
Semantic Integrity Control and Interoperability 

for Component Based Software Development 
 

 
THESIS 

 
 

Submitted in partial fulfilment  

of the requirements for the degree of  
 
 

DOCTOR OF PHILOSOPHY 
 
 

by 
 
 

M. MADIAJAGAN 
 
 
 

Under the Supervision of  
 
 

Dr. B. VIJAYAKUMAR 
 
 
 
 

 

  
 
 

 
BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE 

PILANI (RAJASTHAN) INDIA 

2009 



Semantic Integrity Control and Interoperability 

for Component Based Software Development 
 

 
THESIS 

 
 

Submitted in partial fulfilment  

of the requirements for the degree of  
 
 

DOCTOR OF PHILOSOPHY 
 
 

by 
 
 

M. MADIAJAGAN 
 
 
 

Under the Supervision of  
 
 

Dr. B. VIJAYAKUMAR 
 
 
 
 

 

  
 
 

 
BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE 

PILANI (RAJASTHAN) INDIA 

2009 



 
 

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE 

PILANI (RAJASTHAN) 
 
 
 
 

CERTIFICATE 
 
 
 
This is to certify that the thesis entitled Semantic Integrity Control and 

Interoperability for Component Based Software Development and 

submitted by M. Madiajagan ID. No. 2004PHXF439P for award of 

Ph.D. Degree of the Institute embodies original work done by him under 

my supervision. 

 

 

         Signature in full of the  

         Supervisor:      _________________________ 

 

          Name in capital block 

         Letters:                             Dr. B. VIJAYAKUMAR 

           Designation:                        Associate Professor 

 

 

Date:  



ACKNOWLEDGEMENTS 
 
 

 I would like to express my deepest sense of gratitude, first and foremost, to my Ph.D. 

Thesis Supervisor Dr. B. Vijayakumar, Associate Professor, Computer Science Department, 

BITS, Pilani – Dubai, United Arab Emirates, for his valuable guidance and encouragement 

during the course of this research programme. I am extremely grateful to him for his able 

guidance, valuable technical inputs and useful suggestions. I express my sincere thanks and 

gratitude to our Director, BITS, Pilani – Dubai, Prof. Dr. M. Ramachandran for his 

motivation, encouragement and moral support to pursue my research.  

 I would like to place on record my deepest sense of gratitude to the Research Board, 

B.I.T.S, Pilani for giving me an opportunity to do this research work and providing me 

guidance throughout the research programme. I sincerely thank the Doctoral Advisory 

Committee, B.I.T.S. Pilani and also Doctoral Advisory Committee, BITS, Pilani-Dubai for 

its constant monitoring and advisory role that has really helped me very much throughout this 

programme. I am very much grateful to Dr. Ravi Prakash, Dean Research and Consultancy 

Division, B.I.T.S, Pilani (Rajasthan), India, Dr. G. Vijaya, Dr. K.K.Singh, Dr. K. Kumar,   

Mr. Dinesh Kumar, Ms. Monica Sharma for their constant support and encouragement given 

to me. I am grateful to Dr. K. N. Ramachandran Nair, Dr. V. Santhosh Kumar for their 

valuable suggestions.  

 I would like to thank my colleagues Dr. Manjunath, Dr. A. Somasundaram,                

Dr. S. Vadivel, Dr. Sameen Fatima,  Ms. Sujala D Shetty, Ms. S Jeylatha, Ms. Alamelu 

Mangai, Ms. Susanna Henry, Ms. Mubeena  and Mr. G. Rajendran for their interaction. I 



wish to thank Computer Science Department and Computer Support Group, BITS, Pilani-

Dubai for providing me excellent facilities. I also would like to thank all other staff for their 

kind cooperation.   

  I acknowledge Ms. Barkha Keni, Mr. Satish Surath, Mr. Ananth Oswal, Mr. Hari 

Sreenivasan and Mr. B. Praveen for their help, technical inputs and interactions. I wish to 

thank my wife Mrs. M. Santy, my son Master M. Aroulmurugan, my daughter                   

Miss M. Vithiya and my parents for providing me all support and cooperation in perusing 

this research programme.  

 Above all, I thank the Lord for giving me the strength to carry out this work to the 

best of my abilities. 

 

M. Madiajagan 
2004PHXF439P 



ABSTRACT 
 

 Component-Based Software Development is gaining a lot of importance in the 

construction of high quality and evolvable software systems, in timely and affordable 

manner. The present work addresses the Semantic Integrity Control issue for distributed 

components by providing an environment for defining pre-conditions and post-conditions 

and enforcing them. It also deals with distribution issues in early phases of application 

development, namely requirements and specification. Design-time and Run-time 

interoperability for a distributed environment are considered in the present work. 

 A component based approach for enforcing Semantic Integrity Control in a 

distributed multi-database system has been modeled using UML 2.0. The design of core 

component includes separate interfaces for User, Administrator, and Database Handler. 

The algorithms for pre-condition and post-condition are formulated and discussed. 

The Interoperability of multiple databases in a distributed environment has been 

realized using a Generic Model for the Database Search Application. The implementation 

has been carried out using two approaches:  

1. JDBC and Java API. 

2. ADO .NET Architecture. 

A mathematical representation for the queries, for database component has been 

presented and it makes use of propositions. This will be helpful in the verification of 

simple as well as complex queries, both mathematically as well as experimentally. 



The key factors responsible for maintaining Semantic Integrity Control and 

Interoperability are analyzed for three types of components: Domain, Service and Agent. 

The block schematic and design steps for Domain, Service and Agent components are 

discussed. 

The report also summarizes the work, highlights specific contributions and 

suggests some directions for future work. 



 i 

Contents 
 
  List of Tables ……………………………………………….……….iv 

   List of Figures ……………………………………………….………v 

  List of Abbreviations ………………………………………………. vi 

1 Introduction             1 

1.1 Semantic Integrity ………………………………………….……2 

1.2 Component …………………………………………….…...........2 

1.3 Interface ………………………………………………………….3 

1.4 Contract ……………………………………………………….…3 

1.5 Semantic Integrity for Components ………………………….….4 

1.6 Interoperability ……………………………………………….….7 

1.7 Software Architecture and Technologies ………………………..8 

1.8 Objectives, Scope and Limitations ……………………………..12 

1.9 Research gap ……………………………………………………13 

1.10 Organization of the Thesis ……………………………………...15 

 

2 Component Approach for Enforcing Semantic Integrity Control in a 

Distributed Multi-Database System                 18 

2.1 Introduction …………………………………………………….18 

2.2 Related Work ……………………………………………….…..20 

2.3 Component Design for a Multi-Database System ………….…..21 

2.3.1 Component User ……………………………………22 

2.3.2 Component Administrator ………………………….22 

2.3.3 Database Handler …………………………………...23 

2.4 Problem Description ………………………………………….…23 

2.5 Database Handler ……………………………………………….25 

2.5.1 Schema Manager ……………………………………25 

2.5.2 Site Manager ………………………………………..26 

2.5.3 Execution Manager …………………………………29 

2.5.4 Assertion Manager ………………………………….30 

2.6 Pre-conditions … ……………………………………………….31 



 ii 

2.6.1 Algorithm: Pre-Condition ……………………….….32 

2.7 Post-Conditions ………………………………………………....37   

2.7.1  Algorithm: Post-Condition ………………………….38 

2.8 Implementation …………………………………………………39 

2.9 Summary ………………………………………………………..39 

3 Interoperability of Multiple Databases in Distributed Environment 40 

3.1 Introduction ……………………………………………………..40 

3.2 Objectives ……………………………………………………….41 

3.3 Related Work ……………………………………………………41 

3.4 Problem Description …………………………………………….41 

3.5 Generic Algorithm ………………………………………………44 

3.6 Implementing Using JDBC and Java API ………………………45 

3.6.1 Experimental Setup …………………………………47 

3.6.2 Database Creation …………………………………..48 

3.6.3 Interface Design …………………………………….50 

3.6.4 Test Scenario ………………………………….…….51 

3.7 Implementing Using ADO .NET Architecture …………………53 

3.7.1 Experimental Setup …………………………………58 

3.7.2 Database Creation …………………………………..59 

3.7.3 Interface Design …………………………………….60 

3.7.4 Test Scenario …………………………………….….61 

3.8 Complexity ………………………………………………….…..65 

3.9 Summary ………………………………………………………..65 

4 Mathematical Representation of Pre and Post Conditions using 

Propositions for Database Components     66 

4.1 Introduction ……………………………………………………..66 

4.2 Related Work ……………………………………………….…...67 

4.3 Problem Description ………………………………………….…69 

4.4 SELECT Statement ……………………………………………..72 

4.5 Pre-Conditions & Post Conditions ……………………………...72 

4.6 Mathematical Representation for SQL SELECT Queries ……... 73 

4.7 Experimental Verification ………………………………….……81 



 iii 

4.8 Summary ……………………………………………………….. 84 

5 Component Design Key Factors for Semantic Integrity Control and 

Interoperability           85 

5.1 Introduction …………………………..………………………….85 

5.2 Domain Component ……………...……………………………...88 

5.3 Service Component ……………………………………………...92 

5.4 Agent Component ……………………………………………….96 

5.5 Summary ……………………………………………………….104 

6 Component Design for Domain, Service and Agent   105 

6.1 Introduction …………………………………………………….105 

6.2 Domain Component ……………………………………………105 

6.3 Tasks in Design of Domain Component  ..……………………..108 

6.4 Service Component …………………………………………….110 

6.5 Tasks in Design of Service Component...………………………113 

6.6 Agent Component ……………………………………………...114 

6.7 Tasks in Design of Agent Component.......……………………..116 

6.8 Summary ……………………………………………………….118 

7 Conclusion, Contributions and Future Work              119 

7.1       Contributions ………………………………….……………….120 

7.2       Directions for Future Work ……………………………………122 

Appendix A System Configuration ………………………………..… 124 

Appendix B Functions and their Actions for enforcing Semantic  

                     Integrity Control Using .NET Frame work ……….….… 125 

Appendix C Functions and their Actions for enforcing Interoperability  

                     Using .NET Frame work …………………………..…… 128 

Appendix D Functions and their Actions for enforcing Interoperability  

                      Using JDBC & Java API …………………………….… 130 

References ............................................................................................ 131 

List of Publications .............................................................................. 137 

Biography of the Candidate ……….………………………....………138 

Biography of the Supervisor …………………………………………139 



 iv 

List of Tables 
 
 
1.1 Web Architecture Categorization ………………………...…………………………11 

3.1 Results of Sample Query (a) .……………………………………………………..  51 

3.2 Results of Sample Query (b) ……………………………………………………… 52 

3.3 Core Objects of  .NET framework Data Provider ………………………………… 55 

3.4 Results of Sample Query …………………………………………………………...62 

3.5 Execution Time (in secs) for a given (selectivity factor, bandwidth) …………….. 63 

3.6 Complexity of SQL operations at each site ……………………………………….. 65 

4.1 Truth Table for Query (a) …………………………………………………………. 74 

4.2 Verification of equation 4.2 using DeMorgan’s Law for Query (a)  

        
~
p  v 

~
q  v A (RHS) ……... …………………………………………………….....75 

4.3  Verification of equation 4.2 using DeMorgan’s Law for query (a)  

          p ^ q  � A  (LHS) …………………………………………………. . …………. 75 

4.4 Truth Table for Query (b) ………………………………………………………… 77 

4.5 Verification of equation 4.4 using Demorgan’s Law for query (b) 

        
~
p  v 

~
q1 v 

~
q2  v  A  (RHS) ……………………………………………………...78 

4.6 Verification of equation 4.4 using Demorgan’s Law for query (b)  

        p ^ (q1 ^ q2) � A  (LHS) ……….………………………………………..………79 

5.1  Summary of key factors for Semantic Integrity Control for three types of  

       Components ……………………………………………………………………….100 

5.2 Summary of key factors for Semantic Integrity Control for three types of  

       Components ……………………………………………………………………….102 

 
 



 v 

 
List of Figures 
 
1.1  The four Contracts levels ………………………………………………………… 6 

1.2  COTS Based System Development ……………………………………………… 8 

1.3  Web Architecture Basis ……………………………………………………………9 

2.1  Core Component for Multi-Database System …………………………………….22 

2.2  Block Schematic for Database Handler using UML 2.0 …………………….……24 

2.3  Block Schematic for Site Manager using UML 2.0 ………………………….…...27 

3.1  Block Schematic for database search in a GENERIC MODEL …………………..43 

3.2  Database Access using JDBC Driver …………………………………………….. 46 

3.3  Layout of the UNIFORM INTERFACE implemented using Java API …………. 50 

3.4  ADO .NET Data Architecture …………………………………………………… 57 

3.5  Layout of the UNIFORM INTERFACE implemented using ADO .Net ………... 61 

3.6  Performance graph for Test Database under varying selectivity factor and  

      Bandwidth    ……………………………………………………………………… 64 

4.1  Component View of the Experimental systems …………………………………. 71 

4.2  Server and Process Information ………………………………………………….. 83 

6.1  Block Schematic of Domain Component ………………………………………...107 

6.2  Block Schematic of Service Component …………………………………………111 

6.3  Block Schematic of Agent Component …………..………………………………115 

                                                                                           



 vi 

 
List of Abbreviations 
 
 
 

API - Application Programming Interface 

ADO - ActiveX Data Objects 

CBD - Component Based Development 

CCM - CORBA Component Model 

COM - Component Object Model 

CORBA - Common Object Request Broker 
Architecture 

COTS - Commercial Off-the-Shelf 

DB - Database 

DBMS - Database Management System 

DCOM - Distributed Component Object Model 

DDBMS - Distributed Database Management 
System 

DSS - Distributed Software Service 

EJB - Enterprise Java Beans 

GS - Generic Search 

GUI - Graphical User Interface 



 vii 

HTML - Hypertext Markup Language 

HTTP - Hyper Text Transfer Protocol 

IDL - Interface Definition Language 

IIOP - Internet Inter-Object request broker 
Protocol 

JDBC - Java Database Connectivity 

JRMP - Java Remote Method Protocol 

MSSQL - Microsoft Structured Query language 

OCL - Object Constraint Language 

OLEDB - Object Linking Embedding Database 

OMG - Object Management Group 

OOP - Object Oriented Programming 

ORB - Object Request Broker 

OS - Operating System 

PSQL - Postgres Structured Query Language 

QoS - Quality of Service 

RDF - Resource Description Framework 

RMI - Remote Method Invocation 



 viii 

SOAP - Simple Object Access Protocol 

SQL - Structured Query language 

TCP/IP - Transmission Control Protocol / 
Internet Protocol 

UI - Uniform Identifier 

UML - Unified Modeling Language 

URI - Uniform Resource Identifier 

VB - Visual Basic 

Visual 
Studio IDE - Visual Studio Integrated Development 

Environment 

WSDL - Web Service Definition Language 

XML - eXtensible Markup Language 

 



 1 

Chapter 1 

 Introduction 
Component-based software development is a growing field in 

computer science.  Different frame works and standards for components have 

been developed. Most of them center on CORBA, COM, JavaBeans and EJB. 

Components are normally described to the environment through some 

Interface Definition Language (IDL). The syntactic aspects are usually well-

defined and syntactic constructs that are applicable in all target languages are 

only allowed. The semantic aspects of components, however, are not so well 

supported and require considerable attention. 

 

Component-based software development is gaining recognition as the 

key technology for the construction of high quality, evolvable, large software 

systems in timely and affordable manner. In this new setting, interoperability 

is one of the essential issues, since it enables the composition of reusable 

heterogeneous components developed by different people, at different times, 

and possibly with different uses in mind. Currently most object and 

component platforms, such as Common Request Broker Architecture 

(CORBA), Distributed Component Object Model (DCOM), or Enterprise Java 

Beans (EJB) already provide the basic infrastructure for component 

interoperability at the lower levels, i.e., they sort out most of the “plumbing” 

issues. However, interoperability goes far beyond that; it also involves 

behavioral compatibility, protocol compliance and agreements on the business 

rules.  Information systems largely involve networking these days. The 

development of complex business applications is now focused on an assembly 

of components available on a local area network or on the net. These 

components must be localized and identified in terms of available services and 

communication protocol before any request. 

 



 2 

1.1 Semantic Integrity  

 
Informally, semantics is what a program means, as opposed to what the 

program looks like, which is called syntax [1]. Syntax is a number of rules 

defining possible legal ways to combine the words and symbols (tokens) in the 

language. Semantics is what the different combinations of these tokens 

actually perform in terms of logical operations. By Semantic Integrity, we 

mean the preservation of the collective semantic properties of a program, a 

module or a system. If the semantic properties are violated, the system will 

enter unstable or inconsistent states, which will, eventually, lead to some kind 

of malfunction. Hence it is necessary to define semantic integrity by way of 

conditions or assertions and maintain it over time when the parts of the system 

evolve. Some languages such as Eiffel [2] have assertion statements to ensure 

that semantic properties of modules are not violated, but most programming 

languages leave this task to the programmer. In any case, only a subset of all 

useful preconditions can be tested automatically, so the programmer should 

always be disciplined in his/her approach to semantics. Semantic Integrity can 

be enforced using contracts or assertions. There are different approaches to 

semantic integrity. The most common approach is to express semantic 

integrity requirements using assertions for an entire system or for parts of a 

system (pre- and post - conditions). 

 

1.2  Component 
 

Everything ranging from dll-files to stand-alone applications can be 

considered as components [3, 4, 5]. Some authors argue that a component 

needs to be executable on its own whereas others say that a component is 

simply one or more classes with a common interface. The present work 

focuses on component design meeting the following requirements: 

 



 3 

1. Enforce Semantic Integrity control. 

2. Facilitate Interoperability under varying system 

configurations. 

 

1.3 Interface 

 
Literally, an interface refers to whatever is needed (“equipment or 

programs”) in order to “communicate between different systems or programs”. 

When used to define modules, classes and components, however, it usually 

means the syntactic definition of this interface. This is what is called signature 

in C++, and includes the function name and the number and types of the 

arguments. It may also include the return type, the exceptions thrown and a 

few other attributes. This is also the implication of a CORBA IDL Interface 

Declaration [6]. This kind of interface description contains only an intuitive 

level of semantic description, through the choice of names for the functions 

and the formal arguments, and gives only a very limited support to semantic 

integrity considerations. 

 

1.4 Contract 

 
Contracts take part in the process of preserving the semantic integrity 

of a software module. A contract in programming terms is very analogous to a 

contract in real life. It defines certain benefits for both parts in an agreement. It 

is usually directional, having a provider and a consumer. The consumer must 

ensure that certain assertions are true before it can use the service offered by 

the provider. These assertions are called preconditions and it may or may not 

be possible to express them in a programming language [2]. The service 

providing function benefits from a contract because it does not have to check 

that the precondition is satisfied inside the service function itself, but can 

concentrate on providing the service as efficiently and cleanly as possible. The 



 4 

provider is obligated to produce the expected service. The consumer then 

knows that if it did satisfy the precondition, it is guaranteed correct service or 

output, as specified in the post condition. Pre- and post conditions were first 

introduced by Hoare in 1972 in his Hoaretriplets, but have been popularized in 

later years by Bertrand Meyer and the Eiffel Language [2].  

 

The term contract [2] encompasses both pre- and post conditions, but 

also a clear definition of the responsibilities of both the provider and the 

consumer of a module. The contract should be viewed as a specification of 

responsibilities. A contract should be machine-testable and formalized to the 

extent that no ambiguities remain. What is often omitted is the fact that not all 

contracts can be formalized or even expressed in a machine-testable way. 

There are also certain preconditions, which are too costly to actually test. One 

example is to find out if a networked database can be updated. It might imply 

that the actual update must take place up until the final step, which is clearly 

not desirable, just to find out if it is legal to do the update. There are numerous 

examples of situations where it is not possible to machine-test a contract. In 

Eiffel [2], this kind of “assertions” is represented as comments.  

 

1.5 Semantic Integrity for Components 

 
This section discusses semantic integrity aspects for components. Five 

levels of semantic awareness have been identified and are summarized by the 

keywords “No semantics”,” Intuitive semantics”, “Pragmatic semantics”, 

“Executable semantics” and “Formal semantics”. 

 

The level “No Semantics” encompasses the discussions that focus 

exclusively on the syntactic interface descriptions. This level covers IDL and 

similar interface descriptions. It is not concerned with semantic aspects. It is 

quite common that an interface for a component is described through its 



 5 

signatures alone, and that the interpretation is left more or less to the user’s 

intuition. The component (module) interface is described either textually by 

means of an interface description language (IDL) or visually / interactively 

using appropriate tools [7] and an interface is a collection of signatures of 

services belonging logically together. 

 

  Intuitive semantics It is important that the interfaces are semantically 

consistent when components are to be substituted or when components evolve, 

but without further specifying what that means. The successful reuse of 

components requires a good knowledge of the environment and architecture 

where the components shall be used [8]. This level covers unstructured 

descriptions and comments about what functions should do. It also covers 

testing, which is normally based more on an exhaustive attempt to find a 

wrong answer than on a description of the intended semantics of a system or a 

module.  

 

“Pragmatic semantics” means that the designers and engineers are 

highly aware of the semantic implications and requirements of their 

components, but they do not express these semantics in any particular syntax 

or formalism. They express the semantic conditions as contracts inserted as 

comments in the design documentation, the interface descriptions or in the 

code. 

“Executable semantics” means that the semantic aspects and contracts 

are expressed in some kind of executable language. They can be tested at run 

time but not used to prove that the program is correct. This covers the Object 

Constraint Language (OCL) [9] a specification language recently developed 

for the Unified Modeling Language (UML). OCL is suitable for expressing, 

for instance, invariants, pre-conditions, & post-conditions.  A common 

approach to increased semantic integrity in both object-oriented and structured 

programming communities is to add or use assertions in the programming 

language.  As discussed in [10] and shown in Figure 1.1, four levels of 



 6 

contracts are specified. The first level is the syntactic level where usual 

interface definition languages and programming languages are used, this is the 

No Semantic level discussed above. The second level is the behavioral level 

where pre- and post-conditions are defined using Eiffel or similar languages. It 

corresponds to “Executable Semantic” level. This level suggests how to 

implement the contracts in an interface description language. The third level is 

the synchronization level where tools like path expressions and service object 

synchronization can be utilized. The fourth and final level is the quality of 

service level which makes use of tools like the adaptive communication 

environment ORB. Finally, “Formal semantics” cover the area of formal 

methods used to prove a program's semantic properties.  

 
       Figure 1.1: The Four Contracts Levels 

 

Contracts form a crucial part of a component for composition and 

inheritance [7]. The specification and implementation for components are 

treated separately. Components can be combined through their interfaces and 

the binding of code through appropriate interfaces is done at run-time. 

 



 7 

1.6 Interoperability 

 
Interoperability refers to the ability of information systems to operate 

in conjunction with each other encompassing communication protocols, 

hardware, software, application, and data compatibility layers. There has been 

considerable work in industry on the development of component 

interoperability models, such as CORBA, (D)COM and JavaBeans. These 

models are intended to reduce the complexity of software development and to 

facilitate reuse of off-the-shelf components. The focus of these models is 

syntactic interface specification, component packaging, inter-component 

communications, and bindings to a runtime environment.  

Component-Based Software Development enables development of 

plug-and-play reusable software, which has led to the concept of ‘commercial 

off-the-shelf’ (COTS) components [11]. COTS-based system development 

involves composition and reconciliation, whereas custom system development 

is an act of creation. Traditional development approach uses the waterfall 

model [12] comprising of system study, analysis, design, coding, testing, 

implementation and maintenance phases. COTS-based system development 

starts with a general set of requirements and then explores the marketplace’s 

offerings to see how closely they match the needs; the engineers are 

consumers, who then integrate the products they buy into a system that meets 

the need. The approach to system development using COTS-based systems is 

shown in Figure 1.2. 



 8 

 

Figure 1.2: COTS Based System Development 

The main goal of component based software is to reduce development 

costs and efforts, while improving the flexibility, reliability, and reusability of 

the final application due to the (re)use of software components already tested 

and validated. This approach moves organizations from application 

development to application assembly.  

Interoperability can be defined as the ability of two or more entities to 

communicate and cooperate regardless of differences in the implementation 

language, the execution environment, or the model abstraction.  

 

1.7 Software Architecture and Technologies  

 
The different steps of software system development require one to 

view the system with respect to several individual perspectives such as those 

of end-users, analysts, designers and developers. The software architecture 

encompasses the set of significant decisions about the organization of a 

software system such as:  



 9 

• selection of the structural elements and their interfaces by which a 

system is composed, behavior as specified in collaborations among 

those elements;   

• Composition of these structural and behavioral elements into a larger 

subsystem and architectural style that guides this organization. 

Software system history can be distinguished as follows: centralized 

architecture in 70’s, decentralized architecture in 80’s, distributed architecture 

in 90’s and web architecture in 2000’s. The use of web technologies has 

allowed more complex functionalities to be offered on the net; from 

information publishing to heterogeneous application integration. Web 

(enabled/distributed) architecture is based on multi-tier architecture that 

separates the presentation, business logic and data. We use the architectural 

vision to identify and place the different Information Technologies to select 

for building the system [13]. This approach concerns not only the physical 

view but also the logical view (e.g. code organization, application design.).The 

basis for web architecture is shown in Figure 1.3. 

 
Figure 1.3:  Web Architecture Basis 

 



 10 

The presentation tier allows the graphical interaction with the end-

users over the network using a thin client (the browser) or a rich client (a 

dedicated GUI). The thin client presentation is performed using web browser-

HTML (with script languages and XML if any). The communication with the 

business logic tier is based on HTTP-TCP/IP. Web dynamic technologies such 

as PHP, Microsoft ASP and Java JSP work on this principle and these pages 

are compiled and executed on the web server side to generate just-in-time 

HTML pages displaying the graphical interface of e-business or other 

applications. On the other side, the rich client presentation is developed with 

usual Object-Oriented Programming (OOP) languages such as Java, VB, C++, 

C#, Delphi, and the communication is carried out by protocols from 

middleware technology such as CORBA-IIOP, (D)COM, .NET Remoting, 

Java RMI-JRMP, XML-HTTP and SOAP according to component based 

programming. The middleware technology is the basic mechanism by which 

software components transparently make requests to and receive responses 

from each other on the same machine or across a network.   

 

The business logic tier encloses the application logic representing the 

enterprise know-how and rules. Usually this side is developed according to a 

component-based approach with Unified Modeling Language. This approach 

is based on advanced component models such as EJB from SUN / Java 

community, COM, DCOM and .NET from Microsoft, CORBA/CCM from 

OMG or Web services from W3C. These components are mainly implemented 

following an Object Oriented Programming and component 

intercommunication is performed by middleware inner protocols. The 

components run within a software framework called application server that 

provides a set of technical services such as transaction, identification, load 

balancing, security, data access, and persistence. 

 

The data tier has the data persistence service with relational, XML and 

object databases generally using SQL to manage data. In addition to usual data 



 11 

techniques, work is being done on XML-enabled and distributed data 

management (SQLXML). Table 1.1 categories web architecture into six 

groups.  

Table 1.1: Web Architecture Categorization 

Technology Protocol / Languages Functions 

Modeling 
Technology 

Internet Protocol: TCP/IP,HTTP; 
XML (data model) 

Modeling for 
object based 
systems. 

Communication 
technology 

Internet Protocol: TCP/IP,HTTP; 
Internet Inter -ORB Protocol (IIOP)  
for CORBA; DCOM, .NET 
Remoting, Java RMI-JRMP (Java 
Remote Method Protocol),  
SOAP(Simple Object Access 
Protocol) , Specific definition 
programming language such as 
OMG IDL for CORBA, Microsoft 
IDL for COM, Java interface for 
RMI and WSDL for web services. 

Data transmission 
over Internet. 

Implementation 
Technology 

Internet Protocol: TCP/IP, HTTP; 
Internet Inter -ORB Protocol (IIOP)  
for CORBA; DCOM, .NET 
Remoting, Java RMI-JRMP (Java 
Remote Method Protocol),  
SOAP(Simple Object Access 
Protocol); Object-oriented 
programming (Java, C++, Eiffel, 
C#), Web Programming (HTML, 
XML, ASP, JSP, PHP, PERL). 

Coding using 
object-oriented 
web 
programming 
languages. 

Packaging 
Technology 

Internet Protocol: TCP/IP, HTTP; 
Internet Inter -ORB Protocol (IIOP) 
for CORBA; DCOM, .NET 
Remoting, Java RMI-JRMP (Java 
Remote Method Protocol), SOAP 
(Simple Object Access Protocol); 
EJB, (D)COM, .NET-Programming 
languages. 

This deals with 
the creation, 
management and 
destruction of the 
business 
component. With 
this technology, 
the component 
developer no 
longer needs to 
write “technical” 
code that handles 



 12 

transactional 
behavior, 
security, database 
connection 
pooling. 

Bridging 
Technology 

Internet Inter -ORB Protocol (IIOP)  
for CORBA; DCOM, .NET 
Remoting, Java RMI-JRMP (Java 
Remote Method Protocol),  
SOAP(Simple Object Access 
Protocol); COM-Java RMI, EJB-
.NET 

Bridging 
technology allows 
one to extend the 
aptitude of a 
system to 
interoperate 
between outer 
technologies. 

Memory 
Technology 

Internet Protocol: TCP/IP, HTTP; 
relational, object, XML data base, 
SQL 

Provide shared 
and controlled 
access to schema 
information. 

 

1.8 Objectives, Scope and Limitations 
The present work is intended to meet the following objectives: 

1. Identify the need for Semantic Integrity Control and 

Interoperability in Component Based Software 

Development. 

2. Design, Implement and Analyze algorithms to enforce 

Semantic Integrity Control and Interoperability for 

database search application, using component model. 

3. Analyze the key design parameters for Domain, Service and 

Agent Components. 

4. Specify the design steps for Domain, Service and Agent 

components. 

The component model has been realized using two approaches:  

1. Java API and JDBC. 

2. ADO. NET Architecture. 

This approach can be effectively used for accessing multiple databases in a 

distributed environment. 



 13 

The Contracts specification includes four levels, namely, Syntactic, 

Behavioral, Synchronization and Quality of Service. The present work 

considers only the Syntactic and Behavioral levels for contracts 

 

1.9 Research gap 

 
Distributed component-based information systems are becoming one 

of the major trends in software engineering. Whereas distributed component 

technologies enable the development of reliable, scalable and secure systems, 

existing component-based development techniques and methods do not 

explicitly address distribution. The earlier distribution requirements are 

considered and integrated with functional requirements; the least is the risk 

that the developed component architecture does not reflect these 

requirements. UML Components is a widely known CBD method composed 

of a number of phases targeted at the identification of domain components 

(system and business), their respective interfaces, and their interaction model 

to compose the system architecture. 

Semantic Integrity Control ensures correct operations over the 

components. It requires thorough knowledge about the properties of an 

application. The main problem in supporting automatic semantic integrity 

control is that the cost of checking assertions can be too high in the case of 

distributed components. 

Design-time interoperability is well within current technological 

capability for many classes of systems. In run-time interoperability, the 

constituent systems in a network will be able to support ever-changing 

demands for service. To meet those demands, the components will continually 

adapt to new operational contexts. Because the operational context is changing 

continuously, the developers of those systems cannot know apriori the systems 

with which they will interoperate. The result is that the difficulty of reaching 

agreement between developers has been magnified, since agreement can only 



 14 

be reached after the systems have been developed. Since interoperability 

becomes a run-time issue, it follows that no overall set of agreements can be 

reached, but that each system must negotiate on a pair-wise basis on the 

meaning of a particular communication, and do this dynamically, at run-time. 

Design-time and run-time interoperability exhibit many differences. For 

instance, design-time interoperable systems achieve their necessary degree of 

interoperability only by means of tight programmatic control of engineering 

choices. This approach typically comes at high cost, and involves inflexible 

agreements about specific requirements (e.g., standards, data semantics, and 

QoS); very close interaction between the organizations responsible for the 

systems, and very extensive testing to verify the specific interoperable 

pathways [14]. The resulting integrations are commonly too inflexible to 

permit introduction of any new elements into the systems. Also, maintaining 

such interoperability has its own level of difficulty as system versions change 

and evolve. More significant to end users, these inflexible integrations limit 

the users’ ability to form ad hoc, creative solutions when necessary.  

Interoperability depends to a large extent on common understanding. 

For two systems to interoperate, hardware pins must align, communication 

protocols must be consistent, data formats and structure must be 

understandable, system invocation mechanisms must be shared, and so forth 

[15]. Yet even with all of the things in place to assure connectivity, there is 

still no guarantee that either system will be able to the convert signals, bits, 

and bytes into the information necessary to perform its requisite tasks. Both 

systems must also make consistent interpretations on the meaning of the data 

communicated between them; they must exhibit semantic interoperability.  

As a trivial example, suppose one system sends the number “5” to 

another system. What does that communication mean? The answer is that its 

meaning depends on both systems having agreed that “5” represents a high-

priority risk, or that it represents the fifth day of the week, or some other such 

meaning. In other words, it is necessary to relate the communicated data itself 

to the meaning of that data. Semantics refers to the meaning of data, providing 



 15 

a way to establish what entities mean with respect to their roles in a system. 

There is a limited number of ways that agreements on meaning can be 

achieved. In the context of design-time interoperability, semantic agreements 

are reached in the same manner as interface agreements between the 

constituent systems. If the system of systems is a closed system, then the 

context of those agreements is only that of the system of systems; there is no 

need for any other entity to share in the agreements, or to understand the 

implied meaning of the data [16]. However, in the context of run-time 

interoperability, the situation is more complex, since there is need for some 

manner of universal agreement, so that a new system can join, adhoc, some 

other group of systems. The new system must be able to usefully share data 

and meaning with those other systems, and those other systems must be able to 

share data and meaning from an unfamiliar new comer. 

1. The present work addresses the Semantic Integrity Control 

issue for distributed components by providing an 

environment for defining pre-conditions and post-conditions 

and enforcing them. 

2. The present work addresses the distribution issues in early 

phases of application development, namely requirements and 

specification. The basic idea is to identify distribution 

requirements that can be mapped into common distributed 

services (example: naming, concurrency). 

3. It also deals with design time and run-time interoperability 

in a distributed environment. 

 

1.10 Organization of the Thesis 
 

The thesis is organized into seven chapters followed by the References, 

Appendices and List of Publications. 

Chapter 2 presents a component based approach for software 

development in a distributed environment for the database retrieval operations. 



 16 

A Core Component for a distributed multi-database system has been proposed. 

The Core Component is modeled using three interfaces User, Administrator 

and Database Handler. The User Interface is the starting point of access for 

the Core Component. The Administrator interface deals with access control 

privileges for users and local databases. The Database Handler facilitates 

global schema management and site management. 

Chapter 3 deals with an algorithm for accessing multiple databases in a 

distributed environment. The implementation involves design of User 

Interface Component using two approaches: 

1. JDBC and Java API. 

2. ADO .NET Architecture. 

The task carried out here include SQL Query Initiation from client site, 

Generate Sub-Queries based on Global Schema Information, Execute Sub-

Queries in parallel using SQL servers at appropriate sites, assemble the results 

of the query at the client site and output the query results. The proposed 

generic approach reduces the effort required to search multiple databases 

stored at various sites in a network of heterogeneous systems. 

 Chapter 4 discusses about mathematical representation for SQL 

SELECT statement using propositions and predicate and experimental 

verification using component based approach. The proposed setup can be very 

much helpful in verification of simple as well as complex queries, evaluating 

their correctness and facilitate reliable implementation using database 

components. 

 Chapter 5 analyzes the key factors responsible for maintaining 

semantic integrity control and interoperability in the design of components. 

The key factors will assist a component designer in understanding the 

requirements of Domain, Service and Agent based applications. 

  Chapter 6 presents the design steps involved for three types of 

components, namely Domain, Service and Agent. The proposed design steps 

will be helpful to a component designer in developing components pertaining 

to Domain, Service and Agent applications. 



 17 

 Chapter 7 summarizes the work carried out in this thesis, highlights 

specific contributions and suggests some directions for future work. The 

appendices consist of the following information: 

• The system configuration. 

• Functions and their actions for enforcing semantic integrity 

control using .NET framework. 

• Functions and their actions for enforcing interoperability using 

Java API and JDBC and .NET Framework. 

The relevant articles, books and websites are listed in the References. 

The lists of publications related to the thesis are given at the end. 

 

 

 

 

 

 
 

 

 

           

 



 18 

Chapter 2 
 
Component Approach for Enforcing Semantic 
Integrity Control in a Distributed Multi-Database 
System 

 

2.1 Introduction 

The Complexity of the software applications has increased 

considerably over the recent years. There is a growing need for design of 

software modules that provide reusability and simplify software development 

efforts. The concept of inheritance is one of the key features for the success of 

object-oriented programming languages and design methods. Software 

components are widely applicable to different machines and the users should 

be available in groups arranged according to precision, robustness, generality 

and time-space performance. Existing sources of components - manufacturers, 

software houses, users' groups and algorithm collections - lack the breadth of 

interest or coherence of purpose to assemble more than one or two members of 

such groups. Software production in the large would be enormously helped by 

the availability of spectra of high quality routines, similar to that of 

mechanical design that is supported by the existence of families of structural 

shapes, screws or resistors [17]. 

 

 



 19 

Component-based software development is gaining importance with the 

emergence of new frame works and standards. Most of them are focussed on 

CORBA, COM and JavaBeans. Components are normally specified to the 

environment through some Interface Definition Language (IDL). The syntactic 

aspects are usually well-defined and syntactic constructs that are not 

accessible in all target languages, are not allowed. The semantic aspects of 

components, however, are not so well supported and require greater attention. 

In traditional object-oriented programming, the semantic aspects have been a 

topic of great interest for a long period of time. Since objects and classes have 

a number of properties in common with components, most of the ideas 

developed in traditional and object-oriented programming theory will be 

usable in component-based development also. This chapter focuses on 

Component-based approach to software development for a Multi-database 

application. The pre-conditions and post-conditions are enforced using 

Assertion Manager in the Core Component of the Multi-database system.   

A Distributed Multi-Database system involves storage and retrieval of 

information from independent databases that are spread over multiple sites in a 

computer network. Each database can be implemented using different DBMS 

and different architectures that distribute the execution of transactions. The 

DDBMS gives a unified view of the entire databases to the user [18]. A 

distribute multi-database system offers scalability and reliability in modern 

information systems.  

  



 20 

2.2  Related Work 

 The following properties are in general articulated for components: 

1. Components may be constructed by third-party vendors. 

2. Components may be used in varying application environments. 

3. Component source code may not be available for evaluation. 

4. Components may be distributed. 

5. Component may be used from within different programming 

environments. 

  

However, in practice, all the above five properties need not be present 

in a given component-oriented environment. Investigations have shown that 

most successful component-projects have been done in-house [19], a fact that 

eliminates the first property listed above. Some common components, such as 

plug-ins, can only be used with certain applications in certain operating 

systems. This eliminates the second point and is another example of how 

difficult properties of component usage are simplified or removed. Even if 

difficulties may be avoided by reducing some of the problems above, the need 

to describe semantic properties properly and to preserve the semantic integrity 

is imperative in component-based development. By the semantic integrity of a 

software system, we mean that each part of the system respects the intended 

purpose of any other individual part of that software system. This is a 

condition to build stable systems and requires that each part be clearly 

described and that description be maintained as that part evolves.  



 21 

 Substantial amount of work have been done on component based 

distributed database system over the past few decades and the complexities 

usually inherent in a distributed database are hidden from the user [20]. The 

idea of Software Engineering that encourages decomposition [21] of a system 

into logical units improves the scalability of the system, and it is very much 

applicable to multi-database system.  

 

2.3  Component Design for a Multi-Database System 

 

The component for the multi-database system is designed to support 

three main types of interfacing entities. They are Component User, 

Component Administrator and Database Handler as shown in Figure 2.1. 

These interfaces can be used for interaction with the other components of the 

system. Such a design permits the separation of functionality, user interface 

and data layer from each other. User Interface components from peer systems 

can interface and interact with the core component concurrently. The 

separation of User Interface from the core component has an added advantage 

of being able to connect to Multiple Distributed Database Components.  



 22 

 

 Figure 2.1: Core Component for a Multi-Database System 

 

2.3.1  Component User 

 The Component User interface acts as an entry point to the core 

component of a multi-database system. An example of the Component User 

could be a web based application that provides the user interface to accept a 

query and then display its result.  

 

2.3.2  Component Administrator 

 The Component Administrator interface is used to configure, create 

and maintain local databases.   This interface has been separated from the 

normal User Interface in an attempt to increase the security of the system. The 



 23 

Component Administrator sets access control privileges for users and local 

databases. 

 

2.3.3  Database Handler 

 The Database Handler interface performs the following functions: 

• Global Schema Management. 

• Site Management. 

• Facilitate query execution across various components. 

• Managing Assertions for Components. 

 

2.4  Problem Description 

  The Core Component for Multi Database System (shown in Figure 2.1) 

performs semantic integrity control and retrieval of information using Database 

Handler. The Database Handler Component shown in Figure 2.2 consists of the 

following sub components such as Schema Manager, Assertion Manager, Site 

Manager, and Execution Manager. The user submits a query to the Core 

Component through the User interface and the Core Component further 

connects to the Database handler for retrieval of data by connecting to the 

appropriate site.  



 24 

 

Figure 2. 2: Block Schematic for Database Handler using UML 2.0 

 



 25 

2.5  Database Handler 

The Database Handler has the following sub-components: 

1. Schema Manager. 

2. Site Manager. 

3. Execution Manager. 

4. Assertion Manager. 

The following subsection describes their functions in detail. 

 

2.5.1  Schema Manager 

 

The Schema manager is used to store the Global Schema of the Multi-

Database system as viewed by the component’s users. All the queries handled 

by the Multi-Database system are designed for this global conceptual schema. 

The schema manager checks the query for any semantic errors that arise due to 

representational differences and naming conflicts. It resolves semantic 

conflicts by providing an explicit translation process. The resolution of the 

conflict is made possible with the help of an integrated global schema. 

Information systems often contain components that are based on different 

schemas of the same or intersecting domains. These different schemas of 

related domains are described in meta-models that fit certain requirements of 

the components such as representation power of tractability [21]. For instance, 

a database may use SQL or an object oriented modeling language. A web 



 26 

service described in XML schema may be enriched with semantics of the 

domain. All these different types of schemas have to be connected by 

mappings stating how the data represented in one schema is related to the data 

represented in another schema. Integrating these heterogeneous schemas 

requires different means of manipulation for schemas and mappings and the 

Schema Manager perform this task. It should provide operators such as match 

that computes a mapping between two schemas. An important issue in a 

schema management system is the representation of mappings which can be 

categorized as intentional mapping and extensional mappings [22, 23]. 

Intentional mappings deal with the proposed semantics of a schema and are 

used, for example, in schema integration. Extensional mapping is used if the 

task is data translation or data integration.  

 

2.5.2  Site Manager 

 

The Site Manager is made up of five sub components as shown in figure 2.3: 

a) Site Handler. 

b) Fragmentation Manager. 

c) Replication Manager. 

d) Failure Management. 

e) Schema Map. 



 27 

 

Figure 2.3: Block Schematic for Site Manager using UML 2.0 

 

 



 28 

a)  Site Handler 

The Site Handler manages connections to the sites of the individual 

databases and execution of sub queries at a given site. It provides an 

interface to query the various local sites [24]. Furthermore there is a 

separate component called the Failure Management component that is 

responsible for managing temporary as well as permanent failures of 

any database sites that make up the distributed multi-database system. 

The same component is also responsible for updating a site that has 

come online after temporarily becoming offline or unavailable.  

 

b) Fragmentation Manager 

The individual databases in a Multi-database system may be 

partitioned horizontally or vertically based on primary key values. This 

sub component utilizes the Schema Map to keep track of the multi-

database system and constantly updates its log. The schema manager 

helps in translating query for the global schema to a query for the local 

schema [25]. This translation is done with the help of the 

Fragmentation Manager and Replication manager. 

 

c) Replication Manager 

The Replication Manager subcomponent manages multiple copies of 

important database fragments of a multi-database system. It provides 

an interface to the failure manager. This component is used when a 



 29 

local query fails to execute due to an error (either with the connection 

or with the site itself.). Some important fragments of the multi-

database can be replicated for ensuring availability [26].  

 

d)  Failure Management 

 

This component is invoked by the Site Handler when an error is 

encountered. The component checks with the Schema Map, 

Replication Manager and Fragmentation Manager to see if the failed 

query can be executed without compromising the integrity of the multi-

database system. It generates new localized queries whenever there are 

alternatives. 

e) Schema Map 

The Schema Map sub component provides an interface to the 

Execution Manager. It  plays an important role in converting the global 

schema [22] based queries into localized queries and passing it on the 

site handler where the local queries are executed and their results 

passed on back to the Schema Map [27]. 

 

2.5.3   Execution Manager 

The Execution Manager provides an interface for the external 

components to pass on queries to the Database Handler Component. The 

Execution Manager initially accepts the query from the uniform user interface 



 30 

and then utilizes the Assertion Manager’s interface to check the preconditions. 

After confirming that the preconditions have been satisfied, the Execution 

manager passes on the query to the Site Manager. The returned results are then 

processed for any post conditions as applicable and then passed on to the 

external interface that originally submitted the query. The Site Manager 

returns the query result to Execution Manager.  

 

2.5.4  Assertion Manager 

 The Assertion Manager enforces the pre-conditions of the input query 

involving information retrieval from multi-database system. The post-

conditions include connection status, error types, log files related to retrieval 

operations for each query. The error occurred during the process of 

information retrieval can be syntactic error, semantic errors. The syntax error 

arises due to incorrect query specification. The semantic error can be 

categorized as follows: 

1. Errors arising due to naming conflicts [28].  

2. Errors arising due to policy conflicts [28].  

The Assertion manager checks the query for errors arising out of naming 

conflicts and representational differences are handled by Schema Manager. 

The errors arising out of differences in policies and privileges of the multi-

database systems are handled by Access Control unit. 



 31 

"An assertion is a statement containing a Boolean expression that the 

programmer believes to be true at the time the statement is executed" [29]. In 

other words this means a facility provided within component to test the 

correctness or assumptions made by the components for some purpose. 

Assertions are checks provided within the system to ensure the smooth 

running of the program. Java exceptions are primarily used to handle unusual 

conditions arising during program execution. Assertions are used to specify 

conditions that a programmer assumes to be true. “When programming, if a 

programmer can swear that the value being passed into a particular method is 

positive no matter what a calling client passes, it can be documented using an 

assertion to state it” [30]. Exceptions handle abnormal conditions arising in the 

course of the program; however they do not guarantee smooth or correct 

execution of the program. Assertions help state scenarios that ensure the 

program is running smoothly. Assertions can be efficient tools to ensure 

correct execution of a program. Assertions are not to replace inputs but to 

augment them.  

2.6   Pre-conditions 

The asserting statement undergoes check for preconditions. Preconditions [31] 

are values or parameters passed to a method, to be used for the functioning of 

the program. Assert statements can be used to check the validity of the 

parameters passed before they get used in the body of the method. From server 

point of view, preconditions express the requirements that clients must satisfy 



 32 

whenever they call a component’s code, and are therefore evaluated at their 

entry point. The pre-conditions can be defined, stored and managed by the 

component administrator. The user can also have the option of specifying the 

pre-conditions through “Having Clause” or SET FILTER to command in SQL. 

The pre-conditions can be read from input file and passed to component 

administrator. Pre-Conditions can also involve conditional logic using <and> 

<or> <not> operators. The global schema is consulted while checking the 

correctness of names relating to DBMS, tables, attributes and key constraints.   

 

2.6.1  ALGORITHM:  PRE-CONDITION 

 The algorithm given below checks all the pre-conditions stored in the 

input file and enforces them. This can be accomplished by running a code that 

detects all the key words in SQL, and in the present work SELECT statement 

has been considered. A proper input is from the starting character of document 

to the second SQL keyword found in the input. This part is sent to the pre-

condition routine to check for the correctness and the algorithm given below 

checks the syntax of the statement.  

Algorithm Precond(x, indx, indxa) 

INPUT:  

 x: The input string given by the user, corresponding to the SQL query. 

indx: This is of the type integer. It refers to the current processing point 

of input statement x. Its default value is 0. 

indxa: This is of type integer. It refers to the current processing point 

of actual statement a. Its default value is 0. 



 33 

 Internal Variables: 

a: This is a string variable. It represents a symbol table. It stores the 

syntax for the required SQL statement. While parsing the input, the 

tokens are matched with the entries in “a”. 

i: This is of type integer. It refers to the position pointer of the user 

statement. 

 ia : It is position pointer for the actual syntax stored in “a”. 

 c: This is a temporary string variable. 

 z: This is a temporary integer variable. 

OUTPUT : Boolean output stating whether the syntax is correct. 

      I. Read the input query and pre-conditions from the input file and pass them to  

Component Administrator.  

 II. Perform parsing for the input query as shown in steps from 1 to 2.4. 

 
1.       a <-  

"SELECT$[*|column_name1,column_name2,....]$FROM$tablename1[,t

ablename2,...]$[WHERE$condition_and|or_condition...]$[GROUP 

BY$column-list]$[HAVING$""conditions""]$[ORDER BY$""column-

list"" ASC|DESC]$" 

 
action: Symbol Table for the instructions. The array with which the input 

symbols should be checked. a has '$' as the key to separate between 

spaces,'['&']' to hold the optional parameters. 

        { 
2.      while(x==NULL) 

action: Loop till the Lexer tokens are empty. i.e Loop untill the whole input 

statement is checked completely. 

         { 

2.1     i <- next positon of $ in x 

action: Counter for input strings.Lexer pointer for the input string. 

 



 34 

2.2     ia <- next positon of $ in a 

action: Counter for the array a.Lexer pointer for the string to be checked in 

the symbol table. 

 
2.3        If a[0]=="[" Then 

action: Compare the symbol table for its attribute of an optional keyword. 

 
 {             
2.3.1 indxa <- indxa + 1 
action: Get the next lexer token from Symbol table.This is done because it 

reaches the actual strings to be compared(the position of '[' is 

passed. 

           } 

2.4        If i>=indxa Then 

action: Compare lexer's token of the input and the symbol table for input. 

{ 

2.4.1           length <- ia-indxa 

action: Calculate the length of the actual string in the symbol table so that it 

is compared for the completeness. 

 
2.4.2          If length>=14 and x[i] =' ' Then 

action: If the length is greater than 14(minimum required length for select 

statements) and the position after the 14th position is empty. 

 
   { 

2.4.2.1 If the substring of x between indx and length = The substring 

of a between indxa and length Then 

action: if the above condition is true then it will compare the subsrting 

between lexer pointer of input string and the current pointing 

position with the symbol table elements. 

 
                 {     



 35 

2.4.2.2       indx <- next positon of $ in x + 1 

action: if the above comparison is true then go to the next lexer token in the

      input. 

 

2.4.2.3              indxa <- next positon of $ in a + 1 

action: Go to the next token in the symbol table. 

 
 
                        If x[indx+1]=NULL Then 

   action: Check if the next position is the end of the input string. 

 
                            return true 

action: if yes then "INPUT STRING IS MATCHED" RETURN  A TRUE    

WORD. 

    
      Else 

                          precond(x, indx, indxa) 

action: if no then call the same function to check the next tokens. 

 
                    End If 

  } 

2.4.2.4              ElseIf length of x is less than 14 Then 

  Print error stating that "MINIMUM SYNTAX INPUT FAIL" 

action: If the length of input doesn’t exceeds 14 then print an error "INPUT 

IS NOT COMPLETE".        

  } 

2.4.2.5                Else 

action: If the position after the 14th position is not empty then check if 

symbol table has more elements to be checked. 

  { 

                    If indxa > 0 Then 



 36 

action: if the symbol table has terms to be checked then check if it is an 

optional condition. 

 
      { 

                        If substring of a between indxa-1 and indxa is "[" Then 

                            precond(x, indx, next index of "[" in a) 

action: If it is an optional entity then call the function again by giving the 

symbol  table position pointer as the point of optional entity. 

 
  end if 

                         BREAK outside the loop. 

action: if the above condition fails then Break outside the loop. 

                    } 

                    End If 

 

2.4.2.6                   Print error at substring (a, 0, ia) 

action: Print error that "SYNTAX IS WRONG" position can be mapped by 

giving the substring form start to the lexer pointer of symbol table in 

symbol table. 

                } 

            Else 

2.4.3                print error No proper syntax. 

Action:  if the input is empty or doesn’t  follow any sequence then print 

error "INPUT IS INVALID" 

              } 

 } 

} 

substring(X,pos1,pos2) 

INPUT: String of characters from which substring is extracted.POS1 

position 1 where the extraction should start. POS2 position 2 where the 

extraction should end. 



 37 

Output: x1 substring of X. 

if (pos1<=pos2) then 

 s1=X[p1-1] 

 substring(X,pos1+1,pos2) 

return s1 

 
III. Perform lookup in the Global schema to validate database names, table 

names, attributes and key constraints. 

IV. The Assertion Manager transfers control to the Execution Manager. 

 
Complexity: 
 

The Time Complexity is determined by the total number of input pre-

conditions (say n) and can be expressed as O(n). 

The above algorithm is used for checking the precondition using assertion 

manager. It starts with the precond class which is the class name of the 

precondition component which takes 3 inputs. The first input corresponds to 

input query entered by the user. The second and third inputs are set to 0 by 

default. Here the output will be a boolean value indicating whether the user 

query is valid and permissible. Finally, the Assertion Manager, transfers 

control back to the Execution Manger.   

2.7 Post-conditions 

Just like preconditions, there may be instances where a program needs to 

execute some post-conditions. Post-conditions need to be evaluated before 

each exit point in the method. For instance assert statements can be used to 

check for the validity of the returned values in a method that has multiple 



 38 

return statements. Similarly in Web based architecture post conditions inform 

about what the supplier (i.e. the component’s code) guarantees on return, if the 

precondition has been satisfied on entry. They have to be evaluated at all exit 

points of the component’s code. The server is required to execute the post 

conditions and client can infer useful information upon execution of post-

conditions.  

 After the successful execution of the user query, the post-condition 

algorithm returns the following information: DBMS type (MySQL, 

POSTGRES, MSSQL), Running as user <user-name>, total number of records 

accessed from all databases stored at the various sites. 

 

2.7.1 ALGORITHM: POST-CONDITION  

INPUT: Query Processing at the server. 

OUTPUT: log file and the client information after query execution. 

1. Connect to the databases using standard OLEDB connections. 

2. IF time out response or error returned from any database. 

Print database / table with given name doesn’t exist 

Open the log file (post.log) 

Write to file "current date: ERROR database / table name 

doesn't exist" 

           ELSE 

     Mount the data on the grid view 

     Open the log file (post. log) 



 39 

      Write to file "current date: SUCCESS default       

        statement entered.  

        print summary information on user name, names of 

databases and total number of records accessed.  

 3. Exit. 

2.8 Implementation: 

The pre-conditions and post-conditions have been implemented 

using .NET Component based code. Appendix B lists the functions 

used in .NET code along with their actions. 

2.9   Summary: 

This Chapter dealt in detail with a component based approach 

for enforcing semantic integrity control in a distributed multi-database 

system. The core component design includes separate interfaces for 

User, Administrator and Database Handler. The Database Handler 

includes the sub-components Schema Manager, Site Manager, 

Execution Manager and Assertion Manger. The pre-conditions and 

post-conditions are handled by Assertion Manager and are 

implemented using .NET component based code. 



 40 

Chapter 3 

Interoperability of Multiple Databases in Distributed 

Environment 
   

3.1 Introduction 

 
A database application requires an access to multiple databases and 

each database has several views and tables [32, 33]. Whenever one wants to 

search for information in multiple databases, he/she have to do so using the 

front end of the particular database server. The user has to spend considerable 

amount of time and effort in formulation and execution of several queries over 

multiple databases located in one or more servers. The proposed work 

simplifies the above two tasks by using any one of the following two 

approaches:  

(1) JDBC and Java API and  

(2) ADO .NET Architecture. 

 

Each database in the network reflects the editorial scope and interest of 

one particular publisher or institution. It is desirable to conduct a 

comprehensive search of as many relevant sources as possible. To do so will 

probably require a search of more than one database. It is certainly possible to 

search each database one-by-one, which is time consuming. However, the 

uniform interface designed in this present work extends the search to multiple 

databases spread over the network. The need for searching multiple databases 

at one time is to ensure broadest coverage of relevant material, save time, save 

search costs, integrate results into a single search, identify and remove 

duplicate records across databases. 

 

 



 41 

3.2 Objectives 
 

The present work is intended to meet the following objectives: 

• Design of an efficient and interactive user interface that would accept 

valid SQL query (over multiple databases stored in one or more sites) 

as input from end user. 

• Provide an environment for effective query execution in a distributed 

environment. 

• Allow the end user to view/print the output of the query. 

 

3.3 Related Work  

 
The universal relation as a user interface has been dealt in greater 

detail in [34]. Here, the data of the entire database are modeled using a single 

relation. The schema of the universal relation encompasses all the attributes in 

any of the relation schemes of the database. The advantage of this scheme is 

that an user need not remember the details of all attributes and their groupings 

in each relation. 

The proposed work considers multiple databases spread over one or 

more sites in a heterogeneous network. Hence, it is necessary to have efficient 

Schema Management and Search Techniques to retrieve information in the 

above mentioned environment and a general approach to database search has 

been presented in this chapter.  

 

3.4 Problem Description   
 

A generic model for database search application is shown in Figure 3.1 

and Section 3.5. The user enters the query and passes it to the GS (Generic 

Search) module. This module consults global schema which contains the 

following information: 



 42 

Site Identifier (IP Address), details of all relations and their respective 

databases under which they are present, names of DBMS software supported 

and the operating system environment. The Global Schema is present at all the 

client sites where the queries are initiated. The GS module maps the relation(s) 

name(s) in the query with the Database Name and Site Identifier and generates 

sub-query for each site.  The sub-queries are dispatched to the appropriate 

sites. It then sets up the query for execution by the appropriate SQL server at 

each site and assembles the results at the client [33]. The GS module is 

implemented using the following two approaches JAVA code supported with 

JAVA API and JDBC and ADO .NET Architecture. For experimental setup, 

three sites have been considered, although this model is applicable to n 

number of sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 43 

 

 
 

 Figure 3.1: Block Schematic for Database Search in a GENERIC MODEL 

 

 

 

 



 44 

 

3.5 GENERIC ALGORITHM 
 

   The generic algorithm works as follows: 

 

Algorithm: GS (Generic Search) 

 

Input: A text file containing SQL Query initiated from a client site, 

Global Schema. 

  

Output: The results of the query (in tabular form) at the client site. 

 

Procedure: 

 

1. The USER enters the SQL query using the UNIFORM 

INTERFACE.  

2. The query is stored in a text file and is checked for correct 

Syntax using preconditions and the relation names & 

attribute names are validated from the Global Schema. 

3. Open Global Schema containing the database names & 

relations under them, Site Identifier information, OS name and 

DBMS name [POSTGRES/MYSQL/MS ACCESS]. 

4. Associate the names corresponding to attributes, relations & 

database present in the query with the Global Schema 

information. 

5. Generate Sub-Query for each site. 

6. Dispatch the Sub-Query to the appropriate Site and Connect to 

the appropriate Database Server at each site, using JDBC & 

Java API / ADO .NET Architecture. 

7. The SQL SERVERS execute the sub-queries in parallel at each 

site. 



 45 

8. Assemble the query results in an output file at the client site. 

9. The output file at the client site can be viewed as well as 

printed progressively. 

 

The above algorithm has been implemented using two approaches: 

 

1. The JAVA code supported with JDBC and JAVA API and 

2. .NET code supported with ADO.NET. 

 

3.6 Implementing Using JDBC and Java API 
 

The JDBC API is the industry standard for database-independent 

connectivity between the Java programming language and a wide range of 

databases. The JDBC API provides a call-level API for SQL-based database 

access. JDBC technology allows you to use the Java programming language to 

exploit "Write Once, Run Anywhere" capabilities for applications that require 

access to enterprise data. 

The user will enter the query in the space provided in the interface. The 

program will search for the occurrence of the clause “from”. Extract the table 

name which follows “from” in the query. The back end server will open the 

text file and locate the Database Name and Database Server. The JDBC driver 

will connect to the appropriate database server and database under the server 

as shown in Figure 3.2. The query undergoes execution in the database 

server(s) [35] and assembles the results, in a text file at the Client Site. The 

output generated in this text file can be viewed by the end user. 

 

 

 

 

 



 46 

 

 

 
 

  Figure 3.2: Database Access using JDBC Driver 

 

 

 



 47 

 

3.6.1 Experimental Setup 

 
POSTGRES, MySQL and MS ACCESS are the DBMS software’s that 

have been considered here.  

MySQL [36] and PSQL (POSTGRES SQL) [37] are available on both 

Linux and Windows Platforms. They are widely used for developing database 

applications over the web. LINUX and WINDOWS OS have been chosen 

since both of them are widely used for running many database applications.  

The Relational Model for Databases has been considered in this work. 

The Queries are assumed to be in standard SQL format and are submitted from 

query files. 

Examples used to illustrate this chapter are drawn from the following 

three databases. Each database has three relations. Each Database is stored at a 

separate site. 

1. MySQL Database under  LINUX : library1 

Site 1:- IP Address: 172.16.12.1 (on the intranet) 

   The schema of all the tables in the above database is as follows: 

lib_journal (ISBN, Publisher, title, no_of_issues, subprice) 

lib_cse (ISBN, Publisher, Author, title) 

lib_catalog (ISBN, Author, Title, Year, subprice, accno) 

 (The primary key field is underlined in each relation.) 

2. MySQL Database under WINDOWS: library2 

Site 2: IP Address: 172.16.12.22 (on the intranet) 

The schema of all the tables in the above database is as follows: 

lib_journal(ISBN, Publisher, title, no_of_issues, subprice)  

lib_cse(ISBN, Publisher, Author, title) 

lib_catalog(ISBN, Author, Title, Year, subprice, accno) 

library1 & library2 are horizontally partitioned databases on the 

primary key: ISBN. 



 48 

 

3. PSQL Database under LINUX: student 

Site 3:- IP Address: 172.16.12.3 (on the intranet) 

The schema of all the tables in the above database is as follows: 

Stud_master (idno, name, address, reg_date) 

Stud_tran1 (idno, cgpa) 

Stud_tran2 (idno,Courseid,t1,t2,q1,q2,ce,total,accno) 

 

3.6.2 Database Creation 
 

The following commands were used to create tables under the library1 

& library2 databases used for the generic search over java interface: 

 

CREATE TABLE lib_journal ( 

ISBN int(10) NOT NULL Primary Key, 

Publisher char(20), 

Title char(25), 

Noofissues varchar(10), 

Subprice real); 

 

CREATE TABLE lib_cse( 

ISBN int(10) NOT NULL, 

Publisher char(10), 

Author char(10), 

Title char(25), 

CONSTRAINT ISBN_ID FOREIGN  

KEY(ISBN)REFERENCES lib_journal (ISBN)); 

 

 

 

 



 49 

  CREATE TABLE lib_catalog ( 

   ISBN int(10) NOT NULL, 

   Discipline char(10), 

   Author char(20), 

   Title char(25), 

   Year int, 

   Subprice real, 

   accno char(7), 

CONSTRAINT ISBN_ID2 FOREIGN KEY (ISBN) 

REFERENCES lib_journal (ISBN)); 

 

 The following commands were used to create relations under the student 

database: 

  CREATE TABLE stud_master ( 

   id int primary key, 

   name varchar(20), 

   address varchar(20), 

   reg_date varchar(30)); 

 

  CREATE TABLE stud_tran2 ( 

   idno  varchar, 

   courseid  varchar, 

   t1  real, 

   t2  real, 

   q1  real, 

   q2  real, 

   ce  real, 

   total  real, 

   accno  char(7), 

   Foreign key (idno) references stud_master); 

CREATE TABLE stud_tran1 ( 



 50 

idno varchar, 

cgpa real, 

Foreign key (idno) references stud_master);  

 

3.6.3 Interface Design 
 

The UNIFORM INTERFACE as shown in Figure 3.3 allows the user 

to enter the query. The interface has been implemented using JAVA API [38] 

and connection to database is achieved by locating the JDBC driver [39, 40]. 

Once the user has entered the query and has clicked the “Execute Query” 

button, the back end will find out the database server and connect to it. The 

SQL query is then executed and the user can view the query as well as its 

output results. 

 

 
 

Figure 3.3: Layout of the UNIFORM INTERFACE implemented using JAVA API 

 

 



 51 

3.6.4 Test Scenario 
 

The JAVA program for the present work has been compiled and run 

using the following sequence of two steps: 

$ javac Mainclass.java // to create the class file 

$ java Mainclass // for execution 

 

a) The following query has been entered in the input text file (in1.qry) 

using the uniform interface: 

 

select stud_master.name, stud_tran2.t1, stud_tran2.t2, stud_tran2.q1, 

stud_tran2.q2 from stud_master, stud_tran2 where 

stud_master.idno=stud_tran2.idno; 

 

A complete trace of the java, program’s execution is shown as follows: 

Access details: 

Site(s)  :      172.16.12.3   

DBMS(s) & OS(s):  PSQL under LINUX 

Database(s) :  student   

 

Table 3.1: Results of Sample Query (a). 

Name T1 T2 Q1 Q2 

Aquarius  45 65 7 6 

Venus 67 43 9 9 

Ruby 60 66 9 9 

…….. …….. ……. ……. …….. 

 



 52 

b) The following query has been entered in the input text file (in2.qry) 

using the uniform interface: 

 

select stud_tran2.idno, stud_tran2.accno, lib_catalog.author, 

lib_catalog.title from stud_tran2, lib_catalog where stud_tran2.accno = 

lib_catalog.accno; 

 

A complete trace of the java, .NET program’s execution is shown as follows: 

Access details: 

 

Site(s)   :     172.16.12.1, 172.16.12.2, 172.16.12.3 

DBMS(s) & OS(s) :  MYSQL under LINUX,  

                                   MYSQL under WINDOWS,  

                                   PSQL under LINUX. 

Database(s)  :  student, library1, library2 

 

Table3.2: Results of Sample Query (b) 

IDNO ACCNO AUTHOR TITLE 

2002u7ps035 B32562 J. Ullman Database Systems 

2002u7ps023 C40023 Fred Halsall Multimedia 

communications 

…….. …….. …….. ……. 

…….. …….. ……. ……. 

 

 

 



 53 

3.7  Implementing Using ADO .NET Architecture 
 

A GS module is implemented using ADO.NET Architecture as shown 

in figure 3.4. ADO.NET provides consistent access to data sources such as 

Microsoft SQL Server, as well as data sources exposed through OLE DB and 

XML. Data-sharing consumer applications can use ADO.NET to connect to 

these data sources and retrieve, manipulate, and update data. ADO.NET 

cleanly factors data access from data manipulation into discrete components 

that can be used separately or in cycle. ADO.NET includes:  .NET Framework 

data providers for connecting to a database, executing commands, and 

retrieving results. Those results are either processed directly, or placed in an 

ADO.NET DataSet object in order to be exposed to the user in an ad-hoc 

manner, combined with data from multiple sources, or remotely send between 

tiers. The ADO.NET DataSet object can also be used independently of a .NET 

Framework data provider to manage data local to the application or sourced 

from XML. 

 

Data Access in ADO.NET relies on two components:  

• DataSet and  

• Data Provider. 

  

1. DataSet [41]  

The DataSet is a memory-resident representation of data that provides 

a consistent relational programming model apart from of the data source. It 

can be considered as a local copy of the relevant portions of the database. The 

DataSet is persisted in memory and the data in it can be manipulated and 

updated independent of the database. When the use of this DataSet is finished, 

changes can be made back to the central database for updating. The data in 

DataSet can be loaded from any valid data source like Microsoft SQL server 

database, an Oracle database or from a Microsoft Access database. The 

elements of DataSet are: 



 54 

• Data Table Collection. 

• DataRelation Collection. 

 

Data Table Collection [41] 

 The DataTableCollection contains all the DataTable objects in a 

DataSet. The DataTable is a central object in the ADO.NET library. When 

accessing DataTable objects, they are conditionally case-sensitive. For 

example, if one DataTable is named "mydatatable" and another is named 

"Mydatatable", a string used to search for one of the tables is regarded as case 

sensitive.  

 

DataRow Collection [41] 

 The DataRowCollection represents the actual DataRow objects in the 

DataTable. The DataRow and DataColumn objects are primary components of 

a DataTable. To insert, delete and update the values in the DataTable, 

DataRow object is used.  

 

DataColumn Collection [41] 

 The DataColumnCollection defines the schema of a DataTable, and 

determines what kind of data each DataColumn can contain. The 

DataColumnCollection can be accessed through the Columns property of the 

DataTable object. The DataColumnCollection uses the Add and Remove 

methods to insert and delete DataColumn objects. 

 

Constraint Collection [41] 

The ConstraintCollection is accessed through the 

DataTable.Constraints property. The ConstraintCollection can contain both 

UniqueConstraint and ForeignKeyConstraint objects for the DataTable. A 

UniqueConstraint object makes sure that data in a specific column is always 

unique to preserve the data integrity. The ForeignKeyConstraint determines 

what will occur in related tables when data in the DataTable is either updated 



 55 

or deleted. For example, if a row is deleted, the ForeignKeyConstraint will 

determine whether the related rows are also deleted, or some other course of 

action. 

 

DataRelation Collection [41] 

  A DataRelationCollection object enables navigation between 

related parent/child DataTable objects. The  DataRelationCollection can be 

created by defining it as a property of either the DataSet or the DataTable. 

 

2. Data Provider [41] 

The Data Provider is responsible for providing and maintaining the 

connection to the database and it is shown in table. A DataProvider is a set of 

related components that work together to provide data in an efficient and 

performance driven manner.  

The four core objects of .NET Framework Data Provider are as 
follows: 

 

Table: 3.3: Core Objects of .NET framework Data Provider 

Object  Description  

Connection  
Establishes a connection to a specific data source. The base class 
for all Connection objects is the DbConnection class. 

Command  

Executes a command against a data source. Exposes Parameters 
and can execute within the scope of a Transaction from a 
Connection. The base class for all Command objects is the 
DbCommand class. 

DataReader  
Reads a forward-only, read-only stream of data from a data 
source. The base class for all DataReader objects is the 
DbDataReader class. 

DataAdapter 
Populates a DataSet and resolves updates with the data source. 
The base class for all DataAdapter objects is the DbDataAdapter 
class. 

 

 



 56 

The .NET Framework currently comes with two DataProviders: the 

SQL Data Provider which is designed only to work with Microsoft's SQL 

Server 7.0 or later and the OLEDB DataProvider which allows us to connect 

to other types of databases like Access and Oracle.  

 

Data access with ADO.NET can be summarized as follows: 

A connection object establishes the connection for the application with 

the database. The command object provides direct execution of the command 

to the database. If the command returns more than a single value, the 

command object returns a DataReader to provide the data. Alternatively, the 

DataAdapter can be used to fill the Dataset object. The database can be 

updated using the command object or the DataAdapter. The DataAdapter 

comprises of Select, Insert, Delete and Update modules. 



 57 

 
   Figure 3.4: ADO .NET Data Architecture [41] 
 



 58 

3.7.1 Experimental Setup 
MySQL and MS SQL are the DBMS software that have been 

considered here. The Relational Model for Databases has been considered in 

this work. The Queries are assumed to be in standard SQL format and are 

submitted from query files. 

Examples used to illustrate this section are drawn from the following 

three databases. Each database has three relations. Each Database is stored at a 

separate site. 

 1. MySQL Database under Windows: Employee 1 

    Site 1: IP Address:  76.162.254.156 (ixwebhosting.com) 

  The schema of all the tables in the above database is as follows: 

 

emp_det(no,deptid,desig,salary,dt_join,mailid,address) 

hr_employee (no,deptid,wrkaddr,suboffice,salary,dt_change date) 

                         empl_master (no,deptid,admin) 

 

 2. MySQL Database under Windows: Employee 2 

     Site 2:  IP Address: 70.87.57.146 (visionwebhosting.com) 

   The schema of all the tables in the above database is as follows: 

     

emp_det(no,deptid,desig,salary,dt_join,mailid,address) 

hr_employee (no,deptid,wrkaddr,suboffice,salary,dt_change date) 

empl_master (no,deptid,admin) 

 

 3. MSSQL Database Under Windows: Employee 3 

     Site 3:   IP Address: 76.162.254.156 (ixwebhosting.com) 

    The Schema of all the tables in the above database is as follows: 

 

      emp_det(no,deptid,desig,salary,dt_join,mailid,address) 

     hr_employee (no,deptid,wrkaddr,suboffice,salary,dt_change date) 

     hr_empl_trans (no,deptid) 



 59 

  

3.7.2 Database Creation  
 

The following commands were used to create tables under the 

employee 1 and employee 2 databases. 

 

   CREATE TABLE emp_det ( 

no char(10) NOT NULL Primary Key, 

deptid char(10), 

desig char(10), 

salary real, 

dt_join date, 

mailid char(20), 

address char(50)); 

 

CREATE TABLE hr_employee ( 

No char(10) NOT NULL Primary Key, 

deptid char(10), 

wrkaddr char(15), 

suboffice char(15), 

salary real, 

dt_change date, 

Foregin Key (no) references emp_det); 

 

The following commands were used to create relations under the 

employee database: 

CREATE TABLE empl_master ( 

 no char(10) NOTNULL Primary Key 

 deptid  char(10), 

 admin chat(10), 

 Foregin Key (no) references emp_det, 



 60 

 Foregin Key (deptid) references emp_det ); 

 

CREATE TABLE hr_empl_trans ( 

 no char (10) NOTNULL Primary Key 

 deptid char(10), 

 Foregin Key (no) references emp_det, 

 Foregin Key (deptid) references emp_det); 

 

 

3.7.3 Interface Design 

 
The uniform interface as shown in figure 3.5 allows the user to enter 

the query. The interface has been created in VB .NET and implemented in 

ADO .NET and connection to database is achieved .NET Data Provider. Once 

the user has entered the query and has clicked the “Execute Query” button, the 

ADO .NET Architecture provides consistent access to data source through 

OLE DB and XML. The Data-sharing consumer applications can use ADO 

.NET to connect to these data sources and retrieve. ADO .NET includes .NET 

framework data providers for connecting to the appropriate database, 

executing commands and retrieving results. 

 

  

 



 61 

 
Figure 3.5: Layout of the UNIFORM INTERFACE implemented using ADO .NET   

 

3.7.4 TEST SCENARIO 

 

The .NET program was compiled using the standard Visual Studio 

IDE. 

The following query has been entered in the input text file in3.qry 

using the uniform interface. 

select emp_det.no, emp_det.deptid, emp_det.desig emp_det.amilid, 

emp_det.address from emp_det, he_employees where emp_det.no = 

hr_employee.no; 

 

 



 62 

The following table is obtained as a result of the above query. 

   Table 3.4: Results of Sample Query  

NO DEPTID DESIG MAILID ADDRESS 

C1035 HR4-

1DUB 

Senior 

Advisor 

davis@gmail.

com 

Dubai 

D2301 HR1-

2SHJ 

Finance 

Controll

er 

mathew@gma

il.com 

Sharjah 

…….. …….. …….. …….  

…….. …….. ……. …….  

 

 The query has been executed for different selectivity factors (number 

of records selected) and varying network speeds (band widths). The number of 

records denotes the total percentage of records retrieved from the main 

database and the execution time (in seconds) was calculated for each pair of 

selectivity factor and band width. The results are tabulated in Table 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 



 63 

 

   Table3.5: Execution time (in secs) for a given (selectivity factor, bandwidth) 

Bandwidth 
Number of 

records 

512Kbps 1Mbps 2Mbps 
1343 0.81375 0.4860336 0.314117 

2686 1.6275 0.9720672 0.628234 

4029 2.44125 1.4581008 0.94235 

5372 3.255 1.9441344 1.256467 

6715 4.06875 2.430168 1.570584 

8058 4.8825 2.9162016 1.884701 

9401 5.69625 3.4022352 2.198818 

10744 6.51 3.8882688 2.512934 

12087 7.32375 4.3743024 2.827051 

13431 8.1375 4.860336 3.141168 

 

 

The test database considered here is of size 13.12 MB. The 

performance graph for the above database is shown in figure 3.6 for varying 

selectivity factors and band widths. The results obtained were qualitatively 

similar when the database size is varied in the range 10.0 MB – 100.0 MB. 

From the graph, it can be inferred that the execution times increases linearly 

with the number of records, for a given band width. It is also clear that as the 

band width decreases, the execution time increases. It is quite possible that the 

execution times can vary to some extent for a given pair of selectivity factor, 



 64 

and band width, depending upon the prevailing network traffic / load and the 

search algorithm deployed in various databases. 

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10
Number of Records (in Thousands)

Ti
m

e 
(i

n 
se

co
nd

s)

Bandwidth
512Kbps

Bandwidth
1Mbps

Bandwidth
2Mbps

 
Figure 3.6: Performance graph for Test Database under varying selectivity  

       factor and band width 

 

 



 65 

 

3.8 Complexity  

 
  Table 3.6 summarizes the time complexity of SQL operations at each 

site, as referred in section 6 and section 7.   

  Let n be the number of tuples in a relation / fragment. 

  Table 3.6: Complexity of SQL Operations at each site 

Operation Complexity 

SELECT O(n) 

PROJECT O(n) 

JOIN (sort-merge) O(n * log n) 

 

3.9 Summary 

 
An algorithm for searching multiple databases in a heterogeneous 

environment has been discussed and   implemented using two approaches: 

1. JDBC and Java API. 

2. ADO .NET Architecture. 

It has been successfully tested with several queries which have been initiated 

from multiple client sites.  

The programs developed in .NET and JAVA are interoperable as they 

are created for web based operation and the resulting model can be very 

helpful in practical applications such as banking systems and airline enquiry 

systems where there is a need to execute several queries over multiple 

databases located in different servers. 



 66 

Chapter 4 

Mathematical Representation of Pre and Post 
Conditions using Propositions for Database 
Components 
 

4.1 Introduction 
 

The software engineering arena is constantly moving towards a new 

direction i.e. Component Based Software Development and it is making new 

advances in this area. The basic idea in this approach is to develop software by 

assembling off the shelf components which are reusable [42], [43]. A 

component is a unit of composition with contractually specified interfaces and 

explicit dependencies [44]. An interface describes the services offered or 

required by a component without disclosing the component implementation.  

It is the only means of access to the information of a component.  The 

component reuse is another important characteristic of component-based 

development. Component based development helps in building software that is 

reusable [45]. However, reuse without a precise specification is a disastrous 

risk.  

  
The formal methods refer to the mathematics and modeling applicable 

to the specification, design, and verification of software [46]. The emphasis is 

on the creation of theories and tools to aid these activities. The methods are 

"formal" in the sense that they are precise enough to be implemented on a 

computer. 



 67 

 

4.2  Related Work 
 

The idea behind this chapter is to integrate the formal methods and the 

frame work for implementation, with regard to database components. 

Component-based Software Development (CBD) helps in building software in 

modular way. It is necessary to be able to specify components in such a way 

that we can reason about their construction and composition, and correctness.  

 
Formal methods have been supported as one of those techniques that 

are likely, when correctly applied, to result in systems of the highest integrity. 

The approach of choosing appropriate notations and integrating them with the 

existing development of systems, being careful to ensure that existing 

guidelines and procedures are retained, plays a vital role for the successful 

implementation of formal methods [47].   

This chapter deals with experimental work using three database servers 

and their outputs to the queries, formulated using predicate logic. While 

formulating the formal definitions for queries the Ten Commandments of 

formal methods were kept in mind. The Ten Commandments for formal 

methods [48] highlight the following key points: 

 
• Choose an appropriate notation and the notation used at this stage will 

have a well defined formal semantics. 

• Formal specification, formal development / verification and machine-

checked proofs, each of these three levels is useful in itself. 



 68 

• Cost Estimation: The efforts required by the component designer in 

estimating development costs, development lead-times and initial set-up 

costs. The initial set-up costs include investment in support tools, 

contract, consultancy and training. 

•  Majority of successful formal methods projects have a consultant who is 

expert in formal techniques. 

• An alternative to integration of techniques is the use of formal methods 

to review an existing process. 

• Formalizing the documentation leads to less ambiguity and thus less 

likelihood of errors. 

• There is nothing magical about formal methods, and ensuring that 

system documentation meets the quality standards that were set for 

conventional development. 

• Formal methods are one of a number of techniques to result in systems 

of the highest integrity, and one should not dismiss other methods 

entirely. 

• Formal methods allow us to examine system behavior and to convince 

ourselves that all possibilities have been anticipated. 

• Reuse. The four major factors which conspire against software reuse 

include: the Very Large Scale Reuse problem, Generality versus 

Specification, cost for selection of suitable components for future reuse 

and the reliability of the component reuse. The use of formal methods in 

system development can help to overcome each of these unambiguously 



 69 

stating the requirements of a system, or of a component. Thus 

components that have been formally specified and sufficiently well 

documented can be identified, reused and combined to form components 

of the new system.  

 

4.3  Problem Description  
 

The component view of the experimental system is shown in Figure 

4.1. The proposed system reads SQL queries submitted by users from input 

files. The experimental system comprises of Database Servers, User Interface, 

Query Parser, Authentication Server and Query Generation and Processing 

module as shown in Figure 4.1. When the clients want to access this 

component, this component checks its authentication with the help of 

Authentication Server. If the authentication process is successful then the 

client is allowed to enter its query for processing and retrieving data from the 

corresponding server. The query is entered by the client through user interface 

module and it will be communicated to the Query Generation & Processing 

Module further for processing. The accepted query is parsed by the query 

parser and it is send back to the Query Generation & Processing Module. Then 

the exact database server site is connected and the data are retrieved and 

forwarded to the requested client. Multiple clients (say, n) can pass the select 

queries to the Database Component, residing at a given site. The database 

component helps the clients for data retrieval from the appropriate servers 

located at various sites using the IP addresses. 



 70 

Components support certain definite set of features and present 

functional interface to the client application. Applications can be taken away 

from the details of implementations and managing an advanced technology. 

Components can be designed to support certain algorithms. The application 

uses the algorithm by connecting the component to the component manager. 

Component manager helps the user to specify and register a component type 

and the communication is established through the component manager. 

Component classes that are user-defined must have their functional 

interfaces specified. The applications must invoke these components as they 

adhere to the specified definitions and support the interface. Component 

interactivity is enhanced through defining the integrated functionalities for 

application invocations. Semantic integrity rules form the basis of 

preconditions for processing the queries and conditional verification and 

formal specification methods form the basis for post condition. The post 

conditions ensure the information absoluteness with higher degree of accuracy 

after the execution of the call. Therefore the returned value to the user would 

be program verified and mathematically interpretable.  



 71 

 

 
 
                                      Figure 4.1: Component View of the Experimental System 
 



 72 

4.4 SELECT Statement  
 

An SQL SELECT statement returns a result set of records from one or 

more tables. As SQL is a non-procedural language, SELECT queries specify a 

result set, but do not specify how to calculate it: translating the query into an 

executable "query plan" is left to the database system. The SELECT statement 

has many optional clauses: 

� WHERE specifies which rows to retrieve. 

� GROUP BY groups rows sharing a property so that an aggregate 

function can be applied to each group. 

� HAVING clause is used in combination with GROUP BY clause to 

filter the records that a GROUP BY returns. 

� ORDER BY specifies an order in which to return the rows. 

 

4.5 Pre-Conditions & Post Conditions 
 

 Often a method is written under the assumption that certain things are 

true about the environment: these are called pre-conditions. We can illustrate 

the requirements of a function and the conditions that would hold true after its 

execution. We can do so by specifying the pre-conditions and post conditions 

of a function.  

 
The precondition expresses requirements that any call must satisfy in 

order to be correct, while its post condition expresses properties that are 

ensured in return by the execution of the call [49]. 

  

 



 73 

4.6 Mathematical Representation for SQL SELECT Queries 
  

This section deals with the mathematical representation for SQL 

SELECT queries and it is based on Demorgan’s Laws and the Truth Table 

method [50].  

 
Consider the following SQL queries:  

 
a) Select * from tbl_company_master 

Precondition: zero or more records must exist and one or more fields must 

exist in the table. 

 
Post- condition: if the above precondition is true the result will be displayed 

on the screen. 

 We can express the above precondition in equation 1. 

 Let   p: (set of zero or more records) 

        q: (set of one or more fields) 

        A: (the table tbl_company,_master)   

       ^ :  and  operator  

      � : implies 

          ~ : negation   
  
         v : or operator 

         (p ^ q )  �  A  (equation  4.1 )  



 74 

The truth table corresponding to equation 1 is shown in Table 4.1. In the 

truth table, an entry ‘T’ refers to True and ‘F’ indicates False for the given 

predicates. 

Table 4.1:  Truth table for query (a) 

p q p^q 

T T T 

T F F 

F T F 

F F F 

 
The mathematical representation for the above query is verified using the 
properties of predicate logic. 

 
  p  ^ q  � A 

     p is a statement which expresses a particular condition or situation.    

            This Logic is represented through a predicate. 

                Similarly q, A are predicates of the same type either implicitly or  

                explicitly explaining a situation. 

 � can be replaced by “ v” 

            for example : p � q can be replaced by 
~

p v  q. 
�

            Implication can be replaced by “v” which forms the clausal form of a   

            statement or condition [51]. 

            Therefore the above mentioned statement p ^ q � A can be  

����������������written as     
~

(p  ^ q )  v A 

� � � Applying Demorgan’s law 

~
p  v 

~
q  v A  

which is either (Not preconditions on zero or more records) or (Not 

preconditions on zero or more fields) or  

(table tbl_company,_master). Equation (1) is rewritten as  

p  ^ q  � A  �≡ ~p  v 
~

q  v A  (equation 4.2) 



 75 

Table 4.2: Verification of equation 4.2 using DeMorgan’ s Law for query (a) 
~

p  v 
~

q  v  A   
                           (Right Hand Side) 

p q A ~
p�

~
q�

~
p v 

~
q� ~p  v ~q  v A�

F F F T T T T 

F F T T T T T 

F T F T F T T 

F T T T F T T 

T F F F T T T 

T F T F T T T 

T T F F F F F 

T T T F F F T 

 
Table: 4.3: Verification of equation 4.2 using DeMorgan’ s Law for query (a)�p ^ q  � A            
              (Left Hand Side) 

p q p ^ q� A p ^ q  � A�

F F F F T 

F F F T T 

F T F F T 

F T F T T 

T F F F T 

T F F T T 

T T T F F 

T T T T T 

 

Hence equation (4.1) is verified using the DeMorgan’ s Law, and it is rewritten 

as p ^ q  � A  �≡ ~p  v 
~

q  v A …. equation 4.2 and shown that the right hand 



 76 

side of the expression is equivalent to the left hand side and are shown in Table 4.2 

and Table 4.3. 

 
b) Select CompanyId,CompanyName from tbl_company_master 

 
Precondition: CompanyId & CompanyName must exist with zero or more 

records in the table. 

Post- condition: if the above precondition is true the result will be displayed 

on the screen. 

 The above precondition in equation 2 can be expressed as 

       Let  p : (set of zero or more records) 

  q1: (the field CompanyId) 

  q2: (the field CompanyName) 

  A : (the table tbl_company_master) 

  ^ :  and  operator 

  � : implies 

   p ^ (q1 ^ q2 ) �  A     ……… (equation 4.3 ) 

 
 
 
 
 
 



 77 

The truth table corresponding to equation (4.3) is shown in Table 4.4. 
 

Table 4.4:  Truth table for query (b) 

 
 
 
 
 
 
 

 

 

The mathematical representation for the above query is also verified using the 

properties of predicate logic.  

p ^ (q1 ^ q2) � A 

p is a statement which expresses a particular condition or situation. This logic is 

represented through a predicate and the implication can be replaced by “ v”  which 

forms the clausal form of a statement or condition [51]. Therefore the above 

statement p ^ (q1 ^ q2) � A can be rewritten as 
~(p ^ (q1 ^ q2)) v A 

By applying Demorgan’ s Law  

 
~

p  v 
~

q1 v 
~

q2  v  A 

which is either (Not preconditions on zero or more records) or (Not preconditions on zero 

or more fields) or (table tbl_company,_master).  Equation (2) is rewritten as  

p ^ (q1 ^ q2) � A �≡ ~p  v 
~

q1 v 
~

q2  v  A  ...... (equation 4.4) 

  

 

  

p q1 q2 q1^q2 p^(q1^q2) 
T T T T T 
T T F F F 
T F T F F 
T F F F F 
F T T T F 
F T F F F 
F F T F F 
F F F F F 



 78 

Table 4.5: Verification of equation 4.4 using Demorgan’ s Law for query (b) 

 ~p  v ~q1 v ~q2  v  A   (Right Hand Side) 

p q1 q2 q1 ^ q2 p ^ (q1 ^ q2) ~
(p ^ (q1 ^ q2)) A ~

p  v 
~

q1 v 
~

q2  v  A   

T T T T T F T T 

T T T T T F F F 

T T F F F T T T 

T T F F F T F T 

T F T F F T T T 

T F T F F T F T 

T F F F F T T T 

T F F F F T F T 

F T T T F T T T 

F T T T F T F T 

F T F F F T T T 

F T F F F T F T 

F F T F F T T T 

F F T F F T F T 

F F F F F T T T 

F F F F F T F T 

 
 
 
 
 

 



 79 

 
Table 4.6: Verification of equation 4.4 using Demorgan’ s Law for query (b)  

p ^ (q1 ^ q2) � A  (Left Hand Side)�

p q1 q2 q1 ^ q2 p ^ (q1 ^ q2) A p ^ (q1 ^ q2) � A 

T T T T T T T 

T T T T T F F 

T T F F F T T 

T T F F F F T 

T F T F F T T 

T F T F F F T 

T F F F F T T 

T F F F F F T 

F T T T F T T 

F T T T F F T 

F T F F F T T 

F T F F F F T 

F F T F F T T 

F F T F F F T 

F F F F F T T 

F F F F F F T 

 

Hence the equation (4.4) is verified using the Demorgan’ s Law, and shown that 

the right hand side of the expression is equivalent to the left hand side and are 

shown in Table 4.5 and Table 4.6. 



 80 

c) Select CategoryId,BrandId, CompanyId, CompanyName From  

       tbl_company_master, 

       tbl_admin_insert 

Where tbl_admin_insert.CompanyId= tbl_company_master.companyId 

 
Precondition: CategoryId,BrandId,CompanyId must exist with zero or more 

records in the table tbl_admin_insert, CompanyId & CompanyName must 

exist with zero or more records in table tbl_company_master and zero or more 

records in tbl_admin_insert.ComapnyId should be equal to 

tbl_company_master.CompanyId. 

Post- condition: if the above precondition is true the result will be displayed 

on the screen. 

The above precondition can be expressed as 

Let   

p : (set of zero or more records) 

q1: (the field CompanyId in tbl_admin_insert) 

q2: (the field CategoryId in tbl_admin_insert) 

q3: (the field BrandId in tbl_admin_insert) 

q4: (the field CompanyId in tbl_company_master) 

q5: (the field CompanyName in tbl_company_master) 

A: (the table tbl_company_master) 

B: (the table tbl_admin_insert) 

 



 81 

�
 (q1=q4): p ^ ((q1 ^ q2 ^ q3) ^ (q4 ^ q5)) �  A         

… (equation 4.5 ) 

The above equation (4.5) corresponds to the query (c) over two 

relations A and B involving join operation over the attribute 

companyId. 

The mathematical representation for the above query also can 

be verified using the properties of predicate logic, using similar 

approach as followed for the earlier queries (a) and (b). 

 
4.7  Experimental Verification 

 
The system developed for executing the above queries comprised of 

the following two tables with the following structures: 

1 ) tbl_company_master 
COLUMN_NAME  COLUMN_TYPE      
CompanyId   int(10) unsigned   
CompanyName   varchar(200)   
Address    varchar(200) 
 FullPageAdv   varchar(200)   
URL    varchar(200)  
  
2 ) tbl_admin_insert 
COLUMN_NAME  COLUMN_TYPE  
CategoryId   int(10) unsigned     
BrandID   int(10) unsigned     
CompanyId   int(10) unsigned     
BrandLogo   varchar(200)   
BannerImage   varchar(200)   
FullPageAdv   varchar(200)   



 82 

The above tables were created on three different servers with MSSQL 

(76.162.254.156) and MySQL (76.162.254.156, 70.87.57.146) as shown in 

figure 4.2 and the queries were executed across all database servers. 

The users will be authenticated using the authentication module. The 

user interface for both Linux and Windows operating systems are supported 

and the results will be displayed to the user. The database server exists as a 

combination of three different servers and the site IP addresses are 

76.162.254.156 (MYSQL under Windows), 76.162.254.156 (MSSQL under 

Windows) and 70.87.57.146 (MYSQL under Linux). 

The following query corresponding to predicate logic as mentioned in 

problem description has been given as input to the system: 

Select CompanyId,CompanyName from tbl_company_master 

The above query executed on the system successfully and the 

following results are obtained for the given test data and shown in Figure 4.2.  

 

 

 

 

 

 

 

 

 

 



 83 

�����������	�
�����
��
�����
��

Server Name: 

MySQL . ixwebhosting.com(76.162.254.156 under 
Windows),  MSSQL .ixwebhosting.com(76.162.254.156 
under Windows ),  MYSQL .visionwebhosting.com 
(70.87.57.146 under Linux) 

Server Traffic: Traffic on the Server 

Table Involved: Tbl_company_master 

CompanyID Company Name 

4 A M Trading Co LLC 

5 A A Juma Plastic Pipes & Fittings Ind. Co. LLC 

6 A M Jalal A/c & Ref. Eqpt. Tradg. 

16 ABDULLA & BALIAN OFFICE EQPT LLC 

26 ABU DHABI MOTORS 

37 ACECO 

40 Ad Power FZCO 

50 ADVANCED IMAGING SYSTEMS EST 

59 AHMAD TEA (ME) LTD 

108 Al Barq Kitchen Equipments Trading LLC 

109 Al Basel Co Heavy Equip Spare Parts Tr 

133 Al Ghandi Gen Trdg Co LLC 

145 Al Horiya Sand Blasting 

146 Al Humaidi Trdg Ent LLC 

153 Al Italiah Ind Trdg Co LLC 

164 Al Jazirah Eqpt. & Tech. Svcs. 

202 Al Naboodah Automobiles LLC 

                            Figure 4.2: Server and Process Information 

The same procedure has been followed for query (c) and tested successfully. 



 84 

4.8 Summary 
 

This chapter discussed in detail an approach to use mathematical 

representation to express queries for database components. The experimental 

system has been setup using database components and the SQL queries have 

been tested successfully.  

 



 85 

Chapter 5 
 Component Design Key Factors for Semantic Integrity 

Control and Interoperability 
5.1 Introduction 

This chapter deals with the key factors responsible for maintaining 

semantic integrity control and interoperability in the design of components. The 

development of complex business applications is now focused on an assembly 

of components available on a local area network or the Internet. This chapter 

focuses on identification of key factors for Semantic Integrity Control and 

Interoperability and their applicability to Domain, Service and Agent 

Components.  

A survey has been conducted on web-based applications involving 

phpmyAdmin, using MySQL under Windows and Linux environments. The 

applications considered are: 

1. Online Faculty Feedback System (can be deployed on 

intranet / Internet) [52]. 

2. Telephone Directory Information System [53]. 

3. Library Information System [54]. 

These systems are more focused on a specific application area. The 

semantic integrity control and interoperability are implemented separately for 



 86 

each application. Hence, it is necessary to evolve a common approach / design 

pattern to develop a wide range of applications. Based on the examination of 

operations performed in these applications, the key factors governing Semantic 

Integrity Control and Interoperability have been identified and listed below: 

The key factors for Semantic Integrity Control are Authentication, 

Access to the host program and databases present in the Domain server, Access 

to Proprietary Programs, Source Manipulation to update assertions, checking 

for Assertions, Dynamic Data Manipulation, Time Period of Component 

Availability and Consistency of output. 

The key factors for Interoperability are Open Protocols, Open APIs, 

Open Access, Open Source Compatibility, Broad Compatibility and Open 

Import / Export [55]. 

The key factors for semantic integrity are obtained considering simple 

day to day business architecture in mind. Using the authentication the program 

is restricted to subscribed users, thus the integrity is maintained externally. If 

authentication is not required, then there exists emphasis on the internal code’s 

integrity. Source manipulation and updating assertions is a factor that specifies 

the change in the integrity that the program will encounter and due to which the 

program’s execution technique changes i.e it specifies the dynamic character of 

the integrity of the component. Dynamic data manipulation specified the 

capability of the component to change the object or data according to the need 



 87 

by the requested program. Time period of component availability and 

consistency ensure the component’s integrity and strength for a very long time. 

During this run of a component, the component is checked for the range to 

which it can access the programs or the dependencies of the host that it is 

requesting for. This gives the integrity of the component’s accessibility and its 

wide extension of service. 

The key factors for Interoperability are selected on the basis of the 

software standards as specified by organizations namely Microsoft, CORBA and 

IBM. Open protocols define the extent to which the algorithm is standard and 

thus the extent to which it is widely available for usage. Open access also 

specifies the same aspect but in a different direction, this specifies the extent to 

which the program can be accessed by some individual applications. Open APIs 

provides the set of functions for the developer in the interface design. Open 

source compatibility specifies the commonness of algorithm and code’s depth 

between various open source programs. Broad Compatibility specifies whether 

or not the component is capable of performing its operation in spite of programs 

restriction with internal coding with the other components .Open import and 

export specifies whether the object and classes in the interface are interoperable 

with other components in the distributed environment. 

The categories of components considered in the present work include 

Domain Components, Service Components, and Agent Components. The 



 88 

connection between these components is determined by the language and 

compiler used in creating and compiling it each time when it is executed. The 

components generated for web applications act as a platform independent 

module that supports communication from Client and server machines with the 

maximum fastness in which it can execute. 

All components don’t mean the same. They differ in the complexity, 

scope and level of functionality. The components can be broadly classified as 

given below: 

1. Domain Components, 

2. Service Components, 

3. Agent Components [55]. 

5.2 Domain Component  

  The Domain Component permits reusable classes for an application 

developed within the same domain. The key factors for semantic integrity 

control that are applicable to the design of domain components are discussed in 

detail in the following paragraphs: 

1. Authentication: 

  Domain component authenticates at user level. This is required in 

order to facilitate the highest security.  It facilitates authorized access 

from different machines for users running similar processes. The 



 89 

concerned processes can be used to implement the business logic of the 

domain.. 

2. Access to the host program and databases present in the Domain 

Server:  

It gives full access rights to all components in the same domain. 

The host programs can be accessed through the domain component. The 

host programs can do functions relating to record keeping, by accessing 

the restricted tables.. 

3. Access to Proprietary Programs : 

     The administrator can give permission to the domain component 

for executing / accessing proprietary programs on a host machine. The 

proprietary program could be an internal service or distributed 

computing based service.  

4. Source program Manipulation to update assertions: 

   A domain component cannot manipulate source program 

pertaining to domain application, as this will result in inconsistent 

state. However, new assertions can be created and enforced through 

service component which transfers control to agent and domain 

component in this order. 

 

 



 90 

5. Checking of Assertions: 

The assertions are checked for the correctness of semantics and 

syntax. A faulty syntax can lead to errors that propagate from the 

domain to the user application and it is undesirable. At the same time 

a domain component designer should ensure correct semantics for all 

assertions.  

6. Dynamic Data Manipulation: 

   Domain components do not allow dynamic data manipulation as 

it will lead to faulty or misinterpreted result at the receiver’s end. It is 

advisable to transport the data in a standard format and the 

manipulation is done by the receiving end.  

7. Time Period of Component Availability: 

   The domain component is designed in such a way that it can 

perform its functions at any time when requested by the user 

application. It remains active in the host server and runs as a 

background process. It keeps polling the requests from the user 

applications and responds to them. 

8. Consistency of Output: 

The domain component should offer high level of consistency for 

all the user requests, by providing accurate and timely output. This is 



 91 

applicable even for multiple requests from users, which are identical 

and the output remains the same.  

The key factors for interoperability that are applicable to the design of 

domain components are discussed in detail in the following paragraphs: 

1. Open Protocols:  

Open protocols are not supported as they are built on platform 

specific environments and use high consistency rate for calculation 

and transmission of the data obtained. 

2. Open APIs: 

The domain component as such does not support open API, 

across all domains. However, the applications within the same 

domain can use same type of domain component. 

3. Open Access to user and technical documentation: 

The domain component is allowed for open access to user and 

technical documentation of components in the same domain only. 

4. Open Source Compatibility: 

 The open source compatibility is also not allowed for the 

operations involving proprietary information. 

 

 

 



 92 

5. Broad Compatibility: 

The domain component can be designed to provide broad 

compatibility. This will facilitate in its wider deployment across 

domain applications. 

6. Open Import / Export: 

The domain component can be designed to provide export / 

import facility for data handling. This will support interoperability 

across different applications in one or more domains.  

5.3 Service Component  
 

 Service Components are software components such as User Interface 

(UI), storage, directory services, etc. A service is the basic building block for 

writing applications using Distributed Software Services (DSS), and is a key 

component of the DSS application model. The Service Component executes a 

set of activities in response to a request (event) and delivers some result. 

Services are executed within the context of a DSS node. A DSS node is a 

hosting environment that provides support for services to be created and 

managed until they are deleted or the DSS node is stopped. Services are 

inherently network enabled and can communicate with each other in a uniform 

manner. This works regardless of whether they are executed within the same 

DSS node or across the network. When a service instance is created within a 

DSS Node, it is dynamically assigned a Universal Resource Identifier (URI), by 



 93 

the constructor service. This service identifier refers to a specific instance of 

a service identifier running on a particular DSS node. The service identifier is 

what enables other services to communicate with that service as well 

as Accessing DSS Services through a Web Browser.  

 The key factors for semantic integrity control that are applicable to the 

design of service components are discussed in detail in the following 

paragraphs: 

1. 1.  Authentication: 

  It is required for user identification and service requested by the 

user. Service component requires authentication in order to 

facilitate the security and ubiquitous usage between various 

services offered for different client machines.  

2. Access to the host program and databases present in the 

Domain Server: 

The Domain Sever permits access to one or more host programs 

and databases as per the nature of the service. Some potential 

services under this category include: executing a remote 

procedure call and database search. 

3. Access to Proprietary Programs : 

The service component is implemented using a set of classes. 

Some of the methods in these classes invoke proprietary 



 94 

program to do extended services such as customization function 

in an ERP application. 

4. Source Manipulation to update assertions: 

    Source can be manipulated as it can lead to better services 

which are intended by the user applications. This help in enforcing 

new assertions (such as assertions to deny inference queries) 

created in external file.   

5. Checking of Assertions: 

A service component checks the assertions for the 

correctness of semantics and syntax. A faulty syntax leads to 

undesirable exceptions and terminates the intended function 

abruptly. A service component designer is required to frame the 

assertions with correct semantics.  

6. Dynamic Data Manipulation: 

A Service component supports dynamic data manipulation, 

for handling input and output.  For input data, it can do some 

preprocessing, if necessary (transforming from one format to 

another format) and so on. The output data can be suitably 

formatted as per the request of the user application. 

 

 



 95 

7. Time Period of Component Availability: 

 It is available only for specified time period. Service 

component can extend or renew the time period of the 

component upon specific request. 

8. Consistency of Output: 

The service component offers a higher level of 

consistency under normal conditions. However, it can vary due to 

exceptions like node failure or link failure.  

 The key factors for interoperability that are applicable to the design of 

service components are discussed in detail in the following paragraphs: 

1. Open Protocols: 

Open protocols are supported as it is built on an open platform 

inter-operable language. The protocols can be used in updation / 

upgradation related activities. 

2. Open APIs: 

The service component can be integrated with other application 

interfaces across all the domains. It can be used as a service whose 

response can be used in another application run by the user.  

3. Open Access to user and technical documentation: 

It is allowed for algorithmic change.  

 



 96 

4. Open Source Compatibility: 

The open source compatibility is not provided as the design of 

the algorithms is considered to be confidential. 

5. Broad Compatibility: 

The service component is designed to provide broad 

compatibility across many applications belong to one more domains.  

6. Open Import / Export: 

Any forms of data can be imported and exported given by the 

system to any kind service components that is attached to it. This 

form of data is interoperable widely for use in any operating 

environment. 

 

5.4 Agent Component 
   

 The Agent Component can be designed to perform pre-defined set of 

activities and can be regarded as web enabled software component. The key 

factors for semantic integrity control that are applicable to the design of agent 

components are discussed in detail in the following paragraph: 

1. Authentication: 

It is not required since it receives pre-authenticated 

messages from Domain / Service Component. 

 

 



 97 

2. Access to the host program and databases present in the  

           Domain Server: 

The agent component establishes connection to Domain / 

Service Component. Access to one or more host programs and 

databases is only through Domain / Service component. 

3. Access to Proprietary Programs: 

Agent component extends access to proprietary program 

according to the type of component (Domain / Service) as 

mentioned in section 5. 2 and section 5.3. 

4. Source Manipulation to update assertions: 

  Agent component cannot manipulate source program to 

update assertions, since it is not defined in its scope. 

5. Checking of Assertions: 

Agent component is not required to handle assertions. The 

assertions are handled by domain and service components. 

6. Dynamic Data Manipulation: 

Agent component cannot perform dynamic data 

manipulation. However, it can route the formatted output from 

service component to the user application. 

 

 



 98 

7. Time Period of Component Availability:  

The time period of component availability depends on 

type of component connected (Domain/Service). 

8. Consistency of Output: 

Agent component offers a higher level of consistency. 

However, it can vary due to exceptions like node failure or link 

failure. 

The key factors for interoperability that are applicable to the design of 

domain components are discussed in detail in the following paragraphs: 

1. Open Protocols: 

Protocols are restricted to some functions that can be carried on 

these components. It supports for updating and upgrading, through 

the service component. 

2. Open APIs: 

The agent component can be integrated with other 

interface/service components and it can also be deployed in any user 

application using open API. 

3. Open Access: 

It is allowed for customization level changes. 

 

 



 99 

4. Open Source Compatibility: 

Agent components can have their programs in a open source 

environment. This will enable them to inherit one or more classes 

from the class hierarchy and the agent design can be made quickly 

and effectively. 

5. Broad Compatibility: 

It supports compatibility only for similar type of applications 

with the same domain and not across applications belonging to 

multiple domains.  

6. Open Import / Export: 

Agent component cannot directly support open import / export 

feature for data handling, since it is not defined in its scope. 

However, the agent component can initiate service / domain 

component to perform this feature. 

The following Table 5.1 and Table 5.2 represent the general component 

categorization based on Semantic Integrity Control key factors and 

Interoperability key factors.   

 

 

 

 

 

 



 100 

Table 5.1: Summary of key factors for Semantic Integrity Control for three types 

of components 

Key Factors for 
Semantic Integrity 

Control  

DOMAIN 
COMPONENTS 

SERVICE 
COMPONENTS 

AGENT 
COMPONENTS 

Authentication 

 

Required for users 

to authenticate at 

user level. 

Required for User 

ID and Services 

requested by Users.  

Not required since it 

receives pre-

authenticated 

messages from 

Domain / Service 

Component. 

Access to the host 

program & 

databases present in 

the domain server. 

Full access rights to 

all components in 

the same domain.  

Permits access to 

one or more host 

programs & 

databases as per the 

nature of the 

service. 

Establishes 

connection to 

Domain / Service 

component. Access 

to one or more host 

program & 

databases only 

through Domain / 

Service 

Components. 

Access to 

Proprietary 

programs 

It is accessible only 

by Domain 

Administrator. 

It is accessible only 

by allowable 

services for selected 

proprietary 

programs. 

 

It extends privileges 

according to type of 

component 

(Domain/Service). 



 101 

Source Program 

Manipulation To 

update assertions. 

It is not allowed. It is allowed. It is not allowed. 

Checking 

Assertions. 

 

It is mandatory. It is mandatory. It is not required. 

Dynamic Data 

Manipulation. 

It does not support 

dynamic data 

manipulation. 

It supports dynamic 

data manipulation. 

It does not support 

dynamic data 

manipulation. 

Time Period of 

Component 

availability. 

There is no 

restriction. 

It is available only 

for specified time 

period. Service 

component can 

extend or renew the 

time period of 

component upon 

specific request. 

The time period of 

component 

availability depends 

on type of 

component 

connected 

(Domain/Service). 

Consistency of 

Output. 

It offers a higher 

level of 

consistency. 

It offers a higher 

level of consistency 

under normal 

conditions. 

However, it can 

vary due to 

exception like node 

failure, link failure.  

It offers a higher 

level of consistency. 

However, it can 

vary due to 

exceptions like node 

failure, link failure. 

 

 



 102 

Table 5.2: Summary of key factors for Interoperability for three types of 

components 

Key factors for 
Interoperability  

DOMAIN 
COMPONENTS

SERVICE 
COMPONENTS 

AGENT 
COMPONENTS

Open Protocols 
The Open protocols have to be 

openly available to the 

developer community in a 

non-discriminatory fashion. 

The Open Protocols may 

include protocols that 

implement industry standards. 

 

Supports for access 

purposes only. 

Supports for updating 

and upgrading. 

Supports for updating 

and upgrading. 

Open APIs  
The Open APIs must be

openly available to the 

developer community. Open 

APIs may include APIs that 

implement industry standards 

 

Not provided. Allowed for special 

purpose. 

Allowed. 

Open Access to User and 
technical documentation 
The documentation has to be 

published so that the 

developers can access them 

and reuse them in their 

application 

 

 

Allowed for 

components in the 

same domain only. 

Allowed for 

algorithmic change. 

Allowed for 

customization level 

changes. 



 103 

Open Source Compatibility  
The product must have the 

feature of open access to the 

open source developer for 

development and for non-

commercial distribution of 

implementation of these 

products. 

Not supported. Not Supported. Supported for 

enhanced operations. 

Broad Compatibility 
The product should have high 

standards and allows the 

developers to develop a 

product of robust, consistent, 

and interoperable 

implementation across a broad 

range of widely deployed 

products. 

Supported. Supported. It supports 

compatibility only for 

similar type of 

applications and not 

across different types 

of applications. 

Open Import/Export 
It should support the “import” 

and “export” functions in 

various products that enable 

the transfer of user data from 

one application to another. 

Allowed Allowed for some 

services. 

Not allowed. 

 

 

 

 

 

 



 104 

 5.5 Summary 
 This chapter dealt with the key factors for maintaining Semantic 

Integrity Control and Interoperability in the design of components. The key 

factors for Semantic Integrity Control include: Authentication, Access to the 

host program and databases present in the Domain server, Access to Proprietary 

Programs, Source Manipulation to update assertions, checking for Assertions, 

Dynamic Data Manipulation, Time Period of Component Availability and 

Consistency of output. The key factor for Interoperability include: Open 

Protocols, Open APIs, Open Access, Open Source Compatibility, Broad 

Compatibility and Open Import / Export.  



 105 

Chapter 6 
Component Design for Domain, Service and Agent  
 

6.1 Introduction 
There are two functional strategies for developing a Domain 

component, either top-down or bottom-up design. Top-down approach 

provides a good basis to promote a good hierarchical architectural design 

which can be implemented by a team of component developers in 

reasonably short time. The bottom-up approach is useful when we have 

already a collection of classes (developed earlier) and now it is required 

to integrate them to build the application. 

The following are major three categories [56] of components: 

1. Domain Components. 

2. Service Components. 

3. Agent Components. 

The design procedures are different for these components since they 

basically differ in their purpose of use and the place of applicability. The 

design steps for these components are discussed in details in the 

following sections. 

6.2 Domain Component  
A domain component can consist of a set of classes. The classes 

collaborate among themselves to support a set of operations. The 



 106 

operations include: Request information, Request an action to be 

performed. The classes can belong to any one of the three categories: 

Server Class: Receive Messages from Clients. 

Client Class: Send Messages to Server. 

Client / Server class: Send and Receive Messages. 

Some examples of Domain-specific components include: file 

management packages, device drivers, sorting packages and components 

pertaining to specific applications like ERP. An expert belonging to a 

specific domain should produce, maintain and catalog reusable classes 

and can allow them to be used by application developers. 

The domain components [57] is designed and implemented such that 

it can be used extensively in multiple applications, and minimizing the 

variable parts by providing integration with other related components. 

Domain component design and analysis aims at taking full advantage of 

the reusability of domain models and it is used in multiple applications 

within the same domain. The block schematic for a domain component is 

shown in figure 6.1. The elements of a domain component include the 

following: 

1. Input from Domain / Agent. 

2. Domain component Actions. 

3. Output to Domain / Service / Agent Components. 



 107 

The domain component incorporates restricted activities for Hardware 

and the Business Logic.  

 

 

   Figure 6.1: Block Schematic of Domain Component 

 

1. Input from Domain / Agent  Component: 

The input(s) for domain component can come from another 

Domain / Agent Component. The inputs possibly include request 

for processing some information / doing some action / 

information retrieval from a database. It is more specific on name 

specification by including some useful types of methods for 

referencing collections of resources and algorithm. 

2. Domain component Actions: 

The domain component performs mainly three actions: 

Authentication, Business Logic and Failure Management. 

Process 
Request 

Process 
Result / status 

Process 
Request 

Process 
Result / status 

Domain / Agent 
Component 

 
Domain / Agent / 

Service 
Component 

Domain Component 
 
 

• Business Logic 

• Authentication 

• Failure 

Management  

  Domain Component 



 108 

It permits only allowable operations pertaining to business logic, 

authenticates users, and handles failures relating to transactions, 

nodes and links. 

3. Output to Domain / Service / Agent Components: 

The Domain component can give the output results, after 

performing the requisite actions, to Domain / Service / Agent 

Component(s) according to exports feature. This way it enables the 

transfer of information from one application to another.  

   

 6.3 Tasks in design of Domain Component 

The main tasks in the design of domain component as perceived in 

the present work are shown below: 

1. Define the Domain. 

2. Collect details of existing applications in the domain. 

3. Analyze each application in the sample. 

4. Look for a set of functions / services that are common across various 

applications in the same domain and tabulate them. 

5. Look for a set of functions/ services that are different / unique to 

each application in the same domain, and tabulate them. 

6. Formulate rules and constraints as per the nature of each application 

in the domain. The rules could be business rules / policies or the way 



 109 

the application is to be organized or structured. The implementation 

constraints can be based on available technologies. 

7. It is necessary to define boundaries while dealing with a domain and 

surrounding environment. The boundaries specify entities, inputs, 

outputs, information flow between entities and processes within the 

domain and the semantics of the information. 

8. The functional requirements for each application are analyzed. 

9. Potential risk / problem areas in the domain are identified and 

tabulated. 

10. Proceed to design classes for the domain, under study, keeping in 

mind, the reusability asset. 

11. Explore the possibility of acquiring reusable classes from existing 

applications in the same domain. 

12. After completing the design of classes in the domain, proceed to 

catalog and store the reusable classes in an organized way. 

13. Maintain the class libraries for the domain under study. This includes 

tasks similar to software configuration management [58] namely, 

correction, enhancement and adaptation. 

14. Give access rights / permissions for Application developers to use the 

reusable classes in the same domain 

 

 



 110 

6.4 Service Component  

The Service Component [57] is designed such that it can be used 

as a software component for User Interface, Database service and 

directory services. It acts as a essential block for interfacing with other 

components applications. Service is naturally network enabled and can 

correspond with other components that are connected to it through a 

uniform interface. The service instance is identified by the service 

identifier which helps the services to communicate with other services 

through web browsers. Service Component is implemented as user 

interface software module. It has a high potential of connecting to the 

domain components and the agent components.  

 

The Service Component is designed after having a broad analysis 

of identifying its requirements for a particular service support. The 

elements of a Service component include the following: 

1. Accounting feature. 

2. Authentication  

3. Security. 

4. Failure Management.  

5. History Backup. 

The block schematic for a service component is shown in figure 6.2. 



 111 

The input(s) for Service Component can come from Agent / Domain / 

Client. The inputs possibly include service request such as database 

queries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Block Schematic of Service Component 

 

1. Accounting feature: 

The accounting feature enables recording of information relating 

to service requests from client / Agent / Domain Component and 

service completion details, along with their time stamps. This is 

mainly used for billing / system accounting purposes. 

Domain Component 
 
 

• Accounting 
Feature  

• Authentication 
• Security 
• Failure 

Management 
• History Backup  

 

   Service Component 
 

Agent Component 

 
Client 

 
Domain / Service 

Component 

Request 
for 
Service 

     Request for   
     Service 

Service completion 
result / status 

Service 
completion 
result / 
status 

Service 
completion 
result / status 
 

Service 
completion 
result / 
status 

 
Domain / Agent 

Component 



 112 

2. Authentication: 

It permits only allowable services and Client / Component 

authentication. 

3. Security: 

The Service component provides high level of information 

security for the information and service provided by it. The 

service provided by this component is mostly related to financial 

view. Therefore an open access to this component is not allowed.  

4. Failure Management: 

The Service component supports the failure management in order 

to avoid the failure in the midst of processing the service. 

Therefore the service component will have a backup component 

to take over charge of execution due to failure of the actual 

service component. 

5. History Backup: 

The history backup mechanism keeps a log of all service 

activities taking place in the service component over a period of 

time. This Log file will help in identifying any exceptions that 

might have occurred.  

 

 



 113 

6.5 Tasks in design of Service Component 

The main tasks in the design of service component as perceived in 

the present work are shown below: 

1. Define the Service to be provided. 

2. Look for a set of functions / services that are common across various 

applications in the same service category and tabulate them. 

3. Look for a set of functions/ services that are different / unique to 

each application in the same service category, and tabulate them. 

4. List down the entities, functions to be implemented in the service 

component and the information flow between entities and the service 

component. 

5. It is necessary to define boundaries while dealing with a service and 

the operating environment on which it is provided to be deployed.  

6. The functional requirements relating to the application and the 

interface classes are analyzed. 

7. Potential risk / problem areas in the service and security features are 

identified and tabulated. 

8. Proceed to design classes for the service component, under study, 

keeping in mind, the reusability aspect. 

9. The possibility of acquiring reusable classes from existing service 

component is taken into consideration. 



 114 

10. After completing the design of classes for the service component, 

proceed to catalog and store the reusable classes in an organized way. 

11. Maintain the class libraries for the service component under study. 

This includes tasks similar to software configuration management 

[55] namely, correction, enhancement and adaptation. 

12. Give access rights / permissions for Application developers to use the 

reusable classes while designing new domain / agent / service 

component. 

6.6 Agent Component  

   The Agent Component [57] is designed for the pre-defined set of 

principles and purpose. The Agent components act as an intelligent process 

assistant and moreover they are web enabled software components. The 

agent components can be integrated with some relevant domain 

components for information retrieval purpose. The block schematic for a 

service component is shown in figure 6.3.  The elements of an Agent 

Component include the following: 

 

1. Security and Integration with Domain / Service Component. 

2. Background active failure Management. 

3. Access Control.  

4. Interoperability Management. 



 115 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Block Schematic of Agent Component 

 

1. Security and Integration with Domain / Service Component: 

A client can request for a service / process request from Domain 

Component / Service Component. The Domain / Service 

Component routes the request to the Agent Component. The 

Agent Component ensures confidentiality by hiding the 

information of the client to the Domain / Service Component. 

However, it initiates execution of valid client transaction by the 

domain / service component and finally routes the results / status 

through the Domain / Service Component to the client.   

 

Domain Component 
 
 

• Security & 
Integration with 
Domain/Service 
Components  

• Background Active 
Failure 
Management 

• Access Control 
• Interoperability 

Management 
 

Agent Component 

 
Domain / Service 

Component 
 

Domain / Service 
Component 

 
Connection 
Request / 
Service 
Request 

Connection 
details / 
Service 
Request / 
Process 
Request  
 

Result / 
Status 

 
Client 

 
Client 

Request 
Service 



 116 

2. Background active failure Management: 

The Agent component supports the failure management in order 

to avoid the loss of information during the process of execution. 

Therefore there will be background active failure management 

run which will take care of this type failure during the processing.  

3. Access Control: 

The Agent component validates the client request routed through 

Domain / Service Component and checks the authenticity and 

validity of the client request. It establishes connection to the 

Domain / Service Component only for valid users and request. 

Illegal transactions / users are blocked and exception routines are 

invoked. 

4. Interoperability Management: 

The Agent Component provides support for interoperability by 

using open protocols for information storage and transmission 

across heterogeneous systems in a distributed environment.  

6.7 Tasks in design of Service Component 

The main tasks in the design of agent component as perceived in the 

present work are shown below: 

1. Define the functions to be performed by an Agent. 



 117 

2. Collect the details of services requested by the client through domain 

/ service components.  

3. Look for a set of functions that are common with existing agent 

components. 

4. Look for a set of functions that are different / unique in the design of 

the current agent, and tabulate them. 

5. Formulate the constraints for the agent, under study, as per nature of 

the application. The rules can be formed for object request broker or 

protocol security. This implementation constraint can be based on 

available technologies. 

6. A universal type of agent is created to make the communication 

easier, using open standards for communication and information 

exchange. 

7. Potential risk / problem areas in the agent operation are identified 

and tabulated. 

8. Proceed to design the classes for the agent, under study, keeping in 

mind, the interoperability feature across heterogeneous computer 

systems and network configurations. 

9. After completing the design of the agent, proceed to catalog and store 

the reusable classes for distribution in an organized way. 

10. Record the protocol used for communication and information 

exchange for the agent under study.  



 118 

 

11. Give access rights / permissions for application developers to use the 

reusable classes while designing new agent components. 

 

 6.8 Summary 

 This chapter discussed about the design steps involved for three 

types of components, namely Domain, Service and Agent. The inputs, key 

functions and the outputs for each type of component are highlighted and 

the interactions among them are also specified. 



 119 

Chapter 7 

Conclusion, Contributions and Future Work 

 
The Present work has been carried out to meet the objectives and 

scope outlined in the first chapter. The significance of semantic integrity 

control and interoperability in component based software development has 

been dealt in greater detail in the successive chapters. 

Chapter 2 presented a component based approach for enforcing 

semantic integrity control in a distributed multi-database system. The core 

component has been designed to handle three separate interfaces namely, 

User, Administrator and Database Handler. The user interface is the starting 

point of access to the core component. The administrator interface handles 

access control privileges for users and local databases. The database handler 

performs global schema management and site management. This approach 

helps a component designer very much in enforcing semantic integrity 

control for database components. 

Chapter 3 focused on a generic model for searching multiple 

databases in a heterogeneous environment. Interoperability is achieved at the 

level of heterogeneity in database type and system configuration (hardware, 

software) of the host servers in a distributed environment. The proposed 

approach can be successfully adapted to practical applications involving 

distributed multi-database systems. 



 120 

Chapter 4 dealt in detail a mathematical representation to verify 

queries for database components. This will help a database component 

designer to confirm the correctness of a user’s input queries and verify them 

mathematically as well as experimentally.  

Chapter 5 analyzed the key factors responsible for maintaining 

semantic integrity control and interoperability in the design of components. 

This approach will be very much useful to a component designer in 

understanding the requirements of Domain, Service and Agent based 

applications. 

Chapter 6 presented the design steps involved for the three types of 

components: Domain, Service and Agent. The component designer will be 

able to specify the inputs, key functions and outputs for each types of 

component. The interactions among them are also specified. 

 

7.1 Contributions 

 
 The specific contributions relating to the present research 

work are highlighted here. 

• A Core Component for a distributed multi-database system 

comprising of three interfaces namely, User, Administrator and 

Database Handler has been proposed. The User Interface 

component provides flexibility for any network user to frame a 

query through uniform interface or submit a set of queries from 

a query file. The administrator Interface sets access control 



 121 

privileges for users and local databases. The Database Handler 

interface allows Insert, Delete and Modify operations on pre-

conditions and post-conditions for one or more local databases. 

The proposed design offers a higher level of modularity and 

security. 

• A generic algorithm for accessing multiple databases in 

distributed environment has been presented. This generic 

approach simplifies the search process involving multiple 

databases, residing at various sites, in a network of 

heterogeneous systems. This way, a higher level of 

interoperability is achieved. 

• The mathematical representation of pre and post conditions for 

the database component will help a component designer to 

frame SQL queries precisely and verify their correctness using 

predicate logic.  

• Identification and Analysis of key factors pertaining to semantic 

integrity control and interoperability will be helpful to a 

component designer in the Analysis Modeling phase for 

Domain, Service and Agent components. 

• The design steps for Domain, Service and Agent have been 

proposed.  

 

 



 122 

 

7.2 Directions for Future Work 

 The possible extensions to the present work may be listed as follows: 

• Provide schema viewing using multiple windows, for the 

distributed multi-database system, as per the access privileges 

available to the component administrator. 

• The proposed design for Domain, Service and Agent 

components can be implemented using Java API & Java and 

ADO .NET technology. 

• Handle queries expressed in informal English-like statements 

for information retrieval from a distributed multi-database 

system. In such cases, it is necessary to deduce the predicate 

logic from the user input specification expressed in English-

like statement and then initiate query execution.  

• Extend the component framework to handle vagueness for 

user queries using Fuzzy Logic. 

• The service component can enhanced to offer the services of 

Semantic Web. More specifically, web ontology can be used 

to describe the following technologies: 

- A global naming scheme (URIs). 

- A standard syntax for describing data (RDF). 

- A standard means of describing the properties of data 

(RDF Schema). 



 123 

- A standard means of describing relationship between the 

data items (Web Ontology Language). 

• Agent component design can be extended to incorporate 

collaboration, negotiation and reconfiguration capabilities.  

• Domain component design can include features to build a 

knowledge base of domain expertise that can be inferred from 

domain experts. 



 124 

Appendix A 
 

System Configuration 
 
 
The present research work has been carried out using the following system 

configuration: 

 

1. Computer Programming Laboratory:  72 nodes in LAN, comprising of Acer / 

IBM PCs, Print Server, Windows and Linux OS, Internet access using 100Mbps 

and Software tools under Ubuntu Linux and Windows.  

 

The typical configuration for each PC is as follows: 

 Intel Pentium 4 : 2.8  GHz ACPI. 

 512 MB RAM. 

 40 GB Hard Disk. 

 1.44 MB Floppy Disk. 

 CD ROM Drive. 

 Boardcom Net Xtreme Gigabit Ethernet Network Card. 

 InterR 82865 Graphics Controller Display Adapter. 

2. IXWebhosting.com ( 76.162.254.156): The following are the software loaded 

in the Server: 

MySQL 300, SQL 300, PSQL ,Java, J2EE, #C, ASP.NET, PHP, CGI. 

3.  Visionwebhosting.com (70.87.57.146): The following are the software 

loaded in the Server:  

MSSQL300, PSQL, Java, Visual Studio 2008, J2EE. 



 125 

 
 

Appendix B 
Functions and their Actions for enforcing Semantic Integrity 

Control Using .NET Framework 
 

FUNCTIONS ACTIONS 

Public Function Substring(ByVal 

startIndex As Integer) As String 

 

Retrieves a substring from this instance. 

The substring starts at a specified character 

position. 

 

Public Function Contains(ByVal value As 

String) As Boolean 

     Member of System.String 

 

Returns a value indicating whether the 

specified System.String object occurs 

within this string. 

 

Public Overrides Function ToString() As 

String 

     Member of System.Boolean 

 

 

Converts the value of this instance to its 

equivalent string representation. 

 

 

Public ReadOnly Property Length() As 

Integer 

     Member of System.String 

 

Gets the number of characters in the current 

System.String object. 

 

Public Function IndexOf(ByVal value As 

Char) As Integer 

     Member of System.String 

Reports the index of the first occurrence of 

the specified Unicode character in this 

string. 

 

 



 126 

public virtual string ValidationGroup 
{public  get; public  set; } 
    Member of 
System.Web.UI.WebControls.TextBox 
 

Gets or sets the group of controls for which 
the System.Web.UI.WebControls.TextBox 
control causes validation when it posts back 
to the server. 
 
Return Values: The group of controls for 
which the 
System.Web.UI.WebControls.TextBox 
control causes validation when it posts back 
to the server. The default value is an empty 
string (""). 
 

Public Function Trim(ByVal str As 
String) As String 
     Member of 
Microsoft.VisualBasic.Strings 
 

Returns a string containing a copy of a 
specified string with no leading spaces 
(LTrim), no trailing spaces (RTrim), or no 
leading or trailing spaces (Trim). 
 
Parameters: str: Required. Any valid String 
expression. 
 
Return Values: Returns a string containing a 
copy of a specified string with no leading 
spaces (LTrim), no trailing spaces (RTrim), 
or no leading or trailing spaces (Trim). 
 

Public Function UCase(ByVal Value As 
Char) As Char 
     Member of 
Microsoft.VisualBasic.Strings 
 

Returns a string or character containing the 
specified string converted to uppercase. 
 
Parameters: Value: Required. Any valid 
String or Char expression. 
 
Return Values: Returns a string or character 
containing the specified string converted to 
uppercase. 
 

Public Function StrComp(ByVal String1 
As String, ByVal String2 As String, 
Optional ByVal Compare As 
Microsoft.VisualBasic.CompareMethod 
= Binary) As Integer 
     Member of 
Microsoft.VisualBasic.Strings 
 

Returns -1, 0, or 1, based on the result of a 
string comparison. 
 
Parameters: 
String1: Required. Any valid String 
expression. 
String2: Required. Any valid String 
expression. 



 127 

Compare: Optional. Specifies the type of 
string comparison. If Compare is omitted, 
the Option Compare setting determines the 
type of comparison. 
 
Return Values: 
If String1 sorts ahead of String2, StrComp 
returns -1. If String1 is equal to String2, 
StrComp returns 0. If String1 sorts after 
String2, StrComp returns 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 128 

 
Appendix C 

Functions and their Actions for enforcing 

Interoperability Using .NET Framework 

 
FUNCTIONS ACTIONS 

public enum UriComponents 
    Member of System 
 

Specifies the parts of a System.Uri. 
This is used to connect to the 
component. 

 public class TextBox : 
System.Web.UI.MobileControls.TextContr
ol 
    Member of 
System.Web.UI.MobileControls 
 

Provides a text-based control that 
allows the user to enter text. 
 

public class Button : 
System.Web.UI.WebControls.WebControl 
    Member of System.Web.UI.WebControls 
 
 

Displays a push button control on the 
HTML based controls. 
 

public class ExtenderControlDesigner : 
System.Web.UI.Design.ControlDesigner 
    Member of System.Web.UI.Design 
 

Provides UI support for working with 
extender controls at design time. 
 

System.Web.UI.DataSourceView 

GetView(string viewName) 

    Member of System.Web.UI.IDataSource 

 

Gets the named data source view 

associated with the data source 

.control. 

 
Public Shared Sub WriteAllText(ByVal path 

As String, ByVal contents As String, ByVal 

encoding As System.Text.Encoding) 

     Member of System.IO.File 

 

Creates a new file, writes the 

specified string to the file using the 

specified encoding, and then closes 

the file. If the target file already 

exists, it is overwritten. 

 



 129 

public interface IStateManager 

    Member of System.Web.UI 

 

 

Defines the properties and methods 

any class must implement to support 

view state management for a server 

control. 

 

public System.ComponentModel.ISite Site 

{ get;  set; } 

    Member of 

System.ComponentModel.IComponent 

 

 

Gets or sets the 

System.ComponentModel.ISite 

associated with the 

System.ComponentModel.ICompone

nt. 

 

System.Web.UI.DataSourceView 

GetView(string viewName) 

    Member of System.Web.UI.IDataSource 

 

 

 

Gets the named data source view 

associated with the data source 

control. 

 

 

 



 130 

 

Appendix D 

Functions and their Actions for enforcing Interoperability 

Using JDBC & Java API 

 
FUNCTIONS ACTIONS 

class FetchFrame extends JFrame 

public FetchFrame(String tblname) 

Fetching the table for data 

retrieval after relating the 

global schema with the 

local site component 

schema. 

ds.getConnection() The site handler derives 

the table after querying the 

local site database table 

and mapping the attributes 

with global schema. 

 

Class.forName("mssql.jdbc . driver. mssqldriver") 

Database querying and 

processing table through 

linking libraries of java 

implementations. 

public void totable(String table) throws 

SQLException,ClassNotFoundException  

Provides SQL exception. 

 

Class.forName("com.mysql.jdbc.Driver").newInstance(); 

 

 

Creation of odbc driver is 

being established for 

mysql 

DriverManager.getConnection 

("jdbc:mysql://localhost/root?user=root&password=password"); 

The link to MySQL is 

being established through 

java database connectivity. 

 



 131 

References 
 
 
[1]  Aho, Sethi, Ullman, “Compilers-Principles, Techniques and Tool”, Addison 

Wesley Publing Company, 1996, 32-55. 

[2] Meyer, Bertrand, “Eiffel: Programming for Reusability and Extendability”, 

SIGPLAN Notices, vol. 22, February 1987,  85-94. 

[3] Brown, Alan W., Wallnau, Kurt C, “ The Current State of CBSE”, IEEE Software  

September/October 1998, 37-46. 

[4] Broy, Manfred et al., “What Characterizes (Software) Components? Software 

Concepts & Tools” (1998), 49-56, ISSN 1432-2188, Springer Verlag, June 1998. 

[5] Szyperski, Clements, “Component Software, Beyond Object-Oriented 

Programming”, Addison-Wesley, 2002, 23-56. 

[6] The Object Management Group, Inc. (OMG), the Common Object Request 

Broker: Architecture and specification, Chapter 3: OMG IDL Syntax and 

Semantic, Minor revision 2.3.1: October 2002, http://www.omg.org/cgi-bin/doc. 

[7] Weck, Wolfgang, Inheritance “Using Contracts & Object Composition”, 

Proceedings of the second International Workshop on Component-Oriented 

Programming WCOP’99, Turku Centre for Computer Science, General 

Publication no 5, 1999. 

[8] Wagner F., Wolstenholme P.: “Modeling and Building, Reusable Software. Proc. 

Of the 10th IEEE International Conference and Workshop on the Engineering of 

Componet Based Systems, Huntsville, USA, 2003.. 



 132 

[9] Object Constraiunt Language specification: [online] Available from :  

http://www-4.ibm.com/software/ad/standards/ocl.htm.  

[10] Bengnard, Antoine, Je’ze’quel, Jean-Marc, Poluzeau, Watkins, “Making 

Components Contract Aware”, IEEE Computer, July 1999,  37-45. 

[11] Gray T. Leavens and Murali Sitaraman, Foundations of Component-Based Systems, 

Cambridge University Press, 2000. 

[12] Peltzer D.  .Net & J2EE Interoperability, November 2003. 

[13] Browning, D. Integrate .NET Remoting into the Enterprise Windows Server 

System, Available: http://www.ftponline.com/wss/2002_11/magazine/features.  

[14] Lewis,   Grace   A., Wrage,   Lutz.   Approaches   to   Constructive   

Interoperability (CMU/SEI-2004-TR-020).  Pittsburgh, PA: Software Engineering 

Institute, Carnegie Mellon University, 2005.  

[15]  David    Carney,   David    Fisher,   Ed    Morris.    Some   current    approaches   

to Interoperability (CMU/SEI-2005-TN-033). Pittsburg,   PA:  Software 

Engineering Institute, Carnegie Mellon University, 2005, 2-7. 

[16]  Crnkovic I. and M. Larsson.  ‘Challenges of Component-Based Development’. 

The Journal of Systems and Software: 2002, 201-212. 

[17] Yi Jiao, Baifeng Wu, Kun Zhu and Qiang Yu, “ Towards a Systematic Conflict 

Resolution Policy in Multi-agent System: A Conceptual Framework”, Lecture 

Notes in Computer Science, Springer Berlin, Volume 3865/2006,  274-283. 

[18]  Rick Neol, “Scale Up in Distributed Databases: A Key Design Goal for 

Distributed System, May 17, 2004. 

[19]  Christoph Quix, David Kensche, Xiang Li: “Generic Schema Merging”, 

Advanced Information Systems Engineering, 19th International Conference. 



 133 

CAISE2007, Trondheim, Norway,  Proceedings: Lecture Notes in Computer 

Science June 11-15, 2007, 127-141. 

[20] James F. Kurose and Keith W. Rose “Components of a Distributed Database 

System, May 2004, 78-91. 

[21]  Roger S. Pressman, “Software Engineering: A Practitioner Approach”, 7th 

Edition, McGraw-Hill publisher, 2009. 

[22] David Kensche, Christoph Quix, Yong Li and Matthias Jarke, “Generic Schema 

Mapping”, Lectre Notes in Computer Science: Conceptual Modeling-ER2007, 

Springer Berlin, and Volume 4801/2007. 

[23] A.J.H. Peddernors and L.O. Hertzberger, “A High Performance Distributed 

Database System for enhanced internet services”, Lecture Notes in Computer 

Science, Volume 1401/1998, 467-478.  

[24] Michale Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pifer, Adam Sah, Jeff 

Sidell, Carl  Staelin, Andrew Yu, Mariposa: A Wide-area Distributed Database 

System”, The VLDB Journal”, Volume 5, 1996. 

[25] K. P. Birman, T. A. Joseph, “Exploiting Replication in Distributed Systems”, 

ACM Press, New York, NY, 1990. 

[26] Andrew S. Tanenbaum and Marten Van Steen, “Distributed Systems, Principles 

and Paradigms”, Chapter 7 Fault Tolerance, 2004, 183, 362.  

[27] Thaleheim, B., “Component Construction of Database Schemes”, in Proceeding 

ER’02, Lecture Notes in Computer Science 2503, 2002. pp: 20-34.  

[28]  Yi Jiao, Baifeng Wu, Kun Zhu and Qiang Yu, “ Towards a Systematic Conflict 

Resolution Policy in Multi-agent System: A Conceptual Framework”, Lecture 

Notes in Computer Science, Springer Berlin, Volume 3865/2006, 274-283. 



 134 

[29]  Sun Microsystems, Java Community Process, [Online] Available from: 

http://jcp.org/aboutJava/communityprocess/jsr/asrt_prop.html. 

[30] BenoyJose, “Javaboutique”, [Online] Available from: http://www.javaboutique. 

internet.com/tutorials/assertions.  

[31] Sun Microsystems, Java Boutique, [online] Available from:  

http://javaboutique.internet.com/tutorials/assertions/internal_invariants.html.  

[32] Johnson,James C, EBSCO Electronic Database, “Black Enterprise”,  Vol.35, Iss. 

2, Apr 2005, 52-54. 

[33]  Xi (Michael) Zhang, Tony C. Pan, Umit V. Catalyurek, Tahsin M. Kurc, Joel H. 

Saltz, "Serving queries to multi-resolution datasets on disk-based storage 

clusters", Proceedings of the 4th IEEE International Symposium on Cluster 

Computing and the Grid, 2004 (CCGrid 2004), 2004,  490-498. 

[34]  Ullman J.D., “Principles of Database Systems”, 2nd edition, W H Freeman & 

Co., NY, 2001, 45-56. 

[35] Ellsworth,Abigail, “Databases”, EBSCO Electronic Database, Radcliff,Carolyn 

Jerence & User Services quarterly, Vol.41, Issue3,spring 2002,  276-278. 

[36] MYSQL, “The MYSQL Open Source Database”, [Online]. Available from: 

www.mysql.com. 

[37] POSTGRESQL, “The POSTGRES Open Source Database”, [Online]. Available 

from:  www.postgresql.org. 

[38] George Reese, “Database Programming with JDBC and Java”, OReily 

Publications, 1st Edition June 1997, 40-57. 

[39] JAVA by API, [Online]. Available from: www.java2s.com. 



 135 

[40] Sun Developer Network (SDN), “The Source for JAVA Developers”, [Online]. 

Available from: www.java.sun.com. 

[41] .NET Framework Developer's Guide, Microsoft Visual Studio 2008 / .NET 

framework 3.5, “ADO .NET Architecture”, [Online] Available from: 

http://msdn.microsoft.com/en-us/library/27y4ybxw(VS.71).aspx. 

[42]  K. Bergner, A. Rausch, and M. Sihling, Componentware  The bit picture, 20th 

ICSE Workshop on Component-Based Software Engineering, Japan, 1998.  

[43] S. S. Bhattacharya, P. K. Murthy, and E. A. Lee, Synthesis of embedded software 

from synchronous dataow speci_cations, J. VLSI Signal Processing, Kluwer 

Academic Publication, 1999, 155-66. 

[44]  C. Szyperski, Component Software. ACM Press, Addison-Wesley, 1999, 23-31. 

[45] Jezequel, J.M., Meyer, B: Design by contract: The lessons of Ariane. Computer 

IEEE 30, 1997. 

[46] Kung-Kiu Lau and Mario Ornaghi: A Formal Approach to Software Component 

Specification. Proceedings of Specification and Verification of Component-based 

Systems Workshop at OOPSLA, 2001. 

[47] Sitaraman M, T. J. Long, B. W. Weide, J. E. Harner, and L. Wang. A formal 

approach to component-based software engineering: education and evaluation. In 

Procs. of the International Conference on Software Engineering, IEEE, Toronto, 

Canada, 2001, 601-609. 

[48] Bowen, J.P., Hinchey, M.G.: Ten Commandments of formal methods. IEEE 

Computer, Volume 28, Issue 4, ISSN: 0018-9162, 1995, 56-63.  

[49] Tom Portfolio and John Russell, PL/SQL User’s Guide and Reference, Release 

9.0.1, 2001. 



 136 

[50] John F. Sowa, Joerg H. Siekmann: Conceptual Structures: Current Practices, 

Vol.835, Springer-Verlag New York, LLC, 1994, 67-88. 

[51]  M. K. Venkataraman, “Discrete Mathematics”, The National Publishing 

Company, 1st Edition, 2000. 9-9. 

[52] M. Madiajagan and Taher, “A report on Online Faculty Feedback system”, BITS, 

Pilani-Dubai, 2005, 15-30. 

[53] M. Madiajagan, “Telephone Directory Information System”, 2006, [online] 

available from : http://www.msav.net/  

[54] AUTOLIB, “ Library Management System Software”, AUTOLIB System, Chennai, 

2005. 

[55]  .NET Framework Developer's Guide, Microsoft Visual Studio 2008 

“Interoperability principles”, [Online] available: http://msdn.microsoft.com/en-

us/library/. 

[56] George T. Heineman, William T. Councill, “Component-Based Software Engineering 

Putting the Pieces Together” Addison-Wesley Pearson Education, May 2001, 79-97 & 

641-648. 

[57] Hafedh Mili, Ali Mili, Sherif Yacoub, Edward Addy, “Reuse-Based Software 

Engineering Techniques, Organization and Controls”, John Wiley & Son, Inc. 2002,  

124-136. 

[58] Mili, A., and S. Yacoub, “A comparative analysis of domain engineering methods: a 

controlled case study,” 22nd International Conference of Software Engineering, Limerick, 

Ireland, June 4-11, 2000. 

 

 

  



 137 

List of Publications 
 
Journal Papers 
 

1. M. Madiajagan, B. Vijayakumar, “Interoperability in Component Based Software 

Development”, Transactions on Engineering, Computing and Technology, 

Enformatika, Volume16, November 2006, ISSN 1305-5313, Pages: 207-215. 

2. M. Madiajagan, B. Vijayakumar, Anand Oswal, “Testing Prre and Post Conditions 

with Predicate Logic for Database Components”, CURIE 2009, Birla Institute of 

Technology and Science, Pilani (Rajasthan), Volume 2, Issue 3, October 2009, ISSN 

No.: 0974-1305, pages: 53-58. 

3. M. Madiajagan, B. Vijayakumar, Sri Hariharan S, “Component Approach to Software 

Development for Distributed Multi-Database System”, World Scientific and 

Engineering Academy and Society (WSEAS) Journal of Computing, under review. 

4. M. Madiajagan and B. Vijayakumar, “Design considerations for Domain, Service and 

Agent Components for Web Applications Development”, communicated to 

Informatica Economica Journal and under review. 

 
 
 Conference Papers 
 
 

1. M. Madiajagan, B. Vijayakumar, “Semantic Integrity Control in Component Based 

Software Development”, Emerging Applications of Information Technology, First 

International Conference on Emerging Application of Information Technology (EAIT 

2006), Feb 10-11, 2006, Elsevier, ISBN 10: 81-312-0445-6, pages: 371-374. 

2. M. Madiajagan, B. Vijayakumar, Barkha Bhagwant Keni, “ A Generic Model for 

Querying Multiple Databases in a Distributed Environment Using JDBC and an 

Uniform Interface”, World Congress on Engineering and Computer Science (WCECS 

2007) International Association of Engineers (IAENG), ISBN: 978-988-98671-6-4,  

pages: 280-284. 



 138 

 
 
 
 

Biography of the Candidate 
 
 
 
  
 M. Madiajagan holds a M.S., in Software Systems from BITS, Pilani, India. He 

has 14 years of College / University teaching experience in CSE (Women’s College 

Pondicherry University, India and BITS, Pilani-Dubai, UAE) and 2 years of experience 

in Blue Chip Software Company. Presently, he is working as Senior Lecturer, CS, BITS, 

Pilani-Dubai. His areas of interest include Component Based Software Engineering, 

Distributed Database Systems, Software Architecture, and Theory of Computation. He is 

a member of Professional bodies ACM, World Enformatica Society and Computer 

Society of India. He is actively involved in judging committee member in annual 

students’ technical event TECHNOFEST at BITS, Pilani-Dubai. He is also an active 

member of BITS, Pilani-Dubai Campus Placement Programme and in-charge of Online 

Feedback System, BITS, Pilani-Dubai. 

 
 



 139 

 
 
 

Biography of the Supervisor 
 
 
 
  
 B. Vijayakumar holds a Ph.D. in Computer Science from BITS, Pilani, India 

in 2001. He has 18 years of University teaching experience in CSE (National Institute 

of Technology, Tiruchirappalli, India and BITS, Pilani-Dubai, UAE) and 6 years of 

experience in computer industry. Presently, he is working as Associate Professor, CS, 

BITS, Pilani-Dubai. His areas of interest include Distributed Database Systems, 

Component Based Software Engineering, Web Mining, Multimedia Systems and 

Open Source Software Development. He is member of Professional bodies ISTE 

(Indian Society for Technical Education), World Enformatica Society and Staff 

Advisor for Linux User Group, BITS, Pilani-Dubai. He is actively involved as 

organizing and judging committee member in annual students’ technical event 

TECHNOFEST at BITS, Pilani-Dubai. He has been involved in co-ordination and 

coaching the students of BITS, Pilani-Dubai for annual UAE National Programming 

Contest since 2005. 

 
 
 
 
 
 
 
 
 
 


