
Chapter 8

Unreliable Service and Vacation Interruption

8.1 Introduction

In a real-time scenario, due to the rapid advancement in science and engineering
technologies, the redundant repairable machining systems have now become the es-
sential requirement of daily life. There are many examples of machinery based ser-
vice systems, to be specific, production systems, computer and communication sys-
tems, transportation and supply-chain management, flexible manufacturing systems,
et cetera, which are cited as real-time industrial systems. The industrial systems
advance with the updated digitization, technology, and become sophisticated and
complex. The service quality and performance of any machining system is highly in-
fluenced by the variability of processing times, randomness of repair-times, amount
of random failures, which are some of the common critical factors among all manu-
facturing and commercial industries. Machines are unreliable as their units and capa-
bility of working decrease significantly with the passes of time. It leads to unexpected
failure of the machining system, costly repair of units, expensive replacement of units
that cause the loss of production in any industrial management system. Therefore,
the complexity of the fault-tolerant machining systems, as well as the costs caused by
the unpredictable failure of their units, attract the attention of researchers and system
analysts to maintain the market or acceptable value of any business industry. Indus-
trial systems necessitate the high reliability and availability of the machining system.
For the mathematical modeling of reliability-based machine repair problems through
the queueing-theoretical approach, several research articles and texts (cf. [55], [29],
[53], [192], [87], [193], [86]) have been presented by many of the researchers.

In the mid-twentieth century, the queueing-based telephonic communication prob-
lems developed by the Danish mathematician A. K. Erlang laid the framework for
the development and implementation of queueing problems in real-time scenarios.
Henceforth, during the last century, queueing problems remained more popular and
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emerged as the most prominent and active research area among scholars and re-
searchers. However, because of the increasing complexity of many stochastic ma-
chining and service systems, classical queueing theory, which was once quite suc-
cessful in modeling of telephone systems and other simple service systems, appears
to be insufficient today. To overcome the constraints of classical queueing theory,
the vacation queueing models were introduced and developed as the extension of
the previous theory in the 1970s. In general, in the vacation queueing model, the
server is allowed to take the vacation after the service completion instant rather than
continuously waiting idly for the newly arriving customers. The provision of opting
vacation by the server makes the queue-based service system more flexible in terms
of the optimal operating conditions of the system with the minimum associated ex-
pected cost. Henceforth, the waiting line problems or merely the vacation queueing
models fascinate considerable attention of system analysts, decision-makers, and re-
searchers and become the active and popular area in the research and development
(R&D) sector of service field. To analyze and study the vacation queueing models,
the optimal operating policies in Markovian and non-Markovian environment has
been used by many researchers and scientists (cf. [222], [22], [262], [177], [301],
[171], [221], [88], [89], [212], [137], [233]).

In the past, the concept of queueing theory has been applied to many industrial
problems with several basic queueing terminologies such as impatient, feedback,
breakdown, batch arrival/service, the retrial of customers, and many more. In these
models, generally, it is assumed that the service provided by the service provider is
successful and satisfactory. However, this hypothesis may not always be correct in
many real-time customer-service based management problems. Therefore, the new
terminology, unreliable service, has been introduced in the queueing literature (cf.

[205]) to ascertain whether the ongoing service of the customer has been completed
satisfactorily or not. It can generally be happened because of some external inter-
ference, i.e. the service is interrupted neither by the server’s fault nor by the unit’s
disorder.

In the forthcoming sections, we delineate the effect of working vacation and vaca-
tion interruption policy on some reliability characteristics of the redundant repairable
machining system with unreliable service. For the comparison and stepwise under-
standing, the present study is demarcated in three-part (i) machine repair problem
(MRP), (ii) MRP with working vacation and vacation interruption, and (iii) MRP
with working vacation interruption with unreliable service. For the analysis purpose,
the Chapman-Kolmogorov differential-difference equations are formulated. Next,
to calculate the transient-state queue-size distribution, we employ the Runge-Kutta
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method of fourth-order since it is the arduous task to derive the closed-form expres-
sions of the mean time-to-failure and reliability of the machining system analytically.
For a better understanding from the mathematical point of view, the matrix structures
using different levels and phases of the quasi-birth and death (QBD) process for all
three developed models are also provided.

8.2 Machine Repair Problem (MRP)

In queueing literature, there are many basic models related to real-time Markovian
modeling. To the specific, the machine repair model is the typical example of the
finite population queueing model. In the machine repair model, units represent the
population of prospective customers, the failure of the unit corresponds to the arriv-
ing customer, and the repairman who provides the repair to the failed units is known
as the server. Subsequently, for the mathematical modeling, we deal with the finite
population machine repair problem (MRP) consisting of M identical operating units
and S warm standby units under the care of the single repairman. When the operating
unit fails, it is immediately replaced by the available standby unit with the negligi-
ble switchover time. At the moment when the state of standby unit changes to the
operating state, the failure characteristics of the standby unit become as same as the
operating unit. For the normal working of the repairable machining system, there is
a requirement of M operating units in the system. But the machining system can also
continue functioning in degraded manner even when the number of operating units
in the system is at least m. The (M,m) machining system operates in normal-short
mode depending on the number of operating units in the system; therefore, the max-
imum K = M + S−m+ 1 units are allowed to fail. Moreover, we assume that the
time-to-failure of the operating unit, as well as the standby unit, are independently
and exponentially distributed random variates with parameter λ and ν (0 < ν < λ ),
respectively. Similarly, the time-to-repair the failed unit is also exponentially dis-
tributed with parameter µb. Henceforth, the state-dependent failure rate of units is
represented as

λn =


Mλ +(S−n)ν ; 0≤ n < S

(M+S−n)λ ; S≤ n < K

0; otherwise

In the last few decades, many of the research papers on performance character-
istics of the fault-tolerant machining system have been published using the queuing-
theoretic approach to deal MRP with essential and/or optional terminologies (cf.

[26], [265], [245], [167], [97], [59], [127], [187], [104], [293], [217], [201], [72],



202 Chapter 8. Unreliable Service and Vacation Interruption

[286], [158], [128], [313], [102], [298], [207], [231]). More recently, the fault-
tolerant machining system with the random failure events, common cause failure and
imperfection is investigated by (cf. [229], [230]). For the comparative and optimal
analysis, they provided the numerical simulation of several test experiments with
different repair time distributions.
In this chapter, we present the reliability-based analysis of MRP with different ma-
chining variants. For that purpose, we define the states of the redundant machining
system at time instant t using the fundamental law of Markov chain as

J(t)≡ State of the repairman/server

N(t)≡ Number of failed units in the machining system

Therefore, X(t) = {(J(t),N(t)); t ≥ 0} represents the continuous-time Markov chain
(CTMC) on state space

Θ≡ {(0,n); n = 0,1, · · · ,K−1}∪{K}
where, K is the failure state of the machining system.

Hence, the Markov chain {X(t); t ≥ 0} is irreducible. Also, since the state space
Θ is finite, the Markov chain is positive recurrent. To get the view of transitions
between the precedence states of the machining system, the state transition diagram
for the basic machine repair model is provided in Fig. 8.1.

0, 0 0, 1 • • • 0, S − 1 0, S 0, S + 1 • • • 0, K − 1 K

λ0 λ1 λS−2 λS−1 λS λS+1 λK−2
λK−1

µb µb µb µb µb µb µb

Figure 8.1: State transition diagram of the basic machine repair model.

Now, by balancing the input and output rate flows in Fig. 8.1 and using the fundamen-
tal law of quasi-birth and death (QBD) process, the governing Chapman-Kolmogorov
differential-difference equations of the studied model are derived as follows

(i) When there is no failed unit in the machining system and the repairman is idle
dP0,0(t)

dt
=−λ0P0,0(t)+µbP0,1(t) (8.1)

(ii) When there are n failed units in the machining system and the repairman is
busy in working mode
dP0,n(t)

dt
=−(λn +µb)P0,n(t)+λn−1P0,n−1(t)+µbP0,n+1(t); 1≤ n≤ K−2

(8.2)

(iii) When out of K, maximum allowed failed units, total (K−1) units are failed
dP0,K−1(t)

dt
=−(λK−1 +µb)P0,K−1(t)+λK−2P0,K−2(t) (8.3)
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(iv) The state where the machining system fails completely
dPK(t)

dt
= λP0,K−1(t) (8.4)

For employing the matrix method to determine the transient queue size distributions,
the system of differential-difference equations (8.1)-(8.4) can be represented into the
matrix form DY = Q1Y, wherein, Y is the column vector of all time-dependent state
probabilities of dimension K + 1 and DY is the derivative of the column vector Y,
and Q1 is the block-square transition matrix of order K + 1 which is generated by
using the tri-diagonal characteristics of matrix algebra. The block-structure of the
transition rate matrix Q1 is partitioned as

Q1 =

 B1
00 B1

0 0
C1

1 A1
1 B1

1

0 C1
2 A1

2


where B1

00 is the scalar matrix and B1
0, C1

1 & B1
1 are the row and column vectors of

order K− 1, respectively. Similarly, A1
1 is the tri-diagonal square matrix of order

K−1 and C1
2 & A1

2 are the zero vectors. The structures of these block sub-matrices
are given as

B1
00 = [−λ0] ; B1

0 = [λ0,0,0, · · · ,0]
B1

1 = [0,0, · · · ,0,λK−1]
T ; C1

1 = [µb,0,0, · · · ,0]T

and

A1
1 =



u1
1 v1

1 0 · · · 0 0
w1

2 u1
2 v1

2 · · · 0 0
0 w1

3 u1
3 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · u1
K−1 v1

K−1

0 0 0 · · · w1
K u1

K


where

u1
n =

−(λn +µb); 1≤ n≤ K−1

0; otherwise

v1
n =

λn; 1≤ n≤ K−2

0; otherwise

w1
n =

µb; 2≤ n≤ K−1

0; otherwise

In the process of analyzing the efficiency and working quality of any service/machining
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system, performance measures play a vital role. These measures may either be qual-
itative or quantitative and helps the system engineers and decision-makers to rank
the complex machining/service systems. The following are some essential queueing
performance measures that necessarily be required to investigate the machine repair
model.
• Expected number of failed units in the machining system at time t

EN(t) =
K−1

∑
n=0

nP0,n(t)+KPK(t) (8.5)

• Probability that the repairman is idle at time t

PI(t) = P0,0(t) (8.6)

• Failure frequency of the machining system at time t

FF(t) = λK−1P0,K−1(t) (8.7)

• Throughput of the machining system at time t

τp(t) =
K−1

∑
n=1

µbP0,n(t) (8.8)

• Reliability of the machining system

RY (t) = 1−PK(t) (8.9)

• Mean time-to-failure of the machining system

MT T F =
∫

∞

0
RY (t)dt (8.10)

The numerical simulation has been done in forthcoming section for the sensitivity
analysis of above-mentioned performance characteristics of machine repair problem.

8.3 Working Vacation and Vacation Interruption

In the queueing literature, the vacation queueing models have emerged as intensive
research topics in recent years. Though from the literature, it is observed that the ex-
isting queueing models mainly focused on maintenance optimization, but the reliabil-
ity modeling where the repairman takes the sequence of vacations was less studied.
The concept of working vacation (WV) policy was first conceptualized in 2002 by
[222], inspired from the WDM optical access network using multiple wavelengths.
In the redundant repairable machining systems, during the working vacation period,
the repairman continues rendering the intended repair to the failed units rather than
terminating the repair as on vacation in general. However, in real-time congestion
problems, in spite of better than the complete vacation, the assumption of working
vacation still seems more restrictive. Therefore, to overcome this limitation, in 2007
[170] proposed the vacation interruption (VI) policy for the single service provider in
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Markovian environment. Under vacation interruption policy, during the working va-
cation period, if the repairman finds more failed units in the system waiting for repair
than pre-specified threshold at the service completion instant, the repairman imme-
diately terminates his vacation and resumes the regular working attribute. Several
studies have been done in the context of parametric and optimal analysis of fault-
tolerant machining system with working vacation and vacation interruption by many
researchers (cf. [254], [78], [256], [273], [174], [172], [272], [214]).

0, 10, 0 0, 2 • • • 0, S • • • 0, T 0, T + 1 • • • 0, K − 1

K

1, 1 1, 2 • • • 1, S • • • 1, T 1, T + 1 • • • 1, K − 1

λ0 λ1 λ2 λS−1 λS λT−1
λT λT+1 λK−2

λK−1

λ1 λ2 λS−1 λS λT−1 λT λT+1 λK−2 λK−1

µv µv µv µv µv µv

µv µv µv
θ θ θ θ θ

µb

µb µb µb µb µb µb µb µb

Figure 8.2: State-transition diagram of the machine repair model with working vacation
and vacation interruption.

The basic assumptions considered previously for MRP queueing model are also sup-
posed for the study of queueing model involved in MRP with working vacation (WV)
and vacation interruption (VI). Besides these norms, some more assumptions are also
considered. The repair time of the failed units in working vacation follow the expo-
nential distribution with mean rate µv and the vacation time of the repairman also
follow the exponential distribution with meantime 1/θ . We assume that the inter-
failure times, repair times in both busy & WV states, and vacation times are mutually
independent. Let, J(t) denotes the state of the repairman at time t, and N(t) repre-
sents the total number of failed units in the machining system at time t. Therefore,
the possible states of the repairman are characterized as follows

J(t) =

0; The repairman is in the working vacation period at time instant t

1; The repairman is in the normal busy period at time instant t

Clearly, {J(t),N(t)} for t ≥ 0 is the continuous-time Markov chain (CTMC) with the
state space

Θ≡ {(0,0)}∪{( j,n); j = 0,1 & n = 1,2, · · · ,K−1}∪{K}
where, K is the state representing that the machining system fails completely.

Using the fundamental law of probability and balancing the transitions between
adjacent states in Fig. 8.2 of the MRP with WV and VI policies, the governing
differential-difference equations are developed as follows

(i) When there is no failed unit in the machining system and the repairman is on
the working vacation

dP0,0(t)
dt

=−λ0P0,0(t)+µvP0,1(t)+µbP1,1(t) (8.11)
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(ii) When there are n failed units in the machining system and the repairman is on
working vacation

dP0,n(t)
dt

=−(λn +µv +θ)P0,n(t)+λn−1P0,n−1(t)+µvP0,n+1(t);

1≤ n≤ T −1
(8.12)

(iii) States of the system at which the working vacation of the repairman is inter-
rupted

dP0,n(t)
dt

=−(λn +µv +θ)P0,n(t)+λn−1P0,n−1(t); T ≤ n≤ K−1 (8.13)

(iv) The state of the system after which the busy repairman takes the vacation
dP1,1(t)

dt
=−(λ1 +µb)P1,1(t)+µbP1,2(t)+θP0,1(t) (8.14)

(iv) When there are n failed units in the machining system and the repairman is on
regular busy mode

dP1,n(t)
dt

=−(λn +µb)P1,n(t)+λn−1P1,n−1(t)+µbP1,n+1(t)+θP0,n(t);

2≤ n≤ T −1

(8.15)

dP1,n(t)
dt

=−(λn +µb)P1,n(t)+λn−1P1,n−1(t)+µbP1,n+1(t)+θP0,n(t)

+µvP0,n+1(t); T ≤ n≤ K−2

(8.16)

(v) When (K−1): out-of-K, maximum allowed, units are failed in the machining
system during the busy period of the repairman

dP1,K−1(t)
dt

=−(λK−1 +µb)P1,K−1(t)+λK−2P1,K−2(t)+θP0,K−1(t) (8.17)

(vi) The state of the machining system at which the system fails completely
dPK(t)

dt
= λK−1P0,K−1(t)+λK−1P1,K−1(t) (8.18)

The generator matrix, denoted by Q2, is the composition of block metrics obtained
by the corresponding transitions between adjacent states of the machining system.
The structure of the generator matrix is expressed as follows
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Q2 =



B2
00 B2

0 0 · · · 0 0 0 · · · 0 0 0
C2

1 A2
1 B2

1 · · · 0 0 0 · · · 0 0 0
0 C2

2 A2
2 · · · 0 0 0 · · · 0 0 0

...
...

... . . . ...
...

... . . . ...
...

...
0 0 0 · · · A2

T−1 B2
T−1 0 · · · 0 0 0

0 0 0 · · · C2
2 A2

T B2
T · · · 0 0 0

0 0 0 · · · 0 C2
3 A2

T+1 · · · 0 0 0
...

...
... . . . ...

...
... . . . ...

...
...

0 0 0 · · · 0 0 0 · · · A2
K−2 B2

K−2 0
0 0 0 · · · 0 0 0 · · · C2

3 A2
K−1 B2

K−1

0 0 0 · · · 0 0 0 · · · 0 0 0


where, the block matrix B2

00 is the scalar matrix and B2
0, C2

1 & B2
K−1 are the row and

column vectors of order 2, respectively. The rest of all sub-block matrices are the
square matrices of order 2. The vector and matrix representations of these matrices
are viewed as

B2
00 = [−λ0], B2

0 = [λ0, 0], C2
1 = [µv, µb]

T , B2
K−1 = [λK−1, λK−1]

T

A2
n =

[
−(λn +µv +θ) θ

0 −(λn +µb)

]
; 1≤ n≤ K−1

B2
n =

[
λn 0
0 λn

]
; 1≤ n≤ K−2

C2
2 =

[
µv 0
0 µb

]
& C2

3 =

[
0 µv

0 µb

]
The closed-form expressions for the expected number of failed units in the machining
system EN(t), probability that the repairman is on working vacation PWV (t), proba-
bility that the vacation of the repairman is interrupted PV I(t), reliability of the ma-
chining system RY (t) et cetera are expressed in the following manner
• Expected number of failed units in the machining system at time t

EN(t) =
1

∑
j=0

K−1

∑
n=1

nPj,n(t)+KPK(t) (8.19)

• Probability that the repairman is idle

PI(t) = P0,0(t) (8.20)
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• Probability that the repairman is in normal working mode

PB(t) =
K−1

∑
1

P1,n(t) (8.21)

• Probability that the repairman is on working vacation

PWV (t) =
T

∑
n=0

P0,n(t) (8.22)

• Probability that the vacation of the repairman is interrupted

PV I =
K−1

∑
n=T+1

P0,n(t) (8.23)

• Failure frequency of the machining system at time t

FF(t) = λK−1P0,K−1(t)+λK−1P1,K−1(t) (8.24)

• Throughput of the machining system at time t

τp(t) =
K−1

∑
n=1

µvP0,n(t)+
K−1

∑
n=1

µbP1,n(t) (8.25)

• Reliability of the machining system

RY (t) = 1−PK(t) (8.26)

• Mean time-to-failure of the machining system

MT T F =
∫

∞

0
RY (t)dt (8.27)

8.4 MRP with WV, VI and Unreliable Service

In this section, we choose the queueing terminology and assumptions as same as
in previous sections along with the service failure. The random occurrence of the
service failure is neither because of the server as it would appear in unreliable server
queueing models (cf. [110], [111], [319], [179], [156], [42], [40], [120], [199]), nor
by the units’ disorder as it would be in several interruption models (cf. [284], [179],
[155], [35], [303], [34], [282], [151], [240], [33]). The waiting and/or in-service
failed unit do not abandon (due to the extreme need of repair) from the system, and
we preserve the First Come First Serve (FCFS) protocol for repair. We assume that
the random service failures occur due to external shocks, environmental forces. The
failed units, for which primary repair remains incomplete, continues to strive for
successful repair until it is entirely successful. Additionally, neither the repairman
nor the caretaker knows whether the repair is successful or not until the service time
is completed, and at that instant we hypothesize the quality check to take place, which
determines that whether the service is completed & successful or not.

Let, N(t) be the number of failed units in the machining system at time instant
t, and J(t) be the state of the repairman at time instant t. Then, there exist a total of
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four possible states of the repairman which are characterized as follows

J(t) =



0; the repairman is in the WV period at time instant t

1; States which represents the check points during WV period

2; the repairman is in the busy period at time instant t

3; States which represents the check points during the busy period

Then, {(J(t),N(t)); t ≥ 0} becomes the continuous-time Markov chain (CTMC) with
state space

Θ≡ {(0,0)}∪{( j,n); j = 0,1,2,3 and n = 1,2, · · · ,K−1}∪{K}

0, 10, 0 0, 2 • • • 0, S • • • 0, T 0, T + 1 • • • 0, K − 1

K

1, 1 1, 2 • • • 1, S • • • 1, T 1, T + 1 • • • 1, K − 1

2, 1 2, 2 • • • 2, S • • • 2, T 2, T + 1 • • • 2, K − 1

3, 1 3, 2 • • • 3, S • • • 3, T 3, T + 1 • • • 3, K − 1

λ0 λ1 λ2 λS−1 λS λT−1 λT λT+1 λK−2

λK−1
λ1 λ2 λS−1 λS λT−1 λT λT+1 λK−2

λK−1

λ1 λ2 λS−1 λS λT−1 λT λT+1 λK−2 λK−1

λ1 λ2 λS−1 λS λT−1 λT λT+1 λK−2

λK−1

µv µv µv µv µv µvβ2 β2 β2 β2 β2

β1 β1 β1 β1

β1 β1 β1

θ θ θ θ θ θ

β1

β2 β2 β2 β2 β2 β2µb µb µb µb µb µb
β1 β1 β1 β1 β1 β1

Figure 8.3: State transition diagram of the machine repair model with working vacation
interruption and unreliable service.

Fig. 8.3 represents the state transition diagram of the MRP with multiple WV, VI
policy, and unreliable service of the repairman. For mathematical modeling, re-
pair times of the failed unit follow exponential distribution with parameter µv and
µb when repairman is on vacation or busy respectively. After repair, the service is
checked where checking time also follow exponential distribution with parameter β1

and β2 when repair is successful and not successful respectively. The governing set
of differential-difference equations is given as follows

(i) State when the repairman is idle
dP0,0(t)

dt
=−λ0P0,0(t)+β1P1,1(t)+β1P3,1(t) (8.28)

(ii) When the repairman is in the working vacation state
dP0,n(t)

dt
=−(λn +µv +θ)P0,n(t)+λn−1P0,n−1(t)+β1P1,n+1(t)+β2P1,n(t);

1≤ n≤ T −1

(8.29)

dP0,T (t)
dt

=−(λT +µv +θ)P0,T (t)+λT−1P0,T−1(t)+β2P1,T (t) (8.30)
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(iii) When the working vacation of the repairman is interrupted
dP0,n(t)

dt
=−(λn +µv +θ)P0,n(t)+λn−1P0,n−1(t)+β2P1,n(t);

T +1≤ n≤ K−1
(8.31)

(iv) Check points immediate after the repair is rendered during working vacation
mode

dP1,1(t)
dt

=−(λ1 +β1 +β2)P1,1(t)+µvP0,1(t) (8.32)

dP0,n(t)
dt

=−(λn +β1 +β2)P0,n(t)+λn−1P1,n−1(t)+µvP0,n(t); 2≤ n≤ T

(8.33)

dP0,n(t)
dt

=−(λn +β1 +β2)P0,n(t)+λn−1P1,n−1(t)+µvP0,n(t);

T +1≤ n≤ K−1
(8.34)

(v) States representing that the repairman is on regular busy mode of his service
dP2,1(t)

dt
=−(λ1 +µb)P2,1(t)+θP0,1(t)+β2P3,1(t)+β1P3,2(t) (8.35)

dP2,n(t)
dt

=−(λn +µb)P2,n(t)+λn−1P2,n−1(t)+θP0,n(t)+β2P3,n(t)

+β1P3,n+1(t); 2≤ n≤ T −1
(8.36)

dP2,n(t)
dt

=−(λn +µb)P2,n(t)+λn−1P2,n−1(t)+θP0,n(t)+β1P1,n+1(t)

+β2P3,n(t)+β1P3,n+1(t);T ≤ n≤ K−2

(8.37)

dP2,K−1(t)
dt

=−(λK−1 +µb)P2,K−1(t)+λK−2P2,K−2(t)+θP0,K−1(t)

+β2P3,K−1(t)
(8.38)

(vi) Check points immediate after the repair is rendered during regular busy period
of the repairman

dP3,1(t)
dt

=−(λ1 +β1 +β2)P3,n(t)+µbP2,1(t) (8.39)

dP3,n(t)
dt

=−(λn +β1 +β2)P3,n(t)+λn−1P3,2(t)+µbP2,n(t); 2≤ n≤ K−1

(8.40)

(vii) The state when the system fails completely
dPK(t)

dt
= λK−1P0,K−1(t)+λK−1P1,K−1(t) (8.41)
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Now, using the lexicographic sequence of the states of the machining system, the
structure of the generator matrix is represented as

Q3 =



B3
00 B3

0 0 · · · 0 0 0 · · · 0 0 0
C3

1 A3
1 B3

1 · · · 0 0 0 · · · 0 0 0
0 C3

2 A3
2 · · · 0 0 0 · · · 0 0 0

...
...

... . . . ...
...

... . . . ...
...

...
0 0 0 · · · A3

T−1 B3
T−1 0 · · · 0 0 0

0 0 0 · · · C3
2 A3

T B3
T · · · 0 0 0

0 0 0 · · · 0 C3
3 A3

T+1 · · · 0 0 0
...

...
... . . . ...

...
... . . . ...

...
...

0 0 0 · · · 0 0 0 · · · A3
K−2 B3

K−2 0
0 0 0 · · · 0 0 0 · · · C3

3 A3
K−1 B3

K−1

0 0 0 · · · 0 0 0 · · · 0 0 0


where, the block sub-vectors and matrices have following representation.

B3
00 = [−λ0], B3

0 = [λ0, 0, 0, 0], C3
1 = [0, β1, 0, β1]

T

B3
K−1 = [λK−1, λK−1, λK−1, λK−1]

T

A3
n =


−(λn +µv +θ) µv θ 0

β2 −(λn +β1 +β2) 0 0
0 0 −(λn +µb) µb

0 0 β2 −(λn +β1 +β2)

 ;1≤ n≤ K−1

B3
n =


λn 0 0 0
0 λn 0 0
0 0 λn 0
0 0 0 λn

 ; 1≤ n≤ K−2

C3
2 =


0 0 0 0
β1 0 0 0
0 0 0 0
0 0 β1 0


and

C3
3 =


0 0 0 0
0 0 β1 0
0 0 0 0
0 0 β1 0


To examine the performance of reliability characteristics, namely, reliability of the
machining system, mean time-to-failure, and others, we delineate the closed-form
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expressions in terms of the transient-state probabilities of various states. Following
are some critical performance measures of the machining system which are summa-
rized as
• Expected number of failed units in the machining system at time t

EN(t) =
3

∑
j=0

K−1

∑
n=1

nPj,n(t)+KPK(t) (8.42)

• Probability that the repairman is idle

PI(t) = P0,0(t) (8.43)

• Probability that the repairman is in normal working mode

PB(t) =
K−1

∑
1

P2,n(t) (8.44)

• Probability that the repairman is on working vacation

PWV (t) =
T

∑
n=0

P0,n(t) (8.45)

• Probability that the vacation of the repairman is interrupted

PV I =
K−1

∑
n=T+1

P0,n(t) (8.46)

• Failure frequency of the machining system at time t

FF(t) =
3

∑
j=0

λK−1Pj,K−1(t) (8.47)

• Throughput of the machining system at time t

τp(t) =
K−1

∑
n=1

µvP0,n(t)+
K−1

∑
n=1

µbP1,n(t) (8.48)

• Reliability of the machining system

RY (t) = 1−PK(t) (8.49)

• Mean time-to-failure of the machining system

MT T F =
∫

∞

0
RY (t)dt (8.50)

8.5 Special Cases

The studied models are advanced machine repair problems with many unique and
emergent queueing terminologies. Relaxing one or more assumptions, our studied
models match with the published models available in the existing literature. The
special cases validate our modeling, methodology, and results. Some of them are as
follows
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Case 1: On considering the facility of cold standby units in place of warm standby
units ν = 0, and reliable service β1 = µb, β2 = 0, our machine repair model results
match with special case of MRP in article [181].
Case 2: If K→∞, β1 = µb, β2 = 0, the studied queueing model gives similar results
as in [171] for M/M/1 queue with working vacation (WV) and vacation interruption
(VI).
Case 3: If T = K→ ∞, our model reduce to single server queue with working vaca-
tion and unreliable service (cf. [206]).
Case 4: If T = K→∞, θ →∞, and µv = 0, the model deduce to M/M/1 queue with
unreliable service (cf. [205]).
Case 5: In the case of infinite capacity service system K → ∞, on removing the
assumptions of vacation interruption T =K and unreliable service β1→∞, our model
is equivalent to the model proposed by [222] in which author introduced the notion
of working vacation in the single server queue.

8.6 Cost Analysis

In this section, we formulate the expected total cost function of the redundant re-
pairable machining system to develop the cost optimization problem and calculate
optimal system design parameters, which helps system analysts and engineers in de-
cision making.

8.6.1 Steady-State Analysis

In this subsection, the steady-state analysis at equilibrium is performed to examine
the optimal operating policy of the developed machine repair model with unreliable
service and vacation interruption. In steady-state, i.e. in equilibrium (t → ∞), the
state probability distribution of the machining system is defined as follows

P0,0 = lim
t→∞

Pr [J(t) = 0,N(t) = 0]

Pj,n = lim
t→∞

Pr [J(t) = j,N(t) = n] ; j = 0,1,2,3 & n = 1,2, · · · ,K−1

and

PK = lim
t→∞

PK(t)

Now, using the state transition diagram in Fig. 8.3, the governing matrix formula-
tion Q3Y = 0 for the Markovian machine repair model with standbys provisioning,
unreliable service, and vacation interruption is developed. The steady-state probabil-
ity distribution can easily be computed under probability normalizing condition by
employing the matrix method. Further, for the optimal analysis, the expected total
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cost function is also formulated in the next subsection using intrinsic performance
measures, which incur some cost.

8.6.2 Cost Function

For the optimal analysis, the system design parameters, namely, µv (repair rate dur-
ing WV) and µb (repair rate during the busy period), are taken into consideration.
The main objective of our intuition is to exhibit the optimal repair rates, say µ∗v & µ∗b
respectively for minimizing the incurred expected total cost in operating the redun-
dant machining system. The system engineers and decision-makers have to identify
the states of the machining system, which incur some costs. Following are some cost
elements associated with different performance measures and states of the system,
that are considered and defined as follows

Ch ≡ Holding cost for each failed unit present in the machining system

Cb ≡ Cost associated with the regular busy state of the repairman

Cwv ≡ Cost associated with the working vacation busy state of the repairman

Cvi ≡ Cost incurred with the vacation interruption of the repairman

Ci ≡ Fixed cost for the idle state of the repairman

C1 ≡ Associated cost for providing the repair with rate µv

C2 ≡ Associated cost for providing the repair with rate µb

Using the concept of queueing-theoretic approach and the forementioned cost ele-
ments, we formulate the cost function as follows

TC(µv,µb) =ChE(N)+CbPB +CwvPWV +CviPV I +CiPI +C1µb +C2µv (8.51)

The cost optimization (minimization) problem of the described model involved in
MRP with WV, VI, and unreliable service can be represented mathematically as the
unconstrained problem as follows

TC(µ∗v , µ
∗
b ) = min

(µv,µb)
TC(µv, µb) (8.52)

The expected total cost function is the implicit function of cost elements and per-
formance measures, which depend on state-probabilities derived from the governing
system of equations that are delineated in terms of rates. The expected total cost
function is too complex to get optimal value via the theory of calculus since the first
derivative is not evaluative directly, gradient method, and any other well-known op-
timization techniques. The direct-search method is the too time-taken computational
technique to get any useful results. In the next section, we employ the metaheuris-
tic technique, particle swarm optimization (PSO), which depends on the theory of
survival of the fittest or nature-inspired behavior in swarm for existence.
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8.6.3 Particle Swarm Optimization

For the optimal analysis using PSO algorithm, refer the section 1.10.3 and cite the
system design parameters µv, µb and cost function TC in place of variables x1, x2

and objective function f , respectively.

8.7 Numerical Results and Discussion

The prime goal of the present chapter is to understand the qualitative and percep-
tible performance of the developed fault-tolerant machining system using several
reliability-based performance measures. The expressions of some other queue-based
performance measures are also provided for the straightforward comparative analy-
sis. For validation of formulation and methodology, we establish numerical simula-
tions through various numerical experiments for the three studied models.

Model 1: Machine repair model (MRP)
Model 2: MRP with working vacation (WV) and vacation interruption (VI)
Model 3: MRP with WV, VI, and unreliable service

For that purpose, we fix the default values of the system parameters as M = 10, S = 5,
m = 2, T = 8, λ = 0.3, ν = 0.1, µb = 3.0, µv = 1.0, θ = 6.0, β1 = 5, and β2 = 1. To
determine the state probability distribution numerically, we employ the Runge-Kutta
method of fourth-order and develop the code in MATLAB (2018b) since it is not
possible to derive the analytical expressions of governing state probabilities.

 

Figure 8.4: Variation of reliability of the machining system wrt failure rate of operating
units λ for (i) Model 1, (ii) Model 2, and (iii) Model 3.
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Figure 8.5: Variation of reliability of the machining system wrt failure rate of standby
units ν for (i) Model 1, (ii) Model 2, and (iii) Model 3.

 

Figure 8.6: Variation of reliability of the machining system wrt repair rate µb for (i)
Model 1, (ii) Model 2, and (iii) Model 3.

 

Figure 8.7: Variation of reliability of the machining system wrt repair rate µv for (i)
Model 2, (ii) Model 3.

In Figs. 8.4–8.9, the variation of reliability of the machining system (RY (t)) is ex-
plored wrt the increasing values of different system parameters for all the developed
models. From each figure, we observe that initially, the reliability of the machining
system is constant, but after some time, it continuously decreases, which is the intu-
itively apparent result. We plot three different figures simultaneously to compare the
findings of the studied models and to show the decrements in the reliability function
with increasing values of time t. In Fig. 8.4 and Fig. 8.5, it is noted that the reliability
of the machining system decreases with the increase in the failure rate of the operat-
ing units (λ ) and standby unit (ν) respectively, which follow the obvious trend. This
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Figure 8.8: Variation of reliability of the machining system wrt vacation rate θ . for (i)
Model 2, (ii) Model 3

 

Figure 8.9: Variation of reliability of the machining system wrt (i) rate of successful ser-
vice β1, (ii) rate of unsuccessful service β2 for Model 3.

also prompts that for higher values of λ , the reliability of the machining system de-
creases more rapidly. It is intuitively anticipated that the reliability of the machining
system can be increased by maintaining the appropriate level of repair rate (µb). The
results in Fig. 8.6 validate the hypothesis of the repair rate and demonstrate that the
reliability of the machining system increases with the increasing value of µb. The
effects of working vacations on the reliability of the machining system are depicted
in Figs. 8.7–8.8. Fig. 8.9(i) shows that the high rate of successful service attempt
increases the RY (t), which is expected for any machining or service system. But, the
reverse trend is depicted in Fig. 8.9(ii), which indicates that the cumulative value of
unsuccessful attempts reduces the reliability of the machining system. It is recom-
mended that proper preventive measures should opt to avoid the failure of the unit
and optimal corrective maintenance strategies should be established to maintain the
desired level of reliability at minimum expected cost.

The variation of the mean time-to-failure (MT T F) of the fault-tolerant machining
system for different system parameter values is shown in Fig. 8.10–8.12. In each



218 Chapter 8. Unreliable Service and Vacation Interruption

 

Figure 8.10: Effect of different system parameters on mean time-to-failure of the ma-
chining system in Model 1, 2, & 3.

 

Figure 8.11: Effect of different system parameters on mean time-to-failure of the ma-
chining system in Model 2 & 3.

 

Figure 8.12: Effect of different system parameters on mean time-to-failure of the ma-
chining system in Model 3.

sub-figure, we portray comparative bar-graph for the studied model(s). The MT T F

decreases extensively for the higher values of failure rate (λ ). It also decreases grad-
ually wrt ν and β2, and remains more or less constant wrt µv, θ . It also prompts that
better corrective measures are always necessitate since the MT T F is the increasing
function for higher values of repair rate µb. Also, It appears that the value of MT T F

is very less for the third model, which includes the concept of unreliable service of
the repairman. It prompts that perfect corrective measure is always important.
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Figure 8.13: Surface plot of the expected total cost of the machining system wrt pair of
system design parametrs.

For the optimal analysis in the steady-state condition, we delineate the surface
plot and contour plot of the expected total cost function (eqn(8.51)) in Fig. 8.13 for
combined values of machining system design parameters µb and µv for the default
system parameters value in Figs. 8.4–8.12 and unit cost elements as Ch = 80, Cb = 30,
Cwv = 20, Cvi = 20, Ci = 10, C1 = 60, and C2 = 7 to validate its convex nature. The
shape of these plots confirms that the developed expected total cost function is very
much convex in nature.

To achieve the numerical solution of the governing cost optimization problem
(eqn(8.52)), we implement the swarm intelligence based global optimization tech-
nique, Particle Swarm Optimization (PSO). For that purpose, we fix the default val-
ues of system parameters as M = 10, S= 5, m= 2, T = 8, λ = 0.1, ν = 0.01, θ = 3.0,
β1 = 3.0, and β2 = 0.5 along with the unit cost elements associated with performance
measures and states of the machining system as Ch = 80, Cb = 30, Cwv = 20, Cvi = 20,
Ci = 10, C1 = 60, and C2 = 7. We range the lower and upper bounds of both the deci-
sion variables µv and µb as (0 8]. The default values for parameters of PSO algorithm
are set as κ1 = 2, κ2 = 2, and ω2 = 0.5. The random vectors ϕ1 and ϕ2 take the values
of their elements between 0 and 1.

For the aforementioned default values of the system parameters, some selected
generations of the PSO algorithm are provided in the feasible domain for the illustra-
tive purpose in Fig. 8.14. With the help of these generations, we depict the optimal
combination of decision parameters µv and µb along with the optimal expected cost
of the redundant machining system. Because the PSO algorithm is the generation
and agent-based stochastic optimization technique, we easily examine that in the
first generation, all the search particles (solution points) are randomly distributed in
the whole feasible domain. After that, as the generation passes, i.e. in generations 25,
50, and 100, they approach closer and closer to the converging results in a significant
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    Generation 1       Generation 25 

 

    Generation 50      Generation 100 

 

 

 

Figure 8.14: Several generations of the PSO algorithm in order to find the optimal pair
(µv,µb).

manner by exploring and exploiting the whole feasible region and shows its capabil-
ity to converge to the optimal results within the reasonable time interval. It implies
the robustness of the PSO algorithm and confirms its applicability for all such numer-
ical experiments. Using the PSO algorithm, we achieve the coordinates of the best
particle as [µ∗v ,µ

∗
b ] = [2.585448,3.105217] along with the minimal expected cost of

the machining system TC∗ = 378.073039.
The numerical simulation for different combinations of system parameters and

cost elements is performed by developing several test instances, and results are tab-
ulated in Tables 8.1–8.3. For each test instance, we execute numerical experiments
by employing the PSO algorithm for 50 search particles, 100 generations, and 20
runs. All the results obtained in each run of the PSO algorithm are mutually inde-
pendent of each other. Besides, for the validating of the research findings and to show
the robust nature of PSO algorithm, we utilize the concept of statistical parameters,
namely mean ratio and the maximum ratio of the optimal cost (TC) among all runs
of the PSO algorithm. From Tables 8.1–8.3, for all test instances, we examine that the
mean-ratio

[ TC
TC∗
]

and max ratio max
[ TC

TC∗
]

ranges [1.000000000000,1.000012673892]
and [1.000000000000,1.000038018489] respectively. It signifies that the searching
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characteristic of the PSO algorithm to move towards the best position.
Table 8.1 prompts clearly that for more operating units, better repair rates require.

It allows the working vacation repair rate the little less, which signifies the non-
working attitude of the server in vacation mode. The apparent result of the vacation
interruption threshold is also revealed in Table 8.1, i.e. for high threshold value,
high working vacation repair rate requires. Table 8.2 summarizes the optimal design
specifications for different rates involved in the studied model. For higher failure
rate of units, λ , ν , higher working repair rate is required. In the optimal design,
machining system does not prefer working vacation repair. For long vacation time,
lower working vacation repair rate is necessary since machining system stabilizes
with time. The substantial effect of the unreliable service on the optimal design
parameters is also clearly depicted. Table 8.3 tabulates the results of optimal design
parameters with variation in the incurred cost for different states of the machining
system. The results give glance for the design of the machining system under the
constraints of resource or budget.

In a nutshell, we recommend following notable points from the studied models
• For the predictive maintenance, proper modeling, methodology, and analysis

are required,
• For better preventive maintenance policy, the system designer should opt for

regular maintenance check, redundancy under budget constraints, etc. so that,
failure of units or redundant machining system can be delayed.
• For just-in-time corrective maintenance policy, the prompt repair facility should

be made available with some budgetary constraints.
In short, the optimal design of the fault-tolerant machining system is required from
installation to operation, from the operation to repair, and from repair to replacement.

8.8 Conclusion

In general, the permanent repair facility deteriorates the performance and service
quality of any machining/service system due to exhaust work, wear or tear, more
idleness, etc. To reduce the wastage of valuable resources, we use some critical
queueing terminologies like working vacation, vacation interruption, and unreliable
service of the repairman in our modeling and develop different models. To show
the dynamical behavior of developed models and the comparative analysis among
them, we use several concepts of reliability theory and queueing-theoretic approach.
For that purpose, using the fundamental law of transition between adjacent states,
the Chapman-Kolmogorov differential-difference equations are developed for each
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model, and corresponding matrix structures in terms of block-matrices are also pro-
vided. Moreover, to show the variability of reliability of the fault-tolerant machining
system and mean time-to-failure, several plots are provided, and numerical simula-
tion has been performed for the illustrative purpose.

With the observations of transient analysis, the research scientists, decision-makers,
and engineers can conclude that the reliability of the machining system, mean time-
to-failure, can be significantly improved by increasing the standby components and
the repair rates of the repairman. As a conclusive remark, the findings of the reliabil-
ity measures of the machining system reveal that the utilization of working vacation
policy is more beneficial for the system analysts and engineers instead of employ-
ing unreliable service altogether. Numerical simulations and optimal analysis for
multiple combinations of default data sets of system parameters and cost elements
affirm that such queueing methodologies may be appropriate for many commercial
and manufacturing industries. From the future perspective, one can extend this work
to general and hyper-exponential service times rather than exponential repair times
of the failed units.
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