
Synthesizing and Runtime Monitoring
of Business Process Workflows

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Nihita Goel

Under the supervision of

Prof R.K. Shyamasundar

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

2012

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI
(RAJASTHAN)

CERTIFICATE

This is to certify that the thesis entitled Synthesizing and Runtime Monitoring of
Business Process Workflows which is submitted for award of Ph.D. Degree of the
Institute, embodies original work done by Nihita Goel (ID: 2005PHXF435P) under my
supervision.

Signature in full of Supervisor:

Name of Supervisor: R. K. SHYAMASUNDAR

Designation of Supervisor: Senior Professor, Tata Institute of Fundamental Research

Date:

ii

To my husband and son

iii

Acknowledgements

I am deeply indebted to my adviser, Prof. R. K. Shyamasundar, for his support and
guidance during the course of this thesis. The work in this thesis has benefitted a great
deal from his insights and clarity of thought. I would like to thank him for giving me
this opportunity and all the support and privileges he provided me during my Ph.D. His
insights, support and encouragement enabled me to do more than what i had imagined.

I would like to thank all the members of the Information Systems Development Group
(ISDG) and the School of Technology and Computer Science (STCS), TIFR, for the help
they extended during various stages of my work. In particular, I thank Prof. Jaikumar
Radhakrishnan, Chairperson ISDG Committee for permitting me to pursue my studies
along with my job responsibilities. I thank Dr. N. Raja for helping me with my queries and
in reviewing my draft thesis. I thank Dr. N. V. Narendra Kumar for being a collaborator
in a part of the work related to the thesis and the members of ISDG and STCS for
their cooperation and help especially Sarita, Sandeep, Sushma, John Barretto and Pravin
Bhuwad. I would also like to thank my seniors, friends and colleagues from TIFR, Prof.
Vahia, Mr. Abhyankar and Mr. Nandagopal for their moral support and encouragement
during this period.

I thank BITS Pilani for allowing me to carry out my work. I thank Prof Navneet
Goyal, Head, Department of Computer Science, BITS Pilani for his help and support and
the other members of the DAC for their valuable inputs during the review of this thesis.

I thank my parents, my in-laws, my sister and all my friends and colleagues for their
moral support during the course of my work.

And finally, I express my heartfelt thanks to my husband and son for their patience
and encouragement all these long years. This thesis would not have been possible without
their support.

iv

List of Figures

1.1 Business computing historical perspective. Source [van der Aalst, 1998] . . 3
1.2 Find-Bind-Publish paradigm . 4
1.3 Web-service Stack . 5
1.4 Orchestration v/s Choreography in Web services 5
1.5 SOA architecture illustrated . 6
1.6 A workflow reference model . 8
1.7 A BPM Component Model . 10
1.8 A conceptual model of travel process. Source [White, 2005] 11
1.9 Choreography of web services in a travel workflow 12
1.10 A BPEL model of the travel workflow. Source [White, 2005] 13
1.11 A BPEL code of the travel workflow . 14
1.12 Service definition for endpoint references in BPM 15

2.1 Workflow Control-flow Patterns support in various BPM products. Source
[Wohed et al., 2009] . 22

2.2 Workflow Data-flow Patterns support in various BPM products. Source
[Wohed et al., 2009] . 23

2.3 Workflow Resource-flow patterns support in various BPM products. Source
[Wohed et al., 2009] . 24

3.1 BPMN Elements . 31
3.2 BPMN Gateways . 32
3.3 MSC representing a travel booking system 38

4.1 A BPMN flow for illustrating a Local Synchronizing Merge 46
4.2 A BPMN flow for illustrating a General Synchronizing Merge 47
4.3 A BPMN flow for illustrating a Arbitrary Cycle 49

5.1 A simple order processing model . 57
5.2 Cycles Removal from BPD . 64
5.3 Translation of Quasi Structured Components in BPD 65
5.4 Unstructured Components in BPD and their translation 66
5.5 BPD translation to Orc . 66
5.6 Deadlocks Detection . 68

v

5.7 Order Processing BPD . 69
5.8 Order Processing OrcGraph . 69

6.1 Application v/s Management Modeling . 72
6.2 EasyTravel using BPMN . 73
6.3 EasyTravel SLA Monitoring . 79
6.4 EasyTravel process’s and monitor interactions 79
6.5 The Synchronous Observer . 80
6.6 Meta-model for Monitoring Property . 80
6.7 Wf Sla Mon Framework . 81

7.1 Response-time MSC (Example 1) . 84
7.2 Unwanted scenario (Example 2) . 84
7.3 Wanted scenario (Example 3/ Property p3 of EasyTravel) 85
7.4 An Unwanted Scenario (A1− > A2− > ...An) 86
7.5 Automata for the unwanted sequence A1, A2, ..., An 86
7.6 A wanted scenario (A1− > A2− > ...An) 87
7.7 Automata for the wanted sequence A1, A2, ..., An 88
7.8 MSC and the automata corresponding to the response time property . . . 88
7.9 “occurrence of a precedes the occurrence of b”(p6) 90
7.10 “anytime c occurs either a has never occurred or b has occurred since the

last occurrence of a”(p7) . 90
7.11 “anytime c occurs it must be preceded by a unless b has occurred since the

last occurrence of a” . 90
7.12 “the number of times an event a occurs should be less than two” 91
7.13 Automata for p6 . 91
7.14 Automata for p7 . 92
7.15 Integrating observers with workflow engine 99

8.1 Wf Sla Mon Components . 102
8.2 Specification of properties using MSC . 104
8.3 Specification of properties using SL . 104
8.4 A wizard for specifying SL formula . 105
8.5 Composing monitors/SLAs and viewing the generated automata 106
8.6 Intercepted Messages . 106
8.7 Admin dashboard of Wf Sla Mon . 107
8.8 Performance impact of monitoring on workflows 108

9.1 Workflows as SaaS under Cloud . 112

vi

List of Tables

2.1 List of some BPM Products and their Suppliers 20

3.1 BPMN Gateway Semantics . 33

4.1 Comparison of BPMN, BPEL and Orc language support for the workflow
patterns . 56

5.1 BPMN core elements and their translation in Orc 60

6.1 Basic Metrics . 81
6.2 Property p1 and p2 . 82

7.1 DSL Syntax in BNF . 95
7.2 DSL Syntax in BNF after eliminating left recursion and left factoring . . . 96

8.1 Comparison of Automata with Lustre . 107

vii

List of Abbreviations

B2B Business To Business

BLA Business Level Agreement

BLO Business Level Objective

BNF Backus-Naur Form

BPD BPMN Core Diagram

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Modeling Notation

DSL Deterministic SL

ERP Enterprize Resource Planning

GEF Graphical Editing Framework

M2M Model To Model

M2T Model To Text

MDA Model Driven Architecture

QoS Quality of Service

SLA Service Level Agreement

SLO Service Level Objective

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description Discovery Integration

viii

UML Unified Modeling Language

WCP Workflow Control-flow Patterns

WFMC Workflow Management Coalition

WFMS Workflow Management System

WSDL Web Service Description Language

WSFL Web Service Flow Language

XPDL XML Process Definition Language

YAWL Yet Another Workflow Language

ix

List of Symbols
ψ SL formulas also called safety formulas
φ Past formulas
• the classical “previous” operator of temporal logic with past
¬ • ¬ the dual operator of “previous” operator
∃ existential quantifier
2 the classical “always” operator
O a set of observables
τ a trace on a set of observables
ω an element of trace τ used in definitions associated with SL/DSL formula
∧ the “and” operator used in a SL/DSL formula
∨ the or operator used in a SL/DSL formula
⊃ the “implies” operator as used in a SL/DSL formula
≡ the “equivalence” operator as used in a SL/DSL formula
A(ψ) automata associated with a SL/DSL formula ψ
A(φ) automata associated with a past formula φ
λ a ternary relation Q×O ×Q
Prop a set of propositional symbols used in a SL/DSL formula
Aux a set of auxiliary symbols used in a SL/DSL formula
T a transition function for a Mealy machine / set of tasks in a given BPMN Diagram
G output function for a Mealy machine
Gps parallel fork gateways in a BPD Diagram
Gpm parallel join gateways in a BPD Diagram
Ges exclusive-or gateway in a BPD Diagram
Gem exclusive-or merge gateway in a BPD Diagram
Gds event-based gateway in a BPD Diagram
Gis inclusive-or gateway in a BPD Diagram
Gim inclusive-or merge gateway in a BPD Diagram
Gcs complex gateway in a BPD Diagram
Gcm complex merge gateway in a BPD Diagram
Gpar parallel combinator of Orc used in a OrcDAG
Gwhere pruning combinator of Orc used in a OrcDAG
Gsync a synchronization operator of Orc used in a OrcDAG
Gxor exclusive-or split gateway of Orc used in a OrcDAG
Gmerge merge combinators of Orc used in a OrcDAG

, definition

x

Abstract

Organizations today are increasingly automating their business processes using the work-
flow technologies. These technologies are continuously evolving with the advances in the
field of web services, cloud computing and distributed computing. The business process
workflows are primarily composed of internal or external web services and are based on
Service Oriented Architectures (SOA). Such process workflows require a very systematic
approach towards development, starting from a “conceptual” or an abstract model designed
by their business analysts, to an “executable” model provided by the technical experts.
MDA (Model Driven Architecture) is an OMG initiative that attempts to bridge the gap
between the business functionality and the implementation models through the applica-
tion of model transformations. The thesis aims to apply formal methodologies to develop
efficient, correct and inter-operable workflow systems.

The thesis first proposes a framework for the synthesis of business workflows using a
“model driven” approach wherein the process workflow is expressed as a conceptual model
using BPMN (Business Process Modeling and Notation) which is the de facto notation for
conceptual modeling of such systems and is widely used in Model Drive Architectures for
enterprize-scale solutions. From a conceptual model in BPMN, the executable model is
derived in Orc (a recent language for web orchestrations) through transformations. The
transformation system, called Bpmn2Orc, realizes an executional platform for business
process workflows using Orc, and hence, extends the capabilities of the language Orc to the
business analysts community and the cloud computing environments also. The language
Orc, developed at the University of Texas, is based on a few basic constructs and provides
a clean separation between computation and orchestration and has been used to model
different kinds of orchestrations and workflow patterns. To achieve the above mentioned
transformation, the languages BPMN and Orc are first analysed, and each BPMN core
element is mapped to an equivalent Orc construct. Certain graph based transformation
techniques are then applied where-in a Business Process Diagram (BPD) is validated and
then converted to a set of Orc computation structures (in the form of Orc Graphs). These
Orc Graphs are then used to perform validations of the conceptualized workflow in view of
the executional semantics. Later, it is traversed to generate the executable code that can
be used by the technical analysts for realizing the process workflow. These transformations
are described along with an implementation and illustrated with an example. Thus, the
system Bpmn2Orc provides a validated code generation in Orc starting from a BPMN
specification.

xi

In order to arrive at the choice of executable language Orc, an extensive study and
analysis of various languages supporting business process workflows is undertaken. Orc is
analysed for its support of forty three workflow patterns and compared with the equivalent
pattern support in other languages. The results of this study including the details of each
pattern support in Orc and an in-depth comparison with other languages is also included
as part of this work.

The process workflows are often composed of “external” web services. Their execution
involves task executions that are outside their control domain. Thus, one of the biggest
challenge in realizing such complex workflows is to ensure that their behavior remains
consistent with the intended specifications (note that our transformation validates only the
BPMN specification and not the underlying concepts of the model to meet the performance
requirements that range from QoS to real-time constraints). Thus, runtime monitoring
is required as it is difficult to perceive all possible outcomes of a component service at
the design time and to evaluate dynamic executions. Further, a workflow may require
certain values, for example, QoS attributes, that can only be computed externally. Also,
workflows that use service “discoveries” need certain values at “runtime” to query their
registry databases and find the “best” fitting service. Very often, the organizations also
enter into a Service Level Agreement (SLA) with their partners in order to guarantee their
process behavior. An online monitoring system named Wf Sla Mon, is developed as
part of this work, and is applied for such distributed workflows. It works by maintaining
a watch on all external interactions in order to ensure that a set of given properties are
always satisfied. The system executes concurrently with the runtime system of the process
workflow and enables the workflow to initiate action on detection of any property violation.
Properties may be functional or non functional. The non-functional properties are specified
using user or system provided macros. The functional properties may be specified either

1. in SL, a class of temporal logic that has the expressive power of regular safety prop-
erties or

2. as wanted/unwanted scenarios using Message Sequence Charts(MSC).

The system identifies properties with “basic” or “composite” metrics. Basic metrics can be
aggregated to form composite metrics. From the given properties, the observers are derived
as a deterministic finite state automata and integrated with the underlying workflow engine
such that the property violations can not only be detected but also acted upon on a real
time basis. The application of the system is illustrated through examples of monitoring
properties of a BPMN system. To summarise, the Wf Sla Mon system enables the
workflow service provider to run-time monitor a given BPMN system with respect to
properties related to process interactions with external stake holders and then adapt itself
as per specification.

As part of the work, the monitoring system is applied for a complex SLA. The SLA
is first broken into computable and verifiable properties and integrated with the process
workflow in such a way that it can indeed be ensured. The complete process is illustrated
in the thesis.

xii

Contents

Title Page i

Certificate ii

Dedication iii

Acknowledgements iv

List of Figures v

List of Tables vii

List of Abbreviations viii

List of Symbols x

Abstract xi

1 Introduction 1
1.1 Historical perspective . 1
1.2 Impact of Internet and the Web Services 4
1.3 Emergence of Service Oriented Architecture (SOA) 5
1.4 Workflow Management Systems . 6
1.5 Business Process Management (BPM) . 9
1.6 Challenges in the field of business process workflows 13
1.7 Motivation . 16
1.8 Objectives . 17
1.9 Organization of rest of the thesis . 17

2 Literature Review 19
2.1 Current BPM Systems . 19
2.2 Model Transformation Techniques . 22

2.2.1 Model To Text . 23
2.2.2 Model To Model . 24

xiii

2.3 Related work in monitoring and verification of workflows 25
2.4 Research Gaps . 27
2.5 Approach . 28

2.5.1 Realization of an executional model in Orc 28
2.5.2 Runtime Monitoring of a workflow process instance/s 29

3 Background 30
3.1 BPMN and Orc . 30

3.1.1 Business Process Modeling Notation (BPMN) 30
3.1.2 Orc . 33

3.2 SL and MSC . 35
3.2.1 Temporal Logic of Safety: SL and DSL 35
3.2.2 Deducing Automata . 37
3.2.3 Message Sequence Chart (MSC) . 38

4 Realizing Workflow Patterns in Orc 40
4.1 Workflow Patterns Support in Orc . 40

4.1.1 Basic Control-flow Patterns . 41
4.1.2 Advanced Synchronization Patterns 42
4.1.3 Iteration Patterns . 48
4.1.4 Termination Patterns . 49
4.1.5 Multiple Instance(MI) Patterns . 49
4.1.6 State-Based patterns . 51
4.1.7 Cancelation Patterns . 53
4.1.8 Trigger Patterns . 54

4.2 A Comparison of BPMN, BPEL and Orc for WCP patterns 55

5 A MDA based approach for Synthesizing Process Workflows 57
5.1 Transforming BPMN to Orc: An informal introduction 57
5.2 Equivalent Orc structures for core BPMN elements 59
5.3 Algorithm: Transforming BPMN to Orc 59

5.3.1 Definitions: BPD, OrcGraph and OrcSubgraph 61
5.3.2 BPD to Orc . 63

5.4 Illustration using a Order Processing System 68
5.5 Implementation Technologies . 70

6 Runtime Monitoring Framework 71
6.1 Application v/s Management Modeling . 71
6.2 A Running example: EasyTravel . 72
6.3 EasyTravel’s SLA . 73
6.4 An Informal introduction to our monitoring approach 76
6.5 An overview of Wf Sla Mon . 78

xiv

7 Monitor Specification and Realization 83
7.1 Using MSC . 83

7.1.1 Specification using MSC . 83
7.1.2 bMSC → Automata Transformational Algorithm 85
7.1.3 Implementation . 89

7.2 Using SL . 89
7.2.1 Specification using SL . 89
7.2.2 Model Checking DSL . 90
7.2.3 DSL → Automata: Transformational Algorithm 95

7.3 Integrating observers with workflow engine 97
7.3.1 Generating “events” for the observers 97
7.3.2 Receiving “alerts” from monitors 100
7.3.3 Actions against “alerts” . 100

8 Wf Sla Mon: GUI Capabilities and Experimental Evaluation 101
8.1 Implementation Architecture . 101
8.2 EasyTravel in Orc . 101
8.3 Wf Sla Mon: GUI Features and Capabilities 103
8.4 Experimental Evaluation . 105

8.4.1 DSL Automata generation v/s Lustre 105
8.4.2 Performance impact of monitoring on executing processes 107

9 Conclusions, Specific Contributions, Limitations and Future Work 109
9.1 Conclusions . 109
9.2 Specific Contributions . 110
9.3 Limitations and Future Work . 111

References 113

List of Publications 118

Biography of Student 119

Biography of Supervisor 120

xv

Chapter 1

Introduction

Today’s business environment is characterized by increasing levels of competition. Recent
advances in the field of Information Technology (IT) enable enterprises to increase their
market share and make profits by adapting (or re-engineering) their business processes
to these advances. They can make their tasks easier and efficient by redesigning their
organization and changing the way they work to obtain spectacular improvement. Amongst
the key IT enablers are web services, service oriented architectures and the very recent cloud
computing environments. Together, they provide enterprises with process automation tools
and techniques and the associated computing infrastructure in an unprecedented manner.

A business process of any organization is a collection of “activities” or “tasks” that are
performed by an individual or an automated system in order to produce a specific service
or product required by the organization. These are often referred as business process work-
flows. Traditional workflow technology which is here since mid 1990’s was concerned about
simple task flow and monitoring in a single enterprise domain. However, today’s business
processes run across organizational boundaries and newer models of business, leveraging
the service based architectures are now emerging. This thesis, provides a framework for
synthesizing and runtime monitoring cross organizational workflows. Formal methodolo-
gies are used to develop an efficient, correct and inter-operable workflow system. To explain
this and to set the context, it is important to first provide a historical perspective for busi-
ness computing and the other necessary background of web services and service oriented
architectures. Later, the main research challenges are discussed followed by the objective
and motivation of the work.

1.1 Historical perspective

In order to gain insight about workflow management systems, it is useful to consider the
evolution of business computing over the last few decades. Figure 1.1 provides the business
computing in a historical perspective as described by Aalst et al [van der Aalst, 1998]. The
figure describes the architecture of a typical information system used for business comput-
ing in terms of its components. The evolution shows that more and more generic tasks have

1

been taken out of programs and put into separate management systems. The evolution is
outlined here. The denoted time periods are not strict but more to depict the progressive
development.

1965-1975: Stand-alone Applications: Early information systems were composed of many
stand-alone applications. For each of these applications an application-specific user inter-
face and database system had to be developed. Each application had its own interface
or libraries for user interaction as well as data storage and retrieval. The applications
therefore had data redundancy. The most common programming language used that time
was COBOL. It did not support local variables, recursion, dynamic memory allocation,
or structured programming constructs earlier. (Support for some or all of these features
has been added in later editions of COBOL). COBOL programs were and are still used in
military and government agencies and even commercial organizations under the operating
systems like IBM z/OS, the POSIX family, as well as Microsoft Windows.

1975-1985: Database Management Systems: In the seventies, data was pushed out of appli-
cations and managed separately. For this purpose database management systems (DBMSs)
were developed. The early DBMS systems were mainly relational, for example, INGRES,
IBMs PRTV etc. By using these systems, applications were freed from the burden of data
management. Data redundancy could also be reduced from these applications.

1985-1995: User Interface Management: In the eighties a similar thing happened for user
interfaces and User Interface Management Systems (UIMSs) emerged which enabled appli-
cation developers to push the user interaction out of the applications. The basic concepts
of an UIMS were articulated at a workshop on Graphical Input and Interactions Tech-
niques in 1982 [Löwgren, 1988]. The emphasis was on models and the first model in this
direction was the “Seeheim” model. Since then there has been continuous development
in this field with each system requiring a particular style of programming. These systems
helped the developers by providing a library using which user interfaces could be defined
rapidly and the designer could do this in a standard way. Some examples of UIMS are
Macintosh Toolbox, MacApp, COUSIN etc. Graphical based user interfaces quickly re-
placed the character ones, and as a result the utilization of UIMS also increased. Today
the functions of UIMS are integrated in other tools like DBMS packages, programming
interfaces and web browsers. Around the same time the DBMS technologies also advanced
to include Structured Query Language (SQL) and evolved into more sophisticated prod-
ucts like Sybase, Informix etc.

1995-2005: Workflow Management: Workflow management systems saw their entry in
mid nineties pushing generic business procedures out of the applications. One of the early
workflow system is the FileNet’s business process automation software “WorkFlo”. Ear-
lier workflow systems were used mainly in the manufacturing industry but the scope grew
slowly into business process re-engineering and office automation products also. Workflow
systems provided a mechanism to control the flow of information and work within an en-

2

Figure 1.1: Business computing historical perspective. Source [van der Aalst, 1998]

terprise.

2005-2010: Service Oriented Architectures and Clouds: Over the last decade the Service
Oriented Architectures (SOAs) have emerged and have found their way in WFMS which
allows inter organizational business process workflows to use internet based web services.
The very recent emergence of cloud computing infrastructure is likely to change the face of
WFMS further by allowing organizations to share and compose business processes including
data over the cloud.

To conclude with the historical perspective in workflow management, some early work
in this field is also worth mentioning. The idea to have such generic tools for support-
ing business processes actually emerged in 1970s with pioneers such as Skip Ellis and
Michael Zisman. Zisman completed his Ph.D. thesis “Representation, Specification and
Automation of Office Procedures” in 1997. Ellis and others on the other hand worked on
“Office Automation Systems” in 1990s where they used petri net based workflow models
[van der Aalst and vanHee, 2004]. There are several reasons as to why it took such a long
time before workflow management systems became established as a standard component
even after some of these early works. First, it requires users to be linked to a computer
network. Only in late 1990s with the emergence of internet did people also become easily
connected to the network. Second, earlier information systems evolved from local systems
that were unaware of overall business processes which led to automation in parts and there-
fore workflow could not be considered as any new piece of functionality. Finally, the rigid
and inflexible character of the early products, procedures and systems scared away many
potential users.

In the next section we will briefly discuss about the internet and web-services which
were the catalysts for the evolution of workflow systems today.

3

Figure 1.2: Find-Bind-Publish paradigm

1.2 Impact of Internet and the Web Services

The W3C defines a “Web service” as a software system designed to support inter-operable
machine-to-machine interaction over a network. Web Services use the find-bind-publish
paradigm as shown in Figure 1.2. In this paradigm, service providers register their service
in a public Universal Description Discovery and Integration (UDDI) registry. This registry
is used by consumers to find services that match certain criteria. UDDI defines a set of
Simple Object Access Protocol (SOAP) messages that provide the client API for accessing
a registry. If the registry has such a service, it provides the consumer with a contract and
an endpoint address for that service. Using this, the service consumer binds to the service
and then invokes it.

While the emergence of the internet provided the connectivity between people across
organization and even crossing the boundaries of nations, web services provided a mech-
anism for the organizations to integrate their business processes. The emergence of these
two technologies was therefore considered as a significant step in the evolution of workflows,
especially, the Business to Business (B2B) collaborations. Using these web services one
could move the “activities” or the “tasks” of a workflow across the organizational domain.
It also served as an interface for the process to connect with legacy applications and to
move towards service oriented architectures which we will describe in the next section.

The web service stack is given in Figure 1.3. Here, Web Services Description Language,
known by the acronym WSDL, is an interface described in a machine-processable format,
using which, other systems interact with the given web service in a manner prescribed
by its description. Interaction is through messages, generally SOAP messages. SOAP
Messages are typically conveyed using HTTP or other web related standards with an XML
serialization. On top of the WS-Stack, there are two elements to be found: Orchestration
and Choreography, which provides a mechanism for composition of the web services.

A business process is often formed by combining web services (process fragments) in
various ways to deliver new or modified business capability. Such compositions can be seen
to have both an internal and external view. The internal view is seen as “orchestration”
and defines the actual or intended internal behavior of the process fragment. It includes

4

Figure 1.3: Web-service Stack

Figure 1.4: Orchestration v/s Choreography in Web services

the activities, transitions and the internal resources required to support the enactment of
the process. The external view or the “choreography” defines the behavior of the fragment
as a black box, seen from the outside and addressed through its interfaces. This view sees
the process fragment very much as a source and sink of messages or events of different
types. Choreography v/s Orchestration is depicted in Figure 1.4.

1.3 Emergence of Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) is an architectural style that emphasizes implemen-
tation of components as services. It promotes loose coupling between software components
so that they can be reused. Applications in SOA are built based on “services” where the
service is an implementation of a well-defined business functionality, and such services can

5

Figure 1.5: SOA architecture illustrated

then be consumed by clients in different applications or business processes. An important
aspect of SOA is the separation of the service interface (the what) from its implementa-
tion (the how). Web Services are the key enabler of SOA. They are consumed by clients
that are not concerned with how these services will execute their requests. Services can
be dynamically discovered and composite services can be built from aggregates of other
services

Figure 1.5 shows how various services lie under the service layer as components. Ap-
plications access services via this layer. The services can be external or internal. In case of
external services the service layer of the external application (organization) would be used.
Workflow applications also use the functionality of these applications via these services.

The service-oriented computing (SOC) paradigm uses services to support the develop-
ment of rapid, low-cost, inter-operable, and distributed applications. “Services” in SOA
are autonomous, platform-independent entities that can be described, published, discov-
ered, and loosely coupled in novel ways. They perform functions that range from simple
mathematical calculations or execute complex business processes running across different
service consumers and providers. The approach is independent of specific programming
languages or operating systems. It lets organizations expose their core competencies pro-
grammatically over the Internet using standard XML-based languages and protocols and
a self-describing interface.

1.4 Workflow Management Systems

Having looked at the basics of the SOA technologies, we will now delve into Workflow
systems as such. The Workflow Management Coalition (WFMC), a non-profit international

6

organization of workflow vendors, users, analysts and university/research groups defines
a workflow as: the automation of a business process, in whole or in part, during which
documents, information, or tasks are passed from one participant to another, according to
a set of procedural rules [Stohr and Zhao, 2001]. The goal of workflow is the automation
of complete processes instead of isolated tasks. Workflows based on SOA promotes inter-
organizational collaborations by integrating the teams involved in managing different parts
of a workflow.

A Workflow Model / Specification is used to define a workflow both at the task and
structure levels. There are two types of workflows, namely “Abstract” and “Concrete”.
While concrete workflows are also referred to as executable workflows, an abstract model,
includes tasks that are described in an abstract form without referring to specific resources
for task execution. Abstract or conceptual models provide the ability to define workflows
in a flexible way, isolating execution details. Furthermore, an abstract model provides only
service end point information on how the workflow has been composed and therefore the
sharing of workflow descriptions between users is feasible. In the concrete model, the tasks
of the workflow are bound to specific resources and therefore this model provides service
execution information on how the workflow has been composed (e.g. dataflow bindings,
control flow structures).

A workflow can be executed by a Workflow Management System (WFMS). WFMC
define a WFMS as: a system that defines, creates, and manages the execution of workflows
through the use of software running on one or more workflow engines, which is able to
interpret the process definition, interact with workflow participants and, where required,
invokes the use of IT-tools and applications. These systems thus support the execution
of business processes in an organization. They take care of the distribution of work (and
associated data) to the right people at the right time. They are configured based on (often
graphical) process models. Similar to database management systems, WFMSs are also
generic systems, but instead of supporting the storage and retrieval of data, they focus on
the distribution of work to resources and provide facilities for monitoring its progress and
managing it to completion.

It may be worth mentioning here that while business workflows are applicable for busi-
ness domains, scientific workflows often underlies many large-scale complex e-science ap-
plications such as climate modeling, structural biology and chemistry, medical surgery or
disaster recovery simulation. Compared with business workflows, scientific workflows have
special features such as computation, data or transaction intensity, less human interaction,
and a large number of activities. Some emerging computing infrastructures such as grid
and cloud computing have powerful computing and resource sharing capabilities through
which these special features can be accommodated. One of the major differences between
a business and scientific workflow is that while a business workflow is “control flow” centric
a scientific workflow is “data/information flow centric”. This is the primary reason why
the business workflow models cannot be used directly for the scientific workflows. The
suitability of these workflow models under scientific domain is currently an active area of
research.

Most of the contemporary WFM systems are built on a Service Oriented Architecture

7

Figure 1.6: A workflow reference model

where the application functionality is not provided by one large monolithic application (as
in the traditional model), but by services that are offered by providers. Composite services
are composed out of other services, that can also be provided as services. To facilitate
the creation of composite services, mechanisms for monitoring, conformity checking and
coordinating the different sub-services are needed. In addition to this is the Services-
Management, providing services like assurance, certification and rating of services. With
SOA, systems developed on different platforms and technologies, such as, legacy systems,
Java, and .Net applications, are able to communicate directly using standardized interfaces
and protocols. The definition and execution of business processes is achieved using a
common workflow or a web service orchestration language e.g. BPEL, XPDL, WSFL etc.
BPEL is currently the most widely accepted industrial standard and is a hybrid between
IBMs graph-based WSFL and Microsoft’s block based XLANG which have their origin in
Petri nets and pi calculus respectively. Other languages like YAWL and Orc are still in
the domain of research but have been found very promising to support the complexities
involved.

The WFMC reference model for a workflow system given in mid 1990’s is given in
Figure 1.6. Central to the reference model is the workflow enactment service, that consists
of one or more workflow engines. These engines execute the workflows by initiating new
processes, assigning task to users or roles, listening to events etc. The first interface
concerns the specification of the process or the process definition tools. The processes that
are executed can be defined at design time by means of a graphical process editor. A process
definition language should be based on formal notation, for example, Petri-nets, as then
these specifications can be verified and validated. BPMN and XPDL (the XML Process

8

Definition Language) are some standard languages for defining and interchanging processes
designed by the WFMS. The second interface is with the workflow client applications which
is usually implemented by a graphical interface that consists of a worklist with the work
items that have to be performed by the logged in person. The workflow engine does
the assignment of tasks to the employees (resources). This can be done by means of a
push, or a pull system. Most WFMS work with a pull system, because a push-system
has the disadvantage that tasks can be pushed into the worklist of an employee that is
unavailable for some reason. The WAPI (Workflow Application Program Interface) is
normally used as an interface here. The third interface allows the WFMS to interact
with external applications, either by linking with external applications like Document
Management Systems, JDBC or invoking external web services. The fourth interface allows
different WFMS to communicate with each other, i.e. that at a certain point in the process,
the WFMS can start a (sub-) process in another WFMS. WF-XML is normally used as a
standard here. The fifth interface is for administrative and monitoring tools. These tools
can be used to control issues like status, progress, and workload, and to add new users and
roles.

Web orchestration languages like BPEL are often extended e.g. BPEL extensions, to
allow for the additional requirements of WFM, mainly, manual tasks handled by humans.
Such extensions involve two parts of the WFM system. First, the language is extended
with a new task type, e.g. a Human Activity, or a Staff type, which allows the modeling
of workflows containing tasks to be handled by humans. Second, the WFM system must
contain some kind of task portal, where process participants can claim and executetasks
assigned to them.

1.5 Business Process Management (BPM)

A parallel terminology for the above described workflow systems is now emerging as (Busi-
ness Process Management) BPM systems. One of the most fundamental characteristics
required in the BPM world is the ability to support the management of dynamic business
change leading through:

• Late bindings i.e. to introduce flexibility to the run time environment

• Rules engines i.e. to facilitate complex expression evaluation independently of the
core process specification

• Adaptive processes i.e. to facilitate dynamic change during execution

Figure 1.7 illustrates a BPM component model, derived from a traditional view of the
development and subsequent execution of a business process. The top half of the diagram
illustrates the derivation of a process model along with its service delivery characteristics.
The lower half illustrates the enactment of the process in this environment. The first
step is to prepare a conceptual model of the program. Here one defines a model at a
conceptual level and is generally prepared by business analyst. The executable model is

9

Figure 1.7: A BPM Component Model

prepared by technical analyst who either works on the conceptual model itself by refining it
or generates this through transformation of conceptual model first. The service definitions
and end points are defined in a WSDL (Refer Figure 1.2). The process is then deployed
on the BPM / workflow engine (the two terms are often used interchangeably these days)
and is ready for execution. On receiving a request (invoked by any client) the engine
instantiates the process. The external service interactions are performed using SOAP
Message exchanges.

Figure 1.8 shows an example of a conceptual BPM travel booking system. The Pro-
cess begins with the receipt of a request for a travel booking (Check Credit). After a
check on the credit card, reservations are made for a flight (Check Flight Reservation),
a hotel (Check Hotel Reservation), and a car (Check Car Reservation). The car reserva-
tion may take more than one attempt before it is successful. After all three reservations
are confirmed, a reply is sent. The flight, hotel and car reservations are all made in parallel.

Conceptual Model: The conceptual model is concerned with the formulation of the
business process in terms of business component objects and their interactions. A concep-
tual model typically requires some graphical tools for process definitions or some form of
a choreography language to identify the valid sequences of messages and responses across
and between the participating process fragments. Processes defined here are mostly ab-
stract processes. BPMN is the most common language for conceptual modeling. BPMN

10

Figure 1.8: A conceptual model of travel process. Source [White, 2005]

2.0 supports choreography also. Other languages is this domain are UML Activity models
and WS-CDL. It is to be noted that a conceptual model is typically prepared by a business
analyst and hence the languages used are highly expressive, supports most of the patterns
and allows arbitrary flows and loops etc. They allow models where resource binding etc.
is not specified. A conceptual model is generally transformed into an executable language
where the developers refine and add relevant information to the model. For realization,
there is a need to view a high level structure to define the conversation among the various
stakeholders. This can be depicted through a choreography as given in Figure 1.9. The
choreography also helps in identifying the endpoint reference (EPR) (An EPR is a combi-
nation of Web services elements that define the address for the resource in a SOAP header)
for the process. In Figure 1.9 the endpoint references are shown as small rectangles for the
interactions between the user and the travel process.

Executable Model: To convert any conceptual model into an executable model requires
a more detailed specification of the process in machine processable form, including not only
its detailed internal structure but also its interfaces and internal resource usage. However,
different BPM / workflow products have different internal representation structures of the
executable model. In practice many BPM products have process design tools that are
closely coupled to its execution capabilities. BPEL and XPDL are two standard languages
used for executable models. The main difference between a conceptual model and an
executable one is that a conceptual model is highly expressive and may support a variety
of workflow patterns including arbitrary flows where the executable model depends on
what the execution engine supports. Very often, people working on the conceptual model
may not be aware of the runtime service component structure and hence executable model

11

Figure 1.9: Choreography of web services in a travel workflow

may be reconfigured by the developers. The BPEL translation of the BPMN model given
earlier is given in the Figure 1.10. Here the activities marked with a cross are external
web-services. An extract of XML representation of this BPEL code is given in Figure 1.11.

The recent BPMN 2.0 specification has a clear executional semantics and supports both
conceptual as well as the executional models. The business as well as the technical ana-
lysts can therefore work on the same model. The standardization of executional semantics
enable exchange of BPMN models across BPMN 2.0 complaint platforms.

Service Definitions: Once the executable process is created and deployed as a service,
one needs a mechanism to define it as an interface for the consumers to invoke this service.
The service definition enables instantiation of the executable model(s) into operational pro-
cess instances on user invocation. The service consumer invokes this via SOAP Messages
which have bindings to the service as per the protocol used. The mechanism is depicted
in Figure 1.12. In a web services environment, a set of supporting standards exists for
defining such services, resource access points, access permissions and basic message types,
etc. In other implementation environments equivalent schemes are required. WSDL is one
such standard which defines the service end points.

Service Interactions: This represents the actual, runtime exchanges between resources
associated with execution of particular process fragment. The interactions can again be in-
ternal or external. The internal interactions between the process fragments (e.g. invocation
of local application resource or allocation of work to a local participant) will be regulated
by the WFMS itself. External interactions however are governed by the choreographies.
These are through messages e.g. SOAP, XML. Monitoring of these service interactions,
especially online, is also an active area of research.

12

Figure 1.10: A BPEL model of the travel workflow. Source [White, 2005]

Resource: Resource model is one of the required components of the process definition.
For internal process fragments (activities), appropriate resources are bound to these activi-
ties according to the set of rules (roles) defined earlier. These need to be flexible enough to
permit late binding of resources to task. The resources could be infra-structural resources
also e.g some long running computation to be allocated to a grid. Sometimes there may
be a clash of resources. For external interaction one may need a mechanism to first find an
appropriate resource and then assign tasks to it. With the emerging cloud computing envi-
ronment resource allocation and their binding with activities in a workflow, new standards
may be required in this field.

1.6 Challenges in the field of business process work-

flows

The correctness and performance of the business processes supported by the WFM are
vital to the organization and hence it is important to ensure these both at design time and
runtime. A workflow process definition is therefore analyzed before it is put into production
for its validation i.e. testing whether the workflow behaves as expected; verification, i.e.
establishing the correctness of the workflow; and performance analysis, i.e. evaluating the
ability to meet requirements with respect to throughput times, service levels and resource
utilization. Some of the key challenges in the field of business workflows are given below:

1. Semantically enhanced service discovery: A business process composed from many

13

Figure 1.11: A BPEL code of the travel workflow

services can itself be exposed as a service. The main challenge of service discovery
is using “automated” means to accurately discover these services with minimal user
involvement. This requires analysis of the semantics for both the service provider and
requester, adding semantic annotations and including descriptions of QoS character-
istics in the Web Ontology Language (or other semantic markup language) to service
definitions in WSDL and then registering these descriptions. Achieving automated
service discovery requires explicitly stating needs in some formal request language.

2. Security: Validating the security aspects in workflow applications requires a full sys-
tem approach for an end-to-end security solution. This is especially true for B2B
workflows. Security is a wide area which concerns the internal as well as external
aspects. The internal aspects relate to access permissions, identity management,
digital signatures and authentication mechanism for process access within the orga-
nization. Definition of appropriate roles and organization rules for substitutions may
become very complex. The external requirements are security issues related to web
services. These relate to SOAP message signing, non-repudiation, encryption and
attaching security tokens to ascertain senders identity. Since workflows involve flow
of data across organizations, ensuring a secure access mechanism for the interest and

14

Figure 1.12: Service definition for endpoint references in BPM

requirements of all parties involved is important.

3. Adaptive processes: Services and processes need to equip themselves with adaptive
capabilities so that they can continually change themselves to respond to environ-
mental demands without compromising operational, QoS and financial efficiencies.
The Autonomic computing techniques are required for dynamic service compositions
that are self-configuring, self-optimizing, self-healing, and self-adapting.

4. QoS-aware service compositions: Service compositions must be QoS-aware i.e., un-
derstand the policies, performance levels, security requirements, service-level agree-
ment (SLA) objectives, and so on of the providers. For example, if a new business
process adopts a Web services security standard from WS-Security, the client not
only needs to know this but also if the services in the business process actually re-
quire WS-Security, what kind of security tokens they are capable of processing, and
which one they prefer etc.

5. Process Engineering: This refers to the methods and models adopted by any organi-
zation for their process development. Business workflows require a service-oriented

15

engineering methodology that enables modeling and specification of the business en-
vironment, including Business Level Objectives (BLOs) of their goals and policies;
translating models into service designs; deploying the service system; and testing and
managing the deployment.

6. Service governance: Due to the cross-organizational nature of end-to-end business
processes composed from various service fragments that different organizations main-
tain separately, service governance is a challenging issue. Such processes can function
properly and efficiently only if the services are effectively governed for compliance
with QoS and the overall policy requirements. The services must therefore meet the
functional and QoS objectives within the context of the enterprises within which they
operate. For this it is important to be able to monitor them dynamically at runtime.

7. Inter-operability: standards and implementation strategies: High inter-operability is
imperative for B2B applications because transactions require cooperative workflows.
In an e-commerce environment, it is conceivable that workflows with various levels
of automation must coexist. Some workflow systems can be completely automated
with possibly sophisticated software agents, while other workflow systems may be
completely manually coordinated.

8. Transaction Management: Since the workflow applications are distributed, typically
long running and have a large number of wait states, ensuring the atomicity of a
transaction running across enterprises is very important. Compensation and excep-
tion handling without manual intervention is one way to handle this and most of the
languages support this in some form or the other.

1.7 Motivation

Business process workflows is a promising technology for today’s enterprises to strengthen
and streamline their core business processes and achieve profits like never before. Newer
models of the business leveraging this technology are now emerging. Realizing such work-
flows is, however, challenging due to multiple stake holders involved as well as technical
issues like inter-operability, security, process specification, process monitoring as well as
the overall dynamism involved in the execution environment. Among the many stated
research challenges in this field we are particularly interested in the synthesis and runtime
monitoring of cross organizational workflows. In our view, these are the most important
aspects holding wide scale implementations of such process workflows. The clouds and
grid computing environment are now equipped to provide the necessary infrastructure for
such workflows, however, unless the organizations have some means to monitor and ensure
correctness of their process executions they will be hesitant to move in this direction. The
motivation of this research is therefore to develop a framework that enables realization of
an efficient, correct and inter-operable workflow system. The focus area is Engineering

16

and Service governance to enable synthesis and runtime monitoring of business process
workflows.

1.8 Objectives

The main objectives of this thesis are given below:

1. Synthesizing a business workflow from a conceptual model in BPMN: Given an exe-
cutional language we aim to provide a framework to transform a conceptual model in
BPMN to an executional model by applying model transformation techniques. With
this, the business analysts will have the capability to express their solutions in terms
of service interactions for both control and data flow centric workflows. It will also
enable creation/simulation of mock scenarios for verification/validation/debugging
in an integrated way.

2. Runtime Monitoring of a workflow process instance/s: Further, an executing business
process relies heavily on external web services, but it does not have any direct control
on the individual web-services used in its composition, which may be modified by the
service providers, resulting in erroneous results. The administration and monitoring
tools available in the current workflow systems are insufficient with capabilities to
monitor the process state and other basic admin features only. We aim to provide a
monitoring framework that enables dynamic monitoring of business process workflows
on a real-time basis.

3. Adaptive business processes: The workflows often depend on data that is not available
locally and require inputs from computations occurring at runtime. It also needs
to adapt itself with the changing environment. Our objective is to integrate our
monitoring framework with the workflow process to enable such adaptations.

4. Monitoring SLAs : Very often organizations enter into a Service Level Agreements
(SLAs) with their partners in order to guarantee their process behavior. We aim to
providea monitoring framework for monitoring such SLAs.

1.9 Organization of rest of the thesis

The rest of the thesis chapters are organized as follows:

1. Literature review: This chapter provides a comparison of the currently available
workflow products from both open source and commercial domain, the languages
they support and their features, capabilities and the limitations. This is followed
by a literature survey on the various approaches for runtime monitoring of business
process workflows, some research gaps and an overview of the approach taken.

17

2. Background: This chapter provides a description of the language BPMN and Orc,
which forms the basis of the synthesis tool named Bpmn2Orc. It also provides
the background on MSC and SL, and the trace semantics that is necessary for the
runtime monitoring framework named Wf Sla Mon

3. Realizing workflow patterns in Orc: In this chapter, each of the forty three workflow
control-flow patterns is analysed and its implementation is provided using the lan-
guage Orc. The results are then compared with the patterns supported by BPMN
and BPEL.

4. A MDA based approach for Synthesizing Process Workflows: Here, the systemBpmn2Orc
is described which transforms a BPMN model to Orc for execution. It first provides
the mapping of BPMN constructs with that of Orc and then discusses the implemen-
tation algorithm along with the illustration with a case study.

5. Runtime Monitoring Framework: In this chapter, the approach for runtime moni-
toring, its key component structure and methodology is discussed using an example
BPMN system, EasyTravel and its SLA.

6. Monitor Specification and Realization: The chapter details the property specification
using SL and MSC, the detail of the algorithms for generating monitors and their
integration with Orc workflow engine.

7. Wf Sla Mon: GUI Capabilities and Experimental Evaluation: This chapter in-
cludes some implementation details, screenshots and the results of the performance
evaluation tests performed.

8. Conclusions, Specific Contributions, Limitations and Future Work: The main con-
tribution of the thesis, conclusions, limitations and some future scope of work is
discussed in this chapter.

18

Chapter 2

Literature Review

This chapter provides a comparison of the some contemporary BPM systems from both
open source and commercial domain, the languages they support, their features, capabilities
and the limitations. Later, various model transformation methods and their applications
are listed. This is followed by a literature survey on the related approaches for runtime
monitoring of cross organizational business process workflows. After discussing the research
gaps in this area, the approach taken for this thesis is discussed.

2.1 Current BPM Systems

A list of some of the BPM systems (from both open source and commercial domain) and
their providers is given in Table 2.1. This list is just a snapshot and far from complete.
The number of suppliers offering BPM solutions is estimated to be around 250. This large
number itself indicates that this is a demanding area and these systems are expected to play
a major role in the future. Besides the specialized “workflow” or “BPM” systems (the terms
are used interchangeably these days), most Enterprise Resource Planning (ERP) systems
like SAP, Baan and JD Edwards also have a workflow engine incorporated. These workflow
engines cannot be used as stand alone BPM systems and requires a third party integration
as well as a tight coupling with their existing ERP system. Despite the large number of
products and suppliers, the number of workflows actually in production is relatively limited.
Some of the reasons for their relatively low acceptance in spite of the huge demand is:

• the technology is new and many of the issues are not addressed in totality resulting
in limited functionality and unsatisfactory reliability.

• successful implementations generally require some re-engineering of the organizations
in terms of its functioning. This leads to the inevitable problem of “resistance to
change”.

• despite the efforts of WFMC, standards with respect to functionality and system
linking are lacking. For example, many systems use ad hoc drawing techniques to

19

Table 2.1: List of some BPM Products and their Suppliers
Name Supplier
Action Workflow Action Technologies Inc.
Activiti Open Source
jBPM Open Source
COSA Ley GmbH
Flo Ware BancTec-Plexus, Japan
InConcert TIBCO/ InConcert
Income Promati
Open Workflow Wang
PowerFlow Optica Imaging Solutions
Process Weaver Cap Gemini Innovation
SAP Business Workflow SAP AG
Oracle BPEL Manager Oracle Corporation
WebFlow Cap Gemini Innovation
WorkVision IA Corporation
Ultimus Ultimus
Staffware StaffWare
TeamWARE TeamWare
Websphere Process Manager IBM

specify processes. One of the drawbacks of this is that it is difficult to exchange
process descriptions between different supplier systems.

• since BPM is a complex and quite wide, there is no single BPM product which meets
the requirement of complex rules of resource allocations, document management, se-
curity, monitoring, control flow etc. Hence, different products target different kind/s
(functional domain) of organization.

In order to get an insight of the current products in the market these days, a compar-
ison of some of these products against the key features discussed in the previous chapter
is provided below. The products that have been considered here are Staffware, Web-
Sphere MQ, Oracle BPEL Process Manager, jBPM, OpenWFE, Enhydra Shark, Activiti
and YAWL. Most of the information gathered is from the analysis given by Aalst et al.
in [van der Aalst and vanHee, 2004] and [Wohed et al., 2009] or the individual product
website wherever available. Some key information for commercial products COSA and
InConcert is also included, though, due to lack of documentation a detailed comparison
in terms of workflow patterns support is not included. Oracle BPEL and Websphere MQ
being commercial products also provide limited information about the core implementation
details.

Process Definition: YAWL is a BPM/Workflow system, based on a concise and powerful
modeling language (Yet Another Workflow Language), that handles complex data trans-

20

formations, and full integration with organizational resources and external Web Services.
It provides a graphical tool for process definition in YAWL which is executable. jBPM is
a open source initiative and has a process definition tool called jBPM Graphical Process
Designer (GPD) which is a plugin to Eclipse. It provides support for defining processes
in jBPM Process Definition Language (jPDL) in both: graphical as well as XML format.
jPDL is a executable language and is directly executed by the jBPM workflow engine.
OpenWFE is also a open source product which has a web-based workflow design envi-
ronment called “Droflo” to define process models graphically. These are then translated
to OpenWFE internal process definition language in XML format. Enhydra Shark has a
Process Definition tool called “Together WorkFlow Editor” (TWE) which uses XPDL as
a process language. Oracle BPEL PM as well as IBM Websphere MQ Series use some
variant of BPEL core language and/or BPEL extensions. Activiti is an enriched jBPM
(the core development team is the same) and supports process definitions in BPMN 2.0.
COSA Network Edition (CONE) by COSA is a process definition tool for defining and
revising processes. Here, Petri nets are used to illustrate the process.

Resource Allocation: jBPM identity component allows definition of organizational infor-
mation, such as users, groups and roles to which different tasks can be assigned. Currently
the definition of this information is done through standard SQL insert statements directly
into the workflow database. OpenWFE uses a web-interface for resource management,
called UMAN (for User Management). Users are either human participants or automated
agents. Automated agents are implemented in a language like Java or Python and defined
as users in a workflow. Enhydra Shark has no separate tool for resource allocation but
supports resource patterns as given in Figure 2.3. YAWL provides a graphical resource
allocation framework and has maximum support for the resource patterns. All commercial
tools provide tools for resource allocation and user management.

Administration and Monitoring Support: Most of the providers combine resource
management with monitoring. jBPM console web application has a web based workflow
client whereby users can initiate and execute processes. It also has an administration and
monitoring tool where users can observe and intervene in currently executing process in-
stances. Enhydra Shark has a Management Console, TWS Admin, which is a workflow
client as well as an administration and monitoring tool. This is however simple monitoring
related to starting/stopping or viewing an executing process instance.

Workflow Patterns: The core workflow engine of jBPM, Enhydra Shark and Activiti is
in Java and OpenWFE is in Ruby. Aalst et al [Van Der Aalst et al., 2003] have provided
a set of workflow patterns, that provide a taxonomy of recurring concepts and constructs
relevant to the workflow and business process management area and forms the basis of
evaluating workflow systems. These patterns have been categorized as control-flow, data-
flow and resource-flow patterns. Resource-flow patterns capture the various ways in which
resources are represented and utilized in workflows. Data-flow patterns capture the various
ways in which data is represented and utilized in workflows and control-flow patterns

21

provides the patterns from a control flow perspective. A table comparing some of these
systems as analysed by Aalst et al. in [Wohed et al., 2009] is reproduced in Figures 2.1
to 2.3. In addition, Aalst et al. have also provided an analysis of BPMN, BPEL and
YAWL support for various workflow patterns in [Wohed et al., 2006], [Wohed et al., 2002],
[Wohed et al., 2003] and [Hofstede, 2005] respectively. YAWL has maximum support for
workflow as well as resource patterns and is also implemented in some “Health care”,
“Product recall” scenarios.

Figure 2.1: Workflow Control-flow Patterns support in various BPM products. Source
[Wohed et al., 2009]

As can be seen, various products support workflows with some or the other variant of
the standards based languages like BPEL, BPMN or have their own proprietary system.
Standards are emerging and newer products as well as the newer versions of these existing
products are continuously evolving. While BPEL is commonly used for execution modeling,
BPMN is the language of choice for process specification. YAWL is based on Petri-nets
and provides a common modeling framework.

2.2 Model Transformation Techniques

The Model-Driven Architecture (MDA) by Object Management Group (OMG) aims to
automate the generation of platform-specific models from platform independent models.
The basic MDA pattern involves defining a platform independent model (PIM) and its

22

Figure 2.2: Workflow Data-flow Patterns support in various BPM products. Source
[Wohed et al., 2009]

automated mapping to one or more platform-specific models (PSMs). In the context of
BPM, model transformations are required to convert a conceptual model into executable
model. We discuss and categorize some of the model transformation approaches here.
These are broadly classified into two types: “Model to Text” and “Model to Model”

2.2.1 Model To Text

Model to Text (M2T) includes non code artifacts like XML as well as the code (referred
as Model To Code). There are two kinds of model to text approaches:

1. Visitor based approach: A very basic code generation approach consists in provid-
ing some visitor mechanisms to traverse the internal representation of a model and
generate code as a text stream. An example of this approach is Jamda, which is an
object-oriented framework providing a set of classes to represent UML models, an
API for manipulating models, and a visitor mechanism to generate code.

2. Template based approach: In a template based approach, “templates” are used to
generate the code. A template usually consists of the target text containing splices
of meta code to access information from the source and to perform code selection
and iterative expansion. It closely resembles the target model and hence it results
in more accurate code generation. Tools like Jet, OptimalJ, XDE, and the Model

23

Figure 2.3: Workflow Resource-flow patterns support in various BPM products. Source
[Wohed et al., 2009]

to Text (M2T) transformation project under the Eclipse Modeling Project, help in
transforming models into text. However this approach is useful when both source
and target models have the same meta-model.

2.2.2 Model To Model

Model-to-Model (M2M) transformations translate between source and target models, which
can be instances of the same or different meta-models. M2M transformations are required
to bridge the large abstraction gaps between PIMs and PSMs; it is easier to generate
intermediate models rather than go straight to the target PSM. The different types of
Model to Model approaches are:

1. Direct Manipulation approach: In this approach, the source model is itself modi-
fied directly. Users have to implement transformation rules and their scheduling
from scratch using a programming language such as Java, an internal model rep-
resentation plus some API to manipulate it. They are usually implemented as an
object-oriented framework, which may also provide some minimal infrastructure to
organize the transformations (e.g., abstract class for transformations). Examples

24

of this approach include Jamda and implementing transformations directly against
some MOF-compliant API (e.g., JMI).

2. Relational approach: In a relational approach one needs to state the source and tar-
get element types of a relation and specify it using constraints. In its pure form,
such specification is non-executable. However, declarative constraints can be given
executable semantics, such as in logic programming which, with its unification-based
matching, search, and backtracking seems a natural choice to implement the rela-
tional approach. Here predicates can be used to describe the relations. Relational
approach is thus declarative and mainly focuses on mathematical relations between
source and target models. Predicates and constraints are used to define mathematical
relationships.

3. Graph Transformation based approach: This category is based on the theoretical work
on graph transformations. They operate on typed, attributed and labeled graphs e.g.
representing UML like models. A graph transformation approach consists of LHS and
RHS rules in the form of graph patterns. The LHS pattern consists of a subgraph
and condition which is matched in the model being transformed and replaced by the
RHS pattern in place.

4. Structure Driven approach: This is a two phased approach. The first phase is con-
cerned with creating the hierarchical structure of the target model, whereas the
second phase sets the attributes and references in the target. The framework deter-
mines the scheduling and application strategy and users as such are only concerned
with providing the transformation rules.

In addition to these approaches, there are hybrid approaches which use a combination
of these approaches. In practise hybrid approach is most appropriate as a single approach
is useful only for small transformations.

2.3 Related work in monitoring and verification of

workflows

There have been several approaches and works for developing runtime monitors for busi-
ness process workflows each focusing at different aspects like nature of verifiable properties,
timeliness, granularity, etc. In some approaches the process is temporarily stopped while
the assertion is verified while in others the verification is done via a parallel thread. Re-
covery techniques also range from simplistic logging or sending alerts to more complicated
ones where the process execution can be modified at runtime. Some of these approaches
are summarized here.

Aalst et al.[Aalst et al., 2008] have addressed the problem of conformance checking
of services wherein the service message logs created by SOAP Messages are checked for
conformance against the BPEL abstract process specification by converting the BPEL

25

process into a Petri-net and subsequently WF-Net. Conformance checking is done against
two parameters: fitness and appropriateness where “fitness” is confirmed if the Petri net
can generate each trace in the log and “appropriateness” is confirmed if the Petri net is
the simplest one explaining the observed behavior. Thus, over-fitting and under-fitting
models are avoided. They have shown that specifications in terms of abstract BPEL can
be mapped onto Petri nets and the SOAP messages exchanged between the various services
can be mapped onto the MXML log format. Given a set of messages and an abstract BPEL
specification, conformance checking of these parameters have been demonstrated. If the
observed behavior does not match the specified behavior, the deviations can be shown in
both the log and the model. They have used a case study utilizing Oracle BPEL as a
process engine, and demonstrated that it is indeed applicable using current technology.

Spanoudakis et al.[Mahbub and Spanoudakis, 2004] have given a method for validating
behavior properties expressed using the first order temporal logic language of event calcu-
lus. These properties are automatically extracted from the specification of its composition
process in BPEL4WS or assumed that system providers can specify in terms of events
extracted from this specification. Properties are checked using a variant of techniques for
checking integrity constraints against temporal deductive databases. It supports monitor-
ing of three different types of deviation from requirements, namely: inconsistencies with
respect to recorded and expected system behavior, and unjustified system behavior.

Moser et al. [Moser et al., 2008] have presented a non intrusive approach based on
AOP techniques for BPEL processes. They focus on Quality of Service (QoS) attributes and
dynamic (runtime) replacement of partner web services not meeting the QoS requirements.
For replacements the processes need to be syntactically and semantically equivalent to the
BPEL process. They capture the events by intercepting SOAP Messages. They have
named their system as “VieDAME”.

Baresi et al. have given an integrated monitoring framework for BPEL by unifying
their DYNAMO and ASTRO approaches [Baresi et al., 2009][Baresi et al., 2010]. Where
the “Dynamo” approach is more suited for synchronous check of properties on single process
instances, the “Astro” is devoted to the specification of properties that span sets or classes
of process instances. The unification is at both specification and architectural level and
makes it possible to have monitors which can support both time and temporal dimension
and support property specification for a process instance, class instance and cross-process
instance. Dynamo uses Aspect Oriented Programming (AOP) techniques to gather run-
time data from a running BPEL process, and WSCoL (Web Service Constraint Language)
to define the functional and non-functional properties that need to be checked during
execution. Astro on the other hand, uses automatically generated and independent software
modules to check properties that are defined in RTML (Run-Time Monitor specification
Language). Although basic events are collected using AOP techniques, the actual analysis
is performed by independent software modules that run in parallel to the process execution.
Monitors are automatically generated and deployed starting from a declarative definition.
The code generation produces a state-transition system that evolves on the basis of events
collected at run time.

Organizations normally enter into Service Level Agreements (SLAs) with their business

26

partners to ensure the quality and safety aspects of their processes which depend on the
services provided by the providers. A significant aspect of any monitoring framework is en-
suring conformance to these SLAs. SLA properties are required to be specified formally and
many approaches have been proposed for the specification and runtime monitoring of SLAs.
Raimondi et al.[Raimondi et al., 2008] have considered timeliness constraints, such as la-
tency, throughput, availability and reliability which are formally specified in service level
agreements and translated into timed automata. They attach time stamps to SOAP Mes-
sages and consider these messages as timed letters. SLA Violations are detected by means
of executing the timed automata accepting the timed words. Similar work focusing on
SLA is also found in [Sahai et al., 2002], [Morgan et al., 2005], [Keller and Ludwig, 2003],
[Khaxar et al., 2009] and [Comuzzi et al., 2009].

Ludwig et al. offer an approach based on WS-Agreement defining the Cremona frame-
work for the creation and monitoring of agreements. WS-Agreement and the framework
facilitates providing QoS guarantees by (a) enabling the client to state its service capacity
and QoS needs at the time of publishing (b) enabling the provider to derive resource re-
quirements for the requested QoS level and capacity, and to prioritize allocation of resources
when enough resources are not available (c) the provider to accept or reject a request by
a client based on the resource situation at the time the client requests the service and (d)
a runtime interface to monitor these agreements and to take agreement-level actions, e.g.
changing to another provider or extending agreements if more capacity is needed.

Yuan et al. use UML Sequence Diagram 2.0 for property specification from which
they derive a Finite State Automata. UML 2.0 Sequence Diagrams are sufficiently ex-
pressive for capturing safety and liveness properties [Gan et al., 2007]. By transforming
these diagrams to automata, they enable conformance checking of finite execution traces
against the specification. Halle et al. have used XML streaming for runtime monitor-
ing [Hallé and Villemaire, 2009]. Properties are specified using LTL which is mapped to
XQuery. They have not considered non functional properties and aggregation of metrics
which are required in a typical SLA.

2.4 Research Gaps

Though there are many languages for BPM available in the market today as detailed in
Section 2.1, each language has its own merits or demerits in terms of the features supported
and the target systems it addresses. Most of the BPM languages are more control-centric
rather than being data-centric. They are generally not suitable for scientific workflows and
other distributed programming languages. There are limitations in terms of the workflow
patterns support also. With the emergence of cloud and grid computing environments
the scope of business workflows are likely to increase and they need to be equipped with
capabilities that can leverage such technologies for cloud services as well.

In addition, most of the current BPM frameworks use a common language for both
executional as well as conceptual models rather than having a separate language for con-
ceptual modeling and then transforming it to a executional model. Using a common

27

language makes the conceptual model more complicated for the business analysts. At the
same time different source and target languages limits the conceptual model to the features
of the target language. The workflows today need to support complex compositions and
yet have an ability to be specified by business analyst community easily. A framework is
thus required that allows business community to specify their processes using a language
suited for conceptual modeling which can then be translated to an executional language
that supports a large number of features and can be directly executed or augmented with
additional details by technical analysts later. Based on the study of various BPM systems
we have chosen BPMN as a conceptual modeling language as it is graphical and yet sup-
ports a large number of workflow patterns. Orc is the language of our choice for execution
language.

The workflow administration and monitoring tools available in the current BPM sys-
tems have very limited capabilities. It is highly insufficient when it comes to ensuring the
conformance requirements of the business process with respect to safety or liveness prop-
erties. Very often organizations enter into a Service Level Agreements (SLAs) with their
partners in order to guarantee their process behavior. However, there is no mechanism to
ensure that these agreements are indeed adhered to. A lot of work has been done in this
area as detailed in Section 2.3. Most of the existing approaches however rely on events to
be monitored being generated through code instrumentation. These statements may be
inserted in the source or compiled code of a system and are therefore intrusive. Others
use the message logs generated at runtime which are then evaluated for their conformance.
These are based on runtime logs, they do not work on real time basis and, hence, are not
ideal to support process adaptations. The current work on SLA monitoring considers SLAs
to have purely quality related properties. However, SLAs these days can be quite complex,
with functional as well as QoS properties. No single approach can therefore be consid-
ered as exhaustive enough, that allows dynamic monitoring as well as process adaptations.
Moreover, to the best of our knowledge there is no existing work which demonstrates how a
Service Level Agreement can be broken into measurable properties and dynamically mon-
itored to allow the workflow adapt itself using a feedback mechanism. With these gaps in
mind we aim to provide a system that allows synthesizing, runtime monitoring as well as
adaptation of a business process workflow.

2.5 Approach

The approach taken towards meeting the objectives stated in Chapter 1 in view of the
research gaps is as follows:

2.5.1 Realization of an executional model in Orc

The language Orc [Misra, 2006] and [Kitchin et al., 2009] is based on a few simple con-
structs and provides a clean separation between computation and orchestration and has
been used to model different kinds of orchestrations and workflow patterns [Cook et al., 2006].

28

We first perform an analysis of the forty three workflow control flow patterns support in
Orc and compare them with BPMN and BPEL. The study shows that Orc supports most
of the patterns like Multi merge, Discriminator, Arbitrary cycles, and some of the Multiple
instances patterns which are important for many service based systems but not directly
supported by languages like BPEL. It also has the capability of realizing map-reduce en-
abled workflow compositions [Fei et al., 2009] and also simulations of physical phenomena
of real world. For these reasons Orc is chosen as a realistic choice for a workflow executional
language.

With BPMN as the language for conceptual modeling, certain transformation tech-
niques are applied to transform it into Orc (the chosen executional language for workflows).
The system, Bpmn2Orc, uses a MDA based approach and hence extends the capabilities
of the language Orc to the business analysts community and the cloud computing envi-
ronments. It provides the business analysts the means to express their solutions in terms
of services and their interactions for control/data flow centric workflows that may require
capabilities like map-reduce also. This will enable creation/simulation of mock scenarios
for such workflows and the use of verification/validation/debugging in an integrated way.

For transformation, an in depth study of language BPMN and Orc is performed result-
ing in a set of mappings between BPMN constructs and their equivalent Orc structures.
The transformation approach is graph based where-in the XML based BPMN diagram is
converted to an Orc Graph. The graph is first used to validate the BPMN diagram and
later traversed as per the algorithm to generate the Orc code.

2.5.2 Runtime Monitoring of a workflow process instance/s

A runtime monitoring system Wf Sla Mon is developed that supports specification of
both functional and non functional properties for any workflow and initiates self recovery
actions in case of violation. An “Observer based approach for monitoring” where the system
executes concurrently with the runtime system of the workflow engine is used. MSC and
SL is used for property specification from where the observers are generated automatically
as an automata. These properties can be combined to form the Service Level Agreements
also. The observers are integrated with the underlying web-service engine to allow process
adaptations.

The complete system has support for a web based interface starting from code synthesis,
property specification, SLA composition and online monitoring. It makes use of formal
techniques for developing efficient, correct and inter-operable workflows that may be control
flow or data flow centric. The illustration of implementation uses a travel process and its
SLA properties to be monitored.

29

Chapter 3

Background

This chapter provides the background information required for the thesis work. The chapter
is divided into two parts. The first part (Section 3.1) includes a background of the language
BPMN and Orc, which forms the basis of our synthesis tool Bpmn2Orc. The second part
(Section 3.2) includes a background on MSC, SL and the trace semantics that is required
for the runtime monitoring framework named Wf Sla Mon.

3.1 BPMN and Orc

3.1.1 Business Process Modeling Notation (BPMN)

BPMN provides a graphical notation for business process modeling, with an emphasis on
control flow. Its objective is to support business process management for both technical
and business users by providing a notation that is intuitive to business users yet able to
represent complex process semantics. It defines a process using Business Process Diagram
(BPD), which is in the form of a flow chart made up of BPMN elements. The BPMN
elements (Refer Figure 3.1) could be

• Flow Objects

• Connecting Objects

• Swimlanes

• Artifacts

A flow object can be an event, an activity or a gateway. An event is something that
“happens” during the course of a Process or a Choreography. These events affect the
flow of the model and usually have a cause (trigger) or an impact (result). An event
can be a start event (start of the process), end event (end of the process), a message
that arrives or a specific date-time being reached during a process (intermediate/timer
event). An activity is a generic term that stands for work to be performed within a

30

Figure 3.1: BPMN Elements

process. An Activity can be atomic or compound (sub-process). Activities and Gateways
form the most important constructs for building models as they form the basis of our
transformation model. Table 3.1 provides an informal semantics of BPMN gateways along
with the Workflow Control flow Pattern (WCP) they represent. The types of activities
that are part of any process model are: tasks, sub-processes and transactions. Gateways
are used to control the divergence and convergence of sequence flows in a process. They
determine the branching, forking, merging and joining of paths. They are represented with
a diamond shape. Internal markers indicate the type of behavior control. The types of
gateways include (a) exclusive split and join (b) event based split (c) inclusive split and
join (d) complex split decision and join (e) parallel split and join. (Refer Figure 3.2)

Connecting objects include sequence flows, message flows and associations. A sequence
flow links two objects in a BPD and shows the control flow relation between them. A
message flow shows the flow of messages between two entities that send and receive them
and are represented by a dashed line. An association is represented by a dotted line and
is used to associate information with flow objects. Uncontrolled flows are those that not
affected by any condition or does not pass through a Gateway.

Swimlanes include pools and lanes. A Pool is a “swimlane” and a graphical container
for partitioning a set of activities from other pools, usually in the context of B2B situations.
A Lane is a sub-partition within a pool and will extend the entire length of the pool, either
vertically or horizontally. Lanes are used to organize and categorize activities.

31

Figure 3.2: BPMN Gateways

Artifacts allow modelers and modeling tools some flexibility in extending the basic
notation and in providing the ability to add additional context appropriate to a specific
modeling situation. These can be data objects, groups and annotations. Data Objects are
a mechanism to show how data is required or produced by activities. They are connected
to activities through Associations. A Group is represented by a rounded corner rectangle
drawn with a dashed line. The grouping can be used for documentation or analysis pur-
poses, but does not affect the sequence-flow. Annotations are a mechanism for a modeler
to provide additional information for the reader of a BPMN Diagram.

BPMN supports looping constructs. The attributes of any task or sub-processes deter-
mine if they are repeated or performed once. A small looping indicator is displayed at the
bottom center of the activity. Loops can also be created by connecting a sequence flow to
an upstream object.

32

Table 3.1: BPMN Gateway Semantics
ELEMENT DESCRIPTION AND WCP PATTERN SUPPORT

Parallel Split
(Fork)

It is a place in the process where activities can be performed con-
currently. Figure 3.2(a) shows a parallel gateway where an activity
R forks two activities F and G. Represents WCP-2.

Parallel Merge
(Join)

This gateway is used to synchronize multiple concurrent branches.
Figure 3.2(b) represents this gateway where F and G are merged
using this gateway and thereafter execute R. Represents WCP-3.

Exclusive
(XOR) Split

Each activation of this gateway leads to the activation of exactly
one out of the set of outgoing branches. A default node is specified
so that atleast one outgoing edge is activated.(Refer Figure 3.2(c))
Represents WCP-4.

Exclusive
(XOR) Merge

This gateway is a join where two or more paths are combined into a
single path. Figure 3.2(d) represents this where F and G are joined
using the XOR merge. It represents the WCP-5 and 8 pattern.

Inclusive Split It represents a branching point where alternatives are based on con-
ditional expressions contained within the outgoing sequence flows.
The conditions attached to the outgoing edges can be evaluated
in any order and all branches where the conditions evaluated to
true are activated. The gateway is depicted in Figure 3.2(e) and
represents WCP-6.

Inclusive Join This gateway synchronizes a certain subset of branches out of the
set of concurrent incoming branches and represents WCP-7 pattern.
It is depicted in Figure 3.2(f) where F and G are merged using this
join.

Event based
split

It is a branching point where alternatives are based on an event
that occurs at that point in the process. It represents WCP-16
pattern. The gateway is shown in Figure 3.2 (c)

Complex Choice It is a n out of m gateway. All conditions of the outgoing edges are
evaluated and only those that evaluate to true are activated. The
gateway is shown in Figure 3.2 (h)

Complex Merge It expresses the Structured Discriminator or a Structured Partial
Join. It is to be noted that a structured partial join is a n out of m
join whereas Structured Discriminator is 1 out of m join. WCP-9
/ 28. The gateway is shown in Figure 3.2 (i)

3.1.2 Orc

Orc is a language of our choice for the service orchestration because of its simple constructs
and the programming model that suits the requirements of a web service orchestration lan-
guage. It has a mathematical foundation and supports the initial twenty workflow patterns
as analysed by Misra et al. [Cook et al., 2006]. We provide here an informal introduc-

33

tion to Orc. For a detailed explanation the readers are encouraged to see [Misra, 2006],
[Kitchin et al., 2009] and [The University of Texas, 2011].

Orc separates the computational and non-computational issues like concurrency in-
volved in an orchestration. It assumes the presence of a set of services called sites which
could be external web services or local functions. Sites thus provide capabilities for web
services invocations. Sites could be of varying complexity, performing tasks ranging from
simple arithmetic to complex data management. We use small examples to introduce the
three basic combinators of Orc.

Sequential Composition(>>): Consider an expression f >x> g. Here each value re-
turned by f causes a fresh evaluation of g. This value can be passed to g via channel x.
For e.g.

getRequests(date) >req> bookHotel(date,req).

Here, getRequests() is a site that receives the “requests” for booking a hotel for a given
date. For each request received, a hotel room is booked. The received “request” is bound
to variable req which is then used as a parameter in the site call to bookHotel to make the
intended computation.
f>>g is a short form of f>x>g in case g does not use x. Hence,

bookHotel(date,req) >> bookCab(date,req)

would first call site bookHotel for a given date and req and then invoke the site bookCab.

Symmetric Composition(|): Consider an expression f | g. Here f and g are the sites
that are evaluated parallely. Values from both f and g are published. Hence,

(bookHotel(date,req) | bookCab(date,req)) >> Email(addr,ack)

would initiate the booking for a hotel room and a cab concurrently for a given date and
request received. Two emails would be generated: one for booking of the hotel and the
other for the cab.

Pruning Composition(<): Consider an expression f < x < g. This is interpreted as: for
some values published by g do f. Here evaluation of f and g are started in parallel. Site
calls that need x are suspended. When g returns a value: (a) the value is bound to x (b)
g is terminated and (c) the suspended calls are resumed. Values published by f are the
values of (f < x < g). For e.g.

bookFlight(date,x) <x< (getDelta(date) | getUnited(date))

invokes bookFlight, getDelta, getUnited services together. As and when Delta or United
airline service returns a value, bookFlight is called. The value published by the other air-
line is ignored. The final value published by the expression is the one that is published by

34

bookFlight.

When composing expressions, the >> operator has the highest precedence, followed
by |, and then <. Orc provides certain fundamental sites for functions like if, let, +,
... for easy programming. A fundamental site for “,” is provided to implement barrier
synchronization. For example,

(bookHotel(),bookCab())

would wait for both Hotel and Cab to be booked and then only proceed further (barrier
synchronization).

In Orc, the only mode for a site call is by invocation, service push is not captured in
Orc.

An expression in Orc can be defined as def E(x) = F. This defines a function named
E whose formal parameter list is x and body is expression F. A call E(p) is evaluated by
replacing formal parameter x by the actual parameter p in the body F. Unlike a site call,
a function call does not suspend if one of its arguments is a variable with no value. A
function call may publish more than one value; it publishes every value published by the
execution of F. Function definitions may be recursive. Orc also provides timeouts in the
form of a site Rtimer(t) which returns a signal t after t time units.

Orc provides support for web service invocations by means of a predefined site Web-
Service(url) which takes a parameter url and publishes the corresponding service client
object. This service object can then be used to invoke any operation provided by the web
service in the same way as any other Java object does. The interface is identical to that
of any local function which makes orchestrations using Orc easy and intuitive. For e.g
if Delta airlines is providing a service getPrice() returning the current price of any flight
between two given cities and time, then the site call

Webservice("http://www...delta")

returns the service client object say obj which can be used to invoke the service getPrice()
as obj.getPrice().

3.2 SL and MSC

3.2.1 Temporal Logic of Safety: SL and DSL

In this section, we shall define and give a background on temporal logics of safety such as
SL (and DSL) as given by Halbwachs et al. [Halbwachs et al., 1993].

Definition 1: A transition system
∏

is a quadruple (Q, q0, O, λ) where Q is a set of states,
q0 ∈ Q is the initial state, O is a set of observables, and λ is a ternary relation on Q×O×Q
(transition relation). A trace of

∏
is a sequence (ω0, ω1, ..., ωn, ...) in O

∞ (the set of finite
or infinite sequences of O), such that there exists a sequence of states (q0, q1, ..., qn, ...) and

35

(qn, ωn, qn+1) ∈ λ for any n.

Definition 2: A transition system
∏

satisfies a safety property P (noted
∏

|= P), iff all
of its traces satisfy P .

Definition 3: Let Prop and Aux denote two disjoint alphabets of propositional symbols
and auxiliary symbols respectively. A SL formula, ψ (also referred to as a safety formula),
is of the form ∃x1, x2, ..., xk2φ where x1, x2, ..., xk belong to Aux, 2 is the classical “al-
ways” operator and φ is a past formula.

Definition 4: Past formulas, denoted φ, have the following structure:

• Any symbol a ∈ Prop ∪ Aux is a past formula

• If φ1 and φ2 are past formulas, so are ¬φ1, φ1 ∨ φ2 and •φ1

Definition 5: A trace τ on a set of observables O is a finite or infinite sequence of elements
of O. A property is a mapping from a set of traces to {true, false}. P is a safety property
if and only if the following equivalence holds:
P(τ) = true ⇔ P (τ

′
) = true for any finite prefix τ

′
of τ

Satisfaction of a formula over traces on O is given below.
Let φ denote a past formula and O = 2Prop

∪
Aux. Models of past formulas are finite

traces over O. The satisfaction of a formula by such a trace is defined as follows:
(ω0, ..., ωn) |= a iff a ∈ ωn
(ω0, ..., ωn) |= ¬φ iff (ω0, ..., ωn) ̸|= φ
(ω0, ..., ωn) |= φ1 ∨ φ2 iff either (ω0, ..., ωn) |= φ1 or (ω0, ..., ωn) |= φ2

(ω0, ..., ωn) |= •φ iff n > 0 and (ω0, ..., ωn−1) |= φ
The operator • is the classical “previous” operator of temporal logic with past. Its dual

¬ • ¬ is also used. The only difference between them is that • is false on a trace of only
one element, whereas ¬ • ¬ is true. On any longer trace, they both have the same value.
Also,
φ1 ∧ φ2 , ¬(¬φ1 ∨ ¬φ2)
φ1 ⊃ φ2 , ¬φ1 ∨ φ2)
φ1 ≡ φ2 , (φ1 ⊃ φ2) ∧ (φ2 ⊃ φ1)

A deterministic subset of SL, denoted DSL (Deterministic Safety Formula) is defined below:

Definition 6: DSL is a fragment of SL consisting of formulas of the form
∃x1, x2, ..., xk2(φ ∧ (x1 ≡ φ1) ∧ ... ∧ (xk ≡ φk)) where

• φ is a past formula

• for each i = 1 ... k, φi is a past formula, where auxiliary variables may only appear
under the • operator.

36

Models of safety formulas are finite or infinite traces over 2Prop. Such a trace (ω0, ..., ωn, ...),
ωi ⊆ Prop, satisfies an SL formula, if and only if there exists a trace (ω

′
0, ..., ω

′
n, ...), ω

′
i ⊆

Aux, such that ∀n, ((ω0 ∪ ω
′
0), (ω1 ∪ ω

′
1), ..., (ωn ∪ ω

′
n)) |= φ. Note that the expressive

power of SL is exactly the class of regular safety properties.

3.2.2 Deducing Automata

The automaton A(ψ) associated with a safety formula ψ is defined on the alphabet 2Prop,
and accepts a word (ω0,..., ωn...) if and only if it is a model of ψ. Since the behaviour
of this automaton only depends on the current state and current input, the construction
consists in translating a property of traces into a property of states. Each state of the
automaton will correspond to a formula, and the transitions will correspond to formula
rewriting, according to the scheme:

(ω0,...,ωn,...) � ψ ⇔ ψ
ω0−→ψ1 and (ω1,...,ωn,...) � ψ1

With each past formula φ an automaton A(φ) is associated with input alphabet 2Prop∪Aux,
and whose boolean output is true if and only if the sequence of inputs received so far is a
model of φ.
Past Formula rewriting: Past Formula rewriting (transformation) is a way of recording
the past inputs for future evaluations. It is the basic mechanism for translating trace
properties into state properties.

The inputs of the automaton A(φ) are subsets ω of the finite alphabet A = Prop∪Aux.
The transitions (rewritings or transformations) are defined by means of predicate φ

ω:b−→ φ
′
,

where ω ∈ 2A and b ∈ {true,false}, which means “on the trace reduced to a singleton (ω),
the vaue of φ is b.”

φ
ω0:b0−−→φ1

ω1:b1−−→...
ωn:true−−−−→φn

(ω0,....ωn)�φ , φ
ω0:b0−−→φ1

ω1:b1−−→...
ωn:false−−−−→φn

(ω0,....ωn)2φ

The transition predicate is defined by means of structural inference rules [Halbwachs et al., 1993]:

1. A formula consisting of a basic proposition always evaluates in the same way: its
value is found in the input i.e

a∈ω
a

ω:true−−−→a
, a/∈ω
a

ω:false−−−−→a

2. Boolean operators always evaluate in the same way, according to the values of their
operands:

φ1

ω:b1−−→φ
′
1,φ2

ω:b2−−→φ
′
2

φ1∨φ2

ω:b1∨b2−−−−→φ
′
1∨φ

′
2

, φ
ω:b−→φ

′

¬φ
ω:¬b−−→¬φ′

3. A • operator is always evaluated as if the current input was the first one. So it always
evaluates to false. However if its operand evaluates to true, the operator is rewritten

37

Figure 3.3: MSC representing a travel booking system

into its dual ¬ • ¬, in order to return true in the next state.

φ
ω:false−−−−→φ

′

•φ
ω:false−−−−→•φ′

, φ
ω:true−−−→φ

′

•φ
ω:false−−−−→¬•¬φ′

4. A ¬•¬ operator always evaluates to true. (This is because while • is false on a trace
of only one element, ¬ • ¬ is true.) However if its operand evaluates to false, the
operator is rewritten into its dual •, in order to return false in the next state.

φ
ω:true−−−→φ

′

¬•¬φ
ω:true−−−→¬•¬φ′

, φ
ω:false−−−−→φ

′

¬•¬φ
ω:true−−−→•φ′

Example: The evaluation of the formula •a on a trace ({a},{b},{a},{b}) provides:

•a {a}:false−−−−−→ ¬ • ¬a {b}:true−−−−→ •a {a}:false−−−−−→ ¬ • ¬a {b}:true−−−−→ •a
and, since the last output is true, ({a},{b},{a},{b}) |= •a

Let ψ = ∃x1, x2, ..., xk2φ where x1, x2, ..., xk be the safety formula. The automaton for
ψ can be deduced from the automaton A(φ) as follows

1. All the inputs are projected onto Prop

2. Only the transitions giving the output true are retained.

3.2.3 Message Sequence Chart (MSC)

Message Sequence Charts (MSC) is a language to describe the interaction between a num-
ber of independent message-passing instances. A basic MSC (bMSC) structure is shown
in Figure 3.3. It has instances e.g. Travel, User, Flight Service etc. with vertical lines
representing system components, and horizontal arrows representing messages from one
component to another. For each component, messages higher on the vertical line precede

38

messages lower down. A timer (indicated by ◃▹) is used to show timeouts or delays. Figure
3.3 shows a sequence of messages against a travel agency process. On receiving a flight
detail (Selected flight) from the user; the agency finds the current availability status and
price using the “Get Current Status” operation. If available, it will book this flight with
the “Book Service” service. It then receives the payment details from the user and proceeds
for making the payment with the “Make Payment” service. On successful completion of
this transaction an acknowledgement is sent to the user. Formally a MSC is defined as:

Definition 7: A basic message sequence chart C called bMSC is a labeled directed acyclic
graph with the following components:

• Processes: A finite set P of processes.

• Events: A finite set E of events that is partitioned into two sets: a set S of send
events and a set R of receive events.

• Process Labels: A labeling function g that maps each event in E to a process in P.
The set of events belonging to the orchestrated process p is denoted by Ep.

• Send-receive Edges: A bijection map f : S 7→ R that associates each send event s
with a unique receive event f(s) and each receive event r with a unique send event
f−1(r).

• Visual Order: For process p there is a local total order <p over the events Ep which
corresponds to the order in which the events are displayed.

The interpretation of a basic MSC in the context of runtime monitoring can be in terms
of scenarios which may be wanted or unwanted. They can therefore be used to specify the
monitoring properties of a business process workflow where the output/input events signify
the message exchanges with the external web services.

39

Chapter 4

Realizing Workflow Patterns in Orc

The workflow patterns initiative was established with the aim of delineating the funda-
mental requirements that arise during business process modeling on a recurring basis and
describe them in an imperative way. Aalst et al. provided a set of forty three control flow
patterns which serves as a comparison mechanism for analyzing any workflow language
[Russell et al., 2006]. In this chapter, an analysis of the language Orc for all forty three
patterns is provided. Orc language syntax (version 1.1) is used. While the first twenty of
these patterns are based on the study by Misra et al. in [Cook et al., 2006], the remaining
patterns is an independent contribution of the thesis. The result is summarized with a
comparison with BPMN and BPEL.

4.1 Workflow Patterns Support in Orc

Orc is the language of our choice for synthesizing process workflows. It is based on process
calculus and has clear mathematical semantics. We provide below our analysis of the
support of Orc for workflow patterns which makes it suitable for implementing business
process workflows. Misra et al. [Cook et al., 2006] have provided an analysis of the initial
twenty patterns in Orc. We extend this analysis for all the forty three patterns using the
Orc implementation syntax (indicated with a *). The description of each pattern is quoted
from Aalst et al. [Van Der Aalst et al., 2003]. Also, we have shown the implementation as
per the language syntax for all patterns.

Following sites are used in our transformation:

1. Send(m,x): A site that sends message m to address x.

2. Receive(e): A site that waits for a specific event e and returns as soon as it occurs.

3. Buffer: add, get(n), put, get, reset: A site which implements a channel. The
add() operation maintains a counter and increases every time it is called and get(n)
operation returns as soon as this counter becomes n. reset() method resets this buffer.
The put operation adds values to the buffer and publishes a signal on completion.
The get operation returns an item from the buffer it blocks until an item is available.

40

4. Lock: acquire, release: The site “lock” has exactly one owner. When the lock is
created it is not owned. The method acquire is used to acquire the lock (i.e. becomes
its owner), and all subsequent calls to acquire will block until the owner calls release.
At that point, one of the blocked expressions, if any, will be given ownership and
unblocked.

5. Condition: set, wait: It allows multiple activities to wait until an event happens.
Before the operation set is called, all calls to wait block. When set is called, all
waiting activities are enabled and future calls to wait return immediately.

Following definitions (Orc expressions) are used for the representation of different pat-
terns

1. XOR(b,f,g) , if (b) >> f() else g(): Executes f if b is true, else, executes g.

2. IfCond(b,g) , if (b) >> g() else signal: Executes g if b is true, else returns a
signal.

3. PathNum(m1,m2) ,
let(x) < x < ((receive(m1) >> let(1) | receive(m2) >> let(2) | ...): Waits
for messages m1, m2, ..., (as defined) and as soon as any message is received, the
corresponding index is published.

4.1.1 Basic Control-flow Patterns

1. Sequence (WCP1)
Description: “A task in a process is enabled after the completion of a preceding task
in the same process.”
Implementation: The sequential combinator “>>” is used to implement this pattern.

2. Parallel Split(WCP2)
Description: “The divergence of a branch into two or more parallel branches each of
which executes concurrently.”
Implementation: The parallel combinator “|” is used to implement this pattern.

3. Synchronization(WCP3)
Description: “The convergence of two or more branches into a single subsequent
branch such that the thread of control is passed to the subsequent branch when all
input branches have been enabled.”
Implementation: This pattern is implemented by using a “,” operator. If f , g and h
represent the site calls and x and y are the values published by f and g respectively
then the expression below represents this pattern. Here, h is invoked only after both
x and y are published.

(f,g) >(x,y)> h

41

4. Exclusive Choice(WCP4)
Description: “The divergence of a branch into two or more branches such that when
the incoming branch is enabled, the thread of control is immediately passed to pre-
cisely one of the outgoing branches based on a mechanism that can select one of the
outgoing branches.”
Implementation: This pattern can be represented in Orc by using the XOR expression
(defined earlier). Let c1 and c2 represent the conditions at the point of divergence.
XOR is called recursively and (!c1&!c2) is the translation for the default condition
to ensure that at least one branch is taken. In case h is not specified it could be
replaced by signal or stop as the need may be.

XOR(c1, f, XOR(c2, g, XOR(!c1&!c2,h)))

5. Simple Merge(WCP5)
Description:“The convergence of two or more branches into a single subsequent
branch such that each enablement of an incoming branch results in the thread of
control being passed to the subsequent branch.”
Implementation: This pattern can be represented using “>>” operator as follows

(f|g) >> h

Here f and g are executed in parallel followed by a simple merge. For each value
published by f and g, h will be executed twice.

4.1.2 Advanced Synchronization Patterns

1. Multiple Choice(WCP6):
Description: “The divergence of a branch into two or more branches such that when
the incoming branch is enabled, the thread of control is immediately passed to one
or more of the outgoing branches based on a mechanism that selects one or more
outgoing branches.”
Implementation: This pattern can be represented in Orc by using the IfCond expres-
sion. In this pattern more than one branches may be active and started concurrently
as all the conditions are evaluated concurrently and the site given as an argument is
invoked if the condition is true.

f >> (IfCond(c1,g) | IfCond(c2,h) | IfCond(!c1&!c2,k))

2. Structured Synchronizing Merge(WCP7):
Description: “The convergence of two or more branches (which diverged earlier in
the process at a uniquely identifiable point) into a single subsequent branch such that
the thread of control is passed to the subsequent branch when each active incoming
branch has been enabled. The Structured Synchronizing Merge occurs in a structured
context, i.e. there must be a single Multi-Choice construct earlier in the process model

42

with which the Structured Synchronizing Merge is associated and it must merge all
of the branches emanating from the Multi-Choice.”
Implementation: In Orc this pattern can be represented as:

f >> (IfCond(c1,g), IfCond(c2,h),IfCond(!c1&!c2,k)) > (x,y,z)

Here “,” is the synchronizing operator. Since IfCond expression returns a signal when
the condition is false, each branch in effect returns a signal for the synchronizing
merge to proceed. It is to be noted that c1 & c2 represents a default edge

3. Multiple Merge(WCP8):
Description: “The convergence of two or more branches into a single subsequent
branch such that each enablement of an incoming branch results in the thread of
control being passed to the subsequent branch.” This pattern is similar to Simple
Merge except that a simple merge is against an exclusive split and hence both in-
coming branches are never enabled simultaneously.
Implementation: This pattern in Orc is same as that given in WCP5.

(f|g) >> h

Here f and g are executed in parallel followed by a simple merge. For each value
published by f and g, h will be executed twice.

4. Structured Discriminator(WCP9):
Description: “The convergence of two or more branches into a single subsequent
branch following a corresponding divergence earlier in the process model such that
the thread of control is passed to the subsequent branch when the first incoming
branch has been enabled. Subsequent enablement of incoming branches do not result
in the thread of control being passed on.”
Implementation: In Orc it can be represented by using the Buffer site. Let Discr be
an expression representing such a pattern as defined below:

Discr() = Buffer() > S > ((f|g|h) >x> S.add() >> stop)

|

S.get(1)

) >> k

The discriminator publishes only the first value that is placed in the buffer by (f |g|h),
but allows them to continue executing.

5. Blocking Discriminator(WCP28)*:
Description: “The convergence of two or more branches into a single subsequent
branch following one or more corresponding divergences earlier in the process model.
The thread of control is passed to the subsequent branch when the first active in-
coming branch has been enabled. The Blocking Discriminator construct resets when

43

all active incoming branches have been enabled once for the same process instance.
Subsequent enablement of incoming branches are blocked until the Blocking Discrim-
inator has reset.”
Implementation: The Orc representation is similar to WCP9. It however acquires
a lock at the time of divergence and releases it at the time of merge. Buffer site is
used as before.

BlockDiscr() =

Lock() >L> Buffer() >S> L.acquire >> ((f|g|h) >x> S.add() >> stop)

|

S.get(1))

>> L.release >> k

6. Canceling Discriminator(WCP29)*:
Description: “The convergence of two or more branches into a single subsequent
branch following one or more corresponding divergences earlier in the process model.
The thread of control is passed to the subsequent branch when the first active incom-
ing branch has been enabled. Triggering the Canceling Discriminator also cancels the
execution of all of the other incoming branches and resets the construct.”
Implementation: Canceling discriminator is implemented similar to a Structured dis-
criminator (WCP9) except that it uses a pruning operator < as given below

CancelDiscr() =

Buffer() > S > (let(x) <x< ((f|g|h) >x> S.add() >> stop)

|

S.get(1)

) >> k

As soon as x is published, executing instances of f , g and h will be terminated due
to the pruning operator ¡ used.

7. Structured Partial Join(WCP30)* :
Description: “The convergence of two or more branches (say m) into a single subse-
quent branch following a corresponding divergence earlier in the process model such
that the thread of control is passed to the subsequent branch when n of the incom-
ing branches have been enabled where n is less than m. Subsequent enablement of
incoming branches do not result in the thread of control being passed on.”
Implementation: A discriminator is a special case of a partial join. Where a partial
join is a n out of m join, a discriminator is a 1 out of m join. If the get(1) function
is replaced by a get(n) function, we get a Structured Partial Join.

PartialJoin() = Buffer() > S > ((f|g|h... >x> S.add() >> stop)

|

S.get(n)

) >> k

44

8. Blocking Partial Join(WCP31)*:
Description: “The convergence of two or more branches (say m) into a single subse-
quent branch following one or more corresponding divergences earlier in the process
model. The thread of control is passed to the subsequent branch when n of the in-
coming branches has been enabled (where n < m).”
Implementation: A blocking discriminator is a special case of a blocking partial join.
Where a partial join is a n out of m join, a blocking discriminator is a 1 out of m
join. If the get(1) function is replaced by a get(n) function, we get a blocking partial
join. The pattern implementation is given below:

BlockingPartialJoin() =

Lock() >L> Buffer() >S> L.acquire >> ((f|g|h... >x> S.add() >> stop)

|

S.get(n))

>> L.release >> k

9. Canceling Partial Join(WCP32)*:
Description: “The convergence of two or more branches (say m) into a single subse-
quent branch following one or more corresponding divergences earlier in the process
model. The thread of control is passed to the subsequent branch when n of the in-
coming branches have been enabled where n is less than m. Triggering the join also
cancels the execution of all of the other incoming branches and resets the construct”.
Implementation: A canceling discriminator is a special case of a canceling partial
join. Where a canceling partial join is a n out of m join, a discriminator is a 1 out
of m join. If the get(1) function is replaced by a get(n) function, we get a canceling
partial join. The pattern implementation is given below:

CancelPartialJoin() =

Buffer() > S > (let(x) <x< ((f|g|h) >x> S.add() >> stop)

|

S.get(n)

) >> k

10. Generalized AND-Join(WCP33)*:
Description: “The convergence of two or more branches into a single subsequent
branch such that the thread of control is passed to the subsequent branch when
all input branches have been enabled. Additional triggers received on one or more
branches between firings of the join persist and are retained for future firings. Over
time, each of the incoming branches should deliver the same number of triggers to
the AND-join construct.”
Implementation: The Orc language semantics supports concurrent executions by
default. The “,” operator ensures synchronization. Since triggers need to persist
between firings, one needs a channel as the Orc calculus has no way to maintain
the state required without using a site. A join of expressions f and g, that runs
expression h whenever results from both f and g arrive is given below:

45

{-

Demultiplex two channels.

Whenever a result is available on both a and b, take those results,

create a pair, and publish it.

-}

def demux(a,b) = (a.get(), b.get()) >pair> (pair | demux(a,b))

val cf = Channel()

val cg = Channel()

f >r> cf.put(r) >> stop

| g >r> cg.put(r) >> stop

| demux(cf, cg) >(x,y)> h

11. Local Synchronizing Merge(WCP37)*:
Description: “The convergence of two or more branches which diverged earlier in
the process into a single subsequent branch such that the thread of control is passed
to the subsequent branch when each active incoming branch has been enabled. De-
termination of how many branches require synchronization is made on the basis on
information locally available to the merge construct. This may be communicated
directly to the merge by the preceding diverging construct or alternatively it can be
determined on the basis of local data such as the threads of control arriving at the
merge.”
Implementation: This pattern is applicable for an unstructured flow. It is not di-
rectly supported by Orc as it is a highly structured language. Let Figure 4.1 represent
a unstructured flow. A local synchronization merge at the node after activity E is
provided below.

Figure 4.1: A BPMN flow for illustrating a Local Synchronizing Merge

The Orc representation is given below. The Condition site returns condition variable
C. Once e executes C.wait blocks till C is set. Once b executes C.set sets this variable
and the C.wait continues.

Condition >C> (d >> e >> C.wait) | (a >> (b>>C.set, c) >> f)

46

12. General Synchronizing Merge(WCP38)*:
Description: “The convergence of two or more branches which diverged earlier in the
process into a single subsequent branch such that the thread of control is passed to
the subsequent branch when either (1) each active incoming branch has been enabled
or (2) it is not possible that any branch that has not yet been enabled will be enabled
at any future time.”
Implementation: Let Figure 4.2 represent an unstructured flow with an exclusive
merge. In this BPMN flow the parallel split gateway is replaced by an exclusive-or.
In case the path for C is chosen then B would never be executed. For this pattern it
is required that the synchronizing merge after B still proceeds. Here C.wait blocks
till C is set. C.set is called on both the branches after a. On one branch i.e. for b it
is set after the execution of b and for all other branches condition C is set as soon as
the path is chosen. This allows the synchronizing merge node to proceed.

Figure 4.2: A BPMN flow for illustrating a General Synchronizing Merge

Condition >C> (d >> e >> C.wait) | (a >> (b >> C.set | C.set >> c) >> f)

In effect for all other branches condition is set through C.set as soon as that path is
chosen. This allows the merge node to proceed.

13. Thread Merge(41)*:
Description: “At a given point in a process, a nominated number of execution threads
in a single branch of the same process instance should be merged together into a single
thread of execution.”
Implementation: This pattern is implemented using Buffer site. For each published
value of f (or each execution of f), S.add would increment the count. S.get(n) would
block till this count becomes n and then g is executed.

Buffer >S> (f >> S.add() >> stop

|

S.get(n)) >> g

14. Thread Split(42)*:
Description: “At a given point in a process, a nominated number of execution threads

47

can be initiated in a single branch of the same process instance.”
Implementation: Orc library has a site “each” which publishes each element in the
”given” list in parallel. The value published could be in any order. The pattern is
implemented by the number of threads required as a numbered list and then using
the site each to start individual thread of execution. For e.g. if we wish to start 3
threads we can use:

list = [1,2,3]

{- each publishes the members of the list in any order

-}

each(list) >> f

4.1.3 Iteration Patterns

1. Structured Loops(WCP21):
Description: “The ability to execute a task or sub-process repeatedly. The loop has
either a pre-test or post-test condition associated with it that is either evaluated
at the beginning or end of the loop to determine whether it should continue. The
looping structure has a single entry and exit point.”
Implementation: The language Orc is highly structured and the structured loops are
implemented using recursion as shown below. The site Loop is executed recursively.
g is the terminating condition. If the condition evaluates to true, Loop is invoked.

def Loop(g, f) = g >b> IfCond(b, f >> Loop(g, f))

2. Arbitrary Cycles(WCP10):
Description: “The ability to represent cycles in a process model that have more than
one entry or exit point. It must be possible for individual entry and exit points to
be associated with distinct branches.”
Implementation: Workflows with arbitrary cycles and loops are created in Orc using
recursive definitions like those of structured flows. This is explained by Misra et al
[Cook et al., 2006] and illustrated with an example in Figure 4.3.

Let BA represent the process shown in Figure 4.3. BA is invoked recursively if c3 is
true.

def BA = a >> XOR(c1,c,b>>IfCond(c3,BA))

3. Recursion(WCP22):
Description: “The ability of a task to invoke itself during its execution or an ancestor
in terms of the overall decomposition structure with which it is associated.”
Implementation: Recursion is supported as explained for Structured Loops (WCP21).

48

Figure 4.3: A BPMN flow for illustrating a Arbitrary Cycle

4.1.4 Termination Patterns

1. Implicit Termination(WCP11):
Description: “A given process (or sub-process) instance should terminate when there
are no remaining work items that are able to be done either now or at any time in
the future and the process instance is not in deadlock. There is an objective means
of determining that the process instance has successfully completed.”
Implementation: Implicit termination means that an expression continues running
till it has to, and that no explicit stop action is required. Since there is no explicit
stop action in Orc, it supports implicit termination.

2. Explicit Termination(WCP43)*:
Description: “A given process (or sub-process) instance should terminate when it
reaches a nominated state. Typically this is denoted by a specific end node. When
this end node is reached, any remaining work in the process instance is canceled and
the overall process instance is recorded as having completed successfully, regardless
of whether there are any tasks in progress or remaining to be executed.”
Implementation: Orc supports implicit termination and hence no explicit termination
is required. However the stop site can be used explicitly to terminate a particular
branch of execution.

4.1.5 Multiple Instance(MI) Patterns

1. MI without Synchronization(WCP12):
Description: “Within a given process instance, multiple instances of a task can be
created. These instances are independent of each other and run concurrently. There
is no requirement to synchronize them upon completion. Each of the instances of
the multiple instance task that are created must execute within the context of the
process instance from which they were started (i.e. they must share the same case
identifier and have access to the same data elements) and each of them must execute
independently from and without reference to the task that started them.”

49

Implementation: Since Orc is based on process calculus, the instantiation of in-
stances is not differentiated as a explicit pattern to be supported. Multiple threads
are created using parallel combinator and hence this pattern is supported using “|”
combinator just as WCP2.

2. MI with a Priori Design Time Knowledge(WCP13):
Description: “Within a given process instance, multiple instances of a task can be
created. The required number of instances is known at design time. These instances
are independent of each other and run concurrently. It is necessary to synchronize
the task instances at completion before any subsequent tasks can be triggered.”
Implementation: Since the list of instances is known at design time, they can be
synchronized by using “,” instead of | and implemented as a WCP3 pattern

3. MI with a Priori Run Time Knowledge(WCP14):
Description: “Within a given process instance, multiple instances of a task can be
created. The required number of instances may depend on a number of runtime fac-
tors, including state data, resource availability and inter-process communications, but
is known before the task instances must be created. Once initiated, these instances
are independent of each other and run concurrently. It is necessary to synchronize
the instances at completion before any subsequent tasks can be triggered.”
Implementation: Since the number of instances is known as a runtime quantity be-
fore the instances are created, it can be stored as a numbered list. An activity is
then started by publishing each number from this list, and all the activities can then
be synchronized using “,”. The Synclist given below implements this. Here a:as
represents a list in Orc where a is the first element.

def SyncList(F, []) = signal

def SyncList(F, a : as) = Sync(F(a), SyncList(F, as))

Here : is a concatenation operator in Orc. If K:L is an expression, it publishes a new
list whose first element is the value of K and whose remaining elements are the list
value of L.

4. MI without a Priori Run Time Knowledge(WCP15):
Description: “Within a given process instance, multiple instances of a task can be
created. The required number of instances may depend on a number of runtime fac-
tors, including state data, resource availability and inter-process communications and
is not known until the final instance has completed. Once initiated, these instances
are independent of each other and run concurrently. At any time, whilst instances
are running, it is possible for additional instances to be initiated. It is necessary
to synchronize the instances at completion before any subsequent tasks can be trig-
gered.”
Implementation: This pattern allows creation of instances where the number of in-
stances is not known at design time: more instances may be created until some condi-
tion is satisfied. This pattern implementation in Orc is explained in [Cook et al., 2006]
and provided below. Depending upon the condition g, f is executed.

50

def ParLoop(g, f) = g >b> IfCond(b, Sync(f, ParLoop(g, f)))

5. Static Partial join for MI(WCP34)*:
Description: “Within a given process instance, multiple concurrent instances of a
task (say m) can be created. The required number of instances is known when the
first task instance commences. Once n of the task instances have completed (where
n is less than m), the next task in the process is triggered. Subsequent completions
of the remaining m-n instances are inconsequential, however all instances must have
completed in order for the join construct to reset and be subsequently re-enabled.”
Implementation: Though not very intuitive, such a workflow can be realized by
using Buffer, Lock and SyncList. f would be executed m number of times. These
m instances will be executed concurrently. Once n executions of f complete, h will
execute (S.get(n) would publish a value). Once n executions of f complete, the lock
is released signifying reset of the merge.

list = [1,2,...,m]

def SyncList(f, []) = signal

def SyncList(f, a : as) = Sync(f, SyncList(f, as))

Lock() >L> Buffer() >S> L.acquire >>

(SyncList(f >> S.add() >> stop,list) >> L.release

|

S.get(n)) >> h

6. Static Cancelation Partial join for MI(35)* :
Description: “Within a given process instance, multiple concurrent instances of a
task (say m) can be created. The required number of instances is known when the
first task instance commences. Once n of the task instances have completed (where
n is less than m), the next task in the process is triggered and the remaining m− n
instances are canceled.”
Implementation: The count ofm executions is stored as a list. For each execution the
count maintained with the Buffer is incremented using add operation and once this
count becomes n, get(n) publishes a value and h executes. The executing instances
of f are terminated.

list = [1,2,...,m]

Buffer() > S > (let(x) <x< (each(list) >> f >> S.add() >> stop)

|

(S.get(n))

)>> H

4.1.6 State-Based patterns

1. Deferred Choice(WCP16):
Description: “A point in a process where one of several branches is chosen based
on interaction with the operating environment. Prior to the decision, all branches

51

represent possible future courses of execution. The decision is made by initiating
the first task in one of the branches i.e. there is no explicit choice but rather a
race between different branches. After the decision is made, execution alternatives
in branches other than the one selected are withdrawn.”
Implementation: The pattern is implemented using PathNum site which returns the
index of the message received (explained in Section 4.1). Depending on the index
value, either of h, k or l is executed.

g >> PathNum(m1:m2) >x> (IfCond(x=1,h) | IfCond(x=2,k) | IfCond(x=3,l))

2. Critical Section(WCP39)*:
Description: “Two or more connected subgraphs of a process model are identified as
“critical sections”. At runtime for a given process instance, only tasks in one of these
“critical sections” can be active at any given time. Once execution of the tasks in
one ”critical section” commences, it must complete before another “critical section”
can commence.”
Implementation: Critical Sections can be implemented using locks. If CS1 and CS2
represent the two critical sections, then the lock should be acquired before CS1/CS2
commences and released later. The one which acquires the lock ensures that the
tasks in the other section will not execute till it is released.

L.acquire > CS1 > L.release

L.acquire > CS2 > L.release

3. Interleaved Parallel Routing(WCP17):
Description: “A set of tasks has a partial ordering defining the requirements with
respect to the order in which they must be executed. Each task in the set must be
executed once and they can by completed in any order that accords with the partial
order. However, as an additional requirement, no two tasks can be executed at the
same time (i.e. no two tasks can be active for the same process instance at the same
time).”
Implementation: f1...fn are executed concurrently. However each would first need
to acquire the lock and then release it when it completes. This ensures that only one
function is executed at a given time.

wait(M, f) = M.acquire >> f >x> M.release >>let(x)

Lock >M> (wait(M, f1) | ... | wait(M, fn))

4. Interleaved Routing(WCP40)*:
Description: “Each member of a set of tasks must be executed once. They can be
executed in any order but no two tasks can be executed at the same time (i.e. no
two tasks can be active for the same process instance at the same time). Once all of
the tasks have completed, the next task in the process can be initiated.”
Implementation: Very similar to the WCP17 here f1...fn are started concurrently
with a lock but they are all synchronized such that the next task will start only after
they all complete.

52

wait(M, f) = M.acquire >> f >x> M.release >>let(x)

Lock >M> (wait(M, f1) , ... , wait(M, fn))

5. Milestone(WCP18):
Description: “A task is only enabled when the process instance (of which it is part)
is in a specific state (typically a parallel branch). The state is assumed to be a
specific execution point (also known as a milestone) in the process model. When
this execution point is reached the nominated task can be enabled. If the process
instance has progressed beyond this state, then the task cannot be enabled now or
at any future time (i.e. the deadline has expired). Note that the execution does
not influence the state itself, i.e. unlike normal control-flow dependencies it is a test
rather than a trigger.”
Implementation: The pattern execution is explained in [Cook et al., 2006]. Consider
three Orc activities f , g, and e. The completion of activity f enables g. Let e be an
event that is raised when g is no longer allowed to run. Thus f precedes g and e,
while e can interrupt g.

First(g,e)= let(x) <x< (g | e)

Interrupt(g, e) = First(g,e)

Milestone(f, g, e) = f >> Interrupt(g, e)

4.1.7 Cancelation Patterns

1. Cancel Activity(19):
Description: “An enabled task is withdrawn prior to it commencing execution. If the
task has started, it is disabled and, where possible, the currently running instance is
halted and removed.”
Implementation: Canceling can apply to an activity that is part of a workflow or an
entire workflow case. The Interrupt expression as used in the previous pattern can
be applied to a part of a workflow or the entire workflow to cancel part or all of the
activity.

2. Cancel Case(20):
Description: “A complete process instance is removed. This includes currently ex-
ecuting tasks, those which may execute at some future time and all sub-processes.
The process instance is recorded as having completed unsuccessfully.”
Implementation: Explained in WCP19.

3. Cancel Region(25)*:
Description: “The ability to disable a set of tasks in a process instance. If any of
the tasks are already executing (or are currently enabled), then they are withdrawn.
The tasks need not be a connected subset of the overall process model.”
Implementation: Here receive(event) is a blocking call which waits till event is re-
ceived. It is started along with g and h. If event occurs then false is published
and the executing instances of g and h are terminated. The implementation of this
pattern is as given below.

53

let(x) <x< (g | h | receive(event) > let(false))

4. Cancel MI Activity(26)*:
Description: “Within a given process instance, multiple instances of a task can be cre-
ated. The required number of instances is known at design time. These instances are
independent of each other and run concurrently. At any time, the multiple instance
task can be cancelled and any instances which have not completed are withdrawn.
Task instances that have already completed are unaffected.”
Implementation: The implementation is similar to the WCP25 except that in this
multiple instances of the same process f are being created in place of processes g and
h.

let(x) <x< (each(list) >> f | receive(event) > let(false))

5. Complete MI Activity(27)*:
Description: “Within a given process instance, multiple instances of a task can be
created. The required number of instances is known at design time. These instances
are independent of each other and run concurrently. It is necessary to synchronize
the instances at completion before any subsequent tasks can be triggered. During
the course of execution, it is possible that the task needs to be forcibly completed
such that any remaining instances are withdrawn and the thread of control is passed
to subsequent tasks.”
Implementation: If m instances of f are created then the SyncList function creates
these and then synchronizes them. If event is received before all instances of f
complete, then the process continues and the remaining instances of f are terminated
due to the pruning operator < used.

list = [1,2,...,m]

def SyncList(f, []) = signal

def SyncList(f, a : as) = Sync(f, SyncList(f, as))

let(x) <x< (SyncList(f ,list) | receive(event) > let(false))

4.1.8 Trigger Patterns

1. Transient Trigger(WCP23)*:
Description:“The ability for a task instance to be triggered by a signal from another
part of the process or from the external environment. These triggers are transient in
nature and are lost if not acted on immediately by the receiving task. A trigger can
only be utilized if there is a task instance waiting for it at the time it is received.”
Implementation: A trigger can only be utilized if there is a task instance waiting for
it at the time it is received. If A1 is the activity to be triggered by an event e1 then
a transient trigger can be represented as below. After A0, the process flow waits for
S to be set (S.wait). On occurrence of event e1 this condition is set. It then waits
for t time-units after which it is reset (S.reset).

54

Condition >S> receive(e1) >> S.set >> Rtimer(t) >> S.reset

A0>>S.wait >> A1

2. Persistent Trigger(WCP24)*:
Description: “The ability for a task to be triggered by a signal from another part of
the process or from the external environment. These triggers are persistent in form
and are retained by the process until they can be acted on by the receiving task.”
Implementation: Persistent triggers are same as transient triggers with a difference
that they are retained by the workflow until they can be acted on by the receiving
activity. If an activity A1 is to be triggered by an event e1 then a persistent trigger
can be realized as given below.

Condition >S> receive(e1)>> S.set

A0>>S.wait >> A1

4.2 A Comparison of BPMN, BPEL and Orc for WCP

patterns

Our study of Orc patterns support proves that though Orc is based on simple constructs
it is a powerful and expressive language. It is well suited for developing business process
workflows. Table 4.1 gives a comparison of Orc with BPEL/BPMN 1 in terms of workflow
pattern support and also helps in the analysis of the mapping of BPMN constructs with
Orc that we will describe later. BPMN analysis is based on [Wohed et al., 2006]. Our
study clearly indicates that Orc language has a larger support for workflow patterns than
the language BPEL.

1BPMN 1.0 and Oracle BPEL PM is considered.

55

Table 4.1: Comparison of BPMN, BPEL and Orc language support for the workflow pat-
terns
Pattern BPMN BPEL Orc Pattern BPMN BPEL Orc
Basic Control Flow Termination
Sequence + + + Implicit Termination + + +
Parallel Split + + + Explicit Termination + - -
Synchronization + + + Multiple Instances
Exclusive Choice + + + MI without Synchro-

nization
+ + +

Simple Merge + + + MI with Priori Design
Time Know.

+ + +

Advanced Synchro-
nization

MI with Priori Run-
time Know.

+ + +

Multiple Choice + + + MI without Priori
Runtime Know.

- +/- +

Str. Synchronizing
Merge

+ + + Complete MI Activity - - +

Multiple Merge + - + Static Partial Join for
MI

+/- - +

Structured Discrimi-
nator

+/- - + Canceling Partial Join
for MI

+/- - +

Blocking Discrimina-
tor

+/- - + Dynamic Partial Join
for MI

+/- - +

Canceling Discrimina-
tor

+ - + State based

Structured Partial
Join

+/- - + Deferred Choice + + +/-

Blocking Partial Join +/- - + Critical Section - + +
Canceling Partial Join +/- - + Interleaved Parallel

Routing
- - +

Generalized AND-join + - + Interleaved Routing +/- - +
Local Synchronizing
Merge

- + + Milestone - +/- +

General Synchroniz-
ing Merge

- - + Cancelation

Thread Merge + +/- + Cancel Activity + +/- +
Thread Split + +/- + Cancel Case + + +
Iteration Cancel Region +/- +/- +
Arbitrary Cycles + - +/- Cancel MI Activity + + +
Structured Loop + + + Trigger
Recursion - - + Transient Trigger - - +/-

Persistent Trigger + + +

56

Chapter 5

A MDA based approach for
Synthesizing Process Workflows

In this chapter, the toolBpmn2Orc, which transforms a BPMNmodel to Orc, is described.
It includes the mappings of BPMN core constructs with that of Orc and the implementation
algorithm along with the illustration with an example.

5.1 Transforming BPMN to Orc: An informal intro-

duction

Consider the example of a simple order processing BPMN process shown in Figure 5.1 that
has the following workflow:

Figure 5.1: A simple order processing model

1. On receipt of an order request, concurrently start the branches with

(a) action “Ship Order”, and

(b) “Send Invoice” action. This action is followed by the “Process Payment”.

2. Wait for completion of the actions in the above two branches and then initiate the
action “Close Order”.

57

For transforming it into Orc, we need to identify the “sites” corresponding to the web
services as given below:

1. OrderRequest(): A service which receives a PO request,

2. Send Invoice(): A service which sends an invoice,

3. Process Payment(): A service which processes payment e.g. check clearance, and

4. ShipOrder(): A service which initiates order shipment

An equivalent Orc workflow structure is:

1. OrderRequest() >>

2. (

3. (ShipOrder())

4. ,

5. (SendInvoice() >> ProcessPayment())

6.)

7. >(x,y)> CloseOrder()

The initiation of the actions of the two branches of the BPMN flow after the Order Request
is received is reflected in lines 3 and 5 respectively and the “,” indicates the parallel branch
of the workflow. The sequential action in the second branch is captured by “>>” in line 5.
The parameters x and y reflect the value sent out by “ Ship Order ” and “ Process Payment
” in the first and second branches respectively; that is, the site ShipOrder publishes x on
completion and ProcessPayment publishes y. Thus, “(x,y)” would wait till both x and y
are available. Once x and y are both available, the action CloseOrder can execute; the
latter operation is reflected by the sequencing operator “> (x, y) >” in line 7. Please note
that if no value is to be published by ShipOrder and ProcessPayment the > (x, y > can
be replaced by a sequential combinator without any data values i.e. >>

The above example illustrates how the transformation of BPMN to Orc closely follows
the graphical structure of BPMN into the concurrent computation graph of Orc thus,
allowing the exploitation of concurrency while generating code.

We consider a core subset of BPMN objects consisting of: Activity, Gateway and
Events. A BPMN diagram composed of these core entities is called a BPMN Core Diagram
(BPD). The following notation is used for transformations:

1. An Activity of BPD is treated as a site call in Orc. A site call in Orc could be a
fundamental site (function provided in Orc), a local java method, a web-service invo-
cation or any other remote call. Activities may be also be defined as sub processes.
A sub process is treated as an expression in Orc.

2. Gateways are implemented using the three combinators: sequential composition
(>>), pruning (<), symmetric composition (|). For ease of programming, Orc also
provides the operator (,) (implemented as a fundamental site) which is used for bar-
rier synchronization though it is internally implemented using “<” as described by
Misra et al. in [Misra, 2006]

58

3. In Orc, the only mode for a site call is by invocation, service push is not captured.
Hence, Events are considered implemented as predefined sites in our framework and
continuously poll for a particular message/event. Timers are provided in Orc as a
fundamental site RTimer.

4. Following sites as defined in Section 4.1 are assumed.
Send(m,x) , Receive(e), Buffer, Condition

5. The following Orc expressions as defined in Section 4.1 are used in the translation.
XOR(b,F,G), IfCond(b,G) and PathNum(m1,m2)
Note that, (i) XOR function calls F if b is true, else, function G is called. (ii) IfCond
function executes G if b is true, else returns a signal. and (iii) PathNum function
would wait for the messages m1, m2 etc and as soon as a message is received, it
returns the corresponding index.

With the above mechanisms, we now describe our transformation through the following
steps:

1. Equivalent Orc fragments for core BPMN elements, and

2. Transformation for mapping BPMN flow into an equivalent Orc program.

Step (1) is given below followed by (2) in Section 5.3

5.2 Equivalent Orc structures for core BPMN ele-

ments

In Table 5.1, we describe the core BPMN elements and their mappings in Orc that preserves
the semantics of the underlying workflow pattern expressed by the core elements.

5.3 Algorithm: Transforming BPMN to Orc

We now describe how transformations given in Table 5.1 can be automated. BPMN is a
graph orientated language and based on entirely different meta-model than that of Orc.
The transformation between them is thus not straightforward. Our transformation ap-
proach is inspired by the approach taken by Aalst et al in [Ouyang et al., 2007]. A BPMN
diagram may be treated as a graph wherein:

• the nodes are essentially objects that can be further categorized as tasks or activities,
events (start, end, message receipts and timer events) and gateways corresponding
to the various constructs of BPMN such as Gps, Gpm, Gxs etc. as shown in Figure
3.2.

• the edges are the control flows between these nodes

59

Table 5.1: BPMN core elements and their translation in Orc
ELEMENT ORC TRANSLATION

Sequence flow >>, the sequential combinator in Orc.

Parallel
Split (Fork)
(Fig.3.2(a))

| is the concurrency operator. The equivalent Orc translation is:

R >> (F|G)

Parallel
Merge (Join)
(Fig.3.2(b))

This gateway is implemented using , operator. The Orc translation is:

(F,G) >(x,y)> R

where, x and y are the values published by F and G respectively.

Exclusive
(XOR) Split
(Fig.3.2(f))

This gateway can be translated by using the XOR function as

XOR(c1, G, XOR(c2, H, XOR(!c1&!c2,I)))

Here XOR is called recursively and (!c1 & !c2) is the translation for the default condition.

Exclusive
(XOR) merge
(Fig.3.2(g))

This gateway is translated in Orc as

(F|G) >> R

In case the diagram represents a parallel split and an exclusive join, then for each activation
of the incoming edge the exclusive merge would be activated again. This will result in the
execution of R twice.

Inclusive
/Complex split
(Fig.3.2(d,h))

The Orc translation of this gateway is:

F >> (IfCond(c1,G) | IfCond(c2,H) | IfCond(!c1&!c2,I))

where IfCond is as defined in Section 4.1.

Inclusive join
(Fig.3.2(e))

In Orc this can be translated as:

F >> (IfCond(c1,G), IfCond(c2,H),

IfCond(!c1&!c2,I)) > (x,y,z)

Event
based split
(Fig.3.2(c))

The Orc translation uses the expression PathNum defined earlier which returns the index
of the event that occurs first.

G >> PathNum(m1:m2) >x> (IfCond(x=1,H) | IfCond(x=2,I) |

IfCond(x=3,K))

Here G,H and I are synchrnized before proceeding further i.e. an inclusive join waits for
all branches to complete which is ensured in the IfCond expression.

Complex
Merge
(Fig.3.2(i))

It Orc it can be translated by making use of the Buffer site.

Buffer() > S > ((G|H|I) > x > S.add()) | S.get(n)

Activity Loop-
ing

Activity looping in Orc is implemented by means of tail recursion. Let g be the terminating
condition expression, the Orc translation of Activity Looping is :

Loop(g,F) = g >b> IfCond(b,F>>Loop(g,F)

60

Similarly, an OrcGraph may be treated as a graph wherein:

• the nodes are essentially objects that can be further categorized as tasks (site calls),
events (start, end, message receipts and timer) and gateways corresponding to the fol-
lowing (a) parallel combinator or “|” (Gpar) (b) pruning combinator or “<” (Gwhere)
(c) synchronizing split i.e. “,” (Gsync) (d) function XOR (Gxor) and (e) merge de-
noted as “−” (Gmerge)

• the edges are the control flows between these nodes

5.3.1 Definitions: BPD, OrcGraph and OrcSubgraph

Formal definitions of BPD, OrcGraph and OrcSubgraph are given below:
Definition 1: A BPD is a tuple BPD = (O, T, E, G, Es, Ee, Em, Et, Gps, Gpm, Gxs,
Gxm, Gis, Gim, Gcs, Gcm, Gds, F, Cond) where:

• O is a set of objects which can be partitioned into disjoint sets of tasks T, events E
and gateways G,

• T is the set of tasks which can be atomic or sub processes,

• E is the set of events which can be partitioned into disjoint sets of start events (Es),
end events (Et), events of message receipt (Em) and events indicating a timer (Et),

• G is the set of gateways which can be partitioned into disjoint sets of parallel fork
gateways (Gps), parallel join gateways (Gpm), exclusive-or gateway (Ges), exclusive-
or merge gateway (Gem), event-based gateway (Gds), inclusive-or gateway (Gis),
inclusive-or merge gateway (Gim), complex gateway (Gcs), complex merge gateway
(Gcm),

• F ⊆ O ×O is the control flow relation,

• Cond : F → C is a function mapping sequence flows to conditions where dom(F) =
F ∩ ((Gxs ∪Gis)×O)

Definition 2: A BPD satisfying the following properties is said to be a “well formed”
BPD.

• there can be only one start event in the BPD i.e Es = {s},

• start event has an indegree of zero and outdegree of one. i.e. ∀s ∈ Es, in(s) =
∅ ∨ |out(s)| = 1,

• end events have an outdegree of zero and indegree of one. i.e. ∀s ∈ Ee, |in(s)| =
1 ∧ out(s) = ∅,

• tasks, message events and timer events have indegree of one and outdegree of one, i.e
∀s ∈ (T ∪ Em ∪ Et), |in(s)| = 1 ∧ out(s) = 1,

61

• all split gateways i.e. Gps, Gxs, Gis, Gcs, Gds have an indegree = 1 and outdegree > 1

• all merge gateways i.e. Gpm, Gxm, Gim, Gcm, Gdm have an indegree > 1 and outdegree
= 1

• an exclusive and inclusive split gateway contains a default condition edge

• for each object in (T ∪G) there exists a path from Es to the object

Definition 3: An OrcDAG is a tuple OrcDAG = (O, T, E, G, Es, Et, EReceivem, ERTimert,
Gpar, Gwhere, Gsync, Gxor, Gmerge, F, Cond) where:

• O is a set of objects which can be partitioned into disjoint sets of tasks T, events E
and gateways G,

• T are the set of tasks which can be site calls or expression calls,

• E is the set of events which can be partitioned into disjoint sets of start events (Es),
end events (Et), message receipt events EReceivem and timers ERTimert ,

• G is the set of gateways (combinators in Orc) which can be partitioned into disjoint
sets of parallel combinator (Gpar), pruning combinator (Gwhere), a synchronization
operator (Gsync), exclusive-or split gateway (Gxor), and merge combinators Gmerge)

• F ⊆ O ×O is the control flow relation,

• Cond : F− > C is a function mapping sequence flows to conditions where dom(F)
= F ∩ (Gxor ×O)

• No cycles exist, i.e. ∀s ∈ G where |in(s)| > 1, (u×s) ⊆ F , u should not be reachable
from s

Definition 4: An OrcDAG satisfying the following properties is said to be a well formed
BPD.

• there can be only one start event i.e Es = {s},

• start event has an indegree of zero and outdegree of one. i.e. ∀s ∈ Es, in(s) =
∅ ∨ |out(s)| = 1,

• end events have an outdegree of zero and indegree of one. i.e. ∀s ∈ Ee, |in(s)| =
1 ∧ out(s) = ∅,

• tasks, message events and timer events have indegree of one and outdegree of one, i.e
∀s ∈ (T ∪ Em ∪ Et), |in(s)| = 1 ∧ out(s) = 1,

• all split gateways i.e. Gpar, Gwhere, Gsync, Gxor have an indegree of one and outdegree
> 1

62

• all merge gateways i.e. Gmerge have an indegree > 1 and outdegree = 1

• an exclusive and inclusive split gateway contains a default condition edge

• for each object in (T ∪G) there exists a path from Es to the object

Definition 5: An OrcSubgraph is a tuple OrcSub = (O, T, E, G, Es, Et, EReceivem,
ERTimert, Gpar, Gwhere, Gsync, Gxor, Gmerge, F, Cond) where:

• O is a set of objects which can be partitioned into disjoint sets of tasks T, events E
and gateways G,

• T are the set of tasks which can be site calls or expression calls.

• E is the set of events which can be partitioned into disjoint sets of message receipt
events (EReceivem) and timers (ERTimert),

• G is the set of combinators which can be partitioned into disjoint sets of parallel
combinator (Gpar), pruning combinator (Gwhere), a synchronization operator (Gsync),
exclusive-or split gateway (Gxor), and merge combinators Gmerge)

• F ⊆ O ×O is the control flow equation,

• Cond : F− > C is a function mapping sequence flows to conditions where dom(F)
= F ∩ (Gxor ×O)

• if there is a cycle it must be at the start vertex. ∀s ∈ Es where |in(s)| > 1, (u× s) ⊆
F , if there exists a path such that u is reachable from s then u ∈ Es i.e. then u is
the start vertex

Using the above formal definition, out broad transformational approach is described in
the following:

5.3.2 BPD to Orc

The transformation to Orc is achieved through the following steps assuming that the given
BPD is well-formed:

Step1: The BPD is traversed to detect cycles. These cycles are extracted from the main
BPD and stored as subgraphs to represent functions/expressions in Orc.

Step2: The BPD is traversed to detect any quasi-structured flows. If so, these are converted
into well structured flows.

Step3: The BPD is traversed to detect any arbitrary(unstructured) flows.

Step4: The BPD and all the Subgraphs are now transformed into OrcDAG and OrcSub-
graphs. While OrcDAG is the transformation of the main BPD the OrcSubgraphs
represents the sub-processes e.g. the cycles detected during the transformation.

63

Step5: The Orc code is generated by traversing these OrcDAG and OrcSubgraphs.

These steps are described and illustrated below:

Step1: BPD diagram is analysed to check whether there are any cycles. A directed graph
is acyclic iff it has no (nontrivial) strongly connected subgraphs. Each strongly
connected component in the BPD is contracted to a single vertex, the resulting
graph is a directed acyclic graph often called the condensed graph. The strongly
connected components (subgraphs) are extracted from the main BPD and stored
separately as OrcSubgraph. This transformation is depicted in Figure 5.2 where a
cycle G → M is detected. It is stored as a OrcSubgraph PG. The main OrcDAG
is collapsed to replace the cycle with a task node representing PG.

Figure 5.2: Cycles Removal from BPD

Step2: The BPD is analysed to identify certain quasi-structured components which can be
translated as structured components without changing their semantics. For this,
we attach a Parent Split Number (PSN) to all edges. A PSN for any edge can
range from 0 to n where n denotes the number of split nodes that do not have
the corresponding merge node but a higher hierarchy than the given edge. It is
computed by incrementing the PSN on encountering a split node and decrementing
it on the merge node. A merge for any well structured graph would have the same
PSN for all its incoming edges at any merge node. In case the incoming edges have
different PSN’s then the graph is modified by introducing another merge node as
illustrated in Figure 5.3 All edges belonging to the higher PSN are first merged.
The outgoing edge of this merge node and the remaining nodes are merged to form
a new node. However, it is to be noted that the number of edges with a larger PSN
must be greater than the number of edges with a smaller PSN.

Step3: BPMN supports arbitrary flows. An arbitrary flow in the graph can be detected by
checking the PSN numbers. If the merge nodes have different PSN on their incoming

64

Figure 5.3: Translation of Quasi Structured Components in BPD

edges such that the number of edges with a smaller PSN is equal to or greater than
the number of edges having a larger PSN, then it is an unstructured flow. An
unstructured flow can be captured in Orc using Semaphores [Cook et al., 2006]. In
order to generate a code that would allow such a translation the graph with an
unstructured flow is converted as shown in the Figure 5.4. In steps,

• The split and merge node are converted as activity node with activity name
M.set and M.wait where M is a Condition variable with set and wait functions

• The connecting edge is removed

• The PSN number of remaining nodes are re-calculated

Step4: The BPD and all the subgraphs are converted into OrcDAG and OrcSubgraphs as
follows: (illustrated in Figure 5.5)

• All nodes representing a parallel split gateway are initially taken as a node of
type | i.e ∀u ∈ Gps, u.type = Gpar

• For all parallel merge nodes we first identify the parent split node. The parent
split node of these nodes are converted as of type “,”(barrier synchronization)
whereas the merge node remains a merge node. i.e. ∀u ∈ Gps, v ∈ Gpm where
u is the parent split node of v; u.type = Gsync and v.type = Gmerge

• All exclusive split nodes are converted as XOR nodes in OrcDAG i.e. ∀u ∈
Gxs, u.type = Gxor

• All exclusive join nodes are converted as − nodes in OrcDAG i.e. ∀u ∈
Gxm, u.type = Gmerge

65

Figure 5.4: Unstructured Components in BPD and their translation

• All inclusive split nodes are converted as | nodes. i.e. ∀u ∈ Gis, u.type = Gpar.
Additionally the respective conditions are stored as outgoing edge names.

• For an event based gateway, insert a activity node for PathNum with all con-
ditions as parameters. The gateway itself is replaced by a IfCond activity with
conditions as indexes.

• For a complex merge, insert an activity node just after the parent split node
for printing Buffer() > S > (and one just before the merge with > x >
S.add() | S.get()

Figure 5.5: BPD translation to Orc

66

Step5: Orc Code is generated by traversing the OrcDAG and the OrcSubgraphs. The
traversal is DFS till a merge node is encountered. It is implemented using a re-
cursive function Traverse(node) which receives a node as a parameter. A node
corresponds to a task, event or a gateway in the OrcGraph. A node has a name
and type associated with it. Transformations corresponding to different gateways
(related to Orc constructs as highlighted) and tasks are described below:

1. Gpar:
for all out-edges do

if exists(out-edge.condition)
Write IfCond (out-edge.condition, Traverse (out-edge))

else Traverse(out-edge)
if (out-edge <> last out-edge)

Write ’|’

3. GSync:
Write ’(’
for all out-edges do

Traverse(out-edge)
if out-edge <> last-edge

Write ’,’
else Write ’)’

4. Gxor:
for all out-edges

if the out-edge.condition = ’Default’
Generate the condition as a negation of all other conditions

Write XOR (out-edge.condition
if out-edge <> last out-edge

Write ’, lambda()=(’ and then call Traverse(out-edge)
else Write ’)’

5. Gmerge:
if incoming edge = last traversed incoming edge

If parent split node = Gsync
Write ’)’
else If parent is Gxor then Write ’signal’ else Write >>

Traverse(out-edge)

7. T :

Write node.name + >>

Traverse(out-edge)

67

Furthermore, due to graph based approach, certain deadlock patterns and improper
looping like the ones shown in Figure 5.6 can be detected at any early stage of development.
If a loop decision is made within the implicit boundaries of a set of parallel paths, then
the behavior of the loop becomes ambiguous. Here (Figure 5.6(c)), it is unclear whether
activity F was intended to be repeated based on the loop. Following checks are added:

1. The parent split node of a parallel merge cannot be an exclusive split.

2. The PSN of the nodes connected to the outgoing edges of the exclusive split should
be greater than or equal to the PSN of its parent split node.

Figure 5.6: Deadlocks Detection

5.4 Illustration using a Order Processing System

In this section, we illustrate our BPMN to Orc transformation algorithm using the order
processing system. Once an order request is received, depending on whether it is to be
accepted or rejected (XOR) the order is either closed or processed. In order to process the
order the shipment and the payment related tasks are initiated in parallel. Once the order
shipment is complete and payment received the order can be closed. The BPMN graph is
shown in Figure 5.7. We will describe the steps for the Orc code generation taking this
example.

1 No cycles detected.

68

Figure 5.7: Order Processing BPD

2 All incoming edges of all merge nodes have the same PSN and hence there are no quasi
structured flows.

3 The BPD is structured.

4 Considering the four gateways A,B,C,D in our example in Figure 5.7, the translation
w.r.t the gateways are given below:

• All nodes of type Gps in BPD is translated as of type Gpar i.e | in OrcGraph.
Therefore, B.type = Gpar

• For all nodes of type Gpm we first identify the parent split node. The parent split
node of these nodes are converted of type Gsync i.e. ,. The merge node remains a
merge node. Therefore, B.type = Gsync and C.type = Gmerge

• All nodes of type Gxs(exclusive split) in BPD are translated as of type Gxor in
OrcDAG Therefore, A.type = Gxor

• All nodes of type Gxm(exclusive merge) in BPD are translated as of type Gmerge in
OrcDAG Therefore, D.type = Gmerge

Figure 5.8: Order Processing OrcGraph

69

5 In this step the OrcGraph is traversed as Traverse(ProcessOrder) where ProcessOrder
is the start vertex. We provide a rough sketch of the sequence of Traverse function calls
and the corresponding output.

(a) Since the node.type = T it outputs OrderRequest() >> and then calls Traverse
(XOR)

(b) Since node.type = Gxor it outputs XOR(OrderAccept,(lambda() = (and then
calls Traverse(ProcessOrder). On return it outputs ,lambda() = (and then calls
Traverse(Gxor) again.

(c) Since node.type = T it outputsProcessOrder() >> and then calls Traverse(GSync)

(d) Since node.type = Gsync it outputs (and then calls Traverse(ShipOrder). On return
it outputs , and then calls Traverse(SendInvoice). This is followed by the output
). Similarly, Traversal(ShipOrder) and Traversal(MakePayment) are called and the
output comes as (ShipOrder(),(SendInvoice() >> MakePayment())

(e) Since node.type = Gmerge (there are two merge nodes; their traversal is called
sequentially) then depending upon the type of parent split node either) or) >>
is output.

(f) The last node.type = T and it is the end node. It generates CloseOrder()

OrderRequest() >>

XOR(OrderAccept,

(Lambda() = (ProcessOrder() >>

(ShipOrder(),

(SendInvoice()>>MakePayment())

)

),

Lambda() = signal

)

>> CloseOrder()

5.5 Implementation Technologies

The system Bpmn2Orc realizes the transformations discussed in this chapter and has
been implemented using Java. The BPMN models are created in Eclipse BPMN modeler.
The XML representation of the BPMN model is parsed using XML Document Builder.
The graphs have been implemented using the JGraphT package. For detecting cycles, we
have used predefined functions available in the JGraphT package. The generated code is
then tested with the Orc-engine ver 1.1.

70

Chapter 6

Runtime Monitoring Framework

This chapter, introduces a travel agency process and a SLA that is used for illustrating
the system in the later chapters. The example is used to discuss the approach for runtime
monitoring, the methodology used and the key component structure of Wf Sla Mon.

6.1 Application v/s Management Modeling

The strategic goals of any organization are given by its Business Level Objectives(BLOs).
These BLOs are defined at the enterprize level and are always kept at the back drop in
the whole exercise of any process to service decomposition in that organization. Examples
of such Business Level Objectives include better customer experience, increased revenues
etc. Organizations enter into Business Level Agreements(BLAs) with their partners in
order to meet these objectives. These agreements are however defined by humans in an
informal manner and hence cannot be measured or monitored. More formal contracts are
therefore derived from these BLAs to serve as a “binding” between the partners. These
are called Service Level Agreements (SLAs). The key elements of these formal agreements
are Service Level Objectives(SLOs) or the monitoring properties. While SLA is the en-
tire agreement that specifies what service is to be provided, how it is supported, times,
locations, costs, performance, and responsibilities of the parties involved etc, SLOs are
generally specific measurable characteristics of the SLA such as availability, throughput,
response time etc. SLOs typically contain QoS metric calculations but they may also in-
clude safety properties which are based on events related to a bounded history. Figure
6.1 depicts this methodology where the application and management modeling is initiated
in parallel keeping in view the high level business objectives. The application modeling
includes process modeling followed by its implementation using any orchestration language
like BPEL, Orc etc. The orchestrated process is composed of external web service interac-
tions which form the backbone of monitoring engine. In management modeling, BLOs are
transformed into BLAs and SLAs which are composed of SLOs. In this framework, they
exist in the form of executable automata’s generated from the formally defined SLOs, and
receives as input events the web service invocation messages. Any violation is immediately

71

Figure 6.1: Application v/s Management Modeling

detected and communicated to the process such that it can adapt to the environment by
taking an alternate or recovery step.

6.2 A Running example: EasyTravel

This section discusses the need for runtime monitoring and its scope using a running exam-
ple of EasyTravel process. Consider a simple travel process named “EasyTravel” modeled
as a BPMN process in Figure 6.2. It provides bookings for various airline services. The
process starts when it receives a search criteria from the user in terms of price limit, date
range, destination etc (Receive Search Criteria). Based on the search criteria it fetches
the list of services meeting the criteria (Fetch Services). From the services fetched, it
selects the ”top services” in terms of response time and other customer ratings. These ser-
vices are presented to the user for final selection. On receiving the user selection (Receive
User Selection) it contacts the individual selected service for finding the current status
and price (Get Current Price and Status). If the service is available, the booking
is processed (Process Booking). It then waits for the user to provide payment details
(Receive Payment Details) and parallely listens for any cancelation request (Receive
Cancelation Request. The payment details are passed to the selected service for the
actual payment (Process Payment). On receiving an acknowledgement for the payment
the transaction is considered as complete and an acknowledgment is sent to the user. At
any time if a cancelation request is received, the booking is canceled and depending upon
the user choice either the booking is tried again or the program exits. From Figure 6.2 it
easily follows that the external interaction of EasyTravel is via messages as shown in the
diagram in dashed lines. One can identify two service interface categories:

1. Airline Services interface providing the following web-services:

• GetCurrentAvailability : Checks availability of a flight service.

72

Figure 6.2: EasyTravel using BPMN

• BookService: Books a flight service

• PaymentService: Processes the payment

2. User Interface using the following web services:

• ReceivePaymentDetails: Receives payment from the user

• ReceiveSearchCriteria: Receives the search criteria from the user

• ReceiveUserSelection: Receives the list of services selected by the user

• ReceiveCancelationRequest: Receives the cancelation request from the user

6.3 EasyTravel’s SLA

An SLA sets the expectations between the consumer and provider. It is a cornerstone of
how the service provider sets and maintains commitments to service consumer. Runtime
monitoring is required to ensure adherence to SLAs as they are often associated with
penalty clauses. A good SLA addresses the following aspects

• What the provider is promising

• How the provider will deliver on those promises

• Who will measure delivery and how

73

• What happens if the provider fails to deliver as promised

EasyTravel can be viewed as a “provider” of booking service to its customers, or, as
consumer of airline services. Hence, it will:

1. define and monitor SLAs for its customers

2. monitor SLAs that are given by its providers (airlines)

Let us consider an SLA for customers of EasyTravel as given below 1:

1. Standard terms applicable to all Service Levels outlined herein:

a Definitions

i “Customer” refers to the organization that has purchased EasyTravel Service
Bus Services.

ii “Claim” means a claim submitted by Customer to EasyTravel pursuant to this
SLA that a Service Level has not been met and that a Service Credit may be
due to Customer.

iii “Customer Support” means the services by which EasyTravel may provide
assistance to Customer to resolve issues with the EasyTravel Services.

iv “Service” or “Services” refers to the EasyTravel process for making flight book-
ings.

v “Service Credit” is the percentage of the monthly service fees for the Service
that is credited to Customer for a validated Claim.

vi “Service Level” means standards EasyTravel chooses to adhere to and by which
it measures the level of service it provides as specifically set forth below.

b Service Credit Claims

i To submit a Claim, Customer must contact Customer Support and provide
notice of its intention to submit a Claim.

c SLA Exclusions: This SLA and any applicable Service Levels do not apply to any
performance or availability issues:

i. Due to factors outside EasyTravels reasonable control:

A. That resulted from Customer’s or third party hardware or software;

B. To perform regular platform upgrades and patches.

d Service Credits

i The amount and method of calculation of Service Credits is described below in
connection with each Service Level description.

ii Service Credits are Customer’s sole and exclusive remedy for any violation of
this SLA.

1This is adapted from the real case SLA of Microsoft Windows Azure AppFabric Service Bus

74

iii The Service Credits awarded in any billing month shall not, under any circum-
stance, exceed Customer’s monthly Service fees.

2. Service Levels

a Monthly Uptime Service Level

i Definitions

A. “Downtime” is the total accumulated minutes when there is no connectivity
(availability) between a customer’s service endpoint and EasyTravel’s gate-
way, as measured and aggregated in five minute intervals. A five-minute
interval is marked as unavailable if all the customer’s attempts to establish
a connection to the Service Bus fail throughout the interval

B. ”Maximum Available Minutes” is the total accumulated minutes during a
billing month summed across all registered Internet facing endpoints.

C. Availability Uptime: ”Monthly Uptime Percentage” for a specific Customer
is the total number of “Maximum Available Minutes” less “Downtime” di-
vided by “Maximum Available Minutes” for a billing month. It is reflected
by the following formula:
(Maximum Available Minutes - Downtime) / (Maximum Available Min-
utes) = Monthly Uptime Percentage

ii Uptime Service Levels

Monthly Uptime Percentage Service Credit
< 99.9% 10%
< 99% 20%

b Customer based Response time Service levels

i. “Customers” using the EasyTravel Service will be categorized as “Gold” or
“Premium” customers as given below. The “Average Response Time” for
bookings for customers will depend on this rating.

A. any booking made for a value 1000 INR or above increases the customer
rating by 5 points

B. all usage of the service where services to be booked are searched but not
actually ordered reduces the rating of the customer by 10 points

C. all cancelations made immediately after the booking in the same process
instance reduces the rating by 15 points

ii. Response time Service level

c EasyTravel guarantees that under no circumstances can a payment get debited
from customers account on cancelation of a booking request. In case of violations
a service credit of 5% will be given against each violation.

75

Cust. Rating Cust. Type Avg. Resp. time Service Credit
< 200 Classic 1000ms 5%
200-400 Premium 500ms 5%
> 400 Gold 200ms 2%

6.4 An Informal introduction to our monitoring ap-

proach

Let us assume that EasyTravel needs to ensure the satisfaction of the above SLA and as-
sure that there are minimum service credits for its customers. The SLA described above is
“informal” and cannot be checked algorithmically. Thus, the first task is to extract mea-
surable observable properties over message interactions happening with the stakeholders
of EasyTravel workflow engine. One possible approach with respect to the above SLA is
given below:

1. Monthly Uptime Service level: The uptime of EasyTravel process depends on its
partner airline services. Therefore one needs to ensure that “The Monthly uptime
percentage for any given airline service should atleast be 99%.” where “Monthly Up-
time Percentage” is computed as per the definition given in the SLA. A “Downtime”
is considered as a timeout between any web service request sent and response re-
ceived. A timeout of 5 mins indicates that the service is unavailable. The property
p1 given below helps in satisfying this Service Level.
p1: A response against a BookService request should arrive with-in 5 mins.
Monitoring this property would help in detecting web-services which are unavailable
and hence allows EasyTravel take alternate actions by replacing them with other
services. Maintaining the event log of this property in the form of a data-store will
also help EasyTravel in validating the service credit claims of any customer.

2. Response Time Service levels: The SLA distinguishes customers as “Classic”, “Gold”
and “Premium”. These are based on ratings that are determined by observing their
behavior over a period of time. The determination of customers ratings and the
response time can be ensured as per the properties given below:

(a) p2: The total order value must not be more than 1000 INR”.
In case of a higher value the rating of the customer is increased by 5 points.

(b) p3: Once the BookService response is received the user should be prompted for
sending the payment information i.e. ReceivePaymentDetails. On receiving the
payment information, actual payment i.e. PaymentService should eventually be
invoked (Wanted scenario)”.
In case of violation, the customer rating of the customer is reduced by 10 points

(c) p4: A BookService response is followed by PaymentService request. The response
of PaymentService is immediately followed by a Cancelation request. (Unwanted

76

scenario).
Occurrence of such a scenario reduces the customer rating by 10 points.

(d) Other than determining the customers ratings, the SLA also requires monitoring
average response time against all booking services.
p5: The average time taken by any airline for a booking of a classic customer
must never exceed 1000 ms.
In case of a violation the airline would be removed from the list of available
services. (RemoveAirlineFromList). Similar property is to be defined for gold
and premium customers.

3. EasyTravel guarantees that under no circumstances can a payment get debited from
customers account on cancelation of a booking request. This Service level is assured
using safety properties as defined below:

(a) p6: The PaymentService must not be invoked unless the service is Booked.

(b) p7: Any time PaymentService service is called, either Cancel Booking has never
occurred before, or BookService has occurred since the last occurrence of Cancel
Booking.

In case these properties are not satisfied, an SMS is generated for the administrator

4. Further EasyTravel maintains a list of service registries of all service providers. In
order to select the ”top” service for ensuring the response time promised to its cus-
tomers it queries this registry database to find the average response time of various
service over a period of time. The registry database is therefore updated with run-
time information of QoS metrics and other profiling information related to each airline
service.

5. EasyTravel may also need to distribute the booking service across many providers
and it therefore maintain a history of services selected. If the last service selected is
of Delta it will next select United assuming the QoS values are satisfied.

6. To choose the services based on customer rating the provider having the best QoS re-
sponse is selected for higher priority customers (Gold/Premium Customers). Clearly
to implement such a functionality one needs a mechanism to collect data at runtime
and provide real time responses.

The monitoring of properties p1 to p7 would enable EasyTravel realize it’s SLA, is
argued below. Since the availability of EasyTravel depends on the external airline services
on which it has no control, property p1 would allow EasyTravel to monitor availability of
it’s component services and use alternate service in case any service is not available. This
would ensure that its monthly uptime availability is maximum. For ensuring the response
time service level it needs a mechanism to:

77

1. identify customers as “Gold” or “Premium” which is achieved by monitoring property
p2, p3 and p4 and accordingly update customer ratings

2. monitor property p5 and on receiving an “alert” remove the service from the service
list temporarily

Properties p6 and p7 help EasyTravel monitor the last Service Level of the SLA. Any alert
against these properties generates a SMS for the administrator to analyze the transaction
and revoke payment if required. Thus, the given SLA can be satisfied by monitoring the
above properties continuously as it services its stakeholders.

Wf Sla Mon, can capture these properties to monitor the given SLA. The approach
for monitoring is based on “Observer based monitoring” as explained in Section 6.5. The
monitor coexists with the workflow process being monitored. This is shown under the
Monitor pool in the BPMN of Figure 6.3. The monitor, comprising many observers,
continuously listens for events (signals) which are generated on interception of the messages
against properties p1 to p7. These messages are indicated in Figure 6.3 as ∗(pi) representing
“event” generation for monitoring a property pi. The events are received by the monitor,
which then verifies these properties (p1 to p7) associated with that event and generates
an alert if the property is not satisfied. Depending on the property, the monitor may
perform some computations before validating the property. The EasyTravel process, in
turn, receives these alerts and takes associated action. Alerts are also received by the
workflow administrator’s console as well as the service providers profile updater as shown
in Figure 6.4.

6.5 An overview of Wf Sla Mon

An observer based approach of monitoring is widely used in event driven systems and
synchronous frameworks. Here, an observer is a program that executes in parallel to a
process and acts as a watchdog to ensure that the monitoring properties are adhered to.
Let us denote the program as P (the workflow) and let us say that we need to verify
a safety property ψ (specified using SL/bMSC). Naturally, program P violates a safety
property ψ at a precise step (trace). Thus, we can build an observer that sends an alarm
whenever the property is violated by P . The observer accesses the same environment as P .
Ωψ is the observer of P (the automata) working in parallel with P as shown in Figure 6.5.
In this setup, instead of proving ψ about P, we see that P || Ωψ does not emit an alarm.
This scheme works when we need to consider only finite traces. For liveness properties
this scheme works by monitoring whether the program terminates before the property is
satisfied. The advantages of this approach are: (a) no need for explicit synchronization
of P and Ωψ (b) Modular as P and Ωψ can evolve independently and (c) specification is
executable.

The main idea lies in treating the properties to be monitored in a conjunctive man-
ner and integrating the observers (some of them even work as actuators) with the main
workflow engine. Broadly, the task of Wf Sla Mon consists of the following broad steps:

78

Figure 6.3: EasyTravel SLA Monitoring

Figure 6.4: EasyTravel process’s and monitor interactions

79

Figure 6.5: The Synchronous Observer

Figure 6.6: Meta-model for Monitoring Property

a Generate observers for each of the property to be monitored

b Integrate these observers with the workflow engine

c If necessary, integrate observers from non functional properties as well

As a first step, one needs to specify the properties formally. Properties are considered
to be basic or composite. Basic properties comprise of QoS metrics like Response time,
Execution time and Availability etc or they can represent a count of any functional non-
compliance of the process. Table 6.1 gives the basic metrics provided in our system and
their interpretation. Aggregation on composite metrics like average, minimum, maximum,
percentage and throughput is also possible. A meta model for the class of monitoring prop-
erties captured in Wf Sla Mon is given in Figure 6.6. A functional noncompliance of
the process can be specified in terms “safety” or “realtime response” properties SL and
bMSC.

The non-functional property specification use pre-defined functions provided in our
system and are specified directly using an XML. For example, the specification of properties
p1 and p2 is given in Table 6.2. Here, the timeout tag specifies the timer constraint of
300 ms. A quantifier Count is applied against each timeout. If the Count goes above the
threshold value (using a pre-determined value of x), the airline is removed from the list of
services temporarily. For property p2 the message is scanned to extract the parameter cost

80

Table 6.1: Basic Metrics
Name Description
Response Time It measures the current response time in milliseconds to access

a web service
Execution Time It measures the current execution time in milliseconds to exe-

cute a series of web service invocations as part of the process
Availability It measures the current availability of a web service at all time

or slots of time
Count It is the count of the occurrence of any event
Functional Noncom-
pliance

These are measured as the number of times a given invariant
or property is violated.

indicating the order value and the customer rating is increased if the value is more than
1000.

Functional properties are specified using SL or MSC (described in next chapter). From
the specified properties observers are generated automatically in the form of an automata
whose transitions correspond to the “events”. These are used for “safety” properties or
the wanted/unwanted scenarios requiring real time response. The generated automata is
wrapped with timers and other quantification functions to form the final observer. The
process communication with the external web services is in the form of SOAP messages
which are intercepted by the observers. In case of any violation, an “alert” in the form of a
signal is generated for the workflow engine which initiates a recovery action synchronously.
This is depicted in Figure 6.7 showing the architectural diagram.

Figure 6.7: Wf Sla Mon Framework

81

Table 6.2: Property p1 and p2
p1 p2

<monitor>

<name> p1 </name>

<metric> ResponseTime</>
<quantifier> Count</>
<value> x</value>
<service>

<portname> Delta</>
<input-events>

<request>

<oper> BookService</>
</request>

<response>

<oper> BookService</>
</response>

</input-events>

</service>

<timeout>300</timeout>

<action> RemoveAirlineFromList</>
</monitor>

<monitor>

<name> p2 </name>

<param>Cost</param>

<value> 1000</value>
<service>

<portname> Delta</>
<input-events>

<request>

<oper> BookService</>
</request>

<response>

<oper> BookService</>
</response>

</input-events>

</service>

<action> IncreaseCustomerRating</>
</monitor>

In Chapter 7, MSC and SL specification is described along with their transformation
to automata.

82

Chapter 7

Monitor Specification and
Realization

A functional noncompliance of the process (one of the basic metric) can be specified in
terms of invariants or properties required to be satisfied by the process for its correct-
ness. It can be measured as the number of times a particular safety property is violated,
an unwanted scenario occurred, or any occurrence of an event depending upon the past
history. Monitoring properties can be specified using Message Sequence Charts(MSC) or
the language SL. This chapter provides the details of the algorithms and methodology
used. The chapter covers the following topics (a) Property specification using MSC, (b)
MSC to Automata transformation algorithm, (c) Property specification using SL, (d) SL
to Automata transformation algorithm, and (e) Integration of generated observers with
the runtime engine of workflows. These are illustrated by using properties derived from
the EasyTravel SLA as given in the previous chapter.

7.1 Using MSC

7.1.1 Specification using MSC

A bMSC provides a graphical and intuitive representations of “unwanted” or “wanted”
scenarios. Where an unwanted scenario is a sequence of message exchanges which must
never occur (representing a safety property), a wanted scenario is the sequence of messages
that are desirable. bMSC can also be used for specification of timeout criteria.

Given below are three examples of monitoring properties from the EasyTravel process
and their specification in bMSC.

Example 1: The response time of BookService should not be more than x ms for Delta
airlines.

Example 2: Payment i.e. PaymentService must never happen unless the response against

83

Figure 7.1: Response-time MSC (Example 1)

Figure 7.2: Unwanted scenario (Example 2)

BookService request is received. (Unwanted scenario)

Example 3: BookService request should always be followed by the BookService response.
Only after the response is received should the user be prompted for sending the payment
information. Once the payment information is received, actual payment i.e. PaymentSer-
vice is invoked (Wanted scenario)

The three example properties are specified using MSC as shown in Figure 7.1, 7.2
and 7.3. Here, the instance “Process”, is for travel, and is shown in grey to depict our
travel process (which is being monitored). Any arrow going away from it is a request
message whereas the one coming towards it is a response message. Figure 7.1 denotes that
the response time for a BookService must be more than x secs for Delta airlines (service
provider). Figure 7.2 depicts an unwanted scenario. Occurrence of such a message sequence
is “unwanted” and must therefore be detected by the runtime monitor. Figure 7.3 shows

84

Figure 7.3: Wanted scenario (Example 3/ Property p3 of EasyTravel)

a wanted sequence. If all these messages occur, the sequence should be strictly the one
depicted here. If this sequence is altered it must again be detected as a violating condition.

7.1.2 bMSC → Automata Transformational Algorithm

A property specified using bMSC is transformed into an automata by first extracting a
subset where either the “send” event s or its “receive event” f(s) belongs to Ep. In order
words, only the message interactions pertaining to the process being monitored are con-
sidered. The automata created using a bMSC is essentially a mealy machine.

Definition 1: A Mealy machine M is a 6-tuple, (Q,Q0,Σ,Λ, T,G), consisting of the
following:

• a finite set of states (Q)

• a start state (also called initial state) Q0 which is an element of (Q)

• a finite set called the input alphabet (Σ)

• a finite set called the output alphabet (Λ)

• a transition function (T : Q×Σ → Q) mapping pairs of a state and an input symbol
to the corresponding next state.

• an output function (G : Q× Σ → Λ) mapping pairs of a state and an input symbol
to the corresponding output symbol.

Definition 2: A trace σ0, σ1...σn on Σ is accepted by M iff there is a sequence q0q1...qn+1

of states s.t. q0 ∈ Q0; and for every 0 ≤ i ≤ n; (qi, σi, qi+1) ∈ T, and G(qi, σi, qi+1) ̸=
“ALARM”. The language of M , L(M), is the set of all traces accepted by M .

Based on these definition the bMSC translations to an automata are described below.

85

Figure 7.4: An Unwanted Scenario (A1− > A2− > ...An)

Figure 7.5: Automata for the unwanted sequence A1, A2, ..., An

bMSC as an unwanted scenario:

An unwanted scenario of a given message sequence A1, A2, ..., An is shown in Figure 7.4
and the corresponding automata is shown in Figure 7.5. The number of states in this
automata is n + 1. q0 is the initial state. A state qi denotes the occurrence of message
sequence A1, A2, ..., Ai. The transition relations are defined as:

T (qi,#Ai+1.#Ai+2...#An) = qi ∀ i >= 0, i < n
T (qi, ?Aj.#Aj+1...#An) = qn ∀ j ̸= (i+ 1), i < n
T (qi, ?Ai+1.#Ai+2...#An) = qi+1 ∀ i >= 0, i < n

The output signal “ALARM” signifies the occurrence of violating condition. This is emit-

86

ted as per the output relation defined as:

G(qn−1, ?An) = ALARM

bMSC for an wanted scenario:

A wanted scenario depicts a strict sequence between a set of messages. A violation against
this property i.e the process terminating before the scenario is true results is reducing the
customer rating by 10 points. Let us consider A1, A2, ..., An is a wanted sequence in the
bMSC of Figure 7.4 then the three messages must always follow this sequence. In case the
sequence is altered or the program is terminates before all the messages have occurred,
an alarm is emitted. The automata corresponding to wanted scenario of the sequence
A1, A2, ..., An is given in Figure 7.7. Here q0 is the start state and pt is the process instance
termination signal. All transitions violating the desired sequence emits an alarm. The
number of states in this automata is n+ 1. The transition relations are defined as:

T (qi,#Ai+1.#Ai+2...#An) = qi ∀ i >= 0, i < n
T (qi, ?Aj.#Ai+1...#An) = qn ∀ j ̸= (i+ 1), i < n
T (qi, ?Ai+1.#Ai+2...#An) = qi+1 ∀ i >= 0, i < n

The output signal is “ALARM” which signifies the violating condition. This is emitted as
per the output relation defined below:

G(qi, ?Aj.#Ai+1...#An) = ALARM ∀ j ̸= i+ 1, i < n

Figure 7.6: A wanted scenario (A1− > A2− > ...An)

87

Figure 7.7: Automata for the wanted sequence A1, A2, ..., An

bMSC as a timeout scenario:

bMSC can also be used to specify time delays between a request/response message or any
two events between the process and a client instance. Let out be the output message
and in be the input message and let x denote the time in milliseconds between these
two messages. Figure 7.8 gives the specification of such a property using bMSC and the
automata generated from it. The automata has 3 inputs in, out and tout. The tout signal
corresponds to the timeout signal to be received from the environment. q0 is the initial
state. Two input signals may be received simultaneously. If tout is received before in, an
output signal alarm is emitted which signifies the violating condition.

Figure 7.8: MSC and the automata corresponding to the response time property

88

7.1.3 Implementation

A mix of technologies have been used in order to develop this tool. (generating an automa-
ton from a MSC specification) The part related to MSC specification is developed using
Java based open source “Tutogef” project. It is extended to provide a user interface for
creating MSCs and saving them. The automata is represented as a 2D array.

7.2 Using SL

7.2.1 Specification using SL

Monitoring Properties can also be specified using DSL (as defined in Section 3.2.1). The
DSL specification for a few properties of travel process and their corresponding automata
are provided below. The automata for these examples are shown in Figure 7.9 to 7.12.

With the definitions provided in Section 3.2.1, the specification of properties p6 and p7
using DSL is given below.

p6: The Payment against any service must not occur unless the service is Booked. Let
the proposition symbol a signify the Booking.(BookService) and the symbol b signify a
Payment (PaymentService). The property can be expressed in SL/DSL as:

∃x2((x ≡ •(a ∨ x)) ∧ (b ⊃ x)).

Here the auxiliary variable x denotes that a (BookService) has been true at least once
in the past. Once a is true i.e. BookService response is received, x becomes true and
remains true forever. Whenever b is true implies x is true. This property is violated if x
is not true when b becomes true.

p7: Any time PaymentService service is called, either Cancel Booking has never occurred
before, or BookService has occurred since the last occurrence of Cancel Booking. Let c
denote PaymentService, b denote BookService and a denote the Cancel Booking services.
This property can then be specified as:

∃x, y2((c ⊃ (x ∨ y)) ∧ (x ≡ ((¬ • ¬x) ∧ (¬a))) ∧ (y ≡ (b ∨ ¬ • ¬y) ∧ (¬a))))).

Here the auxiliary variable x denotes “Cancel Booking has never occurred” and y stands
for ”BookService has occurred since the last occurrence of Cancel Booking”.

Given below are two more examples to show how DSL can be used for specifying prop-
erties.

Example 4: If the service is being booked, then the service was selected but not reported
to be unavailable. Let a denote Service Selection, b denote the Service Provider returning

89

Figure 7.9: “occurrence of a precedes the occurrence of b”(p6)

Figure 7.10: “anytime c occurs either a has never occurred or b has occurred since the last
occurrence of a”(p7)

the service as unavailable, c denote Service being booked, and let x and y denote the past
occurrence of a and b. Then,
∃x, y2((c ⊃ (¬y ∧ x)) ∧ (x ≡ •(a ∨ x)) ∧ (y ≡ •((b ∧ x) ∨ y)))
is the SL specification for this property.

Example 5: The Service Providers PaymentService service must not return a payment
failure against any client more than once. This will be specified as:
∃y2((a ⊃ ¬y) ∧ (y ≡ (•(a ∨ y))))
where a denotes the event of the service provider returning a failure against a payment.

7.2.2 Model Checking DSL

The SL formula is transformed into an automata based on the formula rewriting as ex-
plained in Section 3.2.1 and 3.2.2. Consider the property in SL given above ∃x2((x≡

Figure 7.11: “anytime c occurs it must be preceded by a unless b has occurred since the
last occurrence of a”

90

Figure 7.12: “the number of times an event a occurs should be less than two”

•(a∨x))∧(b⊃x)). It means that the first time a is true strictly preceded the first time b is
true. Here, the quantified variable x stands for “a has been true at least once in the past”;
it is initially false, becomes true just after a is true, and then remains true forever. The
evaluation of the above formula for a trace ({a},{b}) is given as:

((x ≡ •(a∨x))∧(b ⊃ x))
a:true−−−→ ((x ≡ ¬•¬(a∨x))∧(b ⊃ x))

b:true−−−→ ((x ≡ •(a∨x))∧(b ⊃ x))

The given SL formula and all its derivatives represent “states”. A derivative of a formula
φ can differ from φ by the fact that some occurrences of the “•” operator are replaced by
its dual “¬•¬”. As a consequence, a formula φ has at most 2nφ distinct derivatives, where
nφ is the number of “•” operators appearing in φ.

The expanded version of the automata for the above formula is given in Figure 7.13.
The states representing the derivatives of the formula and the transitions are given below:

∃x2((x≡ •(a∨x))∧(b⊃x))
(a∧b):false−−−−−−→ ∃x2((x≡ ¬ • ¬(a∨x))∧(b⊃x))

∃x2((x≡ •(a∨x))∧(b⊃x))
(¬a∧b):false−−−−−−−→ ∃x2((x≡ •(a∨x))∧(b⊃x))

∃x2((x≡ •(a∨x))∧(b⊃x))
(a∧¬b):true−−−−−−→ ∃x2((x≡ ¬ • ¬(a∨x))∧(b⊃x))

∃x2((x≡ •(a∨x))∧(b⊃x))
(¬a∧¬b):false−−−−−−−−→ ∃x2((x≡ ¬ • ¬(a∨x))∧(b⊃x))

∃x2((x≡ ¬ • ¬(a∨x))∧(b⊃x))
anyinput:false−−−−−−−−→ ∃x2((x≡ ¬ • ¬(a∨x))∧(b⊃x))

The automata for property p7 is similarly depicted in Figure 7.14.

Figure 7.13: Automata for p6

It is to be noted that DSL is a syntactic fragment of SL, for the formulas of which the
above process produces a deterministic automata. This is because the non determinism
the automaton can only appear during the elimination of auxiliary variables. In DSL these
variables appear only under a • operator in φi. The value of φi in each state is completely

91

Figure 7.14: Automata for p7

determined by the value of the propositional symbols. Since the value of φi determines the
value of xi, the projection onto Prop does not introduce non-determinism.

Let ψ denote the SL formula ∃x1, x2, ..., xk2φ, then der(ψ) denotes the set of all deriva-
tives of ψ. Let PF (ψ) denote the past formula of ψ. The model checking DSL formula is
provided below.

Definition 3: Let φ be any general past formula. For ease of computing the truth values,
the formula is broken into smaller parts denoting a Closure(CL). Let CL

′
(φ) be the

smallest set s.t.

• φ ∈ CL
′
(φ)

• if ¬φ1 ∈ CL
′
(φ) then φ1 ∈ CL

′
(φ)

• if φ1 ∨ φ2 ∈ CL
′
(φ) then φ1 ∈ CL

′
(φ) and φ2 ∈ CL

′
(φ)

• if φ1 ∧ φ2 ∈ CL
′
(φ) then φ1 ∈ CL

′
(φ) and φ2 ∈ CL

′
(φ)

• if φ1 ⊃ φ2 ∈ CL
′
(φ) then φ1 ∈ CL

′
(φ) and φ2 ∈ CL

′
(φ)

• if φ1 ≡ φ2 ∈ CL
′
(φ) then φ1 ∈ CL

′
(φ) and φ2 ∈ CL

′
(φ)

• if •φ1 ∈ CL
′
(φ) then φ ∈ CL

′
(φ)

Then, CL(φ) = { φ1,¬φ1 | φ1 ∈ CL
′
(φ)}

Definition 4: An Atom is a maximal locally consistent subset of CL(φ). A set A ⊆
CL(φ

′
) is called an atom of φ such that:

• φ ∈ A

• φ1 ∈ A iff (¬φ1 ̸∈ A)

92

• (φ1 ∨ φ2) ∈ A iff φ1 ∈ A or φ2 ∈ A

• (φ1 ∧ φ2) ∈ A iff φ1 ∈ A and φ2 ∈ A

• (φ1 ⊃ φ2) ∈ A iff φ1 ̸∈ A or φ2 ∈ A

• (φ1 ≡ φ2) ∈ A iff (φ1 ̸∈ A and φ2 ̸∈ A) or (φ1 ∈ A and φ2 ∈ A)

• •φ1 ̸∈ A

Definition 5: Let At(ψ) denote the set of atoms corresponding to the past formula of ψ
i.e. PF(ψ) and Atφ denote the set of atoms corresponding to φ and all its derivatives i.e.,
all possible states in the automata; then,
Atψ ,

∪
ψ1∈der(ψ)At(ψ1)

For a SL formula ψ we construct an Automata A(ψ) = (Q,Σ, δ, Q0,F) as below:

• Q = Atψ, the set of atoms

• Σ=2Prop, the input alphabet where Prop is the set of propositions (Observables)

• Q0 = At(ψ), the initial state

• F=Q, as all states in this automata are accepting

• δ=Q×Σ×Q, the transition relation such that for A, B ∈ Atψ, ω ∈ Σ, (A,ω,B) ∈ δ iff

– A∩Prop=ω
– φ ∈A iff ¬ • ¬φ ∈ B

– ¬φ ∈A iff ¬ • φ ∈ B

Definition 6: Automata Reduction: A state in the quotient automata is represented by
the collection of all atoms in At(φ) where φ ∈ der(ψ). Each state Si of the automata is
therefore created as: Si = {A | A ∈ At(φi)} and,
Si

ω−→ Sj if ∃A ∈ Si,B ∈ Sj s.t. A
ω−→ B.

Example

Consider the SL formula ∃x2((x ≡ •(a ∨ x)) ∧ (b ⊃ x)). A stepwise explanation of au-
tomata generation is given below.
Step 1:
Here, ψ = ∃x2((x ≡ •(a ∨ x)) ∧ (b ⊃ x))
and PF(ψ) i.e. the past formula of ψ is denoted as φ=((x ≡ •(a ∨ x)) ∧ (b ⊃ x))
der(ψ) i.e. set of derivatives of φ are:
φ1 = ((x ≡ •(a ∨ x)) ∧ (b ⊃ x)) and φ2 = ((x ≡ ¬ • ¬(a ∨ x)) ∧ (b ⊃ x))

93

Step 2:
Here, we find the Closures of φ1 and φ2. We include the formula and then break it into
smaller parts as per the definition of Closures.
CL

′
(φ1) = {((x ≡ •(a ∨ x) ∧ (b ⊃ x)), (x ≡ •(a ∨ x)), (b ⊃ x), x, •(a ∨ x), (a ∨ x), a, b}

CL(φ1) = {((x ≡ •(a ∨ x)) ∧ (b ⊃ x)),¬((x ≡ •(a ∨ x)) ∧ (b ⊃ x)), (x ≡ •(a ∨ x)),¬(x ≡
•(a ∨ x)), (b ⊃ x),¬(b ⊃ x), x,¬x, •(a ∨ x),¬ • (a ∨ x), (a ∨ x),¬(a ∨ x), a,¬a, b,¬b}
CL

′
(φ2) = {((x ≡ ¬•¬(a∨x))∧(b ⊃ x), (x ≡ ¬•¬(a∨x), (b ⊃ x)), x,¬•¬(a∨x), (a∨x), a, b}

CL(φ2) = {((x ≡ ¬ • ¬(a ∨ x)) ∧ (b ⊃ x),¬((x ≡ ¬ • ¬(a ∨ x)) ∧ (b ⊃ x)), (x ≡
¬ • ¬(a ∨ x)),¬(x ≡ ¬ • ¬(a ∨ x)), (b ⊃ x),¬(b ⊃ x), x,¬x,¬ • ¬(a ∨ x),¬¬ • ¬¬(a ∨
x), (a ∨ x),¬(a ∨ x), a,¬a, b,¬b} or,
{(x ≡ ¬ • ¬(a ∨ x)) ∧ (b ⊃ x),¬((x ≡ ¬ • ¬(a ∨ x)) ∧ (b ⊃ x)), (x ≡ ¬ • ¬(a ∨ x)),¬(x ≡
¬ • ¬(a ∨ x)), (b ⊃ x),¬(b ⊃ x), x,¬x,¬ • ¬(a ∨ x), •(a ∨ x), (a ∨ x),¬(a ∨ x), a,¬a, b,¬b}

Step 3:
Let Ai denote the set of atoms for φ1 and Bi denote the set of atoms for φ2

Then, A1 = {((x≡ •(a∨x))∧(b⊃x)),(x≡ •(a∨x)), (b⊃x),¬ • (a∨x),¬x,a∨x, a ,¬b}.
Here ¬ • (a ∨ x) is included as for any general formula φ, •φ cannot be in a atom. Since
•(a ∨ x) cannot be included ¬x is included in order to satisfy the equivalence relation of
x i.e. x≡ •(a∨x). Now, since ¬(a ∨ x) ̸∈ A, (a ∨ x) is included in A. And since (a ∨ x) is
included and x is false, a is included. For (b ⊃ x) since ¬x is included ¬b) is included.

A2 = {((x≡ •(a∨x)) ∧ (b⊃x)), (x≡ •(a∨x)), (b⊃x),¬ • (a∨x), ¬x, ¬(a∨x), ¬a , ¬b }.
Similarly,
B1 = {((x≡ ¬ • ¬(a∨x)) ∧ (b⊃x)),(x≡ ¬ • ¬(a∨x)), (b⊃x),¬ • ¬(a∨x), x, a∨x, a , b }.
B2 = {((x≡ ¬ • ¬(a∨x)) ∧ (b⊃x)),(x≡ ¬ • ¬(a∨x)), (b⊃x),¬ • ¬(a∨x), x, a∨x, ¬a , b }.
B3 = {((x≡ ¬ • ¬(a∨x)) ∧ (b⊃x)),(x≡ ¬ • ¬(a∨x)), (b⊃x),¬ • ¬(a∨x), x, a∨x, a, ¬b }.
B4 = {((x≡ ¬ • ¬(a∨x)) ∧ (b⊃x)),(x≡ ¬ • ¬(a∨x)), (b⊃x),¬ • ¬(a∨x), x, a∨x, ¬a, ¬b }

Step 4:
The transitions in the automata are identified by taking a projection with Prop with the
atoms set. The resulting transitions are:

A1
a∧¬b−−−→ B1, B2, B3, B4,

A2
¬a∧¬b−−−→ A2,

B1
any input−−−−−→ B1, B2, B3, B4,

B2
any input−−−−−→ B1, B2, B3, B4,

B3
any input−−−−−→ B1, B2, B3, B4,

B1
any input−−−−−→ B1, B2, B3, B4,

Step 5:
We now need to create the quotient automata by applying the automata reduction rules.
A1 and A1 denotes state S0 and B1, B2, B3, B4 denotes state S1. The transitions are:

S0
a∧¬b−−−→ S1

94

Table 7.1: DSL Syntax in BNF
Aux:=xi
Prop:=a,...,z
PF:=Prop|Aux|(¬ PF)|(PF ∨ PF)|(PF ∧ PF)|(• PF)|
(¬ • ¬ PF) | (PF ≡ PF) | (PF ⊃ PF)
PPF:=Prop|(¬ PPF)|(∨ PPF)|(PPF ∧ PPF)|(• PPF)|
(¬ • ¬ PPF)|(PPF ≡ PPF)|(PPF ⊃ PPF)
APF:=(¬ APF)|(APF ∨ APF)|(APF ∧ APF)|(• PF)|
(¬ • ¬ PF)|(APF ≡ APF)|(APF ⊃ APF)| PPF
EqTerm:=(Aux ≡ APF)
EqList:=EqTerm|EqTerm ∧EqList
SpecialPF:=(PF ∧ EqList)
Auxlist:=Aux | Aux,AuxList
DSL:=∃ AuxList 2 SpecialPF

S0
¬a∧¬b−−−→ S0

S1
any input−−−−−→ S1

7.2.3 DSL → Automata: Transformational Algorithm

DSL to Automata transformation algorithm takes as an input any DSL formula and eval-
uates the formula to find the next state for all possible transitions. The final automata is
represented in the form of a state transition table represented by a 2D array automata[i][t],
the value of which represents the next state for a transition t occurring in state i. The
automata is generated in two broad steps as described below:

Preprocessing

Pre-processing step involves parsing the formula and identifying syntax errors (if any). The
DSL syntax in BNF notation is given in Table 7.1.

A DSL formula enables the auxiliary variables to be defined with separate past formulas.
In addition, the auxiliary variable in an APF may only appear under a • operator. The
syntax of DSL in BNF after eliminating left recursion and left factoring is as given in
Table 7.2. As can be seen, our implementation uses a “Predictive Parser” wherein each
nonterminal is defined as a procedure and it decides which production to use by looking
at the lookahead token. Predictive parsers are simple, as they require no backtracking.
For verifying in DSL, the condition that an auxiliary variable must occur in the past
formula with a “•” operator, we have made use of simple flags which are set and reset
in the procedure for the nonterminal Eqterm. Apart from the syntax analysis, the pre
processing step also stores useful information like set of propositions, auxiliary variables,
the respective past formulas of each auxiliary variables etc.

95

Table 7.2: DSL Syntax in BNF after eliminating left recursion and left factoring
PF2:=∨ PF)|∧ PF)| ≡ PF)| ⊃ PF)
PF1:=¬ PF)|• PF)|¬ • ¬ PF)|PF PF2)
PF:=Prop|Aux|(PF1

PPF2:=∨ PPF)|∧ PPF)| ≡ PPF)| ⊃ PPF)
PPF1:=¬ PPF)|• PPF)|¬ • ¬ PPF)|PPF PPF
PPF:=Prop|(PPF1

APF2:=∨ APF)|∧ APF)| ≡ APF)| ⊃ APF)
APF1:=¬ APF)|• PF)|¬ • ¬ PF)|APF APF2)
APF:=(APF1|PPF

Eqterm:=(Aux≡ APF)
Eqlist:=Eqterm Eqlist1
Eqlist1:=∧ Eqlist|ϵ

Auxlist:=Aux Auxlist1
Auxlist1:=,Auxlist| ϵ

SpecialPF:=(PF∧ Eqlist)
DSLformula:=∃ Auxlist2 SpecialPF

Automata Generation

The states in the final automata are the set of all derivatives of the past formula. A
derivative of a past formula is formed by replacing a • to ¬•¬ and vice-versa. It therefore
depends on the number of past operators in the formula. The algorithm for the automata
generation is given in Algorithm 1 and that for evaluation of a given state is given in
Algorithm 2. CreateDFA evaluates the SL formula for each state and transition. In order
to find the value of auxiliary variables it evaluates their respective past formulas by taking
the truth value as “false” initially. The value returned is the actual truth value to be used
for the evaluating that state and transition. This is because the state evaluation in the
language SL depends only on the • and ¬ • ¬ operator. (see Section 3.2.2).

The parameter expr in the function Evaluate is the formula to be evaluated. The propo-
sitional as well as the auxiliary variables are replaced with the actual truth values as com-
puted above. The function returns the next state depending on whether the formula evalu-
ates to true or false. The function makes use of two stacks: one for Operands(Propositional
and Auxiliary Variables) and other for Operators(∨,∧,≡,⊃,¬, •,¬ • ¬). Operators are
implemented in the form of static method calls in Java by giving their equivalent textual
representation.

The generated automata is then minimized using standard DFA minimization algo-
rithm.

96

Algorithm 1 Creating DFA

CreateDFA(ψ)
curr-state = ψ.PastFormula() i.e. φ
all-states = Derivatives(φ)
all-transitions = Combinations(Prop)
for each state in all-states do

for each transition in all-transitions do
φ1 = ReplaceφWithPropValuesOfTransition()
for each aux in Aux do
φ = PastFormula(aux)
φ

′
= ReplaceφwithAuxValueFalse()

aux.value = Evaluate(φ
′
)

end for
φ2 = Replaceφ1WithAuxValues()
(ret,next-state) = Evaluate(φ2)
if ret=true then

automata[state][transition] = next-state
end if

end for
end for
MinimizeAutomata()

Complexity

If n is the length of the SL formula, the preprocessing step takes time O(n). Let m be
the number of past operators (• or ¬ • ¬) and k be the number of propositions. The
maximum number of states can then be 2m and there are 2k possible transitions. The
evaluation of a single state and transition takes O(n) time. The complexity of complete
automata generation is therefore O(2m.2k.n) = O(n.2m+k). If l is the number of actual
states computed for the formula the minimization algorithm in our current implementation
takesO(l2.l) = O(l3) time. This can be replaced by better algorithms for DFAminimization
to attain O(l log l) time.

7.3 Integrating observers with workflow engine

7.3.1 Generating “events” for the observers

The interaction between process and the web services is nothing but the messages/events
observed under the SOAP protocol. As our monitoring observer needs to work on the
same signals/messages as the main program engine, we need to capture these messages.
This is depicted in Figure 7.15. Let P denote the process to be monitored for properties
Pr = Pr0,PrlPrm, and let Serv = Servo, , Servk be the set of web-services with which
P interacts. For Servi, let Reqi = (Reqio , tio) , (Reqi1 , ti1),, (Reqin , tin) be the set of all

97

Algorithm 2 Evaluating a state(past formula)

Evaluate(expr)
while not(end of expr) do

Read next character (ch) from expr
if ch ∈ {Aux, Prop} then

OperandStack.Push(ch)
if ch ∈ {Oper} then

if ch ==′)′ then
Oper = OperatorStack.Pop()
if Oper ∈ {∨,∧,≡,⊃} then

Opr1 = Operandstack.Pop()
Opr2 = Operandstack.Pop()
Opr = Oper(Opr1,Opr2)
OperandStack.Push(Opr)

end if
if Oper ∈ {¬, •,¬ • ¬} then

Opr1 = Operandstack.Pop()
Opr = Oper(Opr1)
Opr = Oper(Opr1,Opr2)
OperandStack.Push(Opr)
if (Opr1 = true) ∧ (Oper = •) then
next− state = Replace • with¬ • ¬inExpr

end if
if (Opr1 = false) ∧ (Oper = ¬ • ¬) then
next− state = Replace¬ • ¬with • inExpr

end if
end if

end if
if ch =′ (′ then

OperatorStack.Push(ch)
end if

end if
end if

end while
ret = Operandstack.Pop()
if value = false then
next− state = ALARM

end if
return < ret, next− state >

messages going from P to Servi, together with the associated timeouts for receiving the
response; and Respi = Respio ,Respi1 ,..., Respin be the set of all messages received by P
from Servi. Let Obsi denote the observer for Pri, then the events required by Obsi are
given by

98

Figure 7.15: Integrating observers with workflow engine

∪
i∈Servi(Reqi ∪Respi).

A SOAP Message contains in itself all information relevant to the process state. After
intercepting, the SOAP messages are parsed and analyzed to ascertain whether they need
to be translated as input signals to the monitor. SOAP messages are intercepted by adding
a handler (MyHandler2.class) to the default SOAP handler chain of the travel process. A
process identifier InstanceID is also passed to the Handler using the setHandlerConfig
method to identify various travel processes executing concurrently. MyHandler is derived
from a Generic Handler class and routes the SOAP messages through its handleResponse
and handleRequest methods. It receives the SOAPMessageContext object as a parameter
which is parsed, analyzed and then passed to the respective observer.

HandlerInfo hi = new HandlerInfo();

hi.setHandlerConfig(map);

hi.setHandlerClass(MyHandler2.class);

handlerChain.add(hi);

In case the web service invocation is through the REST/XML then the wrapper im-
plementation needs to generate similar events for the observer. Since the architecture is
loosely coupled adding such functionality should be trivial for the specific REST service
implementer.

The SOAP messages sent and received also need to be correlated. SOAP in conjunction
with WS-Addressing, contains an identifier (messageID) and refers to a previous message
through the relatesTo header. We use this information for correlating messages belonging
to the same service instance. It is to be noted that there is a separate executing instance
of the automata for each process instance. This is managed internally in our system using
a hashmap.

99

7.3.2 Receiving “alerts” from monitors

The observer needs a mechanism to communicate to the EasyTravel for violations detected
to enable it to take appropriate actions. For our implementation we have used Orc-engine
(ver 1.1) as a workflow engine which is Java based but does not have any in-built interrupt
mechanism of its own. In order to receive interrupts from the observer and to be able to
process them on priority, we have modified the engine to create an interrupt buffer where
the violations are added as soon as they are detected. Interrupt handling mechanism
is implemented by adding three classes (a) an Interrupt Event class (b) a Listener class
and (c) an Interrupt buffer. These are standard implementation of callback mechanism.
The Interrupt event class is used by the observer to fire an event (interrupt) as soon as
violation is detected On receiving any event it notifies all its listeners which then writes to
the interrupt buffer. The execution mechanism is given below:

Execute()

[loop ExecuteNextActivity()

] ||

[Interrupt listener receives current value

of p1:p7

if !(p[i].violation) then

execute(action(p[i]))

]

7.3.3 Actions against “alerts”

Actions against detected violations could range from sending mails/sms, database upda-
tion, invocation of an alternate web-service or terminating current process. These actions
are made available in a standard library of functions. In addition to the workflow engine,
“alerts” are also sent to the admin dashboard for the administrator to have a global view
of the system. Following actions are provided in our system:

• send(‘email/sms’,prop,addr): The property violation is emailed/smsed at address
provided.

• execute(classname,methodname): Specific actions can be implemented as Java classes.
On detection of a specific violating condition the corresponding Java method is in-
voked.

• halt : Stop executing the given process instance.

100

Chapter 8

Wf Sla Mon: GUI Capabilities and
Experimental Evaluation

This chapter provides an overview of the implementation technologies used, GUI features,
some screenshots of Wf Sla Mon tool and the results of the performance evaluation tests
that have been performed.

8.1 Implementation Architecture

The technologies used for the implementation of various components in this framework
is provided in Figure 8.1. Most of the transformational algorithms and interfacing is
achieved using Java API. The property specification in MSC is developed using the Eclipse
Graphical Editing Framework (GEF). The final observers are also in the form of Java
classes. Monitors are compiled into a single jar file which can be plugged into the workflow
engine. The web client for this tool monitoring is deployed on Apache Tomcat web server.
Java Applets are used for displaying the monitoring results online by creating a socket
connection to the workflow execution engine. In case of any violations the workflow engines
sends an alert on this socket. This is refreshed on the client machine immediately. Java
event handlers are used for communication between the monitors and the workflow engine.
The monitors communicate with the workflow engine using interrupts (event listeners)
which in turns communicates with the client using the socket connection.

8.2 EasyTravel in Orc

The EasyTravel process is implemented using Orc as given below. The site ReceiveSearchCri-
teria (Line 11) receives a user search criteria in the form of a tuple (price,type). The process
then gets the list of services meeting the criteria using FetchServices. This is published
in a list services (Line 12). The user is then presented with this list out of which he se-
lects the service he requires (user.GetUserSelection()) in Line 4. The Webservice site in
Line 4 returns the site corresponding to the selected service. The process then contacts

101

Figure 8.1: Wf Sla Mon Components

this selected site (getCurrentAvailability) to get the current status. The service is then
booked (BookService) and payment made PaymentService (Line 16). While the booking
and Payment is on, in case, of a cancelation, the booking is canceled CancelBooking. This
is indicated in the Orc process with the pruning operator < in Line 15.

1. def XOR(b,f,g) = if (b) then f else g

2.

3. def Select(services) =

4. user.GetUserSelection() >serviceurl> Webservice(serviceurl) >service>

5. (

6. let(service,price) <price<

7. service.getCurrentAvailability()

8.)

9. >(service,price)> let(service,price)

10.

11. user.ReceiveSearchCriteria() >(price,type)>

12. travel.FetchServices(price,type) >services>

13. Select(services) >(first,currentprice)>

14. (

15. let(stat) <stat<

16. first.BookService() >status>

17. if (status=success)

18. then user.ReceivePaymentdDetails() >> first.PaymentService()

19. else sendRejectToUser()

20. |

21. first.receiveCancellation()

22.)

23. >ret>

102

24. XOR(ret=success,sendAckToUser(),

25. XOR(ret=cancel,user.CancelBooking() >> sendRejectToUser(),sendRejecttoUser())

26.)

8.3 Wf Sla Mon: GUI Features and Capabilities

The graphical environment used in the framework has following features:

• a graphical tool for drawing MSC diagrams for specifying the properties and gener-
ating automata files from the same

• a wizard for specifying a DSL formula to be used as a property or a SLO.

• automatic generation of an executable automata from a given DSL formula

• viewing the generated automata graphically

• composing SLAs/monitors with the SLOs defined earlier

• online monitoring of all SLAs showing violations, their frequency etc.

The association of input events for the monitors(automata) is done at the time of SLA/monitor
composition. One or more monitors can then be added conjunctively. A few screenshots
of the tool are provided below:

Specifying Scenarios in MSC

The wizard for specifying properties in MSC is implemented by extending the open source
“tutogef” project. The wizard generates all related monitor files. A screenshot of the tool
is given in Figure 8.2

Specifying DSL formula

The wizard for creating DSL formula integrates the BNF grammar rules with a user in-
terface. The user starts with the basic formula and then expands it as per the grammar
rules till it reaches the terminal symbol of the grammar. This ensures that the formula
is well formed. The formula can be defined without using the wizard also in which case
a “Validate” button helps in verifying the syntax. Once verified, the automata can be
generated and viewed graphically for easier understanding and verification. The automata
is generated as a Java file which can be directly plugged-in to the Orc (or any other or-
chestration language like BPEL) work-flow engine. Figure 8.5 gives a compilation of some
screen shots of the tool.

103

Figure 8.2: Specification of properties using MSC

Figure 8.3: Specification of properties using SL

Composing SLAs from SLOs

Once the SLOs are specified as properties, SLAs are specified as a conjunction of all these
SLOs along with their mapping of propositional symbols to the events in the form of ser-

104

Figure 8.4: A wizard for specifying SL formula

vice interactions. Multiple SLAs are combined to form the global monitor specification.
Let n be the number of partners and let k be the number of SLOs in a given SLA SLAi then,

Monitor = SLA1 ∧ SLA2 ∧ ...SLAn
where SLAi = SLO1 ∧ SLO2...SLOk

The SLAs are stored in a XML format. The association of the propositional variables
with the actual events corresponding to the web service interactions is done at this stage.
Any property i.e. SLO, once defined, can be used in multiple SLAs by modifying its event
associations.

Admin dashboard for online monitoring

The admin dashboard is a web-based client which is developed using Java Sockets. In case
of violations the monitors send events to this socket (if open). The web client is based on
applets which are refreshed as soon as data is received from observers.

8.4 Experimental Evaluation

8.4.1 DSL Automata generation v/s Lustre

For evaluation of algorithm for generating the automata, monitors (automata) were created
by specifying the DSL formulas and then evaluated against two parameters (i) number
of states/transitions in the generated automata (ii) time taken for automata generation.
The automata was compared with that of Lustre by specifying the equivalent property
in Lustre and calculating the time taken in generating the automata. The results of this
experiment is given in Table 8.1. The indicated time is in milliseconds and is the difference
in the time returned by System.currentTimeMillis() command at the start and end of
the automata creation program. Here, the examples refer to the examples in Section
7.2.1 except “Example 6” which was a sample case taken for increasing the number of
states/transitions. The number of states and transitions created using the tool for these
examples was exactly the same as that of Lustre. (Experiments with other independent

105

Figure 8.5: Composing monitors/SLAs and viewing the generated automata

Figure 8.6: Intercepted Messages

106

Figure 8.7: Admin dashboard of Wf Sla Mon

Table 8.1: Comparison of Automata with Lustre
Formula Time

Taken
(ms)

Number of States
/Transitions

Number of
States/Transitions
(Lustre)

p6 2.5 2/3 2/3
p7 8.5 2/4 2/4
Example 4 8.5 3/5 3/5
Example 5 2.5 2/3 2/3
Example 6 29.5 4/10 4/10

examples also generated comparable number of states). Performance wise the time taken
was found to increase with the number of auxiliary variables used. However, this does not
have an impact as these are compiled away.

8.4.2 Performance impact of monitoring on executing processes

The performance impact of the monitoring engine on the execution of the process was
studies. EasyTravel process was implemented as an Orc script as given earlier. Orc-engine
(ver 1.1) was used as the workflow engine. External web services were implemented as
java web services and deployed on Apache Tomcat on the Local Area Network to simulate
this process. The time taken by the travel process for 30 executions with and without
monitoring was observed. Monitoring was done by adding 1 to 6 monitors. The results

107

Figure 8.8: Performance impact of monitoring on workflows

are given in Figure 8.8. Recovery actions were added for sending email alerts. It was
observed that monitoring increased the overall time of execution by around 200-300 ms.
However this includes the time taken for recovery action. The startup time for monitor
configuration was observed to be 30 ms. As the monitors can be conjunctively added, the
number of monitors did not impact the performance significantly.

108

Chapter 9

Conclusions, Specific Contributions,
Limitations and Future Work

9.1 Conclusions

Workflow technologies are most important for the automation of business processes these
days. There is a growing requirement for having powerful frameworks that can allow
development of an efficient, correct and inter-operable process workflow. However, there
remains some gaps in conceptualizing and implementation due to the dissimilarity in the
domain expertise of the people involved and the languages to be used. The business
analysts try to visualize the system at a higher level and are not concerned about the
implementation environment. The conceptual language they use often does not allow them
to harness the power of the underlying workflow technologies/languages used. Another
challenge in realizing such complex workflows is to ensure that their behavior remains
consistent with the intended specifications ranging from performance requirements like
QoS attributes and real-time constraints (safety properties). The workflows, thus, needs a
mechanism for runtime monitoring as it is difficult to perceive all possible outcomes of its
component service at the design time and evaluate dynamic executions. Further, workflows
may require certain attributes that can only be computed externally. They also need to
monitor their Service Level Agreements (SLAs) with partners in order to guarantee their
process behavior. This thesis, tries to address a few of these problems.

Bpmn2Orc, a system developed as part of this work, takes as an input a conceptualized
BPMN model, validates it and then transforms it into an executional language Orc. This
extends the capabilities of the language Orc to the business analysts community and the
cloud computing environments also. The tool Bpmn2Orc
(a) allows the business analyst community to harness the power of the language Orc.
(b) provides support for verification and debugging of BPMN models to detect concurrency
properties like deadlocks etc., and
(c) can provide an intuitive interface for realizing map-reduce enabled workflows to the
scientific community. It is shown that such a translation is indeed possible as it supports

109

translation of models with cycles, quasi-structured flows and certain unstructured flows
also. Since it follows a graph based approach any translation of a BPMN gateway that
depends on some parameters of another gateway can be done easily.

Further, the language Orc is studied in depth and analyzed for various workflow pat-
terns. Its suitability is compared with other languages in this domain. The analysis shows
that it is a powerful and highly expressive language supporting most of the forty three
control flow patterns. However, since the language syntax is not very intuitive for the non-
technical people, its usage with the business community has remain limited. The results
of this study is also provided.

Another system developed as part of this work is an online monitoring system named
Wf Sla Mon. It works by maintaining a watch on all external interactions of an executing
workflow instance in order to ensure that a set of given properties are always satisfied.
The system makes use of Message Sequence Charts (MSCs) and the temporal logic, SL,
for specification of monitoring properties. MSCs are used to depict a wanted or unwanted
scenario and SL is used to express real time constraints like safety properties. From the
specification, monitors are generated automatically in the form of an automata which is
wrapped with timers and other quantification attributes to form the final observer. The
developed system has many add-on features for ease of monitoring. It provides a web
based user interface for viewing all external message exchanges and the properties being
monitored at runtime. It provides a rich GUI for specifying monitoring properties in the
form of MSC based scenarios and a wizard for specifying a SL formula. The wizard not
only allows specification but also validates the SL formula syntactically. The generated
automata can also be viewed graphically. A user interface for specifying a complete Service
Level Agreement (SLA), formally is also provided.

The generated observers are then integrated with the runtime system of the workflow
engine to allow process adaptations. The process can initiate recovery actions which may
be simple actions like sending emails or a more complicated ones where the process halts
or takes an alternate course (use alternate web service). This allows the workflow process
to be adaptive in response to the changing environment continuously.

As part of the work, it is further demonstrated, how, a given SLA can be broken into
measurable and verifiable properties and then monitored by this system. The framework,
thus, allows an organization to ensure that its SLAs are indeed adhered to.

Finally, experiments were conducted to study the performance impact of runtime mon-
itoring on process executions. The study shows that adding properties do not affect the
performance of the executing process significantly. (cf. Table 8.8) As the approach is
conjunctive, it is scalable as demonstrated by the experiments.

9.2 Specific Contributions

The main contributions of this thesis are:

• A system named Bpmn2Orc, that takes as an input a conceptualized BPMN model,
validates it and then transforms it into an executional language Orc (a recent lan-

110

guage for web orchestration). Graph based transformation techniques are used where-
in a given Business Process Diagram (BPD) diagram is validated for their well-formed
ness and then converted to a set of Orc computation structures (in the form of Orc
Graphs). These Orc Graphs are validated against certain deadlock conditions. Later,
it is traversed to generate the executable code that can be used by the technical an-
alysts for realizing the process workflow. The system Bpmn2Orc thus provides a
validated code generation based on Orc starting from a BPMN specification.

• An analysis of the language Orc for realizing the forty three workflow control flow
patterns and its comparison with other BPM languages.

• An online monitoring system named Wf Sla Mon for runtime monitoring of busi-
ness process workflows. It monitors properties that are specified using temporal
logic SL and generates observers in the form of a deterministic finite state automata.
Properties can also be specified using MSC in the form of wanted or unwanted sce-
narios. The properties specified above are translated into observers, in the form of a
deterministic automata, directly using the algorithm provided. The system provides
a rich user interface and wizards for specification and validations of these properties.
It also provides a provision to view all external message interactions and property
evaluations at runtime.

• A mechanism for realizing adaptive workflows. This is achieved by integrating the
runtime monitoring components (the final observers) generated earlier with the run-
time system of the workflow engine. The observers generates “alerts” on detection
of any violations that are then received by the workflow process. The process then
initiates recovery actions as per specification. This adaptation is also illustrated as
part of the work.

• Illustration of the methodology where formal properties can be composed from in-
formal Service Level Agreements (SLAs), formally specified and monitored using the
above framework.

• A study on performance impact of adding observers to the executing workflow pro-
cesses. The experiments show that observers can be added conjunctively and does
not have significant impact on the performance of the executing process.

9.3 Limitations and Future Work

It is envisaged that the tool Bpmn2Orc will allow the business community to harness the
power of the language Orc through a translation mechanism. The transformation engine
translates the BPMN model to Orc. At present, only the core subset of BPMN is targeted,
which is for the control-flow aspects of the workflow. There are other constructs of BPMN,
like, data-flow that have not been addressed here. The initial experiments show that
Bpmn2Orc can provide an intuitive interface for realizing map-reduce enabled workflows

111

Figure 9.1: Workflows as SaaS under Cloud

to the scientific community as scientific workflows are more data-centric and the language
Orc has been applied in realizing map-enabled workflows also. Translation of dataflow
aspects of the BPMN is one of the future scope of this work. Further, more experiments
need to be conducted on using this framework for realizing map-reduce enabled workflows.

A translation between any source and target model typically limits the usage of target
language to the constructs supported by the source language. The workflow control flow
patterns based analysis of Orc shows that the language Orc has certain features that may
not be directly specified using the existing BPMN syntax. The language BPMN therefore
needs to be extended to utilize the full power of Orc. Extension of the language BPMN
for such Orc constructs needs to be looked into as part of future work.

With the advances in cloud computing technologies, organizations are increasingly con-
sidering deploying the workflows on a cloud. Utilizing cloud services for business workflows
can be achieved in following ways (a) IaaS i.e. Infrastructure As A Service e.g. using hard-
ware, storage from the cloud environment but building, deploying and running workflow
applications themselves (b) PaaS i.e Platform As A Service where the platform e.g. oper-
ating system, web application server etc is provided on a cloud and the clients can execute
their workflow engines on this platform (c) SaaS i.e. Software As A Service, where, the
workflow engine is provided under a cloud and the clients can create and deploy their
business processes. Sometimes SaaS based workflows may be deployed for multiple tenants
(same workflow specification for multiple tenants). In such a case the data needs to be
segregated and security enforced. SaaS based workflows require multiple levels of SLAs to
be satisfied. It is felt that the Wf Sla Mon system can be extended for such SaaS based
workflows on clouds where multiple tenants access the same workflow. Monitoring support
can be added by each tenant based on his requirements. It is planned to experiment this
on a larger cloud based workflow which can support monitoring of SLAs.

112

References

[Aalst et al., 2008] Aalst, W. M. P. v. d., Dumas, M., Ouyang, C., Rozinat, A., and Ver-
beek, E. (2008). Conformance checking of service behavior. ACM Transactions on
Internet Technology, 8(3):13:1–13:30.

[Barbon et al., 2006] Barbon, F., Traverso, P., Pistore, M., and Trainotti, M. (2006). Run-
time monitoring of instances and classes of web service compositions. In International
Conference on Web Services, 2006 (ICWS’06), pages 63 –71.

[Baresi et al., 2010] Baresi, L., Caporuscio, M., Ghezzi, C., and Guinea, S. (2010). Model-
driven management of services. In 2010 IEEE 8th European Conference on Web Services
(ECOWS), pages 147 –154.

[Baresi et al., 2009] Baresi, L., Guinea, S., Pistore, M., and Trainotti, M. (2009). Dynamo
+ astro: An integrated approach for bpel monitoring. In IEEE International Conference
on Web Services, 2009 (ICWS’09), pages 230 –237.

[Chen et al., 2011] Chen, C., Zaidman, A., and Gross, H.-G. (2011). A framework-based
runtime monitoring approach for service-oriented software systems. In Proceedings of the
International Workshop on Quality Assurance for Service-Based Applications, QASBA
’11, pages 17–20, New York, NY, USA. ACM.

[Comuzzi et al., 2009] Comuzzi, M., Kotsokalis, C., Spanoudakis, G., and Yahyapour, R.
(2009). Establishing and monitoring slas in complex service based systems. In Pro-
ceedings of the 2009 IEEE International Conference on Web Services, ICWS ’09, pages
783–790, Washington, DC, USA. IEEE Computer Society.

[Cook et al., 2006] Cook, W. R., Patwardhan, S., and Misra, J. (2006). Workflow patterns
in Orc. In Proc. of the International Conference on Coordination Models and Languages
(COORDINATION).

[Czarnecki and Helsen, 2003] Czarnecki, K. and Helsen, S. (2003). Classification of Model
Transformation Approaches.

[Fei et al., 2009] Fei, X., Lu, S., and Lin, C. (2009). A mapreduce-enabled scientific work-
flow composition framework. In IEEE International Conference on Web Services, 2009
(ICWS’09), pages 663 –670.

113

[Gan et al., 2007] Gan, Y., Chechik, M., Nejati, S., Bennett, J., O’Farrell, B., and Wa-
terhouse, J. (2007). Runtime monitoring of web service conversations. In Proceedings
of the 2007 Conference of the Center for Advanced Studies on Collaborative Research,
CASCON ’07, pages 42–57, New York, NY, USA. ACM.

[Group, 2006] Group, O. M. (2006). Business process modeling notation (bpmn) version
1.0. omg final adopted specification.

[Haiteng et al., 2011] Haiteng, Z., Zhiqing, S., and Hong, Z. (2011). Runtime monitoring
web services implemented in bpel. In 2011 International Conference on Uncertainty
Reasoning and Knowledge Engineering (URKE), volume 1, pages 228 –231.

[Halbwachs et al., 1993] Halbwachs, N., Fernandez, J.-C., and Bouajjani, A. (1993). An
executable temporal logic to express safety properties and its connection with the lan-
guage lustre. In Universite Laval.

[Hallé and Villemaire, 2009] Hallé, S. and Villemaire, R. (2009). Runtime monitoring of
web service choreographies using streaming xml. In Proceedings of the 2009 ACM sym-
posium on Applied Computing, SAC ’09, pages 2118–2125, New York, NY, USA. ACM.

[Hofstede, 2005] Hofstede, A. H. M. T. (2005). Yawl: Yet another workflow language.
Information Systems, 30:245–275.

[Keller and Ludwig, 2003] Keller, E. and Ludwig, H. (2003). The wsla framework: Speci-
fying and monitoring service level agreements for web services. Journal of Network and
Systems Management, 11:2003.

[Khaxar et al., 2009] Khaxar, M., Jalili, S., Khakpour, N., and Jokhio, M. (2009). Mon-
itoring safety properties of composite web services at runtime using csp. In Enterprise
Distributed Object Computing Conference Workshops, 2009 (EDOCW ’09), pages 107
–113.

[Kiepuszewski et al., 2000] Kiepuszewski, B., Hofstede, A. H. M. t., and Bussler, C. (2000).
On structured workflow modelling. In Proceedings of the 12th International Conference
on Advanced Information Systems Engineering, CAiSE ’00, pages 431–445, London, UK,
UK. Springer-Verlag.

[Kitchin et al., 2009] Kitchin, D., Quark, A., Cook, W., and Misra, J. (2009). The orc
programming language. In Proceedings of the Joint 11th IFIP WG 6.1 International
Conference FMOODS ’09 and 29th IFIP WG 6.1 International Conference FORTE ’09
on Formal Techniques for Distributed Systems, FMOODS ’09/FORTE ’09, pages 1–25,
Berlin, Heidelberg. Springer-Verlag.

[Löwgren, 1988] Löwgren, J. (1988). History, state and future of user interface management
systems. SIGCHI Bull., 20(1):32–44.

114

[Ludwig et al., 2004] Ludwig, H., Dan, A., and Kearney, R. (2004). Cremona: an archi-
tecture and library for creation and monitoring of ws-agreents. In Proceedings of the
2nd International Conference on Service Oriented Computing, ICSOC ’04, pages 65–74,
New York, NY, USA. ACM.

[Mahbub and Spanoudakis, 2004] Mahbub, K. and Spanoudakis, G. (2004). A framework
for requirents monitoring of service based systems. In Proceedings of the 2nd Interna-
tional Conference on Service Oriented Computing, ICSOC ’04, pages 84–93, New York,
NY, USA. ACM.

[Misra, 2006] Misra, J. (2006). Computation orchestration: A basis for wide-area comput-
ing. In Journal of Software and Systems Modeling, pages 10–1007.

[Morgan et al., 2005] Morgan, G., Parkin, S., Molina-jimenez, C., and Skene, J. (2005).
Monitoring middleware for service level agreements in heterogeneous environments. In In
Proceedings of the 5th IFIP Conference on e-Commerce, e-Business, and e-Government
(I3E, pages 26–28.

[Moser et al., 2008] Moser, O., Rosenberg, F., and Dustdar, S. (2008). Non-intrusive mon-
itoring and service adaptation for ws-bpel. In Proceedings of the 17th International
Conference on World Wide Web, WWW ’08, pages 815–824, New York, NY, USA.
ACM.

[Ouyang et al., 2009] Ouyang, C., Dumas, M., Aalst, W. M. P. V. D., Hofstede, A. H.
M. T., and Mendling, J. (2009). From business process models to process-oriented soft-
ware systems. ACM Transactions on Software Engineering and Methodology, 19(1):2:1–
2:37.

[Ouyang et al., 2007] Ouyang, C., Dumas, M., ter Hofstede, A. H., and van der Aalst,
W. M. (2007). Pattern-based translation of bpmn process models to bpel web services.
International Journal of Web Services Research (JWSR), 5(1):42–62.

[Papazoglou et al., 2007] Papazoglou, M. P., Traverso, P., Ricerca, I., and Tecnologica, S.
(2007). Service-oriented computing: State of the art and research challenges. IEEE
Computer, 40:2007.

[Raimondi et al., 2008] Raimondi, F., Skene, J., and Emmerich, W. (2008). Efficient online
monitoring of web-service slas. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16, pages 170–
180, New York, NY, USA. ACM.

[Russell et al., 2006] Russell, N., Hofstede, A. H. M. T., and Mulyar, N. (2006). Workflow
controlflow patterns: A revised view. Technical report, BPM Center Report BPM-06-22.

[Sahai et al., 2002] Sahai, A., Machiraju, V., Sayal, M., Moorsel, A. P. A. v., and Casati,
F. (2002). Automated sla monitoring for web services. In Proceedings of the 13th

115

IFIP/IEEE International Workshop on Distributed Systems: Operations and Manage-
ment: Management Technologies for E-Commerce and E-Business Applications, DSOM
’02, pages 28–41, London, UK, UK. Springer-Verlag.

[Schmid, 2011] Schmid, M. (2011). An approach for autonomic performance management
in soa workflows. In 2011 IFIP/IEEE International Symposium on Integrated Network
Management (IM), pages 698 –701.

[Stohr and Zhao, 2001] Stohr, E. A. and Zhao, J. L. (2001). Workflow automa-
tion: Overview and research issues. Information Systems Frontiers, 3:281–296.
10.1023/A:1011457324641.

[The University of Texas, 2011] The University of Texas (2011). Orc user guide.
http://orc.csres.utexas.edu/documentation/html/userguide/userguide.html.

[van der Aalst and vanHee, 2004] van der Aalst, W. and vanHee, K. (2004). Workflow
Management. MIT Press.

[van der Aalst, 1998] van der Aalst, W. M. P. (1998). The application of Petri nets to
workflow management. The Journal of Circuits, Systems and Computers, 8(1):21–66.

[Van Der Aalst et al., 2003] Van Der Aalst, W. M. P., Ter Hofstede, A. H. M., Kie-
puszewski, B., and Barros, A. P. (2003). Workflow patterns. Distributed Parallel
Databases, 14(1):5–51.

[White, 2005] White, S. (2005). Using bpmn to model a bpel process. Technical report,
BPTrends, 3(3):118.

[Wohed et al., 2009] Wohed, P., Russell, N., ter Hofstede, A. H. M., Andersson, B., and
van der Aalst, W. M. P. (2009). Patterns-based evaluation of open source bpm systems:
The cases of jbpm, openwfe, and enhydra shark. Information and Software Technology,
51(8):1187–1216.

[Wohed et al., 2006] Wohed, P., van der Aalst, W. M. P., Dumas, M., Arthur, and Russell,
N. (2006). Pattern-based Analysis of BPMN - An extensive evaluation of the Control-
flow, the Data and the Resource Perspectives. Technical Report BPM-06-17, BPM
Center.

[Wohed et al., 2002] Wohed, P., van der Aalst, W. M. P., Dumas, M., and ter Hofstede,
A. H. (2002). Pattern based analysis of bpel4ws. Technical report, Technical report,
FIT-TR-2002-04, QUT.

[Wohed et al., 2003] Wohed, P., van der Aalst, W. M. P., Dumas, M., and ter Hofstede,
A. H. (2003). Analysis of web services composition languages: The case of bpel4ws. In
PROC. OF ER03, LNCS 2813, pages 200–215. Springer Verlag.

116

[Wu et al., 2011] Wu, G., Wei, J., Ye, C., Shao, X., Zhong, H., and Huang, T. (2011).
Runtime monitoring of data-centric temporal properties for web services. In 2011 IEEE
International Conference on Web Services (ICWS), pages 161 –170.

[Yang et al., 2010] Yang, Q., Ma, D., Zhao, Y., and Li, Z. (2010). Towards a formal
verification approach for implementation of web services specifications. In Proceedings
of the 2010 IEEE Asia-Pacific Services Computing Conference, APSCC ’10, pages 269–
276, Washington, DC, USA. IEEE Computer Society.

[Zhang and Li, 2010] Zhang, G. and Li, B. (2010). A way to model flow construct and
its three properties verification for bpel specification. In Proceedings of the 2010 IEEE
Asia-Pacific Services Computing Conference, APSCC ’10, pages 277–284, Washington,
DC, USA. IEEE Computer Society.

117

List of Publications

[Peer Reviewed International Conference Publications]

1. N Goel and R K Shyamasundar. Automatic Monitoring of SLAs of Web Services. In
IEEE Asia Pacific Services Computing Conference, APSCC 2010: 99-106.

2. Nihita Goel, N. V. Narendra Kumar, R. K. Shyamasundar. SLAMonitor: A System
for Dynamic Monitoring of Adaptive Web Services.. In IEEE European Conference
on Web Services, ECOWS 2011: 109-116.

3. N Goel and R K Shyamasundar. An executional framework of BPMN using Orc. In
IEEE Asia Pacific Services Computing Conference, APSCC 2011.

[Journal Publications]

1. N Goel and R K Shyamasundar. An executional framework of BPMN using Orc. In
FTRA Journal of Convergence, Vol 3, No 1, Mar 15, 2012.

2. [Submitted] N Goel and R K Shyamasundar. Wf Sla Mon: A system for runtime
monitoring of business process workflows. In IEEE Transaction Services Computing.

118

Biography of Candidate

Nihita Goel has a Masters in Computer Science and around 17 years of experience in the
field of Information Technology. She is presently working as Scientific Officer and Head,
Information Systems Development Group at the Tata Institute of Fundamental Research,
India and also pursuing her PhD under the guidance of Prof R.K Shyamasundar. She can
be reached at nihita@tifr.res.in

119

Biography of Supervisor

R.K. Shyamasundar is a Fellow IEEE and Fellow ACM holds M.E., and Ph.D in Computer
Science and Automation from IISc, Bangalore. He is currently Senior Professor and JC
Bose National Fellow at the Tata Institute of Fundamental Research, where he served also
as the founder Dean of the School of Technology and Computer Science. His principal
areas of interest are concurrent programming languages, formal methods, realtime systems
and information security. He has more than 250 publications in peer reviewed journals and
conferences, and several international patents in US and India. Thirty five students have
done their Ph.D. under his guidance in India and US and has served on IEEE Standards
Committee. He did his post-doctoral work during 1978-1979 as an International Research
Fellow at Eindhoven Technological University, Eindhoven, Netherlands under the famed
Professor Dr. Edsgar W Dijkstra. He has been on the Faculty/Staff at IBM TJ Watson
Research center, Eindhoven University of Technology, State University of Utrecht, Penn-
sylvania State University, University of Illinois at Urbana, University of California, San
Diego, ENSMP Sophia Antipolis, IRISA, Rennes, Verimag Grenoble Max Planck Institute
for Computer Science at Saarbrucken, Ericsson Fellow at Univ. of Linkoping etc. He is a
Fellow of all the Indian National Academies of Science and Engineering and also a Fellow
of the Academy of Sciences of the Developing world (TWAS) at Trieste, Italy. He can be
reached at shyam@tcs.tifr.res.in (http://www.tcs.tifr.res.in/˜shyam))

120

