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ABSTRACT 
 
Recently there has been growing interest in propagating the aspect paradigm to the 

activities in the earlier phases of the software development lifecycle. There is a need to 

study various approaches in the use of object-oriented design patterns and aspect 

oriented design approach in enterprise systems for architecture and its implementation. 

Aspect Oriented Software Development (AOSD) is a step towards further enhancing the 

popular object oriented software development framework by embedding the underlying 

design elements  without disturbing the base design. The development of aspect 

oriented requirements gathering approach, design notation and environment for 

development of enterprise systems needs to be further refined in the context of software 

applications and industry. As part of the general research trend, this thesis focuses on 

the design and development of a general purpose design language and the path to 

future work is highlighted  for aspect oriented software development.  

This thesis starts off with a general introduction into the research area and a description 

of the basic  concepts and rationale behind aspect oriented software development and 

aspect oriented programming (AOP).  A critical examination of existing AOP language 

features and aspect oriented design languages is provided. These observations together 

with previous experiences of developing  enterprise wide software applications based on 

object oriented methodologies  lead to a set of fundamental design elements in aspect 

oriented software development. The core of the thesis presents the prototype for the 

design language for aspect oriented software development based on the so called 

‘aspect oriented software development design language’(AOSDDL). This aspect 

oriented design language  with its graphical notation helps developers to design and 

comprehend aspect-oriented programs and would facilitate the perception of aspect-

orientation. This design notation will help developers to assess the crosscutting effects 

of aspects on their base classes. Its application carries over the advantages of aspect-

orientation to the design level and facilitates adaption and reuse of existing design 

constructs.  

Extensive computer laboratory work  on software applications using existing AOP 

languages and AOSD  design notations was carried out. Next, work  on  the  issues 

related to  the mapping  of AOP languages  to existing legacy code / OO code and  

design patterns was carried. In the next stage, work related to mapping of  AOSD design 

notations  to existing AOP languages was taken forward. Finally, the success of the 

design language and its prototype graphical notation is evaluated by means of a few 
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concrete software applications. This shows that AOSDDL  offers sufficient flexibility and 

extensibility to augment software development in ways that suits today’s environment of 

providing a platform for developing enterprise wide distributed applications, and the 

prototype implementation confirms that the research platform offers acceptable design 

elements (constructs) to map aspect oriented programming to aspect oriented software 

development design language.      
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CHAPTER 1 
 
Introduction 
 

1.1    Overview 
 
This introduction sets the stage for the research carried out for this thesis. It 

introduces the concept of “aspect oriented programming” and outlines the general 

path of research that has been taken. 

An analysis of the evolution of object oriented design methodology shows that the 

original object or class architecture was not designed for the requirements of 

today’s enterprise wide distributed environment. This chapter outlines how the 

novel paradigm proposed by aspect oriented design language could advance the 

current  design architecture and overcome its main design flaws. A discussion of 

the applications of aspect oriented programming   and its advantages highlights the 

potential beneficiaries of this new design methodology, namely third party tool  

developers, software developers, software vendors and most importantly the end 

users. 

This chapter concludes with an overview of the main research challenges that are 

targeted by this research effort, followed by an outline of the thesis structure.  

 
1.2    Evolution of Software Programming Methodology 

In the early days of computer science, developers wrote programs by means of 

direct machine-level coding[1]. Unfortunately, programmers spent more time 

thinking about a particular machine's instruction set than the problem at hand. 

Slowly, we migrated to higher-level languages that allowed some abstraction of the 

underlying machine. Then came structured languages, we could now decompose 

our problems in terms of the procedures necessary to perform our tasks. However, 

as complexity grew, we needed better techniques. Object-oriented programming 

(OOP) let us view a system as a set of collaborating objects. Classes allow us to 

hide implementation details beneath interfaces. Polymorphism provided a common 

behavior and interface for related concepts, and allowed more specialized 

components to change a particular behavior without needing access to the 

implementation of base concepts.  
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Programming methodologies and languages define the way we communicate with 

machines. Each new methodology presents new ways to decompose problems: 

machine code, machine-independent code, procedures, classes, and so on. Each 

new methodology allowed a more natural mapping of system requirements to 

programming constructs. Evolution of these programming methodologies let us 

create systems with ever increasing complexity. The converse of this fact may be 

equally true: we allowed the existence of ever more complex systems because 

these techniques permitted us to deal with that complexity.  

There is a well documented problem in the software engineering field relating to a 

structural mismatch between the specification of requirements for software 

systems and the specification of object-oriented software systems. The structural 

mismatch happens because the units of interest during the requirements phase (for 

example, feature, service, capability, function etc.) are different to the units of 

interest during object-oriented design and implementation (for example, object, 

class, method, etc.)[2]. The structural mismatch results in support for a single 

requirement being scattered across the design units and a single design unit 

supporting multiple requirements - this in turn results in reduced comprehensibility, 

traceability and reuse of design models. Currently, OOP serves as the 

methodology of choice for most new software development projects. Indeed, OOP 

has shown its strength when it comes to modeling common behavior. However,  

OOP does not adequately address behaviors that span over many -- often 

unrelated -- modules. Separation of concerns is a basic engineering principle that 

is also at the core of object-oriented analysis and design methods in the context of 

UML [3]. Separation of concerns can provide many benefits: additive, rather than 

invasive, change; improved comprehension and reduction of complexity; 

adaptability, customizability, and reuse.   

In contrast, AOP [4] methodology fills this void. AOP quite possibly represents the 

next big step in the evolution of programming methodologies. However, for aspect-

oriented software development (AOSD) [5] to live up to being a software 

engineering paradigm, there must be support for the separation of crosscutting 

concerns across the development lifecycle including traceability from one lifecycle 

phase to another. Concerns that have a crosscutting impact on software (such as 

distribution, persistence, etc.) present well-documented difficulties for software 
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development. Since these difficulties are present throughout the development 

lifecycle, they must be addressed across its entirety.  

Although a lot  has been done  to study the aspect oriented design approach in 

enterprise systems for architecture and its implementation, work on a general-

purpose design language for aspect-oriented software development is attracting a 

lot of attention. The development of aspect oriented requirements gathering 

approach, design notation and environment for development of enterprise systems 

needs to be further refined in the context of software applications and industry. 

This discussion has shown a range of design methodologies related to object 

oriented and aspect oriented software development that augment the current 

software industry scene and practices. Ongoing efforts in this area suggest that 

this trend of incorporating aspect elements inside any object oriented software 

design is far from over. 

The majority of these designs are implemented as individual ad-hoc extensions – 

all with the goal of improving the software design to account for today’s 

requirements such as logging, caching, persistence and distribution. However, the 

fundamental problem, namely that the programming methodology provides no 

architectural support for flexible extensibility, remains. 

This thesis therefore investigates traceability between developing a standard and 

general purpose  AOSD design language with existing UML features and 

extensions to map AOSD design notations to  AOP language. The aim is to provide 

a uniform design interface to add new extensions (for example, logging, caching, 

security etc)  with a view  towards eventually developing a standard design 

language for a broad range of AOSD approaches – independent of the 

programming language in hand. 

 
1.3    Aspect Oriented Programming And Design  
 
A gap exists between requirements and design on one hand, and between design 

and code on the other hand. Aspect oriented programming (AOP) extended to the 

modeling level where aspects could be explicitly specified during the design 

process  will  make it possible to weave these aspects into a final implementation 

model. Another step could be extension of AOP to the entire software development 

cycle. Each aspect of design and implementation should be declared during the 

design phase so that there is a clear traceability from requirements through source 
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code thus using UML as the design language  to provide an aspect-oriented design 

environment.                                  

The separation and encapsulation of crosscutting concerns has been promoted as 

a means of addressing these difficulties; the standard object-oriented paradigm 

does not suffice. In order to overcome the difficulties for crosscutting concerns 

throughout the lifecycle, an approach is required that provides a means to separate 

and encapsulate both the design and the code of crosscutting behaviour. It is 

important to work towards a general purpose AOSD design language that meets 

certain goals  including the following: 

• Implementation language independent: The final form of AOP 

language may vary from that of any current one. Thus, any design 

language that simply mimics the constructs of a particular AOP 

language is liable to fail to achieve implementation language 

independence. 

• Design-level composability:  Design level composability is a 

desirable property for two reasons. First designers may check the 

result of composition prior to implementation, for validation 

purposes. Second, some projects will continue to require the use 

of a non-aspect-oriented implementation language because of 

pragmatic constraints, such as the presence of legacy code 

written in languages without aspect-oriented extensions; these 

projects could still benefit from separating the design of 

crosscutting concerns. 

• Compatibility with existing design approaches:  An AOSD design-

level language should also build existing design languages such 

as UML, to provide a bridge from old techniques to new, so that 

software engineering realities such as incremental adoption and 

legacy support are possible. 

The construction of complex, evolving software systems requires a high-level 

design model. This model should be made explicit, particularly the part of it that 

specifies the principles and guidelines that are to govern the structure of the 

system. In reality, however, implementators tend to overlook the documented 

design models and guidelines, causing the implemented system to diverge from its 

model. Reasoning about a system whose models and implementation diverge is 
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error prone – the knowledge we gain from these models is not of the system itself, 

but of some fictious system, the system we intended to build. The system’s 

comprehensibility is impeded, and so using software engineering techniques goes 

against our intended goals – quality, maintainability and cost minimization. The 

essence of the problem of implementing higher-level principles and guidelines lies 

in their globality. These principles cannot be localized in a single module, they 

must be observed everywhere in the system, which means that they crosscut the 

system’s architecture. 

 

1.4    Need  for Aspect Oriented Design  in  Software Development? 
 
The identification of the mapping and influence of a requirement level aspect 

promotes traceability of broadly scoped requirements and constraints throughout 

system development, maintenance and evolution. The improved modularization 

and traceability obtained through early separation of crosscutting concerns can 

play a central role in building systems resilient to unanticipated changes hence 

meeting the adaptability  needs of volatile domains such as banking, 

telecommunications and e-commerce. These crosscutting concerns are 

responsible for producing tangled representations that are difficult to understand 

and maintain. Examples of such concerns at the requirements level are 

compatibility, availability and security requirements that cannot be  encapsulated 

by a  use case and are typically spread across several of them. 

With increasing support for aspects at the design and implementation level, the 

inclusion of aspects as fundamental modeling primitives at the requirements level 

and identification of their mappings also helps to ensure homogeneity in an aspect 

oriented software development project. 

The main drive behind aspect oriented design language research is the idea of 

developing design constructs (elements) that exhibit a degree of flexibility and 

customizability that is only known from programmable end systems. While new 

design language constructs based on aspect oriented programming are being 

designed they are still tied to a particular platform whereby the vendor provides 

both the software tool and the design language tool as a complete package with 

additional proprietary tools. Thus, new design language aspect constructs can only 

be tested or utilized to individual specific requirements after the vendor has 

released a software upgrade. The development of new functionality is typically 
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preceded by a long and awkward standardization process. These different 

paradigms have created an increasing gap between the functions and capabilities 

of  these constructs in an aspect oriented development environment. 

Reconsidering the system architecture of object oriented software applications is 

therefore a crucial step in aspect oriented software development. 

 
1.5    Aspect Oriented Software Development Design Language 
   
AspectJ [6, 7, 8] is a popular and well established AOP language that provides 

support for specifying and composing crosscutting  code into a core system.  It 

supports the AOP paradigm by providing a special unit, called “aspect”, which 

encapsulates crosscutting code. Other compositional implementation languages 

and mechanisms  also exist [9, 10].  At the design level, an AOSD design  

language with extensions to UML [1, 11, 12, and 13] in its capabilities relating to 

decomposition and modularization  is required that would map to a particular 

AOSD implementation. Further, a standard AOSD design language must be 

capable of supporting many of these aspect programming languages. A graphical 

notation helps developers to design and comprehend aspect-oriented programs. 

Further, it would facilitate the perception of aspect-orientation. A design notation 

helps developers to assess the crosscutting effects of aspects on their base 

classes. Its application carries over the advantages of aspect-orientation to the 

design level and facilitates adaption and reuse of existing design constructs.  

 

1.6    Who are the beneficiaries? 
 
The advantages of a flexible and extensible aspect oriented design language are 

expected to benefit the software  community at various levels. 

  
1.7    Research Challenges 
 
The main aim of this work is to investigate flexible and extensible mechanisms that 

enable dynamic introduction of new functionality into an existing operational 

design. This endeavor is pursued from the endpoint of the programmer and the 

design team as both has a great interest in implementation and / or processing of 

individual elements. 

The key challenge of this thesis therefore is to design a novel design language 

architecture that provides the basis for flexible extensibility of design functionality. 
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In order to verify the practicality of this architecture, prototyping an application 

according to the new design elements will be a major part of this undertaking. 

The challenges of the architectural design language are as follows: 

 

• Generic platform (not tied to a specific application) 

The design goal is to develop a generic programmable design language 

platform to support  the diversity of today’s and future design specifications.  

The idea is to replace the numerous ad hoc approaches to provide specific 

design elements  inside the language that allows users (such as 

programmers or systems analyst) to extend the design capabilities in a 

uniform way. 

Unlike most existing design language architectures, which are tied to a 

specific application domain, the goal here is to start with a requirement 

analysis of a wide range of  software applications and design specifications 

in order to consider the multitude of requirements in the architectural 

design. 

• Modular component-based architecture 

Another key objective is to design a design language architecture that is 

truly component-based taking advantage of component features such as 

modularity, extensibility, and   reusability.  The design elements  can hence 

be programmed into aspects or classes called components. These 

components will typically provide a new specification or simply extend an 

existing specification. 

The component architecture allows complex technical and  design 

specifications to be split into simply and easy-to-develop functional 

components. This ‘divide and conquer’ approach eases the design and 

development of specifications. Moreover, it improves the granularity of 

design specification extensibility and reusability of components among 

specifications. 

• Compatibility and transparency 

The introduction of aspect oriented programming in current design 

methodologies, such as object-oriented, depends largely on how easily it 

can be integrated with existing technologies. It is therefore a major 

objective to design the design language architecture in a way that enables 
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seamless transitioning towards the aspect based programming paradigm. 

Most early design proposals, for example,  did not consider the crosscutting 

concerns, a vital requirement, and hence, ended up with solutions that rely 

on a design consisting only of objects and classes. Such software systems  

are obviously very hard to introduce in a distributed environment where 

security, caching and logging are major concerns. Consequently, an 

important goal here is to design an aspect based architecture that allows 

transparent, and hence seamless, application of design elements to the 

software components.  No change to the domain specific functional 

components, systems and applications, or the intermediate modules that 

are not directly involved should be required. Such transparent solutions 

have the advantage that a partial transitioning from object oriented design 

to aspect oriented design – where the common but the more important 

concerns reside are most effective – is possible. 

• Commercial feasibility 

Another important factor for the success of aspect oriented design 

language is its commercial viability. Many great technologies have failed in 

the past simply due to a weak business model. As a result, this work 

focuses on a solution that has evident beneficiaries and a likely commercial 

perspective. 

The challenge is to develop an active design language that enables third 

party development of aspect based software applications. Breaking the tight 

coupling between the design language and the software development 

environments decouples the role of the systems analyst from the software 

vendor and thus opens up a new competitive market for third party aspect 

oriented design software. This is particularly promising as unhindered 

competition   typically maximizes the cost-performance ratio of products 

and specifications. 

 

1.8    Thesis Structure 
 
This first chapter of the thesis has introduced the concepts of aspect oriented 

programming and software development. It outlines how the new methodology has 

emerged from traditional object oriented methodologies as a result of the growing 

demands of today’s software practitioners and applications. Furthermore, it 
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provides the motivation for this line of research along with the main research 

challenges of this study. The remainder of this thesis is structured as follows. 

Chapter two continues with an introduction of the general background and issues 

of aspect oriented software development. It defines the basic methodology and 

introduces the main concepts. These include different design language approaches 

towards aspect oriented programming, various programming models and other 

important issues such as crosscutting concerns and system security and integrity. 

Chapter three provides a comprehensive overview of the current state-of-the art in 

the field by introducing related work that is or has been under investigation at other 

research institutions and universities. A special focus is placed on research into 

aspect oriented software design methodologies and enabling technologies. 

Chapter three concludes with an overview of current work on aspect oriented 

applications and design language specifications.  

Chapter four continues with a requirements analysis for aspect oriented systems. 

The requirements are derived from past experiences in object oriented and aspect 

oriented programming paradigms of working in the software industry and 

academics in my previous work places and a thorough study of related work as 

well as other influencing factors, for example commercial aspects such as the 

deployment of new technologies. From these general requirements a subset of 

requirements that form the basis for the design of  the AOSDDL  design language 

architecture and implementation is drawn. 

Chapter five presents the  AOSDDL  design language. This central part of the 

thesis  describes in detail how AOSDDL operates and how the component based 

design architecture enables handling of crosscutting concerns through flexible 

integration and extensibility of design functionality. In addition to the basic 

language design, special focus is placed on the following key aspects: 

components, distribution and weaving. 

Chapter six then describes the ongoing implementation efforts of developing 

prototype design constructs of the AOSDDL design language architecture. Due to 

the considerable extent of the AOSDDL architecture, this chapter focuses primarily 

on validating the key aspects of the design through a ‘proof-of-concept’ 

implementation. 

It continues with a qualitative and quantitative evaluation of AOSDDL and its 

prototype implementation. It evaluates how the AOSDDL architecture satisfies the 
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objectives and requirements identified in chapter four based on a case study and 

several example applications. 

Finally, chapter seven concludes the thesis by drawing together the main 

arguments of this work and summarizing the contributions that have been made. It 

also describes future work that could be carried out based on this line of research.  
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CHAPTER 2 
 
Aspect Oriented Programming 
 
 

2.1    Overview 
 
This chapter provides a general background on the field of aspect oriented 

programming. It looks back to the initial developments of this trend in the 1990’s 

and shows how the field has evolved since. 

The main focus however is to introduce the core concepts [14] and issues of 

aspect oriented programming as a basis for further discussions throughout the 

thesis. As such, this chapter defines the basic methodology for aspect oriented 

programming and describes various approaches towards aspect oriented software 

development. Although the idea of adopting the appropriate design methodology to 

software development is not revolutionary (for example, object oriented approach 

is also a design methodology), identifying common concerns in a software design 

and separating this functionality requires architectural  changes  to the design and 

implementation of current aspects. This chapter introduces several architectural 

approaches to the design of aspect oriented systems and defines various 

programming models for aspect oriented software development. 

Furthermore, the fact that aspects allow  software practitioners to program the 

software places more responsibility and functionality  concerns on such 

architectures. This chapter examines solutions within the context of aspect oriented 

software development. 

 

2.2    Background 
 
While object-oriented programming (OOP) is the most common methodology 

employed today to manage core concerns, it is not sufficient for many crosscutting 

concerns, especially in complex applications. A typical OOP implementation [15] 

creates a coupling between the core and crosscutting concerns that is undesirable, 

since the addition of new crosscutting features and even certain modifications to 

the existing crosscutting functionality require modifying the relevant core modules. 

AOP is a new methodology that provides separation of crosscutting concerns by 
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introducing a new unit of modularization—an aspect—that crosscuts other 

modules. AOP  implements crosscutting concerns in aspects instead of fusing 

them in the core modules. An aspect weaver, which is a compiler-like entity, 

composes the final system by combining the core and crosscutting modules 

through a process called weaving. The result is that AOP modularizes the 

crosscutting concerns in a clear-cut fashion, yielding a system architecture that is 

easier to design, implement, and maintain. 

In this chapter, we examine the fundamentals of AOP, the problems it addresses. 

Perhaps the most commonly asked question in today’s software engineering is, 

how much design is too much? Good system architecture considers present and 

potential future requirements. Failing to take into account the potential future 

requirements of a crosscutting nature may eventually require changing many parts 

of the system or perhaps even re-implementing them. On the other hand, including 

low-probability requirements may lead to an over designed, hard-to-understand, 

bloated system. There is a demand to create well-designed systems that can meet 

future needs without compromising quality. Then again, inability to predict the 

future and time-to-market pressure simply suggests going with what you need 

today. Further, since requirements are going to change anyway, why bother 

considering them? The question that pops up is: Is it  under design / over design? 

 

2.3    Why do we need AOP? 
 
The usual approach is to build the system, profile it, and retrofit it with optimizations 

to improve performance. This approach calls for potentially changing many parts of 

the system using profiling. Further, over time, new bottlenecks may need to be 

addressed due to changes in usage patterns. The architects of reusable libraries 

have an even more difficult task because it is a lot harder to imagine all the usage 

scenarios of a library. Today’s fast-changing technology makes it even more 

difficult since technological changes may make certain design decisions useless. 

Table 2.1 enumerates the forces on an architect that are at the root of the 

architect’s dilemma. 

When software projects turn out to be insufficient for future business requirements, 

it is common to blame the problem on the design decisions. However, what is often 

believed to be insufficient design effort or design shortcomings may be simply a 

limitation of the design methodologies used and the language implementation. With 
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current design and implementation techniques, there is a limit to what we can do to 

produce a system that satisfies the current and potential future requirements in a 

balanced way, and even that limit may not be acceptable when considering the 

ever-increasing pressure on time-to-market and quality requirements of feature-rich 

products. 

The architect’s dilemma, then, is the perennial problem of achieving balance 

throughout the software process; you are always aiming for that balance, though 

you know you can never achieve it.  One point needs to be made explicitly clear: 

AOP is not an antidote for bad or insufficient design. In fact, it is very tough to 

implement crosscutting concerns in a poorly designed core system. There will  still 

be a need to create a solid core architecture using traditional design 

methodologies, such as OOP. What AOP offers is not a completely new design 

process, but an additional means that allows the architect to address future 

potential requirements without breaking the core system architecture, and to spend 

less time on crosscutting concerns during the initial design phase, since they can 

be woven into the system as they are required without compromising the original 

design. 

 

2.4    Evolution of programming methodologies 
 
From machine-level languages to procedural programming to OOP, software 

engineering has come a long way; we now deal with the problems at a much 

higher level than we did a few decades back. We no longer worry about the 

machine instructions but rather view a system as a symbiosis of the collaborating 

objects. However, even with the current methodologies there is a significant gap 

between knowing the system goals and implementing them. The current 

methodologies make initial design and implementation complex and evolution hard 

to manage.    

Table 2.1 Forces behind the architect’s dilemma                      
          Benefits of Under design                        Benefits of Over design 

Reduced short-term development cost Better long-term system manageability 
Reduced design bloat Easy to accommodate new 

requirements 
Reduced time-to-market Improved long-term product quality 
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This is ironic given the world we live in, which demands a faster implementation 

cycle and where the only constant is change.  

In the evolutionary view of programming methodology, procedural programming 

introduced functional abstraction, OOP introduced object abstraction, and now 

AOP introduces concern abstraction [16]. Currently, OOP is the methodology of 

choice for most new software development projects. OOP’s strength lies in 

modeling common behavior [17]. However, it does not do as good a job in 

addressing behaviors that span many, often unrelated, modules. AOP fills this void. 

 
2.5    Managing system concerns 
 

A concern[18, 19] is a specific requirement or consideration that must be 

addressed in order to satisfy the overall system goal. A software system is the 

realization of a set of concerns [20].  In addition to system concerns, a software 

project needs to address process concerns, such as comprehensibility, 

maintainability, traceability, and ease of evolution. 

A concern can be classified into one of two categories: core concerns capture the 

central functionality of a module, and crosscutting concerns capture system-level, 

peripheral requirements that cross multiple modules. A typical enterprise 

application may need to address crosscutting concerns, such as authentication, 

logging, resource pooling, administration, performance, storage management, data 

persistence, security, multithread safety, transaction integrity, error checking, and 

policy enforcement, to name just a few. All of these concerns crosscut several 

subsystems. For example, the logging concern affects every significant module in 

the system, the authorization concern affects every module with access control 

requirements, and the storage-management concern affects every stateful 

business object. Figure 2.1 shows how these concerns often interact in a typical 

application. This figure shows how the implementation modules in a system each 

address both system-level and business concerns. This view portrays a system as 

a composition of multiple concerns that become tangled together by the current 

implementation techniques; therefore the independence of concerns cannot be 

maintained. 
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Figure 2.1 Viewing a system as a composition of multiple concerns. Each implementation module 
addresses some element from each of the concerns the system  
(Source: http://www.javaworld.com) 
 
2.6    Identifying system concerns 
 
Identifying the core and crosscutting concerns of a system focuses on each 

individual concern separately and reduce the overall complexity of design and 

implementation. In order to do this, the first step is to decompose the set of 

requirements by separating them into concerns. Figure 2.2 illustrates the process 

of decomposing the requirements into a set of concerns. While each requirement 

initially appears to be a single unit, by applying the concern identification process, 

we can separate out the individual core and crosscutting concerns that are needed 

to fulfill the requirement. The significance of this kind of system view is it shows us 

that each concern in a multidimensional space is mutually independent and 

therefore can evolve without affecting the rest.  

For example, changing the persistence requirement [21] from a relational database 

to an object database [22] should not affect the business logic or security 

requirements. Separating and identifying the concerns in a system is an important 

exercise in the development of a software system, regardless of the methodology 

used. Once we have done so, we can address each concern independently, 
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making the design task more manageable. The problem arises when we implement 

the concerns into modules. Ideally, the implementation will preserve the 

independence of the concerns, but this doesn’t always happen. 
                             
 
      Business  Persistence 
      Logic 

 
Requirements               Security     Logging 
 

Aspectual 
Decomposition 

                       
Figure 2.2 Concern decomposition. While the requirement initially appears as a single requirement, 
after passing it through the concern identification mechanism, you can see the constituent concerns 
separated out. 
(Source: http://www.javaworld.com) 

  

2.7    A one-dimensional solution 
Crosscutting concerns, by their nature, span many modules, and current 

implementation techniques tend to mix them into the individual core modules. To 

illustrate this, figure 2.3 shows a three-dimensional concern space, whereas the 

code that implements the concerns is a continuous flow of calls, and in that sense 

is one-dimensional. Such a mismatch results in an awkward mapping of the 

concerns to the implementation. 

Since the implementation space is one-dimensional, its main focus is usually the 

implementation of the core concern, and the implementation of the crosscutting 

concerns is mixed in with it. While we may naturally separate the individual 

requirements into mutually independent concerns during the design phase, current 
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programming methodologies do not allow us to retain the separation in the 

implementation phase. 

 

                         

 
           Concern Space      Implementation Space 
                    
Figure 2.3 Mapping the N-dimensional concern space using a one-dimensional language. The 
orthogonality of concerns in the concern space is lost when it is mapped to one-dimensional 
implementation space. 
(Source: http://www.javaworld.com)  
 
2.8    Modularizing 
In software design, the best way of simplifying a complex system is to identify the 

concerns and then to modularize them. In fact, the OOP methodology was 

developed as a response to the need to modularize the concerns of a software 

system. The reality is, though, that although OOP is good at modularizing core 

concerns, it falls short when it comes to modularizing the crosscutting concerns. 

The AOP methodology was developed to address that shortfall. In AOP, the 

crosscutting concerns are modularized by identifying a clear role for each one in 

the system, implementing each role in its own module, and loosely coupling each 

module to only a limited number of other modules. 

In OOP, the core modules can be loosely coupled through interfaces, but there is 

no easy way of doing the same for crosscutting concerns. This is because a 

concern is implemented in two parts: the server-side piece and the client-side 

piece. (The terms server and client are used here in the classic OOP sense to 

mean the objects that are providing a certain set of services and the objects using 

those services. 
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OOP modularizes the server part quite well in classes and interfaces [23]. 

However, when the concern is of a crosscutting nature, the client part, consisting of 

the requests to the server, is spread over all of the clients. 

As an example, let’s look at a typical implementation of a crosscutting concern in 

OOP: an authorization module that provides its services through an abstract 

interface. The use of an interface loosens the coupling between the clients and the 

implementations of the interface. Clients who use the authorization services 

through the interface are for the most part oblivious to the exact implementation 

they are using. Any changes to the implementation they are using will not require 

any changes to the clients themselves. Likewise, replacing one authorization 

implementation with another is just a matter of instantiating the right kind of 

implementation. The result is that one authorization implementation can be 

switched with another with little or no change to the individual client modules. This 

configuration, however, still requires that each client have the embedded code to 

call the API. Such calls will need to be in all the modules requiring authorization 

and will be mixed in with their core logic. 

Figure 2.4 shows how a banking system would implement logging using 

conventional techniques. Even when using a well-designed logging module that 

offers an abstract API and hides the details of formatting and streaming the log 

messages, each client—the accounting module, the ATM module, and the 

database module—still needs the code to invoke the logging API. The overall effect 

is an undesired tangling between all the modules needing logging and the logging 

module itself. Each coupling is represented in the figure by a gray arrow. 

This is where AOP comes into the picture. Using AOP, none of the core modules 

will contain calls to logging services—they don’t even need to be aware of the 

presence of logging in the system. Figure 2.5 shows the AOP implementation of 

the same logging functionality shown in figure 2.4. The logging logic now resides 

inside the logging module and logging aspect; clients no longer contain any code 

for logging. The crosscutting logging requirements are now mapped directly to just 

one module—the logging aspect. With such modularization, any changes to the 

crosscutting logging requirements affect only the logging aspect, isolating the 

clients completely.   

Modularizing crosscutting concerns is so important that there are several 

techniques to achieve it. For example, the Enterprise JavaBeans (EJB) 
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architecture [24, 25,26] simplifies creating distributed, server-side  applications, 

and  handles  the  crosscutting  concerns, such  as security, administration, 

performance, and container-managed persistence. To implement  the crosscutting 

concern of persistence in  EJB the bean developers focus on the business logic, 

while the deployment developers focus on the deployment issues, such as 

mapping the bean data to the database. The bean developers, for the most part, 

are oblivious to the storage issues. The EJB framework achieves the separation of 

the persistence concern from the business logic through use of a deployment 

descriptor—a file in XML format—that specifies how the bean’s fields map to 

database columns.  

Similarly, the framework separates other crosscutting concerns such as 

authentication and transaction management by managing their specifications in the 

deployment descriptor. 

 

                        

 
 
Figure 2.4 Implementation of a logging concern using conventional techniques: The logging module 
provides the API for logging. However, the client modules—Accounting, ATM, and Database—each 
still need to embed the code to invoke the logging API. 
(Source: http://www.javaworld.com)  
Another technique for handling crosscutting concerns is to use dynamic proxies, 

which provide  language  support  for  modularizing  the proxy  design pattern.  
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However, this  feature    offers  a reasonable  solution  to  modularize  crosscutting  

                       

 
 
Figure 2.5 Implementation of a logging concern using AOP techniques: The logging aspect defines 
the interception points needing logging and invokes the logging API upon the execution of those 
points. The client modules no longer contain any logging-related code. 
(Source: http://www.javaworld.com)  
 

concerns, as long as they are simple. The very existence of frameworks like EJB 

and language features like dynamic proxies confirms the need for AOP. The 

advantage of AOP is that it is not limited to a single domain in the way that EJB is 

limited to distributed server-side computing [27], and that AOP code is simpler than 

that of dynamic proxies when they are used alone. 

 
2.8.1    Implementing crosscutting concerns in non modularized systems 
 
The implementation of crosscutting concerns often becomes complicated by 

tangling it with the implementation of core concerns.  A real world system would 

consist of many classes. Many would address the peripheral concerns such as 

authorization, authentication, multithread safety, contract validation, cache 

management and logging. Therefore, while we may have had a good 

understanding of different crosscutting concerns and their separation during the 

design phase, the implementation [28] paid almost no attention to preserving the 
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separation. 

2.8.2    Symptoms of nonmodularization 
 
The  symptoms of non modularization can be modularized into into two categories:  

code tangling and code scattering.   

Code tangling 
 
Code tangling is caused when a module is implemented that handles multiple 

concerns simultaneously. A developer often considers concerns such as business 

logic, performance, synchronization, logging, security, and so forth while 

implementing a module. This leads to the simultaneous presence of elements from 

each concern’s implementation and results in code tangling. Figure 2.6 illustrates 

code tangling in a module. 

 

                    

 
 
Figure 2.6 Code tangling caused by multiple simultaneous implementations of various concerns. The 
figure shows how one module manages a part of multiple concerns. 
(Source: http://www.javaworld.com) 
 

Code scattering 

Code scattering is caused when a single issue is implemented in multiple modules. 

Since crosscutting concerns, by definition, are spread over many modules, related 

implementations are also scattered over all those modules. For example, in a 

system using a database, performance concerns may affect all the modules 

accessing the database.  
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Code scattering can be classified into two distinct categories: duplicated code 

blocks and complementary code blocks. The first kind is characterized by repeated 

code of a nearly identical nature. For example, resource pooling will typically 

involve adding nearly identical code to multiple modules to fetch a resource from a 

pool and return the resource back to the pool. Figure 2.7 illustrates the scattered 

duplicated code blocks. 

 

                         

 
 
Figure 2.7 Code scattering caused by the need to place nearly identical code blocks in multiple 
modules to implement a functionality. In this banking system, many modules in the system must 
embed the code to ensure that only authorized users access the services. 
(Source: http://www.javaworld.com) 
  
The second kind of code scattering happens when several modules implement 

complementary parts of the concern.  All these pieces must be carved to fit 

together perfectly to implement the functionality, as shown in figure 2.8 In figure 

2.8, multiple modules include code for authentication logic and access checking; 

they must work together to correctly implement the authorization. For example, 

before you can check the credentials of a user (access control), you must have 

verified that user’s authenticity (authentication). 
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Figure 2.8 Code scattering caused by the need to place complementary code blocks in multiple 
modules to implement a functionality 
(Source: http://www.javaworld.com) 
 
2.8.3    Implications of non modularization 
 
Code tangling and code scattering together impact software design and 

development in many ways: poor traceability, lower productivity, lower code reuse, 

poor quality, and harder evolution.   

Poor traceability—Simultaneous implementation of several concerns obscures the 

mapping of the concern to its implementation. This causes difficulty in tracing 

requirements to their implementation, and vice versa. This is evident when doing  

the tracing of implementation of an authentication concern, examination of all 

modules is required.  

Lower productivity—Simultaneous implementation of multiple concerns also shifts 

the focus from the main concern to the peripheral concerns. The lack of focus then 

leads to lower productivity as developers are sidetracked from their primary 

objective in order to handle the crosscutting concerns. 
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Further, since different concern implementations may need different skill sets, 

either several people will have to collaborate on the implementation of a module or 

the developer implementing the module will need knowledge of each domain. The 

more concerns you implement together, the lower your probability of focusing on 

any one thing. 

Lower code reuse—If a module is implementing multiple concerns, other systems 

requiring similar functionality may not be able to readily use the module due to a 

different set of concerns they might need to implement. 

Consider a database access module. One project may need one form of 

authentication to access the database, another project may need a different form, 

and still another may need no authentication at all. The variation of crosscutting 

requirements may render an otherwise useful module unusable. 

Poor quality—Code tangling makes it more difficult to examine code and spot 

potential problems, and performing code reviews of such implementations is 

harder. For example, reviewing the code of a module that implements multiple 

concerns will require the participation of an expert in each of the concerns. Often 

not all of them are available at the same time, and the ones who are may not pay 

sufficient attention to the concerns that are outside their area of expertise. 

Difficult evolution—An incomplete perspective and limited resources often result in 

a design that addresses only current concerns. When future requirements arise, 

they often require reworking the implementation. Because implementation is not 

modularized, this may mean modifying many modules. Modifying each subsystem 

for such changes can lead to inconsistencies. It also requires spending 

considerable testing effort to ensure that this implementation change does not 

introduce regression bugs. 

All of these problems lead to a search for better approaches to architecture, 

design, and implementation. Aspect-oriented programming offers one viable 

solution.   

2.9    Aspect Oriented Programming (AOP) appears on the Scene 
 
AOP builds on top of existing methodologies such as OOP and procedural 

programming, augmenting them with concepts and constructs in order to 

modularize crosscutting concerns. With AOP, the core concerns are implemented 

using the chosen base methodology. If OOP is the base methodology, classes are 

implemented as  core concerns. The aspects in the system encapsulate the 
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crosscutting concerns; they stipulate how the different modules in the system need 

to be woven together to form the final system. 

The most fundamental way that AOP differs from OOP in managing crosscutting 

concerns is that in AOP, the implementation of each concern is oblivious to the 

crosscutting behavior being introduced into it. For example, a business logic 

module is unaware that its operations are being logged or authorized. As a result, 

the implementation of each individual concern evolves independently. 
  
2.10    Background of AOP 
 
For years now, many theorists have agreed that the best way to create 

manageable systems is to identify and separate the system concerns. This general 

topic is referred to as “separation of concerns” (SOC). In a 1972 paper, David 

Parnas proposed that the best way to achieve SOC is through modularization—a 

process of creating modules that hide their decisions from each other. In the 

ensuing years, researchers have been studying various ways to manage concerns. 

OOP provided a powerful way to separate core concerns. However, it left 

something to be desired when it came to crosscutting concerns. Several 

methodologies—generative programming, meta-programming, reflective 

programming, compositional filtering, adaptive programming, subject-oriented 

programming, aspect-oriented programming, and intentional programming—have 

emerged as possible approaches to modularizing crosscutting concerns. AOP is 

the most popular among these.   

Much of the early work that led to AOP today was done in universities all over the 

world. Cristina Lopes and Gregor Kiczales of the Palo Alto Research Center 

(PARC), a subsidiary of Xerox Corporation, were among the early contributors to 

AOP. Gregor coined the term “AOP” in 1996. He led the team at Xerox that created 

AspectJ, one of the first practical implementations of AOP, in the late 1990s. 

Xerox recently transferred the AspectJ project to the open source community at 

eclipse.org, which will continue to improve and support the project. AspectJ is an 

implementation of AOP, just as Java and SmallTalk are implementations of OOP. 

AspectJ is based on Java, but there are implementations of AOP for other 

languages, ranging from AspectC for C to Pythius for Python, that apply the same 

concepts that are in AspectJ to other languages. Further, there are a few Java 

implementations of AOP other than AspectJ, such as Java Aspect Component 
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(JAC) from AOPSYS. These implementations differ in the ways they express the 

crosscutting concerns and translate those concerns to form the final system. 

  

2.11    The AOP methodology 
 
In many ways, developing a system using AOP is similar to developing a system 

using other methodologies: identify the concerns, implement them, and form the 

final system by combining them. The AOP research community typically defines 

these three steps in the following way: 

1 Aspectual decomposition—In this step, the requirements are decomposed to 

identify crosscutting and core concerns. This step separates core-level concerns 

from crosscutting, system-level concerns.   

2 Concern implementation—In this step, each concern is implemented  

independently.    

3 Aspectual recomposition—In this step, you specify the recomposition rules by 

creating modularization units, or aspects. The actual process of recomposition, 

also known as weaving or integrating, uses this information to compose the final 

system.   

The fundamental change that AOP brings is the preservation of the mutual 

independence of the individual concerns when they are implemented. The 

implementation can then be easily mapped back to the corresponding concerns, 

resulting in a system that is simpler to understand, easier to implement, and more 

adaptable to change. In the AOP development stages as shown in Figure 2.9, in  

the first stage, decompose the system requirements into individual concerns and 

implement them independently. The weaver takes these implementations and 

combines them together to form the final system.  
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Figure 2.9 AOP development stages. In the first stage, you decompose the system requirements into 
individual concerns and implement them independently. The weaver takes these implementations 
and combines them together to form the final system. 
(Source: http://www.javaworld.com) 

 

2.12    Anatomy of an AOP language 
 
The AOP methodology is just that—a methodology. In order to be of any use in the 

real world, it must be implemented, or realized. As with any methodology, it can be 

implemented in various ways. For example, one realization of the OOP 

methodology specification consists of the Java language and tools such as the 

compiler. In a similar manner, each realization of AOP involves specifying a 

language and offering tools to work with that language. Like any other 

programming methodology, an AOP implementation consists of two parts: 

The language specification describes the language constructs and syntax that will 

be used to realize both the logic of the core concerns and the weaving of the 

crosscutting concerns. 

The language implementation verifies the code’s adherence to the language 

specification and translates the code into an executable form. This is commonly 

accomplished by a compiler or an interpreter. 

  

2.13    Benefits of AOP 
 
The benefits of AOP  are: 
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Cleaner responsibilities of the individual module—AOP allows a module to take 

responsibility only for its core concern; a module is no longer liable for other 

crosscutting concerns. For example, a module accessing a database is no longer 

responsible for pooling database connections as well. This results in cleaner 

assignments of responsibilities, leading to improved traceability. 

Higher modularization—AOP provides a mechanism to address each concern 

separately with minimal coupling. This results in modularized implementation even 

in the presence of crosscutting concerns. Such implementation results in a system 

with much less duplicated code. Because the implementation of each concern is 

separate, it also helps avoid code clutter. Modularized implementation results in an 

easier-to-understand and easier-to-maintain system. 

Easier system evolution—AOP modularizes the individual aspects and makes core 

modules oblivious to the aspects. Adding a new functionality is now a matter of 

including a new aspect and requires no change to the core modules. Further, when 

we add a new core module to the system, the existing aspects crosscut it, helping 

to create a coherent evolution. The overall effect is a faster response to new 

requirements. 

Late binding of design decisions—Architects in general are faced with underdesign 

/ overdesign issues. With AOP, the architect can delay making design decisions for 

future requirements because it is possible to implement those as separate aspects. 

Architects can now focus on the current core requirements of the system. New 

requirements of a crosscutting nature can be handled by creating new aspects. 

 More code reuse—The key to greater code reuse is a more loosely coupled 

implementation. Because AOP implements each aspect as a separate module, 

each module is more loosely coupled than equivalent conventional 

implementations. In particular, core modules aren’t aware of each other—only the 

weaving rule specification modules are aware of any coupling. By simply changing 

the weaving specification instead of multiple core modules, you can change the 

system configuration. For example, a database module can be used with a 

different logging implementation without change to either of the modules. 

Improved time-to-market—Late binding of design decisions allows a much faster 

design cycle. Cleaner separation of responsibilities allows better matching of the 

module to the developer’s skills, leading to improved productivity. More code reuse 

leads to reduced development time. Easier evolution allows a quicker response to 
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new requirements. All of these lead to systems that are faster to develop and 

deploy. 

Reduced costs of feature implementation—By avoiding the cost of modifying many 

modules to implement a crosscutting concern, AOP makes it cheaper to implement 

the crosscutting feature. By allowing each implementer to focus more on the 

concern of the module and make the most of his or her expertise, the cost of the 

core requirement’s implementation is also reduced. The end effect is a cheaper 

overall feature implementation. 

 

2.14    Summary 
 
The most fundamental principle in software engineering is that the separation of 

concerns leads to a system that is simpler to understand and easier to maintain. 

Various methodologies and frameworks exist to support this principle in some form.   

However, for crosscutting concerns, OOP forces the core modules to embed the 

crosscutting concern’s logic. While the crosscutting concerns themselves are 

independent of each other, the use of OOP leads to an implementation that no 

longer preserves the independence in implementation. 

The current most common response to the difficulties of crosscutting concerns is to 

develop new domain-specific solutions, such as the EJB specification for enterprise 

server-side development. While these solutions do modularize certain crosscutting 

concerns within the specific domain, their usefulness is restricted to that domain. 

The cost of using these pre-wired solutions is reflected in the time and effort that is 

required to learn each new technology that, in the end, is useful only within its own 

limited scope. 

Aspect-oriented programming will change this by modularizing crosscutting 

concerns in a generic and methodical fashion. With AOP, crosscutting concerns 

are modularized by encapsulating them in a new unit called an aspect. Core 

concerns no longer embed the crosscutting concern’s logic, and all the associated 

complexity of the crosscutting concerns is isolated into the aspects. AOP marks the 

beginning of new ways of dealing with a software system by viewing it as a 

composition of mutually independent concerns. By building on the top of existing 

programming methodologies, it preserves the investment in knowledge gained over 

the last few decades. In the short-term future, it is highly likely that we will see 

AOP-based solutions providing powerful alternatives to domain-specific solutions.  
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AOP, being a brand-new methodology, is not the easiest to understand. The 

learning curve involved is similar to transitioning from procedural to OOP. The 

payoff, however, is tremendous. Most developers who are exposed to AOP are 

amazed by its power once they get over the initial learning curve.   
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CHAPTER 3   
 
 
Related  Work 
 
 
 
 
3.1    Overview 
 
This chapter outlines important contributions already made in the area of aspect 

oriented software development and shows the multitude of research areas that 

have been followed. Since the focus of the work presented in this thesis concerns 

the development of an aspect oriented design language, this chapter focuses 

primarily on completed and ongoing work in aspect oriented design language and 

enabling programming technologies. A number of research projects that design 

and develop aspect oriented design languages and specifications are studied. This 

chapter concludes with an overview of current work on aspect oriented applications 

and design language specifications. 

Since the beginning of research into aspect oriented design, many research groups 

have tried to develop aspect oriented design languages. The diversity of research 

groups has led to a large variety of different approaches[29, 30, 31].  

Recently there has been growing interest in propagating the aspect paradigm to 

the activities in the earlier phases of the software development lifecycle. A number 

of approaches to aspect-oriented design have been proposed e.g. [5,32].  One 

approach proposes an extension to UML to support aspects.  Composition 

Patterns is another approach to handle crosscutting concerns at the design level 

[5, 32]. 

 
The Unified Modeling Language (UML) [2, 3] is an object-oriented design notation 

that provides basic building blocks to model software-intensive systems, such as 

abstractions that represent structure and behavior of a system, relationships that 

state how the abstractions relate to each other, and diagrams that show interesting 

excerpts of a set of abstractions and relationships. The most important 

characteristic of UML in respect to the issue tackled in this work is its extension 

mechanisms [33]. UML’s extension mechanisms provide standardized means to 
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extend existing  UML building blocks with new properties, called tagged values, or 

with new semantic, called constraints. Besides the alteration of existing building 

blocks, the UML may be extended with completely new building blocks that are 

derived from existing ones. The new building blocks, called stereotypes, have the 

same structure (attributes, associations, operations) as the base building block 

they are derived from.  One such approach is referred to as the “aspect-oriented 

design model”, or AODM for short [33] that extends the Unified Modeling Language 

with the aspect-oriented design concepts as specified in AspectJ [34, 35, 36]. 

 

Design Patterns became popular after the “Gang of Four” book of the same name 

(Gamma et al, 1995) [15, 16, 17, 20, 25, 25, 26, 37] showed how design patterns 

could be used in object-oriented software development. Design patterns are a 

method of encapsulating the knowledge of experienced software designers in a 

human readable and understandable form. They provide an effective means for 

describing key aspects of a successful solution to a design problem and the 

benefits and tradeoffs related to using that solution. Using design patterns help 

produce good design, which helps produce good software. The ability to work with 

design patterns in conjunction with Unified Modeling Language  (UML) is a major 

benefit. UML is now a standard for OO modeling and is an industry standard now. 

Compatibility with UML makes design patterns more palatable for many 

programmers and designers as they are already familiar with UML. For the 

implementation of design patterns, the design policy to consider the patterns as 

concerns is important. At the same time, it is to be desired that we have effective 

languages and tools supporting the advanced separation of concerns [20, 38]. The 

new implementation technologies that support the advanced separation of 

concerns such as  Hyper/J [9, 10, 39] and AspectJ [34, 35, 36] help with coding 

this kind of design. 

 

Separation of concerns[18, 40] is a basic engineering principle that is also at the 

core of object-oriented analysis and design methods in the context of UML. 

Separation of concerns can provide many benefits: additive, rather than invasive, 

change; improved comprehension and reduction of complexity; adaptability, 

customizability, and reuse.  With its nine views that can be thought of as 

projections of a whole multi-dimensional system onto separate plans, UML [3]  
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provides the designer with an interesting separation of concerns called the 4+1 

view model (Design view, Component view, Process view, Deployment view, plus 

Use Case view). In turn, each of these views has two dimensions, one static and 

one dynamic. Furthermore the designer can add non-functional information (e.g. 

persistency requirements) to a model by “stamping” model elements, for instance 

with design pattern occurrences [33], stereotypes or tag values. It is appealing to 

think of many concerns as being independent or “orthogonal”, but this is rarely a 

case in practice. It is essential to be able to support interacting concerns, while still 

achieving useful separation. An aspect-oriented approach to design can help to 

express these concerns explicitly. Frameworks that  provide methodological 

support for building and manipulating UML models with aspects have been 

proposed. One such framework is the UMLAUT [11] (UML All pUrpose 

Transformer) framework which allows the engineer to program the “weaving” of the 

aspects at the level of the UML meta-model. 

 

3.2    UMLAUT: Weaving UML Designs 
 
UMLAUT [41] is a framework dedicated to the manipulation of UML models where 

the weaving process can be adapted and extended: new weavers can be 

constructed simply by changing the weaving rules. The framework takes care of 

the weaver implementation. In UMLAUT toolbox, a weaving process is 

implemented as a model transformation process: each weaving step is a 

transformation step applied to a UML model. Hence the final output is a UML 

model too (endomorphic transformation). The model transformation engine is itself 

designed as a configurable and extendible framework. 

 
3.2.1    General Architecture and Core Engine 
 
UMLAUTs architecture [42] is a three-layered one. The input front end consists of a 

graphical user interface for interactive editing; another interface deals with 

importing UML models described in various formats (XMI, Rational Rose TM MDL, 

Eiffel source, Java source). The middle core engine is made up of the UML meta-

model repository and the extendible transformation engine. Finally, the output back 

end contains various generators (including code generators and an XMI 

generator). The design concept of UMLAUT is a basic core (the middle layer) that 

communicates with its surroundings via hot spots (i.e. interfaces). Functional 
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modules can be plugged in order to specialize the tool's behavior and to meet 

specific requirements. 

 
3.2.2 The Extendible Transformation Framework 
 
The transformation engine of UMLAUT is responsible for the weaving process. A 

weave operation is described as a transformation of an initial model to a final one. 

A designer specifies the required transformation by explicitly composing a set of 

operators from the UMLAUT transformation library. Since the transformation 

engine is an open framework, users may add new operators and extend the 

existing library to support new weaving operations. The framework is designed to 

cater for three different kinds of user:  

Model designers are interested in performing a set of weaving operations. Their 

main concern is what transformation operators are available and useful to the 

model, and how they should be used. 

Transformation architects are responsible for defining how to implement a given 

transformation for a given implementation requirement. They extend the 

transformation library by adding new transformation operators. 

Framework implementor’s aim at enhancing the weaver framework to support 

specific needs of the previous two groups of users. 

The transformation framework uses a mix of object-oriented and functional  

programming paradigms. The object-oriented paradigm allows us to encapsulate 

our operators as discrete entities, and the functional paradigm provides us with a 

composition mechanism for these operators. The main architecture consists of 

three major components: 

1. A core structure that provides the logic for operator composition and implicit 

control flow when a transformation is initiated. 

2. A library of iterators for traversing a UML model. An iterator builds a path 

through a UML model graph so that lazy list operations can be applied. 

3. A library of primitive operators for querying, modifying and creating UML 

model elements. 

Each of these components can be augmented and enhanced. In particular, the 

operator library is likely to be extended by a transformation architect whereas the 

iterator library will more likely be extended by a framework implementer 

knowledgeable about the UML meta-model. 
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For aspect-oriented software development (AOSD) to live up to being a software 

engineering paradigm, there must be support for the separation of crosscutting 

concerns across the development lifecycle  including traceability from one lifecycle 

phase to another. Concerns that have a crosscutting impact on software (such as 

distribution, persistence, etc.) present well-documented difficulties for software 

development [40]. Since these difficulties are present throughout the development 

lifecycle, they must be addressed across its entirety. One such work done is the 

investigation of traceability between one particular AOSD design-level language, 

Theme/UML [5, 42] and one particular AOSD implementation-level language, 

AspectJ. This provides for a means to assess these languages and their 

incompabilities, with a view towards eventually developing a standard design 

language for a broad range of AOSD approaches. 

 
3.3    Theme/UML 
 
Theme/UML [43, 44, 45] presents an approach to designing systems based on the 

object-oriented model, but extending this model by adding new decomposition 

capabilities. The new decomposition capabilities support a way of directly aligning 

design models with individual requirements. Each model contains its own theme, 

or design of an individual requirement, with concepts from the domain (which may 

appear in multiple requirements) designed from the perspective of that 

requirement. Standard UML is used to design the models decomposed in this way. 

Extensions to the UML are required for the composition of the thematic design 

models. This is achieved with a composition relationship. A composition 

relationship specifies how models are to be composed by identifying overlapping 

concepts in different models and specifying how models should be integrated.  

It is the nature of crosscutting behaviour that it has an impact on multiple, different 

elements within software. In order to design such behaviour in standard UML, it is 

necessary to explicitly specify crosscutting behaviour for each of the particular 

elements it affects; the designs of crosscutting behaviour cannot be separated and 

encapsulated with existing UML constructs. These limitations result in design 

models with scattering and tangling properties comparable to those in code. 

Theme/UML mitigates these problems by supporting the design of crosscutting 

concerns as separated, encapsulated design models. Composition of these 

separate design models is specified with a composition relationship, detailing 
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which elements are to be combined, and how to integrate them. Merge is one 

strategy for integration that includes all the elements from the input design models 

in the composed design, reconciling conflicts where appropriate. 

The composition pattern (CP) construct of Theme/UML, based on an extension to 

UML templates, permits a crosscutting design model to be independent of any 

base design model, allowing it to be reused. The composition of concrete design 

models with CPs is based on the semantics of the merge integration strategy. 

Template parameters on a composition pattern may represent operations. A key 

feature of CPs is that they may define supplementary behaviour on such template 

operations. When a template operation with supplementary behaviour is bound to a 

concrete operation, the supplementary behaviour is merged with the original 

behaviour of that concrete operation. Any calls to the original operation result in 

delegation to some ordered combination of the supplementary behaviour and 

original behaviour, as prescribed within the specification of that CP. 

Thematic design with Theme/UML has two important implications:  

• Overlapping specifications supported: Different requirements may exist 

that have an impact on the same core concepts (for example, objects) of 

the system. It is this level of overlapping of requirements that is one of the 

causes of the problems with comprehensibility, extensibility and reuse 

discussed previously. The Theme/UML model recognises and explicitly 

caters for overlap in the different design models for each requirement. This 

is achieved by allowing a separate design model to include the specification 

of any core concepts only as suits the requirement under design by that 

design model. Composition capabilities supported by this new approach 

cater for identifying overlapping concepts, integrating them, and handling 

any conflicts.  

• Crosscutting specifications supported: There are also many kinds of 

requirements that will have an impact across the full design of a software 

system. For example, a requirement for distributed objects has an impact 

on a potentially large proportion of the objects of a computer system. Such 

requirements are referred to as crosscutting, since support for such 

requirements must be included across many different objects in a system. 

With the approach to decomposition described here, crosscutting 



 47

requirements may also be designed separately, with composition 

capabilities handling their integration with other system objects as 

appropriate.  

Decomposition in this manner also requires corresponding composition support, as 

object-oriented designs still must be understood together as a complete design. 

The Theme/UML model supports a new kind of design construct, called a 

composition relationship that supports the specification of how design models 

should be composed. With composition relationships, a designer can:  

• Identify and specify overlaps: Where decomposition allows overlaps in 

different design models, corresponding composition capabilities must 

support the identification of where those overlaps are. In order to integrate 

separate design models, overlapping design elements (or elements which 

correspond and therefore should be integrated into a single unit) are 

specified with composition relationships.  

• Specify how models should be integrated: Design models may be 

integrated in different ways, depending on why they were modularised in a 

particular way. For example, if different design models were designed 

separately to support different requirements, a composed design where all 

requirements are to be included might be integrated with a merge strategy - 

that is, all design elements are relevant to the composed design. 

Alternatively, if a design model contains the design of a requirement that is 

a change to a requirement previously designed (for example, a business 

process has changed), then that design model might replace the previous 

design. In this case, integration with an override strategy is appropriate, 

where existing design elements are replaced by new design elements.  

• Specify how conflicts in corresponding elements are reconciled: For 

some integration strategies, where some corresponding elements are 

integrated into a single design element, (merge integration is an example of 

such a strategy) conflicts between the specifications of those corresponding 

elements must be reconciled. Composition relationships support the 

specification of different kinds of reconciliation possibilities - for example, 

one design model may take precedence over another, or default values 

should be used.  
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In addition, for design models that support crosscutting requirements, (i.e., those 

requirements that have an impact on potentially multiple classes in the design), 

composition of those models with other models is likely to follow a pattern. In other 

words, a crosscutting requirement has behaviour that will affect multiple classes in 

different design models in a uniform way. For these kinds of requirements, the 

Theme/UML model defines a mechanism whereby this common way of composing 

the crosscutting requirement may be defined as a composition pattern.  

 

Other possible dimensions to  Theme/UML that the authors highlight include: 

 
3.3.1    Design Approaches 
 
One of the primary contributions of Theme/UML is its capabilities relating to 

decomposition and modularization of UML models. The UML itself provides 

modularization mechanisms such as packages and subsystems, upon which 

Theme/UML builds its additional composition capabilities. These are largely related 

to modularization and generic composition of crosscutting design elements. 

Theme/UML, provides a more generic approach, including support for both 

functional separation (like roles) and separation of patterns of crosscutting 

behaviour. 

Collaboration-based design or role modeling is a compositional design approach 

that concentrates on decomposing designs on the basis of the roles that objects 

play in particular collaborations. Other approaches to providing design support for 

crosscutting concerns appear more tied to the AspectJ model of AOSD exclusively. 

Theme/UML has taken the more independent route in extending the UML to 

provide just those constructs required to support the decomposition (and 

subsequent composition specification) of design models based on requirements 

specifications. These requirements may be functional or crosscutting, and new 

design constructs are focused on how to compose the separate models, not on 

providing constructs to map to any particular implementation paradigm. This 

approach makes the model more concern centric, not implementation-paradigm 

centric. 

3.3.2 Implementation Approaches 
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Other compositional implementation languages and mechanisms exist. 

Multidimensional separation of concerns [46, 47] with its associated Hyper/J 

language arose from the subject-oriented programming paradigm as has 

Theme/UML. Composition filters are a means of intercepting and rerouting 

messages as they arrive at objects; they can be used as separate crosscutting 

concerns such as synchronization, and have been described as an aspect-oriented 

technique. Adaptive programming [48, 49] has also been described as a (special 

case) aspect-oriented technique [50]. It provides a means to separate the 

algorithms on data from the structure of that data, allowing the structure of the data 

to change without requiring related changes to the algorithms. Implicit context is a 

structuring mechanism and design philosophy concentrating on removing 

knowledge of the large scale from smaller-scale components: it is related to AOSD. 

Others have looked to mixins [51] and mixin layers  as a means of realizing 

compositional implementations of collaboration-based designs. Mixin layers are 

useful for product-line architectures, where features are understood from 

conception to be optional between different configurations of a product.  

 

3.3.3    Lifecycle Impact 
 

There has been some recognition of the need for separating crosscutting concerns 

throughout the lifecycle. For example, Griss [5, 52] has proposed a development 

process for component based product-lines that draws together high-level analysis 

and design composition techniques with supporting implementation composition 

techniques. But this process does not advise how to map the differing constructs 

within the combination of  approaches that may be used. 

The difficulties reported in re-engineering implementations to take advantage of 

compositional implementation techniques highlights the importance of separating 

crosscutting concerns across the lifecycle. Being forced to manually untangle and 

un-scatter the concerns that were identified was a difficult and error-prone process; 

if the systems discussed in that work had been designed with their crosscutting 

concerns separated in the first place, porting the implementations between the 

different compositional techniques studied could have been more tractable. 
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3.4    Approach To  Aspect Oriented Programming And Design  
 
A gap exists between requirements and designs on one hand, and between design 

and code on the other hand. Aspect oriented programming (AOP) extended to the 

modeling level where aspects could be explicitly specified during the design 

process  will  make it possible to weave these aspects into a final implementation 

model. Another step could be extension of AOP to the entire software development 

cycle. Each aspect of design and implementation should be declared during the 

design phase so that there is a clear traceability from requirements through source 

code thus using UML as the design language  to provide an aspect-oriented design 

environment.  

 

The separation and encapsulation of crosscutting concerns has been promoted as 

a means of addressing these difficulties; the standard object-oriented paradigm 

does not suffice. In order to overcome the difficulties for crosscutting concerns 

throughout the lifecycle, an approach is required that provides a means to separate 

and encapsulate both the design and the code of crosscutting behaviour. It is 

important to work towards a general purpose AOSD design language that meets 

certain goals [33], including the following: 

 

• Implementation language independent: The final form of AOP language 

may vary from that of any current one. Thus, any design language that 

simply mimics the constructs of a particular AOP language is liable to 

fail to achieve implementation language independence. 

 

• Design-level composability:  Design level composability is a desirable 

property for two reasons. First designers may check the result of 

composition prior to implementation, for validation purposes. Second, 

some projects will continue to require the use of a non-aspect-oriented 

implementation language because of pragmatic constraints, such as the 

presence of legacy code written in languages without aspect-oriented 

extensions; these projects could still benefit from separating the design 

of crosscutting concerns. 
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• Compatibility with existing design approaches:  An AOSD design-level 

language should also build existing design languages such as UML, to 

provide a bridge from old techniques to new, so that software 

engineering realities such as incremental adoption and legacy support 

are possible. 

 

The construction of complex, evolving software systems requires a high-level 

design model [53]. This model should be made explicit, particularly the part of it 

that specifies the principles and guidelines that are to govern the structure of the 

system. In reality, however, implementators tend to overlook the documented 

design models and guidelines, causing the implemented system to diverge from its 

model. Reasoning about a system whose models and implementation diverge is 

error prone – the knowledge we gain from these models is not of the system itself, 

but of some fictious system, the system we intended to build. The system’s 

comprehensibility is impeded, and so using software engineering techniques goes 

against our intended goals – quality, maintainability and cost minimization. The 

essence of the problem of implementing higher-level principles and guidelines lies 

in their globality. These principles cannot be localized in a single module, they 

must be observed everywhere in the system, which means that they crosscut the 

system’s architecture. 

 

3.5    Impact Of Requirements Engineering On  AOSD 
 
The identification of the mapping and influence of a requirement level aspect 

promotes traceability of broadly scoped requirements and constraints throughout 

system development, maintenance and evolution [54]. The improved 

modularization and traceability obtained through early separation of crosscutting 

concerns can play a central role in building systems resilient to unanticipated 

changes hence meeting the adaptability  needs of volatile domains such as 

banking, telecommunications and e-commerce. One such generic model is the 

AORE (Aspect Oriented Requirements Engineering) [55, 57] model and its 

concrete realization with viewpoints [56]  and XML.  The focus of this model is on 

modularization and composition of requirements level concerns that cut across 

other requirements. These crosscutting concerns are responsible for producing 
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tangled representations that are difficult to understand and maintain. Examples of 

such concerns [58, 59] at the requirements level are compatibility, availability and 

security requirements that cannot be  encapsulated by a  use case and are 

typically spread across several of them [54]. 

 
3.6    Aspect Oriented Requirements Engineering (AORE) 
 
Modern systems have to run in highly volatile environments where the business 

rules change rapidly. Therefore, systems must be easy to adapt and evolve. If not 

handled properly, crosscutting concerns inhibit adaptability. The influence of an 

aspectual requirement and the constraints it imposes on specific requirements 

within the viewpoints affected by the aspect cannot be determined. 

It involves  identifying and specifying both concerns and stakeholders' 

requirements.   The order in which the specification of concerns and stakeholders' 

requirements is accomplished is dependant on the dynamics of the interaction 

between requirements engineers and the stakeholders.   

Once the coarse-grained relationships between concerns and stakeholders' 

requirements have been established and the candidate aspects identified, the next 

step is to define detailed composition rules. These rules operate at the granularity 

of individual requirements and not just the modules encapsulating them. 

Consequently, it is possible to specify how an aspectual requirement influences or 

constrains the behaviour of a set of non-aspectual requirements in various 

modules [60]. At the same time, if desired, aspectual trade-offs can be observed at 

a finer granularity. This alleviates the need for unnecessary negotiations among 

stakeholders for cases where there might be an apparent trade-off between two (or 

more) aspects but in fact different, isolated requirements are being influenced by 

them. It also facilitates identification of individual, conflicting aspectual 

requirements with respect to which negotiations must be carried out and trade-offs 

established. 

After composing the candidate aspects and stakeholders' requirements using the 

composition rules, identification and resolution of conflicts among the candidate 

aspects is carried out. 

Conflict resolution might lead to a revision of the requirements specification 

(stakeholders' requirements, aspectual requirements or composition rules). If this 

happens, then the requirements are recomposed and any further conflicts arising 
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are resolved. The cycle is repeated until all conflicts have been resolved through 

effective negotiations. The last activity in the model is identification of the 

dimensions of an aspect. Aspects at this early stage that can have an impact can 

be described in terms of two dimensions: 

• Mapping: an aspect might map onto a system feature / function (e.g. a simple 

method, object or component), decision (e.g. a decision for architecture choice) 

and design (and hence implementation) aspect (e.g. response time). Accordingly, 

the aspects at this stage are called the RE stage candidate aspects as, despite 

their crosscutting nature at this stage, they might not directly map onto an aspect at 

later stages. 

• Influence: an aspect might influence different points in a development cycle, e.g. 

availability influences the system architecture while response time influences both 

architecture and detailed design.  

The generic AORE model and its concrete realization with viewpoints and XML 

aims as a stepping-stone towards two goals: 

1. Providing improved support for separation of crosscutting functional and non-

functional properties during requirements engineering hence offering a better 

means to identify and manage conflicts arising due to tangled representations; 

2. Identifying the mapping and influence of requirements level aspects on artifacts 

at later development stages hence establishing critical trade-offs before the 

architecture is derived. 

With increasing support for aspects at the design and implementation level, the 

inclusion of aspects as fundamental modeling primitives at the requirements level 

and identification of their mappings also helps to ensure homogeneity in an aspect 

oriented software development project. 

 

3.7    Software Architecture View Of  Aspects 
 
As in software architectures, which emphasize relationships between components 

constituting the software, the relationships among aspects of the system need to 

be made explicit. This is generally difficult because it cannot be assumed that 

aspects are always orthogonal [61]. For example, an aspect for treating overflow of 

data values, and another for encoding values to increase security can both involve 

the same methods or fields of an underlying system, and may even have overlap in 

the modifications applied. Such overlap between different aspects introduces a 
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new type of problem, not seen in conventional languages, where it is clear to which 

module each language segment belongs. It is also a major source of complexity 

when composing and maintaining the aspects. 

 

To alleviate the above problems, a conceptual model called the aspect architecture 

[61] was proposed to provide an aspect-oriented perspective on software 

architecture. Being a conceptual model, it also outlines an instantiation for UML, 

corresponding roughly to Theme/UML. However, Theme/UML, like other UML-

based aspect-oriented design approaches, does not provide architectural support, 

other than that of standard UML, for aspects and their interactions. 

 

Another, main aspect-oriented development approach with explicitly defined 

aspects relationships is Aspect-Oriented Component Engineering (AOCE) [62, 63] 

which supports aspect-orientation throughout the life-cycle of specification, design, 

implementation and deployment in the software component domain. 

 

3.8    Aspect Oriented Software Development  Design Language 
 
AspectJ [6, 7, 8] is a popular and well established AOP language that provides 

support for specifying and composing crosscutting  code into a core system.  It 

supports the AOP paradigm by providing a special unit, called “aspect”, which 

encapsulates crosscutting code. Other compositional implementation languages 

and mechanisms  also exist [9, 10].  At the design level, an AOSD design  

language with extensions to UML [5, 11, 54 and 61] in its capabilities relating to 

decomposition and modularization  is required that would map to a particular 

AOSD implementation. Further, a standard AOSD design language must be 

capable of supporting many of these aspect programming languages. A graphical 

notation helps developers to design and comprehend aspect-oriented programs. 

Further, it would facilitate the perception of aspect-orientation. A design notation 

helps developers to assess the crosscutting effects of aspects on their base 

classes. Its application carries over the advantages of aspect-orientation to the 

design level and facilitates adaption and reuse of existing design constructs.  
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Although a lot  has been done  to study the aspect oriented design approach in 

enterprise systems for architecture and its implementation, work on a general-

purpose design language for aspect-oriented software development is attracting a 

lot of attention. The development of aspect oriented requirements gathering 

approach, design notation and environment for development of enterprise systems 

needs to be further refined in the context of software applications and industry.  

The thesis  work encompasses developing a standard and general purpose  AOSD 

design language with existing UML features and extensions to map AOSD design 

notations to  AOP languages and AOP  to  legacy code / OO code and design 

patterns. 

  

3.9    Summary 
 
This chapter has introduced selected work and developments across the broad 

spectrum of aspect oriented software development research. It provides a 

comprehensive overview of the state-of-the-art in the field and exhibits a number of 

open problems that drive continuous research into aspect design. The various 

projects described throughout this chapter introduce the relevant features  of  

aspect oriented design languages.  

At the core of the chapter is the division of design language architecture into 

implementation dependent and implementation independent approaches. Although 

their fundamental goals are identical and the timescale when they have emerged is 

related, the underlying architectures are inherently different.  While the former is 

tied to a particular implementation of AOP language, the latter with its graphical 

notation initially tries to maintain a general interface to implement  as many aspect 

oriented programming languages.  

A graphical notation helps developers to design and comprehend aspect-oriented 

programs. Further, it would facilitate the perception of aspect-orientation. A design 

notation helps developers to assess the crosscutting effects of aspects on their 

base classes. Its application carries over the advantages of aspect-orientation to 

the design level and facilitates adaption and reuse of existing design constructs. 

The following chapter discusses the whole  gamut of the design requirements 

indicated in this chapter and attempts to classify the variety of design constructs 

into individual and common functionalities. 
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CHAPTER  4 
 
 
Design Language Requirements 
 
 
 
 
4.1    Overview 
 
This chapter discusses the requirements  for aspect oriented design language in 

general and derives the specific requirements for the AOSDDL (Aspect Oriented 

Software Development Design Language) design language architecture that is 

proposed within this work.  

Most common requirements of a design language have already been mentioned in 

the last chapter. It has become apparent that design language research deals 

largely with trade-offs. For example, many of the aspect oriented design systems 

introduced in chapter 3 trade-off implementation dependency for wide tool support 

or limited support with general purpose flexibility.  

Research into aspect oriented design languages so far has shown that no single 

solution will meet all possible requirements of aspect oriented software 

development, and thus, multiple systems for domains with different demands must 

be able to co-exist and interoperate. The challenge in designing aspect oriented 

solutions therefore is to draw the optimal line between trade-offs depending on the 

requirements at hand. For this, it is crucial to understand fully the requirements of a 

given domain. 

 
4.2    Requirements 
 
As with systems in any programming paradigm, aspect-oriented systems need to 

be designed with good software engineering practices in mind.  

The analysis and design of a system are at least as important as the 

implementation itself, with many considering these phases to be more significant in 

their contribution to the success of a project as a whole.  

In any development effort, it is helpful for a developer to be able to consider the 

structure of the final implementation at all stages of the software lifecycle, rather 

than having to make a mental leap to get from a particular way of encoding design, 
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to another way of coding the software. In other words, developers need to be able 

to easily map their designs to the code in order for the design to continue to make 

sense during the development lifecycle.  

In addition to seamless traceability between the design and code, another 

consideration is  the benefits of separating aspects in the design for the design’s 

own sake. Aspect-oriented design has similar benefits for design artifacts as 

aspect-oriented code has for code artifacts. In the infancy of aspect-orientation, 

developers simply used object-oriented methods and languages (such as UML) for 

designing their aspects. This proved difficult, as UML was not designed to provide 

constructs to describe aspects: trying to design aspects using object-oriented 

modeling techniques proved as problematic as trying to implement aspects using 

objects.  

Without the design constructs to separate crosscutting functionality, similar 

difficulties in modularizing the designs occur, with similar maintenance and 

evolution headaches. What is required is special support for designing aspects, as 

we will then be able to improve the design process, and provide better traceability 

to aspect-oriented code.  

A similar set of problems arises when analyzing requirements documentation to try 

to arrive at how to design a system. Approaches for decomposing requirements 

from an object-oriented perspective simply don’t go far enough when trying to plan 

for aspect-orientation. Heuristics and tools to support such an examination will be 

helpful to the developer.  

The thesis work aims to   support for how to both identify aspects in a set of 

requirements, and how to model them in UML style designs. The methodology we 

use is an aspect based  approach to analysis and design.  

Aspects may be related to each other, in the same way as requirements or 

features  are related to other parts of the system. Such relationships may cause 

overlaps in the aspects. We see two kinds of overlap. The first category of overlap 

is concept sharing, where different aspects have design elements that represent 

the same core concepts in the domain. Each aspect will contain specifications for 

those same concepts designed from the perspective of the aspect. The second 

category of overlap is the classic aspect-oriented crosscutting, where dynamic 

behaviour in one aspect will be triggered in tandem with behaviour in other 

aspects.  
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4.3    Evolving of Concerns in Early Requirements Phase 
 
The notion of a concern is fundamental to problem solving  and separation of 

concerns is a fundamental principle for organising software development. The 

sheer size and complexity of many modern software-based systems, however, 

indicates that the criteria for separation are rarely fixed, and that concerns 

themselves are often overlapping and interact in ways that may not be easy to pre-

determine. The aspect-oriented software development community has emerged in 

response to the need to address such issues. The focus of this community has 

been largely on software itself - its structuring and restructuring. Aspects provide a 

structuring construct that allows program code to be written, or re-written, to 

facilitate the representation of multiple concerns and to alleviate tangling of 

overlapping, aka crosscutting concerns. 

In the problem world, inhabited by customers and users, is fertile ground for 

identifying concerns and for exploring their interaction. Indeed, it is a fact that the 

problem world is often the most appropriate source for early identification of 

concerns, but not necessarily of aspects. An understanding of the problem is a 

prerequisite to constructing a suitable solution, we also recognize that the 

processes of understanding problems and constructing solutions are inevitably 

intertwined. Producing a robust statement of requirements often needs an 

exploration of the solution space - the question is: does that solution space need to 

be populated with aspects while the requirements are still being formulated? Often, 

during the requirements and specification process, some architectural position will 

be taken, probably implicitly, and this position may drive what is an aspect and 

what is not. This may be advantageous, as identifying aspects early may lead to 

more robust designs and implementations. But how early'? During the exploration 

of a problem space, and associated requirements, is not normally the right time to 

examine aspect-oriented solutions. However, when we start generating 

specifications - that map the problem and solution spaces – then identifying 

aspects becomes useful. 
 
4.4    Separation of Concerns 
 
Separation of concerns (SOC) is a long-established principle in software 

engineering [19]. It has received widespread attention in modem programming 

languages, with constructs such as modules, packages, classes, and interfaces, 
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which support properties such as abstraction, encapsulation, and information 

hiding. SOC has also received attention in software architecture and design, with 

techniques such as composition filters [64]  and design patterns [65]. 

While advances in all of these areas have had significant benefits, problems 

related to inadequate separation of concerns remain. This has led to recent work 

on "advanced separation of concerns"  (ASOC), including subject-oriented 

programming and design, aspect-oriented programming, and multidimensional 

separation of concerns. These bring a number of innovative ideas to programming 

in particular and to software development in general, which are now beginning to 

mature and coalesce under the heading of aspect-oriented software development 

(AOSD). 

Although ASOC has been emphasized in recent work, concerns themselves have 

remained something of second-class citizens. Current ASOC tools provide only 

limited support for explicit concern modeling, representations of concerns tend to 

be tied to particular tools or artifacts, and concern modeling usually occurs just in 

the context of a particular type of development activity such as coding or design. A 

global perspective on concerns, that spans the life cycle and is independent of 

particular development tools or artifacts, has been lacking.  

Of course, concerns do not play a second-class role in software development. 

They arise at every stage of the life cycle, spanning activities, artifacts, methods, 

and tools. If aspect-oriented software development is to be fully realized, concerns 

must be treated as first-class entities throughout the life cycle.   

 
4.5    Multiple Perspectives to Concern Requirements 
 
Crosscutting requirements serve a dual purpose. On the one hand, they provide a 

description of the overlap between requirements - the first step to managing any 

inconsistency that arises at such overlap. On the other hand, they can provide 

useful input into aspect-oriented design and implementation, as they provide the 

potential join points upon which an aspect-oriented implementation might be 

based. 

Identifying aspects too early is counter-productive, but than an early understanding 

of requirements and the concerns they address is crucial. At the stage when 

requirements need to be mapped onto elements of a software solution, identifying 

aspects may become much more worthwhile. 
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Although the notion of concern is well understood intuitively, good definitions of it 

are surprisingly hard to come by [18]. Aspects are one category of concern: an 

aspect is a (program) property that cannot be cleanly encapsulated in a 

"generalized procedure" (such as an object, method, procedure, or API) [53]. This 

definition identifies a critical property of some concerns that makes SOC 

problematic in conventional programming languages. However, it is too relative to 

program structure (and to code) to make a good general definition of concern. Tart 

and others [25] define a concern as a predicate over software units. This definition 

is not particular to code and appropriately spans the whole software life cycle, but it 

is still based on software units. 

  

To promote concerns to first-class entities ("concerns") in software development, 

they must he defined independently of any specific type of software artifact and 

even of software artifacts in general. One dictionary definition of concern is "a 

matter for consideration" [10]. More specifically to software, the IEEE defines the 

concerns for a system as "... those interests which pertain to the system's 

development, its operation or any other aspects that are critical or otherwise 

important to one or more stakeholders" [18]. We will take concern generally to be 

any matter of interest in a software system.  

We define a concern space as an organized representation of concerns and their 

relationships. This is a generalization of the notion of a concern hyperspace in 

which the concerns are organized according to multiple, overlapping dimensions, 

where each dimension is partitioned by concerns of the same general type (such 

as functions, classes, features). Our definition contrasts with the alternative 

characterization of a concern space  as a body of software, as we are concerned 

first of all with the matters of interest pertaining to a body of software rather than 

with the software itself (although the relationship of concerns to software is 

fundamentally important and is indeed reflected in our approach). Based on 

previous studies, we believe that concern spaces are multidimensional, that is, 

multiple concerns of multiple types may apply to a particular software unit at any 

one time. Additionally, we believe that a concern space is highly structured; that is, 

that concerns can be organized by multiple relationships of multiple types, that 

these relationships may be independent or dependent, and that they commonly 

have a hierarchical or lattice like organization.  
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During software development, concerns arise at all stages of the life cycle, from 

requirements specification  through design, coding and testing to maintenance and 

evolution. Concerns also span multiple phases of the life cycle, relate to multiple 

instances and types of artifacts, and crosscut phases and artifacts in different 

ways. Finally, concerns are dynamic and relative, that is, that the concerns relevant 

to a particular software unit will change over time and that they also depend on the 

perspective or purpose of the user or stakeholder who considers the software [11, 

53, 54].  

Given the above, we believe that a general-purpose concern-space modeling 

schema should [18]: 

1) Support the representation of arbitrary concerns 

2) Support the representation of composite concerns (such as emergent concerns         

based     on interactions of base concerns) 

3) Support the representation of arbitrary relationships among concerns 

4) Support the association of concerns to arbitrary software units, work products, or 

     system elements 

5) Be language independent; that is, 

a) Not depend on any particular programming language or other development 

formalism 

b) Accommodate different development formalisms appropriate to different 

stages of the life cycle 

c) Be able to capture information that is not necessarily reflected in particular 

development formalisms 

6) Be methodology independent 

7) Be applicable across the software life cycle 

8) Support a variety of types of software engineering tasks (as appropriate to the      

development methods in which it is used) 

The first four of these requirements address needs in the modeling of concerns 

and their interrelationships, the last five address needs in the use of the schema 

and particular models.   

One determinant of when to move from exploring concerns to identifying aspects is 

evolution. In particular, changing requirements may add further crosscutting 

concerns that, in turn, necessitate restructuring the problem or solution space.   
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4.6    Architectural Design Enforcement 
 
The construction of complex, evolving software systems requires a high-level 

design model. This model should be made explicit[33], particularly the part of it that 

specifies the principles and guidelines that are to govern the structure of the 

system. In reality, however, implementors tend  to overlook the documental design 

models and guidelines, causing the implemented system to diverge from its model. 

Reasoning about a system whose models and implementation diverge is error 

prone - the knowledge we gain from these models is not of the system itself, but of 

some fictitious system, the system we intended to build. The system's 

comprehensibility is impeded, and so using software engineering techniques goes 

against our intended goals - quality, maintainability and cost minimization. 

Two major approaches have been suggested to bridge the gap between high-level 

design models and the system itself: user invoked i.e. the use of codified design 

principles must be supplemented by checks to ensure that the actual 

implementation adheres to its design constraints and guidelines  versus the 

environment invoked i.e.  the gap between the architectural model and the 

implemented system can be bridged effectively if the model is not just stated, but is 

enforced. 

These principles cannot be localized in a single module, they must he observed 

everywhere in the system, which means that they crosscut the system's 

architecture. 

Aspect Oriented Programming (AOP) is a programming technique for modularizing 

concerns that crosscut the basic functionality of systems. Aspects provide a means 

to clearly capture design decisions. 

 

4.6.1    Enforcing Architectural Regularities 
 
 Aspects can be used for: 

• Design by Contract : AOP can be used as a mean for the implementation of 

the design by Contract design methodology. For example, pre / post 

conditions are checked using before and after (respectively) on a method 

execution join point. 

• Exception Handling: The design regularity of "all exceptions of a certain 

type should be handled the same way".  
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• Observer Design Pattern : The enforcement of the Observer design pattern 

[8]  is illustrated in the example  supplied by the AspectJ team.  The 

example of this behavioral pattern uses the introduction mechanism as well 

as method call receptions. 

What all of these examples have in common is the fact that the regularities they 

define are of a dynamic nature and are enforced upon a monolithic system. These 

examples can be used for enforcing architectural principles, but when attempting to 

implement  design restrictions with AspectJ, one quickly reaches realms which are 

not covered by the literature.   

In other words, we are addressing  the possibility of using AOP in general, and 

AspectJ in particular, in order to solve the problem of design enforcement.  
 

4.7    Avoiding Design Incompatibility 
 
Early Aspects refer to crosscutting properties at the requirements and architecture 

level. The term denotes aspect-orientation within the early development stages of 

requirements engineering and architecture design. The focus is  on the separation 

of crosscutting concerns at the high level architecture and the low level design 

while offering an approach for aspect-oriented modeling and automated code 

generation. Typically, design artifacts that crosscut an architecture cannot be 

encapsulated by single components or packages and are typically spread across 

several of them and therefore also make design hard to understand and maintain. 

This work addresses the specification of crosscutting concerns at the architecture 

level in order to maintain the separation of concerns at an early stage in the 

software development lifecycle. Crosscutting design artifacts can clearly be 

encapsulated avoiding tangling and scattering. 

The architecture design is an important step within the software development 

lifecycle. OO design has proved its strength when it comes to modeling common 

behavior. However, OO design does not adequately address design artifacts that 

crosscut an architecture. They cannot be encapsulated by single components or 

packages and are typically spread across several of them and therefore also make 

design hard to understand and maintain. Crosscutting concerns are present during 

all phases of a software development lifecycle, leading to code tangling or code 

scattering during the implementation phase and graphical tangling during the 

design phase. AOSD is still lacking standardized concepts at the design phase that 
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would foster the specification of crosscutting concerns at the high-level architecture 

and low-level design. Development of large software systems follows processes 

that all include activities like requirements engineering, analysis, design and 

implementations. Following a design methodology like OOD, and focusing on AOP 

at coding level causes a shift of paradigms between OO design and AO code. This 

leads to inconsistencies between design and implementation, as the AO paradigm 

is not seamlessly supported during the early stages of the development lifecycle. 

To avoid the divergence of design models and code, crosscutting concerns must 

be identified at the requirements and architecture level and carried forward in the 

implementation phase. Concepts are needed for a seamless integration of AO 

design and implementation and will be a first step towards an integrated AO 

development process. To make AOSD more widely accepted, the different phases 

of an AOSD lifecycle have to be integrated more smoothly by supporting the AO 

paradigm in every phase. This work includes a design notation for validation of AO 

models. Supporting design models and their transition to concrete implementations 

makes AOSD more usable, more efficient and more accepted among software 

engineers.  

When analyzing OO design, one can see that OO modeling tries to adopt many of 

the OO programming features for design and analysis. Classes, their structures, 

and their relationships are identified and generalization and aggregation 

hierarchies are built. OO design techniques are not sufficient when focusing on the 

AO paradigm as crosscutting concerns also make design tangled and therefore 

hard to understand and maintain. When developing an AO modeling approach, the 

following requirements are obvious: 

 

- A sufficient notation should be simple to understand and 

straightforward to use for developers who are familiar with common 

design notations (such as UML). 

- Design modeling should be supported by powerful CASE tools to 

improve developer productivity and to ensure syntactical 

correctness of the AO model. 

- Design notations should support modeling according to the 

paradigms behind the most common AO approaches and 

languages. 
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- Models should be easy to read and offer a clear separation of 

concerns to avoid crosscutting concerns spanning over many 

design elements. 

- A direct mapping between the notation and supported 

implementation languages should allow automatic code generation 

based on the design model. 

- The notation should be applicable in real-world development 

projects and should be part of an integrated AO development 

process. 

This work can be seen as a step towards a standardized way to capture aspects at 

the design phase of an AO development process. Existing approaches and 

prototypes are well aware of the fact that aspect-oriented modeling is a critical part 

of AOSD. Obviously, to obtain an AO development lifecycle, the gap between AO 

requirements engineering and AOP has to be filled. This work makes a contribution 

to the problem of bridging this gap. 

 
4.8    Requirements Validation 
 
In general, modeling is a broad notion that can be involved in various perspectives 

of software development, such as design specification, code generation, testing, 

and reverse engineering. Models from different perspectives require different level 

of details although their structures may appear to be similar. For example, a 

traditional state model for design specification does not carry sufficient information 

for test generation.   The   aspect-oriented extensions to state models  and UML   

are primarily for the purposes of design specification. Under testing,  we explore 

aspect-oriented state models for testable specification and test generation of 

aspect oriented programs.   
 
While AOP provides a flexible mechanism for modularizing crosscutting concerns, 

it raises new challenges for testing aspect oriented programs. A fault model  has 

been proposed for aspect-oriented programming, which includes six types of faults: 

incorrect strength in pointcut patterns, incorrect aspect precedence, failure to 

establish post-conditions, failure to preserve state invariants, incorrect focus of 

control flow, and incorrect changes in control dependencies [67]. This fault model 

has not yet constituted a fully-developed testing approach. Control flow graphs 
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were constructed at system and module levels, and then test suites were derived 

from control flow graphs.   

While aspects in aspect-oriented programming (AOP) offer an effective way for 

modularizing separate concerns, the new programming constructs of AOP 

languages introduce numerous opportunities for programmers to bring various 

potential faults with respect to aspects . Generally, an aspect-oriented program 

consists of aspects and their base classes (or components) that can be woven into 

an executable whole. The base classes in an aspect-oriented program can also be 

executed independently. From the system architecture perspective, aspects often 

crosscut multiple base classes. From the base class perspective, however, aspects 

are essentially incremental modifications to base classes with additional operations 

and constraints for separate concerns. The incremental modifications of aspects to 

base classes can impose a significant impact on the object states of base classes. 

Although aspects in AOP add more code to their base classes, they can not only 

introduce new object states and transitions, but also remove and update state 

transitions. As such, aspects may lead to subtle differences in the sequence of 

messages that can be accepted by the base class objects. In particular, aspect-

specific faults likely result in unexpected object states and transitions. 

To reveal aspect-specific faults, we need to investigate model-based testing, i.e. 

testing whether or not aspect-oriented programs and their base classes conform to 

their respective behavior models. Model-based testing is appealing because of 

several benefits: (1) the modeling activity helps clarify requirements and enhance 

communication between developers and testers; (2) design models, if available, 

can be reused for testing purposes; (3) model-based testing process can also be 

(partially) automated; and (4) more importantly, model-based testing can improve 

error detection capability and reduce testing cost by automatically generating and 

executing many test cases. 
 
4.9    AOSDDL Requirements 
 
The primary goal of the work presented here is to develop a generic aspect 

oriented design language that can be used to design and build aspect oriented 

applications. However, since the prototyping of such a system is impeded by 

financial resources and time constraints in the context of a PhD project, the 

objective is rather to use open source tools as a base platform and to focus on the 
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development of a minimal, but extensible design language that may serve as a 

flexible platform for future aspect oriented research.  

 
4.10    Summary 
 
This chapter has examined the requirements for aspect oriented software 

development and design language in particular.  

It discussed the general requirements for aspect oriented systems. These 

requirements have been derived from related work and acknowledged publications 

in the field. They summarize the general requirements of today’s aspect oriented 

systems. 

The following chapters present the design (chapter 5) and implementation (chapter 

6) of the aspect oriented design language. Both chapters show how AOSDDL fulfils 

the requirements defined in this chapter by design and implementation. Finally, 

chapter 6 also evaluates to what extent AOSDDL has succeeded in meeting these 

requirements. 
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CHAPTER  5 
 
 
The AOSDDL   
(Aspect Oriented Software Development Design Language) 
 
 
 
5.1    Overview 
The actual realization of a design language form  has been revealed to be non-

trivial. Chapter 3 has described a large variety of design language forms. However, 

most of them are very much tailored towards a specific application or application 

domain. Moreover, with the exception of very few hardly any of these language 

notations have been used outside their own research environment. The 

development of a more generic aspect oriented design language requires a wider 

and more thorough look at the requirements. Chapter 4 has discussed the 

multitude of requirements and has defined the specific requirements for the 

development of the Aspect Oriented Software Development Design Language 

(AOSDDL). 

This central chapter of the work introduces the notations and discusses how it 

fulfils the requirements that have been defined above in principle and design and 

consequently  would be a general purpose AOSD design language (AOSDDL) that 

will map AOSD design notations to the existing AOP languages.  

 

5.2    Tools Environment 
 
The Eclipse Platform for Java was used to carry out the implementation and testing 

of the abstract notations in AspectJ. To implement graphical notations and 

diagrams the Together CASE tool was used. The CASE tool Together from 

Borland is an enterprise development platform enabling application design, 

development, and deployment. It is extensible through an open Java API offering 

the possibility to develop custom software that plugs into the Together platform in 

the form of modules. The open API is composed of a three-tier interface that 

enables varying degrees of access to the infrastructure of Together.                
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5.3    AOSDDL Notations        
    
This work specifies an approach for AO modeling to address the specification of 

crosscutting concerns at the architecture level in order to maintain the separation 

of concerns at an early stage in the software development lifecycle. A key intention 

is to offer standard development tool support and interchangeability among various 

CASE tools, thus an extension to UML was developed without changing its 

metamodel specification to achieve standard UML conformity. Using UML as a 

modeling language improves developer productivity and offers high acceptance, as 

it is the industry-standard modeling language for the software engineering 

community. When using standard UML for aspect-oriented modeling, developers 

do modeling by using familiar tools and environments to gain all the benefits they 

are used to in OO design. UML is an extensible modeling language that enables 

domain-specific modeling which raises its suitability as a modeling language for 

supporting aspect-oriented modeling. 

Another important goal was to gain the benefits both of code and design reuse of 

AO software, including the ability to reuse aspect and base elements separately. 

Thus, aspects and base elements should be completely kept apart and 

independent of the implementation technology in order to simplify the replacement 

of the AO language. A clear separation of the language dependent crosscutting 

parts eases the support of many different AO languages and concepts. This work 

focuses on adopting AspectJ  concepts for the implementation language 

dependent parts of AOSDDL. For the support of other AO concepts (such as 

Hyper/J)  is considered and part of some future work. AOSDDL considers the fact 

that crosscutting concerns tend to affect multiple classes in a system. Since a 

concern itself can consist of several classes and since all of these classes may be 

associated with the class the concern crosscuts, the module construct for a 

concern should be higher-level than a class. Otherwise associations modeled on 

class-level would supersede the logical grouping of the classes belonging to one 

concern. This would make the design models hard to read and lead to graphical 

tangling of crosscutting concerns instead of a clear separation. 
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5.3.1    Symbols for AOSDDL Notations 
 

     Package 
 
 
 

 
 

The Package notation is either base package containing business logic or 

aspect package containing cross cutting concern or a connector that links 

aspects and base elements. 
 
 
 
 

 
     Class 
 
 
 
The class is either 
 

• Introduction class that defines the rules for Aspect J’s introduction 

mechanism or 

• Pointcut class that defines execution points in the control flow of the 

program. 

• Advice class that defines the code to be executed at the pointcuts defines 

in the pointcut class. 

 

 

                                       Joint Point 

Joint points represent points in the dynamic execution of the program. 

                                                                                                                

                                                                                    Connector                                                           
 

    

  



 71

 

                                 (generalization) 

                        (association)  Relationships 

                                  (dependency) 

    (aggregation)   

 

The relationships is defined to indicate either dependency  or generalization 

or association or aggregation. 
 

 

         Note   
   
 

 

Attaching comments to an element or a collection of elements.  

 

    

 

 

     Stereotype aspect 
 

 

 

Stereotype aspects extends aspects to define new modeling elements like 

boundary, control or entity aspects during software development. 

 

 

 

 

 



 72

 

  

     Constraints 
 

 

 

Defining constraints in aspects. 

 

 

    

     Weaving advice 
 

 

 

To Implement weaving mechanism for advice in Aspect Oriented Programming.  

 
                                     
      <<use>>     <<use>> 
 
 
 
 
 
 
 
 
 
   
   
                         Figure 5.1 Using Package and Connector 

 

Figure 5.1 provides an overview of the notation and its focus on using package and 

a connector. AOSDDL includes a base package (having the business logic), an 

aspect package (having  the crosscutting concern) and a connector to link aspects 

and base elements. Being one of the most popular Aspect Oriented language, 

AspectJ has been used to describe and present the AOSDDL notation model. Both 

the aspect package and the base package are used to express any crosscutting 

concern  that can  occur and might affect the system.  Further, they can contain 

any valid UML design construct that might be describing either the complete 

Aspect Package Base Package 

 
 
Connector
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system or a part of the system based on Aspect Oriented Design. The aspect can 

be modeled as an individual entity or independently of any design it may potentially 

affect or be a part of. The connection between base design and aspect design is 

specified separately. Support of different AO technologies is therefore rather 

simple and straightforward, as it is only the connector’s syntax that has to be 

changed. This connector will hide the details of the interaction between 

components. To model any design construct, the connector can be considered in 

terms of a client connector that communicates with the aspect packages via the 

<uses> relationship. The type of connector used to interconnect aspect 

components also influences the performance of component based systems.  This 

kind of separation enables high degree of reusability of both the  aspect and base 

elements since the connector notation (element) is the only crosscutting element. 

This way of focusing on UML notations and standard notation of  packages as a 

single unit leads to design models that are easy to read, as they avoid graphical 

tangling. Additionally, the connector encapsulates the underlying implementation 

technology using AspectJ.                                           

As described above, the AOSDDL notation  can contain the following classes that 

conform to the concepts AspectJ offers for the specification of weaving rules: 

1. The Introduction class, which defines the rules for AspectJ’s introduction 

mechanism. 

2. The Pointcut class, which defines execution points in the control flow of the 

program. 

3. The Advice class, which defines the code to be executed at the pointcuts 

defined in the Pointcut class. 

All classes contain operations with special semantics to specify how aspect and 

base elements have to be recomposed. The complete syntax of the AspectJ 

specific connector will not be presented here, however a few examples  described 

here, provide a macroscopic view of how the notation can be used and shows 

some of the most important constructs. 

  

AOSDDL is a simple and powerful notation for aspect-oriented modeling. In order 

to reduce errors when mapping models to code and offer low-level architecture 

design support, the development of code generator is part of a future work.  
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5.4    Other Design Notations 
 
The following issues were considered for modeling a general purpose AOSD 

design language (AOSDDL) with regard to a programming language namely, 

AspectJ and a standard Object Oriented design language namely,  UML  quite 

widely  in use in the software industry: 

 

• Mapping AOP to Aspect Oriented UML Extensions 

• Identifying Software Concerns  

• Design Language Issues for Component Based software 

Development 

• Mapping UML extensions  through composition patterns to Aspects 

• AspectJ Extensions for Distributed Computing 

  
The issues basically provide a broad outline that sums up the parameters for 

various concerns and scenarios prevalent in the  software industry and how 

AOSDDL will address them under various forms.   

 
5.5    Mapping AOP to Aspect Oriented UML Extensions 
 
Aspect-oriented programming (AOP) is a new software development paradigm that 

aims to increase comprehensibility, adaptability, and reusability by introducing a 

new modular unit called "aspect", for the specification of crosscutting concerns. 

AspectJ is a programming language that supports the aspect-oriented 

programming paradigm by providing new language constructs to implement 

crosscutting code. At present, no design notation is available that appears to be 

appropriate for the design of aspect-oriented programs in AspectJ. The need of 

such a design notation is obvious. First, it would ease the development of AspectJ 

programs. A graphical notation helps developers to  design and comprehend 

Aspect/programs. Further, it would facilitate the perception of aspect-orientation. A 

design notation helps developers to assess the crosscutting effects of aspects on 

their base classes. Its application carries over the advantages of aspect orientation 

to the design level and facilitates adaptation and reuse of existing design 

constructs. 
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The approach presented here  extends the Unified Modeling Language (UML)  with 

the aspect-oriented design concepts as they are specified in AspectJ (in the 

following, the approach called the "aspect-oriented software development design 

language", or AOSDDL for short). The approach reproduces these concepts  by  

extending existing UML concepts using UML's standard extension mechanisms. 

Doing so assures an immediate understanding of aspect-oriented design models 

and enables rapid support by a wide variety of CASE tools.   

 

5.5.1    Problem Identification 
 
The work is organized  in the following way. An UML implementation of AspectJ's 

weaving mechanism is described. A new relationship is introduced to represent this 

weaving mechanism. Next, existing approaches to  extend the UML with aspect-

oriented design concepts are regarded with respect to their compliance with 

AspectJ's semantic.  

  

Concise and independent examples  were created  and the same were 

implemented  in both UML and AspectJ. 
 
5.5.2    Basic Notations for AspectJ 
 
UML representations are presented for AspectJ’s basic abstractions, such as 

connector, join points, pointcuts, pieces of advice, introductions, and aspects.   

  

Connector   
 
Deploying an aspect within an application is done by making use of connectors. A 

connector contains three types of condtructs: one or more initializations, zero or 

more behaviour method executions, and finally any number of aspectJ language 

constructs.  

The advantage of permitting the calling of behavior methods in the connector is 

that it enables advanced users of an aspect to tightly control the execution of the 

aspect-behavior. The default-method on the other hand, provides an easy way for 

deploying an aspect within an application, without needing any knowledge about 

how the aspect-behavior is executed.   

 
 



 76

                     connector  PrinterController { 
                              AccessManager.AccessControl control =  
                                     new AccessManager.AccessControl(* Printer.*(*)); 
                     contro.replace(); 
                     } 
                                      Figure 5. 2:      Connector Syntax 
 
 
Join Points 
 
Looking for an appropriate UML representation for join points, links can be 

identified as the one model element which represents them best. 

 

In the UML, links serve as communication collection for stimuli. A stimulus defines 

a communication between two instances that is dispatched by an action, such as 

an invocation of an operation, a request to create or to destroy an instance, or a 

raise of a (asynchronous) signal. This means that control is passed from one 

instance to another via communication links. Hence, links in the UML represent 

"principled points in the dynamic execution of a program" just like join points do in 

AspectJ. And just like join points in AspectJ, control passes each communication 

link in the UML two times, once the control is passed down to the called instance, 

and once control flows back up again. 

 
However, whether a link actually represents a join point depends on the exact 

communication that is dispatched over the link. A link used to communicate the 

destruction of an instance, for example, does not represent a join point in the 

sense of AspectJ. AspectJ's join point model defines precisely which kind of 

communications promotes an ordinary link to a representation of a join point. In the 

UML some communications such as field references or field assignments do not 

dispatch stimuli. This means that control flow passes no link at all, and no link can 

be assigned to represent the respective join points. To solve this problem, in the 

AOSDDL, these communications are stereotyped as "pseudo" invocations of 

"pseudo" operations that have no other purpose than to read or write (respectively) 

a specific field. Similar, no link can be identified to represent execution and 

initialization join points. Considering that the execution of an operation or a 

constructor or the initialization of an object never occurs without a (preceding) 

operation or constructor call, it is legitimate to use one link (i.e., the one associated 

with the call or create action) to represent all two  or three join points. To represent 
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the order in which control passes these join points, corresponding call, execute, 

and initialize actions are organized to an UML action sequence. 

 
Join points may be visualized in UML interaction diagrams by highlighting 

messages.  Considering that messages are associated with communications and 

require the existence of links, it is proper to highlight messages in collaborations to 

indicate join points. 
  
  
 
 
                                issue( ) 
                                  <create> 
   
            constructor call          
          <issue>               constructor execution 
                     
          <initialize>                 object initialization 
 
           attribute assignment                <set> set (att,val )    
 
 
 
              attribute reference           <get> get(att) 
 
      val 
 
 
       
      operation notify                          <notify> dooperation( ) 
 
        <execute>       <execute>            operationexecution
    
     <dispose> 
 
 
 
 
                              

Figure 5.3: Representing Join Points in Sequence Diagrams 
 

Pointcuts 
 
A pointcut is a set of join points, which are well defined instants in the execution of 

the program. Abstract pointcuts can be labeled via template parameters. In the 

AOSDDL, pointcuts are represented as operations of a special stereotype, named 

<pointcut>. This is legitimate due to the strong structural resemblance of pointcuts 

to standard UML operations. Just like standard UML operations, pointcuts are 

Journal: j1 

Observer: o1
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features of a particular classifier (i.e.. an aspect), they may have an arbitrary 

number of (output-only) parameters, and their declaration comprises a signature 

and an "implementation" (see Figure 5.4).                              
                                        
                                ( output-only) parameters  
 
pointcut stateChanges (Subject s) : 
 

        signature        target (s) && call (void Journal.issue( )); 
                

       pointcut   declaration(“implementation”)                                 
                    
                           Figure 5.4: Mapping of Pointcuts to Operations 
 
 
The <pointcut>  stereotype captures a new semantic and specifies several 

additional constraints. One of those constraints declares that operations of 

stereotype <pointcut> must be implemented by methods of a special stereotype 

that equips the standard UML Method meta-class with an additional property 

named "base" to hold the "implementation" of the pointcut (i.e., its declaration). 
 
Advice 
 
Advice in AspectJ is code similar to an  operation that is, code executed when a 

joinpoint is reached. Standard UML has very high degree of support for depicting 

interactions.  This support is used to depict the behaviour of an advice.  The 

before, after and around constructs of AspectJ are easily mapped using the 

interaction diagrams. Similar to a pointcut, an advice is represented as an 

operation of a special stereotype, named, <advice>. A piece of advice is a feature 

of a particular classifier (i.e., an aspect), it may have an arbitrary number of 

parameters, and its declaration comprises a signature and an implementation (see 

Figure 5.5). In contrast to a pointcut, an advice is also semantically comparable to 

a standard UML operation because it defines some dynamic feature that effects 

behavior. However, there is a semantic difference between an advice and an 

operation. One important difference is, for example, that an advice does not have a 

unique identifier. This circumstance may cause conflicts with existing well-

formedness rules of the UML, stating that two operations (i.e., two pieces of 

advice) in the same classifier (i.e., aspect) must not have the same signature. To 

avoid such conflicts, the AOSDDL supplies an advice with a "pseudo" identifier. 

Another difference pertains to inheritance. Since in AspectJ a piece of advice has 



 79

no unique identifier in the super-aspect, it cannot be overridden in the sub-aspect. 

The <advice> stereotype captures this semantic difference by constraining that an 

advice in the AOSDDL (although having a "pseudo" identifier) cannot be 

overridden. Then, advice declarations in AspectJ contain pointcut declarations that 

specify the set of join points at which the advice is to be executed. Therefore, 

operations of stereotype <advice>, must be implemented by methods of a special 

stereotype that equips the standard UML Method meta-class with an additional 

property named "base" to hold the pointcut declaration. Note how this proceeding 

coincides with the way that pointcuts are implemented in the AOSDDL.  In fact, the 

same method stereotype is used for the implementation of both pieces of advice 

and pointcuts. 
                                        
       “pseudo “ identifier      parameters   implementation 
 

  
  advice_id01  after (Subject s) :      stateChanges(s)  {…} 

 
                  signature                         pointcut declaration                

        
                                    
                                     Figure 5.5: Mapping of Advice to an Operation 
 
  
Pointcut designators 
 
A symbolic name to identify an pointcut. Name based pointcut designators 

correspond to binding named operations.  Further, the standardized UML 

semantics are used to depict pointcuts designations.  

 
 
Introductions 
 
  
In AspectJ, introductions are used to insert members (such as constructors, 

methods, and fields) and relationships (such as generalization/specialization and 

realization relationships) to the base class structure.   

Since introductions in AspectJ may insert both members and relationships, the 

parameterized model element destined to represent introductions in the UML must 

be able to describe members and relationships, too. After reviewing the UML 

specification, parameterized collaborations can be identified to meet these 

requirements best. In the UML, collaborations are used to specify a set of 
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instances together with their members and relationships (i.e., a structural context) 

and a set of interactions that describes some communication between these 

instances (i.e., some behavior performed within the structural context). So, 

collaboration templates prove to be suitable to specify structural and behavioral 

characteristics of introductions. The AOSDDL specifies an extra stereotype of 

collaboration templates, named <<introductions>>, to capture the particular 

semantic of introductions. 

The AOSDDL  specifies a special binding mechanism for collaboration templates of 

stereotype, <<introduction>>(see Figure 5.6). Note that introductions in AspectJ 

are conceptually always bound to (a fixed set of) actual base classes, which are 

specified as type pattern in the introduction declaration.  

 
   
        <Introduction>    
            Journal  
 
 
 
              getData()      
      
 
 
             this   
 
 
 
 
 
 
 
    <Introduction>      
    IssueLabel           
 
 
 
     update( )           BaseType 
                IssueCycle( ) 
 
 
                                                          
 

          this 
 
 

 
                                                       
 
 
                                          Figure 5.6: Design of Introductions 

  Subject 

      BaseType  
Attributes 
Operations 
  +Object getData()

   BaseType 

<ContainsWeavingInstructions> 
BaseType {base=Journal} 

  Observer 

      BaseType  
Attributes 
Operations 
+void  update() 

   BaseType 

<ContainsWeavingInstructions> 
BaseType     {base=issueLabel} 
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Accordingly, in the AOSDDL, template parameters of a collaboration template 

stereotyped with  <<introduction>> are required to be of a special stereotype, 

named <containsWeavinglnstructions>. That stereotype equips the standard UML 

TemplateParameter metaclass with a supplementary meta-attribute, named 

"base", to hold the type pattern that specifies the set of actual base classes to be 

crosscut. A collaboration template of stereotype <<introduction>> is generally 

considered to be implicitly bound to the actual arguments specified in that "base" 

expression. Thus, it is proper to use introduction templates in design models 

directly. 
 
Aspects 
 
In the AOSDDL, aspects are represented as classes of a special stereotype, 

named <<aspect>>. This is legitimate due to the strong structural similarity 

between aspects and standard UML classes. Just like standard UML classes, 

aspects  serve as containers and namespaces for various features, such as 

attributes, operations, pointcuts, pieces of advice, and introductions. And just like 

them, they may participate in associations and generalization relationships. 

However, there are differences between aspects and classes concerning their 

instantiation and inheritance mechanisms. For instance, aspect declarations in 

AspectJ contain instantiation clauses that specify the precise way in which an 

aspect is to be instantiated (e.g., per object, per control flow, or once for the global 

environment). Further, sub-aspects in AspectJ inherit all features from their super-

aspects, yet only ordinary Java operations and abstract pointcuts may be 

overridden. The new <aspect> stereotype captures these semantic   differences. 

Besides that, the stereotype equips the standard UML Class meta-class with a 

couple of additional meta-attributes to hold the instantiation clause, the pointcut 

declaration contained in that instantiation clause, and a boolean expression 

specifying whether the aspect (not just its introductions) may access the members 

of the base classes as a privileged "friend". 

In the AOSDDL, the crosscutting effects of aspects and its components are 

indicated by  <<crosscut>> relationships.   
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5.5.3    Weaving Mechanism of AspectJ 
 
A relationship is introduced denoting the crosscutting effects of aspects on their 

base classes. Both the weaving mechanism and the relationship are derived from 

weaving instructions specified in the aspects. 

  
5.5.4    Weaving Advice 
 
The AOSDDL implements AspectJ's weaving mechanism for advice with help of 

collaborations. For weaving purposes, the collaboration describing the behavior of 

the base classes' operations is split at first. Splitting always takes place at a 

particular join point. Depending on the kind of advice to be inserted, the 

collaboration is split before, after, or (in the case of around advice) before and after 

the particular join point Then, the split fragments are composed with the 

collaboration describing the advice to form a new collaboration. In the composition 

of collaborations can be accomplished by identifying and matching instances that 

participate in each of the collaborations to be composed. 

 

To explicitly state the order of weaving, the AOSDDL utilizes UML use cases. In 

the UML use cases are used to define a piece of behavior of a semantic entity, 

e.g., the operation of a class or the advice of an aspect. (Super-ordinate) use 

cases can be split into a set of smaller (sub-ordinate) use cases using refinement 

relationships. Further, use cases may (unconditionally) include the behavior 

defined in other use cases by means of include relationships. At last, a use case 

may augment the behavior of another use case by means of extend relationships. 

Extend relationships provide a condition that must be fulfilled for the extension to 

take place. To represent the weaving order in the UML, the AOSDDL refines the 

use case describing the base classes' operations (for example, the "select" use 

case in Figure 5.7) into three sub-ordinate use cases; one describing the behavior 

at the join point (“select...part 2"), the others describing the behavior before 

("select..part 1") and after that join point “select_part 3"). Then, the AOSDDL 

composes a new use case ("wovenSelect") that includes the behavior (i.e., the use 

cases) of both the base classes' operations and the advice. In the UML, 

collaborations may be specified to explicitly describe how the included use cases 
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cooperate to perform the behavior of the  including  use case. Figure 5.8 shows 

three collaborations  specifying   

 
  
 
                        

        <refine>         <refine>       <refine>        <include> 
           [attr] 

                   
 
 

           
               <include>              <include>                           <include>         <extend> 
                                             if called by 
              [attr]   <extend>                      this(…) 
                                      on “proceed”            or in flow(…) 

       or … 
            

 
 

Fig 5.7: Weaving Advice with UML Use Cases 
                                      
 
 

                      
                                                 <realize> 
      
       

   <realize>      <realize> 
     

                                   
 
 
                               
 
                                               Fig 5.8. Specifying Weaving Order 
 

 

 

 

 

 

 
                                               Fig 5.8: Specifying Weaving Order 
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how the included use cases cooperate in case of a before, after, or around advice 

to perform the behavior of the including use case (i.e., of the crosscut operation of 

the base classes). Special regards must be given to pieces of around advice and of 

advice that are attached to context-based pointcuts. In these cases, the woven use 

case is generated by means of extend relationships that precisely specify under 

which circumstances the behavior of the extending use case is to be performed. If 

an advice is attached to a context-based pointcut, for example, the extend 

relationship's condition reflects on the dynamic context in which extension has to 

take place. For an around advice, the condition generally states that extension 

shall be performed only if 'proceed' is called. Figure 5.7 illustrates how these 

conditions are expressed in UML use case diagrams.  

 

The weaving process may lead to multiple collaborations. This is particularly likely 

in the case of dynamic crosscutting based on a join point's current execution 

context (i.e., when a piece of advice is attached to a context-based pointcut). 

Multiple collaborations may be needed also to describe all possible flows of control 

through an around advice. This means no conflict with the UML specification, 

though, as it explicitly allows the existence of multiple collaborations for a single 

use case. 
 
5.5.5    Weaving Introductions 
 
Just like weaving of advice, the AOSDDL implements weaving of introductions with 

help of collaborations. Recall that introductions are represented in the AOSDDL as 

collaboration templates of stereotype <<introduction>>. Thus, weaving of 

introductions is realized by instantiating of the collaboration  template  in  the  base  

classes  namespace. Before  the  instantiating the base  classes  (specified in 

template parameter's "base" tag) are supplemented with the features and 

relationships specified in the collaboration template so that the design model will 

not be ill-formed after the weaving process. 
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     <refine>                  <refine> 
 
 
 
 
 
 
 <include>            <include> 
    
                   

                         <refine>     <refine> 
 
 
                

 
       

    <include>          <include>             <include>           <include> 
      
 
 
 
 
                                         
                                           Fig 5.9:  Weaving Introductions with UML Use Cases 
 
 Just like the weaving mechanism of advice, the weaving mechanism of 

introductions is represented in the AOSDDL in a more abstract manner using UML 

use cases. In Figure 5.9 for example, the use cases describing the aspects are 

refined into sets of (subordinate) use cases each specifying the behavior of one 

individual introduction contained in the aspects. These subordinate use cases 

(together with the use cases describing the base classes) are then included into 

new (woven) use cases describing the behavior of the woven (i.e., crosscut) base 

classes. 

 
5.5.6    Weaving Relationship 
 

              <expect> 
SubjectObserverProtocol 

<introduction> 
    Subject 

<introduction> 
    Observer 

              <aspect> 
SubjectObserverProtocol[imp]
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<introduction> 
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  issueLabel 
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The AOSDDL introduces a new relationship (named "<<crosscut>>") to the UML to 

signify the crosscutting effects of aspects on their base classes. This relationship is 

specified in imitation of the extend relationship that is already specified by the UML 

specification. It is no special stereotype of the extend relationship, though, since 

extend relationships may only exist between two use cases. Crosscut 

relationships, however, must connect other kinds of classifiers, as well (such as 

classes, interfaces, and aspects). Similar to extend relationships, the crosscut 

relationship is a directed relationship from one classifier (i.e., an aspect) to another 

classifier (i.e.. a base class) stating that the former classifier affects the latter 

classifier (in the way that the former classifier is woven into the latter classifier). At 

the same time, though, the latter classifier remains independent from the former 

classifier (in the way that its implementation or functioning does not require the 

presence of the former classifier). Instead, the opposite is true. The crosscut 

relationship signifies that the former classifier (i.e., the aspect) requires the 

presence of the latter (i.e., the base class). These characteristics make (the extend 

relationship as well as) the crosscut relationship distinct from other relationships in 

the UML, such as the various kinds of dependency relationships. The crosscut 

relationship states further that the former classifier (i.e., the aspect) is woven into 

the latter classifier (i.e., the base class) according to the weaving mechanism 

described above. Note that crosscut relationships and weaving instructions are 

related to each other by a one-to-one mapping. So (provided with appropriate tool 

support), designers may specify the crosscutting effects o£ aspects either by 

drawing crosscut relationships or by specifying weaving instructions. 
 
5.6    Identifying Software Concerns  
 
Separation of concerns (SOC) is a long-established principle in software 

engineering. It has received widespread attention in modem programming 

languages, with constructs such as modules, packages, classes, and interfaces, 

which support properties such as abstraction, encapsulation, and information 

hiding. SOC has also received attention in software architecture and design, with 

techniques such as composition filters and design patterns. While advances in all 

of these areas have had significant benefits, problems related to inadequate 

separation of concerns remain. This has led to  work on "advanced separation of 

concerns", (ASOC), aspect-oriented programming, and multidimensional 
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separation of concerns. These bring a number of innovative ideas to programming 

in particular and to software development in genera, which are now beginning to 

mature and coalesce under the heading of aspect-oriented software development 

(AOSD). 

 

Although ASOC has been emphasized in recent work, concerns themselves have 

remained something of ignored. Current ASOC tools provide only limited support 

for explicit concern modeling, representations of concerns tend to be tied to 

particular tools or artifacts, and concern modeling usually occurs just in the context 

of a particular type of development activity. such as coding or design. A global 

perspective on concerns, that spans the life cycle and is independent of particular 

development tools or artifacts, has been lacking. 

 
5.6.1    Concern Modeling Schema Framework 
 
During software development [18], concerns arise at all stages of the life cycle, 

from requirements specification, through design, coding, and testing, to 

maintenance and evolution. Concerns also span multiple phases of the life cycle, 

relate to multiple instances and types of artifacts, and crosscut phases and artifacts 

in different ways. Finally, concerns are dynamic and relative, that is, that the 

concerns relevant to a particular software unit will change over time and that they 

also depend on the perspective or purpose of the user or stakeholder who 

considers the software. 

 

This implies that a general-purpose concern modeling framework that may be a 

part of the design language should support the representation of arbitrary 

concerns, the representation of composite concerns, support the association of 

concerns to arbitrary software units, work products, or   system elements, language 

independent, methodology compatible,applicability across the software 

development life cycle, support the representation of arbitrary relationships among 

concerns and widely supported by various software engineering phases.  

  
5.6.2    Applications 
 
Concern modeling framework has many potential applications in software 

development. It  provides a form of documentation for basic information about 
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concerns and their relationships.  This kind of model  can afford a global 

perspective that draws on, combines, and relates concerns from multiple work 

products and life cycle stages. 

 
This kind of concern modeling framework that contains physical concerns 

(representing work products) and mapping relationships (that relate logical 

concerns to physical concerns) can serve as a semantic hyperindex that allows 

concerns to be traced into work products and development tasks. This supports 

traceability of concerns into and across work products and stages, and it makes it 

possible to see how concerns arise, are propagated, and possibly dropped across 

stages and iterations of the life cycle. 

 

Mapping relationships further allow us to assess the impact on the physical level of 

changes on the logical level. For example, if we no Ionger care about robustness 

and lose that motivation for a concern such as Iogging, then we may be able to 

safely drop the software units that implement that concern. However, we may also 

find that a unit considered for deletion also contributes to other purposes (as 

logging may also support auditing) and so should be retained.  

 
Another application is in organizing code (or other units) for purposes of concern-

driven program composition.   

  
5.7   Design Language Issues for Component Based software 

Development 
 

Component based software development (CBSD) and more recently, aspect-

oriented software development (AOSD) have been proposed to tackle problems 

experienced during the software engineering process. When applying CBSD, a full-

fledged software-system is developed by assembling a set of premanufactured 

components. Each component is a black-box entity, which can be deployed 

independently and is able to deliver specific services. The deployment of this 

paradigm drastically improves the speed of development and the quality of the 

produced software. AOSD on the other hand, tries to improve the separation of 

concerns  in current software engineering methodologies, by providing an extra 

separation dimension along which the properties of a software-system can be 

described.  
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Currently available AOSD-research mainly focuses on object oriented software 

development (OOSD). CBSD however, also suffers from the problems that arise 

with the tyranny of the dominant decomposition. Similar to OOSD, aspects such as 

synchronization and logging are encountered, which crosscut several components 

from which the system is composed. Consequently, the ideas behind AOSD should 

also be integrated into CBSD. The other way around, namely the integration of 

CBSD within AOSD, is a valuable concept as well. CBSD puts a lot of stress on the 

plug-and-play characteristic of components; for example, it should be possible to 

extract a component from a particular composition and replace it with another one. 

Introducing a similar plug-and-play concept in AOSD, would make aspects 

reusable and their deployment easy and flexible. 

 
Combining the AOSD and CBSD principles is a valuable contribution to both 

paradigms. However, currently available AOSD and CBSD research cannot be 

straightforwardly integrated, this because of several restrictions which are imposed 

by the existing approaches: 

 
• The deployment of an aspect within a software-system is at this moment 

rather static. In AspectJ for example, an aspect looses its identity when it is 

integrated within the base-implementation of a software system. This 

makes it very difficult to extract an aspect from a particular composition and 

to replace it afterwards with a totally different aspect. This plug-and-play 

property is vital in some environments where the dynamic characteristic of 

components is considered an essential requirement. 

 
• Most AOSD approaches describe their aspects with a specific context in 

mind. Therefore, it is impossible to reuse aspects. This is not acceptable 

within CBSD, since every component of a software-system should be 

independently deployable. 

 
• The communication between the various components from which an 

application is composed, is in most cases specific to the employed 

component model. Java Beans for instance, makes use of an event-model. 
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Currently available AOSD-technologies however, are not suited to deal with 

these specific kinds of interactions. 

 
To integrate the ideas of AOSD into CBSD, we need a new aspect-oriented 

implementation language, designed especially for CBSD. This language should 

enable the development of software along another separation dimension, on top of 

the Java class hierarchy. It  stays as close as possible to the regular Java syntax 

and introduces two concepts: aspect beans and connectors.  An aspect bean is a 

regular Java bean that is able to declare one or more logically related hooks, as a 

special kind of inner classes. Hooks are genetic and reusable entities and can be 

considered as a combination of the AspectJ's pointcut and advice. Since aspect 

beans are described independent from a specific context, they can be reused and 

applied upon a variety of components. The initialization of a hook with a specific 

context is done by making use of connectors. 

 
To make such a language operational, we need   a new component model that 

already incorporates the necessary traps to enable dynamic aspect application and 

removal. Another advantage of this new component model will be that  component 

developers are still able to guarantee QOS for their components. However, the 

dynamicity and flexibility gained by using this new component model comes with a 

price in the form of large performance overhead compared to static languages, like 

for example AspectJ. As a consequence, this  approach can be limited in use 

where limited resources is an issue.  
 

5.8   Mapping UML extensions  through composition patterns to 
Aspects 

 
Requirements such as distribution or tracing have an impact on multiple classes in 

a system and are described, in general, as cross-cutting requirements, or aspects.   

Scattering and tangling make object-oriented software difficult to understand, 

extend and reuse. Though software design is an important activity within the 

software lifecycle with well-documented benefits, those benefits are reduced when 

cross-cutting requirements are present.  One approach to  mitigate these problems 

is by separating the design of cross-cutting requirements into composition  

patterns. 
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Composition patterns require extensions to the UML, and are based on a 

combination of the subject oriented model for composing separate, overlapping 

designs, and UML templates. We also show how composition patterns map to one 

programming model that provides a solution for separation of cross-cutting 

requirements in code—aspect-oriented programming. This mapping serves to 

illustrate that separation of aspects may be maintained throughout the software 

lifecycle.   
 
A composition pattern is a design model that specifies the design of a cross-cutting 

requirement independently from any design it may potentially cross-cut, and how 

that design may be re-used wherever it may be required. Composition patterns are 

based on a combination of the subject-oriented model for decomposing and 

composing separate, potentially overlapping designs, and UML templates. 

  
 
5.8.1   Mapping To AspectJ 
    
At the conceptual level, composition pattern design and aspect-oriented 

programming also have the same goals. Composition patterns provide a means for 

separating and designing reusable cross-cutting behaviour, and aspectoriented 

programming provides a means for separating and programming reusable cross-

cutting behaviour.  The advantages of this are two-fold. First, from a design 

perspective, mapping the composition pattern constructs to constructs from a 

programming environment ensure that the clear separation of cross-cutting 

behaviour is maintained in the programming phase, making design changes easier 

to incorporate into code. Secondly, from the programming perspective, the 

existence of a design approach that supports separation of cross-cutting behaviour 

makes the design phase more relevant to this kind of programming, lending the 

standard benefits of software design to the approach. 

 

5.9    AspectJ Extensions for Distributed Computing 
 
Current programming systems do not provide mechanisms for modularizing 

crosscutting concerns in distributed systems  and thus they are major sources of 

low readability and maintainability of the software [66].  Issues like transactions, 
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security, and fault tolerance are typical crosscutting concerns in distributed 

systems. 
 

Many crosscutting concerns also arise during unit testing of distributed systems. 

The code for unit testing includes typical crosscutting concerns that AspectJ  can 

deal with. AspectJ is a widely used language for aspect-oriented programming 

(AOP) in Java. Unfortunately, if we use AspectJ to modularize testing code for 

distributed software, the code ("aspect") can be somewhat modular but it often 

consists of several sub-components distributed on different hosts. They must be 

manually deployed on each host and the code of these sub-components must 

include explicit network processing among the sub-components for exchanging 

data since they cannot have shared variables or fields. These facts complicate the 

code of the aspect and degrade the benefits of using aspect oriented 

programming. 
 
5.9.1    Implications on Network Processing 
 

AspectJ is a useful programming language for developing distributed software. It 

enables modular implementation even if some crosscutting concerns are included 

in the implementation. However, the developers of distributed software must 

consider the deployment of the executable code. Even if some concerns can be 

implemented as a single component ("aspect") at the code level, it might need to 

be deployed on different hosts and it would therefore consist of several sub 

components or sub-processes running on each host. Since Java (or Aspect J) 

does not provide variables or fields that can be shared among multiple hosts, the 

implementation of such a concern would include complicated network processing 

for exchanging data among the sub components.  
 
Programming frameworks such as Java RMI do not solve this problem of 

complication. Although they make details of network processing implicit and 

transparent from the programmers' viewpoint, the programmers still must consider 

distribution and they are forced to implement the concern as a collection of several 

distributed sub-components exchanging data through remote method calls. The 

programmers cannot implement such a concern as a simple, non distributed 

monolithic component without concerns about network processing. This is never 
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desirable with respect to aspect orientation since it means that the programmers 

must be concerned about distribution when implementing a different concern. 
  
5.10    Summary 
 
AOSDDL attempts to reproduce the semantic of AspectJ in the UML. It provides 

suitable representations for all components of an aspect (such as join points, 

pointcuts, pieces of advice, and introductions) as well as for the aspect itself. 

These representations are extended from existing UML concepts using the 

standard UML extension mechanisms. This way, aspects may be fully specified in 

concise units in an UML design model, thus carrying over the advantages of 

aspect-oriented modularity (such as higher comprehensibility, adaptability, and 

reusability) to the design level.    

 

Concerns represent the "matters of interest" in a software system, and they arise 

and pertain throughout the software life cycle. The  concern space models have 

many applications. Generally they embody knowledge about a software system 

and its components and in effect provide a semantic hyper-index into work 

products and other resources. This information can support of many software 

development tasks, such as rationale capture, impact analysis, change 

propagation, and software composition and decomposition. These tasks are useful 

in initial system development but are especially important for "downstream" 

software processes such as maintenance, extension, adoption, customization, 

integration, and reuse. Concern-space modeling is already being applied within 

individual tools; sooner it will eventually provide a framework for integrated 

software development environments.  

 

To integrate the ideas of AOSD into CBSD, we need a new aspect-oriented 

implementation language, designed especially for CBSD. To make such a 

language operational, we need   a new component model that already incorporates 

the necessary traps to enable dynamic aspect application and removal.  However, 

the dynamicity and flexibility gained by using this new component model comes 

with a price in the form of large performance overhead compared to static 

languages, like for example AspectJ. As a consequence, this  approach can be 

limited in use where limited resources is an issue.  
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Software design is an important activity in the development lifecycle but its benefits 

are often not realized. Scattering and tangling of cross-cutting behaviour with other 

elements causes problems of comprehensibility, traceability, evolvability, and 

reusability. Attempts have been made to address this problem in the programming 

domain but the problem has not been addressed effectively at earlier stages in the 

lifecycle. Composition patterns presents an approach to addressing this problem at 

the design stage. 

 

AspectJ extensions for identifying join points in the execution of a program running 

on a remote host  can simplify the description of aspects with respect to network 

processing if the aspects implement a crosscutting concern spanning over multiple 

hosts. 

 

Further, this chapter has presented the design of AOSDDL, an aspect oriented 

design language. The primary focus of this design language is to provide a highly 

flexible and extensible set of notations suitable for aspect oriented software 

development in all real world scenarios, suitable as a research platform for aspects 

that can form the basis for further research into aspect oriented systems and 

software engineering in general.  

 

The following chapter continues this thesis with an overview of the AOSDDL  

prototype implementation and its evaluation. Due to the broad scope, the prototype 

implementations serve mainly as proof of concept  for key mechanisms and design 

decisions of AOSDDL form. 
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CHAPTER  6 
 
 
Implementation and Evaluation 
 
 
 
6.1    Overview 
This chapter describes the ongoing efforts to engineer a prototypical realization of 

the AOSSDL design language. The previous chapter has presented the design and 

notations of this language. Due to the extent of the AOSDDL structure, the 

prototyping implementations focus primarily on validating the key aspects of the 

language by implementation. 

Also present in this chapter is the evaluation of the AOSSDL structure and the 

prototype implementation as described in the previous chapter and this chapter. 

Since the main objective of this work was to design an aspect oriented software 

development design language from the ground up, it has not been feasible to fully 

realize such a language. As a consequence, the evaluation of the AOSDDL 

structure is to a large extent a theoretical analysis. 
 
6.2    Processing and Test Environments 
 
The operating systems used is Windows XP edition. The Eclipse Platform for Java 

[68, 69, 70, 71, 72, 73, 74, 75] was used to carry out the implementation and 

testing of the abstract notations in AspectJ. To implement graphical notations and 

diagrams the Together CASE tool [76] was used. Moreover, the implementation  

tests can also be conducted under Linux environment  by the very nature of it 

being open source. 
   

6.3    Mapping Learning Resource Center (LRC) Design  to Aspects 
 
We now look at an example application problem that demonstrates  

implementation of aspects for a learning resource center that provides services to 

its customers in the form of periodicals, books, newsletters and magazines. It 

shows how cross-cutting requirements may be designed independently of any 

base design, making aspect design truly reusable.   
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This learning resource center library has various resources (books) of which all 

copies are located in the same room and shelf. An Information officer handles the 

maintenance of the association between these resources and their locations. The 

Information officer also maintains an up-to-date view of the lending status of copies 

of books, periodicals and journals. 

 

6.3.1    Functional Decomposition  
 
Based on the problem definition above the following types of services will be 

required:  

Finding resources on a topic An search operation that takes partial or incomplete 

description of the resources and lists accurate matches in the form of books or 

journals. 

Getting list of Journals An  search service that lists all the journal issues for a 

particular publishing month (quarterly / bi-monthly etc). The user will be able to 

filter the selections based on the criteria specified regarding the journal details. 

Upcoming Issues This will list the future issues for publication and the issue 

month. 

Authentication Before providing any kind of services the application needs to 

verify the credentials (username and password) to it.  

Logging A logging function requirement to keep track of the calls made to the the 

webservices. These kind of features are useful to track the preferences of 

cardholders and resources in demand type of statistics from within the application. 
 

6.3.2    Design Diagrams for Learning Resources Center (LRC)   
 
Figure 6.1 shows the LRC design and figure 6.2 shows the design hierarchy 

diagram for the learning resource center(LRC). To avoid line cluttering on the 

hierarchy diagram, we have omitted a few dependencies. 

 

  

 

 

 

 



 97

 
 
 
 
             OnO 
 
                                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                       
                                       Figure 6.1: Learning Resource Center (LRC) Design 

  
 
6.3.3    Aspects Modularization and Dependency Effects of Aspects 
 
We perform two forms of modularization namely, logging and authentication using 

aspects to remove dependencies between the modules. Using pointcut-advise 

mechanism  we remove the dependencies between the various modules. A logging 

aspect that captures the calls to the webservices directly from the design rules for 

JournalFind. The logging aspect module hooks these calls with the module 

WebServicesLogger. Secondly, for authentication we use introductions to inject the  
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             Figure 6.3:  AOSDDL’s Authentication functionality  
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authentication specific functionality into the application modules. This will result in 

another aspect Authentication, in the final design shown in figure 6.3. 

The hierarchy diagrams in figure 6.4 and figure 6.5 show the effects that aspects 

have on module dependencies. Figure 6.4 models the design change that was 

made to perform aspect oriented modularization to logging and Figure 6.5 models 

the same for authentication. Aspect oriented mechanisms eliminate the 

dependencies clients have on providers by introducing aspects as new modular 

structures. Aspects depend on these clients and providers, and are responsible to 

provide connections between them. Aspect oriented modularization with 

introductions is similar to the module with injected dependency. 
 
 

 

                  

 

 

 
      F 
 
                Figure 6.4: Effect of aspects with pointcut-advise on dependencies 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
                  Figure 6.5: Effect of aspects with introduction on dependencies 
 
6.3.4    Designing Aspects 
 
Figures 6.4 and 6.5 are just one of several variations of pointcut-advise and 

introduction mechanisms. Particularly, in these figures we do not see what the 

visible design rules for aspects are. In both cases aspects depend on clients or/and 
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providers. In Figure 6.4, a small box labeled as C denotes the common points in 

clients accessing the providers. C is moved into the aspect after aspect oriented 

modularization and it represents two things: (i) interfaces that a provider provides, 

and (ii) points in clients that access such interfaces. A typical way to design 

aspects following this process (as in AspectJ) is to capture these points as 

joinpoints, (for example the method names a provider provides and the method 

names of clients that access the provider), that need to be advised. Such joinpoints 

constitute C, and, in a way, become design rules for the aspect. Defining design 

rules for aspects implies making such joinpoints explicit. Just as architectural 

modules emerge after sustaining a considerable design evolution, an aspect 

oriented design would also result in well defined design rules for aspect oriented 

modularization, as in the structure shown in Figure 6.6. 

 
                                              
 
                        
 
 
 
 
 
 
 
 
 
 
 
             Figure 6.6: Design rules for Aspect Oriented Modularization 
 
 
6.3.5    Crosscutting Requirements: Aspects 
 
Synchronizing the aspect is the  first cross-cutting requirement that requires that 

the journal master should handle several requests to manage journals and their 

locations concurrently. This aspect example, first supports the journal masterr 

handling several “read” requests concurrently, while temporarily blocking “write” 

requests. Individual “write” requests should block all other services. 

Synchronization of concurrent processes is a common requirement, and therefore 

it is useful to design this behaviour without any reference to our LRC example. Fig. 

6.7 illustrates how this can be achieved. The Synchronize composition pattern has 

one pattern class, LRCSynchronizedClass, representing any class requiring 

synchronization behaviour. 
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                                      Figure 6.7: LRC Synchronization  for Aspect Design 
 
Specifying how to compose the LRC base design subject with the Synchronize 

composition pattern is a simple matter of defining a composition relationship 

between the two, denoting which class(es) are to be supplemented with 

synchronization behaviour, and which read and write operations are to be 

synchronized.  

In this case, the LRC’s JournalMaster class replaces the pattern class in the 

output, modify(), add() and remove() operations are defined as write operations, 

and the search() operation defined as read (see Figure 6.8).   
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  _ _ _ _ _ _ _ _ _ _ _ _ _                
                                    
                                         
   
 
 
 
 
 
 
 
 
                   
 
                       Bind[JournalMaster{add( ), remove( ), modify( ), search( )]  
          

Figure 6.8: Synchronization of Learning Resource Center (LRC) 
                                                              
Pattern specification and binding, is all the designer has to do to define truly 

reusable aspects patterns, and specify how they are to be composed with base 

designs.      

AOSDDL  approach reflects on the various aspects of the analysis  in terms of 

effectiveness at support  for aspect identification, requirements coverage, 

traceability and scalability. Effective support exists for determining the binding 

order for multiple crosscutting aspects. This may be otherwise difficult to locate. 

The supplementary requirements studied to determine whether any of their minor 

actions should be enhanced to major, or whether to group those requirements. 

Further, all actions could be turned into design aspects and hence scalability was 

efficient. Traceability also followed from and to aspect design. 
   
6.3.6    Designing LRCObserver Aspect 
 
In the Observer composition pattern, two pattern classes are defined. LRCSubject 

is defined as a pattern class representing the class of objects whose changes in 

state are of interest to other objects, and LRCObserver is defined as a pattern 

class representing the class of objects interested in a Subject’s change in state 

(see Fig. 6.9). 
 

LRCSynchronizedAspect 

Learning Resource 
Center (LRC) 

   LRCSynchronizedClass_write (..)    
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The interaction in Fig. 6.9 illustrates specifying behaviour that cross-cuts 

templates, with Subject’s template parameter _aStateChange(..) supplemented 

with behaviour relating to notifying observers of changes in state. Again, this 

achieved by referring to the actual replacing operation with a prepended “_”, i.e., 

_aStateChange(..).Here also is an example of an operation template parameter 

that does not require any delegating semantics. The update() operation in 

observers is simply called within the pattern, and is not, itself, supplemented 

otherwise. It is defined as a template so that replacing observer classes may 

specify the operation that performs this task. This pattern also supports the 

addition and removal of observers to a subject’s list using _start(.., Subject, ..) and 

_stop(.., Subject, ..) template parameters, where each is replaced by operations 

denoting the start and end, respectively, of an observer’s interest in a subject. For 

space reasons, the interactions are not illustrated here, as they do not illustrate any 

additional interesting properties of the composition pattern model. 
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  _ _ _ _ _ _ _ _ _ _ _ _ _                  
                      
      
         
 
 
 
 
 
 
 
 
 
                                                         LRC 
                                                                        LRCSubject       many                        
 
                           one           LRCObserver 
 
                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    Figure 6.9: Aspect Design for LRCObserver 
                                    
 
As with the Synchronize pattern, specifying the composition of Library with the 

LRCObserver pattern is done by specifying a composition relationship between the 

two, defining the class(es) acting as LRCsubject, and the class(es) acting as 

LRCobserver. In this example, there is only one of each (see Fig. 6.10), JournalFile 

and JournalMaster, respectively. 
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<LRCSubject( )>   
<LRCObserverUpdate( ), start(..), stop(..)> 



 105

  
             
  _ _ _ _ _ _ _ _ _ _ _ _  
                                                                            
LRCObserverUpdates( )                                       
   
 
 
 
 
 
 
 
 
                 
 
         bind[<JournalFile(query = false)>,  
                <JournalMaster(updateStatus( ), addView( ), removeView( ), modifyView( )>] 
  
                                 Figure 6.10: Design Aspect for LRCObserver  
 
The output of composing LRCObserver with Learning Resource Center, will show 

JournalFile demonstrating subject behaviour, with the operations borrow() and 

return() initiating the notification of observers, as they are the only state-changing 

operations. JournalMaster ,as an observer, has defined updateStatus() as the 

operation to be called for notification purposes. Operations addView(..), 

modifyView(..) and removeView(..) initiate a JournalFile adding and removing a 

JournalMaster from its list of observers. 

Similiarly, the design Aspect for Authentication (LRCLogger) is shown in figure 

6.11.           
 
 
 
 
 
 
 
 
 
Bind[<{Person,Student,Professor}, 
            {Student.register( ), Person.unregister( ), Professor.issue( )}] 
 
                    Figure 6.11: Design Aspect for Authentication (LRCLogger) 
 
6.4    Testing    
 
In our work, we present a state-based approach to the incremental testing of 

aspect-oriented programs, which addresses the following research issues: 
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• How to specify the expected impact of aspects on object states for test generation 

purposes? 

• To what extent can base class tests be reused for testing aspects? Base class 

tests are not necessarily valid for testing aspect-oriented programs as aspects 

are likely to change transitions of object states.  

• How to determine that a programming fault actually has to do with aspects rather 

than base classes? 

To capture the expected impact of aspects on the states of base class objects, we 

exploit aspect-oriented state models, an aspect oriented extension to state models 

with testability, for specifying base classes as well as aspects. We compose state 

models of aspects and base classes by an explicit weaving mechanism and 

generate abstract test cases from state models for an aspect oriented program and 

the corresponding base program. Taking aspects as incremental modifications to 

their base classes, we identify how to reuse the concrete base class tests for 

testing aspect-oriented programs according to aspect–oriented state models. Such 

an incremental approach to testing aspect-oriented programs can significantly 

reduce testing cost for two reasons: (1) it reuses test cases, the development of 

which is often an expensive investment; and (2) it helps localize programming 

problems by identifying aspect-specific faults. For instance, if the base classes of 

an aspect-oriented program pass all of the state based tests but the aspect-

oriented program as a whole fail some of the tests, the failure would have to do 

with aspects. 

 

6.5    Defining Validation Parameters for Aspects 
 

We first formally define extended state models as a basis for class and aspect 

specification to  describe aspect oriented state models for generating test cases. 

Objects are encapsulated entities of data and operations that can receive 

messages from and send messages to other objects. Constraints often exist on the 

sequence of messages that can be accepted by objects. As these constraints are 

typically related to object states, state models are a common approach for 

capturing object behaviors, especially intra-class behaviors. In the following, we 

extend traditional finite state models as a basis for aspect-oriented state models. 
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For example, fig. 6.12 and the listing  shows the state model and public interface of 

the Journal class, respectively. For clarity, we use d  to denote the instance field 

duedate and assume that returndate <= duedate is a precondition for methods 

return(returndate) and payfine (amt). Transition (Issue, payfine, duedate-returndate 

>=0,Issue) means that method call payfine(amt) with condition duedate-returndate 

>=0 under state Issue does not change the state. 

 

                   
 

Figure 6.12:  The state model of class Journal 
 

 
public class Journal { 
// constructor, or the new operator 
public Journal(); 
// indicating instance field duedate – d  for short 
public double getDuedate(); 
public void renew(date); 
public void issue(date); 
public void freeze(); 
public unfreeze(); 
public void close(); 
} 
Listing for the interface of class Journal 
  
We incorporate aspect-orientation into state models by following the fundamental 

concepts of AOP, such as aspects, join points, pointcuts, and advices. In our 

approach, join points can be states, events, or variables in a state model; a 

pointcut picks out a group of join points; advices are specified as a state model; 

and an aspect is an encapsulated entity of pointcuts and advice model. 
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We build a model for each aspect. Fig. 6.13 shows the aspect model. Overdue that 

enforces a new resource center  policy for the base class Journal  in fig.6.12. 

Although it can crosscut other account (e.g. credit card) classes, for simplicity, we 

specify it only with respect to Journal. The Overdue aspect allows one overdue 

periodical as long as the due date  is  less than three months. In the aspect, the 

states are Issue (a different name can be used, though) and Overdue, where Issue 

is corresponding to the Issue state in the base model and Overdue is a new state. 

The events are return, due and get, which are corresponding to return, renew and 

getBalance in the base model, respectively. The variables used to represent guard 

conditions are x and b, which are corresponding to amt and d in the base model, 

respectively. Note that the aspect is an addition to the base model as all the 

transitions from Issue to Issue in the base model remain unchanged. 

 
aspect Overdue 
state pointcut Issue: Journal.Issue 
event pointcut get: Journal. getBalance 
event pointcut due(x): Journal. renew(date) 
event pointcut return(x): Journal.return(date) 
variable pointcut d: Journal.d 
 

                    
 

Fig 6.13:  The Overdue Aspect 

The general process of our approach to incremental testing of an aspect-oriented 

program is as follows: (1) build the state models of the base classes; (2) generate 
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abstract test cases from the base models; (3) instantiate the abstract test cases to 

form concrete test suites for the base classes; (4) test the base classes; (5) build 

aspect models and weave them into the base models; (6) generate abstract test 

cases from the woven state models; (7) generate test suites for the aspect-oriented 

program as a whole by reusing, modifying, and extending concrete base class test 

cases and instantiate new abstract test cases; and (8) test the aspect-oriented 

program. Of course, we can combine step (5) into step (1), that is, build complete 

aspect-oriented models before testing base classes. 

 

6.6    Detecting Aspect Faults 
A great variety of aspect-specific faults may exist in aspect oriented programs. 

Examples include pointcut expressions picking out extra join points, pointcut 

expressions missing certain join points, incorrect advice types, and incorrect advice 

implementation. In this section, we discuss how these faults would affect object 

states and how they can be revealed by the state-based testing approach. The 

incremental testing approach is similar to traditional regression testing. The 

essential difference is that, aspects as a structured way to specify modifications 

make it feasible to investigate systematic reuse and modification of the existing 

tests. Our approach can be adapted to the UML class diagrams and start charts by 

using class interfaces, flattening start chart diagrams, and following the convention 

of guard conditions. 

 
6.7    Evaluation  
 
In general there are two methods used for the evaluation of research contributions 

namely, qualitative and quantitative evaluation. However, since the contributions 

here are mostly concerned with the use of the notation and its implementation, a 

qualitative evaluation of the concepts and design  of the design language will be 

more meaningful.  

Since it has been feasible to implement only a subset of the overall design 

language architecture, a quantitative evaluation of the entire system cannot be 

provided at this stage.  

 
6.8    Qualitative Evaluation: Mapping To AspectJ 
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This section presents a qualitative evaluation of the AOSDDL design language. 

Firstly, a case study used to evaluate the features and usability of the design 

language is examined. 

 
At the conceptual level, composition pattern design and aspect-oriented 

programming also have the same goals. Composition patterns provide a means for 

separating and designing reusable cross-cutting behaviour, and aspect oriented 

programming provides a means for separating and programming reusable cross-

cutting behaviour. This section introduces possibilities for mapping composition 

pattern constructs to current aspect-oriented programming constructs. Research 

into, and development of, technology support for the aspect-oriented programming 

paradigm is currently centered around AspectJ, and so, using the synchronization 

example, we assess how composition patterns map to AspectJ programming 

constructs. 

 
6.8.1    Synchronize in AspectJ 
 
The Synchronize composition pattern (Fig. 6.7) with its composition specification to 

the learning resource center subject (Fig. 6.8) provides the information required for 

the structure of an aspect program. The composition pattern has one class defined, 

which is a pattern class, and therefore is replaced with a concrete design class. 

The composition relationship’s binding specification indicates that JournalMaster 

replaces the LRCSynchronizedClass pattern, and therefore, all non-pattern 

elements defined within LRCSynchronizedClass are introduced to JournalMaster. 
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First, the composition pattern’s name may be used for the aspect declaration. Also, 

the operation template parameter defined in Synchronize, write(..),may be seen as 

a pointcut in replacing classes. The composition relationship between Synchronize 

and Learning Resource Center (LRC) indicates that the JournalMaster operations 

add(Journal) and remove(Journal) replace write(..).As regards the advice code, the 

interaction (sequence) diagrams specified within the Synchronize composition 

pattern indicate when “advice” operations should be called relative to the template 

operations. These directly translate to the before and after constructs of the 

AspectJ advice element. This information maps to the following programming 

elements of aspects: 
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This illustrates the possibilities for mapping composition pattern constructs to 

AspectJ programming elements. The advantages of this are two-fold. First, from a 

design perspective, mapping the composition pattern constructs to constructs from 

a programming environment ensure that the clear separation of cross-cutting 

behaviour is maintained in the programming phase, making design changes easier 

to incorporate into code. Secondly, from the programming perspective, the 

existence of a design approach that supports separation of cross-cutting behaviour 

makes the design phase more relevant to this kind of programming, lending the 

standard benefits of software design to the approach. 

 
6.9    AspectJ Extensions for Distributed Computing 
 
Current programming systems do not provide mechanisms for modularizing 

crosscutting concerns in distributed systems  and thus they are major sources of 

low readability and maintainability of the software.  Issues like transactions, 

security, and fault tolerance are typical crosscutting concerns in distributed 

systems. 
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Many crosscutting concerns also arise during unit testing of distributed systems. 

The code for unit testing includes typical crosscutting concerns that AspectJ  can 

deal with. AspectJ is a widely used language for aspect-oriented programming 

(AOP) in Java. Unfortunately, if we use AspectJ to modularize testing code for 

distributed software, the code ("aspect") can be somewhat modular but it often 

consists of several sub-components distributed on different hosts. They must be 

manually deployed on each host and the code of these sub-components must 

include explicit network processing among the sub-components for exchanging 

data since they cannot have shared variables or fields. These facts complicate the 

code of the aspect and degrade the benefits of using aspect oriented 

programming.   

 
6.9.1    Implications on Network Processing 
 

AspectJ is a useful programming language for developing distributed software. It 

enables modular implementation even if some crosscutting concerns are included 

in the implementation. However, the developers of distributed software must 

consider the deployment of the executable code. Even if some concerns can be 

implemented as a single component ("aspect") at the code level, it might need to 

be deployed on different hosts and it would therefore consist of several sub 

components or sub-processes running on each host. Since Java (or Aspect J) 

does not provide variables or fields that can be shared among multiple hosts, the 

implementation of such a concern would include complicated network processing 

for exchanging data among the sub components.  
 
Programming frameworks such as Java RMI do not solve this problem of 

complication. Although they make details of network processing implicit and 

transparent from the programmers' viewpoint, the programmers still must consider 

distribution and they are forced to implement the concern as a collection of several 

distributed sub-components exchanging data through remote method calls. The 

programmers cannot implement such a concern as a simple, non distributed 

monolithic component without concerns about network processing. This is never 

desirable with respect to aspect orientation since it means that the programmers 

must be concerned about distribution when implementing a different concern. 
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Consider the case of developing unit tests for distributed software, in our case, a 

distributed authenticated service. The distributed test code includes crosscutting 

concerns but, if they are modularized in AspectJ, the code develops the 

complexities mentioned above. 

 

The implementation of this service consists of two components: a front-end server 

AuthenticationServer on a host W and a database server DbServer on another 

host D. This is a typical architecture for enterprise Web application systems. If a 

client application needs to register a new user, it remotely calls registerUser0 on 

the front-end server using Java RMI. Then the confirmUser() method remotely calls 

addUser() on the database server, which will actually access the database system 

to update the user list. To unit-test the confirmUser() method, the test code would 

first remotely call the confirmUser() method and then confirm that the addUser() 

method is actually executed by the database server. Note that since the test code 

must confirm that remote method invocation is correctly executed, it must confirm 

not only that confirmUser() on the host W calls addUser() but also that addUser() 

starts running on the host D after the call. The test code would be simple and 

straightforward if the examined program is not distributed. It calls the confirmUser() 

method and then confirms the tempUser field is true. This field is set to true by the 

before advice (lines 10 to 14) when the addUser() method is executed. 

 

We below show the test code written in Aspect J on the Eclipse Platform: 
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The above test code becomes more complicated if the examined program is 

distributed. 

                                     
                                        Figure 6.14: The testing code in AspectJ 
 
The test code now consists of three sub-components: AuthenticationServer, 

Receiverlmpl, and Notification (Figure 6.14). Although the overall structure is the 

same, the AuthenticationServer and Receiverlmpl objects run on a testing host T 

but the Notification aspect runs on the host D, where the DbServer is running. The 

host T is different from W or D.  

The testRegisterUser() method (lines 4 to 12) on T remotely calls confirmUser() on 

W and then confirms that the tempUser field is true. This field is set to true by the 
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confirmCall() method in Receiverlmpl, which is remotely called by the before advice 

(lines 28 to 35) of Notification running on D. The confirmCall() method cannot be 

defined in AuthenticationServer since AuthenticationServer must extend the 

TestBed class whereas Java RMI requires that remotely accessible classes 

extends the UnicastRemote0bject class. 

The test code shown below is a distributed version: 

 

 
                        
Even this simple testing concern is implemented by distributed sub-components 

and hence we had to write complicated network processing code using Java RMI 

despite that it is not related to the testing concern. In particular, the Notification 

aspect is used only for notifying confirmCall() on the host T beyond the network 

that the thread of control on the host D reaches addUser(). The Notification aspect 

is a sub-component that are necessary only because confirmCall() and addUser() 

are deployed on different hosts.  

This means that the component design of the unit testing is influenced by concerns 

about distributed. Furthermore, this notification code is similar to what the AspectJ 

compiler produces for implementing the pointcut-advice framework. It should not 
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be hand-coded, but implicit within the language constructs provided by an AOP 

language. 
  
6.10    Summary 
 
Improvement from using AspectJ in pattern implementations is directly correlated 

to the presence of crosscutting structure in the patterns. This crosscutting structure 

arises in patterns that superimpose behavior on their participants. In such patterns 

the roles can crosscut participant classes, and conceptual operations can crosscut 

methods (and constructors). Multiple such patterns can also crosscut each other 

with respect to shared participants.  

 

Software design is an important activity in the development lifecycle but its benefits 

are often not realized. Scattering and tangling of cross-cutting behaviour with other 

elements causes problems of comprehensibility, traceability, evolvability, and 

reusability. Attempts have been made to address this problem in the programming 

domain but the problem has not been addressed effectively at earlier stages in the 

lifecycle. Composition patterns presents an approach to addressing this problem at 

the design stage. 

 

AspectJ extensions for identifying join points in the execution of a program running 

on a remote host  can simplify the description of aspects with respect to network 

processing if the aspects implement a crosscutting concern spanning over multiple 

hosts. 

 

Further, the   realisation  of the prototype implementations provided in this chapter 

does not attempt to provide a complete implementation of the AOSDDL structure 

previously described in chapter 5. For example, significant parts of the component 

and distributed framework, which are both key to the aspect design language, have 

not been implemented due to the overall complexity of the system and the time 

constraints. The objective was rather to demonstrate the feasibility of the design 

language notations through a ‘proof-of-concept’ implementation of the AOSDDL 

specific mechanisms such as concern, join point, introduction etc (the major 

representations). 
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The implementation of the various mechanisms is described according to the 

overall structure of the AOSDDL structure, the processing and test environments.  

This chapter also discussed the evaluation of the design language structure. A 

qualitative evaluation has been considered best suitable for the design evaluation 

of AOSDDL. The qualitative evaluation is demonstrated based on a real case 

study.   
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CHAPTER  7 
 
 
Conclusion 
 
 
 
 
7.1    Overview 
 
This chapter recapitulates the work that has been carried out as part of this 

research effort. It summarizes the conclusions that could be gained from the 

design and development of the AOSDDL architecture.  

It provides an overview of the thesis structure and a summary of each chapter. A 

series of conclusion summarizes what has been learnt from this work, and how 

these experiences contribute to the wider field of research.  

 

7.2    Thesis Summary 
 
Chapter one of this thesis sets the scene by unfolding the evolution of software 

programming from the early days of computer science until today. It continued 

introducing the concepts of aspect oriented software development and describing 

the problem of today’s programming methodologies that have led to the 

establishment of this new research area. It provided a discussion of the research 

motivation for the field, highlighting the need for aspect oriented design capabilities 

and the potential beneficiaries of such a technology. Finally, it  presented a 

summary of the research goals and challenges that are taken on by this work. 
Chapter two provides a general background on the field of aspect oriented 

programming. It looks back to the initial developments of this trend in the 1990’s 

and shows how the field has evolved since. It defined the basic methodology for 

aspect oriented programming and introduced various approaches towards aspect 

oriented software development. The chapter then continued with a discussion of 

several architectural approaches and other key aspects for aspect oriented 

software development. 

Chapter three provided a comprehensive overview of the current state-of-the-art in 

the field of aspect oriented software development. A large number of different 

projects were presented, describing their specifications and the distinction of their 

design. The variety of projects based on the  design language architecture were 
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divided into  implementation dependent and implementation independent 

approaches. Although their fundamental goals are identical and the timescale 

when they have emerged is related, the underlying architectures are inherently 

different.    

Chapter four discussed the requirements  for aspect oriented design language in 

general and derived the requirements for the AOSDDL (Aspect Oriented Software 

Development Design Language)  architecture. These requirements have been 

derived from related work and acknowledged publications in the field.  General 

factors, for example the commercial aspects such as the deployment of aspect 

oriented technologies are also taken into consideration. A differentiation between 

the absolutely vital requirements and the more long-term requirements for an 

aspect oriented software system was made. From this multitude of general 

requirements a subset of requirements, which were considered important for the 

design of a flexibly extensible aspect design language, was drawn. These 

specialized requirements form the basis for the subsequent AOSDDL model and 

implementation. 

Chapter five and six presented the bulk of the contributions made in this thesis, 

namely the AOSDDL design notation and the prototype implementations of this 

design language. This chapter has introduced the design of AOSDDL, an aspect 

oriented design language with he motivation to provide a highly flexible and 

extensible set of notations suitable for aspect oriented software development in all 

real world scenarios,   can form the basis for further research into aspect oriented 

systems and software engineering in general.  

Chapter six presented the ongoing efforts to engineer a prototypical realization of 

the AOSSDL design language. Described in this section is the development of the 

core design constructs and notations of the AOSDDL model. Due to the 

considerable extent of this model, the development work has focused on validating 

the core design decisions and key mechanisms (i.e. separation of concerns, design 

incompatibility, synchronization, etc.) through a ‘proof-of-concept’ implementation.  

This chapter continued with the evaluation of the AOSSDL structure and the 

prototype implementation. A qualitative evaluation was  considered best suitable 

for the design evaluation of AOSDDL.   
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Chapter seven finally concludes the thesis by bringing together the thread of 

arguments throughout this work.  

 
7.3    Concluding Remarks 
 
Several conclusions can be drawn from  the development of AOSDDL: 

 

Enforcing Architectural Regularities 

 

The problems encountered were not as a result of an incorrect AOP design 

concept or idea in general but a consequence of its particular implementation. 

AspectJ being the only implementation available that is widely in use and is still 

undergoing changes. The language was not designed for the purpose of regulating 

architectural decisions and thus lacks sufficient tools to accommodate this task. 

The various design considerations regarding distributed architecture are possible 

with design constructs of AOP but it is their realization that caused difficulties.  

 
AOSDDL Features 
 

- An approach for high level architecture design, called AOSDDL, has 

been developed to enable separation of concerns at the design level 

of an AO development process. Within this approach it is assumed 

that the requirements have already been defined and specified during 

previous development stages. 

 

- Since AOSDDL is UML conform, any CASE tool that supports UML 

modeling can be used. 

 

- Aspects and base elements are completely kept apart; they are connected 

via a special language-specific connector element that encapsulates the 

underlying implementation technology. Any desired AO technology can be 

supported; it is just the connector’s syntax and semantics that have to be 

specified. 
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- Both, aspects and base elements, can be reused separately as the 

connector is the only crosscutting, language-dependent part. This sort of 

encapsulation offers a logical grouping of all classes belonging to one 

concern and eases the readability of design models as avoiding graphical 

tangling. 

 

- To offer low-level architecture design support, a code generator needs to 

be  developed to improve productivity and reduce errors when mapping 

model to code. 

 

AOP Testing 

The incremental testing approach is similar to traditional regression testing. The 

essential difference is that, aspects as a structured way to specify modifications 

make it feasible to investigate systematic reuse and modification of the existing 

tests. Our approach can be adapted to the UML class diagrams and start charts by 

using class interfaces, flattening start chart diagrams, and following the convention 

of guard conditions. 

 

The work can be seen as a first step towards a simple and powerful modeling 

approach that fosters support from existing CASE tools since it is based on 

standard UML. AOSDDL in combination with the code generator should make 

AOSD more usable and more efficient for software development. The assumptions 

about the usefulness of the notation and the AO code generation have to be 

proven in the near future when using it in business development projects. 
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CONTRIBUTIONS 
 
 
 
Here we summarize the main contributions and achievements of the research 

carried out as part of this thesis. 

The overall goal of this work, namely to design a aspect oriented design language 

that enables flexible extensibility of requirements and design functionality, has 

been successfully fulfilled in the form of AOSDDL structure. The validation of the 

architectural design with respect to its feasibility and practicality has been 

accomplished through prototype implementations of the AOSDDL architecture. 

 
Natural Extension to UML  
 
A sufficient notation that is simple to understand and straightforward to use for 

developers who are familiar with common design notations (such as UML). 
 

CASE Tool Support 
 
Design modeling is supported by powerful CASE tools like Together to improve 

developer productivity and to ensure syntactical correctness of the AO model. 

 
Extension of Architectural framework for design constructs 
 
An extension to UML is presented, without changing its metamodel specification, to 

achieve standard UML conformity. This helps developers to become acquainted 

with AO modeling when they are already familiar with OO modeling and UML. A 

key intention was to offer standard development tool support and interchangeability 

between various tools. UML is customized by using standard extension 

mechanisms only. To gain the benefits of code and design reuse of AO software, 

the ability to reuse aspect and business logic separately is needed. A notation is 

presented where aspect and business logic are completely kept apart. Thus, both 

are reusable and at the same time independent of the implementation technology. 

Within this approach it is assumed that the requirements have already been 
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defined and specified during previous development stages. 

 
Enforcing Architectural Regularities 
 
A natural outcome of the research work undertaken during design and prototype 

implementation was the realization that the problems encountered were not as a 

result of an incorrect AOP design concept or idea in general but a consequence of 

its particular implementation. AspectJ being the only implementation available that 

is widely in use and is still undergoing changes. The language was not designed 

for the purpose of regulating architectural decisions and thus lacks sufficient tools 

to accommodate this task. The various design considerations regarding distributed 

architecture are possible with design constructs of AOP but it is their realization 

that caused difficulties 

 

Implementation Support 
 
A direct mapping between the notation and supported implementation languages to  

allow automatic code generation based on the design model is a natural outcome 

for the next stage of work. 

 

Software Development 
 
The notation fulfils its applicability in real-world development projects because of 

smooth integration with existing and widely used tools and methodologies.  
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FUTURE SCOPE OF WORK 
 
Besides the ongoing development efforts to complete the AOSDDL prototype 

implementation, further work in this area focuses on using and extending the 

AOSDDL notation architecture and prototype platform in order to build and 

experiment with design language specifications. 

The code generators, tool integration and  notation deployment and  are few 

examples of ongoing research that take advantage of the AOSDDL  architecture 

and platform.  

 

Code Generators for Aspect modeling  
 
To ease the transition from design to implementation and to offer low-level 

architecture design support, a code generator has to be developed to support 

automatic generation of AO code skeletons from design models. This will help 

developers to focus on models having the code skeletons generated automatically 

to gain the benefits they are used to in OOSD. Code generation improves 

developer productivity, ensures syntactical correctness and reduces errors when 

mapping a model to code. The presented UML notation in combination with the 

code generator will make AOSD more usable and more efficient for software 

development by avoiding inconsistencies among design and implementation. 

Developers can then concentrate on AO design having the code skeletons 

generated automatically. 

 
Tools Integration 
 
After evaluating the prototype’s features in real world development projects, some 

concepts may have to be added (e.g. complex relationships between aspects). 

Another important feature will be a complete CASE tool support including roundtrip 

engineering for aspect mining. As Together supports the development of modules 

offering roundtrip engineering features, this will  be included in the near future in 

the code generator. The connector package encapsulates the underlying 

implementation technology. Currently, the syntax and semantics of an AspectJ 

specific connector type are defined. This sort of encapsulation eases the 
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replacement of the AO language, the support of different technologies and 

language concepts (such as Hyper/J [18] [19] [23]) will be part of some future work. 

An automated code generation for different languages is rather straightforward, 

too. It is only the code generator’s mapping rules that have to be changed. 
 
Notation deployment 
 
The assumptions about the usefulness of the notation and the AO code generation 

have to be proven in the near future when using it in business development 

projects. 

 

Support for Hyper/J 
 
Support of other AO concepts (such as Hyper/J) that are implementation 

dependent parts of AOSDDL  can  also be  considered as part of future work. 

 

Testing of Aspect Oriented Requirements 
 
Addressing  issues like the kind of base class tests that are less likely to be helpful 

for revealing aspect faults, how to prioritize the test cases to be reused and on how 

to model and test interference of multiple interacting aspects. 
 
Summary  
 
There are still many issues to be solved until efficient AO development support 

comparable to current OO support is established. When offering an integrated 

development process, the gaps between the early phases and AO programming 

have to be filled as so far the paradigm focuses mainly at the implementation level. 

There is still a lot of challenging research to be done in the future until the 

paradigm is widely accepted and developers are aware of the benefits AOSD 

offers. 
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APPENDICES 
 
A.  Installation and Configuration of Eclipse Platform  
 
A.1    Running  Eclipse 
 
In case, eclipse.exe does not start eclipse, then do the following:  
 
It's generally a good idea to explicitly specify which Java VM to use when running 

Eclipse. This is achieved with the "-vm" command line argument as illustrated 

below: 

 

c:\eclipse>eclipse -vm c:\j2sdk1.4.2\jre\bin\javaw -vmargs -Xmx256M 
 
                                                       OR 
 
Step 1: 
 
create a batch file "autoexec.bat" as follows: 
 
/****************  autoexec.bat ***********************/ 
 
eclipse -vm c:\j2sdk1.4.2\jre\bin\javaw -vmargs -Xmx256M 
exit 
 
 
/******************************************************* */ 
 
Step 2: 
 
Double click on the file to start eclipse. (you can also create shortcut on desktop 

and  

renaming it as "Eclipse") 

 
If you don't use "-vm", Eclipse will look on the O/S path. When you install other 

Java-based products, they may change your path and could result in a different 

Java VM being used when you next launch Eclipse. 
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A.2    Importing an existing AspectJ project  
 
 1. Physically copy all the Eclipse projects (i.e. Example1, Example1-1, etc ) from 

the specified location ( i.e. from the old workspace directory etc. ) into the   

destination     (i.e. new workspace  directory). 

2. Start Eclipse. 
 
3. Go to File --> Import... 
 
4.From the "select an import source" options choose "Existing project into 
workspace" 
 
5. select "Next". 
 
6. Browse to the newly copied (workspace directory) "project location" and choose 
   the project (i.e. Example1, Example1-1 etc). 
 
7. click "Finish".  
 
8. Repeat this procedure for as many projects to be imported. 
 
Note: 

 If the eclipse projects are not physically copied to the new location (workspace),   

then the projects are created using the old workspaces. However, This can be 

damaging in case, you forget that the project files are actually existing in the old 

location and not in the  new workspace directory. 

  
A.3    Running   AspectJ project in Eclipse 
  
1. Start Eclipse Platform. 
  
2. Go to windows --> Preferences --> Java --> Installed JREs  
 
3. See that the JRE home directory is checked and the path is: 
 
              c:\Program Files\Java\j2re1.4.2_05  
 
4. Now compile and run your AspectJ project. 
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