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ABSTRACT 

 
Data Warehouses and Scientific Databases pose a great challenge to the database 

community to improve query performance as they contain huge volumes of dimensional 

data. Moreover, the queries in such systems are, complex, multidimensional, and have 

large foot prints, often requiring millions of records to be answered.  Many different kinds 

of techniques have been proposed to improve the query performance in such 

environments to provide interactive response time to users.  

Indexing techniques play a major role in improving query performance in Data 

Warehouses and Scientific Databases. Conventional hash-based and tree-based one-

dimensional indexing techniques like linear hashing, extensible hashing, B+-tree are 

found lacking because of the multi-dimensional nature of the queries. In most cases it is 

found that doing a complete table scan is much cheaper than using an index.   

Multi-dimensional index data structures are an important optimization technique for 

querying high-dimensional search spaces in read-mostly environments and are supported 

by major commercial database systems. Bitmap indexes are efficient multi-dimensional 

index data structures for high-dimensional data arising in data warehousing, decision 

support systems, and in some scientific databases.  The main advantages of using bitmap 

indexes is that they are highly amenable to compression and encoding and bitmap 

manipulations using bit-wise operators AND, OR, XOR, NOT are very efficiently 

supported by hardware.  

One of the major issues with bitmap indexes is the associated space overheads especially 

for high-dimensional and high-cardinality data. In recent past, a number of approaches 

have been proposed to reduce the index size and improve the performance of the bitmap 

indexes. These approaches include encoding, compression, and binning. In the thesis, an 

attempt has been made to develop more efficient encoding, compression, and binning and 

techniques for bitmap indexes. 

Byte-aligned bitmap code (BBC) and word-aligned hybrid code (WAH) are two 

especially designed compression schemes for bitmap indexes. Some data preprocessing 

methods have been proposed to make both BBC and WAH more space and time efficient 

in answering equality and range queries.  
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Data reorganization, mainly tuple reodering, is a technique to improve the compression 

ratios achieved by BBC and WAH. Multi-component encoding has been used as a 

preprocessing technique to improve the compression ratio achieved by Gray code 

ordering algorithm used for tuple reordering. 

Bitmap indexes are suitable for low cardinality attributes. A number of scientific data 

analysis applications have attributes with cardinality in millions. High cardinality 

attributes pose unique challenges in terms of keeping the space requirements within 

manageable limits and at the same time maintaining acceptable response time for queries. 

Binning is a common technique used to reduce the size of the bitmap index. Although, 

binning leads to considerable space savings, it gives rise to the candidate check problem 

which can require a lot of additional disk I/Os thereby affecting query performance 

adversely. A new binning strategy is proposed for high cardinality attributes which 

attempts to minimize the number of candidate checks, for a given set of queries, at the 

expense of space. Some optimization techniques for performing candidate checks have 

also been developed. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ���

 
 
 

ACKNOWLEDGEMENTS 

 
First of all I would like to thank my supervisor Prof. Navneet Goyal for his 

valuable guidance, encouragement and moral support. It has been a great pleasure to be 

associated with him on this work.  

Next I want to thank Prof. R. K. Mittal, who introduced me to the field of 

databases. He has been a role model and a great source of encouragement to me.  

Special thanks are due to Prof. L. K. Maheshwari, Vice Chancellor, Prof. K. E. 

Raman, Deputy Director (Administration), Prof. G. Raghurama Deputy Director 

(Academic), Prof. Ravi Prakash, Dean, Research and Consultancy Division, for giving me 

an opportunity and encouragement for completing this thesis. I would like to express my 

sincere gratitude to Prof. S. C. Sivasubramanian, for his constant encouragement and 

support. Thanks are also due to Dr. Sudeept Mohan for providing valuable comments 

while going through initial drafts of the thesis. I sincerely acknowledge the help received 

from Prof. J. P. Mishra, Unit Chief, Information Processing center Unit. He helped me 

with suggestions on trying out various new binning strategies. I sincerely thank members 

of the doctoral advisory committee, Prof. Rahul Banerjee and Dr. Mukesh Rohil, for their 

critical remarks and help in improving the work. 

I would also like to thank Prof. S. Balasubramanium, Group Leader, CS & IS for 

his constant support and guidance. 

I received encouragements and support from my colleagues, Dr. T S B Sudershan,         

Dr. Chitranjan Hota, Mr. Pankaj Vyas and Mr. Biju Ravindran.  I express my sincere 

thanks to them. Lastly, I also thank my ex-colleagues and friends Mr. Dinesh Sharma, 

Mr. Girish Pujari and Mr. S. Jagdish for their advice and motivation. 

Last but not the least the completion of this thesis would not be possible without 

the love and support from my family. I am grateful to them for the continuous 

encouragement and support during the years of my research. 

 



 ��

TABLE OF CONTENTS 
 

 
ABSTRACT i 

ACKNOWLEDGEMENTS iii 

TABLE OF CONTENTS iv 

LIST OF FIGURES vii 

LIST OF TABLES ix 

LIST OF ABBREVIATIONS x 

LIST OF MATHEMATICAL NOTATIONS xi 

  

1. Introduction  1 

      1.1 Query Performance Enhancing Techniques 5 

            1.1.1 Indexing Techniques 5 

            1.1.2 View Materialization 7 

            1.1.3 Parallel Processing 9 

            1.1.4. Data Partitioning 9 

      1.2 Indexing Techniques for Multi-Dimensional Queries 9 

      1.3 Bitmap Indexes 12 

            1.3.1 Advantages and Challenges of Using Bitmap Indexes 16 

                     1.3.1 Space Complexity 17 

                     1.3.2 Time Complexity 18 

      1.4 Summary and outline 19 

  

2. Bitmap Indexing - Literature Review 22 

      2.1 Introduction 22 

            2.1.1 Bitmap Indexes in Commercial Systems 29 

      2.2 Encoding Techniques 29 

            2.2.1 Huffman Encoding 30 

            2.2.2 Multi-Component Encoding 31 

            2.2.3 Equality and Range Encoding  32 

            2.2.4 Comparison of Bitmap Encoding Schemes 39 

            2.2.5 Bit-Sliced Encoding 40 

      2.3 Compression Techniques 42 



 �

            2.3.1 Byte aligned Bitmap Code (BBC) 43 

            2.3.2 Word Aligned Hybrid Code (WAH) 47 

      2.4 Binning Techniques 54 

            2.4.1 Binning Strategies 57 

            2.4.2 Binning Cost Model 61 

            2.4.3 Factors affecting Binning Strategies 63 

      2.5 Complexity Issues and Research Gaps 63 

      2.6 Summary 64 

  

3. Compression Strategies and Encoding Techniques 66 

      3.1 Introduction 66 

      3.2 Encoding of Bitmap Indexes 66 

            3.2.1 Simple Bitmap Indexing 67 

            3.2.2 Encoded Bitmap Indexing 67 

            3.2.3 Maintenance of Encoded Bitmap Indexes 67 

            3.2.4 Solving Queries using Indexing Techniques 69 

                     3.2.4.1 Database Generation 69 

                     3.2.4.2 Construction of Mapping Tables 70 

                     3.2.4.3 Solving Queries 70 

                     3.2.4.4 Performance Evaluation 70 

            3.2.5 New Encoding Scheme 74 

                     3.2.5.1 Implementation Issues and Performance Analysis 75 

      3.3 Compression of Bitmap Indexes 77 

      3.4 New Strategy to improve performance 80 

           3.4.1 New Approach Adopted 81 

      3.5 Experimental Work and Results 82 

            3.5.1 Space Efficiency 82 

            3.5.2 Performance Efficiency 83 

      3.6 Contributions and Summary 87 

  

4. Multi-Component Encoding and Data Reorganization 88 

      4.1 Introduction 88 

      4.2 Tuple Reordering Problem 89 



 ��

      4.3 Gray Code Encoding 90 

      4.4 Multi-Component Encoding 93 

      4.5 Experimental Work and Results 97 

      4.6 Contributions and Summary 101 

  

5. Binning Strategies and Algorithms 103 

    5.1 Introduction 103 

    5.2 Candidate Check Problem 104 

    5.3 Strategies for Efficient Binning 109 

    5.4 Algorithms for Query Processing 112 

            5.4.1 Algorithm for Equi-width Binning  112 

            5.4.2 Algorithm for Exact match Binning  114 

            5.4.3 Algorithm for Range Binning  117 

    5.5 Experimental work and Results 119 

    5.6 Contributions and Summary 126 

  

6. Conclusions and Recommendations 127 

     6.1 Conclusions 127 

     6.2 Recommendations for future work 128 

  

LIST OF PUBLICATIONS 130 

REFERENCES 131 

APPENDIX  - C CODES FOR SOME SAMPLE  PROGRAMS 149 

 A.1 Code for WAH and BBC Compression Algorithms 149 

 A.2 Code for Gray Code Ordering Algorithm 159 

 A.3 Code for Multi-Component Encoding 163 

 A.4 Code for Synthesizing Student records 165 

 A.5 Code for Binning Algorithms 168 

Brief Biography of the Supervisor  171 

Brief Biography of the Candidate 171 



 ���

LIST OF FIGURES 
 

 
Figure No. Caption Section/Page No. 

1.1  Example of Simple Bitmap Index 1.3/13 

2.1 Huffman Encoded Bitmap Index 2.2.1/30 

2.2 Example of a Value-List Index 2.2.1/31 

2.3 An illustration of a 2-component bitmap index. 2.2.2/31 

2.4(a) Examples of Range-Encoded Bitmap Indexes: Projection 

of indexed attribute values with duplicates preserved.   

2.2.3/33 

2.4(b) Single Component, Base-9 Range-Encoded Bitmap Index.   2.2.3/33 

2.4(c) Base< 3,3  >  Range-Encoded  Bitmap  Index. 2.2.3/33 

2.5 Space-Time Tradeoff 2.2.4/39 

2.6 Different Encoding Techniques 2.2.4/40 

2.7 A WAH bit vector 2.3.2/48 

2.8 A bitwise logical AND operation on WAH compressed 

bitmaps 

2.3.2/48 

2.9 Range query “37 <= A < 63” on a bitmap index with 

binning 

2.4/56 

3.1(a) Encoded Bitmap Index and mapping table without 

expansion  

3.2.3/68 

3.2(b) Encoded Bitmap Index and mapping table  with expansion 3.2.3/69 

3.2 Space required for Simple Bitmap Indexing 3.2.4.4/71 

3.3 Space required for Encoded Bitmap Indexing 3.2.4.4/72 

3.4 Space Comparison for Simple and Encoded Bitmap 

Indexing 

3.2.4.4/72 

3.5 Simple and Encoded Bitmap Indexing Analysis of Break-

even Point 

3.2.4.4/73 

3.6 Sample Student Database Example 3.2.5/74 

3.7 Query Processing Time Comparisons for Simple and 

Encoded Bitmap Indexes 

3.2.5.1/77 

3.8 Index File Size for C=5 3.5.2/84 

3.9 Index File Size for C=10 3.5.2/85 

3.10 Performance of BBC-sorted for Equality Queries 3.5.2/85 



 ����

3.11 Performance of WAH-sorted for Equality Queries 3.5.2/86 

3.12 Performance of WAH-sorted for Range Queries 3.5.2/86 

4.1 Tuple Reordering  4.2/90 

4.2 Gray code ordering algorithm 4.3/92 

4.3 Example of a 2-Component index with base < 3, 3 > 4.4/94 

4.4 Double Multi-Component on all three schemes 4.5/99 

4.5 Effect of Preprocessing Schemes without WAH 

compression 

4.5/100 

4.6 Effect of Preprocessing Schemes with WAH compression 4.5/101 

5.1 Two- sided range query 8 < A < 37 on a bitmap index with 

binning 

5.2/105 

5.2 Two Sided Range Query  5.2/106 

5.3 Candidate check in multi-dimensional space.  5.2/108 

5.4 Query endpoints and bin boundaries. 5.3/111 

5.5  Exact match binning. 5.3/112 

5.6 Average Time for Different Binning Algorithms 5.5/123 

5.7 Number of Candidates at different frequencies for binning 

algorithms 

5.5/124 

5.8 Improvement percentage at different frequencies for 

binning algorithms 

5.5/124 

5.9 Query Processing Time at different frequencies for binning 

algorithms 

5.5/125 

5.10 Space Comparison of exact binning with equi-width 

binning 

5.5/125 

 



 ��

LIST OF TABLES 
 

 
Table No. Caption Section/Page No. 

2.1 An example of a Bit-sliced Index 2.2.5/41 

3.1 Table showing the space required using Simple Bitmap 

Indexing and Encoded Bitmap Indexing 

3.2.4.4/71 

4.1 Binning Example 4.4/96 

4.2 WAH bit vector 4.4/97 

4.3 Improvement in compression of real data sets 4.5/99 

5.1 Sample Queries 5.5/120 

5.2 Frequency of Exact and Non Exact Queries  5.5/120 

5.3 Query Processing Time for number of records = 50000 5.5/121 

5.4 Query Processing Time for number of records = 10000 5.5/122 

5.5 Query Processing Time for number of records = 5000 5.5/122 

5.6 Query Processing Time for number of records = 1000 5.5/123 



 �

LIST OF ABBREVIATIONS 
 

 
Abbreviation Details or Expanded Form 

BBC Byte-Aligned Bitmap Compression 

BMI Bit Map Index 

BSI Bit Sliced Index 

DBEC Dynamic Bucket Expansion and Contraction 

DBMS Data Base Management System 

DML Data Manipulation Language 

DW Data Warehouse 

EBI Encoded Bitmap Indexes 

ETL Extraction Transformation and Loading 

EVI Encoded Vector Indexes 

HEP High Energy Physics 

LSB Least Significant Bit 

MSB Most Significant Bit 

OLAP On-Line Analytical Processing 

OLTP On-Line Transactions Processing 

RID Row Identifier 

SBI Simple Bitmap Indexes 

SNAP  Super Nova Acceleration Probe 

TPC Transaction Processing Performance Council 

VLDB Very Large Data Bases 

WAH Word-Aligned Hybrid Compression 

 



 ��

LIST OF MATHEMATICAL NOTATIONS 
 

 
Notation Details 

D number of dimensions, i.e. number of indexed attributes 

nd number of bit slices in dimension d 

wd width of the bit slices in dimension d 

B d, s sth bit slice of the bitmap index for the dth dimension 

Opd 
predicate operator for dimension d where Opd belongs to (<, <=, 

>, >=) 

qd query range of dimension d 

s (qd) 
lower limit((qd-ld)/wd) where ld is the absolute lower bound of the 

search space 

P Total number of pages on disk for values of an attribute 

Pb 
The expected number of disk pages that contain data values that 

fall into bin b 

[ )qq ulq ,=  A range query q with endpoints ql and qu , open on the right 

Q A set of range queries 

xi A bin boundary point 

bi = [xi−1, xi) A bin defines a sub-range open on the right 

B=< b1, b2,... ,bk > A partitioning into k bins 

E(b) The set of queries having bin b as an edge bin 

Cost(Q,B) Candidate check cost associated with binning B and query set Q 

ej The jth smallest query endpoint 

r Number of distinct query endpoints 

EP (Q) = (e1... er) Ordered set of distinct query endpoints 

�(k, n) All possible binnings of the range 1 to n into k bins 

wi = �q�E(bi) pq Weight of bin bi, the sum of probabilities of all queries in E(b) 

R(Q, j) The set of queries in Q with a right endpoint on the right of ej 

Bopt(ej , l) Optimal binning of the sub-region from ej to n using l bins 

bi,j 
A bin defined over the range between query endpoints ei and ej 

,i.e., bi,j = [ei, ej) 



 ���

Bopt Optimal binning 

bN  Number of Bins 

ux  Upper limit of bin 

lx  lower limit of bin 

f  query frequency 

b  Bin containing the result 

fb  Bitmap equal to size of one bin 

iR  Number of records in thi bin 

lb  Lower Bin 

hb  Higher Bin 

R  Number of records in bin 

mR  Minimum number of records 

x  Value to be searched for equality queries 
 
 
 
 
 
 
 
 
 
 
 



 �

Chapter 1: Introduction 

Widespread adoption of database systems in many areas of human activity 

witnessed in recent years led to rapid increase in the volume of data gathered by 

computers. Common employment of bar code readers, automated call centers, Web 

application interfaces, and other facilities induces an unfaltering stream of raw data 

loaded continuously into databases. The ever increasing volume of the gathered data 

makes manual processing of the data impossible, necessitating the development of 

efficient techniques and technologies for extraction of information/knowledge from vast 

data repositories. 

Data is one of the most valuable assets of an organization, and when used 

properly, can assist in decision making that can in turn significantly improve the 

functioning and profitability of an organization. Data Warehousing is a technology that 

allows information to be easily and efficiently accessed for decision making activities by 

collecting data from many operational, legacy, and heterogeneous source systems. Data 

in data warehouses are accessed/analyzed through On-Line Analytical Processing 

(OLAP) tools which well-suited for complex data analysis, such as multi-dimensional 

data analysis, and assist in decision support activities. Many organizations have either 

invested heavily or are planning to invest in the data warehousing technology for 

fulfilling their decision support needs. 

A data warehouses is a huge repository of data that is available for downstream 

data analytics applications. OLAP tools provide data analysis functionality which in turn, 

helps in the decision making process. Data warehouses and OLAP applications differ 

significantly from the traditional database applications. Online Transactional Processing 

(OLTP) or operational systems carry out the day to day operations of a business and are 

highly optimized for answering repetitive and narrow queries. Data warehouses and 

OLAP provide a different context in which huge amounts of data must be processed 

efficiently and queries are often complex and ad-hoc, but still require interactive response 

times. In data warehouse environments, the data is used for decision support and large 

sets of data are read and analyzed in an ad-hoc manner. Data warehouses tend to be 

extremely large, for example, the data warehouse of General Motors, exceeds 1.5 
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terabytes in size, and contains a fact table with more than 2 billion rows in which queries 

can take hours to complete.  

Data warehousing refers to “a collection of decision support technologies aimed at 

enabling the knowledge worker (executives, managers, and analysts) to make better and 

faster decisions” [Choudhari and Dayal, 1997]. In simple terms, a data warehouse is a 

“very large” repository of historical data pertaining to an organization. The data 

warehouse can also be defined as “a repository of data that has been extracted and 

integrated from heterogeneous and autonomous distributed sources” [Kimball, 1996]. 

The significance of data warehousing is evidenced by the recent growth in the 

number of related products and services offered in the market for data warehousing, 

including hardware, database software, and specialized tools. These technologies are 

gaining widespread acceptance in a multiple fields including retail sales, 

telecommunications and financial services. 

OLAP refers to the technique of performing complex analysis over the data stored 

in a data warehouse. Data warehouses are large, special-purpose databases containing 

data from a number of independent sources, supporting trend and anomaly analysis. The 

information stored in a data warehouse is clean, static, integrated, and time varying 

[Inmon, 1993]. The process of analysis is usually performed with queries that aggregate, 

filter, and group the data in a variety of ways. As the queries are often complex and the 

warehouse database is often very large, processing the queries efficiently is a critical 

issue in the data warehousing environment. 

Data warehouses are typically updated periodically, in a batch fashion. The batch 

update process sometimes reorganizes data and indexes to a new optimal clustered form. 

As during this process the warehouse is unavailable for querying, it is possible to create 

specialized indexes and materialized aggregate views (called summary tables in data 

warehousing literature) which in turn help in evaluating queries efficiently. Relational 

DBMS (RDBMS) technology is the best understood technique to deal with large data 

sets. However they were not primarily designed keeping in mind the data warehousing 

and OLAP requirements. A host of techniques used in the relational environment for 

improving query performance in data warehouses are discussed in section 1.1. 
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Data warehouses tend to grow rapidly. To handle data explosion and provide 

interactive response time, highly scalable architecture is vital in a data warehouse 

environment. Data Marts play a vital role in both top-down and bottom-up approaches for 

building data warehouses to address scalability and query response time issues. Most of 

today’s OLAP tools require data warehouses with a centralized structure where a single 

database contains all the data. However, the centralized data warehouse is expensive to 

setup and lacks structural flexibility. More importantly, “the world is distributed”, world-

wide enterprises operate in a global manner and do not fit in a centralized structure. Thus, 

a new paradigm is necessary. The first step in a new direction was the recent introduction 

of data marts, “small data warehouses” containing only data on specific subjects, business 

processes or departments [Informatica, 1997, HP, 1997]. But this approach doesn’t solve 

the problems of space and performance. Data marts provide more flexibility in the 

distribution of data but they still consist of static, self-contained units with fixed 

locations. By distributing small static portions of data to fixed locations, the system 

becomes more flexible, but on the other hand new problems arise, related to intra data 

mart communication, especially in what concerns the processing of queries. Many of 

today’s data marts are basically standalone, because of the unsophisticated and 

rudimentary integration in the global data warehouse context. In spite of the potential 

advantages of data marts, especially when the organization has a clear distributed nature, 

these systems are always very complex and pose difficult global management challenges 

[Albrecht et. al, 1998].  

There are three major differences between transaction-oriented operational 

systems and data warehouse systems: 

• Size of the data: Fast access to GB (109 bytes) or TB (1012 bytes) of data is 

crucial in providing interactive decision support.  

• Dynamics of data: In a typical data warehouse, data is inserted, but 

exceptionally updated or deleted. Furthermore, insertion only takes place at 

certain time windows when the system is not accessible to the analysts. Outside 

these time windows, analysts use the system only for reading data. This strategy 

is typical for read-mostly environments. 
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• Type of queries: Typical queries in an operational system access data on a very 

detailed level, such as the balance of a specific bank account. Typical queries in 

data warehouse environments calculate aggregated data over large sets of data, 

such as sum of sales on product groups for some time period. Therefore, the 

access to aggregated data over large sets of data has to be supported efficiently. 

Data warehousing/OLAP systems are best understood by comparing them to OLTP 

systems. OLTP systems are designed to automate data processing tasks (e.g., order 

entry), which are structured and repetitive, tasks that operate on detailed data. The 

emphasis in such systems is placed on maximizing transaction throughput. In contrast to 

OLTP, data warehouses are designed for decision support purposes and contain historical 

data of many years. For this reason, data warehouses tend to be extremely large 

containing hundreds of gigabytes to terabytes of data. OLAP applications are 

characterized by the rendering of enterprise data into multidimensional perspectives, 

which is achieved through complex, ad-hoc queries that frequently aggregate and 

consolidate data. Thus, OLAP environments are query-intensive, where aggregated and 

summarized data are much more important than detailed individual records. Typical 

OLAP queries require computationally expensive operations such as joins and 

aggregation. All such queries are performed on tables having millions of records but still 

interactive response time is expected. Given these characteristics, it is clear that the 

emphasis in OLAP environments is on efficient query processing. This area has caught 

the fancy of database researchers. A number of “conventional” relational query 

processing approaches have been applied to or extended for answering OLAP queries 

with acceptable response times. 

Many scientific applications such as high-energy physics, climate modeling, 

bioinformatics , astrophysics etc., coupled with advances in technology have resulted into 

generation of  massive volumes of data through observations or computer simulations, 

bringing up the need for effective techniques for efficient storage and retrieval of 

scientific data. Unlike conventional databases, scientific databases are mostly read-only 

and its volume can reach to the order of petabytes, thus making a compact index structure 

a vital necessity. In computational high-energy physics, simulations are continuously run, 

and events that are notable for physicists are stored with all the details. The number of 
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events that need to be stored in one year are of the order of several millions [SciDAC, 

2002]. In astrophysics, technological advances enabled devoting several telescopes for 

observations, results of which need to be stored for later query processing [SNAP, 2004]. 

Genomic and proteomic technologies are now capable of generating terabytes of data in a 

single day's experimentation [Zaki and Wang, 2003]. These new data sets and the 

associated queries are significantly different from those of the traditional database 

systems, mainly due to their enormous size and high-dimensionality (more than 500 

attributes in high-energy physics experiments). This poses a new challenge for efficient 

storage and retrieval of data.  

Most of the scientific databases of practical interest are read-only, just like the data 

warehouses. Various types of queries, such as partial match and range queries are 

executed on these large data sets to retrieve useful information for scientific discovery. 

As an example, a user can pose a range query to retrieve all events with energy less than 

15 GeV, and the number of particles less than 13. When the data is large and read-only, 

as in the case of scientific databases, conventional techniques are not effective for 

improving the performance of querying and data analysis. Thus developing new query 

performance enhancing techniques tailored for scientific databases is crucial to 

effectively exploring such data.  

 

1.1. Query Performance Enhancing Techniques 
 

There are several strategies to improve query response time in the data warehouse 

context: indexing techniques, materialized views, parallelism, and partitioning of data.  

These techniques are briefly discussed below: 

1.1.1. Indexing Techniques 
A commonly used technique to improve the performance of queries is the use of 

index structures. Index structures avoid full table scans for answering narrow queries 

(queries which require only a small fraction of the total tuples), thereby considerably 

reducing the response time. Different indexing techniques have been investigated in 

much detail for operational databases during the last few decades, but very little work has 

been done for finding suitable indexing structures for data warehouse systems as they 



 	

pose different kind of challenges than operational systems. Most of the queries on a data 

warehouse involve joining of large tables. Aggregate functions are also very commonly 

used in these queries. Such complex queries could take several hours or days to process 

large amount of data. A majority of requests for information from a data warehouse 

involve dynamic ad-hoc queries [TPC, 1998, APB, 1998]; users can pose any business 

query at any time for any reason on the data warehouse data. If the right index structures 

are created, the performance of queries, especially ad-hoc queries are greatly enhanced. 

The indexing requirements of OLAP systems are:    

• Symmetric partial match queries: Most of the OLAP queries can be expressed 

as a partial range query or continuous range query, i.e., a query like “list total 

sales from January 2005 to December 2007”. As queries can ask for ranges for 

any dimension, all the dimensions of the data cube should be symmetrically 

indexed, such that they can be searched simultaneously. 

• Indexing at multiple levels of aggregation: It is typical that OLAP systems pre-

compute data at different levels of aggregation, in order to speed up queries. 

These are called materialized views. These views must be indexed in the same 

way that the non-aggregated data. 

• Efficient batch update: We have already said that updates are not so critical in 

OLAP systems, allowing more columns to be indexed. However, sometimes, the 

update window is not enough for data updating, which must be taken into account 

while designing the indexing schema. 

• Sparse data: About 20% of the data in an OLAP system are non-zero. Indexing 

must be able to deal efficiently with sparse and non-sparse data. Modern indexing 

techniques and query processing strategies attempt to fulfill these requirements. 

Due to the scale and high dimensionality of data warehouses and scientific 

databases, simple extensions of traditional indexing strategies are inadequate: R-trees and 

its variants are well-known to lose effectiveness for high dimensions; hashing-based 

indexes lack storage efficiency; and transformation based approaches are not effective for 

partial match and range queries. Furthermore, most of the indexing approaches do not 

focus on the size of the index structure itself. However, due to the huge data volume in a 

data warehouses and scientific databases, the size of the indexing structure becomes as 



 


important as other parameters and must be taken into account. Focusing on the major 

characteristics of business and scientific data, such as being read-only, having special 

access patterns and numerical attributes, researchers have managed to develop indexing 

techniques that are feasible for high dimensional databases. Many indexing techniques 

have been created to reach this goal in read-mostly environments.  

Indexing techniques are among the first areas on which a database administrator 

will focus when good query performance in a read intensive environment is critical. 

Specialized indexing structures offer the optimizer alternatives access strategies for the 

time consuming full table scans. One of the most popular index structures is the B-tree 

and its derivatives [Comer, 1979]. B+ tree indexes are the most commonly supported 

structures in RDBMS, but it is a well-known fact that tree structures have limitations 

when the cardinality of the attribute is small. 

Another class of index structures, the bitmap indexes, attempts to overcome the 

problem by using a bit structure to indicate the rows containing specific values of the 

indexed attribute [O’Neil, 1997]. Although essential for the right tuning of the database 

engine, the performance of index structures depends on many different parameters such 

as the number of stored rows, the cardinality of the data space, block size of the system, 

bandwidth of disks and latency time, only to mention some [Jurgens, 1999]. 

1.1.2.  View Materialization 

View materialization is a technique in which pre-computed results are stored in 

the database. Most commercial database systems support materialized views. In 

materialized views, we generally store aggregated data (summary tables or summary 

indexes) or joins or both.  The use of materialized views is probably the most effective 

way to speed up a specific set of queries in a data warehouse environment. Materialized 

views pre-compute and store (materialize) aggregates and joins, the two most commonly 

used operations in OLAP queries [Chaudhuri, 1997]. The data is grouped using 

categories from the dimensions tables, which corresponds to the subjects of interest 

(dimensions) of the organization. Storing all possible aggregates poses space problems 

and increases the maintenance cost, since all stored aggregates need to be refreshed as 

and when the data warehouse is refreshed. Many algorithms have been proposed for 

selecting a representative subset of the possible views for materialization [Harinarayan, 
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1996, Meredith, 1996, Ezeife, 1997], corresponding to the most usual query patterns. But 

the main problems associated with materialized views are the difficulty to know in 

advance the expected set of queries, the problems of updating materialized views to 

reflect changes made to base relations and the large amount of space required to store the 

materialized views. There are limitations to the concept of materializing views at the data 

warehouse. Pre-computation of queries in materialized views can give answers quickly 

but the number of views that should be materialized at the warehouse needs to be 

controlled, otherwise this can result in data explosion. Selection of views to be 

materialized at the data warehouse is one of the important issues related to view 

materialization. Another challenge in data warehousing is how to maintain the 

materialized views. When there is a change in the data at any source, the materialized 

views at the data warehouse need to be updated accordingly. The process of keeping the 

views up-to-date in response to the changes in the source data is referred to as view 

maintenance. For efficiency reasons, incremental techniques are preferred over re-

computing the view from scratch, for view maintenance. In data warehousing, the view 

maintenance has branched into a number of sub-problems such as self maintenance, 

consistency maintenance, update filtering, and online view maintenance. 

The technique of view materialization is hampered by the fact that one needs to 

anticipate the queries to materialize at the warehouse. The queries issued at the data 

warehouse are mostly ad-hoc and cannot be effectively anticipated at all times. The 

performance when using summary tables for predetermined queries is good. However 

when an unpredicted query arises, the system must scan, fetch, and sort the actual data, 

resulting in performance degradation. Whenever the base table changes, the summary 

tables have to be recomputed. Also building summary tables often supports only known 

frequent queries, and requires more time and more space than the original data. Because 

we cannot build all possible summary tables, choosing which ones to be built is a difficult 

job. Moreover, summarized data hide valuable information. For example, we cannot 

know the effectiveness of the promotion on Monday by querying weekly summary. 

Indexing is the key to achieve this objective without adding additional hardware. It is 

worth noting that the techniques mentioned above (indexes and materialized views) are 

general techniques that can (and should) be used in the data warehouse approach.  
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1.1.3. Parallel Processing 
A large body of work exists in applying parallel processing techniques to 

relational database systems with the purpose of accelerating query processing [Lu et al., 

1994, DeWitt and Gray, 1992]. The basic idea behind parallel databases is to carry out 

evaluation steps in parallel whenever possible, in order to improve performance. The 

parallelism is used to improve performance through parallel implementation of various 

operations such as loading data, building indexes and evaluating queries. One of the first 

works to propose a parallel physical design for the data warehouse was [Datta et. al, 

1998]. In their work they suggest a vertical partitioning of the star schema including 

algorithms but without quantifying potential gains. 

1.1.4. Data Partitioning 
Partitioning a large data set across several disks is another way to exploit the I/O 

bandwidth of the disks by reading and writing them in a parallel fashion. User queries 

have long been adopted for fragmenting a database in the relational, object-oriented and 

deductive database models [Ezeife, 1995, Lim and Ng, 1996]. The set of user queries of a 

database is indicative of how often the database is accessed and of the portion of the 

accessed database to answer the queries. There are several ways to horizontally partition 

a relation, namely, round-robin partitioning, hash partitioning, and range partitioning. 

Partitioning helps in retrieving data faster from the partitions which are much smaller in 

size than the partitioned table. Horizontal partitioning with respect to time has several 

additional benefits like ease of maintenance, data purging, and incremental backups. One 

of the major advantages of data partitioning is that it allows the use of parallel 

architectures for performing different data warehousing tasks like loading and querying. 

 

1.2. Indexing Techniques for Multi-Dimensional Queries 
 

The indexing methods which can handle the requirements described in section 1.1 are 

classified in the following categories: 

• Multidimensional array-based methods 

• Bitmap indexes and their variations 

• Hierarchical indexing methods 
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• Multidimensional Indexes 

• Join Indexes 

Multidimensional Array-based Methods [Bayer, 1997] are used in OLAP systems which 

do not adopt the relational approach, storing data in proprietary array structures. Thus, 

indexing here is closely related with matrix arithmetic. The problem is that, as the 

multidimensional arrays to be stored are usually sparse, some techniques must be used in 

order to save space without losing the array model advantages. 

Bitmapped Indexes are a good way to handle sparsity, and present some other good 

features. The bitmap representation gives an alternate method of the row ids (RIDs) 

representation. The bitmap is simpler and CPU efficient than row ids when the number of 

distinct values of the indexed column is low.  Most relational OLAP vendors use some of 

its variations. Hierarchical Indexing Methods attempt to index aggregate data in a 

different way than data which is stored at the finest granularity level [Markl and Bayer, 

2000]. The other methods index everything in the same way. Suppose we want to index 

data aggregated by <product> and by <product, store>. These methods would first build 

an index on the product dimension, and store summaries at the product level. Each 

product value contains a separate index at the store level, and stores summaries at the 

product-store level, and so on. Summaries at the store level are kept in a separate index 

on store. Their main drawback is the space overhead. 

Multidimensional Indexes apply indexing methods originally devised for spatial data 

structures, mainly Grid Files and R-trees [Guttmann, 1984].  

Join Indexes are methods specifically suited for to perform large table joins, and can be 

viewed as some kind of pre-computed Join, being references to those rows in two or more 

tables, which satisfy the join condition [O’Neil and Graefe, 1995]. 

Traditional Value List Indexes, B-tree indexes are used most commonly in the database 

systems where we are required to get rows of a table with given values having one or 

more columns. The leaf level of the B-tree index consists of a sequence of entries for 

index key values. Each key value reflects the value of the indexed column or columns in 

one or more rows in the table and each key value entry references the set of rows with 

that value. Traditionally, Value-List (B-tree) indexes have referenced each row 

individually as a RID, a Row IDentifier, specifying the disk position of the row. A 
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sequence of RIDs, known as a RID-list, is held in each distinct key value entry in the B-

tree [O’Neil and Quass, 1997]. 

Assume that C is a column of a table T; then the Projection index on C consists of a 

stored sequence of column values from C, in order by the row number in T from which 

the values are extracted. If the column C is 4 bytes in length, then we can fit 1000 values 

from C on each 4 K Byte disk page (assuming no holes), and continue to do this for 

successive column values, until we have constructed the Projection index. Now for a 

given row number n = m(r) in the table, we can access the proper disk page, p, and slot, s, 

to retrieve the appropriate C value with a simple calculation: p=n/1000 and s = n%1000. 

Furthermore, given a C value in a given position of the Projection index, we can calculate 

the row number easily n = 1000*p + s. The columns which are frequently used are held in 

the projection index which helps in the faster access for such type of columns. They are 

like cache which stores the more frequently used items.  

There are lots of indexing techniques that are in use today; however the right 

choice of a proper index depends on many parameters such as the cardinality data, 

distribution, and value range. The read-mostly environment of data warehousing makes it 

possible to use more complex indexes to speed up queries than in situations where 

concurrent updates are present. 

We need to determine which indexing technique should be built on a Column. A column 

has its own characteristics which we can use to choose a proper index. These 

characteristics are given below: 

• Cardinality data: The cardinality data of a column is the number of distinct 

values in the column. The efficiency of indexing technique is dependent on 

degree of cardinality of a column. 

• Distribution: The distribution of a column is the occurrence frequency of each 

distinct value of the column. The column distribution helps in determining type of 

indexing technique to use.  

• Value range: The range of values of and indexed column guides us to select an 

appropriate index type. For example, if the range of a high cardinality column is 

small, an indexing technique based on bitmap should be used. Without knowing 
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this information, we might use a B-Tree resulting into system performance 

degradation. 

The following are the characteristics that we have to be concerned with when developing 

a new indexing technique: 

a) The index should be small and utilize space efficiently. 

b) The index should be able to operate with other indexes to filter out the records 

before accessing raw data. 

c) The index should support ad hoc and complex queries and speed up join 

operations. 

d) The index should be easy to build (easily dynamically generate), implement 

and maintain. 

In the literature on multi-dimensional index data structures, one will often encounter 

the words “curse of dimensionality”. In the fields of multi-dimensional access methods 

these words refer to the degeneration of conventional access methods in 

multidimensional search spaces. In short, it is argued that in many cases the sequential 

scan over the base data is more efficient than an indexed query.  

 

1.3. Bitmap Indexes 
 

Bitmap Indexes were first introduced by O’Neil and implemented in the Model 204 

DBMS [O’Neil, 1987]. This indexing technique is mostly used for typical data warehouse 

applications, which are mainly characterized by complex query types and read-mostly 

environments that are more or less static. In data warehouse environments insert, delete 

or update operations are not very common and, therefore, it is better to build an index 

which optimizes the query performance rather than the dynamic features. 

Bitmap indexing technology is used by many database vendors to improve 

performance in query-heavy environments. Bitmap indexing is based on using a single bit 

(instead of multiple bytes of data) to indicate that a specific column value can be found in 

a particular row of the database table. The basic bitmap index scheme builds one bitmap 

for each distinct value of the attribute indexed, and each bitmap has as many bits as the 

number of tuples. The relative position of the bit within an array of bits (bit map) is used 

to identify the row of the database table that contains the value in question. Each distinct 
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value for the column being queried requires its own bitmap array. This technology 

normally provides a smaller, compact structure requiring less system resources to search 

and process in comparison to a full index. In addition, multiple bitmap indexes can be 

combined into a single bitmap index utilizing AND/OR logic as dictated by the query 

search criteria. Being able to leverage and combine existing indexes is crucial in ad hoc 

query environments where the optimal index is not already available. The query 

optimizer dynamically builds bitmap indexes as needed to include or eliminate records 

for selection in the most economical way. Bitmap indexing technology works well with a 

small number of distinct key values (e.g. state codes), but these indexes can become very 

large when there are many distinct values for the selected column and many rows in the 

table. 

The simple bitmap index is a collection of number of bitmap vectors for each of the 

number of distinct value of the indexed column. The basic idea is to use a bit (0 or 1) in a 

bitmap vector (sequence of bits) to indicate whether an attribute in a table is equal to a 

specific value or not. The ith bit in a bitmap vector (Bv) is set (1) for a specific value v if 

and only if the value of indexed column of the record i is v otherwise (0). The number of 

bitmap vectors in a bitmap index of an attribute is equal to the number of distinct values 

that the attribute can take. The number of bits in each of the bitmap vectors is equal to the 

number of records in the table.  

 

RID          A     Ba    Bb     Bc
   Bd 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: Example of simple bitmap index 
 
Figure 1.1 shows a simple bitmap index on a table with ten rows, where the column A to 

be indexed has character values ranging from ‘a’ to‘d’. The bitmap index for A column 

a 
b 
a 
d 
a 
c 
b 
d 
a 
b 

1 0 0 0 
0 1 0 0 
1 0 0 0 
0 0 0 1 
1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
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consists of four bitmaps, shown as Ba, Bb, Bc, Bd, with subscripts corresponding to the 

value represented. In Figure 1.1, the second bit of Bb is 1 because the second row of A 

has the value ‘b’, while corresponding bits of Ba, Bc
 and Bd are all 0. 

To answer a query such as “select * from table where A = ‘b’”, we access Bb and 

identify the bits equal to 1, corresponding RID represent the result set of the query. 

Similarly for another query with A=’a’ or A=’b’, we perform bitwise OR (|) operations 

between bitmap vectors Ba and Bb, resulting in a new bitmap from which we identify the 

sets bits and their corresponding RID’s represents the result set of the query. Since 

bitwise logical operations such as OR (|), AND (&) and NOT (~) are very well-supported 

by computer hardware, a bitmap index enabled DBMS could evaluate query predicates in 

extremely fast manner. 

Consider following Relation R( age,  salary) 

 

Age salary 

25 60 

22 55 

30 70 

22 55 

23 55 

25 100 

23 45 

30 45 

 
We have following bitmap index:  

 
For Field AGE 
 

22 0 1 0 1 0 0 0 0 

23 0 0 0 0 1 0 1 0 

25 1 0 0 0 0 1 0 0 

30  0 0 1 0 0 0 0 1 
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For Field SALARY 
 

45 0 0 0 0 0 0 1 1 

60 1 0 0 0 0 0 0 0  

55 0 1 0 1 1 0 0 0  

70 0 0 1 0 0 0 0 0  

100 0 0 0 0 0 1 0 0  

 
 
Consider the following Query: 
 
SELECT * 

FROM R 

WHERE  23 <= age <= 25 

 and   50 <= salary <= 70 

 

First, find bitmap index of field “AGE” satisfying the requirement and perform OR 

Operation: 

 
23           0 0 0 0 1 0 1 0 
25   OR   1 0 0 0 0 1 0 0 
               1 0 0 0 1 1 1 0  
 
Second, find bitmap index of field “Salary” satisfying the requirement and perform OR 

operation 

 
60         1 0 0 0 0 0 0 0  
55         0 1 0 1 1 0 0 0  
70  OR        0 0 1 0 0 0 0 0  
        1 1 1 1 1 0 0 0  
 
Then, perform AND operation. 

 
             1 0 0 0 1 1 1 0 
         AND     1 1 1 1 1 0 0 0 
                      1 0 0 0 1 0 0 0 
 

So, the answer to this query is tuple #1 and tuple #5 
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Bitmaps indexes efficiently support complex, multi-dimensional queries. These 

data structures are also implemented in commercial database management systems such 

as Oracle, Sybase or Informics. All these implementations are optimized for typical 

business applications which are characterized by discrete attribute values. However, 

scientific data which is mostly characterized by non-discrete attribute values, cannot be 

handled efficiently by these kind of data structures. 

 

Definition (Simple Bitmap Index) 

 Given a table },...,{ 1 nttT = , where jt is a tuple of ),...,1( njT = , let A be an attribute of 

T, denoted by T.A, and the domain of A be },...,{ ma aa .Then, a simple bitmap index on 

T.A, AB , is a set of bitmap vectors },...,{ 1 mBB , such that 

∀ 1][),,...,1(),,...,1( =∋== jBnjtmiB iji , if ij aAt =. , else 0][ =jBi , where 

][ jBi denotes the j-th bit of iB  

Bitmap indexes are widely used in data warehousing environments. The 

environments typically have large amounts of data and ad hoc queries, but a low level of 

concurrent DML transactions. For such applications, bitmap indexing provides: 

• Reduced response time for large classes of ad hoc queries  

• Reduced storage requirements compared to other indexing techniques  

• Dramatic performance gains even on hardware with a relatively small number of 

CPUs or a small amount of memory  

• Efficient maintenance during parallel DML and loads  

Good properties of Bitmap indexes are cooperativity of different bitmap vectors, low 

cost of construction, maintenance and processing. Bitmap indexing has been successfully 

applied to scientific databases by exploiting the fact that scientific data are enumerated or 

numerical. 

1.3.1. Advantages and Challenges of Using Bitmap Indexes 

The main advantage of bitmap indexes is that logical operations are very well 

supported by hardware and, thus, the operations are executed quite fast. The cost for 

constructing bitmap indexes as well as the processing costs is also very low. Another 
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advantage of bitmap indexes is that they are highly amenable to compression.  However, 

simple bitmap indexes are only efficient for attributes with a low number of distinct 

values. In other words, if the cardinality of the indexed attribute is low, less number of bit 

vectors are required and, thus, the space complexity for such an index structure is low. 

For high cardinality attributes, the space complexity of the simple bitmap index is 

considerably higher than for conventional index data structures. According to the 

conventional wisdom, bitmap indexes are only efficient for low-cardinality attributes. 

However, bitmap indexes with proper encoding, compression, and binning techniques 

can be made efficient even for high-cardinality attributes.  

Bitmap indexes offer several advantages over conventional indexing structures in 

the read-mostly data warehouse and scientific database environments.  Despite of these 

advantages, bitmap indexes pose several challenges as described below:  

 
1.3.1.1. Space Complexity 

Let T be a (database) table and let |T| be the cardinality of T, i.e. the number of 

distinct tuples in T. Thus, the space complexity in terms of bytes for building a simple 

bitmap index on an attribute A of the table T is given as: 

 

size of bitmap =
8

|||| AT ×
 

where |A| corresponds to the cardinality of attribute A, i.e. number of distinct values of 

attribute A. 

The space complexity in bytes for a B+-tree is given by: 

 

size of B+-tree = p
M

T ×× ||44.1
 

where p is the page size and M the degree of the B+-tree, i.e. the maximum number of 

elements in one data bucket. When we assume a page size p of 4 KB and a bucket size M 

of 512, then a bitmap on A is more space efficient than B+-tree if if |A| < 93. In general, 

for low cardinality attributes the bitmap index is more space efficient than the B+-tree. 
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1.3.1.2. Time Complexity 

The time complexity for building a bitmap index in big O notation is given by 

(worst case): 

|)||(| AT ×Ο  

In contrast, the worst case for building a B+-tree is given by: 

))
4

(log|(||))(|log|(| 2
2

p
TAT M ×Ο+×Ο  

where p is the page size and 4 bytes is the size of RID. Term 1 refers to the cost of 

traversing the tree from root to leaf nodes and term 2 refers to the cost of inserting tuple-

IDs into the corresponding leaf nodes. Let us make following simple considerations. If |T| 

is very large and |A| is very small, then the time complexity of building B+ trees is larger 

than for building a bitmap index. 

 

1.4. Summary and Outline 
 

Indexes are used to speed up the evaluation of selection conditions followed by the 

retrieval of desired data. If no pipelining or parallelism is applied, the query response 

time can be expressed by the sum of the time of index processing plus the time of data 

retrieval. If the selectivity of a query, which is defined as the ratio of the cardinality of 

the final result to that of the base table, is high, the time of data retrieval may close in on 

the time of a costly table scan. For example, for selectivity about 35%, over 99.8% data 

pages of the underlying table will be hit. For such cases, using indexes has negative 

effects on query performance. Even for low selectivities, if the time of index processing 

is high, the total time spent on index processing and data retrieval may be longer than that 

of a table scan. Query optimization techniques reduce the index processing time, 

contribute to a better query performance at low selectivities, and also extend the 

feasibility of bitmap indexes at medium selectivities. 

The bitmap representation is an alternate method of the row ids representation. 

Bitmap index offers better space and time complexity as compared to row id 

implementation for low cardinality attributes. The indexes improve complex query 

performance by applying low-cost Boolean operations such as OR, AND, and NOT in the 
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selection predicate on multiple indexes at one time to reduce search space before going to 

the primary source data. Many techniques have been applied on bitmap indexes, aiming 

to reduce space requirement as well as improve query performance. Bitmap indexes are 

primarily intended for data warehousing applications where users query the data rather 

than update it. Bitmap indexes are most effective for queries that contain multiple 

conditions in the WHERE clause. In ad hoc queries and similar situations, bitmap indexes 

can dramatically improve query performance. AND and OR conditions in the WHERE 

clause of a query can be resolved quickly by performing the corresponding Boolean 

operations directly on the bitmaps before converting the resulting bitmap to row ids. If 

the resulting number of rows is small, the query can be answered quickly without 

resorting to a full table scan. Rows that satisfy some, but not all, conditions are filtered 

out before the table itself is accessed. This improves response time, often dramatically. 

The advantages of using bitmap indexes are greatest for columns in which the ratio of the 

number of distinct values to the number of rows in the table is under 1%. We refer to this 

ratio as the degree of cardinality. A gender column which has only two distinct values 

(male and female) is ideal for a bitmap index. 

The space requirement of a simple bitmap index is a linear function of the cardinality 

of the indexed attribute and of the indexed table, and the index processing time for a 

single value selection is a linear function of the length of bitmaps. The sparsity of the bit 

vectors increases with the cardinality resulting in poor space utilization and high 

processing cost. Many variations of bitmap indexing have been proposed to solve the 

sparsity problems. Two common objectives of the proposed methods are (1) reducing the 

space complexity of the index and (2) improving the performance of index processing. 

Solutions include compressing bitmaps, e.g., through run-length encoding, and 

transforming bitmap representation to tuple-id lists. Although these two methods are 

quite efficient in reducing the space requirements of bitmap indexes, they sacrifice the 

advantages of bitmap indexing in query processing namely, the low-cost bitwise 

operations in index processing and the capability of multiple index scans. The size of 

bitmap index can be very large for a high cardinality attribute where there are thousands 

or even millions of distinct values. Many strategies have been devised to reduce the index 

sizes, such as, more compact encoding strategies, binning and compression. Binary and 
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other index types used for high cardinality data: The use of value-based bitmaps to 

improve performance is not new, early database systems, such as Model 204, employed 

similar techniques. The problem with early bitmap indexing approaches, however, was 

that as the number of records in the database grew, so usually did the number of unique 

data values in a column (the cardinality). Once the cardinality grew beyond a certain 

point, the benefits of bitmap indexing were diminished because of the amount of disk 

space required to maintain the bitmap. Bitmaps are also not well suited for joining tables 

or aggregating data. In addition to above mentioned issues , some of the unresolved 

issues in traditional database products are index compression (which raises the threshold 

at which high cardinality becomes an issue); support for the low-cardinality value-based 

bitmaps found in earlier systems, and support for high-cardinality indexes that can 

represent both numeric and textual information in  binary form . High-cardinality binary 

indexes can be used in conjunction with low-cardinality, value-based bitmap indexes. 

Records can be filtered by performing logical AND/OR operations on the arrays of bits.  

There are various indexing techniques to achieve our objective of which we mainly 

concentrate on bitmap indexing techniques. Detailed study and implementation of the 

various existing and proposed bitmap indexing techniques and different optimization 

algorithms have been carried out. The work presented in this thesis is based on file 

implementation rather than a commercial database or data ware house. The code for file 

based implementations is given for reference in Appendix A. We also discuss techniques 

which can specifically help in improving query response related to scientific data. 

Various parameters that are to be considered for building and efficient indexing technique 

and also the desirable characteristics of such indexes are also given in detail. 

The rest of this thesis is organized as follows. Chapter 2 highlights complete related 

work and necessary background, and gives a summary of current techniques to improve 

the performance of bitmap indexes. Chapter 3 presents our solution as a new strategy to 

improve the performance of compression algorithms. We also discuss a new encoding 

technique which reduces the space requirements for bitmap indexes to a very large extent. 

Chapter 3 also gives an experimental evaluation of our new compression strategy and 

encoding technique. In Chapter 4, we present our solution to Tuple Reordering Problem 

with Multi-Component Indexes and Data Reorganization. Our experimental results with 
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real scientific databases have shown improvement in the compression ratio. Chapter 5 

describes our new binning strategies and provides algorithms to solve different types of 

queries. Overlapping Binning Strategy proposed by us out performs all existing strategies 

and improves query performance to a large extent. We conclude in Chapter 6 by 

summary and some recommendations for future work. 

  Parts of this thesis have been published in conferences and journals. Improved 

Compression Strategy has been published in International Conference on Information 

Technology by IEEE Computer Society. New Approach to address complexity issues 

with bitmap indexes has been published in International Conference proceeding 

published by Springer. Multi-Component Encoding with Data Reorganization work has 

published in Information Technology Journal by Asian Network of Scientific 

Information. 
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Chapter 2: Bitmap Indexing - Literature Review 

2.1. Introduction 
 

Querying large data sets to locate some selected records is a common task in data 

warehousing applications.  However, answering these queries efficiently is often difficult 

due to the complex nature of both the data and the queries.  The most straightforward 

way of evaluating a query is to sequentially scan all data records to determine whether 

each record satisfies the specified conditions. A typical query condition is as follows: 

“Count the number of cars sold by producer P in the time interval T”. This search 

procedure could usually be accelerated by indexes, such as variations of B-Trees or kd-

Trees [Comer, 1979, Gaede & Guenther, 1998].  Generally, as the number of attributes in 

a data set increases, the number of possible indexes combinations increases as well.  To 

answer multi-dimensional queries efficiently, one faces a difficult choice. One possibility 

is to construct a separate index for each combination of attributes, which requires an 

impractical amount of space.  Another possibility is to choose one of the multi-

dimensional indexes, which is only efficient for some of the queries.  In the literature, this 

dilemma is often referred to as the curse of dimensionality [Berchtold et al., 1998, Keim 

et al., 1999]. 

By far the most commonly used indexing method is the B-Tree [Comer, 1979].  

Almost every database product has a version thereof since it is very effective for on-line 

transaction processing.  This type of tree-based indexing method has nearly the same 

operational complexities for searching and updating the indexes.  This parity is important 

for OLTP because searching and updating are performed with nearly the same 

frequencies.  However, for most data warehousing applications such as on-line analytical 

processing, the searching operations are typically performed with a much higher 

frequency than that of updating operations [Chaudhuri, 1997, 2001].  This suggests that 

the indexing methods for OLAP must put more emphasis on searching than on updating.  

Among the indexing methods known in the literature, the bitmap index has the best 

balance between searching and updating for OLAP operations. Frequently, in OLAP 

operations each query involves a number of attributes.  Furthermore, each new query 
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often involves a different set of attributes than the previous one.  Using a typical multi-

dimensional indexing method, a separate index is required for nearly every combination 

of attributes [Gaede and Guenther, 1998].  It is easy to see that the number of indexes 

grows exponentially with the number of attributes in a data set.  For data sets with a 

moderate number of dimensions, a common way to cure this problem is to use one of the 

multi-dimensional indexing methods, such as R-Trees or kd-trees.  These approaches 

have two notable shortcomings.  Firstly, they are effective only for data sets with modest 

number of dimensions, say, < 15.  Secondly, they are only efficient for queries involving 

all indexed attributes. 

Bitmap indexing scheme of one kind or another have appeared in all major 

commercial database systems. This is a strong indication that the bitmap index 

technology is indeed efficient and practical. The basic bitmap index scheme builds one 

bitmap for each distinct value of the attribute indexed, and each bitmap has as many bits 

as the number of tuples. The size of this index can be very large for a high cardinality 

attribute where there are thousands or even millions of distinct values. The earlier forms 

of bitmap indexes were commonly used to implement inverted files [Knuth 1998, Wong 

et al., 1985]. They were first implemented in a commercial DBMS called Model 204 

[O’Neil, 1987]. Improvements on this approach were discussed in [O’Neil and Quass, 

1997]. The basic bitmap index uses each distinct value of the indexed attribute as a key, 

and generates one bitmap containing as many bits as the number of records in the data set 

for each key.  The attribute cardinality is defined as the number of distinct values present 

in a data set.  The size of a basic bitmap index is relatively small for low-cardinality 

attributes, such as “gender,” “types of cars sold per month,” or “airplane models 

produced by Airbus and Boeing.”  However, for high-cardinality attributes such as 

“temperature values in a supernova explosion,” the index sizes may be too large to be of 

any practical use.  In the literature, there are three basic strategies to reduce the sizes of 

bitmap indexes: (1) using more complex bitmap encoding methods to reduce the number 

of bitmaps or improve query efficiency [Chan and Ioannidis, 1998, 1999, O’Neil and 

Quass, 1997, Wong et al. 1985], (2) compressing each individual bitmap compression 

[Antoshenkov, 1994, Antoshenkov and Ziauddin, 1996, Wu et al., 2001, 2002], and (3) 

using binning or other mapping strategies to reduce the number of keys [Shoshani et al., 
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1999,Stockinger et al.,  2002, Wu and Yu, 1996,Wu and Buchmann ,1998].  In the 

remaining discussions, we refer to these three strategies as encoding, compression and 

binning, for short. Bitmap indexes are used for speeding up complex, multidimensional 

queries for On-Line Analytical Processing and data warehouse [Chaudhuri and Dayal, 

1997] as well as for scientific applications [Stockinger et al., 2004].However, in many 

applications only some of the attributes are used in the queries.   

 In many data warehouse applications, bitmap indexes perform better than tree-

based schemes, such as the variants of B-tree or R-tree [Jurgens and Lenz, 1999, Chan 

and Ioannidis, 1998, O’Neil, 1987, Wu and Buchmann, 1998]. According to the 

performance model proposed by Jurgens and Lenz [1999], bitmap indexes are likely to be 

even more competitive in the future as disk technology improves. In addition to 

supporting queries on a single table as shown in this article, researchers have also 

demonstrated that bitmap indexes can accelerate complex queries involving multiple 

tables [O’Neil and Graefe, 1995]. In these cases, the conventional indexing methods are 

often not efficient.  For ad hoc range queries, most of the known indexing methods do not 

perform better than the projection index [O’Neil & Quass, 1997], which can be viewed as 

one way to organize the base.   The bitmap index, on the other hand, has excellent 

performance characteristics on these queries.  As shown with both theoretical analyses 

and timing measurements, a compressed bitmap index can be very efficient in answering 

one-dimensional range queries [Stockinger et al., 2002, Wu et al., 2004, Wu et al., 2006].  

Since answers to one-dimensional range queries can be efficiently combined to answer 

arbitrary multi-dimensional range queries, compressed bitmap indexes are efficient for 

any range query.  In terms of computational complexity, one type of compressed bitmap 

index was shown to be theoretically optimal for one-dimensional range queries. The 

reason for the theoretically proven optimality is that the query response time is a linear 

function of the number of hits, i.e. the size of the result set.  There are a number of 

indexing methods, including B*-tree and B
+
-tree [Comer, 1979], that are theoretically 

optimal for one-dimensional range queries, but most of them cannot be used to efficiently 

answer arbitrary multi-dimensional range queries. The bitmap index in its various forms 

was used a long time before relational database systems or data warehousing systems 

were developed.  Earlier on, the bitmap index was regarded as a special form of inverted 



 ��

files [Knuth, 1998].  The bit-transposed file [Wong et al., 1985] is very close to the 

bitmap index currently in use.  The name bitmap index was popularized by O'Neil and 

colleagues [O’Neil, 1987, O’Neil & Quass, 1997].  Following the example set in the 

description of Model 204, many researchers describe bitmap indexes as a variation of the 

B-tree index.  To respect its earlier incarnation as inverted files, a bitmap index may be 

regarded as a data structure consisting of keys and bitmaps. Moreover, B-tree can be 

looked as a way to layout the keys and bitmaps in files.  Since most commercial 

implementations of bitmap indexes come after the product already contains an 

implementation of a B-tree, it is only natural for those products to take advantage of the 

existing B-tree software.  For new developments and experimental or research codes, 

there is no need to couple a bitmap index with a B-tree.  For example, in a research 

program that implements many of the bitmap indexing methods discussed later in this 

chapter [FastBit, 2005], the keys and the bitmaps are organized as simple arrays in a 

binary file.  This arrangement was found to be more efficient than implementing bitmap 

indexes in B-trees or as layers on top of a DBMS [Stockinger et al. 2002, Wu et al. 2002]. 

In [Chan and Ioannidis 1998, 1999] the following bitmap encoding strategies are 

introduced: equality, range and interval encoding. Equality encoding is optimized for so-

called exact match queries of the form a = v where a is an attribute and v the value to be 

searched for. Range encoding, on the other hand, is optimized for one-sided range queries 

of the from a op v where op in {<, <=,>,>=}. Finally, interval encoding shows the best 

performance characteristics for two sided-range queries of the form v1 op a op v2. Wu and 

Buchmann [1998] represented attribute values in binary form that yields indexes with 

only ||log 2 A  bitmaps, where |A| is the attribute cardinality. The advantage of this 

encoding scheme is that the storage overhead is even smaller than for interval encoding. 

However, in most cases query processing is more efficient with interval encoding since in 

the worst case only two bitmaps need to be read whereas with binary encoding always all 

bitmaps have to be read. As already mentioned before, simple bitmap indexes are 

efficient for low-cardinality attributes but they show a considerable storage overhead for 

high-cardinality attributes. One way of reducing the storage complexity is to use bitmap 

compression. An efficient bitmap compression scheme not only has to reduce the size of 

bitmaps but also has to perform bitwise Boolean operations efficiently. 



 �	

Various bitmap compression schemes have been discussed in [Johnson, 1999, 

Amer-Yahia and Johnson, 2000]. The authors demonstrated that the scheme named Byte 

aligned Bitmap Code (BBC) [Antoshenkov, 1994, Antoshenkov and Ziauddin, 1996] 

shows the best overall performance characteristics. More recently a new compression 

scheme called Word-Aligned Hybrid (WAH) [Wu et al., 2004] was introduced. This 

compression algorithm significantly reduces the overall query processing time compared 

to BBC. The key reason for the efficiency of WAH is that it uses a much simpler 

compression algorithm. A number of empirical studies have shown that WAH 

compressed bitmap indexes answer queries faster than uncompressed bitmap indexes, 

projection indexes, and B-tree indexes, on both high and low-cardinality attributes [Wu et 

al,. 2001, 2002, 2004, Stockinger et al. 2002]. The authors complement the observations 

with rigorous analyses. Their main conclusion includes that the WAH compressed bitmap 

index is in fact optimal. Some of the most efficient indexing schemes such as B+- tree 

indexes and B�-tree indexes have a similar optimality property [Comer, 1979, Knuth, 

1998]. However, a unique advantage of compressed bitmap indexes is that the results of 

one-dimensional queries can be efficiently combined to answer multidimensional queries. 

This makes WAH compressed bitmap indexes well suited for ad hoc analyses of large 

high-dimensional datasets. 

To compress a bitmap, a simple option is to use a text compression scheme, such 

as LZ77 (used in gzip) [Gailly and Adler, 1998, Ziv and Lempel 1977]. These schemes 

are efficient in reducing file sizes. However, performing logical operations on the 

compressed bitmaps is usually much slower than on the uncompressed bitmaps, since the 

compressed bitmaps have to be explicitly uncompressed before any operation. To 

illustrate the importance of efficient logical operations, assume that the attribute 

NumParticles can have integer values from 1 to 10,000. Its bitmap index would have 

10,000 bitmaps. To answer a query involving “NumParticles > 5000,” 5000 bitmaps have 

to be ORed together. To efficiently answer this query, it is not sufficient that the bitmaps 

are small; the operations on them must be fast as well. To improve the performance of 

bitwise logical operations, a number of specialized schemes have been proposed. Johnson 

and colleagues have thoroughly studied many of these schemes [Johnson, 1999, Amer-

Yahia and Johnson, 2000]. From their studies we know that the logical operations with 
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these specialized schemes are usually faster than those with LZ77. One such specialized 

scheme, called the Byte-Aligned Bitmap Code (BBC), is especially efficient 

[Antoshenkov, 1994, Antoshenkov and Ziauddin, 1996]. However, in the worst case, the 

total time required to perform a logical operation on two BBC compressed bitmaps can 

still be 100 times longer than on two uncompressed bitmaps. A number of compression 

schemes that improve the overall query response time by improving their worst-case 

performance have been discussed [Wu et al. 2001]. In this article, the main concentration 

was on the Word-Aligned Hybrid (WAH) code for two main reasons: (1) it is the easiest 

to analyze, which leads them to prove an important optimality about the compressed 

bitmap indexes, and (2) it is the fastest in their tests. In earlier tests, the authors observed 

that bitwise logical operations on WAH compressed bitmaps are 2 to 100 times faster 

than the same operations on BBC compressed bitmaps because WAH is a much simpler 

compression method than BBC [Wu et al., 2001, Stockinger et al., 2002].  

There is a space-time tradeoff among these compression schemes. Comparing 

BBC with LZ77, BBC trades some space for more efficient operations. Similarly, WAH 

trades even more space for even faster operations. Compressing individual bitmaps is 

only one way to reduce the bitmap index size. An alternative strategy is to reduce the 

number of bitmaps, for example, by using binning or more complex encoding schemes. 

With binning, multiple values are grouped into a single bin and only the bins are indexed 

[Koudas, 2000, Shoshani et al., 1999, Wu and Yu, 1996]. Many researchers have studied 

the strategy of using different encoding schemes to reduce the index sizes [Chan and 

Ioannidis, 1998, 1999, O’Neil and Quass, 1997, Wong et al., 1985, Wu and Buchmann, 

1998]. One well-known scheme is the bit-sliced index that encodes c distinct values using 

log2c bits and creates a bitmap for each binary digit [O’Neil and Quass, 1997]. This is 

referred to as the binary encoding scheme elsewhere [Wong et al., 1985, Chan and 

Ioannidis, 1998, Wu and Buchmann, 1998]. A drawback of this scheme is that most of 

the bitmaps have to be accessed when answering a query. To answer a two-sided range 

query such as “120 < Energy < 140,” most bitmaps have to be accessed twice. There are 

also a number of schemes that generate more bitmaps than the bit-sliced index but access 

fewer of them while processing a query, for example, the attribute value decomposition 

[Chan and Ioannidis, 1998], interval encoding [Chan and Ioannidis, 1999], and the K-of-
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N encoding [Wong et al., 1985]. In all these schemes, an efficient compression scheme 

should improve their effectiveness. Additionally, a number of common indexing schemes 

such as the signature file [Furuse et al., 1995, Ishikawa et al. 1993, Lee et al., 1995] may 

also benefit from an efficient bitmap compression scheme. Compressed bitmaps can also 

be effective for purposes other than indexing. In one case, the authors demonstrated that 

using compressed bitmaps significantly speeds up the tracking of spatial features as they 

evolve in the simulation of a combustion process [Wu et al., 2003]. 

The bitmap indexes discussed so far encode each distinct attribute value as one 

bitmap vector. This technique is very efficient for integer or floating point values with 

low attribute cardinalities. However, scientific data is often based on floating point values 

with high attribute cardinalities. The work presented in [Stockinger et al., 2004] 

demonstrated that bitmap indexes with binning can significantly speed up multi-

dimensional queries against high-cardinality attributes. A further bitmap index with 

binning called range-based bitmap indexing was introduced in [Wu and Yu, 1996]. The 

idea is to evenly distribute skewed attribute values onto various bins in order to achieve 

uniform search times for different queries. The bin ranges for the bitmap vectors are 

chosen based on a dynamic bucket expansion and contraction approach. In the initial 

phase, the number of entries per bucket (bin) is counted. If the number of entries per 

bucket grows beyond a certain threshold, the bucket is dynamically expanded into 

buckets with smaller ranges. Finally, multiple buckets with adjacent ranges are combined. 

The authors demonstrated that the algorithm efficiently redistributes highly skewed data. 

However, performance results about query response times were not discussed. 

A methodology for building space efficient bitmap indexes is introduced for high-

cardinality attributes based on binning [Koudas, 2000]. The work in [Koudas, 2000] 

focuses on point (equality) queries rather than range queries. An optimal dynamic 

programming algorithm is used for efficiently choosing bin ranges. The author raised 

several interesting open research issues that inspired our research, like extending the 

work by analyzing range queries.  
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2.1.1. Bitmap Indexes in Commercial Systems 
The first commercial product to use the name bitmap index is Model 204. O'Neil 

has published a description of the indexing method in [O’Neil, 1987]. Model 204 

implements the basic bitmap index. It has no binning or compression. Currently, Model 

204 is marketed by Computer Corporation of America. ORACLE has a version of 

compressed bitmap indexes in its flagship product since version 7.3. They implemented a 

proprietary compression method. Based on the observed performance characteristics, it 

appears to use equality encoding without binning.  

Sybase IQ implements the bit-sliced index [O’Neil & Quass, 1997]. Using the 

terminology defined, Sybase IQ supports unbinned, binary encoded, uncompressed 

bitmap indexes. In addition, it also has the basic bitmap index for low-cardinality 

attributes. IBM DB2 implements a variation of the binary encoded bitmap index called 

Encode Vector Index. IBM Informix products also contain some versions of bitmap 

indexes for queries involving one or more tables. These indexes are specifically designed 

to speed up join-operations and are commonly referred to as join indexes [O’Neil and 

Quass, 1997]. InterSystems Corp's Cache also has bitmap index support since version 

5.0. Even though we do not have technical details on most of these commercial products, 

it is generally clear that they tend to use either the basic bitmap index or the bit-sliced 

index. 

 
2.2. Encoding Techniques 
 
The limitations of simple bitmap indexing (SBI) for high cardinality attributes lead to the 

suggestion of encoded bitmap indexing which provides the advantage of a drastic 

reduction in space requirements and also a corresponding performance gain. The main 

idea of encoded bitmap indexing (EBI) is to encode the attribute domain. We will see the 

following example: We assume that we have a fact table ‘SALES’ with N tuples and a 

dimension table ‘PRODUCT’ with 12,000 different products. If we build a simple bitmap 

index on ‘PRODUCT’, it will require 12,000 bitmap vectors of N bits in length. 

However, if we use encoded bitmap indexing we only need �

 � � 1412000log 2 = bitmap vectors plus a mapping table which is a very significant 

reduction of the space complexity. 
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2.2.1. Huffman Encoding 
[Wu and Buchmann, 1998] proposes query optimization strategies for selections using 

bitmaps. Both static and dynamic query optimization strategies have been discussed with 

both continuous and discrete selection criteria. Static optimization strategies discussed 

are the optimal design of bitmaps, and algorithms based on tree and logical reduction. 

The dynamic optimization discussed is the approach of inclusion and exclusion for both 

bit-sliced indexes and encoded bitmap indexes. Figure 2.1 explains with an example how 

Huffman encoding used for reducing the space complexity of bitmap indexes: We assume 

that our attribute domain is given by the table T is {a,b,c}. The encoding schema of EBI 

is stored in a separate table called mapping table and simply encodes the values from a 

SBI by means of Huffman encoding and therefore reduces the number of bitmaps vectors. 

In particular, we use only � � 23log 2 = encoded bitmap vectors instead of 3 simple 

bitmap vectors. This means that 2 bits are used to encode the domain {a, b, c}. For 

example, the attribute value of ‘A’ is represented by the bit string 100 in the table of the 

SBI but in the table of EBI the attribute value ‘A’ is encoded as 00. 

 

  
Table T   SBI      EBI             Mapping Table 

 

Figure 2.1: Huffman Encoded Bitmap Index 

 

Figure 2.2 gives an example of a Value-List index with 12 records, where each column 

(except the first) represents a bitmap B associated with an attribute value v. The column 

)(RAπ represents the relation of the attribute values present in the records. 

 

 

…. column …. Ba Bb Bc B1 B0 A 00 
   A  1 0 0 0 0 B 01 
   B  0 1 0 0 1 C 10 
 C  0 0 1 1 0   
 B  0 1 0 0 1   
 A  1 0 0 0 0   
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Figure 2.2: Example of a Value-List Index 

2.2.2. Multi-Component Encoding 

Many researchers have proposed strategies to find the balance between the space 

and time requirements [Wong et al., 1985, Chan and Ioannidis, 1999]. A method 

proposed by [Chan and Ioannidis, 1999] called multi-component encoding can be thought 

of as a generalization of binary encoding. In the binary encoding, each bitmap represents 

a binary digit of the attribute values; the multi-component encoding breaks the values in a 

more general way, where each component could have a different size. Consider an 

integer attribute with values ranging from 0 to c-1. Let b1 and b2 be the sizes of two 

components c1 and c2, where b1*b2>=c. Any value v can be expressed as                          

v = c1*b2+c2, where c1 = v / b2 and c2 = v % b2, where ‘/’ denotes the integer division and 

‘%’ denotes the modulus operation. One can use a simple bitmap encoding method to 

encode the values of c1 and c2 separately. Next, we give a more specific example to 

illustrate the multi-component encoding. 

 
 
 
 
 
 
 
 
 
 

Figure 2.3: An illustration of a 2-component bitmap index. 
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Figure 2.3 illustrates a 2-component encoded bitmap index for an attribute with 

cardinality c=1000. In our example, the two components have base sizes of b1=25 and 

b2=40. Assume the attribute values are in the domain of [0; 999]. An attribute value v is 

decomposed into two components with c1 = v / 40 and c2 = v % 40. The component c1 can 

be treated as an integer attribute in the range of 0 and 24; the component c2 can be viewed 

as an integer attribute in the range of 0 and 39. Two bitmap indexes can be built, one for 

each component, for example, c1 with the equality encoding and c2 with range encoding. 

If range encoding is used for both components, it uses 24 bitmaps for Component 1 and 

39 bitmaps for Component 2. In this case, the 2-component encoding uses 63 bitmaps, 

which is more than the 10 bitmaps used by binary encoding. To answer the same query 

“v < 105” using the 2-component index, the query is effectively translated to “c1<2 OR 

(c1=2 AND c2<25).” Evaluating this expression requires three bitmaps representing 

“c1<=1,” “c1<=2,” and “c2<=24.” In contrast, using the binary encoded bitmap index to 

evaluate the same query, all 10 bitmaps are needed. 

2.2.3. Equality and Range Encoding  

Consider the thi   component of an index with attribute cardinality   ib .   There are 

essentially two major schemes to directly encode the corresponding values 

iv ( )10 −≤≤ ii bb   in bits: 

 Equality   Encoding:   There are ib  bits, one for each possible value. The representation 

of value iv has all bits set to 0, except for the bit corresponding to iv , which is set to 1. 

Clearly, an equality-encoded component consists of ib  bitmaps. 

Range Encoding:  There are ib  bits again, one for each possible value. The representation  

of value iv has the iv  rightmost bits set to 0 and the remaining  bits (starting  from  the 

one corresponding  to iv   and to  the left)  set to  1. Intuitively,   each bitmap iv
iB   has 1 

in all the records whose  thi    component value is less than or equal to iv . Since the 

bitmap  1−ib
iB  has all  bits  set to  1, it  does not  need to  be  stored,  so a range- encoded 

component  consists of ( ib - 1) bitmaps. 
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Figures 2.4(b) and (c) show the range-encoded indexes corresponding to the equality-

encoded   indexes in figure 2.2. 
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Figure 2.4: Examples of range-encoded bitmap indexes.  (a) Projection of indexed 

attribute values with duplicates preserved.  (b)  Single Component, base-9, range-encoded 

bitmap index. 
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 Figure 2.4: (c) Base< 3, 3 > range-encoded bitmap index. 

An encoded bitmap index on a column A of a table T consists of a set of bitmap 

vectors, lookup table and a set of retrieval Boolean function. Each distinct value of a 
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column is encoded using a no. of bits each of which is stored in a bitmap vector. Lookup 

table stores the mapping between A (column) and its encoded representation. 

As of now, the only encoding scheme that we used is the one used for Value- List 

indexes, called Equality Encoding. But there is another scheme that actually allows for 

even more compact indexes: the Range Encoding scheme. With this scheme, we not only 

set the bit to one that contains the specific value, but also all other bits that are left of this 

value, in short: all bits in the bitmaps iB  to the desired value ivB . This way, we need one 

less column in every bitmap, because the rightmost column has then all bits set to 1 and 

does not need to be stored. Figure 2.4(a) and 2.4(b) shows the bitmap from the first 

example, now reorganized to use range encoding. Of course this type of encoding can 

also be used with multi-component bitmaps. This is even more effective as every single 

component now needs one less column to be stored, resulting in an even more compact 

index. As we can see in Figure 2.4(c), the index from the initial example has been 

reduced from 9 to only 4 columns, i.e. to less than half the original number. The 

downside of this method is that we can't use simple bit comparison anymore to get the 

desired value, because now not only the specific value has 1 in its index but also all 

bitmaps left of it. To overcome this disadvantage, the evaluation algorithm has to be 

modified. The general idea is to differ between the possible query operators 

( )≠=≥>≤< ,,,,, and compute each in a different way. 

A key design parameter for bitmap indexes is the encoding scheme, which 

determines the set of attribute values “represented” by each bitmap in an index that is the 

attribute values that set the corresponding records’ bits in a bitmap to 1. For example, the 

simple design mentioned earlier, the encoding scheme is such that the bitmap associated 

with the value v  represents v  alone. Previous studies [Wong et. al., 1985, O’Neil and 

Quass, 1997, and Chan and Ioannidis 1999] have identified two basic encoding schemes: 

Equality Encoding, which is the one mentioned above and is efficient for equality queries 

(i.e. , queries of the form "" vA = ), and Range Encoding, which is efficient for one-sided 

range queries (i.e., queries of the form "" vA ≤    or  "" vA ≥ ). However, the space-time 

performance optimality of either of the encoding schemes is remain an open issue; that is, 

it is not known whether or not there exists an encoding scheme with strictly better space-

time performance than equality encoding for equality queries or range encoding for one-
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sided range queries. Two sided Range queries of the form "" 21 vAv ≤≤  Performance of 

bitmap indexes for the more general class of membership queries (i.e., queries of the 

form { }",...,," 21 kvvvA ∈ ). 

Informally, an encoding scheme S is optimal for a query class Q if there is no 

other encoding scheme with strictly better space-time performance than S for Q. Consider 

an attribute A of a relation R, where the attribute cardinality is C. For simplicity and 

without loss of generality, the domain of A is assumed to be a set of consecutive integers 

from 0 to C-1. Let B be an individual bitmap of a bitmap index on A. For notational 

convenience, we overload the symbol B so that it indicates both the bitmap itself (i.e., a 

sequence of 0’s and 1’s) and the set of attribute values in A that correspond to its bits that 

are set to 1. This allows us to use set operators and logical operators interchangeable. The 

logical operators AND, OR, and XOR are denoted by ,,∨∧ and ⊕ , respectively, while the 

compliment of B is denoted by B  

An interval query on attribute A is a query of the form "" yAx ≤≤  or 

)"(" yAxNOT ≤≤ . An interval query is an equality query if yx = ; it is a one-sided 

range query if 0=x  or 1−= Cy ; and it is two sided range query if 10 −<<< Cyx . A 

one-sided or two-sided range query is also called a range query. We denote the class of 

equality queries, one-sided range queries, two-sided range queries, and range queries by 

EQ, 1RQ, 2RQ and RQ, respectively. We refer to a query that belongs to the query class 

Q, where { }RQRQRQEQQ ,2,1,∈ , as a Q-query. Queries of the form { }",...,," 21 kvvvA ∈  

are membership queries. 

Equality encoding is the most fundamental and common bitmap encoding scheme. It 

consists of C  bitmaps { }110 ,...,, −= CEEEε , where each bitmap { }vE v = . 

Evaluation of interval queries using an equality-encoded bitmap index proceeds as in 

equation (2.1): 
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The range encoding scheme consists of ( )1−C  bitmaps { }210 ,...,, −=ℜ CRRR , where each 

bitmap [ ]vR v ,0= . 
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In a binary encoded bitmap index, each attribute value is represented in binary form (i.e., 

with � �)(log 2 C bits, where C is the attribute cardinality); so there are a total of 

� �)(log 2 C bitmaps in a binary-encoded index. 

Theorem 2.1 states several results for the existing encoding schemes. 

 

Theorem 2.1: The following statements hold: 

1. Range encoding is optimal for EQ iff 5≤C . 

2. Range encoding is optimal for 1RQ for all C. 

3. Range encoding is not optimal for 2RQ for any C. 

4. Range encoding is optimal for RQ for all C. 

5. Equality encoding is optimal for EQ for all C. 

6. Equality encoding is not optimal for 1RQ, 2RQ, and RQ for any C. 

Let I denote an n-component index with base >< − 11 ,...,, bbb nn . Then the space and time 
usage of the encoding schemes can be computed with the following formulas [Chan and 
Ioannidis, 1998]: 
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For Range Encoding: 
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The base of the most time-efficient 2-component space-optimal index is given by 
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The expected number of pages which are hit by selecting k  tuples from a table of n  

pages is computed by  
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tuples. The hit rate depends, of course, highly on the value p , clustering criteria, 

distribution of indexed attribute, etc. 

 

Consider an example, given are two attributes A and B of a table T. Let the domain of A, 

denoted by ),(ADom be{ }+∈≤≤ ZA 900,A   100|A and { }wvutfedcbaBDom ,,,,,,,,,  )( = . 

The cardinality of T is defined by |T| and the cardinality of an attribute is defined by the 

cardinality of its domain. 

An encoding scheme S is optimal for a query class Q if there is no other encoding scheme 

with strictly better space-time performance than S for Q. An encoding function is called 

total-order preserving, if there exists a total order in the domain of the indexed attribute, 

and the same total order still exists in the encoded attribute domain. We use ‘+’ to denote 

the logical operator OR and ‘.’ to denote the logical operator AND. 

A min-term of n  Boolean variables is a logical conjunction of all n  variables, or their 

negations. Both >< 6,6,6,5  and >< 8,8,8,2 are well-defined bases. A well-defined base, 

>< 1,...,bbn , consists of finite number of components, i.e., +∈ Zn , such that 
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Space-optimum Given an integer n , the space-optimal n -component bit-sliced index is 

the n -component bit-sliced index with the base >−−<
− �������� rrn

bbbb ,...,,1,...,1 , 

where b= � �n A  and r  is the smallest positive integer such that ( ) Abb rnr ≥− −1 . 

 

Time-optimum Given an integer n , the time-optimal n -component bit-sliced index is 
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2.2.4. Comparison of Bitmap Encoding Schemes 
This section compares the space-time tradeoff of the bitmap encoding schemes i.e. the 

best compromise between space usage and query response time, see figure 2.5.  

 
Time 
 A) Space Optimal 
 

 

 

 

      (B) Time-optimal under space constraint M 
 

 

 

 C) Optimal Space-Time Tradeoff (knee) 

(D) Optimal Time 

           Infeasible Region 

         M          Space 

Figure 2.5: Space-Time Tradeoff 

 

For multi component indexes, the more space we save with splitting the index into 

multiple components, the more indexes have to be scanned for a query and so the 

processing time rises [Chan and Ioannidis 1999]. The results show that range-encoding in 

general provides better space-time tradeoff than equality-encoding in most cases. This 

becomes clear as the graph for the range-encoded index most of the time is located under 

the graph for the equality-encoded index, meaning the time for using it is shorter. 

Encoded Bitmap indexes solves the problem of sparsity, improves the space utilization, 

shortens the maintenance and processing time, and also improves the performance of 

processing range queries. Most of all, the cardinality of the indexed attribute no longer 

dramatically effects the maintenance and processing costs of the encoded bitmap indexes.  
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The main encoding schemes for bitmap indexes are as follows: 

• Attribute value decomposition 

– Convert attribute value to suitable base 

• Range Encoding 

– |A| - 1 bitmaps 

• Interval Encoding 

– |A|/2 -1 bitmaps 

• Equality encoding 

– |A| bitmaps 

|A| means Attribute cardinality. The figure 2.6 explains the differences. 

 

 
Figure 2.6: Different encoding techniques 

2.2.5. Bit-Sliced Encoding 
A bit-sliced index of an attribute is a bitwise projection of the attribute [O’Neil 

and Quass, 1997]. The number of bit vectors is equal to the length of the attribute’s data 

type in bits, and the length of each bit vector is equal to the cardinality of the indexed 

table. A bit-sliced index is based on converting integer values to binary values in order to 

perform fast logical operations on them since the hardware directly supports 1’s and 0’s. 

We should choose an optimal number of bits per bit-vector in order to represent the 

whole attribute domain and to occupy minimum space. 

 

Equality 
encoding 

Range 
encoding 

Interval 
encoding 

6 bins  0 1 2 3 4 5 
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Table 2.1: An example of a Bit-sliced Index 
 

            In the above example, table 2.1, column C represents the actual values and C2 

represents binary form of the value and B0 to B7 represents the bit slices. As we look in 

the index, B0
 represents the bits for the numbers corresponding to the value 20 and B1

 

represents the bits for the numbers corresponding to the value 21 .So Bi represents the bits 

for the numbers corresponding to the value 2i where i is from 0 to m (maximum number 

of bit slices required is m+1).In the above example m is 6 since the largest number 156 

can be represented in 7 bits. So the number of bit slices required is also 7. 

For example, 23 can be written as the sum of 1.20 +1. 21 +1.22    +0.23   

+1.24+0.25+0.26+0.27. So for the number 20 B0 contains the value corresponding to 20 i.e. 

0 and B1
 contains 0 and B2

 contains 1 etc. Formal definition of bit-sliced index is as 

follows:        

 

Definition: A bit-sliced index B, often referred to as a BSI, is an ordered list of bitmaps 

BS, BS-1. . . B1, B0; the list of bitmaps is used to represent values of some column C. The 

bitmaps BS, BS-1, . . . , B1, B0 are called the bit-slices, and provide binary representations 

of C values for all the rows, B0 holds the 1’s bits, B1 holds the 2’s bits, B2 holds the 4’s 

bits, etc. More precisely, if we represent the C value of row j by C[j], and the bit for row j 

in bit-slice Bi by Bi[j], then the values for Bi[j] are chosen such that C[j]= �s
i=0 Bi[j].2i 

.So as mentioned in the previous example 23 = 1.20+1.21 +1.22 +0.23+1.24+0.25 

+0.26+0.27 where 23 represents C [4]. 

 

 

RID   Value 
   C 

        Binary    
Representation C2 

B7 

27 
B6 

26 
B5 

25 
B4 

24 
B3 

23 
B2 

22 
B1 

21 
B0 

20 

   1   45        00101101 0 0 1 0 1 1 0 1 

   2  156        10011100 1 0    0 1 1 1 0 0 

   3   14        00001110 0     0 0 0 1 1 1 0 

  4    4        00000100 0 0 0 0 0 1 0 0 

  5   82        01010010 0 1 0 1 0 0 1 0 

  6   25        00011001 0 0 0 1 1 0 0 1 
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2.3. Compression Techniques 
 

Wu et al., 2000, proposed to improve the effectiveness of the basic bitmap index 

by compression. Other ways of improving the bitmap index include binning and using 

different encoding. With binning, multiple values are grouped into a single bin and only 

the bins are indexed [Koudas, 2000, Shoshani, 1999, Wu and Yu, 1996]. This strategy 

reduces the number of bitmaps used but it also introduces inaccuracies. In order to 

accurately answer a query, one has to scan some of the attribute values after operating on 

the indexes. Many researchers have studied the strategy of using different encoding 

schemes [Chan and Ioannidis, 1998, 1999, Wong et al., 1985, Wu and Buchmann, 1998]. 

One well known scheme is the bit-sliced index, that encodes k  distinct values using 

k2log  bits and creates a bitmap for each binary digit [O’Neil and Quass, 1997]. This is 

related to the binary encoding scheme discussed earlier. A drawback of encoding scheme 

is that to answer each query, most of the bitmaps have to be accessed, and possibly 

multiple times. There are also a number of schemes that generate more bitmaps than the 

bit-sliced index but access less of them while processing a query, for examples, the 

attribute value decomposition [Chan and Ioannidis, 1998], interval encoding [Chan and 

Ioannidis, 1999] and the K-of-N encoding [Wong et al.,1985]. Compression techniques 

can be applied on any bitmap. 

Once we have identified some efficient compression schemes, we can improve all 

bitmap indexes. Additionally, a number of other common indexing schemes such as the 

signature file [Furuse et al., 1995, Ishikawa et al., 1993, Lee, 1995] and the bit transposed 

files [Wong et al., 1985] may also benefit from efficient bitmap compression algorithms. 

Other high-dimensional indexing schemes yet to be mentioned include the projection 

index [O’Neil and Quass, 1997] and the UB-tree [Bayer, 1997, Markl and Bayer, 2000]. 

The projection index can be viewed as a different way of organizing the attribute values 

of a table. It can be implemented easily and efficiently by using bitmaps to store the 

intermediate results, and we use it as the bases for measuring the performance of our 

compressed bitmap index. The UB-Tree is a promising technique. 

To address the performance issue, a number of special algorithms have been 

proposed. Johnson and colleagues have conducted extensive studies on their 

performances [Jhonson, 1999, Amer-Yahia and Jhonson, 2000,]. From their studies, we 
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know that the logical operations using these specialized schemes are usually faster than 

those using gzip. One such specialized algorithm, called the Byte-aligned Bitmap Code 

(BBC), is known to be very efficient. It is used in a commercial database system, 

ORACLE [Antoshenkov, 1994, Antoshenkov and Ziauddin, 1996]. However, even with 

BBC, in many cases logical operations on the compressed data still can be orders of 

magnitudes slower than on the uncompressed data. 

2.3.1. Byte aligned Bitmap Code (BBC) 

 Normal bitmap indexing technique doesn't compress the runs of zero and ones. As 

a result it is not space efficient. To overcome this disadvantage, BBC was introduced 

[Antoshenkov, 1994]. BBC is designed so that it can compress runs which are both short 

and long. As a result we can get better compression ratio (on a normal data). It is based 

on the basic idea of run length encoding that represents consecutive identical bits (also 

called a fill or a gap) by their bit value and their length. The bit value of a fill is called the 

fill bit. If the fill bit is 0, we call it as 0-fill otherwise for 1 called as 1-fill. 

 Given a bit sequence, BBC first divides it into bytes and then group bytes into runs. Run 

consists of a fill word followed by a tail of literal bytes. It always contains a number of 

whole bytes which represents the fill length. Byte Alignment property limits a fill length 

to be an integer multiple of bytes. This ensures that during any bitwise logical operation a 

tail byte is never broken into individual bits. In BBC we group the bits (which are either 0 

or 1) in bytes and then compress them.  

 BBC can be categorized into two forms: 

  a) one sided (compresses only fills of 0's or 1’s) and 

  b) two sided (compresses both fills of 0’s and 1's) 

 BBC has got two types of runs viz. fill and literal. The fill runs are the ones where 

we actually store the compressed form of long runs, whereas in case of literal, the bits 

(which are present in the Byte) have literal meaning i.e., 0 - there is no record and 1 - 

there is a record in the database. 

Procedure for two sided BBC:  

BBC scans through records and generates a bit map vector for it. Then, it 

categorizes this into either of four runs, which are described below. 
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Type#1 run: 

 <header byte> <0 to 3 literal bytes> 

 header byte: 

  1 <fill bit> <fill length - 2 bit> <tail length - 4 bits> 

 fill bit signifies whether the runs are of 0's or 1's. 

 With the help of this run, we can store a run having length less than or equal to 

24. (as we have 2 bit for fill length) we can store four values viz. 0 to 3, a value of 3 in 

fill length bits signifies a run length of 8*3 = 24 (since BBC organizes the run in two 

groups of 8). 

After the fills we can have a maximum of 15*8=120 bits which can act as literal bits.  

Tail length has 4 bits, so the maximum number possible is 15 => 15*8=120 bits. 

 e.g 00 8A 37 (in hexa) 

  here we have a runs of zero. 

  Its run length is 1. 

  so, the header bit will now become 

   1 0 01 0010  1000 1010 0011 0111 

   92 8A 37. 

 once we compress this bit, we can identify this run, if a number has a value >= 

127.  Since the MSB bit is 1, in the header byte. 

 

Type#2 run: 

 <header byte>  

 01 <fill bit> <fill length - 2 bits> <odd bit position - 3 bits> 

 fill bit signifies whether the runs are of 0's or 1's. 

 With the help of this run, we can store a run having length less than or equal to 

24. (as we have 2 bit for fill length) we can store four values viz. 0 to 3, a value of 3 in 

fill length bits signifies a run length of 8*3 = 24 (since BBC organizes the run in to 

groups of 8). 

 After the fills we can have a literal bit which has got only one 1 and other 7 bits 

are zeros. The bit which is one is stored in the header information. 

 e.g  80 (HEX) 
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  01 0 00 111  

  47 (HEX).  

  Here we don't have a runs in the beginning so, the fill length is made 0. In 

the literal bit we have 1 in the MSB position. Hence the odd bit position is taken as 7. (7 

for MSB and 0 for LSB). 

 e.g 00 00 00 02. 

 01 0 11 001 

 59 (HEX). 

we have a fill length of 3, followed by a literal which has one in the 1st position (0th 

position being LSB). once we compress this bit, we can identify this run, if a number has 

a value >= 64 and < 127.  

Type#3 run: 

 <header> <multi byte counter> <literal> 

 001 <fill bit> <tail length - 4 bit> 

 The disadvantage of Type 1 run is that it can accomodate run which are less than 

or equal to 120. To overcome this we have Type 3 run, where in we can store runs which 

are even larger. 

 fill bit represent the type of run. 

 The length of fill bits is represented using the multibyte counter. 

  If MSB of multibyte counter is 1, it signifies that there is another multibyte 

counter following it.  

   If MSB of multibyte counter is 0, it signifies that there is a no multibyte counter 

following it.  

   no.of.fill bits = sum of lower 7 bits in the multi byte counter + 4 

  we add 4 because, initially we knew that we have started from type 1 run, which 

has accounted for 3 runs. So, if we are working on type 3 run it means we will be having 

runs which is >=4. 

 Tail holds the literal bits. 

 e.g 00 (9 times) F3. 

 here we have a fill length of 9, which can't be shown using the type 1 run.  

 so, we go for type 3 run. 
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 fill length = 9-4 =5. 

  001 0 0001 0000 0101 1111 0011 

  0001 = > there is only one literal byte. 

  0000 0101 => this is the last Multi byte counter. (as MSB is 0). 

    and the length of fill is 5 + 4 =9 

once we compress this bit, we can identify this run, if a number has a value >= 32 and < 

64.  

Type#4 run: 

 <header> <multi byte counter> <literal> 

 0001 <fill bit> <odd bit position> 

 The disadvantage of Type 2 run is that it can accommodate run which are less 

than or equal to 120. To overcome this we have Type 4 run, where in we can store runs 

which are even larger. 

 fill bit represent the type of run. 

 The length of fill bits is represented using the multibyte counter. 

  If MSB of multibyte counter is 1, it signifies that there is another multibyte 

counter following.  

   If MSB of multibyte counter is 0, it signifies that there is a no multibyte counter 

following.  

   no.of.fill bits = sum of lower 7 bits in the multi byte counter + 4 

  we add 4 because, initially we new that we have started from type 1 run, which 

has accounted for 3 runs. So, if we are working on type 3 run it means we will be having 

runs which is >=4. 

 Tail holds the literal bits. we can have only one literal byte. 

 e.g 00 (9 times) 02. 

 here we have a fill length of 9, which can't be shown using the type 1 run.  

 so, we go for type 3 run. 

  fill length = 9-4 =5. 

  0001 0 001 0000 0101  

  001 = > one is present in the 1st position. 

  0000 0101 => this is the last Multi byte counter. (as MSB is 0). 
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    and the length of fill is 5 + 4 =9 

 once we compress this bit, we can identify this run, if a number has a value >= 16 

and < 32.  

2.3.2. Word Aligned Hybrid Code (WAH) 
Similar to BBC, this technique is also a hybrid between the run length encoding and the 

literal scheme. WAH scheme is much simpler and efficient than BBC [Wu et al., 2004]. 

WAH stores compressed data in words rather than in bytes.  

Two types of word in WAH 

1) Literal Word 

2) Fill Word 

MSB of a word to distinguish between a literal word (0) and a fill word (1) without 

explicitly extracting the bit.  

Lower bits of a literal word contain the bit values from the bitmap. Second MSB of a fill 

word is the fill bit and lower bits store the fill length. 

Imposing word alignment requires all fill lengths to be integer multiples of no. of bits, 

which ensures that logical operation functions only need to access words not bytes or 

bits. In this section, we briefly review the main characteristics of the compression 

algorithm used; namely the word-aligned hybrid run-length code or WAH for short. We 

don’t describe how the logical operations are performed without decompression. 

Interested readers can find details in a technical report [Wu et al., 2001]. As the name 

suggests, this scheme is a variation on the run-length code. The essence of the run-length 

code is to represent a list of consecutive identical bits by its length and its bit value. As is 

common in the literature, we refer to a sequence of identical bits as a fill. The bit value of 

a fill is called the fill bit. The number of bits in a fill is called the fill length. To ensure 

efficient operations, WAH encodes the fill length and the fill bit in one whole word. 

Compared to the uncompressed scheme, this only reduces the space requirement if the fill 

is longer than a word. For fills that are shorter, WAH stores them literally. Altogether, 

there are two types of code words in WAH, those that contain literal bit values (called 

literal words) and those that contain fills (called fill words). 
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In our current 32-bit implementation, we use the Leftmost Bit (LMB) of a word to 

distinguish between a literal word and a fill word, where 0 indicates a literal word and 1 

indicates a fill word. The lower 31 bits of a literal word contains literal bit values. The 

second leftmost bit of a fill word is the fill bit and the 30 lower bits store the fill length. 

To achieve fast operation, it is crucial that we impose the word-alignment requirement on 

this scheme. The word-alignment requirement in WAH requires all fill lengths to be 

integer multiples of 31 bits (i.e., literal word size). Given this restriction, we represent fill 

lengths in multiples of literal word size. For example, if a fill contains 62 bits, the fill 

length will be recorded as two (2), as shown in figure 2.7.  

 

124 bits                                              1,20*0,3*1,79*0,21*1  
31-bit groups          1,20*0,3*1,7*0             62*0                     10*0,21*1 
Groups in hex           40000380           00000000 00000000        001FFFFF 
WAH(hex)                40000380              80000002                     001FFFFF 
 

Figure 2.7: A WAH bit vector. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2.8: A bitwise logical AND operation on WAH compressed bitmaps 
 
Figure 2.8 shows a decompressed version of the three bitmaps involved in the operation 

for the purpose of illustration only. The logical operations can be directly performed on 

the compressed bitmaps and the time needed by one such operation on two operands is 

related to the sizes of the compressed bitmaps. Let the compression ratio be the ratio of 

size of a compressed bitmap and its uncompressed counterpart. When the average 

Decompressed 
 

A 40000380   00000000   00000000   001FFFFF   0000000F 
B 7FFFFFF   7FFFFFFF  7C0001E0  3FE00000   00000003 
C 40000380   00000000   00000000   00000000    00000003 

 
Compressed 

 
A 40000380   80000002                  001FFFFF   0000000F 
 B C0000002                      7C0001E0  3FE00000   00000003 
 C 40000380   80000003        00000003 
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compression ratio of the two operands is less than 0.5, the logical operation time is 

expected to be proportional to the average compression ratio [Wu et al., 2001] 

Even with small data size, in the majority of the test cases, the word-aligned 

scheme is still significantly faster. When the compression ratio is one, the logical 

operations on WAH bit vectors are about 80 times faster than the same operations on 

BBC bit vectors. Even when the time to read two bit vectors is included, the WAH 

scheme is still about 20 times faster than BBC. If we sum up all the total time values 

from all test cases (including different logical operations), the sum for BBC is about 12 

times that of WAH. In other words, on the average WAH is about 12 times as fast as 

BBC. If the IO time is not included, the differences are even larger. Compared to the 

literal scheme, the BBC scheme is faster in less than half of the test cases; WAH is faster 

in about 60% of the test cases. On the average, WAH-compressed bit vectors use less 

than a third of the space required by the uncompressed scheme (LIT). Compared to BBC, 

WAH uses only about 50% more space. 

In using the WAH compressed bitmap index to answer queries, bitwise logical 

operations are the most important operations. For this reason, we next examine the 

complexity of the bitwise logical operation procedures. Two different algorithms, one 

performs an arbitrary bitwise logical operation on two compressed bitmaps, and the other 

performs a bitwise OR between a decompressed bit vector and a compressed one. The 

first one is for general use and the second one is mainly used to sum together a large 

number of sparse bitmaps. Before we give detailed analyses, we first summarize the main 

points. 

The time to perform an arbitrary logical operation between two compressed 

bitmaps is proportional to the total size of the two bitmaps. The exception is when the 

two operands are nearly decompressed; in which case the time needed is constant. The 

time to perform a logical OR operation between a decompressed bit vector and a 

compressed one is linear in the size of the compressed one. When performing OR 

operation on large number of sparse bitmaps using in-place OP, the total time is linear in 

the total size of all input bitmaps. In this case, using generic operation takes more time 

because it allocates memory for intermediate results and compresses them too. In 

contrast, using in-place Oravoids all of these operations. Operations on WAH 
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compressed bitmaps are faster than the same operations on BBC compressed bitmaps for 

three main reasons. 

1. The encoding scheme of WAH is much simpler than BBC. WAH has only two kinds 

of words, and one test is sufficient to determine the type of any given word. In contrast, 

our implementation of BBC has four different types of runs; other implementations have 

even more. It may take up to three tests in order to decide the run type of a header byte 

and many clock cycles may also be needed to fully decode a run. 

2. During the logical operations, WAH always accesses whole words, while BBC 

accesses bytes. For this reason, BBC needs more time to transfer its data between the 

main memory and CPU registers than WAH.  

3. BBC can encode short fills; say those with less than 60 bits, more compactly than 

WAH. However, this comes at a cost. Each time BBC encounters a short fill it starts a 

new run. WAH typically represents such a short fill in literal words. It takes much less 

time to operate on a literal word in WAH than on a run in BBC. This situation is common 

when bit density is greater than 0.01 in random bitmaps. 

We believe it is worthwhile to trade this 50% more space for 12 fold increase in 

operation speed. The gzip scheme is based on an asymptotically optimal compress 

scheme. Even compared again this optimal scheme, WAH scheme uses no more than 

twice as much space. For this extra space, WAH is able to perform logical operations 

several orders of magnitudes faster than gzip. Overall, we believe WAH is the most 

appropriate scheme for compressing bitmap indexes. Wu  and others [2004] propose a 

simple algorithm for compressing the bitmap indexes that improves the speed of logical 

operations by an order of magnitude at a cost of small increase in space. This algorithm 

not only supports faster logical operations but also enables the bitmap index to be applied 

to attributes with high cardinalities. Our tests show that by using WAH compression, we 

can achieve good performance on scientific datasets where most attributes have high 

cardinalities. From their performance studies, Johnson and colleagues came to the 

conclusion that one has to dynamically switch among different compression schemes in 

order to achieve the best performance [Amer-Yahia and Jhonson, 2000]. We found that 

since WAH is significantly faster than earlier compression schemes, there is no need to 

switch compression schemes in a bitmap indexing software. The new compression 
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scheme not only improves the performance of the bitmap indexes but also simplifies the 

indexing software. 

Goyal and others [1999] have considered the application of compression 

techniques to data warehouse indexes. They examined a recently proposed access 

structure for warehouses known as DataIndexes and discussed the application of several 

compression methods to this approach and discusses when each of them should be used.  

Wu and others [2001] talks about bitmap compression as bitmaps are easy to compress 

but compressing them reduce the query processing efficiency. To solve this problem they 

developed a new word-aligned compression scheme technique. They also evaluated 

several bitmap encoding schemes, like equality encoding, range encoding and interval 

encoding. Their results shows that the compressed bitmap indexes are not only much 

smaller in size than their uncompressed versions, but are also just as fast in query 

processing as their uncompressed counterparts. Systematic analysis of the effectiveness 

of the two most efficient bitmap compression techniques, the Byte-aligned Bitmap Code 

(BBC) and the Word-Aligned Hybrid (WAH) code have been discussed in [Wu et. al., 

2004]. Their analysis shows that both compression schemes can be optimal. They also 

proposed a novel strategy to select the appropriate algorithms so that their optimality can 

be achieved in practice. Their results show that the sizes of the compressed bitmap 

indexes are relatively small with the typical B-tree indexes. This is even true for high 

cardinality attributes.  

Wu and others [2006] discusses word-aligned Hybrid Compression technique for 

bitmap indexes making them efficient even for high-cardinality attributes. They proved 

its optimality for one-dimensional range queries. Their main result states that the time 

required to answer a one-dimensional range query is a linear function of the number of 

hits. This strongly supports the well-known observation that compressed bitmap indexes 

are efficient for multidimensional range queries because results of one-dimensional range 

queries computed with bitmap indexes can be easily combined to answer 

multidimensional range queries. They show that WAH not only reduces the bitmap index 

sizes but also improves the query response time. Amer-yahia and Johnson [2000] discuss 

about the compressed bitmap indexes to accelerate decision support queries. They 

showed that there are several fast algorithms for evaluating Boolean operators on 
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compressed bitmaps. These algorithms have different execution times for different 

Boolean operations and for different bitmaps. They present a linear time dynamic 

programming search strategy based on a cost model to optimize query expression 

evaluation plans. Their results show that the optimizer requires a negligible amount to 

time to execute, and that optimized complex queries can execute up to three times faster 

than un-optimized queries on real data.  

Johnson and others [2004] have presented a lossless compression strategy to store 

and access large matrices efficiently on disk. Their approach is based on viewing the 

columns of the matrix as points in a very high dimensional Hamming space, and then 

formulating an appropriate optimization problem that reduces to solving an instance of 

the Traveling Salesman Problem on this space. Richards [1986] talks about file 

compression when all the records of the file have the same field structure. Here 

‘differencing’ compression scheme is analyzed. The idea is to arrange the records in 

some order and output the first record, which differs from the previous record. The 

problem is to sort the records so that they are in a Gray-code order. They presented an 

improvement to Ernwall’s algorithm, extend it to the full mixed-radix case and present 

another algorithm. Stockinger and others [2006] described an integration effort that can 

significantly reduce the unnecessary reading all variables into memory by using an 

efficient compressed bitmap indexing into ROOT framework. By using this index, any 

arbitrary combinations of queries can be answered very efficiently. Their performance 

results show that for multi-dimensional queries, bitmap indexes outperform the 

traditional analysis method up to a factor of 10. Wu and others [2001] presented a 

comparison of two word based compression schemes with BBC. Their results show that 

these word-aligned schemes take only 50% more space than BBC but perform logical 

operations 12 times faster on both real application data and synthetic data. Wong and 

others [1985] introduces a file structure called bit transposed file which suits the special 

characteristics of large Scientific/Statistical Database applications. The data is stored by 

vertical bit partitions. The bit patterns of attributes are assigned using one of several data 

encoding methods. The bit partitions can be compressed using a version of the run length 

encoding scheme. Results from experiments shows that bit transposed may be a 

reasonable alternative file structure for large Scientific/Statistical Databases. 
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To reduce the query response time, [Wu et. al., and 2006] designed a CPU-

friendly scheme named the word-aligned hybrid code. They proved that the sizes of 

WAH compressed bitmap indexes are about two words per row for large range of 

attributes. This size is smaller than typical sizes of commonly used indexes, such as a B-

tree. Therefore, WAH compressed indexes are not only appropriate for low cardinality 

attributes but also for high cardinality attributes. In the worst case, the time to operate on 

compressed bitmaps is proportional to the total size of the bitmaps involved. The total 

size of the bitmaps required to answer a query on one attribute is proportional to the 

number of hits. These indicate that WAH compressed bitmap indexes are optimal. Tests 

on a STAR dataset show that it is 12 times faster than BBC while using only 60% more 

space. They have also shown through both analyses and tests that the query processing 

time grows linearly as the index size increases. In addition, they demonstrated that the 

query processing time is linear in the number of hits when using a WAH compressed 

bitmap index. This proves that WAH compressed bitmap indexes are optimal. Wu and 

others [2002] studied the effects of compression on bitmap indexes. To make compressed 

bitmaps operate more efficiently, they designed word-aligned hybrid code (WAH). They 

demonstrated from tests that improving the compression scheme actually improves the 

query answering speed, not only logical operations. Tests show that WAH compressed 

indexes are not only smaller than the uncompressed indexes, they also take less time to 

answer queries. Compared to the indexes compressed with BBC, the WAH compressed 

indexes are faster by a factor of four or five. They did not see a factor of 12 

improvements because the times spent in query processing are dominated by logical 

operations on very sparse bitmaps. On very sparse bitmaps, WAH scheme is faster than 

BBC usually by a factor of about four or five. During query processing there is also some 

amount of time spent in parsing the query, obtaining the locks. 

Pinar and others [2005] evaluates compressed bitmap indexes for scientific 

databases such as high energy physics. Study has been carried out to reorganize bitmap 

tables for improved compression rates. Their algorithms are used just as a preprocessing 

step, thus there is no need to revise the current indexing techniques and the query 

processing algorithms. We introduce the tuple reordering problem, which aims to 

reorganize database tuples for optimal compression rates. We propose Gray code 
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ordering algorithm for this NP-Complete problem, which is an in-place algorithm, and 

runs in linear time in the order of the size of the database. We also discuss how the tuple 

reordering problem can be reduced to the traveling salesperson problem. Their 

experimental results on real data sets show that the compression ratio can be improved by 

a factor of 2 to 10. 

 
2.4.  Binning Techniques 
 

The simplest form of bitmap indexes works well for low-cardinality attributes. 

However, for high-cardinality attributes simple bitmap indexes are impractical due to 

large storage and computational complexities. We have seen the simple bitmap indexes 

and encoding schemes like range encoding and interval encoding which are best suited 

for one sided range queries and two sided range queries. In addition we have also seen 

equality encoding which is the basic bitmap index scheme for simple equality queries. 

We have just discussed how different encoding methods could reduce the index size and 

improve query response time. Next, we describe a strategy called binning to reduce the 

number bitmaps. 

Koudas [2000] introduced the idea of binning for bitmap indexes. Instead of 

representing one bitmap vector for each distinct value of the attribute domain, design 

bitmap for a group of attribute value by taking into consideration the query and data 

distribution. By doing so, we can control the size of bitmap index by reducing the number 

of bitmap vectors. Now the size of bitmap index is no longer directly proportional to the 

cardinality of the attribute domain. This makes bitmap indexing suitable for high 

cardinality attributes as well. Here, mathematical formation and its optimal solution is 

also discussed. The solution for choosing bitmap ranges efficiently is optimal and 

polynomial time. Compressed bitmaps were also considered and branch and bound 

algorithm for choosing bitmap ranges is proposed. Wu and Yu [1998] introduced the term 

Range-based bitmap indexing for binning, where the attribute values are partitioned into 

ranges and a bitmap vector is used to represent a range. Range-based indexing results in 

non-uniform search times for different queries as the number of records assigned to 

different ranges can be highly uneven. They proposed and evaluated a dynamic bucket 

expansion and contraction approach to construct range-based bitmap indexes for multiple 
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high-cardinality attributes with skew. Their results shows better performance with highly 

skewed data for naïve partition approach and performs favorably with the optimal 

approach.  

All these bitmap encoding techniques and schemes discussed so far are optimized 

for discrete attribute values and they cannot work with the real time scientific data and 

multi dimensional index data structures for such scientific data. Hence we go for an 

algorithm which works well with real attribute values. This generic algorithm is called 

the “Generic Range Encoding Algorithm”. The main problem with this algorithm is that 

we have to do candidate check for getting the exact hits as we are encoding the attribute 

ranges and not exact values of attributes. Hence candidate check problem determines the 

performance factor in this case Since the encoding methods described before only take 

certain integer values as input, we may also view binning as a way to produce these 

integer values (bin numbers) for the encoding strategies. The basic idea of binning is to 

build a bitmap for a bin rather than each distinct attribute value. This strategy 

disassociates the number of bitmaps from the attribute cardinality and allows one to build 

a bitmap index of a prescribed size, no matter how large the attribute cardinality is. A 

clear advantage of this approach is that it allows one to control the index size. However, 

it also introduces some uncertainty in the answers if one only uses the index. To generate 

precise answers, one may need to examine the original data records (candidates) to verify 

that the user specified conditions are satisfied. The process of reading the base data to 

verify the query conditions is called candidate check [Stockinger et al., 2004, Rotem et 

al., 2005b]. A small example of an equality-encoded bitmap index with binning is given 

in Figure 2.9. In this example we assume that an attribute A has values between 0 and 

100. The values of the attribute A are given in the second leftmost column. The range of 

possible values of A is partitioned into five bins [0, 20), [20, 40).... A “1-bit” indicates 

that the attribute value falls into a specific bin. On the contrary, a “0-bit” indicates that 

the attribute value does not fall into the specific bin. Take the example of evaluating the 

query “Count the number of rows where 37 <= A < 63”. The correct result should be 2 

(rows 5 and 7). We see that the range in the query overlaps with bins 1, 2 and 3. We 

know for sure that all rows that fall into bin 2 definitely qualify (i.e., they are hits). On the 

other hand, rows that falls into bins 1 and 3 possibly qualify and need further verification. 
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In this case, we call bins 1 and 3 edge bins. The rows (records) that fall into edge bins are 

candidates and need to be checked against the query constraint. 

In the following example, there are four candidates, namely rows 1 and 3 from bin 

1, and rows 5 and 6 from bin 3. The candidate check process needs to read these four 

rows from disk and examine their values to see whether or not they satisfy the user-

specified conditions. 

 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Range query “37 <= A < 63” on a bitmap index with binning. 

 

On a large data set, a candidate check may need to read many pages and may 

dominate the overall query response time [Rotem et al., 2005b]. There are a number of 

strategies to minimize the time required for the candidate check [Stockinger et al., 2004, 

Rotem et al. 2005a, 2005b]. Koudas [2000] considered the problem of finding the optimal 

binning for a given set of equality queries. Rotem and others considered the problem of 
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finding the optimal binning for range queries. Their approaches are based on dynamic 

programming. Since the time required by the dynamic programming grows quadratic 

with the problem size, these approaches are only efficient for attributes with relatively 

small attribute cardinalities or with relatively small sets of known queries. Stockinger and 

others [2004] considered the problem of optimizing the order of evaluating multi-

dimensional range queries. The key idea is to use more operations on bitmaps to reduce 

the number of candidates checked. This approach usually reduces the total query 

response time. Further improvements to this approach are to consider the attribute 

distribution and other factors that influence the actual time required for the candidate 

check. To minimize number of disk page accesses during the candidate check, it is 

necessary to cluster the attribute values. A commonly used clustering (data layout) 

technique is called the vertical partition or otherwise known as projection index. In 

general, the vertical data layout is more efficient for searching, while the horizontal 

organization (commonly used in DBMS) is more efficient for updating. To make the 

candidate check more efficient, we recommend the vertical data organization. We have 

seen that for high dimensional data the storage overhead for bitmaps indexes is very high. 

There are two possible solutions to deal with this problem namely, generic range 

evaluation algorithm where in attribute ranges are encoded rather than attribute values. 

The other one is to compress the bitmap that has been built and thus save the large 

storage overhead. Though the reduction in storage over head that is achievable with range 

encoding or binary encoding comes at the cost of degraded query response hence study of 

bitmap compression is of great importance. 

2.4.1. Binning Strategies 

Dynamic Bucket Expansion and Contraction (DBEC), the data are first scanned 

into the buffer to construct the bucket ranges by counting the data points falling into each 

bucket. If a bucket grows beyond a threshold, it is expanded into smaller-range buckets 

[Wu andYu, 1998]. After the scan, adjacent buckets are combined it into the final 

required number of buckets with approximately balanced count. Bitmap vectors are then 

built for the contiguous ranges represented by the final buckets. [Stockinger et. al., 2004] 

presented a new strategy to evaluate queries using bitmap indexes for very high 

cardinality attributes. They considered scientific data analysis applications where most of 
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the attributes have very high cardinalities. They analyzed how binning affects the number 

of pages accessed during query processing and proposed an optimal way of using bitmap 

indexes to reduce the number of pages accessed. Their strategy reduces the query 

response time by up to a factor of two by minimizing the number of records scanned 

during the candidate checking, but requires more operations on bitmaps. They provided 

detailed analyses and experimental measurements to verify the efficiency of their new 

strategy. Three discussed strategies are as follows: 

All queries to be conjunctive with a one-sided range condition on each attribute xi < vi.  

Strategy 1: In the first phase the bitmap index is scanned for both attributes. In the next 

phase, the candidate check for attribute 1 is performed by reading the attribute values 

from disk and checking them against the range condition and similarly for attribute 2 is 

done. 

Strategy 2: This strategy evaluates each dimension separately. The bitmap index for the 

first attribute is evaluated first and the candidates of this attribute are checked 

immediately afterward. Similarly, dimension 2 is evaluated. 

Strategy 3: The third strategy is an optimal combination of the above two strategies.. In 

this the first part is similar to strategy one i.e. we find the combined total candidates for 

all the dimension asked in the query and instead of reading all those pages for candidate 

checking we now follow a different strategy.  

We do the candidate checking for only those which are in the intersecting regions 

of the Ctotal (candidates of all dimensions) and candidates of dimension 1 i.e. C1. We 

then combine the candidates that passed the candidate checking to the Ctotal and use the 

new Ctotal for doing the same with rest of the dimensions. By proceeding in this way we 

are filtering out all the unnecessary candidate checks that would have been done if 

candidate checking is done for each attribute separately and then combining them and 

finally filtering out the rest which do not meet all the query requirements i.e. we are 

performing the masking of candidates that satisfy the query constraint and eliminating the 

unnecessary candidates which even might be successful in their individual candidate 

checking but do not form the part of final result. Thus the third strategy seems to be more 

advantageous over the other two as it has both the strategies intertwined to give a better 

performance. 
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Since many scientific applications operate on floating point number, Stockinger, [2001] 

presented a novel algorithm called GenericRangeEval for processing one-sided range 

queries over floating point values. They also presented a cost model for predicting the 

performance of bitmap indexes for high-dimensional search spaces. They studied 

analytically and experimentally the performance behavior of multi-dimensional queries. 

Their experimental evaluation showed that the cost model predicted the performance of 

the bitmap index fairly well and could thus easily be incorporated into a query optimizer. 

It can decide whether the query shall be answered by using the index and tell its 

estimated query response time. 

Stockinger [2002] analyzed the behavior of GenericRangeEval bitmap index 

algorithm against various queries based on different data distributions. They also 

implemented an improved version of BBC. Results show that depending on the 

underlying data distribution and the query access patterns, proposed bitmap indexes can 

significantly improve the response time of high-dimensional queries when compared to 

conventional access methods. They demonstrated that the query response times of 

compressed bitmap indexes can be significantly lower than for uncompressed bitmap 

indexes. Stockinger and others [2000] discuss the design and implementation of bitmap 

indexes for High-Energy Physics analysis, where the potential search space consists of 

hundreds of independent dimensions. They evaluated both equality and range encoding 

techniques and found that the number of bitmap vectors per attribute is a central 

optimization parameter. Their results helps in choosing the optimal number of bitmap 

vectors for multi-dimensional indexes with attributes of different value distribution and 

query selectivity. They solved the candidate check bottleneck by increasing the number 

of bins and came to an optimal query performance. This optimum can be regarded as a 

trade-off between a high number of candidates and consequently more I/O on the event 

data vs. a low number of candidates and therefore a higher number of bins. 

Stockinger and others [2005] propose a novel approach to scalable data analysis 

for large scientific databases by combining bitmap indexing and visualization 

infrastructure. They combined bitmap indexing with a visualization pipeline for 

generating images of abstract data results in a tool suitable for use by scientists in fields 

where data size and complexity poses a barrier to efficient analysis. They present an 



 	


architectural overview of the system (Dexterous Data Explorer) along with an analysis 

showing substantial performance over traditional visualization pipelines. Bitmap Indexes 

are used to quickly locate features in data and grow them into connected regions. The 

results are then used as input to the visualization pipeline. Rotem and others [2004] 

studied the problem of finding optimal locations for the bin boundaries in order to 

minimize the access costs subject to storage constraints. They proposed a dynamic 

programming algorithm for optimal partitioning of attribute values into bins that takes 

into account query access patterns as well as data distribution statistics. Their optimized 

binning strategy improves the query response time and reduces candidate check costs. 

Re-arranging the bin boundaries reduces the total size of the bitmap indexes and also re-

arranging attribute values between bins. This strategy can be used for periodically 

reorganizing the bitmap index based on observed query workloads. 

Rotem and others [2005] studies strategies for minimizing the access costs for 

processing multi-dimensional queries using bitmap indexes with binning. Their approach 

includes optimally placing the bin boundaries and dynamically reordering the evaluation 

of the query terms. They derive several analytical results concerning optimal bin 

allocation for a probabilistic query model Based on data distribution and query 

distributions, their approach place bin boundaries such that the number of candidates that 

need to be checked against the query constraints is minimized. They also suggest 

reordering the evaluation of the attributes in multi-dimensional queries according to the 

estimated attribute selectivity. The results show that as the number of query dimensions 

increase, the efficiency of their algorithm increases.  

Rotem and others [2006] studied strategies for minimizing the I/O costs for 

candidate checking for multi-dimensional queries. Determining the number of bins 

allocated for each dimension and then placing bin boundaries in optimal locations do this. 

Their algorithms also take data distribution and query distributions and finds bin 

allocation for each attribute. They performed analytical and experimental studies to 

evaluate the efficiency of their algorithm. Rotem and others [2005b] have introduced a 

novel algorithm for improving the query response time of bitmap indexes by computing 

optimal bin boundaries. They also aimed at working on candidate check problem by 

minimizing the total time required to answer queried by optimally placing the bin 
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boundaries using their dynamic programming algorithm. They presented an analytical 

and experimental evaluation of the performance of synthetic and real query workloads for 

a large data set from the Sloan Digital Sky Survey. Their results show improvement by a 

factor of 2. Rotem and others [2005a] studied several strategies for optimizing the 

candidate check cost for multi-dimensional queries. They present an efficient candidate 

check algorithm based on attribute value distribution, query distribution as well as query 

selectivity with respect to each dimensional. They also showed that re-ordering the 

dimensions during query evaluation can be used to reduce I/O costs. Their results show 

significant improvements. 

2.4.2. Binning Cost Model   

So far we have discussed various optimization techniques, different strategies and 

different algorithms for achieving the faster query response time and lesser I/O costs. We 

have discussed different binning strategies where in we chose some number of bins for 

binning and the sole concentration was on selecting the bin boundaries and optimizing 

this selection process but now we pay attention to selection of the number of bins that we 

are going to use and the optimization of this number. Here we present a probabilistic 

model that optimizes the number of bins to be used based on frequency with which the 

attributes appear in the queries i.e. more bins for attributes that appear more frequently 

and fewer bins for attributes that appear less frequently. A brief introduction to what we 

have already discussed in detail includes choosing of optimal bin boundary placement. A 

dynamic programming algorithm that works well for the single attribute case but when it 

comes to multi attribute case a lot of parameters arise such as how many bins have to be 

chosen for each attribute, likelihood of an attribute to appear in a query and the selectivity 

factor. On a whole we can treat it as the total cost associated with binning of each 

attribute Ai which is �Cost (Ai). But this is an NP-hard problem as the function Cost(Ai) 

depends on ki(number of bins) for each attribute Ai and in general depends on the query 

and data distributions. Hence we apply a closed form solution to multi dimensional bin 

allocation problem where each Cost (Ai) is a differentiable function under the 

probabilistic query model [Rotem et al., 2005]. 

The solution is described in two pahses. In the first phase we determine the 

number of bins to be allocated to each attribute based on data and query statistics. In the 
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second phase we proceed with this bin allocation and applying the dynamic programming 

algorithm we have used for the single attribute case for each attribute separately. 

Probabilistic query model: 

In this model that we are going to develop on the query set Q we assume attribute 

independence i.e. the probability pi that an attribute Ai will show up in a query is 

independent of the probability of appearance of other attributes in the query. Thus for a 

query qi the probability   �
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Where Cost of candidate check on attribute Ai i.e. Cost (Ai) is a function f(ki) on the 

number of bins ki. We denote it as expected cost of candidate check on j attributes in the 

order Aj, Aj-1,…,At. with ki bins allocated to each attribute and is simply denoted as 

C(j,N) where N is the total number of records or simply C(j). 
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 for 1< i <t, where t is the total number of attributes. 

Choosing proper binning strategies is also important as it may affect the query response 

time considerably. Equal depth binning and equal width binning are two possible binning 

strategies which can be implemented based on knowledge of data distribution and query 

patterns. 
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2.4.3. Factor effecting Binning strategies 
Following are the main factors which guides the binning strategies: 

� Due to disk storage constraints, bitmap indexing systems that use binning must 

limit the number of bins that are allowed per attribute. Such constraints are still 

applicable even when bitmap compression is effectively used.  

� Effective binning strategies attempt to compute bin location boundaries that 

minimize the I/O cost incurred by the candidate check step subject to total index 

storage constraints. It turns out that an optimal binning strategy must be sensitive 

to both query distribution as well as data distribution.  

� Query distribution, in terms of location of query endpoints and popularity of 

queries, may affect bin boundary locations as the number of edge bins may be 

minimized by attempting to align bin boundaries with query endpoints. In 

addition, more bins can be allocated to data regions that are heavily hit by queries.  

� Data distribution affects the binning strategy as one can allocate more bins to 

densely populated regions of the data to avoid costly candidate check operations 

on edge bins with many values. 

 
2.5. Complexity Issues and Research Gaps 
 

The simple bitmap indexing works well with attributes having low cardinalities. 

The size of bitmap index can be very large for a high cardinality attribute where there are 

thousands or even millions of distinct values. B-trees have been widely adopted in 

database systems for external indexing. Their strength is their dynamic nature, 

performance and stability under update – the properties that are not required in a Data 

Warehouse (DW). In the DW environment, building simple bitmap indexes usually costs 

less time and space than building B-trees. The restriction on simple bitmap indexes is that 

they are not suitable for high cardinality attributes. Therefore, there is a need for a new 

indexing technique, which does not have this restriction, but at the same time hold the 

advantage of bitmap indexes. 

It is well accepted that I/O cost dominates the query response time when using 

out-of-core indexing methods. Thus, most indexing techniques focus on minimizing I/O 

cost. For bitmap indexes, most research efforts concentrate on reducing the sizes of 
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indexes. However, tests show that the computation time can dominate the total time when 

using compressed bitmap indexes. In addition, as main memories become cheaper, we 

expect that “popular” bitmaps would remain in memory. This would further reduce the 

average I/O cost and make the time spent in CPU more prominent part of the total query 

processing time. For these reasons, we seek to improve the computational efficiency of 

operations on compressed bitmaps. The space requirement of a simple bitmap index is a 

linear function of the cardinality of the indexed attribute and of the indexed table, and the 

index processing time for a single value selection is a linear function of the length of 

bitmaps. The sparsity of the bit vectors increases with the cardinality resulting in poor 

space utilization and high processing cost. Many variations of bitmap indexing have been 

proposed to solve the sparsity problems. Two common objectives of the proposed 

methods are (1) reducing the space complexity of the index and (2) improving the 

performance of index processing. Many strategies have been devised to reduce the index 

sizes, such as, more compact encoding strategies, binning and compression. 

Based on above literature survey, we aimed at following objectives for our research: 

• Finding new encoding scheme and encoding algorithms to process queries. 

• Finding new compression algorithms that retains are advantages of bitwise 

operators and solves are queries without decompressing the compressed bitmaps. 

Finding new strategies to improve compression ratios for existing compression 

techniques. 

• Finding new binning strategies and algorithms to solve queries with better 

performance than existing techniques. 

 

2.6. Summary 
 

This chapter gives an overview of some approaches on bitmap indexing. As has been 

shown, bitmap indexes offer an efficient way of indexing data that remains consistent 

most of the time. The methods and approaches discussed in this chapter can help 

integrating bitmap indexes in existing databases. All in all, bitmap indexes are becoming 

more and more popular, as indicated by the increasing use in commercial databases like 

the ones by Oracle, RedBrick and Sybase. 



 	�

In this chapter, we reviewed a number of recent developments in the area of 

bitmap indexing technology. We reviewed the existing literature and organized much of 

the research work under the three orthogonal categories of encoding, compression and 

binning. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 		

Chapter 3: Compression Strategies and Encoding Techniques 

3.1. Introduction 
 
Data Warehouses are becoming more important for decision makers. Most of the queries 

against a large data warehouse are complex and iterative. The ability to answer these 

queries efficiently is a critical issue in the data warehouse environment. If the right index 

structures are built on the columns, performance of the queries especially ad-hoc queries 

will be greatly enhanced. This efficient query processing can be done using bitmap 

indexing techniques, which helps in improving the time and space complexities of the 

vast and complex queries that data warehouses deal with. The simplification of query 

processing in turn speeds up the analysis process which is vital to any large organization. 

Bitmap Indexing is one such technique. It primarily functions by representing the 

huge amount of information stored in data warehouses as bitmap vectors which nothing 

but binary representations of the data stored and the processing of binary data is many 

folds faster than the processing of textual/numerical data. Though simple bitmap indexing 

simplifies query processing and improves time complexity thereby speeding up the 

processing of complex real time ad-hoc queries, it has a major bottleneck of dealing with 

space efficiently caused by huge cardinality datasets. In this chapter, an attempt has been 

made to address the problem.  

 

3.2. Encoding of Bitmap Indexes 
 

The simple bitmap index consists of a collection of bitmap vectors each of which is 

created to represent each distinct value of the indexed column. The thi bit in a bitmap 

vector, representing value x, is set to 1 if the thi   record in the indexed table contains x.  

A bitmap for a value: an array of bits where the thi  bit is set to 1 if the thi   record has the 

value. A bitmap index consists of one bitmap for each value that an attribute can take       

[O’Neil, 1987]. 



 	


3.2.1. Simple Bitmap Indexing 
The basic idea of simple bitmap indexing is to use a string of bits (0 or 1) to 

indicate whether an attribute in a table is equal to a specific value or not. The position of 

a bit in the bit string denotes the position of the tuple in the table. The bit is set, if the 

content of an attribute is associated with a specific value. For a typical example, a simple 

bitmap index on the attribute gender, where the domain of gender is {Male, Female}, 

results in two bitmap vectors BMale and BFemale. For BMale the bit is set to 1, if the 

associated tuple has the attribute gender = Male, otherwise the bit is set to 0. For BFemale 

the bit is set to 1, if the associated tuple has the attribute gender = Female, otherwise the 

bit is set to 0. The simple bitmap index on the attribute Gender, Bgrnder, is a collection of 

bitmap vectors { BMale, BFemale } [Buchmann, 1998]. 

3.2.2. Encoded Bitmap Indexing 
Suppose that a fact table attributes, sales, containing N tuples of sales data and a 

dimension table, products, containing information about 12000 different products. 

Traditionally, in order to build a simple bitmap index on products table, it will result in 

12000 bitmap vectors of N bits in length. In encoded bitmap indexing instead of 12000 

vectors, only [log2 N] = 14 bitmap vectors, plus a mapping table is used. For example, 

suppose that the domain of attribute A of a table T is {a, b, c}. Instead of 3 bitmap 

vectors, we use [log2 3] = 2 vectors to build the index on attribute A. 2 bits are used to 

encode the domain {a, b, c}, where ‘a’ is encoded as 00, ‘b’ is encoded as ‘01’ and ‘c’ is 

encoded as ‘10’ respectively. For those tuples with A = ‘a’, set the corresponding 

positions in both bitmap vectors B1 and B2 to 0 and so on. The retrieval Boolean 

functions for ‘a’,’b’,’c’ are ,  and  respectively [Wu and Buchmann, 

1998]. 

3.2.3. Maintenance of Encoded Bitmap Indexes  

As data in a data warehouse is updated, the encoded bitmap indexes also need to 

be maintained to reflect the changes. There are two categories of updates:  

1) Updates without domain expansion 

2) Updates with domain expansion 
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Updates without domain expansion: In the example stated in the previous section, if a 

tuple with A = b is appended to table T, then we need to append only B1 [j] = 0 and B0 [j] 

= 1 at the end of bitmap vectors B1 and B0 where j is the position of the newly inserted 

tuple in table T. 

Updates with domain expansion: If a tuple with A = d is appended to T, i.e. the domain is 

now expanded to {a, b, c, d}, then the following equation should be first tested. 

 Upper Limit (log2|A (m-1)|) =  Upper Limit (log2|A (m)|)  

Where |A (m-1)| denotes the cardinality of A before insertion and |A (m)| denotes the 

cardinality of ‘A’ after insertion.If equation (1) is true, as is the case in our example, then 

add the mapping MA(d) = 11 into the mapping table and set Bi[j] = MA(d)[i]. 

If another tuple with A = e is added to table T, the domain of A is now expanded 

to {a, b, c, d, e}, then Upper Limit (log2|A(m-1)|) < Upper Limit (log2|A(m)|). The following 

actions need to be taken to reflect the change to the encoded bitmap index which will be 

explained by the next algorithm. 

a.) Expand the mapping table MA = {a, b, c, d} to MA = {a, b, c, d, e} 

b.) Add the bitmap vector B2 to BA and set B2 equal to 0 

c) Set Bi[j] = MA (e) [i], where i = 0, 1, 2 and j = the position of the newly 

inserted tuple in the table T 

d.) Revise the retrieval Boolean functions  
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Figure 3.1(a): Encoded Bitmap Index and mapping table without expansion 
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Figure 3.1(b): Encoded Bitmap Index and mapping table with expansion 

3.2.4. Solving Queries using Indexing Techniques 
As data warehousing applications grow in size, existing data organizations and access 

strategies, such as relational tables and B-tree indexes, are becoming increasingly 

ineffective. The two primary reasons for this are that these datasets involve many 

attributes and the queries on the data usually involve conditions on small subsets of the 

attributes. Two strategies are known to address these difficulties well, namely vertical 

partitioning and bitmap indexes. Here, we primarily concentrate on the latter one. One 

important observation is that indexing is often more efficient than using B-tree based 

indexes to answer ad hoc range queries on static datasets. For range queries, compressed 

bitmap indexes are in most cases more efficient than other indexing techniques. We also 

evaluate the performance of two different encoding schemes for bitmap indexes. The 

program aims at comparing the efficiency and the performance of the indexing 

techniques discussed above for solving queries corresponding to a relational database. 

3.2.4.1. Database Generation  

 The program requires large database with multiple records and multiple attributes 

for each record as input in order to simulate a real ad-hoc data warehouse. Data records 

are generated using simulation programs.  
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3.2.4.2. Construction of Mapping Tables 

 A mapping table is constructed for each field of the record. So, if a table has 

degree (arity) 5, then the number of mapping tables required is 5. In case of simple 

bitmap indexing, the value of the new tuple is verified with the already existing tuples in 

the table. If a match is found, corresponding to the attribute, a ‘1’ is inserted in the 

position. If the match is not found, a ‘0’ is inserted and a new record corresponding to the 

newly entered value is made and a ‘1’ is inserted. 

In the case of encoded bitmap indexing, there will be two types of tables. One is 

the mapping table and the other is the encoded bitmap table. First the mapping table is 

verified for the value of the newly entered tuple. If a match is found, then the value 

corresponding to the tuple in the mapping table is added to the encoded bitmap table. If a 

match is not found, then the problem of domain expansion comes into light, i.e. whether 

to domain expansion should take place or not. If the domain expansion takes place, then 

there will be a slight change in the representation (a bit added) and all the updates take 

place as mentioned in the section 3.2.3.  

3.2.4.3. Solving Queries 

 The query that is to be solved is present in the input file. The program takes the 

query as input and constructs mapping tables using both the indexing techniques. In the 

case of simple bitmap indexing, logical ‘and’ing or ‘or’ing is performed on the bits of the 

corresponding record number, as given in the query. If the result is ‘1’, then the record is 

included in the output, otherwise, eliminated. For encoded bitmap indexing, retrieval 

Boolean functions are defined. If the o/p corresponding to the Boolean function defined is 

‘1’, then the record is included. 

3.2.4.4. Performance Evaluation 

An analysis of performance of both types of indexing has been done. The amount 

of space consumed for executing the “SQL select queries” using both types of indexing, 

simple and encoded, has been recorded, varying the number of records in the database.   
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SAMPLE MEASUREMENTS (SPACE REQUIRED): 

NO OF 

RECORDS 

SIMPLE BITMAP 

INDEXING  

ENCODED BITMAP 

INDEXING 

DIFFERENCE  

5 12 14 -2 

10 40 31 9 

20 137 72 65 

40 475 160 315 

80 1750 355 1395 

160 6700 785 5915 

320 26200 1725 24475 

640 103600 3765 99835 

1280 412000 8165 403835 

 

Table 3.1: Table showing the space required using simple bitmap indexing and encoded 

bitmap indexing 
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Figure 3.2: Space required for simple bitmap indexing 
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Space required using Encoded Bitmap 
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Figure 3.3: Space required for Encoded Bitmap Indexing 
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Figure 3.4: Space Comparison for simple and encoded bitmap indexing 
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Figure 3.5: Simple and Encoded bitmap indexing analysis of break-even point 

 

Figures 3.2 and 3.3 depict the space required for both types of indexing. Figures 3.4 and 

3.5 compare both the indexing techniques in terms of the space required (in bytes). From 

figure 3.5, we can observe that the break-even point occurred when the record count is 

around 7. This suggests that, if the record count is less than 7 simple bitmap indexing is 

more efficient than encoded bitmap indexing as far as the space is concerned and if the 

record count is above 7, then encoded bitmap indexing is better compared to simple 

bitmap indexing. 

 

SAMPLE MEASUREMENTS (TIME TAKEN): 

 

Number of records = 1280 

Total time required for Encoded Bitmap Indexing in clock ticks 984.00 

Total time required for simple bitmap indexing in clock ticks 3344.00 

Difference in execution times in clock ticks 2360.00 

2360 / CLOCKS_PER_SEC gives the time in seconds 

The experiments were conducted on a Pentium 4 machine with 1 Gb RAM running 

Linux. 
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Space requirements for comparing Huffman Encoding and Gray Code Encoding will 

always be same which is equal to [log2 N], N as the cardinality of an attribute.  

3.2.5. New Encoding Scheme 

The proposed new encoding scheme is explained through using the following 

student database: 

 

NAME  AGE DISCIPLINE CGPA     Gender 

Ajay  19 EEE  6.163266        M 

Ram  22 Civil  6.024028        M 

.  20 .  9.713227        F 

.  22  .  6.031079        M 

.  18 .  7.837317        F 

.  19 .  4.468817        M 

.  22 .  7.211664        M 

.  18 .  5.597524        M 

.  20 .  4.122381        F 

.  21 .  8.157804        M 

.  21 .  7.259367        M 

.  22 .  8.829899        F 

.  20 .  5.219405        M 

.  18 .  8.355764        M 

.  18 .  6.070122        F 

.  19 .  7.835711        M 

.  22 .  4.996277        F 

.  21 .  5.456334        F 

.  21 .  8.319742        M 

.        19 .  8.375886        M 

Yashveer 19 CS  4.202766        F 

 

Figure 3.6: Sample Student Database  
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The dataset has five different values for the attribute age i.e.18,19,20,21,22. 

The bitmap of attribute age is given below: 

18: 000010010000011000000 

19: 100001000000000100011 

20: 001000010001000000000 

21: 000000001100000011000 

22: 010100100001000010000 

 

We have created five bitmap vectors for each distinct value of age. Each bitmap 

consists of 22 bit values since our example comprises 22 students. For instance, the last 

bit of the bitmap of age 21 is set to 0 because the last student is not of age 21.  Space 

overhead is clearly arising for high cardinality of data which slows down the query 

processing. This bottleneck can be brought under control only by bringing to a halt to the 

increase in number of records or by devising a way by which the encode attribute values 

to control the space requirements. We would discuss its solution details in the 

forthcoming section. 

3.2.5.1. Implementation Issues and Performance Analysis 
To begin with we constructed randomly generated data comprising of student 

information with “Age” and “Gender” as the indexed columns. After generating the 

random data we need to look for distinct elements of “Age” and “Gender” in order to 

process queries dealing with the sample database that have been generated. The bitmap 

on each of the columns can be generated by constructing bitmap vector for each of the 

distinct elements of each indexed column.  

 Query processing is done by asking the user for the student age and/or gender 

whose information he/she wants to use in his/her decision-making. Now, using AND and 

OR binary operators, query posed by user is resolved. Both equality and range queries are 

considered. The time complexity graph for this approach is shown in Figure 3.7. 

Method1: Normal implementation by generation of simple bitmaps on corresponding 

indexed columns. From the above approach we can see how increase in cardinality 

drastically affects the query processing time. For processing a query over 10,000 records 



 
	

is taking around 25 milliseconds while to process a query over 100,000 records is taking 

around 250 milliseconds. That is about 10 times more and is the direct effect of 

increasing cardinality. 

To solve this particular overhead we can go for the second approach defined 
below. 

Method2: This method represents the improved implementation that saves time by 

storing only two positions (start and end) of each of the distinct indexed column entries. 

This alternative to “Method1” can save a lot of space. In this improved method 

we need to first sort the random generated data based on the distinct elements and then 

store the beginning and ending indexes of each of the distinct elements of a particular 

record in a data structure and then we can go for query processing. This new method will 

save a lot of space as we are just storing two indexes for each of the distinct elements of 

each of the indexed columns and thus improve the query processing time to a large 

extent. 

 The output of this approach on a student database with 80,000 records will be as 

follows: 

For age = 18 start index = 0 , end index = 15950 

For age = 19 start index = 15951 , end index = 31934 

For age = 20 start index = 31935 , end index = 48061 

For age = 21 start index = 48062 , end index = 64095 

For age = 22 start index = 64096 , end index = 79999 

 

For gender = M start index = 0 , end index = 39708 

For gender = F start index = 39709 , end index = 79999 

 The above method clearly illustrates the processing done by just storing the first 

and last positions of each distinct indexed column (age and gender) entries and thus 

removing the bottleneck. From the above approach we can see how the increase in 

cardinality is being dealt with efficiently. For processing a query over 10,000 records is 

taking around 20 milliseconds while to process a query over 100,000 records is taking 

around 120 milliseconds. That is about 6 times more and is almost half the amount of 

time taken to process queries with the previous approach (Method1). 

 



 



The time complexity comparison for both approaches is shown below: 

Performance Comparison
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Figure 3.7: Query Processing Time Comparisons for Simple and Encoded Bitmap 

Indexes 

 
3.3. Compression of Bitmap Indexes 

 

The bitmap index is one of the most promising strategies for indexing high-

dimensional data arising in such environments as data warehousing, decision support 

systems, and scientific databases. One of the first database systems to use such a scheme 

is a system called Model 204 [O’Neil, 1987]. Most of the major commercial database 

systems now support some form of a bitmap index. In the research community, the 

earliest forms of the bitmap indexes are known by such names as bit transposed files. 

Some research results on signature files are also directly useful to enhancing the 

effectiveness of bitmap indexes. Recently, a number of optimal bitmap schemes have also 

been proposed. For high dimensional data, various tests have shown that bitmap schemes 

are faster than commonly used tree based indexes. 

The main advantage for using a compressed bitmap index is to reduce the space 

requirement. It also reduces the amount of I/O time that is required for long sequential 
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data transfers. The classical bitmap index produces one bitmap for each distinct value of 

the attribute being indexed. The size of the indexes could be much larger than the size of 

the dataset. This is especially true for scientific databases where most of the attributes 

have high cardinality. However, the bitmaps from the bitmap indexes are often very 

sparse, i.e., they contain mostly zero bits. They are therefore prime candidates for 

compression. The common compression schemes, such as g-zip and bzip2, aren’t 

designed for compressing bitmap indexes. If a bitmap index is compressed using such a 

scheme, the query processing usually takes much longer than using the uncompressed 

index. One solution to this problem is to use specially designed compression schemes. 

Recently, a number of studies were performed on compression schemes especially 

designed for bitmap indexes. It is also possible to perform database operations (e.g. 

aggregation) directly on compressed data, there by potentially reducing CPU time 

requirements. One of the most promising compressing schemes is the byte-aligned 

bitmap code (BBC) [Antoshenkov, 1994]. This scheme permits efficient operations 

without decompression, thereby reducing both the disk space requirement and the 

memory requirement for performing operations. The question we address in this chapter 

is whether a compressed bitmap index can outperform its uncompressed counterpart. 

We briefly review three well known schemes for representing bitmaps. These three 

schemes are selected as representatives from a number of schemes studied previously a  

straightforward way of representing a bitmap is to use one bit of computer memory for 

each bit of the bitmap. We call this the literal (LIT) bit vector. This is the uncompressed 

scheme and logical operations on uncompressed bitmaps are extremely fast. The second 

type of scheme is the general purpose compression scheme such as gzip. They are highly 

effective in compressing data files. We use gzip as the representative because it is usually 

faster than others in decompressing the data files. As mentioned earlier, there are a 

number of compression schemes that offer good compression and also allow fast bitwise 

logical operations. 

The BBC scheme performs bitwise logical operations efficiently and it compresses 

almost as well as gzip. BBC scheme is a version of the two-sided BBC. Many of the 

specialized bitmap compression schemes, including BBC, are based on the basic idea of 

run-length encoding that represents consecutive identical bits (also called a fill or a gap) 
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by their bit value and their length. The bit value of a fill is called the fill bit. If the fill bit 

is zero, we call the fill a 0-fill, otherwise it is a 1-fill. Compression schemes generally try 

to store repeating bit patterns in compact forms. The run length encoding is among the 

simplest of these schemes. This simplicity allows logical operations to be performed 

efficiently on the compressed bitmaps. Different run-length encoding schemes commonly 

differ in their representations of the fill lengths and the short fills. A naive run-length 

code may use a word to represent all fill lengths. This is ineffective because it uses more 

space to represent short fills than in the literal scheme. One common improvement is to 

represent the short fills literally. The second improvement is to use as few bits as possible 

to represent the fill length. 

 Given a bit sequence, the BBC scheme first divides it into bytes and then groups 

the bytes into runs. Each BBC run consists of a fill followed by a tail of literal bytes. 

Since a BBC fill always contains a number of whole bytes, it represents the fill length as 

the number of bytes rather than the number of bits. In addition, it uses a multi-byte 

scheme to represent the fill lengths. This strategy often uses more bits to represent a fill 

length than others such as ExpGol. However it allows for faster operations. Another 

property that is crucial to the efficiency of the BBC scheme is the byte alignment. This 

property limits a fill length to be an integer multiple of bytes. More importantly, it 

ensures that during any bitwise logical operation a tail byte is never broken into 

individual bits. Because working on individual bits is much less efficient than working on 

whole bytes on most CPUs, byte-alignment is crucial to the operational efficiency of 

BBC. Removing the alignment may lead to better compression. For example, the ExpGol 

scheme can compress better than BBC partly because it does not obey the byte alignment. 

However, bitwise logical operations on ExpGol bit vectors are often much slower than on 

BBC bit vectors. Most of the known compression schemes are byte based, that is, they 

access computer memory one byte at a time. On most modern computers, accessing one 

byte takes as much time as accessing one word. A computer CPU with MMX technology 

offers the capability of performing a single operation on multiple bytes. This may 

automatically turn byte accesses into word accesses. However, because the bytes in a 

compressed bit vector typically have complex dependencies, logical operations 

implemented in high-level languages are unlikely to take advantage of the MMX 
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technology. Instead of relying on the hardware and compilers, we developed a new 

scheme that accesses only whole words. It is named the word-aligned hybrid code 

(WAH).The word-aligned hybrid (WAH) code is similar to BBC in that it is a hybrid 

between the run-length encoding and the literal scheme [Wu et.al, 2001]. Unlike BBC, 

WAH is much simpler and it stores compressed data in words rather than in bytes. There 

are two types of words in WAH: literal words and fill words. In our implementation, we 

use the most significant bit of a word to distinguish between a literal word (0) and a fill 

word (1). This choice allows one to easily distinguish a literal word from a fill word 

without explicitly extracting the bit. The lower bits of a literal word contain the bit values 

from the bitmap.  

The second most significant bit of a fill word is the fill bit and the lower bits store 

the fill length. WAH imposes the word-alignment requirement on the fills, it requires that 

all fill lengths be integer multiples of the number of bits in a literal word. The word 

alignment ensures that logical operation functions only need to access words not bytes or 

bits  

 
3.4. New Strategy to improve performance 
 
The major concern for solving queries is minimum space requirements for bitmap 

indexes and minimum response time. As we have seen various bitmap index compression 

schemes which satisfy these requirements. We propose a new area to be explored 

regarding the run length encoding of the bitmap indexes. In this newly proposed scheme 

we will encode only the runs of ‘one’ and taking rest of the bitmap as filled with ‘zeros’. 

These run lengths will be represented as starting and ending location (integer 

format) of runs of ‘ones’ in the bitmap. So in our bitmap index representation we will 

represent only ‘ones’ as rest of the bits can be taken as default ‘zero’. In this way we can 

minimize the space requirements to store the bitmap indexes. This scheme if incorporated 

with the sorted data will drastically minimize the storage requirements. But one should 

have to be cautious towards the implementation of query response. As it can lead to large 

overheads in terms of query response and computations involved. 
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3.4.1. New Approach Adopted 
To study and implement we will first go through the schemes which are already 

introduced or in use. Then we will take random database to simulate a data warehouse 

after that indexes can be built on the various attributes. These indexes can be compressed 

using schemes like WAH, BBC etc. and finally by our proposed scheme. Various types 

of queries can be run based on these compressed indexes and finally the space utilized to 

store the compressed indexes and query response time can be compared. As WAH and 

BBC schemes are proven to be best in space utilization and query response we can hope 

that our scheme can also stand side by side or can be proved better than these schemes. 

The approach adopted here, is very straightforward. BBC and WAH provide 

better results in terms of compression when there are long runs of zeros and ones. In 

random data, it is very unlikely that there will be long runs. If the column on which the 

bitmap index is created has high cardinality then the bit vectors would be sparse. But 

there will not be long runs of ones. To guarantee long runs of both zeros and ones, the 

column on which the bitmap index is to be created, is sorted.  The index created on the 

sorted column is called the clustering bitmap index as it similar to clustering index. Any 

other bitmap index on the same table will be called a secondary bitmap index.  The only 

processing overhead that the proposed strategy has is that the table, on which the 

clustering bitmap index is to be created, must be sorted. Also we need to decide in 

advance about the field on which the clustering bitmap index is to be created, as the 

sorting will be done during the ETL process.  This increases the amount of processing 

during the ETL phase, but the benefits of doing this in terms of saved space and 

processing time of queries is enormous. If the bitmap indexing strategy has to be 

changed, it can be done at the next refreshing of the data warehouse, whenever it is 

scheduled.  To summarize, the new strategy has the following issues: 

• Sorting of the table on the column on which the clustering bitmap index is to be 

created 

• There can be only one clustering bitmap index on a table  

• Need to decide in advance (i.e. before loading the data on to the data warehouse) 

about the bitmap indexing strategy 
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• Indexing strategy can be changed only during the next refresh of the data 

warehouse 

But fortunately these limitations have no effect on the query performance. In this 

newly proposed scheme we will encode only the runs of ‘one’ and taking rest of the 

bitmap as filled with ‘zeros’. These run lengths will be represented as starting and ending 

location (integer format) of runs of ‘ones’ in the bitmap. So in our bitmap index 

representation we will represent only ‘ones’ as rest of the bits can be taken as default 

‘zero’. In this way we can minimize the space requirements to store the bitmap indexes. 

This scheme if incorporated with the sorted data will drastically minimize the storage 

requirements. But one should have to be cautious towards the implementation of query 

response. As it can lead to large overheads in terms of query response and computations 

involved. 

 
3.5. Experimental Work and Results 
 

This section presents experimental results comparing the space-time performance 

of the proposed bitmap indexing strategy against BBC and WAH. The space-efficiency 

of an index is in terms of the disk space for storing the index. The time-efficiency of an 

index is in terms of the processing time taken to answer a query. The processing time 

includes disk I/O time, CPU time for bitmap operations, and the decompression time for 

compressed bitmaps.  

The experiments were run on a 2.4 GHz Pentium-IV processor with 256 MB 

RAM running Linux Red Hat 9.1.  

All the results presented in the this section are obtained using randomly generated 

data with table cardinality varying from 5000 to 2.5 million and column cardinality C 

taking values 5 and 10.  

3.5.1. Space Efficiency 
The index file size comparisons for increasing table cardinality is done in Figure 

3.8 and 3.9 for C = 5 and 10 respectively. First thing to note is that the space 

requirements increase with C for all compressed indexes. It is clear from the figures that 

the space requirements for BBC and WAH increase exponentially for increasing table 
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cardinality. It is true for both C = 5 and 10. The most interesting result is that the space 

required by WAH-sorted (WAH index created on a sorted column) is constant for 

increasing number of records and it requires only 125 bytes of space for C = 5 and 250 

bytes for C = 10. The space required by WAH-sorted increases linearly with C. This 

means that even for very large tables the bitmaps can be stored using just a few bytes 

using WAH-sorted.  

BBC-sorted (BBC index created on a sorted column) takes only a very small 

fraction of the space required by BBC but it increases with the increase in number of 

records. It is therefore recommended that the field on which bitmap index is to be 

created, should be sorted and WAH should be used to get maximum compression. 

3.5.2. Performance Efficiency 

Equality and range queries are considered for testing the performance of the 

proposed strategy. The results are presented graphically comparing the effect of sorting 

on the performance of BBC and WAH for C = 5 and 10. The results for equality queries 

BBC and WAH are presented in Figures 3 and 4 respectively. Figure 3.8 and 3.9, it is 

clear that the BBC-sorted performs better than BBC for both C = 5 and C = 10. The 

performance benefit of using BBC-sorted is more pronounced for C = 10 and it increases 

with the increase in number of records. BBC-sorted, on an average, takes up to less than 

20% time for C = 5 than BBC. This figure goes up to 60% for C = 10. 

In case of WAH-sorted also the performance gains are more for C = 10 and 

increases with the increase in number of records as can be seen from Figure 3.9.     

WAH-sorted, on an average, takes up to less than 50% time for C = 5 than WAH.  This 

figure, as expected, goes up to 64% for C = 10. 

Results for range queries for WAH are presented in Figure 3.12. The type of 

range queries considered has the general form: 

select * from table where X < 1 

If X takes values 0, 1, 2, 3, and 4, then the OR operation is carried out between 

the bit vectors for X = 0 and X = 1 to answer the query. Figure 2.12 shows the advantages 

of using WAH-sorted are clear. It is faster than WAH for both values of column 

cardinalities considered. For C = 5, WAH-sorted takes, on an average, 27% less time than 

WAH for number of records more than 10000, whereas for C = 10, it is 34% faster.  
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From the results presented in this section, it is clear that BBC-sorted and WAH-

sorted offer better compression and performance than BBC and WAH respectively.  This 

is true for all combinations of table and column cardinalities and for both equality and 

range queries.  
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Figure 3.8: Index File Size for C = 5 
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Figure 3.9:  Index File Size for C = 10 
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        Figure 3.10:  Performance of BBC-sorted for Equality Queries 
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Figure 3.11: Performance of WAH-sorted for Equality Queries 
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Figure 3.12: Performance of WAH-sorted for Range Queries 
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3.6. Contributions and Summary 
 

In this chapter, we have discussed about simple and encoded bitmap indexes, how 

to solve queries using these techniques, performance analysis of both these techniques 

and compressing simple bitmap indexes on sorted fields. We have given a performance 

analysis of both simple and encoded bitmap indexes using graphical approach. The result 

is satisfactory and shows that as the cardinality and the range of selections increase, 

encoded bitmap indexes perform and more stable than simple bitmap indexes. However, 

still some implementation-oriented problems to be solved. Also, an efficient algorithm 

for logical reduction of the boolean retrieval functions is indispensable, if we want to 

achieve a better performance of the encoded bitmap indexes. As part of future work, one 

can look into the compression aspects of encoded bitmap indexes. 

A new bitmap indexing strategy for speeding up queries in a data warehouse has 

been proposed. The strategy is to sort the column on which a bitmap index is to be 

created and then using BBC and WAH compression schemes. Sorting produces long runs 

of zeros and ones and this gives higher degree of compression for both BBC and WAH. 

Moreover, the response time of queries is found to decrease considerably for both 

equality and range queries.  It is found that in some cases BBC-sorted is up to 60% faster 

than BBC and WAH-sorted is up to 64% faster than WAH. With such considerable gains 

in terms of space saved and performance, the new strategy offers a simple yet effective 

solution to query performance challenges in a data warehousing environment.                                     

To sum up, we can say that simple bitmap indexing works well with low 

cardinalities attributes. To deal with high cardinalities, our new approach makes simple 

bitmap indexes suitable. Compressed bitmap indexing is shown as a promising technique 

to overcome space problem. Also, there are several fast algorithms for evaluating boolean 

operators on compressed bitmaps are available, which can be examined. Another issue is 

that we also need some other efficient encoding techniques to lower the number of logical 

operations. 
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Chapter 4: Multi-Component Encoding and Data 
Reorganization 

4.1. Introduction 
 
Designing efficient bitmap schemes for storage and retrieval of massive scientific data is 

a challenging problem. Large volumes of data have been generated in scientific 

experiments including biology, high-energy physics, astrophysics, and climate modeling. 

Querying such huge amounts of data is becoming increasingly difficult. Being an 

effective way to store the synopsis of the original data, bitmap index is a particularly 

promising strategy for accessing these types of data efficiently. However, the size of 

bitmap index is still large. Run length encoding and its lossless compression variants 

have been applied to further compress the bitmap indexes. Along with Word-Aligned 

Hybrid code (WAH), Gray code ordering of the data tuples has already been shown to 

greatly boost the compression ratio. For both conventional and scientific databases, the 

number of tuples in the database will far exceed the number of attributes for the tuple. 

Every tuple in the database is represented by one row of the bitmap index whereas each 

column of the bitmap is generated by classifying every tuple attribute into a few 

categories. Thus, the bitmap index generally has much higher order of rows than the 

number of columns. 

Bitmap index used in database indexing is a special kind of bit matrix. Each 

binary row vector in the bitmap represents one tuple in the database. It is usually 

generated by quantizing the attributes of the tuples. The quantization process proceeds in 

two steps. First, many categories are produced by limiting the possible values of each 

attribute. Next, the tuple data are encoded according to the attribute category to which it 

belongs. Bitmap Compression may not be enough for the enormous data generated in 

some applications such as high-energy physics. We are concerned with rearranging the 

order in which data is stored in a database so as to maximize the amount of compression. 

To improve the compression rates, reorganization of bitmap tables is studied where tuple 

reordering problem has been introduced and Gray code ordering algorithm has been 

proposed [Pinar et al., 2005]. In this chapter, we study how to reduce the number of 
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columns for binned bitmap tables to improve better ordering and improve the space 

complexity for tuple reordering problem. In tuple reordering problem, we found that for 

lesser number of columns, Gray code ordering gives better compression rates. We applied 

Multi-Component indexing technique to reduce the number of columns, which is a new 

idea to apply on binned bitmap tables.  

In this chapter, we discuss bitmap compression indexes using multi-component 

indexing for the efficient storage and fast retrieval of large data. The bitmap compression 

indexes embedded multi-component shows superiority over bitmap compressed indexes. 

Tuple reordering problem is studied to reorganize database tuples for optimal 

compression rates. Gray Code ordering algorithm is also used which runs in linear time in 

the order of the size of the database. Reduction in the number of columns is observed in 

our study when multi-component indexing on the binned data is applied. An 

improvement in the space requirement for bitmap index by 25% is observed when one 

time component indexing is applied. Satisfactory improvement factor is observed when 

gray code ordering and WAH compression technique is used. Due to processing 

overhead, two component index is used. Our experimental results on real data sets show 

that the compression ratio can be improved by a factor of 2 to 8 

 
4.2. Tuple Reordering Problem 
 
Our objective in reordering is to increase the performance of run-length encoding by 

having longer uniform segments and thus fewer number of blocks. Recall that run-length 

encoding, when used on bitmaps, packs each segment of “1”s into a block and stores a 

pointer to each block together with the length of the block. Thus the storage size is 

determined by the number of such blocks. Consider two consecutive tuples in the bitmap 

table. If the tuples are on the same bin for an attribute, they will be packed to the same 

block. If not, a new block should start. Efficiency can be enhanced by reordering tuples 

so that they fall into the same bins as much as possible. An example is illustrated in 

Figure 1. In this example, the original table has 12 blocks, whereas the reordered table 

requires only 7 blocks. Let diff(ti, tj ) be the number of attributes that tuple ti and tuple tj 

fall in different bins. Notice that diff( iπ , 1+iπ ) gives how many new blocks start at the ith 
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tuple after reordering when run-length encoding is used, where iπ denotes the ith tuple in 

ordering π [Pinar et al.,2005].  

Definition 1 (Tuple reordering problem) Let π  be an ordering of m tuples so that iπ  

denotes the ith tuple in the ordering. Tuple reordering problem is finding an ordering 

π that minimizes  ),( 1

1

1
+

−

=
� ii

m

i

diff ππ                  (4.1) 

In equation (4.1), we sum diff values over all consecutive tuples to attain the number of 

new runs that start for the whole table. The first tuple requires starting a run for each 

attribute. Thus the number of blocks can be computed as A + ),( 1

1

1
+

−

=
� ii

m

i

diff ππ , where A 

is the number of attributes. Thus an ordering that minimizes equation (1) also minimizes 

the number of blocks in the reordered table. For instance, equation (1)  returns 2 + 2 + 2 + 

1 + 2 = 9 for the initial ordering in Figure 4.1, which means with the addition of the 

number of attributes, there will be 9+3 = 12 blocks in the compressed table. Whereas for 

the reordered table in the same figure, Equation 1 returns 0+1+1+1+1= 4, which means 

only 7 blocks in the compressed file. 

   

   t1       t1                                                                                                                             

   t2       t4 

   t3       t5 

   t4      t3 

   t5      t6 

   t6      t2     

   

         (a) Original Table        (b) Reordered Table 

Figure 4.1: Tuple Reordering  

 
4.3. Gray Code Encoding 
 

A Gray code is an encoding of numbers so that adjacent numbers have only a single 

digit differing by 1. For binary numbers two adjacent numbers differ only by one digit. 

1   0   1   0   0   0 

0   1   0   1   0   1 

1   0   0   1   1   0 

1   0   1   0   0   1 

1   0   1   0   1   0 

0   1   0   1   1   0 

1   0   1   0   0   1 

1   0   1   0   0   1 

1   0   1   0   1   0 

1   0   0   1   1   1 

0   1   0   1   1   0 

0   1   0   1   0   1 
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For instance (000, 001, 011, 010, 110, 111, 101, 100) is a binary 3-bit Gray code.  An n-

bit Gray code corresponds to a Hamiltonian cycle on an n-dimensional Hamming space. 

From another perspective, it is a kind of Space-Filling Curve (SFC) in Hamming space, 

where a space-filling curve is a mapping from a one dimensional set to a multi-

dimensional set. Gray code is analogous to a binary version of Hilbert SFC, because both 

are optimal in minimizing the changes between adjacent points [Liao et al., 2001, Mokbel 

and Aref, 2001]. It is worth noting that Gray code is not unique. After a certain 

transformation, such as the cyclic shift of the entries or permutation of the bits, the code 

is still Gray code. Binary Gray code is often referred to as the “reflected" code, because it 

can be generated by the reflection technique described below. 

1. Let S = (s1, s2, . . . , sn) be a Gray code. 

2. First write S forwards and then append the same code S by writing it backwards, so                  

that we have (s1, s2, . . . , sn, sn, . . . ,s2, s1). 

3. Append 0 at the beginning of the first n numbers, and 1 at the beginning of the last n 

numbers. 

As an example, take the Gray code (0, 1). Write it forwards, and then add the 

same sequence backwards, and we get (0, 1, 1, 0). Then we add 0's and 1's to get (00, 01, 

11, 10). We can use this new sequence as an input to our algorithm. After the reflection 

step we get (00, 01, 11, 10, 10, 11, 01, 10). We add the first digits to attain: (000, 001, 

011, 010, 110, 111, 101, 100). It is worth noting that Gray codes are not unique, and 

different orders on the same group of numbers might satisfy the Gray code property. We 

use the term fundamental Gray code to refer to a Gray code generated by the reflection 

technique described above with using (0, 1) as the initial sequence. We will refer to 

ordering a set of numbers with respect to the fundamental Gray codes as Gray code 

ordering, which we describe next. 

Definition 2 (Gray code rank) The Gray code rank g(s) of an n-bit binary number s is 

the rank of this number in an n-bit fundamental Gray code. For instance, g(0000) = 1, 

since it is the first number in the 4-bit fundamental Gray code. And g(0001) = 2, since it 

follows 0000 in the fundamental Gray code. 

Definition 3 (Gray code sorting) A sequence S = (s1, s2, . . . , sm) is Gray code sorted  

iff )()( 1+≤ ii sgsg  for i = 1, 2, …..m - 1, where g(si) refers to the Gray code rank of si. 
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The sequence (0001, 0010, 0101, 1100, 1110, 1011) is Gray code sorted because g(0001) 

= 2 < g(0010) = 4 < g(0101) = 7 < g(1100) = 9 < g(1110) = 12 < g(1011) = 14. 

This brings the question of how to efficiently order a set of numbers to be Gray 

code sorted. We can reverse the fundamental Gray code generation process, to sort 

numbers with respect to the fundamental Gray code. As the first step, we can divide 

numbers as those that start with 0 and those that start with 1. Clearly those that start with 

0 will precede others in the ordering. Then we can recursively order those that start with 

0. The same can be applied to the second group of numbers that start with 1, but we need 

to reverse their ordering due to the reflective property of the Gray code. Gray Code 

sorting algorithm is explained in reference [Pinar et al., 2005]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Before Flipping    (b) After Flipping 

 
Figure 4.2: Gray code ordering algorithm. 
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In Figure 4.2, each bar represents one column in the bitmap. Shown are the first 6 

columns of the bitmap. The white portion of the bar represents the continued sequence of 

0s whereas the black portion represents the continued sequence of 1s. As mentioned 

earlier, Gray code ordering is essentially a numerical ordering with reflecting or 

reversing. Depicted graphically, the reflecting or reversing operation is to flip a certain 

segment with two portions: one white and one black. The part (a) in the figure 

demonstrates the ordering before flipping or simply the ordinary numerical sorting 

whereas the part (b) in the figure depicts the result of flipping or the outcome of Gray 

code ordering. It is easy to see that many runs concatenate to form longer runs after 

flipping. This explains why Gray code ordering is more effective than the 

numerical/lexicographic ordering. 

 
4.4. Multi-Component Encoding 
 
Simple bitmap indexes take huge amount of space for high cardinality data since we need 

to make bitmap vector for each distinct value. By using Multi-component Indexes, 

number of bitmap vectors can be reduced. The general idea behind multi-component 

index is to perform the Attribute Value Decomposition [Chan and Ioannidis, 1999]. One 

value can be decomposed into several components with same base or different bases. 

Instead of representing bitmap with single table, the same values can be represented with 

several smaller bitmaps working together. Let C be the attribute cardinality, which means 

the number of actual values that an attribute can have. Then you can create a bitmap 

Index in the following way: 

Consider an attribute value v and a sequence of (n-1) numbers 121 ,....,, bbb nn −− . 

Let us define   
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Then v can be decomposed into a sequence of n digits  11 ,,, vvv nn �−   as follows: 
v    = V1 

= V2b1 + v1 

= V3(b2b1) + v2b1 + v1 

= V4 (b4b2b1) + v3 (b2b1) + v2b1 + v1 

   =  …………. 
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V
V , 1 <i <n range 0 = vi < bi. Based on the above, each 

choice of n and sequence < 121 ,...,, bbb nn −− >.gives a different representation of attribute 

values, and therefore a different index. An index is well-defined if nibi ≤≤≥ 1,2 . The 

sequence  < 121 ,...,, bbb nn −− > is the base of the index, which is in turn called a base- 

< 121 ,...,, bbb nn −− > index. If  bbbb nn ≡=== − 11 ... , then the base is called uniform and the 

index is called base-b for short. The index consists of n components, i.e., one component 

per digit. Each component individually is now a collection of bitmaps, constituting 

essentially a base bj index. As you can see vi has to be smaller than bi, which means they 

have to be consecutive integer values with a range from 0 to C - 1. If this is not the case, 

then the index can either be built on the entire domain of present values making it 

generally much larger, or the values can be mapped on C consecutive values via a lookup 

table. The sequence < 121 ,...,, bbb nn −− > is the base of the index, which in turn is called a 

base < 121 ,...,, bbb nn −− > index. The index consists of n components, which means that each 

choice of n and a sequence < 121 ,...,, bbb nn −− > gives a different representation of the index 

because each component individually is now a collection of bitmaps. 

 )(RAπ      2
2B     1

2B        0
2B      2

1B      1
1B       0

1B  
1  → +031x  
2  → +230x  
3  → +130x  
4  → +230x   
5  → +232x  
6  → +230x  
7  → +230x  
8  → +030x  
9  → +132x  
10  → +231x  
11  → +032x  
12  → +131x  

Figure 4.3: Example of a 2-Component index with base < 3, 3 > 

3 
2 
1 
2 
8 
2 
2 
0 
7 
5 
6 
4 

0 1 0 
0 0 1 
0 0 1 
0 0 1 
1 0 0 
0 0 1 
0 0 1 
0 0 1 
1 0 0 
0 1 0 
1 0 0 
0 1 0 

0 0 1 
1 0 0 
0 1 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
0 0 1 
0 1 0 
1 0 0 
0 0 1 
0 1 0
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Let ni denote the number of bitmaps in the ith component of an index and 

{ }0,...,, 21
i

n
i

n
i BBB ii −−  denote the collection of ni bitmaps that form the ith component. Let's 

give an example on this to make things clear. We take the same 12-record relation used in 

Figure 1 and transform it in a base-< 3; 3 > Value- List index (Figure 2). By doing this, 

the number of bitmaps has been reduced from 9 to 6. If we now want to calculate the 

actual value of a record, we use the appropriate line from the calculation shown above. 

Since the example uses a 2-component index, the formula to use is V2b1 + v1; V2 is then 

replaced by the number in the first component which contains the “1” denoting the actual 

value, in this case the one from 2
1B , which is the bitmap in the middle of the component. 

This value is then multiplied with the base b1, resulting in a “3”, and added to v1 

determined in the same way, in this case a “0”. So the final outcome of the calculation 

and the value stored in the first record is a “3”. 

High cardinality data is divided into number of bins to reduce the number the 

bitmap vectors for each attribute. The basic idea of binning is to build a bitmap for a bin 

rather than each distinct attribute value. This strategy disassociates the number of 

bitmaps from the attribute cardinality and allows one to build a bitmap index of a 

prescribed size, no matter how large the attribute cardinality is. A clear advantage of this 

approach is that it allows one to control the index size.  If a value falls into a bin, this bin 

is marked “1” otherwise “0”. Since a value can only fall into a single bin, only a single 

“1” can exist for each row of each attribute. After binning, the whole database is 

converted into a huge 0-1 bitmap, where rows correspond to tuples and columns 

correspond to bin. Table 1 shows a binning example with three attributes, each 

partitioned into two bins. The first tuple t1 falls into the first bins in the attributes 1 and 2, 

and the second bin in attribute 3. Note that after binning we can treat each tuple as a 

binary number. For instance t1 = 101001 and t2 = 010101. 
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Tuple Attribute 1 
 
bin1     bin2 

Attribute 2 
 
bin1     bin2 

Attribute 3 
 
bin1     bin2 

t1 
t2 
t3 
t4 
t5 
t6 
 

1            0 
0            1 
1            0 
1            0 
1            0 
0            1 

1            0 
0            1 
0            1 
1            0 
1            0 
0            1 

0            1 
0            1 
1            0 
0            1 
1            0 
1            0 

                Table 4.1: Binning Example 
 

WAH Compression scheme is a variation on the run-length code. The essence of 

the run-length code is to represent a list of consecutive identical bits by its length and its 

bit value. In 32-bit implementation, the Leftmost Bit (LMB) of a word is used to 

distinguish between a literal word and a fill word, where 0 indicates a literal word and 1 

indicates a fill word. The lower 31 bits of a literal word contains literal bit values. The 

second leftmost bit of a fill word is the fill bit and the 30 lower bits store the fill length. 

To achieve fast operation, it is crucial to impose the word-alignment requirement on this 

scheme. The word-alignment requirement in WAH requires all fill lengths to be integer 

multiples of 31 bits (i.e., literal word size). Given this restriction, we represent fill lengths 

in multiples of literal word size. For example, if a fill contains 62 bits, the fill length will 

be recorded as two (2) [Wu, et al, 2001, Jhonson, 1999], see Figure 4.2.  

a) Input bitmap with 124 bits 
100000000………………..11111  
124 bits                                                 1, 20*0, 3*1, 79*0, 21*1 
 
b) Group bits into 4 31-bit groups 
1,20*0,3*1,7*0                                    31*0    31*0                     10*0,21*1 
 
c) Merge neighboring groups with identical bits 
1,20*0,3*1,7*0                                    62*0                        10*0,21*1 
 
d) Encode each group using one word 

0100 … 0011 100….   10000…10   0000…1111.. 
      31 literal bits            run length is 2 

   Fill bit 0 
Bit 0 indicates “tail” word   Bit 1 indicates “fill” word 

 
 
 



 �


Input bit vector                                  100000000………………..11111 (124 bits) 
124 bits                                                 1,  20*0,  3*1,  79*0,  21*1  
31-bit groups          1,20*0,3*1,7*0                                    62*0                        10*0,21*1 
Groups in hex                  40000380           00000000 00000000                        001FFFFF 
WAH(hex)                       40000380                            80000002                        001FFFFF 

 
Table 4.2:  WAH bit vector 

 
4.5. Experimental Work and Results 
 
Basic format of input file 

Run length encoding and it various form segments of a sequence, thus their performances 

depend directly on the longer data segments. Thus the data is stored in a compressed 

manner in a file which ultimately depicts a 0-1 matrix in the bitmap table. 

The following code will generate the bitmap table given the file where the info is stored 

in compressed manner. 

Input :  

File name “input” which has the following information 

 6 6 18 

0 3 6 9 12 15 18 

0 2 5 1 3 5 0 3 4 0 2 5 0 2 4 1 3 4 

The first row: 

6 6 18   represents the number of rows, number of columns and number of non-zero 

elements, respectively. 

 The second row 

0  3  6  9  12 15 18  represents the starting positions of each column in the bitmap (third 

row).  Basically, this line means from [0,3) is for first row of the matrix, [3,6) second 

row, [6,9) third row, [9,12) forth row and so on. 

The third row 

0 2 5 1 3 5 0 3 4 0 2 5 0 2 4 1 3 4 represent the column number of those non-zero 

elements.  
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Output : 

    A 0-1 bitmap table based on the information present in the input file. 

   1   0   1   0   0   1 

   0   1   0   1   0   1 

   1   0   0   1   1   0 

   1   0   1   0   0   1 

   1   0   1   0   1   0 

   0   1   0   1   1   0 

 

In this section we present the results of our experiments on six datasets. The 

experiments were conducted on a Pentium 4 machine with 1 Gb RAM running Linux. 

We compare here three preprocessing schemes on bitmap data, before actually applying 

WAH Compression algorithm. Since, the warehoused data is read mostly, the time 

involved in preprocessing is not a major concern here. We took the uncompressed data 

with bin size 8, in the first scheme, applied multi-component indexing, thereby reducing 

the bin size from 8 to 6. In the second scheme, we applied multi-component indexing 

twice, in a single step, reducing the bin size from 8 to 3. And in third scheme, we applied 

multi-component indexing (as in scheme 1), but saved the two components in two 

different files, in order to see the effect on Compression algorithm. We have collected the 

results by looking at the improvement in storage of datasets, which is how much 

compression is achieved. The Improvement Factor (IF) is defined as  

 

Improvement Factor =  
sizeCompressed

SizeOriginal
 

 

That is the ratio of original file size to compressed file size. The Improvement 

Factor achieved by applying multi component indexing is a straight forward 1.33 for 

multi component indexing, as initially, the bin size is initially 8 while multi component 

indexing reduces it to 6. The case for double multi component indexing is 2.66, as it 

reduces bin size to 3. This is clearly visible in the graph in figure 4.4. 
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Figure 4.4: Double Multi-Component on all three schemes 
 

The second set of experiments deals with the performance achieved by WAH 

Compression algorithm when either of schemes one, two or three is used as a 

preprocessing steps before applying WAH.  

It is to be noted here that these improvement factors have been calculated using 

the file size obtained by applying WAH on dataset and by applying one of the schemes 

and then applying WAH to it. This allows for comparison of the effect of each of the 

schemes on the WAH compression. The second scheme out performs the other two, 

which is obvious. The more interesting point in these results is that storing in two 

different files doesn’t affect the compression of WAH. 

 

Name 

Uncompressed 
size (bytes) 
Original 

Uncompressed 
size (bytes) 
MultiComponent 

Compressed 
size (bytes) 
Original 

Compressed 
size (bytes) 
Reordered 

Improvement 
Factor  

histo64 6208839 4659655 267399 135558 1.97258 
gaussian16 12900000 9700000 2786733 1965789 1.417616 
stock360 18726500 14046500 1448424 196461 7.372578 
histobig64 57641193 43258985 1935619 497493 3.890746 
stockdft360 18726500 10858304 1172268 612837 1.912854 
histobigsvd64 57641193 43258985 4011647 1996345 2.009496 

 
Table 4.3:  Improvement in compression of real data sets 
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Table 4.3 reveals the effectiveness of our approach on six data sets from various 

applications. In this table, the first two columns give sizes of the uncompressed bitmap 

tables for the original and multi-componented data and next two columns give sizes of 

the compressed bitmap tables for the original and multi-componented data. The last 

column presents the improvement factor. The data set, histogram, comes from an image 

database with 112,361 images. Images are collected from a commercial CD-ROM and 

64-dimensional color histograms are computed as feature vectors. The data set, stock, is a 

time- series data which contains 360 days stock price movements of 6500 companies, i.e., 

6500 data points with dimensionality 360. The data set histogram is partially correlated, 

whereas the stock data set is highly correlated.  
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Figure 4.5: Effect of Preprocessing Schemes without WAH compression 
 

The third set of experiments deals with the effect of the three preprocessing 

schemes on re-ordering tuples before applying the compression algorithm. As with results 

above, the improvement factors here are calculated with respect to running the re-

ordering and compression algorithms directly on datasets. Ignoring the obvious good 

results of Scheme 2, in the figure 4.5 clearly shows Scheme 3 out performs Scheme 1. 

This is because the reordering algorithm is better able to align the tuples for better 

compression. 
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Figure 4.6: Effect of Preprocessing Schemes with WAH compression 

 

From the experiments, it is clear that multi component indexing improves the 

performance of compression algorithms providing for better storage of warehoused 

bitmap data. Choosing the base for multi component indexing is critical, as shown by 

results of Scheme 2. And also, it was established that storing components in different 

files improves storage, if tuple re-ordering is done before the actual compression. 

 
4.6. Contributions and Summary 

 

We studied tuple reordering problem to improve bitmap compression rate for large 

datasets. WAH is indeed a very efficient compression method for bitmap indexes.We 

applied multi-component indexing to get maximum benefits of Gray Code sorting 

algorithm, which is an in-place algorithm and runs in linear time in the order of the size 

of the database. It has been found that efficiency of gray code can further be improved by 

using hybrid indexing technique, consisting of both gray code and component indexing 

Multi component indexing improves the performance of compression algorithms 

providing for better storage of warehoused bitmap data. An improvement in the space 

requirement for bitmap index by 25% is observed when one time component indexing is 

applied. Satisfactory improvement factor is observed when gray code ordering and WAH 
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compression technique is used. And also, it was established that storing components in 

different files improves storage, if tuple re-ordering is done before the actual 

compression. Choosing the base for multi component indexing is critical and thus finding 

a good base that maximizes the performance of WAH will be another interesting research 

project.  
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Chapter 5: Binning Strategies and Algorithms 

5.1. Introduction 
 

Bitmap indexes are known to be both space and time efficient for low cardinality 

data, but for high cardinality and high dimensionality data, the associated space 

overheads tend to negate the performance benefits. In this chapter, we propose methods 

that make bitmap indexes suitable for high cardinality data. A common approach for 

reducing the space requirements of bitmap indexes for high-cardinality attributes is 

binning [Yu and Wu, 1998]. This technique partitions the attribute values into a number 

of ranges, called bins, and uses bitmap vectors to represent bins (attribute ranges) rather 

than the distinct attribute values. Binning definitely reduces the space requirements, but 

have an adverse affect on query performance. In case of binning, answering queries may 

require an additional step called candidate check [Stockinger, 2000] which requires 

reading data from the disk thus increasing the disk I/Os. It is found that candidate checks 

usually dominate the total query processing time. In order to have acceptable query 

response times, it is critical to minimize the number of candidate checks for a given set of 

queries. 

In this chapter, we propose a binning strategy for bitmap indexes for high 

cardinality attributes. The idea is to do binning in such a way so as to minimize the 

number of candidate checks. Attempts have been made towards finding a solution to the 

problem of placing the bin boundaries optimally to reduce the overall number of disk 

reads thereby improving the response time with minimal increase in storage overheads. 

The main feature of the proposed approach is that it takes into consideration the query 

access patterns and also the data distribution. A new concept of overlapping and exact 

bins is introduced to compensate for the marginally increased space requirements in 

terms of improved query response times. In the following section we describe this new 

approach to binning. We also describe in detail the algorithms developed to answer 

queries. 
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The concept of overlapping bins, in a very primitive way, was first introduced by 

[Stockinger et al., 2000] and it was meant for answering one-sided range queries. We 

have introduced range binning for two sided range queries as an extension of one sided 

range queries and the algorithm for the same is presented. The concept of exact match 

binning has been introduced to improve the query processing time and minimize the 

candidate check problem. Another feature of the approach is that it allows bins to 

overlap. Although number of bins increases but it reduce CPU processing time sharply as 

less number of candidate checks need to be performed.  

 

5.2. Candidate Check Problem 
 

The basic bitmap index uses every distinct value of the indexed attribute as a key, 

and generates one bitmap containing as many bits as the number of records in the dataset 

for each key. The sizes of these basic bitmap indexes are relatively small for low-

cardinality attributes, such as “gender”, “types of houses sold in the San Francisco Bay 

Area”, or “car models produced by Ferrari.” However, for high-cardinality attributes such 

as “temperature values in a supernova explosion”, the index sizes may be too large to be 

of any practical use. In this case, bitmap indexes are often designed with bins. This 

bitmap index strategy partitions the attribute values into a number of ranges, called bins, 

and uses bitmap vectors to represent bins (attribute ranges) rather than distinct values.  

This strategy disassociates the number of bitmaps from the attribute cardinality and 

allows one to build a bitmap index of a prescribed size, no matter how large the attribute 

cardinality is. A clear advantage of this approach is that it allows one to control the index 

size. However, it also introduces some uncertainty in the answers if one only uses the 

index. To generate precise answers, one may need to examine the original data records 

(candidates) to verify that the user specified conditions are satisfied. The process of 

reading the base data to verify the query conditions is called candidate check [Stockinger 

et al., 2004, Rotem et al., 2005b]. 
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 Here, we are focusing on aggregation queries that are common in data 

warehousing and scientific applications. These types of queries do not return result 

records but rather statistical information on the result set, e.g. compute the size of the 

result set. Figure 5.1 shows a small example of evaluating such queries with binned 

bitmap indexes [Rotem et al., 2005b]. In this example we assume that an attribute A has 

values between 0 and 50. The values of the attribute A are given in the second leftmost 

column. The range of possible values of A is partitioned into five sub-ranges (bins), 

namely [0, 10], [11, 20] etc. with a bin allocated to each sub-range. The values of the sub-

ranges are called bin boundaries. In this example, the width of each bin is of the same 

size. A “1-bit” indicates the attribute value falls into the range and “0-bit” otherwise. 

Assume that we want to evaluate the query “Count the number of rows where 8 < A < 

37”. The correct result should be 9. We know that all records that fall into internal bins 

Record  
  ID   

Original 
 Values 0-10 11-

20 
21-
30 

31-
40 

41-
50 

1 5 1 0 0 0 0 
2 34 0 0 0 1 0 
3 23 0 0 1 0 0 
4 9 1 0 0 0 0 
5 12 0 1 0 0 0 
6 6 1 0 0 0 0 
7 34 0 0 0 1 0 
8 42 0 0 0 0 1 
9 11 0 1 0 0 0 

10 22 0 0 1 0 0 
11 44 0 0 0 0 1 
12 23 0 0 1 0 0 
13 18 0 0 0 0 1 
14 41 0 1 0 0 0 
15 39 0 0 0 1 0 

Edge bin Internal bin 

  
            8 < A < 37 

Figure 5.1: Two- sided range query 8 < A < 37 on a bitmap index with binning 
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(highlighted in light gray) are sure hits (qualifying records). These records are indicated 

by a “1-bit” and are calculated by performing a Boolean OR operation on all internal 

bins. On the other hand, records that fall into so-called edge bins (highlighted in dark 

gray) contain both qualifying and non-qualifying values. In order to prune the false 

positives, the original data values need to be checked against the query constraint. In 

particular, all records of the edge bins with a bit set to “1”, need to be checked. Such a 

check may involve additional accesses to disk pages depending on how the attribute 

values are stored. Given the query 8 < A < 37, let us look at the candidate check for the 

left edge bin. The candidate records are the records with RIDs 1, 4 and 6. The values of 

these records are 5, 9 and 5, respectively. The only qualifying record is record 4 that 

represents the value 9. The other two records do not fulfill the query constraint and do not 

qualify. This is evident from the above example that the cost of performing a candidate 

check on an edge bin is related to the number of “1-bits” in that bin. The larger the 

number of candidates that need to be checked, the higher the total query processing cost.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Two Sided Range Query  

 0             1              2             3           4       bitmap identifier 

Attribute values on disk 
(base data) 

       Query range: 37<=A<63 
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In this example we assume that an attribute A has values between 0 and 100. The values 

of the attribute A are given in the second leftmost column. The range of possible values 

of A is partitioned into five bins [0, 20), [20, 40).... A “1-bit” indicates that the attribute 

value falls into a specific bin. On the contrary, a “0-bit” indicates that the attribute value 

does not fall into the specific bin. Take the example of evaluating the query “Count the 

number of rows where 37 ≤  A < 63”. The correct result should be 2 (rows 5 and 7). We 

see that the range in the query overlaps with bins 1, 2 and 3. We know for sure that all 

rows that fall into bin 2 definitely qualify (i.e., they are hits). On the other hand, rows that 

falls into bins 1 and 3 possibly qualify and need further verification. In this case, we call 

bins 1 and 3 edge bins. The rows (records) that fall into edge bins are candidates and 

need to be checked against the query constraint. 

In the above example, there are four candidates, namely rows 1 and 3 from bin 1, 

and rows 5 and 6 from bin 3. The candidate check process needs to read these four rows 

from disk and examine their values to see whether or not they satisfy the user-specified 

conditions. On a large data set, a candidate check may need to read many pages and may 

dominate the overall query response time [Rotem et al., 2005b]. [Koudas, 2000] 

considered the problem of finding the optimal binning for a given set of equality queries. 

[Rotem et al. 2005a, 2005b] considered the problem of finding the optimal binning for 

range queries. Their approaches are based on dynamic programming. Since the time 

required by the dynamic programming grows quadratic with the problem size, these 

approaches are only efficient for attributes with relatively small attribute cardinalities 

[Koudas, 2000] or with relatively small sets of known queries [Stockinger et al. 2004]. 

They also considered the problem of optimizing the order of evaluating multi-

dimensional range queries. The key idea is to use more operations on bitmaps to reduce 

the number of candidates checked. This approach usually reduces the total query 

response time. Further improvements to this approach are to consider the attribute 

distribution and other factors that influence the actual time required for the candidate 

check. 

To minimize number of disk page accesses during the candidate check, it is 

necessary to cluster the attribute values [Rotem et al., 2006]. A commonly used clustering 

(data layout) technique is called vertical partitioning. In general, the vertical data layout 
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is more efficient for searching, while the horizontal organization (commonly used in 

DBMS) is more efficient for updating.  

The behavior of the bitmap index in the multi-dimensional space is depicted in Figure 

5.4. Note that for each attribute the candidate check is done separately, e.g after 

“XOR"ing the “candhits" slice with the “previous" slice. However, for all remaining 

attributes, the bit slice which is yielded after “XOR"ing, is “AND"ed together with the 

“global" hit slice. This means, for example, that for attribute 2, only these candidate 

objects need to be checked against the query constraint that are hits of attribute 1. The 

resulting positive effect of this approach is that with a low “attribute query selectivity" 

the number of candidate objects for each further dimension gets reduced. Finally, the hits 

of each dimension are “AND"ed together. Throughout the thesis we will refer to this 

process of sieving out the hits from the candidates as the candidate check. The details of 

the approach described above, is given in [Stockinger et al. 2004]. 

Figure 5.3: Candidate check in multi-dimensional space. 
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5.3. Strategies for Efficient Binning  
 
We extend the concept of equi-width bins, that is, each bin has the same width and thus 

the distribution of data values is reflected in the number of entries for each bin. Along 

with equi-width binning, there is further possibility of equi-depth binning which 

guarantees that each bin has the same number of entries. Both binning strategies have 

their own advantages and disadvantages. The binning strategy depends on two factors, 

namely the data distribution and the query access patterns or the query distribution. Equi-

depth binning guarantees nearly constant access time for all kind of queries independent 

of the data distribution. One would choose this kind of binning when no query access 

patterns are available. Since equi-width bins reflect the data distribution, this kind of 

binning is preferable if the query access patterns are such that those bins are queried 

most, which have the least number of entries. Binning could be made even more effective 

if the query access patterns can be incorporated in deciding the bin boundaries. Thus, for 

heavily queried regions in the search space, the bin ranges should be narrow such that 

these bins only have a small number of entries. 

 
Consider an attribute, A, with values ranging from 200 to 240, having equi-width 

binning:      200 - 210, 210 - 220, 220 - 230 and 230 - 240. To implement the equi-width 

binning, width of bin is taken as input. The query end points are searched in all the bin 

boundaries to locate which bins contains the lower and higher query end points. If the 

selected bins are 1b  and 2b . All the bins that fall between these bins so obtained are 

ORed, as they all contain only hits. The records corresponding to the result of the OR 

operation are directly retrieved. The bins 1b  and 2b  contain some records which are not 

hits and some of them are hits. Thus, for these two bins each record is taken and verified 

to check if it falls within the query boundaries and printed only if it is a hit.  

Now, consider range binning:  200 - 210, 200 - 220, 200 - 230 and 200 - 240. The bins 1b  

and 2b are obtained in a similar manner to solve the query. We construct three 

intermediate equi-width bitmaps fb , 
1f

b and '
fb .  The pseudo-code for answering two sided 

range query using range binning is as follows:  
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If (  1b  != 0) 
{  

fb  = 
1f

b  XOR (
1f

b - 1)     //
1f

b - 1 indicates the bin before 1b  

    '
fb  = NOT (

1f
b )  

}    
If(

1f
b  == 0) 

{  
fb  = 

1f
b  

'
fb = 0xffffffff  

} 
 

To search all records corresponding to “1” bit in fb , and whenever a hit record is found, 

clear the bit corresponding to that record in fb . 

fb  = fb  XOR '
fb  

1f
b  = 2b  XOR ( 2b -1) 

To search all records corresponding to “1” bit in fb , and whenever a miss record is found 

clear the bit corresponding to that record in fb . 

1f
b  = 

1f
b OR ( 2b  - 1) 

fb  = 
1f

b  AND fb  

Finally, fb  contains only those records which lie within the query range and 

consequently printed without any record checking. 

We introduce the concept of exact match binning, where we choose the bin 

boundaries exactly on the basis of the end points of most frequent queries on our system. 

It may happen that the entire range of a given attribute may not get covered by exact 

match bins. We create additional bins to cover the entire range. It may be noted that exact 

match binning produces non-uniform overlapping bins. When we pose any of our most 

frequent queries (satisfying a minimum threshold frequency) we don’t need to perform 

the candidate check, we search the bin matching the query end points and get all hits 

from that bin. As all the high frequency queries match with the bin boundaries, this type 

of binning is the fastest possible binning. For answering low frequency queries, we may 
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use the algorithms that were used with equi-width binning. This approach gives best 

results when we have more number of queries with frequencies greater than the threshold 

frequency. The concept of exact match binning is explained through an example. 

Example: Suppose we consider two frequent queries 223 < A < 233 and 228 < A < 235. 

The bins are created as 200 – 223, 223 – 233, 228 – 235 and 235 – 240. When answering 

queries, for which exact bins are not there, and the query can be answered using multiple 

bins, we choose the bin which has less number of candidates so that the query response 

time may be reduced.  

With exact match binning, the response time of queries is reduced considerably, at the 

expense of some additional space.  

Figure 5.4 demonstrate a set of 10 range queries and a binning into 4 bins. The query q3 

has no edge bins since both of endpoints fall on bin boundaries. Each of the queries q4, 

q5, q6, q7, q10 has 1 edge bin and queries q1, q2, q8, q9 has 2 edge bins. Horizontal lines 

represent query ranges and dotted vertical lines mark query endpoints. 

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

Figure 5.4: Query endpoints and bin boundaries. 
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Figure 5.5 shows same set of 10 range queries with overlapping bins. The query 

q3 has no edge bins since both of endpoints fall on bin boundaries. Each of the queries q4, 

q5, q6, q7, q10 has 1 edge bin and queries q1, q2, q8, q9 has 2 edge bins. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Exact match binning. 
 

5.4. Algorithms for Query Processing 
 
We now present algorithm for query processing for the new binning strategy described in 

the above section. 

5.4.1. Algorithm for Equi-width Binning  

 
Assuming attribute range 0 to 1000 and the number of bins is 10. Then equi-width 
binning is constructed as 0-100, 100-200, …... , 800-900, 900-1000. 
 
POINT QUERY: 

Read x  
For (i = 0 to bN ) //Find the bin that contains the entered x  

 If ( lx [i] ≤  x  < ux [i] ) b  =  i 
 //scan through the entire bin and print records that match.  

// b  has only candidates and not hits. (check=1) 
Print record(b ,1) 
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LEFT SIDED QUERY: 

Read x  
For (i = 0 to bN ) //Find the bin that contains the entered x  

 If( lx [i] ≤  x  < ux  [i]) b  = i 
If b = 0  GOTO LABEL 
//allocate memory equal to the size of one bin to some pointer named  fb  
For (i = 0 to b - 1) 
//Now bitmap will have only hits as all bins to the left of b have hits 

 fb = fb  OR b [i]   
Print records ( fb , 0)   
LABEL : 
Print records (b , 1) 

 
 
RIGHT SIDED QUERY: 

Read x  
For i=0 to bN  //find the bin that contains the entered 'x ' 

 If( lx [i]<= x  < ux  [i]) b  = i  
If b = bN  GOTO LABEL  
//allocate memory equal to the size of one bin to some pointer named ' fb ' 
For(i= b +1 to bN )//bitmap have only hits as all bins to the right of ‘ b ’have 
hits 

 fb = fb  OR b [i]    
//print the records in bitmap without checking (check=0) 
Print records( fb ,0)  
LABEL : 
//print the records in ‘b ’with checking as it has only candidates (check=1) 
print_record( b ,1)  

 
 
TWO SIDED QUERY: 

Read  ql  and qu  
For i = 0 to bN  //find the bin that contains the entered 'ql ' 

 If( lx [i]<= ql < ux  [i])  

lb  = i  
 For i=0 to bN   //find the bin that contains the entered 'qu ' 
  If( lx [i]<= qu  < ux  [i])  

hb  = i  
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 //allocate memory equal to the size of one bin to some pointer named 
' fb ’bitmap 
 //if lb and hb are adjacent goto label 
 If ( hb - lb ) < 2  
  GOTO LABEL  
 For(i= lb +1 to hb -1) 
  fb = fb  OR b [i]  
 
 //print the records in 'bitmap' without checking as it has only hits (check=0) 
 Print records( fb ,0)  
 //print the records in lb  and hb with checking as they have candidates 
(check=1) 

LABEL :  
Print records( hb , lb ,1)  
 

5.4.2. Algorithm for Exact match Binning 

 
POINT QUERY: 

Read x  
 Read mR  //take a large number and call it ' mR ' 

For(i=0 to bN ) 
  If(( lx [i]<= x < ux  [i]) && R [i]< mR )  
  {b  = i   

mR = R [i]} 
 //above step selects all bins containing the entered ‘ x ’ and then  

//selects the bin with minimum number of candidates among them 
//print the records in 'b ' with checking as it has only candidates (check=1) 
Print records (b ,1) 

 
LEFT SIDED QUERY: 

Read x  
 Read mR  //take a large number and call it ' mR ' 

For(i=0 to bN ) 
  If(( lx [i]<= x < ux  [i]) && R [i]< mR )  
  {b  = i   

mR = R [i]} 
 //above step selects all bins containing the entered id and then  

//selects the bin with minimum number of candidates among them 



 ����

//allocate memory equal to the size of one bin to some pointer named ' fb ' 
//allocate memory equal to the size of one bin to some pointer named ' 1fb ' 
For(i=0 to bN ) 

 If( ux  (b  [i])> lx  (b )) 
  { 1fb  = b OR b  [i]  break } 
 If( ux  (b  [i])<= lx  (b )) 
  fb  = fb  OR b  [i]  

print the records in ' 1fb ' with checking as it has only candidates (check=1) 
//print the records in ' fb ' without checking as it has only hits (check=0) 
Print records( fb ,0) 

 
RIGHT SIDED QUERY: 

Read x  
Read mR  //take a large number and call it ' mR ' 
For(i=0 to bN ) 

 lx [i]<= x < ux  [i]) && R [i]< mR )  
  {b  = i  mR = R [i]} 
 

//above step selects all bins containing the entered id and then 
// selects the bin with minimum number of candidates among them 
//allocate memory equal to the size of one bin to some pointer named ' fb ' 
//allocate memory equal to the size of one bin to some pointer named ' 1fb ' 
For(i=0 to bN ) 

 If( lx  (b  [i])< ux  (b )) 
  { 1fb  = b  OR b  [i]  break } 
 If( lx  (b  [i])>= ux  (b )) 
  fb  = fb  OR b  [i]  

//print the records in ' 1fb ' with checking as it has only candidates (check=1) 
Print records( 1fb ,1)  
//print the records in ' fb ' without checking as it has only hits (check=0) 
Print records( fb ,0)  

 
TWO SIDED QUERY: 

Read  ql  and qu  
If( f >=5) 

 For i=0 to bN   //find the bin that exactly matches the query 
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  If( lx [i]= ql   AND ux  [i]= qu )  
.   b  = i  
 //As this is a bin created specially for this particular query, it has all hits 
 //print the records in 'b ' without checking as it has only hits (check=0) 
 Print records(b,0) 

If( f <5) 
For(i=0 to bN ) 

  If(( lx [i]<= ql < ux  [i]) && R [i]< mR )  
  { lb  = i   

mR = R [i]} 
For(i=0 to bN ) 

  If( lx [i]<= qu  < ux  [i]&& R [i]< mR )  
  { hb  = i   

mR = R [i] 
} 

//allocate memory equal to the size of one bin to some pointer ' fb ’ 
//allocate memory equal to the size of one bin to some pointer ' 1fb ’ 
//allocate memory equal to the size of one bin to some pointer ' 2fb ’ 
If( hb  = lb ) 

 //print the records in lb ' with checking as it has only candidates (check=1) 
 Print records( lb ,1) 
 EXIT 

For(i= lb +1 to hb -1) 
 If( ux  (b  [i])> lx  [ hb ]) 
  { 1fb  = hb  OR b  [i]  break } 
 If( lx  (b  [i])>= ux  [ lb ]&& ux  [i]<= lx  [ hb ]) 
  fb  = fb  OR b  [i]  

For(i= hb  to lb +1) 
 If( lx  (b  [i])< ux  ( lb )) 
  { 2fb  = lb OR b  [i]  break } 

//print the records in ' fb ’without checking as it has only hits (check=0) 
Print records( fb ,0)  
//print the records in ' 1fb ’with checking as it has only candidates (check=1) 
Print records( 1fb ,1)  
//print the records in ' 2fb ’with checking as it has only candidates (check=1) 
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Print records( 2fb ,1)  

5.4.3. Algorithm for Range Binning  

 
POINT QUERY: 

Read x  
For(i=0  to bN ) //find the bin that contains the entered 'id' 

 If( lx [i]<= x  < ux  [i]) b  = i  
If( b =0) { fb = b   GOTO LABEL } 

 //allocate memory equal to the size of one bin to some pointer named ' fb ' 

fb  = b -1  AND b   //now bitmap will have less number of candidates, as 
we //eliminated many records not in the required range and which fall in 
previous bin 
//print the records in ' fb ' with checking as it has only candidates (check=1) 
Print records( fb ,1)  

 
LEFT SIDED: 

Read x  
For i=0 to bN  //find the bin that contains the entered 'x ' 

 If( lx [i]<= x  < ux  [i]) b  = i  
If( b =0){  
Print records( lb ,0) 

 EXIT 
 } 
//allocate memory equal to the size of one bin to some pointer named ' fb ' 

fb = b -1 AND b   
//print the records in ' fb ' with checking as it has only candidates (check=1) 
Print records( fb ,1)  
//print the records in 'b -1' without checking as it has only hits (check=0) 
Print records(b -1,0)  

 
RIGHT SIDED: 

Read x  
For i=0 to bN  //find the bin that contains the entered 'x ' 

 If( lx [i]<= x  < ux  [i]) b  = i  
//allocate memory equal to the size of one bin to some pointer named ' fb ' 

//allocate memory equal to the size of one bin to some pointer named ‘ '
fb ’ 

If( b =0) 
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 { '
fb = ~b   

 fb  = b  } 
If( b !=0) 

 { fb  = (b -1) AND b   

 '
fb = ~(b -1)  

 '
fb = '

fb  AND fb  } 
//print the records in ' fb ' with checking as it has only candidates (check=1) 
Print records( fb ,1)  

//print the records in ‘ '
fb ’without checking as it has only hits (check=0) 

Print records( '
fb ,0)  

 
TWO SIDED :  

Read  ql  and qu  
For i=0 to bN  //find the bin that contains the entered 'ql ' 

 If( lx [i]<= ql < ux  [i])  

lb  = i  
For i=0 to bN   //find the bin that contains the entered 'qu ' 
If( lx [i]<= qu  < ux  [i])  

hb  = i  
//allocate memory equal to the size of one bin to some pointer named ' fb ' 
//allocate memory equal to the size of one bin to some pointer named ' 1fb ' 

 
//allocate memory equal to the size of one bin to some pointer named ''

fb ’ 
part1: 
If( lb !=0) 

 fb  <- ( lb  -1)  AND ( lb ) 

 '
fb = ~( lb ) 

If( lb =0) 
 fb  = lb        

 '
fb =0xffffffff  

/* 
candidate check on bitmap: miss -> do not alter the bit  //for this 
purpose hitORmiss() function is used  hit -> clear the bit 
*/ 

fb  =  fb   AND '
fb  
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//after this step bitmap has only records greater than the lower limit 
part2: 

1fb = hb -1  AND hb  
/* 
candidate check on 1fb : miss -> set the bit to zero //for this purpose 
hitORmiss() function is used hit -> do not alter the bit 
*/ 

1fb  = 1fb  OR hb -1 
//after this step bitmap has only records lesser than the lower limit 

fb  =  fb  & 1fb //right and left sided query results are combined  
//Now bitmap is combination of Left and Right queries and contains exactly 
the //results that are needed.  
//print the records in ' fb ’without checking as it has only hits (check=0) 
Print records( fb ,0)  

 
5.5. Experimental work and Results 
 
To compare the proposed binning strategy with the existing binning approaches, we have 

created a sample database and generated a set of 20 two-sided range queries with varying 

frequencies. Total number of queries in the set is 92. The sample queries are given in 

Table 5.1. The number of queries for which exact bins were created at different threshold 

frequencies is given in Table 5.2. The binning strategies considered are equi-width 

binning, range binning, and the proposed exact binning. We have developed a new query 

processing algorithm for exact binning which selects the best bin in case there is more 

than one bin from which a query can be answered. Testing of proposed algorithm for 

query processing was done for increasing number of records in the database starting from 

1000 and going up to 50000. The CPU clock time for different query processing 

algorithms for different binning strategies is presented in Tables 5.3, 5.4, 5.5 and 5.6. The 

average time taken for answering the queries for frequency �=5 and for increasing 

number of records is shown in Figure 5.6. The affect of increasing threshold frequency on 

the number of candidate checks is depicted in Figure 5.7. The improvement factor (%) 

over equi-width binning is given in Figure 5.8. The affect of increasing threshold 

frequency on average time needed to answer queries against 50000 records is presented 

in Figure 5.9. The variation in space required for exact binning with increasing threshold 



 ��
�

frequency is shown in Figure 5.10. The analysis of all the results presented is given 

below.  

Following sample query set is considered: 

 

Query No. Query Frequency 
q1 100 ≤  IDNO ≤  203 6 
q2 053 ≤  IDNO ≤  800 2 
q3 417 ≤  IDNO ≤  501 2 
q4 121 ≤  IDNO ≤  225 3 
q5 600 ≤  IDNO ≤  700 9 
q6 817 ≤  IDNO ≤  842 9 
q7 052 ≤  IDNO ≤  207 4 
q8 333 ≤  IDNO ≤  409 9 
q9 701 ≤  IDNO ≤  779 7 
q10 321 ≤  IDNO ≤  407 3 
q11 505 ≤  IDNO ≤  612 8 
q12 170 ≤  IDNO ≤  225 2 
q13 213 ≤  IDNO ≤  219 2 
q14 714 ≤  IDNO ≤  805 4 
q15 117 ≤  IDNO ≤  162 5 
q16 070 ≤  IDNO ≤  099 5 
q17 400 ≤  IDNO ≤  427 1 
q18 221 ≤  IDNO ≤  233 3 
q19 072 ≤  IDNO ≤  144 6 
q20 513 ≤  IDNO ≤  517 2 

 
Table 5.1: Sample Queries 

 
 
The number of exact and non exact queries at different frequency for the sample query 
set is as follows: 
 
 

Frequency ≥  Number of Exact Queries Non Exact 
3 81 11 
4 72 20 
5 64 28 
6 54 38 
7 42 50 

 
 

Table 5.2: Frequency of Exact and Non Exact Queries 
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From the tables 5.3 – 5.6 it is clear that the average time taken to answer the queries is 

minimum for exact binning and for the proposed query processing algorithm. It is true for 

all values of table cardinality considered.  The summary of these results is presented in 

Figure 5.6. It can be seen from the figure that exact binning strategy performs far better 

than equi-width and range binning. The improvement achieved is more pronounced for 

higher number of records. 

In Figure 5.7, the effect of increasing threshold frequency (�) on the number of candidate 

checks is depicted.  For equi-width binning, the number of candidate checks needed is 

independent of �. For exact binning, the number of candidate checks increases with 

increasing �.  The proposed algorithm for exact binning reduces the number of candidate 

checks which in turn leads to faster response times for queries.  In Figure 5.10, the space 

requirement for exact binning is plotted against threshold frequency. It takes more space 

than equi-width binning, as expected, but is found to decrease with frequency.  From 

Figures 5.7- 5.10, it is evident that space-time performance optimality can be achieved by 

suitably choosing �.  

Query No. Equi Width Range Exact (Equi) Exact(Overlap) 
q1 42760000 63490000 21520000 21560000 
q2 190530000 195790000 168840000 209560000 
q3 41990000 58260000 39000000 27100000 
q4 42780000 64290000 48560000 81130000 
q5 42880000 63170000 21080000 21180000 
q6 41070000 45290000 5010000 5020000 
q7 191300000 73570000 188420000 79510000 
q8 42220000 57260000 15680000 15710000 
q9 42530000 57800000 16160000 16460000 
q10 42320000 59300000 42710000 78500000 
q11 43030000 64250000 22150000 22200000 
q12 42740000 53880000 48560000 79530000 
q13 42550000 43170000 54130000 20780000 
q14 41710000 59560000 23730000 77660000 
q15 43030000 51610000 9440000 10320000 
q16 41960000 46990000 5800000 5810000 
q17 41640000 46420000 35150000 26660000 
q18 42520000 44340000 54120000 20780000 
q19 42450000 56550000 14810000 14850000 
q20 42250000 42410000 44310000 21170000 

 Average    
 57213000 62370000 43959000 42774500 

Table 5.3: Query Processing Time for number of records = 50000 
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Query No. Equi Width Range Exact (Equi) Exact(Overlap) 
q1 1720000 2620000 880000 960000 
q2 7830000 8300000 7240000 7150000 
q3 1750000 2540000 1730000 830000 
q4 1700000 2650000 2030000 1010000 
q5 1800000 2760000 940000 1000000 
q6 1710000 1930000 230000 230000 
q7 7820000 3070000 8050000 1460000 
q8 1780000 2460000 670000 710000 
q9 1750000 2470000 690000 740000 
q10 1770000 2540000 1820000 3310000 
q11 1770000 2730000 940000 1010000 
q12 1710000 2250000 2030000 530000 
q13 1720000 1810000 2320000 50000 
q14 1730000 2540000 1000000 2770000 
q15 1700000 2140000 400000 420000 
q16 1690000 1980000 250000 270000 
q17 1810000 2060000 1530000 950000 
q18 1710000 1840000 2310000 930000 
q19 1700000 2360000 630000 680000 
q20 1700000 1750000 1880000 930000 

 Average    
 2343500 2640000 1878500 1297000 

Table 5.4: Query Processing Time for number of records = 10000 

Query No. Equi Width Range Exact (Equi) Exact(Overlap) 
q1 450000 700000 240000 240000 
q2 2090000 2200000 1890000 1750000 
q3 480000 700000 470000 220000 
q4 440000 700000 540000 250000 
q5 460000 690000 230000 240000 
q6 470000 540000 70000 60000 
q7 2060000 810000 2110000 370000 
q8 500000 720000 210000 200000 
q9 450000 630000 170000 170000 
q10 510000 730000 490000 890000 
q11 450000 700000 240000 240000 
q12 460000 610000 540000 140000 
q13 440000 460000 590000 10000 
q14 470000 670000 250000 690000 
q15 460000 560000 90000 90000 
q16 430000 500000 60000 70000 
q17 510000 580000 430000 250000 
q18 450000 480000 590000 220000 
q19 440000 610000 160000 140000 
q20 440000 460000 480000 260000 

 Average    
 623000 702500 492500 325000 

Table 5.5: Query Processing Time for number of records = 5000 
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Query No. Equi Width Range Exact (Equi) Exact(Overlap) 

q1 30000 40000 10000 10000 
q2 130000 150000 120000 110000 
q3 30000 40000 30000 10000 
q4 30000 40000 30000 10000 
q5 20000 40000 20000 20000 
q6 20000 30000 10000 10000 
q7 130000 50000 110000 50000 
q8 30000 40000 10000 10000 
q9 40000 40000 20000 10000 
q10 20000 50000 20000 60000 
q11 20000 40000 30000 10000 
q12 40000 30000 20000 10000 
q13 20000 30000 40000 10000 
q14 20000 40000 20000 50000 
q15 40000 40000 10000 10000 
q16 30000 30000 10000 10000 
q17 30000 40000 30000 10000 
q18 20000 30000 30000 20000 
q19 30000 30000 20000 10000 
q20 30000 40000 30000 20000 

 Average    
 38000 43500 31000 20000 

Table 5.6: Query Processing Time for number of records = 1000 
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Figure 5.6: Average Time for Different Binning Algorithms 
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Candidate Check Comparison
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Figure 5.7: Number of candidates at different frequencies for binning algorithms 
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Figure 5.8: Improvement percentage at different frequencies for binning algorithms 
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Figure 5.9: Query processing time at different frequencies for binning algorithms 
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Figure 5.10: Space Comparison of exact binning with equi-width binning  
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5.6. Contributions and Summary 
 

In this chapter, we proposed a new binning strategy called exact binning which 

takes query distribution into account. The bins are allowed to overlap and a given query 

could be answered from more than one bin. This necessitated the need for new query 

processing algorithms to be developed in order to minimize the number of candidate 

checks.  We developed an algorithm for the same and compared its performance with the 

existing algorithms given for equi-width binning. It was found that the new binning 

strategy performs much better than any of the existing binning techniques at the expense 

of space. The threshold frequency � can be optimally chosen to get maximum 

performance benefits with minimal space overhead. 
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Chapter 6: Conclusions and Recommendations 

6.1. Conclusions 
 

The ability to extract data to answer complex, iterative, and ad hoc queries 

quickly is a critical issue for data warehouse applications and scientific databases. A 

proper indexing technique is crucial to avoid I/O intensive table scans against large 

tables. The challenge is to find an appropriate index type that would improve the queries 

performance. Bitmap Indexes play a key role in answering data warehouse’s queries 

because they have an ability to perform operations on index level before retrieving base 

data. This speeds up query processing tremendously.  Bitmap indexes are the preferred 

multi-dimensional indexing structures especially suited for data warehouses and scientific 

databases which contain huge volumes of multidimensional data. In the thesis, an attempt 

has been made to improve the performance of bitmap indexes through better encoding, 

compression, and binning techniques.  

One of the major issues with bitmap indexes is the space requirement. BBC and 

WAH are two very effective and popular compression schemes for bitmap indexes.  

Sorting the column on which a bitmap index has been created can drastically improve the 

compression achieved by BBC and WAH as both these compression schemes are variants 

of the run-length encoding (RLE) scheme. Using this simple technique, we observed that 

the space requirement increases only linearly with the increase in the number of tuples in 

the relation. It is very effective in read-mostly data warehouses and can be done during 

the ETL phase. Also, the response time of both equality and range queries is found to 

decrease. It was found that there is up to 60% improvement in response time of queries. 

With such promising gains in terms of both space and performance, the proposed strategy 

offers a simple yet effective solution to query performance challenges in large datasets. 

The other columns in the relation can continue to have BBC or WAH compressed bitmap 

indexes. 

Data reorganization, mainly tuple reordering, plays an important role in 

improving the compression ratios achieved by BBC and WAH. In read-mostly 

environments, data reorganization is found to be very effective strategy to achieve good 
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compression ratios. Multi-component encoding has been used as a preprocessing 

technique to improve the compression ratio achieved by Gray code ordering algorithm 

used for tuple reordering. Spacing saving of 25% was achieved by applying multi-

component encoding just once.  Choosing the base for multi component indexing is 

critical and thus finding a good base that maximizes the performance of WAH will be 

another interesting research project.  

Binning plays a very important role in reducing the size of bitmap indexes on high 

cardinality columns.  We have introduced the concept of exact overlapping bins to 

minimize the number of candidate checks needed to answer a set of queries. The 

overlapping and exact bins are created based on the frequency of queries.  New 

algorithms for performing candidate checks have also been developed. Results are 

presented for different combination of parameters like cardinality and query frequency. 

The proposed new binning strategy and the associated algorithms greatly improve the 

response time of range queries as compared to the conventional binning techniques.  

 

6.2.  Recommendations for the future work 
 

The techniques proposed in the thesis can be applied to bitmapped join indexes to 

reduce the space requirements of such indexes. It would be interesting to see the affect of 

this on the join operation. 

It was observed for binning techniques that the number of candidate checks to be 

performed for a set of queries Q, is sensitive to the choice of the qualifying frequency. 

How to find an optimal frequency so that the numbers of candidate checks required for 

answering queries in a given  set Q are minimized? This could be an interesting research 

problem. Also, dynamic binning strategies could be explored. If the binning boundaries 

could be changed based on the changing query profiles, query response times could be 

reduced drastically. 

We are continuing our work on bitmap indexes to be applied in data mining as 

group bitmap index and improving its performance for doing better analysis. Bitmap 

indexing can be extensively used in data mining algorithms to extract data in faster. 
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Developing new indexing strategies based on bitmap indexes is still an interesting 

research area.  

Despite the success of bitmap indexes, there are a number of important issues that 

remain to be addressed.  

How to automatically select the best combination of encoding, compression and binning 

techniques? 

How to use bitmap indexes to answer more general join queries? 

Research work on bitmap indexes so far has concentrated on answering queries 

efficiently in a read-mostly environment, but has often neglected the issue of updating the 

indexes. Clearly, there is a need to update the indexes efficiently as and when the data file 

changes. Efficient solutions to this issue could lead to a wider adaptation of bitmap 

indexes in commercial systems.  
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Appendix - A 
 

A.1 Code for WAH and BBC Compression Algorithms 
 

#define WAH_RUN_0 "0000000000000000000000000000000" 
#define WAH_RUN_1 "1111111111111111111111111111111" 
#define BBC32_0   "00000000000000000000000000000000" 
#define BBC32_1   "11111111111111111111111111111111" 
#define BBC24_0   "000000000000000000000000" 
#define BBC24_1   "111111111111111111111111" 
#define BBC16_0   "0000000000000000" 
#define BBC16_1   "1111111111111111" 
#define BBC8_0    "00000000" 
#define BBC8_1    "11111111" 
 
#define COUNT 10000000 
#include<stdio.h> 
#include<time.h> 
#include<stdlib.h> 
#include<string.h> 
#include<math.h> 
#include "compress.h" 
 
int wah_counter = 0; 
 
char array[32]; 
 
 
void reverseString(char *string) 
{ 
 int left = 0; 
 char temp; 
 int right = strlen(string) - 1; 
 while(left < right){ 
  temp = string[left]; 
  string[left] = string[right]; 
  string[right] = temp; 
  left++; 
  right--; 
 } 
} 
 
void decimalToBinary(int number,char *binNum,int length) 
{ 
 int i = 0; 
 while(number){ 
  binNum[i++] = number % 2 + 48; 
  number = number / 2; 
 } 
 binNum[i] = 0; 
 for(i = strlen(binNum); i < length; i++) 
  binNum[i] = '0'; 
 binNum[i] = 0; 
 reverseString(binNum); 
 return; 
} 
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int binaryToDecimal(char *strNum) 
{ 
 int i = strlen(strNum); 
 int index = 0; 
 int number = 0; 
 while(i--){ 
  if(strNum[i] - 48){ 
   number += (int)pow(2,index); 
  } 
  index++; 
 } 
 return number; 
} 
 
void compress_wah(char *input_file_name, char *output_file_name) 
{ 
 bool run_0=false; 
 bool run_1=false; 
 int counter=0; 
 FILE *fp = fopen(input_file_name,"r"); 
 if(!fp){ 
  perror("Error in opening input file"); 
  exit(1); 
 } 
 FILE *fo = fopen(output_file_name,"w"); 
 if(!fo){ 
  fclose(fp); 
  perror("Error in opening output file"); 
  exit(1); 
 } 
 
 char temp[32]; 
 int n = 0; 
 clock_t start = clock(); 
 while(!feof(fp)){ 
  n = fread(array,1,sizeof(array) - 1,fp); 
//  if(!feof(fp)){ 
   if(n < 0){ 
    perror("Error in reading file"); 
    fclose(fp); 
    fclose(fo); 
    exit(2); 
   } 
   array[n] = 0; 
   if(n < 31){ 
    //active word 
    int len = 31 - strlen(array); 
    for(int i = 0; i < len + 1; i++) 
     fprintf(fo,"%s","0"); 
    fprintf(fo,"%s",array); 
    clock_t finish = clock(); 
    printf("Time taken = %2.7lf 
seconds\n",(double)(finish - start)/CLOCKS_PER_SEC); 
    int size = ftell(fo); 
    long usize = ftell(fp); 
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    printf("Uncompressed File Size = %d bytes\n", 
usize/8); 
    printf("Compressed Size = %d bytes\n",size/8); 
    printf("Percentage Compressed %2.2lf%% 
\n",100*(double)(usize-size)/usize); 
    break; 
   } 
   if(!strcmp(array,WAH_RUN_0)) 
   { 
    if(run_1) 
    { 
     //write run1 1 
     decimalToBinary(counter,temp,30); 
   //  temp[31]=0; 
     fprintf(fo,"%s%s","11",temp); 
     run_1=false; 
     counter=1; 
    } 
    else if(run_0) 
     counter++; 
    else 
     counter=1; 
    run_0=true; 
   } 
   else if(!strcmp(array,WAH_RUN_1)) 
   { 
    if(run_0) 
    { 
     //write run 0 
     decimalToBinary(counter,temp,30); 
   //  temp[31]=0; 
     fprintf(fo,"%s%s","10",temp); 
     run_0=false; 
     counter=1; 
    } 
    else if(run_1) 
     counter++; 
    else 
     counter=1; 
    run_1=true; 
   } 
   else 
   { 
    if(run_1) 
    { 
     //write run1 1 
     decimalToBinary(counter,temp,30); 
   //  temp[31]=0; 
     fprintf(fo,"%s%s","11",temp); 
     run_1=false; 
    } 
    if(run_0) 
    { 
     //write run 0 
     decimalToBinary(counter,temp,30); 
   //  temp[31]=0; 
     fprintf(fo,"%s%s","10",temp); 
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     run_0=false; 
    } 
    //write literal 
    fprintf(fo,"%s%s","0",array); 
    counter=0; 
    run_0=false; 
    run_1=false; 
   } 
 
  } 
// } 
 fclose(fp); 
 fclose(fo); 
} 
 
 
int get_literal_count(FILE *fp ,char **literal_buffer) 
{ 
 //int loc = ftell(fp); 
 //bool condition = true; 
 char temp[9]; 
 int n = 0; 
 strcpy(*literal_buffer,""); 
 int literal_count = 0; 
 bool first = true; 
 while(true){ 
  n = fread(temp,1,8,fp); 
  temp[n] = 0; 
  if(n < 8){ 
   fseek(fp,-(n),SEEK_CUR); 
   break; 
  } 
  if(!strcmp(temp,BBC8_0) || !strcmp(temp,BBC8_1)){ 
   fseek(fp,-8,SEEK_CUR); 
   break; 
  } 
  strcat(*literal_buffer,temp); 
  if(first){ 
   first = false; 
   char *ptr = strstr(temp,"0"); 
   ptr = strstr(ptr + 1,"0"); 
   if(!ptr) 
    return -(strstr(temp,"0")-temp); 
   ptr = strstr(temp,"1"); 
   ptr = strstr(ptr + 1,"1"); 
   if(!ptr) 
    return -(strstr(temp,"1")-temp); 
  } 
  literal_count++; 
  if(literal_count > 15) 
   break; 
 } 
 //fseek(fp,loc,SEEK_SET); 
 return literal_count; 
} 
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void set_run_3_4_header(int counter, char **array) 
{ 
 counter = counter - 4; 
 int bit_size = (int)ceil((double)log(counter) / log(2)); 
 bit_size = (int)ceil((double)bit_size / 7); 
 *array = new char[bit_size * 8 + 1]; 
 char *temp=new char[bit_size * 9]; 
 strcpy(*array,""); 
 decimalToBinary(counter,temp,0); 
 int i = 0; 
 while(strlen(temp + i) > 7){ 
  strcat(*array,"1"); 
  strncat(*array,temp + i,7); 
  i += 7; 
 } 
 int len = 7 - strlen(temp + i); 
 while(len >= 0){ 
  strcat(*array,"0"); 
  len--; 
 } 
 strcat(*array,temp + i); 
 delete temp; 
 return; 
} 
 
void compress_bbc(char *input_file_name, char *output_file_name) 
{ 
 int counter=0; 
 FILE *fp = fopen(input_file_name,"r"); 
 if(!fp){ 
  perror("Error in opening input file"); 
  exit(1); 
 } 
 FILE *fo = fopen(output_file_name,"w"); 
 if(!fo){ 
  fclose(fp); 
  perror("Error in opening output file"); 
  exit(1); 
 } 
 
 char temp[33]; 
 char literal_array[5]; 
 
 char *literal_buffer = new char[121]; 
 int n = 0; 
 char *run_header; 
 int run_fill_size = 0; 
 int literal_length = 0; 
 clock_t start = clock(); 
 while(!feof(fp)){ 
  n = fread(temp,1,32,fp); 
  if(n < 0){ 
   perror("Error in reading"); 
   exit(2); 
  } 
  temp[n] = 0; 
  if(n < 32){ 
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   fprintf(fo,"%s%s","10000100",temp); 
   // code if read less than 32 bits 
   break; 
  } 
  else{ 
   if(!strcmp(temp,BBC32_0)){ 
    run_fill_size = 4; 
    while(true){ 
     n = fread(temp,1,8,fp); 
     temp[n] = 0; 
     if(n < 8){ 
 
      fprintf(fo,"%s","00100001"); 
     
 set_run_3_4_header(run_fill_size,&run_header); 
      fprintf(fo,"%s%s",run_header,temp); 
      delete run_header; 
      break; 
     } 
     if(!strcmp(temp,BBC8_0)) 
      run_fill_size++; 
     else{ 
      fseek(fp,-8,SEEK_CUR); 
     
 literal_length=get_literal_count(fp,&literal_buffer); 
      if(literal_length<=0) 
      { 
       //run type 4 
       literal_length=-
literal_length; 
      
 decimalToBinary(literal_length,literal_array,3); 
      
 fprintf(fo,"%s%s","00010",literal_array); 
      
 set_run_3_4_header(run_fill_size,&run_header); 
       fprintf(fo,"%s",run_header); 
       delete run_header; 
      
 //fprintf(fo,"%s%s%s","01011",literal_array); 
      } 
      else 
      { 
       //run type 3 
      
 decimalToBinary(literal_length,literal_array,4); 
      
 fprintf(fo,"%s%s","0010",literal_array); 
      
 set_run_3_4_header(run_fill_size,&run_header); 
      
 fprintf(fo,"%s%s",run_header,literal_buffer); 
       delete run_header; 
        
      } 
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     } 
    } 
    //run 3 or 4 
   } 
   else if(!strcmp(temp,BBC32_1)){ 
 
    run_fill_size = 4; 
    while(true){ 
     n = fread(temp,1,8,fp); 
     temp[n] = 0; 
     if(n < 8){ 
 
      fprintf(fo,"%s","00110001"); 
     
 set_run_3_4_header(run_fill_size,&run_header); 
      fprintf(fo,"%s%s",run_header,temp); 
      delete run_header; 
      break; 
     } 
     if(!strcmp(temp,BBC8_1)) 
      run_fill_size++; 
     else{ 
      fseek(fp,-8,SEEK_CUR); 
     
 literal_length=get_literal_count(fp,&literal_buffer); 
      if(literal_length<=0) 
      { 
       //run type 4 
       literal_length=-
literal_length; 
      
 decimalToBinary(literal_length,literal_array,3); 
      
 fprintf(fo,"%s%s","00011",literal_array); 
      
 set_run_3_4_header(run_fill_size,&run_header); 
       fprintf(fo,"%s",run_header); 
       delete run_header; 
      
 //fprintf(fo,"%s%s%s","01011",literal_array); 
      } 
      else 
      { 
       //run type 3 
      
 decimalToBinary(literal_length,literal_array,4); 
      
 fprintf(fo,"%s%s","0011",literal_array); 
      
 set_run_3_4_header(run_fill_size,&run_header); 
      
 fprintf(fo,"%s%s",run_header,literal_buffer); 
       delete run_header; 
        
      } 
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     } 
    } 
    //run 3 or 4 
     
     
    //run 3 or 4 
   } 
   else{ 
    if(!strncmp(temp,BBC24_0,24)){ 
     fseek(fp,-8,SEEK_CUR); 
     literal_length = 
get_literal_count(fp,&literal_buffer); 
      if(literal_length<=0) 
     { 
      literal_length=-literal_length; 
     
 decimalToBinary(literal_length,literal_array,3); 
     
 fprintf(fo,"%s%s","01011",literal_array); 
     } 
     else 
     { 
     
 decimalToBinary(literal_length,literal_array,4); 
     
 fprintf(fo,"%s%s%s","1011",literal_array,literal_buffer); 
     // run 1 or 2 for length = 24 bits 
     } 
    } 
    else if(!strncmp(temp,BBC24_1,24)){ 
     fseek(fp,-8,SEEK_CUR); 
     literal_length = 
get_literal_count(fp,&literal_buffer); 
     if(literal_length<=0) 
     { 
      literal_length=-literal_length; 
     
 decimalToBinary(literal_length,literal_array,3); 
     
 fprintf(fo,"%s%s","01111",literal_array); 
     } 
     else 
     { 
     
 decimalToBinary(literal_length,literal_array,4); 
     
 fprintf(fo,"%s%s%s","1111",literal_array,literal_buffer); 
     //run 1 or 2 for length = 24 bits 
     } 
    } 
    else if(!strncmp(temp,BBC16_0,16)){ 
     fseek(fp,-16,SEEK_CUR); 
     literal_length = 
get_literal_count(fp,&literal_buffer); 
     if(literal_length<=0) 
     { 
      literal_length=-literal_length; 
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 decimalToBinary(literal_length,literal_array,3); 
     
 fprintf(fo,"%s%s","01010",literal_array); 
 
     } 
     else 
     { 
     
 decimalToBinary(literal_length,literal_array,4); 
     
 fprintf(fo,"%s%s%s","1010",literal_array,literal_buffer); 
     //run 1 or 2 for length = 16 bits 
     } 
    } 
    else if(!strncmp(temp,BBC16_1,16)){ 
     fseek(fp,-16,SEEK_CUR); 
     literal_length = 
get_literal_count(fp,&literal_buffer); 
     if(literal_length<=0) 
     { 
      literal_length=-literal_length; 
     
 decimalToBinary(literal_length,literal_array,3); 
     
 fprintf(fo,"%s%s","01110",literal_array); 
 
     } 
     else 
     { 
     
 decimalToBinary(literal_length,literal_array,4); 
     
 fprintf(fo,"%s%s%s","1110",literal_array,literal_buffer); 
     } 
     //run 1 or 2 for length = 16 bits 
    } 
    else if(!strncmp(temp,BBC8_0,8)){ 
     fseek(fp,-24,SEEK_CUR); 
     literal_length = 
get_literal_count(fp,&literal_buffer); 
     if(literal_length<=0) 
     { 
      literal_length=-literal_length; 
     
 decimalToBinary(literal_length,literal_array,3); 
     
 fprintf(fo,"%s%s","01001",literal_array); 
 
     } 
     else 
     { 
     
 decimalToBinary(literal_length,literal_array,4); 
     
 fprintf(fo,"%s%s%s","1001",literal_array,literal_buffer); 
     }      
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     //run 1 or 2 for length = 8 bits 
    } 
    else if(!strncmp(temp,BBC8_1,8)){ 
     fseek(fp,-24,SEEK_CUR); 
     literal_length = 
get_literal_count(fp,&literal_buffer); 
     if(literal_length<=0) 
     { 
      literal_length=-literal_length; 
     
 decimalToBinary(literal_length,literal_array,3); 
     
 fprintf(fo,"%s%s","01101",literal_array); 
 
     } 
     else 
     { 
     
 decimalToBinary(literal_length,literal_array,4); 
     
 fprintf(fo,"%s%s%s","1101",literal_array,literal_buffer); 
     } 
     //run 1 or 2 for length = 8 bits 
    } 
    else{ 
     fseek(fp,-32,SEEK_CUR); 
     literal_length = 
get_literal_count(fp,&literal_buffer); 
     if(literal_length<=0) 
     { 
      literal_length=-literal_length; 
     
 decimalToBinary(literal_length,literal_array,3); 
     
 fprintf(fo,"%s%s","01000",literal_array); 
 
     } 
     else 
     { 
     
 decimalToBinary(literal_length,literal_array,4); 
     
 fprintf(fo,"%s%s%s","1000",literal_array,literal_buffer); 
     } 
     //fseek(fp,-24,SEEK_CUR); 
     //literal 
    } 
   } 
  } 
 } 
 clock_t finish = clock(); 
 printf("Time taken = %2.7lf seconds\n",(double)(finish - 
start)/CLOCKS_PER_SEC); 
 int size = ftell(fo); 
 long usize = ftell(fp); 
 printf("Uncompressed File Size = %d bytes\n", usize/8); 
 printf("Compressed Size = %d bytes\n",size/8); 
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 printf("Percentage Compressed %2.2lf%% \n\n",100*(double)(usize-
size)/usize); 
  
} 
 
int main() 
{ 
  
 printf("\nDoing WAH Compression\n\n"); 
 compress_wah("input_data.txt","wah.txt"); 
 printf("\nDoing BBC Compression\n\n"); 
 compress_bbc("input_data.txt","bbc.txt"); 
 return 0; 
} 
 

A.2 Code for Gray Code Ordering Algorithm 
 
#include<stdio.h> 
#include<stdlib.h> 
 
int rows,cols; 
 
void findcols(FILE *fp) 
{ 
 cols=0; 
 char c; 
 while(1) 
 { 
  fscanf(fp,"%c",&c); 
  if(c==' ') 
  continue; 
 
  else if(c=='\n') 
  goto final; 
 
  else 
  cols++; 
 } 
 
final: 
rewind(fp); 
} 
 
void findrows(FILE *fp) 
{ 
    rows=0; 
 char c; 
 while(1) 
 { 
  if(feof(fp)) 
  goto final; 
 
  fscanf(fp,"%c",&c); 
   
  if(c=='\n') 
                rows++; 
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     } 
 
final: 
rows++; 
rewind(fp); 
} 
 
void reversing(int i,int j) 
{ 
 if(i>=j) 
  return; 
  
 FILE *f1; 
 FILE *f2; 
 
 int temp1; 
 int temp2; 
 
 int k; 
 char c,ctemp; 
 
 f1=fopen("o1.txt","r+"); 
 f2=fopen("o1.txt","r+"); 
 
  
 temp1=(2*cols+1)+((2*cols+2)*(i-2))+2; 
 temp2=(2*cols+1)+((2*cols+2)*(j-2))+2; 
  
 fseek(f1,temp1,1); 
 fseek(f2,temp2,1); 
 
 while(1) 
 { 
  if(i==j) 
  break; 
 
  for(k=1;k<=cols;k++) 
  { 
   fscanf(f2,"%c",&c); 
   ctemp=c; 
   fseek(f2,-1,1); 
   fscanf(f1,"%c",&c); 
   fprintf(f2,"%c",c); 
   fseek(f1,-1,1); 
   fprintf(f1,"%c",ctemp); 
    
   if(k==cols) 
   break; 
 
   fseek(f1,1,1); 
   fseek(f2,1,1); 
  } 
   
  fseek(f1,-(2*cols-1),1); 
  fseek(f2,-(2*cols-1),1); 
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  i++; 
  j--; 
 
  if(i>j) 
  break; 
 
  fseek(f1,(2*cols+2),1); 
  fseek(f2,-(2*cols+2),1); 
   
 } 
 
 
 fclose(f1); 
 fclose(f2); 
} 
 
void gcsort(int start,int end,int b) 
{ 
 if(start>=end) 
  return; 
 
 FILE *f1; 
 FILE *f2; 
 
 int i; 
 int j; 
 
 char n1,n2,c,ctemp; 
 
 int k; 
 int temp1; 
 int temp2; 
 
 i=start; 
 j=end; 
 
 f1=fopen("o1.txt","r+"); 
 f2=fopen("o1.txt","r+"); 
 
 temp1=(2*cols+1)+((2*cols+2)*(i-2))+(2*b); 
 temp2=(2*cols+1)+((2*cols+2)*(j-2))+(2*b); 
  
 fseek(f1,temp1,1); 
 fseek(f2,temp2,1); 
 
 while(i<j)        //positioning f1,f2 to swap loc  
 { 
 
  while(1) 
  { 
   if(j==start) 
   { 
    fscanf(f2,"%c",&n2); 
    break; 
   } 
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   fscanf(f2,"%c",&n2); 
 
   if(n2=='0') 
    break; 
 
   j--; 
   fseek(f2,-(2*cols+3),1); 
 
    
  } 
   
   
  while(1) 
  { 
   if(i==end) 
   { 
    fscanf(f1,"%c",&n1); 
    break; 
   } 
 
   fscanf(f1,"%c",&n1); 
    
   if(n1=='1') 
   break; 
 
   i++; 
   fseek(f1,(2*cols+1),1); 
 
  } 
  
  fseek(f1,-1,1); 
  fseek(f2,-1,1); 
 
  if(i<j)       
  { 
   fseek(f1,-(2*b-2),1); 
   fseek(f2,-(2*b-2),1); 
 
   for(k=1;k<=cols;k++) 
   { 
    fscanf(f2,"%c",&c); 
    ctemp=c; 
    fseek(f2,-1,1); 
    fscanf(f1,"%c",&c); 
    fprintf(f2,"%c",c); 
    fseek(f1,-1,1); 
    fprintf(f1,"%c",ctemp); 
    
    if(k==cols) 
    break; 
  
    fseek(f1,1,1); 
    fseek(f2,1,1); 
   } 
   fseek(f1,-(2*(cols-b)+1),1); 
   fseek(f2,-(2*(cols-b)+1),1); 
  } 
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 } 
   
 if(b<cols) 
 { 
  gcsort(start,j,b+1); 
  gcsort(j+1,end,b+1); 
  reversing(j+1,end); 
 } 
 
 fclose(f1); 
 fclose(f2); 
} 
 
  
   
  
void main() 
{ 
  
  
 FILE *f1; 
  
 f1=fopen("o1.txt","r+"); 
 
 findrows(f1); 
 findcols(f1); 
  
 fclose(f1); 
 
 gcsort(1,rows,1); 
} 
  

 
A.3 Code for Multi-Component Encoding 
 
#include<stdio.h> 
#include<stdlib.h> 
#include<conio.h> 
 
void main() 
{ 
 clrscr(); 
 int cols,rows,i,j,k,base1,base2,rem,quo,num,r; 
 FILE *fr,*fw; 
 char c,ch1,ch2,ch3; 
 
 fr=fopen("SING.CPP","r"); 
 fw=fopen("king.cpp","w"); 
 
 cols=0; 
 while(1) 
 { 
  fscanf(fr,"%c",&c); 
  if(c=='0' || c=='1') 
  { 
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   cols++; 
  } 
  if(c=='\n') 
  break; 
 } 
 
 printf("%2d",cols); 
  
 
 /*We reduce the size of each rows of bitmap from 12 bits in each 
   row to 7 bits using multicomponent equality encoded index */ 
 
   rewind(fr); 
   
   rows=0;  
   while(1) 
   { 
  c=fgetc(fr); 
 
  if(c==EOF) 
  break; 
 
  if(c=='\n') 
  rows++; 
   } 
  rows=rows+1; 
  printf("%2d",rows); 
   
  rewind(fr); 
  
  base1=4;  //NOTE base1 is larger of 2 bases 
  base2=3; 
   
 
  for(i=1;i<=rows;i++) 
  { 
  for(j=cols-1;j>=0 ;j--) 
  { 
   fscanf(fr,"%c",&c); 
   fscanf(fr,"%c",&c); 
   if(c=='1') 
   { 
    num=j; 
   } 
  } 
  quo=num/base1; 
  rem=num%base1; 
   
  ch1='0'; 
  ch2='1'; 
  ch3=' '; 
  for(k=base2-1;k>=0;k--) 
  { 
   fprintf(fw,"%c",ch3); 
   if(k==quo) 
   { 
    fprintf(fw,"%c",ch2); 
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   } 
   else 
   { 
    fprintf(fw,"%c",ch1); 
   } 
  } 
     
  for(r=base1-1;r>=0;r--) 
  { 
   fprintf(fw,"%c",ch3); 
   if(r==rem) 
   { 
    fprintf(fw,"%c",ch2); 
   } 
   else 
   { 
    fprintf(fw,"%c",ch1); 
   } 
  } 
  fscanf(fr,"%c",&c); 
  fprintf(fw,"%c",'\n'); 
  } 
 
} 
   
A.4 Code for Synthesizing Student Records  
 
#include<stdio.h> 
#include<stdlib.h> 
 
 
main(int argc,char *argv[]) 
 
{char *year[]={"2000","2001","2002","2003","2004","2005"}; 
char *A[]={"A1","A2","A3","A4","A5","A6","A7","A8"}; 
char *B[]={"B1","B2","B3","B4","B5"}; 
char *C[]={"C2","C5","C6","C7"}; 
char *dual1[8][5]; 
char *dual2[8][8]; 
char *dual3[4][4]; 
char *sing1[8]; 
char *sing2[5]; 
char *all[130]; 
char *last[999]; 
int a,i,c,d,count,j,l,ran,k,ran2,ran3,ran4; 
char name[16]="",idno[12]=""; 
char 
*host[]={"RM","BD","KR","GN","SK","VY","BG","VK","AK","RP","ML","MB"}; 
FILE *f1,*f2,*f3,*f4,*f5,*f6; 
char *dig[]={"0","1","2","3","4","5","6","7","8","9"}; 
f1=fopen(argv[1],"w"); 
f2=fopen(argv[2],"w"); 
f3=fopen(argv[3],"w"); 
f4=fopen(argv[4],"w"); 
f5=fopen(argv[5],"w"); 
f6=fopen(argv[6],"w"); 
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/*generating the disciplines*/ 
 
for(i=0;i<=7;i++) 
for(j=0;j<=4;j++) 
{ 
dual1[i][j]=(char *)malloc(4); 
strcat(dual1[i][j],B[j]); 
strcat(dual1[i][j],A[i]); 
} 
 
for(i=0;i<=7;i++) 
for(j=0;j<=7;j++) 
{if(i!=j) 
{ 
dual2[i][j]=(char *)malloc(4); 
strcat(strcat(dual2[i][j],A[i]),A[j]); 
 
} 
} 
 
for(i=0;i<=3;i++) 
for(j=0;j<=3;j++) 
{if (i!=j) 
{ 
dual3[i][j]=(char *)malloc(4); 
strcat(strcat(dual3[i][j],C[i]),C[j]); 
} 
} 
 
for(i=0;i<=7;i++) 
{ 
sing1[i]=(char *)malloc(4); 
strcat(strcat(sing1[i],A[i]),"PS"); 
} 
 
for (j=0;j<=4;j++) 
{ 
sing2[j]=(char *)malloc(4); 
strcat(strcat(sing2[j],B[j]),"TS"); 
} 
 
k=0; 
 
/* moving all the disciplines into one array pointer*/ 
 
 
for(i=0;i<=7;i++) 
for(j=0;j<=4;j++) 
{ 
all[k]=(char *)malloc(sizeof(dual1[i][j])); 
strcat(all[k], dual1[i][j]); 
free(dual1[i][j]); 
k=k+1; 
} 
 
for(i=0;i<=7;i++) 
for(j=0;j<=7;j++) 
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{if (i!=j) 
{ 
all[k]=(char *)malloc(sizeof(dual2[i][j])); 
strcat(all[k],dual2[i][j]); 
free(dual2[i][j]); 
k=k+1; 
} 
} 
 
for(i=0;i<=3;i++) 
for(j=0;j<=3;j++) 
{if(i!=j) 
{ 
all[k]=(char *)malloc(sizeof(dual3[i][j])); 
strcat(all[k],dual3[i][j]); 
free(dual3[i][j]); 
k=k+1; 
} 
} 
 
for(i=0;i<=7;i++) 
{ 
all[k]=(char *)malloc(sizeof(sing1[i])); 
strcat(all[k],sing1[i]); 
free(sing1[i]); 
k=k+1; 
} 
for (j=0;j<=4;j++) 
{ 
all[k]=(char *)malloc(sizeof(sing2[j])); 
strcat(all[k],sing2[j]); 
free(sing2[j]); 
k=k+1; 
} 
 
printf("discipline gen finished\n"); 
l=0; 
/*generating the id last three*/ 
for(i=0;i<=9;i++) 
for(j=0;j<=9;j++) 
for(k=0;k<=9;k++) 
{if(i!=0||j!=0||k!=0) 
{ 
last[l]=(char *)malloc(3); 
strcpy(last[l],dig[i]); 
strcat(strcat(last[l],dig[j]),dig[k]); 
l=l+1; 
} 
} 
 
/* 
for(i=0;i<=998;i++) 
printf("%s\n",last[i]); 
*/ 
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//============================================================ 
/*generating file 1  */ 
 
count=0; 
c=0; 
d=15; 
for(i=0;i<2000000;i++) 
 { 
if (count<d) 
  {  a=97+(int)(26.0*rand()/(RAND_MAX+1.0)); 
name[count]=(char)a; 
 count=count+1; 
 } 
else 
{if(c>99) 
break; 
name[count]='\0'; 
ran=0+(int)(12.0*rand()/(RAND_MAX+1.0)); 
ran2=0+(int)(6.0*rand()/(RAND_MAX+1.0)); 
ran3=0+(int)(998.0*rand()/(RAND_MAX+1.0)); 
ran4=0+(int)(121.0*rand()/(RAND_MAX+1.0)); 
strcpy(idno,year[ran2]); 
strcat(idno,all[ran4]); 
strcat(idno,last[ran3]); 
strcat(idno,"\0"); 
fprintf(f1,"%s %s %s\n",idno,name,host[ran]); 
count=0; 
d=(int)(1+(int)(15.0*rand()/(RAND_MAX+1.0))); 
c=c+1; 
} 
} 
fclose(f1); 
printf("finished generating 1st file\n"); 
} 
 
A.5 Code for Binning Algorithms 
 
//query.h 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
extern int b_num,b_width,rec_no,max,min; 
int **bin_ranges; 
int numberofbins; 
int rec_read; 
int temp;   
int b_num,b_width,rec_no,max,min; 
FILE *OutFile; 
 
struct ind 
{ 
 int seek; 
 int recNO; 
 }; 
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typedef struct ind inde; 
 
void *binning(char *[]); 
unsigned int power(int,int); 
void queries(char *[],unsigned int *(*)[]); 
void categorize(unsigned int *(*)[],int,FILE *); 
void create_indexFile(char *[]); 
void print_record(int,int,int,char *[],int,int,int); 
int id_num(char *); 
int compar(const void *,const void *); 
int bitcount(unsigned int x); 
void Print_Binary(int); 
void Print_Bin_Byte(int); 
 
//main.c 
 
#include "query.h" 
 
main(int argc,char *args[]) 
{ 
int id,rm,temp; 
int i=0; 
unsigned int* (*bin)[]; 
void *tmp; 
 
bin=binning(args); 
tmp=bin; 
queries(args,bin); 
} 
 
//Index of data file 
 
#include<stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
struct ind 
{ 
 int seek; 
 int recNO; 
 }; 
typedef struct ind inde; 
 
main(int argc, char *argv[]) 
{ 
 inde i_w, i_r; 
 char ch,id[40],name[40],bhawan[2]; 
 int rec_read = 2,record=0,n=0; 
 FILE *recFile = fopen(argv[1],"r"); 
 FILE *indexFile = fopen("index","w"); 
 
 i_w.seek = ftell(recFile); 
 i_w.recNO = 1; 
   fwrite(&i_w,sizeof(i_w),1,indexFile); 
 while((ch=getc(recFile))!=EOF)  
 { 
  if(ch=='\n') 
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  { 
   i_w.seek = ftell(recFile) + 1; 
   i_w.recNO = rec_read; 
   rec_read++; 
   fwrite(&i_w,sizeof(i_w),1,indexFile); 
   } 
  } 
  fclose(indexFile); 
  
///RETRIEVAL OFRECORDS 
 printf("TOTAL RECORDS = %d", rec_read-2); 
rread:  
 printf("\nEnter the Record to be retrieved :"); 
 scanf("%d",&record); 
 if(rec_read-2 < record || record <= 0) 
 { 
  printf("RECORD DOESN'T EXIST\n"); 
  printf("\npress 1 to try again or 0 to exit:"); 
  scanf("%d",&n); 
  if(n == 0) exit(1); 
  else goto rread; 
  } 
 fopen("index","r"); 
 do 
 { 
  fread(&i_r,sizeof(i_r),1,indexFile); 
  }while(i_r.recNO!=record); 
 
 fseek(recFile,i_r.seek-1,0); 
 if(record == 1) rewind(recFile); 
 fscanf(recFile,"%s %s %s",id,name,bhawan); 
 printf("%s  %s  %s\n",id,name,bhawan); 
 printf("\npress 1 to try again or 0 to exit:"); 
 scanf("%d",&n); 
 if(n == 1) {fclose(indexFile);goto rread;} 
 else exit(1); 
 fclose(recFile); 
 fclose(indexFile); 
 } 
 
 

 
  

 



 �
��

 
Biography of the Supervisor 
 
Dr. Navneet Goyal is an Associate Professor in the Department of Computer Science and 

Information Systems at BITS, Pilani. He is also Assistant Chief of Computer Assisted 

House Keeping Unit at BITS, Pilani.  

 
Dr. Goyal obtained his doctorate from Indian Institute of Technology, Roorkee in 1995. 

After completing his Ph.D, he joined BITS-Pilani in 1995, where he has been involved in 

teaching, research and administration. He has published more than 15 research papers in 

national and international journals in Applied Mathematics, Databases, Data 

Warehousing, and Data Mining. He presently teaches courses on database systems, data 

warehousing, and data mining to undergraduate and graduate students at BITS. He also 

holds a PG Diploma in Health Systems Management from Tulane University, USA. 

 
 
Biography of the Candidate 
 
Yashvardhan Sharma has completed his first degree from BITS-Pilani, India with first 

division in the year 1999 and M.E. (Software Systems) from BITS-Pilani with first class 

in the year 2001. He has a teaching experience of over 8 years to undergraduate and 

graduate students at BITS-Pilani. Currently he is working as Lecturer in Computer 

Science and Information Systems group at BITS-Pilani. His areas of interest include Data 

Warehousing Performance Enhancing Techniques, Data Mining, Object Oriented 

Software Engineering and Application Programming.  

 
 
 


	COVER PAGE.pdf
	CERTIFICATE.pdf
	Complete-17-6-08.pdf

