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CHAPTER 2 

SYSTEMATIC LITERATURE REVIEW ON MACHINING ENERGY 

_______________________________________________________________________ 

This chapter provides a systematic literature review on the energy aspects of machining 

processes. The machining energy characteristics are reviewed to address the four key 

research areas of machining energy: (i) classification, (ii) modelling, (iii) saving strategies, 

and (iv) efficiency evaluation measures.  

2.1 INTRODUCTION 

Energy efficiency has become a key objective for the manufacturing industry since the 

last two decades due to rising energy prices, stringent environment policies, and increasing 

customer awareness. Despite the development of green energy technologies, fossil fuels 

are still the major resources for energy generation. The use of large amount of fossil fuels 

contributed 29.3 Gigatonnes carbon emissions in 2008; expected to rise to 35.4 Gigatonnes 

in 2035 (Campatelli et al., 2015). 

According to a study conducted by International Energy Agency (IEA), manufacturing 

industries account for one-third of global energy consumption and 36% of net global 

carbon emissions (IEA, 2007). In 2015, the U.S. Energy Information Administration 

estimated the total global electricity consumption to be 72734 Petajoules (EIA, 2017). The 

industry sector accounted for 42% (30548 Petajoules) of the total energy consumption. As 

a sub-sector of industry sector, manufacturing consumed 27493.45 Petajoules; within 

manufacturing sector, approximately 20620 Petajoules electricity was consumed by 

machining activities. Machine tools are dominant end users of electrical energy in 

manufacturing, and responsible for high carbon emissions (Li et al., 2015; Zhou et al., 

2016). Machine tools generally operate at less than 30% efficiency (He et al., 2012), and 

have a high potential for energy saving. The energy efficiency of the machine tools has 
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direct impact on the productivity and economic efficiency of the CNC machining 

processes (Anderberg et al., 2010).  Energy efficiency of machine tools improves 

economic and environmental performance of the machining activities, therefore it has 

become a focus area of research for industry as well as academia. 

Understanding energy consumption characteristics provides the basis for energy 

saving of CNC machine tools. A large number of studies addressing the machining energy 

consumption characteristics and improvement strategies have been conducted in the recent 

years. However, a comprehensive analysis of the current state of knowledge and a 

structured methodology to understand the energy characteristics of the machine tools is 

lacking. Since the literature is very vast and fragmented, it is the time to delve into the 

current advancement in the research area and provide directions for future academic work 

and policy makers. As a step towards providing a clear understanding of machining energy 

characteristics, the current study provides a detailed analysis of the literature on machining 

energy characteristics encompassing 226 research articles from a variety of academic 

journals and conference proceedings published during last 25 years (1994-2018). The 

energy classification criteria, energy modelling approaches, energy saving strategies, and 

energy efficiency measures have been reviewed carefully. To the best of authors’ 

knowledge, it is the first systematic literature review focusing on review and holistic 

classification of the reference literature focusing on energy aspects of the machine tools 

and machining processes. The study can also be helpful for the researchers to derive new 

research interest in the area. The basic objective of literature review is to identify the 

potential research gaps on a specific topic by identifying and evaluating the existing 

knowledge on the topic (Tranfield et al., 2003). It is vital to define and justify the research 

topic, design, objective, and methodology (Hart, 1998). Literature review is an integral 
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part of any academic study, either as a standalone review work or as element in the  

introduction, methodology or results analysis sections (May et al., 2017).  

2.2 RESEARCH METHODOLOGY 

Eight types of literature review techniques are defined in the literature: state of the art, 

conceptual, realistic, systematic, narrative, critical, expert, and rapid literature review 

(Sangwa and Sangwan, 2018). The authors reviewed these techniques to select the best 

suited literature review technique based on the objectives of the study. In the current study, 

a systematic literature review was conducted to analyze and evaluate the current state and 

research trends in the field of energy efficient machining. The reference papers were 

analyzed to answer the following major questions: 

i) How the machining energy consumption should be classified for better 

understanding and transparency? 

ii) What are the energy modelling approaches for the machine tool energy 

consumption? 

iii) What are the strategies used for reducing the machining energy? 

iv) How to evaluate the energy efficiency of the machine tools? 

A four phased approach was followed to carry out the systematic literature review: (i) 

planning, (ii) literature search, (iii) data analysis and synthesis, and (iv) interpretation. In 

the planning phase, the research area and scope of the study were defined, and the research 

questions were formulated. The literature search was conducted to prepare the database 

for literature review. In the third phase, descriptive and content analyses were done. 

Finally, the findings of the review and future research directions were discussed and 

presented in the interpretation phase. 

The literature search methodology for the present study is presented in Figure 2.1. The 

literature search was done using Scopus database because it allows for quick and 
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customized literature search for high quality articles. The literature was searched using the 

keywords (‘energy’ OR ‘power’) AND (‘machining’ OR ‘machine tool’ OR ‘machine 

tools’ OR ‘milling’ OR ‘turning’ OR ‘cutting’) in the title of the paper. The keyword 

‘energy’ included the studies focusing on various energy aspects such as energy efficiency, 

energy saving, energy monitoring, energy modelling, energy efficient machining, etc. The 

search was limited to articles published in English language only. The Boolean keyword 

search in Scopus database allows to include different but relevant keywords and excludes 

irrelevant keywords in the same search. The excluded keywords were ‘ball’, ‘micro’, 

‘stone’, ‘laser’, ‘plasma’, ‘stone’, ‘rice’, ‘granular’, ‘atomic’, ‘beam’, ‘discharge’, and 

‘composite’. The present study considered the scholarly articles till 2018. 

The first attempt for keyword search resulted into 1539 articles. The search was further 

refined based on title reading. This removed 1130 articles which were focused on 

composite manufacturing, non-metal machining, chemical operations, etc. and not related 

to metal machining processes. In the third step, the search was limited to articles published 

in six databases – Science direct, Springer, Taylor and Francis, Emerald, SAGE, and 

ASME. This reduced the articles to 302. In the fourth step, the search was refined by 

reading the abstracts and conclusions and a list of 245 articles was obtained. In the fifth 

step, a set of 219 articles was obtained by filtering the articles after reading the full articles. 

Later, seven additional articles were found to be important and relevant for the study which 

were highly cited in the reference literature. This provided a set of 226 articles for the 

review and critical observations. The literature search was terminated when the snowball 

approach started leading towards the articles already included in the database. These 226 

articles are called reference articles throughout this thesis. Next, a descriptive analysis of 

these 226 articles was carried out and presented in the next section. The detailed content 

analysis is presented in subsequent sections. 
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Exclusion criteria

Keywords

1539 Articles

Inclusion criteria

219 Articles

Snowball method (both 

backward and forward)

1. Till December 2018

4. Exclusion after full paper 

reading

Research gap identification

3. Exclusion after title, abstract, 

and conclusion reading

Assessment of the articles for 

machining energy classification, 

modelling, saving strategies, and 

efficiency 

Descriptive Analysis Content Analysis

Journals and 

conferences

Timeline

Authorship

Geography

226 Articles

Machine tool + Energy/Power

Turning + Energy/Power

Machining + Energy/Power

Milling + Energy/Power

*Till December 2018

Cutting + Energy/Power

Without the words in title (‘ball’, 

‘micro’, ‘stone’, ‘laser’, ‘plasma’, 

‘stone’, ‘rice’, ‘granular’, ‘atomic’, 

‘beam’, ‘discharge’, ‘composite’)

2. Online literature database 

(Science direct, Springer, Sage, 

Taylor and Francis, ASME, and 

Emerald)

 

Figure 2.1.  Research methodology for the systematic literature review 
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2.3 DESCRIPTIVE ANALYSIS 

The data from the literature was analyzed to provide meaningful patterns and trends 

over the period of time, as follows: 

2.3.1 Distribution across Journals, Conferences and Books 

The distribution of reference papers across journals and conferences has been shown 

in Figure 2.2. It is observed that 87% of the reference papers are from peer reviewed 

journals, 7% of the reference papers are from conference proceedings and 6% reference 

papers are published as book chapters.  

 

Figure 2.2. Distribution of reference articles across journals, conferences and books 

The distribution of the reference papers among scientific journals and conference 

proceedings is provided in Table 2.1. The 226 reference papers are published in 29 

journals, 10 conference proceedings and 5 books. It is observed that 65% of the total 

reference papers are published in six journals, and Journal of Cleaner Production accounts 

for highest (54) number of articles among them. Procedia CIRP has the second highest 

number of articles (33), followed by 27 articles in the International Journal of Advanced 

197 (87%)

15 (7%) 14 (6%)

Journal Conference Book chapter
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Manufacturing Technology, 14 articles in Journal of Engineering Manufacture Part B, 11 

articles in Energy, and 9 articles in CIRP Annals Manufacturing Technology. It shows that 

only few specific journals focusing on technical aspects of machining are preferred by the 

researchers. The specialized journals on energy efficiency, applied energy and 

environmental research have lesser publications. It shows that the environmental aspects 

of energy efficient machining should be highlighted.  

Table 2.1. Distribution of reference literature across journals and conferences 

Source title Number of articles 

J. Clean. Prod. 54 

Procedia CIRP 33 

Int. J. Adv. Manuf. Technol. 27 

Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 14 

Energy 11 

CIRP Ann. – Manuf. Technol. 9 

CIRP J. Manuf. Sci. Technol. 6 

Int. J. Precis. Eng. Manuf. - Green Technol. 4 

Int. J. Prod. Res. 4 

J. Intell. Manuf. 4 

J. Manuf. Sci. Eng. 4 

Int. J. Precis. Eng. Manuf. 3 

Procedia Manuf. 3 

ASME Int. Des. Eng. Tech. Conf. 3 

Others (with less than 3 publications) 47 

2.3.2 Distribution along the Timeline 

The distribution of reference papers along the timeline shows the occurrence of 

research chronologically. The distribution of publications from 1994 to 2018 is shown in 

Figure 2.3. It is observed here that the first article on machining energy efficiency was 

published by Bayoumi and Hutton (1994) where specific cutting energy of a machining 

process was used as a measure of energy efficiency. Earlier, specific cutting energy of a 
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material, defined as the amount of energy required per unit volume of material removed, 

was used as a measure of machinability of metals. After a considerable gap of nine years, 

second paper on the topic was published by Draganescu et al. (2003), which provided 

statistical models for energy efficiency and specific energy consumption at spindle level.  

Figure 2.3 Distribution of reference articles along timeline 

The fundamental study addressing the cutting and non-cutting energy for a machining 

process was provided by Gutowski et al. (2006). The intensity of research on the topic 

increased only during the second decade of the 21st century. The number of articles 

increased exponentially after 2010. The number of articles increased to 13 in 2011 from 

four in 2010, and in 2018 the number was 45. It can be noted here that 68% of the total 

reference articles appeared in the last four years only. This sustained growth may be 

attributed to increased concern towards energy efficient machining from both academia 

and industry. In recent years, many national and international research initiatives and 

energy policies have come into action to improve the energy efficiency of machining 
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processes. For example, ISO initiated the ISO 14995 series to study the energy 

consumption and environmental performance of the machine tools (ISO, 2016, 2014). The 

European union has listed machine tools as one of the ten important product groups with 

high potential for energy saving and carbon emission reduction, in the Eco-design directive 

(EcodesignDirective, 2008). France, UK, USA, European union, and India have 

implemented many energy saving policies for SMEs (Aramcharoen and Mativenga, 2014). 

Similar initiatives have been introduced in China, Korea and Australia (Tuo et al., 2018a).  

2.3.3 Distribution across Geography and Authorship 

This section provides an overview of reference articles as per their distribution 

according to their country of origin and authorship (Figures 2.4 – 2.5). Most of articles are 

from China followed by USA, UK, and Germany. South Korea and India are at the fifth 

and sixth positions, respectively.  

 

Figure 2.4. Geographical distribution of the reference articles 
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It shows that the machining energy research is mainly focused in China, USA, UK, 

and Germany. The number of research articles from China has increased exponentially 

from eight articles in 2015 to 37 articles in 2018. The research articles from USA and UK 

have also increased in the recent years. However, the research topic has proliferated to 

most of the countries and it can be expected that in coming times, most of the countries 

will focus on machining energy research. The distribution of authorship shows the number 

of articles published by each researcher. It is observed that most of the leading authors are 

Chinese.  

 

Figure 2.5. Distribution of articles across authorship 
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first state of the art review article addressing the energy modelling and monitoring 

techniques, and energy saving strategies for machining processes was presented by Yingjie 

(2014). This paper classified energy modelling techniques based on the level of study at 

machining system, machine tool, and component levels. The challenges in assessment and 

modelling of energy consumption of machine tools were discussed. The study concluded 

that modern manufacturing industries need to improve energy and cost efficiency by rapid 

design, construction and reconfiguration of a machining system in order to maintain the 

competitive ability at the global level. 

Peng and Xu (2014a) presented a critical review of energy efficient machining 

systems. The study focused on energy management at facility level and reported that the 

energy analysis becomes more complex with consideration of higher classification levels. 

Energy efficiency at machine tool level requires more research effort to improve the 

energy efficiency of day-to-day operations at shop floor.  

Zhang (2014) presented a comprehensive literature review on energy efficiency of 

machine tools focusing on energy modelling and saving strategies. The energy monitoring 

approaches were reviewed to get an insight into the energy flow in a machine tool. The 

study outlined the challenges towards improvement in machining energy efficiency and 

highlighted the importance of energy consumption analysis at the machine tool level. 

 Yoon et al. (2015) proposed a novel hierarchical model for energy efficiency strategies 

based on ease of applicability, decision making and process levels for a single 

device/machine tool. The study mainly focused on the energy saving measures and energy 

assessment models are not discussed. It presented six hierarchical levels as assessment and 

modelling, software-based optimization, control technology, cutting improvement, 

hardware-based optimization, and design for environment.  
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Table 2.2 Summary of the existing review articles and the present study 

Reference 

study 

Journal Type of 

review 

Number 

of articles 

reviewed† 

Energy classification Energy modelling Energy saving strategies Energy 

efficiency 

evaluation 

Yingjie (2014) Int J Adv 

Manuf 

Technol 

State of 

the art 

review 

41† Single classification 

criteria: level of machining 

system 

- Improve machine tool 

functionality, optimization 

and reconfiguration of the 

machining systems 

- 

 

 

 

Peng and Xu 

(2014a)  

Int J Adv 

Manuf 

Technol 

Critical 

review 

117† - Theoretical, empirical, discrete 

event based, and hybrid models 

Optimization and energy 

efficient process planning 

- 

 

 

Zhang (2014) Proc Inst 

Mech 

Eng B J 

Eng Manuf 

Compreh

ensive 

literature 

review 

42† - Theoretical and experimental 

models in brief 

Improve machine tool 

functionality, optimization, 

and reconfiguration of the 

machining systems 

- 

 

 

 

Yoon et al. 

(2015) 

Renew sust 

energ rev 

- 155† - - Hierarchical approach at 

machine tool level 

 

- 

Moradnazhad 

and Unver 

(2017a) 

Proc Inst 

Mech 

Eng B J 

Eng Manuf 

Compreh

ensive 

literature 

review 

101† - Theoretical and empirical models 

in brief 

Optimization of cutting 

parameters 

- 

 

 

Zhou et al. 

(2016a) 

J Clean 

Prod 

Compreh

ensive 

literature 

review 

108† Five classification criteria: 

operational status, 

component, energy 

attribute, subsystem, and 

functional movement 

Linear, process oriented, and 

cutting energy based models 

Energy efficient design, 

optimization, and 

scheduling management 

- 

 

 

 

 

Zhao et al. 

(2017) 

Energy  84† Three classification 

criteria: different level, 

operating state, and 

component 

Specific energy based models at 

machine tool, spindle, and 

process levels 

Optimization of machine 

tool energy components and 

process parameters, 

improvement in peripheral 

component efficiency 

- 

 

 

 

 

Present study   226 Six classification criteria: 

level, energy attribute, 

cutting attribute, operating 

state, machining sub-

system/ activity, and 

component/ Therblig 

Detailed review of energy 

consumption models based on 

specific cutting energy of 

machine tool, cutting energy, 

operating state, and individual 

components 

Energy saving strategies are 

clearly classified based on 

implementation phase for 

better understanding 

Energy 

efficiency 

evaluation 

measures 

are 

discussed 

 †Total number of articles referred in the paper (the actual number of papers reviewed are not given)
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Moradnazhad and Unver (2017a) provided a comprehensive review of the theoretical 

and empirical energy models for machine tools. Optimization of cutting parameters was 

identified as an important strategy to improve the energy efficiency of machine tools, and 

various parameter optimization approaches such as design of experiments and artificial 

intelligence techniques were discussed.  

Zhou et al. (2016a) provided a comprehensive review of the energy efficiency of 

machine tools and the strategies to improve it. The study was divided into three parts. In 

the first part, the connotation of energy efficiency in context to machine tools was 

discussed. In the second part, various strategies used to improve the machining energy 

efficiency in design and use phase were discussed. In the third part, the energy assessment 

models were discussed. The study emphasized the need to develop a scientific evaluation 

index for assessment of energy efficiency of machine tools.  

Zhao et al. (2017) provided a systematic overview on the energy classification, 

prediction models, and energy saving strategies for machining processes. The existing 

review studies, published during 2014-2017, provide a good starting point for the 

researchers but not without the following limitations: 

 The reviewed articles were limited and the studies were not comprehensive. 

 Energy efficiency evaluation models were not provided by any of the studies 

To bridge these gaps, this chapter presents a systematic literature review of 226 papers 

on machining energy, from 1994 to 2018 with an aim to explore the different energy 

classification, energy modelling, energy improvement strategies, and energy efficiency 

evaluation of machine tools.  
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2.5 MACHINING ENERGY CLASSIFICATION 

The understanding of different types of energy flows and energy classification is 

essential to reduce the energy consumption of machine tools (Bharambe et al., 2015). 

Energy measurement and monitoring is the first step towards energy analysis and saving. 

Therefore, innovative and effective energy monitoring and management approaches are 

required to promote energy efficient machining. Studies have been conducted to acquire, 

monitor and store the energy information of machine tools in standard formats to explain 

the flow of energy within the machining systems (Peng et al. 2013; Kolar et al. 2016; Abele 

et al. 2015b; Lenz et al. 2017; Zein et al. 2011). Eberspächer et al. (2014) integrated power 

data, control signals, and information from simulation models to develop a power 

monitoring concept for machine tools for detailed classification of  the energy data. Event 

stream mapping has been used as an efficient approach for automated energy monitoring 

of the machine tools (Vijayaraghavan and Dornfeld, 2010).  

Energy consumption of the machine tools is a well-researched area during the last 

decade and many classification criteria have been proposed in the literature. Wang et al. 

(2015) proposed a framework to explain the diverse energy characteristics of machine 

tools under three categories: energy specific characteristics of the process, state specific 

characteristics of the machine tool, and operation specific characteristics of the workpiece. 

Energy specific characteristics are generally used for measuring and managing the energy 

consumption of the machine tools, state specific characteristics are used to monitor the 

operating states of the machine tools, and operation specific characteristics are used to 

monitor the progress of machining process. A few studies have classified the machine tool 

energy consumption up to the component level. The energy classification provided in 

reference literature has been carefully analyzed and divided into six groups based on their 

classification criteria. 
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The first group classified the energy consumption based on three levels: machine tool, 

spindle and process (Y. Cai et al., 2018a; Z. Y. Liu et al., 2018b; Sealy et al., 2016; Wu et 

al., 2017). At process level, the energy required for actual material removal or tool-tip 

energy is studied. At spindle level, the energy consumption by the spindle unit is studied 

which involves the energy required for unloaded spindle rotation, additional losses due to 

load along with tool-tip energy. The energy analysis at spindle level facilitates the analysis 

of spindle motor efficiency. At machine tool level, the energy consumption by the entire 

machine tool is analyzed. It includes the energy consumed by machine tool control 

systems, feed systems, auxiliary components, spindle unit, and material removal. 

The second group classified the energy consumption by the machine tool to 

manufacture a product based on the energy attribute as direct and indirect energy 

consumption (Arif et al., 2013; Hu et al., 2015; Mativenga and Rajemi, 2011; Peng and 

Xu, 2014b; Wang et al., 2014a). Direct energy is the energy consumed by the machine tool 

to realize the necessary operations to manufacture a product, whereas the indirect energy 

is the embodied energy of the cutting tool, coolant, and workpiece material. The indirect 

energy comprises the energy consumed for acquisition of raw or recycled materials and 

process them to manufacture the workpiece blank, coolant, or cutting tool. 

The analysis of direct energy at machine tool level is important to assess and improve 

the energy efficiency of the machine tools. The third group classified the direct energy 

consumption at machine tool level, based on the cutting attribute, as cutting and non-

cutting energy. The cutting energy is the energy required for material removal, and non-

cutting energy is the fixed energy consumed by the machine tool when it is switched on, 

irrespective of the cutting load. The power consumption during cutting is variable and 

depends upon the tool-workpiece material and cutting conditions. A study of machining 
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energy requirements at Toyota states that almost 85% of the energy is consumed as fixed 

energy in idling state, including energy consumed by control systems, lights, axis feed 

motors, spindle motor, coolant and lubrication pumps, etc. Only 14.8% of the total energy 

consumed is used for actual cutting (Gutowski et al., 2005). 

It was observed that there exists one more state between machine tool start up and 

cutting states, which is responsible for the readiness of the machine tool for cutting 

operation, termed as machine-ready state (Balogun and Mativenga, 2013). It includes the 

power consumption by unloaded spindle rotation and feed axis movement. Machine tools 

exhibit a complex and dynamic power profile. The energy consumption is calculated by 

integration of the power profile over time or the area under the power curve and time axis. 

Due to the dynamic nature of power profile, the surface area needs to be decomposed 

properly to obtain the energy consumption. Therefore, the fourth energy classification 

criteria was based upon the operating state of the machine tool. With advancements in 

energy analysis of machine tools, the energy classification included higher number of 

operating states such as spindle acceleration/deceleration, tool change, air cutting, tool 

positioning, etc. for better understanding. A few studies have used various machine 

learning approaches for determining the operating state of a machine tool (O’Driscoll et 

al., 2015; Sihag et al., 2018). The energy data is processed and classified into pre-defined 

classes using various classifiers such as support vector machine (SVM), tree classifier, k-

nearest neighbour (k-nn), etc. Hidden Markov models have also been explored to develop 

an expert system for identification of the energy efficiency state of machine tools (Y. Cai 

et al., 2018b). Frigerio et al. (2013) developed an automata based approach to model the 

function modules and operating states of the machine tools. The operating state based 

energy classification addressed by the reference studies is presented in Table 2.3.  
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Table 2.3 Energy classification based on operating state of the machine tool 
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Altıntaş et al., (2016); Avram and Xirouchakis, 

(2011); Balogun et al., (2013, 2015); Balogun and 

Mativenga, (2013a); Behrendt et al. (2012); Edem 

and Mativenga, (2017a); Rajemi et al., (2010); 

Rentsch and Heinzel, (2015); Salonitis and Ball, 

(2013a); (Vijayaraghavan and Dornfeld, 2010); 

Wang et al., (2014c); Zhang et al., (2017a) 

 x  x  x    

Zhou et al., (2018)  x   x x   x 

Moradnazhad and Unver, (2017b)  x  x  x   x 

Balogun and Mativenga, (2013a)  x  x x x   x 

Huang et al., (2016); F. Liu et al., (2015) x   x  x    

Lv et al., (2016)  x  x x x    

Zein et al., (2011)  x   x x    

Li et al., (2011)  x   x x  x  

Li and Yuan, (2013); Lv et al., (2018); Zhang et 

al., (2016) 

 x  x  x  x  

Li et al., (2016a)  x   x x x x  

Zhang et al., (2018)  x  x  x x   

C. Li et al., (2017) x   x x x x   

Li et al., (2016b)  x   x x x   

Kianinejad et al., (2015)  x  x x x x   

Tuo et al., (2018a)  x x x x x  x  

N. Xie et al., (2016) x  x  x x    

Tuo et al., (2018b)  x x x  x    

L. Li et al., (2017a) x x x  x x    

Chen et al., (2018) x x x  x x    

Mori et al., (2011)   x   x x   

Total† 6 31 6 27 15 36 5 5 3 

†Total number of reference articles for each operating state 
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The fifth energy classification criteria was based upon the machine tool sub-

systems/functional modules/composition systems. Albertelli et al. (2016) classified the 

energy consumption modules as stand-by, cutting, and functional modules. Functional 

module consists of energy consumed by various machine tool components. The energy 

consumption modules were also classified as motion and auxiliary modules (Shen et al., 

2018). Motion modules support the movements of machine tool components and material 

removal process. Spindle and feed modules are defined as motion modules. Auxiliary 

modules include the CNC, cooling, lubrication, hydraulic, and accessory modules, which 

facilitate the completion of the processing task. The machine tool sub-systems can also be 

classified as mechanical, electrical, hydraulic, and pneumatic sub-systems. Another 

criteria is to decompose the energy consumption based on functions of machine tool sub-

systems such as drive train, cooling system, hydraulic system, compressed air, auxiliary 

system, control system, etc. The different machine tool modules and the studies addressing 

them are presented in Table 2.4. 

Table 2.4 Energy classification based on machine tool sub-systems 

Reference study 
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Shen et al., (2018) x x x x x x  x 

Zhang et al., (2017b) x x x    x x 

Mohammadi et al., 

(2017) 

 x  x x x  Compressed air 

and chip conveyor 

Albertelli et al., (2016) x x x    x  

Zhao et al., (2018) x x x x   x x 

Götze et al., (2012) x x x x    Tool and waste 

handling modules 

 

One or more sub-systems are active during each operating state of the machine tool. 

Each composition system is comprised of one or more machine tool components like 
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coolant motor, axis feed motor, controller, chip conveyor, automatic tool changer, etc. The 

sixth energy classification criteria was based on machine tool components. The machine 

tool components were classified as core/driver and auxiliary/peripheral. Core/driver 

components are responsible for material removal and motion transmission while 

auxiliary/peripheral components support the auxiliary operations. The machine tool 

components can also be classified as steady or transient, based on their power consumption 

characteristics. Some studies performed classification for individual components. Peng 

and Xu (2016) explained the energy consumption of a machining system in two stages. In 

the first stage, the total energy consumption was classified for different machining states, 

and, in the second stage, the energy consumption in each machining state was divided into 

machine tool components. A hybrid energy model was developed by combining lower 

level component models and higher level state models. O’driscoll et al. (2013) presented 

an elementary study to use statistical pattern recognition approach for classification of 

machine tool components based on their energy features. The studies classifying the 

energy consumption of the machine tools based on their components are summarized in 

Table 2.5.  

It is interesting to note that it is still a challenge for researchers to identify where and 

how the energy is consumed during a machining process due to the complex structure of 

the machine tools and large number of energy consuming components in a machine tool. 

Based on the analysis of the reference articles and the classification criteria used by them, 

a six step hierarchical model for machining energy classification has been provided in the 

present study (Figure 2.6). This model can help to understand the energy classification at 

six hierarchical levels. 
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Table 2.5. Energy classification based on machine tool components 

Tier 1          

Schmitt et al., 

(2011); Triebe et 

al., (2018) 
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Wei et al., (2018)  x x x x    display screen, 

ventilation fans, 

pilot lamp 

Moradnazhad and 

Unver, (2017b) 

 x  x  x x  milling head, turret, 

lubricant pump 

Zhang et al., 

(2017a) 

x x x x    x  

Lee et al., (2015) x x x x    x  

Zhong et al., 

(2016a) 

x x x x   x   

Aramcharoen and 

Mativenga, (2014) 

x x x x   x x  

Li et al., (2013) x x      x  

Y. He et al., 

(2012) 

x x x x   x   

Braun and Heisel, 

(2012) 

x x x x    x  

Frigerio et al., 

(2013) 

 x x x  x x  part clamp, control 

cabinet, chiller 

Calvanese et al., 

(2013) 

 x x   x x x clamp pallet, 

chiller, NC drives 

Total 7 11 9 9 1 3 6 6 4 

2.6 MACHINING ENERGY MODELLING 

Due to complex energy characteristics of machine tools, it is important to develop 

precise and accurate energy consumption models for understanding and reducing the 

machining energy consumption. A large number of studies have focused on energy 

modelling of machining processes during the last decade. This section presents review of  
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Figure 2.6 Six step hierarchical model for machine tool energy classification 
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energy models provided in the literature. The energy models are classified into five 

categories based on their energy expression. 

i) Machine tool energy models 

ii) Cutting energy models 

iii) State based energy models 

iv) Component based energy models 

v) Therblig based energy models 

2.6.1 Machine Tool Energy Models 

 The specific energy for machining is defined as the energy required for removing a 

unit volume of material. The energy consumption can be measured at cutting, spindle and 

machine tool levels. Sealy et al. (2016) analyzed the specific energy at the three levels and 

studied the variation of these energies with process parameters for sharp and worn out 

tools under up and down milling conditions.  

 The pioneering study towards energy analysis of machine tools was presented by 

Gutowski et al. (2006). The study reported that the energy consumption by machine tools 

is not constant as assumed by most of the life cycle analysis studies, and the concept of 

fixed and cutting energy was presented. A theoretical model to predict the SEC was 

developed as a function of material removal rate based on an exergy framework. However, 

the coefficients of this theoretical model were not clearly defined and hence energy 

prediction was difficult to realize.  

 Li and Kara (2011) undertook this study to develop an empirical model to predict the 

energy consumption for a turning process. Specific energy consumption, defined as the 

energy required to remove 1 cm3 of material, was used as a function unit to compare the 

energy consumption for different materials under varying process parameters. A 

mathematical model for SEC was established as  
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𝑆𝐸𝐶 = 𝐶0 +
𝐶1
𝑀𝑅𝑅

 

where C0 and MRR are the coefficient and predictor of the inverse model respectively, C1 

is the coefficient of the predictor. The model coefficients were determined empirically. 

SEC for three different materials (mild steel 1020, aluminium 2011, and high tensile steel 

4140) were experimentally obtained and it was observed that the model was able to predict 

the SEC for the turning process with an accuracy of more than 90%. The authors further 

validated the model for multiple milling and turning centers (Kara and Li, 2011). 

Li et al. (2013) extended the energy consumption models provided in these studies to 

provide an improved energy consumption model based on thermal equilibrium and 

empirical modelling for milling process. The energy consumption by spindle motor is high 

and constitutes a high portion of total energy consumption for smaller machine tools. 

Therefore, the variation of spindle energy consumption with process parameters was 

analyzed and incorporated in the energy consumption model provided by Li and Kara 

(2011). Experimental investigations were conducted to determine the model coefficients 

for face milling of medium carbon steel (C45). The prediction accuracy of the proposed 

model was 96%. 

Zhao et al. (2016) considered the unloaded spindle power and coolant pump power 

along with stand-by and cutting power and developed energy prediction models using 

empirical modelling and back propagation neural network (BPNN) approach. The 

proposed models were verified for turning of C45 steel. The energy prediction using 

empirical and BPNN models had accuracies of 97.29% and 97.70%, respectively. 

The above discussed models are based on specific machine tools. Li and Yuan (2013) 

proposed two energy consumption models for machining processes. First, a generalized 

energy consumption model was developed for different machine tools with varying 

efficiency. The generalized model was reported to have high prediction accuracy for highly 
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automated machine tools. But, the accuracy of this model for manual, semi-automated and 

micro machine tools was limited.  Therefore, a second model was proposed for more 

accurate prediction of energy consumption of a specific machine tool. The total power 

consumption of a machine tool was modelled as a quadratic function of the MRR. The 

prediction accuracy of proposed model was compared with the well-known model 

presented by Gutowski et al. (2006). The accuracy of the proposed model was higher than 

original model for a wide range of MRR values. 

The above discussed models are widely used for specific energy consumption 

prediction at machine tool level. The model coefficients can be experimentally obtained. 

However, these models express the SEC as a function of MRR. It implies that SEC for a 

machining process at same MRR will be same irrespective of the values of cutting 

parameters. It has been observed that using different combinations of cutting parameters 

while maintaining the same MRR will result into different SEC. Therefore, energy 

modelling at parametric level is crucial to improve the prediction accuracy. 

Guo et al. (2012) defined the total specific energy consumption (TSE) for turning 

process as summation of specific process energy and specific constant energy. 

Experimental investigations were conducted to study the effect of process parameters on 

the total specific energy consumption for turning of aluminum (AlCuMgPb) and steel 

(11SMnPb30) workpieces. It was observed that the total specific energy reduces with 

increase in feed and depth of cut. TSE reduces with increase in cutting speed up to a 

threshold value and then starts increasing. This was due to dominance of increase in 

specific process energy over reduction in specific constant energy, after the threshold 

cutting speed. Zhong et al. (2016b) also modelled the SEC as a function of cutting 

parameters. 

Asrai et al. (2018) modelled the energy consumption of a machining process based on 

the energy conversion processes in the system. The proposed model was based on fewer 

assumptions and therefore the prediction accuracy was reported to be higher than the 
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existing models in the literature. The proposed model was illustrated with a steady-state 

slot milling process and the power input to the machine tool was expressed as a function 

of cutting speed, feed rate, and material removal rate. The model was statistically tested 

for uncertainty and accuracy, and it was reported to be more accurate than the existing 

literature models by Gutowski et al. (2006) and Li and Kara (2011).  

Liu et al. (2015) proposed an energy consumption model for milling process using the 

cutting power at tool tip. The tool tip power was analytically computed using existing 

cutting force models. The empirical relationship between total power consumption and 

cutting power was characterized and validated for a slot milling process. The proposed 

model was compared with the models of Li and Kara (2011) and Li et al. (2013),  and it 

was observed that the proposed model predicted the energy consumption with higher 

accuracy. The proposed model was also able to explain the variation in power consumption 

with cutting parameters under constant MRR conditions. 

Velchev et al. (2014) conducted experimental investigations to study the dependence 

of specific energy consumption on process parameters for turning process. A prediction 

model for direct energy consumption including energy consumption for set up, cutting, 

tool change for single pass turning process was proposed. 

Zhou et al. (2017) considered the effect of spindle rotation speed on the cutting power 

for a milling process and provided an improved SEC model for milling process. The 

proposed model was compared with the models of Gutowski (2006) and Li et al. (2013), 

and better accuracy was reported. The study also reported that the SEC model considering 

cutting speed, feed, depth of cut as independent variables leads to better accuracy but needs 

more experimental data. MRR should be considered as an independent variable to predict 

SEC to achieve higher accuracy with fewer experiments. Xie et al. (2016) modelled SEC 

for turning process considering the detailed effect of process parameters. The summary of 

specific energy based models at machine tool level is provided in Table 2.6. 
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Table 2.6 Summary of specific energy based models at machine tool level 

Study Energy model Process Remarks 

Gutowski et 

al. 2006) 
𝑃 =  P0 + k�̇� 

k is constant (kJ/cm3). 

- Determination of P0 and k is 

difficult 

W. Li and 

Kara, (2011) 
𝑆𝐸𝐶 = 𝐶0 +

𝐶1
𝑀𝑅𝑅

 

C0 and C1 are the model coefficients. 

turning It is a machine tool specific 

empirical model.  

Li et al., 

(2013) 
𝑆𝐸𝐶 = 𝑘0 + 𝑘1

𝑛

𝑀𝑅𝑅
+ 𝑘2

1

𝑀𝑅𝑅
 

k0, k1, k2 are model coefficients. 

milling The variation in spindle 

energy due to change in 

cutting speed was 

considered 

Zhao et al., 

(2016)  
𝑆𝐸𝐶 = 𝑘0 + 𝑘1

1

𝑀𝑅𝑅
+ 𝑘2

𝑛

𝑀𝑅𝑅
 

k0, k1, k2 are model coefficients. 

turning Li (2013) model was 

extended by considering 

unloaded spindle power and 

coolant pump power with 

stand-by and cutting power. 

Li and Yuan, 

(2013) 
𝑆𝐸𝐶 = 𝐶0 ∗ 𝑃𝑆𝑝 + 𝐶1

𝑛

𝑀𝑅𝑅
+ 𝐶2

𝑃𝑆𝑝

𝑀𝑅𝑅
+ 𝐶3 

Co, C1, C2, C3 are constants. 

milling Generalized model for 

highly automated machine 

tools. 

𝑃 = 𝑎 ∗ 𝑀𝑅𝑅2 + 𝑏 ∗ 𝑀𝑅𝑅 + 𝑐 

a,b,c are constants for a specific machine tool and 

cutting tool 

𝑆𝐸𝐶 =
𝑃

𝑀𝑅𝑅
=  𝑎 ∗ 𝑀𝑅𝑅 + 𝑏 +

𝑐

𝑀𝑅𝑅
 

 For specific machine tool 

 

Guo et al., 

(2012) 
𝑆𝐸𝐶 = 𝐶0𝑣𝑐

𝛼𝑓𝛽𝑎𝑝
𝛾
𝐷𝜙 +

𝐶1
𝑣𝑐𝑓𝑎𝑝

 

C0, C1 α, β, γ, Φ are model coefficients obtained by 

least-squares curve fitting method 

turning Parameter based energy 

modelling for constant 

specific and process 

specific energy 

consumption. 

Zhong et al., 

(2016b) 𝑆𝐸𝐶 =
𝑃𝑓𝑖𝑥𝑒𝑑

𝑀𝑅𝑅
+ 𝑘2

𝑘𝑛 + 𝑏

𝑀𝑅𝑅
 +
𝜆𝑣𝑐

𝛼𝑓𝛽𝑎𝑝
𝛾

𝑀𝑅𝑅
 

𝜆, α, β, γ, are the specific coefficients related to machine 
tools, work-piece materials, cutting tools, etc. 

turning Cutting energy was 

modelled in terms of 

detailed parameters. 

N. Liu et al., 

(2015) 𝑆𝐸𝐶 =
𝐶0
𝑀𝑅𝑅

+ 𝐶1
𝑃𝑐𝑢𝑡𝑡𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑀𝑅𝑅
  

milling The variation in power 

consumption with cutting 

parameters under constant 

MRR conditions explained. 

Velchev et 

al., (2014) 
𝑆𝐸𝐶 =

𝑃𝑢
𝑀𝑅𝑅

+ 𝐵0(𝑀𝑅𝑅)
𝐵1  

𝐵0 and 𝐵1 are specific machine coefficients 

depending on the workpiece and cutting tool 

combination. 

turning Energy consumption for set 

up, cutting, tool change for 

single pass turning process 

included. 

Zhou et al., 

(2017) 
𝑆𝐸𝐶 = 𝐶1𝑛

𝐶2 + 𝐶3
𝑛

𝑀𝑅𝑅
+

𝐶4
𝑀𝑅𝑅

 

 

milling Gutowski (2006) and Li 

(2013) models were 

extended by considering the 

effect of rotational speed on 

power consumption for 

milling process 

J. Xie et al., 

(2016) 𝑆𝐸𝐶 =
60 ∗ ∫(𝑃𝑢(𝑡) + 𝑃𝑎𝑑(𝑡) + 𝑃𝑐(𝑡))𝑑𝑡

∫ (𝑣𝑐(𝑡) + 𝑓(𝑡) + 𝑎𝑝(𝑡)) 𝑑𝑡
 

𝑃𝑢(𝑛) = {𝑃𝑢(𝑛1), 𝑃𝑢(𝑛2), …𝑃𝑢(𝑛𝑛)} 

𝑃𝑐(𝑡) = 𝐹𝑐(𝑡) ∗
𝑣𝑐(𝑡)

60
 ; 𝑃𝑎𝑑 = 𝑎1𝑃𝑐(𝑡) +

𝑎2𝑃𝑐
2(𝑡) 

turning Integrated model for SEC 

considering detailed 

process parameters 
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It is observed here that physics based models have been widely proposed in the 

literature to predict the energy consumption characteristics of the machine tools. However, 

these models involve a large number of physical variables, which are difficult to predict. 

In addition, these models have limited reliability when machine tools and operating 

conditions are uncertain. Therefore, soft computational techniques such as ANN, SVM, 

NN have also been used to predict the energy consumption by the machine tools (Ak et 

al., 2015; Kant and Sangwan, 2015a). Data driven energy prediction models using 

Gaussian process (GP) – a non-parametric machine learning approach, has also been 

provided (Bhinge et al., 2016; Park et al., 2015). Borgia et al. (2014) presented an energy 

prediction model for face milling process using feed forward neural network based on 

twenty parameters related to machine tool and workpiece specifications, machining 

features and machining strategies. 

2.6.2 Cutting Energy Models 

The energy models discussed in the last section focus on SEC at machine tool level 

and do not directly correspond to the material removal energy at process level. The cutting 

energy at process level generally accounts less than 20% of the total energy consumption 

(Gutowski et al., 2006; Jia et al., 2017b; Zhou et al., 2016). However, it is important to 

analyze the cutting energy since it governs the chip formation and new surface generation 

(Sealy et al., 2016). It directly impacts the surface characteristics of the machined 

workpiece. Therefore, a large number of studies focused on cutting energy modelling at 

process level. The cutting energy consumption models are reviewed and classified based 

on their characteristics. 

2.6.2.1 Models based on cutting force 

Indirect method for cutting power modelling based on cutting forces has been used for 

a long time. The cutting power is calculated as a product of cutting force and cutting speed. 
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The cutting force is calculated based on analytical models, numerical methods or 

experimental measurements. For example, Rentsch and Heinzel (2015) provided analytical 

model to predict the cutting force for milling process. The cutting force and power models 

were provided as: 

𝐹𝑐𝑧 = 𝑏ℎ𝑚𝑘𝑐𝐾𝛾0𝐾𝑣𝐾𝑣𝑒𝑟𝐾𝑙𝑢𝑏 

𝑃𝑐 =
𝐹𝑐_𝑧 ∗ 𝑣

1000 ∗ 60
∗ 𝑧 

where 𝐹𝑐𝑧 is the cutting force per cutting edge, z is the number of cutting edges, 𝑏 ∗ ℎ𝑚 is 

the average area of cut, 𝑘𝑐, 𝐾𝛾0, 𝐾𝑣, 𝐾𝑣𝑒𝑟, 𝐾𝑙𝑢𝑏 are correction coefficients. 

Carvalho et al. (2015) used the following model for predicting the cutting force for 

face milling operation: 

𝐹𝑐 = 𝑎𝑝𝐶𝑠1𝑓𝑧
𝑟𝑘𝑟−1(1 − 0,0.1 ∗ 𝛼)𝑠𝑒𝑛𝜑𝑟 

where 𝛼 is the axial rake angle, 𝜑 is the rotation angle of the cutting edge, 𝑘 is the approach 

angle of the cutter, and r and  𝐶𝑠1 are coefficients. 

Borgia et al. (2017) used cutting torque based models to estimate the cutting energy. 

The torque required for material removal was modelled as summation of torque due to 

material removal (𝑇𝑀𝑅) and edge forces on the tool (𝑇𝑒). 

𝑇𝐶 = 𝑇𝑀𝑅 + 𝑇𝑒 =
𝑀𝑅𝑅 ∗ 𝑘𝑡𝑐

𝑛
+
𝐷

2
∗∑𝑠𝑔𝑛(𝑛)

𝑖,𝑘

∗ 𝛥𝑎 ∗
𝑁

2𝜋
𝑘𝑡𝑒{𝜑}𝜑𝑠𝑡𝑖𝑘

𝜑𝑒𝑥𝑖𝑘  

where 𝑘𝑡𝑐 is the tangential cutting pressure, 𝑘𝑡𝑒 is tangential edge coefficients, N is number 

of cutting edges, 𝜑𝑒𝑥𝑖𝑘 and 𝜑𝑠𝑡𝑖𝑘  are the exit and starting angles (rad) for the ith engagement 

arc of the kth slice. 

The analytical models involve a large number of coefficients which are difficult to 

obtain. To overcome this gap, some researchers used numerical methods to predict the 
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cutting force and cutting energy. For example, Pervaiz et al. (2015) presented finite 

element modelling based approach to predict the cutting force and energy consumption for 

turning process. Machining simulations were carried out using DEFORM-3D software. 

The predicted cutting force was used to compute the cutting energy of the turning process. 

The non-cutting energy of the machine tool was measured experimentally at the same 

cutting conditions. The simulated cutting force and energy results were compared with 

experimental values for dry turning of Ti6Al4V alloy, the results were found to be in good 

agreement with an error of 1-8%. The proposed methodology can be used to predict the 

cutting force and energy consumption for machining processes without actually 

performing the experiments. 

Some studies used experimental methods to overcome the complex computation 

involved with numerical methods. For example, Kant and Sangwan (2014) measured the 

cutting force for a turning process using dynamometer. The cutting power was calculated 

as a product of cutting force and cutting speed. The predictive models for cutting power 

were developed using regression analysis (Kant and Sangwan, 2014), ANN and support 

vector regression (SVR) (Kant and Sangwan, 2015b). 

It is observed from the literature that the cutting force based energy models reflect the 

theoretical minimum energy required for material removal (Li and Kara, 2011). The actual 

energy consumption for material removal is higher than the computed values using the 

cutting force based models. 

2.6.2.2 Models based on metal deformation theory 

A few studies used metal deformation theory for prediction of cutting power. The 

material removal energy is decomposed into shear energy (useful) and friction energy 

(unproductive) (Ma et al., 2014; Park et al., 2016). Chetan et al. (2018) used a 

mathematical model of SCE for machining of Nimonic 90 under MQL conditions. The 
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SCE was modelled considering the shearing and frictional energy in primary and 

secondary shear zones respectively: 

𝐸𝑃𝑆𝑍 =
𝜎𝑃𝑆𝑍𝜀̅

𝑛 + 1
 

𝐸𝑆𝑆𝑍 =
(∫ 𝜏𝑠𝑡𝑤𝑑𝑥

𝐿𝑠𝑡

0
) 𝑣𝑠𝑡 + (∫ 𝜇𝑠𝑙𝜎0 (1 −

𝑥
𝐿𝑐
)
𝜁

𝑤𝑑𝑥
𝐿𝑐

𝐿𝑠𝑡
) 𝑣𝑠𝑙

𝑣𝑓𝑎𝑝
 

where 𝐸𝑃𝑆𝑍 is the specific energy in the primary shear zone, 𝜀 ̅is equivalent shear strain 

(mm/mm), 𝜎𝑃𝑆𝑍 is flow stress in primary shear zone , 𝑛 is hardening coefficient, 𝐿𝑠𝑡 is 

sticking length, 𝐿𝑐 is tool chip contact length, 𝜏𝑠𝑡 is shear stress at sticking zone, 𝜇𝑠𝑙 is 

sliding coefficient of friction,  𝐸𝑆𝑆𝑍 is specific energy in the secondary shear zone. 𝜎0 is 

nominal normal stress, 𝜁 is exponential parameter, 𝑣𝑠𝑡 and 𝑣𝑠𝑙 are the velocities in sticking 

and sliding zones, respectively. It was reported in the study that the SCE required for 

machining can be reduced by increasing the flow rate and pressure of coolant supply in 

MQL mode. 

Wang et al. (2016) modelled the cutting energy required for orthogonal high speed 

machining as the summation of friction energy at tool-chip interface, plastic deformation 

energy in primary shear zone, and kinetic energy of the flowing chip. The proposed model 

was used to analyze the specific cutting energy consumed for high speed machining of 

7075-T7451 aluminum alloy and it was observed that plastic deformation energy had the 

largest share in total cutting energy consumption followed by friction and chip flow 

energy. High cutting speed, undeformed chip thickness and positive rake angle were 

favorable conditions for energy efficient machining. 

Meng et al. (2018) proposed a cutting energy model based on plastic deformation and 

friction theory. The effect of tool geometry and process parameters on the cutting energy 

was analyzed. The proposed model was experimentally verified for estimation of energy 
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required for linear and circular arc elements and the results were obtained with a maximum 

error of 17.58%. 

2.6.2.3 Models based on detailed parameters  

The material removal power has been modelled in terms of detailed parameters by 

many authors (N. Xie et al., 2016; Lv et al., 2016) as: 

𝑃𝑐 = 𝑘𝑣𝑎𝑓𝑏𝑎𝑝
𝑐𝑎𝑒

𝑑 

where a, b, c, and d are fitting coefficients and k is correction coefficient. Here, 𝑃𝑐 

represents the minimum theoretical power required for material removal by shearing 

process. The actual power required for material removal is higher and modelled by Zhang 

et al., (2017b) as: 

𝑃𝑐_𝑎𝑐𝑡𝑢𝑎𝑙 = (1 + 𝛼)𝑘𝑣𝑎𝑓𝑏𝑎𝑝
𝑐𝑎𝑒

𝑑 

where 𝛼 is the power loss coefficient. 

Liu et al. (2018b, 2015) characterized and evaluated the energy consumed for actual 

material removal in dry milling of hardened tool steel AISI H13, at machine tool, spindle, 

and process levels. The empirical models provided by Li and Kara (2011), and Diaz et al. 

(2011) were discussed in these studies and it was quoted that these models perform well 

for prediction of specific energy consumption at machine tool and spindle levels. However, 

at process level, the net cutting specific energy cannot be predicted using these models 

(R2=41.7%) and a more detailed and accurate model is required. Regression models for 

net cutting specific energy considering four process parameters (cutting speed, feed rate, 

axial and radial depth of cut) were provided as 

𝑆𝐶𝐸 =  𝑘𝑣𝑎𝑓𝑏𝑎𝑝
𝑐𝑎𝑒

𝑑 
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where a, b, c, and d are fitting coefficients. It was also observed that MRR can be used as 

a unique indicator to predict total and spindle specific energy but for cutting specific 

energy individual process parameters should be considered.  

Balogun and Mativenga (2014) conducted experimental investigations to analyze the 

cutting power for milling process. The effects of cutting speed, feed per tooth, depth and 

width of cut on the power consumption were studied and it was observed that cutting speed 

has highest impact on cutting power. The experimental analysis was used to develop an 

empirical model between specific cutting energy and uncut chip thickness for three 

different work materials; aluminum alloy (AW6082-T6), AISI 1045 steel alloy, and 

titanium 6Al-4V alloy:  

𝑘𝑒 = 𝐾𝑒ℎ
−𝑥 

𝑘𝐴𝑙 = 0.071ℎ
−0.94 ;         𝑘𝑆 = 0.900ℎ

−0.33 ;       𝑘𝑇𝑖 = 0.670ℎ
−0.51 

where 𝑘𝑒 represents the specific cutting energy (Ws/mm3) of the work material and h is 

the un-deformed chip thickness (mm). It was observed that at lower uncut chip thickness, 

the SCE is significantly higher as compared to higher uncut chip thickness, generally used 

for conventional milling. It was recommended to perform rough milling operations at 

higher feed rates to reduce energy consumption. However, the increased tool wear at 

higher feed rates was not discussed in the study. 

2.6.2.4 Models based on tool wear 

The material removal power also depends on tool condition and hence it is complicated 

to be assessed properly. Yoon et al. (2014) provided an empirical model for material 

removal energy considering the effect of process parameters and tool wear. 

𝑃𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 = 𝑓1(𝑛, 𝑓, 𝑎𝑝) + 𝑓2(𝑛, 𝑓, 𝑎𝑝) ∗ 𝑉𝐵̅̅ ̅̅ (𝑡) 
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where 𝑉𝐵̅̅ ̅̅  is the flank wear. The model was experimentally validated for a 3-axis milling 

center. It was observed that the material removal power increases with the cutting 

parameters but the rate of increase in power depends on the tool condition.  

Shi et al. (2018) studied the effect of tool wear on the energy consumption for a 3-axis 

milling process and proposed a model to predict the energy consumption with high 

accuracy under realistic conditions of tool wear. Initially, the cutting power was modelled 

based on cutting force analysis and the coefficients were determined experimentally. The 

power without tool wear was measured experimentally. Subsequently, total power 

consumption was modelled as a function of tool wear.  

𝑃 = 𝑃0 + 𝑓(𝑉𝐵̅̅ ̅̅ ) ∗ 𝑃𝑐𝑢𝑡𝑡𝑖𝑛𝑔
0̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

where P and P0 are the total powers with and without tool wear respectively, 𝑃𝑐𝑢𝑡𝑡𝑖𝑛𝑔
0̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is 

the average cutting power during one rotation period without tool wear, and 𝑓(𝑉𝐵̅̅ ̅̅ ) is a 

polynomial function of flank wear that characterizes the variation the cutting force with 

tool wear. This model may be used to predict power consumption by measuring the tool 

wear and vice-versa for the same tool-workpiece combination. 

2.6.2.5 Models based on variable MRR 

Most of the energy consumption modelling studies consider constant or average MRR 

neglecting the dynamic energy behavior of variable MRR machining process. End face 

turning, chamfering and grooving are some examples of variable MRR machining 

processes. A few studies have considered the effect of variable MRR for machining energy 

assessment. Jia et al. (2016b) and Diaz et al. (2012) proposed improved energy 

consumption models for variable MRR machining process. The cutting process was 

divided into N sub-intervals and the MRR was assumed to be constant within the 
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subintervals. The energy consumption for each sub-interval was summed up to obtain the 

total energy consumed for machining a feature at variable MRR conditions. The cutting 

energy for variable MRR was modelled as 

𝐸𝑥 = 𝑁 ∗ ∆𝑡∑(𝑘 + 𝑏 ∗ 𝑀𝑅𝑅𝑎𝑣𝑔,𝑖)

𝑁

𝑖=1

 

where 𝐸𝑥 is energy consumed for each feature with 𝑁 sub-intervals. The proposed model 

was able to explain the variation in cutting energy with cutting parameters. Jia et al. 

(2016b) illustrated the feasibility of the model with a case study. Diaz et al. (2012) assessed 

the accuracy of the model based on standard deviation and mean error. The prediction 

accuracy of the model increased at higher MRR and processing time. 

2.6.2.6 Others 

Hu et al. (2012) modelled the cutting power based on spindle input power and the 

losses occurred. The input power for spindle unit was considered as the summation of 

unloaded spindle power (Pu), cutting power (Pc) and additional losses (Pa). The spindle 

input energy was measured by installing a power sensor at spindle power supply module. 

The additional losses were modelled as a quadratic function of the cutting power as: 

𝑃𝑎 = 𝑎0𝑃𝑐 + 𝑎1𝑃𝑐
2 

The cutting power model was obtained based on the spindle input power and the 

unloaded spindle power as  

𝑃𝑖𝑛_𝑠𝑝 = 𝑃𝑢 + (1 + 𝑎0)𝑃𝑐 + 𝑎1𝑃𝑐
2 

𝑃𝑐 =

−(1 + 𝑎0) + √(1 + 𝑎0)2 + 4𝑎1(𝑃𝑖𝑛𝑠𝑝 − 𝑃𝑢)

2𝑎1
 

where 𝑎0 and 𝑎1 are cutting loss coefficients. The spindle power loss coefficients were 

determined based on experimental investigation and power balance equation. 
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Liu and Guo (2018) proposed a prediction model for SCE by integrating machine 

learning into process mechanics. First, a SCE prediction model was obtained based on the 

prior knowledge of process mechanics. It was then integrated with tree-based radiant 

boosting method to reduce the deviation between predicted and measured SCE values. The 

model was verified by milling H13 tool steel under dry cutting condition and Inconel 718 

under dry and wet cutting conditions. 

Yang et al. (2016) developed an energy prediction model for face milling process by 

integrating Gene Expression Programming (GEP) with Greedy Randomized Adaptive 

Search Procedure (GRASP). The proposed approach overcame the two shortcomings of 

GEP – passive knowledge mining and premature convergence. The application of 

proposed model was illustrated for a face milling case study. The proposed model was 

compared ANN, nonlinear regression, and GEP approaches. It was observed that the 

accuracy for training and validation for the proposed model was higher than the other 

models. ANOVA results depicted that cutting speed was the most significant parameter 

for energy prediction followed by depth of cut and feed rate.  

2.6.3 State Based Models 

Machine tools undergo a series of operating states to execute a machining process. 

Researchers have modelled the energy consumption by one or more operating states of the 

machine tools. ISO 14955-1 (ISO, 2014) defined machine tool operating state as 

combinations of operating modes of machine tool components. The components can 

operate in three modes in each operating state - on, off or hold. The machining energy 

consumption can be obtained as summation of the energy consumed during each operating 

state. The energy consumption models for each of the operating states are discussed in this 

section. The distribution of state-based machining energy models on a timeline is 

presented in Table 2.7. 
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Table 2.7 Summary of state-based machining energy models across timeline  

Reference 

article 

Contribution 

Mativenga and 

Rajemi, (2011) 

Machine tool set up, tool change, material removal, and embodied energy of the cutting 

tool was considered for energy modelling. 

Behrendt et al. 

(2012) 

Stand-by energy consumption of different machine tools was modelled and compared. 

It was observed that the stand-by energy consumption for different machine tools is 

significantly different based on the size and complexity of the machine tools. 

Balogun and 

Mativenga, 

(2013b) 

Basic, ready, tool change, air-cutting, and cutting states were considered and energy 

was modelled as: 

𝐸𝑡 = 𝐸𝑏 + 𝐸𝑟 + 𝑃𝑡𝑐𝑡𝑡𝑐 [𝐼𝑁𝑇 (
𝑡2
𝑇
) + 1] + 𝑃𝑎𝑖𝑟𝑡𝑎𝑖𝑟 + (𝑚𝑛 + 𝑐 + 𝑃𝑐𝑜𝑜𝑙 + 𝑘�̇�)𝑡𝑐  

m is spindle speed coefficient and c is constant. 

Arif et al., 

(2013) 

Material removal, idle running, tool replacement states, and embodied energy of the 

cutting tool were considered for energy modelling.  

Li et al., (2014) Cutting state energy consumption was modelled considering the iron, copper and idling 

losses. 

Wang et al., 

(2014b) 

Idle, cutting and tool change states were considered for modelling of direct machining 

energy.  Embodied energies of cutting tool and coolant were included in the energy 

model as indirect energy.  

Peng et al., 

(2014) 

Start-up, idle, rapid transverse, and cutting states were considered for energy 

modelling. 

Hu et al., 

(2015) 

Air cutting and cutting states, embodied energy of the material were considered for 

estimation of cutting state energy using a feature based approach. 

Guo et al., 

(2015) 

Machining energy was modelled based on rapid transverse, spindle acceleration and 

material removal states.  

Zhang et al., 

(2016) 

Stand-by, cutting, and losses were considered for energy modelling. 

Li et al., 

(2016a) 

Developed a comprehensive energy consumption model for machining process 

considering the energy consumed during stand-by, air cutting, cutting, and tool change 

operations.  

𝐸𝑡 = 𝑃𝑠𝑡(𝑡𝑠𝑡 + 𝑡𝑎𝑖𝑟 + 𝑡𝑐 + 𝑡𝑡𝑐) + 𝑃𝑎𝑢𝑐(𝑡𝑎𝑖𝑟 + 𝑡𝑐)

+ (𝑃𝑠_𝑚𝑜𝑡𝑜𝑟 + 𝑃𝑠_𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛)(𝑡𝑎𝑖𝑟 + 𝑡𝑐)

+∑(𝑃𝑓_𝑚𝑜𝑡𝑜𝑟
𝑖 + 𝑃𝑓_𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝑖 )

𝑖

(𝑡𝑎𝑖𝑟 + 𝑡𝑐) + (𝑃𝑟𝑒𝑚𝑜𝑣𝑎𝑙 + 𝑃𝑎𝑑)𝑡𝑐 

where 𝑃𝑠_𝑚𝑜𝑡𝑜𝑟  and 𝑃𝑠_𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 are power of spindle motor and mechanical 

transmission of spindle drive, respectively; 𝑃𝑓_𝑚𝑜𝑡𝑜𝑟
𝑖  and 𝑃𝑓_𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝑖  are power for 

servo motor and mechanical transmission in the ith feed drive shaft. Temporal features 

and composition of energy consumption of CNC machining are analyzed. 

N. Xie et al., 

(2016) 

The energy consumption of basic, cutting, air cutting, and peak machining states was 

modelled and then machine tool energy evaluation model was established using 

Generalized Stochastic Petri Nets (GSPN). 
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Table 2.7 Summary of state-based machining energy models across timeline (Contd.)  

Reference 

article 

Contribution 

Lu et al., (2016) Calculated the energy consumption for multi-pass turning considering the energy 

consumption due to idle running, tool change, cutting, tool wear, and production and 

disposal of cutting fluid. 

Lv et al., (2016) Performed experimental analysis for energy consumption during cutting and non-

cutting states (stand-by, coolant supply, spindle rotation, axis movement, etc.). The 

study concluded that non-cutting power varies with machine tool for milling machine 

tools but is independent of machine tools for lathes. The energy consumption is reduced 

at higher MRR. 

Huang et al., 

(2016) 

Provided model for spindle start up energy.  

L. Li et al., 

(2017a) 

Modelled the energy consumption based on five operating states: stand-by, workpiece 

set-up, air cutting, cutting, and tool change.  

𝐸𝑡 = 𝑃𝑠𝑡𝑡𝑠𝑡 + 𝑃𝑠𝑡𝑡𝑠𝑒𝑡𝑢𝑝 + (𝑃𝑠𝑡 + 𝑃𝑎𝑢𝑐 + 𝑃𝑢) ∗ 𝑡𝑎𝑖𝑟 + (𝑃𝑠𝑡 + 𝑃𝑎𝑢𝑐 + 𝑃𝑢) ∗ 𝑡𝑐

+ (1 + 𝑐0)𝑘 ∗ 𝑀𝑅𝑉 + 𝑃𝑠𝑡𝑡𝑡𝑐
𝑡𝑐
𝑇

 

Zhang et al., 

(2017a) 

Modelled the energy consumption for multi-pass milling operations considering the 

energy consumed during machine start up, stand-by, machine ready, cutting, and tool 

change operating states. 

𝐸𝑡 = 𝐸𝑠𝑡𝑎𝑟𝑡 +∑𝑃0𝑡0𝑖

𝑁

𝑖=1

+∑(𝑃0 + 𝑘𝑛𝑖 + 𝑏)𝑡𝑟𝑖

𝑁

𝑖=1

+∑(𝑃0 + 𝑘𝑛𝑖 + 𝑏 + 𝑘1𝑣𝑐
𝑥1𝑓𝑥2𝑎𝑝

𝑥3𝑎𝑒
𝑥4)𝑡𝑐𝑖

𝑁

𝑖=1

+∑𝑡𝑡𝑡𝑐

𝑁

𝑖=1

𝑃0
𝑡𝑐𝑖
60𝑇𝑖

 

Rief et al., 

(2017) 

Calculated the machining energy as the summation of basic energy, cutting energy, 

coolant energy, and tool manufacturing energy. 

Ma et al., 

(2017a) 

Proposed specific energy estimation model for material removal during milling process 

considering cutting energy and air-cutting energy. 

Lv et al., (2017) Proposed an energy prediction model for spindle acceleration using moment of inertia 

of spindle drive system.  

Hu et al., 

(2018a) 

The feature based approach developed by Hu et al. (2015) was further used to calculate 

the energy consumption during tool change and tool path in run-time mode. 

Lv et al., (2018) Divided the cutting state power consumption as stand-by power, operational power, 

cutting power, and power loss due to cutting load.   

Chen et al., 

(2018) 

Considered idle, cutting and tool change states for modelling of direct machining 

energy and Embodied energies of cutting tool and coolant as indirect energy.  

Z. Y. Liu et al., 

(2018a) 

Modelled the machining energy consumption including the direct energy by machine 

tool and indirect energy due to embodied energy of cutting fluid, cutting tool, and 

workpiece material. 

Jia et al., (2018) Provided energy consumption model for machine-operator system using the motion 

study. 
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2.6.3.1 Basic/standby state  

The Cooperative Effort in Process Emission (CO2PE!) considered two operating 

states: basic and cutting (Balogun and Mativenga, 2013). The basic or stand-by state is 

defined as the operating state when the machine tool is switched on and the control system, 

spindle system, servo motors, cooling system, etc. are on hold. The energy consumption 

in stand-by state is generally experimentally measured. The stand-by power exists for the 

entire machining operation and therefore its energy consumption is high.  

The power drawn by the machine tools during the stand-by state is independent of 

machining parameters. It fluctuates in certain range due to current and voltage instability. 

Zhang et al. (2016) modelled stand-by energy consumption using sliding filter to remove 

the data with large variation. 

�̂�𝐵𝑀(𝑖) =

{
 
 

 
 1

𝑖
∑𝑃𝑏(𝑘)

𝑖−1

𝑘=0

𝑖 ≤ 𝐿

1

𝐿
∑𝑃𝑏(1 − 𝑘)

𝐿−1

𝑘=0

𝑖 > 𝐿

 

where �̂�𝐵𝑀(𝑖) is the estimated value of 𝑃𝑏(𝑖), 𝐿 is the length of the sliding filter, 𝑖 is the 

sampling point, and 𝑘 is the counter. 

Li et al. (2016a) modelled the stand-by power as summation of the power required by 

inverter, servo drivers and start-up related auxiliary operations. For multi-pass milling 

operations, the stand-by energy consumption was modelled as the summation of energy 

consumed during the stand-by state of each milling pass (Zhang et al., 2017a). 

It has been observed in the literature that the stand-by energy consumption varies 

significantly for different machine tools based on their size, complexity, and degree of 

automation. Behrendt et al. (2012) developed a standardized procedure for energy 

monitoring of machine tools, which can be used to compare the energy consumption of 

various machine tools with different capacities. A standard workpiece was developed 
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based on Japanese Standards Association (JSA) guidelines. The energy consumed to 

produce the designed workpiece using nine machine tools including four 3-axis VMCs, 

one 4-axis HMC, two 5- axis VMCs, one turn-mill, and one CNC lathe was measured 

(Figure 2.7) and it was observed that the stand-by energy consumption varied between 309 

W to 4040 W.  

 

Figure 2.7. Variation of the stand-by power for different machine tools (Behrendt et al., 2012) 

2.6.3.2 Cutting state 

Cutting state of the machine tool is defined as the state when all the auxiliary 

components are active and material is being removed. The power consumed during this 

state consists of the power consumed by basic state, auxiliary components, and material 

removal by shearing process, and losses in form of friction and heat. The material removal 

energy has a non-linear relationship with cutting parameters. The summary of specific 

cutting energy models for machine tools is provided in Table 2.6. 

Arif et al. (2013) provided a model for the cutting state energy consumption for a multi-

pass turning operation as 

𝐸𝑐𝑢𝑡𝑡𝑖𝑛𝑔 = (𝑃𝑟 + 𝑘�̇�) [
𝜋𝐷𝐿

1000𝑣𝑓𝑓𝑓
+∑

𝜋𝐷𝐿

1000𝑣𝑟𝑓𝑟

𝑚

𝑖=1

] 

where m is the number of roughing passes. 
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Li et al. (2014) modelled the cutting state energy consumption as the summation of 

energy consumed for material removal, additional energy loss in electric motor, inertia 

energy loss of moving components of a machine tool, and idle energy consumed by the 

auxiliary components.  

 

𝐸𝑡 = 𝑃0𝑡𝑎 + 𝑁 {(𝑃0 + 𝑃𝑚)
60𝐿

𝑓𝑢
+ [𝑃0 + 𝑃𝑚 + (1 + 𝑏)𝑃𝑐

60𝐿

𝑛𝑓𝑧𝑧
]} 

where N is the number of cutting passes, z is the number of teeth of the milling cutter, fu is 

the specified retraction speed, fz is the feed per tooth (millimeter per tooth), L is cutting 

length in single pass (mm), b is the coefficient of energy loss in electric motor, Pm is the 

power consumed for the inertia of the moving component. 

Li et al. (2016a) and Chen et al. ( 2018) modelled the power drawn during cutting state 

as the summation of power required for basic state, activation of auxiliary components, 

unloaded spindle rotation, material removal, and additional losses: 

𝐸𝑐𝑢𝑡𝑡𝑖𝑛𝑔 = ∫ (𝑃𝑏𝑎𝑠𝑖𝑐 + 𝑃𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 + 𝑃𝑢 + 𝑃𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 + 𝑃𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙)𝑑𝑡
𝑡𝑐

0

 

 The cutting time (tc) was modelled based on the length of the cutting path (Lc) as 

𝑡𝑐 =
𝐿𝑐
𝑛𝑧𝑓𝑧

 

Zhang et al. (2016) modelled the summation of cutting energy and additional losses 

using variable neighborhood search–based gene expression programming. Zhang et al. 

(2017a) provided energy consumption model for multi-pass milling operations. The 

energy consumed during cutting state was modelled as 

𝐸𝑐𝑢𝑡𝑡𝑖𝑛𝑔 =∑(𝑃0 + 𝑘𝑛𝑖 + 𝑏 + 𝑘1𝑣𝑐
𝑥1𝑓𝑥2𝑎𝑝

𝑥3𝑎𝑒
𝑥4)𝑡𝑐𝑖

𝑁

𝑖=1
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where N is the number of passes (1 ≤ i ≤ N), 𝑛𝑖 and 𝑡𝑐𝑖 are cutting speed and cutting time, 

respectively during the ith pass, k, b, k1, x1, x2, x3 and x4 are coefficients that can be 

determined based on the experimental data. 

Ma et al. (2017a) proposed a specific energy estimation model for material removal 

during milling process considering cutting energy and air-cutting energy. The cutting 

energy was modelled as: 

𝐸𝑐 = ∫ (1 + 𝜕)(𝑘 + 0.01𝜕𝑎𝑒𝑎𝑝𝑓𝑧𝑛𝑧)𝑑𝑡
𝑡𝑐

0

 

where 𝑡𝑐 is the material removal time, 𝜕 is power loss coefficient, 𝑘 is constant, ae and ap 

are the width and depth of cut (mm), fz is the chip load (mm/tooth), n is the spindle speed 

(RPM), and z is the number of teeth. The optimum cutting speed for minimum energy 

consumption was identified using MATLAB optimization toolbox. It was reported that an 

increase in MRR resulted into a reduction in energy consumption due to reduction in 

machining time up to a certain extent. After a threshold, the energy consumption started 

to increase because the power rise due to increased load dominated over the energy saving 

due to reduced processing time. 

Hu et al. (2015) proposed an energy prediction method to estimate the cutting state 

energy consumption for machining a part in the design phase based on the features of the 

part. The design of the part was explained using a binary tree, each node of which 

represented a feature of the geometry. The machining energy for each feature was 

classified into three parts, embodied energy of the material (FMEnergy), air cutting energy 

(FAEnergy), and material removal energy (FTEnergy).  

FMEnergy = MRV ∗ Ev 

FAEnergy =∑∑[𝑃1
(𝑗𝑘)

𝑃2
(𝑗𝑘)

…𝑃𝑚𝑗−1
(𝑗𝑘)

𝑃𝑚𝑗
(𝑗𝑘)

] ∗ [𝑠1
(𝑗𝑘)

𝑠2
(𝑗𝑘)

…𝑠𝑚𝑗−1
(𝑗𝑘)

𝑠𝑚𝑗
(𝑗𝑘)

]
𝑇

𝐾

𝑘=1

∗
𝑑𝑗𝑘

𝑣𝑗𝑘

𝐽

𝑗=1
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FTEnergy =∑𝑊𝐴𝑗 ∗ 𝑆𝐸𝐶𝑗

J

𝑗=1

 

where 𝐽 is the number of the processes required to machine one feature, K is the number 

of machining activities for each process, 𝑑𝑗𝑘 and 𝑣𝑗𝑘 are the distance and feed in x,y, and 

z directions respectively during the kth activity of the jth process, and 𝑊𝐴𝑗 is the machining 

allowance (cm3) for the jth process. The applicability of the proposed method was 

demonstrated for a shaft component manufacturing by an automotive component 

manufacturer. The energy consumed for the shaft was calculated with 92% accuracy using 

the proposed method. 

2.6.3.3 Machine ready state 

Balogun and Mativenga (2013) introduced a third operating state, machine ready state; 

which is the transitional state between basic and cutting states. Transitional state consumes 

additional energy for spindle rotation and axis movement. The power models for spindle 

rotation and axis movement are generally obtained using regression analysis. Details for 

these power models are given in sections 2.6.4.1 and 2.6.4.2. 

Arif et al. (2013) provided a model for the energy consumption during machine ready 

state for a multi-pass turning operation as 

𝐸0 = 𝑃0[𝑡𝑃 + 𝑛(ℎ1𝐿𝑡 + ℎ2) + (ℎ1𝐿𝑡 + ℎ2)] 

where m is the number of roughing passes, ℎ1 and ℎ2 are constants related to tool 

approach/departure time, and L is the cutting length. 

Zhang et al. (2017a) provided a model for the energy consumption during machine 

ready state for multi-pass milling operations.  
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𝐸𝑟 =∑(𝑃0 + 𝑘𝑛𝑖 + 𝑏)𝑡𝑟𝑖

𝑁

𝑖=1

 

where N is the number of passes (1 ≤ i ≤ N), tri is the time spent in the air cutting phase 

prior to contact with the workpiece during the ith pass. 

2.6.3.4 Start-up state  

Start-up state refers to the spike during the machine tool start-up. The spike during 

start-up state is less than the peak power values due to spindle start-up or other rapid 

changes in the machine tool states. But the instant rise in power drawn may lead to 

additional energy consumption (Li et al., 2016a). The power consumption during this state 

is measured as a multiple of stand-by power. 

2.6.3.5 Air-cutting state 

Air-cutting state is defined as the state where all the components of the machine tool 

are active but no material is removed. The air cutting energy demand depends on the 

machine tool features and varies significantly among different machine tools for same 

cutting operation (Balogun et al., 2013).  In this state, the spindle runs the tool path defined 

by the CNC program but does not remove any material. It is necessary in practical 

machining operations for safety. Chen et al. (2018) modelled the air cutting energy as 

𝐸𝑎𝑖𝑟 = ∫ (𝑃𝑏𝑎𝑠𝑖𝑐 + 𝑃𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 + 𝑃𝑢)𝑑𝑡
𝑡𝑎𝑖𝑟

0

 

Ma et al. (2017) modelled the air cutting energy as 

𝐸𝑎𝑖𝑟 =∑∫ (𝑥1𝜔
2 + 𝑥2𝜔 + 𝑥3)𝑑𝑡

𝑡𝑎𝑖𝑟

0

𝑁

𝑖=1
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where 𝑡𝑎𝑖𝑟 is air cutting time, ω is the motor angular velocity (rad/s), x1, x2, and x3 are the 

coefficients; and N is the number of air-cutting sub-intervals. The air-cutting time can be 

calculated based on the air-cutting length (𝐿𝑎𝑖𝑟) and feed speed (Li et al., 2016a) as follows: 

𝑡𝑎𝑖𝑟 =
𝐿𝑎𝑖𝑟

𝑛𝑧𝑓𝑧
 

2.6.3.6 Spindle acceleration/deceleration state  

The spindle acceleration/deceleration power (Pacc/dec) indicates the power required for 

accelerating or decelerating the spindle. The spindle is required to reach a specified speed 

within a short time period during this state (Li et al., 2016a). This causes a sudden peak in 

the energy consumption. The energy required for spindle start-up is usually considered 

equal to no-load energy or neglected in energy modelling studies for machine tools. This 

leads to errors in energy prediction for machining processes. Huang et al. (2016)  proposed 

a methodology to determine the spindle start-up energy consumption. A quadratic 

mathematical model was established between spindle start-up energy and spindle speed. 

The feasibility and reliability of the proposed model was verified for 12 machine tools. It 

was reported in the study that for step speed regulation (SSR) machine tools, the time and 

energy data can be stored in discrete tables, whereas for step less speed regulation (SLSR) 

machine tools, the data should be stored as quadratic functions. 

Guo et al. (2015) calculated the (Pacc/dec) based on the acceleration torque as  

𝑃𝑎𝑐𝑐/𝑑𝑒𝑐 = 𝑇𝑎𝑐𝑐/𝑑𝑒𝑐 ∗ 𝜔 = 𝐼 ∗ 𝛼𝑎𝑐𝑐/𝑑𝑒𝑐 ∗ 𝜔 

where 𝑇𝑎𝑐𝑐/𝑑𝑒𝑐 is the acceleration or deceleration torque (Nm), 𝜔 is the angular 

velocity (rad/s), I is the moment of inertia of the spindle (kg m2), and 𝛼𝑎𝑐𝑐/𝑑𝑒𝑐 is the 

angular acceleration or angular deceleration (rad/s2). 
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Lv et al. (2017) proposed an energy prediction model for spindle acceleration using 

moment of inertia of spindle drive system.  

𝐸𝑠𝑝_𝑎𝑐𝑐 = ∫ 𝑃𝑠𝑝_𝑎𝑐𝑐

𝑡𝑠𝑝_𝑎𝑐𝑐

0

𝑑𝑡 

𝑃𝑠𝑝_𝑎𝑐𝑐 = 𝑃𝑆𝑅(𝑛) + 𝑇𝑠𝑝_𝑎𝑐𝑐 ∗ 𝜔𝑚 

𝑡𝑠𝑝_𝑎𝑐𝑐 =
2𝜋(𝑛2 − 𝑛1)

60𝛼𝑠𝑝
 

where 𝑛1 and 𝑛2 are the initial and final spindle speeds. The proposed model was validated 

for a CNC turning center and the spindle acceleration energy was predicted with an 

accuracy of 89.58%. 

2.6.3.7 Cutting tool change state 

The cutting tool is replaced when the machine tool is in idle state, i.e. the basic modules 

are turned on but the spindle and feed motors are turned off. The models for cutting tool 

change energy requirement are summarized in Table 2.8. 

Table 2.8 Summary of energy models for cutting tool change state  

Reference article Energy model  

Balogun and Mativenga 

(2013) 
𝐸𝑡𝑐 = 𝑃𝑡𝑐𝑡𝑡𝑐 [𝐼𝑁𝑇 (

𝑡𝑐
𝑇
) + 1] 

Arif et al. (2013); Li et al. 

(2016a) 

𝐸𝑡𝑐 = 𝑃𝑏𝑎𝑠𝑖𝑐 ∗  𝑡𝑡𝑐 

𝑡𝑡𝑐 = 𝑡𝑝𝑐𝑡
𝑡𝑐
𝑇
  

where 𝑡𝑝𝑐𝑡 is the unit tool changing time 

Chen et al. (2018)  
𝐸𝑡𝑐 = ∫ 𝑃𝑏𝑎𝑠𝑖𝑐  𝑑𝑡

𝑡𝑡𝑐

0

 

Zhang et al. (2017a) For multi-pass milling operations 

𝐸𝑡𝑐 =∑𝑡𝑡𝑡𝑐

𝑁

𝑖=1

𝑃0
𝑡𝑐𝑖
60𝑇𝑖

 

where N is the number of passes (1 ≤ i ≤ N), Ti is the tool life during the i-th pass 

(min), and tci is the cutting time during the i-th pass, tttc is the tool changing time. 
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The feature based approach developed by Hu et al. (2015) was extended to calculate 

the energy consumption during tool change and tool path in run-time mode (Hu et al., 

2018a). This energy depends on the sequence of features to be performed on a workpiece 

and was termed as the energy consumed during feature transition (EFT). Hu et al. (2018a) 

studied the correlation between EFT and feature processing sequence and provided energy 

consumption models for tool change (ETC) and tool path (ETP) for transition from one 

feature to the next feature. However, the energy calculations for these models were error-

prone, cumbersome and time consuming.  

2.6.3.8 Additional load loss 

Lv el al. (2018) characterized the power loss due to cutting load (PLCL), which 

accounts for up to 20% of the cutting power, but still got less attention. PLCL consists of 

two parts, power loss in the mechanical transmission due to cutting load (PLMT) and 

power loss in the spindle motor (PLSM). It is indicated that PLMT has linear relationship 

with spindle rotation speed (n) and cutting force (Fc), and can be modelled as: 

PLMT = 𝑏𝑚𝐹𝑐n    

where 𝑏𝑚 is constant. PLSM is modelled based on the spindle speed as: 

When the motor speed is below base speed,  

𝑃𝐿𝑆𝑀 =
900𝑢2𝐾𝑣1

𝜋2
 (

𝜋2𝐷2

3.6 ∗ 109
𝐹𝑐
2 + 𝑏𝑚

2 𝐹𝑐
2 +

𝑏𝑚𝜋𝐷

3 ∗ 104
𝐹𝑐
2 +

𝑃𝑢𝑚𝜋𝐷

3 ∗ 104𝑛
𝐹𝑐 +

2𝑃𝑢𝑚𝑏𝑚
𝑛

𝐹𝑐)  

When the motor speed is above base speed,  

𝑃𝐿𝑆𝑀 = 𝐾𝑣2 (
𝜋2𝐷2𝐹𝑐

2𝑛2

3.6 ∗ 109
+ 𝑏𝑚

2 𝐹𝑐
2𝑛2 +

𝑏𝑚𝜋𝐷

3 ∗ 104
𝐹𝑐
2𝑛2 +

𝑃𝑢𝑚𝜋𝐷

3 ∗ 104
𝐹𝑐𝑛 + 2𝑃𝑢𝑚𝑏𝑚𝐹𝑐𝑛) 

where bm, kv1 are constant coefficients, Pum is the power of mechanical transmission (W) 

without load, D is the diameter of the workpiece (mm), and u is the transmission ratio of 
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the spindle shaft to the spindle motor. The proposed models were validated through a 

turning case study for three different materials on two different lathes. It was observed that 

cutting force had higher influence on PLCL as compared to cutting power. The energy loss 

due to cutting load (ELCL) was reduced up to 70.8% by proper selection of cutting 

parameters and machine tools. 

2.6.3.9 Others 

Many studies extended the energy consumption models for machine tools by including 

the embodied energy of cutting tools, cutting fluids, and workpiece materials (Hernández 

et al., 2017). The embodied energy of the cutting tool (𝑈𝑡𝑜𝑜𝑙) was modelled as (Arif et al., 

2013; Chen et al., 2018; Mativenga and Rajemi, 2011)  

𝐸𝑡𝑜𝑜𝑙 = 𝑈𝑡𝑜𝑜𝑙 (
𝑡𝑐
𝑇
) 

𝑈𝑡𝑜𝑜𝑙 is calculated based on the energy required to fabricate the cutting tool material 

(𝐸𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙) (J/cm3), volume of the cutting inserts (𝑉𝑖𝑛𝑠𝑒𝑟𝑡) (cm3), number of cutting inserts 

(z), and number of cutting edges per insert (p) (Chen et al., 2018) 

𝑈𝑡𝑜𝑜𝑙 =
𝐸𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑉𝑖𝑛𝑠𝑒𝑟𝑡𝑧

𝑁
 

Wang et al. (2014a)  and Chen et al. (2018) further added the embodied energy of the 

cutting fluids to the indirect energy consumption. It is calculated as the product of the 

specific embodied energy of the coolant and the coolant consumption rate (Wang et al., 

2014a).  

𝐸𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 𝑒𝑐𝑜𝑜𝑙𝑎𝑛𝑡 ∗ 𝑣𝑐𝑜𝑜𝑙𝑎𝑛𝑡 ∗ 𝜌𝑐𝑜𝑜𝑙𝑎𝑛𝑡 ∗ 𝑡𝑐 

where 𝑒𝑐𝑜𝑜𝑙𝑎𝑛𝑡 is the specific embodied energy of the coolant (kJ/kg), 𝜌𝑐𝑜𝑜𝑙𝑎𝑛𝑡 is the 

density of the soluble oil (g/cm3), 𝑣𝑐𝑜𝑜𝑙𝑎𝑛𝑡is the coolant consumption rate (liters/s).   
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Chen et al. (2018) calculated the embodied energy of the cutting fluids based on unit  

embodied energy of the coolant (𝑈𝑐𝑜𝑜𝑙𝑎𝑛𝑡) and the coolant replacement time (𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡). 

𝐸𝑐𝑜𝑜𝑙𝑎𝑛𝑡 =
𝑡𝑐

𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡
∗ 𝑈𝑐𝑜𝑜𝑙𝑎𝑛𝑡 

The unit embodied energy of the coolant is calculated as 

𝑈𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = (𝑉𝑖𝑛+𝑉𝑎𝑑)𝜂𝜌𝑐𝑜𝑜𝑙𝑎𝑛𝑡𝐸𝑜𝑖𝑙  

where 𝜂 is the concentration of the coolant, 𝜌𝑐𝑜𝑜𝑙𝑎𝑛𝑡 is the density of the soluble oil 

(g/cm3), 𝐸𝑜𝑖𝑙 is the energy required to produce the soluble oil (J/g). 

Liu et al. (2018b) also considered indirect energy consumption due to embodied energy 

of cutting fluid, cutting tool, and workpiece material. The proposed model was illustrated 

through a case study of Inconel 718 alloy machining using Tungsten carbide insert with 

(Ti,Al)N/TiN coating under dry and flood cooling conditions. Machine energy 

consumption was higher in flood cutting due to the energy intensive coolant pump. 

However, at high parameter settings, the effect of tool life was significant in cumulative 

energy demand and hence dry cutting consumed more energy than flood cutting at higher 

MRR. Carbon emissions and environmental impacts also exhibited similar trends at 

different parameter settings. However, the model was valid for a specific combination of 

cutting tool and workpiece material.  

Jia et al. (2018) proposed an energy consumption model for machine-operator system 

considering the energy consumption by operator activities along with machine tool. The 

energy consumption by the machine tool activities and operator activities were calculated 

using the motion study. The proposed model was implemented for a case study on a 

CK6153i CNC Lathe and the total energy consumption (MEC+OEC) was calculated for 

five machining stages. 
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2.6.4 Component Based Models 

Machine tool components are defined as mechanical, electrical, hydraulic, or 

pneumatic devices of a machine tool, or their combination such as cooling unit, spindle 

unit, drive axis, controller, etc. They are considered as the basic energy consumption units 

of the machine tool and therefore energy modelling at component level provides better 

transparency. 

Many studies have provided analytical or experimental energy models for different 

machine tool components. These energy models are used to estimate the total energy 

required for the machining operation. For example, Aramcharoen and Mativenga (2014) 

calculated the total energy consumption of the milling process as the summation of energy 

consumed for basic state, tool change, unloaded spindle rotation, feed motion, cutting, and 

cutting fluid supply. The effectiveness of the proposed model was illustrated through a 

milling case study. Theoretically calculated energy consumption (181.51Wh) was 

compared with the experimentally measured value (191.52Wh) for closed pocket milling. 

The difference of 5.23% in the energy consumption was because of increased energy due 

to tool wear progression and transition states. The energy models were used to compute 

the milling energy consumption with different tool paths, and it was reported that contour 

offset was the most energy efficient tool path for closed pocket milling. 

Abele et al. (2015a; 2012) proposed simulation based energy prediction model for a 

specific machining task. The interactions of the machine tool components and their power 

models were used as a basis for calculating the energy consumption without performing 

any experiments. A physical machine controller was connected to the simulator to imitate 

the real machining environment. 

He et al. (2012b) proposed an energy estimation method for machining processes by 

analyzing the correlation between NC codes and the machine tool components. The energy 

consumed by individual components was estimated based on their power characteristics 
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and the information extracted from the NC programs. The applicability of the proposed 

method was illustrated for machining of two workpieces on CNC VMC and CNC lathe. 

Hu et al. (2012) analyzed the energy consumption by fixed and variable energy 

consuming components of the machine tools and proposed an online approach for 

monitoring the energy efficiency and energy utilization ratio of the machine tools without 

using force/torque sensors. Energy mapping for machine tools based on the functional 

requirements and corresponding machine tool components was also presented (Triebe et 

al., 2018; Um et al., 2015).  

Albertelli et al. (2016) proposed an energy evaluation model for a machine tool 

considering the energy consumed by stand-by mode, functional modules (including axes, 

tool changer, spindle, chiller, coolant, chip conveyor, and pallet clamp), and cutting 

operations. The power and operational time for each machine tool component were 

modelled and used to evaluate the total energy consumption by the machine tool. 

Moradnazhad and Unver (2017b) developed a model-based approach to predict energy 

for a complex turn-mill machine tool. The total energy consumption was estimated as a 

sum of idle, auxiliary and cutting energies. The turn-mill machine tool can machine more 

than one features simultaneously. Therefore, cutting energy was computed as sum of 

energy required by each feature. Auxiliary energy consists of energy demands of various 

sub-systems such as main spindle, sub-spindle, milling head, turning turret, tool magazine, 

coolant pump, chip conveyor, chiller, and lubricant pump. The total energy consumption 

for the turn-mill machine tool was computed as 

𝐸𝑡 = 𝑃𝑖𝑑𝑙𝑒 ∗ ∆𝑡1 +∫ 𝑃𝑚𝑎𝑖𝑛 𝑠𝑝𝑖𝑛𝑑𝑙𝑒

𝑡1

0

𝑑𝑡 + ∫ 𝑃𝑠𝑢𝑏 𝑠𝑝𝑖𝑛𝑑𝑙𝑒

𝑡2

0

𝑑𝑡 + ∫ 𝑃𝑚𝑖𝑙𝑙𝑖𝑛𝑔 𝑠𝑝𝑖𝑛𝑑𝑙𝑒

𝑡3

0

𝑑𝑡

+ ∫ 𝑃𝑚𝑖𝑙𝑙𝑖𝑛𝑔 ℎ𝑒𝑎𝑑 𝑓𝑒𝑒𝑑

𝑡4

0

𝑑𝑡 + ∫ 𝑃𝑡𝑢𝑟𝑟𝑒𝑡 𝑓𝑒𝑒𝑑

𝑡5

0

𝑑𝑡 + ∫ 𝑃𝑡𝑜𝑜𝑙 𝑐ℎ𝑎𝑛𝑔𝑒

𝑡6

0

𝑑𝑡

+ 𝑃𝑐𝑜𝑜𝑙𝑎𝑛𝑡 ∗ ∆𝑡7 + 𝑃𝑐𝑜𝑛𝑣𝑒𝑦𝑜𝑟 ∗ ∆𝑡8 + 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟 ∗ ∆𝑡9 + 𝑃𝑙𝑢𝑏𝑟𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ∗ ∆𝑡10

+∑𝐸𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑖

𝑚

1=1
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where m is the number of features. The model effectiveness was tested with two case 

studies and it was reported that the proposed model can predict energy with 90% accuracy. 

Further, the energy demand of various auxiliary units was analyzed and it was observed 

that 61% of the energy was consumed during idle state whereas only 6% of the energy was 

required for actual material removal process. 

Shin et al. (2017) proposed an energy assessment methodology based on component 

energy modelling and used the model for online energy optimization. Data from NC 

programs, process planning, and energy measurement was used to develop component 

energy models. The data stored in repository was extracted, filtered, and synchronized to 

develop energy models based on second-order regression and ANN approaches. The 

models were then optimized in real time using divide and conquer methodology. 

Mohammadi et al. (2017) proposed an approach for  real time visualization of the 

mechanical, electric, fluidic, and thermal energy flows in a machine tool including its 

components using 2-D Sankey diagrams. The electrical and thermal energy consumption 

for machine tool subsystems were obtained by experimental measurements and NC codes. 

Fluidic power was calculated using the machine tool datasheets. However, the proposed 

approach was an intrusive load monitoring approach involving large number of sensors. 

Therefore, the energy measurement was very complex, expensive, and difficult to apply 

for each machine tool. 

Lee et al. (2015) modelled the power consumption for stand-by, coolant system, 

spindle, feed drive system, and material removal. Stand-by and coolant power was 

considered to be constant. The spindle, feed movement and cutting power were modelled 

as linear functions of spindle rotation speed, feed rate and MRR, respectively. A power 

profile simulator was developed consisting of an NC code analyzer and time wise power 
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profile solver. The proposed model was verified for six machine tools. The proposed model 

accurately estimated the energy consumption by spindle, feed system and coolant. It was 

observed that cutting energy was influenced by the process parameters but did not vary 

significantly with the machine tools. Whereas the spindle and feed systems energies vary 

significantly with machine tools. 

Wei et al. (2018) classified the machine tool components into non-time-varying units 

(NTVUs) and time-varying units (TVUs) based on their energy characteristics. The energy 

models were developed based on component state and coupling relationship between 

different energy units using Business Process Model and Notation (BPMN). BPMN was 

used over the other energy modelling approaches like Petri nets and Discrete Event System 

Specifications (DEVS) because it provides a standard specification between design and 

implementation and assists in process visualization. 

Altıntaş et al. (2016) proposed an energy consumption model for feature based milling. 

The energy consumption for processing of each feature was calculated as sum of basic, 

auxiliary and cutting energies. The auxiliary energy was defined as the summation of 

energy consumed by various machine tool components such as spindle, feed axes, coolant 

pump, ATC, and chip conveyor. The energy consumption models for each component 

were explained in detail. The cutting energy was calculated as difference in total energy 

consumption and air cutting energy. The proposed approach was verified for milling of 

three features on aluminum 6061 workpiece with four different sets of process parameters. 

Energy consumption for six different tool paths were compared under same operating 

conditions. It was observed that zigzag tool path consumed least energy. 

Lee et al. (2017) developed a simulation approach for modelling and optimization of 

machining energy using a virtual machine tool (VMT). The VMT was designed consisting 
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models for CNC controller, machine tool components, and cutting process to estimate the 

machine tool energy demand. The parameters of the proposed simulation models were 

determined experimentally. The effectiveness and robustness of the proposed model were 

verified by a milling experimental study. It was reported that the thrust force and energy 

consumption computed by VMT had accuracy of 96.7% and 99.7%, respectively. The 

energy consumption was optimized using GA toolbox in MATLAB and the energy 

consumption was reduced by 13%. Wirtz et al. (2018) presented a simulation based study 

to predict the power consumption for a milling process considering the fixed, material 

removal and spindle power. The energy consumption by different components vary 

significantly with different machine tools and processes. A summary of the energy 

distribution among machine tool components provided in the reference articles is 

presented in Table 2.9. The energy models for different components are discussed below: 

Table 2.9 Energy distribution among machine tool components for different machine tools 

Reference article Machining 

process 

Energy consumption by machine tool components 
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Fujishima et al. (2014)  60% 20-45       

Li et al. (2013) milling dry 25-41 35-60 1-2 9-18    

Rahäuser et al. (2013) machining  50%        

Balogun and Mativenga 

(2013) 

lathe 14.85 24.43 47 16  4.84   

milling 1  8.29 28 17  7.02   

milling 2  4.26 50.29 18     

Götze et al. (2012) milling 33 25     3.7 2 

Behrendt et al. (2012) milling 47 5.2 20 1.9  18.4   

Moradnazhad and Unver 

(2017b) 

turn-mill - 8 61 1 6 3   

Hu et al. (2017a) milling 27.15 12.84 48.12 4.7 7.1    

turning - 17.56 14.59 1.19     
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2.6.4.1 Spindle energy (Esp) 

Spindle energy refers to the energy required by the spindle transmission module for 

rotating the spindle. It is calculated based on the power required by the spindle motor. The 

power consumed by the spindle motor at no load condition is termed as unloaded spindle 

power (𝑃𝑢). The unloaded spindle power varies with rotational speed of the spindle motor, 

and can be acquired using simple statistical measurement approach. Many studies have 

modelled the Pu as linear function of spindle speed (Lee et al., 2015; Lv et al., 2016; 

Pavanaskar and Mcmains, 2015; N. Xie et al., 2016; Zhang et al., 2017b; Zhou et al., 2018) 

Altıntaş et al. (2016) modelled the spindle energy consumption as piecewise linear 

function of spindle speed. Machine tools consist of complex transmission system. 

Therefore, Luan et al. (2018a) suggested to model the unloaded spindle power as a 

piecewise quadratic function as: 

𝑃𝑢 = {

𝐴1𝑛 + 𝐵1𝑛
2 + 𝐶1 (0 < 𝑛 ≤ 𝑛1)

𝐴2𝑛 + 𝐵2𝑛
2 + 𝐶2 (𝑛1 < 𝑛 ≤ 𝑛2)

∙∙∙
𝐴𝑛𝑛 + 𝐵𝑛𝑛

2 + 𝐶𝑛

∙∙∙
𝑛𝑛−1 < 𝑛 ≤ 𝑛𝑛

 

where A, B and C are the coefficients which can be calculated from the experimental 

results. The proposed model was explained theoretically based on the working principle 

of the motor. The effectiveness of proposed model was verified experimentally for a 

milling process. It was evident from the accuracy analysis that the models were in good 

agreement with the experimental data.  

Moradnazhad and Unver (2017b) provided piecewise polynomial functions for power 

consumption by spindle units of a turn-mill center as: 

For main spindle:   𝑃𝑚𝑎𝑖𝑛_𝑠𝑝 = {
𝐴1𝑛 + 𝐵1𝑛

2 + 𝐶1 𝑛 < 𝑛1
𝐴2𝑛 + 𝐵2𝑛

2 + 𝐶2𝑛
3 + 𝐷2 𝑛 ≥ 𝑛1
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For sub spindle:               𝑃𝑠𝑢𝑏_𝑠𝑝 = {
𝐴1𝑛 + 𝐵1𝑛

2 + 𝐶1𝑛
3 + 𝐷1 𝑛 < 𝑛1

𝐴2𝑛 + 𝐵2𝑛
2 + 𝐶2𝑛

3 + 𝐷2 𝑛 ≥ 𝑛1
 

For milling spindle:   𝑃𝑚𝑖𝑙𝑙_𝑠𝑝 = {
𝐴1𝑛 + 𝐵1𝑛

2 + 𝐶1𝑛
3 +𝐷1𝑛

4 + 𝐸1 𝑛 < 𝑛1
𝐴2𝑛 + 𝐵2𝑛

2 + 𝐶2𝑛
3 + 𝐷2𝑛

4 + 𝐸2 𝑛 ≥ 𝑛1
 

Some studies provided spindle energy models based on the electrical characteristics of 

the motor. For example, Wόjcicki et al. (2018) modelled the spindle energy consumption 

as the summation of mechanical power output and electrical power losses: 

𝑃𝑠𝑝 = 𝐾𝑇𝑖𝑞(𝜏)𝜔 + 3𝑅(𝑖𝑞
2 + 𝑖𝑑

2) 

where 𝐾𝑇 is the torque constant (Nm/A), 𝑖𝑞 is the quadrature current (A), 𝜔 is the motor 

speed (rad/s), 𝑅 is the winding resistance (Ω), and 𝑖𝑑 is the direct current (A). 

Borgia et al. (2017) modelled the power for spindle system as summation of 

mechanical power output (𝑃𝑀_𝑠𝑝) and power loss due to motor resistances (𝑃𝑅_𝑠𝑝).  

𝑃𝑢 = 𝑃𝑀_𝑠𝑝 + 𝑃𝑅_𝑠𝑝 = 𝑇𝑀_𝑠𝑝 ∗ 𝜔𝑠𝑝 + 𝑅𝑠 ∗ 𝑖𝑞
2 

where 𝑇𝑀_𝑠𝑝 is the resistant torque (Nm) on the spindle motor, 𝑅𝑠 is the phase resistance 

(Ω), and 𝑖𝑞 is the quadrature current (A). 

Mohammadi et al. (2017) modelled the spindle energy consumption as 

𝑃𝑠𝑝 = 3𝐼2
𝐿ℎ
2𝑅𝑟𝜔

𝑅𝑟2 + 𝐿𝑟2𝜔
 

where I is the current, 𝐿ℎ is the mutual inductance, 𝐿𝑟 is the rotor inductance, and 𝑅𝑟 is the 

rotor resistance.  

Avram and Xirouchakis (2011) presented a mechanistic model for energy consumption 

assessment for a machine tool system considering the dynamic power characteristics of 

spindle and axes feed systems. Three important aspects for spindle energy evaluation were 
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identified as: (i) the transient phases and energy recovery possibilities, (ii) the unloaded 

power consumption and (iii) the power fluctuations due to dynamic cutting loads.  

Liu et al. (2015a) proposed an energy prediction model for the main driving system 

(MDS) of a machine tool considering the power loss of the motor, friction loss of 

mechanical transmission system, cutting power, magnetic field energy of the motor, and 

the kinetic energy of the mechanical transmission system and the motor rotor. The energy 

consumption of the MDS was divided into three states of start-up, idle and cutting. The 

energy consumption by the spindle motor and transmission system (main driving system) 

in each of the three states was modelled. The energy consumption in start-up (𝐸𝑠_𝑀𝐷𝑆) and 

idle state (𝐸𝑠_𝑀𝐷𝑆) was obtained as functions of spindle speed, and cutting energy (𝐸𝑠_𝑀𝐷𝑆) 

was estimated based on cutting power (𝑃𝑐) and load loss coefficients (𝛼1 and 𝛼2) as: 

𝐸𝑠_𝑀𝐷𝑆 = 𝑥1𝑛
2 + 𝑥2𝑛 + 𝑥3 

𝐸𝑢_𝑀𝐷𝑆 = 𝑃𝑢 ∗ 𝑡𝑢 ,                  𝑃𝑢 = 𝑔(𝑛) 

𝐸𝑐_𝑀𝐷𝑆 = ∫ (𝛼2𝑃𝑐
2 + (1 + 𝛼1)𝑃𝑐 + 𝑃𝑢)

𝑡𝑐

0
𝑑𝑡 = 𝛼2 ∫ 𝑃𝑐

2𝑑𝑡
𝑡𝑐

0
+ (1 + 𝛼1) ∫ 𝑃𝑐𝑑𝑡

𝑡𝑐

0
+ 𝑡𝑐 ∗ 𝑃𝑢 

The predicted results were compared with the experimental values and the error was 

analyzed. The proposed methodology was illustrated with a case study of CNC lathe and 

7.73% deviation was obtained between actual and predicted energy values. 

2.6.4.2 Feed axis motor energy (Efeed) 

Feed axis motor energy (Efeed) is the energy required by the axis motor to move the 

machine tool table or cutting tool in x, y and z directions at the specified feed. The feed 

energy is calculated by adding the energy required by each feed axis motor as:  

𝐸𝑓𝑒𝑒𝑑 =∑∫ 𝑃𝑓𝑒𝑒𝑑𝑖

𝑡𝑖𝑒𝑛𝑑

𝑡𝑖𝑠𝑡𝑎𝑟𝑡

𝑚

𝑖=1

∗ 𝑑𝑡 
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where 𝑃𝑓𝑒𝑒𝑑𝑖 is the power required by the feed motor for movement in ith direction, m is 

the number of axis motors in the machine tool. The energy required for rapid traverse can 

also be calculated similarly. 

Many studies have modelled the Pfeed as linear function of feed rate (Altıntaş et al., 

2016; Lee et al., 2015; Moradnazhad and Unver, 2017b; Pavanaskar and Mcmains, 2015; 

N. Xie et al., 2016; Zhang et al., 2017b). Some studies modelled the Pfeed as quadratic 

function of feed rate (Lv et al., 2016; Zhou et al., 2018).  

Campatelli et al. (2015) presented an energy consumption model for machine tool axes 

involving the equivalent mass and friction of the axes.  

𝐸𝑎𝑥𝑖𝑠 = ∫ [(𝑀𝑥 ∗ 𝑎𝑥(𝑠) + 𝜇𝑥 ∗ 𝑀𝑥 ∗ 𝑔) + (𝑀𝑦 ∗ 𝑎𝑦(𝑠) + 𝜇𝑦 ∗ 𝑀𝑦 ∗ 𝑔)]
𝑆

0

𝑑𝑠 

where 𝑀𝑥 and 𝑀𝑦 are the equivalent masses of x and y axes respectively, 𝑎𝑥(𝑠) and 𝑎𝑦(𝑠) 

are the instantaneous accelerations, 𝜇𝑥and 𝜇𝑦 are the equivalent friction coefficients, s is 

the tool path length, and g is the gravity acceleration. Different axes have different 

equivalent mass and friction, therefore, the energy consumption is also different. The 

proposed approach was experimentally verified for a milling case study. 

Edem and Mativenga (2016) proposed a predictive model for energy consumption by 

feed axes motors of a machine tool considering weight of machine tool axes, workpiece 

and feed force acting on the axes.  

𝑃𝑓 = 𝑃0 + (𝑎𝑊𝑓 + 𝑏𝑊) 

where a and b are constants and 𝑊 is the summation of weight of machine tool axes, vice 

and workpiece. The proposed model was validated for a CNC milling center. The authors 

used this model to refine the energy consumption models for the machine tools and 
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developed an energy estimation software to predict the energy consumption using the 

proposed energy model with NC codes (Edem and Mativenga, 2017b). 

The workpiece setting and orientation also affect the feed motion and hence feed 

energy. Sato et al. (2017) investigated the effect of workpiece setting on the energy 

consumption by feed drive systems. The energy consumed by the feed drive system was 

measured for a five-axis machining center. Further, a mathematical model was proposed 

to estimate the feed system energy consumption (𝑃𝐼𝐴) considering losses due to friction 

(𝑃𝐿𝐹), motor (𝑃𝐿𝑀) and amplifier (𝑃𝐿𝐴) as:  

𝑃𝐼𝐴(𝜔) = 𝑃𝐿𝐹(𝜔) + 𝑃𝐿𝑀(𝜔) + 𝑃𝐿𝐴(𝜔) + 𝑇𝑑𝜔 

where 𝑇𝑑 is the disturbance torque  and 𝜔 is the angular velocity of the motor. The model 

was verified for motion accuracy evaluation of five-axis machining center using cone-

frustum cutting model. 

Further, the feed motion can be divided into horizontal and vertical movements. Luan 

et al. (2018a) provided the energy models for feed motion in horizontal (x and y) and 

vertical (z) directions for a machining center as:. 

{
𝑃𝑥𝑓
𝑃𝑦𝑓

=
=
𝐶𝑥 + 𝑏1𝑥𝑓 + 𝑏2𝑥𝑓

2 +∙∙∙∙∙∙ +𝑏𝑛𝑥𝑓
𝑛

𝐶𝑦 + 𝑏1𝑦𝑓 + 𝑏2𝑦𝑓
2 +∙∙∙∙∙∙ +𝑏𝑛𝑦𝑓

𝑛 

{
𝑃𝑧_𝑢𝑝 = 𝐶𝑧_𝑢𝑝 + 𝑏1𝑧_𝑢𝑝𝑓 + 𝑏2𝑧_𝑢𝑝𝑓

2 +∙∙∙∙∙∙ +𝑏𝑛𝑧𝑢𝑝𝑓
𝑛                                                     

𝑃𝑧_𝑑𝑜𝑤𝑛 = 𝐶𝑧_𝑑𝑜𝑤𝑛 + 𝑏1𝑧_𝑑𝑜𝑤𝑛𝑓𝑧_𝑑𝑜𝑤𝑛 + 𝑏2𝑧_𝑑𝑜𝑤𝑛𝑓𝑧_𝑑𝑜𝑤𝑛
2 +∙∙∙∙∙∙ +𝑏𝑛𝑧_𝑑𝑜𝑤𝑛𝑓𝑧_𝑑𝑜𝑤𝑛

𝑛
 

where 𝑃𝑧_𝑢𝑝 and 𝑃𝑧_𝑑𝑜𝑤𝑛 are the power of feed motion power along Z-up axis and Z-down 

axis, respectively, 𝑓𝑧_𝑢𝑝 and 𝑓𝑧_𝑑𝑜𝑤𝑛 are the feed upwards and downwards respectively, 

𝐶𝑧_𝑢𝑝, 𝐶𝑧_𝑑𝑜𝑤𝑛, 𝑏1𝑧_𝑢𝑝, 𝑏2𝑧_𝑢𝑝, ……, 𝑏𝑛𝑧_𝑢𝑝, 𝑏1𝑧_𝑑𝑜𝑤𝑛, 𝑏2𝑧_𝑑𝑜𝑤𝑛, ……, and 𝑏𝑛𝑧_𝑑𝑜𝑤𝑛 are 

the coefficients which can be calculated from experimental data. 

The rapid feed power model was given as 
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{

𝑃𝐹𝐷𝐴 = 𝑃𝐹𝐷(𝑣𝑓𝑎) + 𝑇𝑓𝑎 ∗ 𝜔𝑓

𝑃𝐹𝐷𝐶 = 𝑃𝐹𝐷(𝑣𝑓𝑚𝑎𝑥)               

𝑃𝐹𝐷𝐷 = 𝑃𝐹𝐷(𝑣𝑓𝑑)                    

 

where 𝑃𝐹𝐷𝐴, 𝑃𝐹𝐷𝐶  and 𝑃𝐹𝐷𝐷 are the power consumption during acceleration, steady and  

deceleration states; 𝑣𝑓𝑎, 𝑣𝑓𝑚𝑎𝑥 and 𝑣𝑓𝑑 are the feed rates during acceleration, steady and  

deceleration states; 𝑇𝑓𝑎 and 𝜔𝑓 are the accelerating torque and angular velocity of the servo 

motor, respectively. 

Calvanese et al. (2013) proposed power models for axes motors and axes chiller as: 

𝑃𝑎𝑥𝑒𝑠 = 𝐹𝑚(𝑡) ∗ 𝑣(𝑡) + 𝑅 ∗ 2 ∗ (
𝐹𝑚(𝑡)

𝐾𝑡
)
2

 

where 𝐹𝑚 is the force of motor (N), 𝑅 is the phase resistance (Ω), 𝐾𝑡 is the force constant 

of the motor (N/Arms), and 𝑣 is the axis velocity (m/s). 

𝑃𝑎𝑥𝑒𝑠 𝑐ℎ𝑖𝑙𝑙𝑒𝑟 = 𝑃𝑠𝑏𝑦 + 𝜃 ∗ 𝑃𝑟(𝑡) 

where 𝑃𝑠𝑏𝑦 and 𝑃𝑟 are the constant and variable components of axes chiller power, 

respectively and 𝜃 is a model coefficient. 

Yoon et al. (2018) analyzed the effect of gravitational force on the power consumption 

of feed drive units of a machine tool and proposed an improved power model for the 

machine tool rotational axes. 

𝑃𝑎𝑥𝑒𝑠 = [{𝐶𝑆𝑇𝑂−𝑃 ∗ 𝑓 + 𝐶𝑆𝑇𝐼−𝑃(𝑋)}{𝐶𝑆𝑇𝑂−𝑁 ∗ 𝑓 + 𝐶𝑆𝑇𝐼−𝑁(𝑋)}] ∗ [
𝑃𝑃
𝑃𝑁
] 

where 𝑋 is the position of the table, 𝐶𝑆𝑇𝑂−𝑃, 𝐶𝑆𝑇𝐼−𝑃, 𝐶𝑆𝑇𝑂−𝑁 , 𝐶𝑆𝑇𝑂−𝑁 are power 

coefficients, and 𝑃𝑃 & 𝑃𝑁 are the indicators of feed direction. The proposed model was 

experimentally verified for a 5-axis machining center and it was observed that the power 

consumed by the rotational axis was significantly influenced by the position of center of 

mass and the direction of movement. 
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Borgia et al. (2017) modelled the power for feed system as summation of mechanical 

power output (𝑃𝑀_𝑎𝑥𝑖𝑠) and power loss due to motor resistances (𝑃𝑅_𝑎𝑥𝑖𝑠).  

𝑃𝑎𝑥𝑖𝑠 = 𝑃𝑀_𝑎𝑥𝑖𝑠 + 𝑃𝑅_𝑎𝑥𝑖𝑠 = 𝑘𝑡 ∗ 𝑖𝑞𝑟𝑚𝑠 ∗ 𝜔 + 𝑅𝑠 ∗ 𝑖𝑞
2 

where 𝑖𝑞𝑟𝑚𝑠 is the axis motor quadrature current (rms value) (Arms), 𝑖𝑞 is the axis motor 

quadrature current (A), 𝜔 is the axis motor velocity (rad/s), 𝑘𝑡 is the axis motor torque 

constant (Nm/Arms) , 𝑅𝑠 is the axis motor stator resistance (Ω). The application of 

proposed model was shown for a milling case study and it was observed that the proposed 

simulator can predict the energy consumption with an accuracy of more than 90%. 

Mohammadi et al. (2017) modelled the energy consumption by servo motors as 

𝑃𝑠𝑒𝑟𝑣𝑜 = 3𝐼𝜔𝑘𝑖 + 3𝐼
2𝑅𝑎 

where I is the current,  𝑘𝑖 is the back electromotive force constant and 𝑅𝑎 is the armature 

resistance. 

2.6.4.3 Coolant pump energy (Ecoolant)  

Coolant pump energy (Ecoolant) refers to the energy required by the coolant pump motor 

to supply the cutting fluid to the cutting area. The coolant power is generally constant for 

a machine tool. It can be either obtained from machine tool technical specification data or 

measured experimentally. 

2.6.4.4 Automatic tool changer energy (Eatc) 

The energy consumed by the automatic tool changer includes the energy required 

for the movement of tool turret for changing the tools, and the loading and unloading of 

the cutting tools. The turret is rotated to a specific position to pick the tool specified by the 

NC code. The energy required by the ATC can be calculated as  
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𝐸𝑎𝑡𝑐 = 𝑃𝑎𝑡𝑐𝑛𝑡𝑐
𝑡𝑐
𝑇

 

where 𝑃𝑎𝑡𝑐 is the power required by ATC motor, 𝑛𝑡𝑐 is the number of cutting tools used 

for one machining operation. 𝑃𝑎𝑡𝑐 is constant for a specific machine tool and can be either 

obtained from the machine tool technical specification data or measured experimentally. 

2.6.4.5 Chip conveyor energy (Ecc)  

Chip conveyor energy (Ecc) refers to the energy required by the chip conveyor motor 

to remove the metal chips from the machine tool. The chip conveyor power is generally 

constant for a machine tool. It can be either obtained from machine tool technical 

specification data or measured experimentally. 

2.6.4.6 Fixed energy consuming components 

A few components of the machine tools such as fan motors, servo systems, control 

panel, relays, lights, lubrication system, etc. are always activated when the machine tool 

is switched on and these components consume a fixed amount of energy. ISO/WD14955-

1 defined the fixed energy state as the state when the mains, machine control, peripheral 

units are on and machine processing unit and machine motion unit are ON HOLD (Hu et 

al., 2012). ON HOLD is the condition when the unit is on but not operational and no 

processing or movements are carried out. The fixed energy can be computed as a product 

of fixed power and total machining time. The fixed power is constant for a machine tool 

and therefore can be experimentally measured and stored in the database. 

Modern CNC machine tools have a centralized lubrication system with periodically 

changing operational status. The activation of lubrication system is based on the oil 

pressure and temperature. Therefore, the fixed energy consumption can be modelled as a 

piecewise function based on lubrication system activation (Zhou et al., 2018) as: 
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𝑃𝑓𝑖𝑥𝑒𝑑 = {

𝐶0 0 < 𝑡 ≤ 𝜏0
𝐶1                     𝑡 ∈ (𝜏𝑜𝑖𝑙 ∗ 𝑛𝑐𝑦𝑐𝑖), 𝑛𝑐𝑦𝑐𝑖 = 1,2,3…

𝐶2 𝑡 ∈ (𝜏𝑢𝑜𝑖𝑙 ∗ 𝑛𝑐𝑦𝑐𝑖)

 

where 𝜏0 is the pre-heat time of machine, 𝜏𝑜𝑖𝑙 is the amount of time oil is needed for one 

work cycle of the lubrication system, 𝜏𝑢𝑜𝑖𝑙 is the non-oil supply time during one work 

cycle of lubrication system, 𝑛𝑐𝑦𝑐𝑖 is the ith lubrication work cycle, 𝐶0 is the stand-by power 

consumption in pre-heat time, 𝐶1 is the stand-by power consumption in oil supply time, 

and 𝐶2 is the stand-by power consumption when oil is not supplied. 

2.6.5 Therblig Based Energy Models 

Another energy consumption modelling approach is based on the micro motion of the 

machine tool. The machining tasks are completed through execution of a series of energy 

consuming machine tool motions, and energy characteristics of CNC machine tools can be 

determined based on their motion control. Therblig based energy modelling has emerged 

as a powerful tool for energy analysis of the fundamental motions of the machine tools. 

Therblig is considered as the basic energy demand unit. Therbligs are defined as a set of 

fundamental motions which are executed by machine tool to complete a machining 

operation (Lv et al., 2014). The Therblig based energy demand modelling divides the 

machining processes into a series of activities, and activities into Therbligs; and Therbligs 

are linked with the machining state. Lv et al. (2014) provided models for calculation of 

power consumption by different Therbligs. Jia et al. (2016a) provided a methodology to 

divide a machining process into activities using Therblig activation information. Jia et al. 

(2017a) extended the study to predict the non-value added energy based on Therblig based 

power models for turning process. Jia et al. (2017b) proposed, for the first time, a Therblig 

embedded value stream mapping (TVSM) method to map the energy consumption by the 

machining process at micro level. The proposed approach provided better energy 
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transparency and clearly showed the energy waste during machining. The proposed TVSM 

enables the users to improve time and energy efficiencies in machining without decreasing 

the machining quality. The above papers (Jia et al. 2017b; 2016a; 2014; Lv et al. 2014) 

validated the proposed models for turning processes. Therblig based analysis provided a 

deep insight into the motion and energy demand of a machining process. 

2.7  MACHINING ENERGY SAVING STRATEGIES 

The need for improving energy and resource efficiencies has led to analyses of energy 

saving potentials and strategies for machine tools.  The common energy losses occurring 

at machine tool levels have been studied in the literature, and measures to reduce these 

losses are briefly explained (Schmitt et al., 2011). Long operating time, inefficient loading 

of electric drives, inefficient components, and poor process design may lead to significant 

energy waste in machine tools. A large number of energy saving measures for machining 

operations have been proposed in the literature. 

Zein et al. (2011) presented a structured approach to categorize the energy saving 

measures based on energy reduction, reuse and recovery. The functional requirements and 

corresponding design parameters to fulfill the requirements were defined and mapped in a 

structured way to provide clarity towards selection of suitable sequence of improvement 

measures. Duflou et al. (2012) divided the energy saving measures at five levels: unit 

process, multi-machine system, factory, multi-factory, and supply chain levels. A review 

of energy saving approaches for each level was provided. 

Since the number of studies reporting energy saving measures for machine tools are 

large, a careful classification and simplified discussion is important for clear 

understanding. In the present study, the energy saving strategies are classified based on 

three phases: design, macro process planning and micro process planning. In this section, 
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the strategies to reduce fixed and variable components of machining energy are discussed 

for each phase.  

2.7.1 Design Phase 

It is well evident in literature that the energy efficiency of the machine tools can be 

improved by incorporating improvements such as design of light weight components, 

reduction of stand-by energy consumption, use of intelligent control loops, and 

improvement in structural aspects of machine tools during machine tool design. Reduction 

in weight of moving parts of the machine tool will reduce the inertia and lesser power will 

be required. The use of light-weight materials such as aluminum alloy, fiber reinforced 

plastic (FRP) and fine ceramics can be used for machine tool structure (Fujishima et al., 

2014). 

Kroll et al. (2011) studied the energy saving potential of machine tools by reducing the 

weight of the machine tool components and its direct and indirect impacts on the energy 

efficiency. Maximum possible mass reduction for different strategies and subsequent 

energy reduction were studied.  

Another important strategy is to improve the energy efficiency of machine tool 

components (Duflou et al., 2012; Lv et al., 2016). Abele et al. (2011) analyzed the energy 

saving potentials for machine tool spindle units. The study reported that the spindle energy 

can be reduced by reducing the consumption of compressed air, hydraulics and stand-by 

power. 

Albertelli (2017) proposed a systematic approach for comprehensive evaluation of 

energy consumption by two alternative spindle systems using a combination of empirical 

modelling and experimental analysis. A direct drive spindle system was developed and the 

energy consumption was compared with a traditional spindle system consisting motor-

transmission. The model was tested for a milling case study under a set of operating 
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conditions and it was observed that the new spindle system consumed considerably less 

energy as compared to the traditional system due to absence of gear box and other auxiliary 

components.  

Brecher et al. (2013) analyzed the energy consumption and energy saving measures by 

the hydraulic units of the machine tools. The study was extended and a novel design for 

an energy efficient hydraulic unit was proposed based on a variable displacement pump 

with a hydraulic booster and a variable speed control unit (Brecher et al., 2017).  

Edem and Mativenga (2016) reported that the power consumed by machine tool axes 

can be reduced by reducing the weight of the axes. Okwudire and Rodgers (2013) 

presented design of a new feed drive system for energy efficient machining. The feed drive 

was actuated and configured based on the machine tool operating state. The experimental 

investigations reported that the proposed feed drive consumed lesser energy while the 

accuracy and speed were improved.  

Brecher et al. (2012) presented an optimal cooling system with tunable compressor, 

pressure controlled circulation pump, optimized chiller, and controlled EC-fan. The study 

reported that the coolant energy can be reduced between 30 to 60% using the optimal 

coolant pump. Rahäuser et al. (2013) discussed the application of demand based control 

strategy for coolant pump. The energy consumption of the coolant system was reduced by 

73% by using demand based control for a case study. A dust and chip vacuum system was 

introduced to replace the coolant pump for machining of carbon FRPs and a significant 

reduction in power consumption was reported (Fujishima et al., 2014). 

Neugebauer et al. (2011) reported that the machine tool structure should be 

incorporated with robustness, mobility, miniaturization, adaptability, mutability, multi-

functionality, and energetic networking to improve the energy efficiency. Gontarz et al. 

(2015) focused on consideration of energy efficiency for configuration of customized 
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machine tools. Over dimensioning of machine tools often leads to high energy and 

resource consumption. Therefore, it is important to assess the machine tool usage such as 

manufacturing environment, operational information, machine functionality, and 

component dimensions in advance. The machine tool should be designed and configured 

based on customer usage to improve the energy and resource efficiencies. Eisele et al. 

(2011) presented a simulation based approach for energy modelling of machine tool 

components in the design phase and also reported that the energy efficiency can be 

improved by designing energy efficient machine tools and avoiding oversizing of the 

machine tool components. Li et al. (2011) also quoted component design improvement as 

an effective measure to reduce the fixed energy consumption of the machine tools. 

Other approaches to improve the energy efficiency of the machine tools are waste 

recovery within a machine tool (e.g. kinetic energy recovery system) and design of 

integrated or central peripheral components (Duflou et al., 2012). However, improving 

design of the existing machine tools requires heavy investment and industries are more 

interested in reducing the energy consumption in the use phase. 

2.7.2 Macro Process Planning Phase 

The energy efficient strategies at the macro process planning phase are: 

2.7.2.1 Machine tool selection optimization  

Energy is the primary input for metal working machine tools and the energy saving 

efforts start right from the procurement phase of the machine tools. It is observed that the 

initial investment for energy efficient equipment is generally higher than the less efficient 

alternatives but the energy saving from the efficient machine tools is also desirable. The 

cost of energy consumed by a machine tool in its life time accounts for a major percentage 
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of its life cycle cost and the investment into energy efficient machine tools is reported to 

be financially viable (Bharambe et al., 2015). 

Machining of a feature can be realized by many alternate machine tools, cutting tools 

and cutting strategies. Selection of an appropriate machining system is important for 

energy efficient machining (Balogun et al. 2015; Avram and Xirouchakis 2011). Wang et 

al. (2018a) proposed a hybrid approach to select the optimal machine tool by using a 

combination of STEP-NC, ontology and ant colony optimization techniques. The energy 

consumption for a milling process was modelled based on key influencing factors 

identified in STEP-NC. Ontology was used to identify preliminary machining systems 

based on feasibility of operations, machine tool capacity, cutting parameters, and cutting 

strategies.  The best machining system was identified using ant colony optimization. 

2.7.2.2 Machine tool maintenance 

After selecting the best suited machine tool, it is important to maintain and operate the 

machine tools optimally to minimize the energy waste. Product-Service systems (PSS) 

provide services along with products for the better use of products in the use phase from 

financial and environmental perspectives. Mert et al. (2015) investigated the effect of 

services like maintenance, operator training and process consulting on the energy 

efficiency of machine tools. The study reported that the energy efficiency of machine tool 

components can be significantly improved by maintenance and retrofitting of the 

components. Operator training helps to reduce the operating time and select optimum 

process parameters and energy saving up to 20% can be achieved. Process consulting 

supports the customer in procurement phase to select the optimal machine tool for energy 

efficient machining. 
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2.7.2.3 Energy efficient scheduling and process planning 

Energy efficient scheduling, management and task scheduling are also important 

energy saving measures for machining processes. The energy efficiency can be improved 

by integrating the energy efficiency measures at machine tool and production facility 

levels (Salonitis and Ball, 2013). 

2.7.3 Micro Process Planning Phase 

The energy efficient strategies at micro process planning phase are: 

2.7.3.1  Cutting parameter optimization  

Cutting parameters have a direct influence on the performance of the machine tools in 

terms of various performance measures including productivity, tool life, surface 

roughness, energy efficiency, etc. Effect of cutting parameters on different process 

responses has been analyzed in a large number of studies and it has been reported that 

selection of optimum parameters improves the machining performance significantly. The 

optimum parameters should be carefully selected to improve the machining performance 

while satisfying the constraints related to tool life, machine tool capacity, vibrations, etc. 

For example, if the cutting speed is close to the natural frequency of the cutting tool, 

vibration in the machine tool increases resulting in higher cutting power consumption and 

poor surface finish. 

Carvalho et al. (2015). Machining is a complex system consisting large number of 

variables and multiple contradictory objectives. Improvement in one process response 

often demands sacrifice in some other response. Multi-objective optimization is an 

effective technique to identify trade-off among multiple process responses. The commonly 

used optimization techniques are ANN, GA, desirability analysis, RSM, Taguchi 

approach, GRA, etc. Summary of the key optimization studies for milling and turning 

processes has been provided in Table 2.10.  
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Table 2.10 Summary of cutting parameter optimization studies 
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Paul et al. 

(2018) 

Turning AISI 1060 

steel 

dry   x x  Tool 

geometry 

 x        Back 

force 

Luan et al. 

(2018b) 

Face 

Milling 

HTCuCrSn-

250 alloy 

cast iron 

dry      Tool path  x   x     Cutting 

time 

Cui and Guo 

(2018) 

Turning AISI 1045 

steel 

dry FEM, Contour 

plots 

x  x    x   x x     

Warsi et al. 

(2018a) 

Turning Al 6061-T6 dry Energy 

mapping 

x x     x         

Warsi et al. 

(2018b) 

Turning Al 6061-T6 dry Energy 

mapping 

x  x    x         

Chen et al. 

(2018) 

Milling 

(Ra is 

constraint) 

S45C carbon 

steel 

wet  

 

PSO x x x         x   Cost, SPT 

Zhang et al. 

(2018) 

Turning 

(Ra is 

constraint) 

  NSGA-II x x x         x   Noise, 

cost 

Bagaber and 

Yusoff 

(2018a) 

Turning AISI 316 

steel 

dry Desirability 

approach 

x x x   x    x      
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Table 2.10 Summary of cutting parameter optimization studies (Contd.) 

Article Process Material Coolant 
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Optimization 
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Wang et al. 

(2018b) 

Face 

milling 

Medium 

carbon steel 

(150NHB) 

dry Evolutionary 

strategy 

x x x         x   Cost 

Luan et al. 

(2018c) 

Face 

milling 

HTCuCrSn-

250 alloy 

cast iron 

dry GRA & 3-D 

surface plots 

x  x   x    x x     

Li et al. 

(2018a) 

Free form 

surface 

milling 

Al-6061 dry Adaptive 

dynamic GA 

            x  Cutting + 

air cut 

energy 

Xie et al. 

(2018) 

Turning Carbon 

steel C45 

dry NSGAIII x x x  Tool wear  x   x    x  

Zhou et al. 

(2018) 

Milling 

(Ra, tool 

life, are 

constraints) 

AISI 1045 dry GA 

 

x x x x     x   x    

Zhao et al. 

(2018) 

Milling Carbon 

steel C45 

dry GRA x x x x      x  x    

Zhang et al. 

(2017b) 

Milling 

(Tool life, 

Ra, are 

constraints) 

Steel 16 Mn dry GA x x x x     x      CSEC 
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Table 2.10 Summary of cutting parameter optimization studies (Contd.) 

Article Process Material Coolant 
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Optimization 
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Process variables Process responses 
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Kumar et al. 

(2017) 

Turning EN 353 

alloy steel 

wet Taguchi-

TOPSIS 

x x x  Nose 

radius 

    x    x AECM, 

APCM, 

MRR, PF 

Shin et al. 

(2017) 

Milling Mild steel 

1018 

wet Online 

optimization 

x x x x    x        

Lee et al. 

(2017) 

Milling stainless 

steel SUS 

dry GA x  x     x x       

Zhang et al. 

(2017a) 

Milling Carbon 
steel C45 

dry GA x x x x    x x    x   

He et al. 

(2017) 

Milling 

and 

turning 

Carbon 

steel C45 

dry GA, pareto 

plot 

x x x x    x x      Back 

force 

Arriaza et al. 

(2017) 

Milling Aluminum 

7075 

dry RSM, DA x x x x  x       x  Cutting 

time 

Wang et al. 

(2017) 

Milling Ti–6Al–4V 

alloy 

 Pareto plot x x x x  x   x      Tool life 

Sangwan 

and Kant 

(2017) 

Turning AISI 1045 

steel 

dry RSM, GA  x x x           Cutting 

power 

Liu et al. 

(2017a) 

Milling Al6061-T6 dry Response 

surface 

  x x  x         Machining 

accuracy 
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Table 2.10 Summary of cutting parameter optimization studies (Contd.) 

Article Process Material Coolant 
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Optimization 

method 

Process variables Process responses 
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Li et al. 

(2017a) 

Multi pass 

milling 

Carbon 

steel C45 

dry AMOPSO x x x  No of 

passes 

      x   Cost 

Zhong et al. 

(2016b) 

Turning Carbon steel 

, ductile iron 

dry  x x x         x    

Park et al. 

(2016) 

Milling AISI 4140 

steel 

dry NSGA-II x  x  Tool 

geometry 

 x       x  

Lu et al. 

(2016) 

Multi pass 

turning 

Carbon 

steel C45 

wet MOBSA x x x  No of 

passes 

  x       Machining 

precision 

Bilga et al. 

(2016) 

Turning EN 353 

alloy steel 

 Taguchi, 

ANOVA 

x x x  Nose 

radius 

        x AECM, 

PF 

Albertelli et 

al. (2016) 

Milling High alloy 

steel 

wet Exhaustive 

enumeration 

method 

x x  x    x x       

Li et al. 

(2016b) 

Milling AISI 1045 

steel 

dry Taguchi, 

MOPSO 

x x x x   x  x       

Altıntaş et 

al. (2016) 

Milling AISI 304 SS wet RSM x x x     x        

Li et al. 

(2016a)  

Milling Carbon 

steel C45 

dry Tabu search x x x x     x   x    
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Table 2.10 Summary of cutting parameter optimization studies (Contd.) 

Article Process Material Coolant 

condition  

Optimization 

method 

Process variables Process responses 

v
c 

a
p
 

f a
e 

O
th

er
 

C
u

tt
in

g
 

en
er

g
y

 

S
C

E
 

T
o

ta
l 

en
er

g
y

 

P
ro

d
u

ct
io

n
 

ti
m

e 

R
a
 

T
o

o
l 

w
ea

r
 

S
E

C
 

C
E

 

E
E

 

O
th

er
 

(Camposeco

-Negrete et 

al., 2016, 

2013) 

Turning AISI 1018 

steel 

dry and 

wet 

MEP x x x     x        

Jang et al. 

(2016) 

Milling SM45C  

steel 

dry, wet, 

MQL 

PSO x x x         x    

Tapoglou et 

al. (2016) 

Milling    DMOEA x x x            Cutting 

power, 

time 

Iqbal et al. 

(2015) 

Grooving AISI 4340 dry Fuzzy 

methodology 

x x x  Material 

hardness 

x     x    MRR 

Camposeco-

Negrete 

(2015) 

Turning AISI 6061 

T6 

aluminum 

wet RSM, DA x x x       x  x    

Warsi et al., 

(2015) 

Turning AISI 6061 

T6  

dry Contour plots x  x    x         

Garg et al. 

(2015) 

Milling Cast ZG35 dry Com-MGGP x x x     x        

Velchev et 

al. (2014) 

Turning Steel dry Differenti-

ation 

x x x     x        
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Table 2.10 Summary of cutting parameter optimization studies (Contd.) 

Article Process Material Coolant 
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method 
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Wang et al. 

(2014a) 

Turning Carbon 

steel C45 

wet NSGA-II x x x     x  x     Cost 

Li et al. 

(2014) 

Rough 

milling 

Aluminum 

alloy 

dry GA x  x      x   x    

Finish 

milling 

   x  x       x  x    

Arif et al. 

(2013) 

MP 

Turning 

(Ra, Fc, tool 

life, are 

constraints) 

Alloy steel dry NLP x x x  No of 

passes 

  x        

Camposeco-

Negrete 

(2013) 

Turning 

(No 

MOO) 

AISI 6061 

T6 

aluminum 

dry Taguchi S/N, 

MEP 

x x x     x  x      

Yan and Li 

(2013) 

Milling Carbon 

steel C45 

dry  SQP x x x x  x    x     MRR 

Calvanese et 

al. (2013) 

Milling 

(Ra is 

constraint) 

Aluminum 

alloy 

wet Surface plot x  x     x       PT 

Newman et 

al. (2012) 

Milling Aluminum 

alloy 6042 

dry   x x            Power, 

MRR 
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Table 2.10 Summary of cutting parameter optimization studies (Contd.) 

Article Process Material Coolant 
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Optimization 

method 

Process variables Process responses 
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Guo et al. 

(2012) 

Turning steel dry  x x x       x  x    

Mativenga 

and Rajemi 

(2011) 

Turning Medium 

carbon steel 

dry  x x x         x    

Kant and 

Sangwan 

(2014) 

Turning AISI 

1045Steel 

dry GRA x x x       x     Cutting 

power 

Bagaber and 

Yusoff 

(2017) 

Turning Stainless 

steel 316 

dry DA x x x   x    x x     

Campatelli 

et al. (2014) 

Milling AISI 1050 

carbon steel 

dry RSM x x x x   x     x    

Bhushan 

(2013) 

Turning Al-SiC 

composite 

dry RSM, DA x x x  Nose 

radius 

         Power, 

tool life 

Hanafi et al. 

(2012) 

Turning PEEK-CF30 dry GRA, MEP x x x       x 

 

    Cutting 

power 

Bagaber and 

Yusoff 

(2018b) 

Turning AISI 316 

steel 

dry NSGA II x x x     x       Machining 

cost 
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2.7.3.2 Stand-by energy optimization  

Machine tools consume a significant portion of energy as stand-by energy or fixed 

energy. Lanz et al. (2010) reported that the financial benefits due to reduction of cutting 

energy by parameter optimization are less significant. The energy efficiency can be 

achieved by reducing the non-productive and non-value adding times for a machining 

process by better process planning and switching off the machine during long idle times 

(Li et al. 2011; Hu et al. 2012). 

Utilizing on-off strategy to switch off the machine tool during setting up periods is 

considered as an efficient way to reduce the stand-by energy consumption (Camposeco-

Negrete, 2013; Fujishima et al., 2014; Lenz et al., 2017; Lv et al., 2016; Peng and Xu, 

2013). For example, Mori Seiki machine tools are equipped with electromagnetic brakes 

which are applied to gravity axes to turn off the equipment if the machine tool does not 

perform any operation for five minutes. Energy saving potential using this strategy 

depends on the type of machine tool and its operational status.  

Lenz et al. (2017)  reported that up to 28% of the machining energy can be saved by 

implementing energy saving strategies such as improving the component design, 

component start-stop, setting some components to sleep mode in stand-by state, and 

retrofitting with a regulatory control. However, unnecessary start-stop of components may 

lead to higher energy consumption (Lv et al., 2017) and the component activation should 

be optimized to reduce the energy consumption during non-cutting operations. 

Eberspächer and Verl (2013) proposed a graph based approach to find whether the 

energy saving mode should be activated or not. The authors analyzed the time and energy 

required for state transition and machine tool warm up for production readiness. The 

consumption graph for a machining process was developed and optimized using A*-

algorithm. The optimization results indicated that if the gap between two production states 
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was more than 123 seconds, the energy saving mode should be activated. The proposed 

approach was applied to a milling machine tool and the energy consumption was reduced 

by 5% in two continuous production shifts of 8 hours each. The study was further extended 

to automate energy efficient switching-off of machine tool components to reduce energy 

consumption during nonproductive operating states (Eberspächer et al., 2016). The time 

required to return to production state was considered as one of the constraints to ensure 

high productivity. Schlechtendahl et al. (2016) designed a machine independent energy 

optimizer based on real time machining information to manipulate the operating states of 

the machine tool components for energy saving. The application of the optimizer was 

illustrated for a 5-axis milling machine tool. 

2.7.3.3 Reduce spindle acceleration time  

Lv et al. (2017) proposed strategies for reducing the energy consumption for spindle 

acceleration (ESA) at machine tool level and system level. At machine tool level, the ESA 

can be reduced by avoiding unnecessary spindle start-stop, reducing the acceleration time 

and incorporating lightweight design. At system level, ESA can be reduced by selecting 

suitable machine tools. The energy saving between 10 to 50% can be achieved by using 

these strategies. 

Mori et al. (2011) proposed a novel spindle acceleration/deceleration control for 

reducing the energy consumption during spindle acceleration/deceleration and observed 

that the power consumption was reduced by synchronizing the spindle 

acceleration/deceleration with rapid transverse. 

2.7.3.4 Reactive power compensation and braking energy storage  

Götze et al. (2012) presented a study to analyze the energy and cost effectiveness of 

the machine tools for the adoption of two energy saving measures – reactive power 
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compensation and braking energy storage. The drive system energy consumption was 

simulated to identify the energy flow and saving potentials. The proposed approach was 

implemented for a milling case study and it was reported that both the measures had 

technical and ecological advantages, but only reactive power compensation was 

economically viable.  

2.7.3.5 Feature sequence optimization 

The sequence of the features performed on a workpiece also affects the energy 

consumption of the machine tools during different operating states. Hu et al. (2017b) 

studied the effect of feature processing sequence on the cutting energy and observed that 

up to 14% energy saving and 20% machining time reduction can be achieved by 

optimizing the feature processing sequence. The feature processing sequence also affects 

the energy consumption of tool change and tool path during run-time. Hu et al. (2018a) 

studied the correlation between the energy consumed during feature transition (EFT) and 

feature processing sequence; and provided models for tool change energy (TCE) and tool 

path energy (TPE) for transition from one feature to the next feature. The EFT was reduced 

by 28.6% with optimum sequencing of the features. Further, the model was extended for 

multiple machine tools and bi-objective optimization considering feature transition time 

(TFT) as the second objective. The TFT was reduced by 27.95% with bi-objective 

optimization. 

The energy model was improved by including the energy consumption due to spindle 

acceleration/deceleration for calculation of non-cutting energy (NCE) of machine tools 

(Hu et al., 2017a). The spindle acceleration/deceleration energy can be up to 14% to the 

total NCE of machine tools and hence the energy saving potential is significant. The 

optimum feature sequence to minimize the NCE was identified using ant colony 

optimization (ACO) approach. The effectiveness of the proposed model was illustrated 
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with two case studies with 12 and 15 features, respectively. It was reported that the 

optimum sequence identified by the proposed approach reduced the NCE by 8.70% and 

30.42%, respectively as compared to bottom-to-top sequence of features. The performance 

of various deterministic and meta-heuristics optimization approaches was compared with 

ACO and it was reported that the performance of ACO was best for this case study in terms 

of solution quality and processing time. 

The authors extended their analysis to a multi-objective optimization study considering 

machining time and deviation as process responses along with machining energy (Hu et 

al., 2018b). The sequence related machining time (S-MT), deviation (S-MD) and energy 

consumption (S-MEC) were modelled and analyzed in the study. The activities which were 

not related to the sequence and were common in all possible sequences were ignored. The 

multi-objective problem was solved using the evolutionary approach of Non-dominated 

Sorting Genetic Algorithm II (NSGA-II) and the deterministic approach of Non-dominated 

Inserting Enumeration Algorithm (NIEA). It was observed in the study that NIEA always 

returned the global optimum whereas NSGA-II returned near optimal solution. However, 

the computation time for NIEA was high and intolerable for large number of features. 

Therefore, a new optimization approach, Genetic-based Non-dominated Enumeration 

Algorithm (GNEA), was proposed for large number of features to obtain better quality 

solution in a reasonable time. The proposed model was illustrated through a case study of 

three parts with different features and the results showed that S-MEC, S-MD and S-MT 

can be reduced by 16.66%, 5.29% and 20.51%, respectively with optimum feature 

sequencing.  

Li et al. (2018b) proposed an optimization approach for NC program at two different 

levels – setup level (a group of NC codes for a setup) and NC program level (a group of 

features in the same NC program). At the setup level, processing sequence of different NC 
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programs for machining of different features on a part was analyzed. At this level, energy 

required for tool change between different NC programs was optimized. Whereas, on the 

NC program level, the processing sequence of different features in the same NC code was 

optimized to reduce the energy consumption due to cutting tool movement and travelling 

time of the cutting tools. The optimum NC code sequence at setup level and feature 

sequence at NC program level was obtained using honey-bee mating optimization 

(HBMO)-simulated annealing (SA) algorithm. The proposed approach was verified with 

simulation experiments for two case studies and the energy efficiency was reported to be 

improved by 10% and 15.9%. 

Wu et al. (2017) presented a tool selection optimization study for CNC milling of 2.5D 

pocket for minimization of machining cost and energy consumption. The effect of tool 

sequence on the machining cost and energy consumption was analyzed in the study and 

optimum tool sequence was obtained using graph algorithm. 

2.7.3.6 Workpiece setting optimization 

The machine tool axes have different equivalent mass and friction and the energy 

consumption for movement along each axis is different. The orientation of workpiece 

affects the axial movement along each axis and hence the energy consumption for 

machining process. A few studies analyzed the effect of workpiece setting on the 

machining energy consumption and investigated the possibilities to reduce the energy 

consumption by optimizing the orientation of the workpiece. The optimization of 

workpiece orientation is advantageous over the other techniques such as MQL, energy 

efficient design of components, or parameter optimization, as it does not require extra 

investment or parametric adjustments. 

Campatelli et al. (2015) presented an energy consumption model for machine tool axes 

involving the equivalent mass and friction of the axes and reported 23% reduction in the 
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machine tool axes energy consumption for a milling case study using optimal workpiece 

orientation.  

Edem and Mativenga (2017a) studied the effect of workpiece orientation on energy 

consumption and surface roughness for a milling process. The surface roughness and 

electric energy consumption for milling of AISI 1045 steel were measured for different 

orientations of workpiece. It was reported in the study that the surface roughness and 

energy consumption can be reduced by 29% and 50% respectively when the workpiece 

was oriented in the direction of axis carrying least weight.  

Sato et al. (2017) studied the effect of workpiece setting on the energy consumption 

by feed drive systems. The feed drive energy for a five-axis machining center was analyzed 

for 25 different workpiece settings and it was observed that an energy saving of 20% can 

be achieved using optimum workpiece setting. 

Xu and Tang (2016) analyzed the effect of workpiece set-up on the energy 

consumption for a free form milling process. An energy consumption model was proposed 

for free form milling based on kinematic configuration of the machine tool. The proposed 

model was optimized, and it was observed that the energy consumption can be reduced up 

to 50% by optimizing the workpiece set up without changing the tool path. 

2.7.3.7 Tool path optimization  

The effect of different tool path strategies on the machining energy consumption has 

been analyzed by many researchers and it has been observed that the energy consumption 

varies significantly for different tool paths (Aramcharoen and Mativenga 2014; Guo et al. 

2015). For example, Aramcharoen and Mativenga (2014) analyzed the energy 

consumption with different tool paths for a milling process and observed that contour 

offset was the most energy efficient tool path for closed pocket milling. 
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Pavanaskar and McMains (2015) developed an energy prediction model for CNC 

machine tools considering the tool path aspects and used the model to analyze the effect 

of variation in cutting parameters and tool path on the machining energy consumption. A 

software interface was developed for energy analysis of CNC machine tools and the energy 

consumption for different tool paths was analyzed and compared. Xu et al. (2016) studied 

the effect of tool path on the energy consumption for free form surface milling process 

using a five-axis milling machine tool. It was observed that the proposed tool path was 

25% more efficient in terms of energy consumption as compared to the traditionally used 

tool path. 

Edem and Mativenga (2017a) studied the effect of three tool paths – zag, zigzag and 

rectangular contour – on energy consumption for a milling operation. It was observed that 

rectangular contour resulted in least energy consumption. In another study by Edem et al. 

(2017), the electric energy demand for pocket milling of AISI 1018 steel for two different 

machine tools was measured using three different tool path strategies of zag, zigzag and 

rectangular contour. It was reported that the optimum tool path for minimum energy was 

different for both the machine tools and depends on the axis configuration of the machine 

tool. It was also observed in their study that tool path with more number of tool retracts 

results into longer processing time and higher energy consumption. 

Luan et al. (2018b) investigated the effect of tool paths on energy consumption, 

machining time and surface integrity of the workpiece for face milling of alloy cast iron 

under dry cutting conditions. The cutting energy, cutting time and surface roughness were 

measured for six different tool paths: up milling, down milling, zag-X, zag-Y (up milling), 

morph spiral, and parallel spiral. The zigzag tool path was favored for low energy 

consumption and high processing efficiency. 
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Li et al. (2018a) analyzed the effect of tool path on machining time, carbon emissions 

and energy consumption for free form surface milling and established a trade-off among 

the three process objectives. A tool path was defined as a set of cutter contact points 

(CCPs) and both number and sequence of CCPs were optimized to improve the production 

efficiency, energy saving and environmental performance of machining process. Cutting 

and air-cutting tool paths were considered as two process variables and the process 

objectives were modelled as a function of tool path length. Multiple objectives were 

converted into a single-objective using linear weighted summation method and the tool 

path was optimized using adaptive dynamic GA. The proposed model was verified with a 

case study of free form surface machining of Al06061 alloy under dry cutting conditions. 

It was reported that with optimum tool path selection, the total tool length can be reduced 

by 13.37% and 18.25%, respectively as compared to parallel and streamline milling, 

respectively. 

2.7.3.8 Improvement in coolant conditions 

The coolant conditions have significant impact on energy consumption for machining 

processes as the coolant pump is a significant energy consumer. The impact of coolant 

conditions on the energy consumption has been studied by various researchers and 

alternative cooling strategies have been proposed with higher energy efficiency such as 

minimum quantity lubrication (MQL) (Lv et al., 2016). Many researchers have explored 

the conditions to replace wet machining with environment friendly, dry or MQL 

machining (Zhang et al. 2015; Shokrani et al. 2018). It has been observed that the SCE for 

dry cutting is higher than cryogenic machining due to limitations on MRR. For flood 

cooling, energy consumption is significantly higher than dry and cryogenic machining due 

to high power consumption by coolant pump. Cryogenic cutting condition facilitates the 
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use of higher cutting speed without compromising the tool life. Hence, cryogenic 

machining can result into minimum energy consumption with acceptable tool life. 

Denkana et al. (2015) investigated the effect of coolant flow rate on the power 

consumption of the machine tool while considering the tool wear constraints. Minimum 

amount of coolant flow rate required to remove the heat generated by spindle unit was 

investigated. It was observed that at higher spindle process power, more heat is generated. 

Therefore, higher coolant flow rate was required to impair the tool wear. It was also 

observed that the mean power consumption of spindle motor was not increased by reducing 

the coolant flow rate. 

2.8 MACHINING ENERGY EFFICIENCY EVALUATION MEASURES 

In the previous sections, the energy consumption models and energy saving strategies 

for machine tools have been discussed under various classifications. The quantification of 

energy efficiency is important to analyze that how the implementation of energy saving 

strategies impacts the energy performance of the machine tools. It is evident that only a 

small percentage of the total energy consumption is used for material removal, whereas a 

significant portion is either consumed for auxiliary operations or wasted. Energy efficiency 

of a machining process can be improved by reducing the energy waste and increasing the 

percentage of material removal energy. 

Energy efficiency of machine tools is affected by factors related to both machine tool 

components (Schudeleit et al., 2016) and manufacturing task (Draganescu et al., 2003). 

Liu et al. (2018a) proposed a potential energy method for evaluation of machine tool 

energy efficiency considering the effect of both machine tool components and machining 

tasks. The factors related to machine tools were modelled by acquiring information from 

the machine tool manufacturers. The workpiece related factors were modelled by acquiring 

production information such as workpiece diversity, cutting parameters and process 
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uncertainty. An energy efficiency evaluation model was proposed by combining both 

factors, and the proposed model was illustrated for a gear hobbing machine. In design and 

procurement phases, the energy performance evaluation of machine tools is an important 

pre-requisite for development and selection of energy efficient machine tools. As the 

buyers cannot perform cutting test for different machine tools at procurement stage, an 

energy efficiency model is required which can evaluate and compare the energy efficiency 

of various machine tools without requiring experimental data.  

It is evident from the literature that the researchers have widely used four measures for 

energy efficiency of the machine tools: energy utilization ratio, real time energy efficiency, 

specific energy consumption, and relative energy efficiency. 

2.8.1 Energy Utilization Ratio (U) 

Energy utilization ratio is defined as the ratio of energy required for material removal 

to the total energy consumed by the machine tool. Energy utilization ratio is a widely used 

measure for energy efficiency of the machine tools (Hu et al., 2012; Kumar et al., 2017; 

L. Li et al., 2017; Z. Y. Liu et al., 2015; Lv et al., 2016; Ma et al., 2017; Sealy et al., 2016; 

Tuo et al., 2018b; Zhao et al., 2016). It signifies the proportion of cutting energy to the 

total energy consumption by the machine tools. Hence, the energy efficiency is higher if 

larger proportion of the machine tool energy consumption is utilized for material removal 

and lesser energy is required for auxiliary operations. 

Some researchers (Ma et al., 2014; Park et al., 2016) studied the energy consumption 

for machining process at material removal level. The cutting energy was decomposed into 

shear energy (useful) and friction energy (unproductive). The energy efficiency or energy 

utilization ratio at material removal level was defined as the ratio of shear energy to cutting 

energy. 
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2.8.2 Real Time or Instantaneous Energy Efficiency (ηt) 

Real time or instantaneous energy efficiency is defined as the ratio of material removal 

power to the total power drawn by the machine tool (Y. Cai et al., 2018c, 2018b; Cai and 

Shao, 2017; Draganescu et al., 2003; Guo et al., 2012; Hacksteiner et al., 2017; Hu et al., 

2012; L. Li et al., 2017; N. Liu et al., 2015; P. Liu et al., 2017; Xie et al., 2018). It should 

be noted that real time or instantaneous energy efficiency is a transient value defined for a 

time instant, whereas the energy utilization ratio is a process value. 

2.8.3 Specific Energy Consumption (SEC) 

Specific energy consumption is defined as the ratio of total machining energy to the 

effective output of a machining process. SEC can be defined at three levels – process, 

spindle and machine tool levels wherein the energy required for material removal, the 

energy consumed by spindle unit and the total energy consumed by the machine tool are 

considered, respectively. The SEC definitions provided in the literature are summarized in 

Table 2.6. The effective output can be measured in terms of material removal rate (Lv et 

al., 2016; Warsi et al., 2015), volume of removed material (Chen et al., 2018; C. Li et al., 

2017; Li et al., 2016a, 2016b)  or number of parts processed (L. Li et al., 2017). Sometimes 

the efficiency of spindle or chiller unit is also considered for calculation of SEC at spindle 

level (Draganescu et al., 2003; Hacksteiner et al., 2017; Wójcicki et al., 2018) and the SEC 

is measured as: 

𝑆𝐸𝐶 =
𝑃𝑐

60𝜂𝑠𝑝𝑀𝑅𝑅
 

where 𝜂𝑠𝑝 is energy efficiency of the main spindle. 
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2.8.4 Relative Energy Efficiency (EErel) 

Relative energy efficiency is defined as the ratio of minimum energy required to the 

actual energy consumption for a unit operation.  

EE𝑟𝑒𝑙 =
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 

Kreitlein et al. (2017) evaluated the least energy demand to perform a unit operation 

on the machine tools based on the energetic interrelations without considering a specific 

machine tool or production process. Least energy demand was defined as the minimum 

energy required for shearing the material in the form of chips. 

The least energy demand is also used for benchmarking the energy consumption for 

machining processes. Energy benchmarking is reported to be an efficient strategy for 

energy efficiency management and improvement. The complexity of machining systems 

makes the development and use of energy benchmarking system for machine tools a 

challenging issue. Cai et al. (2017a) identified the drivers for energy benchmarking of 

machining systems and analyzed their characteristics. An energy benchmarking 

framework was then proposed at motion, application and objective levels covering the 

static and dynamic, product and process based, single and multiple objective dimensions 

of energy benchmarking, respectively. In another study by Cai et al. (2017b), a dynamic 

energy benchmarking system was proposed for mass production processes to assess the 

energy efficiency of machining systems. Dynamic energy benchmark can assess the 

energy consumption of different machining systems for the production of same products. 

Further, Cai et al. (2018a) presented two energy benchmarking rules for energy efficiency 

improvements of machine tools. First rule facilitated the energy benchmarking for a group 

of products and the second rule provided an evaluation measure for energy benchmarking 

termed as benchmarking rating. 
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The above stated measures have been widely used for energy efficiency evaluation 

using different methods. Each evaluation method has its own pros and cons; and a standard 

test procedure for energy efficiency evaluation of machine tools is still missing. 

2.8.5 Others 

Karpov (2015) introduced ‘energy efficiency of the cutting operation (K)’ as an 

integral measure of machining effectiveness considering multiple power cycles. 

𝐾 =
∆𝑤 ∗ 𝑉

𝑛𝑐 ∗ 𝐴𝑐
=

∆𝑤 ∗ 𝑉

𝑛𝑐 ∗ ∫ 𝑁(𝜏)𝑑𝜏
𝜏𝑐
0

 

where ∆𝑤 is the specific energy intensity of processed material, V is the volume of 

processed material, 𝑛𝑐 is the number of cutting power cycles 𝑁(𝜏) during the tool travel, 

𝐴𝑐 is the work done for cutting, and  𝜏𝑐 is the cycle time for power change. 

Schudeleit et al. (2015) evaluated and compared four energy efficiency test 

approaches: reference part method, reference process method, specific energy 

consumption method, and component benchmark method using analytic hierarchy process 

(AHP). The four alternatives were compared against seven performance criteria: 

evaluation time, simplicity, machine tool comparison, dependence on workpiece and tool, 

real time use, implementation phase, and operating states evaluation. The reference 

process method (36.1%) was ranked as the most suitable method for energy efficiency 

evaluation of machine tools followed by the component benchmark (26.2%), specific 

energy consumption (20.9%), and reference part (16.8%) methods. However, the reference 

process method had limited application in the design phase. 

Tuo et al. (2018b) proposed an energy efficiency evaluation system for machine tools 

using a virtual part method. Two energy efficiency evaluation indexes were defined and 

evaluated, namely comprehensive energy consumption (CEC) and comprehensive energy 
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utilization (CEU). Reference process, reference part, specific energy consumption, and 

component benchmark methods were critically analyzed in their study. A new virtual part 

based evaluation method was proposed to overcome the shortcomings of these existing 

methods, such as material wastage, cutting parameters, workpiece material and geometry, 

features, and machining cost.  

The studies on energy performance evaluation of machine tools generally focus on 

specific energy consumption for a reference workpiece while consideration of process 

controls in use phase (state of auxiliary components, rotational speed of spindle, feed rate, 

etc.) is scarce. Tuo et al. (2018a) assessed the inherent energy performance (IEP) of the 

machine tools with consideration of various process controls in use phase. The IEP indexes 

were divided into two categories: energy consumption function indexes and equivalent 

energy consumption indexes. The former was used for known operational processes while 

the latter was used for unknown operational processes. The proposed indexes were more 

comprehensive and systematic as these consider process control in use phase and the 

distribution of process controls. The proposed methodologies can be utilized to develop 

energy labels for machine tools, estimation of energy demand during use phase, and 

selection of more efficient machine tools during process planning and procurement phases. 

Hu et al. (2012) proposed an online approach for monitoring the energy efficiency and 

energy utilization ratio of the machine tools without using force/torque sensors. A software 

for real time energy efficiency monitoring was developed to display the power 

consumption and energy efficiency in real time, energy utilization ratio for two 

consecutive shifts. 

Hacksteiner et al. (2017) used specific energy consumption and overall equipment 

efficiency as energy efficiency indicators and proposed an interface to determine energy 
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efficiency and productivity indicators in real time using sensor data and machine control 

data. SCADA software was used for recording, processing, and storing the data.  

Kianinejad et al. (2015) conducted an experimental study to compare the energy 

consumption of old machine tools with the modern machine tools. The energy efficiency 

study of old machine tools may provide insights for reuse, reconditioning, upgrading, life 

cycle, and end of life assessment studies. Two milling machine tools representing old and 

new scenario were selected and energy consumption was measured for different 

operations/components and processing conditions. It was observed that the energy 

efficiency of newer machine tool was 40% higher than that of old one. However, the old 

machine tool can perform more efficiently for the materials which can be processed only 

at lower cutting speeds such as nickel alloys as compared to aluminum alloys. 

2.9 SUMMARY 

The energy efficiency analysis for the machine tools has emerged as a key research 

focus for both industry and academia since the last decade. The thesis presents the first 

systematic literature review of 226 reference articles, from 1994 to 2018, focusing on 

energy aspects of the machining processes. It was found that the first paper on machining 

energy was published in 1994 as per the search criteria of the study. There are seven review 

articles in the list of 226 articles and it was observed that the existing review articles 

focused on limited aspects of machining energy; whether energy classification or 

modelling or saving strategies or efficiency evaluation. The number of articles reviewed 

in these studies were also limited. Descriptive analysis of the reference articles shows that 

most of the research in energy aspects of machining has been conducted during the last 

decade. It has also shown that most of the research is being conducted in China followed 

by USA, UK and Germany. But, it also shows that the research on the topic is going on in 

many countries. Broadly, the research on the topic can be classified in four categories, viz. 
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(i) machining energy classification, (ii) machining energy modelling, (iii) machining 

energy saving strategies, and (iv) machining energy efficiency evaluation measures.  

Based on the different energy classification approaches used by the researchers, the 

research can be divided into six hierarchies; from machining system level to 

component/Therblig level. The researchers have used analytical, numerical and 

experimental modelling techniques for estimation of machining energy at different levels. 

Based on the expression of energy and the level of assessment, the energy models can be 

divided into five groups: machine tool energy models, cutting energy models, operational 

state based models, component based models, and Therblig based energy models.  It was 

observed that Therblig based models provide higher level of classification and help to 

develop precise and accurate energy models. It was found that the machining energy 

saving strategies have been researched at design, macro process planning, and micro 

process planning phases. Some important energy saving strategies in design phase include 

replacing long and bulky mechanical drives with light and direct drives, incorporating 

electrical actuators, integrating safety controller for moving parts, reducing transformer 

losses, and use of lighter and efficient machine tool components. The energy saving 

strategies at macro process planning include selection of machine tool and energy efficient 

scheduling of machining operations. At micro process planning phase, the energy can be 

reduced by benchmarking the energy consumption of machine tool components, using 

modular programs, optimizing the tool path and machining parameters, efficient loading 

of the electric drives, and retrofitting the machine/components. The strategies at design 

level are difficult and expensive to implement. The four major energy efficiency evaluation 

measures used by the researchers are: energy utilization ratio, real time energy efficiency, 

specific energy consumption, and relative energy efficiency. Based on the systematic 

literature review of 226 articles, following research gaps are identified: 
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Development of energy consumption index: 

The energy performance of the machine tools should be an important aspect in the design 

phase. An energy consumption index should be developed and added to the machine tool 

technical specification data for comparison of energy performance of the different machine 

tools. Also more research is needed to benchmark the energy consumption for standard 

machining processes for better energy management and process planning. 

Configuration of customized machine tools: 

The machine tools should be configured for customized machine tools. More research is 

required to understand the customer requirements and demand side management. This will 

help to avoid overdesigning of machine tools and waste during non-productive times. 

Energy modelling upto micro level: 

It is observed in the review study that quantification of energy flow upto micro level 

improves the energy transparency for the production process. Therblig based energy 

modeling helps to envision the machining energy flow at micro level and provides better 

insights about the energy hotspots. In future studies, improved value stream maps should 

be developed to visualize energy consumption and carbon emissions at a micro level, more 

process objective should be added to the value stream maps, and it should be extended to 

other manufacturing processes. 

Selection of optimization objectives from energy and environment perspective: 

It is observed that the selection of process objectives and constraints is not standardized. 

For instance, surface roughness is often considered as a process objective. However, in 

reality, a pre-defined value of surface roughness for a product is acceptable and any efforts 

made to further reduce the surface roughness will result into undesired energy and resource 

consumption. The future studies should work towards providing more practical approach 
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for the selection of optimization objectives including energy and environmental 

perspectives. 

Real time energy data analytics: 

The machine tool performance changes with time, progression of tool wear and deviation 

in process parameters. Real time data monitoring is facilitated by use of sensors and data 

analytics. The use of such technologies is a challenge for industries, especially SMEs, due 

to high investment cost and complexity. Therefore, future research should focus of 

development and deployment of low cost sensors, using off the shelf technologies for data 

acquisition and real time monitoring. 

Use of energy data for condition monitoring and predictive maintenance: 

Electrical power data involves diverse characteristics related to technical specification and 

operational status of machine tools. Abrupt changes in energy profile indicates anomaly 

in the machine tool performance. The real time energy data can serve as a basis for online 

condition monitoring of machine tools. It will help to detect the downtime before it occurs, 

create strategic maintenance timelines that can be performed when needed. This will result 

into better-planned maintenance processes and significant cost saving by reducing 

equipment failure and increasing machine lifetime.  

Integration with industry 4.0 applications: 

The integration of energy data analysis with industry 4.0 application can help to track the 

operational state of the machine tool in real time from a remote location and send the status 

or alert to the right personnel. Further, the future research should explore the opportunity 

of machine-to-machine communication to coordinate the production process. For example, 

in case of a breakdown or error in production process, the communication in machine tools 

can alert the production line about the breakdowns/bottlenecks. This facilitates to intensify 

the pace of production and may automate it entirely in future. 


