
Formalization Of Vertical

Transformations In A Model Based

Design Framework

THESIS

Submitted in partial ful�llment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
by

Anup Kumar Bhattacharjee
(Student ID: 2002PHXF406)

Under the Supervision of

Prof. R.K. Shyamasundar
School of Technology & Computer Science
Tata Institute of Fundamental Research

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

2008

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI RAJASTHAN

CERTIFICATE

This is to certify that the thesis entitled Formalization of Vertical Transforma-

tions in a Model Based Design Framework and submitted by Anup Kumar

Bhattacharjee, ID.No.2002PHXF406 for award of Ph.D. Degree of the Institute, embod-
ies original work done by him under my supervision.

Name: Prof. R.K. Shyamasundar
Designation: Sr. Professor
School of Technology & Computer Science

Tata Institute of Fundamental Research

Mumbai

Date :

Acknowledgment

This research work would not have been possible without support from many people.

First of all, I would like to thank my supervisor, Prof. R. K. Shyamasundar for encour-
aging and guiding me throughout this work. I remember his �rst talk at a tutorial at TRDDC,
Pune (in 1992) where he introduced me to the world of synchrony and I fell in love with Es-
terel. He is a very gifted and dedicated researcher. I am fortunate to have worked under him
and I only wish that a small portion of his talents has touched me during our many meetings
and discussions together. He has been always kind and patient with my shortcomings. I could
never give my best as he expected.

Next to him, I would like to thank my superior colleague, Mr. S. D. Dhodapkar,
Outstanding Scientist and Head, Software Reliability Section, BARC. He inducted me into
the world of computer science after I joined BARC. It was his initiative that I �rst went into
learning lex and yacc when my contemporaries were learning C. He is a man of remarkable
capability of seeing things which most of us would have overlooked. I owe him for providing
me the best support during my formative years in BARC. I wish to thank him for encouraging
me to take up this research work and providing me with all organizational support.

I wish to thank BITS, Pilani for providing me �nancial support during this work without
which this would not have been possible. In particular, I wish to thank Prof. V.S. Rao for
encouraging me during my qualifying interview and later providing me support from BITS. I
wish like to thank Prof Rahul Banerjee and and Prof Sundar Balasubramanian of Department
of Computer Science & Engineering, for agreeing to be members of my Doctoral Advisory
Committee. Their careful reading and comments have increased the quality of the thesis. I
wish to thank Prof Ravi Prakash, Dean Research & Consultancy Division and Prof. Regalla
Srinivasa Prakash, Asst. Dean, Research & Consultancy Division for their support from BITS.
I also wish to thank Mr. Dinesh Kumar, Mr. Sharad Shrivastava and other sta� members of
Research & Consultancy Division who directly or indirectly assisted me during this period.

I wish to thank Mr. B.B. Biswas, Head Reactor Control Division, BARC, Mr. R.K.
Patil, Associate Director (E&I Group), BARC and Mr. G.P. Srivastava, Director (E&I Group),
BARC, for providing me the organizational support in BARC. I wish to thank Mr. R.K. Patil,
Associate Director (E&I Group), BARC for taking personal interest in my research work. I
also wish to thank Mr. G. Govindarajan ,Group Director , (E&I Group), BARC (now retired)
for allowing me to take up the doctoral work.

I wish to thank Prof. S. Ramesh of IIT Bombay (now with GM R &D Lab, Bangalore)
for constructive discussions during many of our collaborative projects and explaining me few
�ner aspects of Synchrony. I also wish to thank him for encouraging me to take up academic
research work and register for Ph.D.

Thanks are also due to my colleagues Mr. Asif Iqbal (now with Honeywell) , Mr. Ajith
K. John and Mr. Amol Wakankar who helped me with some of the implementations. It has

been wonderful to work with all of them as they made the lab environment lively.

I wish to thank my parents for providing me with good education and making me a good
human being. They always gave me the best that they could a�ord.

I wish to thank my parent-in-laws for supporting me. They are wonderful people who
sacri�ced many things for us and supported me during all my di�cult days of parenthood.

I also wish to thank my elder brother (Dada) who did lot of hand holding during my
school days. He taught me Physics and Mathematics during my formative years and initiated
me into the world of scienti�c learning.

My son Arijit deserves lot of thanks for being a wonderful son. I am grateful to him for
having patience with me when I did not spend the time that I should have spent with him. He
kept us in good humour with ∀ and ∃.

Lastly, no word of appreciation is good enough for my wife Ruby. She supported me
during most di�cult days and kept me in good spirit. She is a brave lady who could face many
daunting task and has a spirit that never gives up. I cannot repay my dues when she su�ered
the most during our early days of parenthood while I was away at IIT Kharagpur.

Abstract

Model-based design methods emphasize concurrency, communication abstractions, and
temporal aspects, rather than only procedural interfaces. A successful model based design
is a methodology based on mathematical and visual methods and addresses the problems
associated with designing complex information and control systems. The model-based design
paradigm is signi�cantly di�erent from the traditional design methodology. Rather than using
complex structures and extensive software code, designers can now de�ne advanced functional
characteristics using building blocks which are de�ned in terms of primitive functions having
precise meanings. These built models along with appropriate simulation, automatic code
generation and veri�cation tools can lead to rapid prototyping, software testing and veri�cation.

In this thesis, we address few issues in a model based design framework concerning enrich-
ment of modeling languages, transformation of the modeling language to a framework which
eases veri�cation and code generation, detection of run-time execution errors and validation
of translation from high level language to low level implementation.

The key areas of focus in this thesis are:

� Formalization of translation of the graphical (UML oriented) notations typically used in
in model based designs.

� A language to model choreography of service oriented computing for distributed systems.

� Type system of weakly typed language like C to detect run time errors.

� A scheme for translation validation to validate the assembly code produced by the
compiler.

We show formalization of two graphical notations namely Statecharts and Activity Dia-
grams which are used in model based design methodologies. Statechart is a class of hierarchal
statemachine and is one of the modeling language used for specifying the reactive behaviour
of an entity based on it's response to events. Statecharts are commonly used in the spec-
i�cation and design of embedded systems. However no formal treatment of the semantics
of Statecharts has been given as a part of the OMG standard. Without a formal semantics,
speci�cations in Statecharts are not amenable to analysis and automatic code generation.

Activity Diagram used in UML and STATEMATE encapsulates activities performed by
the system and is used to show graphically a process view of a system in terms of interactions
between processes. It can be used to depict the high level processing view of the system which
is a composition of distributed components, each performing local activities.

We show how these visual notations can be realized in a synchronous language frame-
work. This underlying synchronous semantics allows veri�cation of the models created in

these notations. It also allows high level imperative style code generation using compilers
for synchronous languages. Since the model can be veri�ed and code is generated from the
veri�ed model using provably correct transformation, our approach addresses the concerns of
correct-by-construction approach in vertical model transformation.

The traditional semantics proposed in OMG standards lacks features to model reactive
behaviour of work�ows. It also needs semantic enrichment when each of the activities is prone
to failure and need compensating actions. Such extensions have wide applications in modeling
and debugging complex business processes. We have proposed extension to Activity Diagrams
to model failure and compensations.

Service oriented computing is a new emerging paradigm for distributed computing. Ser-
vices are autonomous computational entities and web services are the most common application
of service oriented computing. The terms orchestration and choreography are used to de�ne
two di�erent �avors of service oriented computing. While orchestration is used to describe a
single view point model, choreography is about specifying the service orchestration in a global
model. Choreographs de�ne the sequence of exchanging messages between two (or more)
independent participants or processes by describing how they should cooperate. We focus on
structuring choreography as a set of message exchanges among various participating roles as
conversations. In this thesis, we also de�ne a language framework, which integrates orches-
tration with scripting to abstract conversations leading to an e�ective modular speci�cation
of service choreography.

We address the inadequacy of a type system in a language like C popularly used in
embedded system design as a part of the back end tool chain. We show a method of de�ning
a type system of C in a deductive framework. The method is based on a novel model of C
programs: each C program is modeled as a typed transition system encoded in the speci�cation
language accepted by PVS theorem prover. Since the speci�cation is strongly typed, proof
obligations are generated, for possible type violations in each statement in C, when loaded
in the PVS theorem prover which need to be discharged. The technique does not require
execution of the program to be analysed and is capable of detecting typical type errors such
as array bound errors, divide by zero, arithmetic over�ows and under�ows etc.

We describe a methodology and a system for the validation of translation of a simple
HLL to assembly language programs. Our method consists of converting the high level lan-
guage (HLL) program and its object code to a common semantic representation such as Fair
Transition System (FTS), and then establishing that the object code is a re�nement of the
HLL program. We show that the the proof of re�nement can be performed using a theorem
prover. In our examples, we have used Stanford Temporal Prover (STeP) as the theorem
prover. The proposed approach also has the additional advantage that the embedded system
remains una�ected by compiler revisions/updates.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.3 Bene�ts of the Approach . 6

1.4 Contribution of the Thesis . 7

1.5 Outline of the Thesis . 8

I Visual Modeling Notations for Reactive & Work�ow Systems:
Formalization and Realization 9

2 Statecharts : Visual Modeling Notation for Reactive Systems 10

2.1 Introduction . 10

2.2 The Synchronous Approach . 11

2.2.1 A Brief Introduction to Esterel 13

2.3 Components of a Statechart . 14

2.4 STATEMATE Semantics . 15

2.5 Formalization of STATEMATE Semantics of Statecharts 15

2.5.1 Synchronous STEP Semantics . 18

2.6 Summary . 20

3 Realization of Statecharts in the Textual Formalism of Esterel 21

3.1 Introduction . 21

3.2 Structure of the Translator . 21

3.3 Semantic Transformation of Statecharts into Esterel 22

i

3.3.1 AND-OR Tree Representation of Statecharts 22

3.3.2 Node-Labeling Algorithm . 24

3.3.3 Labeling for Transition Con�ict Resolution 25

3.3.4 Structure of the Esterel Code . 25

3.3.5 Esterel Code Generator . 27

3.4 Code-Generation Algorithm . 30

3.4.1 Algorithm:GenCode . 31

3.4.2 Algorithm : TranslateTransition . 33

3.4.3 Generation of STEP signal . 34

3.5 History . 35

3.6 Summary . 36

4 Visual Formalism for Communicating Reactive Systems 37

4.1 Introduction . 37

4.2 Communicating Statecharts . 38

4.2.1 Synchronous Communication State 38

4.2.2 Asynchronous Communication State 39

4.2.3 Modeling in CS: An Example of a Simple Plant Controller 41

4.3 Model Veri�cation for Safety & Liveness . 42

4.3.1 Scheme for Veri�cation . 42

4.4 Model of 3-node leader election ring . 45

4.4.1 Veri�cation for Correctness . 46

4.5 Model Code Generation . 47

4.6 Implementation of a Tool . 50

4.7 Summary . 52

5 Modeling Business Processes through Activity Diagram 53

5.1 Introduction . 53

5.2 Activity Diagrams: Interpretation in Process Algebra 55

5.2.1 Synchronisations in Various Control Flow Patterns 55

5.2.2 Handling Interrupts . 57

5.3 Modeling Business Processes as Activity Diagram 59

5.4 Modeling Failures in Activity Diagrams . 60

5.4.1 Semantics of Activity Diagrams with Failures in Enriched CSP Frame-
work . 61

5.5 Summary . 64

6 Implementation of Activity Diagrams in Esterel 65

6.1 Introduction . 65

6.2 Basic Constructs of Activity Diagram and their Implementation in Esterel . 66

6.2.1 Modeling Merge Node . 66

6.2.2 Modeling Decision Node . 68

6.2.3 Modeling ForkJoin Node . 68

6.2.4 Modeling Exception . 71

6.3 Activity with Data and Nesting . 72

6.4 Communication in Activity Diagrams . 74

6.5 Simulation and Code Generation . 74

6.5.1 Code Generation . 75

6.6 Veri�cation . 76

6.7 Implementation Model for Compensating Activities 76

6.8 Summary . 77

7 A Speci�cation Language for Choreography in Distributed Systems 80

7.1 Introduction . 80

7.2 Background . 81

7.3 Modeling conversations as patterns of communication among processes 82

7.4 ScriptOrc: A Language Abstraction for Choreography 85

7.4.1 Operational Semantics of ScriptOrc 88

7.4.2 Clock Expressions in ScriptOrc . 90

7.5 Choreography of Speaker, hotel and Flight 90

7.6 Summary . 92

II Type Correctness and Translation Validation of Model Gen-

erated Code 93

8 Model Transformation: Type Correctness of High Level Language Code 94

8.1 Introduction . 94

8.2 Type Inferencing Method . 95

8.3 Modeling C Programs in PVS . 98

8.3.1 Modeling Datatypes of C in PVS . 98

8.3.2 Modeling Execution Semantics of C in PVS 100

8.4 Proving TCCs in PVS and Tracing RTEs to Source Code 103

8.5 Example . 103

8.6 Summary . 105

9 Translation Validation of a HLL Compiler 107

9.1 Introduction . 107

9.2 Translation Validation: An Overview . 109

9.2.1 Fair Transition System . 110

9.3 An Overview of the OCV Method . 110

9.4 Formal Description of the OCV Method . 111

9.4.1 Correctness of Translation . 112

9.4.2 Proof of Validation using STeP . 114

9.5 Illustrative Example with Translation Error 116

9.6 System for OCV: Implementation Features 120

9.6.1 Generating SPL/FTS for the HLL Source 121

9.6.2 Generating FTS for the Object Code 122

9.7 Summary . 123

10 Conclusions, Future Work and Main Contribution 124

10.1 Conclusion . 124

10.2 Limitations and Future Work . 125

10.3 Main Contribution . 126

References 128

A Representation of Statecharts and Data Structures used in STATEST 137

B Brief Introduction to CSP, PVS and STeP 144

B.1 Brief Discussion on CSP . 144

B.2 A Brief Discussion on PVS . 145

B.3 A Brief Discussion on STeP . 146

Publications 148

Biodata of Candidate & Supervisor 150

List of Figures

2.1 An Example Speci�cation of a Real Time System 12

2.2 Statechart Speci�cation of a Stopwatch . 14

3.1 Schematic Diagram of the Translator . 22

3.2 Statechart and its AndOr Tree Representation 23

3.3 Translation of T4 Type Transition . 30

3.4 Cyclic Transitions . 35

4.1 Rendezvous sender and receiver states . 39

4.2 Asynchronous communication sender and receiver states 40

4.3 A Simple Bottling Plant . 41

4.4 Simple Example showing model translation 43

4.5 Leader Election Protocol: Nodes and channels connectivity 46

4.6 A typical node modeled in CS . 47

4.7 Rendezvous sender and receiver states . 48

4.8 Tool Architecture . 51

4.9 Tool Editor . 51

4.10 The use of CSPROM in formal veri�cation 52

5.1 Simple Activity Diagram . 54

5.2 Basic Constructs of Activities . 56

5.3 Activity with Exception Handlers . 58

5.4 Activity with Yielding Points . 58

5.5 Activity with Failure . 59

5.6 Order Processing . 59

vi

5.7 Activity with Compensation . 61

5.8 Composition of Compensating Activities . 61

5.9 Stack of Compensation Activities . 63

5.10 Activity with Compensation . 64

6.1 Simple node . 67

6.2 Merge Node . 67

6.3 Decision Node . 67

6.4 Fork Join Node . 68

6.5 Reentrant Node . 68

6.6 Exception Node . 72

6.7 Object node with data . 73

6.8 Activity with Nesting . 73

6.9 Object node with communication . 75

6.10 Activity to Code Mapping . 75

6.11 Veri�cation Screen . 78

6.12 Output of Veri�cation . 78

6.13 Mode Automata for Activity with Compensation 79

6.14 Composition of Mode Automata . 79

7.1 Orchestration+Choreography . 81

7.2 Request and Request-Response Operations 87

8.1 Process of Type Checking C Programs . 96

8.2 Example Program . 97

8.3 Annotated Program . 97

9.1 Two Main Steps from Speci�cation to Realization 107

9.2 Overall Object Code Veri�cation Scheme . 111

9.3 Transition System for the Abstract System 112

9.4 Transition System for the Concrete System 113

List of Tables

7.1 Syntax of ScriptOrc . 86

8.1 Formal annotations and their syntax . 98

8.2 The C constructs and their PVS transformations 102

8.3 The TCCs, their signi�cance and proofs for function average 105

9.1 HLL-SPL mapping . 121

9.2 Assembly Instructions to FTS mapping . 122

viii

Chapter 1

Introduction

1.1 Motivation

Designing software for safety-critical systems such as those used in aerospace, control of
nuclear reactors, medical systems, large distributed web applications etc., is a complex and
challenging task. This requires a systematic approach involving modeling, analysis and simula-
tion techniques as have been used bene�cially in other branches of engineering. This approach
supported by veri�cation is expected to achieve improvements in dependability of software
designs.

Model-based architecture and design [91] methodology is increasingly becoming popular
in software used in safety-critical applications. A model enables to analyse the properties
of a proposed design solution for a system before actually realising it in software and/or
hardware. The methodology is based on the representation, composition, and manipulation of
models during the design process. An emerging common requirement in model-based software
and systems design is that modeling languages need to be domain-speci�c (Domain Speci�c
Modeling Language (DSML)), o�ering software/system developers abstractions and notations
that are tailored to characteristics of their application domain.

Models once created should be amenable to rigorous analysis (model analysis) to check
that their behaviour meet the actual system requirements. It is also essential to be able to
generate e�cient implementation (model based code generation) of the system from the model.
Model analysis and model-based code generation require the precise semantics of modeling
language. One of the most commonly used modeling language in software speci�cation and
design is Uni�ed Modeling Language (UML) [92]. The Uni�ed Modeling Language (UML)
is a general-purpose visual modeling language that is designed to specify, visualize, construct
and document the artifacts of a software system. UML is used in specifying software systems
from embedded applications to business process applications. Considerable e�ort is required
to ensure the correctness of the speci�cation in terms of simulation and testing. However
simulation and testing only show the desired behaviour but cannot prove the absence of an

1

undesirable behaviour. Approaches based on formal veri�cation techniques have been found
to be successful in handling such requirements and it is being increasingly used (particularly
in hardware)to �nd corner cases (di�cult bugs) as a complementary e�ort to testing. It is
required to have a rigorous semantics behind such graphical notations which allows rigorous
veri�cation of the models. Additionally, if the actual implementation of the speci�cation is not
derived from the model on which veri�cation is done, the implementation will have potential
to diverge from the speci�cation. Hence there is a requirement of automatic code generation
from the models through a process of model transformation.

Model based design typically works as a phase wise model transformation and re�nement.
The transformation works at two levels: Vertical and Horizontal. Vertical transformation is
typically synthesis of a new artifact from a description at a more abstract level. Horizontal
transformation is more like refactoring an implementation for e�ciency or portability. Contin-
uous veri�cation in these phases needs to be a part of the model based design, which ensures
correctness-by-construction [52]. The veri�cation requirements are with respect to

1. Correctness of the model with respect to certain system invariants.

2. Correctness of mapping model to a high level language implementation.

3. Type correctness of the implementation.

4. Correctness of the translation to a machine language.

These are most demanded by software developments in safety-critical systems. As de-
mands for safety-critical software increase, future requirements will necessitate strategies to
support these in a tool driven environment and hence needs to be addressed as part of the
vertical transformations in a model based design environment.

While UML is rapidly becoming the industry standard for modeling, its standard de�nition
does not contain a precise semantics which helps in model veri�cation and code generation.

The main objective of this thesis is to provide a formal interpretation of some of the
graphical notations typically used in UML, within a framework of synchronous methods and
process calculus. This will address requirement of precise speci�cation of UML models and
can support continuous veri�cation. It will allow formal model analysis and model-based
code generation in a vertical model transformation framework. We show formalization of two
graphical notations namely Statecharts [56, 57] and Activity Diagrams [92] which are used in
model based design methodologies. Statecharts and Activity Diagrams are extensively used
in UML notations, although the actual syntax used in UML are slight variation of the syntax
used for this thesis. We also discuss a formal language based on a reactive framework for
describing choreography in distributed service oriented systems.

As a part of the vertical transformation, the high level model is progressively transformed
into a High Level Programming Language (HLL) like C which can be e�ciently compiled
into a machine executable binary. Such model generated code should be type safe. This

2

is particularly true if automatic code generation from models is employed in safety-critical
systems. One of the issues with types arise because of arithmetic with �nite precision. The
inability of computers to represent an in�nite range of values is well known. For example, in
the case of signed or unsigned integers, it is useful to de�ne a valid range, within which all
values are guaranteed to lie after the result of an assignment or initialization on that integer
type. It is necessary to de�ne a type system policy to be enforced in the event that a resulting
assignment or initialization to variables through evaluation of expressions lie inside the valid
range.

It is important to ensure that the High Level Language (HLL) code generated from the
model is translated correctly to a machine language by a compiler. In several key safety-
critical embedded applications, it has become mandatory to verify the process of translation
by compilers since usually compilers are only certi�ed rather than veri�ed. We have explored
the application of Translation Validation [98] in the veri�cation of compiled code against the
input source program.

This thesis, in addition to the formalization of the Statecharts, Activity Diagrams, also
addresses the type correctness issues of the high level code from the model and correctness of
translation to machine language implementation.

1.2 Related Work

Several domain speci�c notations and methods have been developed to help the designer
specify clear and unambiguous system requirements, verify that the requirements are consis-
tent and correct, and verify that the re�ned design meets its speci�cation. Notable among
these are Uni�ed Modeling Language(UML) [92], Systems Modeling Language (SysML) [69],
Simulink/Matlab [61] and Business Process Modeling Notation(BPMN) [93]. Most of the
notations like that of UML, which are used in industry are based on graphical syntax. However
many of these notations do not have a rigorous semantics because of which the speci�cations
created using these cannot be subjected to rigorous analysis. The advantage of such anal-
ysis notably results in proving some of the required design properties of safety and liveness
[29]. Automatic 100% code generation from the modeling language is also not possible if the
modeling language lacks a precise semantics. Lack of semantics also leads to model and code
going out of sync, if there is a change in requirement or a change in manually developed code
from the model.

The area of research in semantics of visual languages for state based model driven de-
sign has been very active during the last decade [76, 57, 4, 55, 36]. Andre [4] has presented
a formal semantics of hierarchical statemachines in a synchronous framework. However the
presentation does not include the complete syntax of Harel's Statecharts [57]. Formal se-
mantics of Statecharts to that presented here covers the complete syntax (restricted to input
deterministic class) of Statecharts.

The suitability of activity diagrams for modeling business process has been argued in

3

[109]. To the best of our knowledge, the �rst formal semantics of UML Activity Diagram
(UML AD) was proposed by Eshuis [41, 42]. Eshuis proposes the semantics at the following
two levels :Requirement Level and Implementation Level. The �rst level is based on Statechart
like semantics and is transformed into a transition system for model checking by NuSMV
[30]. The second level is based on STATEMATE [54] semantics of Statecharts extended with
properties to handle data. The semantics covers activity charts of UML 1.5 but not of activity
diagrams of UML 2.01. A token �ow semantics based on Petri Nets was proposed in [106]
by mapping activities into procedural Petri nets, which excludes data type annotations but
includes control �ow. Storrle [105] has de�ned mappings to procedural Petri nets to prevent
multiple calls which otherwise would result in in�nite nets. However these approaches do
not address the automatic code generation as may be required in a tool driven environment.
Semantics based on synchronous language was proposed in [15] which allows a validated code
generation from the notation.

A process algebraic formulation of work�ow is proposed in [117]. A theoretical foundation
of �ow composition languages is given by Bruni in [24]. Fu [48], presented an approach of
converting BPEL Web services into guarded statement and further into PROMELA/SPIN for
veri�cation. Similar approaches based on Finite State Processes (FSP) [80] and CCS were
presented in [46] and [74]. However they didn't consider failure and subsequent compensation
and hence not suitable for modeling business processes. Business Process Execution Language
(BPEL) support the notion of compensation in case of a service failure. An activity can
be associated with another activity that acts as its compensation action. This compensation
handler can be invoked either explicitly or by the default compensation handler of the enclosing
scope. In this sense, UML Activity Diagrams need to be enriched with additional semantic
constructs to model such compensating actions. The extensions of Compensating Activity
Diagrams proposed in this thesis is inspired by Hoare [107] and is based on a �ow composition
language introduced in [25]. The notion of compensation was perhaps �rst introduced as
Sagas in handling Long Running Transactions by Garcia-Molina and Salem [49]. A formal
model for compensable transactions has been de�ned by Li [78]. Veri�cation approaches for
incorporating compensating transactions were reported in [5, 40, 45].

Orchestration and choreography are emerging standards for creating business processes
from multiple Web services. Solutions are required to have a good modeling support to specify
such applications. The idea of Scripting as an abstract language for modeling conversation
based on communication patterns was presented in [47]. Research in these area is very active
in terms of orchestration languages based on a process calculus model [73, 86, 114] and
veri�cation issues [38, 40].

Another area of focus in this thesis was to formulate a formal language to capture the
global choreography in distributed service oriented computing. WS-CDL [111] is the �rst chore-
ography language proposed by W3C in 2005. WSCI [110] is another language targeted toward
building a global interconnection model linking service operations but is not actually a chore-

1It should be pointed out that UML 2.0 is a signi�cantly re-engineered version of UML 1.5, particularly
in the context of activity diagrams.

4

ography language. An excellent theoretical framework for service choreography is discussed
in [99]. Orchestration is the prime language abstraction supported by various programming
languages such as BPEL [64], BPML [90]. Another elegant formalism referred to as Orc [86]
has been proposed for orchestration. Conformance validation between Choreography and Or-
chestration has been reported in [77]. As pointed out in [86], a reactive semantics for web
services will provide a good basis for static and dynamic resource discovery and exploitation as
it leads to good dynamic monitoring schemes. The later is also one of the aims of our study
and proposal.

We also focus our attention to type correctness and correctness of translation of high
level code via model transformation. Most of the model based design tools produce High Level
Language (HLL) programs e.g., in C Language. It is well known that C has weak type system
and cannot guarantee absence of Run Time Error(RTE). Static Analysis tools like SPLint [43]
are very useful in detecting RTEs in C, related to bu�er over�ow and pointer arithmetic but
they do not address RTEs associated with arithmetic expressions. The program supervision
tools e.g. those built using Valgrind [89] require target program execution and su�er from the
same limitations as that of testing. Semantic Analysis based on Abstract Interpretation [33]
is a more rigorous approach to detect runtime errors statically. This technique is based on
data �ow analysis which computes program properties by converting programs into equations
over data types represented as lattices and then solving these equations over these lattices.
Tools such as PolySpace [62], ASTREÉ [32] use the abstract interpretation technique for the
detection of runtime errors in C programs. However these tools work on an abstract model
(sound but not complete) of a program and are prone to false positives which are possible
errors requiring further e�ort to investigate. Commercial tools also do not allow tuning to
reduce false positives. There are also excellent research works on software model checking
like BLAST [58], SLAM [8] etc., which are used for checking speci�cations related to software
interfaces, shared resources in device drivers etc. These tools model check speci�ed property
and do not speci�cally address the issues of arithmetic runtime errors in a global manner.

It has remained a grand challenge to establish the correctness of a compiler [59]. For
establishing the correctness of a compiler, one has to prove that the compiler always produces
target code that correctly implements the source code. Owing to the intrinsic complexities of
compiler veri�cation, an alternative referred to as Translation validation has been explored in
[98]. In this approach, each individual translation (i.e. a run of the compiler) is followed by a
validation phase which veri�es that the target code produced on this run correctly implements
the source program. Such a possibility is particularly relevant for embedded systems where
there is a need to execute a �nite set of target programs. It must be pointed out that the
validation task becomes increasingly di�cult with the increase of sophistication and optimiza-
tions methods like scheduling of instructions as in RISC architectures or methods of code
generation/optimization for super-scalar machines[88]. In [98], the authors demonstrated the
the practicability of translation validation for a translator/compiler that translates the syn-
chronous language Signal to C without any optimizations1. We have demonstrated in [14] the
application of translation validation in validating translations of High Level Language (HLL)

1In [97], extension of the approach for TNI Signal compiler is explored.

5

compilers like C and Ada for a restricted class of programs.

1.3 Bene�ts of the Approach

Model-based design methods emphasize concurrency, communication abstractions, and tem-
poral properties, rather than only procedural interfaces. A successful model based design is a
methodology based on mathematical and visual methods and addresses the problems associated
with designing complex information and control systems. The model-based design paradigm
is signi�cantly di�erent from the traditional design methodology. Rather than using complex
structures and extensive software code, designers can now de�ne advanced functional charac-
teristics using building blocks which are de�ned in terms of primitive functions having precise
meanings. These built models along with some simulation tools can lead to rapid prototyping,
software testing and veri�cation. For example, domain-speci�c models for embedded systems
might represent physical processes using ordinary di�erential equations [61], signal processing
using data�ow models [72, 50], and decision logic using �nite-state machines (FSM)[[12].
Model-based design methods address system speci�cation, model transformation, synthesis of
implementations, model analysis ,validation, execution, and design evolution. Model based
design methodology is now also being sought and advocated for large distributed software
development for managing business processes.

Model-based design of software uses formal, composable and manipulable models in the
design, implementation and system integration process. Modeling languages introduce layers
of abstractions in the design �ow that are synergistic with the design objectives and the nature
of the system to be designed. This is partly achieved by meta-modeling languages and meta-
models describing the abstract syntax (concepts, relationships and well-formedness rules) of
such modeling languages.

Synchronous language framework [51, 11, 75] is a sound methodology to address em-
bedded software and hardware design, validation, and implementation. The advantage lies in
rigorous mathematical semantics of synchronous languages, which allows one to argue about
the consistency and correctness of the model and it's correct realization as a compilable im-
plementation. The overall idea is to generate correct-by-construction [52, 53], deterministic
implementation from high-level rigorous speci�cations. The advantage is in increasing qual-
ity while decreasing design and validation costs. In the correct-by-construction approach the
process of software development is treated as in other branches of engineering, and are based
on development of mathematical models, design, veri�cation and re�nement. A system is
deterministic, if it always reacts in same way to the same inputs occurring with the same
timing. On the contrary, a nondeterministic system can react in di�erent ways to the same
inputs, actual reaction depending on internal choices or computation timings. It is known that
determinism is a must in safety critical system software.

A sound methodology is most sought after in the development of control applications like
aerospace, nuclear, chemical, automotive and robotic applications. It is also being increasingly

6

used in development of software used in business processes involving transactions. It provides
an e�cient approach for the �ve key elements of the development process cycle ("V" diagram):
Requirements capturing, Speci�cation, Development, and Deployment of the system, thus
integrating all these phases and providing a common framework for communication throughout
the entire design process. To support this, it is bene�cial to have a sound framework to model,
verify and derive the implementation seamlessly directly from the speci�cation.

1.4 Contribution of the Thesis

The main contribution of the thesis are highlighted below:

1. Formalization of semantics of Statecharts based on an imperative synchronous semantics
of Esterel : We present algorithms [18] [RESS01] for the translation of Statecharts
into Esterel. This allows us to use other backend tools in the synchronous family for
veri�cation and high level code generation for implementation .

2. Extending the Statecharts to model communication: We present an extension in Stat-
echarts to model communication through channels. The new language allows us to
model communicating reactive systems. We also present an alternate translation [66]
[SAFECOMP2003] scheme to Promela used in the veri�cation tool SPIN. We also show
how such a speci�cation can be realized [19] [IT2008] in the imperative synchronous
language Esterel.

3. Formalization of Activity Diagrams in Esterel: We present a reactive semantics of the
various activity patterns using Esterel. We show that this semantics allows us to carry
veri�cation and code generation using tools used for family of synchronous languages
[15] [ICDCIT2005].

4. Compensating Activity Diagrams: Although the Activity Diagrams can model most of the
work�ow patterns used in business process, however it cannot model failures in business
processes. We show a possible extension of activity diagrams to model compensations
required in such business process logic [JOT].

5. Language to Model Choreography in Distributed Service Oriented Computing: Chore-
ographs de�ne the sequence of exchanging messages (conversations) between two (or
more) independent participants or processes by describing how they should cooperate.
In [16, 17], we have explored the use of Scripts in describing conversational aspect of
choreography. We show a formal language framework which integrates orchestration
with scripting to abstract conversations leading to an e�ective modular speci�cation of
service choreography [16], [17] [APSCC08,ICWS08].

6. Type systems for C: Most of the model based design tools generate the implementation
in C language. This is particularly true for tools used in embedded systems. However it is

7

known that there is no proper type system for C and hence C programs may not be type-
safe (e.g. array index over�ow, arithmetic over�ows). We show a deductive technique
based on PVS for verifying type safety of C progarm. We also show an implementation
for checking type safety for a restricted class of C programs based on a type system
implementation in PVS [67][SAFECOMP07].

7. Object Code Validation: The code generated from a model using a model compiler
needs to be ultimately translated to a machine level code using a HLL compiler. It is
known that compiler veri�cation is an undecidable problem. We show how an alternate
methodology based on Translation Validation can be used to verify fragments of High
Level Language programs e.g C and it's correct translation to an object code (assembly
instructions) [14][FTRTFT00].

1.5 Outline of the Thesis

The thesis is presented as follows: It is divided into two major parts: Part I describes the visual
notations, their semantics and translation algorithms and Part II describes the work related to
type safety of model generated High Level Language (HLL) and translation validation for a
HLL compiler.

Part I is organized as follows: Chapter 2 introduces the general de�nition of reactive
systems, Statecharts as a notation to model reactive systems and its semantics. The for-
malisation of translation of Statecharts in a synchronous language framework of Esterel is
presented in Chapter 3. An extension of communication in Statecharts to model communi-
cating reactive processes(CRP) is presented in Chapter 4. Chapter 5 presents a formalization
of Activity Diagrams in a process algebraic framework and introduces an extension of Activity
Diagrams to model compensations in business process logic. An implementation of Activity
Diagrams is presented in Chapter 6. Chapter 7 presents the language framework to de�ne
service choreography.

Part II is organized as follows: In chapter 8, a methodology to build a type system for C
programs is presented. In chapter 9, we present a methodology for compiler validation based
on the framework of Translation Validation.

8

Part I

Visual Modeling Notations for Reactive

& Work�ow Systems: Formalization

and Realization

9

Chapter 2

Statecharts : Visual Modeling Notation

for Reactive Systems

2.1 Introduction

Reactive systems are computer systems that react continuously to their environment, at a speed
determined by the latter. This class of systems contrasts, on one hand with transformational
systems (classical programs whose inputs are available at the beginning of their execution
and which deliver their outputs when terminating: for instance compilers), and on the other
hand with interactive systems (which react continuously to their environment but at their own
speed: for instance operating systems). Among reactive systems are most of the industrial real-
time systems (control, supervision, and signal-processing systems), as well as man-machine
interfaces. These systems have the main following characteristic:

� Parallelism. The design must take into account the parallelism between the system and
its environment. It is convenient and natural to design such systems as sets of parallel
components that cooperate to achieve the intended behavior.

� Determinism. These systems always react in the same way to the same inputs. This
property makes their design, analysis, and debugging easier. Thus, it should be preserved
by the implementation.

� Temporal requirements. These requirements concern both the input rate and the in-
put/output response time. They are induced by the environment and must imperatively
be matched. Hence, they must be expressed in the speci�cations, they must be taken
into account during the design, and their satisfaction must be checked on the imple-
mentation.

� Reliability. This is perhaps their most important feature as these systems are often
critical ones. For instance, the consequences of a software error in an aircraft automatic

10

pilot or in a nuclear plant controller are disastrous. Therefore, these systems require
rigorous design methods as well as formal veri�cation of their behavior.

A language well suited to the speci�cation and design of reactive systems should, therefore,
allow speci�cation of parallel and deterministic behaviours and allow formal behavioural and
temporal veri�cation.

2.2 The Synchronous Approach

Synchronous languages have been introduced in the 80s to make the programming of reactive
systems easier [12]. The purpose of these languages is to give the designer ideal time prim-
itives, thus reducing the chance of programming misconceptions. Instead of the interleaving
paradigm, they are based on the simultaneity principle: All parallel activities share the same
discrete time scale. Concretely, this means that a ‖ b is viewed where a and b are simultaneous.
Each activity can then be dated on the discrete time scale; this has the following advantages:

� Temporal reasoning is made easier.

� Interleaving based nondeterminism disappears, which makes program debugging, testing,
and validating easier.

Concerning the implementation, the idea is to project this discrete time scale onto physical
time. As the scale is discrete, nothing occurs between two consecutive instants: Everything
must happen as if the processor running the program were in�nitely fast. This is the outcome
of synchrony hypothesis which can be stated as

1. the system evolves through an in�nite sequence of successive atomic reactions indexed
by a global logical clock,

2. during a reaction each component computes new events for all its output signals based
on the presence/absence of events computed in the previous reaction and,

3. the communication of events among components occur instantaneously between two
successive reactions.

Although such an in�nitely fast processor does not exist, but it su�ces that any input
be treated before the next one. In order to verify this condition, one only needs to know the
maximal input frequency, and an upper bound on the execution time of the object program.
For this purpose, synchronous languages have deliberately restricted themselves to programs
that can be compiled into a �nite deterministic interpreted automaton, a control structure
whose transitions are deterministic sequential programs operating on a �nite memory. Each
transition, whose execution time is statically computable, corresponds to the system reaction

11

to an input. There are numerous languages based upon the synchrony hypothesis: Esterel
[12], LUSTRE [50], SIGNAL [9], STATECHARTS [56], etc. Signi�cant advantages of the
family of synchronous languages include the availability of idealized primitives for concurrency,
communication and preemption, a clean rigorous semantics, a powerful programming environ-
ment with the capability of formal veri�cation. The advantages of these languages are nicely
paraphrased by Gerard Berry, the inventor of Esterel , as follows: What you prove is what
you execute.

Textual and graphical formalisms have their own intrinsic merits and demerits. For
instance consider the following reactive speci�cation of control �ow (switching of tasks) among
various computing tasks and interrupt service tasks in a control software. The computing tasks
switch from one to another in cyclic fashion and are shown as substates of compute_proc. The
interrupt service tasks are entered as a result of the occurrence of interrupt events. The history
notation has been used to indicate that on return from interrupt tasks, the system returns to
last executing compute task (except when event 100ms occurs, the control returns to compute
task hpt). Such systems can be speci�ed using graphical formalisms easily. The Statechart

!100ms

control_proc

hpt
compute_proc

Root

100ms

e_hpt/s_dt1

s_dt1/e_dt1nt dt1sc

s_dt2/e_dt2
e_dt1/s_dt2

e_dt2

dt2

s_nt/e_nt
e_nt

net_int/e_net_int

net_isr
wdt_int

e_net_int
wdt_isr

wdt_intwdt_int

rti_isrrti_int nmi nmi_isr

e_nmi

H*

H

Figure 2.1: An Example Speci�cation of a Real Time System

for the above system is shown in Figure 2.1. Lets us consider the intended behaviour: When
the event wdt_int occurs on system failure, the state of the system will be in state wdt_isr
and subsequently the system will toggle between states wdt_isr and nmi_isr. Arguing the
correctness of this intended behaviour from such descriptions, however, is not easy. Our work
is concerned with methods that will combine advantages of using graphical formalisms for the
design of reactive systems with that of using formal veri�cation tools in textual formalisms.

12

Statecharts is a visual formalism which can be seen as a generalization of the con-
ventional �nite automata to include features such as hierarchy, orthogonality and broadcast
communication between system components. Being a formalism rather than a language, there
is no unique semantics in the various implementations and further Statechart speci�cations
can be nondeterministic. For these reasons, even though there are powerful programming
environments for Statecharts such as STATEMATE (which includes simulators), environments
lack formal veri�cation tools. The primary motivation incorporating the Statecharts-to-Esterel
translator tool was to open up possibilities of formal veri�cation which seemed easily possible
via Esterel route, the code generation/optimization capability coming as a bonus. In fact,
the implementation of the tool has been found to have the important advantage of using
Statecharts or Esterel for the speci�cations/modeling of di�erent components of the same
system.

2.2.1 A Brief Introduction to Esterel

For a better understanding of the synchrony hypothesis, let us study some examples in Es-
terel . Esterel is an imperative synchronous programming language. Besides variables,
the language manipulates signals: A signal can be valued or pure, and can be an input signal
(its presence can be tested), an output signal (it can be emitted), or a local signal (it can be
emitted and its presence can be tested). The communication mechanism is the synchronous
broadcast: any signal emitted by someone at a given instant is received by everybody at the
same instant. Moreover, the temporal primitives of ESTEREL are intuitive, which will make
the following examples easy to understand: Since control is passed instantly from a �nishing
statement to the next one, the statement await 5 Second; await 5 Second is equivalent to
await 10 Second.1 For the same reason, in the statement

every 60 MINUTE do

emit HOUR;

end every

the signal HOUR is simultaneous with the 60th occurrence of the signal MINUTE. There is no
notion of physical time inside a synchronous program, but rather an order relationship between
events (simultaneity and precedence). The physical time is thus an external signal, like any
other external signal. As a result, one can write either abort TRAIN when 10 METER or
abort TRAIN when 5 SECOND. In the statement

present A then

% something

end present;

‖
present B then

% something else

end present

13

each component of the parallel construct can react independently to its signal. As a conse-
quence, the program reacts either to A alone, B alone, or A and B at the same time.

These small examples show that the synchrony hypothesis leads to very natural code.
Providing the designer with ideal temporal primitives greatly reduces the number of program-
ming errors. The drawback is that, once compiled, the execution time of the program must
match the temporal speci�cations. But of course the same problem arises with an asynchronous
programming language like ADA. Finally, it is important to note that the synchronous approach
has been validated through several real-life projects.

zero

reg

lap

on

off

regular

alarm

H*

b

mode

d[IN on] b b
a

a

a

nonzero
state

d[IN off]

stopwatch

d[IN off]

watch

Figure 2.2: Statechart Speci�cation of a Stopwatch

2.3 Components of a Statechart

States: There are three types of states; Basic state, Or-state and And-state. Basic states
are those states which do not contain any other state, eg., lap is a basic state.

An Or-state is a compound state containing two or more other states. To be in an
Or-state is to be in one of its component states. In this presentation, we will use Or-State
synonymously with XOR-state, i.e., we can be in only one of the component states at a given
time. An example of an Or-state in Figure 2.2 is stopwatch.

An And-state is also a compound state and staying in an And-state implies staying in
each one of its substances. This is provided to model concurrency. The substates of an
And-state may contain transitions which may be executed simultaneously. The state nonzero
shown in Figure 2.2 is an And-state.

Transitions: A Transition in the Statechart is a �ve-tuple (source, target, event, action,
condition). The arrow on the Statechart goes from source to target and is labeled as e[C]/a,

14

meaning that event e triggered the transition when condition C was valid and action a was
carried out when the transition was taken. In general, a could be a list of actions to be taken.

History and Defaults: Statechart incorporates the idea of a history state in an OR-
State. The history state keeps track of the substate most recently visited. This is denoted by
H in a Or-state, as in the or-state stopwatch in Figure 2.2. A default state, marked by a shaded
circle, is a substate of an or-state such that if a transition is made to the or-state and no other
condition (e.g. enter-by-history) is speci�ed, then that substate must be entered by default,
e.g. regular is the default substate for the watch. In Figure 2.2 , we have a deep-history state,
which means that a transition to that state implies being in the maximal most recent set of
basic substates. This can be represented by history states in each one of the Or-substates.

2.4 STATEMATE Semantics

The informal semantics of the STATEMATE version of Statecharts is provided through rules
describing the semantics of a step. The main rules are listed below. For detailed discussions,
the reader is referred to [57].

1. Reactions to external/internal events and changes that occur in a step can be sensed
only after completion of the step.

2. Events are "live" for the duration of the step following the one in which they occur only.

3. Calculations in a step are based on the situation at the beginning of the step.

4. If two transitions are in con�ict, then priority is given to that transition whose scope is
higher in the hierarchy. The scope as de�ned in [57] is: The scope of a transition tr is
the lowest Or-state in the hierarchy of states that is a proper common ancestor of all
sources or targets of tr, including non-basic states that are explicit sources or targets of
transition arrows appearing in tr.

5. Each step follows the Basic Step Algorithm as described in [57].

2.5 Formalization of STATEMATE Semantics of Stat-

echarts

Finite State machines (FSM) are widely used in the modeling in various areas. They are used
to represent the �ow of control and are amenable to formal analysis based on model checking
technique.

De�nition 2.5.1 A FSM consists of

15

� a �nite set of Q of states,

� a �nite alphabet Σ,

� an initial state qI ∈ Q,

� a �nal state qF ∈ Q,

� a set →⊆ Q× Σ×Q of transitions,

Given a word ρ = σ0σ1 · · ·σn over the alphabet Σ, an accepting run of the FSM M over ρ is
sequence

q0
σ0→ q1

σ1→ · · · σn→ qn+1(2.1)

such that q0 equals the initial state qI and qn+1 equals to the �nal state qF and for 0 ≤ i ≤
n, (qi, σi, qi+10 is a transition of M. The set of words ρ ∈ Σ∗ over which M has an accepting
run is called the language of M, denoted L(M).

FSMs can be composed parallelly and hierarchically to build Hierarchical Machines(HM)
[2] called Statecharts(SC). It is assumed that these FSMs have mutually disjoint set of states.

De�nition 2.5.2 We de�ne a Transition System as a special FSM which has no �nal state.
A Transition System is a triple S=(Q, qI ,→), where S is a set of states, s ∈ S is the initial
state, →⊆ Q × L × Q is the set of transitions. A reactive system can be de�ned as the
composition of such transition systems. If S is a reactive system and S produces output O at
the moment that input I is provided, the behaviour can be written as

S
O−→
I
S ′

De�nition 2.5.3 A HM is de�ned inductively as

� Base case: A TS (Q, qI ,→) is a HM.

� Concurrency: If M1,M2 · · ·Mk are SCs then M1 ‖M2 ‖ · · · ‖Mk is a HM.

� Hierarchy: If M is a �nite set of HMs, γ = (Q, qI ,→) is a TM with states Q and
µ : Q 7→ M that associates each state q ∈ Q with a HM in M then the triple
(γ,M, µ) is a HM. Here γ is de�ned to be the root of the SC.

A HM of the form M1 ‖ M2 ‖ Mk is called a product expression and each Mi is called a
component of the product expression. Such product forms are called AND-Charts.

De�nition 2.5.4 We de�ne a HM of the form (γ,M, E, µ) as a Statechart, where the TS γ
is called the top-level of the hierarchical expression, and each HM inM is called a component
of the Statechart. E is de�ned as the set of events which are propositions over Σ and their
boolean combinations.

16

The set of events are de�ned over the alphabet Σ as boolean predicates

� e ∈ Σ→ e ∈ E.

� e ∈ Σ→ ¬e ∈ E

� e1 ∈ Σ and e2 ∈ Σ→ e1 ∧ e2 ∈ E

� e1 ∈ Σ and e2 ∈ Σ→ e1 ∨ e2 ∈ E

The mapping function µ de�nes the type of Statecharts.

� If | µ(s) |= 1 then s is de�ned to be a single �at TS.

� If | µ(s) |=> 1 then s is de�ned to be a parallel composition of TS.

� If | µ(s) |= 0 then s is de�ned to be a basic state.

The composition function µ on M de�nes a successor function such that

χ :
⋃

M∈M

QM → P(
⋃

M∈M

QM)

de�ned by
χ(s) = {s′ | ∃M ∈M •M ∈ µ(s) ∧ s′ ∈ QM}

where s′ ∈ χ(s)↔ s′ is a state of the direct sub-automaton of s. We de�ne a con�guration
as the set of states in which the system lies at any instant of time.

De�nition 2.5.5 Given a Statechart SC = (γ,M, E, µ). A set C ⊆
⋃
M∈MQM is a

con�guration of SC i�

� There exists one state of the root automaton γ ∈ C

� s ∈ C ∧M ∈ µ(s)→ ∃i | si ∈ QM → si ∈ C

� s ∈ C ∧ (∃s′ • s ∈ χ(s′)→ s′ ∈ C)

A transition s l→ s′ of M ∈ M is enabled if s ∈ C and (C,E) |= l. Let EnabledC,E be

the set of enabled transitions. An automaton M ∈ M is said to be enabled if s l→ s′ ∈
EnabledC,E. We de�ne two functions source and target such that source(s l→ s′) = s

and target(s l→ s′) = s′. If t1 and t2 are two transitions then t1 is at a higher priority if
source(t1) ≺ source(t2), where ≺ is the preceding operator.

17

De�nition 2.5.6 Harel [57] de�nes the execution of a Statechart as an execution step in
(C,E) which consists of synchronously �ring all the transitions in a maximal non-con�icting
set of transitions. If Υ ⊆ EnabledC,E be the set of enabled transitions. Υ will be maximal
and non-con�icting i�

� ∀t ∈ Υ 6 ∃t′ ∈ EnabledC,E • Source(t) = Source(t′)

� ∀t ∈ EnabledC,E • t ∈ Υ↔6 ∃t′ ∈ EnabledC,E

2.5.1 Synchronous STEP Semantics

If two reactive systems S1 and S2 make a step together, they are de�ned to be concurrent
and the global step represented as S1 ‖ S2

O−→
I
S1
′ ‖ S2

′ which may be composed of two local

steps S1
O−→
I
S1
′ and S2

O−→
I
S2
′.

De�nition 2.5.7 Let K = (S, s0,
STEP→) be TS where

� S = Conf(µ) × P(E) is the set of states of K, where Conf(µ) is the set of all
con�gurations.

� s0 ∈ S, where s0 = (C0, φ) is the initial state of K where C0 is de�ned as follows. Let
γroot = (Q, qI , rightarrow) and S0 =

⋃
M∈M s0M

then C0 = (χ | Q0)∗(s0)

�

STEP→ ⊆ S × S is the transition relation of K where (C,E)
STEP→ (C ′, E ′) such that

C ′ = (C/ χ∗(Source(Υ))) ∪ Target(Υ) ∪ (χ+(target(Υ)) ∩
⋃
M∈M s0M

) and E ′ =
E ∪ Action(label(Υ))

This de�nition of composition models synchronous behaviour. This gives us following
advantages

1. The reaction time is short as possible and we take it as 0.

2. The timing behaviour is abstract enabling us further re�nement without bothering about
delays since 0 + 0 = 0

The execution semantics of a SC now can be de�ned in terms of steps of execution of the
composite systems. Responsiveness, Modularity and Causality [63] are three very important
criteria in judging the semantics.

De�nition 2.5.8 Responsive A semantics S is responsive if for any two distinct input sets
I1 and I2 and non-empty output set O with O ∩ (I1 ∪ I2) = φ such that

S
O−→
I1

and S 6 O−→
I2

18

De�nition 2.5.9 Modularity A semantics is modular if for any two systems S1 and S2 the
following two statements are equivalent

1. S1 ‖ S2
O−→
I1
S ′1 ‖ S ′2

2. Si
Oi−−−−→

I∪Oi−1

Si
′ for i=1,2

where O = O1 ∪O2

De�nition 2.5.10 Causality A semantics is causal if we can add to every step S
O−→
I
S ′ a

partial order ≤ on I ∪O, such that

1. if S
O−→
I

and S 6 O−→
I′

and I, O 6= φ, then there is at least one dependency between I and O

i.e ∃a ∈ I, b ∈ O with a ≤ b

2. if S1 ‖ S2
O−→
I1

S ′1 ‖ S ′2 with causal order ≤ then there should exist a partitioning into

processes T1, T2 · · ·Tn and causal orders ≤1, · · · ≤n such that ≤� (Ii ∪ Oi) =≤i and
T1 ‖ · · · ‖ Tn = S1 ‖ S2, n ≥ 2, and for each Ti

Oi−→
Ii

Ti
′, these steps combine into the

steps of S1 ‖ S2

It has been proved in [63], that no semantics of reactive systems can be responsive, modular
and causal at the same time. In our framework, we assume the following

� Every observable step is divided into a number of micro-steps. Actions and reactions
strictly follow the order in micro-steps. The events generated as a reaction to some
input can only be sensed in the micro-step following the input.

� Events are generated at the next step but before the reaction of the system is completely
stable (no more transitions are possible), no input from environment is possible.

We will explain later that this is achieved in our translation of Statecharts into Esterel
by dividing the micro-steps in Esterel using an external signal STEP. The introduction of the
STEP signal makes the semantics nonmodular but responsive and obeys Esterel causality
[12]rules. In general, Statecharts allow speci�cation of nondeterministic behaviour. It also
allows non causal behaviour. However in creating speci�cations of reactive systems, we need
to have systems that are output deterministic in a nondeterministic environment. Esterel is
a Turing complete imperative language whose semantics is de�ned based on Meije synchronous
process calculus. It only allows to specify deterministic output behaviour in the presence of
nondeterministic inputs. It is possible to represent a restricted class (deterministic & causal)
of Statecharts into Esterel . This enables one to model check and verify Statecharts using
the Esterel environment. The other advantage is that such a representation enables one to
generate high level validated code for �nal implementation.

19

2.6 Summary

In this chapter, we have discussed the visual notation of Statecharts and its semantics as
proposed by Harel [57]. We have discussed few example Statecharts typically used to specify
the behaviour of a real time system. We have also discussed a brief formal interpretation of
the STEP semantics.

20

Chapter 3

Realization of Statecharts in the

Textual Formalism of Esterel

3.1 Introduction

In this chapter, we describe a method of translating Statechart formalisms into Esterel
with the idea that the powerful veri�cation tools and code optimization tools of Esterel can
be applied for Statechart programs. Our aim has been to provide a clean formally veri�able
code for Statechart programs rather than yet another attempt to de�ne the semantics of
Statecharts. For this reason, we stick to using the STATEMATE semantics [57], which is an
industrial strength version of Statecharts. It must be noted that Esterel is deterministic
and hence, our study is con�ned to the deterministic class of Statecharts. However, it may be
noted that the translation procedure will detect the underlying nondeterminism if any.

The translation preserves the correspondence between the Statechart states and the
Esterel program components for aiding debugging of the programs and veri�cation of the
properties at di�erent levels.

3.2 Structure of the Translator

The internal stages of the translator are schematically shown in Fig.3.1. The �rst stage
is the preprocessing tool stpp. The stpp module converts syntactical constructs like join
points, conditional points etc. into a simpler but equivalent notation. These constructs are
designed to provide a crisper notation while drawing Statecharts but can be simpli�ed to
simple transitions. This helps in simplifying the implementation of translator which can then
expect fewer constructs in the input. It also checks for violation of Statechart syntax and gives
warning messages.

The second stage of the translator is the functional form generator st�g. The output of

21

Statechart Editor
Preprocessor Functional Form

Code Generator

(SCE)

(stpp)

(stffg)

(stgen)

Generator Annotated

Tree

(STATEST)

Translator

Parser

Code

EsterelEsterel Code

GeneratorAND−OR

Figure 3.1: Schematic Diagram of the Translator

stpp is fed into the functional form generator st�g, which converts the graphical notation into
a textual form for further translation. This textual form is described by a context free grammar
and hence amenable to rigorous syntax checking and translation. The third stage stgen is the
Esterel code generator. It takes the functional form as input and emits Esterel code.
The textual representation of the Statecharts in LALR(1) form is given in appendix A.

3.3 Semantic Transformation of Statecharts into Es-

terel

In this section and subsequently in the chapter, we describe the basic algorithmic require-
ments for the transformation of Statecharts into Esterel . The actual algorithm is however
described in the next chapter. Any transformation of Statecharts must preserve the following

� The hierarchy of states and transitions,

� Con�ict resolution in the transitions as per the STATEMATE semantics

� Transitions between states,and,

� Support of communication via events and actions.

In the following, we shall highlight the underlying issues of representation, resolution of con�icts
and code generation. Note that we refer to signals in the Statechart as actions or events, while
those in ESTEREL are referred to simply as signals. We �rst present the underlying ideas and
the actual code generation algorithm is presented at the end.

3.3.1 AND-OR Tree Representation of Statecharts

The Statechart can be represented as an AND-OR tree: being in an AND-node meaning that
the system is in each of its child nodes. Such a representation allows us to express the hierarchy
of states of the Statecharts in a convenient manner to trace the path of arbitrary transitions.

22

This also allows us to resolve con�icts between enabled transitions, by calculating the scope
(refer to section 2.2). For purposes of code generation, we actually use an annotated repre-
sentation of AND-OR tree described in the following section. An AND-OR tree representation
of the Statechart is shown in Figure 3.2.

Root

S

S1

S3

S2

S21 S22

R

Root

S(OR) R(BASIC)

S1(BASIC) S2(AND) S3(BASIC)

S21(BASIC) S22(BASIC)

t1:a

t01

t02 t4:c

t2:b

H

t3:c

t5:e

t6

Figure 3.2: Statechart and its AndOr Tree Representation

The annotated AND-OR tree keeps track of information about the Statechart pertinent
for the translation, such as

1. the states and their types,

2. hierarchy of States, and

3. Transitions between states which includes Entry and Exit points for each transition that
exists a state.

Each node A of the AND-OR tree is represented as a seven-tuple1:

(Name, Type, Tentry, Texit, Tloop, Tdefault, Thistory), where,

� Name : Name of the state viz. S.

� Type : AND, OR or BASIC.

� Tentry : The set of all transitions that enter S (e.g., for state S2, Tentry={t1, t3}).

� Texit : The set of all transitions that exit S (e.g., for state S1, Texit={t1, t2, t4}).

� Tloop : The set of all transitions that exit one of S's immediate child states and enters
another (possibly same) child state (e.g., for state S, Tloop={t1, t2, t3}).

1We shall use node synonymously with state and vice-versa

23

� Tdefault : The single transition to an immediate child state from A (e.g., for state S,
Tdefault={t02}).

� Thistory : The set of transitions to the history state of A (e.g., for state S, Thistory={t6}).

We need to keep track of the Entry and Exit Point Information so that the transitions including
the inter-level transitions can be enabled in the translated Esterel code preserving the
STATEMATE semantics. The actual information we need to keep track will be clear by
considering the states between which the transition takes place. Transitions in Statecharts
can be broadly classi�ed as:

� T1 : Between child states of the same parent (e.g.,Transitions {t1, t2, t3} in Fig.3.2).

� T2 : From a parent state to its (not necessarily immediate) child state(e.g.,Transitions
{t01, t02} in Fig.3.2) .

� T3 : From a child state to (not necessarily immediate) parent state.

� T4 : Any transition that is not of Type T1, T2 or T3 (e.g., {t4} in Fig.3.2).

Note that all of these transitions may not occur in a given Statechart. In particular, types T2
and T3 may not occur, but the way they are translated forms part of the translation for type
T4. Thus for example in Fig. 3.2, the transition labelled t4 would make T3 types in states
subordinate to S and T2 in state Root. The book keeping of the above classes of transitions
is achieved through the Node- Labeling Algorithm by keeping the appropriate entry and exit
information in each node and the AND-OR tree.

3.3.2 Node-Labeling Algorithm

Node-Labeling Algorithm: Assuming levels of the nodes in the tree have already been computed
(with root node having level 0, and increasing level for its child nodes), for each transition in
the set Tr of transitions, the algorithm traverses the path from source node n1 to target node
n2, labeling these two nodes as well as intermediate nodes with:

1. name of the transition,

2. type of the transition, viz., T1, T2, T3 and T4 and

3. the fact whether the transition is entering that node or exiting it.

This information is used to generate code in the translation.

24

3.3.3 Labeling for Transition Con�ict Resolution

As per STATEMATE semantics, two transitions are in con�ict if they exit a common state A.
Further, con�ict resolution is based on the following: Transition t1 has priority over transition
t2 as de�ned earlier(if the lowest2 Or-state exited by t1 is lower than the lowest Or-state exited
by t2). Given this, if trigger events for t1 and t2 occur simultaneously then, we must ensure
that t2 is not taken along with its actions. This is done by a signal hide_A. On taking t1,
hide_A will be emitted. Therefore, before t2 is taken, a check must be made for the presence
of signal hide_A. This is indicated in the AND-OR tree by traversing the tree top-down,
maintaining a list of "hide signals" that we need to label the nodes with. At a node, which has
at least one transition that exits it, we label all of its children with hide_A. This is to ensure
that while translating, a statement to check for the presence of hide_A is executed before
any transition is taken. This will perform the job of hiding internal signals. The algorithm to
implement hide_signal labeling is omitted here for brevity.

3.3.4 Structure of the Esterel Code

We illustrate the structure of the Esterel model for each type of states from Statechart.
Each state in Statechart is modeled as a module in Esterel .

Transformation of a Basic state: If A is Basic-state, then the Esterel code generated for
state A has the form

module A :

emit EnterA;

do sustain InA watching ExitA;

end module

Both EnterA and InA are global signals. The �rst statement broadcasts an internal event
EnterA of entering the state A. The do sustain InA watching statement simulates the
e�ect of being in state A by ensuring that while the state A is occupied the InA signal is emitted
every instant and is available for other states for testing if required. The do .. watching

ExitA construct ensures that as soon as the signal ExitA is emitted, the statement sustain
InA , terminates in the same instant (strong preemption)

Transformation of a Super-state: While translating a superstate of a Statechart, the following
has to be implemented.

1. Entry to this superstate

2Lowest means closest to the root node

25

2. Emission of signals to cause entry to substates. The substates may be entered as direct
destinations or as a history or as defaults, if the �rst two are absent.

3. All transitions exiting the substates. Transitions of type 4 are broken into multiple
transitions of type 2(child to parent) and type 3(parent to child), happening together in
one step.

4. Transitions of loop-type w.r.t this superstate.

Transformation of an Or-State : If S is an OR-state with substates, say, S1, S2,S3 . . . Sn,
then the structure of the Esterel module has the following structure.

module S :

Block_1 ‖ Block_2 ‖ Block_3

end module

The ‖ symbol represents parallel execution of three code blocks in Esterel syntax.

Block_1: This block in the beginning contains statements broadcasting two signals
EnterS and InS signifying entry to superstate S. A local signal (�go� pre�xed to the name of
the immediate substate to be entered) is then emitted to cause entry to one of the substates.
The signal is captured in Block_2.

Block_2: This block of Esterel code contains n parallel segments, n being equal to the
number of immediate substates, one segment corresponding to each of the substates. This is
of this form

Code_for_S1 ‖ Code_for_S2 ‖ .. ‖ Code_for_Sn

Each of the segments contain Esterel statements for entering the module of each substate
as well as code for all transitions exiting that substate.

Block_3: This block of the module handles all inter-level transitions which are of Loop-type
w.r.t. this state. This transition is similar to type 1 transition (sibling to sibling) except that
the transition originates from deep within one sibling and may terminate deep within another
sibling. During a transition this superstate which is the common ancestor of the source and
destination state of the transition receives a valued signal from immediate child state exited
due to the transition and emits a signal causing entry to the destination state. The emitted
signal is simple "go" if the destination is immediate child. Otherwise entry is caused to the
ancestor of the destination state, by emitting a valued signal pre�xed with �sig_D�, the value
being the numerical identi�er of the destination state. All of the interposing superstates will
relay this signal to their substates till the �nal destination state is reached.

26

Transformation of And-state: If S is an And-state with substates S1, S2, . . . Sn , the structure
of the Esterel code has the following form:

module S :

Block_1 ‖ Block_2

end module

In And-state the code segment Block_1 is di�erent from the corresponding Block_1 code
segment of an Or-state, in that, there is no emission of local go signal which causes a substate
to be entered as in Or-state. The reason is when an And-state is entered all of its substates
are entered at the same instant by de�nition. There is no Block_3 because there cannot
be Loop-type transitions for And-states. The Block_2 code has n parallel segments (n= no
of substates) but there is no await immediate go.. construct as there is no corresponding
emission of a go signal in Block_1.

Handling Nondeterminism

Some enabled but con�icting transitions cannot be resolved by scope rule [57]. For example,
there can be two enabled transitions leaving the same state having the same scope. This type
of nondeterminism is permitted in Statechart and is expected to be handled by simulation
environment either by randomly taking one transition or allowing the user to decide about
which transition to take. Since Esterel is a purely deterministic language, the translation
scheme has to prioritize the transitions. We resolve this by generating the await case .. end
construct. Each case statement corresponds to an event triggering the transition, whereby
whichever case is positioned �rst is executed when more than two con�icting events occur.

3.3.5 Esterel Code Generator

The Esterel code generator is the most complex stage of the translator and its internal
structure is shown in the Figure 3.1. Here we present a brief description but the details along
with all translation algorithms can be found in [18, 13, 103]. It consists of a parser which
parses the input Statechart (in the functional form) and constructs an annotated AND-OR
tree by a syntax directed translation scheme. This AND-OR tree is the input to the code
constructor.

Translating a �state� in Statechart into Esterel means generating a code segment
in Esterel which will represent the occupied state in Statechart. Such a code segment in
Esterel , representing an occupied state, has to repeatedly perform (�sustain�) the actions
expected be carried out in that state, while waiting for events which will cause that code
segment to be terminated and other code segment (a new state) to be entered. Such code
segments linked together by Esterel statements which watch for the events in the system and
pass on control from one code segment to other (as per the speci�ed transitions in Statechart)

27

constitute the full translation of Statechart program to Esterel program. In Esterel code,
the transitions are implemented by await statements. In principle it is possible to construct
a single module in Esterel representing the entire Statechart behaviour. However such a
monolithic Esterel code is di�cult to understand and also does not permit visualization
of occupied/unoccupied states when simulated using Esterel simulator Xes. In the code
generation strategy described here, one Esterel module is generated for each state in the
input Statechart. This results in the generation of modular Esterel code capturing the
behaviour of the Statechart. The only disadvantage of this scheme is that the code generated
contains large number of global signals which are seen on the simulator panel.

Figure 3.2 shows a Statechart and its AND-OR tree alongside. Each node of the AND-OR
tree represents the corresponding state in the Statechart and is annotated with the information
like name, type, set of all transitions which enter and exit this state, history �ag indicating
whether history exists for this state etc.

The annotated And-Or tree is the central data structure for the code generation phase.
The code generation algorithm traverses the tree in reverse postorder visiting all the children
nodes from left-to-right before visiting the parent node. While visiting each node, the Es-
terel module for each node (State in Statechart) is emitted and the signals required to
interface various modules are collected. This list is pushed up the tree for the purpose of
global signal declarations in each related module. In the following, we explain the structure of
Esterel code generated for di�erent types of states in Statechart.

The translation is done in a top down manner traversing the AND-OR tree. In short,
the process is as follows:

1. Declare all necessary signals,

2. Generate code for states and transitions between states,

3. Generate code to communication within the Statechart,

4. Generate code to deal with special constructs such as history substates.

Declarations: Information about the following kinds of signals is stored in the annotated
AND-OR tree and these are declared at each node while generating code for the module
corresponding to that node:

1. External Input signals.

2. Internal Input events generated during transitions out of substates of parent node A.

3. Internal Output events (actions) generated during transitions out of substates of parent
node A.

4. If A is a substate of an Or-state with history, then a valued signal new_history_A is
used to that the history can be changed appropriately whenever transition to a substate
Ai of A takes place.

28

5. Dummy signals for T2 or T4 transitions that enter A: In this case signals of the form
sig_BtoA or sig_AtoB would be needed, where B is either an immediate parent or an
immediate child of A. This list is built up for each such node A, during Node Labelling
Algorithm. These signals are used to build a chain of signals that trigger transitions
between immediate parent-child states, and the whole chain generates the entire transi-
tion.

6. Dummy signals for T3 and T4 transitions that exit A. This is similar to 5 above.

7. Valued History signals for all Or-sub-states having history; for each such OR-state these
store the value of the most recent substate. While building the AND-OR tree we can
maintain a list of Or-states which have history.

8. Signals that indicate transition to a history substate of a substate of A, or if A is an
Or-state, to indicate transition to history substate of A.

9. Characteristic signals (in, enter, exit) for each substate of A. To generate this list,
traverse the AND-OR tree bottom-up (postorder) and at each node, add to a list of
child nodes. Then while generating code for node A, declare all characteristic signals for
each of its child nodes as listed.

We have a new module only for each OR-node, therefore, we need not keep a list of all nine
types of signals with an AND-node or BASIC-node unless it is the ROOT node.

The STEP signal: In the Esterel code generated, each step occurs on receipt of an
external signal called STEP. This signal is needed to provide a tick on which transitions can be
made even when there are no input signals from the environment (i.e., when all triggering events
are internally generated). Use of STEP is necessary to implement the super-step semantics of
STATEMATE, wherein several steps are executed starting with some initial triggering events,
till the system reaches a set of stable states (i.e., states with no enabled transitions out of
them).

Transitions: Consider code generation for the translation for a transition t of Type T, with
source state A and target state B. In brief, the model transformation involves the following:

� Generate code to await the occurrence of the triggering event, and

� On occurrence of the STEP (as in STATEMATE semantics), if the triggering condition
is true and no transition preempts t, emit:

[-] a signal to activate the next state (called a "go" signal),

[-] a signal to activate a chain of transitions (for types T2 through T4),

[-] signals to exit the current state, i.e., to terminate emission of signals that depict
the current state as active.

29

Figure 3.3 illustrates transformations with respect to T4 transition. In the Esterel code for
state A, we only show the code for state C and the transition labelled a/b.

a/b

S

A

C D
B

Figure 3.3: Translation of T4 Type Transition

module S
loop

[
await immediate goA ;
trap TA in

[
run A ;
exit TA

]
end trap

present sig_AtoS then

emit goB ;
end present

]
loop

[
await immediate goB ;
trap TB in

[
run B

]
end trap

]
end loop

end module

Code for Module S

module A
trap TA in

[
loop

[
await immediate goC ;
trap TC in

[
run C ;
||

await immediate a ;
await STEP ;
emit b ;
emit sig_CtoA ;
exit TC

]
end trap;
present sig_CtoA then

[
emit sig_AtoS ;
exit TA

]
end present

]
end loop

]
end trap

]
end module

Code for Module A

3.4 Code-Generation Algorithm

In the following, we describe the basic model transformation algorithm. Code to be emitted
for immediate states like history and special actions are omitted for brevity.

Notation: In the code-generation algorithms, the emitted code is shown in EMIT
blocks.

30

3.4.1 Algorithm:GenCode

The main algorithmic steps are brie�y described below:

A1 Traverse the AND-OR tree top-down. (in preorder)
For each node A do

A2 If A is an OR-node:

(a) Begin a new module, and declare all signals that occur A's signal list, or in the
signal list of child nodes of A, till the �rst child Or-node is encountered.

(b) Generate code for each block representing the substate of A. Let A1, A2,. . ., An
be the immediate child nodes of node A. Let ei1, ei2, . . . , eim be the external or
internal events on which transitions are made out of the Ai. Let the corresponding
actions be acti1 to actim. Further, let the conditions under which the transitions
are to be taken be Ci1 to Cim. Let the list of hide signals for the nodes Ai, ∀i
be hide1 to hidet. STEP is a signal that indicates that the next step must be
performed. It is an external signal. Steps of the translation are described below:

(c) Step 1 Emit preamble code. If A is a substate of an OR-state B with history,
then appropriate newhist signals are emitted to update history. Code to be emitted
from this step is given below:

emit enter_A;

[trap TA in [

sustain In_A;

‖ await tick ; emitnewhistB(A);]

‖[signal goA1, goA2, ..goAn in [

(d) Step 2 Emit code to check for T2 and T4 transitions, or for transitions to the
history substate of A. If none of these are true then default state is entered. Code
from this step is given below:

present

case sig_AtoAj do

emit goAj
case entehist_A do

[if histA = 1 then

emit goA1

elseif histA=2 then

emit goA2

31

else emit goAk
endif

end case

end present

(e) Step 3 For each i, emit code to handle transitions out of Ai and also the re�nement
of Ai. The code for each of the i are composed in parallel. The respective codes
to be emitted are given in the substeps below:
Substep 1. Preamble code for Ai.

[loop [

await immediate goAi;
trap TAi

in ...

Substep 2. Emit code corresponding to the re�nement of Ai. We indicate the
re�nement of Ai by << Ai >>. If Ai is an AND-node or BASIC-node then this
is the block of Ai. If Ai is an Or-node, then this is a run Ai statement. In this
case, add it to a queue of Or-node Qnodes, so that we emit code for it and its child
nodes later. When the node is visited during the preorder tree traversal, the entire
subtree under that node Ai is skipped to be processed later.

[� Ai � ;

exit TA;
‖

%subsequent codes will be completed in other steps

Substep 3. Emit code for each transition triggered by ei,j, j = i..m, and com-
posed in parallel with the above code, i.e.,∀ti ∈ T iexit.

call translateTransition(t,Ai);
end trap %TA

Substep 4. Code emitted in case there are transitions of type T3 or T4. Thus for
all transitions t of type T3 or T4 which exit state Ai, we would have:

call exitCodeTrans(t,Ai);

Substep 5. Postamble code for the substate Ai is given below:

] end loop

end

(f) Step 4. The postamble code to be emitted is given below:

] end signal

end

32

A3 If A is an AND-node:

Generate code to emit enter and in signals for A, or for updating history, as in
preamble code above.

Generate code for each one of A's child nodes, Ai, and compose these in parallel

Generate code for each transition that quits a child node of A and compose each
in parallel with that in item 2 above. The translation for the individual transitions is
exactly as for an Or-node. There are no looping transitions of type T4 and AND-node.

A4 If A is a BASIC-node:

Generate code to emit enter and in signals for A, or for updating history of its parent
state, just as was done for the Or-state. Also generate code to begin, await a return
signal for or end an activity.

1. Generate code for each of the Or-nodes in the queue Qnodes till no more Or-nodes remain
in the queue.

3.4.2 Algorithm : TranslateTransition

This procedure gives the translation for a translation t of type T with source state A and
target state B.

procedure translateTransition(t:Transition,currNode:Node)
begin

A:=source(t);
B:=target(t);
et := event(t);
at := action(t);
Ct := condition(t);

/* Let hideS be signal which hides all transitions of scope less than t*/
if (A = currNode) then
begin

EMIT[
loop

await immediate et;
await STEP;

if Ct then

[

present hide1 else

present hide2 else

. . .
present hiden else

emit hideS;

33

emit at;
emit exitA;

end..

] if t.trType= T1 then
begin

EMIT[
emit goB;
emit exitTA;

end
] if t.trType= T2 OR t.trType=T4 then
begin
∀Si ε ancestor(A) and child(Si, B)

EMIT[
emit sig_AtoSi;
emit TA;

end
] else

/* A 6 =currNode*/
begin

EMIT
[present sig_AtoA1 then

emit sig_A1toA2;
end

end] end procedure

3.4.3 Generation of STEP signal

In the above Algorithm described in 3.4, each step occurs on receipt of an arti�cially created
external signal called STEP. Clearly, this STEP signal cannot be generated internally, as it will
not generate a tick then. Further, STEP must be given to the state machine (system) as long
as there are enabled transitions (enabled on internally generated signals). In our translation,
this indication is obtained from the enter and exit signals emitted. We de�ne a new signal
"give_step" which is emitted whenever an enter or exit signal is emitted. Thus, whenever
give_step is emitted, a STEP signal must be emitted. Additionally, STEP must be emitted
on occurrence of an external input. The state machine generated by the Esterel compiler
must interface with the environment through a driver routine. The driver routine executes the
state machine whenever there is an input from the external environment. Thus, our problem
is to execute the state machine under certain conditions (namely when give_step is emitted)
even when there is no external input. The trick here is to set a bit for every occurrence of
give_step that is checked by the driver routine; the bit indicates that the driver routine must
generate a tick (and supply a STEP). Thus, due to the presence of "await STEP" in the
translation for transitions, although the actions are "activated" in the current step, they take

34

e�ect only in the next step. This is in accordance with the STATEMATE semantics.

Our model faithfully represents all behaviours of the STATEMATE Statecharts, in both
the Step and Superstep time models. In our translation, the STEP of Statecharts is mapped
to the tick of Esterel. Time instants are indicated by a separate TIME signal. In the
Superstep time model, the STEP and TIME signals are distinct, while in the Step model they
always occur together. As noted in [57], a Statechart using the Superstep time model can
have possible in�nite loops in the same TIME instant. This can also happen in our Esterel
translation, and cannot be detected using the present Esterel tools.

Let us consider the Statechart shown in �g.3.4. Following are the steps executed when
the event a occurs.

� STEP 1: Transition tl is enabled because of occurrence of a and the system moves from
the con�guration R,A to R,B and the event b is generated in the system.

� STEP 2: In this step since event b is available, transition t2 is enabled and the system
leaves the con�guration R, B and moves to R, C and the event c is generated.

� STEP 3: In this step since event c is available, transition t3 is enabled which when taken
leaves the con�guration R,C, moves on to R,A and a is generated.

R

A

BC

t1:a/b

t2:b/c

t3:c/a

Figure 3.4: Cyclic Transitions

In the asynchronous time model [57], all these steps will constitute one superstep and be
executed in one time instant. Each of these steps is executed when the external signal STEP
is given.

3.5 History

As noted in [57], history states can occur only within Or-states. History is implemented using
valued history signals for each Or-state having history. The value 0 corresponds to the default

35

state, i.e., no history. The emission of the history signals for a state S, histS is done only
by the root module ROOT, of the entire Statechart. When a new state is entered within an
Or-state S, the module corresponding to that state emits a newhistS signal which is captured
by ROOT which in turn updates histS. the history itself is maintained as a integer valued
signal, the integer indicating which substate of the Or-state is the most recent one. However,
if we use a shared variable for keeping track of the history, there will be no need to sustain the
integer valued signal used for that purpose. Below, we show the code part of ROOT which
updates the history values.

module ROOT :

...

var x in

[% the below block exists for each Or-state with history

every immediate newhistS

x := ?newhistS ;

sustain histS(x) ;

end

...

]

end module

3.6 Summary

In this chapter, we have discussed in detail the structure of the Statechart to Esterel code
generator. We have discussed the structure of Esterel code generated by the translator.
We have presented the general structure of the translation algorithms. We have also shown
how the translation handles multilevel (T4 type) transitions which is unique as such transitions
are not supported in other variants of Statecharts.

36

Chapter 4

Visual Formalism for Communicating

Reactive Systems

4.1 Introduction

A communicating reactive system is a class of reactive system that is composed of a collection
of autonomous reactive nodes which communicate over communication channels. These nodes
could be on di�erent physical machines which exchange data through communication links.
Altogether these nodes collectively and cooperatively achieve the overall functionality of the
system. Many of the modern control systems fall into this class.

The design of reactive systems is known to be complex as compared to transformational
systems. Statecharts[56, 57] which are an extension of �nite state machines are used in the
industry for modeling the behaviour of a reactive system. Visual formalisms like Statecharts are
appealing to practicing software designers. Arguing the formal correctness however, is quite
complex particularly when the number of states are large and hence, they need automated
veri�cation support.

The Statecharts in the form described in previous chapters do not support modeling
of communicating reactive systems. The communication mechanism in Statecharts is based
on shared variables and does not support communication through channels. In this chapter,
we describe an extension [66] of Statecharts by introducing new states for handling com-
munication through bu�ered channel or unbu�ered channels. The extended notation is called
Communicating Statecharts (CS) which is inspired by Communicating Reactive Processes [12].
The primitives can model synchronous as well as asynchronous communication. Each node in
CS is modeled as a Statechart with additional communicating states showing the communi-
cation through channels. The operational semantics of CS as de�ned here preserves the Step
semantics of Statecharts[57].

In the previous chapters, we had described translation [18, 103, 13]of Statecharts into
Esterel [12] for veri�cation and subsequent code generation. In this chapter, we describe

37

an alternate approach of translating CS into Promela, the input modeling language of Spin
model Checker [60] for veri�cation. This is because Esterel does not have constructs to
model communication through channels, which is required at the speci�cation level. Using the
CS to Promela translation tool (CSPROM), one can translate a CS speci�cation into Promela
and later use Spin model checking tool to verify the temporal properties of the system. We
also show how one could model distributive algorithms in the tool. Subsequently we show [19]
how to translate the communication primitives into Esterel so that it can be integrated
into the Esterel based tool chain.

As an illustrative example, we have modeled the well known Leader Election Protocol
used in distributed systems using CS notation. The model was translated into Promela using
the CSPROM tool and we have used the translated model in Promela to show the correctness
of the algorithm by verifying the known properties of the algorithm. The veri�cation was
carried out using the Spin model checker.

The contribution of this chapter is in extending the powerful visual formalism of State-
charts with features required to model distributed systems, de�ne a scheme for formal veri�-
cation of the model using a model checker, providing schemes to integrate Esterel tools
for code generation and packaging them in a tool environment.

The chapter is organized as follows: The syntax and semantics of the communication
primitives included in Statecharts are described in section 4.2 followed by the he model trans-
formation scheme for veri�cation in section 4.3. The code generation scheme for Esterel
is discussed in section 4.5.

4.2 Communicating Statecharts

A distributed reactive system is modeled in CS as a network of independent reactive programs
or nodes, Ni, each node having its own reactive interface with separate input/output signals
and its own notion of instants. Each node Ni in CS is modeled as a Statechart with new
communicating states showing the communication through channels. The nodes can com-
municate with each other using rendezvous states or bu�ered channels. The mechanism of
rendezvous states uses unbu�ered channel and the communicating state is called Synchronous
Communicating State. On the other hand communicating state using bu�ered channel is
called Asynchronous Communicating State. They are described in detail below.

4.2.1 Synchronous Communication State

A synchronous communication state or a rendezvous state indicates communication with the
matched rendezvous state in other node via an unbu�ered channel. The channel is speci�ed
as the label in rendezvous state. Figure 4.1 shows the representation of these states in a 2
node system in CS.

38

Premption

C?x

N2 S21

S22 S23

N1 S11

S12 S13

Premption

C!x
Sucessful

Communication
Sucessful

Communication

a b

Figure 4.1: Rendezvous sender and receiver states

The syntax for labeling rendezvous state is C ! | ? <mtype#> x where "C" is the
name of the channel through which the communication is done,"x" is the message being sent
or the variable in which message is being sent, "?" implies that this is the receiver end of the
channel C, "!" implies that this is the sender end of the channel C. The optional mtype#
is the message type for the message �x�. The sender does not send a message unless the
receiver is ready to receive the message. There can be two types of exits from a rendezvous
state. The transition labeled Successful communication is the exit from rendezvous state
when communication succeeds and it is represented by a dashed edge. The transition labeled
Preemption is the preemptive exit from rendezvous state when the reactive computation
results in a state transition, before the actual communication completes. The rendezvous
state is a special state and cannot be re�ned like a normal state in Statecharts.

In the Fig.4.1, N1 and N2 are two nodes of a distributed system, each represented by a
Statechart. The actual communication takes place between the nodes when both are at the
state labeled as C!x and C?x. The intuitive executional semantics of a rendezvous state is as
follows:

� If the sender enters the rendezvous state, it waits until receiver enters the matching
rendezvous state and vice versa. Both the sender and receiver exit this state after
successful communication.

� While waiting for synchronization preemptive exit can take place on sender or receiver
which can be due to a time_out event.

In contrast to a normal Statechart state, a rendezvous state does not have history and static
reactions.

4.2.2 Asynchronous Communication State

Here the communication is via a bu�ered channel speci�ed as the label of asynchronous com-
munication state. Every channel has a message queue associated with it and messages are

39

C?x

N2 S21

S23

N1 S11

S13

C!x
Sucessful

Communication
Sucessful

Communication

a b

Figure 4.2: Asynchronous communication sender and receiver states

stored and retrieved in FIFO fashion. The sender doesn't have to wait for receiver to receive
but puts the message in the message queue and continues with its computation. The sender
is blocked only when the message queue is full. On the other hand the receiver picks up
the message from the message queue and continues with its computation. The receiver gets
blocked only when the message queue is empty. Asynchronous communication state is drawn
as a shaded circle as shown in �gure 4.2. Here the two nodes while in states S12 and S21 check
at each instant for the event a and b in conjunction with the implicit guards as shown in
the �g.4.2. Asynchronous communicating state has only one type of exit i.e., after performing
successful communication.

Its intuitive executional semantics is explained below.

� Sender checks whether message queue is full before entering the communication state.
If it is not full, it puts the message at the end of message queue and takes the non-
preemptive transition in the next reaction. If the queue is full sender waits until the
message can be put on the queue. The wait is always outside this state, essentially in
the source state of incoming transition.

� Receiver checks whether message queue is empty before entering the communication
state. If it is not empty, it reads the message from the message queue in FIFO fashion
and takes the non-preemptive transition in the next reaction. If the message queue is
empty, receiver waits until the message can be read from the queue. The wait is always
outside this state, essentially in the source state of incoming transition.

� The waits on the message queue is de�ned as implicit guards on the incoming tran-
sition to this state. Thus for the asynchronous communicating states shown in �gure
4.2 the guard on the sender side is Not(C_full) and on the receiver side the guard is
Not(C_empty).

� There is an upper bound on message queue length.

40

Fill_bottle

bottleFilled

Stamp_bottle

Error

 timeOut/error

Stamping_Unit

Transfer_bottle

C2?x

 timeOut/error

stamped

C1?x

Filling_Transfer_Unit

transferComplete

C1!x

C2!x

Error

Init_unit

start

timeOut

timeOut

Figure 4.3: A Simple Bottling Plant

The asynchronous communication state does not have history and static reactions and cannot
be re�ned further.

4.2.3 Modeling in CS: An Example of a Simple Plant Controller

The model in �gure 4.3 depicts a simple bottling plant with two independent units namely
�lling bottles and stamping the bottles. Each unit is controlled by a separate controller. The
�lling unit controller needs to communicate with the stamping unit controller for synchronizing
the stamping operation of a �lled bottle. We have used synchronous communicating states to
model the lock step operation of the system.

Both the nodes have been drawn with a very high degree of abstraction. The example
shows the outer structure and how controller can communicate. In the Filling_Transfer_Unit
the starting state is Fill_bottle. After the bottle is �lled indicated by the event bottleFilled
the present state moves to communicating state C1!x which initiates communication with the
Stamping_Unit and waits for synchronization. When Filling_Unit is in state C1!x, it can
be preempted by a timeOut event error which moves the unit to an Error state for operator
intervention. When the communication is successful, it waits for synchronization from the
Stamping _unit at the C2?x and after successful stamping the moveBottle event is generated
and the Fill_bottle node moves to Transfer_bottle state. From this state it makes transition
to initial state on transferComplete event.

In Stamping_Unit the initial state is Init_unit. When it receives event start, it moves to

41

communicating state C1?x and waits for communication indicating that the bottle is �lled and
ready to be stamped. If the synchronization is successful, it moves to the state Stamp_bottle
where actual stamping of the bottle takes place and communicates the fact in the state C2!x.
On successful completion of communication it goes back to C1?x state and waits for the next
bottle. In case of timeOut, while waiting for synchronization the unit moves to Error state.

4.3 Model Veri�cation for Safety & Liveness

Each node of CS is mapped as a process proctype in Promela. Thus if there are �n� nodes
in a CS model there will be �n� instances of Promela proctypes. Each process in Promela
representing the node in CS is logically composed of two modules namely Environment (this is
also the main process) and Reactive Kernel. The Environment invokes the Reactive Kernel.
The job of the Environment is to set the input signals and call the Reactive Kernel module
to react on these signals as shown below.

Environment()
begin

every step do
set input signals
set internal signals and outputs generated in the last step
call reactive kernel

end
end

Here the step is part of the operational semantics of Statecharts [57] and is associated
with any event (external input events or internal events). The reactive kernel reacts to the
signals by taking all possible transitions which are enabled from the set of active states. All
state changes and output signals generated are returned to the environment. All reactions
of the reactive kernel are atomic and take zero time (in reality take a bounded and a priori
known amount of time, which is negligible compared to the frequency of reactions). This is
the synchrony hypothesis and is the basis of all reactive models. Reactive Kernel waits for
the environment to trigger the reaction. Depending upon the current state and the external
input signals the reactive kernel reacts by taking all possible transitions. Internal signals may
be emitted or set during the reaction and those add to the set of input signals in the next
reaction. Output signals generated will be active only in the next reaction.

4.3.1 Scheme for Veri�cation

We have implemented the scheme discussed above in a translator named CSPROM (Commu-
nicating Statecharts to Promela) that translates CS models to functionally equivalent Promela
code. The translated code can be formally veri�ed against the requirement using SPIN.

42

a/ b/S0

X
X0

X1

N1

Figure 4.4: Simple Example showing model translation

As explained in section 4.3, every node of the CS is mapped to a process in Promela
with two components, the main Environment process and the reactive-kernel as a procedure.
Let us consider a single node of CS shown in Figure 4.4 and study its translation. Here S0 is
the initial state of the system and X is a hierarchical state with two states X1 and X2. Signal
a and b are two input signals. The environment code for this is shown below

/* This is the Promela code for environment

S0_N1, X_N1, X1_N1, X2_N2 are the

state variables, representing the states

a_N1, b_N1 represent the boolean events

in the context of the system N1

*/
active proctype N1_Env()

{
S0_N1 = true;

do

:: if

:: a_N1 = 0

:: a_N1 = 1

fi;

if

:: b_N1 = 0

:: b_N1 = 1

fi;

atomic

{

N1_kernel();

}

od

}

The environment �rst sets the initial state and then non-deterministically chooses the

43

status of input signals and after that it makes an atomic call to reactive_kernel called
N1_kernel.

The kernel �rst initializes the temporary state variables and initiates a do loop. Every
state that has an outgoing transition has a block of code associated with it. In this example
states S0 and X1 have the corresponding block of codes. If state S0 or X1 is enabled,
the transition_condition is checked and if that is true state variables are set for the new
con�guration. The loop terminates when all the enabled transitions are taken and the next
set of active states are assigned in hierarchical order.

/* This is the Promela code modeling

the kernel/
inline N1_kernel()

{
t_X_N1 = X_N1;

t_S0_N1 = S0_N1;

t_X1_N1 = X1_N1;

t_X2_N1 = X2_N1;

reaction_not_completed = true;

do

:: (reaction_not_completed == true) →
reaction_not_completed = false;

if

:: (S0_N1 == true) →
if

:: (a_N1 == true) →
t_S0_N1 = false;

S0_N1 = false;

t_X_N1 = true;

t_X1_N1 = true;

reaction_not_completed = true;

:: else → skip

fi

:: else → skip

fi;

if

:: (X1_N1 == true) →
if

:: (b_N1 == true) →
t_X1_N1 = false;

X1_N1 = false;

t_X2_N1 = true;

reaction_not_completed = true;

:: else → skip

fi

44

:: else → skip

fi

:: else → break

od;

S0_N1 = t_S0_N1;

X_N1 = t_X_N1;

if

:: (X_N1 == true) →
X1_N1 = t_X1_N1;

X2_N1 = t_X2_N1

:: else →
X1_N1 = false;

X2_N1 = false

fi

}

4.4 Model of 3-node leader election ring

As an illustrative example we consider the well known algorithm for leader election in a uni-
directional ring [60]. In this algorithm, each node sends a message with its id, to its right
neighbour, and then waits for the message from its left neighbour. When it receives such a
message, it checks the id, in this message. If the id, is greater than its own id, it forwards
the message to the right; otherwise it swallows the message and does not forward it. If a
node receives a message with its own id, it declares itself the leader by sending a termination
message to its right neighbour and exits the algorithm as the leader. A node that receives a
termination message forwards it to the right, and exits as non-leader.

Assuming there are three nodes in the ring. Each node has two channels, input and
output, messages are read from input channel and written to output channel. The input
channel of a node is shared as the output channel of left neighbour and output channel is
shared as an input channel of right neighbour. In this algorithm, all processes will participate
in the election. We consider a 3 node ring and �g. 4.5 gives the abstract view of the
connectivity of the three nodes in a ring. A typical model of a node in CS is shown in �g. 4.6.
The nodes are identi�ed by the node_id value.

Here the state Leader indicates that when that particular node is in that state, it has
become the leader. Similarly the state Lost indicates that the particular node has lost the
election.

45

N1

N2N3 C3

C1 C2

Figure 4.5: Leader Election Protocol: Nodes and channels connectivity

4.4.1 Veri�cation for Correctness

We illustrate the veri�cation process below by verifying two properties related to Safety and
Liveness of the algorithm.

1. Safety Property

The primary goal of the algorithm is that it must guarantee that at any point of time
there is only one leader. The predicate ∀i ∈ {1, 2, 3}.L_Ni is true for the node which
is the leader. Hence the proposition

onlyonewinner = ((¬L_N1 ∧ ¬L_N2 ∧ L_N3) ∨
(¬L_N1 ∧ L_N2 ∧ ¬L_N3) ∨ (L_N1 ∧ ¬L_N2 ∧ ¬L_N3) ∨
(¬L_N1∧¬L_N2∧¬L_N3)) is true when there is only one leader. The variable L_Ni

is set to true when the node i ∈ {1, 2, 3} reaches the Leader state. The fourth term
in this formula takes care of the states when there is no leader i.e during intermediate
states of execution of the algorithm. As a safety property this should be true over all
states i.e []onlyonewinner must be satis�ed by the model. By running Spin model
checker, it is found that the model satis�es this property.

In case the model does not satisfy the property, Spin produces a counter example which
can be traced in the Promela model by the guided simulator of the Spin user interface.
The output also contains information about the state space of the model.

2. Liveness Property

The algorithm starts in a state where there is no leader and as the algorithm terminates
eventually a leader is selected. This property is stated in terms of internal state variables
as

46

Init

InitLeader

CompareId

C3!try#node_id

C1?x#id

C3!x#id

StartLoop

/loop /loop

id>node_id id==node_id
id<node_id/loop

C3!winner#node_id

id==node_id

Leader Lost

id!=node_id

LeaderElect

C3!winner#node_id

loop

Node2

[x=winner]

Iterator

Voting

int node_id=2,id=0;

EndVoting

Figure 4.6: A typical node modeled in CS

[](noofwinner = 0) −→<> (noofwinner = 1))

This property is also satis�ed by the model. The variable noofwinner is a global state
variable keeping a count of how many states have become the leader.

4.5 Model Code Generation

In previous chapters, we had presented a detailed algorithm for translation of Statecharts to
Esterel constructs. It was shown how the di�erent types of states and their composition
could be compiled into Esterel . As explained earlier, the crux of the translation lies in

1. Extracting the hierarchy of states and transitions

2. Resolving the con�ict in the transitions as per the Statemate semantics

3. Generating the code corresponding to the transitions between states

4. Generating code that models system state between transitions and

47

Premption

C?x

N2 S21

S22 S23

N1 S11

S12 S13

Premption

C!x
Sucessful

Communication
Sucessful

Communication

a b

X

Handshaking signals

Handshaking signals

Figure 4.7: Rendezvous sender and receiver states

5. Generating code that supports communication via events and actions.

The advantage of converting the visual language into Esterel is in using tool chains available
in synchronous languages. In this section we explain the scheme to be adopted in modeling the
communication primitives shown in CS notations in Esterel . We only show the primitives
for synchronous communication. We have implemented the rendezvous by using pure signals
labrt, rabrt, sabrt etc., for local abortion and handshaking events indicating whether
they are ready [6]. The Esterel code for handling states with communication shown in
Fig.4.1 are explained below. The same �gure annotated with the signals are shown in Fig.
4.7. The schematic code for the state N1 is given here.

module N1

input a, rcpt,rabrt,labrt ;
output x,conf,sabrt,success,fail ;
% �signals�

trap TN1 ∈ [
loop

[
await immediate goS11 ;
trap TS11 ∈ [

%� code for state S1

[[S11]]
||

await immediate a ;
present labrt else

emit x ;
await case

labrt : emit sabrt ;
emit fail

rcpt : emit conf ;

48

emit success

rabrt : emit fail

end

end present;
await success ;
await STEP ;
emit sigS11_to_N1 ;
exit TS11

] end trap

present sigS11_to_ A then

emit go_S13

else present fail then

emit go_S12%� preempted

end present

end present

]
end loop

end trap

end

The sender node N1 works by �rst awaiting on the initiating event a and then emanating
the signal x and then waiting for either an rabrt or rcpt signal to arrive from the receiving
node. On receipt of the rcpt signal, the sender con�rms the rendezvous via the conf signal.
If on the other hand the sender is locally preempted indicated by the labrt signal, it responds
by emitting the sabrt signal and terminates. Receipt of signal rabrt also causes unsuccessful
termination of the rendezvous. A successful rendezvous is characterized by the presence of
signal success at termination.

module N2

input b, x,sabrt,conf,labrt ;
output rcpt,rabrt,success,failure ;
trap TN2 ∈ [

loop

[
await immediate goS21 ;
trap TS21 ∈ [

%� code for state S21

[[S21]]
||

await immediate b ;
present labrt else

await case

labrt : present x then

49

emit rabrt

emit failure

end

data : emit rcpt ;
await case

labrt : emit failure

conf : emit success

sabrt : emit failure

end

end

end present

await STEP ;
emit sigS21_to_N2 ;
exit TS21

] end trap

present sigS21_to_N2 then

emit go_S23

else present failure then

%preempted

emit go_S22

end

]
end

]
end trap

end

The receiver node works for by awaiting for the initiating event b and the waiting for a
data x signal to arrive from sender node and then acknowledging it by emitting a rcpt signal.
It then awaits the arrival of conf signal which will indicate successful termination.

4.6 Implementation of a Tool

We have developed a tool which has an environment to model, verify and subsequently generate
Esterel code from visual model based on Statecharts. The tool has an editor (STATED),
model veri�er (CSPROM) and code generator generating code in Esterel (STATEST). The
overall architecture of the tool is shown in Fig. 4.8. The editor is shown in Fig. 4.9. The CS
model is created from the informal system/software description. Once the CS model is built,
it can be translated into the Promela model using our CSPROM translator. This becomes the
input to the Spin model checker. The system requirements are captured and formalized as
formal speci�cation during the model building process illustrated in Fig. 4.10. These formal
speci�cations are put either as state assertions in the obtained Promela code or as temporal
properties directly given in the Spin model checker.

50

STATED STATEST

Model Editor Model Code Generator

Esterel Code

Int. Representation

CSPROM

Model Verifier

Verification ResultsUser Inputs

User Inputs

Figure 4.8: Tool Architecture

Figure 4.9: Tool Editor

51

System/Software Description

CS Model Generation

(CSPROM)

System/Software Requirements

Formalization
of

Requirements

Formal Verification

SPIN Model CheckerCS to Promela Code
Generation

Properties/AssertionsCS−to−Textual Description

Model Building Formalizing Properties and Verification

Figure 4.10: The use of CSPROM in formal veri�cation

The Esterel code generator module STATEST shares the intermediate representation
with CSPROM and generates the Esterel code. It is possible to use veri�cation tools from
Esterel distribution like Xeve [21] and EsterelStudio [39].

4.7 Summary

The environment is planned to be extended with facility to incorporate host language code
like C functions in the diagram to enable handling data dependent part of the actual design.
We plan to extend the tool to generate directly C code from the model to be compiled and
run on an operating system. The following points are worth mentioning regarding modeling
and veri�cation

� It is required to know some of the internal state variables to encode the temporal
properties in LTL. We need to provide a framework in which it should be possible to
express these properties at the level of abstraction of CS.

� Presently any counterexample generated by Spin during model checking for a property
on the translated code has to be manually traced back to the CS model. It would be
better, if the property it self can be speci�ed as an observer in the CS notation and any
counterexample generated by Spin model checker could be simulated in the CS model.

52

Chapter 5

Modeling Business Processes through

Activity Diagram

5.1 Introduction

One of the important modeling artifacts used in UML, is the Activity Diagrams (referred as
UML AD)that are used to model sequence of actions as part of the process �ow. It is used to
model sequence of actions to capture the process �ow actions and its results. It focuses on the
work performed in the implementation of an operation (a method), and the activities in a use
case instance or in an object. Process �ow modeling language like Activity Diagram has drawn
attention in the recent years in terms of modeling work�ows [108] and veri�cation [41, 40].
In this chapter, we present a formal interpretation of Activity Diagrams in a process algebraic
framework [23]. A simple activity diagram describing the order processing and account is
shown in Fig. 5.1.

Although the OMG document [92] provides an intuitive semantics of Activity Diagrams,
it lacks a formal semantics required for analysis and automatic code generation. Hence, in the
recent past there has been a lot of interest in giving a formal semantics to Activity Diagrams.

In [109] it has been shown that UML AD can be used to model some of the work�ows
patterns identi�ed in [108]. It is pertinent to ask �Can we use UML AD to specify business
processes which are prone to failure?� . We opine that the traditional Activity Diagram needs to
be enriched with additional constructs to enable us to model failures in any of the component
processes. One of the advantages of having such a semantics for activity diagrams will allow
modeling distributed work�ows coupled with interruptible regions and evaluate their transi-
tional state and behaviour for checking conformance to the requirement. Business Process
Modeling Notation (BPMN) [93] has constructs to show failures and compensations, however
we are not aware of a formal semantics of BPMN. On the other hand, the semantics of Activity
Diagrams has been studied extensively in literature [42] and by enriching the constructs, it is
expected to be useful.

53

Receive
Order

Fill Order Ship Order

Invoice

Make
Payment

[Order rejected]

Payment
Accept Send Invoice

Close Order

Cancel
Order

OrderCancel Request

Figure 5.1: Simple Activity Diagram

The main contribution of this chapter is in the following

� Establishing the requirement of compensation actions in UML AD for modeling business
processes.

� Enriching the constructs of UML AD with compensable actions [26] which enables mod-
eling of failure in business processes.

The semantics of the additional constructs are based on CSP enrichment that can cater to
failures in activities. Failures/exceptions are modeled as a part of the activities and is robust
in the sense of CSP; as the failure action has also become an explicit action treated in a
�rst-class manner and hence there is nothing like a real "exception". The proposed constructs
can also be used to provide a theoretical framework for BPMN.

The chapter is organized with a description of various constructs of activity diagrams
and their interpretation in a process algebraic notation are given in section 5.2. A brief insight
into the requirement of activity diagram to model business logic is given in 5.3. Section 5.4
introduces the additional structures required to build compensating activities in modeling with
a formal semantics.

54

5.2 Activity Diagrams: Interpretation in Process Alge-

bra

An action is the fundamental unit of executable functionality in an activity [92]. The execution
of an action represents some transformation or processing in the modeled system, which could
be a computer system or a process. An action may have sets of incoming and outgoing activity
edges that specify control �ow and data �ow from and to other nodes. An action will not begin
execution until all of its input conditions are satis�ed. The completion of the execution of an
action may enable the execution of a set of successor nodes and actions that take their inputs
from the outputs of the action. The sequencing of actions are controlled by control edges
and object �ow edges within activities, which carry control and object events respectively. An
action can only begin execution when all incoming events are present. An action execution
represents the run-time behavior of executing an action within a speci�c activity execution.
When the execution of an action is complete, it o�ers events in its outgoing control edges,
where they are accessible to other actions. Communicating Sequential Processes (CSP) [23]
is a process algebra which is suited for modeling such process �ow systems. One of the
advantage of CSP is that one can make assertions about safety and correctness properties
based on traces.

An interpretation of UML AD activity as CSP [23] processes is given below. The basic
�ow of activity is de�ned by the process PROC(P) as

αPROC(P) = {P.entry, P.in, P.exit}
PROC(P) = P.entry → P.in→ P.exit→ SKIP

The process PROC(P) �rst performs the event P.entry at the start representing the
start of the activity P, the event P.in represents the activity P is being performed and P.exit
represents the completion of activity. This is similar to the basic events considered in each
state in a Statechart [57]. In addition to these events, we consider two more events:

√
to

notify the upper level activities about the completion of the activities in the present scope,
† to notify a general trigger to higher level activities. An activity diagram is constructed as
a legal combination of activity, start, stop state elements and merge, decision, fork and join
relationship elements.

5.2.1 Synchronisations in Various Control Flow Patterns

A number of control �ow patterns and their ability to be modeled in UML AD has been
identi�ed in [109], which de�ne elementary aspects of control �ow. These are also used as
elementary control-�ow in Work�ow Management.

We provide the transition rules [23] of some of the basic control patterns shown in Fig.5.2
as processes in CSP. Σ denotes the set of observable events in the environment and the ter-
minal events Ω = {

√
, †,©} represent the di�erent ways in which an activity may terminate.

55

Sequence Exclusive Choice Simple Merge

-
P Q

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

-

-

-

P

Q

R

[c1]

[c2]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.?

6

-

P

R

Q

Parallel Split Synchronisation

-

-

-

P

Q

R

R

Q

P
-

-

-

Figure 5.2: Basic Constructs of Activities

Successful termination is represented by the
√

event, action denoted as P
√
→ ◦. An interrupt

event is represented by the † event and yielding is represented by the ©event. The interrupt
and yielding events are described later.

Sequence We consider three cases
Process P does not terminate

P
α→P ′

P ; Q
α→ P ′; Q

α ∈ Σ

Process P terminates normally

P
√
→0 ∧Q α→ Q′

P ; Q
α→ Q′

α ∈ Σ ∪ Ω

Process P Terminates abnormally

P
ω→0

P ; Q
ω→0

ω ∈ (Ω− {
√
})

Exclusive Choice Condition c1 ⊂ α

P
√
→0 ∧Q α→ Q′

P ; Q2R
α→ Q′

α ∈ Σ

Condition c2 ⊂ α

P
√
→0 ∧R α→ R′

P ; Q2R
α→ R′

α ∈ Σ

Parallel Split
P ; Q ‖ R

56

P
√
→0 ∧Q α→ Q′ ∧R α→ R

P ; Q ‖ R α→ Q′ ‖ R
α ∈ αQ

P
√
→0 ∧Q α→ Q ∧R α→ R′

P ; Q ‖ R α→ Q ‖ R′
α ∈ αR

The rules for simple merge and synchronization are expressed in terms of the above rules.
Simple Merge

P2Q; R ≡ (P ; R)2(Q; R)

Synchronization
P ‖ Q; R

5.2.2 Handling Interrupts

Although not shown in [108], it is possible to break the �ow in an activity diagram by an
asynchronous interrupt event. If activities are sequential, the exception causes an immediate
transfer of the �ow of control. An interrupt handler may be used to catch interrupts: in
P 4 Q, an interrupt caused in P triggers execution of the handler Q. It follows that a trace
of (P 4 Q) is just a trace of P up to an arbitrary point when the interrupt occurs, followed
by any trace of Q.

α(P 4Q) = αP ∪ αQ
traces[P 4Q] = {s _ 〈†〉_ t | s ∈ traces[P] ∧ t ∈ traces[Q]

The control �ows to interrupt handler from the �rst process which is caused by the † event as
shown below:

P
α→P ′

P 4Q
α→ P ′4Q

α ∈ Σ

P
†→0 ∧Q †→ Q′

P 4Q
†→ Q′

† 6∈ Σ

P
√
→0

P 4Q
√
→0

Fig. 5.3, shows how exceptions can be raised in activities and in CSP and it can be
written as ProcessOrder4 CancelOrder. If interrupts could be nested i.e if P 4 Q could
be interrupted and R is the handler then it could be speci�ed as (P4Q)4R). Generating an
interrupt inside the activity diagram to interrupt other activities is shown by a special process
called THROW which generates the interrupt event † and terminates.

THROW
†→ 0

57

X

B

Cancel
Order

cancelOrderEvent

Process Order

Protected Node

Exception Handler

Figure 5.3: Activity with Exception Handlers

A B

C D

E F

D

Yield

Yield

Figure 5.4: Activity with Yielding Points

On occurrence of the interrupt event control �ow in the activity represented by process P will
be transferred to Q.

An activity, which is ready to yield to an interrupt is to be indicated by local checkpoint
where the state of the process is known and can be restarted. The behaviour of such activities
is similar to check-pointed transaction. A local snapshot of the activity as shown in �g. 5.4 is
taken through the primitive YIELD operator so that P YIELD Q means run P with checkpoint
Q. This is similar to the Hoare's restart with checkpoint operator [85]. The transition rules
are speci�ed as

P
α→P ′

P YIELD Q
α→ P ′ YIELD Q

α ∈ Σ

P YIELD Q
†→ Q YIELD Q

P YIELD Q
©→ P YIELD P

58

5.3 Modeling Business Processes as Activity Diagram

Let us now consider the activity diagram shown in Fig. 5.5, where activity B can fail. This
activity B can be a service provided by a server. Since the UML AD can only model forward
�ow, it is not possible to show the actions required if the service provided by this activity fails.

A B C

failback is required

This flow is not
possible if B failsif B fails then fail

Figure 5.5: Activity with Failure

If the activity A is not successful because of some internal exception or an external
condition, we must be able to undo the partial e�ect of actions executed in A. Let us now
consider the activities required to process an order for which the activity diagram is shown in
�g 5.6.

���
�

DispatchOrder

ProcessOrder

AcceptOrder

PackOrder BookCourier CheckCredit

CreditOk

CreditNotOK
X

ShipOrder

Figure 5.6: Order Processing

This is the classical book store problem where customers can order books over the web
to the vendor. The vendor may not store all books and need some time in processing with
other suppliers. However he can check the credit status of the customer with the bank. In
case the activity CheckCredit reports a credit failure like CreditNotOK which should trigger

59

the cancellation of the order, cannot be shown using the traditional token �ow semantics of
UML Activity diagrams. This is the underlying motivation.

A business process as described above typically consists of steps (each of which may
be re�ned in substeps) and each step is called an activity. The requirements of business
processes modeling are to be able to describe the process map showing the �ow in the activities,
description of these activities, handling exceptions and failure.

5.4 Modeling Failures in Activity Diagrams

We extend the syntax and semantics of UML activity diagram inspired by [107] and [26]. Here
an activity is drawn as a box with two entry points and three exit points. The entries and exits
are as shown in Fig.5.7. The box indicates an activity which may be composed of sub-activities
but the interior components and connections of the box can be ignored from the outside. The
entry and exit points of a compensable activity are activated in a standard sequential ordering.
The normal entry point for an activity is at the start and failure leads to an exit along the exit
labeled fail, which returns control to the compensation of the previous transaction. Successful
execution ends with a �nish, which will start the next activity in the sequence. If a subsequent
activity fails, triggering a fail-back, this activity is able to compensate. If an activity detects
that it can neither compensate nor succeed, it will allow the control to pass on the throw exit,
which needs to be handled at the higher level as shown in Fig.5.8. After compensation, the
activity exits by the failure arrow as before. In this sense, the compensable activities has a
three way token �ow as shown in Fig. 5.7.

For example, consider a simple activity whose input is X and which computes an output
data Y such that Y = X + X. The compensating activity must be able to compute X such
that X = Y/2. The action of compensation is to save a local snapshot of local state (values
of variables) before change and restore it when required to compensate. This is the technique
used in traditional transaction processing systems. The post condition of an activity at the
�nish edge must entail the precondition at the fail-back edge. Postfinish ⇒ Prefailback.
Similarly Prestart ⇒ Postfail.

This is similar to what is supported at procedural level in BPEL4WS where the compen-
sation handler can be invoked by using the compensate activity.

<compensationHandler>

activity

</compensationHandler>

<compensate scope=''ncname'' ? attributes>

standard block

</compensate>

The advantage of graphical notation like Activity Diagram is that it would be easier to capture

60

Compensation

Action
Start Finish

Fail Failback

Throw

Local Memory
Post finish

Prestart

PrePost fail
failback

Figure 5.7: Activity with Compensation

THROW

P Q R
A

Figure 5.8: Composition of Compensating Activities

the choreography in a graphical formalism than in an imperative language like BPEL.

5.4.1 Semantics of Activity Diagrams with Failures in Enriched
CSP Framework

In order to support failed activities, we use compensation operators [26] and the Activities
are classi�ed into standard and compensable activities. A compensable activity has associated
compensation actions which are invoked in case of a failure in the forward activities. A
compensable activity consists of a forward behaviour and a compensation behaviour. In the
case of an exception, activities will be executed to compensate the forward behaviour. The
basic way of constructing a compensable activity is through the compensation primitive P÷P̄ ,
where P is the forward activity and P̄ is its associated compensation. P̄ should be designed
to compensate for the e�ect of P and may be run after P has completed.

The compensation enabled activity PP = P÷P̄ is composed of two standard processes.
The �rst one is called forward process which is executed during normal execution and the second
one is called the compensation of the forward process which is stored for future use when it is
required for compensation:

P
α→P ′

P ÷ P̄ α→P ′ ÷ P̄
α ∈ Σ

If the forward activity terminates normally then the complete activity terminates with P̄ a
the result compensation. Hence at the end of successful termination of present activity, the

61

compensating activity P̄ is installed.

P
√
→0

P ÷ P̄
√
→P̄

If any forward activity terminates abnormally, then so does the complete activity, resulting in
an empty compensation activity

P
†→0

P ÷ P̄ †→0

If the activity PP = P÷P̄ cannot progress either way due to an internal condition, it generates
a throw which should be caught by an exception handler. This handles the three way �ow

PP 4 IP = [P ÷ P̄]
†→ IP

traces[PP 4 IP] = {s _ t | s ∈ traces[P ÷ P̄] ∧ t ∈ traces[IP]
A standard activity can be transformed into a compensable activity by adding to it an activity,
which actually does nothing (SKIP). We use P,Q to identify standard activities and PP,QQ to
identify compensable activities.

PP ::= P ÷ P̄ (compensation pair)
| SKIPP = SKIP ÷ SKIP
| THROWW = THROW ÷ SKIP

The parallel and sequential composition operators for compensable processes are designed in
such a way that ensures that after the failure of an forward activity the necessary activities
are performed in an appropriate order to compensate the e�ect of already performed actions.
Sequential composition of compensable processes is de�ned so that the compensations for
all performed actions will be in the reverse order to their original sequence. Let us consider
PP = P ÷ P̄ and QQ = Q÷ Q̄ as two compensable activities then the following rules de�ne
the sequential composition of compensating activities

PP
α→PP ′

PP ; QQ
α→ PP ′; QQ

α ∈ Σ

if PP fails the whole activity terminates and the compensation activity of PP that is run.

PP
α→P̄

PP ; QQ
α→ P̄

α ∈ (Ω− {
√
})

However if QQ terminates normally after PP, the compensation of PP i.e P̄ should be
composed with the compensations from QQ i.e Q̄. The reversal of process order is shown by
〈Q̄, P̄ 〉. This is shown by

PP
√
→P̄ ∧QQ

√
→ Q̄

PP ; QQ
ω→ Q̄; P̄

(ω ∈ Ω)

62

P

P

Q

P
Q

P Q R

R

Figure 5.9: Stack of Compensation Activities

A compensable activity PP can be converted into standard activity by de�ning a block [PP] =
P ÷ P̄\αP ∪αP̄ ∪†. Successfully completed PP represents successful completion of the whole
transaction block and compensations are no longer needed. When the forward behaviour of
PP throws an interrupt, the compensations are executed in the appropriate order and the
interrupt is not observable outside the block. Parallel composition of compensable activities is
de�ned in such a way that compensations for performed actions will be accumulated in parallel.
We assume that each of the activities P and Q are not raising interrupt and not yielding to
interrupt.

[P ÷ P̄ ‖ Q÷ Q̄; THROWW] = (P ‖ Q); (P̄ ‖ Q̄)

[P ÷ P̄ ‖ Q÷ Q̄ ‖ THROWW] = SKIP2(P ; P̄)

(Q; Q̄)2(P ‖ Q); (P̄ ‖ Q̄)

A typical behaviour concerning the stack of compensation activities is shown in Fig.
5.9. One of the safety requirement of such compensating activity diagram is that the stack
of compensating activities must be empty at the end. Now let us consider the above activity
diagram in Fig.5.6 to process orders which require compensation because of exceptions raised
by the CheckCredit activity when su�cient credit does not exist. The modi�ed activity
diagram is shown in Fig 5.10. The activities can be speci�ed formally as

ProcessOrder = (AcceptOrder÷ CancelOrder)

; ShipOrder; DispatchOrder

ShipOrder = (PackOrder÷ UnpackOrder) ‖
(BookCourier÷ CancelCourier)

‖ CheckCredit ; (CreditOK ; SKIPP 2

CreditNotOK ;THROWW)

This shows the underlying formal description of the activity diagram with compensating con-
structs. The advantage is in that this can be subjected to analysis for showing certain desired
properties of business logic. The model can be used also to construct an implementation from
the description like that of [95].

63

���
�

DispatchOrder

ProcessOrder

CheckCredit

CreditOk

AcceptOrder

BookCourierPackOrder

UnpackOrder CancelCourier
CreditNotOK

CancelOrder

ShipOrder

THROWW
!

Figure 5.10: Activity with Compensation

5.5 Summary

In this chapter, we have presented the semantics of UML Activity Diagrams in a process
algebraic framework using CSP as the formal language. We discussed the requirement of
compensations in Activity Diagrams which can be used to model business process logic. Later
we have presented the main contribution of this chapter: a semantics of compensable Activity
Diagrams using the framework of �ow compensable process languages.

64

Chapter 6

Implementation of Activity Diagrams

in Esterel

6.1 Introduction

In this chapter, we extend the process algebraic semantics of activity diagrams and propose
a reactive formalism [15] of Activity Diagrams of UML AD. The synchronous model for the
Activity Diagrams is represented as a collection of transformation rules for each construct
of the Activity Diagrams. We use Esterel [12] language for description purpose. Our
approach combines the requirement level and implementation level semantics. Further the
notion of procedure call transitions as used in activity diagrams are captured nicely through
the �run module� construct and one can specify the number of incarnations of the same
module when called multiple times. Since it is based on Esterel , that has e�cient code
generation tools, the transformations can be used to realize a system directly from the model.
Thus in our approach, we can not only reason about functional requirements of UML AD but
also generate validated code automatically. This approach is useful for model based design
of embedded systems. In this presentation, we are concerned with the Intermediate Level of
Activity Diagrams that include control and data �ow and decisions.

The main contribution of this chapter is in establishing a semantic mapping between
UML AD to a synchronous language which allows validated code generation. This chapter
is organized as follows: The Esterel model of the basic activity constructs are provided in
section 6.2. In section 6.5, a brief description of simulation and code generation based on the
synchronous framework is presented. In section 6.7 a possible implementation of compensating
activities is given in terms of Mode Automata. Veri�cation approaches are presented in section
6.6.

65

6.2 Basic Constructs of Activity Diagram and their Im-

plementation in Esterel

A basic ActivityNode is modeled by an Esterel module named after the node. The invo-
cation of the activity is modeled by instantiating the module using the run module construct.

A basic ActivityNode can invoke an asynchronous task which can handle system speci�c
functions and can be modeled by an Esterel task statement such as exec taskA ()()

return ExitA, where taskA is the external process performing the actual action written in
the host language. The completion of the task is signaled by emitting the signal ExitA referred
as a return signal. A return signal cannot be internally emitted by the program. In our model
we ignore the external action for the purpose of simplicity.

Each activity node has the following set of signals associated with it.

� EntryS is the signal emitted when a particular activity node is entered.

� InS is the signal emitted when an action in a particular activity node is being performed.

� ExitS is the signal emitted when a particular activity node is completed.

We also assume that there is a root activity node which contains and controls the sequencing
of the activity nodes through the activity edges. In the example shown in Fig. 6.1 the module
simpleActivity performs the task of passing control tokens from the activity sendPayment
to the activity receivePayment. The activity node simpleActivity is the root activity
controlling the activities sendPayment and receivePayment. The activities sendPayment,
receivePayment and simpleActivity in the above example, can be interpreted through
the Esterel fragments shown in the Fig.6.1.

6.2.1 Modeling Merge Node

A merge node (cf. Fig. 6.2) is a control node that brings together multiple alternate �ows. It
is not used to synchronize concurrent �ows but to accept one among alternate �ows. It has
multiple incoming edges and a single outgoing edge. It can be described as follows

module mergeNode
run A% the module A implements activity A
||

run B% the module B implements activity B
||

await ExitA ;

66

module receivePayment

 %do something

end module

output InreceivePayment;
output ExitreceivePayment;
 emit InreceivePayment;

emit ExitreceivePayment

SimpleActivity

Send Payment Receive Payment

module sendPayment

 %do something
 emit ExitsendPayment
end module

output InsendPayment;
output ExitsendPayment;
 emit InsendPayment;

module simpleActivity
inputoutput ExitsendPayment;
 run sendPayment;
 await immediate ExitsendPayment;
 run receivePayment
end module

Figure 6.1: Simple node

run C% The module C implements activity C
||

await ExitB
run C% The module C implements activity C

end module

MergeNode

A

C

B

Figure 6.2: Merge Node

decisionNode

A

B

C

v

u

e

Figure 6.3: Decision Node

Here the activities A and B are started concurrently, but whichever activity completes
earlier, starts the activity C. If activity A and B completes together, then two instances of C
would be running at the same time. This interpretation is in line with recent OMG document
[92].

67

6.2.2 Modeling Decision Node

A decision node (cf. Fig. 6.3) is a control node that chooses between the outgoing �ows.
It has one incoming edge and multiple outgoing edges. It can be described by the following
Esterel fragment.

module decisionNode
var e in
run A ;
if e = u

run B ; % e is the guard which if has value u then run B
else if e = v

run C ; % e is the guard which if has value v then run C
end

end
end module

Here after the activity A completes, the control passes to activity B or C depending on
the guard condition e being equal to u or v respectively.

6.2.3 Modeling ForkJoin Node

A forkJoin node (cf. Fig. 6.4) is a control node that splits a �ow into multiple concurrent
�ows. It has one incoming edge and multiple outgoing edges. Tokens arriving at a fork node
are duplicated across the outgoing edges. Tokens o�ered by the incoming edge are all o�ered
to the outgoing edges.

forkjoinNode

A

B C

D

Figure 6.4: Fork Join Node

R

A B

(2)

Figure 6.5: Reentrant Node

68

The forking and joining of activities can be described by the following Esterel frag-
ment.

module forkJoinNode
run A% run activity A

[
run B% run activity B
||

run C% run activity C
]

run D% run activity D
end module

Here after the activity A completes the activities B and C are started concurrently. Once
both of B and C are complete, D is started. If concurrent activities are not modeled carefully
this may lead to problem. Let us consider the case as shown in the Fig. 6.5. Here completion of
A forks A once again with B. Thus, a possible run of the system is A→ AB → ABB → · · · .
That is there can be an in�nite incarnation of B. This causes problem with veri�cation because
of unboundedness of states.

If we need to consider �nite number of instances, we can use the parallel construct in
Esterel to specify a �nite number of concurrent activities. This is an advantage of the
model, where one can specify the number of instances of the same activity which could be
forked simultaneously. This closely maps to Work�ow Management Systems, where one would
specify the maximum number of such concurrent instances of an activity. The Esterel model
of the activity diagram shown in Fig. 6.5 is shown below. The module R is the coordinating
module for A and B. In this model we assume that there could be at most two instances of
activity B as shown by the two modules named B1 and B2 in the code. In Fig.6.5 the number
shown in bracket indicates the maximum possible number of instances of activity B. Here we
assume calling external tasks as �nal activities for ActivityNodes A and B.

module A :
output InA ;
return ExitA ;
task activityA () () ; % external asynchronous task declaration
exec activityA () () return ExitA% external action
||

abort
sustain InA ; % indicates module A is active

when ExitA
end module

69

module B :
return ExitB ;
output InB ;
task activityB () () ; % external asynchronous task declaration
exec activityB () () return ExitB% external action
||

abort
sustain InB ;

when ExitB
end module
module R :

return ExitA,ExitB1,ExitB2 ;
input InA, InB1,InB2 ;
task activityA () () ; % external asynchronous task
task activityB () () ; % external asynchronous task
input start ;
signal b1b2, free ∈

loop
await [start or ExitA];
present free then [

abort
run A

when ExitA
]

end
end
||

loop
present [not InB1] then % First instance of B

[
await ExitA ;
% Signal renaming
run B1/B [signal ExitB1/ExitB,InB1/InB]

]
else [present not InB2 then

[% Second instance of B
await ExitA ;
emit b1b2 ;
%Signal renaming
run B2/B [signal ExitB2/ExitB,InB2/InB]

]
else [

await [ExitB1 or ExitB2];

70

emit start
]

end
]

end present
end
||

loop
await start ;
abort

sustain free% free is on when B1 is active but B2 is dormant
when b1b2

end
end

end module

Since each run B produces a separate instance of the task associated with the activity B,
several simultaneous instances of activity associated with B can exist. In this case one should
specify the number of instances of such activities. The model here shows capability of running
two identical activities concurrently.

6.2.4 Modeling Exception

Fig. 6.6, shows the exception in an activity diagram. The node which is aborted due to the
exception is called the protected node and the receiving node is the exception handler node. An
exception handler is an element that speci�es a body to execute in case the speci�ed exception
occurs during the execution of the protected node. In Fig. 6.6, Activity Node ProcessOrder
is the protected node and CancelOrder is the exception handler and CancelOrderEvent is
the exception input. This can be modeled in Esterel as shown below..

module B
input cancelOrderEvent, ExitProcessOrder ;
trap T in

run ProcessOrder
||

abort
loop

await cancelOrderEvent ; % Watch exception event
exit T

end

71

X

B

Cancel
Order

cancelOrderEvent

Process Order

Protected Node

Exception Handler

Figure 6.6: Exception Node

when ExitProcessOrder
handle T do
run cancelOrder% Exception Handler

end
end

Here the activity ProcessOrder is preempted and the the activity cancelOrder is
executed on raising the exception event cancelOrderEvent.

6.3 Activity with Data and Nesting

In many instances one ActivityNode may need to pass a data to another ActivityNode for
processing by the Activity performed at that ActivityNode. For example if P and Q are two
ActivityNodes and P is required send a data X to Q as shown in Fig.6.7 then this can be
modeled using the mechanism shown below. The ExitS signal emitted by the activity node S
is used for synchronizing the fact that the data token is available at the end of activity P.

module main

inputoutput X:type % X is the data which is passed between activities

run P(X)

await immediate exitP

run Q(X)

end module

module P

output X:type

...

emit ExitP

end module

72

���
�

������������

X

Main

P

Q

Figure 6.7: Object node
with data

���
�

���
�

���
�

���
�

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�

�	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	��	�	�	�Y

Y

(call)

A B

P

Q R

X

Figure 6.8: Activity with
Nesting

module X module Y

...

run A run P;

if e = u then

run B; run Q

run Y else if e = v then

... run R

... end

end end

module Q

input X:type

task QActivity()(); % declaration of asynchronous task

...

exec task QActivity(X) return ExitQActivity;

...

end module

In our model, Activity Diagrams with nested call can be modeled naturally. Let us assume
that one activity Y is nested in another activity X as a call Y action in the activityNode C
of X shown in Fig. 6.8. This can be modeled by using the run Y construct of Esterel .
The following Esterel fragment describes the nested call of the Fig.6.8.

73

6.4 Communication in Activity Diagrams

The notion of communication between two Activity Diagrams can be nicely modeled in the
Communicating Reactive Processes (CRP) [10] framework. The CRP model consists of net-
work ‖ni Mi of Esterel modules, each having its own inputs and outputs and its own notion
of instants. The network is asynchronous and the nodes communicate though synchronous
channels. In this model, each Mi is an Activity Diagram each of which evolve locally with its
own input and output and mutually independent notions of time [10]. Signals may be sent
or received in activity diagrams through channels and is denoted by the common send and
receive nodes. As an implementation model, one can think of an asynchronous layer (task)
that handles rendezvous by providing the link between the asynchronous network events and
node reactive events. The shared task can be called as channel. Fig. 6.9, shows a simple
example of an activity diagram showing two component activities PrintServer and PrintClient
communicating data (as �les) through a channel. The CRP code for the same is shown below.

module PrintServer

input channel printq from PrintClient : FILE % CRP channel

......

receive(printq,file) % send data file to printq

.....

end module

module PrintClient

output channel printq from PrintServer :FILE % CRP channel

...

send(printq,file) % receive data file from printq

....

end module

The send and receive [100] are communication primitives realizing the communication
rendezvous between two locally synchronous programs. The primitive send blocks until sending
data on the named channel succeeds and the primitive receive blocks until a communication
succeeds on the named channel and the value assigned to the variable.

6.5 Simulation and Code Generation

Above we have shown how activity diagrams can be transformed into Esterel model. We
are augmenting our previous work [18] to translate them automatically. The Esterel model
can be simulated by using the xes interface. Xes is the simulator freely available along with the
Esterel distribution. The simulator can be generated by compiling the Esterel program
with the xes library. The simulation gives the user a clear picture of the execution of the activity
diagrams and checking conformance to requirement is easy. We are also building simulators
directly in the domain of input activity diagrams whereby one can see the simulation graphically.

74

C

PrintClient

Create

Clean

PrintServer

Print

(file)
ReceiveSend

(file)

Figure 6.9: Object node with com-
munication

click_I_I1()
I1 click() O1

click_O_O1()

Input/Output Handling Interface Functions

Figure 6.10: Activity to Code Map-
ping

6.5.1 Code Generation

There are two orthogonal levels of semantics, both indispensable: the intuitive level, where
semantics must be natural and easy to understand, and the formal level, where the semantics
is rigorously de�ned and fully non-ambiguous. Having formal semantics for the languages also
makes code generators much easier to develop and verify. The translation process from Activity
Diagrams to High Level Language (HLL) code like C is based upon sound proven algorithms
that the Esterel code generators directly implement. By providing a formal semantics based
on the synchronous paradigm and Esterel , it is easy to build correct code by construction,
using Esterel -C/Java code generators. We assume Esterel -C code generator for further
discussion.

For actual execution of the code , the generated code must also be linked with some
extra layer of code that realizes the interface with the outside world which detects input events,
read data and realizes output events and send data.If for example the module click should
react to an input event, composed for example of one input tokens I1 as shown in Fig. 6.10.
The sequence will include call to one automatically generated input C function click_I_I1()

. This should be followed by call to the reaction function by executing the C code click(),
followed by a call to output C function click_O_O1().

The automatic code building process is achieved using the rules described above

1. Model the �ow as an activity diagram model

2. Transform the model into the Esterel model following the rules as described above.
These can be automated by encoding them in a model transforming algorithm similar
to [18].

3. Describe interfaces as required by the Esterel modules regarding inputs and outputs.

75

4. The activities to be performed in the software exec tasks are to be encoded in the
host language and operating systems.

6.6 Veri�cation

We only discuss the veri�cation approach in case of conventional UML AD (i.e. without
compensation). The model captures the operational semantics of activity diagrams. However
it is not amenable to formal veri�cation using model checking due to presence of asynchronous
tasks invoked by the exec statements. For the purpose of veri�cation, it is required to do a
control abstraction of the Esterel models whereby we only retain the labels where the task
is to be created. The derived model is thus converted into a pure Esterel program and one
can perform a constructive causality analysis using the Esterel compiler option of causal.
This model can then be converted into an automaton in BLIF (Berkley Logical Interchange
Format) format, which is accepted by the Esterel model checker xeve.

As an example, let us consider the activity diagram given in Fig. 6.5 with the following
very simple safety property: when both B1 and B2 activities are going on activity A cannot be
started. It is to be noted here that B1 and B2 are two incarnations of the activity B. This is
assuming that there is no queuing of input. This could be veri�ed by xeve. The screen shots
taken from xeve are included here in Figs.6.11,6.12 for reference.

6.7 Implementation Model for Compensating Activi-

ties

The compensating activity diagrams can be represented as a model in a reactive framework
based upon Mode Automata [83]. Mode Automata is a reactive language which combines
synchronous data �ows with running modes. The compensating activity could be considered
as having two modes: normal and compensating modes. The normal mode de�nes the activity
in the forward direction and the compensating mode de�nes the activity which is run in case
of a failure in the subsequent activities. Fig. 6.13 shows two compensating activities PP and
QQ. The modes of PP are also shown as a Mode Automaton in bottom of the the Fig.6.13.
The compensating activities PP and QQ are shown as two concurrent state machines. In
the forward mode of P the variable x is incremented by 1. In case the forward activity of
QQ = Q÷ Q̄ fails, it is compensated by the compensating mode P̄ of PP. The actual action
in each activity is written as a data�ow equation in the box. These could be the tasks as shown
in earlier in the Esterel code. In Fig. 6.14 we show the composite Mode Automaton.

76

6.8 Summary

In this chapter, we have explored the speci�cation of operational semantics for the Activity
Diagrams of UML 2.0 in a synchronous style. The semantics is good for simulation, code
generation and veri�cation. Our initial experience shows that veri�cation of Activity Diagrams
in this approach can be applied to moderately large examples. All the constructs can be
expressed uniformly in the constructs of Esterel. In this approach the external action done
in the activitynode can be easily modeled as an external task in the Esterel language. The
exception handling in Petri Nets as shown in [106] is rather di�cult which can be modeled
easily in our framework.

77

Figure 6.11: Veri�cation Screen

Figure 6.12: Output of Veri�cation

78

x:=if x>0 then pre(x)−1
else 0

x:=if x>0 then pre(x)−1
else 0

X

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

x:=0−>pre(x)+1 Killw

x:=0−>pre(x)+1

PP QQ

finish_P

finish_P

fail_Q

τ

finish_P

fail_Q

Normal Mode

Compensating Mode

Figure 6.13: Mode Automata for Activity with Compensation

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

x:=if x>0 then pre(x)−1
else 0

x:=0−>pre(x)+1
Killw

finish_P

finish_P

fail_Q

τ

Killw

τ

x:=pre(x)*2

fail_Q

finish_P

finish_Q

Normal Mode

Compensating Mode

PP

QQ

Figure 6.14: Composition of Mode Automata

79

Chapter 7

A Speci�cation Language for

Choreography in Distributed Systems

7.1 Introduction

A distributed system is a collection of computers that are spatially separated and do not
share a common memory. The processes executing on these computers communicate with one
another by exchanging messages over communication channels. Designing distributed systems
is a complex process because of asynchrony, limited local knowledge and failures. An example
of distributed computing is a collection of computing entities connected over a network which
interact through well de�ned interfaces like TCP/IP, CORBA or some other middleware.

Service oriented computing [104] is a new emerging paradigm for distributed computing.
Services are autonomous computational entities o�ering services and web services are the most
common application of service oriented computing. The terms orchestration and choreography
are used to de�ne two di�erent �avors of service oriented computing. While orchestration is
used to describe a single view point model, choreography is about specifying the service
orchestration in a global model. Choreographs de�ne the sequence of exchanging messages
between two (or more) independent participants or processes by describing how they should
cooperate. The main advantage of a global de�nition approach is that it separates the process
being followed by an individual system within a domain of control from the de�nition of the
sequence in which each system exchanges information with others as illustrated in Fig.7.1.
This means that, as long as the observable sequence does not change, the rules and logic
followed within the domain of control can change [84].

The speci�cation, design and implementation of service oriented applications need to
address at least the following three major aspects:

� Orchestration of Services: Provide the speci�cation and realization of processes that
drive the message exchanges among web services in the context of arbitrary delays and
failures.

80

Service
Web

Service
Web

Service
Web

Service
Web

Service
Web

Service
Web

Orchestration Orchestration

Choreography

reply

invoke(syn)
request_response

request

Figure 7.1: Orchestration+Choreography

� Conversation: Speci�cation of request-response patterns around web services.

� Choreography: Speci�cation of collective message exchanges among interacting web
services providing a global, message-oriented view with observations and controls.

In this chapter, we focus on structuring choreography as a set of message exchanges
among various participating roles as conversations. Our main contribution in this paper is
a language ScriptOrc, which integrates orchestration with scripting to abstract conversations
leading to an e�ective modular speci�cation of service choreography. In our approach, we
are using the power of Scripts [47] and Orc [86] and capture the conversations that form the
key factor for web service abstractions. Our language is based on a reactive framework [10].
As pointed out in [86], a reactive semantics for web services will provide a good basis for
static and dynamic resource discovery and exploitation as it leads to good dynamic monitoring
schemes. We shall demonstrate the formalism with an example from work�ow.

The chapter is organized as follows: section 7.2 provides a brief introduction to the
issues in the process speci�cation. The role of Scripts in abstracting conversations as patterns
of communication is discussed in section 7.3. The formal language for actual speci�cation is
introduced in section 7.4 and in section 7.5, we demonstrate the use of the language with an
example. Finally, we summarize and conclude in section 7.6.

7.2 Background

A choreography de�nes collaborations among interacting participants. It can be structured
as a container for a collection of activities to be performed by the participants. There are
two types of activities identi�ed in [111]: Basic activities and Control-�ow activities. Basic
activities include a SKIP action, which does not do anything; an assign activity, which assigns,
within one role, the value of one variable or an expression to another variable; and an interaction
activity, which results in an exchange of information between participant roles and possible

81

synchronization of their observable information changes and the actual values of the exchanged
information. An interaction activity consists of:

� participant roles in realizing the objective; in web services, tasks are often understood
as some kind of registration needed due to security and other requirements;

� exchange of information along with direction(s);

� observable information changes;

� operation performed by the recipient.

The type of interactions is described by the possible actions on the communication channel,
which falls into three types: request, response, or request-response with respect to the agents'
role in accomplishing the task; in a sense, the role provides either an implicit or explicit
speci�cation of computation. Note that the patterns of communication can be recursive.
Apart from the requirements of handling multi-party interactions and allowing modularity and
composability , the other goals of a choreographic language [113] are:

� Information Driven: Choreography describes the way participants take part and maintain
the locus by recording the state changes caused by exchanges of information and their
reactions.

� Information Alignment: Choreography allows the participants to communicate and syn-
chronize their states and the information they share.

� Exception Handling: Choreography needs to de�ne handling of exceptions.

7.3 Modeling conversations as patterns of communica-

tion among processes

In services oriented architecture of distributed systems, patterns of communications among
agents or processes follow a clear role. For instance, when a customer is requesting a travel
agent for air-ticket between destinations A and B, we can see two roles: (i) the customer
looking for possible itineraries between A and B possibly with some constraints such as cost,
single hop etc, and (ii) the travel-agent with the task of providing answers to the speci�ed
queries from the customer. Often, the request-response looks like a database query even
though it is not necessary that the structure of results come from one static database; quite
often it could be an aggregation among several databases which are often dynamic realized
through a protocol among the communicating processes.

We use the abstraction referred to as, Script in [47], in the context of distributed comput-
ing to provide a good abstraction for web-service conversations. We de�ne Scripts consisting
of:

82

� Roles are formal process parameters of goal-oriented task abstractions in which actual
processes enroll. Each role has a set of parameters that consists of data parameters as
well as role parameters. Note that the same process can be in di�erent roles for di�erent
scripts (note often the role could be symmetrical).

� Data Parameters are the classical parameters for binding actual parameters with names.

� Body is the executable abstraction in terms of roles that would be enrolled by pro-
cesses. The body essentially describes the behaviour articulating the actions that will
be performed by the roles jointly or other wise.

Scripts have attributes like

� delayed initiation: tasks does not start immediately; reason could be due to await for
other processes to enroll or wait for time. For instance, the classical rendezvous where
one needs to wait for the dual partner to do the task. In general, one could specify a
threshold for the script to proceed.

� delayed termination: All the roles that have �nished their action also need to wait for
all the roles participating to terminate (E.g.,broadcast message delivery con�rmation).

� immediate initiation: start immediately (E.g., asynchronous message transmission).

� and immediate termination. The role terminates as soon as its' role is complete (E.g.,
asynchronous task creation).

The importance of roles and scripts, is highlighted using the following example from
[86]. An o�ce assistant (Bob) is asked to arrange the visit of a Speaker (Alice) for which he
contacts the speaker, requesting for a set of possible dates. The speaker responds by choosing
a possible dates for the visit. The assistant then contacts hotel and airline reservation sites
with the dates. He awaits con�rmation from the hotel and airline reservation. Once he receives
the con�rmation, the assistant makes the choice and con�rms to the hotel and airlines. The
entire conversation is choreographed under the role of the o�ce assistant. We describe a script
below to describe possible conversations considering the fact the O�ce Assistant performing
the complete choreography.

SCRIPT1:

INITIATION IMMEDIATE

TERMINATION DELAYED

Bob enrolls as OFFICE ASSISTANT

Alice enrolls as SPEAKER

Bob sends request to Alice with a set of dates

Alice replies with a date

����������������������-

SCRIPT2:

83

INITIATION IMMEDIATE

TERMINATION DELAYED

HILTON enrolls as HOTEL

TAJ enrolls as HOTEL

[Bob sends reservation request to HILTON

HILTON replies to Bob with cost]

|
[Bob sends reservation request to TAJ

TAJ replies with cost]

Bob selects a Hotel ∈ { HILTON,TAJ }
with lowest cost

END

����������������������-

SCRIPT3:

INITIATION IMMEDIATE

TERMINATION DELAYED

DELTA enrolls as AIRLINES

UNITED enrolls as AIRLINES

[Bob sends reservation request to DELTA

DELTA replies with flight no and cost]

|
[Bob sends reservation request to UNITED

UNITED replies with flight no and cost]

Bob selects a Flight ∈ { DELTA, UNITED}
with lowest cost

END

����������������������-

Bob sends (Hotel, Flight) info to Alice

Alice confirms to Bob

Bob confirms to Hotel

|
Bob confirms to Airlines

END

Thus, we can identify the roles as O�ce Assistant, Speaker and Hotel and Airlines. The
roles Hotel and Airlines have multiple instances. The initiation of the scripts could begin the
moment stake holder roles have enrolled themselves in the script. Thus the �rst script can start
the moment O�ce Assistant and Speaker have enrolled in the roles. The Scripts SCRIPT2
and SCRIPT3 can start the moment the Hotels sites and Airlines have enrolled themselves
in the scripts which could be initiated in parallel. We can see the request, request-response
patterns of communication in the above script. Completion of SCRIPT1 depends on values
published by SCRIPT2 and SCRIPT3 which is line with asynchronous parallelism of Orc [86].

In another scenario, the o�ce assistant selects a hotel and �ight through a hotel reser-
vation portal and a �ight reservation portal. The o�ce assistant has to provide the constraint
like cost and a suitable time of departure. The hotel reservation site involves an orchestration

84

of many hotels (shown in thick lines) whose roles are registered with the site. Similarly the
airline reservation site orchestrates between various airlines which are registered with it. In this
case, we can note that the master choreographer O�ce Assistant is initiating a conversation in
each of the portals to give him a suitable hotel and �ight meeting the constraints. In this case
we can identify three distinct roles namely O�ce Assistant, Speaker, Hotel Reservation Portal
and Flight reservation Portal. The Hotel Reservation Portal again depends upon the various
hotels which register themselves. The same is with Flight reservation Portal and Airlines. The
Hotel Reservation and Flight reservation scripts could be initiated in parallel. Scripts similar
to the one shown above can be written for this case.

7.4 ScriptOrc: A Language Abstraction for Choreogra-

phy

ScriptOrc is based on a reactive framework [10] and provides constructs to describe conversa-
tions and preemption of conversations based on timeouts.

The basic choreography is de�ned in terms of a control structure around a set of basic
activities, locations and variables. The set of basic activities de�ne expression evaluation and
assignments to variables in each site participating in a role. Composition of basic activities
constitute the kernel command structures. Control Structures group Basic Activities and other
Control Structures together in a nested structure to express the logic and decision �ow involved
in the Choreography.

Notation:

� x̃ = {x1, x2, . . . xn} denotes tuples of variables.

� α,β denote events.

� An event could be a noti�cation like completion of a conversation, exceptions
(communication/computation) or an external interrupt due to cancellation.

� σ denotes state and is the valuation of state variables.

� L denotes a set of distinct locations like, say AMEX, Travelex, NDTV etc (denoted by
r, r1, r2).

� A denotes a set of basic activities understood by the various sites/locations/agents.

The basic choreography can be realized as a set of conversations where conversations
corresponds to interactions with other agents or local computations. Denoting C, C1 and C2

for conversations, then constructs de�ned in Table 1, can be used to de�ne and compose the

85

C ::= 0 SKIP

| x@r := e ASS

| x@r := e when y T-ASS

| req(~ρA1 [k1 ∈ N : criticalset], · · · ~ρAn [kn ∈ N : criticalset], x̃1, · · · , x̃n, C) REQ

| reqres(~ρA1 [k ∈ N : criticalset], · · · ~ρAn [k ∈ N : criticalset],
τ, x̃1, · · · x̃n, z̃1, · · · z̃n, C) RQR

| C1; C2 SEQ

| C1 | C2 PAR

| C1 � b� C2 ALT

| b ∗ C LOOP

| abort C1 when α handle C2 TIMEOUT(τ) C3 end ABT

Table 7.1: Syntax of ScriptOrc

conversational aspect of choreography. Note, even scripts can be treated as conversations in
that sense.

The basic kernel constructs for request/response are:

� req(~ρA1 [k1 ∈ N : criticalset], · · · ~ρAn [kn ∈ N : criticalset], x̃1, · · · , x̃n, C): This is a
request for one-way conversation consisting of:

� ρA1 , · · · , ρAn denote roles interacting via the data parameters x̃1, · · · x̃n.
� k1, · · · kn ∈ N : minimum number of enrollments needed in script C before it can

start.

� Roles are bound to script C.

� reqres(~ρA1 [k1 ∈ N : criticalset], ~ρAn [kn ∈ N : criticalset],
τ, x̃1, · · · x̃n, z̃1, · · · z̃n, C). This is a request response conversation (two way or multi-
party) where

� Zis are the response results, and

� all other parameters are the same as in req.

� Note that, as we are having timeouts, we assume that request and response
cannot happen instantaneously.

� The command abort C1 when α handle C2 TIMEOUT(τ) C3 end denotes a con-
versation preempts a conversation if the needed response does not arrive within the
timeout τ or is preempted by an event α in the environment. Note that the timeout is
speci�ed with reference to the process that is hosting and executing the conversation;
it could be the local clock or a global clock in a perfectly synchronous system.

� The conversations follow on classical lines; note that SKIP amounts to no action except
for the enrollment of processes 9similar to pure synchronization).

86

A B

y
C

x

A B

y
C

x

wz

Figure 7.2: Request and Request-Response Operations

The primitive req(ρA, ρB, x̃, ỹ, C) is an invocation of the conversation C in the context of role
ρB initiated by role A as illustrated in Fig. 7.2 (later denoted by CρA [ρB] but the context
of agent ρA is omitted). Let r1 ∈ L and r2 ∈ L be two sites in roles ρA and ρB, and
m ::= (r1, r2, x̃, ỹ, dir) where dir = {↑, ↓} indicates whether it is a request or response for m.
IfM denotes the underlying semantics (not going into formalisms due to lack of space) then

M[〈ρA, ρB, o, x̃, ỹ, ↑〉]
4
= x̃@r1

send−→ ỹ@r2

This captures the binding of various parameters as described above of the roles, data etc.
Note that, as mentioned already, there shall be a observable time di�erence between x̃@r1

and ỹ@r2 when r1 and r2 are distinct.

M[req(ρA, ρB, x̃, ỹ, C)]
4
=M[〈ρA, ρB, o, x̃, ỹ, ↑〉]; M[C[ρB]](ỹ)

This corresponds to transmission of parameters; followed by actions for the request/response.

Note that req or reqres conversation may not start unless all participants in the conver-
sation have enrolled in their respective roles. In that sense, the initiation and termination of
a conversation are always delayed.

The primitive reqres is used to describe the invocation of the request-response operation
as illustrated in Fig. 7.2. The semantics for reqres is an invocation of the conversation C in
role ρB, performed by role ρA. The parameter τ denotes the timeout of response and if τ=0
then the command waits for until a response arrives. The conversation C in reqres which can
invoke other conversations happens between request and response. The conversation C in
reqres could also be an orchestration service. Semantically, this can be de�ned as given below:

M[reqres(ρA, ρB, x̃, ỹ, z̃, w̃, C)]
4
=M[〈ρA, ρB, o, x̃, ỹ, ↑〉];

M[C[ρB]](ỹ);

M[〈ρB, ρA, o, w̃, z̃, ↓〉]

The meaning of other constructs are given below:

87

� 0 denotes the Null process that terminates instantaneously.

� Sequence (C1; C2): denotes the sequencing of conversations � C2 starts after the
completion of C1.

� Choice (C1 � b� C2) : denotes choice of conversations based on either local or global
(environment) conditions.

� Parallel (C1 | C2) : denotes concurrent execution and terminates when both of them
terminate.

7.4.1 Operational Semantics of ScriptOrc

Here, we provide a basic operational semantics of ScriptOrc using reactive style. As we use
explicit preemption/timeout, we use a global clock to see the progress of time the participating
precesses or agents.

ASS
〈σ(e) = v〉

〈x@r := e, σ〉 → 〈0, σ[x@r 7→ v]〉

T-ASS
〈σ(e) = v〉

〈x@r := e when y, σ[y = >]〉 → 〈0, σ[x@r 7→ v]〉

SEQ
〈C1, σ〉

α→ 〈C ′1, σ′〉
〈C1; C2, σ〉

α→ 〈C ′1; C2, σ′〉

SEQ
〈C2, σ〉

β→ 〈C ′2, σ′〉

〈SKIP ; C2, σ〉
β→ 〈C ′2, σ′〉

ALT
〈C1 � b� C2, σ〉

b→ 〈C1, σ′〉
ALT
〈C1 � b� C2, σ〉

¬b→ 〈C2, σ′〉

The rule for site enrollment is based upon willingness of a site to enter into a role with an empty
slot in the critical-set. A conversation can start at a site only when it has a an available roll
in the conversation. The following rules provide semantics for role enrollment and concurrent
conversations.

Enrolling
ri ∈ L, ki < criticalset(A)〈ri, A〉 7→ ρA

〈ρA, C1, σ〉→〈C1[ρA], σ′〉

88

PAR-CI Concurrent interaction of independent conversations

〈C1, σ〉
α→ 〈C ′1, σ′〉

〈C1 | C2, σ〉
β→ 〈C ′1 | C2, σ′〉

Similarly the dual rule for C2

PAR-CT Parallel construct terminates when both terminate

〈C1, σ〉
α→ 〈0, σ′〉, 〈C2, σ〉

β→ 〈0, σ′〉

〈C1 | C2, σ〉
α∪β→ 〈0, σ′〉

The rule PAR-N-SYNC denotes interacting (synchronizing) conversations. In PAR-N-SYNC syn-
chronizing event between the conversations C1, C2 is represented by ./ (C1, C2). Let us
assume two sites r1, r2 ∈ L that have enrolled into roles ρA and ρB. Since conversations are
essentially programs, ./ can be viewed as a parallel composition of labelled transition systems
for C1 and C2 that synchronize, that is, there is proper matching of req and response at all
points in order. If `1, `2 denote actions in First(C1) and First(C2), match(`1, `2) denotes
matching of the req-response pairs then

./ (C1, C2)
4
= ∃`1 ∈ First(C1), `2 ∈ First(C2) • σ |= match〈`1, `2〉∧ ./ (rest(C1), rest(C2))

PAR-N-SYNC

〈ρA, C1, σ〉→〈C1[ρA], σ′〉, 〈ρB, C2, σ〉→〈C2[ρB], σ′〉

〈C1[ρA] , C2[ρB], σ〉 ./(C1,C2)→ 〈C1′[ρA] , C2′[ρB], σ′〉

ABORT (ABT)

C1
∗→ SKIP

〈abort C1when α handle C2 TIMEOUT(τ)C3 end ; C4, σ〉
β→

The conversation can evolve in four ways based on environment

(1)
〈C4, σ〉

(2)
〈abort C1

βwhen handle C2 TIMEOUT(τ)C3 end ; C2, σ′〉
β 6= α

(3)
〈C2; C4, σ〉

β = α

(4)
〈C3; C4, σ〉

TIMEOUT (τ) ∈ ENV ≺ α

Note that in an abort statement the handle and timeout segments are optional and is the
primary reactive construct that allows preemption capable of handling and reacting to changes
in the environment. Brie�y,

89

(1) An abort statement terminates when the enclosed conversation itself terminates; C4

denotes the conversation after the abort statement - it can be reached either through
preemption (seeing α or normal termination of C1 within the timeout statement.

(2) It continues to execute C1 in the environment (Env) where the event β occurs but the
conversation can only react to (or watching) α.

(3) If in the environment the event α occurs, then the abort statement terminates and starts
the execution of next conversation after executing the event handler.

(4) However, if the timeout event occurs before the event alpha and the statement C1 has
not yet terminated, then the timeout handler C3 is executed followed by C2.

A simpli�ed syntax of the statement can be abort C when α handle Ch TIMEOUT(τ) end,
where the conversation C is preempted by a local TIMEOUT event. The TIMEOUT event
can occur only with respect to the local clock. Each process participating in the choreography
is locally reactive [10] driving the complex operation over the asynchronous network. An
execution of a set of processes {Mi | i ∈ I} where I is the input event set can be de�ned as
the set of (Input-output) events for the processes.

7.4.2 Clock Expressions in ScriptOrc

In the synchronous data �ow model, each variable can be characterized both by its stream
of values and by its global clock. A process transforms an input clock to output clock. This
can be stated in terms of clock signatures that are relative to the appropriate clock variables.
We can think of expression e in ScriptOrc as constant streams, variables x (bound during the
course of execution), or stream variables like e when xclk. An assignment does not change
the clock of a variable but sampling operators like y:= e when x de�nes the clock of y wrt
x, where x could be assigned by a conversation. We are working on de�ning a more rigorous
rules in ScriptOrc based on clock calculus.

7.5 Choreography of Speaker, hotel and Flight

The choreography de�ned in section 7.3, illustrating the choreography of Speaker, Hotel and
Airline reservation performed by the O�ce Assistant could be scripted in our language as
(variables with subscript lc are temporary variables) illustrated below. The subscripts SP and

90

OA denote information for roles Speaker and O�ce Assistant respectively.

SCRIPT : GetDate

INITIATION IMMEDIATE;

TERMINATION DELAYED;

ROLE SPEAKER,OA;

VAR ˜dateOA, ˜dateSP ;

BEGIN

VAR w̃lc;

#The vector w̃lc contains the set of dates

reqres(OA, SPEAKER, ˜dateOA, w̃lc, ˜dateSP , d, C);

END

The script for hotel reservation and �ight booking is given below. The function Filter does
the computation for selection, meeting the constraints but details are not shown due to lack
of space.

SCRIPT : GetHotel&Flight

INITIATION IMMEDIATE;

TERMINATION DELAYED;

BEGIN

VAR x̃lc, ỹlc;

ROLE Speaker,OA,Hotel[n], Airline[m]

reqres(OA,Hotel[n], ˜PrefOA, x̃lc,
˜hotellc, ˜hotel, SKIP)

|
reqres(OA,Airline[m], ˜PrefOA, ỹlc,

˜flightlc,
˜flight, SKIP)

hotel@OA = Filter(˜hotel, cost);

flight@OA = Filter(˜flight, cost, time);

h̃fOA@OA = 〈hotel, f light〉;
req(OA, Speaker, h̃fOA, h̃fSP , SKIP)

req(OA,Hotel, confirm, SKIP);

|
req(OA,Airline, confirm, SKIP);

END

We �nd that the O�ce Assistant (OA) is the master choreographer and it generates a com-
plete arrangement for the Speaker's lecture date, his accommodation and �ight, by performing
a choreography between Speaker, Hotels and Airlines. In the above script, the communication

91

requirements and control between various roles have been captured. The actual implementa-
tion (we show only for the function Arrange&Visit) now can be speci�ed in Orc as

ArrangeV isit(p, s)
4
=

GetDate(p, s) > d >

(let(h, a) where h :∈ GetHotel(d),

a :∈ GetAirline(d))

> (h, a) >

Ack(p, (h, a)) > q >

(let(x, y)where x :∈ Confirm(h), y :∈ Confirm(a))

7.6 Summary

In this chapter, we have demonstrated that modeling conversation with roles as in Scripts
proposed in [47] leads to smooth Choreography abstraction. While Orc [86] is an elegant
abstraction for Orchestration, ScriptOrc proposed in this paper provides a clean denotation
of choreography and semantics follows on the lines of reactive semantics using techniques
proposed for CRP in [10] with appropriate notions of events and states. In fact, we can use
the Orc operators for our conversations in ScriptOrc with advantage.

92

Part II

Type Correctness and Translation

Validation of Model Generated Code

93

Chapter 8

Model Transformation: Type

Correctness of High Level Language

Code

8.1 Introduction

Embedded software-based control systems are commonly constructed using model-based design
environments. These environments allow the system designer to establish critical properties
ensuring the reliability of the system directly at the model level, using a rich mathemati-
cal toolset. However, the software implementation substantially transforms the mathemati-
cal model by introducing numerous programming artifacts (aggregate data structures, point-
ers), arithmetic with �nite representation and altering the numerical representation (platform-
dependent �oating/�xed-point arithmetic etc. Verifying that the safety properties of the sys-
tem are preserved by the implementation is extremely challenging, yet in many cases critically
important. Model based design environments usually come with an automatic code generator
(autocoder) which automatically synthesizes an implementation of the embedded controller
from the speci�cation of its model. Automatic code generators are getting increasingly used
in practical applications for they greatly simplify the implementation process. In industry con-
cerned with development of systems for safety-critical systems however, auto code generation
is used sparingly, because of use of complex algorithms, the generated code is considered to be
not adequately trustworthy. However after constructing a veri�ed model, it is always bene�cial
to use an auto code generator to keep the model and code in sync.

Static program analysis tools have recently proven successful in tackling the certi�cation
of embedded software-based control systems. Ensuring the absence of execution errors in
software used in safety-critical systems is extremely important as the failure of such software
can lead to system failure causing a loss of safety function. Run Time Errors (RTEs) arising
out of poor type system (e.g. C language) are the most subtle but crucial type of errors found
in software leading to system failures. Examples of such errors are array indices out of bound,

94

divide by zero and arithmetic over�ows/under�ows etc. In this chapter we describes our work
in developing techniques for detection of such type violations (also called runtime errors) using
a deductive approach. Detecting run time errors statically through program analysis, helps in
reducing e�orts in activities like Debugging, White box testing and Code reviews. The other
advantage is in reducing runtime overheads of checking program variables being restricted to
its safe ranges during the execution of the program. Further once the type safety of a model
generated code is ensured, it is possible to remove all run time checks to detect such errors
thereby increasing the e�ciency of execution.

In this chapter, we discuss an approach for detecting run time errors based on Type
System [27] The technique is based upon modeling C programs as state transition systems
encoded in the speci�cation language of Prototype Veri�cation System (PVS) [35]. State
Transition System model of a program describes how variables in the program are modi�ed
as program executes from beginning to end. The description of a given program as state
transition system in PVS language is called PVS Speci�cation or PVS Model of the program.
Since the speci�cation language of PVS is strongly typed, the possible runtime errors in the C
program result into type inconsistencies in the PVS speci�cation. When the PVS speci�cation
is typechecked, these type inconsistencies automatically generate proof obligations called Type
Correctness Conditions (TCCs). The PVS prover commands can be used for discharging the
proofs of these TCCs. If all the TCCs are proved, the program can be declared as free of
type violations and therefore corresponding runtime errors. Presence of any unproved TCC
indicates that the program is not typesafe and it can be traced back to a possible runtime
error in the C program. This is a deductive technique and requires user interaction but
can handle in�nite state systems. The proof process is automated to some extent using
PVS strategies as scripts. However this approach of checking properties cannot be fully
automated as it sometimes requires powerful theorem proving techniques that can be applied
only interactively. Although the technique can be applied to general class of C programs, it is
speci�cally targeted towards safety-critical software developed following software engineering
practices like controlling module sizing, complexity(McCabe) etc.

The chapter is organized as follows. Section 8.2 gives an overview of the method. In
section 8.3, we describe how C programs are modeled in PVS. A brief account on how TCCs
are proved in PVS and how to locate the RTE is given in section 8.4. Section 8.5 presents a
small example to illustrate the method. Section 8.6 summarises our experience and provides
some discussion related to future work.

8.2 Type Inferencing Method

The method is based on modeling the C programs as state transition systems in PVS speci�-
cation language. The states are encoded as the evaluation of the program variables over the
data domains. The transitions are the execution of statements and modeled as the e�ect of
modifying the set of state variables participating in the statement. Each state is expressed as
a function of the previous state and thereby the entire program is encoded as a list of states

95

Source Cod e
Data Range

 Specificat ions

 Annotate Source Cod e

Annotated Source Cod e

C2PVS

PVS Sp ecificat ion

PVS

List of Typ e Violat ion

User

Figure 8.1: Process of Type Checking C Programs

each in terms of the previous states.

The datatypes of C (which are represented in the machine in �nite size) are modeled in
PVS as subtypes of PVS types with limited size. For example int datatype of C is represented
as restr_int which is a subtype of int datatype of PVS restricted between the integer maximum
and integer minimum. Each operator in C is modeled as a PVS function with operands having
subtypes and return value having PVS type. For example, the binary + operator on int
datatype of C is represented as a PVS function add_restr_int with restr_int operands and
int return value. When + operator is used in any expression in the C program, it is replaced by
the function add_restr_int in the PVS model. This modeling scheme causes the typechecker
to generate TCCs for all possible runtime errors. This is explained in detail in section 8.3.

Fig. 8.1, shows the steps that are followed in carrying out runtime error detection.
The source code is annotated with formal annotations extracted from the constraints on the
input data of the program. These constraints are referred in the Fig. 8.1 as Data Range
Speci�cations. The translator c2pvs, developed as part of this work, translates the C program
to a PVS speci�cation which is loaded in the PVS theorem prover. The type inconsistencies in
the PVS speci�cation are detected by the PVS typechecker causing generation of TCCs (Type
Correctness Conditions), which need to be proved before the speci�cation can be considered
typesafe. An unprovable TCC shows that the program is not typesafe and indicates presence
of a runtime error.

The annotations are written as comments in a prede�ned syntax, so that they will
be ignored by the compiler and the behavior of the source code will not be changed. The
annotations are translated by c2pvs to axioms or lemmas which are used in the proofs. We

96

extern int ext_glob;
int �nd_z(int a,int b)
{

int p,z;
if(ext_glob>0)

p=a;
else

p=b;
if(ext_glob>0)

l1: z=(a*1000)/(p-b);
else

l2: z=(a*4000)/(p-b);
return z;

}

Figure 8.2: Example Pro-
gram

extern int ext_glob;
int �nd_z(int a,int b)
{

int p,z;
/*pre a≥1500 AND a≤2000
AND b ≥500 AND b ≤ 1000 end*/
if(ext_glob>0)

p=a;
else

p=b;
if(ext_glob>0)

l1: z=(a*1000)/(p-b);
else

l2: z=(a*4000)/(p-b); ←−
return z;

}

Figure 8.3: Annotated Program

explain the method with the help of the example shown in Fig.8.2, where the value of z is
computed based on the parameters a and b.

There are two parameters a and b for the given function. Let the ranges of values a and
b can take at the entry to the function be,

1500 <= a <= 2000

500 <= b <= 1000

The function find_z can be annotated with these constraints using annotations of type
pre-conditions denoted as pre. The annotated function is shown in Fig.8.3. It can be seen
that there is a divide by zero error in the statement z = (a ∗ 4000)/(p − b); at l2 (shown
by an arrow) as the expression p − b evaluates to zero at this program point (Note that the
statement z = (a ∗ 1000)/(p − b); at l1 does not cause divide by zero error). The actual
steps in the proof process are further explained below.

As shown in Fig.8.1, the annotated function is given as input to c2pvs. The c2pvs
translator translates the function to a state transition system encoded as PVS speci�cation.
The pre-condition is translated as an axiom in the PVS speci�cation. The PVS speci�cation
generated by c2pvs is then loaded in PVS and typechecked. The PVS typechecker generates
the following TCC to guarantee that p − b is not zero at l2 (sub_restr_int is the PVS
representation of the binary − operator in C).

OBLIGATION sub_restr_int(p, b) /= 0

The proof of this TCC is tried using the pre-condition and the PVS prover commands.
The proof fails, which indicates that p−b is zero at l2 and the statement z = (a∗4000)/(p−b)

97

Table 8.1: Formal annotations and their syntax
Annotation Syntax Meaning
/ ∗ pre formula end ∗ / Conditions true at entry to function
/ ∗ post formula end ∗ / Conditions true at exit of function
/ ∗ postfunc formula end ∗ / Model e�ect of function calls
/ ∗ prefunc formula end ∗ / Conditions true before function calls
/ ∗ loopinv formula end ∗ / Loop invariants

can lead to a divide by zero error. A similar TCC is generated at l1 for the statement
z = (a ∗ 1000)/(p− b) also; but it gets proved indicating that the statement does not result
into division by zero.

The annotations of type pre-conditions used here specify the ranges of values function
parameters and global variables can take at the entry to a function. In general pre-conditions
can be used to specify the constraints on the input data (ranges of input data) and any
condition which is true at the entry to the function. It must be noted that these annotations
are only used to capture the ranges of the input data and do not capture the functional
speci�cations of each C function. Tools like PolySpace use similar Data Range Speci�cations
for global variables. The di�erent types of annotations supported by the tool and their syntax
are listed in table 8.1.

Generating PVS speci�cation of a C program involves modeling the datatypes and mod-
eling the execution semantics. The next section describes the modeling scheme in detail.

The method can be used for runtime error detection of sequential C programs at the
unit level (C function level). However, to guarantee the absence of runtime errors across the
entire program, one can use compositional technique.

8.3 Modeling C Programs in PVS

8.3.1 Modeling Datatypes of C in PVS

The PVS type system has number, real, rational, integer, and natural as number related
types [35]. The variables of these types can have values varying from -∞ to +∞ (except
natural where the range is 0 to +∞). Unlike PVS, in C the ranges of values for datatypes are
restricted. Hence we have modeled the C datatypes as restricted types (subtypes) in PVS.

Modeling Integer and Character Datatypes: Integer and character datatypes
of C are modeled as subtypes of the PVS datatype int, restricted between the maximum
and minimum representable values. For example, int datatype of C is modeled as a subtype
restr_int.

restr_int:TYPE =

98

{x:int| x<=INT_MAX AND x>=INT_MIN AND INT_MAX>=INT_MIN}

where INT_MAX and INT_MIN are constants indicating the integer maximum and
integer minimum respectively for the machine on which the C program will be executed.
Similar modeling is used for other integer types and character types.

Operators on integer and character datatypes are modeled as functions with subtype
arguments and PVS type return value. For example, arithmetic operators on int are modeled
as functions with restr_int arguments and int return value. Binary + on int is modeled as a
function add_restr_int.

add_restr_int(x:restr_int,y:restr_int):int=x+y

Similar modeling is used for other operators on integer and character datatypes.

Modeling Floating Point Datatypes: Floating point datatypes of C (�oat, double,
and long double) are modeled as subtypes of PVS datatype real restricted to the normalized
range [71].

For example, �oat datatype of C is modeled as a subtype restr_�oat.

restr_float:TYPE={x:real|((x <= MAX AND x >= MIN) OR

(x <= -1*MIN AND x >= -1*MAX) OR (x = 0)) AND (MAX >= MIN)}

Here MAX and MIN are constants indicating the normalized �oat maximum and nor-
malized �oat minimum respectively.

Operators on �oating point datatypes are also modeled as functions with subtype argu-
ments and PVS type return value. But these functions modeling the �oating point operators
�rst perform the operations with in�nite precision and then the result is converted to �nite
precision. Hence three rounding functions round_to_nearest_�oat, round_to_nearest_double

and round_to_nearest_long_double are de�ned, which round an in�nite precision real number
to the nearest representable �oat, double and long double number respectively. For example,
binary + operator on �oat is modeled as a function add_restr_�oat.

add_restr_float(x:restr_float, y:restr_float): real

= round_to_nearest_float(x+y)

Similar modeling is used for other operators on �oating point datatypes.

Generation of TCCs: The modeling scheme described above causes the typechecker
to generate proper TCCs for all possible runtime errors. We will illustrate this with the help
of two simple examples.

Let us consider the statement c = a + b; where a, b, c are int. The value of a + b
can go beyond INT_MAX or INT_MIN which can get assigned to c causing an integer
over�ow/under�ow. Let us see how the typechecker detects this.

The statement c = a+ b is modeled in PVS as,

99

c = add_restr_int(a,b)

The typechecker �nds that the type of c is restr_int which does not match with the
type of add_restr_int(a,b). Hence it generates the following TCC to ensure that the value
of add_restr_int(a,b) does not go beyond INT_MAX or INT_MIN so that it is of type
restr_int.

add_restr_int(a,b)<=INT_MAX AND add_restr_int(a,b)>=INT_MIN

Proving this TCC ensures that a+ b does not over�ow/under�ow in this statement.

Let us consider another statement c = a/b; where a, b, c are integers. There are two
possible runtime errors in the statement.

1. b can be zero resulting in divide by zero error.

2. a/b can over�ow/under�ow.

The statement is encoded in PVS as,

c = div_restr_int(a,b)

The typechecker expects restr_int and nonzero_restr_int (restr_int with zero ex-
cluded) as the argument types for div_restr_int. But it encounters restr_int as the second
argument of div_restr_int. Similarly it expects restr_int as the type of div_restr_int and
encounters int instead of it. The typechecker generates two TCCs.

1. b /= 0

This TCC is to ensure that b is not zero.

2. div_restr_int(a,b)<=INT_MAX AND div_restr_int(a,b)>=INT_MIN

This TCC is to ensure that the operation a/b does not over�ow/under�ow.

Proving these TCCs ensures that b is not zero a/b does not over�ow/under�ow in this
statement.

8.3.2 Modeling Execution Semantics of C in PVS

In our method, a C function is modeled as a state transition system, encoded as a PVS theory
(A PVS speci�cation is composed of theories similar to the way a C program is composed of
functions). In the state transition system considered here, a state is a type consistent valuation
of all the program variables and statements are the transitions between the type consistent
states. A state is type consistent if the valuations of state variables are within proper ranges

100

de�ned for that type. We encode the state transition system as a list of such states with each
state de�ned in terms of the previous states. i.e. a statement S causing the si→sj transition
is represented by sj where sj is de�ned as a function of si. A program is type safe if all the
reachable states are type consistent.

Modeling of State: State is modeled in PVS by a tuple of values. Each component
of the tuple corresponds to a variable of the program. In general consider a C program with
n variables v1, v2, . . . , vi, . . . , vn of types t1, t2, . . . , ti, . . . , tn. The states of the program are
modeled as tuples of type [t1, t2, . . . , ti, . . . , tn]. For example a state sa is modeled as

sa : state = (sa, sa, . . . , sa, . . . , sa)

Now the components of the tuple sa, sa, . . . , sa, . . . , sa denote the values of the program
variables v1, v2, . . . , vi, . . . , vn respectively at the state sa.

Assignment Statement: An assignment statement modi�es the value of a program
variable and thus changes the state of the program. It can therefore be modeled in PVS as a
new state resulting from the application of a state transition on the present state.

Sequential Composition: Consider a sequence of statements S1; S2; Let the current
state of the program be sa. Let the statement S1 changes the program state to sa+1. The
statement S2 now acts on the state sa+1, to get sa+2 as the resulting state. We represent this
in PVS as

sa+1 : state = state transition for S1(sa)

sa+2 : state = state transition for S2(sa+1)

The statements after S2 will act on the state sa+2 and are represented in the same manner as
S1 and S2.

If-else Statement: Consider an if-else statement which occurs at a program state sa
as shown in the table 8.2. After the if-else statement at state sa, the program can go to two
possible states sb (if the condition is true) or sd (if the condition is false). The statements
inside the if part will operate on the state sb and those inside the else part will operate on sd.
Let sc be the �nal state in the if part and se the �nal state in the else part. The states sb to sc
and sd to se are not reachable always and their reachability depends on the if condition. The
state after the whole if-else statement sf will be either sc or se. Hence modeling the if-else
statement includes modeling of all the states from sb to sf .

Loops: Consider the loop while(B) S , where B is the loop condition and S is the
statement part of the loop. We take loop invariants as input from the user (A loop invariant
is de�ned as a formula which is true before control enters the loop, remains true each time
the program executes the body of the loop, and is still true when control exits the loop). Now
the state after the loop can be modeled as any state satisfying the condition:

(loop invariant) AND NOT(loop condition)

101

Table 8.2: The C constructs and their PVS transformations
C construct PVS transformation
sa : vi = expr; sa+1 : state = (sa, sa, . . . , expr, . . . , sa, . . . , sa)
sa : vi = expr; sa+1 : state = (sa, sa, . . . , expr, . . . , sa, . . . , sa)
vj = expr; sa+2 : state = (sa+1, sa+1, . . . , sa+1, . . . , expr, . . . , sa+1)
sa : if(cond)
{
sb : statements sb : state = if cond(sa) = true then sa else unreachable endif
sc : sc : state = state transition for last statement in if part
} (state previous to scin if part)
else
{
sd : statements sd : state = if cond(sa) = false then sa else unreachable endif
se : se : state = state transition for last statement in else part
} (state previous to se in else part)
sf : sf : state = if reachable(sc) then sc else se endif
sa : while(B) S
sb : substate : type = {s : state{loop-invariant(s)} ∧¬(B(s))}$

sb : substate

The accuracy of the proofs depends on the correctness and accuracy of the user supplied
invariants. Tools like STeP [20], which can generate loop invariants automatically can be used
for this purpose.

The possible runtime errors inside the loop are detected by handling the statements
inside the loop separately i.e. by putting the translation of these statements into another
theory. This theory is named as looptheory_i for the ith loop in the function. As the loop
invariant conjuncted with loop condition is true before entry to the loop body, it is put as
a pre-condition to these statements. Typechecking this theory generates TCCs representing
possible runtime errors inside the loop, the proofs of which are tried by using the pre-condition.
Thus a C function with n loops will generate a PVS speci�cation with n + 1 theories i.e. n
loop theories and one main theory.

The PVS transformations of di�erent constructs in a C program with n variables

v1, v2, . . . , vi, . . . , vj, . . . , vn

of types
t1, t2, . . . , ti, . . . , tj, . . . , tn

respectively are illustrated in detail in the table 8.2. All the constructs are labeled with
identi�ers indicating the states at which they occur.

102

8.4 Proving TCCs in PVS and Tracing RTEs to Source

Code

Most of the TCCs generated in PVS can be proved by using the axioms in the PVS theory,
type predicates on the program variables and type predicates on the loop states followed by
the application of prover command grind. The tool automates the proofs of such TCCs by
generating a strategy which performs the above steps. Such a strategy is generated for each
theory.

But there exists TCCs which cannot be proved this way; particularly those related to
multiplication, and division. This is due to the reason that grind cannot handle nonlinear
arithmetic. For example, let us consider that we want to prove in PVS the following

{-1} a >= 0

|-------

{1} a * a >= 0

grind alone will not prove this. We need to use a lemma le_times_le_pos from the
prelude (prelude consists of theories that are built into the PVS system), properly instantiate
it and then invoke grind. The need to select and use lemmas from prelude and instantiating
them makes the automatic discharge of such TCCs di�cult. Such TCCs should be tried
interactively.

Presence of any unproved TCC indicates the presence of possible RTEs in the original
C program. Each TCC generated by PVS is identi�ed by the state and the operation from
which it is generated. The name of a TCC si_TCCj indicates that it is generated from
the jth operation of the ith state in the PVS model. As we know the number of states
generated by each type of C statement, given that a TCC si_TCCj is unproved we can infer
the C statement causing the possible RTE from the state number i. The exact operation
causing the RTE can be inferred from the operation number j. The type of RTE detected
(array bound errors, divide by zero etc.) can be found out by analyzing the TCC description
generated by PVS. Currently this functionality of tracing the RTEs from the unproved TCCs
is not incorporated into the tool and e�ort is on to automate it.

8.5 Example

We now present an example to illustrate the method.

int average(int n)

{

int i,sum,avg;

/*pre n>=1 AND n<=100 end*/

i=n;

sum=0;

103

while(i>0)

{

/*loopinv (i>=0) AND (i<=n) AND (n>=1) AND (n<=100) AND

(sum = (n*(n+1)-(i+1)*i)/2) end*/

sum=sum+i;

i=i-1;

}

avg=sum/n;

return(avg);

}

The function average �nds out the average of �rst n natural numbers. The user supplied
pre- condition and the loop invariant are inserted as formal annotations. The PVS speci�cation
generated for the function is shown below.

looptheory_1:THEORY

BEGIN

...

state:TYPE=[bool,void,restr_int,restr_int,restr_int,restr_int,restr_int]

s1:state

axiom_3: AXIOM (s1`5>=0) AND (s1`5<=s1`4) AND (s1`4>=1) AND

(s1`4<=100) AND (s1`6=(s1`4*(s1`4+1)-(s1`5+1)*s1`5)/2) AND

great_restr_int(s1`5,0)

...

s3:state=IF s2`1=FALSE THEN s2 ELSE

(s2`1,s2`2,s2`3,s2`4,sub_restr_int(s2`5,1),s2`6,s2`7) ENDIF

END looptheory_1

average:THEORY

BEGIN

.....

state:TYPE=[bool,void,restr_int,restr_int,restr_int,restr_int,restr_int]

s1:state

axiom_3: AXIOM s1`4>=1 AND s1`4<=100

.....

s3:state=IF s2`1=FALSE THEN s2 ELSE (s2`1,s2`2,s2`3,s2`4,s2`5,0,s2`7)

ENDIF

loopcondition_1:[state->bool]=LAMBDA(u:state): (great_restr_int(u`5,0))

loopinvariant_1:[state->bool]=(LAMBDA(u:state): ((u`1=s3`1) AND

(u`2=s3`2) AND (u`3 =s3`3) AND (u`4=s3`4) AND (u`7= s3`7) AND

(u`5>=0) AND (u`5<=u`4) AND (u`4>=1) AND (u`4<=100) AND

(u`6=(u`4*(u`4+1)-(u`5+1)*u`5)/2)))

substate_1:TYPE={s:state | loopinvariant_1(s) AND

NOT(loopcondition_1(s))}

axiom_4: AXIOM EXISTS (x1: substate_1): TRUE

s4:substate_1

.....

104

Table 8.3: The TCCs, their signi�cance and proofs for function average
TCC Name Theory Name Signi�cance of the TCC How the TCC is proved
s2_TCC1 looptheory_1 To ensure sum+i does not Interactively

over�ow/under�ow inside
the loop

s3_TCC1 looptheory_1 To ensure i-1 does not (looptheory_1_strategy)
over�ow/under�ow inside
the loop

s5_TCC1 average To ensure n is nonzero (average_strategy)
in operation sum/n

s5_TCC2 average To ensure sum/n does Interactively
not over�ow/under�ow

s6:state=IF s5`1=FALSE THEN s5 ELSE

(s5`1,s5`2,s5`3,s5`4,s5`5,s5`6,s5`6) ENDIF

END average

The PVS speci�cation consists of two theories. The �rst theory looptheory_1 is the
translation of the loop and the second is the translation of the function average. The state-
ments inside the loop are translated to states s1 to s3 in looptheory_1. loop invariant AND
loop condition is translated to axiom axiom_3 in looptheory_1. In theory average, the pre-
condition is translated to axiom_3 and the loop invariant is translated to [state → bool]
function loopinvariant_1. s4 is the state after the loop de�ned as a constant of the type
substate_1 which is a subtype of the state type satisfying loopinvariant AND NOT(loop
condition).

The tool generates strategy looptheory_1_strategy for the theory looptheory_1 and
average_strategy for the theory average. The PVS speci�cation is type checked. Table
8.3 shows the TCCs generated, their signi�cance and how they are proved. All the TCCs
generated are proved. Hence there are no arithmetic over�ows/under�ows and divide by zero
in the function average.

8.6 Summary

In this chapter, we have presented an approach for detecting restricted type errors in C pro-
grams by transforming the input programs into typed PVS speci�cations and subsequently
discharging TCCs using PVS. The method is capable of detecting errors such as array out of
bound, divide by zero, over�ow/under�ow. In this approach, an unproved TCC has a direct
correlation with the source line and it is easy to track the cause of the RTE in the source
code. Also the loop invariants can be tightened to reduce the false positives.

We have also implemented a tool based on this method. The tool implemented using

105

this technique takes MISRA [87] compliant subset of C language. Most of the software
development process standards like IEC880 [65] used in developing software for safety-critical
applications recommend use of programming rules which prohibit usages of unsafe constructs
of a programming language. MISRA C:2004 [87] standard is a set of programming rules for
C language categorized in Required and Advisory rules. These set of rules together de�ne a
subset of C Language. We have adopted this subset of C as it is a well accepted standard
and one can check compliance to MISRA standard using commercial tools. Use of MISRA C
also helps in meeting recommendations of standards for safe subsets of languages. Limiting
the method to MISRA C subset which does not allow union datatype, pointer arithmetic and
dynamic memory allocation eliminates di�culties with PVS model generation and reasoning.
These features (allowed in general POSIX standard) are considered unsafe in context of safety
critical software.

106

Chapter 9

Translation Validation of a HLL

Compiler

9.1 Introduction

In the �nal realization of the executable code from high level language derived from the model
for safety critical applications, very high levels of con�dence in the correctness of executable
code is essential. The two steps in the realization of object code (cf. Fig. 9.1) are:

1. Realizing a high level program from a given requirement speci�cation and architectural
speci�cation.

2. Generating the object code using the translator (or compiler).

In Fig. 9.1, dotted lines are shown between the speci�cation and the HLL realization to re�ect
several successive re�nements whereas the solid arrow between the HLL and the translator
shows the direct nature of the re�nement (translation). To show that the object code indeed
realizes the given speci�cation, we need to establish that:

Compiler
Executable

Code

Model Development Environment

(Model)

Code Generator

High LevelRequirement

Specification
Architecture

+

Auto Code

Manual Code
Stepwise Refinement

Figure 9.1: Two Main Steps from Speci�cation to Realization

107

1. high level program is an implementation of the given speci�cation,

2. object code derived is a correct translation of HLL program.

In the previous chapters, we have addressed the �rst step. The second step depends upon the
correctness of the translator. In the context of compiler development, the step corresponds
to the preservation of the meaning of program by the compiler. It may be noted that even
certi�ed compilers will have several known bugs many of which could a�ect executable code.
Thus, one has to look for solutions such as:

1. Veri�cation of Compiler

2. Formal veri�cation of compiled code

3. Establishing the equivalence of the source and the object code.

Compiler veri�cation is an extremely di�cult task and almost impossible (undecidable in gen-
eral) and formal veri�cation of compiled code is again extremely di�cult. Translation Vali-
dation is an approach proposed in [98] that intrinsically realizes (3) in a pragmatic manner.
Translation validation is based on Re�nement Mappings [1] and can be used to establish that
the object code produced by the compiler on a given pass, is a correct implementation of the
input program. Re�nement Mappings have been used to prove that a lower-level speci�cation
correctly implements a higher-level speci�cation. Pnueli et al. [98] proposed the technique of
Translation Validation to show that a program in Signal [9] � a synchronous language � is
correctly translated into C � an asynchronous language.

In this chapter, we demonstrate a methodology supported with tools to establish equiv-
alence of the given source program with the corresponding object code. The rationale is based
on the fact that usually in safety-critical embedded applications, it would su�ce to establish
correctness of compilation of a �nite set of programs. In our approach, we �nd out whether
the object code generated can be proved to be an implementation of the source program
(restricted to an industry standard subset). For this, both the source and the object programs
are brought under a common semantic framework of FTS and then it is shown that the tran-
sition system of the object program is a re�nement of the transition system of the source
program. The contribution of the chapter lies in the development of a methodology for Object
Code Validation (OCV) with tool support for validating translations from a general purpose
HLL to assembly language. We have demonstrated the use of this methodology in translation
validation of a compiler in [14].

Rest of the chapter is organized as follows: Section 9.2 gives an overview of translation
validation and the related work. In section 9.3, an outline of the proposed OCV method is
given. This is followed by a detailed treatment of re�nements, proof obligations in STeP and
a simple illustrative example of the method in section 9.4. In section 9.5, we give an example
wherein the method detects translational errors. In section 9.6 implementation issues regarding
support tools of OCV are discussed.

108

9.2 Translation Validation: An Overview

For establishing the correctness of a compiler, one has to prove that the compiler always
produces target code that correctly implements the source code. Owing to the intrinsic com-
plexities of compiler veri�cation, an alternative referred to as Translation validation has been
explored in [98]. In this approach, each individual translation (i.e. a run of the compiler) is
followed by a validation phase which veri�es that the target code produced on this run cor-
rectly implements the source program. Such a possibility is particularly relevant for embedded
systems where there is a need to execute a �nite set of target programs. It must be pointed
out that the validation task becomes increasingly di�cult with the increase of sophistication
and optimizations methods like scheduling of instructions as in RISC architectures or methods
of code generation/optimization for super-scalar machines. In [98], the authors demonstrated
the the practicability of translation validation for a translator/compiler that translates the syn-
chronous language Signal to C without any optimizations1. The method exploits the special
features of the Signal compiler:

1. Each program consists of an initialization followed by an in�nite loop consisting of phases
like, calculating clock expressions,reading inputs, computing outputs, writing outputs
and updating previous expressions.

2. The compiler translates a program structurally.

The question that arises is:

Is it possible to apply the above technique to a non-synchronous language (HLL)
that does not use such structural translation?

It is very clear that by the very facts of di�culties of compiler veri�cation mentioned already,
we cannot extend the method in an unconstrained manner. The basic characteristics of the
underlying language and its translator that we have exploited are:

1. Source program satis�es safeness constraints (Language Subsets).

2. The programs also pass through some of the well-established metrics of software engi-
neering required for certi�cation.

3. The compiler is a certi�ed industrial compiler that does not use complex optimizations;
the assembler is a simple translator having almost a one-one correspondence between
assembly and machine code.

The above characteristics are indeed the minimum requirements imposed on translators used
in critical embedded applications.

1In [97], extension of the approach for TNI Signal compiler is explored.

109

9.2.1 Fair Transition System

The common semantic framework viz. FTS [81], is formally described as F = (V,Θ,Γ, E)
where,

� V = {u1, u2 · · ·un} ⊆ ν : A �nite set of system variables consisting of data variables,
and control variables and ν is the vocabulary.

� Θ: The initial condition characterizing the initial states.

� Γ: A �nite set of transitions. τ ∈ Γ is a function τ : Σ 7→ 2Σ mapping each state s ∈ Σ
into a set of states τ(s) ⊆ Σ.

� E ⊆ V : A set of externally observable variables.

A computation in FTS, F , denotes an in�nite sequence σ =< s0, s1, s2 . . . >, where
si ∈ Σ for each i ∈ N i� s0 |= Θ and (si, si+1) |= Γ.

9.3 An Overview of the OCV Method

Our method for OCV consists of:

1. Translating the given HLL program into SPL(Simple Programming Language) used in
STeP or FTS.

2. Translating the compiler generated assembly language program corresponding to the
above HLL program to SPL or FTS.

3. Deriving the interface mapping using the symbol table generated by the compiler.

4. Using STeP to show that the FTS for the object code is a re�nement of the FTS for
the source program.

The overall OCV scheme is diagrammatically shown in Figure 9.2. The feasibility of our
approach relies on the following aspects:

1. Restricting the language subset to safe subsets enforces good structural relations on
the FTS for the source and the object program since we also assume that there are no
complex optimizing transformations.

2. The above structure also provides support for the Interface Mapping of variables. For
instance, translations in an actual compiler like GNU gcc, that has options (eg, -gstabs,
-gstabs+ etc.) for producing debugging information can be e�ectively used to derive
correspondences between variables in the source and the object program.

3. Use of interactive theorem provers such as STeP [20] or PVS [35] to establish the
equivalence.

110

A

C

Semantic Framework
Representation in Common

(HLL)

Object
Code

Translator

Translator

Correct

Program

Compiler

Between Abstract (A) &
Interface Mapping

Concrete (C) System

Theoem Proving
Environment

(error detection)
Incorrect

Figure 9.2: Overall Object Code Veri�cation Scheme

9.4 Formal Description of the OCV Method

Firstly, the HLL program and it's object code are translated into FTS using the two translators
shown in Figure 9.2. The two fair transition systems obtained become the input to the theorem
proving tool STeP to carry out the proof of correctness of translation. The other input required
is the Interface Mapping (cf. in Fig.9.2) that provides a mapping between the variables in
the HLL program and the object code. Although FTS is the �nal representation used in the
proof, it is also possible to �rst translate the HLL and it's object code into SPL, which is
accepted by STeP as input. The translators shown in Figure 9.2 are designed to take one HLL
program and it's object code as input and produce the corresponding SPL programs. The
representations of the HLL and it's object code, in the form of FTS, could then be obtained
using STeP. However, as explained later, we have found that in the case of object code it is
easier to directly translate it to FTS. We illustrate the above concepts using a simple HLL
program given below:

int test(int a)

{ int i,j=1,k=2;

if(a)

i=j*i +k;

else

i=k*i +j;

}

The FTS of the above HLL program is shown in Fig.9.3 and is referred to as Abstract System
denoted by A=(VA,ΘA,ΓA, EA), where VA = {pi0, i, j, k, l, n, a}, ΘA = {pi0 = 0}, ΓA =
{T1, T2, T3, T4, T5} and EA = {a, l, i, k, j}; pi0 denotes program location counter. The transi-
tion system shown in Fig.9.4 is obtained from the object code of the above HLL program. For
lack of space, the object code is not shown here. In the sequel, the FTS corresponding to the
object code is always referred to as Concrete System and is denoted by C=(VC ,ΘC ,ΓC , EC)

111

0

I:=1,j:=2,k:=3
Condition

Actionl:=i*k+j
~a>0

i:=l

a>0
l:=i*j+k

i:=l

1

3

54

2

T2

T3 T5

T4

T1

Figure 9.3: Transition System for the Abstract System

where VC = { pi0, ebp_4, ebp_8,ebp_12,ebp_16, ebp8,ecx,edx,eax,esp },ΘC = {pi0 = 0},
ΓC = {T1, T2, . . . , T15} and EC = {ebp_4, ebp_8, ebp_12, ebp_16, ebp8}. The Concrete
System variables ebp_4, ebp_8, ebp_12, ebp_16 and ebp8 correspond to the variables in the
Abstract System. The correspondence between variables of the A and C is {i 7→ ebp_4, j 7→
ebp_8, k 7→ ebp_12, l 7→ ebp_16, a 7→ ebp8}. Thus, VA ⊂ VC . Even though in this example
there is a direct one to one correspondence between the observables of the two systems, in
general it need not be so. For example, HLL may support an abstract data type like a long
integer (64 bit), which when mapped to a low level assembly program may be represented as
two 32 bit integers (d1,d2) and the mapping will be an expression (232∗d2+d1). It can be also
observed that the number of states in the two transition systems are di�erent (]ΣC ≥]ΣA).
A state in the HLL program (or it's FTS) is said to correspond to a state in the object pro-
gram (as represented by its FTS) when they agree on the values of the observable variables.
Formally, if sA ∈ ΣA and sC ∈ ΣC are two states of HLL and object program then sA 7→ sC
i� ∀vA ∈ EA • vA(sA) = vC(sC) where vC ∈ EC ∧ vA 7→ vC(sC). Here v(s) means the value
of variable v interpreted in state s. Thus, in Figure 9.4 the shaded nodes {0,7,8,14,15} are the
states which correspond to states {0,2,4,3,5 } in abstract system in that order. The states of
the Concrete System that do not have a correspondence with those of the Abstract System
are unobservable and hence are local to it.

9.4.1 Correctness of Translation

Let us consider an Abstract System A representing a HLL program and Concrete System C
representing the corresponding object code. The system A can be viewed as a speci�cation
for the implementation C. A re�nement mapping [1] is de�ned as a function (f : ΣC 7→ ΣA)
which maps concrete system states to abstract system states. If the translation is correct, C
will preserve the essential features of A except for:

� The concrete system need not agree with the abstract system on the values of all
variables. The re�nement relation singles out the observable variables whose behavior
should be preserved.

112

T2

0

ebp8 1 ~ebp8
eax:=ebp_12eax:=ebp_8T2

2 9

ecx:=ebp_4*eax ecx:=ebp_4*eax
3 10

4 11

5 12

6 13

7 14

8 15

T3

eax:=ecxT4

edx:=ebp_12T5

ecx:=eax+edxT6

T8

T12

T13

T14

T1ebp_4:=1,ebp_8:=1,ebp_12:=2

T7
ebp_16:=ecx

ebp_4:=ebp_16 ebp_4:=ebp_16

ebp_16:=ecx

ecx:=eax+edx

edx:=ebp_12

eax:=ecx
T10

T9

T11

Figure 9.4: Transition System for the Concrete System

� In the course of computation, the concrete system may require data movement in tem-
porary locations (registers). This leads to the possibility of loosing one to one corre-
spondence between states in the two systems.

� The abstract system can operate in terms of high level abstract data types, while the
concrete version is restricted to only those data types available in the particular architec-
ture. Consequently, one should not always expect one to one correspondence between
the concrete observable variables and the abstract ones.

From the theory of re�nement mapping [98, 1], we have:

� if f : ΣC 7→ ΣA is an inductive re�nement mapping from C to A then C is said to be a
re�nement of A i.e C v A

� A re�nement mapping f : ΣC 7→ ΣA is called inductive i� B-INV rule given below is
satis�ed.:

R1. Initiation: s |= ΘC → f(s) |= ΘA, ∀ s ∈ ΣC and

R2. Propagation: (s, s′) |= ΓC → (f(s), f(s′)) |= ΓA for all s, s′ ∈ ΣC

Given two FTSs, A and C, we have to show that C is a correct implementation of A or in other
words C re�nes A. We assume that EA = VA − {pi0}. Let α : VA → ε(VC) be a substitution

113

that replaces each abstract variable v ∈ VA by an expression εv over the concrete variables.
Such a substitution α induces a mapping α̃ between states. To show that C re�nes A it is
required to show that [1] R1: ΘC → φ, R2: ∀τ ∈ ΓC • {φ}τ{φ}, R3: ΘC → ΘA[α] and
R4: φ → φ[α], where φ be an assertion on C and α : VA → ε(VC) is a substitution. The
rules R1-R2 express the requirement that φ is an invariant of system C and R3-R4 express
the requirement that α̃ is an inductive re�nement mapping. We de�ne φ to be an invariant
de�ning the conditions under which observable variables are changed by the computation.

9.4.2 Proof of Validation using STeP

Let uA be an observable variable in A and uC be the corresponding variable in C. Consider a
state si in the abstract system where uA is de�ned. Let luA

(s0 ↪→ si) be the path condition
(conjunction of all predicates on the path (s0 ↪→ si) and cond(uA) be the disjunction of
all such path conditions, because there can be more than one path from s0 to si. Then an
invariant can be de�ned by φ : at_si → cond(uA) ∧ uA = Thus taking the FTS in Fig.
9.3, we can have φ : pi0 = 2→ a > 0∧l = i∗j+k and φ : pi0 = 3→ ¬(a > 0)∧l = i∗k+l.
Such invariants can also be de�ned for the concrete system. The fact that these invariants are
indeed true in the respective systems can be veri�ed by the B-INV rule. If for any transition
τ ∈ Γ, {φ}τ{φ} is not established, one can generate a weakest precondition (WPC)[37] which
should hold good before the transition is taken so that φ remains true after the transition.
The WPC itself can be checked by applying B-INV. These can be applied repeatedly till it is
proved or disproved.

We de�ne the substitution function α : VA → ε(VC). This function de�nes the mapping
between an abstract variable to its counterpart in the concrete system. In STeP this mapping
is expressed by Simplify or Rewrite rules. These simpli�cation rules are declared with the SIM-
PLIFY, REWRITE keywords. The SIMPLIFY rules are automatically and exhaustively
applied when STeP simpli�er is invoked. REWRITE rules are applied interactively. We
also de�ne a mapping of states in the two system where the values of the observables in the
two systems are same. Now if φ(uCi) is an invariant in the concrete system for a concrete
variable uCi and φ(uAi) is an invariant in the abstract system then if the translation is correct
φ(uCi)→ φ(α(uAi)) must be true by rule R4. This should be true for all observable variables.
The technique by which this is carried out is the MON-I[81] rule (modus ponens) which says
if p is true and p→ q then q is true.

For the system shown in Fig. 9.3, we prove the following invariants (PROPERTY PA1-
PA4) by using B-INV and WPC rules. For the systems shown in Fig. 9.3 and Fig 9.4 the
script showing the proof requirement for correct implementation is given below:

(*These are the invariants of the Abstract System and

are shown in the syntax accepted by STeP.*)

PROPERTY PA1: [](pi0 = 2 --> a > 0 /\ l = i*j +k)

PROPERTY PA2: [](pi0 = 4 --> a > 0 /\ i = l)

PROPERTY PA3: [](pi0 = 3 --> ~(a > 0) /\ l = i*k +j)

114

PROPERTY PA4: [](pi0 = 5 --> ~(a > 0) /\ i = 1)

(* Properties PC1-PC4 are invariants of the Concrete System *)

PROPERTY PC1:[](pi0=7 --> ebp8 >0 /\ (ebp_16=ebp_8*ebp_4 + ebp_12))

PROPERTY PC2:[](pi0=8 --> ebp8 >0 /\ ebp_4 = ebp_16)

PROPERTY PC3:[](pi0=14 --> ~(ebp8 > 0) /\ (ebp_16=ebp_12*ebp_4 +ebp_8))

PROPERTY PC4:[](pi0=15 --> ~(ebp8 > 0) /\ ebp_4=ebp_16)

(*Interface mapping between abstract variables i,j,k,l,a and the

concrete variables -4(ebp), -8(ebp), -12(ebp),-16(ebp) and 8(ebp).

Here -1 means the variable is unobservable *)

value i:int*int --> int

value j:int*int --> int

value k:int*int --> int

value l:int*int --> int

value a:int*int --> int

SIMPLIFY S1: i(pi0, ebp_4) ---> if pi0 >= 0 then ebp_4 else -1

SIMPLIFY S2: j(pi0, ebp_8) ---> if pi0 >= 0 then ebp_8 else -1

SIMPLIFY S3: k(pi0, ebp_12) ---> if pi0 >= 0 then ebp_12 else -1

SIMPLIFY S4: l(pi0, ebp_16) ---> if (pi0=7 \/ pi0=8 \/ pi0=14

\/ pi0=15) then ebp_16 else -1

SIMPLIFY S5: a(pi0, ebp8) ---> if pi0 >= 0 then ebp8 else -1

(* Axioms A1-A4 axiomatize the correspondence between observable states *)

control pca:[0..5] (* control variable *)

AXIOM A1: pi0=7 <==> pca=2

AXIOM A2: pi0=14 <==> pca=3

AXIOM A3: pi0=8 <==> pca=4

AXIOM A4: pi0=15 <==> pca=5

(* Properties P1-P4 are invariants of the Abstract System (written with

mapping). Proof Obligation for correct refinement *)

PROPERTY P1:[](pca = 2 -->a(pi0,ebp8) > 0 /\ l(pi0,ebp_16) =

j(pi0,ebp_8)*i(pi0,ebp_4) + k(pi0,ebp_12))

PROPERTY P2:[](pca = 4 -->a(pi0,ebp8) > 0 /\ i(pi0,ebp_4) =

l(pi0,ebp_16))

PROPERTY P3:[](pca = 3 --> ~(a(pi0,ebp8) > 0) /\ l(pi0,ebp_16) =

k(pi0,ebp_12)*i(pi0,ebp_4) + j(pi0,ebp_8))

PROPERTY P4:[](pca = 5 --> ~(a(pi0,ebp8) > 0) /\ i(pi0,ebp_4) =

l(pi0,ebp_16))

Here properties PC1-PC4 are invariants of the concrete system. These are proved using B-INV
and WPC as was done in proving properties PA1-PA4 for the abstract system. Properties P1-
P4 are the properties of the abstract system (PA1-PA4) but written with substitution function.
These properties are again proved using the properties PC1-PC4 and MON-I rule; note that
premise R3 can be trivially proved.

115

9.5 Illustrative Example with Translation Error

The above technique was tested on experimental basis to a number of test programs written
in C language. The translations of C programs were deliberately seeded with errors to test
the e�cacy of the method. All seeded errors could be detected by carrying out the required
proofs. This was detected during the proof.

SPL Representation of HLL Source Program (Abstract System)

macro LAST:int where LAST=1024

(*

macro C1: [0..999] where C1=10

macro C2: [0..999] where C2=15

macro C3: [0..999] where C3=20

macro const:int where const=1

*)

in param:int

local v1,pav1:[-LAST..LAST]

local v2,v3:[0..999]

local C1: [0..999] where C1=10

local C2: [0..999] where C2=15

local C3: [0..999] where C3=20

local const:int where const=1

case4:: [

v1:=param;

v2:=v2*8;

l0: if v2 >= 1 /\ v2 <= 99 then

[v3:=C1;

l1: skip]

else

[if v2>= 100 /\ v2 <= 199 \/ v2=201 then

[v3:=C2+C1;

l2: skip]

else

[if v2=0 then

[v3:= const;

l3: skip]

else

[if v2=200 then

[v3:=v2 div 4;

l4: skip]

else

116

[if v2=202 then

[v1:=pav1;

l5: skip]

else

[if v2>=203 /\ v2 <= 999 then

[v3:=v2+ const;

l6: skip]]]]]];

pav1:=v1;

l7: skip]

In the abstract system

A = {V,Θ,Γ, E} where
V = {pi0, param, v1, v2, v3, C1, C2, C3, pav1}
Θ = pi0 = 0

Γ = the set of transitions and

E = {v1, v2, v3, C1, C2, C3}

The following are the invariants of the abstract system as included in the speci�cation �le
(SPEC �le) for the STeP.

PROPERTY P1: l1==>1<=v2 /\ v2 <= 99 /\ v3=C1

PROPERTY P2: l2==>((100<=v2 /\ v2<= 199) \/ v2=201) /\ v3=(C2+C1)

PROPERTY P3: l3==>v2=0 /\v3=const

PROPERTY P4: l4==>v2=200 /\ v3 = (v2 div 4)

PROPERTY P5: l5==>v2=202 /\ v1=pav1

PROPERTY P6: l6==>203<= v2 /\ v2 <= 999 /\ v3=(v2+const)

These invariants are proved using the rule repeat(B-INV;Simplify;Undo;WPC).

SPL Representation of Object Program(Concrete System)

in g0:int

local r1,r2,r3,r4,r5,r6,r7,g1,g2,g3,g4,g5,g6,g7,v1,v2,v3,pav1:int

local temp:int

prog::

[r5:=g0;temp:=r4 * 8;r4 := temp;r3:=r4;

l1:if r4>0 then

[g3:=99;

l2: if r3 > 99 then

[g1 := 199;

l3: if r3 > g1 then

117

[g6:=200;

if r3 != g6 then

[g5 := 201;

l4: skip;

l5: if r3 = g5 then

[g6:=25;v3:=g6;

l6: skip]

else

[g3:=202;

l7: if r3 != g3 then

[g6:= 203;

l8: if g6 >= r3 then

[g5:=v1;g4 := r4+g5;v3:=g4;

l9: skip]

else

[pav1:=r5;

l10: skip]]

else

[g1:= pav1;v1:=g1;

l11: skip]]]

else

[g6:=r4 div 4;v3:=g6;

l12: skip]]

else

[g7:=100;

l13: if g7 <= r3 then

[g6 := 25;v3 := g6;

l14: skip]]]

else

[if 1 <= r3 then

[g7:=10;v3:=g7;

l15: skip]]]

else

[g4:=12;v3:=g4;

l16: skip]]

118

In the above concrete system,

C = {V,Θ,Γ, E}
where

V = {pi0, r3, r4, v1, C1, C2, C3, pav1}
Θ = {pi0 = 0}
Γ = the set of transitions

E = {r3, v1, v2, v3, C1, C2, C3, pav1}

The following are the invariants of the system as included in the speci�cation �le (SPEC
�le) for the STeP. These are also proved using the same rules as in case of abstract system
invariants.

macro C1: int where C1=10

macro C2: int where C2=15

macro C3: int where C3=20

macro const:int where const=12

control pca:[0..8]

AXIOM A1: []Forall i:int.(i=r4-->i=r3)

PROPERTY P1: l15==>1<=r3 /\ r3 <= 99 /\ v3=10

PROPERTY P2: l14==>(100<=r3 /\ r3<= 199) /\ v3= 25

PROPERTY P3: l6==>r3=201 /\ v3=25

PROPERTY P4: l16==>r3<=0 /\ v3=12

PROPERTY P5: l12==>r3=200/\v3=(r4 div 4)

PROPERTY P6: l11==>r3=202 /\v1=pav1

PROPERTY P7: l9==>203<=r3 /\v3=(r4+v1)

The re�nement mapping between abstract system variables and the concrete system
variables and the proof obligations are shown below.

local V1,V2,V3,PAV1:int

(* Interface Mapping between Abstract System variables

and Concrete System variables *)

value fv1:int*int*int-->int

value fv2:int*int*int-->int

value fV2:int*int*int-->int

value fv3:int*int*int-->int

value fpav1:int*int*int-->int

SIMPLIFY S1: fv1(pi0,V1,v1) ---> if pi0 >= 0 then v1 else -1

SIMPLIFY S2: fv2(pi0,V2,r3) ---> if pi0 >= 0 then r3 else -1

SIMPLIFY S3: fv3(pi0,V3,v3) ---> if pi0 >= 0 then v3 else -1

SIMPLIFY S4: fpav1(pi0,PAV1,pav1) ---> if pi0 > 0 then pav1 else -1

119

(* State Correspondence between Abstract States and Concrete States *)

AXIOM M1:[](pca=1<-->l15)

AXIOM M2:[](pca=2<-->l14)

AXIOM M3:[](pca=3<-->l6)

AXIOM M4:[](pca=4<-->l16)

AXIOM M5:[](pca=5<-->l12)

AXIOM M6:[](pca=6<-->l11)

AXIOM M7:[](pca=7<-->l9)

(* Proof Obligation for correct translation *)

PROPERTY P1: pca=1==> 1 <= fv2(pi0,V2,r3) /\ fv2(pi0,V2,r3)<= 99 /\

fv3(pi0,V3,v3)=10

PROPERTY P2: pca=2==>(100<=fv2(pi0,V2,r3) /\ fv2(pi0,V2,r3)<= 199) /\

fv3(pi0,V3,v3)=(C2+C1)

PROPERTY P7: pca=3==>fv2(pi0,V2,r3)=201 /\ fv3(pi0,V3,v3)= (C2+C1)

PROPERTY P3: pca=4==>fv2(pi0,V2,r3)=0 /\fv3(pi0,V3,v3)=const

PROPERTY P4: pca=12==>fv2(pi0,V2,r3)=200/\ fv3(pi0,V3,v3)=

(fv2(pi0,V2,r3) div 4)

PROPERTY P5: pca=6==>fv2(pi0,V2,r3)=202 /\ fv1(pi0,V1,v1)=

fpav1(pi0,PAV1,pav1)

PROPERTY P6: pca=7==>203<= fv2(pi0,V2,r3) /\ fv2(pi0,V2,r3) <= 999 /\

fv3(pi0,V3,v3)=(fv2(pi0,V2,r3)+ fv1(pi0,V1,v1))

It is found that the property P3 and P6 could not be veri�ed. The failure of P3 is
because in the abstract system we have a state v3=const, with the path condition l3 −→
v2 = 0 ∧ v3 = const. Whereas in the concrete system, for the corresponding state where
v3=const the path condition is v2 ≤ 0. The failure of P6 is because the upper bound of v2
is 999 which is missing in the concrete system.

9.6 System for OCV: Implementation Features

The main tasks of the implementation lie in generating the FTS for the source and object code,
extracting interface mapping, and the algorithm for proof. Extraction of interface mapping
information is done closely to that discussed in Section 9.3 so as to achieve the mapping semi-
automatically. The algorithm for proof of validity follows on the lines of STeP theorem prover
[20]. The translator for HLL produces SPL output while that for object code produces Fair
Transition System (FTS) for reasons explained in section 9.6.2. The features of generating
SPL/FTS and the underlying modeling are discussed in the following.

120

Table 9.1: HLL-SPL mapping
Annotated HLL Declaration SPL Translation
Multiply (X,Y: in Matrix,Z:out Matrix) in X,Y:Matrix
�# derives Z from X,Y out Z:Matrix

Z:=Multiply_Z(X,Y)
Exchange(X,Y: in out �oat) in X,Y:rat
�# derives X from Y & out_mX,_mY:rat
�# Y from X; _mX:=Exchange_X(Y)

X:=_mX
_mY:=Exchange_Y(X)
Y:= _mY

9.6.1 Generating SPL/FTS for the HLL Source

The methodology was used in translation validation of a speci�c compiler. Some of the features
of the translation scheme are discussed below:

� Each function/procedure is translated into a SPL procedure.

� Most of the HLL has support for many types of data structures like records, aggregates,
enumerated types which do not have corresponding types in SPL. Hence, the translators
implemented for HLL handle only the basic data types which have corresponding types
in SPL.

� The function invocations in HLL and object code are translated to corresponding function
invocations in SPL or FTS. These functions are required not to have any side-e�ects.

� Procedures in languages like Ada are modeled as multiple functional assignments to out
variables.

The in and out variables and their mutual dependencies are required to be explicitly anno-
tated in the programs input to the translators, so that the functional assignment relationships
between the in and out variables can be inferred. Some illustrative examples are shown in
Table 9.1. Let us consider a procedure to multiply two matrices and the result returned in a
third matrix. In SPL, the data type Matrix is to be speci�ed as user de�ned type with corre-
sponding axioms (not shown). A typical annotation for Ada declaration and the corresponding
SPL code is shown in Table 9.1.

Consider a procedure Exchange for exchanging two variables as shown in Table 9.1.
which is called from a procedure being analyzed. The convention of naming the functions in
SPL modeling the procedure is <procedure name_<variable name which is exported > (list
of variables modifying the exported variable).

121

Table 9.2: Assembly Instructions to FTS mapping
Assembly Instruction SPL/FTS Statement, Declaration & Rule
cmpi src1,src2 cc:=cmp(src1,src2) value cmp : int ∗ int −→ int

SIMPLIFY cmp(src1, src2)→
if(src1 < src2) then 4 else
if(src1 = src2) then 2 else
if (src1 > src2) then 1 else 0

shli len,src,dst dst:=src*power(2,len) value power : int ∗ int −→
int

shri len,src,dst dst:=src div power(2,len) REWRITE ∀m,n : int•
power(m,n) →
if(n = 0) then 1 else
if(n = 1) then m else
m ? power(m,n− 1)

9.6.2 Generating FTS for the Object Code

The object code is translated directly into FTS for reasons explained below. We have used the
instruction set of i960 processor for illustration. The iterative type of statements from HLL
program may be translated to object code by using conditional and unconditional branching
statements because i960 processor has only binary branch statements and no loop statements.
Since the predicates in the loop type of statement in the HLL may be complex i.e. containing
conjunction and disjunction of variables, it becomes very di�cult to reconstruct a loop type
construct in SPL from the form in which exists it in object code. This reverse engineering can
only be done through extensive �ow graph analysis. However, since the Fair Transition System
syntax supports goto, it is straight forward to translate such constructs into Fair Transition
Systems rather than into SPL. Hence the translator implemented for object code produces
FTS directly instead of an SPL program.

In the implementation of the translator from assembly instruction to FTS the main
task lies in modelling the assembly instructions and some illustrative instructions modelling
are discussed in the following. We have considered i960 (RISC) processor for the purpose of
illustration. Since many of the instructions in the instruction set have implicit operation, it is
required to use SIMPLIFY/REWRITE rules to model the e�ect of the instruction. Some of
the illustrative instructions are modelled as shown in Table.9.2. Let us take for example the
cmpi src1, src2 instruction which compares two integers and sets the condition �ag cc to
4, 2 or 1 depending on the condition src1 < src2, src1=src2 or src1 > src2. This is
modelled as an assignment
cc:= cmp(src1,src2).

Let us consider the example of arithmetic shift shli and shri shown in Table 9.2. A
multiplication or division by some power of two is usually implemented by an arithmetic shift
left or right respectively when translated by the compiler.

122

The i960 processor supports movement of data between �oating registers fp0-fp3 and other
registers like r0-r15 and g0-g15. Since in our implementation the register sets r0-15 and g0-
g15 are declared as integer types, operations involving this requires AXIOMs : ∀m : rat •
(Real(Int(m)) = m) and ∀m : int • (Int(Real(m)) = m).

9.7 Summary

The object code validation is a task requiring special skills even in the presence of mechanized
theorem provers. The implementation of the translators to SPL/FTS is a major step in
reducing the total e�ort involved in object code validation. Human interaction is still required
in constructing the interface mappings and in carrying out the proofs.

The technique generally works �ne if there is a structural correspondence between the
�ow graph of the two programs. The common semantic representation should have capability
to handle di�erent type of data structures normally used in HLLs like C or Ada. Each veri�able
unit, which is a function or procedure in our case, should be small enough, so that it is easily
possible to establish state correspondence and construct interface mapping. This is not a
problem if the software is nicely modularized following good software engineering practices
where each module has a small cyclomatic number. This is generally a requirement for software
to be used in safety-critical system. It is also seen that auto code generators follow systematic
patterns for code generations.

The process of validation requires skills with theorem provers. However, even with our
preliminary experience we �nd it to be very useful for the validator. On the �y validation [88]
aids in generating correct code as large fraction of of target-dependent errors in compilers can
be detected. Program annotation and assertions aid in the proof.

123

Chapter 10

Conclusions, Future Work and Main

Contribution

10.1 Conclusion

The process of developing a safety-critical system which is tractable and veri�able, must be
based on systematic techniques. The traditional life cycle model can be described by the
following three layers:

� Layer 1: Requirements Speci�cation: In this layer, user requirements and architectural
constraints are captured preferably in a formal speci�cation language. This is an im-
portant layer for capturing the relevant functionality and its adequate formalization in
precise mathematical de�nitions to reduce ambiguity. This layer serves the basis of ab-
stracting a model by de�ning the context of the system. The issues which are of interest
here are ensuring completeness and consistency of the requirements.

� Layer 2: System Model & Design: Adequate speci�cation resulting from the �rst phase
forms the basis for this phase which comprises the derivation of an abstract implemen-
tation. This phase usually follows the notion of stepwise re�nement. It will include
re�nement of the operational behavior, and veri�cation to ensure correct development.
This layer thus demands extensive support for modeling, simulation, testing, code gen-
eration/synthesis and veri�cation.

� Layer 3: System Model to Executable Model : In this layer the actual implementation
is carried out using a programming language and a compiler. The outputs of this
phase are executable codes. Considerable e�ort goes into generating optimized code for
recon�gurable architectures. Issues concerning this layer would be to validate that the
executable code corresponds to design.

For a correct realization the above process demands the process of rigorous veri�cation at
each of these layers. In this thesis, we have addressed some of the concerns for the vertical

124

transformations through each of these layers. We have shown a formalization of Statecharts
which is a visual modeling notation for used specifying reactive systems by providing a trans-
lation scheme to the imperative reactive language Esterel . We have actually built a tool
titled Programming Environment for Reactive Systems which has an editor, simulator and
translator to support modeling, veri�cation and code generation via Esterel framework for
supporting model based system design.We have also extended the Activity Diagram to support
compensations in Work�ow systems. We have provided a simulation semantics for Activity
Diagrams in terms of equivalent Esterel constructs which can be used to provide a framework
to automatically generate code from Activity Diagrams.

We have shown a language framework called ScriptOrc to model choreography in dis-
tributed service oriented architecture. We have shown how abstract scripts can be used to
show service conversations. The idea of roles and the critical set of roles have been identi�ed
in de�nition of the scripts. We have provided a reactive framework for the language which
captures the notion of abortion of scripts due to events and timeouts. We have also provided
an operational semantics of the language.

We have presented an approach for detecting restricted type errors in C programs by
transforming the input programs into typed PVS speci�cations and subsequently discharging
TCCs using PVS. The method is capable of detecting errors such as array out of bound,
divide by zero, over�ow/under�ow. In the proposed approach, an unproved TCC has a direct
correlation with the source line and it is easy to track the cause of the RTE in the source
code. Also the loop invariants can be tightened to reduce the false positives.

We have presented a technique for object code validation using the principle of Transla-
tion Validation. The object code validation is a task requiring special skills even in the presence
of mechanized theorem provers. The implementation of the translators to SPL/FTS is a major
step in reducing the total e�ort involved in object code validation. Human interaction is still
required in constructing the interface mappings and in carrying out the proofs.

The technique generally works �ne if there is a structural correspondence between the
�ow graph of the two programs. The common semantic representation should have capability
to handle di�erent type of data structures normally used in HLLs like C or Ada. Each veri�able
unit, which is a function or procedure in our case, should be small enough, so that it is easily
possible to establish state correspondence and construct interface mapping. This is not a
problem if the software is nicely modularized following good software engineering practices
where each module has a small cyclomatic number. This is generally a requirement for software
to be used in safety-critical system. It is also seen that auto code generators follow systematic
patterns for code generations.

10.2 Limitations and Future Work

Model driven design frameworks which support requirement speci�cation, modeling, simula-
tion, test coverage, formal veri�cation and automatic code generation are becoming available

125

to the industrial users. In this thesis, we have addressed few important issues regarding for-
malization and realization in vertical transformation of models to executable code. We have
not addressed the aspects of code generation from synchronous languages to traditional high
level languages. One of the reasons is that generation of C code from synchronous languages
is well understood. However the distribution of generated code in a distributed architecture
needs attention. This is a challenge that needs to be addressed.

We have discussed the reactive requirements of the activity oriented language like Activity
Diagrams widely used in modeling work�ow networks. We have addressed the compensation
requirements in such networks however we have not addressed the implementation requirements
of such compensation from the model. This is another work that we are pursuing.

We have shown the use of Esterel based model checker xeve but which is presently
not the state of the art. Augmenting the veri�cation engine by using better techniques like
SAT based veri�cation would de�nitely allow to verify large models and involving nonlinear
arithmetic. This is currently a quite active area in the formal veri�cation community.

Another challenge is to bring the issues of service orchestration and choreography to
model oriented designs. This we believe would be very useful in modeling large systems com-
posed of communicating subsystems. Integration of SysML [69] in a formal framework of
service orchestration and choreography will be a signi�cant contribution to modeling commu-
nity involved in software design at large. We are working towards such an integrated formalism
to achieve the same via the reactive semantics. Furthermore, we plan as part of our future work
to verify/validate the timing characteristics embedded in the request-response framework.

Our methods of deducing type correctness of C programs and validation of translation
is based on deductive methodology and is not completely automatic. Automation of the proof
is one which needs very careful study in terms of invariant generation and proofs using correct
lemmas. This is particular if grind or simplify proof strategies fail and one needs to instantiate
the correct lemma. This is in general a very active research area.

10.3 Main Contribution

The main contribution of the thesis is in the following:-

1. Formalization of semantics of Statecharts based on an imperative synchronous semantics
of Esterel: We present complete algorithms for the translation of Statecharts into Esterel.
This allows us to use other backend tools in the synchronous family for veri�cation and
high level code generation for implementation .

2. Extending the Statecharts to model communication: We present an extension in State-
charts to model communication through channels. The new language allows us to model
communicating reactive systems. We present an alternate translation scheme to a lan-
guage Promela used in a veri�cation tool SPIN. We also show how such a speci�cation
can be realized in the imperative synchronous language Esterel .

126

3. Formalization of Activity Diagrams in Esterel: We present a reactive semantics of the
various activity patterns using Esterel. We show that this semantics allows us to carry
veri�cation and code generation using tools used for family of synchronous languages
[ICDCIT05].

4. Compensating Activity Diagrams: Although the Activity Diagrams can model most of the
work�ow patterns used in business process, however it cannot model failures in business
processes. We show a possible extension of activity diagrams to model compensations
required in such business process logic [JOT09].

5. Language to Model Choreography in Distributed Service Oriented Computing: Chore-
ographs de�ne the sequence of exchanging messages between two (or more) indepen-
dent participants or processes by describing how they should cooperate. We show a
formal language framework which integrates orchestration with scripting to abstract
conversations leading to an e�ective modular speci�cation of service choreography [AP-
SCC08,ICWS08].

6. Type systems for C: Most of the model based design tools generate the implementation
in C language. This is particularly true for tools used in embedded systems. However it
is known that there is no proper type system for C and hence C programs may not be
typesafe. We show an implementation of a system for checking types for a restricted
class of C programs based on a type system implementation in PVS [SAFECOMP07].

7. Object Code Validation: The code generated from a model using a model compiler
needs to be ultimately translated to a machine level code using a HLL compiler. It is
known that compiler veri�cation is an undecidable problem. We show how an alternate
methodology based on Translation Validation can be used to verify fragments of HLL
code which can be used for compiler validation [FTRTFT00].

127

References

[1] Martín Abadi and Leslie Lamport. The existence of re�nement mappings. Theoretical
Computer Science, 82(2):253�284, 1991.

[2] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. Communicating hierarchical
state machines. Lecture Notes in Computer Science, 1644:169�179, 1999.

[3] Stuart Anderson, Massimo Felici, and Bev Littlewood, editors. Computer Safety, Re-
liability, and Security, 22nd International Conference, SAFECOMP 2003, Edinburgh,
UK, September 23-26, 2003, Proceedings, volume 2788 of Lecture Notes in Computer
Science. Springer, 2003.

[4] Charles André. Synccharts: a visual representation of reactive behaviors. Technical
Report RR 95�52, rev. RR (96�56), I3S, Sophia-Antipolis, France, Rev. April 1996.

[5] J. Augusto, M. Leuschel, M. Butler, and C. Ferreira. Using the extensible model checker
xtl to verify stac business speci�cations. In In Pre-proceedings of 3rd Workshop on
Automated Veri�cation of Critical Systems (AVoCS 2003), pages 253�266, 2003.

[6] R.K. Shyamasundar B. Rajan. Multiclock esterel: A reactive framework for asynchronous
design. In IPDPS '00: Proceedings of the 14th International Symposium on Parallel and
Distributed Processing, page 201, Washington, DC, USA, 2000. IEEE Computer Society.

[7] Christel Baier and Holger Hermanns, editors. CONCUR 2006 - Concurrency Theory,
17th International Conference, CONCUR 2006, Bonn, Germany, August 27-30, 2006,
Proceedings, volume 4137 of Lecture Notes in Computer Science. Springer, 2006.

[8] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek,
S. Rajamani, and A. Ustuner. Thorough static analysis of device drivers, 2006.

[9] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous program-
ming with events and relations: the signal language and its semantics. Sci. Comput.
Program., 16(2):103�149, 1991.

[10] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating reactive processes. In
POPL '93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 85�98, New York, NY, USA, 1993. ACM.

128

[11] Gérard Berry. The e�ectiveness of synchronous languages for the development of safety-
critical systems. Technical report, Esterel Technologies, 2003.

[12] Gérard Berry and Georges Gonthier. The esterel synchronous programming language:
design, semantics, implementation. Sci. Comput. Program., 19(2):87�152, 1992.

[13] A. K. Bhattacharjee, S. D. Dhodapkar, Sanjit A. Seshia, and R. K. Shyamasundar. A
graphical environment for the speci�cation and veri�cation of reactive systems. In Felici
et al. [44], pages 431�444.

[14] A. K. Bhattacharjee, Gopa Sen, S. D. Dhodapkar, Kundapur Karunakar, Basant Rajan,
and R. K. Shyamasundar. A system for object code validation. In Joseph [70], pages
152�169.

[15] A. K. Bhattacharjee and R. K. Shyamasundar. Validated code generation for activity
diagrams. In Chakraborty [28], pages 508�521.

[16] A. K. Bhattacharjee and R. K. Shyamasundar. Choreography = orchestration with scripts
+ conversations. In Proceedings of IEEE International Conference on Web Services,
ICWS 2008 (To appear). IEEE, 2008.

[17] A. K. Bhattacharjee and R. K. Shyamasundar. Scriptorc : A speci�cation language for
web service choreography. In Proceedings of IEEE International Asia Paci�c Conference
on Service Computing, APSCC 2008 (To appear). IEEE, 2008.

[18] A.K. Bhattacharjee, S.D. Dhodapkar, S. Seshia, and R.K. Shyamasundar. PERTS: An
environment for speci�cation and veri�cation of reactive systems. Reliability Engineering
& Systems Safety Journal, 71(2):299 �310, 2001.

[19] A.K. Bhattacharjee, S.D. Dhodapkar, and R.K. Shyamasundar. An environment for
modeling communicating reactive systems. In IT 2008, 1st IEEE International Con-
ference on Information Technology. IEEE Xplore, Digital Object Identi�er 10.1109/IN-
FTECH.2008.4621603, 2008.

[20] N. Bjorner, A. Browne, E. Chang, M. Col'on, A. Kapur, Z. Manna, H. Sipma, and
T. Uribe. Step the stanford temporal prover educational release version, 1995.

[21] Amar Bouali. Xeve: an esterel veri�cation environment (version v1.3).

[22] Douglass B.P. Real Time UML Advances in the UML for Real-Time Systems. Pearson
Edition, 2004.

[23] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560�599, 1984.

[24] Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Theoretical foundations for
compensations in �ow composition languages. SIGPLAN Not., 40(1):209�220, 2005.

129

[25] Michael J. Butler and Carla Ferreira. A process compensation language. In IFM '00:
Proceedings of the Second International Conference on Integrated Formal Methods,
pages 61�76, London, UK, 2000. Springer-Verlag.

[26] Michael J. Butler, C. A. R. Hoare, and Carla Ferreira. A trace semantics for long-running
transactions. In 25 Years Communicating Sequential Processes, pages 133�150, 2004.

[27] Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Handbook of Computer
Science and Engineering, Boca Raton, FL, 1997. CRC Press.

[28] Goutam Chakraborty, editor. Distributed Computing and Internet Technology, Second
International Conference, ICDCIT 2005, Bhubaneswar, India, December 22-24, 2005,
Proceedings, volume 3816 of Lecture Notes in Computer Science. Springer, 2005.

[29] Edward Y. Chang, Zohar Manna, and Amir Pnueli. Characterization of temporal property
classes. In ICALP '92: Proceedings of the 19th International Colloquium on Automata,
Languages and Programming, pages 474�486, London, UK, 1992. Springer-Verlag.

[30] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new Symbolic Model
Veri�er. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Conference on
Computer-Aided Veri�cation (CAV'99), number 1633 in Lecture Notes in Computer
Science, pages 495�499, Trento, Italy, July 1999. Springer.

[31] Byron Cook and Andreas Podelski, editors. Veri�cation, Model Checking, and Abstract
Interpretation, 8th International Conference, VMCAI 2007, Nice, France, January 14-16,
2007, Proceedings, volume 4349 of Lecture Notes in Computer Science. Springer, 2007.

[32] Patrick Cousot. Proving the absence of run-time errors in safety-critical avionics code.
In EMSOFT '07: Proceedings of the 7th ACM & IEEE international conference on
Embedded software, pages 7�9, New York, NY, USA, 2007. ACM.

[33] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints. In POPL '77:
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages, pages 238�252, New York, NY, USA, 1977. ACM.

[34] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks.
In POPL '79: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 269�282, New York, NY, USA, 1979. ACM.

[35] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, , and Mandayam Srivas. A
tutorial introduction to pvs, April 1995.

[36] Werner Damm and David Harel. LSCs: Breathing life into message sequence charts.
Formal Methods in System Design, 19(1):45�80, 2001.

130

[37] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1997.

[38] Jin Song Dong, Yang Liu, Jun Sun, and Xian Zhang. Veri�cation of computation or-
chestration via timed automata. In Zhiming Liu and Jifeng He, editors, Formal Methods
and Software Engineering, 8th International Conference on Formal Engineering Meth-
ods, ICFEM 2006, volume 4260 of Lecture Notes in Computer Science, pages 226�245.
Springer, 2006.

[39] Stephen A. Edwards. High-level synthesis from the synchronous language esterel. In
IWLS, pages 401�406, 2002.

[40] Michael Emmi and Rupak Majumdar. Verifying compensating transactions. In Cook
and Podelski [31], pages 29�43.

[41] Rik Eshuis. Symbolic model checking of uml activity diagrams. ACM Trans. Softw. Eng.
Methodol., 15(1):1�38, 2006.

[42] Rik Eshuis and Roel Wieringa. Veri�cation support for work�ow design with uml activity
graphs. In ICSE '02: Proceedings of the 24th International Conference on Software
Engineering, pages 166�176, New York, NY, USA, 2002. ACM.

[43] David Evans and David Larochelle. Improving security using extensible lightweight static
analysis. IEEE Software, 19(1):42�51, /2002.

[44] Massimo Felici, Karama Kanoun, and Alberto Pasquini, editors. Computer Safety, Reli-
ability and Security, 18th International Conference, SAFECOMP'99, Toulouse, France,
September, 1999, Proceedings, volume 1698 of Lecture Notes in Computer Science.
Springer, 1999.

[45] Je�rey Fischer and Rupak Majumdar. Ensuring consistency in long running transactions.
In ASE '07: Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, pages 54�63, New York, NY, USA, 2007. ACM.

[46] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based veri�cation of web service
compositions, 2003.

[47] Nissim Francez and Brent Hailpern. Script: A communication abstraction mechanism.
In PODC '83: Proceedings of the second annual ACM symposium on Principles of
distributed computing, pages 213�227, New York, NY, USA, 1983. ACM.

[48] X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In In Proc. of the
13th International World Wide Web Conference (WWW'04), USA, 2004. ACM Press.,
2004.

[49] Hector Garcia-Molina and Kenneth Salem. Sagas. SIGMOD Rec., 16(3):249�259, 1987.

131

[50] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-�ow pro-
gramming language LUSTRE. Proceedings of the IEEE, 79(9):1305�1320, September
1991.

[51] Nicolas Halbwachs. Synchronous programming of reactive systems. In Computer Aided
Veri�cation, pages 1�16, 1998.

[52] Anthony Hall. Correctness by construction: Integrating formality into a commercial
development process. In FME '02: Proceedings of the International Symposium of
Formal Methods Europe on Formal Methods - Getting IT Right, pages 224�233, London,
UK, 2002. Springer-Verlag.

[53] Anthony Hall and Roderick Chapman. Correctness by construction: Developing a com-
mercial secure system. IEEE Softw., 19(1):18�25, 2002.

[54] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and a. Shtul-
Trauring. Statemate: a working environment for the development of complex reactive
systems. In ICSE '88: Proceedings of the 10th international conference on Software
engineering, pages 396�406, Los Alamitos, CA, USA, 1988. IEEE Computer Society
Press.

[55] D. Harel and R. Marelly. Specifying and executing behavioral requirements: The play-
in/play-out approach. Technical Report MSC01-15, The Weizmann Institute of Science,
2001.

[56] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231�274, June 1987.

[57] David Harel and Amnon Naamad. The statemate semantics of statecharts. ACM Trans.
Softw. Eng. Methodol., 5(4):293�333, 1996.

[58] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software veri�cation with blast. In
Lecture Notes in Computer Science, volume 2648, pages 235�239. Springer, 2003.

[59] Tony Hoare. The verifying compiler: a grand challenge for computing research. Technical
report, Microsoft,research.microsoft.com/ thoare, 2004.

[60] Gerard J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279�295,
1997.

[61] TheMathWorks MATLAB Website: http://www.mathworks.com/. Matlab website:
http://www.mathworks.com/.

[62] Polyspace Technologies Home Page http://www.polyspace.com, June 2007.

[63] Cornelis Huizing, Rob Gerth, and Willem P. de Roever. Modeling statecharts behaviour
in a fully abstract way. In CAAP '88: Proceedings of the 13th Colloquium on Trees in
Algebra and Programming, pages 271�294, London, UK, 1988. Springer-Verlag.

132

[64] IBM,BEA, Microsoft and Seibel, Available at http://www.ibm.com/developerworks/library
/speci�cation/ws-bpel/. Business Process Execution Language for Web Services, 1.1
edition, 2002.

[65] IEC60880. Nuclear Power Plants I& C Systems Important to Safety Software aspects
for Computer Based Systems Performing Category A Functions, IEC60880, Ed.2. IEC,
2004.

[66] A. Iqbal, A. K. Bhattacharjee, S. D. Dhodapkar, and S. Ramesh. Visual modeling and
veri�cation of distributed reactive systems. In Anderson et al. [3], pages 22�34.

[67] Ajith K. John, Babita Sharma, A. K. Bhattacharjee, S. D. Dhodapkar, and S. Ramesh.
Detection of runtime errors in misra c programs: A deductive approach. In Saglietti and
Oster [101], pages 491�504.

[68] Barnes John. High Integrity Ada: The SPARK Approach. Addison-Wesley, 1997.

[69] Thomas Johnsona, Jonathan Jobe, Christiaan Paredis, and Roger Burkhart. Modeling
continuous system dynamics in sysml. In Proceedings of the IMECE 2007, 2007.

[70] Mathai Joseph, editor. Formal Techniques in Real-Time and Fault-Tolerant Systems,
6th International Symposium, FTRTFT 2000, Pune, India, September 20-22, 2000,
Proceedings, volume 1926 of Lecture Notes in Computer Science. Springer, 2000.

[71] William Kahan. IEEE 754 standard for binary �oating-point arithmetic. Technical
report, IEEE, 1985.

[72] G. Kahn. The semantics of a simple language for parallel programming. In Information
Processing, 74:993�998, 1977.

[73] David Kitchin, William R. Cook, and Jayadev Misra. A language for task orchestration
and its semantic properties. In Baier and Hermanns [7], pages 477�491.

[74] Mariya Koshkina and Franck van Breugel. Modelling and verifying web service orchestra-
tion by means of the concurrency workbench. SIGSOFT Softw. Eng. Notes, 29(5):1�10,
2004.

[75] Edward A. Lee and Haiyang Zheng. Leveraging synchronous language principles for
heterogeneous modeling and design of embedded systems. In EMSOFT '07: Proceedings
of the 7th ACM & IEEE international conference on Embedded software, pages 114�123,
New York, NY, USA, 2007. ACM.

[76] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon Reese.
Requirements speci�cation for process-control systems. IEEE Transactions on Software
Engineering, 20(9):684�707, 1994.

133

[77] Jing Li, Huibiao Zhu, and Geguang Pu. Conformance validation between choreogra-
phy and orchestration. In First Joint IEEE/IFIP Symposium on Theoretical Aspects of
Software Engineering (TASE 2007), pages 473�482, June 2007.

[78] Jing Li, Huibiao Zhu, Geguang Pu, and Jifeng He. A formal model for compensable
transactions. In ICECCS '07: Proceedings of the 12th IEEE International Conference on
Engineering Complex Computer Systems, pages 64�73, Washington, DC, USA, 2007.
IEEE Computer Society.

[79] Peter Liggesmeyer, Klaus Pohl, and Michael Goedicke, editors. Software Engineer-
ing 2005, Fachtagung des GI-Fachbereichs Softwaretechnik, 8.-11.3.2005 in Essen, vol-
ume 64 of LNI. GI, 2005.

[80] Je� Magee and Je� Kramer. Concurrency: State Models and Java Programs. Wiley
International, July 2006.

[81] Zohar Manna and Amir Pnueli. Temporal veri�cation of reactive systems: safety.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[82] Keith Mantell. From uml to bpel, model driven architecture in a web services world,
http://www-128.ibm.com/developerworks/webservices/library/ws-uml2bpel, 2006.

[83] Florence Maraninchi and Yann Rémond. Mode-automata: About modes and states for
reactive systems. Lecture Notes in Computer Science, 1381:185�195, 1998.

[84] E. Michael Maximilien and Munindar P. Singh. Toward web services interaction styles.
In Proceedings of 2nd IEEE International Conference on Services Computing (SCC).
IEEE, July 2005.

[85] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1989.

[86] Jayadev Misra and William R. Cook. Computation orchestration: A basis for wide-area
computing. Journal of Software and Systems Modeling, pages pp.83�110, May 2006.

[87] MISRA-C:2004. Guidelines for the use of the C language in critical systems. The Motor
Industry Software Research Association, 2004.

[88] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langauges (POPL '97), pages 106�
119, Paris, January 1997.

[89] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. SIGPLAN Not., 42(6):89�100, 2007.

[90] Object Management Group (OMG), Available at http://www.bpmi.org/. Business Pro-
cess Modeling Language (BPML), 1.0 edition, 2002.

134

[91] Object Management Group (OMG). OMG model driven architecture, version 1.0.1,
2004.

[92] Object Management Group (OMG). Uni�ed modeling language : Superstructure, version
2.0, revised �nal adopted speci�cation, 2004.

[93] Object Management Group (OMG). Business process modeling notation (bpmn) spec-
i�cation available at http://www.bpmn.org, 2006.

[94] S. Owre. PVS language reference, http://www.csl.sri.com, 2007.

[95] Sebastian Pavel, Jacques Noye, Pascal Poizat, and Jean-Claude Royer. Java implemen-
tation of a component model with explicit symbolic protocols, 2005.

[96] Chris Peltz. Web services orchestration and choreography. IEEE Computer, 36 (10):pp.
46�52, Oct., 2003.

[97] A. Pnueli, O. Shtrichman, and M. Siegel. Translation validation for synchronous lan-
guages. Lecture Notes in Computer Science, 1443:235�265, 1998.

[98] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. Lecture Notes in
Computer Science, 1384:151+, 1998.

[99] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the theoreti-
cal foundation of choreography. In WWW '07: Proceedings of the 16th international
conference on World Wide Web, pages 973�982, New York, NY, USA, 2007. ACM.

[100] B. Rajan and R. Shyamasundar. An implementation of communicating reactive process,
1997. Intl. Conf. on Parallel and Distributed Computing and Networks, Singapore.

[101] Francesca Saglietti and Norbert Oster, editors. Computer Safety, Reliability, and Secu-
rity, 26th International Conference, SAFECOMP 2007, Nuremberg, Germany, Septem-
ber 18-21, 2007, volume 4680 of Lecture Notes in Computer Science. Springer, 2007.

[102] Tim Schattkowsky and Wolfgang MÃ¼ller. Model-based design of embedded systems.
In Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC'04), pages pp. 121�128, 2004.

[103] Sanjit A. Seshia, R. K. Shyamasundar, A. K. Bhattacharjee, and S. D. Dhodapkar. A
translation of statecharts to esterel. In Wing et al. [115], pages 983�1007.

[104] Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing, Semantics,
Processes, Agents. John Wiley & Sons, Ltd., 2005.

[105] Harald Störrle. Semantics of uml 2.0 activities with data-�ow. In German Software
Engineering Conference, 2005.

135

[106] Harald Störrle and Jan Hendrik Hausmann. Towards a formal semantics of uml 2.0
activities. In Liggesmeyer et al. [79], pages 117�128.

[107] Hoare T. Compensable transactions, May 2006. Slides Presented at UNI-IIST, Beijing.

[108] van der Aalst, W. ter Hofstede, and A.Kiepuszewski B.and Barros A. Work�ow patterns.
Distributed and Parallel Databases, 14(3):5�51, 2003.

[109] Russel N.and van der Aalst and W. ter Hofstede A .and Peta Wohed. On the suitability
of uml 2.0 activity diagrams for business process modelling. Proceedings of the Third
Asia-Paci�c Conference on Condeptual Modelling, pages 95�104, 2006.

[110] W3C Working Draft, Available at http://www.w3.org/TR/wsci/. Web Services Chore-
ography Interface (WSCI) Language, 1.0 edition, 2002.

[111] W3C Working Draft, Available at http://www.w3.org/TR/ws-cdl-10/. Web Services
Choreography Description Language, 1.0 edition, 2004.

[112] W3C Working Draft, Available at http://www.w3.org/TR/wscl10/. Web Services Con-
versation Language (WSCL), 1.0 edition, 2004.

[113] W3C Working Draft, Available at http://www.w3.org/TR/ws-chor-model/. WS Chore-
ography Model Overview, 2004.

[114] I. Wehrman, D. Kitchin, W. Cook, and J. Misra. A timed semantics of orc. Theoretical
Computer Science, 402(2-3):234�248, August 2008.

[115] Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors. FM'99 - Formal Meth-
ods, World Congress on Formal Methods in the Development of Computing Systems,
Toulouse, France, September 20-24, 1999, Proceedings, Volume II, volume 1709 of
Lecture Notes in Computer Science. Springer, 1999.

[116] Peter Y. H. Wong and Jeremy Gibbons. A Process-Algebraic Approach to Work�ow
Speci�cation and Re�nement. In Proceedings of 6th International Symposium on Soft-
ware Composition, March 2007.

[117] W.L. Yeung. CSP based veri�cation for web service orchestration and choreography.
Simulation, 83(1):65�74, 2007.

136

Appendix A

Representation of Statecharts and Data

Structures used in STATEST

Statecharts is a graphical language. However for processing the speci�cation for translation,
it is represented in textual form (LALR(1)). Any Statechart is built by using operators and
primitive states. In Statecharts, there are two types of states namely the AND-type and the
OR-type. Being in an AND-state means being in all of its immediate substates simultaneously.
We call these immediate substates and their interior the orthogonal components of that AND-
state. Being in an O-state means being in exactly one of its substates. The operator that
build the interior of an AND-state is called an AndChart and the operator that build the inside
of an OR-state is called OrChart. We use a Stati�cation operator that builds the hierarchical
structure of Statechart. The basic states are denoted by Prim(I, O,A), where A is the name
of a state, I and O a set of incoming and outgoing transitions. Prim Charts are nonterminal with
one root state and is a Statechart, without incoming and outgoing transitions. The grammar
(acceptable to YACC/Bison) speci�cation of the textual representation is given below.

%{

#include <stdio.h>

#include <symtab.h>

#include <tree.h>

extern char *yytext;

extern int yylineno;

extern TREENODE_PTR rootPtr;

%}

%union

{

137

SYMTAB_PTR sym;

TREENODE_PTR tptr;

TRANSITION_PTR trPtr;

TRLIST_PTR trList;

EXPRESSION_PTR ePtr;

}

%start statechart

%token BASIC STAT OR AND IN EQ LG LT LE GT GE

%token<sym>IDENTIFIER

%type<tptr> statchart primchart orchart andchart

%type<sym> statelabel

%type<trList> input input_opt input_set output output_opt output_set

history history_opt

%type<trPtr> transition

%type<ePtr> event condition action expr arr_expr logical_expr

function state_prefix

%%

statechart : primchart

primchart : BASIC '(' input_opt ',' output_opt ',' statelabel ')'

| statchart ',' orchart ',' input_opt ',' history_opt ')'

| statchart ',' andchart ')'

;

statchart : STAT '(' BASIC '(' input_opt ',' output_opt ',' statelabel ')'

;

orchart : primchart

| OR '(' orchart ',' orchart ',' input_opt ',' output_opt ')'

;

andchart : primchart

| AND '(' andchart ',' andchart ',' input_opt ',' output_opt ')'

;

input_opt : empty

| input_set

138

;

output_opt : empty

| output_set

;

history_opt :

| history

;

input_set : '{' input '}'

;

input : transition

| transition ',' input

;

output_set : '{' output '}'

;

output : transition

| transition ',' output

;

transition : '[' statelabel ',' statelabel ',' event ',' condition ','

action ']'

;

statelabel : IDENTIFIER

;

event :

| logical_expr

;

condition :

| expr

;

action :

139

| expr

;

expr : IDENTIFIER '=' arr_expr

| '(' expr ')'

| logical_expr

| function

;

logical_expr : IDENTIFIER

| '(' logical_expr ')'

| IN statelabel

| IN state_prefix

| IDENTIFIER EQ logical_expr

| IDENTIFIER LG logical_expr

| IDENTIFIER LT logical_expr

| IDENTIFIER LE logical_expr

| IDENTIFIER GT logical_expr

| IDENTIFIER GE logical_expr

| '^' logical_expr %prec '^'

| '!' logical_expr %prec '^'

| logical_expr '|' logical_expr

| logical_expr '&' logical_expr

;

140

state_prefix : statelabel '.' statelabel

| statelabel '.' state_prefix

;

function : IDENTIFIER '(' expr ')'

;

arr_expr : IDENTIFIER

| IDENTIFIER '+' arr_expr

| IDENTIFIER '-' arr_expr

| IDENTIFIER '*' arr_expr

| IDENTIFIER '/' arr_expr

;

history : '(' IDENTIFIER ',' input_opt ')'

| '(' ',' ')'

;

empty : '{' '}'

;

Data Structures used in STATEST
The data structures used in the algorithms described in chapter 3 are given here

typedef enum {ENTR=1, EXIT,ENTR_EXIT,LOOP} TRCONDITION ;

typedef enum {TYPE1, TYPE2, TYPE3, TYPE4} TRTYPE ;

enum {BASIC_OP=0,OR_OP,AND_OP,STAT_OP};

enum {HISTORY=1,DEFAULT};

typedef struct hide {

char *state; /* name of hide signal */

struct hide *next; /* pointer to next hide signal in list*/

} *HIDE_LIST ,HIDE;

141

typedef struct succList

{

void *data;

int parentToChildType;

struct succList *next;

}LIST,*LIST_PTR;

typedef struct transition

{

char *src; /* source of transition */

char *dest; /* destination of transition */

TRTYPE trType; /* type of transition (TYPE1, TYPE2 etc.)*/

int trSpFlag; /* */

EXPRESSION_PTR event; /*Event associated with transition*/

EXPRESSION_PTR condition;

EXPRESSION_PTR action;

HIDE_LIST noHide; /*Hide signal to be issued by this transition

to hide other lower priority transitions*/

LIST_PTR exitStateSet;

LIST_PTR entryStateSet;

int trId;

char *lastExitedState;

}TRANSITION,*TRANSITION_PTR;

struct transition_tag

{

TRANSITION_PTR trPtr; /*Pointer to transition */

TRCONDITION flag; /* indicated whether tr is ENTRY, EXIT or LOOP*/

TRTYPE trType; /* type of transition */

char *lastExitedState;/*Last state exited by the transition trPtr*/

struct transition_tag *next;

};

typedef struct transition_list

{

TRANSITION_PTR trPtr;

struct transition_list *next;

}TRLIST,*TRLIST_PTR;

typedef struct tree_node

{

char *name;

int type; /*operator */

int histFlag;

int childToParentType;

142

int parentToChildType;

int noChild;

int levelInTree;

TRLIST_PTR inputTrList;

TRLIST_PTR outputTrList;

struct tree_node *lchild;

struct tree_node *rchild;

LIST_PTR succPtr;

LIST_PTR signalList;

struct tree_node *parentPtr;

struct transition_tag *trTag;

HIDE_LIST hideLabels;

}TREENODE,*TREENODE_PTR;

typedef struct Signal{

char *name;

int type; /* 0= input, 1=output, 2=inputoutput */

}ESIG_DECL, *ESIG_DECL_PTR;

143

Appendix B

Brief Introduction to CSP, PVS and

STeP

B.1 Brief Discussion on CSP

In CSP[23] the ultimate unit in the behaviour of a process is an event (conditions) which are
regarded as instantaneous and A is the set of all events. The behaviour of a process upto
some instant of time can be a record of events in which it has participated. The basic CSP
processes are

P ::= STOP | SKIP | e→ P | c?x→ P |
P2Q | P uQ | P ; Q | P ‖X Q | P\A | µx.P (x)

The process STOP can perform no events: it represents the end of a pattern of behaviour.
The process SKIP can do nothing but terminate and the future behaviour is determined by
the expression following the next sequential composition symbol. The process e → P ("e
then P") is ready to perform the event e and if this event is performed, the future behaviour
of this process is described by term P. The query symbol, ?, denotes a choice of events: the
process c?x → P is ready to perform any event of the form c.x; if this process performs a
particular event c.a, then x takes the value a for the rest of the current scope. The symbol
2 denotes an external choice of behaviours. if x and y are distinct events (x → P2y → Q)
describes a process which initially engages in either of the event x or y. The notation P uQ
(P or Q) denotes a process which behaves either like P or like Q, where the choice is made
internally and may represent run-time nondeterminism. P;Q denotes a process which initially
behaves like P and upon successful termination of P behaves like Q. The parallel composition,
P ‖ Q, speci�es the process which behaves like the system composed of processes P and Q
interacting in lock step synchronisation. The set of events that can occur only if performed
simultaneously by both processes. In P ‖X Q, the execution of the activities in P and Q
are synchronized over X. The hiding operator internalises sets of events: the expression P\A
denotes a process that behaves exactly as P, except that events from the set A are no longer

144

visible in the environment i.e. they may not be shared with, and do not require the cooperation
of, other processes. A recursive process like a clock can be de�ned as µx : (tick) | (tick → x).

Traces play a central role in CSP in describing the behaviour of processes. A trace of
the behaviour of a process is a �nite sequence of symbols recording the events in which the
process has engaged up to some momemnt in time. traces[•] is a semantic function which
maps a CSP expression to its set of possible traces. The set of all such traces is de�ned by
traces[P] = {s ∈ A∗ | ∃Q.P s→ Q}. The general CSP process composition rules de�ned in
terms of antecedent and consequent A1,A2,··· ,An

C
are de�ned below :

Termination
SKIP

√
→STOP

Pre�x
a→P a→P

Choice P
a→P ′

P2Q
a→P ′

Q
a→Q′

P2Q
a→Q′

Sequence P
a→P ′∧a6=

√

P ; Q
a→P ′; Q

P
√
→0∧Q a→Q′

P ; Q
a→Q′

Interleaving Parallel P
a→P ′∧a6∈A

P‖AQ
a→P ′‖AQ

Q
a→Q′∧a6∈A

P‖AQ
a→P‖AQ′

Synch. Rule P
a→P ′∧Q a→Q′∧a∈A
P‖AQ

a→P ′‖AQ′

B.2 A Brief Discussion on PVS

Prototype Veri�cation System(PVS) [35] is a veri�cation system supporting an interactive
environment for writing formal speci�cations and checking formal proofs. It provides an ex-
pressive language that augments classical higher order logic with a sophisticated type system
containing predicate subtypes, dependent types, and with parameterised theories and a mech-
anism for de�ning abstract datatypes such as lists and trees.The standard PVS types include
numbers (reals, rationals, integers, naturals). The combination of features in the PVS type-
system is very convenient for speci�cation, but it makes typechecking undecidable. The PVS
typechecker copes with this undecidability by generating proof obligations for the PVS theorem
prover. Most such proof obligations can be discharged automatically. PVS has a powerful in-
teractive theorem prover/proof checker. The basic deductive steps in PVS are large compared
with many other systems: there are atomic commands for induction, quanti�er reasoning,
automatic conditional rewriting, simpli�cation using arithmetic and equality decision proce-
dures and type information, and propositional simpli�cation using binary decision diagrams.
The PVS proof checker manages the proof construction process by prompting the user for a

145

suitable command for a given subgoal. The execution of the given command can either gen-
erate further subgoals or complete a subgoal and move the control over to the next subgoal
in a proof. User-de�ned proof strategies can be used to enhance the automation in the proof
checker. Model-checking capabilities used for automatically verifying temporal properties of
�nite-state systems have recently been integrated into PVS. PVS's automation su�ces to
prove many straightforward results automatically; for hard proofs, the automation takes care
of the details and frees the user to concentrate on directing the key steps.

B.3 A Brief Discussion on STeP

The Stanford Temporal Prover (STeP) [20] is a system developed to support the computer-
aided formal veri�cation of concurrent and reactive systems based on temporal speci�cations.
Unlike systems based on model-checking, STeP is not restricted to �nite-state systems. It com-
bines model checking and deductive methods to allow the veri�cation of a broad class of sys-
tems, including programs with in�nite data domains, N -process programs, and N -component
circuit designs, for arbitrary N . In short, STeP has been designed with the objective of com-
bining the expressiveness of deductive methods with the simplicity of model checking. The
veri�cation process is for the most part automatic. User interaction occurs mostly at the high-
est, most intuitive level, primarily through a graphical proof language of veri�cation diagrams.
E�cient simpli�cation methods, decision procedures, and invariant generation techniques are
then invoked automatically to prove resulting �rst-order veri�cation conditions with minimal
assistance.First, in addition to the textual language of temporal logic, the system supports
a structured visual language of veri�cation diagrams for guiding, organizing, and displaying
proofs. Veri�cation diagrams allow the user to construct proofs hierarchically, starting from a
high-level, intuitive proof sketch and proceeding incrementally, as necessary, through layers of
greater detail.

Second, the system implements powerful techniques for automatic invariant generation.
Deductive veri�cation in the temporal framework almost always relies on �nding, for a given
program and speci�cation, suitably strong (inductive) invariants and intermediate assertions.
The user can typically provide an intuitive, highlevel invariant, from which the system derives
stronger, more detailed, top-down invariants. Simultaneously, bottom-up invariants are gen-
erated automatically by analyzing the program text. By combining these two methods, the
system can often deduce su�ciently detailed invariants to carry through the entire veri�cation
process.

Finally, the system provides an integrated suite of simpli�cations and decision procedures
for automatically checking the validity of a large class of �rst-order and temporal formulas.
This degree of automated deduction is su�cient to handle most of the veri�cation conditions
that arise during the course of deductive veri�cation� and the few conditions that are not
solved automatically typically correspond to the critical steps of manually constructed proofs,
where the user is most able to provide guidance.

146

The basic input to STeP is an SPL program P and a temporal logic formula which
expresses the property of P to be veri�ed. The SPL program is modeled as a fair transition
system S. Even though SPL can be used to describe both software and hardware systems,
STeP is not restricted to SPL, and can be used to verify any system that can be modeled as
a fair transition system.

147

Papers Published out of this Ph.D Thesis Work

Journal Publications

1. (JOT) A. K. Bhattacharjee, R. K. Shyamasundar, Compensating Activity Diagrams: A
Notation to Model Business Processes, Accepted for publication in Journal of Object
Technology, ETH Zurich, ISSN 1660-1769 To appear in January-February Issue, 2009.

2. (RESS01) A. K. Bhattacharjee, S. D. Dhodapkar , S. Seshia and R. K. Shyamasundar,
PERTS: an environment for speci�cation and veri�cation of reactive systems, Elsevier
Journal of Reliability Engineering and System Safety, 71(3), 2001,pp 299-310 ISSN:
0951-8320.

Peer Reviewed International Conference Publications:

1. (APSCC2008) A.K. Bhattacharjee and R.K. Shyamasundar ScriptOrc : A Speci�cation
Language for Web Service Choreography, Accepted for publication in the proceedings
of the IEEE International Conference on Asia-Paci�c Services Computing Conference
(IEEE APSCC 2008) Yilan, Taiwan, 2008.

2. (ICWS2008) A.K. Bhattacharjee and R.K. Shyamasundar Choreography = Orchestration
with Scripts + Conversations, IEEE International Conference on Web Services (IEEE
ICWS 2008), Beijing, 2008.

3. (IT2008) A. K. Bhattacharjee, S. D. Dhodapkar, R.K. Shyamasundar, An Environment
for Modeling Communicating Reactive Systems, Proceedings of International IEEE Con-
ference on Information Technology, Gdansk University of Technology, Poland, May 18 -
21, 2008

4. (SAFECOMP07) Ajith K. John, Babita Sharma, A. K. Bhattacharjee, S. D. Dhodapkar,
S. Ramesh,Detection of Runtime Errors in MISRA C Programs: A Deductive Approach,
Computer Safety, Reliability, and Security, 26th International Conference, SAFECOMP
2007, Nuremberg, Germany, September 18-21, 2007. Lecture Notes in Computer Sci-
ence 4680 Springer 2007, ISBN 978-3-540-75100-7.

5. (ICDCIT05) A. K. Bhattacharjee, R. K. Shyamasundar, Validated Code Generation for
Activity Diagrams, Distributed Computing and Internet Technology, Second International
Conference, ICDCIT 2005, Bhubaneswar, India, December 22-24, 2005, Proceedings.
Lecture Notes in Computer Science 3816 Springer 2005 ISBN 3-540-30999-3.

148

6. (SAFECOMP03) A. Iqbal, A. K. Bhattacharjee, S. D. Dhodapkar, S. Ramesh, Visual
Modeling and Veri�cation of Distributed Reactive Systems, Computer Safety, Relia-
bility, and Security, 22nd International Conference, SAFECOMP 2003, Edinburgh, UK,
September 23-26, 2003, Proceedings. Lecture Notes in Computer Science 2788 Springer
2003, ISBN 3-540-20126-2.

7. (FTRTFT00) A. K. Bhattacharjee, Gopa Sen, S. D. Dhodapkar, Kundapur Karunakar,
Basant Rajan, R. K. Shyamasundar,A System for Object Code Validation, Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, 6th International Symposium, FTRTFT
2000, Pune, India, September 20-22, 2000, Proceedings. Lecture Notes in Computer
Science 1926 Springer 2000, ISBN 3-540-41055-4

149

Biography of Candidate

Name Anup Kumar Bhattacharjee
Quali�cation M.Tech(Computer Science), IIT Kharagpur

B.E (Electrical Engineering), NIT, Silchar, Assam
1 year Course in Nuclear Engineering at BARC (1987-1988)

Employment Scientist, Bhabha Atomic Research Centre(BARC), Mumbai
Area of Work Software Engineering, Formal Speci�cation & Veri�cation,

Model based Software Design, Design of Reactive Systems
Static Analysis

He is working in Software Reliability Section, BARC and has been closely associated with
Mr. S.D. Dhodapkar who is known for his contribution toward methodologies for High Integrity
Safety-Critical System Design. He has contributed signi�cantly toward the development of
static analyzers for C and assembly languages in BARC. During the last few years he has been
working toward inducting formal methods for software developments in BARC. He has been
closely associated with the research groups at Centre for Formal Design and Veri�cation of
Software (CFDVS) at IIT Bombay and School of Technology and Computer Science, TIFR.
He has also worked in many collaborative research projects with other national laboratories like
ISRO and DRDO. He was a visiting scholar in 2004 at the University of Trento, Italy under
an Indo-Italian academic program.

Biography of Supervisor

Name Prof. R.K. Shyamasundar
Quali�cation Ph.D (Computer Science and Automation),IISc, Bangalore

M.E. (Electrical Engg.) IISc, Bangalore
B.E. (Electrical Engg.), University of Mysore

Area of Work Real-time Distributed Systems, Programming Languages,
Logic Programming, Reactive systems & Formal Methods

He joined the National Centre for Software Development and Computing Techniques
established at the Tata Institute of Fundamental Research (TIFR) under United Nations Pro-
gram. He did his post-doctoral work during 1978-1979 as an International Research Fellow at
Eindhoven Technological University, Eindhoven, Netherlands under the famed Professor Dr.
Edsgar W Dijkstra. On his return he started the Theoretical Computer Science Group at TIFR
covering areas of concurrency, real-time programming, speci�cation and veri�cation of software
etc. He was the �rst Dean of the School of Technology and Computer Science at the Tata
Institute of Fundamental Research. He had various assignments at IBM TJ Watson Research
center, Eindhoven University of Technology, The Netherlands, State University of Utrecht, the
Netherlands, Pennsylvania State University, University of Illinois at Urbana, University of Cal-
ifornia, San Diego, ENSMP Sophia Antipolis, IRISA, Rennes, Verimag Grenoble Max Planck

150

Institute for Computer Science at Saarbrucken etc. He has more than 200 publications and
several patents in US and India. Thirty students have done their Ph.D. under his guidance in
India and abroad.

He has served as a consultant to Esprit projects at The Netherlands and several industries
in India. He has worked towards setting centres of excellence such as Centre for Formal
Design and Veri�cation of Systems (CFDVS), IIT Bombay (Center set up from BRNS with
participation from TIFR, BARC, and IIT Bombay), Cyber Security Education centers under
DIT, Govt of India, Discrete Mathematics and Theoretical computer Science Centers under
support from DST. He has contributed signi�cantly in guiding the international co-operations
such as Indo- French, Indo-Italian and Indo-US in the research areas of computer science.

He is a Fellow of the Indian Academy of Sciences, Fellow of the Indian National Science
Academy, Fellow of the National Academy of Sciences� Fellow of the Indian National Academy
of Engineering and Fellow IEEE (USA). He is member of IEEE standardization committee on
Esterel.

151

