
Chapter 7

A robust numerical scheme for two-parameter
singularly perturbed parabolic problems with
a discontinuous convection term coefficient and
source term

7.1 Introduction

In this chapter, a numerical scheme is constructed for the problems in which the dif-
fusion and convection parameters (ε1 and ε2, respectively) both are small, and the
convection term coefficient and source terms have a jump discontinuity in the domain
of consideration. Two different cases depending on the magnitude of the ratios ε1/ε2

2 ,
and ε2

2/ε1 have been considered separately. Through rigorous analysis, the theoreti-
cal error bounds on the singular and regular components of the solution are obtained
separately, which shows that in both cases the method is convergent uniformly irre-
spective of the size of the parameters ε1, ε2. Test problems are included to validate
the theoretical results.

Define Ω− = (0,e), Ω+ = (e,1), Ωe = Ω− ∪Ω+, Ω = (0,1), Λ = (0,T ], D− =

Ω−×Λ, D+ = Ω+×Λ, De = D− ∪D+, D = Ω×Λ, where T is a fixed real num-
ber. We consider the following two-parameter singularly perturbed boundary value
problem (SP-BVP)

Lψ(x, t)≡−ψt + ε1ψxx + ε2a(x, t)ψx−b(x, t)ψ = f (x, t), (x, t) ∈ De, (7.1a)

ψ(0, t) = ψl(t) on ϒl, ψ(1, t) = ψr(t) on ϒr, (7.1b)

ψ(x,0) = ψb(x) on ϒb, (7.1c)
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where 0 < ε1, ε2� 1 are the diffusion and convection parameters respectively. ϒ =

ϒl ∪ϒb ∪ϒr, where ϒl = {(x, t) : x = 0, t ∈ Λ}, ϒb = {(x, t) : t = 0, x ∈ Ω}, and
ϒr = {(x, t) : x = 1, t ∈ Λ} is a part of the boundary of D. We assume that a(x, t) and
f (x, t) are sufficiently smooth in D except the jump discontinuity at e ∈Ω denoted by
[w](e) = w(e+)−w(e−). Furthermore, we assume

(A1) a(x, t)≤−κ1 < 0 in D− and a(x, t)≥ κ2 > 0 in D+.

(A2) The functions b(x, t) (in D), and ψl(t), ψr(t), ψb(x) (on ϒ) are bounded and
sufficiently smooth.

(A3) b(x, t)≥ β ∗ > 0 in D.

(A4) The initial function satisfies the compatibility conditions.

The uniqueness of the solution of the problem (7.1) is confirmed by (A1)-(A4).
In general, the small diffusion parameter leads to the twin boundary layers and the
discontinuity in the convection term coefficient and source terms lead to an inte-
rior layer in the solution. Moreover, in general, the layer behaviour is determined
by the magnitude of the ratios of the diffusion parameter to the square of the con-
vection parameter, and the fact whether the convection-coefficient a(x, t) is negative
or positive. In particular, the boundary layers widths depend continuously on these
ratios, and the interior layer occurs at both sides of the point of the discontinuity.
A detailed discussion on the effect of the discontinuity in the convection-coefficient
and source term on the solution of SPBVPs can be found in Farrell et al. [133] for
ODEs and in O’Riordan and Shishkin [134], and Clavero et al. [109] for PDEs. Let

κ = min{κ1,κ2} and γ = min
(x,t)∈De

{∣∣∣∣b(x, t)a(x, t)

∣∣∣∣}. Our aim is to develop a parameters

uniform numerical scheme for two different cases I. γε1 ≤ κε2
2 , and II. κε2

2 ≤ γε1

satisfying assumptions (A1)-(A4). An analogous convergence analysis can be given
for the reverse situation of (A1) i.e., for a(x, t)≥ κ1 > 0 in D− and a(x, t)≤−κ2 < 0
in D+.

The chapter is further organized as follows. In Section 7.2, the minimum principle,
and stability estimates are established. Furthermore, the solution decomposition into
its regular and singular components is given, and the bounds on the derivatives of
the components are also given. The proposed scheme comprising the Crank-Nicolson
scheme on a uniform mesh in time and an upwind difference scheme in space on a
predefined Shishkin mesh is derived in Section 7.3. A decomposition of the solution of
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the fully discrete scheme is given in Section 7.4. Furthermore, the parameters uniform
error estimates are also established for both cases. The theoretical results obtained in
Section 7.4, are validated through two test problems in Section 7.5. Finally, some
concluding remarks on the major finding of the chapter are drawn in the last Section
7.6.

7.2 Continuous Problem

Lemma 7.2.1. Let Φ∈C2(De)∩C0(D) be non-negative on ϒ and [Φx](e, t)≤ 0, t > 0.

Then LΦ≤ 0 in De gives Φ≥ 0 throughout D.

Proof. Define Ψ(x, t) = eξ |x−e|/2ε1Φ(x, t), (x, t) ∈ D, where ξ = κ1 for x < e, and
ξ = κ2 for x > e. Assume Φ(θ ,ζ ) = min(x,t)∈De Φ(x, t). Then, it is easy to verify that
LΦ(θ ,ζ ) > 0 for θ ∈ Ωe, which is a contradiction. Also, if θ = e, then [Φx](e,ζ ) =

[Ψx](e,ζ )− [(κ1 +κ2)/(2ε1)]Ψ(e,ζ )> 0. Thus, we obtain a contradiction.

Lemma 7.2.2. The parameter-uniform estimate on ψ(x, t) is given by

‖ψ‖D ≤ ‖ψ‖ϒ +
‖ f‖De

β ∗
.

Proof. An application of Lemma 7.2.1 to the comparison function

Π
±(x, t) = ‖ψ‖ϒ +

‖ f‖De

β ∗
±ψ, (x, t) ∈ D,

yields the required estimate.

Decomposing the solution ψ as

ψ = u+ v+w,

where the regular component u, and the left and right singular components v and w

respectively, satisfy the following BVPs

Lu = f , (x, t) ∈ De,
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with u(0, t), u(1, t), u(e−, t), u(e+, t) chosen suitably, and u(x,0) = ψb(x), where

u(e−, t) = lim
x→e−

u(x, t), u(e+, t) = lim
x→e+

u(x, t).

Lv = 0, (x, t) ∈ De,

with v(0, t) = ψl(t)−u(0, t)−w(0, t), v(1, t) chosen suitably, and v(x,0) = 0.

Lw = 0, (x, t) ∈ De,

with w(0, t) chosen suitably, w(1, t) = ψr(t)−u(1, t)− v(1, t), w(x,0) = 0.

Lemma 7.2.3. The layer components for Case I satisfy

|v(x, t)| ≤C


exp((−κε2/ε1)x), if (x, t) ∈ D−,

exp((−γ/2ε2)(x− e)), if (x, t) ∈ D+,

|w(x, t)| ≤C


exp((−γ/2ε2)(e− x)), if (x, t) ∈ D−,

exp((−κε2/ε1)(1− x)), if (x, t) ∈ D+.

Proof. For the proof, follow the technique given in [105, 134].

Lemma 7.2.4. The layer components for Case II satisfy

|v(x, t)| ≤C


exp
(
−
√

κγ

ε1
x
)
, if (x, t) ∈ D−,

exp
(
−1

2

√
κγ

ε1
(x− e)

)
, if (x, t) ∈ D+,

|w(x, t)| ≤C


exp
(
−1

2

√
κγ

ε1
(e− x)

)
, if (x, t) ∈ D−,

exp
(
−
√

κγ

ε1
(1− x)

)
, if (x, t) ∈ D+.

Proof. For the proof, follow the technique given in [105, 134].

The regular and singular components can be further decomposed as

ψ(x, t) =


(u−+ v−+wl)(x, t), if (x, t) ∈ D−,

(u−+ v−+wl)(e−, t) = (u++ v++wr)(e+, t), if (x, t) = (e, t),

(u++ v++wr)(x, t), if (x, t) ∈ D+,
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where u−, u+ are the left and right regular components, respectively i.e., u− and u+

are the restrictions of u on D− and D+ respectively. Similarly, v−, wl , the left layer
components, and v+, wr, are the right layer components, respectively. Thus

u(x, t) =


u−(x, t), (x, t) ∈ D−,

u+(x, t), (x, t) ∈ D+,
v(x, t) =


v−(x, t), (x, t) ∈ D−,

v+(x, t), (x, t) ∈ D+,

w(x, t) =


wl(x, t), (x, t) ∈ D−,

wr(x, t), (x, t) ∈ D+.

The proofs of the following theorem on the bounds of the components and their deriva-
tives can be proved in a similar way as given in [135].

Theorem 7.2.1. The components in Case I, satisfy the following bounds∥∥∥∥dku−

dxk

∥∥∥∥
D−
≤C

(
1+(ε1/ε2)

3−k
)
,

∥∥∥∥dku+

dxk

∥∥∥∥
D+

≤C
(

1+(ε1/ε2)
3−k
)
,

k = 0,1,2,3,4,∥∥∥∥dkv−

dxk

∥∥∥∥
D−
≤C(ε2/ε1)

k,

∥∥∥∥dkv+

dxk

∥∥∥∥
D+

≤Cε
−k
2 ,k = 1,2,3,∥∥∥∥dkwl

dxk

∥∥∥∥
D−
≤Cε

−k
2 ,

∥∥∥∥dkwr

dxk

∥∥∥∥
D+

≤C(ε2/ε1)
k, k = 1,2,3.

while, in Case II, the bounds are as follows∥∥∥∥dku−

dxk

∥∥∥∥
D−
≤C

(
1+ ε

−(k−3)/2
1

)
,

∥∥∥∥dku+

dxk

∥∥∥∥
D+

≤C
(

1+ ε
−(k−3)/2
1

)
,

k = 0,1,2,3,4,∥∥∥∥dkv−

dxk

∥∥∥∥
D−
≤Cε

−k/2
1 ,

∥∥∥∥dkv+

dxk

∥∥∥∥
D+

≤Cε
−k/2
1 , k = 1,2,3,4,∥∥∥∥dkwl

dxk

∥∥∥∥
D−
≤Cε

−k/2
1 ,

∥∥∥∥dkwr

dxk

∥∥∥∥
D+

≤Cε
−k/2
1 , k = 1,2,3,4.
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7.3 The Discretization

In this section, based on the Crank-Nicolson method an implicit numerical scheme is
introduced to solve (7.1). For a fixed time T , the uniform mesh

Λ
M =

{
tn = n∆t : n = 0,1, . . . ,M, ∆t = T

M

}
is obtained by dividing the time interval [0,T ] into M partitions. Then, on Ωe×ΛM

the problem (7.1) is semi-discretized as

−D−t Y n+1(x)+ ε1(Y n+1/2)xx(x)+ ε2an+1(x)(Y n+1/2)x(x)−bn+1(x)Y n+1/2(x)

= f n+1(x),x ∈Ω
e, 0≤ n≤M−1,

Y n+1(0) = ψl(tn+1), Y n+1(1) = ψr(tn+1), 0≤ n≤M−1,

Y 0(x) = ψb(x), x ∈Ω,

where Y n+1(x) is the approximation of ψ(x, tn+1) at (n + 1)-th time level, D−t is
the backward difference operator, Y n+1/2(x) = (Y n+1(x)+Y n(x))/2, and an+1(x) =

a(x, tn+1), etc.
Rewrite the above equation as

L̂Y n+1(x) = g(x, tn+1), x ∈Ωe, 0≤ n≤M−1,

Y n+1(0) = ψl(tn+1), Y n+1(1) = ψr(tn+1), 0≤ n≤M−1,

Y 0(x) = ψb(x), x ∈Ω,

(7.2)

where the operator L̂ is defined as

L̂≡ ε1

2
d2

dx2 + ε2
an+1(x)

2
d
dx
− cn+1(x)

2
I,

and

g(x, tn+1) = f n+1(x)− ε1

2
(Y n)xx(x)− ε2

an+1(x)
2

(Y n)x(x)+
dn+1(x)

2
Y n(x),

cn+1(x) = bn+1(x)+
2
∆t

,

dn+1(x) = bn+1(x)− 2
∆t

.
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The local truncation error in the temporal semi-discretization is given by e j+1 =

Y n+1(x)−U(x), where U(x) is the computed solution of

L̂U(x) = f (x, tn+1)− ε1
2 (Y

n)xx(x)− ε2
a(x,tn+1)

2 (Y n)x(x)+
d(x,tn+1)

2 Y n(x),

x ∈Ωe, 0≤ n≤M−1,

U(0) = ψl(tn+1), U(1) = ψr(tn+1), 0≤ n≤M−1,

U(x) = ψb(x), x ∈Ω.

The following lemma which estimates the local truncation error Tn can be proved by
following the approach given in [136] (see Lemma 3) for one parameter SP-BVPs.

Lemma 7.3.1. The local truncation error Tn satisfies

‖Tn‖ ≤C(∆t)3, 0≤ n≤M.

The following lemma estimates the global error En defined as En = ψ(x, tn)−
Y n+1(x) at the instant tn.

Lemma 7.3.2. The global error En is estimated as

‖En‖ ≤C(∆t)2, 0≤ n≤M.

Proof. By definition, we have

‖En+1‖∞ =

∥∥∥∥∥ n

∑
k=1

ek

∥∥∥∥∥
∞

, n≤ T
∆t

≤ ‖e1‖∞ +‖e2‖∞ + · · ·+‖en‖∞.

Using the previous lemma

‖En+1‖∞ ≤Cn(∆t)3 ≤C(∆t)2.

The solutions

λ0(x) =−
ε2an+1(x)

2ε1
−

√(
ε2an+1(x)

2ε1

)2

+
cn+1(x)

ε1
< 0,
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and

λ1(x) =−
ε2an+1(x)

2ε1
+

√(
ε2an+1(x)

2ε1

)2

+
cn+1(x)

ε1
> 0,

of the characteristic equation

ε1λ
2(x)+ ε2an+1(x)λ (x)− cn+1(x) = 0,

describe the layer behavior of the solution. More precisely, the rate at which the
solution decay/rise in the layer region is given by η0 = −maxx∈Ω

λ0(x), and η1 =

minx∈Ω
λ1(x). In Case I, η0 and η1 are of O

(
ε2ε
−1
1
)

and O
(
ε
−1
2
)

respectively, while
in Case II, both η0 and η1 are of O

(
ε
−1/2
1

)
.

It is well-known that one can not achieve the uniform convergence on an equidis-
tant mesh for the problems of the form (7.1). Therefore, a non-uniform mesh which is
dense in the layer regions will be constructed. To construct the mesh we divide [0,1]
into six sub-intervals [0,σ1], (σ1,e−σ2], (e−σ2,e], (e,e+σ3], (e+σ3,1−σ4], and
(1−σ4,1], where the transition parameters σ1, σ2, σ3, and σ4 are defined as

σ1 = min
{

e
4
,
lnN
η0

}
, σ2 = min

{
e
4
,
lnN
η1

}
,

σ3 = min
{

1− e
4

,
lnN
η1

}
, σ4 = min

{
1− e

4
,
lnN
η0

}
,

where N ≥ 8 is the number of intervals used for the discretization. In this work in
Case I, we have taken, η0 = κε2/ε1, η1 = γ/2ε2, while in Case II, we have taken
η0 =

√
κγ/ε1, and η1 =

1
2

√
κγ/ε1.

We place N/8 points in each of the subintervals [0,σ1], (e−σ2,e], (e,e+σ3], (e+

σ3,1−σ4], and N/4 points in (σ1,e−σ2], and (1−σ4,1]. Then, the mesh width is
given by
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hi = xi− xi−1 =



8σ1

N
, if i = 1,2, . . .

N
8
,

4(e−σ1−σ2)

N
, if i =

N
8
+1,

N
8
+2, . . .

3N
8
,

8σ2

N
, if i =

3N
8

+1,
3N
8

+2, . . .
N
2
,

8σ3

N
, if i =

N
2
+1,

N
2
+2, . . .

5N
8
,

4(1− e−σ3−σ4)

N
, if i =

5N
8

+1,
5N
8

+2 . . .
3N
4
,

8σ4

N
, if i =

3N
4

+1,
3N
4

+2, . . .N,

and the mesh points are given by

xi =



8σ1

N
i, if i = 0,1, . . . ,

N
8
,

σ1 +
4(e−σ1−σ2)

N

(
i− N

8

)
, if i =

N
8
+1,

N
8
+2, . . .

3N
8
,

e−σ2 +
8σ2

N

(
i− 3N

8

)
, if i =

3N
8

+1,
3N
8

+2, . . .
N
2
,

e+
8σ3

N

(
i− N

2

)
, if i =

N
2
+1,

N
2
+2, . . .

5N
8
,

e+σ3 +
4(1− e−σ3−σ4)

N

(
i− 5N

8

)
, if i =

5N
8

+1,
5N
8

+2, . . .
3N
4
,

1−σ4 +
8σ4

N

(
i− 3N

4

)
, if i =

3N
4

+1,
3N
4

+2, . . .N.

It can be noticed that xN/2 = e. If we denote ΩN− = {xi}N/2−1
i=0 , ΩN+ = {xi}N

i=N/2+1,
and ΩN = {xi}N

0 . Then, the required mesh DN,M is the tensor product of ΩN and ΛM

i.e., DN,M = ΩN ×ΛM = DN−,M ∪ (e×ΛM)∪DN+,M, where DN−,M and DN+,M are
the tensor products ΩN−×ΛM, and ΩN+×ΛM respectively. Introducing the operators

D−x µ
n
i =

µn
i −µn

i−1

hi
, D+

x µ
n
i =

µn
i+1−µn

i

hi+1
, and δ

2
x µ

n
i =

(D+
x −D−x )µ

n
i

i
,
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where i =
hi+hi+1

2 , the full discretization of (7.2) on DN−,M ∪DN+,M is given byL Nψ̃(xi) = g̃(xi), xi ∈ΩN−∪ΩN+,

ψ̃(x0) = ψl(tn+1), ψ̃(xN) = ψr(tn+1), 0≤ n≤M−1,
(7.3)

where ψ̃(xi) is the approximation of Y n+1(xi) and the operator L N is defined as

L N
ψ̃ ≡ ε1

2
δ

2
x ψ̃ + ε2

an+1

2
D∗xψ̃− cn+1

2
ψ̃,

D∗x =


D−x , if i < N/2,

D+
x , if i > N/2,

and D−x ψ̃(xN/2) = D+
x ψ̃(xN/2). Moreover, the function g̃(xi) is given by

g̃(xi) = f n+1(xi)−
ε1

2
δ

2
x Y n(xi)− ε2

an+1(xi)

2
D∗xY n(xi)+

dn+1(xi)

2
Y n(xi).

7.4 Parameter Uniform Convergence Analysis

Before proving the main result on the convergence of the proposed method, we give
some basic properties satisfy by the operator L N .

Lemma 7.4.1. Let Φ̃(x0)≥ 0, Φ̃(xN)≥ 0, and D+
x Φ̃(xN/2)−D−x Φ̃(xN/2)≤ 0. Then,

L NΦ̃(xi)≤ 0 for all xi ∈ΩN−∪ΩN+ implies Φ̃(xi)≥ 0 for all xi ∈ΩN .

Proof. For contrary assume Φ̃(li) = minxi∈ΩN Φ̃(xi) < 0 for some li ∈ ΩN . Then, we
consider two different cases (i) li ∈ ΩN−∪ΩN+, and (ii) li = e. In the first case, for
li ∈ΩN− we have

L N
Φ̃(li) =

ε1

2
δ

2
x Φ̃(li)+ ε2

an+1(li)
2

D−Φ̃(li)−
cn+1(li)

2
Φ̃(li)

=
ε1

2i

(
Φ̃(li+1)− Φ̃(li)

hi+1
− Φ̃(li)− Φ̃(li−1)

hi

)

+ ε2
an+1(li)

2

(
Φ̃(li)− Φ̃(li−1)

hi

)
− cn+1(li)

2
Φ̃(li)> 0.
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Also, for li ∈ΩN+ we have

L N
Φ̃(li) =

ε1

2
δ

2
x Φ̃(li)+ ε2

an+1(li)
2

D+
Φ̃(li)−

cn+1(li)
2

Φ̃(li)

=
ε1

2i

(
Φ̃(li+1)− Φ̃(li)

hi+1
− Φ̃(li)− Φ̃(li−1)

hi

)

+ ε2
an+1(li)

2

(
Φ̃(li+1)− Φ̃(li)

hi+1

)
− cn+1(li)

2
Φ̃(li)> 0.

Now in the second case when li = e, we have D+
x Φ̃(xN/2)> 0 and D−x Φ̃(xN/2)< 0, so

D+
x Φ̃(xN/2)−D−x Φ̃(xN/2)> 0.

Thus in both cases, we get a contradiction and the proof is completed.

We shall now prove the convergence of the proposed scheme for both cases sepa-
rately. Analogous to the continuous case, decompose the solution ψ̃i of (7.3) into the
regular and singular components as

ψ̃i = Ũi +Ṽi +W̃i.

We further decompose the regular component Ũi as Ũi = Ũ−i + Ũ+
i , where Ũ−i and

Ũ+
i are the restrictions of Ũi at the left and right side of the point e respectively. Then

L NŨ−i = g̃(xi) in DN−,M, Ũ−0 = u−(0, tn+1), Ũ−N/2 = u−(e−, tn+1),

and

L NŨ+
i = g̃(xi) in DN+,M, Ũ+

N/2 = u+(e+, tn+1), Ũ+
N = u+(1, tn+1).
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The layer components Ṽi and W̃i are also decomposed as Ṽi = Ṽ−i + Ṽ+
i , and W̃i =

W̃ l
i +W̃ r

i . These components satisfy the following problems

L NṼ−i = 0 in DN−,M, Ṽ−0 = v−(0, tn+1), Ṽ−N/2 = v−(e, tn+1),

L NṼ+
i = 0 in DN+,M, Ṽ+

N/2 = v+(e, tn+1), Ṽ+
N = 0,

L NW̃ l
i = 0 in DN−,M, W̃ l

0 = 0, W̃ l
N/2 = wl(e, tn+1),

L NW̃ r
i = 0 in DN+,M, W̃ r

N/2 = 0, W̃ r
N = wr(1, tn+1),

(Ũ−i +Ṽ−i +W̃ l
i )(e, tn+1) = (Ũ+

i +Ṽ+
i +W̃ r

i )(e, tn+1).

Lemma 7.4.2. The bounds for the singular components are given as

|Ṽ−i | ≤C
i

∏
j=1

(1+η0h j)
−1, i = 0,1, . . . ,N/2,

|Ṽ+
i | ≤C

i

∏
j=N/2+1

(1+η1h j)
−1, i = N/2+1, . . . ,N,

|W̃ l
i | ≤C

N/2

∏
j=i+1

(1+η1h j)
−1, i = 0,1, . . . ,N/2,

|W̃ r
i | ≤C

N

∏
j=i+1

(1+η0h j)
−1, i = N/2+1, . . . ,N,

where η0 and η1 are defined in the previous section.

Proof. Refer, [135].

The nodal error is given by νi,n+1 =(u(xi, tn+1)−Ũi)+(v(xi, tn+1)−Ṽi)+(w(xi, tn+1)−
W̃i).

Analysis for Case I (γε1 ≤ κε2
2 ). The error estimate is obtained by estimating the

errors in the smooth and singular components separately.

Lemma 7.4.3. The error bound for the regular component is given by

|u(xi, tn+1)−Ũi|ΩN−∪ΩN+ ≤CN−1.
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Proof. Using the classical argument on the domain ΩN−, we obtain

|L N(u−(xi, tn+1)−Ũ−i )| ≤CN−1(ε1‖u−‖3 + ε2‖a‖‖u−‖2)

≤CN−1.

Thus an application of Lemma 7.4.1 gives

|u−(xi, tn+1)−Ũ−i | ≤CN−1.

The same error bound can be obtained by using the above argument on the domain
ΩN+ i.e.,

|u+(xi, tn+1)−Ũ+
i | ≤CN−1.

Hence, the error bound for the regular component is given by

|u(xi, tn+1)−Ũi|ΩN−∪ΩN+ ≤CN−1.

Lemma 7.4.4. The error bound for the left interior layer component in the domain

ΩN− is given by

|v−(xi, tn+1)−Ṽ−i | ≤CN−1(lnN)2.

Proof. If xi ∈ [0,σ1), then for σ1 = e/4, we have ε2/ε1 ≤ C lnN and so using the
classical argument, we obtain

|L N(v−(xi, tn+1)−Ṽ−i )| ≤CN−1(ε1‖v−‖3 + ε2‖a‖‖v−‖2)

≤CN−1(lnN)2.

Now for σ1 < e/4, the classical argument gives

|L N(v−(xi, tn+1)−Ṽ−i )| ≤C(hi +hi+1)(ε1‖v−‖3 + ε2‖a‖‖v−‖2)

≤CN−1
σ1(ε1‖v−‖3 + ε2‖a‖‖v−‖2)

≤C
ε2

2
ε1

N−1 lnN.
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Consider Φ(x) =C(N−1 +N−1 lnN(σ1− x) ε2
ε1
). Then it is easy to obtain

L N
Φi =−

(
cn+1

2
Φi +C

ε2
2

ε1
N−1 lnN

)
≤−|L N(v−(xi, tn+1)−Ṽ−i )|,

which gives

|v−(xi, tn+1)−Ṽ−i |=C
(

N−1 +(N−1 lnN)(σ1− xi)
ε2

ε1

)
≤C

(
N−1 +(N−1 lnN)σ1

ε2

ε1

)
≤CN−1(lnN)2. (7.4)

Furthermore, for xi ∈ [σ1,e), we have

|v−(xi, tn+1)−Ṽ−i | ≤ |v
−(xi, tn+1)|+ |Ṽ−i |.

Now Lemma 7.4.2 for i = N/8, and the fact ln(1+ y) > y(1− y/2), gives |Ṽ−i | ≤
CN−1, ∀xi ∈ [σ1,e). Also,

|v−(xi, tn+1)| ≤C exp((−κε2/ε1)xi)

≤C exp((−κε2/ε1)σ1)

≤C exp((−κε2/ε1)(lnN/η0))

≤CN−1.

Hence, for xi ∈ [σ1,e)

|v−(xi, tn+1)−Ṽ−i | ≤CN−1. (7.5)

Finally, on combining (7.4) and (7.5), we get

|v−(xi, tn+1)−Ṽ−i |ΩN− ≤CN−1(lnN)2.

Lemma 7.4.5. The error bound for the right interior layer component is given by

|v+(xi, tn+1)−Ṽ+
i |ΩN+ ≤CN−1(lnN)2.
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Proof. For the uniform mesh, the proof is similar as for the left interior layer compo-
nent. In the case of non-uniform mesh, when xi ∈ [e+σ3,1), we have

|v+(xi, tn+1)−Ṽ+
i | ≤ |v

+(xi, tn+1)|+ |Ṽ+
i |.

Now Lemma 7.4.2 for i = 5N/8, and the fact ln(1+ y) > y(1− y/2), gives |Ṽ+
i | ≤

CN−1, ∀xi ∈ [e+σ3,1). Also,

|v+(xi, tn+1)| ≤C exp(−(γ/2ε2)(xi− e))

≤C exp(−(γ/2ε2)σ3)

≤C exp(−(γ/2ε2)(lnN/η1))

≤CN−1.

Hence, for xi ∈ [e+σ3,1)

|v+(xi, tn+1)−Ṽ+
i | ≤CN−1. (7.6)

Now for xi ∈ [e,e+σ3), the truncation error bound gives

|L N(v+(xi, tn+1)−Ṽ+
i )| ≤C(hi +hi+1)(ε1‖v+‖3 + ε2‖a‖‖v+‖2)

≤CN−1
σ3(ε1‖v+‖3 + ε2‖a‖‖v+‖2)

≤CN−1
σ3(ε1ε

−3
2 + ε2ε

−2
2 )

≤CN−1(lnN/η1)(ε1ε
−3
2 + ε2ε

−2
2 )

≤CN−1 lnN.

Use of the discrete minimum principle, yields

|v+(xi, tn+1)−Ṽ+
i | ≤CN−1 lnN. (7.7)

Finally, on combining (7.6) and (7.7), we get

|v+(xi, tn+1)−Ṽ+
i |ΩN+ ≤CN−1 lnN.

The error bound on the interior layer component is given in the following lemma
by combining Lemma 7.4.4 and Lemma 7.4.5.
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Lemma 7.4.6. At each mesh point in ΩN−∪ΩN+, the error bound satisfies

max
xi∈ΩN−∪ΩN+

|v(xi, tn+1)−Ṽi| ≤CN−1(lnN)2.

The similar error bound can be obtained for the boundary layer component and is
given by

Lemma 7.4.7. At each mesh point in ΩN−∪ΩN+, the error bound satisfies

max
xi∈ΩN−∪ΩN+

|w(xi, tn+1)−W̃i| ≤CN−1(lnN)2.

Analysis for Case II (κε2
2 ≤ γε1).

Lemma 7.4.8. The error bound for the regular component is given by

|u(xi, tn+1)−Ũi|ΩN−∪ΩN+ ≤CN−1.

Proof. For xi ∈ΩN−, we have

|L N(u−(xi, tn+1)−Ũ−i )| ≤CN−1(ε1‖u−‖3 + ε2‖a‖‖u−‖2)

≤CN−1.

Using Lemma 7.4.1, we get the following estimate

|u−(xi, tn+1)−Ũ−i | ≤CN−1.

The similar error bound can be obtained for the domain ΩN+ and is given by

|u+(xi, tn+1)−Ũ+
i | ≤CN−1.

Hence, the error bound for the regular component is given by

|u(xi, tn+1)−Ũi|ΩN−∪ΩN+ ≤CN−1.

Lemma 7.4.9. The error bound for the left interior layer component is given by

|v−(xi, tn+1)−Ṽ−i |ΩN− ≤CN−1 lnN.
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Proof. For xi ∈ [0,σ1), the classical argument gives

|L N(v−(xi, tn+1)−Ṽ−i )| ≤C(hi +hi+1)(ε1‖v−‖3 + ε2‖a‖‖v−‖2)

≤CN−1
σ1(ε1‖v−‖3 + ε2‖a‖‖v−‖2)

≤CN−1(lnN/η0)(ε1ε
−3/2
1 + ε2ε

−1
1 )

≤CN−1 lnN.

Using Lemma 7.4.1, we get the following estimate

|v−(xi, tn+1)−Ṽ−i | ≤CN−1 lnN. (7.8)

Furthermore, for xi ∈ [σ1,e), we have

|v−(xi, tn+1)−Ṽ−i | ≤ |v
−(xi, tn+1)|+ |Ṽ−i |.

Now Lemma 7.4.2 for i = N/8, and the fact ln(1+ y) > y(1− y/2), gives |Ṽ−i | ≤
CN−1, ∀xi ∈ [σ1,e). Also,

|v−(xi, tn+1)| ≤C exp
(
−
√

κγ

ε1
xi

)
≤C exp

(
−
√

κγ

ε1
σ1

)
≤CN−1.

Hence, for xi ∈ [σ1,e)

|v−(xi, tn+1)−Ṽ−i | ≤CN−1. (7.9)

Finally, combining (7.8) and (7.9), we get

|v−(xi, tn+1)−Ṽ−i |ΩN− ≤CN−1 lnN.

Lemma 7.4.10. The error bound for the right interior layer component is given by

|v+(xi, tn+1)−Ṽ+
i |ΩN+ ≤CN−1 lnN.
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Proof. For the case of non-uniform mesh, for xi ∈ [e+σ3,1), we have

|v+(xi, tn+1)−Ṽ+
i | ≤ |v

+(xi, tn+1)|+ |Ṽ+
i |.

Now Lemma 7.4.2 for i = 5N/8, and the fact ln(1+ y) > y(1− y/2), gives |Ṽ+
i | ≤

CN−1, ∀ xi ∈ [e+σ3,1). Also,

|v+(xi, tn+1)| ≤C exp
(
−1

2

√
κγ

ε1
(xi− e)

)
≤C exp

(
−1

2

√
κγ

ε1
σ3

)
≤CN−1.

Hence, for xi ∈ [e+σ3,1)

|v+(xi, tn+1)−Ṽ+
i | ≤CN−1. (7.10)

Now for xi ∈ [e,e+σ3), the classical argument gives

|L N(v+(xi, tn+1)−Ṽ+
i )| ≤C(hi +hi+1)(ε1‖v+‖3 + ε2‖a‖‖v+‖2)

≤CN−1
σ3(ε1‖v+‖3 + ε2‖a‖‖v+‖2)

≤CN−1
σ3(ε1ε

−3/2
1 + ε2‖a‖ε−1

1 )

≤CN−1(lnN/η1)(ε
−1/2
1 + ε2‖a‖ε−1

1 )

≤CN−1 lnN.

Using Lemma 7.4.1, we get the following estimate

|v+(xi, tn+1)−Ṽ+
i | ≤CN−1 lnN. (7.11)

Finally, on combining (7.10) and (7.11), we get

|v+(xi, tn+1)−Ṽ+
i |ΩN+ ≤CN−1 lnN.

Thus, the error bound on the interior layer component is given by combining
Lemma 7.4.9 and Lemma 7.4.10.
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Lemma 7.4.11. The error bound for the interior layer component is given by

max
xi∈ΩN−∪ΩN+

|v(xi, tn+1)−Ṽi| ≤CN−1 lnN.

The error bound on the boundary layer component given in the following lemma
can be obtained in the same way.

Lemma 7.4.12. The error bound for the boundary layer component is given by

max
xi∈ΩN−∪ΩN+

|w(xi, tn+1)−W̃i| ≤CN−1 lnN.

Theorem 7.4.1. The solution ψ(x, t) of (7.1) and ψ̃i of (7.3) satisfy the following

parameter-uniform error estimate

sup
0<ε1,ε2�1

max
1≤i≤N
1≤n≤M

|ψ(xi, tn)− ψ̃i| ≤C

((∆t)2 +N−1(lnN)2), Case I,

((∆t)2 +N−1 lnN), Case II.

Proof. The proof for xi 6= e follows from the triangle inequality and Lemmas 7.3.2,
7.4.3, 7.4.6, 7.4.7, 7.4.8, 7.4.11 and 7.4.12. The proof for xi = e can be done by
following the technique given in [137].

7.5 Numerical Illustrations

For fixed ε1, ε2, the maximum point-wise absolute error is calculated as

eN,M
ε1,ε2 = max

n

(
max

i
|ψ̃2N,2M

2i − ψ̃
N,M
i |

)
,

where ψ̃
N,M
i , and ψ̃

2N,2M
2i are the solutions on the mesh DN,M and D̂2N,2M, respectively.

Since the values of the transition parameters σi, i = 1,2,3,4 are different in the cases
of N and 2N mesh intervals, so the fine mesh D̂2N,2M is obtained by inserting one nodal
point between two consecutive nodal points (in DN,M) in both directions. Moreover,
the order of convergence ρ

N,M
ε1,ε2 is calculated as

ρ
N,M
ε1,ε2 = log2

(
eN,M

ε1,ε2

e2N,2M
ε1,ε2

)
.
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Example 7.5.1. In the following problem, we take Ω = (0,1), Λ = (0,1] and e = 0.5

−ψt + ε1ψxx + ε2a(x, t)ψx−b(x, t)ψ = f (x, t), (x, t) ∈ De,

ψl(t) = 0 on ϒl, ψr(t) = 0 on ϒr, ψb(x) = 0 on ϒb,

where a(x, t) is −(1+x(1−x)) and 1+x(1−x) in D− and D+ respectively; b(x, t) =

1+exp(x) in De; and f (x, t) is−2(1+x2)t and 2(1+x2)t in D− and D+, respectively.

Example 7.5.2. Again, we take Ω = (0,1), Λ = (0,1] and e = 0.5 for the following
problem

−ψt + ε1ψxx + ε2a(x, t)ψx−b(x, t)ψ = f (x, t), (x, t) ∈ De,

ψl(t) = 0 on ϒl, ψr(t) = 0 on ϒr, ψb(x) = 0 on ϒb,

where a(x, t) is−(1+exp(−xt)) and 2+x+t in D− and D+ respectively; b(x, t)= 2+
xt in De; and f (x, t) is (exp(t2)−1)(1+xt) and−(2+x)t2 in D− and D+, respectively.

To verify the theoretical estimates, the numerical results obtained on a specific
range R(ε1,ε2) of the perturbation parameters satisfying either Case I or Case II are
presented in the tables. Note that the cases σ1, σ2 = e/4 and σ3, σ4 = (1−e)/4 occur
for a small subset of R(ε1,ε2) of perturbation parameters, and the uniform mesh
is sufficient to obtain good accuracy. It can be noticed that in Case I, the problem
considered in this study is similar to the convection-diffusion problem, however, in
Case II it becomes similar to the reaction-diffusion problem.
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Table 7.1: eN,M
ε1,ε2 and ρ

N,M
ε1,ε2 for Example 7.5.1 for ε1 = 2−6.

N

ε2 64 128 256 512 1024 2048 4096

2−6 3.28e-03 1.68e-03 8.53e-04 4.30e-04 2.16e-04 1.08e-04 5.41e-05

0.96 0.98 0.99 0.99 1.00 1.00

2−10 3.40e-03 1.75e-03 8.90e-04 4.48e-04 2.25e-04 1.13e-04 5.64e-05

0.96 0.97 0.99 0.99 0.99 1.00

2−14 3.41e-03 1.76e-03 8.92e-04 4.49e-04 2.26e-04 1.13e-04 5.66e-05

0.95 0.98 0.99 0.99 1.00 1.00

2−18 3.41e-03 1.76e-03 8.92e-04 4.50e-04 2.26e-04 1.13e-04 5.66e-05

0.95 0.98 0.99 0.99 1.00 1.00

2−22 3.41e-03 1.76e-03 8.92e-04 4.50e-04 2.26e-04 1.13e-04 5.66e-05

0.95 0.98 0.99 0.99 1.00 1.00

2−26 3.41e-03 1.76e-03 8.92e-04 4.50e-04 2.26e-04 1.13e-04 5.66e-05

0.95 0.98 0.99 0.99 1.00 1.00

2−30 3.41e-03 1.76e-03 8.92e-04 4.50e-04 2.26e-04 1.13e-04 5.66e-05

0.95 0.98 0.99 0.99 1.00 1.00
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Table 7.2: eN,M
ε1,ε2 and ρ

N,M
ε1,ε2 for Example 7.5.1 for ε2 = 2−8.

N

ε1 64 128 256 512 1024 2048 4096

2−18 3.15e-02 1.97e-02 1.19e-02 6.78e-03 3.78e-03 2.09e-03 1.09e-03

0.68 0.73 0.81 0.84 0.85 0.94

2−20 4.30e-02 2.87e-02 1.92e-02 1.19e-02 6.87e-03 3.87e-03 2.04e-03

0.58 0.58 0.69 0.79 0.83 0.92

2−22 4.72e-02 3.29e-02 2.31e-02 1.46e-02 8.63e-03 4.93e-03 2.48e-03

0.52 0.51 0.66 0.76 0.81 0.99

2−24 4.84e-02 3.42e-02 2.43e-02 1.55e-02 9.22e-03 5.29e-03 2.65e-03

0.50 0.49 0.65 0.75 0.80 1.00

2−26 4.87e-02 3.46e-02 2.47e-02 1.57e-02 9.38e-03 5.39e-03 2.69e-03

0.49 0.49 0.65 0.74 0.80 1.00

2−28 4.88e-02 3.47e-02 2.47e-02 1.58e-02 9.42e-03 5.41e-03 2.71e-03

0.49 0.49 0.65 0.75 0.76 1.00

2−32 4.88e-02 3.47e-02 2.47e-02 1.58e-02 9.42e-03 5.41e-03 2.71e-03

0.49 0.49 0.65 0.75 0.80 1.00
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Table
7.4:

C
om

parison
ofe

N
,M

ε1 ,ε2
forE

xam
ple

7.5.1
for

ε2
=

2
−

4

N
=

64
N
=

128
N
=

256
N
=

512
ε1

In
[114]

PM
In

[114]
PM

In
[114]

PM
In

[114]
PM

2 −
6

4.28e-03
3.04e-03

1.87e-03
1.55e-03

8.63e-04
7.83e-04

4.14e-04
3.94e-04

2 −
10

3.64e-02
1.86e-02

1.84e-02
1.23e-02

8.96e-03
7.52e-03

5.14e-03
4.46e-03

2 −
14

7.63e-02
2.98e-02

4.69e-02
1.80e-02

2.62e-02
1.08e-02

1.39e-02
6.35e-03

2 −
18

8.23e-02
3.13e-02

5.23e-02
1.93e-02

3.00e-02
1.18e-02

1.63e-02
6.94e-03

2 −
22

8.27e-02
3.14e-02

5.27e-02
1.94e-02

3.03e-02
1.19e-02

1.65e-02
6.98e-03
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(a) ε1 = 2−6, ε2 = 2−4 (b) ε1 = 2−6, ε2 = 2−24

(c) ε1 = 2−10, ε2 = 2−8 (d) ε1 = 2−15, ε2 = 2−6

Figure 7.1: Numerical solution profiles for Example 7.5.1.
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(a) ε1 = 2−10, ε2 = 2−4 (b) ε1 = 2−16, ε2 = 2−24

Figure 7.2: Numerical solution profiles for Example 7.5.1.
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(a) Example 7.5.1 (b) Example 7.5.2

Figure 7.3: Numerical solution profiles for ε1 = 2−10, ε2 = 2−4 by taking continuous
source terms.

Table 7.5: eN,M
ε1,ε2 and ρ

N,M
ε1,ε2 for Example 7.5.2 for ε1 = 2−15.

N

ε2 32 64 128 256 512 1024 2048

2−6 3.48e-02 3.83e-02 3.16e-02 2.20e-02 1.45e-02 8.90e-03 5.19e-03

-0.14 0.28 0.52 0.60 0.70 0.78

2−10 1.43e-02 7.55e-03 4.17e-03 2.35e-03 1.30e-03 7.16e-04 3.95e-04

0.92 0.86 0.83 0.85 0.86 0.86

2−14 1.21e-02 5.83e-03 3.02e-03 1.54e-03 7.77e-04 3.90e-04 1.96e-04

1.05 0.95 0.97 0.99 0.99 0.99

2−18 1.20e-02 5.84e-03 3.02e-03 1.54e-03 7.77e-04 3.90e-04 1.96e-04

1.04 0.95 0.97 0.99 0.99 0.99

2−22 1.20e-02 5.84e-03 3.02e-03 1.54e-03 7.77e-04 3.90e-04 1.96e-04

1.04 0.95 0.97 0.99 0.99 0.99

2−26 1.20e-02 5.84e-03 3.02e-03 1.54e-03 7.77e-04 3.90e-04 1.96e-04

1.04 0.95 0.97 0.99 0.99 0.99

2−30 1.20e-02 5.84e-03 3.02e-03 1.54e-03 7.77e-04 3.90e-04 1.96e-04

1.04 0.95 0.97 0.99 0.99 0.99
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Table 7.6: eN,M
ε1,ε2 and ρ

N,M
ε1,ε2 for Example 7.5.2 for ε2 = 2−16.

N

ε1 32 64 128 256 512 1024 2048

2−4 7.44e-03 3.94e-03 2.03e-03 1.03e-03 5.22e-04 2.62e-04 1.31e-04

0.92 0.96 0.98 0.98 0.99 1.00

2−8 1.02e-02 5.40e-03 2.79e-03 1.42e-03 7.17e-04 3.60e-04 1.81e-04

0.92 0.95 0.97 0.99 0.99 0.99

2−12 1.15e-02 5.92e-03 2.98e-03 1.51e-03 7.63e-04 3.83e-04 1.92e-04

0.96 0.99 0.98 0.98 0.99 1.00

2−16 1.21e-02 5.83e-03 3.03e-03 1.54e-03 7.79e-04 3.92e-04 1.96e-04

1.05 0.94 0.98 0.98 0.99 1.00

2−20 1.23e-02 5.91e-03 3.05e-03 1.56e-03 7.85e-04 3.95e-04 1.98e-04

1.06 0.95 0.97 0.99 0.99 1.00

2−24 1.30e-02 5.97e-03 3.06e-03 1.56e-03 7.89e-04 3.96e-04 1.99e-04

1.12 0.96 0.97 0.98 0.99 0.99



188 Chapter 7. Implicit scheme for two-parameter SP-BVPs

(a) ε1 = 2−6, ε2 = 2−4 (b) ε1 = 2−10, ε2 = 2−4

(c) ε1 = 2−10, ε2 = 2−20 (d) ε1 = 2−24, ε2 = 2−32

Figure 7.4: Numerical solution profiles for Example 7.5.2.
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(a) ε1 = 2−10, ε2 = 2−4 (b) ε1 = 2−16, ε2 = 2−24

Figure 7.5: Numerical solution profiles for Example 7.5.2.

It is observed from the tables, for fixed N, ∆t, the maximum pointwise error in
both cases is fixed after a certain small ε1 (or ε2). This confirms the independence of
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the method on ε1, ε2. Also, the results presented in the tables confirm the theoretical
error estimates obtained in Theorem 7.4.1. All the results presented in the tables are
obtained by taking ∆t = 1/N. The physical phenomenon of the solutions for different
values of ε1, ε2 is presented via surface plots (refer Figs. 7.1 and 7.4). These graphs
clearly indicate that for small perturbation parameters close to zero, the solution of
the test problems exhibit parabolic boundary layers at both lateral surfaces, and an
interior layer near the point of discontinuity. It can also be observed that the layer
width continuously depends on ε1, ε2. The effect of ε1, ε2 for a particular time step on
the solution can also be observed from the graphs for different time levels (refer Figs.
7.2 and 7.5).

O’Riordan and Shishkin [134] observed numerically that the discontinuity in the
convection-coefficient can lead to only the interior layer when the source function
is continuous. Also, it can be noticed from Figure 7.3 that, the interior layer may
not appear even if the convection-coefficient is discontinuous, only boundary layers
appear that corresponds to the smooth source function. These graphs are drawn by
replacing the discontinuous source functions in Examples 7.5.1 and 7.5.2 (keeping
a(x, t), b(x, t) and the initial data unchanged) by smooth functions f (x, t) = 2(1+x2)t

and f (x, t) = (exp(t2)− 1)(1+ xt), respectively. All the graphs are drawn by taking
N = 64 and ∆t = 1/N.

7.6 Conclusion

An implicit numerical scheme on a predefined Shishkin mesh is suggested for the
solution of two-parameter singularly perturbed parabolic BVPs where the convection
term coefficient and source terms have a jump discontinuity in the domain of consid-
eration. The solution of these problems exhibits twin boundary layers and an interior
layer, due to which the analysis of these problems is different from the case of smooth
data. For both cases through a rigorous convergence analysis, it has been shown that
the proposed scheme is parameters uniform with second-order accuracy in time and
almost first-order accuracy in space. Very high gradients near the boundaries ϒl, ϒr,
and the point of discontinuity e can be observed for small ε1, ε2 (refer Figs. 7.1-7.4).
It can also be observed from Figure 7.3 that the interior layer near e may not occur for
smooth source term.


