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Abstract 

_______________________________________________________________________ 

In most of the process industries the end product quality is not measurable online. 

Unavailability of reliable hardware sensors for continuous quality monitoring at times 

results in production of low quality products. Soft sensors or inferential sensors are 

process models which use the information of easily measurable process variables and 

produce as output, the estimated/predicted values of difficult to measure process 

variables. Most of the present day approaches for soft sensor development are data based 

because of the various difficulties associated with development of mathematical models 

for complex processes. 

Clinker composition and cement particle size are two of the most important quality 

parameters in cement manufacturing process. Unfortunately, there are no hardware 

sensors available for continuous monitoring of these quality parameters. Therefore, the 

focus of this research is to develop data-driven soft sensors for online monitoring of 

cement clinker quality and cement fineness. 

The two processes focused upon are, (1) a chemical process where the raw mix is 

converted to cement clinker at high temperature in a rotary cement kiln and (2) a 

physical process where the clinker is ground in a vertical roller mill for cement 

production. The required data for these two processes were collected from a cement 

plant. 

The grinding process data set comprised of data for three input variables and one 

output variable. The three input variables are measured continuously by installed 

hardware sensors and therefore contain some outlying observations. These outliers were 

detected and removed by the robust Hampel's method of outlier detection. The processed 

data set after outlier removal, consisted of 158  samples of input-output data. This data 

set was equally divided into a training set and a validation set consisting of 79 

observations each. The data division was performed using Kennard-Stone maximal intra-

distance criterion. The training set was used for development of different kinds of data-

driven soft sensors. The different soft sensors developed include, linear and support 

vector regression, artificial neural network, fuzzy inference and neuro-fuzzy models of 
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the grinding process. The performances of the developed models were assessed with the 

validation data set by measuring six different statistical model performance indicators. 

The neuro-fuzzy and the back propagation neural network models showed better 

performances than the other models. The accuracy of both these models are quite 

acceptable as per the model acceptability criteria reported in the literature. 

The clinkerization process taking place in the rotary kiln, involves nine inputs and 

eight outputs. Out of the nine inputs, 4 are raw meal quality parameters (measured in the 

laboratory) and five are kiln operating parameters. The operating parameters are 

measured continuously by installed hardware sensors and therefore contain outliers. 

After performing a comparison of different multivariate outlier detection techniques, the 

outliers present in the kiln input data were removed by the technique of closest distance 

to center method. The processed data set consisted of 223 pairs of input-output data. 

Using Kennard-Stone algorithm, the total data set was divided into a training set 

consisting of 112 samples and a validation set containing 111 samples. The training set 

was used to develop three kinds of feed forward neural network models and two types of 

fuzzy inference models. The performances of the developed soft sensors were analyzed 

with the validation data set by evaluating six statistical model evaluation parameters. The 

analysis showed that the soft sensor based on Takagi-Sugeno fuzzy inference modeling 

technique, has the highest accuracy in estimating eight cement clinker quality 

parameters. 

 

Key words: Artificial neural network, ANFIS, cement fineness, clinker quality, fuzzy 

inference system, multivariate outlier detection, soft sensor, subset selection, support 

vector regression, vertical roller mill. 
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Chapter - 1 

Introduction 

_______________________________________________________________________________ 

1.1 Motivation 

Industrial processing plants are usually heavily instrumented with a large number 

of sensors. Instruments are essential in a process industry for continuous monitoring and 

control of different process variables which are required for different purposes (e.g. 

meeting stringent effluent norms, operating within safety limit, achieving desired product 

quality etc). In most cases, meeting these criteria demands accurate on-line continuous 

measurement of quality variables. For measurement of physical process variables such as 

temperature, pressure, flow rate etc., in an industry, a large variety of accurate hardware 

sensors and transducers are available which are quite affordable and reliable. However, for 

continuous online monitoring of chemical or biochemical variables related to composition 

(for assessment of product quality), reliable hardware sensors are not available. In most of 

the cases the analysis is performed in the laboratory by collecting samples and the 

response time can be several minutes or even hours. Even if an online analyzer is 

available, the cost, precision and reliability of such instruments are quite often 

unsatisfactory. Moreover, some common problems associated with hardware sensors for 

online quality monitoring are, time consuming maintenance, regular calibration, aged 

deterioration, insufficient accuracy, long dead time & slow dynamics, large noise and low 

reproducibility (Kano and Nakagawa, 2008). To maintain the quality specifications, 

knowledge of instantaneous composition is necessary for implementation of an efficient 

control system. Failure to accurately estimate important process outputs may result in 



Introduction 

 

2 

product loss, energy loss, undesirable byproduct formation and safety hazards (Zhao, 

2003).  

In the aforementioned context, when online sensing of quality parameters by 

hardware sensors is not possible, there is a need of estimating the parameter using other 

available informations. Therefore, soft sensors must be considered as possible alternatives 

for continuous online sensing of such variables for which hardware sensors are not 

available or have less reliability and significant time delay. Soft sensors allow online 

estimation of variables (mostly relating to product quality) which are otherwise difficult or 

impossible to monitor online, using easily measurable variables. 

1.2 Soft Sensor Basics 

Soft sensor is a combination of two terms: “software”, because the models are mostly 

computer programs, and “sensors”, because the models provide similar information as 

their hardware counterparts. Other synonyms for soft sensor are inferential sensors, virtual 

on-line analyzer or observer-based sensors.  

There are a wide range of process industry problems that a soft sensor can address 

(Fortuna et al., 2007; Kadlec et al., 2009). Prediction of an unmeasured process variable 

from the available data of measured variables (process monitoring) is perhaps the most 

important application of a soft sensor. By doing so, process monitoring soft sensors make 

way for faster and more accurate decision making with regard to process operations. 

Besides this, other application includes process fault detection. This refers to detection of 

the state of the process and in the case of a deviation from the normal conditions, 

identification of the cause. A process industry employs large number of various sensors. 

Therefore, occasional failure of a sensor is always a possibility. Detection of this failure is 

the next application area of soft sensors which is described as sensor fault detection. Once 

a faulty sensor is detected and identified, it can be either reconstructed or the hardware 
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sensor can be replaced by another hardware sensor or soft sensor, which is trained to act as 

a back-up sensor of the hardware measuring device. If the soft sensor is accurate and 

reliable enough then this can be used in place of the hardware sensor in normal operating 

conditions which can lead to significant revenue saving by avoiding large investment, 

installation and maintenance cost associated with hardware sensors. Moreover, soft 

sensors also overcome the time delay problem associated with most hardware sensors 

thereby resulting in more effective control of the process output variable. The software 

tool is easier to maintain and is not subject to mechanical failures and therefore such a 

substitution can result in financial benefits for the process owner. 

Soft sensor design is an emerging area attracting huge research interests. The heart of 

the soft-sensor constitutes the model of a process which takes values of the easily 

measurable process variables and predicts the output which is difficult to measure process 

variable, thereby replacing or assisting a real physical sensor. This plant model may be a 

first principle model (mechanistic model), black-box model (empirical model) or gray box 

model (hybrid model). First principle models describe the physical and chemical 

background of the process and hence require detailed process understanding. Black-box 

and gray box models are data-driven which are developed from the actual process input-

output data.  

While first principle models provide good process understanding and can be applied 

over a wide range of process data, there are difficulties in development of first principle 

models because: most of the processes are very complex and are not fully understood, 

parameters involved in the model equations are difficult to obtain and moreover, very 

often the model equations developed become so complex that it becomes difficult to solve. 

On the other hand availability of large amount of plant historical data has shifted the focus 

towards design of data-driven soft sensors. These, in comparison to the first principle 
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model based soft sensors, are more reality related and describe the true conditions of the 

process in a better way.  

1.3 Data-Driven Soft Sensor Design Procedure 

The basic steps in any data-driven soft sensor design method are: data collection, data 

preprocessing, model selection, parameter identification and finally model validation 

(Fortuna et al., 2007; Kadlec et al., 2009) which are shown in the schematic diagram 

below: 

 

Figure 1.1: Soft Sensor Design Steps 

1.3.1 Data Collection and Preprocessing 

The first activity in the data-driven soft sensor design is collection of actual process 

data. There are sensors which record values for a process variable every few seconds or 

minutes. So, a dataset for a period of even a few months or some days comprises a vast 

amount of data which often makes the analysis quite complicated. The raw data extracted 

from the plant database may often suffer from one or more of these drawbacks (Fortuna et 

al., 2007; Ljung, 1999): multidimensionality, measurement noise and low accuracy, 

redundant and incorrect values, non-uniform sampling rates, presence of outliers, data co-

linearity & missing values, drift & offset and high & low frequency disturbances. When 

unprocessed flawed data is used for model development, the resulting control system may 
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lead to suboptimal operation, unsafe process operation, production of off-specification 

products or high operating cost (Morad et al., 2005). Therefore, the collected raw data is 

subjected to data preprocessing.  

Data preprocessing and cleaning is done in order to avoid confusion resulting from 

availability of huge amount of data pertaining to many variables and better process 

understanding. Preprocessing of the process data extracted from the plant data base can 

become the key to the success or failure of the final application. The analysis of available 

data leads to better process understanding, process diagnostics and process improvement. 

For effective modeling the data must contain all the relevant information over the process 

operating range. Data preprocessing task is a complex procedure involving variable 

selection followed by data selection.  

 An industrial database provides data of all the variables that are recorded. 

However, all the available variable data may not be relevant to the process variable to be 

estimated. Presence of irrelevant (or less relevant) variable data in the input dataset leads 

to noise which may result in deterioration of the model. An inferential sensor works 

satisfactorily if only those secondary variables that are most sensitive to the primary 

variables are employed. The inappropriate selection of soft sensor inputs may lead to 

numerical problems, such as singularity and over-parameterization, or may markedly 

reduce the estimation accuracy (Zamprogna et al., 2005). For neural network modeling a 

reduction in the input data dimension leads to simplified neural architecture and reduced 

training time (Gonzaga et al., 2009).  

Therefore, for better modeling results, after collecting the data pertaining to all the 

associated process variables from the plant database, the irrelevant variables should be 

deleted from the dataset which will otherwise lead to increase in noise level, thereby 

deteriorating the modeling results. Prior process knowledge is used to screen out first 
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totally irrelevant variables. Then statistical or heuristic techniques are performed to further 

eliminate irrelevant and redundant variables. Principal component analysis and clustering 

analysis are two typical methods involving statistical and heuristic technique, respectively 

(Papadokonstantakis et al., 2005). Another method of variable selection is Kohonen maps 

(Kohonen, 1990). They belong to the set of self organized maps which are used to project 

subsets of input variables along with the output variables onto network output space. A 

dissimilarity method is used to determine the relevance of each combination.  

The task of variable selection is followed by data selection. This is a crucial step 

deciding the success of the soft sensor design. This essentially involves identification and 

removal of data outliers from the collected raw data. Outliers are sensor values which 

deviate from the typical or sometimes also meaningful ranges of the measured values. In 

other words outliers are observations that do not follow the statistical distribution of the 

bulk of the data. In the context of process industry, outliers in dataset may arise due to 

(Liu et al., 2004, Lin et al., 2007, Fortuna et al., 2007, Hodge & Austin 2004): hardware 

failure, process disturbances or changes in operating conditions, instrument degradation, 

transmission problems and/or human error. 

Outliers can be distinguished into two types: obvious and non obvious. Obvious 

outliers are those whose values do not satisfy the physical and technological limitations 

(e.g a negative absolute pressure). Non obvious outliers even though satisfy the 

technological limitations, have values outside the typical range and hence are not true 

reflection of the correct variable state. From knowledge of process and hardware 

limitations, obvious outliers can be detected and removed with ease. The real difficulty 

arises in accurate detection of non obvious outliers where one may face the problems of 

masking and/or swamping. Masking refers to the condition when outliers are incorrectly 

identified as actual process values and swamping is the situation when a normal process 



Introduction 

 

7 

value is incorrectly identified as outliers (Lin et al., 2007). Outliers may lead to model 

misspecification, biased parameter estimation and incorrect analysis results (Liu et al., 

2004). Moreover, bad data or outlier characterized by low signal to noise ratio leads to 

reduced resolution and may produce false alarms during process monitoring (Sharmin et 

al., 2006). Common approaches for outlier detection are based on statistical methods using 

the historical data. The methods can be of univariate approach or multivariate approach.  

The commonly used univariate outlier detection techniques are the conventional 

methods such as three sigma edit rule, box plot method and robust methods such as mean 

minimum distance algorithm or the Hampel's identifier technique (Pearson, 2001; Lu et 

al., 2009). Univariate outlier detection techniques should not be applied to multivariate 

data because of the possibility of the existence of correlations between the variables. The 

samples of a single variable which may be detected as outliers univariately may not appear 

as outliers when the variability of other variables is considered (Hoo et al., 2002).  

The common approaches of multivariate outlier detection can be classified as either 

distance based techniques or projection pursuit methods (Filzmoser et al., 2008). Projection 

pursuit technique involves suitable projection of the raw data in which outliers are likely 

to appear more prominently. Distance based techniques are based on computation of 

distance of a particular observation from the centroid of the data cloud. Subsequently, 

based on certain cut off criteria a particular observation is either flagged as an outlying 

observation or retained as a normal observation. Both techniques are in use and are areas 

of open research. While there is no universally accepted single technique for a particular 

problem, in this work, attention is focused on the application of distance based techniques 

for outlier detection. The various univariate and distance based multivariate outlier 

detection techniques used in this work are described in Chapter 3.  
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The outliers may appear as a block (e.g. if the plant is shut for some period of time, 

the process values appear close to zero) or single instances (occurs mostly due to sensor 

malfunction). If outliers are detected as a block continuously over a period of time all 

those values must be deleted from the dataset. However if the outliers are detected at 

particular discontinous time instances instead of over a time period, then some reasonable 

value should be placed in place of that outlying value. This is called as missing value 

imputation. While there are many imputation techniques available in the literature 

(Lakshminarayan et al., 1999), in this work the commonly used interpolation technique has 

been adopted. This involves linear interpolation between neighboring values if the outlier 

is detected inside a dataset or linear extrapolation with the preceding or following values if 

the outlier is detected at the end or beginning of a dataset respectively. 

1.3.2 Model Development and Validation 

The processed dataset is subsequently used for soft sensor model development. Prior 

to modeling, the available data is divided into a training set which is used for model 

development and a validation set. The model accuracy is assessed by investigating the 

model's prediction accuracy with the validation set data which is not used for model 

development. Proper training set selection can also play a vital role in successful model 

development. It has to be ensured that the training subset formed from the total dataset 

must be a proper representative of the entire dataset. For small datasets it may be possible 

to capture the characteristics of the entire set in the training set by manually picking 

appropriate samples. But manual selection is not possible for large sets. Therefore, the 

values are selected either randomly or some statistical algorithm can be used for sample 

selection. Most modeling works in engineering applications have used random selection 

method for obtaining the training set from the total available data and there have been only 

very limited industrial application of structured method of data splitting. In this work, in 
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addition to random selection, two statistical methods, the Kennard-Stone algorithm and the 

Duplex algorithm have been used for division of data into training and validation subsets. 

The detail description of these methods are presented in Chapter 3.  

After obtaining the training and validation data, one is ready for soft sensor model 

development. This involves model structure selection followed by model identification.  

Model structure is a set of candidate models among which the required model is searched 

for. The model structure stage is concerned with finding a form for the soft-sensor model. 

These may be first principle models, regressor models, black box or gray box models. 

Whatever is the model structure, it always has a set of dependent variables (process 

outputs) which are the consequence of a set of independent variables (inputs).  

The enormous complexity of the industrial process makes it difficult for development 

of models from first principles. However, the availability of great amount of historical data 

in the plant database encourages the use of gray or blackbox models. Selection is mainly 

decided by the purpose for which the soft sensor is designed. The model structure can 

range from simple statistical models like ordinary least square regression to more 

complicated soft computing based models such as neural network, fuzzy inference systems 

or combinations of more than one technique which is popularly called as gray box or 

hybrid modeling approach.  

Model identification consists in determining a set of parameters e.g., the regression 

coefficients in a multiple linear regression model or weights and biases in a neural 

network model which will identify a particular selected model structure based on the 

available data. The set of parameters are determined using some optimization techniques 

so as to achieve the least modeling error. The modeling error is measured using some 

statistical parameters between the actual process output values and the model predicted 

output values. The model accuracy can be expressed in terms of correlation coefficient, 
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root mean squared error, mean absolute error etc. The details of different statistical 

performances used for model evaluation are presented in Chapter 5.  

A model that fits the data used for model identification may give poor results on a 

new dataset. So the generalization capability of the designed model is evaluated using a 

different set of input – output data which is known as the model validation process. If 

validation fails then one or more of the previous steps are repeated. Model validation is a 

complex process and becomes more difficult in case of non linear models which is often 

the case with a soft sensor. The design constraints considered depend on the objective for 

which the soft sensor is intended to be used.  

Finally, the model that gives good prediction accuracies for both the training dataset 

as well as the validation dataset is chosen to be used as a soft sensor for the industrial 

process concerned. 

1.4 Research Objectives 

The objectives of the present work are mentioned below: 

1. Design of data-driven soft sensors for cement manufacturing processes using 

statistical (linear and non-linear regression) and artificial intelligence (neural 

network, fuzzy inference and adaptive neuro-fuzzy inference) based modeling 

techniques. 

2. Comparison of the performances of the different data-driven soft sensors. 

3. Development of control algorithms for cement manufacturing processes using the 

designed soft sensors. 

1.5 Organization of the Thesis 

An exhaustive literature survey on the different types of soft sensors reported till date 

for different industrial processes along with scope of the present work is presented in 

Chapter 2. Theoretical details of different methods used in this work starting from outlier 
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detection techniques to different statistical, black box and hybrid modeling techniques are 

presented in Chapter 3. Two industrial processes are taken up in this work for 

development of soft sensor: the pyroprocess in the cement industry involving the rotary 

cement kiln, for estimation of cement clinker qualities and the clinker grinding process for 

estimation of cement particle size coming from the cement mill. Chapter 4 gives the 

details of these two processes along with the associated process variables and the soft 

sensor development activity for these two processes. The results and discussion involving 

application of different univariate and multivariate outlier detection techniques, training 

set design algorithms and the prediction accuracies of different statistical, neural network, 

fuzzy inference and neuro-fuzzy based soft sensors are presented in Chapter 5. The 

concluding remarks and future scope are presented in Chapter 6. 
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_______________________________________________________________________________ 

Chapter - 2 

Literature Review 

_______________________________________________________________________________ 

This chapter begins with a detailed literature survey of various types of soft sensors 

reported till date in Section 2.1. Subsequently the gaps in existing research are presented 

in Section 2.2 followed by the scope of the present work in Section 2.3. 

2.1 Soft Sensor Development in Various industries 

In this section the various types of soft sensors reported in the literature have been 

presented. The soft sensors have been classified according to the types of industrial 

processes concerned. While bulk of the reported soft sensors have been developed from 

actual process input - output data, a few models are also based on mathematical model of 

the process. 

It may be noted that the focus of the present work is on the design of data-driven soft 

sensors. Therefore, only data-driven soft sensor models based on black box and gray box 

modeling principles are reviewed in the following section and a few reported soft sensors 

derived from first principles, have not been presented.  

2.1.1 Petroleum Refinery and Petrochemical Industries 

Probably the early works on inferential measurement in distillation date back to the 

early 1990s when Kresta et al. (1994) applied the method of partial least squares (PLS) for 

estimation of heavy key component in the distillate. The latent variables used in the model 

were formed from various temperature and flow measurements. 

Chen and Wang (1998) proposed soft sensor design method using a combination of 

Bayesian automatic classification system and back propagation neural network. The 

software sensor was applied for prediction of condensation temperature of light diesel oil 
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using an input set of 14 process variables comprising of different tray temperatures, 

column top temperature, reaction temperature, flow rates of feed, recycle, steam and rich 

absorbent oil. 

Park and Han (2000) proposed a multivariate locally weighted regression technique 

for modeling of non linear processes with correlated process variables. The technique was 

used to estimate the bottom product composition and temperature of distillate. Toluene 

composition estimation was done using 16 process variables and estimation of 90% 

distilled diesel temperature was made using 57 process variables which were measured 

online. 

Back Propagation Neural Network (BPNN) modeling technique was used by Bhartiya 

and Whiteley (2001) for online monitoring of ASTM 95% end point of kerosene. They 

used scatter plot, partial correlation coefficient and Mallow's Cp criterion to identify 5 

potential key input variables from a set of 59 process variables.  

Fortuna et al. (2003) investigated the performances of BPNN, Radial Basis Function 

Neural Network (RBFNN), neuro-fuzzy networks and non-linear least squares fitting 

models as soft sensors for a sulfur recovery unit in a refinery. The BPNN model trained by 

Levenberg-Marquardt algorithm produced the best performance and was used for real time 

monitoring of hydrogen sulfide and sulfur dioxide in the tail stream of the sulfur recovery 

unit using the information of five process input variables.  

The techniques of standard support vector machine (SVM) and least square SVM 

based on statistical learning theory (SLT) were employed by Yan et al. (2004) to construct 

a soft sensing model. The SVM based soft sensor is applied to estimate the freezing point 

of light diesel oil in distillation column. The optimum regularization and kernel parameters 

of the SVM were determined using Bayesian evidence framework. The model uses five 

process variables as inputs which include vapor temperature on the tray, quantity of reflux 
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of the first intermediate section circulation, extraction temperature and reflux temperature 

of first intermediate section circulation. 

Fortuna et al. (2005) proposed soft sensors for estimation of the stabilized gasoline 

(C5) content in the overheads and the butane (C4) content in the bottom flow of a 

debutanizer column. BPNN model trained by Levenberg-Marquardt algorithm was used as 

soft sensor. The soft sensors used column top and bottom temperatures, pressure, side 

temperature, top flow and reflux ratio as model inputs.  

The method of principal component analysis (PCA) was applied by Zamprogna et al. 

(2005) to select the most suitable set of secondary process variables to be used as soft 

sensor inputs for prediction of the unmeasurable process variable. A regression process 

model is presented for online estimation of product composition from input temperature 

data. 

Dam and Saraf (2006) suggested neural network architecture using genetic algorithm 

(GA) for on line property (specific gravity of side draw products, flash point and ASTM 

temperatures) estimation of crude fractionator products.  The genetic algorithm was used 

to determine the most relevant set of input parameters.  The different inputs considered for 

the ANN model development were: flow rates of feed, reflux, heavy naphtha, kerosene, 

light gas oil, heavy gas oil and steam; top and bottom temperatures; flash zone pressure 

and crude true boiling point. 

Luo and Shao (2006) suggested use of neuro-fuzzy system based on rough set theory 

(RST) and genetic algorithm. Rough set was used to obtain the reductive fuzzy rule set 

and genetic algorithm was used to obtain the optimal discretisation of continuous 

attributes. The neuro-fuzzy approach based on RST and GA was employed to develop soft 

sensor for estimating the freezing point of light diesel oil in fluid catalytic cracking (FCC) 

unit. The soft sensor model used five secondary process variables as model inputs which 
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include light diesel fuel extracting temperature, gas temperature at 19th column tray, 

reflux flow rate, reflux extract temperature and the cycle return temperature at the first 

middle sidetrack in main fractionator. 

Statistical approach using non-linear generalized ridge regression method was 

adopted by Yan (2008) for modeling of complex non linear systems. The technique was 

used to develop soft sensor for naphtha 95% cut point. He has shown that the performance 

of the ridge regression method is better than the other methods for modeling of non-linear 

systems such as line regressions, non-linear ordinary least square regression and non-

linear traditional ridge regression. For prediction of the cut point, the soft sensor used the 

following process information as inputs: temperature and mass flow rate of the inlet feed, 

temperature and pressure at column top, naphtha mass flow rate, mass flow rate of the 

side-stripper products, the temperature at the flash zone, the mass flow rate of the steam 

input to the bottom of the column. 

Kaneko et al. (2009) proposed soft sensing based on partial least square (PLS) 

technique for the distillation process for estimating bottom product concentration. The 

PLS model was updated and the abnormal data were classified using independent 

component analysis (ICA)-based fault detection. A total of 19 variables (flow rates of 

feed, reflux, reboiler, top and bottom product, feed, bottom and different tray temperatures 

and liquid level) were used for developing ICA-based fault detection model and 25 

variables (by adding time lagged values of some variables) were used for developing the 

PLS model.  

Ma et al. (2009) developed a soft sensing system for the o-xylene purification 

column. They used the regression method for model development with input variables 

selected in a stepwise manner based on partial F-test criterion. The soft sensor was applied 

for continuous monitoring of isopropyl benzene impurity of o-xylene distillation column 
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using seven tray temperatures and flow rates of 1,2,4- Trimethylbenzene and o-xylene as 

model inputs.  

Wang et al. (2010) proposed dynamic PLS model for real time monitoring of ASTM 

90% distillation temperature of the distillate. In addition to model development, the PLS 

regression technique was also used for multivariate outlier detection. Using the method of 

root-mean-square error of cross validation (RMSECV), they chose 14 process parameters 

as predictor variables from a pool of 35 variables. 

Ge and Song (2010) proposed the technique of relevance vector machine (RVM) as 

an alternative to the largely used standard and least-square support vector machine 

techniques for non-linear soft sensor design. The soft sensor was applied to a sulfur 

recovery unit (SRU) for estimation of concentration of H2S and SO2 in the tail gas using 5 

process variables (air flow, Mono Ethanol Amine flow and gas flow from sour water 

stripping process) as model inputs.  

2.1.2 Polymer Industries 

Ohshima and Tanigaki (2000) developed wave-net and extended kalman filter based 

process models for online monitoring and control of melt index of high density 

polyethylene. The models use concentrations of hydrogen, ethylene, propylene, butene, 

co-catalyst and operating temperature as inputs.  

Rallo et al. (2002) designed soft sensor for prediction of melt index of six different 

Low density poly ethylene (LDPE) grades. They applied the technique of self organizing 

map (SOM) to decide on the set of most relevant input variables from a pool of 25 total 

process variables consisting of pressures, flow rates, temperatures of the cooling/heating 

streams of the reactor, etc. Subsequently, dynamic clustering technique was used for 

formation of training data. The training dataset was used for designing fuzzy ARTMAP 

and RBF neural network models of the LDPE process for melt index prediction. 
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Kim et al. (2005) underlined the shortcomings of mechanistic and empirical modeling 

technique for modeling of polypropylene process which involves complex catalytic 

reaction producing more than 100 different grades of products. Their soft sensor is based 

on a hybrid modeling approach which involves critical to quality (CTQ) based clustering 

in the first step for different reactors followed by PLS based soft sensing model for each 

reactor in the subsequent step. The models were developed from 86 operational variables 

comprising of 32 flowrates, 28 temperatures, 18 pressures and 8 tank levels.  

Shi and Liu (2006) proposed a soft sensor based on PCA, radial basis function (RBF) 

and multi scale analysis (MSA) to predict the melt index of polypropelene using the 

knowledge of 9 input process variables (pressure, flow rate and temperature, etc.).  

Sharmin et al. (2006) applied PLS technique to develop a soft sensor which can 

predict melt flow index using routinely measured process variables obtained from a low 

density poly-ethylene (LDPE) – ethylene vinyl acetate (EVA) plant autoclave reactors. 

Mu et al. (2006) proposed recursive PLS based soft sensor for predicting the average 

crystal size of a purified terephthalic acid (PTA) purification process. The model used 

fourteen process variables as inputs which include the pressures and the liquid levels of 

the five crystallizers and four level set-points of the crystallizers.  

Roy et al. (2006) developed various kinds of ANN models for prediction and 

optimization of polymer properties. They used the informations of 440 different types of 

engineering polymers to develop back propagation, recurrent, probabilistic and 

generalized regression neural network models for prediction of mechanical, thermal, 

magnetic, optical, electrical, environmental and deteriorative properties from the 

knowledge of microscopic, mesoscopic, and macroscopic polymer structures. 

 Liu (2007) applied principal component analysis (PCA) followed by fuzzy c-

means (FCM) and fuzzy Takagi–Sugeno (FTS) modeling technique to decompose a non-
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linear system to several linear sub systems. The technique was used to build a piecewise 

linear virtual sensor model for inferring melt index of polythene. 14 process variable 

informations were used by the model to predict the process output i.e. melt index. These 

input variables include ethylene flow, modifier flow, purge flow rate, temperatures at 

different locations and pressure maintained in the reactor.   

Gonzaga et al. (2009) applied BPNN technique for soft sensing the viscosity of poly-

ethylene terephthalate (PET). The ANN model uses eight input process variables of 

primary esterification and secondary esterification reactor temperatures, low polymerizer 

and high polymerizer temperatures, low polymerizer and high polymerizer pressures and 

flow rate into polymerizer.  

 Li and Liu (2011) designed RBF neural network model for melt index prediction in 

the polypropylene process. The parameters of the RBFNN model were determined by 

combination of particle swarm and simulated annealing optimization techniques. The 

process input variables used by the model are the process temperature, the pressure, the 

level of liquid, percentage of hydrogen in vapor phase, flow rates of propylene and 

catalyst to the reactor.  

Kaneko and Funatsu (2013) proposed genetic algorithm based wavelength selection 

technique for variable selection followed by application of Support Vector Regression 

(SVR) modeling technique, for soft sensor development of polymerization process. Using 

various input process variables such as  the temperature in the reactor, the pressure and 

concentrations of the monomer, co-monomer, and hydrogen, the soft sensor was used to 

predict melt flow rate.  

Soft sensor for online prediction of melt index was also developed by Liu et al. (2013) 

for sequential-reactor-multi-grade polymerization process. A just-in-time sequential non-

linear modeling technique was proposed and the technique was combined with the least 
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square support vector regression technique for design of soft sensor. Similarly, another 

statistical technique named independent component regression was applied by Ge and 

Song (2014) for prediction of melt index  in polypropylene production process. In their 

application, it was observed that the technique of independent component regression 

performed better than the principal component and partial least square regression 

techniques. 

2.1.3 Fermentation and Bioprocess Industries 

 Linko et al. (1997) applied back propagation technique to develop neural network-

based soft sensors for online estimation of enzyme activity and biomass concentration in 

yeast lipase and fungal glucoamylase production. The neural network model used on-line 

measurable variables such as pH, agitation rate, oxygen uptake rate, carbon dioxide 

evolution rate, total consumed oxygen, total carbon dioxide produced and ammonia 

consumption as inputs. 

Sotomayor et al. (2002) developed discrete extended kalman filter model for online 

monitoring of microbial oxygen uptake rate and oxygen transfer function in the activated 

sludge process from measurements of the dissolved oxygen (DO) concentration and the air 

injection flow rate as inputs. 

Bogaerts and Wouwer (2003) have presented a review of software sensor design 

techniques and their application in bioprocesses. They subsequently (2004) proposed a 

parameter identification procedure based on a cost function combining a conventional 

prediction error criterion with a state estimation sensitivity measure. This parameter 

identification procedure is demonstrated in the context of bioprocess modeling and soft 

sensor design. The minimization of the proposed cost function enforces higher model 

sensitivities and better transfer of information from measured to unmeasured variables.  
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Arauzo et al. (2004) proposed a soft sensor and internal model control (IMC) for 

penicillin fermentation process. They have suggested use of FasArt and FasBack neuro-

fuzzy systems. Fast learning and good multi-input multi-output (MIMO) identification 

encourages the use of FasArt and FasBack for developing adaptive controller and soft 

sensor. The soft sensor is applied for estimating biomass concentration and viscosity of 

broth in the penicillin process using the online measurable variables of agitation speed, 

pressure, temperature, acidity, dissolved oxygen and carbon dioxide production rate.  

Desai et al. (2006) introduced SVR technique for soft sensing of bioprocess variables. 

The SVR model parameters were determined by the technique of sequential minimization 

optimization and the developed soft sensor was applied to fed-batch bio-processes for 

prediction of invertase and streptokinase concentrations.   

Dai et al. (2006) proposed an artificial neural network (ANN) soft sensing method 

based on the assumed inherent sensor and its inversion concepts to estimate hard to 

measure crucial process variables. The method is based on the assumption of an inherent 

sensor subsystem in the process whose inputs are the process variables to be estimated and 

outputs are directly measurable variables. A global invertible condition is proposed which 

guarantees the existence of an inverse of such inherent sensor. The proposed ANN – 

inversion soft sensor was applied to real time estimation of the immeasurable variables in 

erythromycin fermentation process (mycelia concentration, sugar concentration and 

chemical potency) using various process inputs such as dextrin flow, aqua ammonia flow, 

propanol flow, water flow, oil flow and pH value. 

 Ochoa et al. (2007) proposed model for simultaneous saccharification-fermentation 

(SSF) process used in bioethanol industry. The model can be used as a part of the control 

algorithm, as a simulated plant or as a soft sensor. They developed an unstructured model 

and a structured model (cybernetic model). The cybernetic model represented the SSF 



Literature Review 

 

21 

process more precisely than the unstructured model. However, the unstructured model is 

simpler, has less model parameters involved and is more suited for model based control or 

real time optimization applications. They suggest the use of Metropolis Monte Carlo 

method (stochastic based) over gradient based technique for model’s parameter 

identification. 

 Liu et al. (2010) developed SVM and ANN soft sensor models for online 

estimation of biomass concentration in erythromycin fermentation process. A combination 

of GA and simulated annealing optimization techniques were used for optimal SVM 

parameter estimation. The SVM based soft sensors uses 11 process inputs comprising of 

dissolved oxygen tension, pH value, temperature, relative pressure, agitator rotate speed, 

the volume of dextrin, bean oil, propyl alcohol and water, the airflow rate and biomass 

concentration at previous sampling instant and was shown to perform better than neural 

network model based soft sensor.  

The technique of genetic programming was applied by Sharma and Tambe (2014) for 

soft sensor development of two bioprocesses. In the process of extracellular production of 

lipase enzyme, the soft sensor was used to predict the time-dependent lipase activity. In 

bacterial production poly copolymers, the soft sensor was designed to predict the amount 

of accumulated polyhydroxyalkanoates. 

2.1.4 Metallurgical Industries 

Radhakrishnan and Mohamed (2000) developed a BPNN model for the blast furnace 

process of iron making. The model utilizes 33 process variables as inputs and produces 

estimated values of six hot metal quality (quantity, temperature, silicon, sulphur, 

manganese and carbon percentages) and nine slag quality (quantity, TiO2, SiO2, Al2O3, 

CaO, MgO, K2O, FeO and Basicity) parameters. The model inputs included quantity and 
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compositions of sinter, iron ore, coke, lime stone, manganese ore and temperature, 

pressure and flow rate of hot air blast. 

Tian et al. (2006) used genetic algorithm combined with back propagation neural 

network for the soft sensor model. The genetic algorithm optimizes the weight and bias 

values of the back propagation network. They used the model to predict molten steel 

temperature in ladle furnace refining process using the available informations on refining 

power consumption, the initial temperature, the ladle states, the absorbed and released heat 

of alloy and slag, the amount of argon blowing, the weight of molten steel and the refining 

time. 

Kano and Nakagawa (2008) presented a brief review of the various methods of data 

based process monitoring, modeling and control techniques which find application in steel 

industry. They proposed a data-driven quality improvement (DDQI) method and applied 

to iron and steel processes. Statistical process model using a combination of PCA and 

linear discriminant analysis (LDA) was developed to predict surface flaws and internal 

defects of manufactured steel. The model was developed using 55 input variables which 

include contents of various additive elements in a steel making process, temperature and 

residence time in each heating zone in a hot rolling process and temperature at the exit of 

each stand in a hot rolling process. 

Zeng and Gao (2009) investigated the effect of data preprocessing on the model 

performance. They applied the multivariate outlier detection techniques of Mahalanobis 

distance (MD), Resampling by half means (RHM) and Smallest half volume (SHV) to the 

blast furnace dataset and after outlier detection and removal, applied the techniques of 

subspace system identification and prediction error method for prediction of silicon 

content in hot metal produced in the blast furnace. The silicon content was predicted using 

seven process variables consisting of quantity, temperature and pressure of blast, quantity 
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of coal powder, quantity of coal powder, permeability index, coke ratio and descending 

speed of materials.  

2.1.5 Emission Quality Monitoring 

Qin et al. (1997) applied techniques of principal component analysis and neural 

network continuous online monitoring of NOx content in the flue gas coming out of an 

industrial boiler. The monitoring is achieved using the information of 7 process variables 

as inputs which include: flow rates of air, steam, feedwater and fuel; economizer 

temperature; pressure values at stack and windbox. 

Ikonen et al. (2000) developed NOx monitoring soft sensor for a 25 megawatt (MW) 

semi-circulated industrial fluidized bed combustor by combining neural network and fuzzy 

logic which is known as distributed logic processor (DLP) model. The model requires the 

information of primary air flow, fuel flow, bed, free board and throat temperatures and 

flue-gas oxygen percentage as inputs. 

Neural network modeling for soft sensor development has been proposed by Tronci et 

al. (2002) for online prediction of CO, NOx and O2 in the flue gas of a 4.8 MW power 

plant. Steam generation rate, excess and over-fire air percentage and reburning flow rate, 

temperatures of inlet air and outlet fume and oxygen in combustion chamber are supplied 

as inputs to the ANN model.  

Marengo et al., (2006) have developed PLS, PCA and ANN models for prediction of 

pollutant emission in a cement plant. They have used Kohonen mapping for splitting the 

data to training and testing sets. The 19 model inputs considered in their work are various 

physical-chemical properties of the raw material and fuel and the models were developed 

for prediction of quanitity of NOx, SOx and dust released from the clinkerization process. 

They found that ANN model performed better than PCA and PLS models. 



Literature Review 

 

24 

Zheng and Yu (2008) investigated the application of artificial neural network and 

support vector regression techniques for modeling the relationship between NOx emission 

and plant for a 300 MW coal fired boiler. The operating parameters include 19 process 

variables consisting of primary and secondary air velocities, mill speed, boiler load and 

coal quality. The SVR model whose hyper-parameters were determined using ant colony 

optimization technique exhibited better prediction performance than the BPNN model 

trained with Levenberg–Marquardt algorithm.  

Shakil et al. (2009) applied PCA for reduction of input data dimension followed by 

time delay ANN model development for NOx and O2 soft sensing in industrial boilers. The 

hybrid model uses the values of different temperatures in the boiler, air flow, mixed gas 

flow and air to fuel ratio as model inputs. 

Zhou et al. (2012) developed SVR, BPNN and Generalized Regression Neural 

Network (GRNN) models for continuous online monitoring of NOx emission in coal fired 

thermal power plant. The SVR model parameters determined using ant colony 

optimization technique showed superior performances to BPNN model trained by LM and 

gradient descent with momentum (GDM) algorithm and the GRNN model. The model 

uses 21 process conditions as inputs which include primary and secondary air velocities, 

mill speed, total air flow rate, O2 content in the flue gas and boiler load. 

2.1.6 Pulp and Paper Industries  

Runkler et al. (2003) developed Mamdani and Takagi-Sugeno type fuzzy inference 

system for modeling of wood chip refiner in fiber board production process. The models 

were used for prediction of flexural strength and the water uptake of the final fiber board 

from the knowledge of relevant process input variables (steam pressure, refining speed and 

refining power). During model development, the available input dataset was used to form 
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the "if" part and the corresponding output dataset was used to form the "then" part of the 

rule base. 

Dufour et al. (2005) designed BPNN model as soft sensor to predict unmeasured 

variations in the feedstocks of an industrial pulp digester. This is one of the few researches 

for industrial soft sensor development where attention was given for proper design of 

training set for model development 

Galicia et al. (2011) proposed a reduced order dynamic PLS based soft sensor for 

real-time monitoring of Kappa number of pulp produced in the digester. The Kappa 

number is inferred using the process information for 16 secondary variables which include 

effective alkali, dissolved lignin, total dissolved solids, free liquor temperature of upper 

recirculation, lower recirculation and extraction flow. 

2.1.7 Particle Size in Grinding Processes 

One of the earliest works on soft sensor development for a grinding process was 

reported by Casali et al. (1998) which involves designing of an ARMAX model for 

estimation of percentage of material with +65 mesh-size in the product of the grinding 

process using a rod mill. The different types of ARMAX models developed take the past 

output measurements and past and present input measurements for inferring the present 

output. The various online measurements used by the model were fresh ore feed rate, rod 

mill water feed rate, rod mill power, sump water addition rate, sump pump speed, solid 

concentration and mill power.  

Another soft sensing approach for ball mills and semi-autogenous grinding (SAG) 

mills (Herbst and Pate, 1999) makes use of simple differential equations for particle size 

estimation, followed by correction of this estimation from knowledge of the actual values 

received from the real sensor using an extended kalman filter. The model uses mass feed 

rates of coarse and fine, mean residence time, power draw and ore grindability. However, 
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these models assume the availability of a real sensor and can only be applied in case of 

momentary unavailability of the real sensor. A crucial problem in the comminution 

processes is that for many such processes no hardware sensor for online particle size 

monitoring is available.  

Sbarbaro et al.  (2008) proposed a NARMAX type model structure as soft sensor for a 

grinding process where the output i.e. particle size was described as a function of the 

easily measured input variables where the parameters of the model were determined using 

error projection and recursive least square algorithm. The developed soft sensor was 

applied for estimating percentage of +65 mesh size particles in the output of ball mill 

using cyclone feed density, fresh ore feed rate and pressure at the cyclone battery as model 

inputs.  

Use of artificial neural network for soft sensing of particle size of nickel mine ores 

was reported by Ko and Shang (2011). The neural network model trained by Levenberg - 

Marquardt algorithm received calculated particle uniformity and initial estimate of particle 

size based on 2D image analysis as inputs and produced as output the improved estimate 

of ore particle size. In addition to back propagation neural network technique, methods of 

recurrent neural network and wavelet network were investigated for soft sensing of 

particle size in lead-zinc ore beneficiation process (Mitra and Ghivari, 2006). 

2.1.8 Batch Processes 

Lee and Park (1999) developed back propagation neural network soft sensor model of 

a sequentially operated batch reactor used in advanced waste water treatment for 

Biological Oxygen Demand (BOD) and nutrient removal. The neural network model was 

used for real time estimation of phosphate, nitrate and ammonium concentrations using 

pH, oxidation-reduction potential and dissolved oxygen as inputs. 
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Zamprogna et al. (2004) applied the multivariate regression technique of PLS to 

develop an empirical model of a batch distillation column operated at constant reflux ratio, 

for online estimation of instantaneous mole fraction of the light and intermediate 

components in the distillate stream and the mole fraction of the heavy component in the 

reboiler. In this soft sensing approach, the input dataset consisting of initial feed 

composition, boil-up rate and reflux rate was preprocessed using PCA followed by 

application of dynamic and multiple PLS regression method for model development. 

Another soft sensor reported by the same authors (Zamprogna et al., 2005) estimates the  

mole fraction of the light and intermediate components in the distillate stream The soft 

sensor models are based on PLS regression and ANN techniques and use tray temperature 

measurements as secondary variables. They proposed PCA based sensitivity analysis 

method to optimally decide the model inputs from the set of total available inputs. 

Marjanovic et al. (2006) applied multi-way PLS (MPLS) technique for soft sensing of 

product quality in a batch reactor used for production of specialty chemicals. Cooling 

water flow, reactor temperature and pressure and hydrogen flow to the reactor were used 

as input informations to the model which predicts the concentration of reactant and 

product in the mixture at any time in the batch.   

Gunther et al. (2009) proposed an evolving PLS modeling strategy with bias 

correction for soft sensing of product titer in the fed-batch bio-reactor used for production 

of recombinant protein. 

Facco et al. (2009) applied PLS regression technique to design soft sensor for online 

estimation of resin quality (acidity number and viscosity) produced in an industrial batch 

polymerization process. Online data for twenty three process variables (temperatures, 

pressures and valve openings in the reactor) were utilized as secondary variables for 

development of the soft sensor model.  



Literature Review 

 

28 

2.2 Gaps in Existing Research 

The literature survey on the different types of soft sensors proposed so far has led to 

the identification of the following gaps. 

2.2.1 Gaps in Data Preprocessing 

It has been emphasized in Section 1.3.1 that data preprocessing plays a crucial role in 

the industrial data-driven soft sensor design. The most important aspect of data 

preprocessing is the proper detection and removal of outliers. The techniques for outlier 

removal can either be univariate or multivariate. Most of the industrial processes are 

multivariate in nature i.e. the output product quality is a function of many input variables. 

However, in most of the proposed soft sensors the outlier detection has been performed 

using univariate techniques which may not be appropriate when multiple number of 

process variables exist and there is existence of strong correlation among the variables. 

2.2.2 Gaps in Design of Training Set 

In any data based modelling approach, the total dataset must be split into a training set 

and a validation set. While the model is developed from the training set, the model 

performance is assessed by simulation of the developed model with the validation set 

inputs and comparing the model estimated output with the actual output values. Proper 

selection of the samples for training and validation is a crucial step in data based model 

development. In most of the reported studies, this subset selection has been performed in a 

random manner. While random selection is simple to perform, and has been widely 

followed by researchers for modeling, this method does not guarantee that the training set 

obtained is a proper representation of the entire dataset and moreover it may give rise to 

extrapolation problems (i.e. samples at the boundaries may not be included in the training 

set). This problem can be suitably addressed by following a structured subset selection 
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technique. Unfortunately, there has been little application of structured sampling methods 

in industrial processes modeling studies.  

2.2.3 Gaps in Modeling Technique 

There have been wide application of the different statistical methods ranging from 

simple multiple linear regression to more sophisticated techniques of principal component, 

partial least square and support vector regression and their improved versions. Similarly, 

the technique of black box modeling using artificial neural network (ANN) has also gained 

good popularity in the soft sensor design community. However there have only been very 

limited application of fuzzy inference and neuro-fuzzy inference techniques for soft sensor 

development. 

2.2.4 Gaps in Application in Industrial Process 

In addition to the process industries mentioned in Section 2.1, there is also scope of 

soft sensor development and application in other industries. While significant research in 

soft sensing has been done for some industries such as petroleum refinery and 

petrochemicals, polymer or bio-processes, very few research works have been reported in 

cement industries which is the main focus of the present work. 

Based on the aforementioned gaps, the objectives are defined and presented in Section 1.4. 

2.3 Scope of the Present Work 

The present work focuses in the design of soft sensors for two processes involved in 

cement manufacturing:(1) Cement mill where clinker is ground to fine particles (2) Rotary 

cement kiln where the raw mixture is converted to clinker. 

2.3.1 Soft Sensor for Cement Mill 

Clinker grinding in the cement mill for production of cement is one of the most 

energy demanding processes in cement industry. In cement plants 75% of the total energy 

consumption is due to grinding of raw materials and clinker (Boulvin et al 2003). The 
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particle size in the cement manufacturing process is expressed as cement fineness or 

cement Blaine which is surface area per unit mass (m
2
/kg). A higher Blaine indicates 

higher fineness. Lower than prescribed cement fineness indicates poor quality of the 

finished product resulting in more recycling and thereby increases the grinding cost 

further. Higher fineness has been reported to increase the compressive strength of cement 

(Binici et al, 2007). However, much higher fineness than required, will result in 

subsequent loss of cement particles in the bag house separation unit and loss of cement 

from cement bags during handling and transportation. Moreover, cement fineness has also 

been shown to indirectly affect the heat of hydration and settling time (Vuk et al., 2001).  

The aforementioned facts highlight the need for production of cement with proper 

fineness. Presently, the fineness is measured by offline laboratory sampling at regular 

intervals. Since no hardware sensor is available for online monitoring of cement Blaine in 

the grinding process, a soft sensor based on the input parameters of the comminution 

process will largely help the plant operators to adjust the process inputs so as to produce 

cement with desired fineness. However, because of process complexity, mathematical 

modeling of a cement mill is a difficult task. The product particle size in a cement mill is a 

non linear function of the mill inputs.  

 A study of the existing literature for particle size soft sensing reveals that hardly 

any research work has been reported on soft sensing of cement particle size. Neural 

network based modeling and control strategies for product flow rate and mill load in the 

ball mill based cement grinding process was reported by Topalov and Kaynak (2004). But 

there is no effort for prediction of particle size in cement mills. Most of the reported works 

concern with modeling of ball mill. Traditionally, the closed circuit ball mill equipped 

with high efficiency separator has been the most commonly used clinker grinding 

equipment.  In cement plants, while the vertical roller mill (VRM) has been in use for raw 
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mix and coal grinding, its application in clinker grinding is hardly a decade old. As per 

literature the first VRM used for clinker grinding was in the year 2002 (Simmons et al., 

2005). Thereafter VRM is gradually becoming the standard for new grinding installations. 

VRMs offer certain advantages over ball mills as listed below (Simmons et al 2005; 

Sorrentino 2011): 

 More energy efficient  and consume approximately 40% less power than ball 

mills. 

 More compact layout (drying, grinding and classification are carried out in a 

single equipment). 

 More suitable for handling hot feed and larger size feed than ball mills. 

While the older cement plants still continue to use ball mills, due to the 

aforementioned facts, VRMs are gradually becoming the standard for new grinding 

installations. However, very few or no research so far has been reported on modeling of 

grinding processes employing vertical roller mills for clinker grinding.  

2.3.2 Soft Sensor for Rotary Cement Kiln 

The quality of clinker plays the most important role in determining the quality of 

cement. Unfortunately there is no hardware sensor available for online sensing of clinker 

composition coming out of a rotary cement kiln. The clinker quality is determined by 

measuring its contents of free lime and other important components by offline laboratory 

analysis. Therefore, any reduction in clinker quality, as determined by offline laboratory 

analysis hours after production, leads to rejection or recycling of the clinker formed. Any 

method for online estimation of clinker quality will greatly help in reducing the amount of 

rejection thereby resulting in lower revenue loss or more profit. While there have been 

some modeling works reported for rotary cement kiln, very few models focus on soft 

sensing of clinker quality.  
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Marengo et al. (2006) developed model for prediction of pollutants from the 

clinkerization process. Stadler et al.  (2011) developed model to determine the temperature 

profile of material along the kiln length. In the kiln model reported by Sadeghian and 

Fatehi (2011), the focus is on detection of various types of process faults associated with 

kiln operation, such as coating disintegration, ringing, super hot or super chilled. This is 

achieved by use of model for predicting the kiln back end temperature (entry point of raw 

material in the kiln). The different inputs considered for the modeling are: material flow, 

fuel flow, kiln speed, induced draft (ID) fan speed and secondary air pressure. Similarly 

Sharifi et al. (2012) have used the same input variables for predicting current, CO content, 

pre-heater temperature and back end temperature using wavelet-based fuzzy inference 

system. Unfortunately, none of the aforementioned models are suitable to be used as soft 

sensors for inferring clinker quality. 

 Probably the first ever effort for soft sensing of clinker quality was reported by Lin 

et al. (2007). Principal component regression and partial least square models were derived 

for prediction of clinker free lime content and NOx emission from the kiln. For clinker free 

lime prediction, they used kiln current, kiln feed, fuel flow rates to calciner and kiln and 

several temperature measurements within the kiln system as the model inputs. However, 

one possible shortcoming in the reported model is ignoring the input quality. In general, 

for any process, the output quality is a function of the process operating conditions as well 

as the type of input. Therefore in addition to the kiln operating conditions, the quality of 

raw meal also affects the final clinker quality as shown later in this work. This aspect has 

not been considered in the proposed model.  

Qiao et al. (2010) used  least square support vector regression technique to model 

rotary kiln for clinker free lime estimation. They used kiln current, coal feed rate, kiln tail 

pressure, temperatures along kiln length and raw mill quality data as inputs. Similarly in 
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another soft sensor reported for cement kiln by Lin and Jørgensen (2011) the focus was on 

monitoring NOx formation in the kiln with the help of partial least square regression 

technique using the process values of kiln current, kiln feed , fuel flow to kiln, several 

temperature measurements along with image features of kiln flame. Subsequently an RBF 

neural network model had been proposed by Zhong and Du (2012) for soft sensing of 

clinker free lime using the input variables kiln feed rate, fuel flow rate, kiln RPM, lime 

saturation factor (LSF), silica modulus (SiM) and alumina modulus (AlM).  

 While free lime (f-CaO) is the single most important quality parameter for cement 

clinker, a few other quality parameters also play a crucial role in determining the quality 

of clinker and cement. Effects of all important clinker quality parameters are briefly 

mentioned below (Hewlett, 2003): 

 Free lime: Calcium Oxide (CaO) present in the cement clinker which has not 

combined with other oxides during the burning process in the kiln. An increase in 

clinker free lime means a reduction in total silicates (C3S + C2S). This ultimately 

results in less strength of the concrete.  

 Alite (C3S): This reacts quickly with water and is responsible for higher early 

strength of concrete 

 Belite (C2S): This reacts slowly with water and is responsible for imparting 

strength at later age 

 Aluminate (C3A): This reacts very fast with water and causes rapid hardening. Low 

proportions lead to more resistance to sulfates. 

 Ferrite (C4AF): This provides slight effect on strength and contributes to color of 

cement. 

 Lime saturation factor (LSF): This is the ratio of CaO to iron, aluminium and 

silicon oxides. LSF of clinker is defined as: 
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 LSF = CaO/(2.8SiO2 + 1.2Al2O3 + 0.65Fe2O3) 

 High LSF in clinker indicates high proportion of alite to belite. This is usually 

maintained between 0.92 to 0.98 with values higher than 1 indicate possible 

presence of free lime in the clinker. 

 Silica modulus (SiM): SiM = SiO2/(Al2O3 + Fe2O3).  

 High SM indicates the presence of more amount of calcium silicates and less 

amount of aluminate and ferrite in clinker. Typical desired values of SiM are 

between 2 to 3. 

 Alumina modulus (AlM): AlM=(Al2O3/(Fe2O3). AlM indicates the relative 

proportions of aluminate and ferrite phase in the clinker. This is usually maintained 

between 1 and 4.  

2.3.3 Outline of the Present Work 

The data-driven soft sensors for the clinker grinding process and the rotary cement 

kiln were developed based on actual industrial data. Data for different process variables 

relevant to these two processes were collected from a cement plant with a clinker grinding 

capacity of 235 tons per hour and clinker producing capacity of 10000 tons per day. The 

collected data were preprocessed for detection and removal of outliers. Three types of 

univariate outlier detection techniques were applied to the grinding process which involves 

only a few (three) number of variables. On the contrary, multivariate outlier detection 

techniques were applied to the rotary kiln data where a number of (nine) process variables 

are involved.  

 After data preprocessing, the clean data obtained for the two processes were 

divided to training set for model development and validation set for model evaluation. 

Two popular training set design techniques i.e. the Kennard-Stone technique and the 

DUPLEX algorithm were used. The training sets obtained using the two algorithms were 
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compared with two types of random data division to explain the improvement in the 

quality of the training datasets obtained. 

The training sets were used to develop the following models for the two processes. 

Table 2.1: List of different data-driven models developed for the grinding process 

and clinkerization process 

PROCESS 
CLINKER GRINDING IN VERTICAL 

ROLLER MILL 

CLINKER FORMATION IN ROTARY 

CEMENT KILN 

Model Output Cement fineness or cement Blaine 8 number of clinker qualities 

Soft sensor models 

developed 

Multiple linear regression (MLR) 

Quadratic response surface 

Standard SVR 

Least square SVR 

BPNN 

RBFNN 

GRNN 

PCA+BPNN 

Fuzzy inference (Mamdani) 

Fuzzy inference (Sugeno) 

Adaptive neuro fuzzy inference 

system (ANFIS) 

Multiple linear regression 

(MLR) 

BPNN 

RBFNN 

GRNN 

Fuzzy inference (Mamdani) 

Fuzzy inference (Sugeno) 

PCA+BPNN 

Performance of the developed models were evaluated based on multiple statistical model 

performance criteria. 

The best models for each of the two processes were tested in the SIMULINK environment 

for their capability for real time estimation of the respective quality parameters. 
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_______________________________________________________________________________ 

Chapter - 3 

Methodology 

_______________________________________________________________________________ 

A brief description of the stepwise design procedure for soft sensor is presented in 

Chapter 1. In this chapter the theoretical details and application procedure of various 

design techniques are discussed. From the initial phase of data preprocessing to the final 

step of model development and validation, a number of methods exist in each design step. 

It is not possible to describe all the techniques in one report. Therefore, the description is 

limited only to the techniques which are used in the present research work.  

3.1 Data Collection and Preprocessing 

3.1.1 Variable Selection 

Inappropriate selection of soft sensor inputs may reduce the estimation accuracy. 

Therefore, it is mentioned in Chapter 1 that an inferential sensor works satisfactorily if 

only the most relevant secondary variables are employed for soft sensor development. In 

this work, prior process knowledge (gained by rigorous consultation with plant operators 

and engineers) is used to screen out the irrelevant variables. In this way, three secondary 

variables were selected as model inputs for soft sensing of cement fineness and nine 

secondary variables were selected as inputs for soft sensing of clinker quality. 

3.1.2 Outlier Identification 

Large process industries generally collect and store data on sensitive process 

parameters which can be utilized for model development. There are sensors which record 

values for a process variable every few seconds or minutes. So, a dataset for even a period 

of a few months or some days comprises a vast number of data which often makes the 

analysis quite complicated. The data extracted from the plant database history cannot often 
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be used in its raw form because of problems of missing data, presence of outliers and data 

co-linearity. Data preprocessing and cleaning is done in order to avoid confusion resulting 

from availability of huge amount of data pertaining to many variables and better process 

understanding. Preprocessing of the process data extracted from the plant data base can 

become the key to the success or failure of the final application. The analysis of available 

data leads to better process understanding, process diagnostics and process improvement. 

Outliers are sensor values which deviate from the typical or sometimes also 

meaningful, ranges of the measured values. In other words outliers are observations that 

do not follow the statistical distribution of the bulk of the data. In the context of process 

industry, outliers in dataset may arise due to (Liu et al., 2004; Lin et al., 2007; Fortuna et 

al., 2007; Hodge 2004): hardware failure, process disturbances or changes in operating 

conditions, instrument degradation, transmission problems and/or human error. 

Outliers can be distinguished into two types: obvious and non obvious. Obvious 

outliers are those whose values do not satisfy the physical and technological limitations 

(e.g a negative absolute pressure). Non obvious outliers even though satisfy the 

technological limitations, have values outside the typical range and hence are not true 

reflection of the correct variable state. From knowledge of process and hardware 

limitations obvious outliers can be detected and removed with ease. The real difficulty 

arises in accurate detection of non obvious outliers where one may face with the problems 

of masking and/or swamping. Masking refers to the condition when outliers are incorrectly 

identified as actual process values and swamping is the situation when a normal process 

value is incorrectly identified as outliers (Lin et al., 2007).  Presence of outliers in the data 

used for modeling may lead to model misspecification, biased parameter estimation and 

incorrect analysis results (Liu et al., 2004). Moreover, bad data or outlier characterized by 
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low signal to noise ratio leads to reduced resolution and may produce false alarms during 

process monitoring (Sharmin et al., 2006).  

The different outlier detection mechanisms may be classified as either univariate or 

multivariate based on whether dataset of only one variable is considered or a set of 

variables are considered simultaneously.  

3.1.2.1 Univariate Outlier Detection 

A critical review of commonly used statistical techniques and various nonlinear data 

cleaning filters used for univariate outlier detection is presented by Pearson (2002). A 

major drawback associated with data cleaning filters is that they even alter the values 

which are not outliers. Therefore, in this research, statistical methods for univariate outlier 

detection were applied which are presented below (Pearson, 2002; Hodge and Austin, 

2004). 

Three sigma method 

Probably the most popular univariate approach is the 3 outlier detection algorithm 

which is based on univariate observations of the variable distributions. This algorithm is 

presented below. 

Let value of a particular variable be represented by    with i ranging from 1 to N 

where N is the total number of observations. For each observation   , calculate the value          where    is the mean value. If this value is less than three times the standard 

deviation () of the entire set, then this is a normal value, else an outlier. Mathematically 

this is expressed as: 

If           , then the particular sample is an outlier. 

However, if multiple outliers occur on the same side of the mean then the value of    
gets shifted towards the outliers. Moreover, presence of several outliers distant from the 
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mean results in an inflated estimation of . Therefore 3, edit rule is likely to detect less 

outliers as their number increases.  

Hampel Identifier 

The 3 edit rule is based on the assumption that the variable under study is normally 

distributed and hence fails when the normality condition is not satisfied. More robust 

version of this approach is the Hampel identifier. This method uses more outlier resistant 

median in place of mean and median absolute deviation from median (MAD) in place of 

standard deviation to calculate the limits. The MAD scale is defined as                                                                  (3.1) 

The MAD scale represents a normalized version of the median distance of each data 

point    from the reference value     .      corresponds to 50% quantile or median. The 

factor 1.4826 makes the expected value of MAD scale equal to standard deviation  for 

Gaussian data sequences. Mathematically, the Hampel's identifier can be written as 

If               ,  then the particular sample is an outlier. 

Box Plot 

Another outlier detection method is the box plot  which is a graphical tool for 

determining mild and extreme outliers in a dataset. A box plot is drawn between the upper 

and lower quartiles with a solid line drawn across the box to locate the median. The 

different regions in the plot are defined as: 

Lower inner fence: Q0.25 – 1.5(Q0.75 – Q0.25)  

Upper inner fence: Q0.75 + 1.5(Q0.75 – Q0.25)  

Lower outer fence: Q0.25 – 3(Q0.75 – Q0.25)  

Upper outer fence: Q0.75 + 3(Q0.75 – Q0.25) 

A mild outlier is a point beyond an inner fence on either side while an extreme outlier 

is a point beyond an outlier fence. 
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3.1.2.2 Multivariate Outlier Detection 

An industrial dataset contains informations for multiple number of process variables 

out of which many are likely to be correlated. Univariate outlier detection techniques are 

largely ineffective while treating a multivariate dataset. Since multivariate outliers may 

not be extreme values along a particular direction, univariate techniques applied to 

multivariate dataset may result in masking or swamping. 

The common approaches of multivariate outlier detection can be classified as either 

distance based techniques or projection pursuit methods (Filzmoser et al., 2008). 

Projection pursuit technique involves suitable projection of the raw data in which outliers 

are likely to appear more prominently. Distance based techniques are based on 

computation of distance of a particular observation from the centroid of the data cloud. 

Subsequently, based on certain cut off criteria, a particular observation is either flagged as 

an outlying observation or retained as a normal observation. There is no universally 

accepted single technique for a particular problem and both techniques are in use and are 

areas of open research. In this work, attention is focused on the more commonly used 

distance based techniques. The two classical multivariate distance estimators are the 

Euclidean distance (ED) and the Mahalanobis distance (MD).  

The MD is better than the ED since this also takes into account the correlation 

existing among the variables. Therefore, in the early days the classical Mahalanobis 

distance was used as the multivariate outlier detection technique. The classical MD and 

leverage value methods work well with a few number of outliers. However, if a significant 

number of outliers are present on one side of the centre, the mean and covariances are 

substantially affected. Therefore, use of classical methods  to such a dataset may result in 

masking and swamping effect. This necessitates the need for robust estimation of the mean 
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and covariance matrix which is the most important challenge associated with the 

application of distance based methods.  

Probably one of the earliest methods proposed for robust estimation of location and 

dispersion is the ellipsoidal multivariate trimming (MVT) technique (Gnanadesikan and 

Kettenring, 1972). This involves removing a certain fraction of observations with highest 

MD values (computed by classical means) followed by computation of the location and 

scatter (i.e mean and covariance) from the remaining observations. The algorithm stops 

when convergence is achieved for the values of mean and covariance obtained for two 

subsequent subsets. However, the MVT has been shown as unreliable due to the use of 

conventional MD in the initial step (Egan and Morgan, 1998) and also the breakdown 

point of MVT for M variables is only 1/M (Daszykowski et al, 2007). Breakdown point is 

defined as the percentage of outliers required in the total dataset to render a particular 

technique ineffective.  

The MVT technique proposed in 1970s was followed by the techniques of minimum 

volume ellipsoid (MVE) and the minimum covariance determinant (MCD) methods in the 

1980s (Rousseeuw and Leroy, 1987). These two techniques have been so far quite popular 

robust methods for multivariate centre and scatter estimation. The MVE technique 

involves construction of an ellipsoid of minimum volume by taking half of the 

observations. The robust estimates of mean vector and the covariance matrix are computed 

from these N/2 observations. The MCD method involves determination of the N/2 

observations from the total data whose variance-covariance matrix has the minimum 

determinant value. While MVE and MCD techniques have the advantage of having a high 

breakdown point (50%), these are computationally complex. For example in the traditional 

MVE technique, for an N×M dataset, volumes of 
           (h is the integer part of 
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(N+1)/2) number of ellipses are to be computed in order to determine the minimum 

volume (Hadi, 1992). Various techniques for estimation of the minimum volume ellipsoid 

have been proposed such as resampling algorithm (Rousseeuw and Van Zomeren, 1990), 

simulated annealing and genetic algorithm (Woodruff and Rocke, 1993) and forward 

search algorithm (Atkinson, 1994; Riani et al, 2009).  

Since MVE and MCD techniques are iterative in nature, successful application of 

these methods require complex algorithms which may be difficult to program. Moreover, 

algorithms which are iterative in nature are not suitable for automation and hence cannot 

be implemented online in the plant for detection of outlying observations. Therefore, some 

simplified methods for robust estimation of multivariate location and spread have been 

proposed which include resampling by half means (RHM), smallest half volume (SHV) 

(Egan and Morgan, 1998) and closest distance to centre (CDC) method (Chiang et al, 

2003). Reviews on the various outlier detection techniques, issues on robust estimation of 

multivariate location and dispersion can be found in Hodge & Austin (2004) and 

Daszykowski et al., (2007). In this research work, robust outlier detection has been 

performed using two types of classical methods and three types of robust techniques. The 

details of these techniques are given below. 

The classical Mahalanobis distance method 

In this technique the MD of each observation from the data centroid is calculated and 

compared with a cut off value. The MD is described by the following equation for a 

dataset   with N observations and M number of variables (   is an N×M matrix):   is the 1×M row vector representing the mean values of all the M variables. 

                                                (3.2) 

Here C is the covariance matrix which is defined as: 
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                         (3.3) 

      represents the N×M mean centered input data matrix obtained by subtracting 

from any element of    the mean value of that particular variable.      represents the diagonal elements of the resulting N×N matrix. Therefore     is the 

N×1 column vector representing the squared Mahalanobis distance of all N number of 

observations. 

Observations whose MD are higher than the cut off value are considered as outliers. 

Usually this cut off value is set at 97.5% quantile of the chi-square distribution. This can 

mathematically be expressed as follows: 

If (multivariate distance)
2
 > 2

M,0.975 then the observation is an outlier. 

If (multivariate distance)
2
  2

M,0.975  then the observation is a normal value. 

Hat matrix leverage value method 

Similar to conventional MD method, another classical method for multivariate outlier 

detection is the hat matrix leverage value (Hoaglin and Welsch, 1978). In this method, 

from the available input dataset, the hat matrix is determined as mentioned below:                                        (3.4) 

Here X is the N×M input data matrix and H is the hat matrix. The diagonal elements of the 

hat matrix are called as leverage values and if these values are greater than 2M/N, then the 

corresponding observations are flagged as outliers. 

The Minimum covariance determinant (MCD) 

In this method, subsets of data (of size 
  ×M) are selected. For each subset the 

covariance matrix is computed and the determinant value of the covariance matrix (which 

is a square matrix) is calculated. The subset which results in the minimum value of the 
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determinant of the covariance matrix, is the one representing most normal 
   samples. The 

mean vector   and the covariance matrix C is determined based on this N/2 samples 

instead of the entire N observations.  

The MCD technique is iterative in nature, because to determine the best half 

representative samples, all possible subsets must be considered. The method of MCD was 

implemented using the code given by Verboven and Hubert (2005). 

The Smallest Half Volume (SHV) method 

In this method the Euclidean distance between every pair of samples are determined. 

In this manner a distance matrix D of dimension N×N is formed. Any element Dij of this 

matrix represents the Euclidean distance between i
th

 and j
th

 sample given by 

                                          (3.5) 

It may be noted that the diagonal elements of the distance matrix which represent 

distance of an observation from itself are zero. 

Subsequently, elements in each column are sorted in increasing order. Then for each 

column (of length N) the first N/2 elements are summed.  The column with smallest sum is 

identified and the N/2 elements of that column resulting in this smallest number represents 

the N/2 most similar observations. Thereafter, the mean and covariance matrix required for 

MD calculation is determined based on this set of N/2 observations.  

Closest distance to center (CDC) method 

This method involves determination of Euclidean distance of each sample    (1×M 

row vector) from the centroid   (1×M row vector). So, for N number of samples an N×1 

column vector representing the distances of samples from the centre is obtained. In this 

column vector N/2 samples with smallest distance to the centroid are identified. These N/2 

samples which are closest to the center represent the normal observations since outliers are 
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observations which lie far away from the majority of the data. Subsequently, the mean 

vector and covariance matrix are determined based on this set of observations. 

3.1.3 Missing Value Imputation 

Missing data are single sample values or set of sample values, where one or more 

measurements have a value which does not represent the actual state of the physical 

measurable quantity. The affected variables usually have values like ±∞, 0 or any other 

constant value.  

The most common causes are the failure of a hardware sensor, its maintenance or 

removal, failure of proper transmission of the data between the sensors and the database, 

errors in the database, problems in accessing the database, etc. Besides these, missing 

values may also result when the values are entered manually into a log book. Based on the 

different conditions resulting in missing data, they have been classified as 

(Lakshminarayan et al., 1999, Khatibisepehr and Huang, 2008): 

Missing completely at random (MCAR): When the probability of a record containing a 

missing value does not depend on either the observed data or the missing data. 

Missing at random (MAR): When the probability of a record having a missing value 

could depend on the observed data but not on the value of missing data itself. 

Not missing at random (NMAR) or Non ignorable: When the probability of a record 

having a missing value for an attribute could depend on the value of the attribute. 

In the present work, after the outliers are detected and removed from the dataset, it 

results in missing data at those time instants. 

There are different strategies to deal with the problem of missing values in the dataset. 

One approach to addressing the issue of missing data is case deletion i.e. to skip the data 

samples consisting of variable or variables with the missing values. However, this may 

lead to deletion of some of the useful data as well, resulting in loss of useful information. 
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Case deletion is suitable when the amount of missing data is small and constitutes a 

negligible fraction of the total data (Qin et al., 2007, Lakshminarayan et al., 1999). 

Data imputation is a statistical procedure for filling in of missing values by practical 

possible values so as to make the database complete. One can distinguish different 

approaches for carrying out missing data imputation. These are: (i) single imputation (ii) 

multiple imputation and (iii) simultaneous imputation. 

In single imputation the missing values are replaced by a single value (using e.g. 

mean/median values). Multiple imputations are iterative techniques where several 

imputation steps are performed and multiple choices are there (in decreasing order of 

likelihood) for each missing value. Multiple imputations involve more rigorous 

computation procedure. Simultaneous imputation is the technique of filling in of missing 

values for multiple values in the database simultaneously.  

The choice of a particular imputation technique to be used depends mainly on the 

nature and amount of available data, extent of missing data and the application purpose. 

Mean imputation is a commonly applied strategy in practical scenarios where the missing 

values are replaced by the mean of all available observations of the affected variable. This 

method may significantly change the values of variance, correlations and regression 

coefficients of the imputed variable. Use of mode value instead of mean value is an 

alternative to mean imputation. When the measurements are expected to be constant over a 

period of time then the missing data can be replaced by the last measured observation 

before the missing data. Another approach is to impute the missing value by making a 

linear interpolation of the values preceding and following it (Kano and Nakagawa 2008; 

Wang et al., 2010). 
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In this work, linear interpolation between neighboring values or linear extrapolation 

with the preceding or following values is used for the imputation of missing values as 

explained below. 

If in a dataset, values of             are known at time instants             and the 

value    obtained at    was identified as an outlier and hence deleted from the dataset, 

then some meaningful value of    is computed by linear interpolation between       and      . 

Similarly, if the missing value due to deletion of outlier resulted in the beginning of a 

dataset, imputation is performed by linear extrapolation with the following values. If the 

missing value occurred in the end of a dataset, imputation is performed by linear 

extrapolation with the preceding values. 

3.1.4 Data Scaling and Normalization 

Before modeling, it is necessary that the data of variables be normalized relative to 

one another. Otherwise, important process variables having small magnitudes will be 

overshadowed by less important variables having larger magnitudes. Therefore, data 

scaling or normalization is done so that all variables will have more or less equal weights. 

Some methods followed for data normalization are mentioned below. 

Min – max normalization (Fortuna et al., 2007):                                                                               (3.6) 

Z-score normalization or auto scaling (Sharmin et al., 2006, Fortuna et al., 2007) :  

Here, each variable is normalized about its mean.                                                (3.7) 

Zero – mean normalization method (Lee et al, 2007):                   where                                                 (3.8) 
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In this work, a commonly used normalization (Radhakrishnan 2000, Yan et al., 2004) 

in the range of 0 and 1 is adopted:                                                       (3.9) 

3.2 Data Co-linearity and Dimensionality Reduction 

If the two or more input variables are related to each other, then these are known as 

correlated variables and the data of these variables are said to be co-linear. A challenging 

issue for soft sensor design, is co-linearity existing in the available data of the process 

variables. Very often, the variables measured in the process industry are strongly co-linear 

and at times redundant. Data pertaining to variables other than the ones of importance are 

unnecessary and increase the model complexity, which has often negative effect on the 

model design and subsequently model performance. Moreover, highly correlated variables 

can give numerical problems for multiple regression based models (Lin et al., 2007).  

One way to address the co-linearity problem is to select a subset of the input variables 

which is less co-linear. This is done by analysis of scatter plots between pairs of variables. 

A scatter plot is a statistical tool for exploring variable correlation. In this method each 

candidate variable is plotted against the system output to search for any structure. If the 

variables move together on the plot then they are correlated. A straight line indicates a 

linear input – output correlation while a curve indicates a non-linear input – output 

correlation. The relationship is characterized either by using Pearson correlation 

coefficient or coefficient of variation 

The Pearson correlation coefficient = 
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                  (3.10)    

Coefficient of variation = 
Mean

Deviation Standard      
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Another method is to perform cluster analysis. Cluster analysis is an exploratory data 

analysis methodology in which a set of observations is partitioned into a certain number of 

unknown groups or clusters in such a way that all observations within a group are similar, 

while observations in different groups are different (Chen and Wang 1998). The rows of 

the data matrix which represent samples, are partitioned into distinct groups (clusters). 

Cluster analysis is performed by constructing a proximity matrix (proximity measures the 

nearness of two objects).  

The method of correlation analysis is performed by computing the estimated 

normalized correlation function between each possible independent variable and the 

system output. The magnitude of any peak in the cross correlation function gives 

information about the relevance of the input variable while its position gives information 

about the correct regressor to be considered in the model.  

Principal Component Analysis (PCA) and Partial Least Square (PLS) regression  are 

among the most popular methods to deal with data co-linearity in the process industry. 

PCA and PLS are useful multivariate statistical tools widely applied in soft sensor design. 

They are applied in a number of steps ranging from outlier detection (data processing) and 

data rectification to dimensionality reduction, model identification and process monitoring 

(Wang et al., 2002). While PCA is applied only on the input dataset, PLS is a regression 

technique applied to both the input and output datasets. In this work, PCA was applied to 

both the grinding process and rotary kiln process data to investigate the correlation 

existing among the variables.  

3.2.1 Principal Component Analysis (PCA) 

The method of principal component analysis aims at reducing the dimensionality of a 

multidimensional dataset consisting of a large number of interrelated variables. PCA is 

used to convert a large number of interrelated variables to less number of uncorrelated 
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variables. This reduction is achieved by transforming to a new set of variables, the 

principal components, which are uncorrelated. Each variable is transformed so that it has a 

mean zero and a standard deviation 1 (and so the variance is also 1). So the total variance 

in the dataset, which is the sum of variances of the observed variables is always equal to 

the number of observed variables analyzed. The transformed variables are linear 

combinations of original ones and the last variables can be ignored with minimum loss of 

information (Joliffe, 2005; Fortuna et al., 2007).  

In PCA, the input data matrix X is represented as:                                  (3.11) 

Where P is the principal component loading matrix and T is the score matrix. The 

loading vectors are the eigen vectors of the covariance (or correlation) matrix    . The 

number of principal components can be determined by considering the eigen values 

associated with the loading vectors.  

The calculation steps of PCA are presented in the form of a block diagram in Figure 3.1 

(Wold et al., 1987; Jolliffe, 2005). 

In step 2, standardization corresponds to calculation of 
    .  

       has also dimension of N×M 

                                                        . 

Scaling of the data by dividing the mean centered values with standard deviation is 

essential because PCA is a least square method and in the absence of scaling, variables 

with large variances will have large loadings (Wold et al, 1987).  

The M columns of    represent the M eigen vectors.  

Eigen vectors are called loadings and identify the directions where the majority of the data 

variability occurs while the corresponding eigen values give the amount of variability 
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associated with each direction. This gives the components in order of significance. Let C' 

be the matrix containing the eigen vectors sorted in decreasing order of eigen values. 

 

Figure 3.1: Procedure for conducting Principal Component Analysis (PCA) 

                                               (3.12) 

The input data                                             (3.13) 

For M number of input variables an equal number of principal components are obtained 

which are linear combinations of the original variables.  

Get the original input data matrix X 

(N×M). N is the number of observations 

and M is the number of input variables. 

Standardize each value by subtracting 

from every value, the mean and dividing 

by the standard deviation of that column.  

Calculate the covariance (correlation) 

matrix C (M×M) 

Determine C', the M×M eigen vector 

matrix representing the  M eigen vectors 

of the covariance matrix C 

Sort the M eigen vectors  in the 

decreasing order of their eigen values.  

These M eigen vectors represent the M 

principal components 
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The transformed data matrix                                      (3.14) 

The derived latent vectors or principal components are determined by multiplication of the 

scaled input data with the eigen vectors as explained below in Equation 3.15:                                                                                  (3.15) 

Similarly the second row of transformed data are determined by carrying out the above 

computation with the second row of input data i.e              

The first principal component extracted in a PCA accounts for a maximum amount of 

total variance in the observed variables. The second component accounts for a maximum 

amount of variance in the data not accounted for by the first component. In this manner 

each component accounts for a maximum amount of variance in the observed variable that 

was not accounted for by the preceding component and therefore is uncorrelated with all 

the preceding components. PCA proceeds with each new component accounting for 

progressively smaller amount of variance.  

If there is significant correlation existing among some of the input variables, the last 

few PCs will account for very negligible amount of total data variance and hence can be 

ignored without much loss of information. Therefore, finally M number of input variables 

can be reduced to P number of principal components where P<M. The number of principal 

components P is determined by constructing a table of principal components versus 

cumulative variance or a scree plot (principal components vs variance) and P is decided to 

be the value upto which the total accounted variance is around 85% to 90 % or more. The 

initial N×M original data values are finally reduced to a modified input dataset of 

dimension N×P.  



Methodology 

 

53 

3.3 Design of Training Set  

Proper selection of the samples for training and validation is a crucial step in data-

based model development (Rajer-Kanduč et al., 2003) and effective modeling requires the 

training set to be a proper representative of the entire dataset. One approach of dividing 

the dataset into training and validation subsets is random selection. Random selection is 

simple to perform and for small datasets it may be possible to preserve the characteristics 

of the total dataset in the training subset. However, for large datasets, method of random 

selection does not guarantee that the training set obtained is an appropriate reflexion of the 

entire dataset and moreover it may give rise to extrapolation problems (i.e. samples at the 

boundaries may not be included in the training set). This problem can be addressed by 

following a structured subset selection technique. While structured sampling methods have 

been quite popular for modeling in the field of chemometrics, most of the industrial 

processes modeling studies have been based on random selection so far and the method of 

data splitting has not received the due attention. There have been only limited applications 

(Dufour et al., 2005) for soft sensor development of industrial processes.  

In the literature, the method proposed by Kennard and Stone (1969) has been reported 

to perform better than other subset selection techniques of Kohenen self organizing maps 

and D optimal design (De Groot et al., 1999, Rajer-Kanduč et al., 2003).  Therefore, in 

this work, the performance of Kennard-Stone algorithm was compared with that of 

random selection and another popular statistical method known as the DUPLEX 

algorithm. The code for implementation of the two subset selection techniques were 

adopted from freely available TOMCAT toolbox (Daszykowski et al., 2007). 
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3.3.1 Random Selection 

For random selection 79 random values (corresponding to sample numbers) were 

chosen in the range of 1 to 158 using 'Multiplicative lagged Fibonacci generator' algorithm 

available in MATLAB.  

3.3.2 Kennard-Stone Algorithm 

The steps involved in Kennard-Stone algorithm are outlined below (Kennard and 

Stone, 1969): 

 Select the two most distant objects by measuring the Euclidean distance 

between every two samples. 

 For the remaining samples, choose the ones that have the shortest Euclidean 

distances from the two chosen samples and select the one with the maximum 

distance. Include this sample in the training set. 

 Repeat the procedure till the desired number of training samples are selected. 

This algorithm results in sample selection from all parts of the data space for non-

homogeneous distributions (Feudale et al., 2002). 

3.3.3 DUPLEX Algorithm 

The steps involved in DUPLEX algorithm are outlined below (Snee, 1977). 

 Select the two most distant objects by measuring the Euclidean distance between 

every two samples and include in the training set. 

 In the remaining data, include the pair of objects with maximum distance in the 

validation set. 

 Identify the object with maximum distance from the two points of training set, 

include in the training set. 

 Identify the object with maximum distance from the two points of validation set, 

include in the validation set. 
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 Proceed till all the objects of the original set are assigned to either the training or 

the validation set. 

3.4 Statistical Modeling 

After the initial activities of data cleaning followed by separation of the total dataset 

to training and validation datasets, the next step for soft sensor designing is development 

of data-based process models. The data-based process models may either be statistical or 

be based on the methods of soft computing. The following statistical models were 

developed in this research work. 

3.4.1 Linear Regression Model 

In linear regression models, the output is modeled as a linear combination of (not 

necessarily linear) functions of the inputs. The generalized form of such a model takes the 

form:                                                         (3.16) 

Depending on the nature of the function   the linear regression models can be simple 

linear additive models or more complex polynomial models. In this work, linear additive, 

principal component regression and quadratic response surface models were developed for 

the two processes. 

The structure of linear additive model for a single output and three input system is 

expressed as:                                                    (3.17)  

The structure of a quadratic response surface model for the same process is given as:                                                                                                             (3.18) 
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The structure of the principal component regression model is exactly the same as 

linear additive model except the fact that the input variables are the chosen principal 

components instead of the actual process variables. 

The parameters of the regression models i.e. the regression coefficients were 

determined using the method of least sum of squared error criterion. As per this criterion 

the coefficients are evaluated as:                                       (3.19) 

Where   is the row vector consisting of the regression coefficients  . 

It may be noted that if a constant or bias term is added in the equations mentioned 

above then a column of 1s must be added in the beginning of the input data matrix. That 

means if a dataset has values for M number of variables and N number of observations, 

then the dimension of the input data matrix   is N×(M+1) instead of N×M. 

3.4.2 Support Vector Regression Model 

The support vector machine (SVM) technique, which was initially proposed in the 

mid 1990s for carrying out classification tasks (Cortes and Vapnik, 1995) was soon 

extended to solve regression or function approximation problems (Vapnik et al., 1997). 

The SVM technique used for non linear regression is known as support vector regression 

(SVR).  

The SVR is based on structural risk minimization unlike empirical risk minimization 

(involves minimization of certain model performance index such as mean of absolute error 

or root mean squared error) commonly used for other  statistical or ANN based modeling. 

The structural risk minimization principle involves determination of a function      that 

has at most  deviations from target values for all sets of training data.  The loss function 

parameter  represents the radius of a tube around the regression function. This tube is 

known as error insensitive zone. 
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The non-linear mapping is done by non-linear transformation of the inputs to a high 

dimensional feature space (similar to input to hidden layer projection in feed-forward 

neural networks) followed by linear correlation of feature space terms with the output. A 

complete presentation of SVR theory and associated derivations can be found in books 

written by Vapnik (1998) and Cristianini & Shawe-Taylor (2000). Only the important 

modeling equations will be outlined here. 

SVR is based on estimation of the function                                (3.20) 

Here,      represents the non linear transformation of the input vector to high 

dimensional feature space satisfying the Mercer’s condition (Mercer, 1909),                      where   is the kernel function,   is the weight vector and   is 

bias value. 

The various types of valid kernel functions (satisfying Mercer’s condition) are linear, 

polynomial, Gaussian radial basis function (RBF), exponential RBF, sigmoid and splines 

(Gunn, 1998). The commonly used Gaussian RBF kernel has the form: 

                                                   (3.21) 

          are i
th

 and j
th

 input training value and   is the width of the RBF kernel. 

Based on the kind of optimization function used, the two types of SVR methods in use are 

known as the standard SVR and the least-square SVR (LS-SVR). In this work, both 

standard and least square SVR models were developed for the clinker grinding process. 

The theoretical details of the two methods are presented below: 

3.4.2.1 The Standard SVR 

The standard SVR technique uses error insensitive loss function and inequality 

constraints. The primal optimization function in standard SVR method is given as: 

Minimize                                                 (3.22) 



Methodology 

 

58 

Subject to:                                                                          (3.23) 

Here, C is known as the penalizing factor or regularization parameter that controls the 

tradeoff between model complexity and training errors i.e. it determines the extent to 

which errors beyond  are tolerated.             are positive slack variables defined by                                                              (3.24) 

The above primal optimization problem is more readily solved in its dual formulation 

by the introduction of Lagrange multipliers           . The values of the Lagrange 

multipliers are determined by solving the dual optimization problem using Quadratic 

Programming (QP). Once            are determined, the optimal weights of the original 

function (x) are computed as follows:                                          (3.25) 

And the optimal bias is determined as                                           (3.26) 

The solution of the dual problem is given by:                                 (3.27) 

3.4.2.2 The Least Square SVR (LS-SVR) 

The least squares SVR is a modification of the standard SVR that uses a quadratic 

(least square) loss function and equality constraints. The advantages of LS-SVR over 

standard SVR is, reduced complexity and computational requirement because instead of 

solving a quadratic optimization problem, the technique involves solution of a set of linear 

equations. 
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The optimization problem of LS-SVR is given below (Suykens and Vandewalle, 1999): 

Minimize                                                (3.28) 

Subject to:                                        (3.29) 

The dual optimization problem for LS-SVR is given below: 

Minimize                                                               (3.30) 

The optimal solution to the above problem is obtained as below: 
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                      (3.31) 

The final LS-SVR model for function approximation is obtained as:                                            (3.32) 

3.4.2.3 Tuning of SVR Hyper-Parameters 

A successful SVR model largely depends on proper selection of regularization 

parameter (C), kernel parameter () and error bound  for standard SVR and regularization 

parameter (C), kernel parameter for LS-SVR. A very high value of C results in only 

empirical risk minimization whereas very small C value will under fit the training set. As  

decreases, the number of support vectors increase which subsequently increases the model 

complexity. Similarly, very low value of  results in better fitting of the training data and 

poor generalization whereas high values lead to poor approximation (Wang et al., 2003).  

Proper selection of SVR hyper-parameters is an optimization problem for which no 

single method has been universally accepted. The various methods proposed in the 

literature include gradient descent algorithm for minimization of generalization error 
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(Chapelle et al., 2002), grid search combined with cross validation method (Hsu et al., 

2003), analytical method (Cherkassky and Ma, 2004), genetic algorithm (Huang and 

Wang, 2006), particle swarm optimization (Yuan and Chu, 2007, Lin et al., 2008), 

simulated annealing (Lin et al., 2008) and ant colony optimization (Zhou et al., 2012).  

Gradient descent method suffers from the drawback of getting trapped in local 

minimum (Li and Tan, 2010). A major drawback associated with the evolutionary 

computation approaches is the need of prior knowledge of some algorithm parameters in 

order to perform the optimization. Values of these parameters significantly affect the final 

result of the optimization algorithm. While one can always ensure optimum values in grid 

search method by increasing the search domain,  significant computation is required with 

increase in search domain and the number of SVR hyper parameters. Grid search is 

difficult to perform, once the number of parameters exceeds two (Chapelle et al., 2002). 

This is a major advantage of LS-SVR over standard SVR enabling the designer to conduct 

grid search based optimization for LS-SVR hyper-parameters. 

The proposed approaches for SVR hyper-parameter tuning  are based either on cross 

validation technique (n-fold or leave one out) (high computational effort) or use of a 

separate validation set. The n-fold cross validation involves dividing the data to n number 

of subsets, perform training on n-1 subsets and test with the left out subset and determine 

the error, repeat these steps with each of the n subsets and finally combine all the errors 

generated with the test subsets. The optimal set of hyper-parameters is the one that 

produces least of these errors. The method of leave one out (LOO) cross validation method 

is even more rigorous where n is equal to the number of training observations so that for 

each set of hyper-parameters, model development is done the number of times equal to the 

number of observations.  
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In this work, for design of standard SVR model, grid search with cross validation 

method was adopted. However, to reduce the computational burden, the number of 

parameters for grid search were limited to two ( and ) and the parameter C was decided 

in priori using the analytical expression proposed by Cherkassky and Ma (2004) which is 

proposed as mentioned below:                                              (3.33) 

The standard SVR model was developed using one of the widely used MATLAB SVM 

Tool box (Gunn, 1998). 

For design of LS-SVR, grid search operation with criterion of error minimization on 

the validation set was adopted for the LS-SVR hyper parameter selection. The LS-SVR 

model was developed using the freely available MATLAB toolbox LS-SVMlab 

(Pelckmans et al., 2002). 

3.5 Artificial Neural Network Modeling 

A neural network model requires a complete input – output dataset. The theoretial 

details of artificial neural network can be found in standard text books such as 

Samarasinghe (2007). 

3.5.1 Back Propagation Neural Network (BPNN) 

The back propagation neural network (also known as multilayer perceptron) is a kind 

of feed-forward neural network consisting of an input layer, an output layer and one or 

more hidden layer neurons as shown in the Figure 3.2.  

The back propagation algorithm has been the most popular neural network design 

algorithm till date. Neural network models using back propagation algorithm has been 

developed for estimation of: PET viscosity in polymerization process (Gonzaga et al., 

2009), pollutant emission from cement kiln (Marengo et al., 2006), process output 

variables of water desalination plant (Al-Shayji, 2002), water content of natural gases 
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(Mohammadi and Richon, 2007), crude oil viscosity (Elsharkwy and Gharbi, 2000), river 

flow (Kisi and Cigizoglu, 2007), various polymer properties (Roy et al., 2006), enzyme 

activity and biomass concentration (Linko et al., 1997).  

Figure 3.2: Feed forward neural network structure 

In a BPNN model, the number of neurons in the input layer and output layer are same 

as number of input variables and output variables of the process respectively. Choosing 

the number of hidden layers and number of neurons in each hidden layer are the most 

critical decisions to successful design of BPNN. Unfortunately, there is no universal 

method to determine the optimum network topology and these are mostly decided based 

on a trial and error procedure so as to produce the least error (Mohammadi and Richon, 

2007; Gonzaga et al., 2009). Usually a single hidden layer is used to solve functional 

approximation problems and if the performance goal is not attained in a single hidden 

layer gradually the number of hidden layers can be increased. The more the number of 

hidden layers the more is the complexity associated and large training time required. Few 

number of neurons in the hidden layer leads to poor model accuracy whereas many 

number of neurons result in model over fitting and poor generalization.  
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3.5.2 Radial Basis Function Neural network (RBFNN) 

Multilayer feed forward networks with sigmoidal activation functions have been 

proven to be universal approximators which are mostly trained by back propagation 

method using gradient descent algorithm.  However, the disadvantages of back 

propagation neural networks are: excessive computational or training time due to use of 

non-linear optimization techniques and possibility of getting trapped in local minima 

resulting in sub-optimal solution (Chen et al., 1991; Gurumoorthy and Kosanovich, 1998; 

Samanta, 2010).  

Radial basis function networks are a class of feed-forward supervised networks. It is a 

three layer network consisting of an input layer, a hidden layer and an output layer with 

linear parameters. Non-linear basis functions are used at the hidden layer neurons. A 

centre is associated with every hidden layer node. Hidden layer nodes calculate the 

Euclidean distance between the centre and the input vector which is sent as input to the 

basis function.  The different types of basis functions used are (Chen et al., 1991): 

Thin plate spline function:                                    (3.34)             

Gaussian function:                                                   (3.35) 

Normalised Gaussian function                         
                                           (3.36) 

Multiquadratic function:                                                 (3.37)    

Inverse multiquadratic function:                                                (3.38)   is the scaling parameter or width which controls the spread of the function around the 

centre.  

Out of the above functions, the Gaussian type is mostly used as activation function for 

hidden layer nodes.  
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For an input vector  , the network output is given as:                                                 (3.39)               is the weight associated with i
th

 RBF centre and        is the Euclidean distance 

between centre    and the input vector  . 

The linear parameters used in RBF networks result in faster training and less 

convergence problems in comparison to BP neural networks. Also RBF networks have 

better approximation ability with simpler network architecture as compared to Multi layer 

perceptrons (Sarimveis et al., 2002). Selection of an appropriate radial basis network 

requires careful selection of basis function and their associated parameters (centres and 

widths). The performance of an RBF network largely depends on the centres chosen. As a 

strict interpolator the network must have as many RBF centres as the training data. 

However, this results in a large structure when the data are plenty. Moreover, the large 

model structure results in over-fitting of the training data and poor generalisation 

capability of the network. On the other hand use of very less number of centres results in 

under fitting of the data (Ghodsi, 2003). 

The centres and widths are obtained using k-means clustering algorithm or density 

estimation methods.  This involves classifying the input data into k number of clusters. 

The cluster centres are determined by minimising the total squared error incurred in 

representing the dataset by k cluster centres. However, the drawbacks of this standard 

algorithm are that for determining the hidden nodes many passes of all training data are 

required resulting in large computational time for large dataset (Sarimveis et al., 2002). 

Moreover, though this method has faster training but results in local optimum yielding 

suboptimal models (Marinaro and Scarpetta, 2000; Li et al., 2004; Billings and Zheng, 

1995). The second category makes use of algorithms to determine the network structure as 

well as the parameters. Some of the proposed algorithms are: orthogonal least squares 
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algorithm (Chen et al., 1991; Samanta, 2010), genetic algorithm (Billings and Zheng, 

1995), individual training of each hidden unit based on functional analysis, fuzzy partition 

of input space followed by linear regression (Sarimveis et al., 2002).  

In the present work, a two-layered feed-forward neural network was constructed. The 

first layer has radial basis neurons with Gaussian activation function as given in equation 

to perform the non linear transformation of the input signal. The second layer has linear 

neurons which produce linear outputs. Orthogonal least squares algorithm was used for 

designing of the RBF neural network model. The following iteration is performed until the 

network's mean squared error falls below goal or the maximum number of neurons are 

reached: 

     1) The network is simulated with no neurons in the first layer. 

     2) The input vector with the greatest error is determined. 

     3) A radial basis neuron is added with weights equal to that vector. 

     4) The output layer weights are redesigned to minimize error. 

3.5.3 Generalized Regression Neural Network 

Generalized regression neural network (GRNN) which was first proposed by Specht 

(1991) is a powerful tool for non linear function approximation. In the general regression 

algorithm, the form of input – output dependence is expressed as a probability density 

function determined from the observed data. The algorithm has the form (Specht, 1991): 

                                                                                (3.40) 

Di
2
, the Euclidean distance between two input vectors is given as:                                                    (3.41) 
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The regression equations can be implemented in a neural network like structure which is 

then known as GRNN.  

A typical GRNN has four layers: an input layer, a pattern layer, a summation layer and the 

output layer as shown in the figure below.  

 

Figure 3.3: Generalized regression neural network structure 

Input layer has the same number of neurons as the number of input variables and 

pattern layer has the same number of neurons as the number of training cases. Pattern 

neurons compute a distance  which is the square of differences across all weights as 

described in Equation 3.41.  

The activation function associated with the pattern neuron is exponential and can be 

written as             .  

Here                                                       (3.42) 

The choice of smoothing function or spread parameter  is critical to the successful 

design of a GRNN. A large value of  results in more generalization and smoother fitting 

whereas a low value results in more accurate fitting and poor generalization. The method 
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suggested for optimum selection of  is the hold out or leave one out method (Specht, 

1991; Goh, 1999).  

The summation neurons calculate the sum of weighted inputs from pattern layer. 

There have been some applications of GRNN modeling for estimation of crude oil 

viscosity (Elsharkwy and Gharbi, 2001), river flow (Kisi and Cigizoglu, 2007), polymer 

property (Roy et al., 2006), soil quality (Goh, 1999), river sediments (Cigizoglu and Alp, 

2006), coal grindability (Peisheng, 2005), plasma process parameters (Kim et al., 2009), 

water quality (Palani et al., 2008), compressive strength and elasticity modulus (Dehghan 

et al., 2010), NOx emission (Zheng et al., 2008).  

3.6 Fuzzy Inference System (FIS) 

The basic structure of a general fuzzy inference model is shown in Figure below: 

Figure 3.4: Fuzzy inference system 

The important steps in any fuzzy system design are: fuzzification of the actual process 

variable data, construction of the rule base and finally defuzzification of the fuzzified 

output to obtain the actual output value. Fuzzification involves transformation of the real 

process values to a particular fuzzy linguistic variable with appropriate membership value 

in the range 0 to 1. The most common membership functions in use are triangular, 

trapezoidal or gaussian. The fuzzified output is determined by composition of fuzzified 

inputs and the appropriate rules from the rule base. The commonly used composition 

methods are min-max or max product composition. Finally the fuzzy output value 

produced for a particular observation has to be defuzzified in order to get the actual 

process output value. Commonly used defuzzification methods are (Jang et al., 1997): 
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centroid of area, bisector of area, mean of maximum, weighted average, smallest of 

maximum and largest of maximum.  

In the present work, both Mamdani and Sugeno type fuzzy inference models were 

developed for the two industrial processes. Five linguistic variables were used for each 

process variable (input or output for Mamdani model and inputs for Sugeno model). The 

linguistic variables are listed below along with their ranges: 

VS: very small [0 - 0.2] 

S: small [0.1 - 0.45] 

M: medium [0.3 - 0.65] 

L: large [0.5 - 0.85] 

VL: very large [0.7 - 1] 

A combination of triangular and trapezoidal membership functions (MF) are used. 

Triangular function is applied to the variables of 'very small' and 'very large' category and 

trapezoidal function for the other types of linguistic variables as described above. The 

mathematical expressions for triangular and trapezoidal membership function are 

presented below in Equations 3.43 and 3.44 respectively (Jang and Sun, 1997).                                        (for triangular MF)                  (3.43) 

                                          (for trapezoidal MF)      (3.44)   is the fuzzy membership value for the inputs. The parameters a, b and c (a<b<c) 

represent the three corners of the triangular membership function and a,b,c,d (a<bcd) 

represent the four corners of the trapezoidal membership function.  

For each data sample, the antecedent of the corresponding fuzzy rule has inputs equal to 

the number of process inputs variables. Logical AND operator is used to obtain the result 

of the rule as mentioned below: 
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 )(),...,(),(min)( 21 Mxxxx    (for Mamdani FIS)                               (3.45) 

 )(),...,(),()( 21 Mxxxproductx    (for Sugeno FIS)         (3.46) 

The fuzzified output is obtained by the min-max composition as shown below: 

y = x o R                          (3.47) 

here, y represents the fuzzified value of the output, x is the vector of fuzzified values of the 

inputs, R is the set of rules. The symbol 'o' represents composition. 

For a particular set of inputs there may be a possibility of application of multiple rules 

producing multiple number of fuzzy outputs. Aggregation refers to combination of 

different fuzzy output membership values to produce a single fuzzy output. This is a 

maximum method which involves fuzzy union of all possible fuzzy outputs. Centroid and 

weighted average method mentioned below were used as the method of defuzzification for 

Mamdani and Sugeno type FIS respectively. 

Centroid method: 
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Weighted average method: 
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                    (3.49) 

out  is the fuzzy membership value for the output 

Unlike Mamdani method, the output in a Sugeno type model is either linear function 

of the inputs or constant following which the model is known as either a first order Sugeno 

fuzzy model or zero order Sugeno fuzzy model. 
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3.7 Hybrid Modeling 

3.7.1 PCA-BPNN 

In a pure BPNN modeling the inputs to the neural network modeling are the actual 

process variables. In the combined approach of PCA-BPNN modeling, the inputs to the 

neural network model are the principal components or latent variables which are the linear 

combinations of actual variables obtained by conducting PCA on the input data matrix. 

The number of modified inputs (principal components) are decided using the method 

described in Section 3.2. 

3.7.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

In the basic fuzzy inference system, the membership functions are chosen arbitrarily. 

However, the shape of the membership functions depends on parameters associated with 

it, and changing these parameters change the shape of the membership function. 

Neuro fuzzy inference systems are basically kinds of adaptive network models which 

are functionally equivalent to fuzzy inference models. The network model consists of 5 

layers. Based on the input value appropriate membership value is generated from the first 

layer. The output from a node in layer 2 is the product of all membership values reaching 

that node. In other terms the output from a particular node in second layer is the firing 

strength from that node.  A particular node in the 3
rd

 layer calculates the ratio of the 

individual firing strength to the sum of all rules firing strength. Outputs of this layer are 

called normalized firing strengths. Every node in the 4
th

 layer is an adaptive node. The 

outputs produced from the nodes of 4
th

 layer are equal to the product of normalized firing 

strength received and the function relating the output and the inputs. The parameters 

associated with the functional relationships are called as consequent parameters. Nodes in 

the final layer calculate the overall outputs as the summation of all input signals.  
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Number of nodes in the first layer will be equal to the number of fuzzy linguistic 

variables created for all input variables. Similarly number of nodes in layers 2, 3 and 4 are 

equal to the number of fuzzy if-then rules. The membership function parameters are 

optimized using either a back propagation algorithm alone or a hybrid algorithm (a 

combination of least-squares and back propagation gradient descent method). The 

algorithm details can be found in Jang (1993).  

In process industries, ANFIS modeling approach has been investigated for estimation 

of wastewater effluent quality (Perendeci et al., 2008; Pai et al., 2009). In particulate 

studies ANFIS has been applied for prediction of weight of the residual granule (WRG) 

values in drying process (Azadeh et. Al., 2012). This WRG is an indirect indication of the 

particle size. However the potential of ANFIS technique for direct estimation of particle 

size has rarely been explored. 
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_______________________________________________________________________________ 

Chapter - 4 

Design of Soft Sensors for Quality Monitoring in Cement 

Manufacturing Processes 

_______________________________________________________________________________ 

The various techniques of soft sensor development described in Chapter 3 were 

applied for product quality monitoring in cement plant. Two processes were considered in 

the cement plant, a chemical process (pyroprocess) where the raw materials are converted 

to clinker and a physical process (cement grinding) where the clinker is converted to 

finished product i.e. cement. Description of these two processes along with the soft sensor 

development procedure is described in the following sections. 

4.1 Soft Sensor Development for Clinker Grinding Process 

4.1.1 Process Description 

In the clinker grinding process, clinker coming from rotary cement kiln is ground in 

the cement mill along with a small amount of gypsum and/or fly ash. A schematic diagram 

of the vertical roller mill used for clinker grinding is shown in Figure 4.1. 

Vertical roller mill (VRM) is the most important constituent of the grinding process 

which consists of a grinding table with grinding rollers fitted on the table periphery. A 

minimum clearance is maintained between the table top surface and the grinding roller 

surfaces. The table rotates with certain fixed rpm about the axis passing through the centre 

and perpendicular to it. The material (clinker, gypsum and/or fly ash) is discharged from 

the top directly onto the centre of the grinding table. Due to centrifugal action, the material 

is spread outward and gets crushed by coming in between the table top surface and roller 

surface. The grinding mechanism in the VRM is shown in Figure 4.2. 
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Air 

Vertical Roller Mill 

Clinker+Gypsum(+Fly ash) Classifier 

Bag House 

Hot Air Flow 

Cement to Silo oversize 

the use of bucket elevators. The cement is separated from the carrier gas in the bag house 

and sent to the cement silo for subsequent packaging and distribution. The entire grinding 

process flow diagram is presented in Figure 4.3. 

 

 

 

 

 

 

 

 

 

Figure 4.3: Clinker grinding process in cement plant 

4.1.2 Data Collection and Treatment 

The quality parameter i.e. cement fineness is determined by offline laboratory 

analysis in terms of Blaine number which is defined as the surface area per unit mass 

(expressed in the units of m
2
/kg). High Blaine number indicates more fineness of the 

cement. The key factors affecting the output quality from the mill are: the incoming flow 

rate of the material i.e. clinker, gypsum and/or fly ash, air flow rate through the mill and 

the rpm maintained in the classifier. Higher inflow rate of clinker results in less efficient 

grinding and therefore less cement fineness. Similarly higher air flow rate results in more 

amount of ground material forced through the classifier thereby decreasing the cement 

fineness. A higher classifier rpm does not allow coarse particles to pass through it and 

results in increase of cement fineness.   



Design of Soft Sensors for Quality Monitoring in Cement Manufacturing Processes 

 

75 

It can be noted that the rotational speed of the grinding table and the hardness of the 

inlet clinker are also potential input variables. However, the process study and the 

consultation with plant operators revealed that these two parameters are maintained 

constant during the grinding operation. Some may argue that if the model is built assuming 

constant properties (hardness) of the inlet material, the model performance will be 

unreliable when there is a change in this property. While this may be true, in case of 

cement grinding process, the inlet material cement clinker is received from the kiln after 

proper quality testing. Therefore, any deviation of clinker from the prescribed quality at 

the kiln output will lead to rejection of the clinker instead of being sent to the grinding 

mill. Therefore, based on these reasoning, online data pertaining to the aforementioned 

three input process variables were collected from plant database history which 

significantly affect the mill output i.e. cement fineness. Data for cement fineness were 

collected from the plant laboratory where the fineness is measured every one hour by 

taking ground cement sample from the mill. Figure 4.4 shows the raw input data as 

collected from the plant database and Table 4.1 shows the characteristics of the raw data 

as received from the plant. 

Outliers are more likely to occur in the dataset in which values are produced by 

installed online hardware sensors than in the laboratory data because of the possible 

scenarios of sensor malfunctioning or plant shut down. The abnormally high values and 

standard deviation of the inputs variables (Figure 4.4 and Table 4.1)  indicate the presence 

of outliers in the raw data received from the plant. The three popular univariate outlier 

detection techniques described in Section 3.1.2.1 were used for data preprocessing. 
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Figure 4.4: Raw input data for cement mill 

 

onitoring in Cement Manufacturing Processes 
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Table 4.1: Characteristics of raw data as received from the cement plant 

VARIABLES MINIMUM MAXIMUM AVERAGE 
STANDARD 

DEVIATION 
SKEWNESS KURTOSIS 

Inputs 

Hot air 

flow 
0 703517 660915.99 101843.158 -5.516 32.78 

Classifier 

RPM 
1.375 1114.133 896.86 162.834 -1.929 9.405 

Clinker 

inflow 
0 239.828 180.723 38.344 -2.693 12.794 

Output 
Cement 

Blaine 
266 385 338.79 34.268 -0.624 1.722 

Under each technique, the detected outliers were removed and the resulting missing 

values were imputed by using linear interpolation or extrapolation with the neighborhood 

values. The performance of the three techniques were assessed by analyzing the 

descriptive statistical results of the resulting datasets. The clean data resulted from 

application of Hampel's method were subsequently used for modeling. The reason for 

choosing the Hampel's method are presented in Chapter 5. 

For the purpose of data-driven soft sensor design, the input and output datasets should 

be of the same length. While a total of 281 values were obtained for the input variables, 

158 values for cement fineness were obtained from the laboratory for the same period. 

Therefore, to maintain the dimensional uniformity between the input and output, 158 sets 

of input variables were retained or calculated by linear interpolation corresponding to the 

time instants when the laboratory information was available. The resulting sets of 

modified data are shown in Figure 4.5. After outlier detection, removal and missing value 

imputation, the whole dataset was normalized in the range 0 to 1 using Equation 3.9. 

Figure 4.5 represents the total number of available datasets for the three input and one 

output variables. This total dataset was split equally into a training subset and a validation 

subset each having 79 number of observations using three different techniques of random 

selection, Kennard-Stone (K-S method) maximal intra distance criterion and the duplex 

method. Out of the three different pairs of subsets, the pair obtained using the K-S method 
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was subsequently used for the development of different empirical and hybrid models. The 

reasons for using K-S method of selection over the other two methods are provided in 

Section 5.2.  

For developing principal component regression and PCA-BPNN models, the three 

input variables were transformed to three principal components (latent variables) by 

conducting PCA on the input data matrix (The procedure is described in Section 3.2).  

4.1.3 Soft Sensor Model Development 

Simple methods of linear regression, quadratic regression and more recently proposed 

technique of support vector regression techniques were applied for statistical model 

development. While in linear model the output is expressed as a linear combination of the 

inputs, in quadratic model the output is expressed as a combination of the inputs, squared 

inputs and the interaction terms. The parameters of the regression models were determined 

using least square error optimization method (Equation 3.19). The two statistical models 

obtained are produced below: 

Linear regression model: 
321 3195.0054.110143.013563.0 xxxy ++−−=                     (4.1) 

Response surface model: 

 

323121

2

3

2

2

2

1321

3748.008.092911.0256.0

144.075615.0215.04708.11507.13933.0

xxxxxxx

xxxxxy

++−+

−−−++−=
                 (4.2) 

In the above equations, ��, �� and �� represent  hot air flow rate through the mill 

(Nm
3
/h), RPM maintained in the classifier and the clinker inflow rate (tons/h) to the mill, 

respectively. Here, y represents the grinding process output i.e cement fineness (m
2
/kg). 
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re 4.5: Final input-output data for modeling of cement mill 

onitoring in Cement Manufacturing Processes 
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For development of principal component regression (PCR) model, three principal 

components were obtained for the three actual process input variable out of which two 

principal components account for more than 80% of the total variance of the input dataset 

(Details are presented in Table 5.6, Chapter 5). Therefore, the input dimension was 

reduced from three actual input variables (��, 	��, ��) to two principal components or latent 

variables (��	and	��). The least square regression model equation with the two latent 

variables is given below: 

Principal component regression model: � = 	−0.0966 + 0.758�� − 0.629��        (4.3) 

The key issue in support vector modeling is the optimal selection of the parameters C, 

ε and σ for standard SVR and optimal selection of C and σ for LS-SVR. In this work, to 

ensure best values of the parameters, grid search with cross validation method was 

adopted. However, to reduce the computational burden, the number of parameters for grid 

search were limited to two (ε and σ) and the parameter C was decided a priori using the 

analytical expression proposed in the literature (Equation 3.33).  

The error bound ε and the RBF kernel width were determined by performing grid 

search followed by cross validation on the validation set so as to produce the least error on 

both the training and validation set. The search was done first by performing a coarse grid 

search followed by a fine grid search as suggested in the literature. The ranges of values 

used for the search operation are mentioned below: 

Coarse grid search  σ = [2
-4

, 2
-2

, 2
0
, 2

2
] 

   ε = [2
-8

, 2
-6

, 2
-4

, 2
-2

]                        (4.4) 

Fine grid search σ = [2
-2

, 2
-1.875

, 2
-1.75

, 2
-1.5

, 2
-1

] 

   ε = [2
-4

, 2
-3.875

, 2
-3.75

, 2
-3.5

, 2
-3

]                      (4.5) 

From grid search, two sets of optimum SVR parameters were obtained with different 

number of support vectors as given below: 
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SVR1: [C, ε, σ] = [1.4608, 0.068157 (2
-3.875

), 0.2726 (2
-1.875

)] 

 Number of support vectors (NSV) = 45 (56.9%) 

SVR2: [C, ε, σ] = [1.4608, 0.003906 (2
-8

), 0.2726 (2
-1.875

)] 

 Number of support vectors (NSV) = 77 (97.4%). 

The purpose of choosing two SVR models are explained in Section 5.3.1 (Chapter 5). 

The parameters to be chosen for LS-SVR model are, the regularization parameter (C) and 

the kernel parameter(σ). Same grid search was performed for optimal LS-SVR hyper 

parameter selection. The domain of grid search is mentioned below: 

Coarse grid search: C = [2
-5

,2
-3

,2
-1

,2
1
,2

3
,2

5
,2

7
] 

   σ = [2
-5

,2
-3

,2
-1

,2
1
,2

3
,2

5
,2

7
]                                  (4.6) 

Fine grid search: σ = [2
-3

 - 2
-1

] and C = [2
1
 - 2

3
]                       (4.7) 

The optimal values obtained are C = 2
2.75

 = 6.72 and σ = 0.2332. 

In a feed forward back propagation neural network model, the number of nodes in the 

input and output layer is decided by process conditions. In this case there are three input 

variables of gas flow rate through the mill, solid flow rate to the mill and the classifier 

rpm. The output variable is the cement quality variable i.e. fineness values obtained from 

the laboratory. So, the important design decisions were to determine the number of hidden 

layers in the network, number of neurons to be present in each hidden layer and the 

activation function of the hidden layer neuron. Usually one or two hidden layers are used 

since increase in number of hidden layers results in increase in training time of the 

network. Therefore, one hidden layer was used. Since the entire dataset was normalized in 

the range 0 to 1, logarithmic sigmoidal activation function was used for the hidden layer 

neurons. This activation function has the form:  

������ = 	
�

(������ 	!�"# )
                                     (4.8) 
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Linear activation function was used for output layer neurons. To decide the number of 

neurons to be used in the hidden layer, networks with different number of neurons were 

created and these were trained with different back propagation algorithms. The algorithms 

that were used are: gradient descent method with momentum, resilient back propagation 

algorithm and Levenberg-Marquardt algorithm. 

For designing RBFNN, any of the basis functions given in Equations 3.34-3.38 can be 

used for the RBF neurons. The choice of the function does not play a crucial role in the 

performance of the model (Chen et al., 1991). Therefore, the simple and commonly used 

basis function, the Gaussian activation function presented in Equation 3.35 was used for 

the RBF neurons to perform the non linear transformation of the input signal. The second 

layer has linear neurons which produce linear outputs. Orthogonal least squares algorithm 

(Chen et al., 1991) which is available in MATLAB neural network toolbox was followed 

to determine the network parameters.  

The optimum scaling parameter for regression neural network was determined by 

constructing networks with different spread values and assessing their performance with 

the validation dataset (Details are presented in Figure 5.8, Chapter 5). 

The details of the three optimum neural network structures are presented in Table 4.2 

Table 4.2: Neural network model details for the clinker grinding process 

TYPE OF FEED FORWARD 

NEURAL NETWORK MODEL 
NUMBER OF NEURONS 

ACTIVATION FUNCTIONS 

USED 

BPNN (Trained by 

resilient back propagation 

algorithm) 

3 input layer neurons, 20 

hidden layer neurons, 1 

output layer neuron 

Sigmoidal in hidden layer 

and linear in output layer 

RBFNN (Orthogonal least 

square algorithm) 

3 input layer neurons, 25 

RBF layer neurons, 1 output 

layer neuron 

Gaussian basis function in 

RBF layer and linear in 

output layer 

GRNN 

3 input layer neurons, 79 

pattern layer neurons, 1 

output layer 

Gaussian function in pattern 

layer, linear in output layer 

The three neural network models developed are produced in Figure 4.6 
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Figure 4.6(a): BPNN Model for the grinding process 

 

Figure 4.6(b): RBFNN Model for the grinding process 
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Figure 4.6(c): GRNN Model for the grinding process 

The general structure of a fuzzy inference system (FIS) has been shown in Section 

3.6. The specific model structure for the clinker grinding process is shown below in Figure 

4.7. 

 

Figure 4.7: Fuzzy inference system for the clinker grinding process 

It has been mentioned in Section 3.6 that designing of a fuzzy inference model 

requires fuzzification of the actual process variable data, construction of the rule base and 

finally defuzzification of the fuzzified output to obtain the actual output value. The 

normalized values of the three inputs and the output variable were used for fuzzification. 

Both Mamdani and Sugeno type fuzzy inference models were developed for the cement 
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grinding process. Unlike Mamdani method, the output in a Sugeno type model is either 

linear function of the inputs or constant following which the model is known as either a 

first order Sugeno fuzzy model or zero order Sugeno fuzzy model. 

Five linguistic variables were used for each process variable (input or output for Mamdani 

model and inputs for Sugeno model). The linguistic variables are listed below along with 

their ranges: 

VS (very small) :[0 - 0.2] 

S (small)  :[0.1 - 0.45] 

M (medium)  :[0.3 - 0.65] 

L (large)  :[0.5 - 0.85] 

VL (very large) :[0.7 - 1] 

For Sugeno type model, 8 constant output values in the range 0 to 1 were taken as 

mentioned below: 

ES (extremely small) : 0.05 

VS (very small) : 0.15 

S (small)  : 0.25 

LM (low medium) : 0.35 

M (medium)  : 0.45 

L (large)  : 0.65 

VL (very large) : 0.75 

EL (extremely large) : 0.90 

Figure 4.8 explains the fuzzification process for one input and the output (for Mamdani 

type). 
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Figure 4.8 (a): Fuzzification of the input variable: classifier RPM 

 

Figure 4.8 (b): Fuzzification of the output variable: cement fineness 

Fuzzification of the other two inputs is same as the one shown above in Figure 4.8(a). 

The rule base was framed based on the physical understanding of the process and the 

available input - output dataset for model development. A total of 45 rules were framed for 

the Sugeno model and 63  fuzzy if-then rules were framed for the Mamdani type model.  
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layer receives exactly 3 membership values from the three different process inputs. The 

AND operator produces a single membership value from the 3 membership values. The 

outputmf layer calculates the output membership value by multiplying the input with the 

linear relationship between the inputs and the output. If multiple rules exist for a single set 

of inputs, then multiple number of output membership values are produced. The following 

layer consists of a single node (single process output) which performs the aggregation 

operation (summing of the membership values) and the defuzzification operation.  

The details of the three fuzzy inference models are produced in Table 4.3. 

Table 4.3: Fuzzy inference model details for the clinker grinding process 

MODEL DETAILS 
MODEL TYPE 

FIS (MAMDANI) FIS (SUGENO) ANFIS 

Inputs 3 3 3 

Outputs 1 1 1 

No of input MFs [5 5 5] [5 5 5] [3 3 3] 

No of output MFs 5 9 27 

No of rules 63 45 27 

AND method Minimum Product Product 

Aggregation method Maximum Sum Sum 

Defuzzification 

method 
Centroid Weighted average 

Weighted 

average 

Input MF type 
Triangular and 

trapezoidal 

Triangular and 

trapezoidal 
Triangular 

Output MF type Trapezoidal Constant Linear 

The PCA-BPNN model was constructed using the values of these two latent variables 

and the corresponding actual output values. The details of the optimum PCA-BPNN model 

is presented in Table 4.4. 

Table 4.4: PCA-BPNN model details for the clinker grinding process 

Number of nodes in input layer 2 

Number of hidden layers 1 

Number of nodes in hidden layer 35 

Number of nodes in output layer 1 

Activation function for hidden layer neurons Logarithmic sigmoidal 

Activation function for output layer neuron Linear 

Training algorithm Gradient descent with momentum 
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4.2 Soft Sensor Development for Rotary Cement Kiln 

4.2.1 Process Description 

The main raw material for cement production is limestone (CaCO3). The limestone is 

mixed in a proper ratio with ores of iron oxide, aluminum oxide and silica (clay). The 

mixture known as raw mix or raw meal is subsequently ground to fines in a raw mix 

grinder (usually a vertical roller mill used for this purpose). The ground raw meal then 

enters the clinker production process. The conversion of raw mix to clinker is known as 

pyroprocessing. The schematic diagram of the pyro-process is presented in Figure 4.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Process flow diagram for clinker production 
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The conversion of raw mix to clinker takes place through four stages: preheating, 

calcining, sintering and cooling. The preheating of the raw mix is accomplished in a 

multistage cyclone preheater. These cyclones are arranged in a tower above the feed end 

of the kiln. The raw mix enters into the inlet of the uppermost cyclone where the gas 

temperature is of the order of 500°C and during its movement sequentially and stagewise 

downwards, it gets heated by coming in contact with the hot flue gas coming from the 

kiln.  Finally, the bottom cyclone discharges into the kiln itself. During this preheating 

operation the temperature of the raw mix powder rises to about 850°C. The calcination 

process is already initiated by the time the raw mix enters the kiln. Calcination process is 

described by the following reaction: 

CaCO3 → CaO+CO2   

In modern cement plants, before entry to the kiln, a precalciner (additional 

combustion process) is used to augment the calcination process to decrease the processing 

load in the kiln. Bulk of the calcination reaction as described above is achieved during the 

vertical downward movement of the raw meal in the multistage cyclone preheater and in 

the precalciner. 

In the kiln, the temperature of the feed further increases to around 1500
0
C. At this 

high temperature, the CaO formed due to calcination, reacts with  other components of 

raw mix to form complexes as mentioned below (Hewlett, 2003): 

2CaO+SiO2  → Ca2SiO4 (Dicalcium silicate, CCN: C2S or belite) 

C2S+CaO → Ca3SiO5 (Tricalcium silicate, CCN: C3S or alite) 

3CaO+Al2O3 → Ca3Al2O6 (Tricalcium aluminate, CCN: C3A or aluminate) 

4CaO+Al2O3+Fe2O3 → Ca4Al2Fe2O10 (tetraracalcium  aluminoferrite, CCN: C4AF or 

ferrite) 
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Here, CCN stands for 'Cement Chemistry Notation'. According to this notation the various 

oxides are denoted as below: 

CaO → C; SiO2 → S, Al2O3 → A and Fe2O3 → F 

Finally the hot clinker coming out from the kiln is cooled by contacting with air in the 

cooler. The product i.e. clinker quality is determined by offline laboratory analysis usually 

with a sampling period of 1 h. Subsequently based on the clinker free lime (f-CaO) content 

information received from the quality control laboratory, the kiln operator adjusts the 

various kiln operating parameters to maintain the free lime content within the prescribed 

limit. While free lime (f-CaO) is the single most important quality parameter for cement 

clinker, other quality parameters such as alite, belite, aluminate, ferrite, LSF, AlM and 

SiM also determine the quality of cement as mentioned in Section 2.3.2.  

4.2.2 Data Collection and Treatment 

Table 4.5 presents different input and output variables considered for modeling. 

Table 4.5: Input and output variables for rotary cement kiln model 

INPUTS OUTPUTS 

Raw meal quality Kiln operating variables Clinker quality 

SiO2 

Al2O3 

Fe2O3 

CaO  

Kiln feed rate 

Kiln RPM 

Raw meal inlet temperature  

Coal feed rate 

Kiln current 

Free lime (f-CaO) 

Lime saturation factor (LSF) 

Silica modulus (SiM) 

Alumina modulus (AlM) 

C3S (Alite) 

C2S (Belite) 

C3A (Aluminate) 

C4AF (Ferrite) 

The quality variables of raw meal quality and clinker quality are measured by offline 

laboratory analysis whereas the kiln operating parameters are measured online. Figure 

4.11 shows the values of the kiln parameters as received from the plant over a period of 

one month and Table 4.6 presents the statistical characteristics of the raw data. 
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Table 4.6: Statistical characteristics of raw kiln data 

KILN OPERATING VARIABLES RANGE 
STANDARD DEVIATION 

(σ) 

SKEWNESS 

(γ) 

KURTOSIS 

(κ) 

Coal feed rate (tons/h) 16778 495 33.8 1142 

Kiln current (Ampere) 14465 413 32.9 1105 

Feed inlet temperature (0C) 99135 6268 11.26 145 

Kiln feed rate (tons/h) 556.24 80.5 -3.8 17.6 

Kiln RPM 4.5 0.8 -3.1 13 

It can be observed that the occasional peaks appearing in the plots are the outlying 

observations arising due to sensor malfunctions. Presence of outliers in the raw data is 

further confirmed in Table 4.6 which shows abnormally high values of range, standard 

deviation, skewness and kurtosis for the 5 kiln operating variables. These values must be 

properly detected and removed before using the data for model development. Both 

univariate and multivariate approaches for outlier detection were carried out. 

The three univariate outlier detection techniques of 3 sigma method, box plot method 

and Hampel's method (described in Section 3.1.2.1) were applied to each variable dataset. 

Subsequently, the detected outliers are removed and the resulting missing values were 

imputed by linear interpolation. The statistical characteristics of the resulting datasets were 

studied to determine the best performing technique. The dataset resulting from application 

of Hampel's identifier was subsequently used to develop various neural network models of 

the kiln for estimation of clinker quality. All input-output data were normalized in the 

range 0 to 1 using Equation 3.9 prior to model development. The final input dataset (raw 

meal quality and kiln operating variables) containing values of all 9 input variables in the 

normalized form is shown in Figure 4.12. 
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Figure 4.11: Actual raw data of kiln operating variables as received from the plant
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Figure 4.12: Final input data for neural network modeling (After applying univariate outlier detection method) 
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A total of 223 input – output datasets were prepared out of which 156 were used for 

training the neural network model and 67 for model validation. This data division was 

performed using random selection by allocating the first 156 data for training and the rest 

67 samples for validation. 

However, when a number of input variables are present and which are likely to be 

correlated, univariate outlier detection technique may not be effective. This is because, 

multivariate outliers may not be extreme values along a particular direction. This 

phenomenon is explained in Figure 4.13 by plotting values of two kiln operating variables 

i.e. coal feed rate and the raw mix input to the kiln. The two points highlighted are not 

extreme values either in x or y direction. So univariate outlier detection methods will not 

detect these points as outliers. However, the outlyingness of these two samples is quite 

obvious in the bivariate plot shown. Similarly many values in the initial part (x from 30 to 

35) will be incorrectly shown as outliers in a univariate analysis because most of the 

values are concentrated in the region x from 35 to 40. However, a simultaneous decrease 

of both values indicates a practical phenomenon of slowdown of the operation. Therefore, 

univariate techniques applied to multivariate dataset may result in masking or swamping 

effects i.e. some multivariate outliers may not be detected or some normal values may be 

detected as outliers.  

Five types of multivariate outlier detection techniques were applied on the 

multivariate dataset. These techniques include two classical methods (classical 

Mahalanobis distance and hat matrix leverage value method) and three robust methods 

(MCD, SHV and CDC). These techniques have already been described in Section 3.1.2.2. 

The method of MCD was implemented using the code available in Verboven and Hubert 

(2005) and MATLAB codes for other techniques were written which are provided in the 

Appendix. For comparison, the outliers detected in each technique were removed and the 

statistical characteristics of the resulting datasets were analyzed. Based on the analysis the 
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CDC method was found to be best performing (Detailed performance analysis of the 

techniques are presented in Table 5.3, Chapter 5).  

 

Figure 4.13: Bivariate scatter plot of two kiln operating variables explaining the 

multivariate nature of outliers 

The number of data values obtained for the kiln operating variables were in excess of 

one thousand whereas the number of laboratory values obtained for raw meal and clinker 

quality were 223. Therefore, a total of 223 number of operating variable data values were 

selected based on the time instant at which the clinker quality data were available. For any 

time instant while the instantaneous values of clinker quality and kiln operating variables 

were selected, the previous values of raw meal quality data were selected. This is due to 

the fact that laboratory values are available only with a time lag of minimum 1 hour. 

Therefore, at any instant to predict the instantaneous clinker quality parameters, while the 

instantaneous values of kiln operating variables are available to the model, the same for 

raw meal quality values are not available and only the last reported values from the 

laboratory are available. Therefore any observation set for model development comprises 

of: 
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Here x1, x2, x3, x4 and x5 are model inputs corresponding to kiln operating variables 

(second column of Table 4.5) and x6, x7, x8 and  x9 are model inputs corresponding to input 

raw meal quality (first column of Table 4.5). y1, y2,.., y8 are model outputs corresponding 

to clinker quality (third column of Table 4.5). The total data were normalized in the range 

of 0 to 1 for each process variable using the minimum and maximum values of that 

variable. The total processed dataset of 223 number of samples after normalization, were 

divided into a training set of 112 observations and a validation set of 111 observations. 

The data divsion was performed using Kennard-Stone (K-S) maximal intra distance 

criterion described in Section 3.3.2 and the code for implementation was adopted from the 

TOMCAT toolbox (Daszykowski et al., 2007). 

4.2.3 Soft Sensor Model Development 

The model development was done using two different sets of data. One set comprises 

of data available after univariate outlier detection followed by random division of the data 

into 156 training samples and 67 validation samples (Dataset 1). In this dataset, the raw 

meal quality data are also the instantaneous values. The second set of data was formed by 

using CDC method of robust multivariate outlier detection followed by application of 

Kennard-Stone method for division of the data to 112 training samples and 111 validation 

samples (Dataset 2). In this dataset the raw meal quality data are the time lagged values 

(sine at any instant, the laboratory values for the last drawn sample is available). 

4.2.3.1 Modeling Using Dataset 1 

For designing BPNN model, neural network models with one and two hidden layers 

were tested. The number of neurons was determined by conducting model training for 

different number of neurons ranging from 3 to 20 and choosing the one producing the least 

error.  

The RBFNN model was developed using Gaussian function (Equation 3.35) in the 

RBF layer followed by linear activation function in the output layer. The desired error goal 
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was set to zero and maximum number of neurons to 70. After adequate number of 

simulations with different spread values, an optimum spread value of 0.4 was used for the 

RBFNN.  

In the similar manner the optimum spread value for the GRNN model was determined 

to be 4.9. The number of hidden layers in a GRNN model is same as the number of input 

patterns i.e. 156 in this case.  

The details of the three optimum neural network structures are presented in Table 4.6 

and the model figures are presented in Figures 4.14-4.16. 

Table 4.7: Neural network model details for the clinkerization process using 

univariate outlier detection and random data division 

TYPE OF FEED FORWARD NEURAL 

NETWORK MODEL 

NUMBER OF 

NEURONS 
ACTIVATION FUNCTIONS USED 

BPNN (Trained by conjugate 

gradient algorithm) 

Input layer: 9 

Hidden layer 1: 9 

Hidden layer 2: 12 

Output layer: 8 

Hidden layer 1 and 2: Sigmoidal 

Output layer: Linear 

RBFNN (Orthogonal least square 
algorithm) 

Input layer: 9 

RBF layer: 70 

Output layer: 8 

RBF layer: Gaussian 
Output layer: Linear 

GRNN 

Input layer: 9 

Pattern layer: 156 

Output layer: 8 

Pattern layer: Gaussian 

Output layer: Linear 
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Figure 4.14: BPNN model structure for clinkerization process developed using dataset 1 

 

Figure 4.15: RBFNN model structure for clinkerization process developed using dataset 1 
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Figure 4.16: GRNN model structure for clinkerization process developed using dataset 1 

4.2.3.2 Modeling Using Dataset 2 

The training set prepared by using K-S method as described earlier was used for data-

driven model development of rotary cement kiln. It has been mentioned in Section 2.3.2 

that the model reported by Lin et al. (2007) for soft sensing of free lime has used different 

kiln operating variables as inputs and the input raw meal quality has not been considered 

in modeling. Therefore, before proceeding further with model development it was 

investigated whether the inclusion of raw meal quality as inputs improves the model 

performance or not. To address this issue, initially two types of multiple linear regression 

models for the kiln were developed, one only with kiln operating variables as inputs (Total 

5 inputs) and the other using kiln operating variables as well as raw meal quality as inputs 

(Total 9 inputs). The linear regression models using the two possible set of inputs are 

presented in Table 4.7. 
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Table 4.8: Multiple linear regression model of the cement kiln with and without raw 

meal quality 

NUMBER OF INPUTS REGRESSION EQUATIONS 

5 (Only kiln operating 

variables) 

�� = 0.131 − 0.05�� − 0.02�� + 0.28�� − 	0.043�2 + 0.027�+ 

�� = 0.301 − 0.05�� − 0.02�� + 0.148�� − 	0.123�2 + 0.022�+ 

�� = 0.139 + 0.015�� + 0.047�� + 0.009�� − 	0.046�2
+ 0.037�+ 

�2 = 0.56 + 0.044�� + 0.061�� − 0.111�� − 	0.351�2 + 0.057�+ 

�+ = 0.384 − 0.037�� + 0.001�� + 0.063�� − 	0.07�2 + 0.026�+ 

�, = 0.415 + 0.0004�� + 0.0356�� − 0.09�� + 0.182�2
− 0.079�+ 

�3 = 0.33 + 0.067�� + 0.05�� − 0.022�� − 0.223�2 + 0.003�+ 

�' = 0.55 − 0.03�� − 0.12�� − 0.0022�� + 0.33�2 − 0.14�+ 
 

9 (Kiln operating variables 

+ Raw meal quality) 

�� = 0.297 + 0.0318�� − 0.0132�� − 0.178�� − 	0.0308�2
− 0.124�+ − 	0.062�, + 0.2053�3 + 0.018�'
+ 0.0405�. 

�� = 0.2834 + 0.0128�� + 0.1627�� − 0.0048�� − 	0.0734�2
− 0.1428�+ − 	0.0384�, + 0.1�3 − 0.0953�'
+ 0.0755�. 

�� = 0.2708 − 0.024�� − 0.1236�� − 0.1024�� − 	0.0253�2
− 0.0135�+ − 	0.002�, + 0.011�3 − 0.0296�'
+ 0.0284�. 

�2 = 0.5844 − 0.0537�� + 0.2351�� − 0.2794�� + 0.0363�2
− 0.059�+ − 	0.0504�, + 0.097�3 − 0.1936�'
+ 0.0603�. 

�+ = 0.2982 + 0.0208�� + 0.0786�� + 0.069�� − 	0.051�2
− 0.0536�+ − 	0.0634�, + 0.077�3 − 0.0815�'
+ 0.0474�. 

�, = 0.573 − 0.0276�� − 0.1748�� − 0.1607�� + 0.1056�2
+ 0.0284�+ − 	0.069�, − 0.0942�3 + 0.2131�'
− 0.1165�. 

�3 = 0.2586 − 0.0025�� + 0.2548�� − 0.1434�� + 	0.0402�2
− 0.0136�+ + 	0.051�, + 0.0042�3 − 0.1213�'
+ 0.0007�. 

�' = 0.338 + 0.0641�� + 0.0032�� + 0.2961�� − 	0.0177�2
+ 0.047�+ − 	0.0544�, + 0.0211�3 + 0.199�'
− 0.104�. 

Here, ��	to	�' are the clinker quality parameters in the order in which they appear in 

column 3 of Table 4.5. In the first set of model equations, ��	to	�+ are kiln operating 

parameters in the order in which they appear in second column of Table 4.5. In the second 

set of model equations, ��	to	�+ are same as mentioned before and �,	to	�. are time 

lagged values of raw meal quality in the order in which they appear in the first column of 

Table 4.5. It is be shown subsequently in Section 5.3.2.1 that, inclusion of raw meal 

quality parameters as model inputs leads to significant improvement in model 
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performance. Therefore, subsequently the nine input variables (instantaneous values of 

kiln operating parameters and time lagged values of raw meal quality) are used for data-

driven model development. 

With the available training set, BPNN, RBFNN and GRNN models of the rotary 

cement kiln were developed in the same manner as described in Section 4.1.3. The details 

of the three optimum models developed are presented in Table 4.8. 

Table 4.9: Neural network model details of the clinkerization process using 

multivariate outlier detection and K-S method of training data selection 

TYPE OF FEED FORWARD NEURAL NETWORK 

MODEL 

NUMBER OF 

NEURONS 

ACTIVATION 

FUNCTIONS USED 

BPNN (Trained by gradient descent with 

momentum algorithm) 

Input layer: 9 

Hidden layer: 15 

Output layer: 8 

Hidden layer 1 and 2: 

Sigmoidal 

Output layer: Linear 

RBFNN (Orthogonal least square algorithm) 
Input layer: 9 

RBF layer: 14 

Output layer: 8 

RBF layer: Gaussian 

Output layer: Linear 

GRNN 
Input layer: 9 

Pattern layer: 112 

Output layer: 8 

Pattern layer: Gaussian 

Output layer: Linear 

The general structure of the fuzzy inference model has been presented in Figure 3.6 

and the model structure for the grinding process has been presented in Figure 4.7. The 

fuzzy model structure for the rotary cement kiln is shown in Figure 4.17. The important 

steps involved in model development have already been explained in Section 3.6. Two 

types of fuzzy inference models were designed for the kiln system: Mamdani type FIS and 

Sugeno type FIS.  
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Figure 4.17: Fuzzy inference system (FIS) for the rotary cement kiln 
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The normalized values of the nine inputs and eight output variables were transformed 

to fuzzy linguistic variables by applying a membership function. For Mamdani fuzzy 

model, the 8 output variables i.e. cement clinker quality parameters were fuzzified with 

trapezoidal membership function. For Sugeno type model, 8 constant output values in the 

range 0 to 1 were chosen.  

Five linguistic variables were used for each process variable (input or output for Mamdani 

model and inputs for Sugeno model). The linguistic variables are listed below along with 

their ranges: 

VS (very small): [0 - 0.2] 

S (small):  [0.1 - 0.45] 

M (medium):  [0.3 - 0.65] 

L (large):  [0.5 - 0.85] 

VL (very large): [0.7 - 1] 

Triangular function is applied to the variables of 'very small' and 'very large' category and 

trapezoidal function for the other types of linguistic variables as described above.  

The eight constant output values for Sugeno fuzzy modeling are mentioned below: 

ES (extremely small): 0.05 

VS (very small): 0.15 

S (small):  0.25 

LM (low medium) 0.35 

M (medium):  0.45 

L (large):  0.65 

VL (very large): 0.75 

EL (extremely large): 0.9 

Figure 4.18 explains the fuzzification process for one input and one output (for Mamdani 

type). 
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Figure 4.18 (a) Input fuzzification for the variable 'Kiln Current'  

 

Figure 4.18 (b) Output fuzzification for the variable 'Free lime' 

The rule base was framed based on the available input - output dataset for model 

development. A total of 147 rules were framed for the Mamdani model and 129 fuzzy if-

then rules were framed for the Sugeno type model.  
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Since nine process inputs are involved, for each data sample the antecedent of the 

corresponding fuzzy rule has nine inputs. AND operator is used to obtain the result of the 

rule as mentioned below: 

{ })(),(),(),(),(),(),(),(),()( 987654321 xxxxxxxxxminx µµµµµµµµµµ = (Mamdani) (4.11) 

{ })(),(),(),(),(),(),(),(),()( 987654321 xxxxxxxxxproductx µµµµµµµµµµ = (Sugeno) (4.12) 

The fuzzified output is determined by composition of fuzzified inputs and the appropriate 

rules from the rule base. 

One input value had more than one fuzzy membership values under different liguistic 

variables. Therefore, for one set of input data, multiple rules are applied producing 

multiple number of fuzzy outputs. Aggregation was performed by combining different 

fuzzy output membership values to produce a single fuzzy output. This is a maximum 

method which involves fuzzy union of all possible fuzzy outputs. Finally, the fuzzy output 

value produced for a particular observation was defuzzified in order to get the actual 

process output value. Centroid and weighted average method mentioned in Equations 3.48 

and 3.49 were used as the method of defuzzification for Mamdani and Sugeno type FIS 

respectively. 

For development of hybrid model combining principal component analysis and back 

propagation neural network, initially PCA was performed on the 223×9 input data matrix. 

Subsequently using cumulative percentage variance criterion 5 principal components were 

selected which are the linear combinations of all nine input variables. BPNN was 

developed using this reduced input dataset consisting of five latent variables instead of the 

nine actual input variables. 
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________________________________________________________________________ 

Chapter - 5 

Results and Discussion 

________________________________________________________________________ 

The theory and procedure of soft sensor development for the clinker grinding process 

and pyro process are described in the preceding Chapters 3 and 4. The results obtained for 

the two processes in each step of the soft sensor development starting from data analysis 

and pretreatment to model development and analysis are presented in this chapter.  

5.1 Performance Analysis of Outlier Detection Techniques 

The performances of different outlier detection techniques (univariate and 

multivariate) were analyzed by evaluating various statistical parameters such as standard 

deviation, skewness, kurtosis, range etc. The statistical parameters were determined 

initially for the raw dataset as for the processed datasets. The processed datasets were 

obtained after the application of a particular outlier detection technique, removal of the 

outliers detected by a technique followed by imputation of missing values by linear 

interpolation with the neighboring values.  

5.1.1 Performance of Univariate Outlier Detection Methods 

The skewness value of a dataset is defined as: 

� = 	∑����	�	
��
                             (5.1) 

The kurtosis is defined as: 

 = 	∑����	�	����                  (5.2) 

Table 5.1 presents the statistical characteristics of the resulting datasets for the clinker 

grinding process.  
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Table 5.1: Descriptive statistics of the input variables after using different outlier 

detection methods for the grinding process 

VARIABLES 

OUTLIER 

DETECTION 

METHOD 

MINIMUM MAXIMUM AVERAGE 

STANDARD 

DEVIATION 

(σ) 

SKEWNESS 

(γ) 

KURTOSIS 

(κ) 

Hot Air 

Flow 

3 sigma 
rule 

538273 706023.8 677660.15 16107 -4.32 31.282 

Hampel's 

rule 
657680.31 706023.8 680091.88 8285.72 0.152 2.919 

Box plot  608619.25 706023.8 679609.4 9805.87 -1.59 13.125 

Classifier 

RPM 

3 sigma 

rule 
427.786 1114.133 906.354 134.605 -0.84 3.084 

Hampel's 

rule 
563.165 1114.133 909.214 129.27 -0.72 2.658 

Box plot 427.786 1114.133 906.354 134.605 -0.84 3.084 

Clinker 

inflow 

3 sigma 

rule 
76 239.828 183.64 28.2 -1.31 6.2 

Hampel's 

rule 
147.43 227.427 188.33 16.05 0.21 2.728 

Box plot 103.6 239.82 185.92 23.27 -0.59 4.67 

Skewness is a measure of symmetry of the dataset and for a normally distributed data, 

the skewness value is zero. Similarly, kurtosis represents the extent of peakedness or 

flatness of the dataset and for a normally distributed data has a value of 3. Presence of 

outliers in a dataset results in higher standard deviation, large deviation of skewness and 

kurtosis values from 0 and 3 respectively.  

A closer comparison on the nature of raw data presented in Table 4.1 with that of 

cleaned data in Table 5.1 shows the significant improvement over raw data when outlier 

removal techniques are applied. The methods of 3 sigma rule and box plot are influenced 

by the presence of outliers in the data. On the other hand, the Hampel's method that uses 

outlier resistant median and MAD values is less affected by the outliers present in the 

original dataset. It can be noticed in Table 5.1 that Hampel's method has resulted in the 

least standard deviation and skewness and kurtosis values closest to 0 and 3 respectively. 

Table 5.1 establishes the superiority of Hampel method over the other two methods. Table 

5.2 presents the statistical characteristics of the resulting datasets for the rotary cement 

kiln.  
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Table 5.2: Descriptive statistics of the input variables after using different outlier 

detection methods for the clinkerization process 

KILN OPERATING PARAMETERS 

VALUES FOR TREATED DATA 

3 SIGMA METHOD HAMPEL'S METHOD BOX PLOT RULE � � � � � � 

Kiln feed rate -3.79 19.119 -1.181 4.12 -1.669 5.658 

Kiln current -7.318 75.024 -0.056 2.676 0.068 4.716 

Kiln RPM -2.5 9.497 -1.317 3.923 -1.892 6.274 

Kiln feed inlet temperature 14.34 227.488 -0.624 3.51 -1.038 4.7 

Coal feed rate -3.862 21.554 -0.671 4.321 -1.429 6.47 

The raw data characteristics for the kiln processes have been presented in Table 4.6. 

Comparison of the values for the raw data in Table 4.6 with the values for the processed 

data in Table 5.2 indicates that all three methods have resulted in improvement of 

statistical characteristics of the input data. However, it can be noticed that Hampel's 

method again produces the best result in comparison to the other two methods. The better 

performance of the Hampel's method is due to the fact that this method is outlier resistant 

due to the use of median and MAD values (Equation 3.1) which are outlier insensitive. On 

the other hand, performance of the 3 sigma method is least satisfactory because this 

method uses the values mean and standard deviation which are heavily affected by the 

presence of outliers.  

The modified datasets for the kiln process obtained using the three univariate outlier 

detection techniques are plotted in Figure 5.1 where it can be verified that the clean data 

obtained by application of 3 sigma method still contain a number of outliers.  

5.1.2 Performance of Multivariate Outlier Detection Methods 

The multivariate nature of the input data for the clinkerization process has been 

explained in Section 4.2.2. For detection and removal of multivariate outliers present in 

the raw dataset, two classical methods (classical Mahalanobis distance and hat matrix 

leverage value method) and three robust methods minimum covariance determinant 

(MCD), smallest half volume (SHV) and closest distance to center (CDC) were separately 

applied on the original dataset. The performances of the different methods were analyzed 
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by evaluating the statistical characteristics of the dataset obtained after application of each 

technique. The results are presented in Table 5.3. 

The traditional methods of Mahalanobis distance and Hat matrix leverage values 

perform poorly as compared to the other three robust methods. It is difficult to conclude 

the superiority of one robust method over others in general. In this work, the best values 

obtained under a particular statistical parameter is highlighted. 

Table 5.3 indicates superior performance of SHV technique over other methods. This is 

quite understandable if we look at the total number of outliers detected. SHV method 

detects more than 40% of the data as outliers! It is very hard to believe that all the sensors 

were malfunctioning for almost 15 days during that 1 month period. SHV seems to be too 

conservative and slightly deviated values are detected as outliers. It is quite possible that 

following SHV method if we remove half of the values as outliers, we may be losing 

important process information and practical applicability of the model will be very limited 

to the small range of process values (because data-driven models do not extrapolate well).  

On the other hand, CDC method detects around 17% values as outliers and also 

produces statistical performance almost at par with SHV method. Removing 17% data 

values is acceptable and we will be able to have an increased domain of applicability of 

the developed soft sensor. Therefore based on this reasoning the processed dataset 

obtained after application of CDC method was used for subsequent modeling. 
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Figure 5.1: Comparison of the three outlier detection techniques for the rotary cement kiln data 
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Table 5.3: Performance of multivariate outlier detection techniques 

OUTLIER 

DETECTION 

METHOD 

NO OF 

OUTLIERS 

DETECTED 

DESCRIPTIVE STATISTICS FOR VARIABLES AFTER DELETION OF OUTLIERS USING DIFFERENT METHODS 

COAL FEED CURRENT INLET TEMPERATURE KILN FEED RPM 

RANGE σ γ κ RANGE σ γ κ RANGE σ γ κ RANGE σ γ κ RANGE σ γ κ 

Raw Data 16778 495 33.8 1142 14465 413 32.9 1105 99135 6268 11.26 145 556.24 80.5 -3.8 17.6 4.5 0.8 -3.1 13 

Mahalanobis 

Distance 
66 32.7 3.13 -3.2 19 193 23.7 -0.1 1.25 15103 747 14.4 232 315 43.5 -3.8 19.9 2.86 0.47 -2.8 11.8 

Hat Matrix 

Leverage 

Value 

85 27.1 2.65 -2.8 17.8 193 22.9 -0.1 4 15103 753.5 14.24 228 252.4 33.75 -3.6 18.8 2.47 0.39 -2.5 10.2 

Closest 

Distance to 

Centre 

(CDC) 

195 9.11 1.66 -0.125 2.28 151 21 -0.016 3.38 585.2 47 -0.97 8.88 73.2 14.22 -1.46 4.66 0.9 0.2 -1.56 4.81 

Smallest Half 

Volume 

(SHV) 

486 7 1.42 -0.06 2 89.9 16.47 -0.09 2.85 118.2 24 -0.12 2.5 40 7.96 -0.74 3 0.67 0.11 -1.88 7 

Minimum 

Covariance 

of 

Determinant 

(MCD) 

287 9.11 1.6 -0.15 2.3 130 19.8 -0.06 3.2 267.9 36.5 -0.83 4.24 69.9 12.7 -1.47 4.97 0.8 0.16 -1.63 5.25 
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5.2 Performance Analysis of Training Set Design Techniques 

The available dataset was split into two parts. The training sets were used for 

development of data based model and the performances of the developed models were 

evaluated by analyzing their results with the validation sets. The effect of training data 

selection on the model performance has been mentioned in Section 3.3. Both random as 

well as algorithm based subset selection was carried out.  

For the clinker grinding process, two types of random selection were performed. In 

random selection 1, out of 158 total available observations, the first 108 values were 

allocated for model development and the rest 50 were used for model performance 

assessment. In random selection 2, the total data were split equally to training and 

validation subsets each having 79 number of samples. 79 random values (corresponding to 

sample numbers) were chosen in the range of 1 to 158 using 'Multiplicative lagged 

Fibonacci generator' algorithm available in MATLAB for formation of training set. After 

formation of training set, the rest 79 samples were used as validation set. 

Two popular statistical techniques were used for algorithm based subset selection. 

The Kennard-Stone maximal intra distance criterion and the DUPLEX algorithm. The 

procedural details of these two algorithms have already been presented in Sections 3.3.2 

and 3.3.3, respectively. The statistical characteristics of the total dataset as well as the 

training sets formed using the aforementioned techniques are presented in Table 5.4. 

It has been emphasized earlier that a major problem associated with data based 

models is the problem of extrapolation. The model must not be used with any input values 

which falls outside the range of inputs used for model development. In other words, the 

maximum possible range of data should be included in the training dataset. It can be 

observed in Table 5.4 that while both K-S and DUPLEX algorithms perform better than 

the random selection in retaining the total data characteristics in the training set, K-S 
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algorithm ensures maximum coverage of the entire dataset for all three concerned 

variables. However, both algorithms perform almost at par as far as the location and 

dispersion of the datasets are concerned.  

Table 5.4: Performance of the three subset selection methods 

DATA TYPE 
INPUT 

VARIABLE 
MINIMUM MAXIMUM RANGE MEAN 

STANDARD 

DEVIATION 

Total Input Data 

(158 samples) 

Air Flow 0 1 1 0.4833 0.1787 

Classifier 

RPM 
0 1 1 0.6022 0.2544 

Clinker 

Inflow 
0 1 1 0.5154 0.2 

Training Data by 

Random Selection 

(79 samples) 

Air Flow 0.182 1 0.818 0.539 0.1862 

Classifier 

RPM 
0 0.892 0.892 0.496 0.273 

Clinker 

Inflow 
0 0.964 0.964 0.572 0.224 

Training Data by 

duplex algorithm 

(79 samples) 

Air Flow 0.006 1 0.994 0.4696 0.176 

Classifier 

RPM 
0 1 1 0.6162 0.246 

Clinker 

Inflow 
0.1395 0.9448 0.805 0.5048 0.1926 

Training data by 

Kennard-Stone 

algorithm (79 

samples) 

Air Flow 0 1 1 0.4966 0.2 

Classifier 

RPM 
0 0.991 0.991 0.5489 0.2676 

Clinker 

Inflow 
0 1 1 0.506 0.2253 

The performance of the three data splitting methods are further analyzed by 

developing multiple linear regression models based on the three different training sets 

resulting from the three data splitting methods. The results are produced in Table 5.5. 

Table 5.5: Effect of different data splitting methods on multiple linear regression 

model performance 

DATA SPLITTING METHOD 
MEAN ABSOLUTE ERROR (MAE) 

TRAINING SET VALIDATION SET 

Random 0.1072 0.1019 

Duplex algorithm 0.093 0.112 

Kennard-Stone algorithm 0.1174 0.0971 

The results of Table 5.5 indicate that, while the K-S method produces the maximum 

error for the training set, it produces the minimum error for the validation set. This is due 

to the difference in nature of functioning of the two algorithms. While K-S algorithm 
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results in formation of only the training dataset, the DUPLEX algorithm simultaneously 

forms the training as well as the validation datasets from the total data. Therefore, the 

range of the dataset is higher in case of the K-S algorithm. As data range increases, the 

fitness becomes poorer.  

However, a model developed from a larger range of data is likely to generalize better 

than a model developed from a smaller range which will frequently have extrapolation 

problems. The better generalization behaviour of the K-S based model in comparison to 

other types of models is quite evident when one looks at the validation error produced by 

the different models. Moreover, a good model is considered as one which produces good 

result for the unknown data. Therefore, it can be concluded from Table 5.4 and Table 5.5 

that the Kennard-Stone method of data splitting performs better than that of random 

selection method and DUPLEX method and hence the training dataset obtained by using 

K-S method was used subsequently for development of various types of data-driven 

models.  

5.3 Performance Analysis of Developed Soft Sensors 

While the parameters of linear and principal regression models were determined 

based on least of sum of squared error criterion, other models were developed so as to 

minimize the mean absolute error (MAE) between the actual and model predicted values. 

The MAE is defined as  

N

yy

MAE

N

i

ii∑
=

−

= 1

ˆ

                                                 (5.3) 

5.3.1 Results for Clinker Grinding Process 

A closer look at the regression coefficients of the linear equation (Equation 4.1) 

indicates that the values are quite in agreement with the physical understanding of the 
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process. The sign of a particular coefficient indicates the nature of relation between the 

dependent and the independent variables (i.e. direct or inverse) and the magnitude 

indicates the extent of dependence. The equation reveals that the classifier RPM affects 

the fineness the most. Positive coefficient indicates a direct relationship. This can be 

physically interpreted quite well. At higher RPM, most of the coarse particles will not be 

able to pass through the classifier resulting in an increased fineness of the product. 

Similarly, when hot air flow rate through the mill is increased more particles will be 

forced through the classifier resulting in a drop in cement fineness. 

For design of standard SVR model, the error bound ε and the RBF kernel width σ 

were determined by performing grid search followed by cross validation on the validation 

set so as to produce the least error on both the training set and the validation set. The 

search was done first by performing a coarse grid search followed by a fine grid search as 

suggested in the literature (Gunn, 1998). The ranges of values used for the search 

operation are mentioned below: 

Coarse grid search  σ = [2
-4

, 2
-2

, 2
0
, 2

2
] 

   ε = [2
-8

, 2
-6

, 2
-4

, 2
-2

] 

Fine grid search σ = [2
-2

, 2
-1.875

, 2
-1.75

, 2
-1.5

, 2
-1

] 

   ε = [2
-4

, 2
-3.875

, 2
-3.75

, 2
-3.5

, 2
-3

] 

The results of the grid search operation for selected parameters are produced in Figure 5.2.  

A closer look at Figure 5.2 verifies the SVR theory on the effect of one SVR hyper-

parameter on another. It can be seen that for both training and validation data, with 

increase in the value of error bound ε, the model performance error also increases with a 

decrease in the number of support vectors. From grid search, two sets of optimum SVR 

parameters were obtained with different number of support vectors as given below: 
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SVR1:  [C, ε, σ] = [1.4608, 0.068157 (2
-3.875

), 0.2726 (2
-1.875

)]       (5.4 a) 

 Number of support vectors (NSV) = 45 (56.9%) 

SVR2:  [C, ε, σ] = [1.4608, 0.003906 (2
-8

), 0.2726 (2
-1.875

)] 

 Number of support vectors (NSV) = 77 (97.4%). 

For development of LS-SVR model of the grinding process from the training data, 

rigorous grid search was  performed for optimum SVR hyper-parameter selection. The 

domain of grid search is mentioned below: 

Coarse grid search: C = [2
-5

,2
-3

,2
-1

,2
1
,2

3
,2

5
,2

7
] 

   σ = [2
-5

,2
-3

,2
-1

,2
1
,2

3
,2

5
,2

7
] 

The results of coarse grid search are displayed in Figure 5.3(a) and 5.3(b) for the training 

and validation data respectively.  

It can be noticed that for the data used for modeling (training data), there is almost a 

monotonic increase in the model error values with increase in kernel width (σ) and 

decrease in error value with increase in value of regularization parameter (C). Moreover, 

the effect of C is more prominent at lower values of kernel width and error variation with 

C continuously reduces as the value of σ increases resulting almost in convergence at high 

kernel width. Figure 5.3 (a) indicates that the best values will be the highest possible 

values for C and lowest possible values for σ. However, such a selection though results in 

very accurate fitting, produces poor generalization capability of the model as is evident 

from Figure 5.3(b). It can be observed in Figure 5.3(b) that the set of C and σ values 

producing very low error values  for the training data (Figure 5.3(a)), produce 

unacceptably high error values for the validation data. The optimum range corresponds to 

the middle portion of Figure 5.3(b) producing a dip in error value.  
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Figure 5.2: Results of the grid search and cross validation for optimal selection SVR hyper-parameters 
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Figure 5.3(a): Coarse grid search result for the training data 

 

Figure 5.3(b): Coarse grid search result for the validation data 

A narrower domain for the two values were obtained from the coarse grid search and 

then a fine grid search was performed in that domain to get more accurate values of the 

two parameters. From Figure 5.3, the narrow ranges for the two values were decided as: 
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σ = [2
-3

 - 2
-1

] and C = [2
1
 - 2

3
] 

The results of fine grid search are shown in Figure 5.4(a) and 5.4(b) for the training and 

validation data, respectively.  

 

Figure 5.4(a): Fine grid search result for the training data 

 

Figure 5.4(b): Fine grid search result for the validation data 

It seems from Figure 5.4(b) that a kernel width value of 0.35 is the optimum. 

However, error for the training data is quite high at this value. The optimum parameters 
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were chosen as the ones producing acceptably lower value for both training and validation 

data. The optimum parameter values for the LS-SVR model are 

[C,σ] = [6.72, 0.2332]                       (5.4 b) 

An LS-SVR model was also developed using the proposed analytical expressions 

(Cherkassky & Ma, 2004). As per these guidelines the value for regularization parameter 

is given by the following analytical expression (Equation 3.33): 

( )yy yyC σσ 3,3max −+=            (3.33)  

While there is no proposed analytical expression for kernel width, the recommended 

range is given as ( )5.01.0 −≈dσ  7937.04642.0 −≈⇒σ (d = number of input variables). 

Applying the above formula to the present industrial grinding process, the regularization 

parameter value was 1.4608. Figure 5.5 shows the LS-SVR model performance for the 

fixed regularization parameter (C = 1.4608) and different kernel width values in the range 

as suggested by Cherkassky & Ma (2004).  

 

Figure 5.5: LS-SVR model performance using analytical tuning method 

It can be observed that there is a monotonic increase of the error indicating that the 

optimum kernel width parameter lies outside the suggested range. The least error occurs at 

the lowest value of the kernel width (σ = 0.4642) which however, is not optimum. 
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For development of PCR and PCA-BPNN models, initially PCA was performed on 

the normalized values of entire 158 number of samples. The covariance matrix obtained 

for the 158×3 input data matrix is given below. 

����������	������ = 	� 1 −0.23973 0.361078−0.23973 1 −0.458960.361078 −0.45896 1 *                     (5.5) 

The eigen vectors obtained for the above covariance matrix are: 

+�,��	-�����	������ = 	�−0.279 0.81 0.5140.584 0.568 −0.580.762 −0.139 0.632*           (5.6) 

The principal component analysis results based on the above eigen vectors are presented in 

Table 5.6: 

Table 5.6: Results of PCA for the clinker grinding process 

COMPONENTS 
EIGEN 

VALUE 
VARIANCE (%) 

CUMULATIVE 

VARIANCE (%) 

Principal component 1 (PC1) ./ = 0.514�/ − 0.58�0 + 0.632�2 
1.714 57.24 57.24 

Principal component 2 (PC2) .0 = 0.81�/ + 0.568�0 − 0.58�2 
0.77 25.72 82.96 

Principal component 3 (PC3) .2 = −0.279�/ + 0.584�0+ 0.762�2 

0.51 17.04 100 

It can be observed in Table 5.6, that two principal components account for more 

than 80% of the total variance of the input dataset. Therefore, the input dimension was 

reduced from three actual input variables to two principal components ./ and .0 (latent 

variables).  

For BPNN model development three types of training algorithms were used as 

mentioned in Chapter 4. Though gradient descent method has been the most used training 

algorithm for a back propagation neural network, it suffers from the problem of getting 

stuck in local minima. In order to avoid this problem, gradient descent with momentum 

(GDM) algorithm was used.  
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However, in cases where the value of the gradient (partial derivative of the error with 

respect to the weights) is very small, there is little change in weights according to the 

GDM algorithm which was the motivation for use of RP algorithm. The LM method has 

much better convergence characteristics than the other algorithms but has also more 

computational requirements. The detailed results of application of the aforementioned 

three algorithms for training of BPNN are shown in Table 5.7 and Figure 5.6. 

LM algorithm is one of the fastest back propagation algorithms and it can be observed 

that this algorithm leads to faster convergence and the desired error goal for training data 

can be achieved with very less number of epochs. It may also be noted that for any 

algorithm the training error decreases with increase in the number of hidden layer neurons. 

A good model is judged by its ability to accurately estimate the output for both known and 

unknown data. Therefore, in Table 5.7 and Figure 5.6, the results are presented for 

different hidden layer neurons till the validation error showed a decreasing trend. The 

optimum number of neurons are attained once the validation error starts increasing 

(Figure 5.6).  

For choosing the optimum number of hidden layer neurons, the error values produced 

with training as well as validation data were taken into consideration. It may be noted that 

the best result is produced by the model trained by resilient back propagation algorithm 

which produces the least validation error of 6.4%. Gradient descent with momentum 

algorithm although produces a comparable validation error, the error to training data is 

somewhat higher (7.8%). The percentage values mentioned here, are also known as mean 

absolute percentage error which is 100 times MAE.  
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Table 5.7: Back propagation neural network model performance for different training algorithms and different number of hidden 

layer neurons 

TRAINING ALGORITHMS 

GRADIENT DESCENT WITH MOMENTUM (GDM) LEVENBERG-MARQUARDT (LM) RESILIENT BACK PROPAGATION (RP) 

No of Neurons 

in hidden layer 

Mean Absolute Error 

(MAE) No of Neurons 

in hidden layer 

Mean Absolute Error 

(MAE) No of Neurons 

in hidden layer 

Mean Absolute Error 

(MAE) 

Training Validation Training Validation Training Validation 

5 0.15111 0.11249 5 0.07284 0.06923 5 0.07786 0.06602 

10 0.10045 0.08064 6 0.06516 0.07339 10 0.07956 0.07054 

15 0.09041 0.07150 7 0.07117 0.07703 15 0.07059 0.06650 

20 0.10137 0.09113 10 0.04028 0.09774 20 0.06804 0.06446 

25 0.07819 0.06757 
15 0.00483 0.12387 25 0.05953 0.08070 

30 0.09134 0.07827 
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Figure 5.6: Mean absolute error as a function of number of neurons in back 

propagation neural network model 

Validation error in case of LM algorithm increases quite fast with number of neurons 

which is a case of more accurate fitting to training data and less generalization with 

validation data. Also in case of LM algorithm the network converges quite fast with less 

number of neurons producing an error of 0.4% with the training data. However, the error 

for the validation data shows a sharp increase (more than 12%). One advantage of LM 

algorithm may be that though values are somewhat higher than RP algorithm at 7.2% and 

6.9% respectively for the training and validation data, this is achieved at much less 

number of neurons than the other algorithms. From Table 5.7, the optimum back 

propagation network configuration can be decided as the one trained by RP algorithm with 

20 number of hidden layer neurons and producing almost comparable error values (and 

also the least among all) for both known (training) and unknown (validation) data.  

While RBF network model has the advantage of much less training time as compared 

to the back propagation network model, it suffers from the drawback of requiring more 

number of neurons than the BP network model for the same error goal. Ideally an RBF 

model should have as many hidden layer neurons as the number of training samples for 
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perfect fitting. But then it exhibits quite erratic behaviour to unknown data. Therefore, 

based on the criteria of producing low and almost comparable MAE values for both 

training and validation data, the network was designed by application of orthogonal least 

squares algorithm for different number of hidden layer neurons. The performance of RBF 

networks are produced for different spread value and different number of hidden layer 

neurons in Figure 5.7(a) and 5.7(b) respectively. The best RBF model was obtained as the 

one having 25 hidden layer neurons employing Gaussian basis function with a scaling 

parameter of 0.8.  

 

Figure 5.7(a): Mean absolute error as a function of scaling parameter in RBF neural 

network model (Constant number of hidden layer neurons) 

The regression neural network has also as many hidden layer neurons as the number 

of training samples. The important design decision is the optimum selection of spread 

value. Figure 5.8 shows the MAE produced by the regression neural network (GRNN) to 

training and validation data at different values of spread parameter.  
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Figure 5.7(b): Mean absolute error as a function of number of RBF layer neurons in 

RBF neural network model (Constant scaling parameter) 

 

Figure 5.8: Mean absolute error value of regression network as a function of spread 

parameter in GRNN model 
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Figure 5.9: Training and Validation errors as a function of number of hidden layer 

neurons for the PCA-BPNN model 

It can be observed from Figure 5.8 that as the value of smoothing parameter or spread 

value decreases the network results in more accurate fitting and as the spread parameter 

increases it results in less accurate fitting and better generalization. Since a good model is 

considered as one which estimates the output value quite accurately for both known and 

unknown inputs, the optimum spread value for the generalized regression network model 

was decided to be 0.11. 

Gradient descent with momentum back propagation algorithm was used for training 

of the PCA-BPNN model where the model inputs are the two chosen latent variables ./ 

and .0instead of the three actual variables. The training and validation errors as a function 

of the number of hidden layer neurons are shown in Figure 5.9. 

It can be observed in Figure 5.9 that the error for known data decreases with increase 

in the number of neurons. In fact, very low values for training error can be obtained if 

even higher number of neurons are used. But then, the performance of a model is judged 
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by its ability to predict outputs quite accurately for the unknown data. Use of very high 

number of neurons results in problem of over-fitting and poor generalization. Therefore 

the optimum number of neurons can be said to be the one producing almost comparable 

and of course sufficiently low error values both for known and unknown data. From 

Figure 5.9, it can be observed that the lowest average error is obtained with both 35 as 

well as 45 number of neurons. But the network with 45 neurons has the problem of 

overfitting and produces higher validation error. Therefore, the optimum number of the 

PCA based BPNN model was decided to be 35.  

The performances of all the statistical models developed for the clinker grinding process 

are presented in Tables 5.8(a) and 5.8(b) for the training and validation data respectively.  

Table 5.8 (a) Statistical Model Performance for training data in the grinding process 

MODEL TYPE MAE RMSE 
CORRELATION 

COEFFICIENT 
VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

Linear 

Regression 
0.1174 0.1571 0.8520 72.6015 0.7260 0.1266 

Principal 

Component 

Regression 

0.1285 0.1706 0.823 67.72 0.677 0.138 

Quadratic 

Response 

Surface 

0.1129 0.1511 0.8639 74.6474 0.7464 0.1266 

Support Vector 

Regression 

(SVR1: NSV = 

56.9% ) 

0.0812 0.1201 0.9181 84.197 0.8399 0.0967 

Support Vector 

Regression 

(SVR2: NSV = 

97.4% ) 

0.0627 0.1251 0.9117 83.002 0.8263 0.1011 

LS-SVRGRID 0.072 0.104 0.939 87.97 0.879 0.083 

LS-SVRCM 0.101 0.143 0.881 77.33 0.773 0.115 
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Table 5.8 (b) Statistical Model Performance for validation data in the grinding process 

MODEL TYPE MAE RMSE 
CORRELATION 

COEFFICIENT 
VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

Linear 

Regression 
0.0971 0.1273 0.8783 77.0649 0.7685 0.0892 

Principal 

Component 

Regression 

0.1124 0.1405 0.85 71.93 0.718 0.10 

Quadratic 

Response 

Surface 

0.0933 0.1282 0.8812 77.5266 0.7651 0.0891 

Support Vector 

Regression 

(SVR1: NSV = 

56.9% ) 

0.0823 0.1131 0.9177 84.1133 0.8174 0.0773 

Support Vector 

Regression 

(SVR2: NSV = 

97.4% ) 

0.0666 0.1003 0.9290 85.9939 0.8562 0.0695 

LS-SVRGRID 0.079 0.113 0.913 83.34 0.817 0.078 

LS-SVRCM 0.08 0.118 0.905 81 0.80 0.082 

The performances of all the neural network models developed for the clinker grinding 

process are presented in Tables 5.9(a) and 5.9(b) for the training and validation data 

respectively.  

The performances of all the fuzzy inference models developed for the clinker grinding 

process are presented in Tables 5.10(a) and 5.10(b) for the training and validation data 

respectively.  

Table 5.9(a): Neural network model performance for training data in the grinding process 

MODEL TYPE MAE RMSE 
CORRELATION 

COEFFICIENT 
VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

BPNN 0.068 0.135 0.896 79.75 0.797 0.108 

RBFNN 0.084 0.119 0.918 84.26 0.843 0.095 

GRNN 0.064 0.097 0.947 89.46 0.894 0.078 

PCA-BPNN 0.0654 0.1342 0.8979 80.146 0.8 0.1077 
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Table 5.9(b): Neural network model performance for validation data in the grinding process 

MODEL TYPE MAE RMSE 
CORRELATION 

COEFFICIENT 
VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

BPNN 0.064 0.103 0.925 84.88 0.726 0.072 

RBFNN 0.077 0.114 0.906 82.12 0.812 0.079 

GRNN 0.071 0.109 0.918 83.96 0.829 0.076 

PCA-BPNN 0.0749 0.1086 0.915 83.171 0.8316 0.0759 

Table 5.10(a): Fuzzy inference model performance for training data in the grinding process 

MODEL TYPE MAE RMSE 
CORRELATION 

COEFFICIENT 
VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

Fuzzy 

Inference 

(Mamdani) 

0.097 0.1314 0.9134 81.8077 0.8083 0.1089 

Fuzzy 

Inference 

(Sugeno) 

0.0766 0.1262 0.9118 83.0905 0.8230 0.1028 

Neuro-fuzzy 

(ANFIS) 
0.0551 0.0945 0.9490 90.0769 0.9007 0.0754 

Table 5.10(b): Fuzzy inference model performance for validation data in the grinding process 

MODEL TYPE MAE RMSE 
CORRELATION 

COEFFICIENT 
VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

Fuzzy 

Inference 

(Mamdani) 

0.0939 0.1198 0.9065 80.8412 0.7951 0.0867 

Fuzzy 

Inference 

(Sugeno) 

0.0737 0.1053 0.9176 84.2005 0.8415 0.0739 

Neuro-fuzzy 

(ANFIS) 
0.0626 0.1045 0.9208 84.6499 0.8438 0.0727 

Except linear and principal component regression models, all other models were 

developed so as to minimise the mean absolute error between the actual and model 

predicted output values.  
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However a critical question that remains unanswered in most of research works is: Is 

the lowest error value obtained for a particular model low enough so that the model is 

acceptable for practical use? Literature search revealed that there is rarely a straight 

forward answer to this question and it can be said that the criteria is process specific. 

While for some processes, errors in excess of 10 to 20% have been stated as acceptable, 

some have also mentioned modeling error not to exceed 10%. 

Moreover, it has been observed that in most of the modeling works related to 

industrial processes, the models are assessed based on one or two performance criteria. 

Different researchers have used different model evaluation criteria. However, a model 

showing better value on one performance criterion may produce lower accuracy in another 

performance criteria. Therefore, in this work, the model performances are assessed by 

evaluating six different statistical parameters as described below. 
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The variance account for (VAF): 
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Theil's inequality coefficient (TIC):  
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A good model should have MAE and RMSE values close to 0, VAF value close to 

100 and R value close to unity. The Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) 

which was initially proposed for evaluation of river flow forecasting models has since 

been applied for evaluation of various chemical process models such as membrane bio 

reactors (Mannina and Bella, 2012) and water quality prediction (Singh and Gupta, 2012). 

Similarly, Theil's inequality coefficient (TIC) has been successfully applied as a model 

evaluation parameters for TiO2 production process (Hvala et al., 2005) and polymerization 

process (Li and Liu, 2011). NSE value ranges from -∞ to 1, 1 being the value for a perfect 

model. TIC value lies between 0 and 1 with 0 being the value for the case of perfect 

model.  

An important question to be answered is what is the cut off prediction error criterion 

based on which it can be concluded that the best model developed is actually acceptable. 

In fact it depends on the application area of the model. MAE values of 0.1036 and 0.1757 

for training and validation data, respectively, have been reported in soft sensing of ball 

mill output particle size (Wu and Yuan, 2009). Similarly, VAF values of 81 % and 83% 

have been reported as satisfactory (Gokceoglu and Zorlu, 2004; Yagiz and Gokceoglu, 

2010). In modeling of grinding units estimation with around 6% error has been mentioned 

as acceptable (Casali et al., 1998) for soft sensing of particle size. Similarly, it has been 

reported in the literature that good models should have NSE values higher than 0 and TIC 

value less than 0.3 (Moriasi et al., 2007). In Tables 5.8-5.10, under each model evaluation 

criterion, the closest to the ideal value has been highlighted.  
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It can be observed that out of the two standard SVR models, SVR2 model produces 

better performance. However, in case of SVR models, the model complexity increases 

with number of support vectors and it has been suggested that for optimum modeling 

performance, the hyper-parameters be so chosen that the number of support vectors is 

around 50% of the training samples. Therefore, though SVR2 yields better results, it has 

the number of support vectors 97.4% of training samples. The optimum SVR model was 

searched in the range of 40 to 60% number of support vectors and it can be observed in 

Figure 5.2 that in this range, SVR1 with the stated parameters is the optimum SVR model. 

The purpose of providing the performances of two types of LS-SVR models in Table 5.8 

is not to conclude that analytical tuning formulae for computation of SVR hyper-

parameters as proposed by Cherkassky and Ma (2004), should not be used. In fact, in the 

standard SVR model design, combination of grid search and analytical formulae were used 

for optimum SVR hyper-parameter selection. The comparison of the two LS-SVR models  

is only to suggest that in case of LS-SVR model, where only two unknown parameters are 

required to be determined, a rigorous grid search may result in better optimum values. The 

advantage of LS-SVR model using grid search is also quite obvious while comparing with 

the results of standard SVR in Table 5.8. The standard SVR model using a combination of 

analytical method and grid search tuning technique produced a minimum validation error 

of 8.2% compared to LS-SVR model where the error is less (7.9%).  

It may be noted that the regression neural network produces the best result for the 

training data and the back propagation network yields the best result for the validation 

data. Since a model is evaluated on the basis of its generalization ability, the BPNN model 

trained with resilient back propagation algorithm can be considered better than the GRNN 

model. Moreover, the BPNN model uses 20 hidden layer neurons where as the GRNN has 

79 patter layer neurons (equal to the number of training samples). 
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It can be observed in Tables 5.8-5.10 that though both RMSE and MAE represent the 

average error and both RMSE and MAE have the units of difference between actual and 

predicted value, for any model, the RMSE value is higher than MAE value. This is due to 

the fact that in RMSE, large errors get amplified because of squaring phenomenon.  In 

case of training errors for BPNN and RBFNN models, BPNN produces less MAE despite 

higher RMSE. Similarly the ambiguity in model performance assessment based on one or 

two performance criteria is illustrated by observing the MAE and RMSE value of linear 

and quadratic models in Table 5.8(b). While quadratic model results in lower MAE, linear 

model shows marginally lower RMSE value. This observed variation in model 

performance is due to the fact that RMSE value is not only a function of average error but 

also a function of the distribution of error magnitudes. Therefore, MAE has been 

recommended as a better performance index than RMSE (Willmott and Matsuura, 2005).  

Considering the prediction errors produced by different models, it can be concluded 

that the BPNN model can be accepted as a reasonably good model for the grinding 

process. Because, the BPNN model trained by resilient back propagation algorithm shows 

modelling error in the range of 6 to 7% for both training and validation data. Moreover, 

the BPNN model is also more accurate than the Mamdani and Sugeno type fuzzy 

inference models where the reported error values are 9.4% and 7.3%, respectively.  

It may further be noted that the BPNN model has also better performance than the 

hybrid modeling approach of principal component analysis followed by BPNN modeling 

where the modeling error was 7.5%. Similar phenomenon is also observed by comparing 

the performance of linear and principal component regression models where linear 

regression model has better performance than PCR model. This shows that in the grinding 

process involving three input variables, dimensionality reduction by use of latent variables 

does not result in better modeling accuracy.  
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Among fuzzy inference models, the performance of the neuro-fuzzy model is clearly 

superior to all other types of models as observed in Table 5.10. While 5 types of linguistic 

variables were used for all the three input variables for the Mamdani and Sugeno models 

(Table 4.3), the neuro fuzzy approach achieves better result with less number of linguistic 

variables (3 numbers for each type of inputs). In addition to that, a total of 27 rules were 

used for the ANFIS model while 63 and 45 fuzzy if-then rules were framed for the 

Mamdani and Sugeno type models respectively. 

On comparing the results of Tables 5.8 to 5.10, finally it can be concluded that both 

the BPNN model (validation error 6.4%) and the neuro-fuzzy inference model (validation 

error 6.26%) have the best performances as compared to all other model types. Both these 

models produce errors in the range of around 6% for the validation data (This percentage 

error which is also known as mean absolute percentage error is 100 times the mean 

absolute error). This error value has been recommended as acceptable by Casali et al., 

(1998) for soft sensing of particle size. 

The predicted cement fineness values by various developed soft sensor models are 

presented in Figures 5.10 and 5.11 for the training and validation data respectively.  
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Figure 5.10 (a): Predicted values of cement fineness by different neural network 

models (Training data) 

 

Figure 5.10(b): Predicted values of cement fineness by different fuzzy inference 

models (Training data) 
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5.11 (a): Predicted values of cement fineness by different neural network models       

(Validation data) 

 

Figure 5.11 (b): Predicted values of cement fineness by different fuzzy inference 

models (Validation data) 
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Static Vs dynamic soft sensor 

It is useful at this stage to discuss on the static or dynamic nature of the developed 

soft sensor. When input and output data at the same time instant are considered for model 

development, the soft sensor models are called as static. On the other hand, if the 

instantaneous output is modeled as a function of the inputs of the same as well as previous 

time instances, the model is said to be a dynamic one. 

A static soft sensor has the form ( ) ( ) ( ) ( )( )txtxtxfty 321 ,,=                     (5.12) 

A dynamic soft sensor will have the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ),...1,,...,1,,...,1, 332211 −−−= txtxtxtxtxtxfty                                    (5.13) 

In this work, since the instantaneous values of inputs and outputs were considered for 

modeling, the developed models can be considered static. However it will be improper to 

say that a dynamic model is always better than a static one. The reason is elaborated 

below. 

Usually the dynamic soft sensors are developed by augmenting the instantaneous 

input values with time lagged values. The usefulness of a static or dynamic soft sensor 

largely depends on the process for which the inferential monitoring system is developed. 

Dynamic soft sensors are more useful than static soft sensors for process industries where 

dynamic process conditions are more common (e.g. regular grade changeover operations 

in polymer processes) or when significant time delay exists between inputs and outputs in 

which case input values of previous instances are also important . These two process 

conditions have no meaning in the clinker grinding process using vertical roller mill for 

the reasons explained below. 

There are very few grade change over operations in the clinker grinding process. This 

essentially means the desired cement fineness value is more or less constant for the entire 

duration of grinding. Therefore, unsteady state in operation occurs only during start up and 



Results and Discussion 

140 

shut down period and during normal operation the process operates mostly at steady state. 

Similarly, The effects of the inputs on the output are quite fast and the time delay factor is 

negligible.  

The negligible time delay is a significant advantage of vertical roller mill over ball 

mill and also an important reason why VRM modeling is quite different than ball mill 

modeling. Particle residence time in the vertical roller mill is less than even a minute as 

compared to ball mills where particle residence time is in the order of 20 to 30 minutes 

(Sahasrabudhe et al., 2006). Therefore while the present output can be considered as a 

function of the instantaneous input, it is highly unreasonable to consider that the present 

output is a function of the input which is available a few minutes back. 

Online Implementation 

The designed soft sensor models can be implemented in the process for online 

estimation of cement fineness from input process data. It should be emphasized at this 

juncture that any data-driven model must not be used for predicting output from an input 

data which does not lie within the data range used for initial model development. This is 

because data-driven models do not extrapolate well. The online implementation of the 

model in the SIMULINK environment is shown in Figure 5.12 using the two best 

performing soft sensor models i.e. the BPNN model and the ANFIS model. 
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Figure 5.12(a): SIMULINK block diagram showing online monitoring of cement fineness with the neural network and fuzzy 

inference model for normal input data 
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Figure 5.12 (b): SIMULINK block diagram showing online monitoring of cement fineness with the neural network and fuzzy 

inference model for abnormal (or outlier) input data
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In Figure 5.12(a), the three blocks on the left receive the values of the input process 

variables as measured by the hardware sensors. At any instant, one or more measured 

input process variables may either be normal (values that fall within the range for model 

development)or abnormal (values that fall outside the range). The instantaneous values 

received are then normalized with their respective minimum-maximum values which 

subsequently pass onto the multiplexor. The row vector of input normalized data is 

transposed to a column vector by the 'Reshape' block to meet the syntax requirement of the 

models. However before passing on the input set to the model a range check has been 

introduced. The 'if' block checks if all the three normalized values are within the range 0 

and 1. The condition supplied to the 'if' block is mentioned below: 

u1(1) ≥ 0 & u1(1) ≤ 1 & u1(2) ≥ 0 & u1(2) ≤1 & u1(3) ≥ 0 & u1(3) ≤ 1 

Here u1(1), u1(2) and u1(3) represent the three elements of the input u1 to the 'if' block. 

Subsequently, if the above condition is satisfied the 'if action subsystem' block 

following the 'if' block passes the values to the two models. The output produced by the 

models are in the normalized form which are subsequently converted to the actual cement 

fineness or Blaine value. Figure 5.12(a) shows the simulation results for one set of input 

data which are normal values (i.e all normalized inputs lie within the range 0 and 1). 

Figure 5.12(b) explains what happens if one or more input values are abnormal or outlying 

values. 

It can be seen in the block diagram that range for classifier RPM used for model 

development is from 610 to 1112. Figure 5.12(b) shows the simulation result for a 

classifier input value of 2000 which is outside the modeling range and hence in such a 

scenario, the output of the model cannot be relied upon. After normalization, the value for 

RPM is greater than one and the condition written in the 'if' block is not satisfied. 

Therefore the set of input values are prevented from flowing to the model which can be 
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noticed in the 'display' block preceding the model (all values are shown as 0). However, 

the models produce some output even for this set of 0 values which must be avoided in the 

final result display. This has been achieved by adding the 'switch' block which passes the 

model output to the 'display' if the inputs to the models  are nonzero. Else a '0' is displayed 

as the final simulation result. The '0' is an indication that one or more input values lie 

outside the desired range to be used by the model. 

Previously, in Figures 5.10 and 5.11, comparison of the performances of different 

models for training and validation datasets were presented only at the instances when 

laboratory values of cement fineness were available (total 158 values, 79 training values 

and 79 validation values). After showing the implementation strategy of the best chosen 

models in Figure 5.12, the continuously model predicted values of cement fineness for all 

the available input data (total 281 values as mentioned in Section 4.1.2) along with the 

intermittent reported laboratory values are presented in Figure 5.13. 
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Figure 5.13: Continuously monitored values of cement fineness by back propagation neural network model and adaptive neuro-fuzzy 

inference model along with intermittent reported laboratory values 
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Closed loop study 

Model predictive control strategy for controlling cement fineness (Blaine) in the 

clinker grinding process using ball mill has been proposed earlier (Martin and McGarel, 

2001). However, due to of lack of online monitoring system, there is no control system in 

place for accurately controlling cement Blaine in cement industries. According to Bureau 

of Indian Standards (BIS), 53-grade ordinary portland cement (cement concrete achieving 

a compressive strength of 53 MPa in 28 days) must have a minimum fineness value of 225 

m
2
/kg. Many industries operate so as to maintain the fineness value in the range of 340 to 

360 m
2
/kg. However, there is no continuous control system in place to ensure that the 

fineness remains within a particular range. The developed model can be utilized for 

continuous monitoring and control of cement fineness. 

An important issue is the selection of the manipulated variable. Since clinker inflow 

and hot air flow rate are the upstream values, these are mostly the disturbances for this 

process. Classifier RPM value is changed by the mill operator and can be considered as 

the manipulated variable. The linear regression model of the grinding process (Equation 

4.1) indicates that among the three input variables, hot air flow has the least effect on the 

fineness. This phenomenon is further substantiated by making scatter plots of the output 

with each of the two disturbance inputs computing the correlation coefficient. The plots 

are shown in Figure 5.14. 

Correlation coefficient has been used in the literature for influential variable selection. 

Higher value indicates strong correlation between the two variables and vice versa (Warne 

et al., 2004). Negative correlation indicates inverse relationship of the two variables.  
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Figure 5.14: Scatter plots and correlation coefficient showing the dependence of the 

output with the three input variables 
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It can be observed that between the two disturbance variables, dependence of cement 

fineness on clinker inflow rate is stronger than dependence of cement fineness on hot air 

flow rate.   Therefore, closed loop study was performed with clinker inflow rate as the 

disturbance variable. The model predictive control strategy to maintain cement fineness 

value within desired range is shown in Figure 5.15. 

 

Figure 5.15: Closed loop structure for continuous monitoring and control of cement 

fineness 

Here, the clinker grinding process consisting of the VRM and the associated inputs 

and outputs is shown. The values of the inputs are received from  online physical sensors 

installed in the process. The block shown as ANN model in Figure 5.15 actually represents 

the entire structure shown in Figure 5.12. This ANN model performs sequentially the tasks 

of normalization of the actual inputs, comparison with the minimum and maximum values 

used for model design, computation of the output and conversion of normalized output to 

actual value in the unit of m
2
/Kg. The continuously monitored value produced by the 

model and the set point value are supplied to the model predictive controller (MPC).  
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Two important parameters in MPC are the lengths of prediction and control horizons 

(Qin and Badgwell, 2003). Prediction horizon (P) refers to the time interval over which 

the output is predicted and control horizon (M) refers to the time interval over which the 

control moves are computed. Usually P is greater than M and the recommended values are 

P = 20 and M = 1 to 3 (Bequette, 2003).  

In this work, the performance of the MPC was compared by using a prediction 

horizon of 20 and different values of control horizons ranging from 1 to 3. The simulated 

response of the changes in manipulated variable and the corresponding changes in output 

are shown in Figure 5.16 for a 10% step change in the load variable (clinker inflow rate) 

above a nominal steady state value of 200 tons per hour.  

It can be observed that increase in control horizon does not bring any significant 

improvement. A higher control horizon results in increase in overshoot due to the larger 

magnitude of initial changes in the manipulated variables (Shridhar and Cooper, 1997). It 

can be concluded from Figure 5.16 that a control horizon of 1 gives better performance 

than other values.  
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5.3.2 Results for Clinkerization Process 

As described in Section 4.2.3, the soft sensor model for rotary cement kiln was 

developed using the kiln data which were processed and divided using two different 

methods. The pair of datasets obtained are referred as dataset 1 and dataset 2. All models 

developed have nine inputs and eight outputs. The models are evaluated by measuring six 

different statistical performance indices. The formulae of these performance indices for a 

single output quality 34 have been presented in Equations 5.3 and 5.7 to 5.11. Therefore, 

for any model corresponding to eight outputs, eight values are obtained for a single 

performance index. The model performance values reported in the subsequent sections 

correspond to the average of the eight values. For example, for a particular model, for 

eight outputs, eight values of MAE were obtained. The value of MAE reported in a 

particular Table is the average of these eight MAE values. The same logic holds good for 

other statistical parameters as well.  

5.3.2.1 Results for Kiln Dataset 1 

Dataset 1 was formed by application of Hampel's method of univariate outlier 

detection followed by random division of the processed data to 156 number of training 

samples and 67 number of validation samples. Three types of feed forward neural network 

models were developed using the training dataset. The details of the three network 

structures have already been provided in Table 4.7. The performances of these models are 

presented in Tables 5.11(a) and 5.11(b) for the training and validation data respectively. 

The performances of the three neural network models in predicting the eight clinker 

quality parameters are shown in Figure 5.17. 

One interesting observation is, as far as simulation of the networks for the training 

data is concerned, all three models produce satisfactory results (Table 5.11(a)). However, 

the performance of the GRNN model is superior to the other two models because of the 

use of large number of pattern layer neurons (Table 4.7). But the important aspect where 
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the BP network model lags behind the radial basis network and the regression network 

model is the generalization capability of the models (Table 5.11(b)) i.e. how well the 

models perform when they are supplied with data not used for the training. It is quite 

obvious from Table 5.11(b) that RBFN and GRNN clearly outperform the network model 

trained by back propagation method. The performance of a model is assessed by its ability 

for generalization.  

Table 5.11(a): Neural network Model Performance for training data in clinkerization 

process (Dataset 1) 

MODEL TYPE MAE RMSE 
CORRELATION 

COEFFICIENT 
VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

BPNN 0.0612 0.0822 0.87 75.93 0.7593 0.0955 

RBFNN 0.065 0.0918 0.8397 70.55 0.7055 0.1033 

GRNN 0.0351 0.061 0.9357 86.99 0.87 0.0683 

 

Table 5.11(b): Neural network Model Performance for validation data in 

clinkerization process (Dataset 1) 

MODEL TYPE MAE RMSE 
CORRELATION 

COEFFICIENT 
VAF 

NASH-
SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

BPNN 0.4033 0.817 -0.131 -2549.3 -27.65 0.592 

RBFNN 0.1321 0.1696 0.188 -22.76 -0.542 0.2018 

GRNN 0.1517 0.195 0.092 -51.94 -0.674 0.2228 

Detailed analysis of the results of Table 5.11(b) reveals that the BPNN model has 

very low generalization capability. The high negative variance account for (VAF) values 

for the BPNN model is due to the fact that the model exhibits highly erratic behavior in 

estimating outputs from unknown inputs, resulting in much higher variance for the 

residuals (3 − 35) than for the actual output. Clinker quality parameters are better predicted 

by RBFN than GRNN as evident from the values of different statistical performance 

indices in Table 5.11(b).  
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 Figure 5.17(a): Prediction performances of the three neural networks for training data 
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Figure 5.17(a): Prediction performances of the three neural networks for training data (Continued) 
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 Figure 5.17(b): Prediction performances of the three neural networks for validation data 
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Figure 5.17(b): Prediction performances of the three neural networks for validation data (Continued)
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However, the best performance may not be satisfactory. Even in case of RBFNN 

model, there is significant difference of performance with the training and validation data. 

This might be due to the fact that the statistical characteristics of the training data might 

have been significantly different than that of the validation data. This difference is due to 

the fact that, random sampling does not ensure uniform characteristics of the datasets. 

Moreover, there may be some flaws in the initial processed data itself due to the 

application of univariate outlier detection techniques to the multivariate data. These 

problems are addressed by applying multivariate outlier detection technique to the raw 

data and use of statistical techniques of subset selection instead of random data division. 

Application of closest distance to center (CDC) method of multivariate outlier detection 

resulted in a different set of processed data (Total number of observations are same) which 

was subsequently divided equally into training and validation subsets. This is referred to 

as Dataset 2. 

5.3.2.2 Results for Kiln Dataset 2 

The training set prepared by application of the Kennard-Stone method to the 

processed data, was used for data-driven model development of rotary cement kiln. It is 

mentioned in Section 2.3.2 that the model reported by Lin et al. (2007) for soft sensing of 

free lime has used different kiln operating variables as inputs. However, the input raw 

meal quality has not been considered in modeling. Therefore, before proceeding further 

with model development it was investigated whether the inclusion of raw meal quality as 

inputs improves the model performance or not. To address this issue, initially two types of 

multiple linear regression models for the kiln were developed, one only with kiln 

operating variables as inputs (Total 5 inputs - Column 2 of Table 4.5) and the other using 

kiln operating variables as well as raw meal quality as inputs (Total 9 inputs - Both 

columns 1 and 2 of Table 4.5). The linear regression equations are reported in Table 4.8. 
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The model performance with and without raw meal quality values as inputs are presented 

in Table 5.12. 

Table 5.12: Multiple linear regression model performance with and without input 

material quality values as model inputs 

NUMBER OF INPUTS 
MODEL PERFORMANCE 

MAE (Training set) MAE (Validation set) 

5 (Only kiln operating variables) 0.1056 0.096 

9 (Kiln operating variables + Raw meal quality) 0.0899 0.0874 

From Table 5.12 it is quite clear that inclusion of input quality as model inputs 

significantly improves the model performance (The MAE has decreased by 17% for 

training set and 10% for the validation set). However, it must be noted that as mentioned 

earlier the input quality values used for performance evaluation are the most recent values 

as obtained from the quality control laboratory as these are not continuously measured and 

hence instantaneous values are not available. 

The available training and validation datasets as explained in Section 4.2.3 were 

subsequently used for development and analysis of the various data-driven soft sensor 

models of the rotary cement kiln. The datasets contain 9 input parameters and eight output 

(clinker quality) parameters. A total of 112 samples were used for training and rest 111 

samples for validation.  

The optimum structure of multilayer perceptron (BPNN) was determined by 

constructing neural network models with different number of hidden layer neurons 

followed by training with different algorithms so as to achieve the minimum error for the 

validation dataset. The results are shown in Figure 5.18. 

For design of back propagation neural network model four different training 

algorithms were used: gradient descent with momentum (GDM), resilient back 

propagation (RP), Levenberg-Marquadt (LM) and conjugate gradient descent (CG). LM 

algorithm though quite fast and gives good fitting with less number of epochs, it suffers 
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from the problem of over fitting as evident from the very high error for the validation data. 

Both Gradient Descent with Momentum (GDM) and Resilient Back Propagation (RP) 

algorithms performed equally well with the validation data. However considering the 

marginal better result of GDM with training data, the optimum network structure was 

decided to be the one having 15 sigmoidal hidden layer neurons trained with gradient 

descent with momentum (GDM).  

 

Figure 5.18 (a): Neural network model performance trained by different algorithms 

(Training data) 

 

 

Figure 5.18 (b): Neural network model performance trained by different algorithms 

(Validation data) 
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Ideally an RBF model should have as many number of hidden layer neurons as the 

number of training samples (inputs) for perfect fitting. However, this perfect fitting with 

training data results in very poor generalization.  Therefore, the aim was optimum 

selection of spread and number of neurons so that the network produces low and almost 

comparable error values for both training and validation data. Initially to determine the 

optimum spread parameter, networks with fixed number of neurons and different scaling 

parameters were created. Performances of these RBFNNs with training and cross 

validation data are shown in Figure 5.19(a). From this analysis, the optimum scaling 

parameter was decided as 2. Subsequently at this spread value, networks with different 

number of RBF neurons were created and tested. The results are shown in Figure 5.19(b). 

 

Figure 5.19(a): RBF neural network model performance as a function of scaling 

parameter at constant number of neurons (10) for clinkerization process 
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Figure 5.19(b): RBF neural network model performance as a function of number of 

neurons at constant scaling parameter value of 2 for clinkerization process 

In the similar manner the optimum spread parameter of the regression network was 

determined. The results leading to optimum spread value are produced in Figure 5.20. 

 

Figure 5.20: Regression neural network model performance as a function of spread 

value 
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assessed using the same statistical parameters which were used for the grinding process 

models. The results are reported in Tables 5.13.  

Similarly using the procedure described in Section 4.2.3.2, Mamdani and Sugeno type 

fuzzy inference models of the kiln process were developed. The rules were framed based 

on the values of the training data and the optimum model in each case was chosen as the 

one that produced the least MAE for the validation dataset. A total of 147 rules were 

framed for the Mamdani model and 129  fuzzy if-then rules were framed for the Sugeno 

type model. The performances of the two fuzzy inference models are reported in Table 

5.14. 

The ideal model values for the different statistical parameters are mentioned in the top 

row. The closer the model values are to the ideal values, the better is the model fitness. 

The values in Tables 5.11-5.14 represent the average value for the eight output variables. 

NSE value ranges from -∞ to 1 and TIC value lies between 0 and 1. Good models should 

have NSE values higher than 0 and TIC value less than 0.3 (Moriasi et al., 2007). 

The advantage of using multivariate outlier detection and structured subset selection 

method can be clearly observed by comparing the performances of the neural network 

models reported in Table 5.11 with the ones reported in Table 5.13. While the best 

performing RBF model produced an error of 13% for the validation data, in the second 

scenario, all models have validation error values significantly less than this. Logic for 

using six model evaluation parameters is also clearly visible for the clinkerization process. 

A comparison of the MAE and RMSE values of BPNN and RBFNN shows that while with 

respect to RMSE, RBFNN may seem better, but with respect to MAE, BPNN seems 

better. The reasons have already been discussed under the results for grinding process in 

Section 5.3.1.  
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Table 5.13(a): Neural network model performance for training data in clinkerization process (Dataset 2) 

MODEL TYPE 
MODEL DETAILS 

MAE RMSE 

CORRELATION 

COEFFICIENT 

(R) 

VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

BPNN 

15 hidden neurons, trained by 

gradient descent with 

momentum (GDM) 

0.077 0.113 0.589 34.567 0.338 0.180 

RBFNN 
14 neurons, Scaling parameter 

= 2 
0.084 0.111 0.582 52.34 0.345 0.161 

GRNN 
Optimum Spread Parameter = 

0.25 
0.043 0.052 0.924 85.577 0.798 0.089 

Table 5.13(b): Neural network model performance for validation data in clinkerization process (Dataset 2) 

MODEL TYPE 
MODEL DETAILS 

MAE RMSE 

CORRELATION 

COEFFICIENT 

(R) 

VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

BPNN 

15 hidden neurons, trained by 

gradient descent with 

momentum (GDM) 

0.089 0.126 0.335 12.445 0.038 0.207 

RBFNN 
14 neurons, Scaling parameter 

= 2 
0.087 0.122 0.342 46.902 0.092 0.180 

GRNN 
Optimum Spread Parameter = 

0.25 
0.086 0.122 0.353 48.411 0.081 0.181 
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Table 5.14(a): Fuzzy inference Model Performance for training data in clinkerization process 

MODEL TYPE 
MODEL DETAILS 

MAE RMSE 

CORRELATION 

COEFFICIENT 

(R) 

VAF 

NASH-
SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

Fuzzy Inference 

(Mamdani) 

5 fuzzy variables for each input (triangular 

and trapezoidal membership function) 

5 fuzzy variables for each output (trapezoidal 

membership function) 

Total 147 rules 

0.062 0.080 0.808 77.965 0.378 0.119 

Fuzzy Inference 

(Sugeno) 

5 fuzzy variables for each input (triangular 

and trapezoidal membership function) 

9 fuzzy variables for each output (Zero order) 

Total 129 rules 

0.054 0.090 0.807 71.028 0.211 0.133 

Table 5.14(b): Fuzzy inference Model Performance for validation data in clinkerization process 

MODEL TYPE 
MODEL DETAILS 

MAE RMSE 

CORRELATION 

COEFFICIENT 

(R) 

VAF 

NASH-

SUTCLIFFE 

EFFICIENCY 

(NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

Fuzzy Inference 

(Mamdani) 

5 fuzzy variables for each input (triangular 

and trapezoidal membership function) 

5 fuzzy variables for each output (trapezoidal 

membership function) 

Total 147 rules 

0.087 0.122 
0.524 48.078 0.024 0.173 

Fuzzy Inference 

(Sugeno) 

5 fuzzy variables for each input (triangular 

and trapezoidal membership function) 

9 fuzzy variables for each output (Zero order) 

Total 129 rules 

0.081 0.118 
0.571 49.943 0.089 0.167 
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Analyzing the results presented in Tables 5.13 and 5.14, it can be concluded that the two 

fuzzy inference models (Mamdani and Sugeno) and the regression neural network model have 

better performances than the BPNN and RBFNN models. The performances of these three 

models with the training and validation data are shown in Figure 5.21(a) and 5.21(b), 

respectively. To choose the best out of these three models, further analysis was done by 

studying the statistical parameters produced by these three models for each of the 8 outputs. 

The results are presented in Table 5.15. 

Considering the average values it can be concluded that the regression neural network 

(GRNN) model has the best performance for the training data and Sugeno type fuzzy inference 

model (FISS) has the best performance for the validation data (The best average values are 

highlighted in Table 5.15).  Performance of the models with respect to prediction of the 

individual outputs helps further in choosing the best model. Analyzing the model performance 

with validation results of Table 5.15 (b), it is clear that GRNN has the worst performance. 

While Mamdani type fuzzy inference system (FISM) shows poor prediction accuracy for SiM 

and C3S, Sugeno type fuzzy inference system (FISS) shows low accuracy for LSF, SiM and 

C3S. However, this lower accuracy comes with the advantage of better accuracy in predicting 

free lime.  

While the significance of the different quality parameters in determining the cement 

quality has been mentioned in the process description, free lime content happens to be the most 

important quality parameter which ultimately decides whether the clinker is to be rejected or 

processed further in the grinding unit. Therefore, it was concluded that the FISS model has the 

best performance because it has the best overall prediction accuracy as well as best prediction 

accuracy for free lime content. 
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Figure 5.21(a): Performances of the three data-driven soft sensors with training data 
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 Figure 5.21(a): Performances of the three data-driven soft sensors with training data (Continued) 
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Figure 5.21(b): Performances of the three data-driven soft sensors with validation data 
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Figure 5.21(b): Performances of the three data-driven soft sensors with validation data (Continued) 
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Table 5.15 (a): Detailed model evaluation for training data in clinkerization process 

Output 

Variable 

(Clinker 

Quality) 

MODEL PERFORMANCE 

MAE RMSE R VAF NSE TIC 

GRNN FISM FISS GRNN FISM FISS GRNN FISM FISS GRNN FISM FISS GRNN FISM FISS GRNN FISM FISS 

FCaO 0.054 0.063 0.070 0.074 0.081 0.126 0.933 0.901 0.785 78.08 79.66 46.76 0.781 0.764 0.427 0.141 0.133 0.201 

LSF 0.041 0.066 0.049 0.046 0.076 0.074 0.942 0.865 0.876 88.62 80.13 80.66 0.829 0.683 0.701 0.087 0.113 0.110 

SiM 0.022 0.064 0.070 0.025 0.112 0.125 0.908 0.337 0.516 96.54 61.59 51.28 0.763 -2.085 -2.846 0.084 0.261 0.281 

AlM 0.049 0.064 0.044 0.061 0.077 0.075 0.940 0.892 0.899 84.23 78.74 79.70 0.847 0.792 0.803 0.079 0.090 0.088 

C3S 0.036 0.050 0.048 0.040 0.063 0.077 0.929 0.843 0.769 92.16 85.73 78.69 0.807 0.643 0.474 0.058 0.078 0.095 

C2S 0.061 0.067 0.053 0.067 0.083 0.090 0.926 0.896 0.883 76.60 75.22 72.72 0.803 0.791 0.756 0.090 0.090 0.096 

C3A 0.041 0.062 0.056 0.050 0.079 0.090 0.891 0.848 0.828 81.86 79.33 73.46 0.744 0.684 0.589 0.120 0.126 0.141 

C4AF 0.044 0.061 0.039 0.055 0.070 0.065 0.922 0.884 0.899 86.49 83.29 84.92 0.809 0.747 0.787 0.053 0.061 0.056 

Average 0.043 0.062 0.054 0.052 0.080 0.090 0.924 0.808 0.807 85.57 77.96 71.02 0.798 0.378 0.211 0.089 0.119 0.133 

Table 5.15 (b): Detailed model evaluation for validation data in clinkerization process 

Output 

Variable 

(Clinker 

Quality) 

MODEL PERFORMANCE 

MAE RMSE R VAF NSE TIC 

GRNN FISM FISS GRNN FISM FISS GRNN FISM FISS GRNN FISM FISS GRNN FISM FISS GRNN FISM FISS 

FCaO 0.113 0.096 0.081 0.150 0.134 0.116 0.118 0.498 0.677 22.49 37.90 51.06 -0.063 0.151 0.360 0.307 0.266 0.233 

LSF 0.078 0.078 0.074 0.100 0.099 0.102 0.408 0.550 0.507 67.59 64.64 62.69 0.009 0.030 -0.022 0.165 0.167 0.172 

SiM 0.052 0.075 0.065 0.096 0.121 0.112 0.120 0.358 0.462 69.88 56.80 57.13 -0.087 -0.741 -0.478 0.235 0.239 0.230 

AlM 0.099 0.090 0.087 0.131 0.114 0.116 0.621 0.708 0.695 47.03 53.76 51.41 0.281 0.457 0.432 0.143 0.115 0.120 

C3S 0.077 0.098 0.093 0.126 0.149 0.149 0.167 0.425 0.428 42.59 27.17 25.76 0.015 -0.370 -0.370 0.157 0.172 0.173 

C2S 0.108 0.093 0.099 0.145 0.121 0.137 0.345 0.647 0.546 30.40 47.84 33.39 0.031 0.326 0.128 0.164 0.130 0.150 

C3A 0.066 0.073 0.074 0.099 0.115 0.107 0.618 0.475 0.576 65.46 52.29 58.76 0.354 0.129 0.254 0.155 0.171 0.161 

C4AF 0.092 0.094 0.078 0.132 0.125 0.108 0.429 0.534 0.674 41.84 44.22 59.34 0.108 0.207 0.410 0.125 0.122 0.102 

Average 0.086 0.087 0.081 0.122 0.122 0.118 0.353 0.524 0.571 48.41 48.08 49.94 0.081 0.024 0.089 0.181 0.173 0.167 
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The hybrid model was developed by first conducting PCA on the total normalized 

input data (223×9 data matrix). The covariance matrix is shown in Table 5.16. Eigen 

vectors of the covariance matrix are reported in Table 5.17. Each column under Table 5.17 

represent one eigen vector. For nine inputs there are total nine eigen vectors. The eigen 

values for these nine eigen vectors are reported in Table 5.18. The magnitudes of the 

eigen-values represent the quantity of input data variance represented by the 

corresponding eigen vector. Based on these eigen values the principal components and 

their share in the total variance are presented in Table 5.19 

Table 5.16: Covariance matrix for the normalized values of kiln inputs 

1 -0.13371 0.085632 0.01712 0.001483 0.154242 -0.07059 0.040675 0.17405 

-0.13371 1 -0.13703 0.182449 -0.17419 -0.19408 -0.04169 -0.25991 0.016876 

0.085632 -0.13703 1 0.193291 0.048916 -0.10767 -0.07348 0.258803 -0.03782 

0.01712 0.182449 0.193291 1 0.029276 -0.02808 -0.07784 0.198474 0.06579 

0.001483 -0.17419 0.048916 0.029276 1 0.620826 -0.00124 0.558103 -0.03365 

0.154242 -0.19408 -0.10767 -0.02808 0.620826 1 0.048149 0.135283 -0.05016 

-0.07059 -0.04169 -0.07348 -0.07784 -0.00124 0.048149 1 -0.09817 0.155941 

0.040675 -0.25991 0.258803 0.198474 0.558103 0.135283 -0.09817 1 0.168686 

0.17405 0.016876 -0.03782 0.06579 -0.03365 -0.05016 0.155941 0.168686 1 

Table 5.17: Eigen vectors for the symmetric matrix of Table 5.16 

0.06833 -0.39575 0.078109 -0.27609 0.620246 -0.34388 0.472732 0.082192 -0.15232 

-0.14435 -0.18159 0.603785 -0.05346 0.30559 0.577412 -0.16181 0.138089 0.326697 

-0.00337 0.328436 0.483913 -0.38393 -0.28447 -0.33182 -0.04581 0.536217 -0.17288 

0.101105 0.066541 -0.58072 -0.34844 0.156192 0.431122 -0.08013 0.550631 -0.08261 

0.688389 -0.10108 0.218129 0.041812 -0.0022 0.239666 -0.18149 -0.15995 -0.59212 

-0.48596 0.445256 0.0214 -0.27985 0.290069 0.15367 -0.07166 -0.40135 -0.46135 

-0.03972 -0.28176 0.016535 -0.534 -0.53575 0.286615 0.427125 -0.28429 0.034181 

-0.49453 -0.46604 0.01152 0.357439 -0.21286 0.085914 0.011191 0.302854 -0.51557 

0.089897 0.439382 0.09743 0.398892 0.010145 0.28599 0.721933 0.15573 -0.05406 
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Table 5.18: Eigen values of the eigen vectors of Table 5.17 

0.197 0.496 0.624 0.8302 1.0211 1.1196 1.2136 1.4165 2.0815 

Based on the cumulative percentage variance criterion, the usual practice is to choose 

the number of principal components those account for a cumulative variance of more than 

70% or 80%. Therefore, based on the results reported in Table 5.19, a total of five 

principal components were selected. These five principal components PC1 to PC5 are the 

linear combinations of the original input variables which are formulated based on their 

respective eigen vector values reported in Table 5.17. The resulting expressions of these 

five principal components are mentioned in Table 5.20. 

Table 5.19: Principal components in the decreasing order of their contribution to data 

variance 

PRINCIPAL 

COMPONENTS 
VARIANCE 

PERCENTAGE 

VARIANCE 

CUMULATIVE 

PERCENTAGE 

VARIANCE 

PC1 2.0815 23.13 23.13 

PC2 1.4164 15.74 38.87 

PC3 1.214 13.49 52.36 

PC4 1.1196 12.44 64.8 

PC5 1.0211 11.35 76.15 

PC6 0.8302 9.22 85.37 

PC7 0.6242 6.93 92.3 

PC8 0.4959 5.51 97.81 

PC9 0.1972 2.19 100 

Total 9.0001 100  

Table 5.20: Details of the five principal components 

Principal 

Components 
Expression 

PC1 
6�/ = −0.1523�/ + 0.3267�0 − 0.1728�2 − 	0.0826�7 − 0.5921�8− 	0.4613�9 + 0.0342�: − 0.5156�; − 0.054�< 

PC2 
6�0 = 0.0822�/ + 0.1381�0 + 0.5362�2 + 	0.5506�7 − 0.16�8− 	0.4013�9 − 0.2843 + 0.3028�; + 0.1557�< 

PC3 
6�2 = 0.4727�/ − 0.1618�0 − 0.0458�2 − 	0.0801�7 − 0.0815�8− 	0.0717�9 + 0.4271�: + 0.0112�; + 0.722�< 

PC4 
6�7 = −0.3439�/ + 0.5774�0 − 0.3318�2 + 	0.4311�7 + 0.2397�8+ 0.1537�9 + 0.2866�: + 0.086�; + 0.286�< 

PC5 
6�8 = 0.6202�/ + 0.3056�0 − 0.2845�2 + 	0.1562�7 − 0.0022�8+ 0.29�9 − 0.5357�: − 0.2128�; + 0.0101�< 
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Using the five principal components mentioned in Table 5.20, the input dataset 

dimension was reduced from 223×9 to 223×5. These 5 latent variables were subsequently 

used for developing BPNN model of the rotary kiln for estimation of clinker quality. 

Gradient descent with momentum was used as the training algorithm for design of the 

BPNN model from the 112×5 training data. 

Networks with different number of hidden layer neurons were created and trained 

with training data so that the minimum MAE was attained. Subsequently, the different 

trained networks were tested with the validation data subset (111×5 validation data subset) 

and the MAE values were computed. The results are shown in Figure 5.22. Based on the 

results of Figure 5.22, the optimum number of neurons can be decided as either 18 or 15. 

Both these structures have the lowest validation errors with lower training error at 18 

neurons. The optimum structure was decided as 18 hidden layer neurons where the 

network produces almost equal error for both training and validation data. 

 

Figure 5.22: Results of BPNN model design from transformed input data 

The statistical performance of the PCA - BPNN model is reported in Table 5.21. 
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Table 5.21: PCA - BPNN Model Performance for the clinkerization process 

MODEL DETAILS MAE RMSE 

CORRELATION 

COEFFICIENT 

(R) 

VAF 

NASH-

SUTCLIFFE 

EFFICIENC

Y (NSE) 

THIEL'S 

INEQUALITY 

COEFFICIENT 

(TIC) 

Ideal Value 0 0 1 100 1 0 

5 inputs 

9  outputs 

Single hidden layer 

with 18 neurons 

Hyperbolic tangent 

activation function for 

hidden layer neurons 

Linear activation 

function for output 

layer neurons 

Performance with training data 

0.09 0.128 0.366 8.15 0.075 0.207 

Performance with validation data 

0.089 0.126 0.293 7.933 0.027 0.208 

 

A comparison of Table 5.21 and 5.13(b) indicates that application of PCA is 

meaningful to kiln data. Because the performance of the two BPNN models, one with nine 

actual input values and the other with five latent variables are almost at par with each 

other. However comparison of Table 5.21 with Table 5.14 reveals that the performance of 

the fuzzy model is still better in all the statistical performance indices. Therefore, the 

Sugeno type fuzzy model was subsequently tested in SIMULINK platform for assessing 

its online quality monitoring capability.  
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Figure 5.23: SIMULINK block diagram showing online monitoring of cement clinker quality with the fuzzy inference model
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Figure 5.24: Continuously monitored value of clinker quality parameters by the Sugeno Fuzzy Inference Model 
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Figure 5.24: Continuously monitored value of clinker quality parameters by the Sugeno Fuzzy Inference Model (Continued) 
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Online Implementation 

The model structure implemented in SIMULINK is shown in Figure 5.23. 

The nine blocks on the left receive the values of the input process variables. Out of these 

nine input blocks, most recently obtained laboratory values for input raw meal quality are 

supplied to the first four blocks. The other five blocks receive the continuously measured 

values by the installed hardware sensors. The subsequent couple of blocks describe the 

process of normalization of each process value in the range 0 to 1. The fuzzy inference model 

requires a column vector of nine elements.  

The normalized individual values are combined with the help of a multiplexor and then 

subsequently converted to a column vector using the reshape block. This column vector 

consisting of the normalized input values is the required input to the fuzzy model (a display 

unit is produced prior to the model to ascertain that the values supplied to the model are in 

proper format). The model with its membership functions, fuzzy variables and the rule base 

determines the outputs. The output from the model is a column vector containing 8 elements. 

These values are separated with the help of a demultiplexor and subsequently denormalized 

to produce the predicted values in their respective actual units. Figure 5.23 also shows the 

simulated results for one set of inputs.  Finally, the continuously monitored cement clinker 

quality parameters using the block diagram of Figure 5.23 are shown in Figure 5.24 for all 

223 number of observations. 
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________________________________________________________________________ 

Chapter - 6 

Concluding Remarks 

________________________________________________________________________ 

In most of the process industries, no hardware sensors are available for continuous 

monitoring of end product quality. Soft sensors or inferential sensors are industrial process 

models that use the information of easily monitored process variables and produce 

estimated values of quality variables. Because of the inherent complexities associated with 

most of the industrial process, the models are mostly derived from actual input-output 

process data. Till date, soft sensor development has been reported for product quality 

prediction in various process industries such as petroleum refinery and petrochemicals 

industry, polymer industry, fermentation and bio processes industry, metallurgical industry 

and pulp & paper industry. However, there have been very few applications of soft sensing 

techniques in cement manufacturing processes. Therefore, the focus of the present 

research work is development of soft sensors for continuous quality monitoring in cement 

manufacturing processes.  

This chapter presents a summary of the work done followed by significant findings 

and finally the future scope of research. 

6.1 Summary of the Work Done 

Two processes were identified where there is no hardware sensor available for online 

monitoring of product quality. First, a physical process where cement clinker is ground in 

the vertical roller mill for production of cement. Here, the quality parameter is the product 

particle size which is measured offline by laboratory analysis. Second, a more complex 

chemical process occurring in the rotary cement kiln where the raw meal under high 
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temperature is converted to clinker. Here, the product quality is the chemical composition 

of the clinker formed which is again measured by offline laboratory sampling.  

Actual input-output process data were collected from a cement plant in order to 

develop data driven soft sensors for estimation of cement fineness and clinker 

composition. The output of the clinker grinding process i.e. the cement fineness is a 

function of three input variables. The output of the clinkerization process i.e. the 

composition of the clinker is a function of nine input variables.  

The data collected from the plant were first preprocessed for detection and removal of 

outliers. The grinding process where only three inputs are involved, univariate outlier 

detection techniques were applied for removal of abnormal data values. Nine inputs are 

involved in the clinkerization process taking place in the rotary cement kiln. Therefore, 

considering the multivariate nature of the data, both univariate as well as multivariate 

outlier detection techniques were applied. The different univariate outlier detection 

techniques applied were the three sigma edit rule, box plot method and the Hampel's 

identifier. For the input data of rotary cement kiln in addition to these three univariate 

outlier detection techniques, five types of multivariate outlier detection techniques were 

applied for data preprocessing. The different multivariate techniques applied are, the 

conventional techniques of Mahalanobis distance, hat matrix leverage value and robust 

techniques of minimum covariance determinant, smallest half volume and closest distance 

to center methods.  

The total data sets obtained after data preprocesssing were divided equally into 

training and validation subsets for model development and performance evaluation. In the 

data division step, random division as well as statistical methods of Kennard-Stone 

algorithm and DUPLEX algorithms were followed for design of the training set.  
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For the grinding process, using the designed training data set, five types of statistical 

models (multiple linear regression, principal component regression, quadratic response 

surface, standard support vector regression and least square support vector regression), 

three types of feed forward neural network models (back propagation, radial basis function 

and regression), two types of fuzzy inference models (Mamdani and Takagi-Sugeno) and 

two types hybrid models (adaptive neuro fuzzy inference and PCA plus back propagation 

neural network) were developed.  

Similarly, for the more complex clinkerization process, multiple linear regression, 

three types of feed forward neural network models (back propagation, radial basis function 

and regression), two types of fuzzy inference models (Mamdani and Takagi-Sugeno), and 

one hybrid model (PCA plus back propagation neural network) were developed. The 

performances of all developed models were analyzed by evaluating the model outputs for 

the unknown (validation) data.  

The performance analysis was carried out in terms of six different statistical model 

performance indices. The best model in each of the two processes was decided as the one  

that gives the best desirable values in all the six statistical parameters. The best chosen 

model was implemented in the SIMULINK platform by means of interconnected block 

diagram structure to assess their continuous quality monitoring capability. For the grinding 

process, a simple model predictive control scheme has been developed to illustrate the 

potential of the model for closed loop control of cement fineness within the desired range.  

6.2 Significant Observations and Findings 

In the following sections the significant findings of this research work are presented. 

The findings are classified into three categories. In the first section, the general findings 

are presented which are followed by observations related to the grinding and clinkerization 

process in sections two and three respectively.  
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6.2.1 General Observations 

1. Among the three univariate outlier detection techniques, the Hampel's method of 

outlier detection using the outlier resistant median and median absolute deviation 

instead of outlier sensitive mean and standard deviation produced better results 

than the three sigma edit rule and the box plot method. 

2. In case of radial basis function neural network, with increase in the number of RBF 

neurons, accuracy of model fitting increases for the training data.   

3. In case of regression and radial basis function neural network, with decrease in the 

spread parameter, the fitting to training data becomes more and more accurate. 

4. In all types of neural network, fuzzy inference and support vector regression 

models, the optimum model parameters were decided by the method of cross 

validation. The optimum parameters are the ones that result in lower modeling 

error not only for the data used for model development (training data) but also for 

the unknown or validation data. 

5. Among the statistical parameters for model evaluation, though RMSE and MAE 

both represent the average error between predicted and actual values, for any 

model, RMSE value is always higher than the MAE value.   

6. During model evaluation, in a few cases, between two models, MAE value for one 

model was lower while the RMSE value for the other model was lower. In such 

cases the better model was chosen as the one producing lower MAE value since 

this has been reported in the statistical literature as a better performance parameter 

than the RMSE.  
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6.2.2 Soft Sensing of Cement Fineness 

1. Two statistical techniques were applied for design of training set from the total 

data set. It was observed that the technique of Kennard-Stone maximal intra 

distance criterion performs better than the Duplex method. 

2. Among statistical modeling techniques, the non-linear regression technique using 

the method of support vector machine performs better than the techniques of 

multiple linear regression, principal component regression and quadratic response 

surface methods.  

3. Among the two types of support vector regression techniques studied, the 

technique of least square support vector regression performs better than the 

standard support vector regression technique.  

4. In case of support vector regression models, the technique of rigorous grid search 

method results in better optimum values of SVR hyper-parameters than the values 

determined by using analytical formulae proposed in the literature. 

5. Among the back propagation, radial basis function and regression neural network 

models designed for the grinding process, the back propagation model trained by 

resilient back propagation training algorithm produced the best result. 

6. In the grinding process where only three input variables are involved, 

dimensionality reduction is not advisable. The performance of principal component 

regression and PCA-BPNN model which were formed using two latent variables as 

inputs, performed worse than multiple linear regression model and BPNN model 

respectively. 

7. Overall, the hybrid model using adaptive neuro-fuzzy inference technique and the 

back propagation neural network produced better performance than the other 
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models. Any of these models can be implemented in the grinding process for 

online monitoring of cement fineness. 

8. The predictive capability of the model can also be exploited for closed loop control 

of particle size in the grinding process.  

6.2.3 Soft Sensing of Clinker Quality 

1. Among the five multivariate outlier detection techniques which were applied to the 

kiln data, the performances of the three robust methods were better than the 

performances of the two classical methods. Among the three robust methods, the 

smallest half volume (SHV) method is very conservative and detects too many 

observations as outliers which may result in loss of important informations 

contained in the data. The performance of the closest distance to center (CDC) 

method was found to be the best because the data set resulting from application of 

CDC method has better or at par statistical characteristics as those resulting from 

other methods but with less number of observations detected as outliers.  

2. Among the neural network models developed for the rotary kiln using the data set 

1 (which was obtained by using univariate outlier detection and random data 

selection) the radial basis function neural network showed better performance than 

the back propagation and regression neural network models. 

3. However, models developed using data set 2 (Obtained by using multivariate 

outlier detection and statistical method of training data selection), showed better 

performance with less complexity, than the models developed using data set 1. 

4. Because of nine input variables and the multivariate nature of the input data, it is 

strongly recommended to use multivariate outlier detection technique instead of 

univariate outlier detection technique in the initial data preprocessing step.  



Concluding Remarks 

 

185 

5. Model performance improves when along with kiln operating variables, input 

material quality values are also included as input parameters. 

6. Application of principal component analysis for reduction of number of input 

variables makes sense for kiln modeling because it was observed that the BPNN 

model developed from the nine actual input variables and the PCA-BPNN model 

developed from five latent variables, have almost similar performance. 

7. Among the three types of neural network models and two types of fuzzy inference 

models, the Takagi-Sugeno fuzzy inference model outperformed all other models. 

6.3 Major Contributions 

1. A comparison of three univariate outlier detection techniques is performed on two 

sets of real industrial data, one set belongs to the clinker grinding process and the 

other set belongs to the pyro process (clinkerization process) in cement 

manufacturing. 

2. Performance of five multivariate outlier detection techniques is compared on a real 

industrial data set for the pyro-process in cement manufacturing. 

3. Two statistical techniques for training set design are compared. 

4. Performances of three types of feed forward neural network models, and two types 

of fuzzy inference models are compared for the two industrial processes.   

5. Data-driven soft sensors were designed for continuous online monitoring of 

cement fineness in the clinker grinding process using vertical roller mill and eight 

different clinker quality parameters in the pyroprocess using the rotary cement kiln 

for clinker production. 

6. A model predictive control strategy has been developed using the mill classifier 

speed as the manipulated variable for maintaining the cement fineness within the 

desired value. 
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6.4 Future Scope of Research 

This section comprises of two parts. In the first part the scope in the cement 

manufacturing process is presented followed by scope in the other processes. 

6.4.1 Cement Manufacturing Process 

1. It can be tried to improve the model performance further especially for the cement 

kiln. Probably along with instantaneous input values, time delayed input values can 

be included for model development. This time delay can be taken as the material 

residence time inside the kiln.  

2. By including delayed inputs, dynamic soft sensor can be developed which can be 

utilized for online control of clinker quality. 

3. Further, the hybrid modeling technique of adaptive neuro-fuzzy inference 

technique can be explored as a soft sensor model for the rotary cement kiln. 

6.4.2 Other Industrial Processes 

The different industrial processes for which soft sensors have been reported are 

presented in Chapter 2. The bulk of the soft sensors are reported for the petroleum 

refinery, polymer, fermentation and bioprocess industries. There are still many process 

industries for which application of soft sensors have not yet been adequately explored. A 

few such processes are presented below 

1. In pulp and paper industry, soft sensors have been reported for prediction of Kappa 

number of pulp coming from digester. The final product i.e. paper is rejected based 

on the quality parameter of paper GSM (grams per square meter) and brightness. 

Research can be carried out to develop soft sensor for prediction of these quality 

for paper coming out of paper machine. 

2. The final chemical composition of fertilizer (e.g. moisture, nitrogen etc) produced 

in the fertilizer plant. 
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3. In emission quality monitoring, while significant work has been done for NOx 

monitoring, very few researches have been reported for SOx monitoring. Presence 

of SOx is likely to be significant in the stack gas when liquid petroleum products or 

petroleum coke are used as fuel.  

Therefore, the research on soft sensor development for continuous online monitoring of 

quality variables can be extended to the process industries where, this has largely been 

unexplored so far. 
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________________________________________________________________________ 

Appendix A 

________________________________________________________________________ 

MATLAB Codes 

1.1 Outlier detection by conventional Mahalanobis distance method 

load kilndata; 

input = [kilnfeed, rpm, intemp, coalfeed, current]; % Concatenation of the input variables 

[m,n] = size(input); 

average = mean(input); 

for j = 1:n 

    for i = 1:m 

        X(i,j) = input(i,j) - average(j); % Mean centered input data matrix 

    end 

end 

covariance = (X'*X)/(m-1); % Calculation of covariance matrix 

maha = diag(X*inv(covariance)*X'); % Calculation of Mahalanobis distance 

for i = 1:m 

    maha1(i,1) = X(i,:)*inv(covariance)*X(i,:)'; 

end 

outliermd = zeros(size(maha,1),1); 

j = 1; 

for i = 1:1144 

    if maha(i)> 12.833 %Chi square cut off value 

        outliermd(j,1) = i; 

        j = j+1; 

    end 

end 

outliermd(j:size(maha)) = []; % Vector of sample numbers detected as outliers 

Xcorrect = input; 

Xcorrect(outliermd,:) = []; % Corrected input matrix after the deletion of the rows detected 

as outliers 

1.2 Outlier detection by hat matrix leverage value method 

load kilndata; 

input = [kilnfeed, rpm, intemp, coalfeed, current]; % Concatenation of the input variables 

[m,n] = size(input); 

average = mean(input); 

for j = 1:n 

    for i = 1:m 

        X(i,j) = input(i,j) - average(j); % Mean centered input data matrix 

    end 

end 

covariance = (X'*X)/(m-1); % Calculation of covariance matrix 

maha = diag(X*inv(covariance)*X'); % Calculation of Mahalanobis distance 

for i = 1:m 
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    maha1(i,1) = X(i,:)*inv(covariance)*X(i,:)'; 

end 

H = X*inv(X'*X)*X';  % Hat Matrix 

leverage = diag(H);  % Leverage Values 

outlierlev = zeros(size(leverage,1),1); 

j = 1; 

for i = 1:1144 

    if leverage(i)> 2*n/m 

        outlierlev(j,1) = i; 

        j = j+1; 

    end 

end 

outlierlev(j:size(leverage)) = []; % Vector of sample numbers detected as outliers 

Xcorrect = input; 

Xcorrect(outlierlev,:) = []; % Corrected input matrix after the deletion of the rows detected 

as outliers 

1.3 Outlier detection by smallest half volume method 

load kilndata; 

input = [kilnfeed, rpm, intemp, coalfeed, current]; % Concatenation of the input variables  

clear kilnfeed rpm intemp coalfeed current; 

distance = pdist2(input,input); % Calculation of distance matrix  

sortdistance = sort(distance); % Each column of the distance matrix sorted in ascending 

order 

[p,q] = size(distance); 

modsortdistance = sortdistance; 

modsortdistance(((p/2)+1):p,:)=[]; % Retaining only the first half elements of each column 

of the sorted matrix  

summation = sum(modsortdistance); % Determine sum of each column  

[minsum,index] = min(summation); % Get the minimum sum value and the index 

testcolumn = distance(:,index); % retaining all distance values of indexth column 

for i = 1:p/2 

    [m,n] = min(testcolumn); 

    sample(i,1) = n;  % Getting the minimum p/2 row numbers from the minimum distance 

column 

    minval(i,1) = m; 

    testcolumn(n) = max(testcolumn); 

end 

finaldata = input(sample,:); % Set of p/2 most similar observations 

[m,n] = size(finaldata); 

average = mean(finaldata); % Robust mean 

for j = 1:n 

    for i = 1:m 

        P(i,j) = finaldata(i,j) - average(j); % Mean centered input data matrix 

    end 

end 

covariance = (P'*P)/(m-1); % Calculation of robust covariance matrix 

for j = 1:n 

    for i = 1:p 

        X(i,j) = input(i,j) - average(j); % Centering original data with robust mean 
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    end 

end 

maha = diag(X*inv(covariance)*X'); % Calculation of Mahalanobis distance 

% for i = 1:m 

%     maha1(i,1) = X(i,:)*inv(covariance)*X(i,:)'; 

% end 

outliershv = zeros(size(maha,1),1); 

j = 1; 

for i = 1:p 

    if maha(i)> 12.833 

        outliershv(j,1) = i; 

        j = j+1; 

    end 

end 

outliershv(j:size(maha)) = []; % Vector of sample numbers detected as outliers 

Xcorrect = input; 

Xcorrect(outliershv,:) = []; % Corrected input matrix after the deletion of the rows 

detected as outliers 

1.4 Outlier detection by closest distance to center method 

load kilndata; 

input = [kilnfeed, rpm, intemp, coalfeed, current]; % Concatenation of the input variables 

clear kilnfeed rpm intemp coalfeed current; 

[m,n] = size(input); 

average = mean(input); 

sigma = std(input); 

for i = 1:m 

    for j = 1:n 

        X(i,j) = (input(i,j) - average(j))/sigma(j); % Scaling of input data matrix 

    end 

end 

averageX = mean(X); % Center of the input data matrix 

distance = pdist2(X,averageX); % Euclidean distance of each observation from the center 

for i = 1:m/2 

    [p,q] = min(distance); 

    sample(i,1) = q;  % Getting the m/2 samples with minimum distance to the center 

    minval(i,1) = p; 

    distance(q) = max(distance); 

end 

finaldata = X(sample,:); % Set of m/2 most similar observations 

[p,q] = size(finaldata); 

average = mean(finaldata); % Robust mean 

for j = 1:q 

    for i = 1:p 

        P(i,j) = finaldata(i,j) - average(j); % Mean centered input data matrix 

    end 

end 

covariance = (P'*P)/(p-1); % Calculation of robust covariance matrix 

for j = 1:n 

    for i = 1:m 
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        Xm(i,j) = X(i,j) - average(j); % Centering original scaled data with robust mean 

    end 

end 

maha = diag(Xm*inv(covariance)*Xm'); % Calculation of Mahalanobis distance 

% for i = 1:m 

%     maha1(i,1) = X(i,:)*inv(covariance)*X(i,:)'; 

% end 

outliercdc = zeros(size(maha,1),1); 

j = 1; 

for i = 1:m 

    if maha(i)> 12.833 

        outliercdc(j,1) = i; 

        j = j+1; 

    end 

end 

outliercdc(j:size(maha)) = []; % Vector of sample numbers detected as outliers 

Xcorrect = input; 

Xcorrect(outliercdc,:) = []; % Corrected input matrix after the deletion of the rows 

detected as outliers 

disp(['Original number of samples are: ',num2str(m)]); 

disp(['Number of outliers detected are: ',num2str(size(outliercdc,1))]); 
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________________________________________________________________________ 

Fuzzy Rule Base 
gf = Hot air flow rate through the mill 

rpm = classifier speed 

tph = clinker inflow rate 

For the type of membership function used and the range of values for different linguistic 

variables, please refer to Chapter - 4. 

1.1 Mamdani FIS Rule base for grinding process 

1. If (gf is m) and (rpm is l) and (tph is m) then (output1 is l)     

2. If (gf is m) and (rpm is l) and (tph is l) then (output1 is l)     

3. If (gf is l) and (rpm is vs) and (tph is vl) then (output1 is s)   

4. If (gf is vl) and (rpm is vs) and (tph is vl) then (output1 is s)  

5. If (gf is vs) and (rpm is m) and (tph is s) then (output1 is s)    

6. If (gf is vs) and (rpm is m) and (tph is s) then (output1 is m)    

7. If (gf is l) and (rpm is m) and (tph is vs) then (output1 is l)    

8. If (gf is l) and (rpm is m) and (tph is vs) then (output1 is vl)   

9. If (gf is m) and (rpm is s) and (tph is l) then (output1 is s)     

10. If (gf is s) and (rpm is vl) and (tph is s) then (output1 is vl)  

11. If (gf is m) and (rpm is vl) and (tph is s) then (output1 is l)   

12. If (gf is vl) and (rpm is s) and (tph is m) then (output1 is s)   

13. If (gf is vl) and (rpm is s) and (tph is l) then (output1 is s)   

14. If (gf is vl) and (rpm is m) and (tph is s) then (output1 is s)   

15. If (gf is vl) and (rpm is m) and (tph is m) then (output1 is s)   

16. If (gf is s) and (rpm is s) and (tph is s) then (output1 is vs)   

17. If (gf is m) and (rpm is s) and (tph is s) then (output1 is vs)   

18. If (gf is s) and (rpm is l) and (tph is l) then (output1 is l)    

19. If (gf is s) and (rpm is l) and (tph is m) then (output1 is vl)   

20. If (gf is l) and (rpm is l) and (tph is l) then (output1 is vl)   

21. If (gf is vl) and (rpm is l) and (tph is l) then (output1 is l)   

22. If (gf is l) and (rpm is vl) and (tph is l) then (output1 is vl)  

23. If (gf is m) and (rpm is s) and (tph is vl) then (output1 is s)   

24. If (gf is l) and (rpm is m) and (tph is s) then (output1 is m)    

25. If (gf is l) and (rpm is l) and (tph is s) then (output1 is m)    

26. If (gf is l) and (rpm is m) and (tph is m) then (output1 is m)    

27. If (gf is l) and (rpm is l) and (tph is m) then (output1 is m)    

28. If (gf is s) and (rpm is vl) and (tph is m) then (output1 is l)   

29. If (gf is s) and (rpm is vl) and (tph is m) then (output1 is vl)  

30. If (gf is s) and (rpm is m) and (tph is m) then (output1 is m)    

31. If (gf is l) and (rpm is m) and (tph is l) then (output1 is vs)   

32. If (gf is l) and (rpm is m) and (tph is l) then (output1 is s)    

33. If (gf is s) and (rpm is m) and (tph is s) then (output1 is m)    

34. If (gf is m) and (rpm is m) and (tph is s) then (output1 is m)    

35. If (gf is l) and (rpm is vl) and (tph is m) then (output1 is l)   
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36. If (gf is l) and (rpm is vl) and (tph is m) then (output1 is vl)  

37. If (gf is s) and (rpm is l) and (tph is s) then (output1 is vl)   

38. If (gf is m) and (rpm is l) and (tph is s) then (output1 is vl)   

39. If (gf is l) and (rpm is s) and (tph is l) then (output1 is vs)   

40. If (gf is l) and (rpm is s) and (tph is l) then (output1 is s)    

41. If (gf is l) and (rpm is s) and (tph is vl) then (output1 is vs)  

42. If (gf is l) and (rpm is s) and (tph is vl) then (output1 is s)   

43. If (gf is vl) and (rpm is s) and (tph is l) then (output1 is m)   

44. If (gf is m) and (rpm is vl) and (tph is s) then (output1 is vl)  

45. If (gf is m) and (rpm is vl) and (tph is m) then (output1 is vl)  

46. If (gf is m) and (rpm is vs) and (tph is l) then (output1 is s)   

47. If (gf is s) and (rpm is m) and (tph is s) then (output1 is s)    

48. If (gf is s) and (rpm is vl) and (tph is l) then (output1 is vl)  

49. If (gf is m) and (rpm is vl) and (tph is l) then (output1 is vl)  

50. If (gf is l) and (rpm is l) and (tph is m) then (output1 is l)    

51. If (gf is l) and (rpm is l) and (tph is l) then (output1 is l)    

52. If (gf is l) and (rpm is s) and (tph is m) then (output1 is vl)   

53. If (gf is l) and (rpm is s) and (tph is m) then (output1 is l)    

54. If (gf is m) and (rpm is vs) and (tph is vl) then (output1 is s)  

55. If (gf is l) and (rpm is m) and (tph is s) then (output1 is s)    

56. If (gf is l) and (rpm is m) and (tph is m) then (output1 is s)    

57. If (gf is l) and (rpm is vs) and (tph is vl) then (output1 is vs) 

58. If (gf is m) and (rpm is vs) and (tph is vl) then (output1 is vs) 

59. If (gf is m) and (rpm is l) and (tph is l) then (output1 is vl)   

60. If (gf is s) and (rpm is l) and (tph is l) then (output1 is vl)  

61. If (gf is s) and (rpm is m) and (tph is vs) then (output1 is s)   

62. If (gf is s) and (rpm is m) and (tph is vs) then (output1 is m)    

63. If (gf is m) and (rpm is s) and (tph is m) then (output1 is s)     

1.2 Sugeno FIS Rule Base for grinding process 

1. If (gf is m) and (rpm is l) and (tph is m) then (output1 is l)      

2. If (gf is l) and (rpm is vs) and (tph is vl) then (output1 is lm)  

3. If (gf is vs) and (rpm is m) and (tph is s) then (output1 is lm)   

4. If (gf is l) and (rpm is m) and (tph is vs) then (output1 is vl)   

5. If (gf is m) and (rpm is s) and (tph is l) then (output1 is s)     

6. If (gf is m) and (rpm is vl) and (tph is s) then (output1 is el)   

7. If (gf is vl) and (rpm is s) and (tph is m) then (output1 is s)    

8. If (gf is vl) and (rpm is m) and (tph is s) then (output1 is vs)   

9. If (gf is s) and (rpm is s) and (tph is s) then (output1 is es)    

10. If (gf is s) and (rpm is l) and (tph is l) then (output1 is vl)   

11. If (gf is l) and (rpm is l) and (tph is l) then (output1 is el)   

12. If (gf is m) and (rpm is s) and (tph is vl) then (output1 is vs)  

13. If (gf is l) and (rpm is m) and (tph is s) then (output1 is m)    

14. If (gf is s) and (rpm is vl) and (tph is m) then (output1 is vl)  

15. If (gf is s) and (rpm is m) and (tph is m) then (output1 is m)    

16. If (gf is l) and (rpm is m) and (tph is l) then (output1 is es)   

17. If (gf is s) and (rpm is m) and (tph is s) then (output1 is s)    

18. If (gf is l) and (rpm is vl) and (tph is m) then (output1 is vl)  

19. If (gf is s) and (rpm is l) and (tph is s) then (output1 is el)   

20. If (gf is l) and (rpm is s) and (tph is l) then (output1 is vs)   
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21. If (gf is m) and (rpm is l) and (tph is l) then (output1 is vl)   

22. If (gf is vs) and (rpm is m) and (tph is m) then (output1 is lm)  

23. If (gf is vl) and (rpm is s) and (tph is l) then (output1 is lm)  

24. If (gf is m) and (rpm is vl) and (tph is m) then (output1 is el)  

25. If (gf is m) and (rpm is m) and (tph is s) then (output1 is m)    

26. If (gf is m) and (rpm is vs) and (tph is l) then (output1 is s)   

27. If (gf is l) and (rpm is l) and (tph is s) then (output1 is s)    

28. If (gf is vl) and (rpm is l) and (tph is s) then (output1 is s)   

29. If (gf is m) and (rpm is s) and (tph is m) then (output1 is s)    

30. If (gf is l) and (rpm is vl) and (tph is l) then (output1 is el)  

31. If (gf is m) and (rpm is l) and (tph is s) then (output1 is vl)   

32. If (gf is s) and (rpm is s) and (tph is vl) then (output1 is vs)  

33. If (gf is l) and (rpm is l) and (tph is m) then (output1 is vl)   

34. If (gf is s) and (rpm is vl) and (tph is l) then (output1 is el)  

35. If (gf is s) and (rpm is vl) and (tph is m) then (output1 is el)  

36. If (gf is s) and (rpm is l) and (tph is m) then (output1 is el)   

37. If (gf is l) and (rpm is s) and (tph is m) then (output1 is s)    

38. If (gf is l) and (rpm is s) and (tph is vl) then (output1 is vs)  

39. If (gf is s) and (rpm is m) and (tph is vs) then (output1 is lm)  

40. If (gf is l) and (rpm is vs) and (tph is vl) then (output1 is vs) 

41. If (gf is l) and (rpm is m) and (tph is m) then (output1 is m)    

42. If (gf is m) and (rpm is vs) and (tph is vl) then (output1 is vs) 

43. If (gf is s) and (rpm is vl) and (tph is s) then (output1 is el)  

44. If (gf is m) and (rpm is vl) and (tph is l) then (output1 is el)  

45. If (gf is l) and (rpm is vl) and (tph is s) then (output1 is el) 

1.3 ANFIS Rule base for grinding process 

1. If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf1) then (output is 

out1mf1)    

2. If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf2) then (output is 

out1mf2)    

3. If (input1 is in1mf1) and (input2 is in2mf1) and (input3 is in3mf3) then (output is 

out1mf3)    

4. If (input1 is in1mf1) and (input2 is in2mf2) and (input3 is in3mf1) then (output is 

out1mf4)    

5. If (input1 is in1mf1) and (input2 is in2mf2) and (input3 is in3mf2) then (output is 

out1mf5)    

6. If (input1 is in1mf1) and (input2 is in2mf2) and (input3 is in3mf3) then (output is 

out1mf6)    

7. If (input1 is in1mf1) and (input2 is in2mf3) and (input3 is in3mf1) then (output is 

out1mf7)    

8. If (input1 is in1mf1) and (input2 is in2mf3) and (input3 is in3mf2) then (output is 

out1mf8)    

9. If (input1 is in1mf1) and (input2 is in2mf3) and (input3 is in3mf3) then (output is 

out1mf9)    

10. If (input1 is in1mf2) and (input2 is in2mf1) and (input3 is in3mf1) then (output is 

out1mf10)  

11. If (input1 is in1mf2) and (input2 is in2mf1) and (input3 is in3mf2) then (output is 

out1mf11)  
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12. If (input1 is in1mf2) and (input2 is in2mf1) and (input3 is in3mf3) then (output is 

out1mf12)  

13. If (input1 is in1mf2) and (input2 is in2mf2) and (input3 is in3mf1) then (output is 

out1mf13)  

14. If (input1 is in1mf2) and (input2 is in2mf2) and (input3 is in3mf2) then (output is 

out1mf14)  

15. If (input1 is in1mf2) and (input2 is in2mf2) and (input3 is in3mf3) then (output is 

out1mf15)  

16. If (input1 is in1mf2) and (input2 is in2mf3) and (input3 is in3mf1) then (output is 

out1mf16)  

17. If (input1 is in1mf2) and (input2 is in2mf3) and (input3 is in3mf2) then (output is 

out1mf17)  

18. If (input1 is in1mf2) and (input2 is in2mf3) and (input3 is in3mf3) then (output is 

out1mf18)  

19. If (input1 is in1mf3) and (input2 is in2mf1) and (input3 is in3mf1) then (output is 

out1mf19)  

20. If (input1 is in1mf3) and (input2 is in2mf1) and (input3 is in3mf2) then (output is 

out1mf20)  

21. If (input1 is in1mf3) and (input2 is in2mf1) and (input3 is in3mf3) then (output is 

out1mf21)  

22. If (input1 is in1mf3) and (input2 is in2mf2) and (input3 is in3mf1) then (output is 

out1mf22)  

23. If (input1 is in1mf3) and (input2 is in2mf2) and (input3 is in3mf2) then (output is 

out1mf23)  

24. If (input1 is in1mf3) and (input2 is in2mf2) and (input3 is in3mf3) then (output is 

out1mf24)  

25. If (input1 is in1mf3) and (input2 is in2mf3) and (input3 is in3mf1) then (output is 

out1mf25)  

26. If (input1 is in1mf3) and (input2 is in2mf3) and (input3 is in3mf2) then (output is 

out1mf26)  

27. If (input1 is in1mf3) and (input2 is in2mf3) and (input3 is in3mf3) then (output is 

out1mf27)  

1.4 Sugeno FIS Rule base for the clinkerization process 

1. If (SiO2 is vl) and (Al2O3 is vl) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is s)(C4AF is l) (1)      

2. If (SiO2 is vl) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is lm)(C2S is m)(C3A is s)(C4AF is um) (1)      

3. If (SiO2 is vl) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is l) and (Inlet-Temperature is vs) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is m)(C2S is m)(C3A is s)(C4AF is um) (1)       

4. If (SiO2 is vl) and (Al2O3 is l) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is s) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is es)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is um)(C2S is vs)(C3A is lm)(C4AF is um) (1)   
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5. If (SiO2 is vl) and (Al2O3 is m) and (Fe2O3 is vl) and (CaO is l) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is vl) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

es)(Alumina-Modulus is es)(C3S is lm)(C2S is m)(C3A is es)(C4AF is el) (1)  

6. If (SiO2 is s) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is l) and (Kiln-Feed is m) 

and (Kiln-RPM is vs) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is s) then (Free-Lime is vl)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is es)(C2S is el)(C3A is s)(C4AF is vl) (1)      

7. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is es)(Silica-Modulus is 

vs)(Alumina-Modulus is vs)(C3S is s)(C2S is l)(C3A is vs)(C4AF is el) (1)      

8. If (SiO2 is s) and (Al2O3 is m) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is s) and 

(Kiln-RPM is vs) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-Current 

is m) then (Free-Lime is s)(Lime-Saturation-Factor is es)(Silica-Modulus is 

vs)(Alumina-Modulus is vs)(C3S is vs)(C2S is vl)(C3A is vs)(C4AF is vl) (1)     

9. If (SiO2 is vl) and (Al2O3 is m) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is m) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is es)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is s)(C2S is vl)(C3A is s)(C4AF is vl) (1)       

10. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is vl) and (CaO is vs) and (Kiln-Feed is l) 

and (Kiln-RPM is s) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is vl) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

es)(Alumina-Modulus is vs)(C3S is s)(C2S is lm)(C3A is vs)(C4AF is el) (1)  

11. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is vs) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is s)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is es)(C3S is lm)(C2S is um)(C3A is es)(C4AF is vl) (1)  

12. If (SiO2 is m) and (Al2O3 is vs) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is es)(Silica-Modulus is 

es)(Alumina-Modulus is lm)(C3S is s)(C2S is l)(C3A is lm)(C4AF is vl) (1)  

13. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is vl) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is m) and (Inlet-Temperature is s) and (Coal-Feed is l) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is vs)(C3S is lm)(C2S is m)(C3A is vs)(C4AF is vl) (1)    

14. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is vl) and (Kiln-Feed is m) 

and (Kiln-RPM is m) and (Inlet-Temperature is m) and (Coal-Feed is l) and (Kiln-

Current is s) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is vs)(C3S is m)(C2S is s)(C3A is es)(C4AF is vl) (1)     

15. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is lm)(C2S is um)(C3A is vs)(C4AF is vl) (1)   

16. If (SiO2 is l) and (Al2O3 is vs) and (Fe2O3 is m) and (CaO is vs) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is m) then (Free-Lime is es)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is um)(C2S is vs)(C3A is vs)(C4AF is vl) (1) 

17. If (SiO2 is vs) and (Al2O3 is l) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is s) and (Inlet-Temperature is s) and (Coal-Feed is l) and (Kiln-



Appendix B 

 

211 

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is vs)(C3S is m)(C2S is lm)(C3A is vs)(C4AF is vl) (1)     

18. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vs) 

and (Kiln-RPM is s) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is m)(Silica-Modulus is 

lm)(Alumina-Modulus is s)(C3S is l)(C2S is es)(C3A is es)(C4AF is m) (1)       

19. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is vl) and (CaO is l) and (Kiln-Feed is s) 

and (Kiln-RPM is m) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is vs)(C3S is m)(C2S is lm)(C3A is vs)(C4AF is vl) (1)    

20. If (SiO2 is vl) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is vs)(C3S is lm)(C2S is m)(C3A is vs)(C4AF is vl) (1)   

21. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is m) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is l)(Lime-Saturation-Factor is es)(Silica-Modulus is 

lm)(Alumina-Modulus is lm)(C3S is es)(C2S is el)(C3A is vs)(C4AF is lm) (1)    

22. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is vl) and (CaO is vl) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

es)(Alumina-Modulus is s)(C3S is m)(C2S is lm)(C3A is s)(C4AF is vl) (1)     

23. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is l) and (Kiln-Feed is m) 

and (Kiln-RPM is l) and (Inlet-Temperature is m) and (Coal-Feed is s) and (Kiln-

Current is m) then (Free-Lime is es)(Lime-Saturation-Factor is es)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is s)(C2S is l)(C3A is lm)(C4AF is l) (1)       

24. If (SiO2 is vl) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is l) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is s)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

s)(Alumina-Modulus is vs)(C3S is s)(C2S is l)(C3A is vs)(C4AF is l) (1)      

25. If (SiO2 is l) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is s) 

and (Kiln-RPM is m) and (Inlet-Temperature is m) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is el)(Lime-Saturation-Factor is el)(Silica-Modulus is 

vs)(Alumina-Modulus is vl)(C3S is m)(C2S is vs)(C3A is m)(C4AF is s) (1)       

26. If (SiO2 is m) and (Al2O3 is l) and (Fe2O3 is m) and (CaO is vl) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is es)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is vs)(C2S is el)(C3A is s)(C4AF is um) (1)    

27. If (SiO2 is m) and (Al2O3 is l) and (Fe2O3 is l) and (CaO is l) and (Kiln-Feed is l) and 

(Kiln-RPM is s) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-Current 

is l) then (Free-Lime is lm)(Lime-Saturation-Factor is m)(Silica-Modulus is 

es)(Alumina-Modulus is vs)(C3S is m)(C2S is lm)(C3A is vs)(C4AF is vl) (1)     

28. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is s) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is es)(Silica-Modulus is 

lm)(Alumina-Modulus is m)(C3S is s)(C2S is l)(C3A is es)(C4AF is m) (1)      

29. If (SiO2 is vl) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is l) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is m) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is s)(C4AF is l) (1)        
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30. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is l) and (Kiln-Feed is l) and 

(Kiln-RPM is s) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-Current is 

vl) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is vs)(Alumina-

Modulus is s)(C3S is lm)(C2S is m)(C3A is vs)(C4AF is vl) (1)       

31. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is vl) and (Coal-Feed is l) and (Kiln-

Current is vl) then (Free-Lime is s)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is lm)(C2S is um)(C3A is s)(C4AF is vl) (1)  

32. If (SiO2 is m) and (Al2O3 is vs) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is vs) 

and (Kiln-RPM is s) and (Inlet-Temperature is m) and (Coal-Feed is s) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

s)(Alumina-Modulus is s)(C3S is um)(C2S is s)(C3A is vs)(C4AF is l) (1)      

33. If (SiO2 is vl) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is vl) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

es)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is s)(C4AF is l) (1)    

34. If (SiO2 is m) and (Al2O3 is l) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is es)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is vs)(C2S is vl)(C3A is lm)(C4AF is um) (1)   

35. If (SiO2 is vl) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

es)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is s)(C4AF is vl) (1)     

36. If (SiO2 is l) and (Al2O3 is l) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is vs) 

and (Kiln-RPM is s) and (Inlet-Temperature is m) and (Coal-Feed is vs) and (Kiln-

Current is s) then (Free-Lime is s)(Lime-Saturation-Factor is m)(Silica-Modulus is 

vs)(Alumina-Modulus is el)(C3S is m)(C2S is s)(C3A is l)(C4AF is s) (1)        

37. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is s) and (Coal-Feed is vl) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is lm)(C2S is m)(C3A is vs)(C4AF is l) (1)     

38. If (SiO2 is s) and (Al2O3 is m) and (Fe2O3 is vl) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is s) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

es)(Alumina-Modulus is s)(C3S is m)(C2S is lm)(C3A is s)(C4AF is vl) (1)     

39. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is m) and (Coal-Feed is l) and (Kiln-

Current is s) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is s)(C3S is lm)(C2S is um)(C3A is vs)(C4AF is l) (1)         

40. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is m)(C2S is lm)(C3A is s)(C4AF is vl) (1)    

41. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is vs) then (Free-Lime is es)(Lime-Saturation-Factor is m)(Silica-Modulus is 

es)(Alumina-Modulus is lm)(C3S is um)(C2S is vs)(C3A is s)(C4AF is l) (1)    

42. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is l) and (Kiln-Feed is vl) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-
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Current is l) then (Free-Lime is s)(Lime-Saturation-Factor is es)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is s)(C2S is vl)(C3A is s)(C4AF is m) (1)        

43. If (SiO2 is l) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is s) 

and (Kiln-RPM is vs) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is m) then (Free-Lime is lm)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is vs)(C2S is vl)(C3A is s)(C4AF is um) (1)    

44. If (SiO2 is vl) and (Al2O3 is m) and (Fe2O3 is l) and (CaO is vl) and (Kiln-Feed is l) 

and (Kiln-RPM is m) and (Inlet-Temperature is m) and (Coal-Feed is vl) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

es)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is s)(C4AF is l) (1)     

45. If (SiO2 is vl) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is vl) then (Free-Lime is el)(Lime-Saturation-Factor is um)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is m)(C2S is s)(C3A is vs)(C4AF is um) (1)   

46. If (SiO2 is vl) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is s) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

s)(Alumina-Modulus is l)(C3S is lm)(C2S is um)(C3A is m)(C4AF is lm) (1)      

47. If (SiO2 is m) and (Al2O3 is vs) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is vl)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is lm)(C2S is m)(C3A is vs)(C4AF is um) (1)    

48. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is s) and (Inlet-Temperature is vl) and (Coal-Feed is s) and (Kiln-

Current is vl) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is s)(C4AF is um) (1)      

49. If (SiO2 is vs) and (Al2O3 is l) and (Fe2O3 is vl) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is vs) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

es)(Alumina-Modulus is lm)(C3S is m)(C2S is lm)(C3A is s)(C4AF is vl) (1)  

50. If (SiO2 is m) and (Al2O3 is vs) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is m) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is lm)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

es)(Alumina-Modulus is s)(C3S is lm)(C2S is m)(C3A is es)(C4AF is um) (1)    

51. If (SiO2 is l) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is s) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is vl) then (Free-Lime is vs)(Lime-Saturation-Factor is es)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is lm)(C2S is um)(C3A is lm)(C4AF is um) (1)  

52. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is m) and (Kiln-

Current is s) then (Free-Lime is es)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

s)(Alumina-Modulus is l)(C3S is s)(C2S is um)(C3A is m)(C4AF is m) (1)        

53. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is s) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is m)(C2S is lm)(C3A is es)(C4AF is m) (1)       

54. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is m) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is m)(Silica-Modulus is 

s)(Alumina-Modulus is s)(C3S is m)(C2S is s)(C3A is vs)(C4AF is um) (1)        
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55. If (SiO2 is s) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is l) and (Kiln-Feed is vl) 

and (Kiln-RPM is s) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is lm)(C2S is um)(C3A is lm)(C4AF is l) (1)     

56. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is vl) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is vl) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is lm)(C2S is l)(C3A is s)(C4AF is m) (1)     

57. If (SiO2 is m) and (Al2O3 is vl) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is m) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is vs) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is m)(Silica-Modulus is 

es)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is lm)(C4AF is l) (1)      

58. If (SiO2 is l) and (Al2O3 is l) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is m) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is vl) then (Free-Lime is um)(Lime-Saturation-Factor is l)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is um)(C2S is vs)(C3A is s)(C4AF is um) (1)     

59. If (SiO2 is l) and (Al2O3 is vs) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is l) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is s)(C4AF is um) (1)    

60. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is m) and (Coal-Feed is m) and (Kiln-

Current is s) then (Free-Lime is es)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is um)(C3S is lm)(C2S is m)(C3A is lm)(C4AF is um) (1)     

61. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is vs) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is lm)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is m)(C2S is lm)(C3A is vs)(C4AF is um) (1)   

62. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is vl) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is lm)(C2S is m)(C3A is el)(C4AF is m) (1)      

63. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is s) and (Inlet-Temperature is m) and (Coal-Feed is l) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

s)(Alumina-Modulus is um)(C3S is lm)(C2S is um)(C3A is lm)(C4AF is m) (1)      

64. If (SiO2 is l) and (Al2O3 is l) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is m) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is vl)(C3S is m)(C2S is lm)(C3A is um)(C4AF is lm) (1)     

65. If (SiO2 is m) and (Al2O3 is l) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is vl) and (Coal-Feed is l) and (Kiln-

Current is vl) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is s)(C4AF is l) (1)       

66. If (SiO2 is s) and (Al2O3 is vs) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

lm)(Alumina-Modulus is m)(C3S is m)(C2S is m)(C3A is s)(C4AF is lm) (1)     

67. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is vs) and (CaO is vs) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is s) and (Coal-Feed is vl) and (Kiln-
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Current is l) then (Free-Lime is lm)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is s)(C2S is l)(C3A is s)(C4AF is um) (1)    

68. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is m) then (Free-Lime is es)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is m)(C2S is s)(C3A is s)(C4AF is m) (1)         

69. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is vl) and (Coal-Feed is s) and (Kiln-

Current is s) then (Free-Lime is lm)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is s)(C2S is l)(C3A is s)(C4AF is m) (1)        

70. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is s) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is um)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is s)(C2S is um)(C3A is vs)(C4AF is l) (1)       

71. If (SiO2 is vl) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is s) 

and (Kiln-RPM is m) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is vl) then (Free-Lime is vs)(Lime-Saturation-Factor is m)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is l)(C2S is s)(C3A is s)(C4AF is m) (1)        

72. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is s) 

and (Kiln-RPM is l) and (Inlet-Temperature is m) and (Coal-Feed is vs) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is l)(C3S is lm)(C2S is m)(C3A is lm)(C4AF is lm) (1)       

73. If (SiO2 is m) and (Al2O3 is vs) and (Fe2O3 is vs) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is lm)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is lm)(C2S is m)(C3A is vs)(C4AF is um) (1) 

74. If (SiO2 is s) and (Al2O3 is m) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is l) and (Kiln-

Current is m) then (Free-Lime is lm)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is lm)(C2S is m)(C3A is s)(C4AF is um) (1)     

75. If (SiO2 is l) and (Al2O3 is vs) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

s)(Alumina-Modulus is l)(C3S is m)(C2S is lm)(C3A is lm)(C4AF is lm) (1)    

76. If (SiO2 is l) and (Al2O3 is l) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is m)(C2S is s)(C3A is lm)(C4AF is l) (1)       

77. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is s) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is lm)(C2S is m)(C3A is s)(C4AF is um) (1)        

78. If (SiO2 is s) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is l) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is l)(C3S is m)(C2S is s)(C3A is m)(C4AF is lm) (1)        

79. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is um)(C3S is m)(C2S is m)(C3A is lm)(C4AF is m) (1)       
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80. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is um)(C3S is m)(C2S is lm)(C3A is lm)(C4AF is um) (1)     

81. If (SiO2 is l) and (Al2O3 is l) and (Fe2O3 is s) and (CaO is vl) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is vl) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is l)(C3S is m)(C2S is s)(C3A is m)(C4AF is lm) (1)      

82. If (SiO2 is l) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is lm)(C2S is m)(C3A is s)(C4AF is um) (1)       

83. If (SiO2 is m) and (Al2O3 is vl) and (Fe2O3 is s) and (CaO is l) and (Kiln-Feed is l) 

and (Kiln-RPM is m) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is s) then (Free-Lime is s)(Lime-Saturation-Factor is m)(Silica-Modulus is 

es)(Alumina-Modulus is m)(C3S is m)(C2S is s)(C3A is lm)(C4AF is l) (1)         

84. If (SiO2 is m) and (Al2O3 is l) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is s)(Lime-Saturation-Factor is m)(Silica-Modulus is 

es)(Alumina-Modulus is m)(C3S is m)(C2S is s)(C3A is lm)(C4AF is l) (1)        

85. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is m) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is s) then (Free-Lime is vs)(Lime-Saturation-Factor is m)(Silica-Modulus is 

es)(Alumina-Modulus is l)(C3S is um)(C2S is vs)(C3A is m)(C4AF is m) (1)        

86. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is lm)(C2S is m)(C3A is s)(C4AF is um) (1)        

87. If (SiO2 is m) and (Al2O3 is l) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is vl) then (Free-Lime is lm)(Lime-Saturation-Factor is um)(Silica-Modulus 

is vs)(Alumina-Modulus is vl)(C3S is m)(C2S is vs)(C3A is um)(C4AF is lm) (1)    

88. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is vl) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is lm)(C2S is m)(C3A is s)(C4AF is lm) (1)      

89. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

s)(Alumina-Modulus is s)(C3S is m)(C2S is s)(C3A is vs)(C4AF is um) (1)       

90. If (SiO2 is m) and (Al2O3 is l) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is m) 

and (Kiln-RPM is m) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is el)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is vl)(C3S is es)(C2S is el)(C3A is m)(C4AF is s) (1)        

91. If (SiO2 is l) and (Al2O3 is vs) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is vs)(C3S is m)(C2S is lm)(C3A is es)(C4AF is l) (1)     

92. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-
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Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is el)(C2S is lm)(C3A is s)(C4AF is um) (1)     

93. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is es)(Lime-Saturation-Factor is es)(Silica-Modulus is 

s)(Alumina-Modulus is l)(C3S is s)(C2S is vl)(C3A is m)(C4AF is m) (1)       

94. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is es)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is s)(C2S is vl)(C3A is s)(C4AF is l) (1)     

95. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

es)(Alumina-Modulus is m)(C3S is lm)(C2S is m)(C3A is m)(C4AF is vl) (1)      

96. If (SiO2 is s) and (Al2O3 is m) and (Fe2O3 is l) and (CaO is l) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

es)(Alumina-Modulus is s)(C3S is m)(C2S is lm)(C3A is s)(C4AF is vl) (1)    

97. If (SiO2 is vl) and (Al2O3 is m) and (Fe2O3 is l) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is m)(C2S is s)(C3A is s)(C4AF is l) (1)     

98. If (SiO2 is l) and (Al2O3 is vs) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is vl) then (Free-Lime is es)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is lm)(C2S is l)(C3A is lm)(C4AF is m) (1)   

99. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is vs) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is lm)(C2S is um)(C3A is s)(C4AF is l) (1)     

100. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is s)(C3S is m)(C2S is s)(C3A is s)(C4AF is l) (1)       

101. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

el)(Alumina-Modulus is lm)(C3S is lm)(C2S is lm)(C3A is vs)(C4AF is um) (1)  

102. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is m) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is vl) then (Free-Lime is m)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is vl)(C3S is s)(C2S is l)(C3A is m)(C4AF is es) (1)        

103. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is l) and (Inlet-Temperature is m) and (Coal-Feed is vl) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is lm)(C2S is um)(C3A is s)(C4AF is um) (1)   

104. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is vl)(C3S is m)(C2S is lm)(C3A is s)(C4AF is um) (1)      
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105. If (SiO2 is vl) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is lm)(C2S is um)(C3A is s)(C4AF is um) (1)   

106. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

m) and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is um)(C2S is s)(C3A is s)(C4AF is m) (1)       

107. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is lm)(C2S is um)(C3A is s)(C4AF is um) (1)   

108. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is m)(C2S is m)(C3A is s)(C4AF is um) (1)      

109. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is l) and (Kiln-Feed is m) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is lm)(C2S is um)(C3A is s)(C4AF is um) (1)    

110. If (SiO2 is l) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is l) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is lm)(C2S is m)(C3A is s)(C4AF is um) (1)     

111. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is l) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is vl) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is lm)(C2S is um)(C3A is lm)(C4AF is um) (1) 

112. If (SiO2 is s) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is lm)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is s)(C2S is l)(C3A is lm)(C4AF is um) (1)    

113. If (SiO2 is s) and (Al2O3 is l) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is m)(C3S is m)(C2S is lm)(C3A is lm)(C4AF is um) (1)      

114. If (SiO2 is s) and (Al2O3 is s) and (Fe2O3 is l) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is l) and (Inlet-Temperature is vl) and (Coal-Feed is m) and (Kiln-

Current is s) then (Free-Lime is m)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

s)(Alumina-Modulus is s)(C3S is lm)(C2S is m)(C3A is s)(C4AF is vl) (1)      

115. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

vs)(Alumina-Modulus is um)(C3S is s)(C2S is um)(C3A is m)(C4AF is m) (1)      

116. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is um)(Lime-Saturation-Factor is m)(Silica-Modulus is 

s)(Alumina-Modulus is um)(C3S is lm)(C2S is m)(C3A is lm)(C4AF is es) (1)    

117. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-
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Current is s) then (Free-Lime is l)(Lime-Saturation-Factor is m)(Silica-Modulus is 

s)(Alumina-Modulus is l)(C3S is lm)(C2S is m)(C3A is m)(C4AF is s) (1)        

118. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is l) and (Kiln-

Current is l) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

lm)(Alumina-Modulus is l)(C3S is lm)(C2S is m)(C3A is m)(C4AF is s) (1)      

119. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

s)(Alumina-Modulus is l)(C3S is el)(C2S is um)(C3A is m)(C4AF is lm) (1)    

120. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is s) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is m)(C2S is lm)(C3A is s)(C4AF is um) (1)    

121. If (SiO2 is l) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is um)(C3S is lm)(C2S is um)(C3A is lm)(C4AF is lm) (1)    

122. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is m) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is l)(C3S is lm)(C2S is m)(C3A is m)(C4AF is lm) (1)      

123. If (SiO2 is l) and (Al2O3 is s) and (Fe2O3 is s) and (CaO is s) and (Kiln-Feed is vl) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is es)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is um)(C2S is s)(C3A is s)(C4AF is m) (1)      

124. If (SiO2 is m) and (Al2O3 is s) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is l) then (Free-Lime is lm)(Lime-Saturation-Factor is vs)(Silica-Modulus is 

vs)(Alumina-Modulus is lm)(C3S is es)(C2S is vl)(C3A is s)(C4AF is l) (1)   

125. If (SiO2 is l) and (Al2O3 is vs) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is vl) then (Free-Lime is s)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is lm)(C3S is lm)(C2S is um)(C3A is s)(C4AF is el) (1)   

126. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is s) and (Kiln-Feed is l) 

and (Kiln-RPM is vl) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is s) then (Free-Lime is m)(Lime-Saturation-Factor is lm)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is lm)(C2S is um)(C3A is s)(C4AF is m) (1)       

127. If (SiO2 is m) and (Al2O3 is m) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

m) and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is s) and (Kiln-

Current is m) then (Free-Lime is es)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is lm)(C2S is m)(C3A is s)(C4AF is m) (1)         

128. If (SiO2 is m) and (Al2O3 is l) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is s) 

and (Kiln-RPM is s) and (Inlet-Temperature is m) and (Coal-Feed is s) and (Kiln-

Current is vl) then (Free-Lime is s)(Lime-Saturation-Factor is m)(Silica-Modulus is 

vs)(Alumina-Modulus is l)(C3S is m)(C2S is s)(C3A is um)(C4AF is m) (1)        

129. If (SiO2 is m) and (Al2O3 is l) and (Fe2O3 is m) and (CaO is m) and (Kiln-Feed is 

vl) and (Kiln-RPM is l) and (Inlet-Temperature is l) and (Coal-Feed is m) and (Kiln-

Current is m) then (Free-Lime is vs)(Lime-Saturation-Factor is s)(Silica-Modulus is 

s)(Alumina-Modulus is m)(C3S is m)(C2S is m)(C3A is lm)(C4AF is m) (1)        



 

220 

________________________________________________________________________ 

List of Publications 

________________________________________________________________________ 

Journal Articles 

1. Pani, A., & Mohanta, H. K. (2009). Application of soft sensors in process monitoring 

and control: A review. The IUP Journal of Science & Technology, 5(4), 7-20. 

2. Pani, A. K., & Mohanta, H. K. (2011). A survey of data treatment techniques for soft 

sensor design. Chemical Product and Process Modeling, 6(1). 

3. Pani, A. K., Vadlamudi, V. K., & Mohanta, H. K. (2013). Development and 

comparison of neural network based soft sensors for online estimation of cement 

clinker quality. ISA Transactions, 52(1), 19-29. 

4. Pani, A. K., & Mohanta, H. K. (2014). Soft sensing of particle size in a grinding 

process: Application of support vector regression, fuzzy inference and adaptive neuro 

fuzzy inference techniques for online monitoring of cement fineness. Powder 

Technology, 264, 484-497. 

5. Pani, A. K., & Mohanta, H. K. (2015). Online monitoring and control of particle size 

in the grinding process using least square support vector regression and resilient back 

propagation neural network. ISA Transactions (In Press) 

6. Pani, A. K., & Mohanta, H. K. Inferential sensing of cement clinker quality using 

robust multivariate outlier detection and soft computing techniques. (Communicated) 

Conference Proceedings 

1. Pani  A. K., & Mohanta H. K., (2011, February) Importance of Data Analysis and 

Treatment for Soft Sensor Design: Application to Continuous Rotary Cement Kiln. 

2nd Conference on Advances in Chemical Engineering, Thapar University, AChemE - 

2011. 

2. Pani, A. K., Vadlamudi, V., Bhargavi, R. J., & Mohanta, H. K. (2011, July). Neural 

Network Soft Sensor Application in Cement Industry: Prediction of Clinker Quality 

Parameters. In Process Automation, Control and Computing (PACC), 2011 

International Conference on (pp. 1-6). IEEE. 

3. Vadlamudi V. K., Pani A. K., Bhargavi R. J., Mohanta H. K, (2011, December). 

Development of Fuzzy Logic Based Soft Sensor for Prediction of Free Lime Content 

in the Cement Clinker. Indian Chemical Engineering Congress CHEMCON – 2011. 

4. Pani A. K., Vadlamudi V. K., Bhargavi R. J., Mohanta H. K., An RBF Neural Network 

based Soft Sensor Development for Prediction of Cement Clinker Properties. Indian 

Chemical Engineering Congress CHEMCON – 2011.  

5. Pani, A. K., Amin, K. G., & Mohanta, H. K. (2012, July). Data driven soft sensor of a 

cement mill using generalized regression neural network. In Data Science & 

Engineering (ICDSE), 2012 International Conference on (pp. 98-102). IEEE. 

6. Pani, A. K., & Mohanta, H. K. (2013, February). A hybrid soft sensing approach of a 

cement mill using principal component analysis and artificial neural networks. In 

Advance Computing Conference (IACC), 2013 IEEE 3rd International (pp. 713-718). 

IEEE. 

 



221 

________________________________________________________________________ 

Biographies 

________________________________________________________________________ 

Biography of the Candidate 

Mr Ajaya Kumar Pani has done his Graduation in Chemical Engineering from National 

Institute of Technology, Rourkela and Post Graduation in Chemical Engineering from 

Institute of Technology, Banaras Hindu University, Varanasi. He worked as a Junior 

Project Fellow at Regional Research Laboratory (Presently Institute of Minerals and 

Materials Technology), Bhubaneswar for 1 year and as a Graduate Engineer Trainee at J K 

Paper Mills, Rayagada, Odisha for 1 year. Prior to joining BITS, he served as a Lecturer at 

Jagannath Institute of Technology & Management (Presently Centurion University), 

Parlakhemundi, Odisha for 4 years. He joined BITS Pilani in the year 2007 and has since 

been working as a Lecturer in the Department of Chemical Engineering at BITS-Pilani, 

Pilani Campus. 

Biography of the Supervisor 

Dr Hare Krishna Mohanta is an Assistant Professor in the Department of Chemical 

Engineering in BITS-Pilani, Pilani Campus, Rajasthan. He has over 16 years of teaching 

experience and 1 year industrial experience. He has obtained his B.E. (Chemical 

Engineering) degree in 1995 from NIT Rourkela, M.Tech. (Chemical Engineering) in 

1998 from IIT Kanpur, and Ph.D. in Chemical Engineering (Specialization: Process 

Control) in 2006 from BITS Pilani. He is a Life Associate Member of Indian Institute of 

Chemical Engineers (IIChE) and a Member of Institution of Engineers (India). He has 

several publications in the international and national journals. His areas of research 

include wavelet-based process identification & control, design of soft sensors for process 

monitoring & control, reactive distillation design & control, nonlinear control & state 

estimation, catalytic pyrolysis of hydrocarbons besides modeling & simulation. 

 

 


