Techniquesto Improve the Perfor mance of Cache

Memory for Multi-Cor e Processors

THESIS

Submitted in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by
Nitin Chaturvedi

Under the Supervision of

Prof. S. Gurunarayanan

BITS Pilani

Pilani | Dubai | Goa | Hyderabad

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

2015

Techniquesto Improve the Perfor mance of Cache

Memory for Multi-Cor e Processors

THESIS
Submitted in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by
Nitin Chaturvedi

Under the Supervision of

Prof. S. Gurunarayanan

BITS Pilani

Pilani | Dubai | Goa | Hyderabad

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

2015

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitledl échniques to Improve the
Performance of Cache Memory for Multi-Core Processors’ and submitted
by Mr. Nitin Chaturvedi ID No. 2007PHX401P for awaof Ph.D. degree of

the institute embodies original work done by hind@nmy supervision.

Signature of the Supervisor

Date: (Dr. S. GURUNARAYANAN)
Professor, (Electronics & Instrumentation)
Dean, Work Integrated Learning Programme DivisMALPD), BITS, Pilani

Dedicated
To God
For gifting me with the best

One can have................

ACKNOWLEDGEMENTS

This thesis arose in part out of years of resetirabhas been done. During this period, | have
met several people who have made a significantibomion in assorted ways to the research
and the making of this thesis and who deserve abecention. | am glad to take the

opportunity to convey my gratitude to them in myrthle acknowledgement.

In the first place, | deem it a great pleasurexjoress my gratitude whole-heartedly to Prof.
S. Gurunarayanan Dean, WILPD, for his supervisiealuable advice, suggestions and
guidance from the very early stage of this reseashwell as giving me extra ordinary
experiences throughout the work. Besides providimg unflinching encouragement and
support in various ways, he has also allowed mefteedom to experiment with my

innovation which has in a major proportion enhanaed nourished my intellectual growth.

| am greatly indebted to Prof. Sudeept Mohan, Pg&imdar Balasubramaniam and Prof.
Abhijit Asati for their crucial contribution, comsictive comments and motivation. | thank
them for their willingness to share their knowledgi#éh me, which was very fruitful in

shaping my ideas and research. Collective and ishai¥ acknowledgements are due to all

my colleagues who have directly helped me in mykwor

Thanks are due to Prof. B. N. Jain, Vice-chanceallod Prof. A. K. Sarkar, Director, BITS,
Pilani for the constant support and concern. | wdike to gratefully acknowledge Prof. S.
K. Verma, Dean, RCD and many others for their ipdissable help and for creating a
pleasant working atmosphere. | am also indebtedlltof my project students at the bits
pilani: Arun Subharamanian, Pradeep harinderaminJithomas, Pranav Gaur, Chirag

Aggarwal, Ishan, Kapil, Prashant Gupta.

Words fail me to express my gratitude to my fanahd friends who were always ready to
lend a hand. | thank everybody who was importanh&successful realization of this thesis,
as well as express my apology that | could not menpersonally one by one. Finally, |

would like to thank God for always guiding me.

ABSTRACT

Performance gap between the speed of Processon@mary is continuously increasing with
advent of every new technology. Compared to trawi super-scalars, Chip Multi-
processors (CMP) deliver higher performance at tgpeaver for thread-parallel workloads.
However, CMP have further increased the demandiifgrer on-chip cache capacity as well
as off-chip bandwidth due to coherence and capaeited misses, so there is always a need
to judiciously utilize on chip cache memory. Thigesis addresses the issues of on-chip
shared L2 cache management in the Multi-Core Psoces Now onwards, the last level

cache is referred as L2 cache (level 2 cache).

In this thesis, we consider CMP, a class of pramssahere multiple cores are integrated on
to the same chip and each core compete for thedntahip L2 cache. Two basic schemes
are currently used to manage L2 cache. First, aragpcache slice is used as a private L2
cache for each core on CMP. Private L2 caches geavie lowest hit latency but reduce the
total effective cache capacity because each cestas a local copy of any block it touches.
Second, all cache slices are aggregated to formgheslarge L2 cache, shared by all the
cores. A shared L2 cache increases the effectichecaapacity for shared data, but it
presents several challenges in the design of athigneache that is shared among multiple
cores in CMPs. Our efforts in this work have focuse addressing some of these key

challenges.

First, we present a comparative understanding cieanisses in the context of CMPs with
shared L2 cache by analyzing the interactions batweache references made by different
cores. Then, we propose a novel cache managentareccalled adaptive block pinning to

mitigate the effect of dominated ownership of blogkithin a set by few cores.

Secondly, we focus on one of the most importanteissn designing large shared L2 cache in
a CMP system which is the increasing dominance iof delays, which affects the access
time and impacts the system performance. In thigec®, non-uniform cache architectures
(NUCA) have proved to be able to tolerate wire gedéfect while maintaining a huge on-

chip storage capacity. However, the fixed locatdrdata block in NUCA imposes serious

limitations with this architecture. In order to o®eme this limitation, we propose selective
block replication scheme which improve upon thevemional large shared uniform cache
and over various NUCA schemes proposed so far, asi@tatic-NUCA (S-NUCA).

Third, we present solutions for the challengesouohticed by dynamic features provided by
Dynamic NUCA (DNUCA), like multiple locations foratla placement, migration movements
and data access policy. To address these challergbave proposed an adaptive migration-
replication (AMR) scheme to overcome the abovelehgks and reduce miss latency in the

NUCA cache along with an efficient data accesscydlb reduce network traffic.

Finally, we have observed that different applicasioequires different working set sizes and
having varying spatial and temporal localities. rEfiere, the performance benefits that can
be obtained from fixed configuration caches aretéth Moreover many applications exhibit
low spatial locality with few cache words utilizéeéfore eviction. This effectively increases
miss rate and wastes on-chip network bandwidth.seduwvord transfers also consume a
large fraction of the on-chip energy. To address¢hissues, we propose an efficient variable
granularity cache design that is tuned to meetvthging runtime locality requirements of

different applications.

We evaluated various schemes using full-system lation using multi-thread, and multi-
programmed workloads running on an eight-core C¥WE.show that all the proposed shared
cache management schemes achieve significant penime improvement over the reference
schemes for these workloads. This thesis investigtie problem of sharing of last level
cache between concurrently running applications eraduates cache management schemes
as a mean of optimizing the overall system perforceaAll the proposed cache architectures
were simulated and evaluated for performance thraiguulation studies using Parsec and
SPEC 2006 Benchmarks.

TABLE OF CONTENTS

Page No.
Certificate [
Acknowledgements iii
Abstract \Y
CHAPTER 1: Introduction 1
1.1 Need for Chip Multiprocessors 4
1.2 Software Implications 4
1.3 Hardware Implications 5
1.4 CMP Design Trends 6
1.5Non-Uniform Access Latency 7
1.6 Thesis Focus: Shared L2 Cache Management 8
1.6.1 Thesis Problem Statement 8
1.7 Evaluation Metrics for CMP 10
1.7.1 Latency 10
1.7.2 Network Traffic (Bandwidth) 10
1.7.3 Effective Cache Utilization 11
1.7.4 Energy/Power Consumption 11
1.8 Thesis Contribution 11
1.9 Organization of Thesis 13
CHAPTER 2: Background and Literature Review 15
2.1 Introduction 16
2.1.1 Conventional cache architectures 16
2.1.2 Replacement schemes in caches 17
2.1.3 Energy efficient cache architectures 19
2.1.4 Operating system support 20
2.2 Conventional cache design limitations 22
2.2.1 Caching for Chip Multiprocessor 22
2.2.2 Cache Proposals for Multicores 23
2.3 An Introduction to Multiprocessor Memory Coreiscy 31
2.3.1 Effect of Caches on Memory Consistency 32
2.3.2 Cache Coherence Invariant and Pernmissio 34
2.3.3 Coherence invariants 35
2.4 Coherence Protocols 35

Vi

2.4.1 Design space for cache coherence mlstoc

2.4.2 Specifying cache coherence protocols
2.4.3 Stable States
2.4.4 Transient States
2.5 Existing Cache coherence protocols
2.5.1 Snooping bus-based coherence protocol
2.5.2 AMD-Hammer Coherence protocol
2.5.3 Token-Based Coherence protocol
2.5.4 Directory-based protocol
2.6 Summary
CHAPTER 3: EVALUATION METHODOL OGY
3.1 Introduction
3.2 Experimental Frame work
3.2.1 Simulation Tools (Simulation Setup)
3.2.2 Detailed Cache Simulator
3.2.3 Protocol-Independent Components

3.2.4 Specification Language for Implemegi@ache Coherence (SLICC)

3.3 Interconnection Network
3.3.1 GEMS Interconnection Network
3.3.2 Garnet Network / Orion
3.3.3 Base GARNET model design
3.4 Energy Model
3.4.1 CACTI
3.4.2 Energy calculation
3.5 Workload Description
3.5.1 Limitations of Existing Benchmark Ssite
3.5.2 Multi-threaded Benchmarks
3.5.2.1 Input Sets
3.5.2.2 Workloads
3.5.2.3 Characterization
3.5.3 Multi-programmed benchmarks
3.6 Summary

CHAPTER 4: Adaptive Block Pinning: A Novel Shared Cache Patrtitioning for CMP

4.1 Introduction
4.2 Motivation

Vii

38
38
39
40
43
43
45
46
47
49
50
51
51
51
52
54
55
56
56
57
59
60
60
60
61
62
63
64
64
66
67
68

70
74

4.2.1 Cache Miss Classification
4.2.2 Traditional Processors
4.2.3 Chip-Multiprocessors

4.2.4 Characterization of Compulsory Intesgassor and Intra-processor misses

4.3 Taxonomy Used in CMPS
4.4 Baseline Architecture
4.5 Shared Cache Management Scheme
4.5.1 Set Pinning Ownership Scheme
4.5.2 Proposed Block Pinning Scheme
4.5.3 Cache HIT/MISS Policy
4.5.4 Block Ownership Relinquishment Policy
4.5.5 Hardware Support
4.6 Experimental Methodology
4.6.1 Simulation Environment
4.6.2 Benchmarks
4.7 Results
4.8 Related Work
4.9 Summary
CHAPTER 5: Selective Replication in the Shared Last L evel Cache
5.1 Introduction
5.2 Motivations
5.3 Proposed Selective Replication Policy
5.4 Replication Policy: owner bank knows when {aicate
5.4.1 Working of the proposed scheme
5.4.2 Managing Read/Write Request
5.4.2.1 Read Request
5.4.2.2 Write Request
5.4.2.3 Invalidation Request
5.4.2.4 Eviction Request
5.5 Hardware Overhead of Proposed Policy
5.6 Cache Coherence Protocol
5.7 Verification of Protocol
5.8 Experimental Setup
5.8.1 Simulation Environment
5.8.2 Benchmarks

viii

74
74
74

79
80
81
81
82
85
86
89
90
90
90
91
93
95
96
97
99
101
103
101
105
105
107
108
108
108
109
111
111
111
112

78

5.9 Results
5.10 Related Work
5.11 Summary
CHAPTER 6: Adaptive Block Migration-Replication (AMR) in NUCA
6.1 Introduction
6.2 Motivations for This Work
6.2.1 Exploiting Dynamic Non Uniform CachecArtecture
6.2.2 Data Lookup with in The D-NUCA
6.3 Proposed Shared Cache Management using AMR
6.3.1 Baseline Architecture
6.3.2 Working of the Adaptive Migration-Regation scheme (AMR)
6.3.2.1 Single remote requestor
6.3.2.2 Multiple frequent requestors
6.4 Proposed Data Access Policy for Shared LastlLl@sache
6.5 Updating location pointers
6.6 Coherence Protocol
6.6.1 False miss
6.6.2 Read request
6.6.2.1 Hit in the local bankcluster
6.6.2.2 Miss in the local bankcluste
6.6.2.2.1 Replica absent
6.6.2.2.2 Replica present in the local bankclusteequesting core
6.6.2.2.3 Replig@) present in the local bankcluster of other cores
6.6.3 Exclusive write request
6.6.3.1 Replica absent in bankset
6.6.3.2 Replica exists in the sanmkbat: GETX Request
6.6.4 L1 evictions
6.6.4.1 No replica in the bankset
6.6.4.2 Replica(s) present in thekisahreplicas
6.7 Special cases
6.8 Evaluation Methodology
6.8.1 Multicore System
6.8.2 Benchmarks
6.8.3 Energy
6.9 Results

113
116
118
119
119
121
123
124
125
125
129
131
133
135
138
138
139
140
140
140
140
141
141
142
142
142
143
143
143
144
144
144
145
145
146

6.9.1 Performance Evaluations 146

6.9.2 Network Traffic 146
6.9.3 Energy Consumption 147
6.10 Related work 148
6.11 Summary 150
CHAPTER 7: A Novel Work-L oad awar e adaptive cache 151
7.1 Introduction 152
7.2 Motivations 153
7.3 Justification for Proposed Cache Architectures 154
7.3.1 Cache Block Utilization 154
7.3.2 Effect of block size on cache mide emd bandwidth 156
7.3.3 Requirement for adaptive cache blocks 156
7.4 Proposed Variable Granularity cache architectur 157
7.5 Cache Management Scheme 158
7.5.1 Cache Set-Indexing 158
7.5.2 Data Lookup 159
7.5.3 Block Insertion 160
7.5.4 Block Replacement 160
7.6 Hardware Overhead 161
7.7 Spatial Locality Predictor 161
7.8 Results 161
7. 9 Related Work 163
7.10 Summary 164
CHAPTER 8: Conclusions and Future Work 165
8.1 Conclusions 166
8.2 Future Directions 169
8.2.1 Global Replacement Policy 169
8.2.2 .Dynamic granularity block movement with Carere Granularity for cach 169
in CMP
8.2.3 Mapping strategy 170
8.2.4 Tiled architecture 170
List of References 171
List of Publications 182
Brief Biography of Candidate and Supervisor 184-185

Table 1.1:
Table 2.1:
Table 3.1:
Table 4.1:
Table 4.2:
Table 4.3:
Table 5.1:
Table 5.2:
Table 6.1:

LIST OF TABLES

Comparisons of several leading induStPs
Summary of coherence protocols

Benchmark characteristics

Miss due to eviction of a block by tleng core
Miss due to eviction of a block by thiéedent core
Configuration parameters for simulation
System configuration

Benchmarks

System configuration

Xi

49
67
75
76
90
111
112
145

Figure 1.1

Figure 1.2
Figure 1.3

Figure 1.4

Figure 1.5
Figure 1.6

Figure 2.1

Figure 2.2 (a)
Figure 2.2 (b)
Figure 2.2 (c)

Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 2.10
Figure 2.11
Figure 2.12

Figure. 3.1

Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

LIST OF FIGURES

. Intel processor technology road map, core coumeases in next
" decade

: Cache design complexity
: Uniform cache access (UCA) Vs Non uniform cachebitgctures

. Non-uniform cache architecture (NUCA) has long sroBip latency,
" wire delay dominates overall cache access time

. Private design of L2 caches
: Shared design of L2 caches

Sketch of CMP memory access that hits in the Lheakit in the

: shared last level L2 cache and miss in both prikzatand shared L2

Cache

Fixed sets per processors

Fixed Partitioned sets

Sets with variable number of blocks

: Problem of Incoherence

: Dividing a given memory location’s lifetime into eghs

: Cache Controller

: Memory Controller

. State Diagram for MSI

. MESI

. State Transition for MOESI Protocol

: Cache to Cache miss in AMD-Hammer protocol

: Cache to Cache miss in Token coherence protocol

: Cache to Cache transition in Directory based cotuer@rotocol

A block diagram of GEMS StructuRRuby, detailed memory

: simulator can be driven by one of four memory systequest

generators

. Interconnection network on chip

. Multi-processors with physically centralized memory
: Multi-processors with Distributed Shared memory

. Distributed shared memory with message passing

: Chip Multiprocessor with on-chip shared L2 cache

. State diagram representing a memory element’syitte in the shared
" cache

. Distribution of compulsory, inter-processor andanprocessor misses
: Memory addresses leading to Inter and intra-praesssses

: Block Diagram of Proposed Architecture

: Basic flow chart explaining the logic of adaptivedk pinning

Xii

23

24
24
25
33
34
35
36
40
41
42
45

49

52

57
70
71
71
2 7

77

78
79
80
82

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13

Figure 4.14

Figure 4.15
Figure 4.16
Figure 4.17

Figure 5.1

Figure 5.2
Figure 5.3
Figure.5.4
Figure 5.5

Figure 5.6

Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 6.1

Figure 6.2
Figure 6.3

Figure 6.4

Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure. 6.11

. Inter processor Miss in dual core processor
. Allocation of block ownership to prevent evictiandual core processor 84
: Ownership prevent eviction in dual core processor

. Cancellation of block ownership in dual core preoes

. Counter CT-1 saturates and ownership bits (Cljemet in dual core
" processor

: L2 Cache Miss Rate
: POP Cache Hit Rate
: Performance with different cores

. Trade-off between off-chip miss rate and on-chipeas latency in
" private/shared on-chip cache designs

: Non-Uniform Cache Architecture

: Shared Level-2 Cache Organization
: Bank cluster in NUCA

: Non-Uniform Cache Architecture

. Shaded red portion constitutes the central bangtets, whereas light
" brown bank close to the cores are the local bangtets

: Address Interpretation

. State transition based on the value of reuse thlésh

: Additional in-line directory bits for the proposedheme
: Sequence diagram for block replication

: Sequence diagram for block invalidation

: Normalized Completion Time

: L2 Hit Latency

: Distribution of Network Traffic

: Normalized Energy Consumption

: NUCA Organizations

. Set sharing schemes in NUCA Organization with défe mapping
" schemes

. Data pingponging between banks 16 and 24, and it is nottalleact
" near the local bank clusters in Dynamic NUCA Orgatid n

. Example to illustrate the complexity of data loakDynamic NUCA
" Organization

. Multi-banked NUCA Organization (with Bank ID’s inchted)

: Logical Partitioning into Bankclusters

: Bankset shown in red (16 way bankset associative)

: Address Interpretation

: Remote hit in the local bank-cluster of Core-7

: Dynamic profiling of block usage with inline direely counters
: Gradual Block migration

Xiii

83

84
88

89

91
92
93

97

98
100
101
102

102

103
104
109
110
110
113
114
115
116
120

122

124

125

126
126
27 1
128
130
131
132

Figure 6.12 : Block ping-pong scenario with two competing cores 133
. Replica creation in the local bank cluster of frequrequestor (Core

Figure 6.13 : 2) 134
Figure 6.14 : Location pointer co-located with each set 135
Figure 6.15 ﬁggli(tiir(l)gal bits within cache line to maintain cokace and reuse 139
Figure 6.16 : Core-4 facing a false miss due to block migration 401
Figure 6.17 : Migration mechanism to handle read requests (r@plixsent) 141
Figure 6.18 ieqquueesr:s(fe diagram showing the invalidation stegsage of write 142
Figure 6.19 : Handling L1 evictions (no replica in bankset) 143
Figure 6.20 : Normalized completion Time 146
Figure 6.21 : Normalized Network Traffic 147
Figure 6.22 : Normalized Energy Consumption 148
Figure 6.23 : Normalized average L2 Hit Latency 149
Figure 7.1 : Cache Hierarchy and trade-off between size anddgte 152
Figure 7.2 . Set associative cache with fixed data block size 153
Figure 7.3 . Percentage utilization of blocks 155
Figure 7.4 . Percentage utilization of blocks 155
Figure 7.5 . Variable Granularity Cache Architecture 157
Figure 7.6 . Data look-up logic 159
Figure 7.7 : Hit/Miss Block 160
Figure 7.8 - Read and Writ_e Accesses to a set containing twekblof size 3 and 4 162
words respectively
Figure 7.9 Read and Write Acc_esses to another set containiadplocks of size 3 162
and 2 words respectively
Figure 7.10 : Cache Simulation 163

Xiv

LIST OF ACRONYMS

CMP Chip Multiprocessors

UCA Uniform Cache Architecture
NUCA Non-Uniform Cache Architecture
SNUCA Static Non-Uniform Cache Architecture
DNUCA Dynamic Non-Uniform Cache Architecture
LLC Last Level Cache

L1 Level One Cache

L2 Level Two Cache

DIR Directory

L1D Level One Data Cache

L1l Level One Instruction Cache
VLIW Very Large Instruction Word

TLP Thread Level Parallelism

ILP Instruction Level Parallelism
FIFO First In First Out

LRU Least Recently Used

LFU Least Frequently Used

MRU Most Recently Used

SMP Symmetric Multiprocessor
NUMA Non-Uniform Memory Access
3C Compulsory Capacity Conflict

XV

Chapter 1

| ntr oduction

This chapter introduces the need for chip multigssor with on chip cache memory. In
addition to that, it describes the on-chip cachaf@urations for CMP and finally it presents
the contributions of this thesis.

Chapter 1

INTRODUCTION

1. Introduction

Advances in VLSI technology [1] over the past twaxades has enabled the improvement of
VLSI systems performance in two ways. Firstlyrease in system operating frequency due
to shrinking of transistor sizes. Secondly, implatirey several micro-architectural
techniques, like super-scalar, out-of-order issame;chip caching and deep pipelines
supported by sophisticated branch predictors. Wmfately, as has been recently noted, the
future effectiveness of these approaches is limdeé to the emergence of two main
constraints. The first constraint is increase i@ ttumber of transistors and their switching
frequency which leads to an overall increase ingrosonsumption. The second constraint is
that, as the feature size is decreased, wire delayst scale efficiently and become a major
design limitation for large integrated circuits.€Be problems have caused a change in the
design paradigm of the microprocessor industry{32]4] [5] [6]. Figure 1.1 shows that the
design focus has shifted to Chip Multi-processatsch integrates multiple uniprocessors on
to the same die. Chip Multiprocessors (CMPs) aiegodeveloped by all the main vendors
[8] [9] [10] [11] [12] [13]. However, the sharingf the on chip resources amongst the cores
impose new constraints and create new challengésr[designers.

Many-core Era
Massively parallel
applications

100
Multi-core Era
Secalar and
Parallel applications _
10
Increasing
Hyper-Threading Hardware
ﬁ . Thrf’ﬂrfs
Per Socket

200

2005 2007 2009 2011 2013

(5]

Figure 1.1: Intel processor technology road map, core cowreases in next decade

This thesis investigates various design alternatisgemprove the performance of the on-chip
cache system in CMP architectures. Compared toracegsor cache systems, CMP caches
have two distinct features that present new chgdenFirst, the size of the on-chip cache
which continue to grow, creating the phenomenonnoh-uniform access latency. Non

uniform cache architecture allows various partshef cache to be accessed with different
latencies, depending on the physical location. d@loee, a strategic physical placement of
cached data can significantly improve performar8erond, the on chip cache system must
be able to provide low access latencies to muligpiechip cores simultaneously. Table. 1.1
summarizes the main features of some first gemeraCMPs from several leading

manufacturers. These CMPs show the trend of incrg&sache and core count with moderate

clock frequencies.

Table 1.1: Comparisons of several leading industry CMPs.

Cores Tech. (nm)/ Inter- L2 Cache L2
(Hardware : Configuration | Cache

Y ear Transistors / | connect . .
Threads Freq. (GHz) | strat size/ assoc/ | Sharing
per Core) €. 9y Latency Pattern

Server Processors

IBM Power5 | 2003 2(2) 130/276M/1.9| Bus 1.9MB/10/13 | Shared

AMD 1 o00a| 201) | 90/233M/2.2| Bus | 1MB/16/12 | Private
Opteron
Intel 12005 2(2) 90/1.7B/1.8 | Bus | 24MB/12/14 | Private
Montectio

Sun Niagara| 2005 8(4) 90/N.A./N.A. Bus 3MB/8/N.A. | Shared

Embedded Processors

RMI XLR | 2005 8(4) 90/N.A./1.5 Ring 2MB/8/N.A. | Shared

Caviun 0051 16(1) | 90iN.A0.6 | Bus | IMBINAN. | o red
Octeom A.
S'B{tfxfc'v' 2005| 4(1) | 90/NA/ML2 | NA. 1MB/Z'A'/ N-1 Shared

The main contributions of this thesis are cache agament schemes: an Adaptive Block
pinning, Selective block replication and AdaptivepRcation-Migration policy for large
shared L2 cache along with a proposed novel regordgble cache architecture as explained
later in section 1.8. These shared cache managemteehhiques achieve significant
reductions on cache access latency and commumcatiwer over the baseline private and

shared designs.

1.1 Need for Chip Multiprocessors

The performance improvement brought by technolégictvances [14] earlier has slowed
down dramatically in past four to five years. Thiswdown can be attributing to three key

factors as explained below.

First, the most complex micro architectural desigas only bring marginal performance
gain at the expense of significantly higher desafforts and longer design cycle. The
traditional channels to improve performance by widg the issue widths and using better
speculation mechanisms are fundamentally limited thy amount of instruction-level

parallelism (IPL). These methods have already redgoint of diminishing returns.

Second, higher clock frequencies can no longerieetty translated into better performance
because global wire delay does not scale with ilileis feature size. For each subsequent
technology generation, less on chip distance catnaversed within one clock cycle, leading
to long cross-chip latencies [15] [16]. Thus eveough individual chip components continue
to become faster, the communication latency amaifigreiht components remains constant,

limiting the performance of the overall system.

Third, power consumption has become a key desigmstaint that limits achievable

processor performance in traditional desktop amdesesystems. Elevated power density
causes transistor reliability and stability probtenesulting in higher die temperature. The
increasing power usages is the primary reason wimelly forces chip designer to deviate

evolving traditional super-scalar uniprocessors [3]
1.2 Softwarelmplications

Traditional super-scalar and VLIW architecture @xpinstruction level parallelism relying

on speculative execution to gain performance. Bszdhe instruction level parallelism that
exists in sequential programs is limited even thestrelaborate systems today can only
achieve a marginal performance gain with bettedipt®n and speculation mechanisms.
CMP exploits a much coarser form of parallelisntheg thread level which we refer to as
thread level parallelism (TLP). For applicationsttweignificant TLP, CMP can deliver

higher throughput and consume less energy per operthan a wider issue superscalar
architecture [17]. Several important classes ofliegipon have abundant thread level

parallelism and can take advantage of CMP as desthelow:

13

Server workloads: The large transaction-based s&wekloads, such as web or data
base servers, are inherently thread-parallel beceash transaction is an independent
task. Today, server workloads are executed on langéchip multiprocessor systems
to obtain high throughput. CMPs will work very wésk these workloads.

Parallel scientific workloads: The Classic algam#) such as Fourier transform or LU
decomposition, are the centerpieces of many criiceentific workloads. Similarly,
large compute intensive programs such as weathecdsting demand extremely high
performance that uniprocessors are unable to delBecause of their importance,
they are well studied and heavily parallelizedhat thread level to take advantage of
large multichip systems. These scientific workloadls work even better on CMPs
because they have tighter integration that redwoesmunication latencies among

different cores and memory.

Multi-Programmed workloads: Most commercial modeperating systems support
multitasking and can run a large number of programparallel. In fact, desktop
machines today run hundreds of programs concuyreisthg time-sharing. Thus, we
anticipate multi-programmed workloads to be the homenmon ones for a desktop
processor. Multi-programmed workloads are naturdiiead parallel as different

programs rarely share data, thus fully utilizing features of a CMP.

Hardware I mplications

From a hardware point of view, CMPs address theeHlottlenecks of unicore processors:

(1) Power budget, (2) Global wire delays, (3) Dasigmplexity as described below:

1.

Power budget: CMPs achieve high performance by ingnwlifferent threads in
parallel, putting less pressure on individual tdrearformance. Thus, CMPs can use
relatively less aggressive cores and scale backkcfeequency. This approach
sacrifices some single-thread performance, butwallanany power-inefficient

features to be removed from the processor, thawhycing energy per operation.

Global Wire Delay: The physical structure of a Cleurally constricts the majority
of the data movement to be localized within eaatcgssor core. Global wires in a
CMP will mainly be responsible for transporting s#th data between different
threads. While increasing global wire delay willm@n a problem, such global
communication happens much less frequently comparddr example, access to the

register file in a wide super-scalar processoraddition, this abstraction gives more

5

control over the wire delay problem to the softwadfer example, the operating
system can place multiple threads that have a dhégjnee of sharing in adjacent cores

to minimize the cost of global communication.

3. Design complexity: The CMP approach reduces desamplexity by allowing the
chip makers to reuse previous core designs withominodifications to suit future
products. The focus of the redesign effort is titerconnection network responsible
for communication among cores, caches, physical ongnand I/O devices. Thus
CMPs can have a much shorter design cycle andtonmearket compared to super-

scalars (refer Figure 1.2).

Moore’s Law The Power Wall The Frequency Wall
| Server: power = $$

% - g DT: eliminate fans
@ P = Mobile: battery .
=] "] —— O
g -DFM g b P U
c f -Veriabiity 3 t :
5 -Reliabilty = we are T
z we are ; @ here S
o here - Wire delay =
- c
Time Time Time
The Complexity Wall Locality Single-thread Perf
5
0 2 o - 2

c 0 ho} u_‘-‘ !
o S : Ul
- o g : -

= A= Q -~
o here 5
£
Issue Width Cache Size Time

Figure 1.2: Cache design complexity
14 CMP Design Trends

There are two trends in future CMP design; FirdtiRS will have more cores. For example,
the Niagara [18] and XLR chips have 8 cores anducawocteon CN38xx chip has 16 cores
as shown in Table. 1.1. Each core is likely toddatively simple, especially in the embedded
chip space. Second CMP will have more total caapacity. For example, the newest Intel
Montecito chip, based on the Itanium [11], has tewes, each with its own 12 MB L3 cache,

forming a total on-chip capacity of over 24MB.

1.5 Non-Uniform Access L atency

Traditional cache architectures are uniform cactohigecture (UCA) as shown in Figure
1.3(a) where the access latency to each locatisarnse. Most current cache designs divide
large caches into small slices as shown in Figud¢b)l to reduce both access latency and
energy consumption. The cache access latencynsaply dominated by the access time of
each individual cache slice, thus the access laea various slices are fixed.

| | | |
|
| | s I :
[| | I |
| I | =t |
I | | I |
[| | I |
| Single | | L :
: Baﬂk I [iy Dt T Rt P |
I		1	
:			
: !	=		
:		1	
i :			
e e e e e ____ I _____ |
(a) UCA (b) NUCA
Number of banks: 1 bank : 32 banks
Average loaded access time: 255 cycles . 24 cycles

Figure 1.3: Uniform cache access (UCA) Vs Non uniform caclrekitectures

In the larger caches anticipated in future CMPgewdelay [16] will cause cross-chip
communications to reach tens of cycle. Cache flat@ncies will be dominated by the wire
delay to reach each individual cache slice rathan the time spent accessing the slice itself.
The access latencies to various slices will beceigeificantly different depending on their
location with respect to the load/store unit of pmecessor. UCA design is no longer suitable
for these wire delay dominated caches because tisengvorst-case latency will result in
unacceptable hit times. Thus, we must allow difiergices of the cache to be accessed at
their fastest possible latencies. The resultingheadesign is what we refer to as a non-

uniform cache Architecture (NUCA) [19]. Figure liMystrates this cross-chip latency.

A NUCA architecture can be either static or dynanficstatic NUCA(S-NUCA) simply
relaxes a UCA design and allows different cacheeslito be accessed with different

latencies. It is static because each cache bloskilisstatically mapped to a specific bank.

The more flexible dynamic NUCA (D-NUCA) cache expsghe physical location of each
block to the designer, allowing more optimal plaeamthan the statically address-mapped
approach of S-NUCA.

Q 0909090000

IDDDDDDD

I
EEEEEE RN

| ¢ Cross-chip wire delay | |‘ Cross-chip wire delay) |
~ 1 to 2 eycles > 10 cycles
Figure 1.4: Non-uniform cache architecture (NUCA) has longssrahip latency, wire delay

dominates overall cache access time.

The more flexible dynamic NUCA (D-NUCA) cache expsghe physical location of each
block to the designer, allowing more optimal plaeamthan the statically address-mapped
approach of S-NUCA. An intelligent placement mape data to physical cache locations so
that the working set of the workload stays in taehe slices which are physically closest to
the core. Such a placement minimizes the cross-cbipmunication latency incurred by
cache accesses. However, the process of locaticgclae block in a D-NUCA can cost

significantly more time and energy as compared-MUEA.
1.6 ThesisFocus: Shared L2 Cache M anagement

1.6.1 Thesis Problem Statement

For any computer system, its overall performanceofien directly correlated to the
performance of its memory hierarchy. In CMPs, dffecmisses will remain expensive but
increase in clock frequency together with worserghgpal wire delays will also increase
latencies for cross chip communication. Effectivee wof on-chip cache must therefore
consider both the cost of off chip misses and th& of cross chip communications. Two

base-line last level cache designs private ancedhtlustrate the trade-off between these two

components of effective data access latency. lrgplgiity we assume in the rest of the thesis
that the second level cache (L2) is the last le¥ein chip cache.

I

L1IS ||L1DS

4+

L% |L2§S
Data |Tag

: : : :

Router]]

I
F

L2%

I
.+

Private L2 caches
backing up the L1
cache on the local tile

Router

Router

Router

Memory Memory Memory Memaory
Channel Channel Channel Channel

Figure 1.5: Private design of L2 caches

A private design eventually partitions all of the ohip L2 cache slices such that each
processor is assigned to its closest partitiortsaprivate L2 cache as shown in Figure 1.5.

The shared design aggregates all the L2 cache s6derm a single L2 cache slice shared by
all the cores as shown in Figure 1.6.

Core Core Core Core

L1I% [|L1D% L1Is ||L1Ds L1I$ ||L1D$ L1I$ [|L1D$

Shared L2 caches Router Router | [Router Router

backing up all of the

L1 caches on-chip —— ; ; L:
L1§ |L2S|L2Y L% |L25|L2 L2s |L2s|L2 L1% |L2S|L1§
Data | Tag|Dir Data | Tag |Dir} Data | Tag|Dir Data | Tag|Dir

= = =

Memory Memory Memory Memaory
Channel Channel Channel Channel

Figure 1.6: Shared design of L2 caches

The private design has a low L2 hit latency aspheate L2 cache is physically co-located

with the processor core and has a much smaller éyv@a a shared cache. This layout

9

provides good performance if the working set fitthwhe local L2 slice. The disadvantage of
the private design is that effective on chip cachpacity is reduced for shared data as each
core must retain its own copy of shared data bldtie shared design reduces the off chip
miss rate for large shared working sets becauseabsingle on chip cache copy is required

for any shared data.

However large shared L2 caches have worse acdesgyathan a small private L2 cache.
With multiple cores, this placement task becomediquéarly challenging because many
cores may contest for the same shared data sireoltaty and the optimal placement of the
shared data in cache may not be close to any ofettpgesting cores, thus impacting the
access rate. In this thesis, we have investigaedus cache management policies for large
shared Last Level cache in CMP. We studied prigatk shared cache designs and explored
novel cache management schemes with optimal triiddsetween the off chip miss rate and

the cross chip latency to achieve low data ac@sadies for future CMP.
1.7 Evaluation Metricsfor CMP

This section presents the evaluation metric emplayethis thesis. We do not focus on
traditional uniprocessor metrics such as IPC sihisenot the correct metric to evaluate CMP

performance.
1.7.1 Latency

CMP running many commercial, scientific, and daiaing workloads exhibit abundant
thread-level parallelism, and thus using multiptegessors is an attractive approach for
increasing their performance. To support the fratjgemmunication and synchronization in
these workloads efficiently, servers should optanize latency of cache-to-cache misses. A
cache-to-cache miss is a miss, often caused byssingeshared data that requires another
processor’'s cache to supply the data. To reducdatieecy of cache-to-cache misses, a
coherence protocol should ideally support direatheato-cache transfer. Our goal in this
thesis is to reduce the access latency of shareldesain CMPs. Execution time is the
ultimate effect of latency to the system perforneaaond we use that as an evaluation metric.

1.7.2 Network Traffic (Bandwidth)

A cache coherence protocol should conserve bankviadreduce power consumption and
avoid interconnect contention, because contentamluges performance. Past research has
extensively studied the bandwidth efficiency offeliént cache management schemes and

10

coherence protocols. We use both on-chip and off-ctetwork traffic (bandwidth) as

evaluation metrics.
1.7.3 Effective Cache Utilization

The increasing gap between processor and memoegd sp&l increased number of cores in
the system make maximizing on-chip cache capacitgial to achieving good performance.
If the effective on-chip cache capacity is smdle humber of off-chip misses will increase,
which hurts system performance severely due toeas®d off-chip bandwidth and
corresponding higher energy consumption. In ordenéasure how effectively we improve
utilization we use cache miss rate, (misses perikgtructions (MPKI)), as our performance

metric.
1.7.4 Energy/Power Consumption

With the increased performance and clock rate otgssors, processor power consumption
and heat dissipation have become one of the clggtem the design of high-performance
systems. Monolithic processors have reached a ledare they consume large power
resulting in less performance improvement per poiver; as a result, industry moved to
multi-core on a chip for performance growth whilgpdnding less on raw circuit speed and,
thus, power. We estimate the dynamic energy irothehip memory hierarchy to be roughly
30% of overall chip energy consumption. We use dynaenergy (and hence dynamic
power) consumption as the evaluation metric. Altffoave do not model leakage (static)
power for the full system or dynamic power for tipai logic, we can put the dynamic power

of on-chip memory hierarchy into perspective bykiog into some prior studies [5].
1.8 Thesis Contribution

The most important contributions of this thesis are

» Adaptive block Pinning Technique. We have proposed and evaluated a hardware-based
approach, called block pinning, for eliminatingarprocessor misses and reducing intra-
processor misses in a shared cache. Furthermoreshawwed that an adaptive block
pinning scheme provides improvement over the benebtained by the block pining and
set pinning scheme by significantly reducing thenbar of off—chip accesses. This work
also proposes two different schemes of relinqugshite ownership of a block to avoid

domination of ownership of few active cores in matire system which results in

11

performance degradation. Extensive analysis ofetlaggroaches with SPEC and Parsec

benchmarks are performed using a full system sitoula

Selective block Replication Scheme. We proposed and evaluated selective block
replication scheme which improve upon the conveatidarge shared uniform cache and
various NUCA schemes proposed so far, such as SANSENUCA in terms of average
access latency without significant reduction in thierate. This scheme dynamically
keeps track of frequency of usage of the remotekisland selectively replicates the
highly used block in the local bank cluster of taquesting cores. The complete set of L2
cache is divided into various bank clusters. Eamfe dias a local bank cluster which is
close to it and a central bank cluster. This schathmevs use of both shared as well as
replicated blocks. An extensive analysis of ourppsed scheme as compared to static
NUCA using SPEC and Parsec benchmarks are perfausiag a full system simulator.

Adaptive Replication-Migration Scheme (AMR) with data access policy. NUCA
partitions the complete cache memory into smalleitiplie banks and allows banks near
the processor core to have lower access laterfeasthose further away, thus reducing
the effects of the cache’s internal wire delayst Qroposed AMR scheme uses migration
scheme to move blocks close to the requesting icosaldition to the selective block
replication scheme to keep most frequently usedkislavithin the local bank cluster of
the requesting core and prevent data ping-pingceffeérevious work considered D-
NUCA as a promising design. In our work, we progbsen efficient data access
algorithm for NUCA design using a set of locatiomirgers with in each bank to reduce
miss latency and on-chip network contention. Extenanalysis shows that our proposed
AMR scheme along with data access scheme reducesnily energy consumed per
memory request, and achieves an average perfornspeeelup as compared to S-NUCA

and D-NUCA cache management schemes.

A novel reconfigurable cache ar chitecture with adaptive block size. Data movement
between cores shared cache and its managementtémpacnory access latency and
power. The efficiency of high-performance sharedmmey multi-core processors
depends on the design of the on chip cache higranati the coherence protocol. Current
multi-core cache hierarchies uses a fixed sizeechtdck in the cache organization and in
the design of the coherence protocols. The fixegé sif block in the set is basically
chosen to match average spatial locality requiréraeross a range of applications, but it

also results in wastage of bandwidth because otaassary coherence traffic for shared

12

data. The additional bandwidth has a direct impacthe overall energy consumption. In
this work, we present a new adaptable cache désgjnmatches data movements with

the spatial locality of the application.

With the contributions described above, we havesliged faster and more efficient shared
cache management schemes that provides largetiegf@n-chip cache capacity, faster data
availability, reduced L1 miss penalty, reduced-lasel cache miss, reduced interconnect and

off-chip bandwidth requirement, and reduced dyngmoiMver consumption.
1.9 Organization of Thesis

This thesis is structured in eight chapters.

Chapter 1 highlights the advantages of CMP arctutes and the problems that this research

attempts to investigate. The remainder of the shissarranged as follows.

Chapter 2 reviews the background information relatethe traditional cache architecture,
first generation CMP cache architecture, and nétwar chips, cache coherency, cache
simulators and shared cache memories. It also wsvieveral schemes that attempt to

improve the efficiency of cache hierarchies botkhie single processor and the CMP domain.

Chapter 3 describes the experimental methodolotigwied in this thesis, we describe the
CMP working environment with processor and cachmukator used as well as their
integration. It also provides a short overview loé bbenchmark used for the evaluation of
different proposed shared cache management schemes.

Chapter 4 describes a proposed novel adaptive lgookng scheme to manage unwanted
block eviction and block relinquishment policy tgnamically relinquish the owner ship of

the cache block in shared cache architecture.

Chapter 5 describes the detailed implementatiamoafuniform cache architecture for multi-
cores and the proposed selective cache line réplicacheme for non-uniform cache

architectures.

Chapter 6 presents adaptive migration-replicatiééRR) scheme which combines the
advantage of selective block replication and blodkgration to reduce both off-chip and
cross-chip access latency. We also present theemspitation of a novel data access policy
to manage network traffic on the chip. These aaduated together with other schemes that
were developed during this work. The advantages @mavbacks of each scheme are
identified which is then used to develop a novalret cache management scheme.

13

Chapter 7 describes a novel reconfigurable cactleitacture that adapts according to the

applications executed on the processors.

Chapter 8 concludes this thesis by summarizingctimributions made in addition to future
directions and possibilities. Finally, in Appendfx we give an overview of the cache

coherence protocol used in this thesis.

14

Chapter 2

Background and Literature Review

This chapter discusses the design choices that lmanfound in literature for cache
organization and for the design of cache coherepo®ocols for multiprocessors. This
chapter presents an overview of current cache caie® protocols and discuss several

alternatives to design the cache hierarchy in CMéh#ectures.

15

Chapter 2

Background and Literature Review

2.1 Introduction

In this chapter, we will briefly discuss backgrountbrmation related to this work. We will

begin in section 2.1 by discussing conventionaheadesign techniques and existing cache
replacement policies. In section 2.2 we descrilhedierarchy and cache partitioning for
chip multiprocessor along with various existing leaalesign techniques for multicores to
improve system performance. Finally, section 2.8spnts an overview of existing cache

coherence protocols developed for current multipssors.
2.1.1 Conventional cache architectures

One of the major components of architecture lewvalvgr consumption is the memory
subsystem [21]. Benini et al. [22] analyzed in detarious architectures and optimization
techniques used in memories. Panda et al. [23yed/various techniques used in memory
related optimizations in embedded systems. Aslpeekisting research 42% and 23% of the
total processor power in StrongARM 110 [24] and BoWwC respectively is used by the
cache. According to these numbers, there is suimtanfluence on the overall energy

utilization when cache energy consumption is reduce

Several hardware (architecture level) and softwacéniques have been proposed to lower
the consumption of power and enhance the memorgystdm performance. Each of these
techniques has its own merits and demerits. Theéwse techniques may result in intricate
circuit implementation while incorporating a vayieif applications. The software methods
adjusted for a specific application cannot be rdegyga for any other applications. These
issues are extremely important for system desigim@sase in the cost of hardware pushes

the system towards non-application specific designs

Lowering the consumption of the cache power caratteined by lowering the number of
cache misses, latency (delay) per access, shultvwg a part of the cache, reconfiguring the
cache for specific applications. Various architeetievel techniques described in literature to
attain these, include hardware prefetching [27Hie& cache partitioning, horizontal cache
partitioning, reconfiguring cache architecture [3&Jptimizing cache control circuitry,

modifying the replacement circuitry to improve tate [32] [33], making use of the compiler

16

and operating system information (software corgwltache) to improve performance and

various combinations of some of these [40].

While designing a cache, one has to choose betteedirect-mapped and set-associative
mapping schemes as these are the existing eneofgi@nt mapping techniques [25]. Both
these schemes have their own advantages and digagega in context of cache access time,
dynamic power consumption and cache hit rate. &itee shows that direct-map cache
consumes much lesser dynamic power per cache aooegmred to a set-associative cache.
For instance, Hennessy and Patterson reported 566 dynamic power consumption per

access for a 4-way set-associative cache as cothfmatieat of a direct-map cache.

An experiment conducted by Hennessy and Patter@&) inhdicated that a rise in
associativity results in a lowering of the misseraind thus, lowered the consumption of
power. This indicates that for applications needm@igh cache hit rate and low energy
consumption it is preferable to use a set-asgwveiatache, despite it the additional cost
related to consumption of power due to increagagncomparison. For instance, for a direct-
mapped 8KB cache, the average miss rate for theCSPBenchmarks is 4.6% while it is
3.8% for two way and 8KB set-associative cache 2886 for a 4-way 8KB set-associative
cache. Though the miss rate reduction is smallesults in a significant performance
improvement which depends heavily on the hit ratd access time, as the large cycle
penalty of a cache miss is now avoided. So, if veasnre the performance of a cache in
terms of the power consumption, the set associaaghe may give better performance than
the direct-mapping scheme because energy overheatbdniss penalty is much higher than
per access power. Thus, applications that needlrehrcache hit rate favor a set-associative
cache over a direct-mapped cache. The cache pawsumption characteristic varies with
the total cache size as well [26]. Small cache &zenergy proficient and has less access
latency but suffers because of poor hit rate. Ssb@ative mapping scheme also provides
support for energy efficient caching schemes likeyvghutdown, way concatenation, way
prediction and process aware caching efficientlyus set-associative mapping scheme is
chosen for this work.

2.1.2 Replacement schemesin caches

The three types of misses incurred in the cachehmecompulsory, capacity and conflict
misses. A compulsory miss is the result of the ficess to a block that has previously never
existed in the cache. A capacity miss occurs when d¢ache is not big enough to

17

accommodate all the blocks required to efficiemttecute the program. A conflict miss takes
place when multiple blocks map to the same sets dhcurs in the direct-mapped and set-
associative cache, but not in the fully associatiehe. Conflict misses are one of the major

cause of cache misses during program execution.

The performance of a cache replacement technidueflycrelies on how precisely the cache
can envisage the future reference pattern depenaingrevious references. The future
reference pattern may depend on the past refepatiteyn and input data. It is relatively easy
to find the reference pattern in a static schedsletlem than in a dynamic-scheduled system.
The choice of a replacement policy is one of thestmwrucial cache design problems.
Selection of a suitable line/block replacement atgm, in the case of fully associative and
set-associative caches [28], can have significaupiact on the overall system performance.
The existing processors use different replacensrategies including random, round robin,
First-In-First-Out (FIFO), Least Frequently Used-(l), Least Recently Used (LRU), Pseudo
LRU (PLRU), MRU (Most Recently Used) and variants these [29] [43] [44]. The
performance of all these policies are compared aaradlyzed with reference to the optimal
replacement policy (OPT). This strategy cannotrbplémented in the instance of dynamic
scheduling systems, since the future cache refeseace not accessible [30]. Even if the
future references are known, it is impractical mopiement this scheme because of the
computational complexity involved in finding thecte line to be evicted. However, it is

very useful in determining the lower limit for thember of cache misses.

The least frequently used (LFU) replacement scheelects the cache line to be evicted
based on the frequency of access of the cache liké$ requires maintaining a frequency
count register per cache line and is incrementedngy each time a reference is made to the
cache line. So a register is updated for everyeadsess. LFU finds the cache line with the
lowest frequency count as the one to be evictedJ laRd its variants are the commonly
employed replacement policy in the cache on accolittteir high performance [29]. There
are different techniques to implement LRU in hardgyavhich comprise of Counter, Square
matrix, Skewed matrix, link list, Phase, and Systalrray method [31]. The replacement
circuit intricacy and the additional hardware neads comparatively less than the LRU and
LFU in the instance of FIFO and Random replacemsehémes [34] [35]. A variant of LRU
replacement policy is Early Eviction LRU (EELRU)7[3 The EELRU dynamically opts to
remove the LRU page or the most recently used pdgéi et al. [39] try to improve the

LRU replacement decision with the help of an addai bit (lock/release) per cache line and

18

lock and release operations. This process awarseheported 60.9% reduction in cache
miss ratio and faster execution then the LRU reptant strategy. Wang et al. proposed a
replacement algorithm which improves the cache peittormance or in the worst case
performs similar to LRU for set-associative cacpEy. Wong and Baer [32] proposed an
enhancement for the LRU replacement policy withemgoral bit per cache line. This
temporal bit acts opposite to the EM bits in [4@, it specifies the cache lines to be retained
in the cache rather than cache lines to be evidtee.temporal bit settings are determined by
off-line profiling or an on-line hardware historgitle. This bit set when there is a cache hit in
that line and is reset when non-LRU line is evicfemm the set. Martin Kampe et al.
proposed self-correcting LRU [36], which dependsL&U, supplemented with a feedback
loop to continuously oversee and revise the mistalane during replacement. O'Neil et al.
proposed the LRU-2 method [41] that evicts the mgnibock with a minimum time stamp
of the second to last reference. A hardware hidiainle is used by Lai et al. [42] to envisage
when a cache block is dead and which block to erehfand replace the dead one. The fact
that the size of the history table restricts thagte of the history consulted is the
disadvantage of this algorithm. The technique ofrgimg any two extant replacement
strategies is indicated by Yannis Smaragdakis [#®$; technique is extremely suitable with
real program data, frequently surpassing LRU (iditeah to all the other policies it adopts)
by over 40 %. Jaafar Alghazo et al. [46] propos&dLBU (Second Chance-Frequency-
Least Recently Used) that merges LRU and Leastuerdgty Used (LFU) using the second
chance concept. Outcomes of experiments conducigidate that the SF-LRU crucially
lowers the number of cache misses in contrast éoLfRU (up to 6.3%) and LFU (up to
9.3%). SFLRU [36] has been recommended to attemgiattly consider the frequencies
while making the LRU decisions and to ensure thatdosts are less. Most Recently Used
(MRU) policy selects the most recently used cadhe from a set for eviction. This
algorithm is not widely used in the cache memorgtay because of its bad temporal
locality. In addition to all these replacement pigls, there exist various replacement
strategies which are very specific to architectdites victim cache [48], skewed-associative

cache, elbow cache etc.
2.1.3 Energy efficient cache ar chitectures

Cache memory analysis reveals that the chief sewftpower consumption are the data lines
and data sense amplifiers. The power consumptidhdogata lines and data sense amplifiers

as per Wilton and Jouppi [26] were 55%, 65% and tB%he total cache sub system power

19

consumption for the direct-mapped, 2-way set-assivei and 4-way set associative mapping
schemes respectively. One way to minimize the dymgmwer consumption is to mitigate
the intrinsic activities of the cache during a @achccess. Minimum cache power
consumption can be achieved if the cache accesssimainimum conflict misses. Also, if
each cache hit results in reading and comparing onke tag entry, then enabling and
accessing only that one data entry and if eachecanlss results in only reading and

comparing one tag entry also helps in reducing p@easumption.

Hardware pre-fetching [27] is an accepted methodntprove the cache performance in
conventional systems. Pre-fetching methods attampower the cache miss rate by pre-
fetching instructions into internal cache. This nragults in replacing useful data in the
cache. Unfortunately, most of the existing prefietg methods are not extremely efficient in
embedded systems because of real time processisy aints.

Embedded systems employ various partitioning sceamenake cache energy efficient and
deterministic. This ensures the smooth executiomigher priority time-critical tasks. A
cache partitioning can be either static (fixed) dynamic. A fixed partitioning scheme
partitions the entire cache into N equal/ unegiz&issand assigns them to the tasks. In case of
dynamic partitioning scheme, cache is partitionaskll on various parameters such as size of
the task, priority of the task, number of cacheck$oin use etc. Another way of partitioning

the cache is vertical and horizontal partitioning.
2.1.4 Operating system support

CMP incorporate novel hardware features that asgimilar from traditional uniprocessors or
conventional symmetric multiprocessing (SMP) mutigessor systems. These novel features
bring additional performance improvement possibgitand problems. Chip multi-processors
architectures deal with three basic difficulties farther expanding processor clock
frequencies further. To start with, the performanliference between the speed of the
processor and memory forces processors to haltheowvast majority of their time for the

memory to deliver the information, making recurremnacrements in frequency insufficient.

Secondly, vital utilization and high temperaturspairsal of processors, which are attached to
the frequency of CMP, are reaching their physicabking points. Lastly, higher frequencies
need deep execution pipelines, making the desigfigtoation and verification of advanced

processors even more difficult and challenging.

20

Consequently, Chip multi-processor have turned theonew mainstream architecture [49]
and henceforth obliges prime consideration fromv&mfe programming engineers to have a
Chip multi-processor aware operating system andicghons framework. Considering the
software perspective, the skill to use the maxinzapacity of various execution cores in
chip multi-processor has turned out to be troubtesoas it includes many software
programming layers. At the higher level, each d¢sngsed to execute an alternate application,
or a solitary application must be parallelized heit naturally or manually, into various
threads. On the other hand, when application lpagdllelism is separated and communicated
clearly, there are two difficulties in accomplispiadaptable execution that are present in

chip multi-processor architectures.

Contention on Shared Resources. In contrast to the conventional SMP (symmetric
multiprocessor) systems, there are more sharedunaes on the critical path in each
individual core in a chip multi-processor. Sometloése resources comprise of on-chip
shared last level caches, the memory controlled, the interconnection network to other
processor sockets (or the 1/O fabric). The preseheacontrolled contention in any of these

shared resources may lead to a degraded systenghimat and hampers performance.
Non-Uniform Inter-Core Communication L atency:

In contrast to traditional SMP systems, chip mpiticessors are hierarchical in nature, and
the communication latency between two cores in chuipti-processor varies substantially
and relies on their physical closeness. For ingtaimc contrast to cores that are located on
two different chips, same chip cores can interagtlkegr via on-chip caches. This facet of
chip multi-processors is similar to conventional WA (non-uniform memory access
latency) multiprocessor systems. Effectively, chmulti-processors designs include extra
levels to the memory hierarchy and, consequentgsult in the non-uniformity of
communication latency much more pronounced as coedpao conventional NUMA
systems. Consequently, handling these issuesgcartain extent, falls under the purview of
the operating system. Apart from having knowledfjeghe basic CMP hardware design, the
software system (operating system) can remove anhlide information related to the
dynamic character of the running system, which atgep of how well the hardware, and
how well the software applications are performindpys allowing the operating system to
deal with the resources in an efficient way. Sdaaensure the same, the operating system
precisely recognizes and quantifies the latenclctifg events in an intricate multi-core

system. At the operating system level, there haenlihree crucial methods to deal with the

21

issue pertaining to consumption of energy: procedseduling techniques [20], paging

systems [50], and performance tuning [51].

In summary, chip multi-processors addresses thagoy issues that are present within the
evolution of chip multi-processors like the poweallwvmemory wall and design intricacy.
The basic shift in chip multi-processor design rsei@ddepth support from software’s so as to

attain the complete potential in terms of procesgsipeed.
2.2 Conventional cache design limitations

The mechanism and policies utilized for conventiaahes architectures that support uni-
cores have several limitations when they are usld @GMPs. Firstly, these schemes are

insufficient to handle the competition among theesdor the on chip caches. Secondly, these
policies failed to support physical memory sharimgfween rival threads, and to avoid

damaging intrusion like thrashing. Lastly, fairn@sgrovement, QoS guarantee and priority
supports are other limitations of conventional eaglpolicies. There are no traditional cache

proposals that deal with all CMP caching needs.

2.2.1 Caching for Chip M ultiprocessor

CMP is the novel standard for high-performance aatng. The chip designers raises the
number of processor cores in the chip so as tofibdrem the thread-level parallelism and
frequency is reduced to lower the consumption afgro A lower frequency not only saves
power but also lowers the processor-memory perfoomagap and thus harmonizes the

architecture to some degree.

Although, CMP caching presents a number of newiehgés to CMP cache designers, these
challenges are not new in the history of generehice analysis & research. It has been dealt
with in varied caching systems including virtual may paging, conventional shared-
memory multiprocessor memory designs and web cgchiime notion of caching was
introduced and recorded within the IBM System/38plementation [102] that employed a
high-speed buffer to reduce the processor-memargdsdiscrepancy by utilizing the locality
principle [40]. The cache’s efficacy is to a greatent ascertained by its data placement,
access and replacement strategies for a specitivecsize. Majority of the linked studies
pertaining to CMP caching emphasizes on the menooganization of shared memory
multiprocessors. Figure 2.1, indicates a Dual &P with multi-level cache and their on-
chip access latencies. In this figure, two corearestihe last-level cache. The latency for

cache hits in the first-level cache is the inteaactime for roundtrip to the cache in addition

22

to the hit time for the cache. If there is a hithe last-level cache, the latency is the (round-
trip) interaction time (both between processor &rsl-level cache, and between first-level
and last-level cache), miss time for the first-les&che and hit time for the last-level cache.
For misses in all levels of cache, latency compridemiss times for all caches, (round-trip),
interaction time (also comprising of off-chip ireetion) and latency of primary memory.
The first-level cache characteristically has ardayeof 2-3 clock cycles and the ability of
around 16-64 Kbytes. On-chip last-level cachesamparison have bigger storage abilities
and latency. Latency is characteristically in tlkéent of 8-30 clock cycles and capacity is in
megabytes with the extant high-end processors.ifidreased latency of the larger memory
blocks is the result of the distance to the mentogk on account of the bigger size and the

look up time in the bigger memory block.

Core 0 Core 1
IEI hit Communication
L1D| L1I LID|L1I L1 Cache latency
L2 hit [I Communication
1 y
Last Level Cache L2 Cache latency
Last level o
cache miss Communication
v
. Main memory Time
Main memory latency

Figure 2.1: Sketch of CMP memory access that hits in the Icheahit in the shared last
level L2 cache and miss in both private L1 and eth&?2 Cache

2.2.2 Cache Proposalsfor Multicores

In this section, we present few existing cache giegiroposals for CMP that are more
pertinent to some part of our proposed work. ThEeposals focused on last-level cache in a
CMP. The last-level of cache in a CMP can be peyvahared or a hybrid. A private cache
can be quicker compared to a shared cache andoitkert is not modified by other

processors, while a shared cache can use the &g&o® in a superior manner as an

application that functions on a huge data set evilploy a bigger amount of the cache space

23

when run concurrently with an application that ming executed on a small data set. A
hybrid cache, on the other hand, merges the bsradfihe private and shared caches. Several
of these proposals are combinations of both privatehared cache organization. These
hybrid proposals merge the benefits of both privaté shared caches. Figure 2.2, puts forth
three different manners of segregating a cacheMiP£with shared cache. In Figure 2.2 (a)

each set belongs to only single core in CMP.

Way 00 Way 01 Way 10 , Way 11
Index00| T] D |T] D |T| D |T] D | Farttions
oift| D |T| D |T| D |T| D | [Coreo
0lT| D |T| D|T| D |T]| D | []Corel
ulr[{o[r][dp]r[p [r] b
Indexoo| T| D | T| D (T| D |T| D T:Tag
oftT o[t p[r|Dp 1] D D:Data
wlT] p [Tt p[r]p [1r] D
ulr o[opflr|[p [t

Figure 2.2 (a): Fixed sets per processors

While Figure 2.2(b) shows that each set containslequmber of cache blocks from two
active cores in CMP. Whereas, the third case pteserother mechanism in which, each set
can be segregated with a variable number of calduisfrom two different cores as shown

in Figure 2.2(c).

Way 00 Way 01 Way 10 , Way 11

Index 00| T D T DIT| D T D Partitions
o[t D |T| D |T| D |[T| D | [Coreo
0lT| D |T| D|T| D |T]| D | []Corel
nm|T|{ o |T| D|T| D |T| D

Indexoo| T| D | T| D (T| D |T| D T:Tag
oofT| D |T| D|T| D |[T]| D D:Data
wo|lT| D|T| D|T|D |[T]| D
1n|T|{ oD |T| D|(T|D |T| D

Figure 2.2 (b): Fixed Partitioned sets

It is easier to re-segregate the cache as there modification to which a group addresses

maps to. Modifying the segregated size is intriaateaccount of the hashing function that

24

maps memory addresses to sets has to be alteretleandche blocks have to be relocated or
invalidated. Researchers have proposed severamgshthat partitions the cache in a better
manner so that, the core that can use additi@@lecspace get more space whereas core that

is not utilizing the pre-fetched blocks in the cadan get less cache space.

Way 00 , Way 01 Way 10 , Way 11

Index00| T| D | T| D|T| D | T| D Partitions
o1l T| D | T DlTl DIT D] Coreo
w|lT| D |T| D|T| D |T| D | []Corel
1M{T| D | T D |T| D T D

Indexo0| T| D | T| D |T| D |T| D T:Tag
offrT) D)T DIT| D |T| D D:Data
10(T|] D | T D|T| D T!| D
11| T D T D|T D T D

Figure 2.2 (c): Sets with variable number of blocks

The number of cores being integrated on the dienisthe rise as CMP platforms are
becoming popular. To lower the off-chip memory as;ehe last level cache is generally
arranged to be a distributed shared cache. Soeastte hot-spots, cache lines are interleaved
across the distributed shared cache slices. Ontltex hand, as one increases the number of
cores and cache slices in the platform, majorityhef data references are transmitted to the
remote cache slices, thus increases the accessydi® a considerable level. A hybrid last
level cache was recommended by Zhao et al. [53Je&h cache slice, it has some degree of
private space and some degree of shared spacaiihie to offer more hits into the local
slice while trying to sustain a lower general mest® for workloads with no sharing. The aim
on the other hand, for workloads with adequateispas to permit additional sharing in the
last-level cache slice. The researchers also diedushe hybrid last-level cache design
choices and analyzed its hit/miss rate for severatial server applications and multi-
programmed workloads. As per the simulation outrtevas inferred that this kind of
architecture was most beneficial as it could inseethe local hit rate to a great extent and
simultaneously ensure that the overall miss rate ezmparable to that of the shared cache.
This scheme overlooks the matter related to thegtmns of private as against the shared

cache dynamic partitioning based on the worklodthier.

25

The issue of segregating a shared cache amongstabsimultaneous running applications
was analyzed by Qureshi et al. [59]. The frequerdiyiployed LRU strategy totally
segregates a shared cache as and when demandédjngranore cache resources to the
application with a higher demand and lesser caeseurces to applications with lower
demands. On the other hand, a higher need for cadwairces is not always linked to a
superior performance by the extra cache resoulcssadvantageous for performance to use
the cache resources in the application that cah rbeke use of the resources instead of
application that demands additional cache resouiess, the author recommend utility-
based cache partitioning (UCP), a low-overheadtimer method that partitions a shared
cache between several application based on therilggvén cache misses that all the
applications probably get for a given extent ofhmacesources. The recommended method
observes each application at runtime employing\elhaost-efficient, hardware circuit that
needs storage less than even 2KB. The data gatbgrége monitoring circuits is employed
by a partitioning algorithm to choose the amountathe size to be apportioned for each
application. The assessment with 20 multi-prograchmeorkloads indicates that UCP
enhances functioning of a dual-core system by at@3% and on average 11% in contrast to
LRU-dependent cache partitioning. The current stbdg overlooked the multi-threaded

workload and the difference in utility of privatatd of rival threads.

A simple architectural extension and adaptive sgiias for handling the L2 and L3 cache
hierarchy in a CMP system was proposed by Speighit §55]. Specifically, the researchers
assess two methodologies that enhance cache gffitaitially they recommended the
employment of a small history table to offer cluesthe L2 caches as to which lines are
resident in the L3 cache. They use this table tookee few unrequired clean write backs to
the L3 cache, lowering pressure on the L3 cacheoanithe on-chip bus. Next, they analyze
the functioning advantages of permitting write mfdom L2 caches to be transmitted to the
adjacent on-chip L2 caches instead of compelliramttio be grasped by the L3 cache. In
addition to lowering the capacity stress on thech8he it also makes the following access
quicker as L2-to-L2 cache transfers characterifidaave lower latencies compared to
accesses to a huge L3 cache array. The perfornegrm@acement of these two schemes, and
their merged impact, on four commercial workloaslshie lowering in the overall execution

time of around 13%.

Hardware-managed coherent caches and software-edisiggaming memory are the two

primary models for the on-chip memory in CMP syste direct comparison of the two

26

models has been undertaken by Leverich et al.g56liming a similar group of presumptions

pertaining to technology, area, and computatiokiilss

The aim is to enumerate how and when they varyoimext of execution, consumption of
energy, and width requirements in addition to layetolerance for a CMPs. They show that
for all data-parallel applications, the performaracel scaling of the both cache-based and
streaming models are similar. For specific appilicet that have limited data reuse, streaming
scales are superior on account of superior bantvedtployment and macroscopic software
pre-fetching. On the other hand, the initiationsnoéthods like hardware pre-fetching and
non-allocating stores to the cache-based modelceethe streaming benefit. Overall, the
outcomes show that there is no adequate benefleweloping streaming memory systems
where all on-chip memory structures are handledi@ip. However, the author indicates
that streaming at the programming model level eemlly advantageous, even with the
cache based model, as it improves locality aneldps chances for maximization of
bandwidth. Furthermore, the author researcher esttbat stream programming is really
effortless with the cache-based prototype as thdwee ensures suitable, best-endeavor
implementation even when the programmer fails tonadize the code of the application.

The Cooperative Cache Partitionif@CP) to assign cache resources between threads
running simultaneously on CMPs was put forth by m@¢haet al. [57]. Distinct cache
partitioning schemes that employ a sole spatiatitpar recurrently all through a stable
program stage, CCP resolves cache contention watveral time-sharing partitions.
Timesharing cache resources between partitions ifgeach thrashing thread to quicken
noticeably in at least one segment by one-sideztlycing the capacity assignments to other
threads and also enhancing fairness by providingedapartitions an equal chance for
execution. Time-sharing based cache partitioningaditionally merged with CMP
cooperative caching [58] to develop the advantagfeERU-based latency optimizations,
which result to a basic partitioning algorithm auperior execution for workloads that fail to
take advantage of the cache partitioning. The awghsess the efficacy of CCP by simulating
a 4-core CMP running all grouping of 7 represem&atSPEC2000 benchmarks. For
workloads that can take advantage of cache paritigp CCP attains around 60%, and on
average 12%, superior performance compared todimpiehensive seeking of optimal static
partitions. Generally, CCP offers the most supenatcomes on almost all assessment

criteria for varied cache sizes.

27

The huge data working sets of commercial and s@iemtorkloads underline the L2 caches
of CMPs. Few CMPs employ a shared L2 cache to aseréhe on-chip cache storage and
reduce off-chip misses. Other CMPs employ privatecAches and duplicates data to restrict
the delay on account of global wires and reducbeaccess time. The latest hybrid schemes
employ selective duplication to balance latency aagacity, but their static duplication
norms may lead to performance degradation for samalgamations of workloads and
system configurations. The Adaptive Selective Rpion (ASR) has been recommended by
Beckmann et al. [60]; it is a method that dynantycal’ersees workload behavior to control
duplication. ASR duplicates cache blocks only whavaluates the advantage of duplication
(lower L2 hit latency) to surpass the outlays (&ddal L2 misses). Full-system simulations
of 8-processor CMPs indicate that ASR offers athgadxecution: enhancing the execution
by over 29% in contrast to shared caches, 19% mnir&st to private caches and 12% in

contrast to CMP-NuRapid and Victim Replication.

A comprehensive research of fairness in cache rghaamongst threads in a chip
multiprocessor (CMP) architecture was put forth Kiyn et al. [61]. The earlier studies
related to CMP architectures have merely analyhesughput maximization methods for a
shared cache. Researchers have not assesseditearpod fairness in cache sharing, and its
association to throughput. Fairness is an essepttdllem as the Operating System (OS)
thread scheduler’s efficacy relies on the hardwareffer a suitable fair cache sharing to co-
scheduled threads. In the absence of such hardgiaes issues, including thread starvation
and priority inversion, may occur making the OSeshiiHler unproductive. The researcher
provides many inputs. Initially, the researcheroramends and assesses five cache fairness
metrics that gauge the extent of fairness in catiaging, and indicates that two of them are
linked strongly with the execution -time fairne&xecution time fairness is described as
how uniform the execution times of co-schedulededds are modified; where each
modification is comparative to the execution tinfetlte same thread being implemented
solely. Next, using the metrics, the researcheomgmends static and dynamic L2 cache
partitioning algorithms that maximize fairness.idt effortless to implement the dynamic
portioning algorithm as it does not need any majarfiling and has a reduced overhead; it
does not limit the cache replacement algorithm RiJL Despite the static algorithm require
the cache to keep LRU stack information, it carphibe OS thread scheduler to evade cache
thrashing. Finally, the author studies the relatiop between fairness and throughput, while

maximizing throughput does not necessarily impréaieness. Employing a group of co-

28

scheduled pairs of applications (benchmarks), oerage the recommended algorithms
enhance fairness by factor of 4x while enhancimrgtiinoughput by 15%, in contrast to a non-

partitioned shared cache.

A distributed L2 cache management approach via-feage data to cache slice mapping in a
processor chip comprising of several cores wasmewended and analyzed by Jin et al. [62].
L2 cache handling is an essential multi-core preaedesign facet to overpower non-uniform
cache access latency to achieve high performantegdine execution of the program and to
lower on-chip net-work traffic and its power consatian.

An arrangement for the on-chip memory system odfiip multiprocessor, in which a 16MB
pool of 256 L2 cache banks is shared by 16 procgess@s recommended by Huh et al. and
Foglia [63, 65]. The L2 cache is arranged as nafeum cache architecture (NUCA) array
with a switched network inserted in it for supemp@rformance. Researchers indicate that this
arrangement can endorse the range of degreesraighanshared, in which every processor
owns a private segment of the cache, thereby, lagi¢he hit latency; completely shared, in
which each processor shares the entire cache btheeeglucing misses, and every point in
between. Researchers seek the best level of shéwingeveral cache bank mapping
strategies, and also assess a per-application gactigoning policy. They infer that a static
NUCA arrangement with sharing degrees of two orrfta most suitable for varied

commercial and scientific parallel workloads.

A dynamic cache partitioning scheme that clearkigas cache space between concurrently
executing process and reduces the overall cachgemiwas put forth by Suh et al. [66].

Employing a group of on-line counters, the scheyathically estimates each process gain
or loss in varied cache assignments in contexthef tumber of cache misses. Then, the
dynamic alteration of the allocation occurs to easthat more essential processes can

employ additional cache space [67].

Nahalal, a new CMP cache architecture that pamstibhe L2 cache as per the data sharing of
the programs was recommended by Guz et al. [68; glovides locality of reference to
shared as well as private data. A part of the Loy is located in the center of the chip,
surrounded on all sides by all processors, whigerdmainder of the L2 memory is situated
on the outer slices [20]. The hottest shared daplates the inner memory and is quickly

accessed by all the processors. A "backyard" foln @aocessor is created by the outer slices.

29

The cache-fair scheduling algorithm, a novel opegasystem scheduling algorithm for
multi-core processors is introduced by Fedoroval.g69]. This algorithm lowers the impact
of unequal CPU cache sharing that take place asetpeocessors and result in partial CPU
sharing, priority inversion, and insufficient CPdcaunting. As per the author, the execution
of the algorithm in the Solaris operating systerdidates that it generates better priority
enforcement and enhanced execution stability fgiiegtions. With traditional scheduling
algorithms, application performance on multicoregassors differs by around 36% based on
the runtime attributes of concurrent processes. dimdor assessed the execution of the
algorithm in Solaris 10 and indicated that it callyi lowers co-runner dependent
performance difference, while levying slight drawkaon best-effort threads. Co-runner-
dependent performance is the outcome of unequdlecsicaring, and by evading the same,
the researchers deal with the issues that wenetudt of unequal cache sharing.

Uncontrolled sharing in CMP results in situationsene one core eliminates beneficial L2
cache content belonging to another core. To deid this issue, Tam et al. [70] executed a
software tool that permitted partitioning of theasdd L2 cache by directing the assignment
of physical pages. This method is successful inelovg cache contention in multi-
programmed SPECcpu2000 and SPECjbb2000 workloagtformance enhancements of
around 17% were attained without any negative impacco-scheduled applications. This
study failed to analyze how this method dynamicallyered the number of partitions
accorded to an application in an on line, thatitoa reduced overhead conduct.

As many schemes already exists and there is atodetl an efficient dynamic partitioning
scheme that explicitly allocates cache space amaigailtaneously executing tasks this
research work proposes to investigate the cacbeadibn that can be dynamically changed
so that more needy tasks can use more cache spéedsa propose to investigate methods to

resolve ownership of cache space efficiently.

As a response to the rising (comparative) wire \dl#ferent methods have been proposed
by architects to handle the influence of slow wioeshuge uniprocessor L2 caches. Block
migration (e.g., D-NUCA and NuRapid) lowers the @age hit latency by transferring

commonly employed blocks towards the lower-latebeyks. Transmission Line Caches
(TLC) employs on-chip transmission lines to offewllatency to all banks. Conventional

stride-based hardware prefetching attempts to enithstead of lowering the latency. There
are more issues with chip multiprocessors (CMPs)bdgin with, CMPs frequently share the

on-chip L2 cache, needing several ports to offeqadte bandwidth. Next, multiple threads

30

indicate several varied working sets, which vierfstricted on-chip storage. Thirdly, sharing
code and data interferes with block migration, ae processor’s low-latency bank acts as
another processor’s high-latency bank. L2 cachégdedor CMPs that merge these three
latency management methods were proposed by Brhdfbral. and Kannan [71]. The
researchers employ comprehensive full-system simoulato evaluate the performance

tradeoffs for both commercial and scientific woiddis.

The probability of using a very small data caclpdif $or fulfilling the needs of the temporal
and spatial streams was analyzed by Naz et al. [72]

The influence of different cache architectures lo@ éxecution behavior of multi-threading
applications was analyzed by Tao et al. [74]. Higpkasis was on four common cache
planning problems: cache structure, configuratioiteiga, coherence influence, and
prefetching strategies. The research relies onfaleeeloped cache simulator that designs
the operability of a multi-core cache hierarchy hwitirbitrary levels and different

organizations. Both the hardware and program deeetocan be directed by the attained

outcomes to maximize their cache designs or thgrpro codes.

In a shared L2 cache model of CMP, cache coherenay important research issue to be
addressed. Although traditional cache coherencyopob has been used [83]. In a CMP,

cache coherency has been handled in a way to thientage of its design structure. Roy et
al. [75] proposes variable forwarding cache cohexdn improve performance of the system
by using variable forwarding. This work proposes amvestigates various cache coherency

issues that exist in CMP and various ways of resglthem.
2.3 An Introduction to Multiprocessor Memory Consistency

Serial programs running on Von-Neumann machinesgntea simple intuitive model to the
programmer. The instructions seem to be executdteimanner stated by the programmer or
compiler irrespective of the fact that the desigrthe machine really executes them in a
varied sequence. Crucially, a program’s load retuhe last value that was written in the
memory location. Similarly the value of the nexadas ascertained by the store to a memory
location. This description results in a direct ismpkentation and semantics for programs
being executed on a single uniprocesddulti-threaded programs being executed on
multiprocessor machines obscure the programmingeimadd also the implementation to
enforce a specific model. Specifically, the valeaurned by a given load is indistinct as the

latest store may have taken place on a varied gsocecore. Hence, architects describe

31

memory consistency models [76] to state how a msmecore can detect memory accesses
from other processor cores in the system. Sequiemissistency is a model described to be
one that the outcome of any execution is similaif &se operations of all processors were
executed in some chronological order, and the ¢ipasaof each distinct processor act in this
sequence in the order stated by its program [7fHle®@more relaxed consistency models [78]
can provide the system designer additional freettorfurther optimize memory system to
decrease memory latency. For instance, a relaxedeim@gmemory) allows simple
implementation of write buffers with the bypaggioption. While relaxed prototypes can
enhance performance by retiring memory instructigm®r to them having being noticed by
other processors in the system, proper synchraaizadf multi-threaded applications is still
needed. Systems employing relaxed memory consistgmrototype either have additional
instructions that permit a programmer to compdkeangs between loads and stores [79], or
describe semantics in a way that a programmer gachsonize by employing sensibly
developed series of loads and stores. The adddfosache memories influences how

consistency is enforced irrespective of sequeatiatlaxed consistency.
2.3.1 Effect of Cacheson Memory Consistency

Cache memories have been paramount in facilitatiiveg rapid performance progress of
microprocessors over the past twenty years. Thieyvgbrocessor speeds to increase at a
greater rate than DRAM speeds by exploiting logatitmemory accesses. The importance of
caches is their effective operation with very dittmpact on the programmer or compiler. In
other words, details of the cache hierarchy doafi@ct the instruction set architecture and
their operation is all hardware-based and autonfabim a programmer’s point-of-view.
While implementing a cache hierarchy had little ifazation on a uniprocessor's memory
consistency, caches complicate multiprocessor mgamsistency. The root of the problem
lies in store propagation. Figure 2.3 illustratesiraple example of incoherence. Initially,
memory location A has the value 42 in memory, dmhtboth Core 1 and Core 2 loads this
value from memory into their respective cachestile 3, Core 1 increments the value at
memory location A from 42 to 43 in its cache, makore 2’'s value of A in its cache stale
or incoherent. To prevent incoherence, the systemst nmplement a cache coherence
protocol to regulate the actions of the cores ghah Core 2 cannot observe the old value of
42 at the same time that Core 1 observes the v8udhe design and implementation of
these cache coherence protocols are the main topidscussion. While R1 and R2 — the

two cores in a system may load the same memorkhbldo their corresponding private

32

caches, a following store by any one of the coresl@vresult in a variation in the values of
the caches. Hence, if R1 stores to a memory bloak éxists in both the caches of R1 and
R2, R2’s cache has a probable old value on acagfithe R1’s default function of storing its
individual cache. The current cache incoherenceldvoat be an issue if R2 never loads to
the block while still cached or if the multiprocesdid not back the transparent shared-
memory abstraction. However, since the multipromessemory model should support
shared-memory programming, at some point the fulnmds of the block by R2 needs to
obtain the novel value stored by R1, as describedhb model. Thus, R1's store must
probably impact the status of the cache line insR@iche to sustain consistency, and the
methods for doing the same are known to be cacherence. Hence, the policy of the
current study considers the cache coherence ta bedapendent problem related to memory
consistency that is essential but not adequatmpdeiment a given model. All the protocols
that we discuss can endorse any memory consisfgotgtypes, but our explanations would

presume sequential consistency.

Loadrl, mem A

Time 1
A 42
Load rl, mem A
Time 2
A42 A42
Addrl, r1#1

Storerl, mem A

Time 3

A 43 A 42

Figure 2.3: Problem of Incoherence

33

2.3.2 CacheCoherencelnvariant and Permission

The example of an incoherent situation describethénprevious section 2.2 is intuitively
“incorrect” in that cores observe different valugsa given datum at the same time. In this
section, we transition from an intuitive sense difatvis incoherent to a precise definition of
coherence. There are several definitions of colverémat have appeared in textbooks and in
published papers. We present the definition weeprébr its insight into the design of
coherence protocols. In the sidebar, we discussnaltive definitions and how they relate to
our preferred definition. The basis of our prefdrdefinition of coherence is the single-
writer—multiple-reader (SWMR) invariant. There miag either a single core that may write
(and may also read) or multiple cores that may ergdgiven memory location at any given
moment of time. Thus, there is never a time whgivan memory location may be written
by one core and simultaneously either read or evwritty any other cores. Another way to
view this definition is to consider, for each memdwocation, that the memory location’s
lifetime is divided up into epochs. In each epagther a single core has read—write access or
some number of cores (possibly zero) have read-aobess. Figure 2.4 illustrates the
lifetime of an example memory location, dividedoirfour epochs that maintain the SWMR

invariant.

In addition to the SWMR invariant, coherence regglithat the value of a given memory
location is propagated correctly. To explain whiuea matter, let us reconsider the example
in Figure 2.2. Even though the SWMR invariant hplidluring the first read-only epoch

Cores 2 and 5 can read different values, thenyistes is not coherent.

Time
.

Read-only | Read-Write |Read-Write| Read-only
Cores2 & 5 Cores 3 Core 1l |Cores 1.2.3

Figure 2.4: Dividing a given memory location’s lifetime inggpochs

Similarly, the system is incoherent if Core 1 fdilsread the last value written by Core 3
during its read—write epoch or any of Cores 1,r2Z3 ail to read the last write performed by
Core 1 during its read—write epoch. Thus, the d&fim of coherence must augment the
SWMR invariant with a data value invariant thattpers to how values are propagated from
one epoch to the next. This invariant states thatwvalue of a memory location at the

beginning of a period is similar to the value of tnemory location at the completion of its

34

last read—write period. There are other interpi@tatof these invariants that are equivalent.
One notable example [88] interpreted the SMWR iawvds in terms of tokens. The
invariants are as follows. For each memory locatibere exist a fixed number of tokens that
is at least as large as the number of cores. tra bas all of the tokens, it may write the
memory location. If a core has one or more toké&nmsay read the memory location. At any
given time, it is thus impossible for one core ®\briting the memory location while any

other core is reading or writing it.
2.3.3 Coherenceinvariants

1. Single-Writer, Multiple-Read (SWMR) Invarianit any given (rational) time, for
any memory location B, only a single core is présieat may write to B (and also has

the ability to read it) or some limited cores thety only read B.

2. Data-Value Invariant. The value of the memamation at the initiation of a period is
equivalent to the value of the memory locatiorhat¢completion of its last read—write

period.
2.4 Coherence Protocols

The goal of a coherence protocol is to maintainecehce by enforcing the invariants
introduced in the previous section. To implememsthinvariants, we associate with each

storage structure (each cache) and the LLC/memf{intta state machine called a coherence

loads &
store

_Coreside__ | Cache |g p/Cache
Network side
Controller

controller.

Issued
Coherence
Requests/
Response

Received
Coherence
Requests/
Response

Interconnection
Network

Figure2.5. Cache Controller

35

The collection of these coherence controllers dtutes a distributed system in which the
controllers exchange messages with each otherstorethat, for each block, the SWMR and
data value invariants are maintained at all tinffd® interactions between these finite state
machines are specified by the coherence protocohefeénce controllers have several
responsibilities. The coherence controller at dheagvhich we refer to as a cache controller,
is illustrated in Figure 2.5. The cache controftaust service requests from two sources. On
the “core side,” the cache controller interfacesh® processor core. The controller accepts
loads and stores from the core and returns loagesaio the core. A cache miss causes the
controller to initiate a coherence transaction $suing a coherence request (e.g., request for
read-only permission) for the block containing tleeation accessed by the core. This
coherence request is sent across the interconnengtwork to one or more coherence
controllers. A transaction includes a request deddther message(s) that are exchanged in
order to satisfy the request (e.g., a data respomsgsage sent from another coherence
controller to the requestor). The types of tranieastand the messages that are sent as part of
each transaction depend on the specific cohereno®cpl. On the cache controller's
“network side,” the cache controller interfaces tioe rest of the system via the
interconnection network. The controller receivesarence requests and coherence responses
that it must process. As with the core side, tree@ssing of incoming coherence messages

depends on the specific coherence protocol.

_______ -—-------1 LLC/Memory <« »Memory
Network side Controller

Issued
Coherence
Response

Received
Coherence
Requests

Interconnection
Network

Figure2.6: Memory Controller

The coherence controller at the LLC/memory, which nefer to as a memory controller, is
illustrated in Figure 2.6. A memory controller igrato a cache controller, the sole exception

being that it generally has only a network side.sish, it does not issue coherence requests

36

(on behalf of loads or stores) or receive coheraemsponses. Other agents, such as 1/O
devices, may behave like cache controllers, meroomyrollers, or both depending upon their
specific requirements. Each coherence controllgfiements a set of finite state machines
rationally one independent, but similar finite stahachine per block and receives and
processes events (e.g., incoming coherence mejsigEnding upon the block’s state. For
an event of type E (e.g., a store request frontthme to the cache controller) to block B, the
coherence controller takes actions (e.g., issuwEharence request for read-write permission)
that are a function of E and of B’s state (e.gadrenly). After taking these actions, the
controller may change the state of B. As statetlaity in the current study, permitting
multiple cores to access the same address spateréodata in their private caches leads to a
cache coherence problem. This problem is made pazest to software via hardware
implementation of cache coherence protocols. Tlaeeetwo varied strategies that can be
employed to sustain cache coherence, and depepdirigem, we can segregate amongst
invalidation and update-based cache coherenceqmist{80, 81]. On getting a write request,
invalidation-based protocols [78] sends invalidatimessages to all the sharers (the sole
exception being the requester) and it requiresape/ copies must be invalidated. However,
update based protocols forwards the newly writtepycto all the sharers after write
operation. The chief drawback of the update-basedogols is the generation of heavy
network traffic. This is more evident, when a pigiag core writes a block several time
prior to another core reading the block; this resin all updates being notified, requiring a
varied message for each one. Despite this disaalgariieing lowered by adaptive protocols
[82], this is one of the chief reason why the lategstems employ invalidation-based
protocols and, thus, the current work considerslidation based cache coherence protocols.
Invalidation-based protocols need to guarantesuhsequent invariant.

Logically, at any point, a single core can writeache block or multiple cores (SWMR) can
read one cache block. Thus, if a processing casaseto alter a cache block, this block has
to be invalidated beforehand (the read permissieeds to be invalidated) from the other
caches. Similarly, if a processing core desiresetd a cache block, the write permission
allotted to some other cache needs to be invatidasforehand. There are other crucial
design choices that impact the ultimate efficacyhef protocol when implementing a cache
coherence protocol. The subsequent section outtimesdescription of a cache coherence
protocol and subsequently discusses the existioigq@ols.

37

24.1 Design spacefor cache coherence protocols

There are many options for designing cache coherpnatocols based on the states of the
blocks present in the private caches. These optiaue been generally termed based on the
states they use: MOESI, MOSI, MESI, MSI etc. Eatgtesstands for varied authorizations

for a block present in a private cache.
2.4.2. Specifying cache coherence protocols

A designer of a coherence protocol must choosesthtes, stable states, transient states,
transactions, events, and transitions for each ¢ygeherence controller in the system.

Cacheblock states:

In a system with only one actor (e.g., a singleegmrocessor without coherent DMA), the
state of a cache block is either valid or invalidlere might be two possible valid states for a
cache block if there is a need to distinguish bdottlat are dirty. A dirty block has a value
that has been written more recently than otheresopf this block. For example, in a two-
level cache hierarchy with a write-back L1 caches block in the L1 may be dirty with
respect to the stale copy in the L2 cache. A systémmultiple actors can also use just these
two or three states, but we often want to distisgibetween different kinds of valid states.
There are four characteristics of a cache block weawish to encode in its state: validity,

dirtiness, exclusivity, and ownership [83].
The latter two characteristics are unique to systesith multiple actors.

Validity: A valid block has the most up-to-date value fos thiock. The block may be read,

but it may only be written if it is also exclusive.

Dirtiness: As in a single core processor, a cache blockrty diits value is the most up-to-
date value, this value differs from the value ia th.C/memory, and the cache controller is
responsible for eventually updating the LLC/memearth this new value. The term clean is

often used as the opposite of dirty.

Exclusivity: A cache block is exclusive if it is the only prigly cached copy of that block in

the system (i.e., the block is not cached anywhkse except perhaps in the shared LLC).

Ownership: A cache controller (or memory controller) is then@r of a block if it is liable
for replying to coherence requests for that bldckmost protocols, there is exactly one
owner of a given block at all times. A block thatowned may not be removed from a cache

to permit another block to enter due to a capaoityconflict miss without giving the

38

ownership of the block to another coherence cdetroNon-owned blocks may be evicted

silently (i.e., without sending any messages) ma@rotocols.

In this section, we first discuss some commonlydustable states of the blocks that are not
currently in the midst of a coherence transactioa thhen discuss the use of transient states

for describing blocks that are currently in the stidf transactions.
24.3 Stable States

Many coherence protocols use a subset of the clageistate MOESI model first introduced
by Sweazey and Smith [83]. These MOESI (often pumiced either “MO-sey” or “mo-EE-
see”) states refer to the states of blocks in Aeaand the most fundamental three states are
MSI; the O and E states may be used, but they atr@sbasic. Each of these states has a

different combination of the characteristics ddssdi above.

M (modified): In CMP system, only a private cache of a single ¢@eps the valid copy of
the data block in this state, and only this singdee has permission to read/write over the
block. The private caches of the other cores dohotit any valid copy of this block. Even
the shared L2 cache holds an invalid copy of thegk In the case of requests from other
cores for this particular block, the private casht valid copy of the block in modified state

must provide requested block

S (shared): In this state cache holds a valid data block. InFC8§stem, multiple cores are
allowed to keep private copies of the data bloclshared state but a single core holds the
block in owned state. If there is no private caelith data block in owned state then shared

L2 cache is responsible for providing the requebtedk.

| (invalid): In this state cache do not keeps a valid copy efrtiguested data block. A valid
copy of the requested data block can be presesttared L2 cache or in the private cache of

another core.

O (owned): In this state, the copy of the block in the cachealid as well as dirty but it is
not the exclusive copy. The private caches of tinerocores may hold a read-only copy of
this block but none of them can hold the block wned state. The shared L2 cache holds a
stale copy of the block. In case other cores neednodify this block, the coherence
controller needs to send invalidation messageqwalidate all the private copies in the
system. This scenario is quite similar with therstastate. The main difference between

these two states is that in case of a miss, thatericache with block in owned state is

39

responsible for forwarding this block since thersdalL2 cache holds the stale copy of the

block. However, the block evictions in the owneatetentails write back operations.

E (exclusive): In this state cache holds a valid copy of the retpeecache block. This single
core is allowed to read/write to this valid copytbé data block. Another valid copy of the
block may exist in the shared on-chip cache.

The most basic protocols use only the MSI statasthere are reasons to add the O and E
states to optimize certain situations. When weeneMESI snooping and directory protocols
in later chapters, we discuss the issues involved.

2.4.4 Transient States

Thus far we have discussed only the stable stdias dccur when there is no current
coherence activity for the block, and it is onlgdk stable states that are used when referring
to a protocol (e.g., “a system with a MESI protécoHowever, there may exist transient
states that occur during the transition from oablststate to another stable state. We had the
transient state IVD (in |, going to V, waiting f@rataResp). In more sophisticated protocols,
we are likely to encounter dozens of transienestaiVe encode these states using a notation
XYZ, which denotes that the block is transitioniingm stable state X to stable state Y, and
the transition will not complete until an eventtgbe Z occurs. For example, in a protocol in
a later chapter, we use IMD to denote that a bleak previously in | and will become M
once a D(ata) message arrives for that block. Tdr@ws combinations using a subset of
these states are illustrated below to design @iffeprotocols:

MSI

The simplest cache coherence protocol requiresaat IMSI states (three states) to enforce
invariant discussed previously while using writeclbogrivate cache. A single core in the

CMP has provided read/write permissions for a hlagkich means its private cache holds

block in M (modified) state. However, other coraghie CMP have permissions to read the
block while caching the block in S (shared statgjure 2.7 presents state transition diagram
for a simple MSI based cache coherence protocol.

Wr/GetX Rd/GetS

Wr/GetX

Figure 2.7: State Diagram for MSI

40

In case of a request for a new block from one efgtocessing core, an existing block must
be evicted from the private cache to make spaceherincoming block. Moreover, the
eviction of block requires state transition to thestate but we have not shown these

transitions in the state diagram.

In order to read a block the core must issues @Gi8est for the block while executing an
application. It requires read permission (Rd/Gét®Yhe block if the block is not previously
accessed. However, if the core already have a peadhission then a read request is
generated (Rd/-). On the other side, if the exagutbre needs to write to a cache block then
it must generate GetX request to obtain the wraemgssion (Wr). As shown in Figure 2.7,
the transition due to the requests generated byteegores are represented by dashed arrows
while the normal arrows represents the transitemsed by local requests. The design of MSI
cache coherence protocols is relatively simple ibutas few drawbacks which can be
improved by adding few more states such as Exau@) and Owner (O). The addition of
exclusive (E) state further optimizes the simplelM&tocol for nonshared data blocks.
Hence, it is essential to obtain good performammceséquential applications running on a
multiprocessor. On receiving a read request frarara, the data block is brought into private
cache and stored with exclusive state instead ekhtiared state. In this case, the requesting
core obtains write permissions for a block. Howevke subsequent write request for this
block will not result into cache miss (in case noféhe other cores requested for the block).
After write operation the status of the cache black be silently changed to the modified
one. The difference between the exclusive statenaotified state is that the data block with
exclusive state is clean and the shared LLC caoldsta valid copy of the data block. The
main benefit of this state is that in case of blaskction or read requests from other
processing cores, there is no need to write batktdahe shared cache.

-7 _GetS GetX "~
R/ " GetS vy Get.X\\::\A
d/- s 7 T = i e m T T T Sl CetS
(M Rd/- LB Rd/-C* 8 I > QetS g
Wi/ 2R - S8Je *7 GetX

Wr/GetX Rd/GetS

Wr/GetX

Figure 2.8: State transition for MESI

41

The state transition diagram for the MESI basecheamwherence protocol is presented in

Figure 2.8.

Now, to further optimize the MESI protocol [83] additional state is introduced know as
owned state. The main advantage of owned stateatsin case of a shared request from a
remote processing core to the cache block stordtkimodified state, the state changes from
modified to the owned state instead of transitmihie shared state. The owned state is quite
similar to the shared state with the difference tha shared LLC cache do not hold a valid

copy of the data block. Following are the benaditthe addition of owned state:

* The first one is the reduction of network traffiecause the processing core does not need to
write the data block back to the shared L2 cachengwa remote read request and the block

state transitions from the modified state to theedvstate.

» Secondly, the shared L2 cache is not requirechaotain a replica for blocks within the
owned state, which can lead to improved utilizatod thus lowering the miss rate of the
shared cache. Note that in CMPs with a shared cadanization, the misses of the shared
cache require off-chip accesses.

» Thirdly, for a few architectures cache misses barresolved more rapidly by supplying
data from private caches as compared to the slcadk. This is primarily the case of the cc-
NUMA machines [93], in which the shared cache @mesented by main memory, or perhaps
even CMPs utilizing a private cache organizatioh4]1 However, in CMPs along with a
shared cache organization, the data block can ek more quickly from the shared
cache and, in this case, this benefit can be ighdfgure 2.9 presents the state transition

diagram for the MOESI cache coherence protocol.

.- B s,
Ty
RCU_C M, fioé @ L _— ?,_f_ﬁ—cifhés < ?St:}é—(isf:é 1 __ GetS
Wr/- ' : ' R 7™ GetX

Rd/CetS

Wr/GetX

Wr/GetX

Figure 2.9: State Transition for MOESI Protocol

42

The owned state also can also be witnessed witheuéxclusive state resulting in a MOSI
protocol whose state transition diagram is notdatéid. All the cache coherence protocols

evaluated in the current study presume MOESI states
2.5 Existing Cache coherence protocols

In this section, we will present few already exigticache coherence protocols for

multiprocessors.
2.5.1 Snooping bus-based coher ence protocol

Goodman et al. [79] first described snooping cohegeon bus. In snoop-based protocols, a
coherence request is broadcast to all nodes any eweele snoops the request. Each node
maintains an identical state machine to implemieatceiche coherence protocol. By snooping
the request, each node applies the message omtcsiaie of the state machine and responds
accordingly. In these systems, a node is considarediprocessor with its private cache
hierarchy. Snoop-based protocol is implemented daygudifferent techniques depending on
the topology for interconnect. The most interestmges are bus-based and ring-based
snooping. Bus-based snooping is the widely usedoapp for cache coherence where a bus
connects all components to a set of wires. A bder®fthe key ordering and atomicity
attributes that allow straightforward coherencerapens. Goodman [79] first described
snooping coherence on a bus. This technique hag s@mants. The sent messages are
viewed by all the endpoints on a bus in a simidaltorder. Busses offer atomicity such that
at one time only one message is visible on thednasthat all endpoints see that message.
Buses execute shared lines that permit any endpoiaiter a signal or condition that is
visible across to all other endpoints during a tvaesaction. Shared wires are used for bus
arbitration. They are also used in coherence axfie a processor having a shared copy of
the cache line can indicate whether there is amyeshcache copy on snooping a GETS
request in the bus. When a GETX request (permigsianodify data) is introduced on the
bus, all nodes snoop their caches and the memaityotier gets ready to fetch the data from
DRAM. If the tag is present in a processor’s cacheead-shared state S, the coherence state
is altered to invalid state | to nullify read pession from its own processor. If the
processor’s cache has a tag in altered state Nlyssxe state E, or owner state O, it declares
the shared owned line to constrain a memory reptlytaen puts the data on the bus before
moving its state to I. In a bus-based protocol sth@ed owned line provides the functionality

of signaling the memory controller not to send dla¢a when data is altered in a processor’s

43

cache. If there is no processor to provide the ¢sttared owned line is not set) memory
controller provides the data. When a GETS requestnfission to read data) appears on the
bus, all nodes snoop their caches and the memaityotier gets ready to fetch the data from
DRAM. If the processor’s cache has a tag in M, EQaostate, it declares the shared owned
line to constrain a memory reply and then putsddia on the bus before moving its state to
O or S state depending on implementations; othermiemory controller serves the data and

requester moves to E- state.

Cache replacements are performed silently for copieS or E state. For M or O state it
requires a write back of modified data to memonywirite back, the node needs to introduce
a WRITEBACK bus transaction that contains incluttess data and is accepted by memory.
The atomic character of the bus guarantees thatgamherence requests are ordered in
context to the write back function. Sometimes thigeaback data may be buffered in write
back buffer to serve the misses before writing béitkhat case, bus snoops must also look
into write back buffer. Bus arbitration determinée fairness of the bus-based broadcast
protocol as a processor can complete its trangadtend only if it is able to send its request
on the bus. A state transition must appear atoRFoc.example, two nodes may send the
UPGRADE request simultaneously while both are iaretl state. One of them will get the
bus exclusive access and the other will not. Tleedwner node’s UPGRADE will invalidate
second requester's copy. Once the second requgsterthe bus access, the UPGRADE
message is no longer valid as it does not haveudltopy. There are several ways bus can
be implemented. One approach is to use electrishllyed wires which are held exclusively
for the entire cache coherence transaction (attraitsaction). A better performing option is
to use split transactions to permit other processorget the bus while awaiting a reply.
Modern snooping systems execute a logical bus gnmgoadditional switches, state, and
logic instead of shared electrical wires; somehoke systems also execute the ordering of a
bus only for coherence control messages and notdta such as Sun Starfire [86] [87]
system executes a logical bus merely for coherezmpgest messages, but data responses are
transmitted on a different switched interconneetwFof the buses use pipelining methods in
order to attain more concurrency. While these naggressive buses may ease the atomicity
attribute, they still offer a total order of cohece requests that allows a straightforward

execution of snooping.

44

The disadvantage of these bus-based snooping pietie that the buses have limited
bandwidth. The more often it snoops on the bus|eb® bandwidth is available for the bus’s
main job of transferring information back and foritth addition, the broadcast nature of cache

messages requires even more valuable bandwidth.
2.5.2 AMD-Hammer Coherence protocol

The Opteron systems from AMD made use of Hammeheaoherence protocol for CMPs

[8] [9]. Just as shooping-based protocols, Hamfiaués to retain any coherence details about
the blocks kept in the private caches and, dubisofact, it relies upon broadcasting requests
to each individual cores on the chip to resolveheamisses. Its key benefit in comparison
with snooping-based protocols is that it managsegtesys which makes uses unordered point-
to-point interconnection networks. The hammer protsupports small to moderate number
of cores and it works with unordered interconnettetwork where traditional snooping is

not possible.

XPO 1

Figure 2.10: Cache to Cache miss in AMD-Hammer protocol

In case of a cache miss, the hammer first sendguest to the home memory, it allocates a
transaction entry to place the block into a busyesaind the request is send to all the cores
within the system like broadcast based protocol to olitsnrequested block and to clear
away the potential copies of the block in case ofvrde miss. Finally, the request is
forwarded to the memory controller that fetchesadewm main memory and sends it to the
requesterAfter receiving forwarded request, each core samdexplicit acknowledgment or
the datamessage to the request&s soon as the requester obtains each of the resppoit
transmits arunblock message tthe home tile. This message informs the homewtth the
fact that the miss has already been fulfilled.unrsa manner, if there is an additional request

for the identical block waiting with the home tilthen it is processed by providing the

45

requested blockDespite the fact that the unblock message may ialsoduce additional
contention towards the home tile, it really stops the appsagaof race problems. This
message is also helpful to eliminate race conditiondirectory-based protocolhich are
discussedshortly. Figure 2.10 demonstrates an illustrabbimow Hammer resolves a cache-
to-cache transfer miss. As shown in figure, theed®rcommunicates a GetX request (write)
towards the home node (H). Thereafter, home nadesinits invalidation messages to all the
cores. The core having the ownership of the reqdellock replies with the data block (3
Data). On the other hand, all the cores that damwantain a copy of a given block (Invalid)
retort by means ahe acknowledgememessages. As soon as the requester obtains et of
responses, it transmits the unblock message (4)Uabardsthe home coreAt first, we
observed thatthis protocol requires three hops within the criticaklp before the required
data block isacquired Secondly, transmitting the invalidation messageses significantly
the traffic inserted within the interconnectionwetk and, as a consequence increases power

consumption.

2.5.3 Token-Based Coherence protocol

Token coherence [88] is a framework for designiogerence protocols whose main asset is
that it decouples the correctness substrate frarrgkedifferent performance policies. Token
coherence protocols can avoid both the need ab#yt@rdered network and the introduction
of additional indirection caused by the acces$i&ohtome tile in the common case of cache-
to-cache transfers. Token coherence protocols &aelpe coherence by assigning T tokens to
every memory block, where one of them is the ovtoleen. Then, a processing core can read
a block only if it holds at least one token fortthbock and has valid data. On the other hand,
a processing core can write a block only if it lso&dl T tokens for that block and has valid
data. Token coherence avoids starvation by issaipgrsistent request when a core detects
potential starvation. In CMP systems, it uses &itiged arbitration scheme for persistent
requests, which are issued after a single retrgptiimize the access to contended blocks.
Particularly, on every cache miss, the requestorg broadcasts requests to all other tiles. In
case of a write miss, they have to answer withoakbns that they have. The data block is sent
along with the owner token. When the requesteriveseall tokens the block can be
accessed. On the other hand, just one token isreglqupon a read miss. The request is
broadcast to all other tiles, and only those tlaatehmore than one token (commonly the one
that has the owner token) answer with a token arwpg of the requested block. Figure 2.11

shows an example of how Token solves a cache-toecaansfer miss. Requests are

46

broadcast to all tiles (1 GetX). The only tile wittkens for that block is M, which responds
by sending the data and all the tokens (2 Data).

XRD 1

Figure 2.11: Cache to Cache miss in Token coherence protocol

We can see that this protocol avoids indirectiorcesionly two hops are introduced in the
critical path of cache misses. However, as happer$éammer, this protocol also has the
drawback of broadcasting requests to all tiles werye cache miss, which results in high

network traffic and, consequently, power consumpéibthe interconnect.
2.5.4 Directory-based protocol

One of the most widely used cache coherence prot@&j [89] in shared memory
multiprocessors was directory based coherence gobtoA number of conventional
multiprocessors that employed directory protocotsthe Standford DASH [91] and FLASH
[92] multiprocessors, the SGI Origin 2000/3000 [98hd the AlphaServer GS320 [94].
Currently, a number of Chip Multiprocessors, sushPaanha [95] or Sun UltraSPARC T2
[96], as well employs directory protocols to maintaache coherence. In directory based
protocols, the serialization location is also tloenle core of the block, which is similar to the
hammer protocol. In comparison to hammer, the thrgcbased protocols refrain from
transmitting the requests by maintaining detailsualthe state of every individual block
within the private caches. This data is known aeatiory information (therefore known as
directory-based protocols). In an effort to spepadache misses, this directory details are not
kept in main memory. Rather, it is often storedcbip with the home tile of each and every
block. The directory-based protocol that we havelemented for CMPs is similar to the
intra-chip coherence protocol used in Piranha. iigsly, the directory data is comprised of
a full-map (or bit-vector) sharing code that idiméid for tracking the sharers of the block.
Sharing code permits protocol in terms of sendmglidation messages to caches that are
currently sharing block, and so remove unnecegsadiéntified coherent messages. In

47

directory-based protocols, where O-state is &r owner field referring to owner tile gets
added to directory information meant for every BloOwner field permits protocols in terms
of detecting tile that needs to offer block meanter varied sharers. Thus, requests are
forwarded to tile. Application of directory inforrian permits protocol for reducing adequate
network traffic as against Hammer as well as Tok&rer each cache missed in application is
marked in directory protocol [97] [98], where caBason to miss sends request to home tile,
an aspect that serializes for all kinds of requestsed in terms of same block. Every home
tile comprises of on-chip directory cache thatdsponsible for storing, sharing and further
owning data for blocks as it manages. This cacle igglied for blocks that never hold any
copy in shared cache. Moreover, tags’ part of tlteeesd cache comprises field for storing all
the shared data meant for those blocks with a \eaitdy in cache. As home tile decides about
the request process, it gains access towards alyedata and further performs apt kinds of
coherent actions. These actions comprise forwardeggest to owner tile, and further lay
interest in invalidating all the block copies far mstant where write gets missed. Whenever,
the tile obtains a forwarding request, it sends dag towards the consumer when it is
already available or, in other instance, the regunesd to hold back until the data will be
available. Similar to Hammer, each and every titesst reply to the invalidation messages
using an acknowledgement message to the consuimee, $he acknowledgement messages
are obtained by the requester, it is often esdettiaipdate the consumer regarding the
number of acknowledgements that it must obtainrgaaccessing the requested data block.
Within the implementation that we use in this tee#iis information is sent from the home
tile, which has knowledge of the total number ofaldation messages released, to the
requester in addition to forwarding as well as da&ssages. Whenever the consumer obtains
all acknowledgements and the data block, it unldatie home tile in order to permit it to
process additional requests for that block. FigAr#2 presents an illustration of how
directory resolves a cache-to-cache transfer niigs.request is forward towards the home
tile, wherein the directory data is preserved (XpeAfter that, the home tile forwards the
request towards the source of the block, whichxisaeted from the directory data (2 Fwd).
Whenever the data forwarded by the provider arrivesards the requester (3 Data), the miss
is considered solved and the home tile must beagkbt (4 Unbl). As we can see, although
this protocol presents indirection to resolve eashisses (about three hops within the critical
path of the miss), a small number of coherence agessare involved to resolve them, which
ultimately translates into savings in network tiafand less power consumption. This
attribute makes the directory protocol the utmaostable approach.

48

XPD 1

2 Inv

Figure 2.12: Cache to Cache transition in Directory based i protocol

The cache coherence protocols explained earliersamemarized in Table 2.1. It is not
feasible to employ conventional snooping-based opals for scalable point-to-point
networks. Hammer can work over scalable point-toHpaetworks but at the expense of
broadcasting requests to all cores and introducidgection in the critical path of cache
misses. Tokens on the other hand, evade the itidinelout yet send requests to all cores on
every cache miss, which, in turn, influences thesconption of power and network traffic.
Contradictorily, directory merely sends requeststiie core that must obtain them; it

however, initiates indirection, which influenceg xecution time of the applications.

Table2.1: Summary of coherence protocols

Network Requests Indirection
Snhooping shared interconnect To all cores No
Hammer Point-to-point To all cores Yes
Token Point-to-point To all cores No
Directory Point-tgoint Only to necessary Yes

In our work in this thesis, we have used modifiedatory-based coherence protocols that
circumvents both broadcasting messages to eatdte afores and the indirection to the owner
core for majority of cache misses.

2.6 Summary

In this chapter, we reviewed the existing reseatohe to optimize cache management
schemes for uni-cores and multicore processors.fdiesed on some fundamental work

followed by description of existing cache coheretemniques for multiprocessors.

49

Chapter 3

Evaluation M ethodology

This chapter describes the experimental framewarktae benchmarks used in this thesis.

50

Chapter 3

Evaluation M ethodol ogy

3.1 Introduction

The Experimental frame work and the methodology leygal in this thesis is described in
the current chapter. First, a flexible and detatadhe-coherent distributed shared memory
system prototype that comprises of L1 caches, [ches main memory and interconnection
network is implemented. Then details of the timgnguulation tool are presented followed

by the discussion of the power and area estim#biols.

The remainder of the chapter is structured asvi@idSection 3.2 presents the details of the
simulation tools used for the performance evaluaticarried out in the current work. Section
3.3 and Section 3.4 discusses the interconnectiwh power estimation tools used for

calculating the improvements for the proposed s@sert last, the discussions on the choice

of application programs (benchmarks) and their digisons are presented in Section 3.5.
3.2 Experimental Framework

We employed an in-order processor model with th@lersis on the average raw memory
latency encountered by each memory request to geo&i much better illustration of the

memory system behavior.
3.2.1 Simulation Tools (Simulation Setup)

We have used Simics from Virtutech, which is a sy#stem simulator [99] that has the ability
of simulating an entire computing system, includipgcessors, caches and memories,
graphics and networking cards, hard disks, and nyggs of removable media. This kind of
flexibility allows the simulation of many differeftardware architectures and the ability to
boot a variety of different operating systems. &ettet, the ability to boot these operating
systems means that there are a variety of benclhmgaduites available to test system
optimizations. Simics provides a built-in cachetsgs called g-cache that allows individual
cache modules to be attached to a processor. ltledsg cache modules it is possible to build
up a model of the entire cache system, includingukiting accesses to main memory. The g-
cache implementation even provides support forid-inucoherency protocol called MESI,
which is used in a many of Intel's microprocess®#hile this implementation of MESI is

specifically intended for cache systems utilizingtevthrough L1 caches and write-back L2

51

caches, it can be modified to work for other comfagions. MESI, which represents Modified
Exclusive Shared Invalid, provides a method foridgating the status of lines within the
cache. Limiting the number of states to four regmiithat only two bits be added to each line

in the cache, resulting in a relatively small stigr@verhead.

At present, Simics backs prototypes for the follogviarchitectures: UltraSPARC, Alpha,
x86, x86-64 (Hammer), PowerPC, IPF (ltanium), Mi&@& ARM. In addition to the ability
of simulating target architectures, Simics eadilgves the inclusion of extensions or modules
in order to extend its functionalities.

3.2.2 Detailed Cache Simulator

We employed a modular simulation infrastructure GEMGeneral Execution-driven
Multiprocessor Simulator) that decouples both station functionality and timing so as to
develop a simulation tool-set that endorses bdtksfistem and timing simulation [100]. We
utilized Simics [99], a full-system functional sifator, as the basis on which different timing
simulation units could be loaded dynamically. Watool both the efficacy and robustness of
a functional simulator by decoupling functionaliyd timing simulation in GEMS. The
employment of the modular design offers the adalftalio simulate different system
modules in varied levels of details. GEMS incladgroup of modules executed in C++ that
plug into Simics and add timing capacities to tirausator. GEMS provide offers varied

modules for designing different facets of architieet

Random 2 5

Tester b ﬁ
< T &= Opal
=N =

Ao = £ Detailed
WF_ ‘I\ ; Sl 8 Processor

/=l Model
Q{\ Microbenchmarks

Interconnection
Networ

Coherence

Controllers '

Caches & Memory

Figure. 3.1: A block diagram of GEMS Structure: Ruby, detaieemory simulator can be
driven by one of four memory system request genoegat

52

The heart of GEMS is the Ruby memory system simulaAs illustrated in Figure 3.1,
GEMS provides multiple drivers that can serve asw@rce of memory operation requests to
Ruby:

1) Random tester module: The most basic driver of Ruby is a random testiniy designed
to stress test the corner cases of a given memmganization. It makes use of false
sharing as well as action/check pairs to identdyesal possible memory system as well
as coherence issues in addition to race probleB]s A2number of capabilities are found
in Ruby that can debug the modelled system alotig @eadlock identification as well as

protocol tracing.

2) Micro-benchmark module: This driver allows several micro-benchmarks with
common interface. The feature work extremely wallfindamental timing validation, in
addition to comprehensive performance evaluationceftain conditions (e.g., lock

contention or widely-share data).

3) Simics: This driver makes use of Simics functional sinhaddo effectively approximate a
reliable in-order processor without pipeline stalBmics sends each and every load,
store, and instruction fetch requests to Ruby, Wiarries out the first stage cache access
to find out if the operation hits or misses withine first level cache. Upon the cache hit,
Simics may keep executing instructions, switchiegueen processors within a multiple
processor setting. On a cache miss, Ruby stallscSimequest originating from issuing
processor, and thereafter simulates the cache Ewssy individual processor could have
only a single miss outstanding, however contengilong with other timing affects among
the cpu cores will decide when the request finislBgsgoverning the timing related to
when Simics advances, Ruby decides the timing-ddpenfunctional simulation in
Simics (e.g., to identify which processor subsetjyenceives a memory block).

4) Opal: This powerful driver models a dynamically-scheduUlISPARC v9 processor and

certainly utilizes Simics to verify its functionabrrectness.

The initial pair of drivers belong to a stand-aaxecutable that is separate from Simics
or any real simulated programiloreover, Ruby is particularly developed to ase&sious
other drivers other than four already mentiorigd means of well-defined interface.
GEMS’ modular layout offers considerable simulator configuratifiexibility. For
example, these memory system simulator is sepdrate our processor simulator.

GEMS additionally provides flexibility in specifyinseveral cache coherence protocols

53

that canbe simulated by our timing simulatoit divides the protocol-dependent
information from theprotocol-independent system components as agetechniquesTo
facilitate specifying different protocols and syste it provides the protocol specification
language SLICC which we have used for implementivegproposed cache management

techniques. The two main simulation modules areyRuta Opal.

5) Ruby: Ruby has been identified as timing simulator fadtiprocessors memory system
which includes caches, controllers of cache and ongmnterconnection network, and
main memory banks. Ruby comprises hard-coded tinsingulation in relation with
components that remain largely independent overhesaoherent protocol (like,
interconnecting network) added by the capability describe protocol-dependent
elements (as cache controllers) in terms of domspetific language, SLICC
(Specification Language for Implementing Cache Cehee). Ruby module is realized
using C++ and further uses queue-driven modelifoukaiting timing. Message buffers of
different latencies and bandwidth are used for comioation in between various
components, in addition the components at the vexpend of the buffer are scheduled
to get up over next message, which is availablerdading from the buffer. However,
there are many buffers that are used under strgttif-first-out (or the FIFO) manner,
whereby the buffers are never liable to remainrictstl towards FIFO behavior. The
simulation proceeds by invoking the wakeup metrwdtie next scheduled event on the
event queue. Thus, simulation remains identicataise all the components get woken up
in every cycle; so that event queue can get opéichfar avoiding unnecessary processing

in every cycle.
3.2.3 Protocol-Independent Components

The message buffer, cache arrays, memory arraysassatted glue logic are the protocol
independent components of ruby. However, a patoaiponents that deserves discussion are

definitely the caches as well as the interconnaatietwork.

Caches. Ruby module permits to implement a complete cachaichy associated with each
single core in addition to the shared caches eregloy the CMPs along with other
hierarchical coherence system. Cache attributeshadan include size and associativity, are

considered as the configuration parameters.

54

Interconnection Network: The interconnection network is the unified commatian
substrate used to communicate between cache andmneantrollers. A single monolithic
interconnection network model is used to simulalle cammunication, even between
controllers that would be on the same chip in aufated CMP system. As such, all intra-chip
and inter-chip communication is handled as parintédrconnect, although each individual
link can have different latency and bandwidth pasters. This design provides sufficient
flexibility to simulate the timing of almost anyrid of system. A controller communicates by
sending messages to other controllers. Ruby’sdaterection network models the timing of
the messages as they traverse the system. Messaget® multiple destinations (such as a
broadcast) use traffic-efficient multicast-basedtireg to fan out the request to the various
destinations. Ruby models a point-to-point switchegrconnection network that can be
configured similarly to interconnection networkscurrent high-end multiprocessor systems,

including both directory-based and snooping-baystems.

For simulating systems based on directory protocBigby supports three non-ordered
networks: a simplified full connected point-to-pbimetwork, a dynamically-routed 2D-torus
interconnect inspired, and a flexible user-defimetivork interface. The first two networks
are automatically generated using certain simuledofiguration parameters, while the third
creates an arbitrary network by reading a usemddficonfiguration file. This file-specified
network can create complicated networks such aMB-ODNUCA network. For snooping-
based systems, Ruby has two totally-ordered nesvarkrossbar network and a hierarchical
switch network. Both ordered networks use a hiéra@ one or more switches to create a
total order of coherence requests at the netwadds. This total order is enough for many
broadcast-based snooping protocols, but it reqtivasthe specific cache-coherence protocol
does not rely on stronger timing properties prodid®y the more traditional bus-based
interconnect. The topology of interconnect is sipediby a set of links between switches,
and the actual routing tables are re-calculatedefmh execution, allowing for additional
topologies to be easily added to the system. Tterdannect models virtual networks for
different types and classes of messages, andowvsldynamic routing to be enabled or
disabled on a per-virtual-network basis (to proydét-to-point order if required). Each link
of interconnect has limited bandwidth, but intencects does not model the details of the
physical or link-level layer. By default, infiniteetwork buffering is assumed at the switches,
but Ruby also supports finite buffering in certai@tworks. Although, Ruby’s interconnect

model is sufficient for coherence protocol and mgmisierarchy research, but it allows

55

integration of more detailed interconnection netwéor research focusing on low-level

interconnection network issues.
3.2.4 Specification Language for Implementing Cache Coherence (SL1CC)

A domain-specific language is included under Rubystate cache coherence protocols
referred to as SLICC (Specification Language foplementing Cache Coherence).SLICC
permits the effortless development of varied cacbkerence protocols and it has been
employed to implement the protocols assessed irctineent study. It relies on notion of
stating distinct controller state machines thatesent system elements like cache controllers
and directory controllers. Each controller is thegimally a per-memory-block state machine,

which comprises of:
» States: group of probable states for each cache block,
* Events: conditions that activate state changes, likesags arrivals,

« Transitions. the cross-result of states and events (relyinghenstate and event, a

transition executes an atomic series of activiied modifies the block to a new state)
» Actions: the particular operation executed during a tréonsit

For instance, the SLICC code may specify a “Shastake that permits read-only access for
a block in a cache.

3.3 Interconnection Network

3.3.1 GEM S I nterconnection Networ k

Our initial simulation uses GEMS’s [100] network ds&b for interconnect and switch
contention prototype. It uses virtual cut-throughtshing for transferring cache messages
through interconnects. The network link width isldyées and so is the flit size. The data and
command communications are executed by messadkeeefvaried sizes (8 bytes, 16 bytes,
and 72 bytes). 8-byte and 72-byte messages arehysé@S and Victim Migration. The
network link is shared at an 8B granularity; thiglicates two 8B messages (or one 8B
message and part of a 16B or 72B message) cambatgsbe same time, presuming that both
the messages are to be sent. Wdeked with a buffer size of 3 and a message mnaitl to go
through a link/switch in cases where there is a beffer entry on the other side. The link is ogedp
across most of the cycles required (determined bgsage size, link-width, and link latency) to
forward a message from one particular side to thercside. Messages are forwarded in first come

first serve (FCFS) manner. L2S makes use of 2 alithannels (one for request and one more for

56

response messages) in each direction. Messagepetvhetween L1s as well as L2s are treated as
on-chip traffic and messages communicated betwe28® and memory controller are treated as off-

chip traffic.
3.3.2 Garnet Network / Orion

With increasing core counts, the on-chip networkdoees an integral part of future chip

multiprocessor (CMP) systems. Future CMPs, withetiszzo hundreds of nodes, will require
a scalable and efficient on-chip communication ifabFhere are several ways in which on-
chip communication can affect higher-level systegsigh. Contention delay in the network,

as a result of constrained bandwidth, impacts systeessage arrivals. In multi-threaded
applications, spin locks and other synchronizatimechanisms magnify small timing

variations into very different execution paths. Wettk protocols also impact the ordering of
messages. A different order of message arrival iogpact the memory system behavior
substantially. Especially for cache coherence als) protocol level deadlocks are carefully
avoided by designing networks that obey specifieang properties among various protocol
messages. The manner in which the ordering is imghted in the network leads to different
messages seeing different latencies and again tsypaessage arrivals. Communication
affects not only performance, but can also be nifssgnt consumer of system power. Not
only do network characteristics impact system-lebehavior, the memory system also
impacts network design to a huge extent. Co-dasggimterconnects and the memory system
provides the network with realistic traffic patterand leads to better retuning of network

characteristics

CPU CPuU - - - cPu

SH BE F

L1 Cache Lt Cache Li Cache

Controlber Comrober - - - Commier

SE HE =

_.__.--'_'__.___"‘-\-_.-r"_'_ ____"--\.._,_:—'— = iy, D—

Interconnection Network _%

e — ____'-'_'-Fr-i_ o
%ﬂlﬂ? %mn%

Comrofier | ® ® | comrolier

Figure 3.2: Interconnection network on chip

57

System-level knowledge can highlight which metraelay/throughput/power) is more
important. The inter-connect also needs to be awhatke specific ordering requirements of
higher levels of design. Figure 3.2 shows how weicomponents of a CMP system are
coupled together. The inter-connection network he tommunication backbone of the
memory system. Thus, interconnection network detedn no longer be ignored during
memory system design. To study the combined effesystem and interconnect design, we
require a simulation infrastructure that modelséhaspects to a sufficient degree of detail. In
most cases, it is difficult to implement a detaiged! accurate model that is fast enough to run
realistic workloads. Adding detailed features iases the simulation overhead and slows it
down. However, there are some platforms that cHyetilade off accuracy and performance
to sufficiently abstract important system charastis while still having reasonable speed of
simulation on realistic workloads. One such platfas the GEMS full-system simulation
platform. It does a good job in capturing the dethiaspects of the processing cores, cache
hierarchy, cache coherence, and memory controllEhgs has led to widespread use of
GEMS in the computer architecture research commuiithere has been a huge body of
work that has used GEMS for validating researchsd®ne limitation of GEMS, however, is
its approximate interconnect model. The intercotinecsubstrate in GEMS serves as a
communication fabric between various cache and mgantrollers. The model is basically
a set of links and nodes that can be configureddaous topologies with each link having a
particular latency and bandwidth. For a messadgeaterse the network, it goes hop by hop
towards the destination, stalling when there igeation for link bandwidth. GEMS does not
model a detailed router or a network interface. i@y modeling a detailed router micro
architecture, GEMS ignores buffer contention, siwignd Virtual Channel (VC) arbitration,
realistic link contention and pipeline bubbles. TBEMS interconnect model also assumes
perfect hardware multicast support in the routergn-chip network designs, supporting fast
and low power hardware multicast is a challengees€éhand other limitations in the
interconnect model can significantly affect the ults reported by the current GEMS
implementation. Trace driven techniques also docapture program variability that a full-
system evaluation can. In the light of the abogeies, we have integrated GARNET, which
is a detailed timing model of a state-of-the-ateinonnection network, modeled in detail up
to the microarchitecture level. A classical fivage pipelined router with virtual channel
flow control is implemented. Such a router is tgbig used for high-bandwidth on-chip

networks.

58

3.3.3 Base GARNET model design

Modern on-chip network designs use a modular paskéthed fabric in which network
channels are shared over multiple packet flows.us&x a classic five-stage virtual channel
router [101]. The router can have any number ofiirgnd output ports depending on the
topology and configuration. The major componentictv constitute a router, are the input
buffers, route computation logic, VC allocator, ®hiallocator and crossbar switch. A five-
stage router pipeline was selected to adhere to ¢larck frequency network designs. Every
VC has its own private buffer. The routing is dirs@m-ordered. Since research in providing
hardware multicast support is still in progress atate-of-the art on-chip networks do not
have such support, we do not model it inside theers. A head it, on arriving at an input
port, first gets decoded and gets buffered accgrthnts input VC in the buffer write (BW)
pipeline stage. In the same cycle, a request i$ teethe Route Computation (RC) unit
simultaneously, and the output port for this padketalculated. The header then arbitrates
for a VC corresponding to its output port in the ¥ication (VA) stage. Upon successful
allocation of an output VC, it proceeds to the $tvidllocation (SA) stage where it arbitrates
for the switch input and output ports. On winnitg tswitch, then it moves to the switch
traversal (ST) stage, where it traverses the cews3iis is followed by Link Traversal (LT)
to travel to the next node. Body and tail its falla similar pipeline except that they do not
go through RC and VA stages, instead inheritingMeallocated by the head it. The tail it
on leaving the router, deallocates the VC resebsethe packet. Router micro architectural
components: Keeping in mind on-chip area and eneoggiderations, single-ported buffers
and a single shared port into the crossbar frorh eguut were designed. Separable VC and
switch allocators were modeled. This was done lmxdlese designs are fast and of low
complexity, while still providing reasonable thrdymyt, making them suitable for the high

clock frequencies and tight area budgets of on-oktporks.

The individual allocators are round-robin in naturgeractions between memory system and
garnet as shown in Figure 3.1. The interconnectietwork acts as the communication
backbone for the entire memory system on a CMP.vEneus L1 and L2 cache controllers
and memory controllers communicate with each otlgng the interconnection network.
Note that we are talking about a shared L2 systers.lilrhe network interface acts as the
interface between various modules and the netw@rka load/store, the processor looks in
the L1 cache. On a L1 cache miss, the L1 cachedltantplaces the request in the request

buffer. The network interface takes the messagebaedks it into network-level units (its)

59

and routes it to the appropriate destinations whiaffht be a set of L1 controllers as well as
L2 controllers. The destination network interfacesbine this into the original request and
pass it on to the controllers. The responses usenttwork in a similar manner for
communication. Some of these messages might bieeocritical path of memory accesses. A
poor network design can degrade the performantieeainemory system and also the overall
system performance. Thus, it is very important tohidect the interconnection network

efficiently.
3.4 Energy Model

3.4.1 CACTI

CACTI (Cache Access and Cycle Time Information)J[LProvides an integrated cache and
memory access time, cycle time, area, leakagedgnamic power model. By integrating all
these models together, one can get to know traldesefween time, power, and area. CACTI
is continually being upgraded due to the incessamprovements in semiconductor
technologies. Particularly, we employ the versiod for the results presented in this thesis.
We are mainly interested in getting the accessitae and area requirements of both cache
and directory structures that are necessary folementing our ideas. In this study, we
assume that the length of the physical addressOidits as, for example, in the Sun
UltraSPARC T2 architecture [96]. This length is dige calculate the bits required to store
the tag field for each cache. Moreover, we alsarassa 45nm process technology, and the

other parameters shown in the following section.
3.4.2 Energy calculation

This thesis also evaluates the energy consumedndyNUCA cache and the off-chip
memory. To do so, we used a similar energy modé&hab adopted by Bardine et al. [103].
This allowed us to also consider the total energgipgated by the NUCA cache and the
additional energy required to access the off-chgmory. The energy consumed by the

memory system is computed as follows:
Etotal = Estatic + Edynamic
Estatic = ES _noc + ES_banks + ES_mechanism
Edynamic = ED_noc + ED_banks + ED_mechanism + Ebiif>-

We used models provided by CACTI to evaluate statiergy consumed by the memory
structures (ES_banks and ES_mechanism). CACTI éas bsed to evaluate dynamic energy

60

consumption as well, but GEMS support is requiredhis case to ascertain the dynamic
behavior in the applications (ED_banks and ED_meish&. GEMS also contains an
integrated power model based on Orion [104] thatised to evaluate the static and dynamic
power consumed by the on-chip network (ES_noc dhdnigc). Note that the extra messages
introduced by the mechanism that is being evaluatedthe on-chip network are accurately
modeled by the simulator. The energy dissipatedhleyoff-chip memory (Eoff-chip) was
determined using the Micron System Power Calcul§t05] assuming a modern DDR3
system (4GB, Vvdd: 1.5v, 333 MHz). Our evaluationttué off-chip memory focused on the
energy dissipated during active cycles and isolétéxl from the background energy. This
study shows that the average energy of each ac&&® pJ. As an energy metric we used
the energy consumed per memory access. This isl lmaséhe energy per instruction (EPI)
metric which is commonly used for analyzing therggeconsumed by the whole processor.
This metric works independently of the amount ofdirequired to process an instruction and

is ideal for throughput performance.
3.5 Workload Description

The aim of this section is to choose a benchmaite shat can be used to design the next
generation of processors. In this section, we firsisent the requirements for such a suite.
We then discuss how the existing benchmarks fait¢et these requirements.

We have the following five requirements for a benelk suite:

Multithreaded Applications: Shared-memory CMPs are already ubiquitous. Thedtfen
future processors is to deliver large performanmogrovements through increasing core
counts on CMPs while only providing modest seriagrfgrmance improvements.

Consequently, applications that require additiggmatessing power will need to be parallel.

Emerging Workloads: Rapidly increasing processing power is enablingea mlass of
applications whose computational requirements vibengond the capabilities of the earlier
generation of processors. Such applications areifisigntly different from earlier

applications.

Diverse Workloads: Applications are increasingly diverse, run on adetgrof platforms and
accommodate different usage models. They includih hioteractive applications like
computer games, offline applications like data mgnprogram and programs with different
parallelization models. Specialized collectionsbehchmarks can be used to study some of

these areas in more detail, but decisions aboiwdrgkepurpose processors should be based on

61

a diverse set of applications. While a truly reprgative suite is impossible to create,
reasonable effort should be made to maximize thersity of the program selection. The
number of benchmarks must be large enough to @ptsufficient amount of characteristics
of the target application space.

Employ State-of-Art Techniques: A number of application areas have changed draaitic

over the last decade and use very different alyostand techniques. Visual applications for
example have started to increasingly integrate ipey@mulations to generate more realistic
animations. A benchmark should not only represerdrging applications but also use state-

of-art techniques.

Support Research: A benchmark suite intended for research has additioequirements

compared to one used for benchmarking real machiloee. Benchmark suites intended for
research usually go beyond pure scoring systemspemdde infrastructure to instrument,
manipulate, and perform detailed simulations of theluded programs in an efficient

manner.
3.5.1 Limitations of Existing Benchmark Suites

In the remaining part of this section we analyze lexisting benchmark suites fall short of
the presented requirements and must thus be coedidesuitable for evaluating CMP

performance.

SPEC CPU2006 and OM P2001: SPEC CPU2006 and SPEC OMP2001 [106] are two of the
largest and most significant collections of benctk®aThey provide a snapshot of current
scientific and engineering applications. Computehiecture research, however, commonly
focuses on the near future and should thus alssidenemerging applications. Workloads
such as systems programs and parallelization maddsh employ the producer-consumer
model are not included. SPEC CPU2006 is furthernaoseite of serial programs that is not

intended for studies of parallel machines.

SPLASH-2: This is a suite composed of multithreaded applceti{107] and hence seems to
be an ideal candidate to measure performance of<CMBwever, its program collection is
skewed towards HPC and graphics programs. It thes dot include parallelization models
such as the pipeline model which are used in odpptication areas. SPLASH- 2 should
furthermore not be considered state-of-art anymBiaanes for example implements the
Barnes-Hut algorithm for N-body simulation. For ayaf simulations it has largely been
superseded by the TreeSPH method, which can atsmaicfor mass such as dark matter

62

which is not concentrated in bodies. However, deerpure N-body simulation barnes must
be considered outdated. In 1995 Xu proposed a dhyalgorithm which combines the
hierarchical tree algorithm and the Fourier-basadiée-Mesh (PM) method to the superior
TreePM method. Our analysis shows that similar e@ssexist for a number of other

applications of the suite including raytrace antiosity.

Other Benchmark Suites Apart from all the majottypes of benchmark suites, there are
various smaller collections of workloads that argeneral designed in order to research over
determined program area ath@refore remaitimited towards single application domain. This
is the reason that such aspects remain inclusigenafler application sets against diversified
benchmark suite, offered typically. Such limitasasre not applicable for scientific research,
which donot restrictthe application domainSuch type of benchmark suites can be noted as
ALPBench, MineBench, MediaBench, BioParallel andydits-Bench. As they follow

diversified approaches, we will not discuss sudtesun detail.
3.5.2 Multi-threaded Benchmarks

One of the goals of the PARSEC suite was to assempltogram [108] selection that is large
and diverse enough to be sufficiently represergator scientific studies. It consists of 9
applications and 3 kernels which were chosen fromicde range of application domains.
PARSEC workloads were selected to include differeminbinations of parallel models,
machine requirements and runtime behaviors. Alcherarks are written in C/C++ because
of the continuing popularity of these languageghia near future. PARSEC meets all the

requirements outlined in Section 3.4.3:
» All the applications are parallelized

* PARSEC benchmark suite never gets skewed for HP&yrgms that appear in
abundance, yet represent just a niche. It lays itapoe over emerging workloads.

» Diversified workloads are selected from varioaseas like media processing,
computational, computer vision, enterprise servéirsance and animation physics.
PARSEC appears more diverse against SPLASH-2.

» Every application represents state-of-art ipeetive areas.

» PARSEC supports computer architecture reseanclka inumber of ways. The most

important one is that for each workload six inpetissvith different properties are defined

63

(Section 3.1). The characteristics of the includearkloads differ substantially from
SPLASH-2 [6].

Recent technology trends such as the emergencklBs@nd the growth of world data seem
to have a strong impact on workload behavior.

3.5.2.1 Input Sets
PARSEC defines six input sets for each benchmark:
TEST: A very small input set to test the basic functidiyadf the program.

SIMDEV: A very small input set which guarantees basic @ogbehavior similar to the real

behavior, intended for simulator test and develapme

SIMSMALL, SIMMEDIUM and SIMLARGE: Input sets of different sizes suitable for

simulations.
NATIVE: A large input set intended for native execution.

TEST andSIMDEYV are merely intended for testing and developmedtsirould not be used
for scientific studies. The three simulator inpisisstudies vary in size, but the general trend
is that larger input sets contain bigger workintgs s;nd more parallelism. Finally, the native
input set is intended for performance measurementgeal machines and exceeds the
computational demands which are generally considéasible for simulation by orders of

magnitude.
3.5.2.2 Workloads
The following workloads are part of the PARSEC suit

BLACKSCHOLES: This application is an Intel RMS benchmark. It cédt¢es the prices for
a portfolio of European options analytically withet Black-Scholes partial differential
equation (PDE). There is no closed-form expresforthe Black- Scholes equation and as

such it must be computed numerically.

BODYTRACK: This computer vision application is an Intel RMSridoad which tracks a
human body with multiple cameras through an imagguence. This benchmark was
included due to the increasing significance of cotapvision algorithms in areas such as

video surveillance, character animation and compaterfaces.

CANNEL: This kernel was developed by Princeton University.uses cache-aware

simulated annealing (SA) to minimize the routingtcof a chip design. Canneal uses fine-

64

grained parallelism with a lock-free algorithm amslery aggressive synchronization strategy

that is based on data race recovery instead otlamoe.

DEDUP: This kernel was developed by Princeton Univerdit)compresses a data stream
with a combination of global and local compresdioat is called 'deduplication’. The kernel
uses a pipelined programming model to mimic reafldvanplementations. The reason for
the inclusion of this kernel is that deduplicatioms become a mainstream method for new

generation backup storage systems.

FACESIM: This Intel RMS application was originally developeg Stanford University. It
computes a visually realistic animation of the medeface by simulating the underlying
physics. The workload was included in the benchnsaite because an increasing number of

animations employ physical simulation to createamealistic effects.

FERRET: This application is based on the Ferret toolkit ahhis used for content-based
similarity search. It was developed by Princetoriversity. The reason for the inclusion in
the benchmark suite is that it represents emenggxgrgeneration search engines for non-text
document data types. In the benchmark, we haveiguoetl the Ferret toolkit for image
similarity search. Ferret is parallelized using pifgeline model.

FLUDANIMATE: This Intel RMS application uses an extension of $imeoothed Particle
Hydrodynamics (SPH) method to simulate an incongioés fluid for interactive animation
purposes. It was included in the PARSEC benchmaite sbecause of the increasing

significance of physics simulations for animations.

FREQMINE: This application employs an array-based versiothefFP-growth (Frequent
Pattern-growth) method for Frequent Item set MinfRtMI). It is an Intel RMS benchmark
which was originally developed by Concordia UnivigtsFregmine was included in the
PARSEC benchmark suite because of the increasmgfugata mining techniques.

STREAMCLUSTER: This RMS kernel was developed by Princeton Univgmind solves
the online clustering problem. Streamcluster watugted in the PARSEC benchmark suite
because of the importance of data mining algorittamd the prevalence of problems with

streaming characteristics.

SWAPTIONS: The application is an Intel RMS workload which uslee Heath-Jarrow-
Morton (HIM) framework to price a portfolio of swams. Swaptions employs Monte Carlo

(MC) simulation to compute the prices.

65

VIPS: This application is based on the VASARI Image Pssogy System (VIPS) which was
originally developed through several projects fuhtby European Union (EU) grants. The
benchmark version is derived from a print on demseice that is offered at the National
Gallery of London, which is also the current maima of the system. The benchmark

includes fundamental image operations such asfare afansformation and a convolution.

X264 This application is an H.264/AVC (Advanced VideodBw) video encoder. H.264
describes the lossy compression of a video streaimsaalso part of ISO/IEC MPEG-4. The
flexibility and wide range of application of the 264 standard and its ubiquity in next-
generation video systems are the reasons for thkision of x264 in the PARSEC

benchmark suite.
3.5.2.3 Characterization
We are interested in the following benchmark chiarastics:

Parallelization: PARSEC benchmarks use different parallel modelsclwhave to be
analyzed in order to know whether the programs szate well enough for the analysis of

CMPs of a certain size.

Working sets and locality: Knowledge of the cache requirements of a workloael a

necessary to identify benchmarks suitable for thdysof CMP memory hierarchies.

Communication-to-computation ratio and sharing: The communication patterns of a
program determine the potential impact of privatehes and the on-chip network on

performance.

Off-chip traffic: The off-chip traffic requirements of a program argortant to understand

how off-chip bandwidth limitations of a CMP canexit performance.

In Table 3.1 we summarize the important characditesi®f the identified working sets. Most
workloads exhibit well defined working sets witheatly identifiable points of inflection.
Compared to SPLASH-2, PARSEC working sets are fogmtly larger and can reach

hundreds of megabytes such as in the cases of alaanmfregmine.
Two types of workloads can be distinguished:

The first group contains benchmarks such as bodytrack and swaptwich have working
sets no larger than 16 MB. These workloads halmnited need for caches with a bigger
capacity, and the latest generation of CMPs oftemady has caches sufficiently large to

accommodate most of their working sets.

66

The second group of workloads is composed of the benchmarks canffieakt, facesim,
fluidanimate and freqgmine. These programs have hage working sets of sizes 65 MB and
more, and even with a relatively constrained irggitsuch as simlarge, their working sets can
reach hundreds of megabytes.

Table 3.1: Benchmark characteristics

Application Parallelization Workin Date Usage
Program pplicat Model 9 Sharing
Domain . Set
Granularity Exchange
blackscholes Flnanc[al data-parallel coarse small low low
Analysis
bodytrack | Computer Visiondata-parallel medium | medium| high| medium
Canneal Engineering unstructured fine unbounded high high
Engineering o . i .
dedup Storage pipeline medium| unboundedhigh high
Facesim Animation data-parallel coarse large low| medium
Ferret Similarity search pipeline medium| unboundedhigh high
Fluidanimate Animation data-paralle] fine large low | mediun
Fregmine Data Mining | data-parallelmedium | unbounded high | medium
Streamcluster Data Mining | data-parallel medium | medium low | medium
Swaptions Flnanc[al data-parallel coarse medium low low
Analysis
Vips Medlq data-parallel coarse medium low| medium
processing
X264 Medlq pipeline coarse medium high high
processing

Furthermore, the requirement of those workloadscémhe capacity is almost voracious and
rises with the extent of data processed by thera. Tidble 3.1 outlinethe approximationgor

the biggest working set of every PARSEC workload tfee native input group. In many
instances, they are remarkably huge and can ewah tgigabytes. These huge working
groups are commonly the result of an algorithm thattions and is based on huge amounts
of input data that is gathered. Canneal, dedupgetfeand freqmine are programs with

unbounded workingroups.
3.5.3 Multi-programmed wor kloads

We also evaluated our proposed schemes with mudgrpmmed workloads, which comprise
of many application instances running at the same tusing different subsets of the cores
available on chip. As it is anticipated that sel/@@e architectures will also be used for

67

throughput computing and multi-programmed worklohdse varied protocol requirements
as compared to parallel applications, they also emak interesting scenario for the

assessment undertaken in this work.
3.6 Summary

To summarize, Simics full sytem simulator alonghwisEMS enables us to model cache
memory, interconnects and off-chip memory with matke accuracy and power is measure
by CACTI. We have carefully chosen applications nfrodiverse domains. The
multiprogramming workloads that we simulate havepligptions with varying memory
intensive and non-intensive properties. We consaheeight core chip multiprocessor in all
our experiments. And finally, we have evaluated proposed schemes by executing these
diverse memory intensive applications on our basehrchitecture with proposed cache

management schemes.

68

Chapter 4

Adaptive Block Pinning: A Novel Shared Cache
Partitioning Scheme for CMP

This chapter presents an Adaptive Block Pinninge8Bwh which is a Novel Shared Cache

Management Scheme for CMPs to reduce miss rate.

69

Chapter 4

Adaptive Block Pinning: A Novel Shared Cache Partitioning for CMP

4.1 Introduction

Traditionally, multi-processor systems have beesigted by interconnecting multiple
uniprocessors and DRAM modules. In comparison tpronessors, a multi-chip system is
capable of delivering computing power that is savenagnitudes higher. However, the
design and performance of the memory system fottitolip system directly affects the
overall system performance. Below are three diffeedternatives, each differing in the way
they store and access data. Figure 4.1, shows saically centralized memory shared by all
of the processors, interconnected through a sHauedWhile this approach is simple, it can
only be applied when the number of processorsarsistem is small.

Core-1 Core-2 Core-3 Core-4
Cache Cache Cache Cache
[[[[
\i Y \i Y
[Interconnection Network j

Figure 4.1: Multi-processors with physically centralized mamo

Large multi-chip systems generally have hundredgrotessors and the bandwidth of a
centralized memory system does not scale with thegssor count. In these large multi-chip
systems, physical memory is typically distributemtogs the system, with a portion of the
memory co-located with each processor. A commuioicgbrotocol is used to manage the
exchange of shared data between different procesbmo such approaches are illustrated in
Figure 4.2 and Figure 4.3. Traditionally, designdrave taken two approaches for
implementing a physically distributed memory systamessage passing and distributed

shared memory.

70

Core-1

Core-2

Cache

Cache

Core-3

Core-4

Cache

Cache

Figure 4.2: Multi-processors with distributed shared memory

Core-1

Core-2

Core-3

Core-4

Cache

Cache

Cache

Cache

B

]

]

B

Figure 4.3: Distributed shared memory with message passing

CMP also called as multi-core processors and tmeycksely related to earlier multi-chip
multiprocessor systems. The main difference betwleemulti-chip multiprocessor and chip
multiprocessor lies in the communication networknm®nunication between two nodes in a
multi-chip multiprocessor system can take hundredsycles because of messages travel
through an inter-chip network as shown in Figuré, 4.2, and 4.3. Generally off chip
operations are clocked at a fraction of the chggfiency and are limited by on chip pin
bandwidth. However in a CMP as shown in Figure thd,communication messages between
processor cores travel through an on chip interection network, capable of delivering
much higher bandwidths at lower latencies. Thisificantly lowers the cost of inter node

communication as compared to multi-chip multipreoes.

71

Core-1 Core-2 Core-3 Core-4

Li-I|L1-D| Li1-I|L1-D| L1 |L1-D| L1l [L1-D

[Interconnection Network j

Shared-L2 Cache

Figure 4.4: Chip Multiprocessor with on-chip shared L2 cache.

For any CMP, the memory system is a main compomdnith can improve or reduce
performance dramatically. The latest versions ohynarchitectures are CMP with the last
level of on-chip cache memory organized as eitharesl or private. Private L2 caches for
each core has the advantage of low access lateatthese caches fail to make optimum use
of on-chip memory space because some blocks mal/todee replicated in other private L2
caches. While multiple cores with single sharecheaanake optimum use of on-chip cache
space, they do suffer from high access latency eoeapto private caches. L Hsu and lyer
[110] have shown that organizing the last level d&the as a shared cache gives better
performance than private caches. CMPs with lastlleaches as shared caches give rise to
another type of miss that were not present in pgicaches: “inter-processor misses”. A miss
is called an inter-processor miss in a multi-cygesm where a core evicts a block which was
brought into the cache by another core and subst@ueesses by this core to the same block
lead to a cache miss. To eliminate inter-processsses, researchers have proposed many
techniques: Shekhar [109] gives replacement ownedta set to a core that brings the first
block into that set. Only this core is allowed toce the blocks from that set. In a multi-core
system, ownership exists only for replacement; aewner cores can read and write into the
set but can’t evict the blocks. A major probleme@dy such multi-core architectures is
cache contention, where multiple cores competeutage of the single shared L2 cache.
Research shows that uncontrolled sharing leadsaimasios where one core evicts useful L2

cache data which belongs to another core.

This chapter proposes a fine grained control oher replacement ownership. Our work

analyzes and proposes a technique to provide ohipes$ individual blocks in a set instead

72

of providing ownership of a complete set to a canel it will be shown that such a fine
control results in better utilization of the blodkside a set. In the beginning, we investigated
and presented a comparative understanding of cabses in the context of CMPs with
shared last level cache by comparing the CII schi@oenpulsory, Inter-processor and Intra-
processor) to the traditional 3C scheme proposedufoprocessors. This classification

provides an insight into the interaction betweetheareferences made by different cores

Then, we presenteadio differentapproaches for dealing with data ownership in trered L2
cache and make the following important contribugiamthis Chapter:

» First, we proposed a novel technique calledlbjmoning which associates cache blocks
with owner processors (ownership in this chaptérseto right of a processor to evict
blocks within the set on a cache miss) and redirbtdcks that would lead to inter
processor misses to a small Processor Owned PriP&®) cache. Each core has its
own POP cache. Also provided is a quantitative yamalof the effect of block pinning

on both inter-processor misses and intra-procesgses in a shared cache.

* Then, as an enhancement over the set pinnindplacé pinning approach, we proposed
a technique called adaptive block pinning which nowes the benefits obtained by set
and block pinning, by adaptively relinquishing owstep of pinned blocks within sets.
The adaptive block pinning approach mitigates tfiece of dominated ownership of

blocks within a set by a few processors which iseped in the block pinning approach.

* Finally, we have evaluated each of the above appesausing a full system simulator
which provides a characterization of the sensitivdaf performance to various
configuration parameters. In addition, we compaue approach to a set pinned cache

[109] and a traditional cache.

The rest of the Chapter is structured as follovextiSn 4.2, lays out the motivation for this

work by analyzing the problem of inter-processosses. In section 4.3, we describe the
baseline architecture followed by basic taxonomgdus chip multiprocessors. Section 4.4
provides detailed explanation of the proposed tgchire and ownership relinquishing

techniques. Section 4.5 provides details of theegrpental methodology used and also the
details of the benchmarks applications used fotuetian. Results are presented in section
4.6 followed by related work in Section 4.7 anddasion are given in section 4.8.

73

4.2 Motivation

4.2.1 Cache Miss Classification

One fundamental aspect of multi-core processorghés way in which the memory is
organized. Memory architecture and its performairdjences both the performance of the
tasks running on the processors as well the contation between tasks and processors.
Especially when task’s performance depends on dbality of data in caches. A smart
memory miss classification along with its preventioan have a profound impact on

performance and is yet to be explored for its &fficy in multi-core architectures.
4.2.2 Traditional Processors

The standard traditional cache miss classificatiorhwitspect to single processor architectures is the
3C miss classification: Compulsory, Capacity andhiict misses. According to this classification,
cache misses are broadly divided into compulsory man-compulsory misses. Compulsory misses
are those misses that are generated due to irdfeence to a memory location. The variation & th
size of the cache as well as in the associativigkas negligible variation in the number of
compulsory misses. Prefetching can help here, mdacger cache block sizes (which are a form of
prefetching). Non-compulsory misses are classifisdCapacity and Conflict misses where Capacity
misses are those misses that occur regardlesssoéiasvity or block size. Capacity misses occur
solely due to the finite size of the cache mem@unflict misses are those misses that arises due to
inadequate associativity (i.e., they do not occuraifully associative cache). They usually have
subclasses of conflict misses which are furtheeg@ized as mapping misses that are not avoidable
given a particular degree of associativity as aslireplacement miss that happen to be caused by a
sub—optimal replacement policy. These classificeibave enabled researchers to analyze the reasons
for various classes of cache misses accuratelyy Thave in turn influenced the successful
development of a number of performance optimizatiauhich target reduction of specific kinds of

cache misses and improve system performance icage of uniprocessors [8] [22][35][36][38].

4.2.3 Chip-Multiprocessor s

The most current versions of several processoritaothres include chip multiprocessors
(CMPs) along with a shared L2/L3 cache [110] [180][In these CMPs, the processors
compete for the shared cache. With regards to CMBsshared caches, the traditional 3C
miss classification is not really enough to comprehand analyze the exact cause of cache
misses. Traditional classification failed to motle contention that arises among different
processors in gaining access to the shared cache. opportunity to systematically

characterize solutions to scale down misses inesheaches by making use of the existing

74

classifications is also limited. While coherencesseis are being utilized to model misses in
multiprocessors with private caches, it aims tovesdhe problems associated with sharing
data.To address these issues, a fresh cache miss an@lysiquired that interprets the interactions
among transactions from several cores within a GidAg with shared cache. This is also crucial in
order to develop various techniques to have higHfective shared cache management. So, we
analyzed the identification of cache misses in tmmtext of CMPs utilizing shared cache.
Researchers are extensively working on managiagedhcaches in Chip Multi-Processors
(CMPs). Different cache management schemes have pegposed for multi-core shared
cache architectures. M. Dubois [110] first introdd@ class of misses that was not present in
the traditional processors. This category is calleerency misses and is present only in
Multi Processors. These misses occur because alidiation of cache blocks shared between
private caches of multiple processors. Shekhar][if@Bduced another way of categorizing
misses in multi-core systems namely into compulsorgses, intra-processor misses and
inter-processor misses (Cll). The inspiration far avork comes from the transactions
indicated in Table 4.1 and 4.2. Think about a CMEhwwo cores, Corel and Core2 long
with a fully associative shared L2 cache. Tableahil 4.2 illustrate two possible forms of
transactions which could cause a miss within tharesh cache. Table 4.1 symbolizes a
conventional capacity miss in which the same Caseadccountable to each of the initial

reference as well as expulsion of the stored merblagk A.

Table4.1: Miss due to eviction of a block by the same core

Intra Processor Misses

Cores Access Action

Corel Access location A Cold Miss, location A
brought to cache

Corel Access location A Cache hit, no change
Core2 Access location A Cache hit, no change
Corel Access location B Replace location A, B

brought to cache

Corel Access location A Cache miss

Table 4.2 also depicts a miss by processor Coratlatcurs to a memory element A. The

difference here is that A was brought into the eably an earlier reference by processor

75

Corel, but it was evicted by Core2, because ofaerce to a different memory element B

that is mapped to the same cache block as A.

Table 4.2: Miss due to eviction of a block by the differente

Inter Processor Misses

Cores Access Action

Corel Access location A Cold Miss, location A
brought to cache

Corel Access location A Cache hit, no change
Core2 Access location A Cache hit, no change
Core2 Access location B Replace location A, B

brought to cache

Corel Access location A Cache miss

In this example, simply by classifying these kimmdsnisses as “capacity misses” just like in
the 3C miss classification, we were unable to ledyaut the inherent dissimilarities within
the cause for these types of misses. This is als® Wwith conflict misses. Hence, an
appropriate classification of the cache missestidainto that illustrated in table 4.1 is known
to be Intra-processor misses as well as other demtical to that illustrated in table 4.2 is
known to be Inter-processor misses. Therefore, dhehe misses within a multi-core
processor along with a shared cache are classiftedcompulsory misses, intra-processor

misses as well as inter-processor misses.

In an attempt to provide a much more comprehensiesvledge of the CIlI classification, we
present the life span of a memory element as itelicaithin the state diagram in Figure 4.5.
This state diagram could be described as life sfhfanmemory element in CMP when using
the shared cache during the execution of a compgrtegram, presuming this program is
running on a dual core processor. The similar disgcan be easily outstretched to any range
of cores. As shown in state diagram, the memonyete under observation is at first usually
not referred by any core, therefore we considdrse@mong the Never Referenced state. At
this instant, |the initial access by P1 or perrepn core P2 will result in a compulsory miss
and the state of memory element is changed froneN@ferenced to the Referenced for the

first time within the life span of the element.

76

Plreference P2reference P1lreplacement P2replacement Any reference

Intra-processor

miss *\
P1

~ Cache hit ‘\ /

(Cold miss - P1reference ————

\ /’ replacement

Never nter-processor
referenced m|557

)

P2
replacement

L
(f”/Cache hit \) Q

Figure4.5: State diagram representing a memory element'syiéte in the shared cache

(Cold miss —— 5 P2 reference

Intra-processor
miss

Now, further references by any of the core to themory element in the Referenced state
results to a cache hit. In case of replacemertt@htemory element, the state of the memory
element changes into the Replaced state. And timomyelocation is marked with the core
ID that have replaced the initial memory elemerdr Hlustration, a memory which is
expelled from the cache due to a reference frore Bdris present in Replaced P1 state. At
this moment, it is easy to recognize that eacheaedy non-compulsory cache misses to any
memory element take place while it is within theplReed state. Therefore, the identification
of the non-compulsory misses is based upon thetiatwwhether the cache miss is happening
due to memory element actually being replaced bysime core P1 or possibly by a different
core P2. This is inferred merely by matching theecguffering from the miss with the 1D of
the memory element in the Replaced state. It i©mapt to understand that the identification
of non-compulsory misses into intra-processor nsisse well as inter-processor misses is
orthogonal with the identification of the same ampacity and conflict misses. As an
illustration, the examples presented with referendable 4.1 and table 4.2, in case of a fully
associative cache, represent (a) capacity missishalso an intra-processor miss and (b)
capacity miss that is also an inter-processor nigsflict misses may also be classified as
intra-processor misses and inter-processor missgsthis classification. This ClI
classification is a bit more significant in compam with the 3C miss classification and more
importantly, it is able to model the correspondewdéin transactions of several cores at the

level of the shared cache.

77

4.2.4 Characterization of Compulsory Inter-processor and I ntra-processor misses

We have measured the distribution of various typésmisses. Figure 4.6 plots the
distribution of compulsory, inter-processor andrarpprocessor misses with our baseline
system configuration (A detailed description of baseline configuration is given in Section
4.4). The black portion of the stacked bars reprissthe inter-processor misses, the spotted
portion (in the middle) represents intra-process@ses and the striped portion represents the
compulsory misses. On an average, 40.3% of theesi@m® inter-processor misses, 24.6% of
the misses are intra-processor misses and thenmemg&5.1% are compulsory misses.

120 M Inter-Processor M Intra-Processor Compulsory

100

80

Distribution of L2 Cache Misses

60
40
20
0
- 2 &
oS TS S S E S S S
Q\‘\\Q N &R @oo & W3 %eo &'QJ 5° &
N7 Y 0T @ S Y A o Y P
B NN N AV

Figure 4.6: Distribution of compulsory, inter-processor anttarprocessor misses [109]

Now, reducing off—chip accesses is the key to aessful shared cache management scheme
in a CMP with large shared L2/L3 cache [19]. Théeaf of compulsory misses can be
reduced by hiding their latency. This can be adckdeby prefetching data into the cache
before it is accessed. There have been many retates for reducing memory bandwidth
and the number of off—chip accesses through haedsaftware data prefetching [27] [48].
However, the focus of this chapter is on developeuaipniques to reduce inter-processor and
intra-processor misses. In our proposed architectater-processor misses are eliminated by
giving replacement ownership of a block to a preogswhile Shekhar [109] eliminates inter-

processor misses by giving replacement ownershgpsetft to a processor.

For a “hot set” [109] in the on-chip cache, owngrstf the complete set is given to a single

processor. But if a set is not a “hot set”, prongliownership to a single processor will

78

increase the load on POP caches of other proce$sguse 4.7 indicates that only about 9%
of the memory addresses result in hot sets, sadh&er of hot sets is not going to be too

large.

70% M Inter-Processor M Intra-Processor

60%

50%
40%
30%
20%
10%

00%

Figure4.7: Memory addresses leading to Inter and intra-psmmasisses [109]

4.3 Taxonomy Used in CMPs

The most common cache miss classification schemsirfigle processor architectures is the
3C miss classification: Compulsory, Capacity andniict misses. It can be broadly

classified as compulsory and non-compulsory migsasflict and capacity misses).

Compulsory Misses: Compulsory misses are those misses caused Hdysheeference to a
datum. Cache size and associativity make no diifexéo the number of compulsory misses.

Non -Compulsory Misses:

Capacity Misses. Capacity misses are those misses that occurdiegarof associativity or

block size, solely due to the finite size of thelea

Conflict Misses: Conflict misses are those misses that occur duesufficient associativity

(i.e., they do not occur in a fully associative oz

Intra-processor Miss: Non-compulsory misses are further classified basethe processor
responsible for evicting the referenced block. Aqwompulsory miss is classified as an intra-
processor miss if it was evicted by the same psmretat brought it into the cache.

79

I nter-processor Miss: A non-compulsory miss is classified as an interepssor miss if the

block brought into the cache by one processoritey by other processors on the chip.

Hot Blocks: If the number of intervening references betweercessive references to few
blocks in the L2 cache is large, then it indicatest these few blocks are accessed over and

over again and we call these blocks as hot blocks

Processor Owned Private (POP) cache: A very small region of the shared L2 cache, which

is confined to be written by individual processors.
4.4 Baseline Architecture

The block diagram of the proposed block pinningh#ecture for L2 cache is shown in
Figure 4.8. As seen from the figure, we have emires G to G on the same chip with
individual private L1 caches and a large shared¢adche. The L2 cache is further partitioned
into a large shared cache and eight small POP sdohe for each core). In case of a hit, the
common shared L2 cache behavior is similar todittomal shared cache. In case of a miss in
the common L2 cache, all the POP caches are selaictparallel. If there is a hit in any of

the POP caches, the data block is transferreceteetiuesting core.

ClLLl |l > L2 Cache
POP 1
Ll POP2
Prors

Shared Ownership area of
L2 Cache
C8,L1 |« >
A
\
CT1 | CT2 y —————
A
/ Blockl / . BlockX
Block owncrship bits

Figure 4.8: Block Diagram of Proposed Architecture

80

4.5 Shared Cache Management Scheme

This section, first presents the data ownershipa@nd some of its drawbacks that restricts
it to achieve performance benefits at low impleragah cost. Then, the rest of the section

describes in detail the proposed block ownershipagament scheme for shared L2 cache.
4.5.1 Set Pinning Owner ship Scheme

Set pinning is basically a cache management schianvehich each single core obtains
replacement ownership associated with a certainbeunrmof sets within the shared L2 cache.
Exclusively the processing core which has the mpteent ownership of a given set actually
being accessed have the permissions to carry amgehin that set. This novel shared cache
management scheme eliminates inter-processor migtesut paying for additional costs of
maximizing the associativity of a given shared eachhe conceptual proposal of the set
pinning scheme is founded on two significant obagons regarding the behaviour of non—
compulsory misses within the shared cache. Researatxamined the total number of
diverse memory addresses within the referencesrdsailts in inter-processor as well as

intra-processor misses.

The division of the number of references to divemsemory addresses leading to inter-
processor as well as intra-processor misses harerneasured and it has been observed that
the low fraction of distinct memory addresses lrgdb inter-processor misses suggests that
the majority of the inter-processor misses takeglaainly because of few blocks within the
memory. We also examined the amount of time pemodelation to the total number of
intervening references between successive refeseiloceach of these blocks and certainly
noticed that the majority of blocks are accessednagnd again within 100 references 64.5%
of the time on average. This indicates that thdsekb are frequently accessed and this
increases miss rate. We have also observed thgiotloy of allocating ownership of sets to
processors may lead to many blocks in the set bamgsed. Secondly, the policy of
allocating sets to processors is based on firstecdimst serve allocation. This simple
allocation policy results in an unfair division thfe sets in the shared L2 cache. So we have
proposed a new cache management scheme to expdsié two observations. First, by
disallowing the large number of references for ¢hémwv blocksthat areresponsible for
evicting L2 cache blocks and therefore causingiptecessor misses. Secondly, the issue of
fairness in acquiring ownership in the shared Léhea

81

4.5.2 Proposed Block Pinning Scheme

Block pinning is a cache management scheme whexg ggrocessor acquires replacement
ownership of a certain number of blocks in the slatache. Only the processor that has
replacement ownership of the block being accesaadreplace that block entry in the set.

The basic flow chart explaining the logic of blgukning is shown in Figure.4.9.

///‘_-\\\
(\ Start |
R
Reference by corz Cn ‘
T I ”/\
TV L
. Wrie ety =207 o H:\ - T
. ” ™ -~
AN I “Owagr Max 1
7 Hit N g
—M]ss(Miss > Yes Yes Yes
L
o
. 1. Cache Hit 1.Cache hit 1.Hitin 12 Relinquish hij
OfFChi uest . elinquish ownership
pReg 2. Read line 2_Copyline 2. Replace line
3. Set Ownership 3. Keep Ownership
1. Writein 1.2
1. Data brought into cache 2. Set ownership
2. Set Block Ownership s

1. Increment CT1 & CT2
2. Write in POP

Request Completed

Figure 4.9: Basic flow chart explaining the logic of adaptieck pinning

In multi-core systems, inter-processor misses oadwn a block (A) brought into the cache
by one core (Q is evicted by another core {\cand any subsequent access by coig t(Cthe
same block (A) leads to a cache miss. A simple atetb prevent inter-processor misses is
by allocating block ownership to a core at the tiohdringing data into the cache from off-
chip memory. This method assigns replacement owiete all the blocks in the entire L2
cache. While all cores can read and write into bheck, only the owner core has the
permission to replace or evict a block from thehead~or example, assume a dual core

82

processor with cores (Cand (G) as shown in Figure. 4.10, where both the coresanding
references to the same set. In the absence of bleokrship, if G experiences a miss, it may
evict a block which was brought into the cache hyNbw, any subsequent access hyt@
the same block will result in a cache miss and teamh overall increase in the miss rate. But
if block replacement ownership is assigned to caZesvill not be able to evict a block that
is owned by @€as shown in Figure 4.10. One particular observatiith this method of

reducing inter-processor misses is that it may teaah increase in intra-processor misses.

Cl C2

/" /]L1-D| L1 LI-D[LI-T|
5\\\ \\\1 2;”
e
’ .. l:Read Hit (C
4:Load B,” _’(‘)
- 1.2 cache - 2:Read Miss (C2)
3:EVICKA 3. Byict A
4. l.oad B

5: Inter-processor miss

Main memory

Figure 4.10: Inter processor Miss in dual core processor

The rate of intra-processor misses can be contrbieidentifying whether the referenced set
is a “hot set” or not. Once the set is identifiedheat, assigning new block ownership in the
hot set will increase intra-processor misses, sga core has lesser number of replacement
candidates to choose from when it requires morekislan that set. So, hot set miss rate is

high either due to inter-processor misses or duecteased intra-processor misses.

83

Cl C2

(|L1-D| L1 LID[LIT|
\l 3/
B (01) a“,’r Sequence
5 " Cl-ID=00
A (00 3
ya LU " C2-ID =01
% 4 | 1:Read Miss (C1)
IR L2 cache '/ 2:Load A set ownership(00)

3: Read Miss (C2)
4: Load B set ownership(01)

Main memory

Figure 4.11: Allocation of block ownership to prevent evictiandual core processor

Cl C2
-~ .. Sequence

/LDl LL LI-D L] Y oy 0y = g

3 3/ C2-ID=01
\\\\\\ / 1: Read Miss (C1)

“p _--" 2:Load A set ownership(00)
A A (00) t\ 3: Read Miss (C2)
2:Load A~)

:) 4 Eviction for A failed
T L2 cache ‘{ 5: Read Hit (No Inter-
Processor miss)

Main memory

Figure 4.12: Ownership prevent eviction in dual core processor

To control (reduce) this increase in intra-processisses, POP caches are used. Suppose, if

during the last Naccesses to a particular set there areoiMmore misses (whereiMs the

threshold value), then this particular set is co&sed to be a “hot set” and the ownership of
one of the cores is canceled and the core will bang its blocks from memory to its POP
cache instead of the hot set. This process wiltedese the traffic to the hot set and eventually
the miss rate will come down. This process of chmgethe ownership of cores from a
particular set may lead to a situation where omlg core owns all the blocks in a set. To
avoid this situation, the ownership of a core isagded if it owns a certain minimum number
of blocks. If a set is not a hot set, it means ti@tmany addresses are being generated by

different cores that index into this set. In thisse, to reduce the miss rate, the proper

84

distribution of block ownership among the coremésessary. Consider an example when
core G owns most of the blocks in the cache and is rausigg these blocks while core C
has ownership of a few blocks and suffers missabah set because it has fewer blocks to
choose from when evicting a block. If the ownersbighe less frequently used blocks of
core G is transferred to core xCthen the overall miss rate can be controlled hedce
reduced. The algorithm applied for relinquishing@ thwnership of blocks is explained in
Algorithm-1 and implemented using full system siatat. Also by allowing all the cores in
a multi-core system to share “non hot sets”, tlaellvaffic on the POP cache can be reduced.
Now, to assign block ownership in the last levedrsld cache, (leg) bits in each block are
needed to indicate owner of the block, (where muimber of cores in the multi-core system).
When for the first time, a core fetches a blockrfroff-chip memory to the cache, it3dre

ID' number will be written in the ownership bits bétblock. Now only this core has the right

to evict the block from the cache, as long as kespsership of the block.
4.5.3 Cache HIT/MISS Policy

In the proposed cache architecture, the sharedacBecis organized as POP caches and a
common cache. In case of a miss in the L1 cacleeidpuest is forwarded to the common L2
cache. If there is a hit, then the requested blsckent to the requesting core. In case of a
miss, the POP caches of all the cores are probedralel for the requested block. If the
request hits in one of the POP caches, then thek ldosent from that POP cache. These two
partitions are non-inclusive in nature. Wheneveaehe miss occurs in the shared Last level

cache, it may result due to any one of the follg\soenarios:

1 The reference from a core may point to a sereveeme of the blocks are not owned by
any of the cores in the multi-core system. In tbése, the requested block will be
transferred from memory to the referenced set amdecship bits will be set with the

‘CorelD’ of the requesting processor.

2 The request from a core to a block address noanyt po a set where all the blocks are
owned by cores other than the one which experieacasss. In this case, a block cannot
be replaced from this set because the requestirey dmesn’t own any block. So, data
from memory will be transferred to the POP cachetled requesting core that is

experiencing a miss.

3 The reference from a core to a lock addressirsting to a set where the requesting core
owns some of the blocks in that set. In this c#se,core will replace one of the blocks

85

owned by it with the new block. In this case, thack to be replaced is one which is least
recently used among the blocks owned by the cotleainset, which need not be the least

recently used block of the entire set.
4.5.4 Block Owner ship Relinquishment Policy

This section proposes two methods to relinquish dlmership of a block: In the first
method, one saturating counter per block is uséis Tounter is initialized to half of the
maximum count. Every time when the block is acogss®d it results in a hit, the counter
value is increased by one. If the counter reachedamum value i.e. all 1's it will stay there
(saturating). If a processor experiences a missa iparticular set, then the counters
corresponding to all the blocks owned by other gssors in that set are decremented by one.
If any counter hits zero, ownership of this bloskdancelled and given to the processor
whose miss makes the counter hit zero. Qualitativeelcounter hitting zero means that the
processor owning it is not using it effectively ahés block can be used more effectively by
other processors. This technique has a major drwba that the numbers of counters
required is equal to the number of blocks in thehea This huge hardware requirement
makes this technique less attractive.

The other technique for ownership relinquishmequnes just two counters per set (Gind
CT>). The algorithm for this technique is given beld®; is used to determine whether or
not a set is a “hot set” and €15 used to fine tune the number of blocks owneceagh
processor in a set. Selecting two counters is basdtie observation that misses may occur

in a set can rise because of two reasons:

1. Setis a “hot set” and most of the processorsraegt to put their blocks in the same

set and hence intra-processor misses are more.

2. Setis not a hot set but the distribution of blocks$he set is unfair, i.e. the processor
requiring more blocks owns less blocks and the ggsar owning more blocks is not

utilizing them effectively.

Let the set Cores = {{ C1,..C/} represent the cores present in the baseline rsysiée set
HS includes all the “hot sets” of the cache. Thanemship of the different blocks in the set is
indicated in the Owners set. Owrf@rdenotes the set containing the owners of all bldcks
set s. X y, m, n are chosen by experiments to meet the performaaeds of Application j.
The shorthand numAccesses(s) is used to denotauthber of accesses to set s. The set RB

contains the list of all blocks that have a patéiceore, say core c as their owner.

86

/* Algorithm for relinquishing owner ship and cache operation */

Algorithm 1: Algorithm for relinquishing owner ship

function handlePinnedCacheMiss

INPUT: Requesting core (c), Referenced Set (s), HS, Gfh&@T:1®), CT,®.
OUTPUT: HShew, OWnerses®

BEGIN

1 X=X, Y—y,M—m, N—n, CThi®«— 0, CT,® —0;

2 if (numAccesses(s) ==Y && G == X) //unfair distribution

3 B(® « LRUBIock(s);

4 B. Owner«< c, update Ownefg

5. Oownergen «— Owner§) CT:®«— 0;

6 endif

7 elsif (numAccesses(s) == Y && G = X) // relinquishment not needed
8 CTi®« 0; //reset counter

9. endif

10. dsaf (numAccesses(s) == N && G == M) // set is ‘hot’

11. HS.add(s), Hew <« HS;

12. while (missRate >= MRT) || (s.numBlocksWithOwner (chi#mBlockinSet(s)))
13. for some}l Coresandk!=c

14. RB<« findBlocksWithOwner(k);

15. O r 0O RB, r.Owner— xx; // Cancel ownership

16. update Ownefd Ownersess — Owner$)
17. k.loadNewBlockLocatioa- POPCache

18. end for
19. end while
20. endif

21. dsaf (numAccesses(s) == N && G 1= M)
22. CEY«0;

23. endif

END

*kkkkhkkkk*x

kkhkkkkikkk*k

Algorithm 2: Algorithm for cache operation

function handleReference
INPUT: Read/Write request (Rggfrom some « Cores that indexes set s.
BEGIN
Lookup L1
if (hit)
Read/write data block, update LRU stack
else /I L1 miss
FwdReg—BlockPinnedL2
if (hit)
Read/write data block, upda®dLstack
else // Pinned L2 cache miss

87

CT++, CToO++; /lincrement miss counters
handlePinnedCacheMiss; ¢okithm 1

FwdReg—POPCache
Lookup POPCaghe
if (hit) // PGFache hit
Read/Write data
else
FwdReg—off-chip;
end if
numAccesses(s)++;
end if
end if
END

*kkkkkkkk*k

kkhkkkkhkkk*k

These blocks will be relinquished to bring the @aaohiss rate below a predetermined Miss
Rate Threshold (MRT). &) is the LRU block located in thé"kvay of the set s. Counter €T
produces a high output (all 1's) if there are X sBis in the last Y accesses to a set and
counter C} produces a high output (all 1's) if there are Msseis in the last N accesses to
that set. Here M is a multiple of X and N is a npkt of Y. Multiplication factor in both
cases is the same. So, if the miss rate incredms®ae a particular value, GWwill detect it
first, and the set is assumed not to be a “hotaetfiis point. The ownership of the blocks in
the set which are not being utilized effectively aanceled. To do this, whenever CT
produces a high output as shown in Figure. 4.13epsinp of the least recently used block in
the set is cancelled, so that a processor sufferiage misses can acquire the ownership of

this block and the miss rate can come down.

______ Cl C2 |
(’/ | DL D[L1 .
n, L1-D| L1l L1-D| 234
\ Sequence
4 CT1=1]A (00) | B(01) [C(00)— E(01) [D(00) ¥"¢y_1py— g
e C2-ID =01
L2 cache 5 1:Read Hit (C1)

| 2: Read Miss (C2)
/ 3: Read Miss (C2)
4: Read Miss (C2)
4: CT1=l,
4: Reset ownership, C(xx)
5:Load E(01)

i
/
/

Main memory

Figure 4.13: Cancellation of block ownership in dual core pssm

88

Qualitatively, in canceling ownership of the leestently used block, it is assumed that this
block is not being utilized properly by the ownerdacan be better utilized by processors
other than the current owner. Once ownership dbekis canceled, Ciis reset to its initial
value. If the miss rate still remains high aftefeav such attempts, the number of such
attempts as determined by the ratio of N/Y 2@l also produce a high output and the set is
treated as a “hot set”. This indicates that eveog@ssor is trying to put its blocks in this set.
In this case, the ownership of all the blocks @iagticular processor is canceled as shown in
Figure. 4.14 and this processor will now bring aey blocks to its POP cache instead of the
“hot set”. This cancelation of ownership of blocksl continue until either miss rate goes
below the threshold value or the complete set inemivy a single processor. In effect, the

load on the hot set and the miss rate both williced

[l C2
1 [Lip[Li L7 L[e
| a 2.3

y ™
‘ /
4 CT1, CT2 =1[A(00)~AGx) [B(01)] C(00)->E@O1) | DO1) k-

.

Sequence
L2 cache g . ClID=00
i C2-ID=01
1: Read hit (C1)
: Read Miss (C2)
: Read Miss (C2)
: Read Miss (C3)
: CT1=1, CT2=1,
: Reset ownership, C(xx)
: Evict, C(00), Load E(10)

Main memory

I A]

Figure4.14: Counter CT-1, 2 saturates and ownership bits cai@Ieset in dual core
processor

4.5.5 Hardware Support

The relinquishing of the blocks in a set by an omctee is based on the confidence counters
for each set (Caand CB), which indicates the confidence of the systemagsigning
ownership of a block to the current owner. Theltatiditional hardware cost includes that
for the counters CiTand CT along with the processor identifier fiel@d¢relD) for the block
pinning architecture. After experimenting with aage of values from 2 to 16 and we found
that 4 bits for CT and 6 bits for CT were sufficient to account for the longest dunmatod
ownership without frequent saturations. Therefdre,total additional hardware cost is about
2.5% of the L2 cache in our baseline configuration.

89

4.6 Experimental M ethodology

In this section we describe our baseline systenfigumation and evaluation methodology.

All the results are obtained with the baselineaystonfiguration described below.
4.6.1 Simulation Environment

Evaluating the performance of CMPs with differemtst. level cache architectures requires a
way of simulating the environment in which we woebdpect these architectures to be used
in real systems. We have used Virtutech Simics f@B]system functional simulator with
modified gcache extended with Multifacet GEMS [10Dhe base line configuration is given
below in Table 4.3.

Table 4.3: Configuration Parameters for simulation

No of Cores 8
Core Mode Single Thread
Frequency 1Ghz
L1-Data Cache 32kb, 64 bytes
L1-Instruction Cache 32kb, 64 bytes
Shared L2 Cache 8-Way Set Associative
L2- Cache (Size) 2MB
POP Cache 8-Way, 16Kb, 64bytes

4.6.2 Benchmarks

To quantitatively examine the CllI classificatiordan figure out the benefits of the proposed
block pinning as well as adaptive block pinning estles for shared cache memories on
CMPs, we put into use few programs from the SPEGchmark suite [106]. All of the
chosen programs make use of the reference inpuargktcertainly fast forwarded to the
beginning of the main loops. We have also usedtzeprograms from the PARSEC [108]
benchmark suite. All of these benchmarks use sigelanputs and are fast forwarded to the
beginning of Region of Interest (ROI). The methodthe simulations involves first skipping
both the initialization and thread creation phamed then fast-forwarding while warming up
the cache for 500 million cycles and then colleatistics until the end of another 500 million

cycles.

90

4.7 Results

This section analyses the impact of our novel adagilock pinning technique for block
ownership technique on performance in the basanwhitecture. Figure 4.15 shows the
performance improvement achieved with adaptive kblptning when compared to a
conventional cache. On average we observed the¢ thea significant reduction in misses
per thousand instructions (mpki) while running ARSEC benchmark applications. As
stated earlier adaptive block pinning does notugrice the number of compulsory cache
misses. Adaptive block pinning eliminates intergassor misses but they may introduce few
additional intra-processor misses in the POP catherefore the effective misses are the
misses that occur in both block pinned L2 cacheesas POP caches. The effective miss
rate is defined as

BlockPinnelL2misses POPCachensses
TotalL2acesse

Effectivel2 — Missrate=

The effective miss rates for adaptive block pinnamgl set pinning, normalized with respect
to the miss rates of the traditional shared cacherae are plotted in Figure. 4.15.

120
M Traditional Cache M Set Pinning Block Pinning
100 -

80 -

60 -

40

Normalized Miss Rate

20 B

Figure4.15: L2 Cache Miss Rate

The percentage of improvement is obtained by takiney difference between the average
value along all the applications for reference gnoposed schemes. The adaptive block

pinning scheme achieves an average improvemer2%fghd 4% as compared to traditional

91

cache and set pinned cache schemes. Another rtteitidetermines the performance of our
scheme is the effective hit rate of the POP cadiMesdefine this metrics as

TotalHitsnPOPCaches
MissesinBockPinnedP

HitRate—- POP=

The effective hit rates in POP caches are plotideigure 4.16.

100
90
80
70
60
50
40
30
20
10

M Set Pinning M Block Pinning

POP Cache Hit Rate

Figure4.16: POP Cache Hit Rate

The hit rates are found to improve by 3-4% (avedameross all benchmarks) as compared to
the set pinning scheme. The sensitivity analysith warying number of cores plotted in
Figure 4.17 shows the speedup obtained by our @edgbck pinning scheme relative to the

traditional shared cache and set pinning schente4yi8 and 12 cores.

92

140
B Traditonal Cache B Set Pinning Block Pinning

o

g 7

E

E'BIJ

7 =

& e

=

o

%‘40

=

gzn
aﬂ'ﬁgﬁﬁaﬁ_ !E 83 E E‘BSEgEI'g g g 8 250
EES EE"ZS|2EF g it EEE M
sERiesd 1l Eﬁgﬁ ; ?wgﬁ :
= = # = z 5

Core-4 ‘ Core-8 Core-12

Figure4.17: Performance with different cores
4.8 Related Work

Qureshi [54] divides the blocks in a set amongedéht processors. Here, at the end of a time
frame, miss rate is measured, which means thaiatign to reduce the growing miss rate
can be taken only at the end of a time frame. Pphjger proposes an implementation where
corrective action can be taken at any time whersmage grows above a given threshold
value. Recently, people from research and acadéewe investigated several multicore
cache architectures in the effort to attain theuced access latency of private L2 caches
together with the reduced off-chip miss rates @fretl L2 caches [60] [114] [116]. Dynamic
and Static last level shared cache managemenigmhi@ave been investigated in an effort to
take care of the problem of data isolation [54]sé&chers have also extensively analyzed
quite similar issues in distributed video-on-demaydtems. Victim replication [116] is
basically a modification of the shared last lewatlte design that attempts to maintain copies
of local primary cache victims inside the local t&che portion however permits a number of
copies of a cache block to co-exist in various b2tipns of the shared L2 cache. Chang and
Sohi [114] present CMP Cooperative Caching, a snsgfup to control [total on-chip cache
resources as well as incorporates the merits oh lpsivate as well as shared cache

organizations by creating an aggregate “sharediiesalcy means of cooperation in between

93

private caches. The technique used by cooperatiolinng is to keep a locally expelled block
within the on-chip L2 cache of a different privgirtion which may free cache space instead
of evict it from the on-chip hierarchy entirely. iWiregard to set—pinning as well as adaptive
set—pinning, Shekhar [109] diverts the cache blogk&ch may trigger an existing cache
block to be evicted from the on chip cache towdngssmall POP cache to decrease off—chip
accesses, and hence avoiding inter-processor massasell as reducing intra-processor
misses in CMPs. Adaptive Selective Replication (AS®/namically tracks the workload
patterns in order to manage block replications he tache and it was suggested by
Beckmann and Wood [60]. The ASR mechanism repkcedehe blocks in the event when it
estimates that the benefits of replication in teowhsnuch lower L2 hit latency exceed the
expense as a consequence of elevated L2 misseptived&elective Replication may work
extremely well in association with our scheme totHer improve the L2 hit latency.
Petoumenos [117] has implemented} a better steaisthodel of a CMP shared cache which
explains each of the cache sharing as well as @#sagement using a novel fine-grained
technique called StatShare. This model preciseplagxs the behavior of shared threads
using run-time statistics and enables us to leam $ystematically each thread uses its space.
Even though this model precisely identifies capaciisses and can approximate cold misses
however it fails to address conflict misses. Sofenlavel shared cache management policies
for CMP have been explored during the last few yeRafique [118] presented an Operating
System-driven which typically incorporates a hardeveache quota management technique,
an OS interface as well as a set of OS level qaathestration scheme to obtain enhanced
flexibility. Tam [70] addressed the problem of untolled sharing and presented a software
assisted technique in the Operating System whiebles splitting up of the Last level shared
L2 cache by governing the assignment of physicgepaThese software schemes provides
higher flexibility at the expense of inhibited ajepbility as compared to a hardware scheme.
In uniprocessors, the minimization of conflict neéissn privately used caches connected with
a single core continues to be a useful problermedstigation and there have been a variety
of vital works that manage this challenge in bothh@ hardware and software [119] [48]
[123] [124]. Collins and Tullsen [119] revealed theage of a hardware miss classification
table which permits the processor or memory coletrdéd distinguish every individual cache

miss as either a conflict miss or just a capacibn¢conflict) miss.

94

49 Summary

Inter-processor misses constitute 40% of the tatadber of misses in a Chip Multi Processor
with shared L2 cache. This work proposes a newitaathre to eliminate these misses
without a significant increase in intra-processasses by giving replacement ownership of a
block to one of the processors. This work also shthat if a processor is not utilizing blocks
owned by it optimally, the ownership of its bloakan be transferred to other processors. In
this work, two techniques to relinquish the ownersbf a block are presented. The first
technique uses a saturating counter per blockishdécremented whenever a request misses
in the set. Ownership of a block is relinquishedewhhe counter hits zero. Since the first
technique incurs a significant hardware overheagskamnd technique that uses two counters
per set (CTand C®) is proposed. Ciis used to determine whether or not a set is asats

and CT is used to fine tune the number of blocks owneédxsh processor in a set.

95

Chapter 5

Selective Replication in the Shared Last Level Cache

This chapter presents Selective Replication scherBbared Last Level Cache for effectively

dealing with fixed block location problem in NUC&cbes.

96

Chapter 5

Selective Replication in the Shared Last Level Cache

5.1 Introduction

In the previous chapter of this thesis, we haveided on the problem of inter-processor and
intra-processor cache misses in the shared L2 dacharge-scale CMPs. For that study, we
have assumed a shared L2 cache organization withifarm access latency and physical
mapping of blocks to uniform shared L2 cache. i3 thapter, we discuss the perks and
drawbacks of this organization, and we proposeltnnative mapping policy. As discussed
in the introduction of this thesis, an importantiden when designing a multi-core processor
is how to organize and manage the last-level op-chche, i.e., the L2 cache in this thesis,
since cache misses at this cache level result ng-latency off-chip accesses. The two
common ways of organizing this cache levelieateto the local core osharedamong all
cores. Figure 5.1 presents the trade-off betweendownflicting goals that is to reduce off

chip miss rate and to reduce on chip miss latency.

High on-chip Pure shared design
access latency

Hybrnd designs

Design 2

Low on-chip

: . Pure private desi
access latency © Optimal design P &

Low off-chip High off-chip
miss rate miss rate

Figure5.1: Trade-off between off-chip miss rate and on-clipess latency in private/shared
on-chip cache designs

The private L2 cache organization, ensures fastsacto the L2 cache. However, it has two
main drawbacks that could lead to an inefficiers okthe aggregate L2 cache capacity. First,
local L2 banks keep a copy of the blocks requebtethe corresponding core, potentially

replicating blocks in multiple L2 cache banks. Seidoad balancing problems appear when

97

the working set accessed by all the cores is hgeaeous, i.e., some banks may be over-
utilized while others are under-utilized. Sincesthedrawbacks can result in more off-chip
accesses, which are very expensive, there is & fsbih private caches to shared cache
organization. However, the non-uniform latenciesiisingle large shared cache becomes the
bottle neck for this kind of architecture. Thereforesearchers from both industry and
academia proposed to implement a shared non-unif@ohe organization for multi-core
processor [10] [76]. The shared L2 cache orgamimatialso called non-uniform cache
architecture (NUCA) [19] as shown in Figure 5.2 iathprovides more efficient use of the
L2 cache by storing only one copy of each block apdistributing the copies across the

different banks.

CPU 2
Bankclusters
[J Local
5 B Inter
S B Central

CPUO

Figure 5.2: Non-Uniform Cache Architecture

The main drawback of this organization for multr&qrocessor is the long L2 access
latency, since it depends on the bank wherein ekhkallocated, i.e. a bank in the local bank
cluster or a bank in either the central or the libeak clusters of the other cores. The most
straightforward way of distributing blocks amonge tHifferent banks in the non-uniform
cache organization is by using a physical mappiolecy in which a set of bits in the block
address defines the owner bank for each block.

Some recent proposals [63, 134] and commercial Cbliesse the less significant bits for

selecting the owner bank. In this way, blocks asigned to banks in a round-robin fashion

98

with block-size granularity. This random distritartiof blocks does not take into account the
distance between the requesting core and the hamledn a L1 cache miss. Moreover, the
average distance between two cores in the systgmfisantly increases with the increasing
number of cores on the CMP, which can become apednce problem for multi-core
processors. To address these issues, we propasdective cache line replication scheme for
shared L2 NUCA. The proposed selective replicati@thanism makes use of unused cache
lines in the local bank-clusters of different cor&8e extend our proposed replication
scheme, to balance between access latency and capgheity in shared NUCA designs by
selectively replicating frequently used data close the requesting cores, while

simultaneously ensuring low off-chip memory accesse

The rest of the chapter is organized as followse bxt section, describes the motivation
for this work. Section 5.3 provides detailed exypl@on of the proposed policy. In section
5.4, the baseline architecture and simulation emvirent is briefly described, followed by
the results and implementation overhead. Relatetk wa discussed in section 5.5 and

finally conclusions are given in section 5.6.
5.2 Motivation

In order to adapt to the ever-growing needs of modeemory-hungry work-loads, on-chip
cache size need to be increased. Unfortunatelyareipg the cache size alone is not
sufficient to increase the efficiency since thediianal UCA design exhibits serious
limitations aslarger capacity comes at the cost of increasedsade¢ency. For that reason,

large on-chip caches with a single, large and umifatency are undesirable.

Ideally, we would like data to reside in the pdrthe cache that is physically located close to
the processor so that it can be accessed fasterdtita that resides farther away from the
processor. The solution lies in a distributed cadbsign that manage to provide varying
access times and increased bandwidth. In ordech®\e this goal, a complete shift in the
cache architecture design paradigm was requireel.pféviously single, monolithic chunk of
cache (UCA) is transformed to a finer-grained gtree; as shown in Figure 5.3.

99

| | I [
: : pask i |
I | | I [
| i | =t |
I | | I [
I | | I [
| singe | | | == |
! Bank | lZZZZIZiZZZ:Z'IIIIl l'.'.:::i:::':i:l
| -

| ' I | |
| : | I |
| | | L
| | I] |
1 | I |1 I
e e e | I I
D o ____ I _____ |

(a) UCA (b) NUCA
Number of banks: 1 bank : 32 banks

Average loaded access time: 255 cycles 24 cycles

Figure5.3: Shared Level-2 Cache Organization

More specifically, the last-level cache is composéghysically independeritanks which

are evenly distributed across the die area. Th&gdeprovides varying access latencies
between the cores and the cache banks, dependirigeophysical distance between the
requesting core and the cache bank where the negudata resides. This leads to a Non-
Uniform Cache Access (NUCA) organization of thelmacdNUCA provides faster access to

cache blocks in the banks that reside closer tpitheessor.

For example, as suggested by Kim et al. [19] dndtilated in Figure 5.3(b), the closest bank
in a 16 MB, on-chip L2 cache built in a 50 nm prsgdechnology can be accessed in 4
cycles, while an access to the farthest bank ntajte up to 47 cycles. On the other hand,
every access to a UCA of the same size would recuiconstant latency of 41 cycles. As
access time is directly related to the block's graent, the placement is an important
decision.Figure 5.3(b) shows a banked NUCA cache, as oppiostte classic UCA shown
in Figure 5.3(a). This static NUCA design uses a-tihmensional switched network,
permitting a large number of small, fast banks &ifterconnected. The NUCA design
allows accessing each bank at different speedpopional to the distance of the bank from
the requesting core. Thus, the closest bank caacbessed in the minimum time, while an
access to the farthest is the slowest. A blockardy be placed in a single location during its
lifetime. This, of course, imposes serious lim@ag with this architecture: a frequently
accessed block may be placed in a bank locatefidiar the requesting core, thus suffering
the overhead of a high access time every time accessed. The block cannot be placed to

100

any other bank, closer to its requester, in ordémprove its access time, since its location in

the cache is statically defined by its address.

This limitation of the static NUCA motivated uspoopose selective cache line replication in
the NUCA cache, which addresses the problems tieg¢ &om static placement of cache

blocks.
5.3 Proposed Selective Replication Policy

We assume Last level shared L2 Cache as a Non4uni@ache Architecture, based on Kim
et al.’s NUCA design [16]. The following definitisnwill help facilitate describing our
baseline architecture.

Owner Bank: The bank in which data is mapped for the first tiafi@r an off-chip access

using the static address mapping scheme.

Bank clusters. A group of eight banks compose a bank-cluster &edcomplete NUCA
cache (128 banks) is divided into a 16 bank-clusseshown by red dotted box in Figure. 5.4.
Each bank cluster consists of a single bank otkldiankset.

.__-Bankclu ste_;.j"_f

|| corer || coe2 || coe3 |

S S Heoh

S5
D i o
B\ s W

| coed || coes || coes || core?

Figure5.4: Bank cluster in NUCA

Bank set: All the banks that compose NUCA cache can bechily treated as a set-
associative structure as shown in Figure. 5.5, s/leaich bank in a bank-cluster holds one

way of a logical bank set.

101

As shown in Figure. 5.5, the complete NUCA cachpaditioned into 128 banks, which is
logically organized into a 16-way bankset assoaasiructure (Grey color banks constitute a

bankset). Now, the group of eight banks (bankctyistat are located close to the cores are

| e || Core 1

5 Jais

5 JRiS
T

Gl

[Core2 || o3|

5558 |55
(RS
S E
Syals

Coe6 | | coe? |

T

| Core 4 [| Core5 |

Figure 5.5: Non-Uniform Cache Architecture

called local banks whereas the other eight bamitsare located at the center of the NUCA
cache are called central banks as shown in Figuée.Therefore, in a bank-set associative
NUCA cache a data block can have 16 possible plactn(eight local banks and eight
central banks).

Core 0 Core 1 Core 2 Core 3

0|1 415 8|9 12/§13 16| (17| | |20| |21 241125 28| (29

2||[s] [e]| 7] [10]|j11] [14]|[25] [18]||19] [22]||23] [26]|[27] |30]|[31

92/|[93

64|||65| [68|(|e9| [72][|73| [76l/[77] [so|[s1] [s4]|s5

e6||[67] [70ll[72] [74l|[75] [78]l[79] [82]/[g3] [26||/87 91 94l|[95
2
2

96||(97 0 04|10 08|10 12|11 1

=

@22

2 26|[12

98/||99 02|10. 06|10 1afn1 1411 18111

32(||33| |36|||37 40(|141 |44 |45 |48]||49] [52|||53 56||(57 60|||61

34| (35| | |38 [39] |42 43 46 50| |51 54 58] [59] | [62] [63

Core 4 Core 5 Core 6 Core 7

Figure5.6: Shaded red portion constitutes the central bangtets, whereas light brown
bank close to the cores are the local bank-clusters

102

The address mapping of the incoming data block wheames from off chip main memory
is statically predetermined by selecting lower lbfsthe data block address as shown in
Figure. 5.7. The LRU data block in the referencetdo$ this bank would be evicted if the set
is completely occupied by data blocks.

12 bits 7 bits 7 bits 6 bits
Tag Bank-select | Index | Bank-offset
) 32 bits N
12 bits 3 bits 4 bits 7 bits 6 bits

Select 1 out of 8

Bank-select | Index | Bank-offset
banks

Tag

32 bits

>~
v

Figure5.7: Address Interpretation
54 Replication Policy: owner bank knowswhen to replicate

In this section, we propose an efficient, highlykwate and low-overhead mechanism to
track the re-usability of each cache line in thared NUCA. Our scheme allows dynamic
replication of those cache lines that shows higigasat the shared LLC. When a replicated
cache line is evicted or invalidated, the proposedeme dynamically adjusts its future
replication decision. This scheme also reducessactadency and energy consumption by
selectively replicating the cache line that showgh lve-usability to the local bank-cluster of

the requesting core. It also maintains coherenogptaxity similar to that of a conventional

non-hierarchical coherence protocol as replicatemesallowed only in the local bank cluster
of the requesting core. The extra coherence corplaxses only when the replicated cache

line is evicted or invalidated from the local baclkster.
5.4.1 Working of the proposed scheme

For proper working of the proposed scheme, we ifiedtfour key requirements for efficient
cache line replication in the NUCA cache. The fimstolves selecting a cache line for
replication. The second one is the intelligent ptaent of the replicated cache line. The third
requirement is the lookup mechanism capable ofktyiocating the replicated cache line
within the shared cache and finally maintainingheacoherence for the replicated cache
lines. We first define few terms to facilitate delsimg our proposed scheme.

103

Owner Bank: The bank where data is placed for the first tiafegr being brought from off-
chip memory. All the subsequent off-chip requeséssgrialized at this bank for maintaining

coherence and resolving false misses.

Copy Sharer: A core that is given access to a separate chobecopy in its local bank

cluster.

Non-copy sharer: A core that is acting as a simple sharer of thehe line and has not

received a separate copy of the line in its loealkocluster.

Owner bank reuse: The number of times a cache line is accessddeapwner bank before

being evicted or written.

Replicated line reuse: The number of times the local copy of the replidatache line is

accessed before it is invalidated or evicted.

Reusethreshold (RCT): If the value of re-usage becomes equal to ortgrehan this value,

then a separate copy of the cache line is created.

Note that for any cache line, one core can be glesicopy sharer while other cores can be
non-copy sharers of the cache line. So, initiallyree cores are non-copy sharers of the cache
line as shown in figure 5.8. We have used a dirgdbased coherence protocol, in which
each cache entry is further extended with an exfpéication indicator bit (RIB) and a 2 bit
saturating counter (RCT-1) as shown in the Figbr&. Based on the value of RCT-1 and the
status of RIB, the cache controller allows creatingeparate copy of cache line in the local
bank-cluster.

N Owner+Reuse <= RCT o)
C

Multiple-
copies

Reuse >= RCT

Figure 5.8: State transition based on the value of reusehblés

104

5.4.2 Managing Read/Write Request

This section describes how our proposed scheme geara read/write request and handles

evictions and invalidations for replicated cacimed.
5.4.2.1 Read Request

As a result of a compulsory miss, a data blockasled into the cache from off-chip memory.
The cache controllers are designed in such a watydh a L1 cache read miss, it first
searches the local bank cluster of the requesting @here the requested data block can be
mapped or replicated within the NUCA cache to pdevreduced access latency). If the
request hits, the block is inserted at the L1 caxfttbe requesting core. In addition, if this is
the replicated copy of the cache line then theesponding replication reuse counter (RCT-
2) should be incremented to keep track of the tewese information. In our scheme, for a
newly replicated cache line, the counter RCT-leset to 1 and RCT-2 is incremented on
every request that results in a hit. Figure 5.9ashthe directory entry to track a replicated
cache line. In case of a miss, the memory regedstiarded to the owner bank by using the
lower address bits of the block address (Figurg), Beginning the next stage of the search
mechanism. If the data block is found, the reqisehkit and the block is sent to the core that
started the memory request, thereby completingélaech mechanism. In case the cache line

is not found in the owner bank, the memory reqise&irwarded to off-chip memory.

2 bits/line 1 bit/core 2 bits/core
Replication reuse Replication indicator Owner bank reuse
counter bit counter
Additional bits for
Tag LRU Coherence state riona’ Bt
replication

Figure5.9: Additional in-line directory bits for the proposedheme

Algorithm-1, presents how to handle read requests from thescdiee logic for all the
algorithms are implemented using full system sinaulalo ensure the correct operation and
accuracy of our proposed block replication polittye in-line cache directory entries are
extended with extra bits as shown in Figure. 5.Reep a track of reuse as well as replicated
line information. These additional bits include tReplication indicator bit (RIB), which
identifies whether a replicated copy of cache imereated. If it is set to 1, then an extra copy

of cache line is placed in local bank-cluster o lequesting core. Secondly, there is a

105

separate owner bank reuse counter (RCT-1) for eamh This counter is used to track the
number of times the line is accessed by a corbeabivner bank. Initially, it is reset to zero
and is incremented on every access to the owndk. barthis counter reaches the reuse
threshold (RCT) then RIB is set to 1 and a separapy of the cache line is placed in the
local bank cluster of the requesting core. If thkie of RCT-1 is less than the reuse threshold
(RCT), then the cache line is inserted in the peual cache of the requesting core, without
being replicated. In order to better understandrélyn-1 and algorithm-2, let the set C =
{Co, C1, G, GC3, C4, G5, Gs, C7} represent the cores as described in the bas®&lldEA
architecture. Let L1 = {Ld, L11, L1y, L14 L1s, L1ls, L17} be their respective private L1

caches. We use Bfcaiand BGunerto refer to the local and owner bankclusters respey.

Algorithm 1##Read request

functionhandleReadRequest
INPUT: ReadRegfrom CeC
Begin:

Lookup L1

if (hit)

Load Ling
LRUQueugt.movetoEnd(Ling
else

Fwd ReadReq+$BC iocal

10: if (hit)

11: Load Ling

12: LRUQueug:.movetoEnd(Ling
13: RCT-2 ++

14: else// local bank-cluster miss
15: Fwd ReadRgg— BC owner

16: if (hit)
17: if (RCT-1> RCT)
18: RIB—1

19: endif //Line 17

20: if(RIB==1)

21: BCiocarinsertReplica (Ling)

22: RCT-1~ 1, Load Ling

23: elsé/RIB!=1

24: RCT-1 ++, Load Line

25: LRUQueugt.movetoEnd(Ling)
26: endif /Line 20

27: else /lowner bank miss
28: Fwd ReadRegg- off-chip

29: endif /Line 16
30: endif /Line 10
31: endif /Line 5

32: End/ Line 3

106

Also assumed is a LRU based replacement policylemented using a queue. In our
analysis, we have considered few special casescthdtl further accelerate our proposed
policy. For example, during the initial search itibe local-bank cluster closer to the core, it
is possible for the same bank to be the owner lzantk the read request can be handled
directly at the local bank cluster of the core,utdsg in reduced number of steps. In this
case, even if the replication indicator bit (RIB)set to 1 (to create a copy of replicated line)

the cache line is only inserted at its private hAthe, without being replicated.
5.4.2.2 Write Request

In this section, the details of write requests edhdby our proposed scheme are presented. In
case of a write request, the cache controller Girscks the private L1 cache. If it is not
present in exclusive state it results in a miss @nadlocal bank cluster is probed for the
replicated cache line. If the replicated cache érists in the exclusive or modified state, it is
moved to the private L1 cache and its reuse coustgrcremented. If the replicated cache
line is present in the shared state or if it doasexist, then the request is forwarded to the
owner bank depending on the lower bits of the reting address as discussed in Figure. 5.7.
Upon receiving the request, the owner bank chdwokslirectory information for that line and
sends invalidation messages to all other sharetd_arcopies to maintain the single-writer
and multiple reader case, thereby simplifying tbleerence protocol complexity. Once the
invalidation acknowledgements are received, theasweuse counter (RCT-1) of all the non-
copy sharers are reset to 0 except for the reaugestire since they have not shown enough
cache line reuse. If the requesting core is thg sharer then its owner reuse counter (RCT-

1) is incremented otherwise it is reset to 1.

Algorithm-2, illustrates how to handle write requests for taehe line.

Algorithm 2 ## Write request

functionhandleWriteRequest
INPUT: WriteReq; from Ge C
Begin

Lookup L1

if (hit)

Write Ling, update LRU state
else//miss

Fwd WriteReg— BCocal

: if (hit && cacheLing.state == M/EX)
10: Ll.insert (Ling)

11: RCT-2 ++

12: Write Ling, update LRU state

CoNoaRrwNRE

107

13: elsif (hit && cacheLing.state == S)
14: Fwd WriteReg— BC owner

15: Send Inv— L1 copies, copy-sharers
16: RCT-Zther sharers— O

17: Recv. Inv. Ack

18: if (Ci.isCopySharer(Ling)

19: Send RCT-2BC owner

20. Decide Replica status C

21 endif /Line 18

22: cachelLingstate— EX

23: Li.insert (Ling), Write Line;

24: update LRU state

25: if (Gi.isSingleSharer (Ling)

26: RCT-1 ++

27. else

28: RCT-1<1

29: endif /Line 25
30: endif /Line 9
31: endif /Line 5
32: End /Line 3

5.4.2.3 Invalidation Request

In case of an invalidation request, if a copy affealine is found in either of the caches (L1
or local bank-cluster), an acknowledgement is serthe owner bank. If a replicated cache
line exists then the replica reuse counter is comaoated back with acknowledgement. This
information is used to decide whether the core mgintain replica status or not. If the value
of RCT-1+RCT-2 (owner reuse + replicated line r@¢usegreater than threshold value then it

maintains replica status, otherwise it is demoteithé status of a non-copy sharer.
5.4.2.4 Eviction Request

On an L1 cache line eviction request, the locakbaunster is probed for the same address. If
a replicated block exists, then the dirty datahi@ L1 cache is merged with it, otherwise an
acknowledgment is sent to the LLC owner bank. sedhe replicated cache line in the local
bank cluster is evicted then the L1 cache is searébr the same address and invalidated. An
acknowledgment is sent to owner bank with the cepdid line reuse counter information. If

RCT-2(reuse counter) >=RCT, then the core maintaopy status, otherwise it is demoted to

non-copy status.
5.5 Hardware Overhead of Proposed Policy

The proposed replication policy requires additiohafdware to implement the selective
replication of blocks within the shared LLC. As shoin Figure. 5.9, each directory entry

108

requires 2 bits for the replicated line reuse ceu®CT-2) (for an optimal threshold of 4)
and 1 extra bit to store replication informationBR Hence, the proposed scheme requires
an additional (8X3) + (2X8) X 8 = 152 bits of stgeaper LLC directory entry. Therefore, the
extra number of bits required per bank is 128X152.375kB. So, as per our baseline
configuration with 8 MB LLC NUCA cache consisting ©28 banks, the total hardware
required by the proposed scheme is 51.968kB, wikith634% additional hardware required.
The proposed selective replication scheme can &y extended to tiled CMPs as well and
is not restricted to NUCA based designs. In additio the hardware overhead, there is
additional complexity in cache design partly beeaofkthe additional latency introduced by

comparison with the threshold, which is taken cdri@ our design.
5.6 Cache Coherence Protocol

Our work uses a directory protocol that does nadnan ordered interconnect to satisfy
coherency. We also believe that future CMPs wily ren a directory like structure to
maintain coherence and can scale to a large nuoflmr-chip cores. To ensure correctness
and to implement different read and write scenarmEche coherence protocols utilize
transition states. Transient states usually inclsidées where the controller is waiting for
acknowledgements or data to be received. Our pobtouplementation inherits such
transition states from the baseline cache coherpratecol and uses these transient states to
maintain a coherent view of the system. In the psep cache access scheme, for any cache
line that does not exhibit complex sharing anddfee search mechanism, the implemented
protocol works similar to the baseline cache camaegorotocol. This is basically enforcing a
write-invalidate policy for all cache lines in tishared NUCA. The coherence protocol is
designed on top of the write-invalidate directomptpcol, which is a modified baseline
MOESI protocol. Race conditions are handled usiagybor active states for each request.
Sequence diagram in Figure. 5.10, briefly describ@s a write-invalidate based protocol
works for a simple cache line replication exampleg the sequence diagram in Figure. 5.11,
describes block invalidation. The arrows represespecific location in the system with a
hypothetical time line. From left to right, thesacdtions are the requesting core, the L2
shared cache which also includes the directoryitheb-located, the consumer cores, and the

main memory.

109

L1-0 L2-4 L2-46 L1-3
A:l GETs Al
wiss — [WdiGETs
— A:S Al
/ Q:‘S)
. %0 ~ (€
A:S e
A:S-A:RepS i o A:S
—Pl-Acy
N — 2{Ass
o,
o
~
A:RepS |
Replica Local Bank Owner Non-Replica
Sharer Bank Sharer
Figure 5.10: Sequence diagram for block replication
L1-0 L2-4 L2-46 L1-3 L1-3
Al GETx A:RepS ﬁ:geps A:S A:S
MissS — — W :
— \ = lnv
\g-l\c - ?| A:l "
. - - - '~ \
A:RepS [__ In";’:'nd }3 ~ /A:I
— #|A:update- -
RIB P
A 7~
e
w7
N 7~
AEf— |
Replica Local Bank Owner Non-Replica Sharers
Sharer Bank

Figure5.11: Sequence diagram for block invalidation

For clarity in explanation, the example assumesngles requesting core and a single

consumer core of the cache line. Also, we assurat itfitially the cache line is in the

110

OWNED state in the requestor's cache and SHARERh@& consumer core’s cache. The
directory is co-located with each cache line antlaitks the coherence state of cache lines

belonging to different cores.
5.7 Verification of Protocol

Modified MOESI based directory protocol relies dretbaseline coherence protocol for
correctness. However, before the protocol is ptd operation, it is essential to verify its
robustness when subjected to different race samnai robust coherence protocol is
required to ensure correctness under all possihglitons. For the verification, we have
utilized the stress tests provided by the GEMSskloIBy stress testing over a large design
space encompassing all possible race conditionsice&oherency issues were identified and

the protocol was suitably modified and corrected.
5.8 Experimental Setup

5.8.1 Simulation Environment:

In this section, we describe our evaluation methaglp with all the results obtained
using the system configuration described in Tahle SVe simulated the entire system
using Virtutech Simics full-system simulator [99tended with the GEMS toolset [100].
GEMS is an event driven simulator that providesomplete memory-system timing

model that enabled us to model the multi-banked KW&che architecture.

Table5.1: System Configuration

Configuration Parameters
No of Cores 8
Core Mode Single Thread
Frequency 1Ghz
L1-Data Cache 32kb, 64 bytes
L1-Instruction Cache 32kb, 64 bytes
Shared L2 Cache 8 Mb, 128 banks
Bank Size 64 Kb, 8-Way, 64bytes

Furthermore, the RUBY memory system simulator piesi support to implement
baseline system memory hierarchy. This includesdhechip interconnection network

parameters, bank access time, mapping, replacepwdicies etc. In RUBY, each cache

111

bank has its own controller and using the domaecHjr language called SLICC we can
specify with precision the coherence protocol. Ténwironment allows us to simulate a
complete multiprocessor system that is running mroercial operating system without
any modification and it accurately models the nekwvoontention introduced during the
simulation. The simulated system is organized asngle CMP that consists of eight
UltraSPARC Illi homogeneous cores with layout dégacin Figure 5.4. Each processor
core has its own first-level cache (data and irdtoms) and is connected to a node of the
network. The last level of the memory hierarchythe NUCA distributed in 128 banks
connected to the cores via switches. We used M@&Séd directory protocol to maintain
correctness and robustness of the memory subsysSiem.main system configuration

parameters used in our simulations are shown ineTal2.
5.8.2 Benchmarks

To quantitatively analyze the proposed scheme, wedutwo different scenarios: 1)
Multi-programmed and 2) Parallel applications. Tinet one executes in parallel a set of
eight different SPEC CPU2006 workloads with theerefice input and fast forwarded to
the beginning of the main loops. Table 5.2 outlinles workloads that make up this
scenario. The Parallel workload simulates the ceteplset of applications from the
PARSEC v2.0 benchmark suite [108] with the sim-¢angput data sets. This benchmark
suite contains 13 programs from different areashsas, computer vision, image
processing, financial analytics, video encoding antnation physics. The method for the
simulations involves first skipping both the inltation and thread creation phases and

then fast-forwarding while warming up the cache360 million cycles.

Table5.2: Benchmarks

Benchmarks Applications I nput

Blackscholes, bodytrack,
canneal, racesim,

PARSEC Sim-large Input
fluidanimate, x264,
raytrace,swaptions, streamclus
Mix or Different applications,
SPEC2006 gcc, ibm, astar, mcf, soplex, Reference Input

perlbench

112

Then finally, we performed a detailed simulatiorr 00 million cycles. We use the
aggregate number of user instructions committed gyete as the performance metric,

which is proportional to the overall system thropgh
5.9 Results

We have simulated the execution of selected apita from the PARSEC multithreaded
benchmark suite [108] to completion using sim-laigput set. We have used energy
consumption of the shared cache memory and the letimp time as the reference
performance metrics. We have also analyzed theankttvaffic in terms of the bytes-per-
instruction and L2 hit latency to further evaluate proposal. For the applications that have
high miss rate in the NUCA cache, our scheme ofdpes the S-NUCA baseline
architecture by 8% as shown in Figure 5.12. Byrtgladvantage of selective replication for
highly reused cache lines at the owner bank, memeyests are directly satisfied by only
accessing the local bankcluster. The percentagenfovement is obtained by taking the
difference between the average value along allagiy@ications for reference and proposed
schemes. Figure. 5.12, shows the normalized corapléime for the selected benchmarks

and we observe that in none of the considered lmeadh applications, performance is

degraded.
B S-NUCA B Proposed Policy

o 1.2
E
=1
8
2038
£
o
©06
=]
[4}]
N
< 0.4
E
202

0

S e et
% \\%o Geé‘& 6‘5\6\ @ \(“‘b& \\da \)5,\ N
C\;‘“o ‘00& ‘&;’ _\6'39 {37‘ {a,;(\ @09

X ¢ g

Figure5.12: Normalized Completion Time

In the chosen applications, completion time redurctiaries from about 4% up to 36%. On
average, this translates to about 8% increaserforpgance. Figure. 5.13, shows the average

L2 hit latency in both S-NUCA and the selectiveliegiion scheme. With the adoption of the
113

replication mechanism, L2 response time reducesldse to 12% on average; this is due to
the fact that most of the hits are concentratethen faster local-banks and the requested
blocks can be provided in a very short time. Fav Bpplications like Streamcluster and
Bodytrack, we have observed low L1 miss rate, &y tan’t gain much from the proposed
policy but there is no further degradation in the@rformance. Therefore, for the applications
with higher miss rates, the impact on the perforreas even better. In the second scenario,
we have observed applications with low high mide,rake Dedup and Swaptions. In this
scenario both the schemes take equal access kEgewbien the request hits in the closest
banks. With applications having very high hit rake Bodytrack, we have observed slight
performance improvement. We assume that the apiplsarunning on future processors will
follow the characteristics of the first scenarippbcations with large working sets and many

applications running simultaneously.

12 B S-NUCA B Proposal Policy

P o) & Ko p\)@ @ ok &
\00 d\« . 6‘5\ (_,\ Qe, \f& efJ
e\'&‘*c' o 6\@@5“ & &

o o o
+a (=7} o =

Normalized L2 Hit Latency

o
]

Figure5.13: L2 Hit Latency

In general, our scheme shows good performance weprent with almost all benchmarks of
the PARSEC suite, with more than 8-10% improvemaerthe Ferret application. Figure.
5.14, presents the distribution of the data as altontrol messages that affect the overall
network traffic in terms of number of bytes pertiastion. In our architecture the size of
control message is 8 bytes (header only) whereasitte of the data message is 72 bytes
which contains 8 bytes for the header portion atdb¥ges for the data block. From Figure.
5.14, it can be observed that the total networffi¢res reduced for almost all the applications

which are the result of selective replication ofloa lines at the closer banks (local bank-

114

clusters). The closer banks are the banks in tted lmank-cluster that are physically close to
the cores. This reduces the network distance sadeoy a packet to reach the receiver bank.
In the proposed policy the data packets travergsser number of hops with respect to S-
NUCA, as seen in the graph and the data portigheohetwork traffic is reduced whereas the
control part of the network traffic remains almdse same. In our proposed policy, the
selective replication and then invalidation fordemrite blocks is triggered only few times as

compared to the total number of L2 accesses.

m Control Message H Data Message

30

Number of bytes per instruction —
0

Figure5.14: Distribution of Network Traffic

As a result, the overhead of replication and irdatlon messages has a low impact on the
total network traffic. Reduction in network traffes shown in Figure. 5.14 reduces dynamic
energy consumption because of reduced overall mketactivity. Figure. 5.15, shows the

dynamic energy consumption of each benchmark usiegproposed selective replication

policy.

115

[
N

Il Network LLCD HLI-D .11

Normalized energy consumption—

Figure 5.15: Normalized Energy Consumption

The energy reduction can be primarily attributed th@ reduction in network traffic.
Therefore, for benchmarks where our proposal imggothe L2 performance, the energy
benefits will in fact be higher. We observed thia¢ fproposed scheme improves energy
consumption of the NUCA cache by more than 27%aspared to the S-NUCA baseline
architecture. To summarize, the proposed selecteydication policy reduces energy
consumption and enhances performance when comparether last level shared NUCA
data management schemes. We explored all valuBEC®fbetween 1 and 8 and found that
they provide no additional insight beyond a thrégh@alue of 4. The proposed policy makes
use of data locality on-chip and reduces off-chigsnrate. Overall, our replication policy
consumes 27%lower energy and shows 15% lower ctimpléme when compared to S-
NUCA.

5.10 Reated Work

Prior research on cache management in multi-careegsors has mostly focused on the last
level cache. Shared, private as well as hybrid ldeSigns have been extensively reported in
[112] [113] [120] [130] [132]. All other cache lelgehave traditionally been organized as
private to a core. Private LLC organizations previinited cache capacity to a thread and
adversely affect applications with large workingss&hared organizations on the other hand
have the flexibility of storing the data of an dpation in various locations throughout the
cache, but at the cost of higher hit latenciesesie&ch request has to incur the wire delays
imposed by the meshed interconnection network. KHeweheir off-chip miss rates are low
as compared to private organization because datat ireplicated in the LLC. The influence

116

of wire delay in shared LLC design implies thatesclatencies are not constant. To address
this problem of non-uniform access latencies, Kinmale [19] introduced the original non
uniform cache architecture (NUCA) as shown in Fegus.2. In shared NUCA, the whole
LLC is partitioned into smaller banks such that reeacache banks have lower access
latencies as compared to farther banks, thus rtiig#éhe effects of on chip wire-delays. The
efficiency of a migration scheme depends on an rateudata access scheme that was
difficult to implement in the past. Kim was thestfirto highlight the importance of the bank
access scheme in dynamic NUCA organizations. Ajhoblock migration enhances D-
NUCA benefits to outperform S-NUCA, it is limiteg Ibhe quality of the bank access scheme
within NUCA. This work was further extended by Hehal. [63] who analyzed different
NUCA organizations and came to the same conclugianhalthough D-NUCA outperforms
other organizations, access policy is of prime irrg@e in shared D-NUCA designs. Since
then researchers from both industry and acadenvia éeensively studied policies in NUCA
architectures that efficiently manage: block plaeam[63][115][127][129][131], block
migration [126][127][135],replacement [128] and kop [125][137]. The introduction of
CMPs further increased the complexity of the mbétrked NUCA design process. Chisti et
al. [134] also proposed an alternative NUCA desigired NURAPID, in which the Last level
cache is divided into a few large banks insteachahy smaller banks for higher reliability,
efficiency and lower data migration rates with lfignt extension to accommodate a limited
number of cores. The concept of cooperative cgclmmmulti-core processor systems was
introduced by Chang et al. [114] to increase therall cache capacity, where each processor
core has a local L2 cache and cache consistenaginghare achieved by listening in on all
the L2 cache traffic and cooperating in decrea#iiegconflicts. Another variant of NUCA is
proposed by Liu et al. Beckmann and Wood [112hgirtanalysis show that block migration
policy is less effective for CMP because 40-60%otdl hits in commercial workloads were
satisfied in the central banks. There has also kaegnficant recent work in evaluating the
benefits and limitations of replication in CMP cashHuh et al. [63] investigated sharing in
a CMP-NUCA cache and favored some replication betwsache banks. Adaptive Selective
Replication dynamically evaluates the costs ancetisnof replication on a per-block basis
and adapts to the needs of the workload. Othernsebesimilar to Adaptive Selective
Replication are the CMP-NuURAPID [134] and CoopemtCaching [114] proposals. The
above proposals reduce replication but utilizeaticsimechanism that does not adapt to the
needs of different workloads in different phased ather constraints. Finally, similar to
ASR, Suh et al. [138] used set and way countersdnitor cache block utilization. Zhang et
117

al. [116] used an automatically re-sizable caché wimiss tag buffer to track possible cache
hits if a full sized cache was available. Howe&uh et al. used the monitoring information
to dynamically partition the ways in a set-assoogattache among multiple thread sand
Zhang et al. used it to reduce energy consumption.

5.11 Summary

We have proposed an efficient selective replicagiolicy for the last level cache. The cache
line re-usability is profiled dynamically using directory reuse counters. On a set of multi-
threaded applications, our selective replicatiolicgaeduces the overall energy by 27% and
the completion time by 15% when compared with St CA L2 cache management
policy. The coherence complexity of our protocohimost identical to that of a traditional
non-hierarchical (flat) coherence protocol singaiocas are only allowed to be created at the
LLC slice of the requesting core. Our proposedqgyois implemented with an extra storage
overhead of 3.71% per NUCA bank.

118

Chapter 6

Adaptive block Migration-Replication (AMR) in NUCA

This chapter presents challenges introduced by aiyndeatures provided by D-NUCA, like
multiple locations for data placement, migration veaments and data access policy. This
chapter presents AMR scheme, which is an efficm cost-effective mechanism to
overcome above challenges and reduce miss latentlyei NUCA cache and the on-chip

network contention.

119

Chapter 6

Adaptive block Migration-Replication (AMR) in NUCA

6.1 Introduction

The static non-uniform cache architecture (NUCA¥iges for shared last level cache
memory outperforms the classical uniform cache miggdion with slightly increased
complexity in the control mechanism. In S-NUCA dmwn in Figure 6.1 (a) and (b), a
block can only be placed in a single location. Tlnsposes serious limitations with this
architecture: a frequently accessed block may aeeadl in a bank located far from the core,
thus suffering the overhead of a high access tineryetime it is accessed. The block
cannot be placed to any other bank, closer teedsi@ster, since its location in the cache is
statically defined by its address. This limitatioihthe static NUCA motivated us to propose
selective cache line replacement in the NUCA cauliech address the problems that arise

from static placement of cache blocks in the presichapter.

Core 5 Core 4 - CPU-4 CPU-5 CPU-6 CPU-7
g ¢ B
ol S
© |]
@ O =] Z‘ D
3 m |m] |EE
= 5]
| |
- = []
I_: n (] D
= L D r;
] = g [
] 1 '
s |EEC i
=] L] =
=] ono 3
= [[o
Core O Core 1 CPU-0 CPU-1 CPU-2 CPU-3

Figure 6.1: NUCA Organizations

However, the limitations of the static NUCA orgaatibn gave birth to NUCA's next
generation designs, the dynamic NUCA, which addtlesproblems that arise from static
placement. Data movement and their managementefunthpacts memory access latency
and consumes power. We observed that previous DAUESigns have used a costly data
access scheme to locate data in the NUCA cacherderoto achieve remarkable
performance improvement. To address these issuedunther investigated this limitation

along with the benefits of dynamic NUCA organizates well as discusses the drawbacks of

120

both S-NUCA and D-NUCA organization. Finally, weoppsed an adaptive migration-
replication policy for non-uniform shared L2 cachgpported with an efficient data access
policy using a set of location pointers with eaemks, which provides solutions to the basic
problems with D-NUCA. Our scheme relies on low-dwead and highly accurate in-
hardware pointers to control network traffic andpmwves cache miss latency. Using
simulations for 8-core multi-core system, we shomatt our proposed data search
mechanism in D-NUCA design reduces 40% dynamic ggheronsumed per memory

request and improves average performance speedéby

The rest of the chapter is organized as followse Tbxt section describes motivation for
this work. Section 6.3 provides detailed explasratof proposed data access policy. In
section 6.4, the baseline architecture and sinmaragnvironment is briefly described,
followed by the results and implementation overhd@elated work is discussed in section

6.5 and finally conclusions are given in sectiod. 6.
6.2 Motivationsfor ThisWork

As technology nodes evolve, feature sizes keemldghg with every generation. However
interconnects have scaled by a much smaller amélertice wire delays have shown slight
improvements and have now become a major hurdilapnoving chip multiprocessor (CMP)
performance. This discrepancy has led to an inecedscus in developing on-chip cache
architectures that can minimize the increasing wdedays [19] [63] [5] [138]. With
increasing number of cores physically distributeechip, accesses from different cores incur
non-uniform delays. Such an observation has latiéalevelopment of heavily banked non-
uniform cache architectures (NUCA), with an aimutdize the closer banks to satisfy the
requests of different cores. Figure 6.2 shows tkiferent ways of assigning sets to banks
proposed by Kim [19]. The migration mechanism psgzbfor these mapping schemes was
fairly simple, since it is tightly related to theganization of the banks in sets. When a hit
occurs to a data block in one of the cache's banissswapped with the corresponding block
of another bank that belongs in the same banksetisrone step closer to the cache

controller.

121

1] | |
I |
e

|
=

(a) Simple Mapping (b) Fair Mapping (c) Sharedpding

Figure 6.2: Set sharing schemes in NUCA Organization withedtght mapping schemes [16]

Traditionally, NUCA organizations have been classlifas static (S-NUCA) and dynamic (D-
NUCA). While in S-NUCA a data block is mapped taraque bank in the NUCA cache, D-
NUCA allows a data block to be mapped to multipdahs. D-NUCA also provides dynamic
features like migration of data between multipleksaby leveraging data locality and moves
frequently accessed data close to the requestireg bultiple placement locations for data
and its migration between multiple banks, makesdidita access scheme a key constraint in
D-NUCA based architectures. However, because of-umiiorm distances between
requesting cores and shared L2 cache banks in &sk mterconnection network, on chip
cache access latencies vary greatly and can soeeetim very large due to wire delays.
Extensive research has been reported in literadesding with such non uniform cache
architectures (NUCA) [19] [63] [110] [125] [129]eS8eral replication mechanisms have also
been proposed to balance between access latencgaaheé capacity in hybrid L2 cache
designs [60] [139]. Much of the previous effortsv@docused on either the migration or
replication of blocks in the shared last level @a¢60] [127]. Such a “one-policy-fits-all”
approach may adversely affect some applicationssthew greater benefit from using one
policy over the other. In this work, we proposedaataptive migration-replication scheme
that is tuned to the varying runtime requiremerit&m application. The proposed scheme
analyzes the access patterns of applications duheag execution in order to make the
migration/replication decision. Our approach is@dle in the sense that it can shift between
the two policies (migration and replication) at tiore in order to best suit the requirements
of the application. Methods that have implementesgtlactive cache line replication scheme
on top of a migratory baseline policy lack an efitex search mechanism to make best use of
the low access latency provided by replicated lif@salleviate this drawback, we propose
an effective search policy to keep track of cadhesl in the shared LLC. We have also

122

explored several exceptional cases that may assause of replica creation and the race
conditions that it may cause, if left unsolved. Taseline coherence protocol was suitably

modified to ensure coherency of data in all possdglenarios.

In summary, we propose a novel runtime shared cadr@agement scheme that uses both an
accurate, low overhead data access policy and aptiad migration-replication mechanism
to meet the performance requirements of differgulieations in different phases of their

execution.
Following are our contributions in this effort:

1. Dynamically adapting the migration/replicatiogctsion at runtime according to the

needs of a particular application.

2. Proposing an accurate, low overhead data lopklipy that provides low latency cache
access in the presence of both replicated as welligrated blocks in the cache.

3. Identifying possible race conditions that magedue to the presence of both migrated
and replicated blocks in the cache and appropyiateldifying the baseline coherence

protocol to handle these exceptional scenarios.
6.2.1 Exploiting Dynamic Non Uniform Cache Architecture

The migration mechanism allows data to move tow#ndsmost frequently referring core,
thus reducing the average cache latency by stahaegmost frequently accessed blocks in
banks close to the referring core. In CMP configares in which processors are placed at
different sides of the shared D-NUCA cache, thefgperance improvements due to the
migration can be limited by the ping-pong or cartfhit phenomenon [110] [103] [60] shown
in Figure. 6.3. We recall that the typical way toplement migration consists in letting
cached blocks to migrate whenever a request cofnamy an L1 cache hits the block, and
letting them migrate in the direction of the regeedo decrease access time. When the
requests for the same cache block are generated bgches staying at opposite sides of the
D-NUCA (e.g., L1 from CPU-O and L1 from CPU-4 inghkre. 6.1(b), the blocks
alternatively migrate up and down in the pertainyagkset, usually staying in the middle of
the bankset, that is, far from all the processore effects of ping-pong are twofold: First,
the performance improvements due to migration ianédd, as shared blocks don’t succeed
in reaching the faster ways and secondly the dyo@meérgy consumption increases, due to

the increased NOC traffic induced by up and dowgration of blocks.

123

0 0 0 0 o} 0
)
II | f
8 ‘ 8 8 ‘ 8 8 | 8
| ||
16 16 16
— [= — — —
& & @ o o} @
f 24 [| 24 [|24
/
|I | |II
| |32 32 | 32 32 32 32
|| \ l'
1
| | 40 40 \ | 40 40 \ | 40 40
t=0 t=1 =2 =3 t=4 t=5

Figure 6.3: Data ping-ponging between banks 16 and 24, aischibt able to reach near the
local bank clusters in Dynamic NUCA Organization

6.2.2 Data L ookup with in the D-NUCA

A NUCA design can be characterized based on folicips which determine its behavior:
Bank placement, which determines the first location of data ia tache.

Bank lookup, which defines the searching algorithm across#reks.

Bank migration, which decides data movements between the NUCAksha

Bank replacement, which deals with the evicted data and any acti@tgiired upon its

eviction.

Static NUCA implements static placement of datar{dard placement depending on its
address), which also allows a simple static lookgzhanism, using the same static function
that is used for placement. It also implementsagsit replacement policy, e.g. LRU, and no
migration of data at all. A data block is placedipredetermined, statically determined by its
address, position and never moves until evictedhAtother extreme, in a dynamic NUCA,

a data block can be placed in any bank of the cathis approach provides the greatest
flexibility and unlocks the possibility for great@erformance gains. However, such an
extremely dynamic placement strategy comes at & dd® overhead of locating a data
block in the cache when it could be found anywhea) be too large as shown in

Figure 6.4.

124

LLANIR P AE VAR
K> | >
N 1 Broadcast S | S

HK. al
8] [S][y] [
Core 4 Core 5

Figure 6.4:. Example to illustrate the complexity of data lankDynamic NUCA
Organization

Locating data blocks with no limitation on theirgsible location, requires a broadcast to
all the banks for each access. That would be pitbfgbin terms of both latency and
energy. Therefore, placement is strongly pairedhwhe lookup mechanism and the greatest
challenge is developing hybrid solutions that laynewhere between the static and the
extremely dynamic policies, which would deliver igerformance at an affordable cost.
Hence, the full potential of the NUCA access lates@re not exploited.

6.3 Proposed Shared Cache Management using AMR

This section presents the details of our baselmchitecture to facilitate the explanation
of the proposed scheme.

6.3.1 Basdline Architecture

The block diagram of the baseline architectureLficache is shown in Figure. 6.5. As seen
from the figure, we have eight cores ©©0 Gs on the same chip with individual private L1
caches and a large shared L2 cache.

125

Figure 6.5: Multi-banked NUCA Organization (with Bank ID’s irghted)

The L2 cache is further partitioned into multiplenks. We assume a last level shared L2
cache as a Non-Uniform Cache Architecture, deriveth Kim et al.’s Dynamic NUCA-

1 (D-NUCA) design [16]. We first define few terms tacilitate describing our baseline
architecture.

Owner Bank: The bank to which data is mapped for the firstetiaiter an off-chip access

using a static address mapping scheme.

Bankclusters: A group of eight banks compose a bankcluster aedentire NUCA cache
(128 banks) is divided into 16 bankclusters showthle highlighted portions in Figure 6.6.

Core 0 Core 1 Core 2 Core 3

o|[1]|[4][s] [&]le ‘ 12 [13] [16] [27 ‘ 20| [21] [24] [25] | [2g] [29
“Local Bankclusters
21| 3 [Eﬂ 11 (aa|y1s) as)as) 2223 [zel|lz7] [30]|[31

64(||65 68(|| 69 72|[|73 76|||77 80|[|81 84((|85 88|89 92(1{93

66|||67 70[|| 71 74 Central 87 90|[|91 94|95

96]([57 of fodf Bankclusters [p17 fad|iag f24)i2
ogl|[o9] [oZ|hod fog|io7 fhid|h11] pid|p1g Rig|pigd [2d|k23 hoglh2
32||[33 [40[[[41] [a4]|[25] [as]|[4s] [s2][[53] [s6][[s7] [s0]|[61
34 [35 [42] |43]

58| [59 62| (63

Core 4 Core 5 Core 6 Core 7

Figure 6.6: Logical Partitioning into Bankclusters

126

Bankset: All the banks that compose the NUCA cache are drkats a set-associative
structure as shown in Figure 6.7 where in each baids one way of a logical bankset. Each
bankcluster consists of a single bank of a bankdet. mapping of addresses to banks in the
local bankcluster and the central bankcluster es@mted in Algorithm-1 and Algorithm-2

respectively.

Core 0 Core 1 Core 2 Core 3
1l D ””” 1 !_17 FI—H—IH ””” '—|D .
il i i
Sl = [_]D T il = il
[A Il e il
e = Logical Bankset L= i
[L B B =) === -
,,,,,,,,, [HO0 O 00 Of:O5 SOm

=7] El ‘ ﬁﬁD gl e ’ |—| WEL
i | nink OO

Core 4 Core 5 Core 6 Core 7

Figure 6.7: Bankset shown in red (16 way bankset associative)

As shown in Figure. 6.7, the entire NUCA cache astiponed into 128 banks, which is
logically organized into a 16-way bankset assoagasitructure (Red colored banks constitute
a bankset). Now, the group of eight banks (banketushat are located close to the cores are
called local banks (grey colored region in Figur@)6whereas the other eight banks that are
located at the center of the NUCA cache are calkatral banks (indicated by light red
regions in Figure 6.6). Therefore, in a banksebeiative NUCA cache a data block can have

16 possible placements (eight local banks and eigfiral banks).

Algorithm-1: L1 request mapping to local L2 bank:

function mapL1_request_LocalL2_dest
INPUT: L1 ID, num_banksets, CPU Address (addr),
OQUPTUT: L2bank IDyes®®
BEGIN:
L2bank IDyest= (L1 ID * num_banksets) + addr [loghum_banksets) -1: 0]
END

127

Algorithm-2: L1 request mapping to central L2 bank:

function mapL1_request_CentralL2_dest
INPUT: L1 ID, num_banksets, CPU Address (addr), num_hRba
OUPTUT: L2bank IDyesfe"™,
BEGIN:
L2bank IDyest= (L1 ID * num_banksets) + addr [lognum_banksets) -1: 0] +
(num_L2banks)/2;
END

The address mapping of an incoming data block tb2abank during its first reference from
off-chip memory is statically determined using tbever bits of the data block address as
shown in Figure 6.8. The LRU data block in the mefieed set of this bank would be evicted
if the set is completely occupied by data blockac®the data block is placed in a bank of
the D-NUCA cache, the migration policy is used tetedmine its optimal position.
Researchers in the past have proposed gradual pom{mne-hit-one-hop’) for data blocks
[105] [58]. In Ideal D-NUCA, a data block can beppad into any cache bank to maximize
placement flexibility for the block. However, theeshead of searching a data block in that

scenario may be too large as each bank in entir€ Althche must be searched for the block.

12Bits 7bits 7bits 6bits
Tag Index Bank-select | Byte offset
- 32-Bits -
12Bits 7bits 3bits 4bits Gbits
Tag Index Select Lout of Bank-Cluster| Byte offset
8 banks “
_‘ 32-Bits .-

Figure 6.8: Address Interpretation

Previously, data lookup was performed either usiegtralized tags or by broadcasting the
tags to all the banks. Such a policy came at tls¢ @bincreased network traffic and higher
power dissipation. To address this issue, reseercuggested that data blocks be allowed to

be mapped to only one bankset [16] [58]. Such alBEN design uses a two-step multicast

128

data access algorithm. In the first step, it braatkca data block request to the local bank that
is closest to the core that has initiated the mgmequest, and to the eight other central
banks in the bankset. If all nine requests resuét miss, then in the second step, the request
is sent in parallel to the remaining seven bankstfal banks) of the requested data’s bank-
set. Finally, if the request misses in the remgrbanks as well, then it is forwarded to the
off-chip memory. Therefore, when we evaluate NUQ#Her, we will assume the same D-
NUCA architecture described above in this sectibart,we will use our proposed data access
algorithm (see sub-section 2.3) to find the exacttion of data instead of the two step
multicast data access algorithm. The traditionaNDEA access policy is described in
Algorithm 3.

Algorithm-3: Baseline D-NUCA data access policy

function handleCoreRequest
INPUT: Read/Write request for LipgReq) from G e C

BEGIN

1 Lookup L1

2 if (hit)

3 Load Ling, LRUQueues.movetoEnd(Ling
4, else

5. V' Kk BCeentras Fwd ReadReq4>BCocal”, k
6 if (hit)

7 Load Ling LRUQueuget.movetoEnd(Ling

8 else

9. v k {BC} - {BC central BCIocaI(i)}
10. Fwd ReadReg+ k

11. if (hit)

12. Load Ling LRUQueugst.movetoEnd(Ling
13. else

14. Fwd ReadReqg+> off-chip

15. endif

16. endif

17. endif

END

6.3.2 Working of the Adaptive Migration-Replication scheme (AMR)

When a block is first brought on-chip as a resdltaocold miss, it is placed in a bank
statically determined by the lower bits of the pbgsaddress sent out by the requestor. In
cases where it is frequently accessed by a cotdasHacated far away from this bank, this
position is far from optimum. A preferred locatiould be the local bank-cluster of the

requesting core. We propose two mechanisms tha&t iwdandem to determine the optimum

129

location for a block on-chip, (i) a gradual meclsamiin which the block migrates in steps
towards a remote requester, (ii) an abrupt mechamswvhich the block is replicated directly
to the local bank of the requester. Both theseham@sms require the use of hardware
counters to monitor access patterns over a prerdgted time window. Consider the
example in Figure 6.9, in which there is a rematedr a block located in the local bank-
cluster of Core 7, but frequently utilized by C@reThere exists a need to move the candidate
block closer to the requesting core (Core 0) ireotd reduce hit latency for Core 0. This is
achieved by means of cache line reuse trackinggusandware counters.

Core 0 Core 1 Core 2 Core 3
e A-——————— Address Bank-select e R
M S o[l ikl
,:f Miss :\\ Owner bank !
________'___________________________J‘ \“‘\\Qe r_ S R R

| \\\Q{Qbf} i

§ Wi - L]
L | e | Core 0 €ne, S
=l e Single Remote e PSR PELts EEES
EUji Requestor
Core 4 Core 5 Core 6 Core 7

Figure 6.9: Remote hit in the local bank-cluster of Core-7

A 2-bit saturating hardware counter MM igration Counter) is used with each block to keep
track of access patterns from different cores. Tlee specific migration counter is
incremented on every hit from that particular cadew, if MC saturates after a certain
number of accesses Migration Threshold (MT)), the second counter RReplication
Counter) begins to start incrementing, with MC rdeed. On every MC saturation, the block
is migrated one step closer to the requesting ddre.role of this second counter is to decide,
whether to provide a separate copy of the requdsieck at the local bank cluster of a
frequent requestor. Therefore, when RC saturate=pleca of the block is placed in the local
bank cluster of the requesting core, with the RIBtlee replicated block Replication
IndicatorBit =1) set to 1. Both MC and RC are now reset. Apotscenario in which the

counters are reset is when the block reaches tted lmnk-cluster of a frequent requestor

130

after a series of migrations. Figure 6.10 showsotiganization of banks, sets and cache lines
in the shared NUCA LLC with our novel contributiomighlighted.

Core 0 Core 1 Core 2 Core 3

7”""“"”""1 o Location pointer field 15
| ol 1]lo| -« |o|1]| 0| Wayo |-/ way7

SetOV|ITID| «+«+« VTD
Set 1] [| |] Reu§e RIB | Sharers | State | V| T | D

N N tracking

. MCO|RCOMC1|RC1 . . MC7|RC7

L O A A . Reuse tracking counters per core
e Eem—— effee]
N-1

Core 4 Core 5 Core 6 Core 7

Figure 6.10: Dynamic profiling of block usage with inline ditecy counters
(V: Valid bit, T: Tag bits, D: Data bits)
The following sub-sections explain in detail, tlegiss of steps taken by the proposed AMR

scheme in different scenarios.
6.3.2.1 Single remote requestor

The data access pattern of the application suggesitsyle remote requester. As a result, the
block is moved as per our migration policy (from statically determined location) within the
same bankset. The core specific MC increases vaithh eequest from that particular core
along with block migration towards the requestorewtMC saturates. In case, there is no
other requesting core then the block will be miggdatio the local bank-cluster of the frequent

requestor as shown in the Figure. 6.11.

131

Core 1 Core 2 Core 3
)] [Y
] UDE@ ffffffffffff [
Single remote 'FEUj—"EU__;l_E ir‘j __________]
e OO OO
1EE S : =
l:ﬂ:' | Gradual migration :Ij D i Gradual
R MY f:::,’l ';::: =esasness ‘;:;,: ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, " 7 migration
I o i (0 00
ffffffffffffffffff 00| 000000 00|0dd
Core 4 Core 5 Core 6 Core 7

Figure. 6.11. Gradual Block migration

The logic for block migration is presented in Alglom-4.

Algorithm-4: Block Migration

function handleNUCABIockMigrateRequest

INPUT: NUCA cache hit for LingReq) from G e C , MG?, Location;©?
OUTPUT: Location;"e")

BEGIN

1. if (MCi0 > MT)

2 if (Location®© _- Local banksthe)

3 Locatiofi"®" « Central bankther
4, RGO ++

5. else if(Location;®? _- Central banktne)
6 Locatioji"®" «— Central bank

7 RGO ++

8. else if(Location;©'9 _- Central bank)
9. Location""«— Local bank

10. RGY —0

11. MCi 0 0

12. updateBlockLocation (Lipe

13. else

14. MGO ++

15. endif

16. endif

END

132

6.3.2.2 Multiple frequent requestors

The access patterns of the application may indi@guent usage of a cache line from
multiple cores. In this case, the gradual migratiteechanism proposed in [19] would lead to
the block ‘ping-ponging’ between the two competoages as depicted in Figure 6.12. The
block’s position may alternate between the two re@rtanks of the requesters or between
their local and central banks. With the block’s ipoa dynamically varying with each

competing request, the block will not be able tergually migrate to the local bankclusters
of either of the cores as discussed in the prevaussection. In this case, finding out an
optimum placement for a data block within the NUGAa key challenge to avoid ping-pong
within the bankclusters of the same bankset. Téhe-sffects of ‘ping-ponging’ of data blocks

includes extra network traffic and subsequentlyatge dynamic power consumption. To
solve this problem, we propose to selectively cepé blocks when ‘ping-ponging’ of

requests is detected between two cores.

Gradual migratio

Core 4 Core 5 Core 6 Core |

Figure 6.12: Block ping-pong scenario with two competing cores

In the proposed scheme, the cache controller iigegaiues of both the migration (MC) and
replication counters (RC). In case, the value Gf aturates for one of the requesting cores,
then the controller creates a copy of the requedilack into its local bankcluster (within in
same bankset) and sets RIB to 1 for this blockefréfigure 6.13). The migration and
replication counters for both copies of the bloeks reset to 0. The same is true for other

133

frequent requestors as well. Now all the futureussgs by the competing cores to the same
block can be handled at their respective local bluskers, while requests from the other
cores move the original copy of block closer tonthas dictated by the migration policy. As
a result of replication, all competing cores thhbw enough promise (greater reuse as
reflected in the saturation of RC) would be givewdatency access to the block, while other
cores whose RC for that block is yet to saturatkzetthe gradual migration scheme to
eventually obtain the block in their local bankt¢&rs. The conditions for block replication
are presented in Algorithm 4.

Core 0 Core 1 Core 2 Core 3
7777777777777777777777777777777777 M 1 — = F””””‘r””””
I T
‘) Replica creation
| SN gy S— { IS) S|
_______________ -w-_ ! -) -
Core 2 L o Block ping-
RC saturation ! i | ponging
,,,,,,,,,,,,,, SIS [IIIITIIIIIIIIENgS
~ Multiple frequent
I requestors
I
L
o e —— P~ O
L] } O O
! I
i I
V1
__
Core 4 Core 5 Core 6 Core 7

Figure 6.13: Replica creation in the local bank cluster of freqt requestor (Core 2)

Algorithm-5: Block Replication

function handleNUCABIockReplicateRequest

INPUT: NUCA cache hit for LingReq) from G C, MCY, RCY, Location;©)
OUTPUT: Location;"W

BEGIN

if (RC 9> RT)

Location™®".«— Local bank

RGY —0,MG?P 0

RIF) — 1

updateBlockLocation (Lip)e

endif

ok wNE

END

134

6.4 Proposed Data Access Policy for Shared Last Level Cache

We have seen that D-NUCA uses a migration policyniove data blocks close to the
requesting core. This provides low-latency accessan architecture where wire delays
significantly impact processor performance. Howeseach a dynamic data movement within
NUCA banks comes at the cost of a complex datasacgelicy. Designing an efficient and
low-cost data access policy is very challengingotder to simplify the complexity of an

ideal D-NUCA, we restrict data movement within augp of banks called a bankset. Now, in
order to keep track of the location of tmgratedandreplicatedblocks on-chip, we extend

each set within a bank with a p bit location pairfter the p banks) as shown in Figure. 6.14.

Core 0 Core 1 Core 2 Core 3
BankSelect = pomecemengomconeoo
o040
Owner hank 3
FD _________
“S O |
Core 0 R e
Single Remote \ []
Requestor D 777777 D
) s
|OHOHOI\OI\OHO\IOH1HOHOI\OI\lH \IOHOHODD
Location pointer """ TTTTrTTTTTOC
Core 4 Core 5 Core 6 Core 7

Figure 6.14: Location pointer co-located with each set

Each bit (denoted by the 1's in the location pairfteld) indicates the possibility that the
cache block is located in that bank, either dumitgration or replication. There is a separate
RIB with each cache line that indicates whetherdhehe line possesses a replica in another
bank.

Further each bank acts as an owner bank for anl eguaber of blocks on the chip. This
assignment is done statically using the lower bftshe requestor's physical address. This
static assignment ensures that every bank is qaviair chance to be the owner of an equal
number of cache lines and helps in load balanctnipea owner bank as all on-chip block
requests that miss in the local bankcluster anialszd at the owner bank. Based on the bits
which are set in the location pointer field, regaese sent to different banks. The number of

responses received vary based on the followingscase

135

1. If the block has no replica and has migrated awaynfthe owner bank, a single

response is received.

2. If the block has no replica and is located at tinner bank, then the owner bank
services the request for the block.

3. If the block has a copy in another bank, resporis@s two or more banks may

pollute the on-chip network.

We handle the last case separately to ensurehtbatguestor is serviced from a single bank
that contains the block. The detailed logic is pneésd as follows. On a local bankcluster
miss, the owner bank location pointers are probedentify possible locations of the cache
block. Requests are sent to all banks whose bdtisn the location pointer field. We ensure a
single responder by adding additional circuitrytbet tag comparison stage. We propose that
only the original copy of the block (RIB=0) mustngee the new request in order to avoid
additional coherence complexities in the preserfcenwltiple responders. Our additional
circuitry does not increase the latency of thedagparison and can be done in parallel with

the check that is performed to ensure that thekltoatains valid data.

The location pointers need to be updated in casleck has migrated or a replica has been
created. Section 6.5 explains the mechanism totegda location pointers in detail. Previous
migration based approaches have either used brstagicpartitioned multicast as their search
policy. In contrast, using the location pointenstihe owner bank, we can efficiently direct
our search to a subset of banks at the cost ofyale® hardware overhead (6.8% including

reuse tracking).

Algorithm-6: Block search

function searchCacheBlock

INPUT: NUCA cache request for LingReq) from G C
BEGIN:

1 Fwd Req — Owner Bank)

2 if (hit)

3 L1 « Load Lingj

4. else

5 vV k {Bits set in location field}
6 Fwd Reg— BankInBankset

136

if (hit && RIBD 1=1)

L1 < Load Line;

else
10. Fwd Reg— off-chip
11. Owner Bank «— Address [Bank-select bits]
12. L1 < Load Linej

13. endif
14. endif
END

Algorithm-7: Updating Location Pointers

function updateBlockLocation
INPUT: CacheLing updateCause
BEGIN

1. k< findOwnerBank(CacheLinpg//Static mapping
2. if (updateCause == MIGRATE || updateCaus®EPLICATE)
3. if (numBlocksInSetWithOwnagst(k) == 0)

4. LocationPtk [dest] «— 1

5. if (numBlocksInSetWithOwner: (k) == 0)

6. LocationPtk [src] < O

7. endif

8. endif

9. else if (updateCause == EVICTION)

10. if (numBlocksInSetWithOwner (k) == 0)

11. LocationPtg [src] < O

12. endif

13. endif

END

137

6.5 Updating location pointers

To begin with, the location pointer bits and théRire reset to zero (invalid cache block).

The ‘p’ bit set pointer and the RIB are updatethim following scenarios.

1. When the block is first brought into the owiank from off-chip memory, the location
pointer field corresponding to the owner bank is(get has not already been updated by
another block belonging to the same set and owgdtdosame bank). The RIB field for

the block is reset.

2. When the block migrates on a remote hit, then@wbank is made aware of the
destination bank for that block, and the bit cqgm®ling to the destination bank is set in
the location pointer field of the owner bank.

3. When a ping-pong is detected and a replicaréated, the RIB corresponding to the
replica block is set and the bank locations of tbglica are updated in the location

pointer field of the owner bank for that block.

4. When a block (not having a replica in the sdraekset) is evicted to off-chip memory,
the set is examined to see if it has any otherKslagith the same owner bank as the
evicted block. If yes, then the location pointeidiin the owner bank is left unchanged.
If not, the bit corresponding to the evicted blackank in the location pointer field of the
owner bank is reset to 0.

5. When a replica is invalidated, either due toeawlusive write request or write-back
request or when it has shown less reuse (LRU)gctineent bank holding the replica is
examined to see if it holds other blocks with taene owner bank as the replica. If yes,
then the location pointer bit field is left unchaadg Otherwise, the owner bank is notified
to reset the location pointer field bit correspandio the bank from which the replica

was evicted.
6.6 Coherence Protocol

Researchers have been extensively working on magagn-chip coherence for shared
caches in CMPs. Different cache coherence protobalse been proposed to keep data
coherent in a multicore environment. This sectioespnts the working of cache coherence
protocols as adapted to our proposed scheme. ldased on the basic MESI protocol to
maintain cache coherence and correctness. FiglisesBows the additional bits required to

maintain the list of sharers and coherence stateedtl cache and L2 cache.

138

6.6.1 False miss

In non-uniform shared last level caches that alfowmigration, an important issue to be
addressed is the handling of requests to blocksamsit during the migration process. As the
request misses in both the source and destinatoksh the requestor wrongly infers the
absence of the block on-chip. This problem has befemred to as the ‘false miss’ problem in
literature and can lead to costly off-chip missesef Figure 6.16). With two copies of the
block now present on-chip, if either of the copissmodified, it becomes impossible to

maintain coherence between the blocks.

Core 0 Core 1 Core 2 Core 3

Reuse
tracking
1 bit 32 bits 3 bits 3 bits 64 bits

Sharers | State

Cpwetn | [it

Core 4 Core 5 Core 6 Core 7

Figure 6.15: Additional bits within cache line to maintain cebrce and reuse tracking

To solve this problem, we use a two-way handshaievden the source and destination
banks. On a remote hit, the source bank sendsthetbache line and a ‘Migration:Begin’
message to the owner bank. The destination bamkaaiving the data block responds with a
‘Migration:End’ message to the owner bank. The awmenk now acknowledges both the
source and destination banks after updating thatilmt pointers, with ‘Migration:Ack;
messages. Now the source de-allocates the caehdrlaguests received by the source during
the transition are serviced at the source and stgueceived after the ‘Migration:End’
message are forwarded to the destination by theeobank. We will explain the working of
the proposed coherence protocol and the mecharoshrandle false misses through the

following access scenarios.

139

6.6.2 Read request
6.6.2.1 Hit in the local bankcluster

If the GETS (shared read) request hits in the lbealkcluster of the requesting core, then it
is directly transferred to the private L1 cachéhaf requestor.

\

False Miss

™~

< awiL

J/ v v \ 4
Figure 6.16: Core-4 facing a false miss due to block migration
6.6.2.2 Miss in the local bankcluster

6.6.2.2.1. Replica absent: On a miss in the local bank-cluster of a requesttore, the
request is forwarded to the owner bank. If the bklisgpresent in the owner bank, it is sent to
the L1 cache of the requestor, otherwise the longtbinters are examined and the request is
selectively broadcasted to all the banks whose wése set in the location pointer field.
There exists a need to selectively broadcast seampiests as locations are tracked at each
set and a single set may contain other blocks Wighsame owner bank as the requested
block, although the requested block may itself m®tpresent in a particular bank. Now, the
bank that contains the requested block (tag mats$ponds to the requesting core and the
block is transferred to the L1 cache of the requesturther, this block migrates from the
initial bank toward a bank closer to the requestinge, if MC saturates, otherwise it will
remain in the same bank (MC incremented). Figul& @xplains the migration process in
detail. Consider a GETS request from Core 0’s Ldheahat misses in the local bankcluster.
Using the information provided by the location gens at the owner bank the block is found
to be located at L2-36. On a hit in the remote b@r#36), MC4 saturates and the block
migrates one hop closer to Core 0. After three $4€H4 saturations, the block migrates three
hops (L2-36— L2-100— L2-68 — L2-4) and is placed in the local bankcluster ofeCO.

140

Requests during the transit are handled as dedchibéhe previous section to avoid false

misses. The detailed sequence diagram is presenkegure 6.17.

Read Location
pointers

=
E Once for each
+ migration hop
Hit
Update Location
pointers
R <o 3
M
- —— —_
F\Nd"GFjS
N N ~N ~N N
Local bank- Local bank- Owner bank

Requestor Requestor CORE 0 CORE 4

Figure 6.17: Migration mechanism to handle read requests @albsent)

6.6.2.2.2. Replica present in the local bankcluster of requesting core: In this case, the
shared read request (GETS) can be handled dirattlye local bankcluster that stores the

replica.

6.6.2.2.3. Replica(s) present in the local bankcluster of other cores. In this case the
request is forwarded to the owner bank. If the dafesent in the owner bank then the data
is transferred to the L1 cache of the requesting.da case there is a miss at the owner bank
then the location pointers are examined and sulesgiguhe request is sent in parallel to all
the banks in the bankset, whose location poingd fis set to 1. In this case, however,
multiple banks respond to the request. In an atteimpeduce on-chip traffic created by
allowing multiple responders to send their dateckdp we choose only that data block, for
which RIB is not set. In contrast, an approach thatives data from all the responders and
then chooses to ignore the later received blocksldvsignificantly limit on-chip bandwidth
for other requests. By making this optimization wso reduce coherence protocol
complexity and save energy. The requester on riecethie data block, acknowledges with a
‘DATA_ACK'’ message.

141

6.6.3 Exclusive writerequest

6.6.3.1 Replica absent in bankset: If the write request hits in the local bank-cluste in a
remote bank-cluster as determined by the locatmnter bits of the owner bank, all other
sharers of the line are sent invalidation requ@kkg). On receiving acknowledgements from
the sharers (INV_ACK), the requestor is given esisle rights to the line. The block is
transferred to the L1 cache of the requestor arittienr(refer Figure 6.18)

6.6.3.2 Replicaexistsin the same bankset: GET X Request

Multiple copies of the cache line are present m blank-set and a single core issues GETX

request. There are three different cases as péoakup policy.

X ~
1->IM S I S l

] GETX

\3 g Read
[T | Wd:GETY location

pointers,
list of

«
/ " “\,-.5‘3 sharers

iny:Start |

/
% WAy

|
A

& awiy

k/g\ﬁff’d/até‘f/

R A 4 A 4 A 4 N
Local bank- Local bank- Owner bank

CORE O CORE 4

M

Requestor

Figure 6.18: Sequence diagram showing the invalidation stegage of write
requests

1. Replica exists in the local bank-cluster of tequesting core (Exclusive or Modified
State): On a L1 cache miss for a GETX request faooore, the request is forwarded to
the local bankcluster of the same core. If a repiicpresent in the E or M state, then the

cache block can be directly transferred to thegtei\L1 cache of the requesting core.

2. Replica exists in the local bank-cluster of tkquesting core (Shared state) or Replica
exists in the local bankcluster of other cores (®/Etate): In this case, the request is
forwarded to the owner bank of the block (where liee of sharers of the block are
maintained). The owner bank sends invalidation agsgo both L1 and LLC copies of

the block. The location of the replicas is detemmimt the owner bank using the location

142

pointers. Once the invalidation acknowledgementdV(IACK) are received, the
requesting core can be granted exclusive acceds (&¢ line in its private L1 cache. The
invalidations mentioned above are essential to taminhe ‘single-writer multiple reader’

invariant necessary for the correct operation tiecence protocols.

6.6.4 L1 evictions
Consider the case when an incoming block evicista ldl line in a write-back cache.

6.6.4.1 No replicain the bankset: The L1 cache controller issues a PUTX (write-fdok
that line. The request is sent to the owner L2 beamk the set pointers are examined to find
the location of the line. The PUTX requests aredelely broadcasted to the banks whose
bits are set in the location pointer field. Once line is found the dirty data block is written

into the corresponding L2 bank (refer Figure 6.19).

| 5 S R

[->IM E
—
D
\, Read list of
Fwd:GETX ________________._._-——-—-—"' sharers
| FwdGETX
PR
22
S‘nﬂ‘edd |
MP—— |
Eviction -_________________ﬂL
-—-—-—---—-_
> |Read location
) J—@L/’g‘/ pointers
g 5 6’9\)
N7 &
S
W W " Ib, " N \l’ W
ocal bank- Replica Replica Owner bank
R stor
eque CORE 0 sharer sharer

Figure 6.19: Handling L1 evictions (no replica in bankset)

6.6.4.2 Replica(s) present in the bankset: In this case, the request is forwarded to theeswn
bank, and using the information obtained from theation pointer field and the replication

indicator bit (RIB) the dirty L1 block is mergedtwithe LLC replicas.

143

6.7 Special cases

1. Two simultaneous PUTX requests for the saméecdioe issued by two different L1
cache controllers: There is no possibility of aer@ondition arising in this case as both
requests are forwarded to the owner bank and gexiabefore updating the replicated

blocks.

2. When a GETX request is issued by an L1 cachea fdock owned by another L1 cache,
there exists a possibility that the write-back reappto the wrong L2 bank because of
gradual migration on a remote hit. This possibiigyuled out in our design because the
location pointers are updated in synchronism wiierg migration/replication event.
PUTX requests read the updated location pointedscan be satisfied at the correct L2

destination bank.
6.8 Evaluation Methodology

We evaluated the proposed AMR scheme (Algorithmsam 8 core CMP. The basic system

configuration parameters used for the evaluatiershown in Table 6.1.
6.8.1 Multicore System:

All the experimental evaluations are performed gisinsingle CMP that consists of eight
UltraSPARC llli homogeneous cores. The cache hslggron-chip interconnection network
and cache coherence protocols amulated using the Virtutech Simics full-system
simulator [99] that is extended with the GEMS tetl§100]. GEMS simulator provides
Ruby, which is a detailed memory sub-system simulttat provides support to implement
the proposed cache hierarchy within our baselirstegy. Each processor core has its own
first-level cache (data and instructions) and isnaxted to a node of the network. The last
level of the memory hierarchy is the D-NUCA baselidistributed in 128 banks and

connected to the cores via switches.

144

Table6.1: System Configuration

Configuration parameters

No. of cores 8
Core mode Single thread
Frequency 1 GHz
L1-Data Cache 32 kB, 64 bytes
L1-Instruction Cache 32 kB, 64 bytes
Shared L2 cache 8 MB, 128 banks
Bank size 64 kB, 8-way, 64 bytes

We used MESI based directory protocol to maintaimecency of the memory subsystem.

6.8.2 Benchmarks

Our full system simulator runs an unmodified SalaktD operating system. To analyze the
proposed schemes, we run selected multithreaddatcamms from Princeton PARSEC 2.0
benchmark suite [108]. We also run a set of sitigteaded applications from SPEC2006
suite. All the application are first compiled usigec (provided with the Sun Studio 10 suite).
The method for the simulations involves first skiygp both the initialization and thread
creation phases, and then fast-forwarding whilewiag up the cache for 500 million cycles.

Then a detailed simulation is performed for thetr&®0 million cycles.

6.8.3 Energy

To estimate the energy consumed by the baseling-bawiked NUCA cache and the off-chip
memory, we adopted an energy model given by Bardinal. [103]. This allowed us to
calculate the dynamic energy dissipated by the $amkhe LLC cache using the Orion tool.
To calculate the energy consumed during an off-chgmory access, we have used the
micron datasheet. Therefore, the total energy acoeduby the NUCA memory system is the

sum of all three components:

Edynamic: Enetwork+ Ebankst Eoff—chip

145

6.9 Results

We selected few applications from the PARSEC 2.tadBscholes, Bodytrack, Canneal,
Streamcluster, Swaptions and Fluidanimate) and SR&EC2006 benchmark suites and
simulated their execution on the baseline S-NUCANWOCA configurations as well using
the proposed policy. We have compared 3 differdr@ Imanagement schemes and chosen
completion time, energy consumption and networKfitrabytes-per-instruction) as the
reference evaluation metrics. We have also anali2edccess latency in all the three cases

to further evaluate our proposed scheme.
6.9.1 Performance Evaluations

The percentage of improvement is obtained by takimegdifference between the average
value along all the applications for reference amaposed schemes. Figure 6.20 compares
the completion time (normalized) for selected aggilons. It was observed that the proposed

mS-NUCA mD-NUCA ® Proposed-AMR D-
! fact
1 09
E 0.8 >ed
= 07
§ o 1 of
% 05 the
§ 0.4 ink-
T 03
=
gﬁ 0.2
E 0.1
< 0

Blackscholes Bodvtrack Canneal Streamcluster Swaptions Fluidanimate SPECZ2006
Figure 6.20: Normalized completion Time

On an average we obtain a 9% performance improveménrespect to S-NUCA (baseline)

and nearly 4% improvement with D-NUCA.
6.9.2 Network Traffic

A comparative evaluation of the variation in ongchietwork traffic is shown in Figure 6.21.
It is based on the distribution of both data ad aglcontrol messages that affects the overall
network traffic (measured in terms of bytes-petrungtion). In our architecture the size of
control message is 8 bytes (header only) and #eedfithe data message is 72 bytes which
contains 8 bytes for the header portion and 64sbide the data block. It can be observed
from Figure 6.21 that the proposed AMR policy reskithe contribution of data messages to

146

the overall network traffic when compared to S-NUOAe main reason for this reduction is
the selective data block replication in the locahks and the migration of data blocks
towards the requesting cores, which reduces thebaurof network hops that must be

traversed by a data packet to reach the destinatida.
x
>
<
D
]
8
o
[a

Canneal Streamcluster Swaptions Fluidanimate Spec 2006

m Data Message B Control Message

w
o

S-NucA [N

D-NucA I
Proposed-AMR I

DNucA I
Proposed-AMR [N

S-NucA I
S-NucA I

s-Nuca B
D-NUcCA
S-Nuca B
D-NUcA I

Number of bytes per Instruction
o w &6 & 8 B

s-NucA [N

DNUCA I
Proposed-AMR [N

S-NucA [

DucAa I
Proposed-AMR NN

Proposed-AMR [l

Blackchol

D

s Bodytrac
Figure 6.21: Normalized Network Traffic

In AMR, on an average the data packets traversernamber of hops with respect to D-
NUCA as well, bringing about a reduction in netwarkffic. We have also noticed that the
control messages are increased for both AMR and OA(tonventional, multi-cast search)
as compared to the S-NUCA due to the extra messageded by both of the selective
replication and migration schemes to maintain cemey and track data block location.
Another important observation that can be madkeasthe proposed AMR, by virtue of using
an efficient data access policy is able to redheeotverall network traffic when compared to
both S-NUCA and D-NUCA. The reduction in the netkdraffic has a direct effect on

reducing dynamic energy consumption.

6.9.3 Energy Consumption

Figure 6.22 presents the energy consumption fortlihee different schemes. We have
normalized the results obtained from AMR and D-NU@ARh respect to the baseline S-
NUCA for each application. Our results include émergy consumed (static and dynamic) by
the on-chip network, the last level NUCA cache, #mel main memory. As seen from the
graph, both D-NUCA and AMR consume lower energy &most all applications when
compared to S-NUCA. As explained in sub-section2.By selectively replicating blocks to

147

the local bankcluster of frequent requestors andimadcasting search requests to only a

subset of banks of the bankset, we obtain 5.3 ¥R2ah&b energy savings when compared to

S-NUCA and D-NUCA respectively.
< x < x X << < @
8 b
z 3
g
o
S

Normalized Energy

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

< X < < <

0
< o < < <
O 0O =00 =00=00=00=0023=0
2D 2D 2 2 €2 22242222 <2
2222225222322 222 52222
U)DwU)DwU)DmU)DmU)DwU)DmU)
Q Q Q o Q Q
Q Q Q Q Q Q
e e e e e e
o o o o o o o

BlackcholesBodytrack Canneal Streamclust Swaption FluidanimateSpec2006

Figure 6.22: Normalized Energy Consumption

To summarize, our simulation results shows thatptloposed AMR scheme performs better
than both the widely used S-NUCA and D-NUCA LLC ragament schemes (in terms of
completion time and energy consumption). The pregasclusion of line migration together
with the selective replication scheme has consideraitility in improving LLC NUCA
performance. We have also observed significantatealuin the network traffic (refer Figure
6.21) and the average L2 hit latency (refer Figh&8) when compared to the two state-of-
the-art schemes (S-NUCA and D-NUCA).

6.10 Related work

Kim et al. [19] was the first to introduce the noeniform cache architecture (NUCA) for the
last level shared cache as shown in Figure 1.dneshNUCA, the entire LLC is divided into
smaller equal sized banks such that nearer cachkshbi@ave lower access latencies as
compared to farther banks, thus mitigating theat$fef increasing on-chip wire-delays.

148

B S-NUCA B D-NUCA B Proposed-AMR

Blackscholes Bodytrack Canneal Streamcluster Swaptions Fluidanimate ~SPEC2006

o o o =
IN o © [()

Normalized average L2 Hit Latency

©
[N

o

Figure 6.23: Normalized average L2 Hit Latency

The benefits that can be obtained from a cache rigration policy are limited by the
effectiveness of a data access scheme that wasuttiffo implement in the past. Kim [19]
was the first to present the importance of the kaeadess scheme in D-NUCA organizations.
Although block migration enhances D-NUCA to outpeni S-NUCA, it is limited by the
ping-ponging of data between requesting cores aacefficiency of the bank access scheme
within NUCA. We address both these issues usingcseé replication and an efficient
search scheme in this chapter. Beckmann and Wobd] [Aave shown that cache line
migration is not beneficial in NUCA cache architeet for multicores as approximately 50%
of the hits in commercial and scientific applicagoare in central bank-clusters to access
shared cache lines. In-order to obtain performdoereefits they have however used a costly
data access policy. Huh et al. [63] proposed a 1B Mnamic non-uniform cache
architecture with 16 cores, but their proposed atign policy ignored the problem of cache
line ping-ponging between bankclusters. CMP-NURARI134] uses block replication in
NUCA caches, but this policy has ignored last lexsgthe pressure due to block replication.
Reactive-NUCA [139] favors instruction replicatiobut has neglected shared block
replication in the LLC. Victim replication [116] as a static policy to replicate blocks that is
not effective for all applications, and Adaptivelédtive Replication [60] only allows to

replicate shared-read-only data and ignores oyipexstof data.

149

To summarize, for programs that exhibit high degreesharing, a majority of the proposed
schemes have not been able to combine an effiblesk migration scheme with the low
latency benefits provided by block replication. d&t6 that do so, lack an efficient search
scheme that provides fast access to blocks. We &aweessed this issue in this chapter by
using location pointers that brings about significeeduction in on-chip network traffic and

energy consumption at the cost of negligible hardvewerhead.
6.11 Summary

We present an adaptive migration-replication sch¢AMR) for shared last level NUCA
cache, which dynamically tracks cache line reusgquency and replicates cache lines that
show high reuse to the local bank-cluster of thguesting cores. Our proposed policy
determines when and where to migrate cache blacksndem with the replication decision.
On a set of chosen multi-threaded and single tleeagplications, the proposed AMR policy
reduces overall energy consumed by 5.3% and 2.8d4hee completion time by 9% and 4%
when compared to the S-NUCA and D-NUCA LLC cachaaggment policies respectively.
The coherence complexity of our protocol is almidsintical to that of a traditional non-
hierarchical (flat) coherence protocol since regdiare only allowed to be created at the LLC
slice of the requesting core. Our proposed polgyimplemented with an extra storage
overhead of 6.8% per NUCA bank.

150

Chapter 7

A Novel work-load awar e adaptive Cache

This chapter presents a novel reconfigurable caatohitecture to improve cache capacity

and reduces on-chip network traffic to improve eysperformance.

151

Chapter 7

A Novel Workload-awar e adaptive Cache

In this chapter, we have proposed a novel recordlga cache architecture to improve cache

capacity and reduces on-chip network traffic toriowe system performance.

7.1 Introduction

In the previous chapters of this thesis, we haweided on the various cache management
challenges in the moderate to large shared L2 safitteCMPs. For that study, we have
assumed a cache hierarchy with private L1 cachdsshared L2 cache organization with a
uniform/non-uniform access latency and physical pimag of blocks to the shared L2 cache.
Figure 7.1 presents the memory hierarchy along wi#lde-off in speed vs size. The
efficiency of current high-performance shared menmaulticore processors depends on the
design of the on cache hierarchy and the coher@gmotcol. Traditional and current
processor cache hierarchies uses a fixed sizecbedalock in the cache organization and in

the design of the coherence protocols.

Processor SUPER FAST
SUPER EXPENSIVE
TINY CAPACITY
" pROCESSOR "
REGISTER)
3 FASTER
EXPENSIVE
LEVEL 1 (L1) CACHE SMALL CAPACITY
LEVEL 2 (L2) CACHE
EDO, SD-RAM, DOR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
\ PRICED REASONABLY
and More... __,"r. RAMDOM ACCESS MEMORY (RAM) '_‘. AVERAGE CAPACITY
y b
SSD, Flash Drive SOLID STATE MEMORY AVERAGE SPEED
HNON-VOLATILE FLASH-BASED MEMORY E
Mechanical Hard Drives | VIRTUAL MEMORY SLOW
e oapCHERP
FILE-BASED MEMORY LARGE CAPACTITY

A Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng

Figure 7.1: Cache Hierarchy and trade-off between size amahdézt

152

The fixed size of block in the set is chosen toaneaverage spatial locality requirement
across a range of applications, but it also resmtsvastage of bandwidth because of
unnecessary coherence traffic for shared data.aldgional bandwidth has a direct impact
on the overall energy consumption. In this chapter present a new adaptable cache design
that can be dynamically reconfigured to match tlaadmovements for an executing

applications and its required spatial locality.
7.2 Motivations

Caches memories are designed to exploit localiyefgfrence in order to take benefit of data
reuse by speeding up subsequent access to thedsaanelock. There are two different types
of reference locality which cache designer tryxpleit are temporal and spatial. Present day
processors use eight bytes of data at a time awdt@rcaches are designed to keep small
amount of data that is frequently used near thegasor to exploit locality within executing
applications. Cache design are either direct mappagt-associative where each block from
memory maps to a single entry in the cache (singlg) or in one of the many (number of
ways) possible entries in the cache. Figure 7esgnmts a four way set-associative cache
structure with data and tag array, where size ohekta-block size location is 64bytes. As
shown in figure 7.2 each set can store a fixed rarmobdata blocks and that depends on the
set-associativity of the cache. Each data blockyd6d-bytes) within a set is called a way.

Address
3130---12111098---3210

22 8
Tag

Index

Index V Tag Data V Tag Data V Tag Data V Tag Data
0

1
2

253
254
255

Data

Figure 7.2: Set associative cache with fixed data block size

153

Therefore, we have observed that the size of thhechlock entry is the basic unit of data
transferred or allocated in the cache architectudasa blocks size in caches affects multiple
system performance metrics including on-chip irdarection bandwidth, cache miss rate,

and cache utilization.

Uniformly sized data blocks simplifies cache redsieand support simple tag organization.
However, traditional caches are not flexible beeao$ fixed data block size and fixed
number of data blocks in the set which resultsaorpcaching efficiencies for applications
that has low spatial locality. We have analyzed the cache block size exploits spatial

locality by naturally prefetching all the neighbagiwords at the same time.

However, few words in a data block could be eviaiatbuched during the life cycle of a
cache block, due to the varying spatial localiterécuting applications. These unused words
in the data block consume interconnect bandwidthgoilute the cache, which increases the
number of misses. We have analyzed the influence fated size data-block as shown in
Figure 7.3 and presented a novel modified cachéymlesith adaptive cache block size

depending on the application executed on the psoces
7.3 Justification for Proposed Cache Architectures

In this section, we have first analyzed the infleeeiof data block size on various parameters
that justifies the need for our proposed architectu

7.3.1 CacheBlock Utilization

Previous research had reported that in the absankigh spatial locality, a multiple word
cache blocks which are of 64 bytes in size on EgSCMP tend to increase cache pollution
and fill the cache with neighboring words that andikely to be used during block life time.
To illustrate this issue, we divide the cache Ime words of 8 bytes each and track which of
the words are used before the complete block istei The profiled results for few

applications are shown in figure 7.3.

154

These results show that all of the executed apgpmita accessed only 1-4 words within the

complete 8 words (64bytes) more than 80 % of tted txcesses.

M 5-8 words W 1-4 words

100

90

s 80
Q

S 70
o)

g 60

g 50
G

X 40

30

20

10

0

Canneal X264 Soplex

Figure 7.3: Percentage utilization of blocks

We have further analyzed the profiled results aswvshin Figure 7.4. The result shows that
all of the executed applications accessed 1-2 wondan average over 70% of times within

1-4 words (which is 80 % of the total accesses.)

H1-
100 1-2 words
90
80
3 70
<
[}
2 60
5
5 50
=
s 40
X
30
20
10
0
Canneal X264 Soplex

Figure 7.4: Percentage utilization of blocks

155

7.3.2 Effect of Block Size on Cache Miss Rate and Bandwidth

We have also observed that different applicatiomseh different cache block size

requirements and it affect cache miss rate whidfirectly correlated with the performance

and the size of the data transfer using intercanmetvork. The size of data transfer effects
bandwidth and dynamic energy [144]. Our analysmwshthat there is strong influence of

block size on miss rate and bandwidth. We have wdgdcan application on a system with
64K L1 cache and a 1M L2 cache with fixed wayshi& tache with 64byte block size. In the
next run we have reduced the block size from 632dytes which increases the miss rate.
However, when we have increased block size fronn6256 bytes, there is reduction in the
miss rate but increase in the bandwidth. Thereftitere is a trade-off in miss rate and
bandwidth and therefore choosing optimal block simsents the need to take both criteria’s

into account for an application.
7.3.3 Requirement for adaptive cache blocks

Previous research and our observation demandsede for novel cache architecture and
hierarchy which supports variable cache block sikasadapts the spatial locality of the data
access patterns in an application. In summaryAl$maller fixed cache block improves
cache utilization but it increases miss rate amer@onnect traffic for applications with good
spatial locality, affecting the overall performan2g A fixed Large cache block underutilizes
the cache space and on chip interconnect with uihwseds for applications with low spatial
locality, which significantly decreases the cachefficiency. 3). Spatial locality varies not
only with applications but also within each appiica, resulting in underutilization of the

significant fraction of the cache space.

In summary, a smaller fixed cache block can impnaveation and miss rate but is not suited
for applications that exhibited good spatial loyalOn the other hand, a large fixed size cache
block goes under-utilized for applications exhigtipoor spatial locality. Since spatial locality
varies both between applications as well as witmnapplication, there exists a need for a
cache which supports variable cache block sizesadagts to the spatial locality of the data

access patterns in an application.
We make the following contributions in this work:

1) Proposing a variable granularity cache, withalde size and number of cache blocks per

set.

156

2) Designing the indexing, insertion, lookup anplaeement polices for the proposed variable

cache architecture.
3) Implementing the proposed policy in Verilog HAhd analyzing the results obtained.

The rest of the chapter is structured as follovecti®n 7.4 provides detailed explanation of
proposed architecture. Section 7.5 presents thailslaif the variable cache management
scheme. Section 7.6 includes a discussion on tiheéwhse overhead. Section 7.7 briefly
outlines the spatial locality predictor used in tesign. Results are presented in Section 7.8,
with related work in Section 7.9 and concluding agks in Section 7.10.

7.4 Proposed Variable Granularity cache architecture

Figure 7.5 shows the detailed architecture of camable granularity cache. An important
design consideration is the allocation of spaceblocks (of different sizes) in the same

cache according to the spatial locality shown leyapplication.

Address

| Tag |]Setindex|word | Byte offset | Number of || 1 word =8
€50 bits—h=38 bits=p43 bits—+¢—3 bits — sets =256 bytes »

b}
| Valid/Invalid bit armyl | Tag/Data bit array| Tho %,- =
?vow 31 olrol|T1 731 olr|p|r[pf --- |T]D|T[D m%"’

1 iffrfo[r] --+ 1[0
. . "
: - Y \ 2|5
* L
. . . T D | T | D PR) ™
: . . 8 Words =
.) ' (max.) B | §
. é m
o o
254 254 254
255 255 2s5(r] o [r|p]| --- |T[D o o
© |9
< R
Variable number of blocks per set and Voriabl
variable number of words per block VCB: Variable
Cache Block

Figure 7.5: Variable Granularity Cache Architecture

Figure 7.5, presents a fixed size (64kB), variaj@nularity cache with 256 sets and 256
bytes per set. Cache sets may also be configuredntain: example eight 32-byte blocks or
four 64-byte blocks, based on the application’sun@nent. As a result, our architecture is

flexible both in terms of allowing for variable niver of blocks as well as allowing blocks of

157

different sizes in the same set. We refer to suclache organization as a ‘locality-aware

variable granularity cache organization.’

A traditional cache includes a separate data amaiiaay. But a cache architecture, such as
ours would require the tag array to grow or shiimlsize based on the number of blocks
allocated to each set. One possible solution, otopletely eliminate the need for a separate
tag array, by merging both the data arrays andteays. This merging is beneficial because
now, every tag co-located with the correspondin@g.ddowever this modification presents
its own challenges. We describe these challengesviand outline solutions for the same.

1) Distinguishing between data and tag words in the set: One possible solution is the
addition of a separate array to store bits to et@iavhich word in the cache array represents

tags and which one represents data-blocks as simotlva Tag/data bit arrag Figure 7.5.

2) Tracking the validity of data stored in a cache line: In a conventional cache, the
valid/invalid bits are used by the block replacetnand block insertion policies and are
typically associated with the tag array. One pdsssblution is the addition of another array

for storing information about the validity of dataevery word of the set.

Finally as shown in Figure 7.5, the complete camfohitecture has three separate arrays one
for storing data-blocks and tags together, oneidentifying tag/data words and one for
storing the valid/invalid bit information. In thegposed cache architecture tags are extended
with ‘Begin’ and ‘End’ addresses to support varelphulti-word blocks. The next section
gives the working of the overall cache architecture

7.5 CACHE MANAGEMENT SCHEME

Some of the key aspects to be kept in mind whileldping a cache architecture are the
indexing, look-up, insertion and replacement pekciWe describe them in detail below:

7.5.1 Cache Set-Indexing

In this cache architecture the main storage arcdgsha collection of sets with different sized
data-blocks that do not overlap. Each cache blsakvided into 4 different fields consisting
of <Tag, Begin, End, Data-Block> as shown in Figdré. The minimum size of the data
block in the cache is one word and the maximumNBAX words. The boundaries of any
cache block are given by thBegin and ‘End bits. We can encodeBegin’ and ‘End’ in
log2 (TMAX) bits. In the cache, the set indexingheique masks the lower log2 (TMAX)
bits to ensure that all data-blocks in the samargkix to the same set. The Tag and Set-

158

Index are identical for every word in the cacheckloVhen TMAX = 8 words = 64 bytes, a
fair comparison with a fixed block size (64 byteshventional cache architecture can be

made.
7.5.2 Data L ookup

The steps involved in data look-up are describdgignre 7.6. In the first step, the lower log2
(TMAX) bits are masked from the address and thersix is derived from the remaining
bits. In parallel, the Tag/Data bit array activates words in the data array corresponding to
the tags for comparison. In this cache architediueeminimum size of a block is two words,

one for the tag, and one for the data, therefojgcadt words cannot be tags.

= bl
TR
g glz $ 8
£
gl T
Valid/invalid array ~ Tag/Data array s
e .. L1 bed [[o |
- E
=" Hit/Miss
Block
o dd
% Address Hit/Miss Signals | | | .-
c |o: decoder e =i
s 8:256 oA ke
a [' [Werd] s [werd] =
oo |2 tj @
==
50
bl '
]
% : :
Tag Encoder| Tag Base Address Subtractor
32:5 Offset
A =}
515 Adder
731 Werd 0-31

Word Address

Mux

Accessed
Word

Figure 7.6: Data look-up logic

The hit-miss block shown in Figure 7.7 consisténal comparators, one to determine if there
is a tag match and another one to ascertain ifepeested word lies in the range specified by
the ‘Begin’ and ‘End’ bits. Using the base addresthe requested word from the tag encoder
and the offset computed using a subtractor, weirolite location of the requested word

which is routed to the destination using a multple

159

| wordo | word1 | word2 | -+] word31]

— —_—— —
| To T1
Tag I
Selector I
|
I v
IS S —

I 16 Tag Selectors I

3 I Tag I Begin End | Offset
S {50 bits) | (3 bits) (3 bits) (2 bits)
Address
\’ Tag Wlord WTrd
I A B A, B

Tag Comparator] [Comparator
Match? | fia=B) (a<B) |(A=B) (A<B

/I Hit/Miss Signals I

s0 PR 515

Figure 7.7: Hit/Miss Block
7.5.3 Block Insertion

In case of a miss for the desired word, the ingentiolicy should determine a position in the
set to allocate the incoming block. In order tocmoplish data insertion we examine the
Valid/Invalid bit array. As described in Sectior There is one bit per word in this array and
a “1” in the bit field indicates that the corresporg word (tag/data) has been allocated space
and contains valid information. So in order to melisearch space for an incoming data
block, this architecture performs a substring dearcthe Valid/Invalid bit array of the cache
set for contiguous sequence of “0s” (empty wor@®y. example, to insert a block of four
words consisting of a single word-sized tag analérivord-sized data, it performs a substring
search for 0000 in Valid/Invalid bit array corresgong to the indexed set. In case a match is
found, the tag and data block may be inserted hadccorresponding bits in the tag/data bit
array as well as in valid/invalid bit array cands. However if the search results in a miss it

triggers the replacement policy as described b&ho8ection 7.5.4.
7.5.4 Block Replacement

The key challenge in this policy is to identify thieck to replace. When the selected block in
the cache is replaced, the corresponding bits entély/data bit array and valid/invalid bit
array are reset. We employ Least Frequently UsdelJJLas our replacement policy as

adopted in literature. It works as follows: Firstly the absence of vacant space in the cache

160

set, the least frequently used (LFU) block is ptbder replacement. If after such a
replacement, there is still inadequate space @lailtor the incoming block, our policy
resorts to replacing multiple smaller blocks (basedtheir position in the least frequently
used stack) till the incoming block may be accomated.

7.6 Hardware Overhead

The extra bits required in this proposed cacheladag/data bit per word and valid/invalid
bit per word in both arrays. Both the tag/datadsiay and valid/invalid bit array sizes are

directly proportional to the cache size and reqaiminimal storage overhead of 3%.
7.7 Spatial Locality Predictor

A spatial locality predictor serves the purposedefermining the number of words to be
fetched on a cache miss. We examine the executhmed from different applications and
predict its spatial locality. In this work, we denstrated the effectiveness of the technique
for a custom trace. Later, we will extend this wof&r any application phase. For this
purpose, we intend to use a prediction table (aintd a branch history table) whose entries
are indexed by the program counter (PC). Each eittige table contains a bit array, whose
field indicates whether a particular word has beerthed before eviction. We use the PC to
index into the table, based on the notion thatifipdeC’s capture the spatial locality of the
application. The entries in the table need to baatgd only on an eviction (often infrequent),
hence, the additional latency that will be impobgdhe predictor is minimal. Our predictor
is optimistic and will over-fetch around the créilcword requested by the processor. One
may also choose to bypass the predictor (cold m®En prediction accuracy is low (low
confidence interval). Further, we also wish to astda sensitivity study to tackle certain
other issues that come with online prediction, sashdetermining the optimum size of the

prediction table and the prediction table entréssa part of future work.
7.8 Results

The proposed architecture is simulated using Vgidardware Description Language (HDL)

using ModelSim.

161

B! fancsrbie:
B [aprocessrfadess fep i - dooomodoany ||| !
- [mvocessor dafa ot e DRIES ST [DDDDDDDDDDDDDD DDDDDDDDDIDDDDIE DZDZDDDDDDDDDDD.=
B [l n e :
pt)a;mm#amhimmm
! fprocessc it or

st

Figure 7.8: Read and Write Accesses to a set containing texckblof size 3 and 4 words
respectively

Figures 7.8 and 7.9 show how write accesses terdift words in the variable cache are
handled. We present accesses to two sets eachintogtaariable sized blocks for the
purpose of evaluation. In Figure 7.8, accessessiagle set of the variable granularity cache
are shown along with various control signals. Td¢es contains a block of size 3 words (12
bytes) and another of size 4 words (16 bytes). 8&irme that a single byte transaction
occurs per cycle. The yellow oval indicates 12 svhits to the 3-word block. However a
request for a subsequent word results in a wrigsras shown by the gray oval. The spatial
locality predictor predicts a complete 4-word blq@®AX) be used to refill the set. The 3-
word block by virtue of being least frequently udedie to previous accesses) is evicted.
Since there is still inadequate space availabke Athvord block is evicted as well. Now, as
indicated by the red oval, 16 write hits correspogdo the incoming block may be noticed.

As a result of the sequence of operations, a 3-woidlis left in the set.

I‘.L:- Mﬁhﬁm . D:DIDJDDDDDDDD‘ DID:)EDDDDDDJD D:DID]DIDDJDD" |
B o |
B moces e e e 001 :):)D:)D:}DD:DD:):)D:)mJDDD:)D:)DDDD:JD:IJDEDDDDJDDDDDJDDDDU‘ "

4 vt s e

4 fprocessr it o mis g

4 fprocessony_cecheeahit

4 fprocessvjny cache s
4 fprocesso oy cachefrietit

! frocessofry_cechefirteniss

Figure 7.9: Read and Write Accesses to another set contaimindplocks of size 3 and 2
words respectively.

162

The same sequence of operations as describedr ¢akiés place, with the difference that the
2-word block is evicted instead of the 4-word blolckthis case, assuming the same predictor
is used, a single word void is left in the setFigure 7.9, accesses to another set containing a
3-word and 2-word block are shown, whereas figut® 8hows complete cache simulation.

| Tioop1100 00001000110 | Jaooo..)

|

e ...Aﬂv‘mwidahmtrm
B fproceso oy ey e

Figure 7.10: Cache Simulation.
7.9 Related Work

There has been a large body of research workingnpnoving the utilization of the cache
and reduce energy consumption [143][145][148]. Ghreet al. [151] proposed Line
Distillation to discard only untouched words frombblock during eviction. Their design
consists of a Line Organized Cache (LOC) in whible tache blocks are of regular
granularity (64 bytes) and a Word Organized CadM®OC) which contains word-sized
blocks. Therefore, this organization supports tloeage of data at two granularities in the
cache. In contrast, we propose to maintain diffevesrd-sized cache blocks in order to fully
exploit the spatial locality shown by the applioati Veidenbaum et al. [140] also proposed a
word-organized cache, but it incurs significant tagrhead. Sector caches have also been
proposed in the past [141][142][147]. They orgartiags at the granularity of a sector and
data at sub-sector granularity. In particular, Rujgat al. [144] proposed a word-sized sector

cache that uses prefetching to determined wordsribg be utilized by the application. But a

163

common problem faced by all prefetching techniqisethe issue of cache pollution with

unused words. Orthogonal to the above mentionekdnigues, work has also been done
towards designing an adaptive granularity DRAM lkagechitecture [146]. Similarly, many

techniques have been proposed at the software (eweipiler) to re-order code to better
exploit spatial locality [149] [150].

7.10 Summary

In this chapter, a locality-aware variable grantyatache architecture is presented, that can
hold different number of cache blocks with variablember of words. This adaptive block
sizing minimizes the size of data messages andcesdon chip network traffic. By utilizing a
spatial locality predictor, we are able to reduaehe pollution for applications that exhibit
low spatial locality and improve the performance ather applications. Our variable
granularity cache is flexible and can be adapteduib any level of the multilevel cache
hierarchy (L1, L2 or L3). We have used this nowattte to model L1 in the cache hierarchy.
Simulations in Verilog HDL demonstrate the feasipibf the proposed design. In future, we
will perform full system simulations using cachenmasiation tools [99]. In addition, the
number of words per block utilized by the applioatwill also be evaluated by profiling the

cache evictions for a variety of benchmarks [108]

164

Chapter 8

Conclusons and Future Work

This chapter presents the main conclusions oftti@sis and outlines areas for future work.

165

Chapter 8

Conclusions and Futurework

In this chapter, we conclude the thesis by sumnmayithe contributions and providing some

future directions for extending the work.
8.1 Conclusions

In order to take advantage of billions of trangiston single chip with manageable design
complexity while staying within the power budgetsdameeting the demand of ever
increasing throughput requirement, CMP with manygesand shared LLC is a viable design
choice. With the adoption of this domain, we haighér demand on on-chip cache capacity
and interconnect bandwidth (on/off-chip). Many mithireaded applications on CMP require
support for fine-grain and dynamically changingrsigaaccess patterns. Multiprogrammed
and single-threaded applications require localidata access. All these applications are
penalized by indirection in directory-based cacbleetence. Furthermore, their working sets
well exceed the private cache sizes and stresshesthared LLC mostly by exceeding the
on-chip capacity. On-chip caches must thereforg@tattathese varying needs to reduce L1

miss penalties and both on chip and off-chip badtwiequirements.

In this thesis, we have tried to incorporate ddfgrcache management schemes to design a
CMP cache that solves the indirection problem alt &g meets the requirements of fine-
grain sharing support, localized and faster colmyeand data availability, larger effective

cache capacity, and application-adaptive replacemégration policy.

As stated above, most of today’s multi-core prooesfeature Last level shared L2 caches. A
major problem faced by such multi-core architeduse cache contention, where multiple
cores compete for usage of the single shared LkecaPrevious research shows that
uncontrolled sharing leads to scenarios where are evicts useful L2 cache content

belonging to another core. To address this problem:

We examined in Chapter 4 a cache miss classificatiGll: Compulsory, Inter-processor and
Intra-processor misses — for CMPs with shared cadr its comparison to 3C miss
classification for traditional uniprocessor, to yide a better understanding of the interactions
between memory references of different procesddisedevel of shared cache in a CMP. We
then propose a novel approach, called block pinrmimgeliminating inter-processor misses
and reducing intra-processor misses in a shardaec&uwrther, we showed that an adaptive

166

block pinning scheme improves over the benefitsaioked by the block pining and set
pinning scheme by significantly reducing the numbkpff—chip accesses. This work also
proposes two different schemes of relinquishing tvenership of a block to avoid
domination of ownership of few active cores in nuaie system which results in
performance degradation. Extensive analysis ofetteggproaches with SPEC and Parsec

benchmarks are performed using a full system sitoula

In Chapter 5 we presented the growing needs of modeemory-hungry work-loads,
therefore there is a growing need to keep large @echip caches. Unfortunately, expanding
the cache size alone is not sufficient to increasmlern systems efficiency, since the
traditional UCA design exhibits serious limitatioriarger capacity comes at the cost of
increased access latency, as wire delays grow alstingthe physical size of the memory
structure. For that reason, large on-chip cachdls avisingle, large and uniform latency are
undesirable In other words, increasing cache sizes only mdkesexisting gap between
processor and memory access speeds grow even wides. solution lies in a distributed
cache design that manages to provide varying atiress and increased bandwidth. In order
to achieve this goal, a complete shift in the caatohitecture design paradigm was required.
The previously single, monolithic chunk of cacheC@) is transformed to a finer-grained
structure. More specifically, the last-level cadsecomposed of physically independent
banks which are evenly distributed across the die afé# design provides varying access
latencies between the cores and the cache bamendiag on the physical distance between
the requesting core and the cache bank where guested data resides. Thus, we are led to a
Non-Uniform Cache Access (NUCA) organization. NU@#Aovides faster access to cache
blocks in the banks that reside closer to the m®me The major limitation with this
architecture is that a block can only be placed gingle location during its lifetime. This, of
course, imposes serious limitations with this aedture: a frequently accessed block may be
placed in a bank located far from the cache cdetiaihus suffering the overhead of a high
access time every time it is accessed. We propasedefficient, and low-overhead
mechanism to track the re-usability of each cache in the shared NUCA. Our scheme
allows dynamic replication of those cache lines s$teows high usage at the shared LLC.
When a replicated cache line is evicted or invaéidathe proposed scheme dynamically
adjusts its future replication decision. This scheatso reduces access latency and energy
consumption by selectively replicating the caclne lihat show high re-usability in the local

bank-cluster of the requesting core. It also maistaoherence complexity similar to that of

167

a conventional non-hierarchical coherence prot@soteplications are allowed only in the

local bank cluster of the requesting core.

Chapter 6 of this thesis dealt with the challengesed by Dynamic NUCA design. The
limitations of the static NUCA organization resdlte NUCA's next generation designs, the
dynamic NUCA, which address the problems that fieen static placement. Furthermore,
future multi-core systems will execute massive memmtensive applications with
significant data sharing. Data movement and theanagement further impacts memory
access latency and consumes power. We observegrinabus D-NUCA designs have
used a costly data access scheme to locate ddtee iINUCA cache in order to achieve
remarkable performance improvement. To addressthiggations, we further investigated
this limitation along with the benefits of dynaniNd&CA organization and also discussed the
drawbacks of both S-NUCA and D-NUCA organizatiomafly, we proposed an adaptive
migration-replication policy for non-uniform sharkét level cache and proposed an efficient
data access policy using a set of location pointéits each banks, which addresses the basic
problems with these two potential future cache iggctures SNUCA and D-NUCA. Our
scheme relies on low-overhead and highly accurateardware pointers to control network
traffic and improves cache miss latency. Using $ations on 8-core multi-core system, we
show that our proposed data search mechanism itVOANdesign reduces dynamic energy
consumed per memory request and outperforms ma#i access policy by an average
performance speedup.

In Chapter 7 we first presented the need for hybrael cache design based on the
observation of variable spatial locality exits amgodifferent application. Then, we
presented a novel cache architecture with adaptvek sizing to minimize the size of data

movement and reduces on chip network traffic.

To summarize, we optimized for both private andati@ata in all types of applications. We
optimized for shared data in multi-threaded appilices by providing fair adaptive block
ownership policy and its dynamic relinquishmentijatck level).

We tracked frequency of usage of data in all typefs applications including
multiprogrammed, multi-threaded applications onftiieand triggers selective replication of
most frequently used data at the local bank cluatet localized coherence in NUCA
(Chapter 5).

168

We also optimized cache for all types of appligagidoy preventing data ping-pong and
uncontrolled data movements within NUCA using ao@pimigration-replication (AMR)

policy (Chapter 6).

Our optimizations are applied at the L1 level using-grain variable size block movement
from LLC/L2 level (larger effective L1 capacity, asore words are moved close to private
L1 cache) (Chapter 7).

8.2 FutureDirections

The experimental work presented in this thesis spgn following directions in the cache

hierarchy and coherence protocol design:
8.2.1 Global Replacement Policy.

Current last level non-uniform cache architecttddd CA) for multicore processors employ
LRU (Least Recently used), PLRU (Pseudo-LRU) or \tgiants as their replacement
strategy. These policies work well for a traditiboaiform cache architecture but none of
them address the issue of global cache line replent as required in a heavily banked
NUCA cache. In a NUCA cache, highly reused caamesliplaced in the local banks (near the
requesting cores) which face frequent eviction asmared to cache lines are placed far
away. This can lead to increased miss rates fderdiit applications. A conventional
replacement policy employed at the local bank evittte LRU cache line, without
considering the possibility of its future use. Thdicy also does not consider idle cache lines
(showing lesser reuse) at distant banks as camdidiat replacement. Since multiple banks in
a NUCA cache work independently, there exists namado identify the LRU cache line at a
global level, considering all banks. Thereforeré¢his a need for a global cache replacement
scheme that characterizes cache lines based anréusie probability, and prioritizes the

retention of those blocks showing high reuse proityab

8.2.2 Dynamic granularity block movement with Coherence Granularity for caches in
CMP

Current research proposals and existing work miamtaache coherence at cache line
granularity or at page level granularity. With thiised line/page size, it is easy to design and
maintain cache coherence in CMP. However, the imaitation of these proposals are that,

they do not allow to change the granularity of line/page dynamically depending on the

169

workload pressure. Different workload have variable size requirements and hence

variable granularity cache line has the potentiaitprove the overall performance in CMP.
8.2.3 Mapping strategy:

Conventional, static cache line and page mappirthg¢anulti-banked last level cache banks
has the benefit of easy implementation. Howevay tfo suffer from the long access latency
due to initial poor placement. In future, an efiti mapping policy is required along with

variable granularity block and cache coherence @upp
8.2.4 Tiled architecture:

Analysis of our proposed schemes on a tiled arctouite will be another interesting area of

our future work.

170

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

L1ST OF REFERENCES

G. E. Moore. Cramming More Components onto Integtatircuits. Electronics, pp.
114-117, April 1965.

J. Huh, D. Burger, and S. W. Keckler. Exploring thesign space of future cmps. In
Proceedings of the 10th International ConferencePamallel Architectures and
Compilation Techniques (PACT), pp. 199-210, 2001

K. Krewell. Intel's PC roadmap sees double. Micogpssor Report, vol.8, issue 5,
pp. 41-43, May 2004.

R. Low. Microprocessor trends: multicore, memoryd apower developments.
Embedded Computing Design, Magzine, September,.2005

M. Monchiero, R. Canal, and A. Gonzlez, Power/Renince/Thermal Design-Space
Exploration for Multicore Architectures. In IEEE dansactions on Parallel and
Distributed Systems, vol. 19, issue 5, pp. 666—2808

Frank Schirrmeiste. Multi-core Processors: FunddaienTrends, and Challenges.
Embedded Systems Conference, Imperas, Inc., 22006-f5, California, April 4,
2007.

Christian Martin. Multicore Processors: Challengepportunities, Emerging Trends.
In proceeding of the Embedded world Exhibition &whference, pp. 1-6, February
2014.

Ardsher Ahmed, Pat Conway, Bill Hughes, and Fred&/eAMD Opteron™ shared-
memory MP systems. In Proceeding of the 14th Hap£Isymposium, pp. 1-30,
August 2002.

Chetana N. Keltcher Kevin J. McGrath Ardsher Ahnfeat Conway. The AMD
opteron processor for Multiprocessor Server. IEEEr®) vol. 23, issue 2, pp. 66-76,
March/April, 2003.

Ron Kalla Balaram Sinharoy Joel M. Tendler, IBM Ro% Chip: A multithreaded
Dual core processor, IEEE Micro, vol. 24, issupi2,40-47, March/April, 2004.

C. McNairy and R. Bhatia. Montecito: A dual-corejattthread itanium processor.
IEEE Micro, vol. 25, issue 2, pp. 10-20, March-A2005.

Intel Corporation. Intel 64 and 1A-32 Architectur@ptimization Reference Manual,
January 2011.

K. Krewell. Sun's Niagara pours on the cores. Mycooessor Report, vol. 18, issue 9,
pp. 11-13, September 2004.

Borkar, S., Chien, A. A. The Future of Microprocass Communications of the
ACM, Vol. 54, No. 5, pp. 67-77, May 2011.

Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckkmd Doug Burger. Clock rate
versus IPC: The end of the road for conventionatroarchitectures. In 27th
International Symposium on Computer Architectu&JA), pp. 248-259, June 2000.

Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. Thatudre of wires. In IEEE
transaction, vol. 89, issue 4, pp. 490-504, A@O2.

K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, akd Chang. The case for a
single-chip multiprocessor. In Proceedings of thle [hternational Conference on

171

Architectural Support of Programming Languages a@gerating Systems,
Cambridge, MA, pp. 2-11, October 1996.

[18] P. Kongetira, K. Aingaran, and K. Olukotun, Niagafa 32-Way Multithreaded
SPARC Processor, IEEE Micro, vol.25, issue 2, Ap:28, 2005.

[19] C. Kim, D. Burger, and S. W. Keckler. An adaptimen-uniform cache structure for
wire-delay dominated on-chip caches. In Proceediofyghe 10th International
Conference on Architectural Support for Programmiranguages and Operating
Systems, pp. 211-222, 2002.

[20] A. J. Smith. Cache memories. Computing Surveys, 44| issue 3, pp. 473-530,
September 1982.

[21] L. Benini and G. De Micheli. System-level powerioptation: techniques and tools.
ACM Transaction on Design Automation Electronic t8ys, vol. 5, issue 2, pp. 115—
192, Apr. 2000.

[22] L. Benini. Energy-Aware Design of Embedded Memoried Survey of
Technologies, Architectures, and Optimization Tegbhes, vol. 2, issue 1, pp. 5-32,
2003.

[23] P. R. Panda, F. Catthoor, K. U. Leuven, N. D. Dkittbanckaert, E. Brockmeyer, C.
Kulkarni, A. Vandercappelle, and P. G. Kjeldsbdbgita and Memory Optimization
Techniques for Embedded Systems. ACM TransactiorDesign Automation of
Electronics Systems, vol. 6, issue 2, pp. 149-200].

[24] R. T. Witek, A. J. Black, E. M. Cooper, D. W. Dolopehl, P. M. Donahue, G. W.
Hoeppner, T. H. Lee, P. C. M. Lin, L. Madden, M.Pearce, K. J. Snyder, and S. C.
Thierauf, “0. 5-W CMOS RISC,” vol. 9, issue 1, 4703-1714, 1997.

[25] John L. Hennessy and David A. Patterson. Computehifecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., 4thieadj 2007.

[26] S. J. E. Wilton and N. P. Jouppi. CACTAn Enhanced Cache Access and Cycle
Time Model. IEEE Journal of solid state circuitp, ft—26, 1996.

[27] T. Chen and J. Baer. Effective hardware-based gtafatching for high-performance
processors. IEEE Transaction on Computing, vol. iddue 5, pp. 609-623, May
1995.

[28] M. D. Hill and A. J. Smith. Evaluating associatwitn CPU caches. In IEEE
Transactions on Computers, vol. 38, issue 12, §p221630, December 1989.

[29] A. J. Smith. Cache Memories,” ACM Computer. Surveyl. 14, issue 3, pp. 473—
530, September 1982.

[30] J. Jeong and M. Duhois. Optimal Replacements irh€aevith Two Miss Costs. In
Proceedings of the 11th Annual ACM symposium onalR&r Algorithms and
Architectures, pp. 155-164, June 1999.

[31] T. S. B. Sudarshan, R. A. Mir, and S. Vijayalakshrighly Efficient LRU
Implementations for High Associativity Cache Memohy Proceedings of the 12th
IEEE International Conference on Advanced Computng Communications, pp.
87-95, December 2014.

[32] W. Wong and J. Baer. Modified Iru policies for imping second-level cache
behavior. In Proceedings of the 6th Internationgahfosium on High-Performance
Computer Architecture, pp. 49-60, January 2000.

172

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

H. Al-Zoubi, A. Milenkovic, and M. Milenkovic. Pesfmance evaluation of cache
replacement policies for the SPEC CPU2000 benchmaitk. In Proceedings of the
42nd Annual Southeast Reg. Conference, ACM-SE g22@7-272, 2004.

Y. Deville and J. Gobert. A Class of Replacemenlicks for medium and high
associativity Structures. ACM SIGMETRICS Computechitecture News, vol. 20,
issue 1, pp. 55-64, March 1992.

R. A. Sukumar and S. G. Abraham. Efficient Simwlatof Caches under Optimal
Replacement with Application to Miss Characteriaatiln Proceedings of the ACM
SIGMETRICS Conference on Measurement and ModelinGamputer System, pp.
24-35, May 1993.

M. Kampe, P. Stenstrom, and M. Dubois. Self-comgct.RU replacement policies.
In Proceedings of the first Conference on Computingntiers, pp. 181-191, April
2004.

Y. Smaragdakis, S. Kaplan, and P. Wilson. EELR&imple and Effective Adaptive
Page Replacement. In Proceedings of the 1999 ACMEME&ETRICS Joint
International Conference on Measurement and MogeadlinComputer Systems, pp.
122-133, May 1999.

A. V. Veidenbaum, W. Tang, R. Gupta, R. Nicolau atdJi. Adaptive Cache line
Size to Application Behavior. In Proceedings of #13th International Conference on
Supercomputing, pp. 145-154, June 1999.

N. Maki, K. Hoson and A. Ishida. A Data-Replace-@olhed Cache Memory System
and its Performance Evaluations. In Proceedingb®iEEE Region 10 Conference,
pp. 471-474, September 1999.

Z. Wang, and D. O. F. Philosophy. Cooperative haré¥goftware caching for next
generation memory systems. Ph.D Thesis, DepartnoéntComputer Science,
University of Massachusetts, Amherst, Massachydettsruary, 2004.

E. J. O'Neil, P. E. O'Neil, and G. Weikum. An optiity proof of the LRU-K page
replacement algorithm. Journal of ACM, vol. 46uis4, pp. 92-112, Jan, 1999.

A. Lai. C. Fide and B. Falsafi. Dead-block prediati& dead-block correlating
prefetchers. ACM SIGARCH Computer Architecture Newd. 29, issue2, pp. 144—
154, 2001.

J. T. Robinson and M. V. Devarakonda. Data Cachadgement Using Frequency-
Based Replacement. In Proceedings of the 1990 AGBMETRICS Conference on
Measurement and Modeling of Computer Systems, 142, May 1990.

D. Lee, J. Choi, J. Kim, S. H. Noh, S. L. Min, Yh&€ and C. S. Kim. LRFU: a

spectrum of policies that subsumes the least rigcased and least frequently used
policies. In IEEE Transaction on Computers, vol, ¥sue 12, pp. 1352-1361,
December. 2001.

Y. Smaragdakis. General adaptive replacement pslidn Proceedings of thé"4
International Symposium on Memory ManagementSMM °'04, pp. 108-119,
October, 2004.

J. Alghazo, A. Akaaboune, and N. Botros. Sf-lIru [@a&keplacement Algorithm. In
Proceedings of the Records 2004 International Whaison Memory Technology,
Design and Testing, pp. 19-24, August 2004.

173

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

J. Aguilar and E. L. Leiss. An Adaptive Coheren@pRcement Protocol for Web
Proxy Cache Systems. Communication and Systems8ypp. 1-14, 2004.

N. P. Jouppi. Improving direct-mapped cache peréorce by the addition of a small
fully-associative cache and prefetch buffers. lmdeedings of the 17th Annual
International Symposium on Computer Architecturel. 18, issue 3, pp. 364-373,
May, 1990.

M. Flynn and P. Hung. Microprocessor design issu€lpughts on the road ahead.
IEEE Micro, vol. 25, issue 3, pp.16-31, 2005.

A lebeck, X. Fan, H. Zeng and C. Ellis. Power-AwdPage Allocation. ACM
SIGOPS Operating Systems Review, vol. 34, issyg5105-116, 2000.

A. Acquaviva and B. Ricc. Energy Characterizatioh Embedded Real-Time
Operating Systems. In Proceedings of the WorkshopgCompliers and Operating
Systems for Low Power, pp. 53-73, December 2003.

A. Gutierrez, R. G. Dreslinski, T. Mudge. EvalugtiRrivate vs. Shared Last-Level
Caches for Energy Efficiency in Asymmetric Mulleres. In Proceedings of the
International Conference on Embedded Computer Bystérchitectures, Modeling,
and Simulation (SAMOS XIV), pp. 191-198, July, 2014

Li Zhao, Ravi lyer, Mike Upton, Don Newell. Towarttybrid Last Level Caches for
Chip-Multiprocessors. Intel Corporation. 2006. Aahble from:
http://wwwpassat.crhc.uiuc.edu/dasCMP/papers/dasiifaper07.pdf.

Moinuddin K. Qureshi Yale N. Patt. Utility-Based ¢& Partitioning: A Low-
Overhead, High-Performance Runtime Mechanism tditldar Shared Caches. In
Proceeding of the 39 Annual IEEE/ACM international Symposium on Micro-
architecture, Orlando, Florida, USA, pp. 423-432¢[2006.

Evan Speight, Hazim Shafi, Lixin Zhang and Ram Rwjay. Adaptive Mechanisms
and Policies for Managing Cache Hierarchies in QWigtiprocessors. In Proceeding
of the 329 Annual International Symposium on Computer Arattilee (ISCA’05),
Madison, Wisconsin USA, pp. 346-356 June 2005.

Jacob Leverich, Hideho Arakida, Alex Solomatnik@unin Firoozshahian, Mark
Horowitz, Christos Kozyrakis. Comparing Memory Syss for Chip
Multiprocessors. ACM SIGARCH Computer Architectudews New York USA,
Volume 35, Issue 2, pp. 358-368, May 2007.

Jichuan Chang and Gurindar S. Sohi, Cooperativeh&€deartitioning for Chip
Multiprocessors. In Proceedings of thes'2annual international conference on
Supercomputing, Seattle, Washington, pp. 242-2%2, ZD07.

K. T. Sundararajan, V. Porpodas, T.M. Jones, Ndpham, B. Franke. Cooperative
Partitioning: Energy-Efficient Cache Partitioningr fHigh-Performance CMPs. In
Proceeding of IEEE 18th International Symposium HHigerformance Computer
Architecture (HPCA), pp. 1-12, Feb. 2012.

Ravi lyer, Li Zhao, Fei Guo, Ramesh lllikkal, Snh#lakineni, Don Newell,Yan
Solihin, Lisa Hsu, Steve Reinhardt. QoS Policied Architecture for Cache/Memory
in CMP Platforms. In Proceedings of the ACM SIGMHTR 2007 the International
Conference on Measurement and modeling of Com@ystems, San Diego, pp. 23-
24, June 2007.

174

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Bradford M. Beckmann Michael R. Marty and David YWood. ASR: Adaptive

Selective Replication for CMP Cachetn Proceedings of the 39th Annual
IEEE/ACM international Symposium on Micro-architet (MICRO-39), Orlando,

FL, pp. 443-454, Dec 2006.

Seongbeom Kim, Dhruba Chandra and Yan Solihin. FK2ache Sharing and
Partitioning in a Chip Multiprocessor Architectuhe.Proceedings of the International
Conference on Parallel Architectures and Compihatibechniques (PACT'04),
France, pp. 111- 122, Oct. 2004.

Lei Jin Hyunjin Lee Sangyeun Cho. A Flexible Daid 2 Cache Mapping Approach
for Future Multi-core Processors. In Proceedingshef 2006 workshop on Memory
system performance and correctness, San Josepi@alifpp. 92-101, Nov 2006.

Jaehyuk Huh Changkyu Kim, Hazim Shafi Lixin Zhangug Burger Stephen W.
Keckler. A NUCA Substrate for Flexible CMP CacheaB8hg. In Proceeding of the
19" International Conference on Supercomputing, 1CS0520 Cambridge,
assachusetts, USA, pp. 1028-1040, June 2005.

Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhabgpug Burger, Stephen W.
Keckler “Author Retrospective for A NUCA Substrater Flexible CMP Cache
Sharing”, ICS 25th Anniversary Volume, pp. 74-76nd, 2014.

Pierfrancesco Foglia, Daniele Mangano, Cosimo Aotdfrete, NUCA Model for

Embedded Systems Cache Design. IEEE 2005 Workshdgmntbedded Systems for
Real-Time Multimedia (ESTIMEDIA), New York Metroptdn Area, USA, pp. 41-

46, September 2005.

G.E. Suh, L. Rudolph, S. Devadas. Dynamic Pariiigrof Shared Cache Memory.
The Journal of Supercomputing, Volume 28, Numbgmpl,7-26, April 2004.

Miquel Moreto, Francisco J. Cazorla, Alex Ramirew aMateo Valero. Explaining
Dynamic Cache Partitioning Speed Up. IEEE CompAiehitecture Letter, vol. 6,
issue 1, pp. 1-4, Jan 2007.

Zvika Guz, Idit Keidar, Avinoam Kolodny, Uri C. Wssr. Nahalal: Cache
Organization for Chip Multiprocessor. IEEE Compugechitecture Letters, vol. 6,
issue 1, pp. 21-24, Jan 2007.

Alexandra Fedorova, Margo Seltzer and Michael D.ite&mCache-Fair Thread
Scheduling for Multicore Processors. Technical RepbR-17-06, Division of
Engineering and Applied Sciences, Harvard UniveiGambridge, October 2006.

David Tam, Reza Azimi, Livio Soares, and MichaelrS8in. Managing Shared L2
Caches on Multicore Systems in Software. Workshoptlee Interaction between
Operating Systems and Computer Architecture (WIOE®AId in conjunction with
the International Symposium on Computer Architeetg@$CA), Toronto, Canada, Jan
2007.

Hari Kannan, Fei Guo, Li Zhao, Ramesh lllikkal, Rxer, Don Newell, Yan Solihin,
Christos Kozyrakis. From Chaos to QoS: Case StudiesCMP Resource
Management. ACM SIGARCH Computer Architecture Netew York, USA, vol.
35, issue 1, pp. 21-30, June 2007.

H. Kasture and D. Sanchez. Ubik: Efficient CacherBly with Strict QoS for
Latency-Critical Workloads. In Proceedings of ti#hlinternational conference on

175

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Architectural support for programming languages apdrating systems (ASPLOS),
March, 2014.

Afrin Naz, Mehran Rezaei, Krishna Kavi and Philiweéany. Improving Data Cache
Performance with Integrated Use of Split Cachesfivi cache and Stream Buffers.
Media Workshop 04, ACM SIGARCH Computer ArchiteetuNews, New York,
USA, pp. 41-48, Nov 2005.

Jie Tao, Marcel Kunze, and Wolfgang karl. Evalugtthe cache Architecture of
Multicore processors. In Proceeding of thé" Buromicro Conference on Parallel,
Distributed and Network-Based Processing, Frangelp-19, February 2008.

Roy A., Vadlamani S., Sudarshan T.S.B. Variablen@oding Cache Coherency for
Chip Multiprocessors. In Proceeding of 14th Annlrternational Conference on
High Performance Computing (HiPC 07), pp. 40-45(00er 2007.

Sarita V. Adve and Kourosh Gharachorloo. Shared omngroonsistency models: A
tutorial. IEEE Computer, vol. 29, issue 12, pp. B&-December 1996.

L. Lamport. How to Make a Multiprocess Computer tth@orrectly Executes
Multiprocess Programs. In IEEE Transactions on Qaers, pp. 690-691, 1979.

K. Gharachorloo, D. Lenoski, J. Laudon, P. GibboAs,Gupta, and J. Hennessy.
Memory Consistency and Event Ordering in Scalablear&-Memory. In
Proceedings of the 17th Annual International Sympuson Computer Architecture,
pp. 15-26, May 1990.

James R. Goodman. Using Cache Memory to ReducesdocMemory Traffic. In
10th International Symposium on Computer Architeet(iISCA), pp. 124-131, June
1983.

Per Stenstrom. A survey of cache coherence sch@&nesultiprocessors. In IEEE
Transactions on Computers, vol. 23, issue 6, pRr423une 1990.

Per Stenstrom, Mats Brorsson, Fredrik Dahlgren,ada&rahn, and Michel Dubois.
Boosting the performance of shared memory multigseors. IEEE Transactions on
Computers, vol. 30, issue 7, pp.63-70, July 1997.

Hakan Nilsson and Per Stenstrom. An adaptive ugaaded cache coherence
protocol for reduction of miss rate and traffic.Anoceedings of the 6th International
Conference on Parallel Architectures and Langu&geepe (PARLE), pp. 363-374,
June 1994.

P. Sweazey and A. J. Smith. A Class of Compatilaleh@ Consistency Protocols and
their Support by the IEEE Futurebus. In Proceedofghe 13th Annual International
Symposium on Computer Architecture, pp. 414-428e 11986.

Alberto Ros, Manuel E. Acacio, and José M. Gargia.efficient cache design for
scalable glueless shared-memory multiprocessorsPrioceedings of the ACM
International Conference on Computing Frontiers,331—330, May 2006.

Alberto Ros, Ricardo Ferndndez-Pascual, Manuel ¢acd, and José M. Garcia.
Two proposals for the inclusion of directory infation in the last-level private
caches of glueless shared-memory multiprocessorgndl of Parallel Distributed
Computing (JPDC), vol. 68, issue 11, pp. 1413-14&%ember, 2008.

A. Charlesworth, Starfire: Extending the SMP EnpelolEEE Micro vol. 18, issue 1,
pp. 3949, February 1998.

176

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

A. Charlesworth. The Sun Fireplane System Intereonrin Proceedings of the 2001
ACMI/IEEE Conference on Supercomputing, p-7-15, Molver 2001,

M. Martin, M. Hill, and D. Wood. Token Coherenceeupling Performance and
Correctness. In Proceedings of the 30th Annual riateonal Symposium on
Computer Architecture, pp. 182-193, June 2003,

Anant Agarwal, Richard Simoni, John L. Hennessyd &tark A. Horowitz. An
evaluation of directory schemes for cache coherehtéProceedings of the 15th
International Symposium on Computer Architectur8QA), pages 280-289, May
1988.

Lucien M. Censier and Paul Feautrier. A new soiutio coherence problems in
multi-cache systems. In IEEE Transactions on Coeigutvol. 27, issue 12, pp.
1112-1118, December 1978.

Daniel Lenoski, James Laudon, Kourosh Gharachokialf-Dietrich Weber, Anoop
Gupta, John L. Hennessy, Mark A. Horowitz, and ManE. Lam. The Stanford
DASH multiprocessor. In IEEE Computer, vol. 25uss3, pp. 63—79, March 1992.

Jeffrey Kuskin, David Ofelt, Mark Heinrich, John iHein, Richard Simoni, Kourosh
Gharachorloo, John Chapin, David Nakahira, Joelt&aiark A. Horowitz, Anoop
Gupta, Mendel Rosenblum, and John L. Hennessy. ®tenford FLASH
multiprocessor. In Proceedings of the 21st Intéonat Symposium on Computer
Architecture (ISCA), pp. 302—-313, April 1994.

James Laudon and Daniel Lenoski. The SGI OriginccANUMA Highly Scalable
Server. In Proceedings of the 24th Internationalm@ysium on Computer
Architecture (ISCA), pp. 241-251, June 1997.

Kourosh Gharachorloo, M. Sharma, S. Steely, and¥&. Doren. Architecture and
Design of AlphaServer GS320. In Proceedings oBthelnternational Conference on
Architectural Support for Programming Language @mperating Systems (ASPLOS),
pp. 13-24, November 2000.

Luiz A. Barroso, Kourosh Gharachorloo, Robert MchNaa) Andreas Nowatzyk,
Shaz Qadeer, Barton Sano, Scott Smith, Robert, 3tetsBen Verghese. Piranha: A
scalable architecture based on single-chip muktgseing. In Proceedings of the 27th
International Symposium on Computer Architectu&JA), pp. 12-14, June 2000.

Manish Shah, Jama Barreh, Jeff Brooks, Robert G@ltagory Grohoski, Nils Gura,
Rick Hetherington, Paul Jordan, Mark Luttrell, Gbopher Olson, Bikram Saha,
Denis Sheahan, Lawrence Spracklen, and Aaron W§86. UltraSPARC T2: A
highly-threaded, power-efficient, SPARC SoC. In EEBsian Solid-State Circuits
Conference, pp. 22-25, November 2007.

Manuel E. Acacio, José Gonzalez, José M. Garci,Jasé Duato. A new scalable
directory architecture for large-scale multiprocess In Proceedings of the 7th
International Symposium on High-Performance CompAtehitecture (HPCA), pp.
97-106, January 2001.

Yeimkuan Chang and Lasimi N. Bliuyan. An efficiehybrid cache coherence
protocol for shared memory Multiprocessors. IEEBRnBactions on Computers, pp.
352-360, March 1999.

177

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]
[107]

[108]

[109]

[110]

[111]

[112]

P. S. Magnusson, M. Christensson, J. Eskilson,disdfen, G. Hallberg, J.H6gberg,
F. Larsson, A.Moestedt, and B.Werner. Simics: Al Bylstem Simulator Platform,
vol. 35, issue 2, pp. 50-58, 2002.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. RMarty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. WoodMultifacet's general
execution-driven multiprocessor simulator (gems)idet. In Computer Architecture
News, pp. 92-99, 2005.

Niket Agarwal, Li-Shiuan Peh, and Niraj Jha. Garn&tdetailed interconnection
network model inside a full-system simulation framoek. Technical Report CE-P08-
001, Princeton University, pp. 33-42, 2008.

N. Muralimanohar, R. Balasubramonian, and N. P.ppouCacti 6.0: A tool to
understand large caches. Technical report, Untyeddi Utah and Hewlett Packard
Laboratories, 2007.

A. Bardine, P. Foglia, G. Gabrielli, and C. A. Rref\nalysis of static and dynamic
energy consumption in nuca caches: Initial resuit?roceedings of the Workshop
on Memory Performance: Dealing with Applicationgs&ms and Architecture, pp.
105-112, 2007.

H. S. Wang, X. Zhu, L. S. Peh, and S. Malik. Oriénpower-performance simulator
for interconnection networks. In Proceedings of 3b&h International Symposium on
Microarchitecture, pp. 294-305, 2002.

Micron. System power calculator. In http : //wwwaman.com/, 2009.
Benchmarks. Spec cpu2006. In http : //www.speccprgZ006, 2006.

C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.ptau Methodological
considerations and Characterization of the SPLASPREallel Application Suite. In
Proceedings of the 22nd Annual International Synymsn Computer Architecture,
pp. 24-36, June 1995.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. Therspa benchmark suite:
Characterization and architectural implications.FAroceedings of the International
Conference on Parallel Architectures and Compitaliechniques, pp. 72-81, 2008.

S. Srikantaiah, M. Kandemir, M. J. Irwin. Adapti$et Pinning: Managing Shared
Caches in Chip Multiprocessors. In Proceedinghefli3th International Conference
on Architectural Support for Programming Languagesl Operating Systems, pp.
135-144, March 2008.

L. Hsu, R. lyer, S. Makineni, S. Reinhardt, and Nlewell. “Exploring the cache
design space for large scale cmps.” SIGARCH CompArtehitecture News, vol. 33,
issue 4, pp. 24-33, 2005.

M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramanmyit and P. Stenstrom. The
detection and elimination of useless misses iniproltessors. In Proceeding of the
20th Annual International Symposium on Computerhitexcture, pp. 88—97, 1993.

Bradford M. Beckmann and David A. Wood. Managingré\elay in Large Chip-
Multiprocessor Caches. In Proceeding of thé" 3iternational Symposium on
Microarchitecture (MICRO-37), Portland, Oregon, Bf9-330, Dec 2004.

178

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

H. Dybdahl and P. Stenstrom. An adaptive sharedif®i nuca cache partitioning
scheme for chip multiprocessors. In Proceedingb®fL3th International Symposium
on High-Performance Computer Architecture, pp. 22007.

J. Chang and G. S. Sohi. Cooperative caching fdp chultiprocessors. In
Proceedings of the 33rd International Symposiun€omputer Architecture, pp. 264-
276, 2006.

Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Qmpizing replication,
communication, and capacity allocation in cmps. Rroceedings of the 32nd
International Symposium on Computer Architectu@)%

M. Zhang and K. Asanovi'c. Victim replication: Maxizing capacity while hiding
wire delay in tiled chip multiprocessors. In Protiegs of the 32nd International
Symposium on Computer Architecture, pp. 336-349520

P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiaas] E. Hagersten. Modeling
cache sharing on chip multiprocessor architectuhesProceeding of the IEEE
International Symposium on Workload Characterizgtjp. 160-171, 2006.

N. Rafique, W.-T. Lim, and M. Thottethodi. Architacal support for operating

system-driven cmp cache management. In Proceedintheo 15th International

Conference on Parallel architectures and Compiialiechniques, Seattle, pp. 2-12,
2006.

J. D. Collins and D. M. Tullsen. Runtime identifica of cache conflict misses: The
adaptive miss buffer. ACM Transaction on Computgst&n, vol. 19, issue 4,
pp.413-439, 2001.

G.Memik, G. Reinman, and W. H.Mangione-Smith. Redy@energy and delay using
efficient victim caches. In Proceeding of the 200&rnational Symposium on Low
Power Electronics and Design, Seoul, pp. 262-26632

Jason Mars Lingjia Tang Mary Lou Soffa. Directly a&acterizing Cross Core
Interference through Contention Synthesis. In Redogys of the 6th International
Conference on High Performance and Embedded Anthites and Compilers,
HIPEAC, pp. 167-176, January, 2011.

A. Sandberg, D. EKV, E. Hagersten. Reducing cache pollution throdegection and
elimination of non-temporal memory accesses. Inc&edings of the ACM/IEEE
International Conference for High Performance Cotimgy Networking, Storage and
Analysis, pp. 1-11, November, 2010.

N. Topham, A. Gonzalez, and J. Gonzalez. The designperformance of a conflict-
avoiding cache. In Proceeding of the 30th Annual MAEEE International
Symposium on Microarchitecture, pp. 71— 80, 1997.

C. Zhang. Balanced cache: Reducing conflict missfedirect-mapped caches. In
Proceeding of the International Symposium on Comp@tchitecture, Boston, pp.
155-166, 2006.

R. Ricci, S. Barrus, and R. Balasubramonian. Leyiagp bloom filters for
smartsearch within nuca caches. In ProceedingseoTth Workshop on Complexity-
Effective Design, 2006.

179

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

M. Hammoud, S. Cho, and R. Melhem. Dynamic cachasteting for chip
multiprocessors. In Proceedings of the Internati@anference on Supercomputing,
pp. 56-67, 2009.

M. Kandemir, F. Li, M. J. Irwin, and S. W. Son. Avel migration-based nuca design
for chip multiprocessors. In Proceedings of theermational Conference on
Supercomputing, pp. 1-12, 2008.

J. Lira, C. Molina, and A. Gonzélez. Last bank: Ishgawith address reuse in non-
uniform cache architecture for cmps. In Proceedimighe 15th International Euro-
Par Conference (Euro-Par), pp. 297-308, 2009.

N. Muralimanohar and R. Balasubramonian. Intercohmesign considerations for
large nuca caches. In Proceedings of the 34thnatienal Symposium on Computer
Architecture, pp. 369-380, 2007.

M. Chaudhuri. Pagenuca: Selected policies for gaget locality management in
large shared chip-multiprocessors. In Proceedingefl5th International Symposium
on High-Performance Computer Architecture, pp. 238; 2009.

J. Merino, V. Puente, and J. A. Gregorio. Sp-nueaost effective dynamic non-
uniform cache architecture. ACM SIGARCH Computechitecture News, vol. 36,
issue 2, pp. 64-71, May 2008.

M. Hammoud, S. Cho, and R.Melhem. Acm: An efficiamproach for managing
shared caches in chip multiprocessors. In Procgedof the 4th International
Conference on High Performance and Embedded Anthites, pp. 355-372, 20009.

A. Pesterev, N. Zeldovich, and R. Morris. Locaticeche performance bottlenecks
using data profiling. In Proceedings of the 5th dp@an conference on Computer
systems, EuroSys '10: Pages 335-348, April, 2010.

Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Dasice associativity for high-
performance energy-efficient non-uniform cache ieckures. In Proceeding of the
36th International Symposium on Microarchitectyme, 55-56, 2003.

Liu C, Sivasubramaniam A, Kandemir M, Irwin MJ. Emicing L2 organization for
CMPs with a center cell. In Proceedings of the 2DBtternational Parallel and
Distributed Processing Symposium, pp.10-16, 2006.

Wenisch TF, Wunderlich RE, Ferdman M, Ailamaki Al$afi B, Hoe JC. Simflex:
Statistical sampling of computer system simulationlEEE Micro, vol. 26, issue 4,
pp.18-31, 2006.

S. Akioka, F. Li, K. Malkowski, P. Raghavan, M. Kdemir, and M. J. Irwin. Ring
data location prediction scheme for non-uniformheaarchitectures. In Proceedings
of the International Conference on Computer Degign 693-698, 2008.

Suh GE, Rudolph L, Devadas S. Dynamic Cache Rariitg for CMP/SMT Systems.
Journal of Supercomputing, pp. 7-26, 2004.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Aikki. Reactive nuca: Near-
optimal block placement and replication in disttdmli caches. In Proceedings of the
36th International Symposium on Computer Architestpp. 3-14, 2009.

A.V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, axdJi. Adapting cache line
size to application behavior. In Proceedings of 1B international conference on
Supercomputing, pp. 145-154. ACM, 1999.

180

[141]

[142]

[143]

[144]

[145]

[146]

[147]
[148]
[149]
[150]

[151]

[152]

J.B. Rothman., and A.J. Smith. Sector cache desmighnperformance. In Proceedings
of the 8th Modeling, Analysis and Simulation of Gmuter and Telecommunication
Systems, 2000, pp. 124-133, 2000.

J.B. Rothman, and A.J. Smith. "Minerva: An adaptsudblock coherence protocol
for improved smp performance." High Performance @otimg. Springer Berlin
Heidelberg, pp. 64-77, 2002.

H. Kim, and P.V. Gratz. "Leveraging Unused CachecBlIWords to Reduce Power
in CMP Interconnect.” Computer Architecture Ledterol. 9, issue 1, pp. 33-36,
2010.

Pujara, and A. Aggarwal. "Cache noise predictidddmputers, IEEE Transactigns
pp. 1372-1386, (2008).

F.C. Chen, S.H. Yang, B. Falsafi, and A. Moshov@scurate and complexity-
effective spatial pattern prediction." In Procegdiof the SoftwaréEE, pp. 276-287,
2004.

D.H. Yoon, M. K. Jeong, M. Sullivan, and M. Ereghe dynamic granularity
memory system. In ACM SIGARCH Computer Architectivews, vol. 40, issue 3,
pp. 548-559, 2012.

A. Seznec. "Decoupled sectored caches: conciliddwgag implementation cost.” In
ACM SIGARCH Computer Architecture News, vol. 2&5us 2, pp. 384-393, 1994.

C. Dubnicki, and T. J. LeBlanc. "Adjustable blodkescoherent caches." In ACM
SIGARCH Computer Architecture News, vol. 20, is@uep. 170-180, 1992.

S. Carr, K.S. McKinley, and C-W Tseng. “Compilettiopzations for improving data
locality”. vol. 28, issue 5, 1994.

M.E. Wolf., and M.S. Lam. A data locality optimiginalgorithm. ACM Sigplan
Notices, vol 26, issue 6, pp. 30-44, 1991.

M. K. Qureshi, M. A. Suleman, and Y. N. Patt. Lidsstillation: Increasing cache
capacity by filtering unused words in cache lin&s. Proceedings of the 13th
International Symposium of High-Performance Computechitecture, pp. 250-259,
2007.

Sparsh Mittal, Yanan Cao, and Zhao Zhang, MASTERUiti-core Cache Energy-
Saving Technique Using Dynamic Cache Reconfigunatio IEEE Transactions on
very large scale integration (VLSI) systems, VA, Rlo. 8, pp.1653 -1665, August
2014.

181

LIST OF PUBLICATIONS
JOURNAL PAPERS

Nitin Chaturvedi, S Gurunaryanan “An Efficient bkocpinning for multi-core
architectures”, Journal of Microprocessor and Msgsiems”, Elsevier, ISSN 0141-
9331, 39(3), pp.181-188, 2015.

Nitin Chaturvedi, Arun Subramanian, S Gururnarayari@n Efficient data access
policy for shared last Level Cache”, WSEAS transacbn computers, ISSN 2224-
2872, 14(5), pp.38-48, 2015.

Nitin Chaturvedi, Arun Subramanian, S GururnarayanéSelective cache line
replication scheme in Shared Last Level Cache”.c&t@m of Computer Science,
Elsevier, ISSN 1877-0509, pp.1095-1107, 2015.

Nitin Chaturvedi, S Gururnarayanan, “Adaptive Bldekning: A Novel Shared Cache
Partitioning Techniques for CMP”, European JourohlScientific Research, ISSN
1450-216X, 124(1), pp. 80-93, 2014.

Nitin Chaturvedi, S Gururnarayanan “Study of Vasdeactors Affecting performance
of Multi-core architectures” in International Joatf Distributed and Parallel Systems
(IIDPS), ISSN 0976-9757, 1(2), pp. 37-45, 2013.

Nitin Chaturvedi, Jithin Thomas, S Gururnarayanaddptive Zone-Aware Multi-bank
on Chip last level L2 cache Partitioning for Chipulfprocessors” in the International
journal of Computer Applications, , ISSN 0123-456(®), pp. 19-23, 2010.

Nitin Chaturvedi, S Gurunaryanan “An Adaptive Migoa-Replication Scheme
(AMR) for Shared Cache in Chip Multiprocessors “rmascript submitted in Journal of
Parallel Computing” (Elsevier, initial submissioB0 October 2014, revision
communicated)

Nitin Chaturvedi, S Gurunaryanan “An A Locality-AreaVariable Granularity Cache
Architecture " revision submitted in Electronics tles-IET on January
2015(communicated)

182

10.

11.

12.

13.

CONFERENCE PAPERS

Nitin Chaturvedi, Rakesh Kumar, TSB Sudarshan “AdapBlock Pinning for Multi-
core Architectures” in proceedings of Internatio@ainference on High Performance
Computing(HiPC), Dec-2008

Nitin Chaturvedi, Pradeep Harinderan, S Gururnaragd’A Novel shared L2 NUCA
cache partitioning scheme for Multi-core Architeesl' in proceedings of International
Conference on Emerging Trends in Engineering (ICEPR. 183-188, Feb-2010.

Nitin Chaturvedi, Prashant Gupta, S Gurunarayarficient Cache Migration Policy
for Chip Multi-Processors” 2011 IEEE Internation@bnference on Computational
Intelligence and Computing Research, ICCIC-11,11§2-107,2011(IEEE-Explore).

Nitin Chaturvedi, S Gurunarayanan “An Adaptive Bddeinning Cache for Reducing
Network Traffic in Multi-Core Architectures” 201EEE International Conference on
Computational Intelligence and Communication NekydCCN-2013, pp. 446-450,
September 20131 EEE-Explore)

Nitin Chaturvedi, S Gurunarayanan “An Adaptive GadGoherence Protocol with
adaptive Cache for Multi-core Architectures” in eeedings of International
Conference on Advanced Electronic Systems, ICAER2@p. 197-201, September
2013, (EEE-Explore)

183

BRIEF BIOGRAPHY OF CANDIDATE

Nitin Chaturvedi is a Lecturer in the DepartmentEdéctrical & Electronics
Engineering in Birla Institute of Technology andiédce, Pilani since August
2008. Prior to this he worked as Assistant LectuneEEE/IU. His interest
includes, Energy efficient storage systems, CMOSSNMDesign, Computer
Architectures. He obtained his Master of SciencéedtEonics) from Devi
Ahilya University, Indore (M.P) and Master of Tedhogy from University
Centre for Instrumentation and Microelectronics (ML from Panjab

University, Chandigarh.

184

BRIEF BIOGRAPHY OF SUPERVISOR

Dr. S. Gurunarayanan is Professor in the Departnw@ntElectrical and
Electronics Engineering and he is Dean of Workdrdeed Learning Program
Division (WILPD) in Birla Institute of Technologynal Science, Pilani. He
obtained Masters in Science (Physics) from Alagappaversity, Karaikudi,
Masters in Engineering (Systems & Information), nfrdBirla Institute of
Technology and Science, Pilani, and Ph.D. (Eleats)rfrom Birla Institute of
Technology and Science, Pilani in 1987, 1990 an@D2@spectively. He has
several publications in National and Internatiordmurnals. His research
interests are Digital Design and Computer Archiest VLSI Design,

Embedded Systems.

185

