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PREFACE

‘FILTERS have begun to arouse a great deal of interest, and it is
thought that there is room for a book treating the subject in as simple
a manner as possible, i.e. in an explanatory way.

The writer has aimed at giving an introduction to each branch
of the subject, including the Cauer method of design.

The various circuits in use, such as, say, band pass filter sections,
are not all separately worked out. This has been done by others
quite fully. Only so much has been included as to show the method
of handling the subject ; and the book is intended more as a textbook
than as a reference book. Chapter X on Cauer filters must be
regarded as a stopgap. The Conclusion is the author’s view of the
way future development ought to be attempted, indicating the lines
to go upon.

The author believes he has made a discovery in this subject.
It is that if you go out and buy any number of any sizes of coils
and condensers, bring them home and connect them up in any way
—put two terminals anywhere in the circuit for input and two
more terminals anywhere else for output—you have built a filter.
There may be very many pass bands at various frequencies, and
the filter may have curious characteristic impedances in each band.
Yet it is a true filter, and gives the quite remarkable results common
to all filters. Tested at any frequency in a pass band, it will (apart
from losses in coils and condensers) give no weakening of voltage
and current, no attenuation, that is, and this is true, however
many similar circuits you send current through all put in a row.

If tested at any frequency in an attenuation band, however, it
will have some attenuation; and it will only be necessary to build
sufficient similar circuits and put them end to end to get any desired
attenuation. There are details to be observed in understanding
this general theorem, such as, for example, that to experience no
attenuation one ought to make the load resistance of the correct
value. Yet the statement stands, in its surprising breadth and
generality.

In order to get the pass bands where one desires as regards
frequency, and in order to suit a given load resistance, one needs
to understand design. It is the purpose of this book to teach it.
Of what use then is the author’s generalization? This much: it
is not an accident that the circuits described by their inventors as

iii



iv PREFACE

filters are filters; they must be so. They cannot help but be; and
since all circuits built of reactances are filters, it is plain that there
is an infinite field for research and design.

The author desires to thank Mr. Wm. Emery of the Liverpool
City Technical College for help in designing the illustrations, the
finished drawings for which were prepared by Mr. B. C. Wood.

He is greatly indebted to Mr. J. B. McCusker of the A.T. & E. Co.
for reading the proofs, and also to Mr. C. Rhodes, M.Eng., AM.LE.E,,
and to the Publishers. Their work has helped to keep the book free
from the sort of mistake that students find perplexing.



INTRODUCTION

MANY pieces of electrical apparatus, such as lamps, bells, radiators,
motors and resistances, as well as coils and condensers, have two
terminals, while a transformer has four.

In telephone and telegraph work many pieces of apparatus are
found which have four terminals like a transformer, so they take a
certain current at a certain voltage and give out a certain current
at perhaps a different voltage. An attenuator composed of pure
resistances is a case in point. It has two input and two output
terminals.

Attenuators composed of pure resistances are now much used in
transmission testing. They are simple to make and they produce
simple and definite effects because they attenuate all frequencies
alike.

In the early days of telephone work, transmission testing was
done with artificial cables composed of resistances and condensers
to simulate the resistance and capacity of cables with their variable
attenuation.

When loading became general, however, most cables had a
fairly level attenuation frequency curve, and an artificial line or
attenuator was needed which also had a level characteristic.

The solution to this was to build attenuators with pure
resistances.

A filter has also four terminals and enables some frequencies to
pass freely while being a barrier to others. Other networks merely
shift the phases of current.

If a circuit contains resistances like an attenuator, and also
condensers and coils like a filter, it may have an effect something
between a filter and an attenuator; it may attenuate different
frequencies in a different degree. It is then called an attenuation
equalizer, and is useful for putting in a transmission line to level up
the variation in attenuation of the line with frequency.

To revert to filters, the filter in its pass band shifts the phases of
the currents flowing through it. If the filter has a pass band from 0
to infinity it is then called a phase shift network, as it does not atten-
uate any frequency, but only shifts the phases of currents passing
through it. Such networks can undo the harmful effects of phase
shifts in transmission lines. In general, a line 1000 miles long tends
to produce transients due to phase shift, which only begin to be

v



vi ELECTRIC FILTERS

harmful for speech at that length. On the other hand, picture trans-
mission is much upset by phase shift in the cable, and phase shifting
networks can restore sharpness to the picture if suitably designed.

All these networks are distinguished by having four terminals,
and their study may be called that of four-terminal networks.

THE FUNDAMENTAL PLAN OF THE WORK

These networks are introduced into the line to cause certain
effects, such as a filtering action, and with filters one has to take
into account the reflections at the ends of the filter, as shown in
Chapter IV. This, however, is difficult, so one first ignores them by
working on chains of similar sections infinitely long, i.e. one studies
characteristic impedances and propagation constants: these are the
“bricks” to work with. '

A further simplification is to ignore, first of all, the resistance
losses in coils and condensers, which are treated in Chapter IV.
This means that one has to study circuits built up of reactances only.

The circuits must have some shape when made into a drawing,
i.e. some geometrical pattern, so one studies circuit forms such as
ladders, lattices, and gates. It is simpler to use resistances instead
of reactances in deriving preliminary formulas for the characteristic
impedances and for the propagation constant. Here, then, is the
beginning. Using resistances first simplifies the algebra, and also
-makes up a very practical piece of apparatus—the aftenuator, dealt
with in Chapter I.

Then reactances can be used to make filters, as in Chapters II
and III. Later, losses in coils can be taken into account by using
complex quantities as in Chapter IV. After that, the study of reflec-
tions shows what the circuits will do when connected up to other
apparatus in the usual practice, as shown in Chapter IV.

This is the work involved. Other networks are dealt with, and
also methods of measurement.

Towards the end there is a chapter on fundamental theorems.
Following Euclid, this ought to be at the beginning; but one under-
stands general theorems easily by observing particular cases first.
As a concession to the reader, who must be the judge, this chapter is,
therefore, not put at the beginning, where it logically belongs.

Some account of Cauer’s work 1s also given, using Tschebbytcheff
polynomials.
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ELECTRIC FILTERS

CHAPTER 1
ATTENUATORS
ATTENUATORS made with pure resistances have the advantage that

they give an attenuation* which does not depend on frequency.
Also the characteristic imBedance is a constant resistance, and so
is_the impedance looking into the attenuator when the far end is
closed with the proper resistance, whatever the frequency and what-
ever the attenuation, it the atfenuatof is built correctly. ~Fus
voltage calculations become easy.

The resistances are calculated from the voltage and current
attenuation ratio, which may be called N. This is the ratio with the

load connected; and the value of N corresponding to so many
decibels is given by the formula

db == 20 loglo N

20

Note particularly that transmission measurements are logarithms
of current, voltage, and power ratios.

A voltage or current ratio of 10:1 is 20 db, but a power ratio
of 100: 1 is also 20 db because power is voltage or current squared,
provided the same load resistance is used. There are not two sorts
of decibels, though one may write

2

the W being watts. A table relating db to current and voltage ratio
N is given on page 2, (see Table 1).

The desirable features of any attenuator are that the network must
match a line of, say, R ohms. It must therefore give its attenuation
when closed at the far end by R ohms, and under this condition the
impedance at the sending end is R ohms too. Attenuators may be
fixed or variable.

or N = antilogm< db)

* w@@mplwe\aﬂs ! weakening "’ of current.
o T



2 ELECTRIC FILTERS

TABLE 1

RELATION BETWEEN VOLTAGE (AND CURRENT) RATIO
AND DECIBELS

N db db N
0 Infinity 0 1
1 Q 1 ‘ 1.18
2 602 2 ! 1.256
3 956 3 ! 1.416
4 12.04 1 i 1.586
5 13.98 5 1.777
6 1558 6 ' 2
7 169 7 | 294
8 1806 8 251
9 19-12 9 282
10 20 19 316
15 23.54 15 563
20 2602 20 10
30 29.56 25 1777
10 3004 30 31'6
50 33.98 35 56'3
100 40 10 100
1,000 60 45 1777
10,000 80 50 316
100,000 100 60 1,000
1,000,000 120 70 3,160
\ 80 10,000
90 31,000
100 100,000

The IT network in Fig. 1 has the properties that it reduces
the current and voltage step by step along the network and, if it is

Fi1Gc. 1. INFINITE LADDER NETWORK

infinitely long, tends to have a certain definite “ resistance’” as mea-
sured at the two end terminals. That is to say, it has a “character-
istic. impedance,” just like a cable.

That it also causes attenuation is instantly seen by the fact that
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it is a repeated potentiometer. If it is long enough, there cannot be
anything but a negligible current flowing at the far end, and so it
does not matter what is connected to the far end; resistance mea-
surements at the near end depend solely on the resistances in the
sides and rungs of the ladder. In other words, there is a character-
istic impedance which is characteristic of that network.

To prove that the reduction of current per section is the same
definite factor all along the infinite network, consider the network
in Fig. 1 to be infinitely long, then add another section at the
beginning as in Fig. 2.

If 1 volt is applied to A in Fig. 1 the voltage at B may be % volts,

say. In Fig. 2, if a higher voltage x is applied to the beginning
S there will be 1 volt at 4 because the two networks Fig. 1 and Fig. 2,

S A B (o]
@ AN AAA A --
% ; y K
® ] X
o— L AN --
S A B C

F1G. 2. CURRENTS IN LADDER NETWORK UNCHANGED BY ADDING A SECTION
AND INCREASING THE SENDING END VOLTAGE

being supposed to be infinitely long, look alike, and because of the
proportionality due to Ohm’s law as expressed in the linearity
theorem. (See Chapter IX, ““General Theorems.”)

Then the 1 volt at 4 in Fig. 2 will cause :lr volts at B in the same

figure because 1 volt at 4 caused % volts at B in Fig. 1, and the 4’s

and B’s in the two figures correspond.
Finally, it is seen that the three voltages at the beginnings of
the first three sections of the ladder, namely S and 4 and B in Fig. 2,

. . | O . .
arein theratio x:1: o which is a geometric progression. An exten-

sion of reasoning proves geometrical progression to hold throughout
the network. The whole argument is that x volts at S must produce

1 volt at 4 in Fig. 2 because 1 volt at Ain Fig. 1 produces }c volts
at B in Fig. 1.
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Geometrical Progression and the Exponential

The following is a little-known theorem on the exponential—

““Where there is geometrical progression, there is exponential
decay, and logarithms are indicated.” Hence a ladder network has a
‘ propagation constant.” The next step is to call the shunt resist-
ances b, say, and half the series resistances a, say, and find one
formula for characteristic impedance and another for propagation
constant in terms of @ and . These formulas will then be proper
to ladder networks. )

If the network is closed with a resistance equal to its character-
istic impedance, R, the ratio of voltage to current at the sending

end is 1_. = R just as at the far end across the resistance, R, voltage

divided ‘by 1, gives R because of Ohm’s law.
In other words,

8 r
E_E — __f'
which may be written
[ ] il
E__' — ;

Here we have proved what was stated above that N is esther
the voltage or the current ratio; for they are equal to each other.

Finding the voltage ratio % and equating it to N gives one of

r

the equations or conditions for working out the resistances of the
arms. The other condition is that the current ratio must also be N,
and that follows if the characteristic impedance of the II is equal
to R, the resistance with which it is closed. Since, through the idea
of characteristic impedance, the voltage ratio equals the current
ratio, these give two equations, each with a ratio, which are equal
to each other.

TW& Fig. 3, let the series resistances
be a ohms eac e shunt resistance  ohms; call the current in
the resistance R at the end ¢,. The voltage E, across the shunt
resistance is then E, = (R + a),. The resistance R is the resistance
that the attenuator is working into, i.e. that for which it is designed.
The current in b, which may be called 7,, is E, divided by &

(R + a)i,

or )
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The sent current is this, with 7, added, which gives

LTT I

The sent current divided by 7,, the received current, is the current
ratio, which may be called N.

Then .
N=Rj“+L

So from currents, we have
R+a+b
N= —

This is one equation ; and it enables the unknown resistances 2 and b
to be found in terms of R and N when it is taken in conjunction with

a a

—— MM - WM =

Eol » R

ib
-___ Y _ P g
iy
Fi1G. 3. THE “T” ATTENUATOR

another equation, and so the network may be built up. Consider
voltages now in order to get the other equation.

The received voltage is E, = Ri,, while the sent voltage E, is
that across b, together with that lost in the first resistance a.

The voltage ratio now becomes

E (R_{_a),"_*_a(ﬂi_;ﬂ'_@,"
= = =N
E, Ri, -
_(R+a)b+aR+a2+ab
So N = 75 .

Usipg the other equation

N=1_?_—|—_g_:|—_l_)
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which was derived from the currents, makes (R + a) b + aR + a* +
ab = R (R + a + b) by equating the two.
From this

RE=2ab+a . . . . . .

This is an all-important formula in ladder network theory. It
is the gateway to the study of ladder filters. It means that the
characteristic impedance of a ladder network built up of two a’s
and a bis given by R = V2 ab + a2 This will be used later in filter
design. Meanwhile we desire to find a4 and .

R?— a2
Now b = 52 from equation (1) above.
If this is put in
N=R+Z+b
the result is R+
N = R—a

orRN—aN =R+ a
which gives the resistance a as

N-—-1
«=R(y51)
Notice that as the current ratio N becomes very large a = R

nearly, in other words for 6009 line, say, @ = 6009 when the attenu-
ation is large. To find b use the result

2
b= }_?__2a_a and put ainit,
Rz—R’<%———%>2
Then b= ax
2R(N— 1)
N+1
_RRN+1)P*—R*N-—-12  R4N
- 2RIN—1)(N+1) — 2(N2—-1)
R2N N
or b=1_\f2———l=2R{N2——-—l}
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Here as N becomes larger b becomes smaller ; and if N approaches
1, i.e. no loss, then b becomes very large. The following table gives
the value of @ and b for a “T” attenuator of this type.

TABLE 2

Ti-IE VALUES* OF THE RESISTANCES IN THE “T"” ATTENUATOR
(Two a’s and one b in shunt, Fig. 3)

db a b
Ohms Ohms

1 344 5190

2 688 2583

3 102:6 1704

4 135-8 1258

5 168 986-9

6 199-2 803-1

7 229- 670

8 258-2 568

9 285-6 487
10 311-6 422
15 418-8 220'5
20 490-6 1213
25 536 67
30 562 38
35 578 20-6
40 587 12
45 594 6-78
50 596 3-8
55 598 2:13
60 599 1-2
70 600 0-38
80 600 0-12
90 600 0-038

100 600 0-012

The Resistance Values for a “ T’ Attenuator

: “" ” 2 N e 1
Each of the series arms of the “T"” is R ( N 1).

) N
The shunt arm is 2R (]'W_—_-—l)

These two formulas make it possible to design “T” attenuators
for any impedance R and any attenuation. N is the voltage ratio,
which must be calculated from the decibel desired attenuation
figure. A network may be made up to have an impedance of, say,
600 ohms looking in one way when, say, 150 ohms is connected to
the far terminals, and looking like 150 ochms when the first terminals
are connected to a 600-ohm line. Thus the “pad” connects together

* These are slide rule results.
o—(T.a71)
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a 600- and a 150-ohm line with correct matching of the impedances.
This is a separate calculation from that just given.

Fig. 4 shows a circuit for a 0-10 db attenuator, and Fig. 5 one
for 0-100 db. The first box uses only two switch levels and 30 resist-
ances, while in the second case an extra switch level enables a saving

ANV~ LYV —
AN A2
—— A AAAN——3
e AN e AAAV e
—AMA— — AMA—S
A ——AAAN— 6
— A e AAA N 7
IN — AMA—— | AAANN—e8 ouT
—AM L AAAA——D
—AWW - AAAVN——sIO

Fi1Gc. 4. “T"” ATTENUATOR 0-10 DB, SHOWING SWITCHING ARRANGEMENT
(30 CoiLs ARE NEEDED)

odb odb
0 ~ANMA— 10
20 AMAA AN 20
30— A AAMAA——30
40— AN AAMA——40
50— ANAA ANAA—250
60 —AAAMN ~AAMWW—60
IN 70 T =70 ouT
80 t—80
'ogoj oo
- VA
W 600"

80 \
90
100db
Fi1c. 5. “T” ATTENUATOR 0-100 DB, SHOWING SWITCHING CIRCUIT
(24 CoiLs ARE NEEDED)

of six series resistances to be effected because on the higher values

the a’s are very nearly equal to 600¢ while the shunt b alone needs
to be altered.
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'In the design of filters the full arm of the top of the “T,” which is
twice a, is called Z;, and this makes it like Fig. 6.
The next thing is to decide how the coils should be wound.

o ~“WVW\ ~WWN—0

1
'i'zl TZ,
db *zl zl
Z2

1 15 216
2 29 108
t e
4

. i s ) 5 70 4

F1G6. 6. A NUMERICAL EXAMPLE OF AN

ATTENUATOR—FOR A 25€ MICROPHONE

Resistance Coil Winding

If resistance coils are just wound like a reel of cotton, the induct-
ance may spoil the result. If, however, they are wound with a loop of
wire as shown in Fig. 7 the inductive effect vanishes, because current

A

€NDS 0\ WIRE _LOOP~ THE
OFcolL - - - - / SPOOL

SPOOL & UNWQUND WIRE
v
8 IE HERE
MNITH _COTTON

A
ENDS THE WOUND
B. coiL

" F16. 7. WINDING NON-INDUCTIVE SPOOLS

goes round one way to the inner end of the loop and then back again.
Unfortunately, capacity is now introduced. Wound in this second
way the spool somewhat resembles a transmission line with resistance
and capacity, short-circuited at the far end. If the wire be of R
ohms per inch loop and if C farads is the capacity between the two
wires of the loop per inch, the impedance of the spool is Z, tanh PI,

and this becomes '/ Z‘Iiw tanh IV RCw
3
Expanding tanh Pl as Pl — (_P;l_) + negligible terms and writing

Zy as IR;'; makes the coil impedance

Pi\2 ey 1
Rl(l - (—3-) ), wlpch is Rl(l -3 RlClw)
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"Here Rl is the ohmic resistance of the loop and CI the total
capacity, say C,.
Hence
impedance 1 (ohmic res.) (C)w
ohmic resistance ~ = 3

(ohmic res.) (C)w
3

This fraction

is the fraction by which the coil is in error. It is a vector at right
angles as it carries by right a j.

A formula by Cour and Bragstad gives the capacity of the wire
used in the following calculation as 24uuF. per yard loop. The
resistance was 100 ohms per yard of wire, giving a loop $ yards long
for a 10009 coil, i.e. C; = 120uuF.

Then at 800c/s Pl = 0-0245

2
Therefore g—;l-)— = 0-0002, giving an impedance with a j carrying

0-02 per cent of the current. At 3200 cycles Pl = 0-049, making
(i)
3

0-08 per cent of the main current.

It must be remarked that if an impedance has a small j term
added, its total size is practically unaltered, so if in the network
which is being built up with the coils phases are not in question, but
merely attenuation, this coil is excellent; for it will be right to a
few parts in ten thousand as far as the error due to capacity is
concerned.

The wire used by the author here, however, is a convenient size
for getting over this capacity error. If too large, too much wire is
needed, the length of the loop ! is too large, and a big error comes in.
If too small a wire is used, errors in soldering the ends become too
big.

A still better way is to wind with a single wire, using half the wire
up, and then wind alongside or on top with more of the wire in the
opposite direction, but the above is very good.

When winding small values of resistance the error in ]oxmng
up the end becomes large, and if two or more wires are wound in
parallel these may be wound in opposite directions and one wire only
varied to get the right adjustment. By using # wires in parallel the
accuracy is increased #® times.

= 0-0008, i.e. an impedance error with a j carrying 0-0008 or
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Winding Low Resistances
It is much easier to make an accurate low resistance if the thick
wire, made a bit too long, is shunted by a long thin wire and this
altered to bring the resistance down, as shown in Fig. 8.
MEASURE HERE

]

& A.THICK WIRE :,
START WINDING AT ——ee——"""ADJUST LENGTH OF
THIS END OF THE PAIR A THIN WIRE THIN WIRE HERE AND
OF WIRES _ __ SOLDER THE TWO

Fi1G. 8. AcCURATE WINDING OF Low RESISTANCES MADE Easy

——— ANW—T—AVWW———8

IN—= —0uT

IN— —0uT

° AW °

F16. 9. DouBLE “T” AND “II” NETWORKS

Networks Balanced to Earth
When a network balanced to earth is required, the double II
network requires only four resistances instead of five for a double

“T” as shown in Fig. 9.



CHAPTER 1I
LADDER FILTERS

IN accordance with Theorem IV in Chapter IX any collection of
reactances will form a filter. In this case, however, many odd pass
and attenuation bands may come in at various places in the frequency
scale. It is, therefore, necessary to employ design methods in order
to make the edges of the pass band come at the desired frequency
and to obtain the desired impedance, not to speak of the desired
attenuation.

Historically it was the invention of the coil-loaded telephone
cable by Pupin that constituted the first filter.

It was seen that the inductance lumped in the coils with capacity
between coils gave the filtering action.

Logically, the proper way to begin is to study various circuits,
such as the ladder and lattice, using resistances first; and, then,

LOADING LOADING
. > -
TERMINALS ( oo T Coolf. o
O casie  00Q) 00 o
coiL coit

F1G. 10. CoIL-LOADED CABLE

after building up a complete theory of such networks, put reactances
in the arms of each to make a filter. If this were done, the reader
might find it hard to see where the text was leading to, and therefore
difficult to follow, so the ladder filter is treated first of all, for its
own sake, and as an example of the method to be followed in lattice
and other filter circuits.

The coil-loaded telephone cable with its cut-off frequency phe-
nomena constituted a low pass ladder filter, shown in its simplest
form in Fig. 10. Such filters need a special end coil or condenser.

There are two ways of arranging the termination of a ladder
filter; one is the half-series termination where the end component
consists of a coil of half the inductance of the main ones, i.e. half
the series impedance of the ladder (see Fig. 11 (a) ).

The other is the double-shunt termination, which in this case
means a condenser of half the full capacity. In other words, the

12
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impedance of the first shunt with this termination is double the
ordinary impedance of the other rungs of the ladder (see Fig. 11 (b)).

In order to obtain definite formulas for ladder circuits we go
back to Chapter I on attenuators, where it was shown that the
characteristic impedance of a ladder network is V2ab + 4% Here
a is the value of one arm of the “T.” When several ““T’s” are joined

(b) Double-shunt termination.
Fi1G. 11. Low Pass FILTERS EQUIVALENT TO COIL-LOADED CABLE

up to make a ladder it is convenient to take an a covering all the series
impedance between two rungs, i.e. twice as big as that used in work-
ing out attenuators.

2
This makes the characteristic impedance Z, = / ab + 1| for

the ladder. This is applied to a ladder built up of “T' "’ so_that the
end section has a serics Impedarnce fa where a 1s the total impedance
hetween two s. If it is half 1n each line to secure a balance to
earth, 4'is then the total of these halves. Thus this formula applies
toa ladder network which is half-series terminaled.

~The 1mpedance of the double-shunt terminated ladder may be
calculated from this formula for the half-series terminated ladder
by adding an extra 44 in series followed by 25 in parallel. The result
is that the general impedance formula for a double-shunt terminated

ladder is
7= Y% _
I
%

Let us consider for a moment what these formulas mean. They
have been derived on the¢ assumption that the arms of the ladder
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are pure resistances. One may ask ““Is this all right? Can we suppose
or assume resistances when we know the arms are not going to be
resistances, derive a general formula on that assumption, and then

proceed to put jLw’s and j'Ciafé in for coils and condensers?”

This question is fundamental. The answer is that we can do so,
and one may argue backwards from the j notation somewhat as
follows. In using the j notation we put reactances in series and in
parallel just as if they were resistances. In some textbooks Z, and
Z, are used for impedances, but if they are in series it is Z; - Z,,
just like two resistances. Why not then use a and b, easy letters,
for plain resistances? It makes it simpler to think about. The
general formulas

.
’\/E,/l-i-a%and—\/a——g—a—
~/‘+zz;

apply to any ladder, but each particular circuit must be worked out
separately, and various impedance frequency curves will result
from different circuits.

There is an interesting peculiarity about these two formulas.
They multiply to ab. Although a and b are usually both imaginary
quantities, because they are both reactances which vary with fre-
quency, ab is often a real figure, and may even be a constant, inde-
pendent of frequency, and if it be positive, then a square root gives
a real quantity too.

Campbell’s theorem connecting characteristic impedance with
attenuation, which is a corollary of the author’s Theorem IV (see
Chapter IX), is as follows—

kﬂs“ When the characteristic impedance is unreal the filter attenuates,
u

t when, i.e. at another frequency, the impedance is real, the filter
a pass band.”

So if one studies the characteristic impedance of a particular
circuit one not only knows how it varies with frequency in size an
reality, but by noticing where it is unreal one finds the attenuatio
Bands, i.e. where they come in the frequency scale.

Take the half-series case first, and work it out as if 2 and b werg
pure resistances.

2
Then Z°=Jab+%=MJl+-‘%
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The reactances a and b must now be put in. Take the low pass
filter for a start: ais a coil and b a condenser, so

a=jLogndb= Cl‘w /
/ LCw?
Then\/—ﬁ— A/C,whlch is a numeric, and Z, = N/CA/I__———

. . . 2 .
This is real when o is less than ——— and reactive when w exceeds

VIC

this value; so, without more ado, the cut-off frequency is

1
vV LC
and there is attenuation above this frequency, but none below. The
amount of the attenuation is another matter. When w =0, i.e. at

very low frequencies, Z, = ~/ é, but the impedance in the pass band

falls as w increases and is O at the cut-off. When such a filter is
said to have a nominal impedance of, say, 6002, this is the value of

~/ L The filter is usually designed so that / é is 6009 if the filter

is to work into a load of 6009. There is then a lack of matching,
which becomes worse for frequencies nearer the cut-off than it is
for lower frequencies. (See Fig. 12.)

This lack of matching the ends, together with phase changes in
the filter, causes a loss, even in the pass band, but this loss is not
usually serious. The formula

L LCw?
Zo=~/m/‘—‘4—

if plotted as Z, against w gives a ‘““quarter-circle” diagram. The
line to which the filter is connected may be called R ohms, and

this is the value of é,
T T2
so Zy=R ,J 1— L(:;w
Further, as
PR
*" aVIC

where f, is the cut-off frequency, the LC in the form*ala for Z, may be
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put in terms of the frequency f being used and f, the cut-off fre-
quency. This makes

Zy

R = vV1—=xwhere x = frequency

cut-off frequency

and shows the equation to be a circle. As

R andasfo=—\—}-—L_C
w

design may be carried out at once. Multiplication gives

L_
=

R s 1
= and division C = =Rf,
These two formulas are very simple and highly important. They
are a milestone and enable one to make a low pass filter.
In particular, the expression

'—R- = l,— X

is important because it shows that
~ (1) the impedance varies with frequency;

(2) for low frequencies the impedance Z, of the filter is nearly
equal to a constant value R because a low frequency or small x
makes V1 — 2 nearly 1, and so Z, = R nearly;

-(3) at some frequency given by x having the value 1 the impe-
dance is zero;

(4) the impedance is real when x is less than 1 since 1 — x3 is less
than 1;

(5) the impedance is imaginary when x is above 1 because 1 — %
is now negative and its root is unreal;

(6) for high wvalues of x, the impedance is high since % is then
nearly equal to x.
Curves will be given later (see Fig. 12).

“Formulas for Components of Simple Ladder Low Pass Filter

ThecoilL::B
nf

1
The condenser C = 171—27
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EXAMPLE
Design a filter for a 1000-ohm line to cut off all frequencies above 500
cycles.
1000 2
Then L= 5007 = = henrys
And C = 50‘0_17:2700_0 farads, or % microfarads

These two formulas are fairly easy to remember. The easiest
way is to work out a few examples made up by oneself. Then, using
rough and ready arithmetic (let = be three, for once), work out a

[}

3

3

o .y f
w //
z /

<

a /

oo ~~ /

b NG

- N

2% 3r, af,
FREQUENCY

CUT-OFF 3

F1G. 12. IMPEDANCE OF SIMPLE LADDER TyPE Low Pass FILTER
(HALF-SERIES TERMINATED)

few cases mentally. When one knows the coil and condenser sizes
one can build the filter. The two formulas form the basis of the
formulas for all the more important ladder filters.

One might reasonably want to calculate attenuations at once,
but we are going to work out the characteristic-impedances first.
There is much to be said for doing so. If one goes to buy an electric
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iron or a lamp, one wants to know the current it takes. Impedance
tells this for different frequencies.

The attenuation gives the current at any place along the ﬁlter
Impedance gives the current entering. Both assume an infinitely
long filter to avoid reflections from the distant end.

Impedance of Low Pass Filter
The impedance in the pass band is V1 — %3 times the nominal

R, which is A/ C Using this R value as a unit then, it follows that

the impedance in the pass band of a half-series terminated low pass
plain ladder filter is a variable resistance when the frequency is
vaned following a graph which is just a quadrant of a circle (see
for which i to_make a filter
settles the value R ohms. The cut-off is the only other factor. These
with = give L and C. The L is the total inductance between two
condensers. If it is desired to put half of it in each side of the ladder,
double-wound coils each of total inductance L must be used.

Half-series Case

The low pass filter if half-series ended falls to zero at cut-off along
a quadrant of a circle. This is in the pass band because at frequencies
below cut-off the x in v/1— «? is a fraction, reducing 1 — 22 as it
gets bigger with rising frequency.

In the attenuation band we have Vv x% — 1, which is turned round
because x2 is greater than 1 since x is so, and it is necessary to take
out — 1, giving 7 when the root of minus one is taken. The impedance
is now a reactance.

Let us consider the characteristic impedance of this filter in
greater detail. The calculation is given in Table 3.

L3y?
Z=Nt— 73

for the half coil ended filter. __When o is low, this is real, i.e. a pure

ohmic resistance of value ,{/ é— for low frequencies, falling to zero at
a frequency given by

L L3? 2
L= = =, le. — = VLC
C 4 lewo

Also note that above this frequency there is a minus sign with its root
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aj mdlcatmg a pure reactive xmpedance, rising now with frequency.
(See Fig. 12))
TABLE 3

IMPEDANCE OF LOW PASS SIMPLE LADDER FILTER ABOVE
CUT-OFF (HALF-SERIES TERMINATED)

x Var—1

a
@
@
o
9

B 00 GO O 1D st vt et ad bt it e et et v
SNSNSDRUH G HIPO=D
€2 OO 10 B b vtk e e

00 R I G G KD
gﬁmwgg—lm\lm

Here x is again the frequency as a multiple of the cut-off fre-
quency. The figures worked out are impedance, as a multiple of the
nominal impedance of the filter. The curve is therefore general for
all filters with the same circuit.

If, for example, a filter with 1000 ohms neminal impedance is
worked at 10 kc., its cut-off being 5 kc., and it is a low pass filter
terminated in Aalf a coil, the impedance is found at 10 kc. from the
value 1-732 opposite 2 in the table because 5 kc. and 10 kc. make
% =2. The 1732 must be multiplied by the nominal 1000, the
result being 1732 ohms.

These remarks apply to the simple half-series ended filter. Ifitis
ended in this way the coil at the end must have half the calculated

inductance as given by the formula L = Ef,which gives thewhole coil.

If the filter is double-shunt ended the ends must be half value
condensers.

Double-shunt Case
This makes the impedance 7ise in the pass band to infinity at

cut-off because the formula becomes \/T}:? according to Table 4.
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TABLE 4

RISING IMPEDANCE IN THE PASS BAND
(LOW PASS FILTER DOUBLE-SHUNT ENDED)

x Impedance

1.008
1.023
1:049
1.094
1157
125
1-4
1.67
2-2
Infinity

~000000000
[=R{oNe-IN No N7 BN SR

(See also Fig. 13.)

These values are merely the reciprocals of the values for the
quadrant of the circle which falls to zero (Fig. 12).

The values in the attenuation band for the double-shunt ended
low pass filter are as follows.

_1
VaE—T1
TABLE 5

IMPEDANCE IN THE ATTENUATION BAND
(LOW PASS FILTER DOUBLE-SHUNT ENDED)

The formula is

x Impedance

Infinity
219
1-51
1-20
1-025
0-896
0-578
0-436
0-353
0-298
0-259

OGO 1D D et et ot e
h h abd=

(See also Fig. 14.) ~

Referring to Table 3 for the half-series case, as w becomes large
above the cut-off, Z,, now reactive, becomes large too. This is
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quite right because the first condenser is a short circuit at high
frequencies, and one measures the end coil, which is }jw only,
which is what the formula reduces to when w is big. If a

/
[

/
/

42 Vi

1-O =]

’

IMPEDANCE_|OF

PLAIN [LOW PASS FILTER BELOW

CUT-OFF
(Pouble [Shunt (Terminated Casle)

w
2
< odatnl A4 |
w
;- i'c l C J‘ (od l INITE

T IT

—t-EREQUENCY

. CUTLOFF FREQUENCY

o 2 4 6 8 [e)

F16. 13. IMPEDANCE OF Low Pass FILTER BELOW CUT-OFF
(DOUBLE-SHUNT TERMINATED)

double-shunt terminated filter is used, % is for all frequencies the

reciprocal of what it is for the half coil terminated filter. That is to
say, Z, differs for the two terminations.

The two cases are shown in Figs. 12, 13, and 14.

The above characteristics for the impedances of low pass filters
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with either termination are of value in themselves and’ also for
other reasons. .

Cles iNFINITI

2:0

1-8

1-6

IMPEDANCE C‘DF PLAIN
0|4 = LOW PASS FILTER ABOVE
2 CUT—O[{F
T (Dopble SHunt Terminated| Case )
O.2
L. L
"Oi— = 00 cewaa

-8
. l
4 .k
2 .-
J R
O __CUT-OFF FREQUENCY

| 2 3 4 s 6
F16. 14. IMPEDANCE oF Low Pass FILTER ABOVE CUT-OFF
(DOUBLE-SHUNT TERMINATED)

The Attenuation of the Low Pass Filter-

The change of impedance of the infinitely long filter from real
to imaginary at a certain critical frequency gives a clue to the filter
action, for if any apparatus having two terminals measures as a
resistance, the apparatus accepts energy, and as neither L nor C can
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dissipate but only store energy it is highly probable that the energy is
travelling along the filter, from section to section.

Further, in the case of a continuous wave from an oscillator,
if there is not to be an infinite build up of energy near the end, ‘the
energy must be going in, travelling along the line as fast as it is
supplied, suggesting no attenuation. On the other hand, at a fre-
quency above the cut-off frequency, the reactance effect shows that
no continuous supply of energy is being accepted, but that there is
just a surging of energy into and out of the filter at each half cycle.
This suggests attenuation.

To find the attenuation, it is convenient to measure, not the
mere ratio of current entering and leaving a section, but its logar-
ithm—because current ratios multiply, one after the other, but
logarithms merely add up. The current ratio entering and leaving a
ladder, in terms of the series and shunt arms a4 and b is rather com-
plicated, but, curiously enough, if the current entering a section is
called 4, and the current leaving the section is called 7, the ratio being

:.—1, although the ratio depends on the series and shunt impedances
2 and b of the ladder in a complicated way, the expression for

1 (3 4y

2 {2+ 3)
in terms of @ and b is very simple: it is just

a
1+ 5
The first expression will be recognized as
SP + e-—P
2

if P denotes the logarithm of the ratio of 4, to 1,4 (for ¢~ * is the recipro-
cal of &P, so if & is ¢, over 4y, then e~ F is 4, over 4,). This expression

HeP—e )
has a name in hyperbolic trigonometry. It is called cosh P.
Formula for the Attenuation of a Ladder Filter
The above formulas give
a
CoshP =1+ 25

3—(T.a71)
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This is a very important formuia, because it gives the attenuation
(which is the logarithm of a current ratio, so that when P is known the
current ratio is also known) in terms of the arms 4 and 4 of the ladder
filter. What we have not done is to prove that

1 (i 4y
§k+ﬂ
1+%

in the case of a ladder. Also, having the formula, one needs to know
how to use it.

will give the simple form

Proof of the Formula for the Propagation Constant of Ladder Filters
(Based on the Calculation of Half-section Attenuation)

Take half a section, with its series arm as in Fig. 15. Fig. 16 shows
an example of Fig. 15 for the case of a low pass filter.

O—Wwv —e FL
#a . 00000, v
2 !
3C
o s o ) T )

‘F16. 15. HALF A SECTION F1G. 16. HALF A SECTION OF A

LADDER Low Pass FILTER

The well-known cable formula for the impedance of a line opened
and closed applies. Thus

Zclosed = Zytanh }P = a2 . . . . - (1
Calling the attenuation of a complete section P
Z,
Zopen=m,=«}a+2b. . . . . (2)

Multiply these two equations together.
2
Z =;a(;a-|-2b)=ab+‘fI

which gives the characteristic impedance and so immediately proves
this formula. To find the attenuation is fairly easy. Dividing the
two equations (1) and (2), we have

__1a a
Tanh* 3P = o =+ %
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Our aim is to get a simple formula for cosh P, as the formula for
cosh P is the simplest in the case of ladder structures. Express tanh
as sinh divided by cosh.

sinh®P  cosh®P—1 1 1 a
cosh?2}P —  cosh?)P =~ = cosh?}P~ a + 4b
So
1 e
cosh?2}P ~ ~ (a + 4b)

The next thing is to turn this upside down,

cosht}P = 1 + 4=

But cosh P = 2 (cosh?}P) — 1.
This is like the easy formula of half an angle in circular trigo-
nometry. So

a
cosh P =2 + 35~
The final formula then is
a
cosh P =1 4 25

This proves the formula for the propagation constant in an easy

way. When both a and b are known in the j notation, 537 2b is known

cosh P is known, and P can be found from tables of cosh P,

In this proof everything depends on the “open” and ‘“closed”
impedance formulas, which are so much used by cable manufac-
turers when they have made a piece of cable and wish to find its
characteristic impedance by open and closed tests.

The proof to the cable formulas follows. It is a great benefit to
treat filters as cables and use the transmission methods.

An Easy Proof to the Impedance of a Length of Line Open and Closed
at the Far End

This is the easiest way to prove these formulas. Draw a
picture of the real line cut at the place desired. Call the attenuation
P up to that point.

The oscillator may be thought of as having the same impedance
as the infinite line. Call this Z,.

Let the oscillator put a voltage E on the sending end of the infi-
nite line. Then let the line be cut. The voltages and currents change.
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In a D.C. case the currents and voltages would change in this sense,
the currents would be less, and the voltages greater everywhere when
the line was cut. ‘ «

In an A.C. case resonance would occur in some cases and these
decreased currents might prove increases and so on. The j notation
takes care of all that, so one can work it out as a D.C. case. The trick
is to introduce the infinite line with an extra generator in it, which
must make the current zero if we want it to be like a line which is cut.

Here then is the line and an infinite line with an extra generator

{

(see Fig. 17).

Is,

* , . \ - - N .
(. N N —iNE
‘ - ’ T - o .
. l‘\
THE OP
. —FIG. 17. “OpPEN" CABLE ForRMULA

Without the added generator, G, the sent current is E, the voltage
the oscillator puts on the infinite line divided by Z, its characteristic
impedance. The current 7 at G is

-
N
o

because &~ is the reduction factor.

If we are to simulate the cut line, the generator G must make
the current at G zero. This means the generator G must put into the
line a reverse current of strength

E

= e-P
()

This will return to the sending end, and as the oscillator is sup-
posed of impedance to match the line, there will be no reflections
when the return wave arrives at the oscillator. The current wave
returned to the oscillator is attenuated on its way back, so its value is

E -

A
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The current leaving the oscillator, is

_.E_. — £ 8—-2?
Zy 2,
because the go and return waves subtract. e return wave puts

a pressure across the oscillator terminals, a rise of value decided
by Z,. Itis
E

= g=2P — Eg—?P
Zy5 e = Ee
°

Therefore, cutting the line raises the voltage E to E + Ee~%°
and lowers the current from

The new current A
E -
z,(1—e )
is the I,, the true sent current of the cut line. The new voltaée
E (1 4 &—%P) is the E,, the true sending voltage in the case of the cut
line. Divide these, and it gives the impedance Z open.
E(1 4 &~

E
Z, (=)

Z,y=

This reduces to
& 4 ¢-F

L7
by simply multiplying by . The result is Z, coth P because
. ef —¢—F
& e F
is tanh P. This proves the formula
Zop=2Zycoth P’
The next thing is to consider the cable short-circuited at the far
end (see Fig. 18). '
CABLE SHORT-CIRCUITED

In order to make the uncut line like the line which is cut and
short-circuited, one may connect a generator of voltage across the line
- helping current to flow across from positive to negative. The result,
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if the generator reduces the voltage across the line and across its own
‘terminals to zero, is to make the current double. It is like connecting
two cells in series short-circuited. If their voltages and impedances

~ |

~ @ —INF.

F16. 18. “CLoSED’’ CABLE FOorRMULA

are equal, they must produce zero voltage across the terminals when
connected. This generator, therefore, introduces or superimposes
the same terminal voltage and current that the other one does. The
voltage is added in such a direction as to reduce the voltage every-
where (it is reduced to zero at the short circuit) and increase the
current everywhere. The result is that the sent current is in this
case

E .
7 (1 +67%)
)
and the sending voltage is E (1 — ¢~ %7).
This makes
Sending voltage ef — =P
~S<mt§_———u?r_é——;tg— <8P+ _P}whlchlslotanhP

These, then, are the two formulas for the impedance of a cable
with the end open and closed.

The two formulas Z,,, = Z, coth P

and Z,; = Z,tanh P
tell the impedances of the two cases. In the past one seldom wished
to use a cable with the end shorted, though we do so now in radio
work and get resonance.

What was and is still valuable, however, is to measure Z open
and Z closed on a bridge and multiply the two.. When this is done
tanh P cancels coth P and Z,, Z,; = Z,3, whlch immediately finds
Z,, the characteristic impedance.

; I%vmon gives tanh P, from which the propagatlon term P is
oun:

The great feature of these formulas is that they enable any circuit
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such as a ladder, lattice, etc., to be taken and analysed to give general
formulas for its Z, and its propagatlon
The Use of the Attenuation Formula

When 2 and b are one negative and the other a positive reactance,
i.e. — j and 7, the result is (1 — & real), which is a real fraction until

ry
/
\ 3 //
/
\\ j 4
2
cpsHl P
v
,/ ' C€QS Pl=casHjP
1
/ o | 2 3&5 1
o \\
L =1

F1G. 19. CosH P witTH REAL AND UNREAL VALUES OF P

4a/b becomes more negative than — 1. Until then it is fractional : first
positive, then negative. When cosh P is fractional, P is unreal;

and cos B=1 + }%, putting B for unreal propagation constant,

which is a phase shift of B degrees.

- Filters in their pass bands, then, give a phase shift, section by
section. A negative cosine means a shift of angle greater than 90°.
When, however, cosh P is real and greater than unity (without regard
to its 4+ or — sign), then P is real, which means so much attenuation
in népers. '

The attenuatlon begins when cosh P is 1, that is when = 25 is—2,,

which is when yT) is — 1 in the case of this filter. Cosh P is drawn for
P imaginary and P real in Fig. 19,
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Cosh P can be negative since it is
& 4+ & F
2

and ¢ is a current ratio. Sois ¢~%, and if a current is reversed in
phase with regard to another, their ratio is negative. This makes
cosh P negative too, which is not at first obvious. It can also be
seen by writing P as 4 + jB and expanding cosh (4 + jB).

A Simple Explanation of the Action of a Low Pass Filter

If the filter is drawn with both coils and condensers divided into
two, it becomes easy to see that there is no attenuation at the fre-
quency of resonance of the half coil with the half condenser (this is

K D H

AI%C e ul%c%" s e
BI IT ’ :g T

Fi1c. 20. TrE Cut-OoFP FREQUENCY OF THE Low Pass FiLTER

a definition of the cut-off frequency), but that there is attenuation
above it (see Fig. 20).

At the frequency of resonance of the half coil {L with the half
condenser }C, the whole loop ADFB is in resonance with the circu-
lating current, and this section viewed alone has infinite impedance
measured at the terminals A B, because the impedance round ADFB
is merely that of the }L since the second L and }C are zero in series
resonance. Thus the ADF path is in anti-resonance with the }C
across A and B at a frequency f such that

1 2 2 ——
§Lw = E—ﬁ-;or —c;= \/LC

If then the loop ADFB has an infinite impedance at the terminals
AB and DF the same may be said of every other section. Thus the
‘second section puts no shunt on the condenser between D and F, and
the argument which applies to one isolated section is true of the

- whole chain when connected up. This proves the filter to have an
infinite impedance at this frequency.

The impedance of the coil KD cancelling that of the condenser
DF and leaving the coil AK only effectively in circuit means that
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the total applied voltage is reproduced three times in the circuit
AKDF, once across AK, once across KD, and once across DF. Thus
the applied voltage is found at full volume across DF, the phase
being obviously réversed, because the current is the same in all
three elements of the ADF circuit, but a condenser voltage is in
phase opposition to a coil voltage when the two are in series.

The voltage across DF being applied to the next section causes
the same chain of events. The voltage at DF is found in full volume
at HM,and so on. There is then no attenuation, but 180° phase change
from section to section. 4

Suppose the argumernt repeated at a higher frequency. Again
suppose the first section to be separated from the rest.

The impedance of the ADF path now exceeds that of the AB
condenser, so the condenser takes more current and the section looks
like a condenser as regards the current taken. Further, the voltage
across DF is less than the voltage applied to AB now, for the impe-
dance of coils rises, and that of condensers drops with frequency.
There was equality before, now there is not. When the next section’
is coupled on at DF, it acts as a capacity load, increases the size of
the $C condenser between D and F, and so further lowers the voltage
between D and F. The relative phases remain the same. Thus there
is attenuation at any frequency above the

1

f=vic

and a steady phase change of 180° from section to section.

Phase Changes in Filters

Neglecting resistance in coils and condensers in the attenuation
band as explained before, P is real and cosh P is found to be greater
than unity, which is necessary, for cosh x starts from 1 when x = 0.

Cosh P may, however, be positive or negative. If positive there
{s no phase change from section to section. If, however, cosh P is
found to be negative then there is a phase change of 180° from
section to section, for it means that the propagation constant con-
tains a real portion, say 4, and an unreal, j7. Then cosh P, which
isnow cosh (4 + jw)iscosh 4 cos = + j sinh 4 sin = when expanded
as cosh (@ + b), and as sin # is 0 and cos = is — 1, the whole cosh
P = — cosh 4, proving that a minus sign to the cosh P means a
phase change of #. This proof is necessary because when cosh P
turns out negative it does not follow as obvious that there is reversal
of current, for cosh P is a complicated function but has that property.
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This is given as a theorem by G. A. Campbell.
If the filter is all coils, cosh P is positive, and there is attenuation
as long as both shunt and series arms behave as coils. (See Fig. 21.)

—— 000000, 000000 —

(010 (0} (4)

[ —
F1G. 21. THREE COILS ACTING AS A “T"” ATTENUATOR

Notice particularly that attenuation depends on {3 being either

positive or else negative but greater than 1. This is illustrated in
Fig. 22.

PASS RANGE
\\\ l' - a

R S -2 -1 O
SHUNT ARM

F1G6. 22. ATTENUATION AND Pass RANGE oF LADDER FiLTERS DEPENDING
ON RATIO OF THE ARMS LYING BETWEEN 0 AND — 4

Vi

E

The Atteriuation Curve of the Low Pass Ladder Filter

a
CoshP =1+ 3%
]
Here @ = jlo, b==.—l—— and cosh P = l—LCm =1—=22
jCo 2
where % = applied frequency.
. cut-off frequency

Attenuation begins at x = 1 and the result is as shown in Table 6.

The value of B° from cos B is found by cosine tables, while the
value of 4 from cosh 4 is found from tables of cosh #, for which see
Fig. 19. A curve of the results is shown in Fig. £3.
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" TABLE 6

ATTENUATION CURVE OF THE SIMPLE LOW PASS LADDER
FILTER AND THE PHASE CHANGE IN THE PASS BAND

. Attenuation banci Pass band
— 028 O
5 . (lcoshz;’) Aor P x lng B°
1-05 — 125 0-69 0 1-0 0°
1-1 — 1-42 0-89 0-1 0-98 11°
12 — 1.88 1-25 0-2 092 23°
1.3 — 2:38 .1-51 0-3 0-82 35°
14 — 292 1-74 0-4 0-68 47°
1.5 - 35 1-93 0-5 0-5 60°
1-6 -—- 4-12 2:1 0-6 0-28 74° .
17 ., — 478 225 07 0-02 88° 51’
1-8 — 5448 2-39 0-8 — 0-28 106° 18’
19 — 622 2-52 09 — 0-62 128° 24/
2:0 | 7 2-65 0-95 — 0-805 143° 36’
25 — 11§ 314 1-0 - 10 180°
3-0 —17 3-54
35 — 235 3-85
4-0 — 31 4-13
45 — 39-5 4-38
50 — 49 46
¥

Here A is in népers and is found from cosh 4, while B is found from cos B in
the previous column, using the appropriate table in each case.

P
@ <
180° 4.0 -
PHAISE CHANKGE 5///
ns® 3o —
/ e
LA\
9° 2 ) L™
/ A
y y x
45° 10 / /
V4 f 11
A -1

o
n 2k r
CUT-OFF FREQUENCY

Fi6. 23. PROPAGATION CONSTANT OF SIMPLE LADDER L.P. FILTER
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The Use of ‘ General " Curves

These curves are of fundamental importance, for they apply to
the low pass filter. Since they are plotted for frequency divided by
cut-off frequency they apply to a filter of any cut-off frequency.
That is to say, the attenuation of a 1000 cycle low pass filter at 2 kc.
and the attenuation of a 3 kc. filter at 6 kc. are both read from the
same curve or table as 2-65 népers.

Similarly, the impedance curves have been plotted with the
“nominal” (meaning the low frequency impedance 4/L/C) value
as unit. Thus they apply to filters of any characteristic impedance
just by a multiplication by 600 ohms (or whatever it is). Further,
the curves apply equally to high pass filters, as will be shown later.

The Relation Between Cosh P and Attenuation

Cosh P needs to be over 1 in actual size to produce attenuation.
If cosh P is negative and over 1 there is attenuation. This may be
seen as &F is a current ratio and a phase reversal of current, i.e. a
negatwe value to &F, say — 6, makes e"'P negative too, and so cosh P,
which is

e e F
2 ’
is also negative. Hence, in looking for attenuation, cosh P, though
it may be positive or negative, must be over 1, and a/b in ladder
filters can have either any positive value or any negative value over
4, in order to make cosh P greater than 1.

The one case is that of two similar impedances which act like a
potentiometer and thus reduce the voltage, so cosh P is 4 ve. The
second is inductance for one arm and capacity for the other, so cosh
P is — ve. The sketch in Fig. 16 is not only theoretical, for any two
terminal impedances may at any one frequency measure or “‘Jook ” like
a capacity and at another “look” like an inductance. For example,
a coil and condenser in parallel look like a condenser at high fre-
quencies, but like a coil at low frequencies. This is an easy way of
followmg the working of difficult circuits.

particular, the half-section shown in Fig. 16 has resonance
be the inductance and capacity at the cut-off frequency.
en attenuating, the simple low pass filter has a phase change
%alszoz(persectmn Thlsmeansthatthephasesareasshownm
ig, 24 (a)

The filtering action is roughly obvious since the series inductances

mse the passage of the higher frequencies, while a condenser allows
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Sometimes both arms of a ladder filter look like coils, in which
casg(F18. 21) the filter obviously attenuates, as it is like a repeated
potentiometer. A compound circuit changes a§ the frequency is

HALF S AN P
CYGQLE a |

> T < 4

a, b, ¢ phases in order, a before b, etc.

HA -~ ~ ~
vele
o) . c—— ———n

(a) Pass band currents.

HALF a\ /B\ /D
cvct.:c T T

—0
a, b, ¢ phases simultaneous now,

OTHER I I
H

ALty ~ = T~

(b) Attenuation band curren
F1G. 24. PuasE CHANGES IN LADDER FILTERS

raised through a resonance, so it may look like one thing at one
frequency and another at a higher frequency. In the low pass filter
it is plain that the condensers shunt the voltage across the line at
high frequency.

Mathematics show that this happens at a critical frequency, and
that there is no reduction below that frequency.

ExaMrLE

Design a low pass filter to have a nominal impedance of 6002 and a cut-
off of 1000 ~. It is required to have a high impedance in the altenuation
band at one end and a low impedance at the other end. It should be
balanced to earth.

R 600
La-a,soL=—l—60-—0—-;;=0-1909henry

C = —

1
=Ry % € = g0,000, = 5% uF
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These are the full coils, and each coil needs to be woundiisith two
windings for balance to earth. The 191 millihenrys are ttvoth
windings in series.

If double-shunt ended, begin with a

0-53

—— = 0:265,F

condenser. If half-series ended, begin with a 95-5 mH coil.
Before going on to consider more complicated ladder circuits it
will be well to look at the simple high pass filter.

The High Filter
This has series condensers and shunt inductances. If jLw is put
for b in the general formulas and
1
jCw
for a, then the characteristic impedance and attenuation can be
worked out; for, again,

in a ladder, and a = Tla-»’ but b = jLw so

J
z - L _L_JEJI 1
O ANC CHduw2” NC T LC4®

.. 4LCw? =1 for the cut-off frequency, defining the change of
impedaticé”from the real to reactive.
Also, at frequencies high now,

.y

C
L orvic L __1
..LC—mor L —2w_4ﬂfo
R 1

This gives the sizes of components, but it is far easier tp use the
Theorem for Inversion about a given frequency (see Chapter IX).
Take the main series impedance of the low pass filter, a coil of value

L=-I—e—henrys
7o
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The condenser which would resonate with this at f, is one which

makes
/ CR_ 1
nfo 2mfy

C'R 1 1
or '—j—-- 4"7301‘ CR = 7447.-
1
Cl= —
4nf,R

which is the full condenser for a ladder high pass filter. By “full”
condenser is meant the value to be placed in one side of the line
when there is none in the other as in Fig. 25.

it L L 3L
O~ O
LOW PASS FILTER
This should be

tuned to fo
%L abov
2—6' Th:s should be
'S tuned to fy
= byC above

i

HIGH PASS FILTER

F16. 25. DEsIGN oF HiGH Pass FILTER BY FREQUENCY INVERSION OF
Low Pass FILTER

Applying the same principle to the condenser of the low pass
filter gives a coil for the high pass filter of value L.

R
1
L Iﬁ)henry

Compare the sizes of this coil and condenser with those for the
low pass filter, and it will be seen that the full coil and condenser
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for a high pass ladder filter are one-quarter the sizes of the coil and
condenser for a low pass filter of the same cut-off. So, knowing the
low pass filter, one knows about high pass filters too.

The Two Terminations for Ladder High Pass Filters

If the high pass filter is to be “half-series” terminated, the
method of getting half a series impedance is to double the end con-
denser. If it is to be double-shunt terminated then it must end not

TrEE

(a) Double-shunt ended at each end. Unbalanced to earth.

BX0S

4C 2C
(5) Half-series ended. Balanced to carth.

F16. 26. THE LADDER HicH Pass FILTER

in a condenser but in a coil as shown in Fig. 26 (4), and the end coils
must each be of inductance twice the value given by the formula

R
4nfo

High Pass Filter Balanced to Earth

When it is desired to balance this filter to earth, every condenser
must be doubled in size and also duplicated as in Fig. 26 (b), which
shows such a filter half-series terminated. While this is at first a
little confusing, it is all based on the fact that the impedance & in
the general formulas is the loop impedance between two rungs of
the ladder, two condensers of 2 uF in series acting like one of 1 uF,
and also the fact that the general formulas are based on a value

L=
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of §a or else 2b for the end impedance. It is the impedance which
counts, and determines when to double, and when to halve, a coil or
condenser to secure balance to earth and also make a certain
termination. Table 7 gives examples of high pass filters.

TaBLE 7

COMPONENTS FOR (NOMINAL) 600-OHM IMPEDANCE,
HIGH PASS FILTERS

f L C 2L
Full Coil Full Condenser End Coil
. mH F mH
. 62% 382 «(‘ 12 764
125 191 2:12 382
187 128 1-42 256
250 95-6 1-06 191
375 64 0-71 128
500 47-8 0-53 956
750 32 0-355 84
1000 24 0-265 47-8
1500 159 0-177 32
2000 12 0-132 24

The Impedance of the High Pass Filter
rom the simple formulas for the characteristic impedance of

the general ladder circuit
7
Vab »/ I+3

Vab

Ji+ 5

for a double-shunt termination, the particular curves for the impe-
dance of the high pass filter with either termination may be obtained.

Note that Vab or Vcoil X condenser (because @ is a condenser
now and b is a coil) becomes

T l_ﬁ
NILe X Ea=ANT

just as for a low pass filter. This is the nominal impedance. The

factor
a
N1t 5

for a half-series, and

4—(T.a71)
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- or its reciprocal in the double-shunt case multiplies the constant J%:
-and produces a curve.
We have worked out the low pass filter impedance curves. What
are the high pass ones like?

In v ab the frequency f or o cancels. In 7& it does not cancel
again, so /1 + ;;% contains w. It is worked out thus—

ais - and bis Lo, s0 it is
jew

[1—_ 1
T 3LCo?

Note the 4, but also that

R 1
. L= 4"———ﬁ’ and C = ero
for this filter, or
1
T g

where wy is.the cut-off but w any frequency.
This makes the impedance for the half-series case V'1 — 2%, but
note that x here is not
frequency cut-off frequency
cut-off frequency frequency

the reciprocal. Observing this means that the curves previously
obtained for low pass filters are curves for high pass filters if one
changes the scale at the base to reciprocal values. The simplest way
is to use } for 2, } for 3, 2 for §, and so on.

—~— As the frequency comes down in the high pass filter the result
is just like going up in the low pass case. Compare the half-series
ended low pass filter with the half-series ended high pass filter. The
double-shunt high is like the double-shunt low pass filter curve.

How to Tell the Impedance Curve from the Circgit
There is a rapid way to see which curves to use for which case.
The v'1— 3 for the series and
1
V1—4t

for the shunt case are the same for both filters. One goes up as »
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becomes very large, but is zero at cut-off, and the other goes down
to 0 at infinity value of x, being infinite at cut-off. '

From the cireuit, does the filter end in a shunt condenser or a
series coil? This quickly shows what it does at infinite frequency,
and so gives the required information for that value of «.

Ladder Band Pass Filter

One of the most useful of band pass filters is the four-element
one shown in Fig. 27. This drawing does not take into account bal-
ance to earth or terminations, which must be arranged after working
out L,, C;, Ly, and C, from the formulas first of all.

| L, Cll- | L CI'-—O

1

L? ::C2 L? C2

— . e o

Fi1G. 27. SiMPLE LADDER BAND Pass FILTER (NOT TERMINATED)

As for the derivation of the formulas, suppose L, resonates with
C, at the same frequency as that for which L, and C; are in anti-
resonance. Then, neglecting losses, at this frequency L, and C,
will together have zero impedance. Also L, and C, will be infinity
and put no leak on the line. This frequency is, therefore, in the pass
band. The filter is usually made to match the line round about this
frequency as far as impedance goes.

To study the circuit, calculate its characteristic impedance from
the general formula

z,=V&3J1+-Z—b

Putting in the values for ¢ and b, remembering that a is a series
resonant and b a parallel resonant circuit,

. 1\, : T
(lew + J'Clw)fa (]Llw + jclw) T _1_
Zo == - 1 1 + _——L_’——— ]L‘w + 'C
3 —_ 4— ] ’w
Lo + 7 g C,
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As Le+izs ]C )
is to resonate at the same frequency as

. 1
]L'w + ]—-6;), Llcl = LgC’ and
the first fraction reduces to

LL /‘Ll‘
LG~
Then when working at the frequency of resonance

zo=,/§=1e ‘

to match the line because the brackets

(110 + ) 224 (71 + )

are then both zero. The attenuation starts when Z, becomes unreal

or when
1+ (’L‘ © 1w w) (JL’ +7Cw)
Li

G

becomes unreal, but this is when
(JI-1 + Fron w) (ﬂ-g + o w)
C;
L (L + )
(10 + jC,w) A o

because with the same resonance frequency one bracket is just a frac-
tion of the other all the time. Use this and also take a square root so

(1m0 + ) (i2:2) =7

3 (bo—cia) 7=

Notice that
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or Llclw d C—z_ 1’ Cﬂ = 2C1w

2w
or w - \/1_1_6‘_; — m =
Call the frequencies a and §.
) a+ﬁ=\/zzl?;whileaﬂis+z%;
. 1 L
Consider (Llw — E}; ) 4+ 2 = 4+ 2R

When w = « the — sign is taken, so
Lia— (%& =—2R
but when w = g the + sign is taken, so
1
Lg— Ch = 2R
and L,C,$*— 2RC,8— 1= 0
— RC, 4+ VR:C2 4 L,C,
I,C using the
! plus sign
B = RC, + VR3C,* 4+ LGy | in both cases.
LG,
2V R:C.2 + L,C,
LG,

So a+pf=
Then

_RCGA4+ LG RG]
* L2C2 LG,
and f—a= 2R

I

The four equations settling the sizes are now—

M. .. LG =LC,

L
2) . . . . R =Rt
@ c
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1
(3). . . E=aﬁ
2R
@. . . f-e=T

Calling the band edges frequencies of f; and f;, « = 2#f; while
B = 2nf,, we find the components as follows—

R

From (4) L = 5 = ey
: L 1 Moay) —— Sy
From 2) Co= g = 2R GA=R) f1)
_ 1wy~ {
From 3) ¢, = ﬂL R21rf121rf, 4nR\f, fz}
From (1) L,_L,C "5{%—}} Brretiue b
1 J2 Ca,

The Components of the Band Pass Filter ot e,

The following four expressions give the four components for the
plain band pass filter.

Se 3 il R l\
ries coil = — - _
‘”(fs_fl) "-(:L‘,aoo)
Shunt condenser = S B
R(fz .fl) “.R( \Q, v )
1 (1 1 ,
Se i = = {—- — s ——— ! _ ’
ries condenser 4nR\f; f: R ( < Gor /‘
Shunt coil = R(1 _1 R ' '
w\L v (G - wer)

These formulas are much more easily remembered if it is observed
that L, is the inductance for a low pass filter whose cut-off frequency
is the “band width”’ of the desired band pass filter.

The same remark applies to the condenser C,. On the other
hand, the shunt coil L, is the difference of the coils for two high pass
filters, one of cut-off f;, the other of cut-off f;. The series condenser
is also the difference of two condensers suitable for two high pass
filters, one for each of the frequencies which form the edges of the
band in question.
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These results are summarized in a table later and enable ordin-
ary ladder filters to be designed from memory and sometimes almost
mentally. (See page 49.)

ExamrLE

As an example of the band pass filter, take the following. Design a band
pass filter for a 10002 line to pass frequencies from 2000-5000 c/s. The
width of the band is 3000 c/s. A low pass filter for 3000 c/s would need a

coil
1000
#3000
This, then, is the full series coil. The shunt condenser is

1
1000 #3000 — 0108 wF

The series condenser is

= 0-106 = 106 mH

1 1
4000 #2000 ~ 4000 5000

Using the formulas for condensers for high pass filters,
1 1
C, = <§; — m) uF = 0-0239 uF

The shunt coil is likewise 0-0239 henry = 23-9mH. The fact that the
figures for L, and C, are the same figures as those for C, and L, is a result of
the impedance being 100092. With an impedance of, say, 6000, this would
not have happened.

53mH .  -O478uF 53mH  +0478uF
RGN

(@) I-Ia.lf-series ended section.
106mH ;0239uF
LRI

: L
47:0mi: 2 ‘OS3uF 476mH ‘053

T A

(b) Double-shunt ended section.
Fia. 28. NuMERICAL ExAMPLES OF BAND Pass FILTER SECTIONS
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Terminations of Ladder Band Pass Filters

If a half-series termination is desired the end series coil must
be half 106 mH, or 53 mH. The end condenser must have half the
impedance of the 0-0239 condenser calculated above, so it must be
0-0478 uF.

If it be desired to use a double-shunt termination, the double
shunt coil is 47-8 mH, and the condenser half 0-106 uF = 0-053 uF
The two arrangements are shown in Fig. 28.

C, L

000000 A - 100800 —o0

FULL SICTION

4L 2.C- 2|’Cc 4,

s 1
L2 3 Ca
2T
o— e
HALP-SCRILS TCRMINATED
1 Ci

e oo——,
‘}cz 2"2 g Ti‘cz

v
OOUBLE SHUNT TERMINATED

F16. 29. BAND Pass FILTER SECTIONS
Fig. 29 shows the full section as it would be in an infinitely long
filter, and the two terminations as applied to a single section only.
It will be understood that in a filter of several sections it is only
the end coil and condenser which has the half or double impedance
valuesshown in Figs.28 and 29. The interior of the filter has the ordin-
ary values. Inthe passband, thefilter matchesthelineat the geometric

mean frequency Vf,f;. In the above example this is 3160 c/s. At
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other frequencies in the pass band, that is, as one or other of the
band edges 2000 and 5000 c/s is approached, the half-series ter-
minated filter falls in impedance to zero ohms at the cut-off, after
which it rises in the attenuation band to infinity ohms for D.C. and
also at an infinite number of cycles. This last is readily seen, because
of the coil and condenser in series at the beginning of the filter. See
also Table 8 for examples of a section of a band pass filter half-series
terminated.

The double-shunt terminated filter has a rising impedance in
the pass band as one or other of the cut-off frequencies is approached.
It isinfinite at the cut-off, and after changing to a reactance gradually
falls to zero ohms at very low or very high frequencies. The half-
series ended filter, like all the rest, is reactive as regards its char-
acteristic impedance outside the pass band.

The question of the extra attenuation produced by these changes
in impedance is dealt with later.

Simple Explanation of this Band Pass Filter in Action

The series arm L,C; and the shunt arm L,C, have the same reson-
ance frequency.
TasLE 8

SERIES CONDENSER AND SHUNT COIL FOR A BAND PASS
FILTER 100 CYCLES WIDE, HAVING 600 OHMS IMPEDANCE

Value of
Series Condenser Shunt Coil Series Condenser
(End Value)
f (o) L, 2C,
mH . uF
80- 180 0-925 0-333 . 1-85
150-250 0-353 0-127 0-71
200-300 0-22 0-080 0-44
250- 350 0-1515 0-054 0-303
300- 400 0-108 0-039 0-217
350- 450 0-084 30-2 0-168
450- 550 0-0536 19-3 0-107
550~ 650 0-037 13-3 0-074
850— 750 0:0272 10 0-054
750~ 850 0-0208 7-5 0-042
850- 950 0-01645 59 0-033
950-1050 0-0133 48 0-027
1050-1150 0-01095 4 0-022
1450-1550 0-0059 2:2 0-012
2000-2100 0-00316 11 0-0063
The series coil full value is ;r_?%ﬁ nearly two henries, and constant if the band

width is constant, as it is (100 cycles) in this case. The very end coil to go with the
end condenser is just under 1 henry to make a half-series ended filter.
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The sketch shows the components for a single section of the
example in Table 8.

0-95n  2C, 2C, 095w

L2 g}‘ S-4ur

600" BAND PASS FILTER. 100~ BAND.
(The half-series termination is shown)

The resonances occur in the pass band at the geometric mean
of the two frequencies f; and f; of the band edges, as shown in
Fig. 30 (a). The curves are steeper the narrower the band. Band

width is the number of cycles f, — f, divided by V/f,f;.

PASS
BAND
T t t2

FREQUENCY

ATTENUATION &

a)

a
L4
)

ATTENUATION

1 T
FREQUENCY

(U]
' F16. 30. AcTioN OF BAND PAss FiLTER TO CURRENTS IN THE Pass BAND

The result is that at a frequency a little above this, the series
combination is an inductance, and the shunt circuit is a capacity,
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so that the filter acts like a low pass filter. The cut-off of this equiva-
lent is very high, being somewhere over to the right of f, (see
Fig. 30 (b)), but as higher frequencies are taken in the band f, — f,
the value of the series inductance appears to increase and also
the apparent shunt capacity, so the cut-off of the equivalent low
pass filter is lowered until when the frequency f, is used the cut-off
is actually f,.

At frequencies above f, the filter acts like a low pass filter with
a cut-off below f,, and so there is a quick attenuation.

At low frequencies the affair acts like a high pass filter. The
following table shows at a glance the sizes of inductances and cap-
acities needed for simple low, high, and band pass filters.

TABLE 9

TABLE FOR CALCULATING VALUES OF INDUCTANCE AND
CAPACITY OF LADDER FILTERS

Low Pass High Pass I Band Pass

¢ ¢
\mwlqm, eve—itit—--
L

R Use a quarter of values L, as for a low pass
L= of of L and C for a low filter of same band
1 pass filter width
C = ;Ef-‘

C, difference of two high
pass filters for f; and f,

L, difference of two high
pass filters for f, and f,

C, as for a low pass
filter of band width

Balance to Earth of Band Pass Filters

To put half the series impedances in each line where balance to
earth is wanted means doubling every condenser in the line and
inserting this double value in each line.

The coils can be wound in two windings on the same core, and
are thus no different for a balanced filter as regards material. In
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balancing to earth in this way the shunt impedances are untouched.
We must now deal with more complicated ladder circuits.

Derived Ladder Filters

The next type of ladder filter in order of complexity is called
the series- or shunt-derived type. There are two varieties of the
derived filter, and in both cases an extra component or two is used
in each derived section of the filter. A

The derived section has two advantages. It has a much sharper
cut-off than the simple section, and also the impedance in the pass
band can be made much more level with change of frequency. After
the first steep rise in attenuation, however, the attenuation falls to
a low value with further change of frequency. This is a disadvantage.

These sections are, therefore, good as end sections with one or
more simple sections in the middle to keep up the attenuation at
frequencies away from the cut-off. It pays often to use all derived
sections with different peak frequencies.

The peak attenuation frequencies need to be correctly spaced
out, however.

The result is to make an excellent filter with few components.
If it is desired to save coils rather than condensers because of their
higher cost then a shunt-derived section may or may not be better
than a series-derived section.

The study of the derived filter can best be made by taking the
low pass filter as an example.

The Derived Low Pass Ladder Filter

It will be noticed that the ordinary low pass filter has a very
variable impedance in its pass band. This is common to all simple
lad8er filters. By putting a portion of the series impedance in the
shunt arm, as shown in Fig. 31 and using smaller coils and condensers
for the main ones, a low pass filter section is obtained which exactly
matches the ordinary filter impedance when both are half-series
terminated, but has a much better characteristic impedance when
the derived section is double-shunt terminated. Filters may be
shunt-derived, and the termination to be used to get the benefit
from it as regards impedance is then half-series, as shown later.

The impedances of these filters, so terminated, are nearly level
throughout the pass band. The series-derived one, double-shunt
terminated, has a reciprocal impedance to the shupt-derived one,
half-series terminated; when the one has fallen with a rising fre-
quency to half its value, i.e. from the nominal value of 600 to 300
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ohms, the other characteristic impedance would have risen from

600 to 1200 ohms, i.e. double. .
The exact method of deriving these filters js as follows. Take the

formula for characteristic impedance of the half-series terminated

filter
a2
Zo — J ab + T

Suppose now that the coil a is reduced to a fraction m of its simple
value and a portion of inductance which we may call L, is put in
series with b, which is a condenser in this case of a low pass filter.
The characteristic impedance now is

Vma (jLyw + b) + }m*a?

The question is, if this filter is to match the ordinary one in impe-
dance, what change in the value of b, or what size of shunt arm
coil L,, will be needed? Call its impedance x. If b is increased in

size to p” of its impedance (incidentally it will be a smaller condenser),

then there is a portion in the formula ma X —mb- = ab as before,.

The rest
272
(max -+ @41}

should be made equal to 2. Then the new impedance exactly equals
the old one. This gives an equation

m2a?  a?
max + i =1

Solving for x gives
a*(1—m) a(l —m?
dam ~—  4m X

Hence the impedance, in this case a coil, is one of value yom™ of

X =

the ordinary full series coil. As coil impedances are proportional to

a
2

inductances, the fraction l:mm is the fraction of the ordinary

&
inductance. (Had it been a condenser its size would have been

T— 3 to get the same impedance change. This is what happens
.in the high pass case.) The derived filter is shown in Fig. 31.
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In increasing the impedance of the b arm notice that although
itis %. a larger value of impedance, being a condenser this is obtained

by using a smaller size condenser of value mC.
Let us sum up what has been done so far. Note that in Fig. 31
nothing has been said about terminations yet.

Fic. 31. SERIES-DERIVED Low Pass LAbppeERrR FILTER (NoT
TERMINATED)

It is the half-series terminated filter having this derived circuit
whose impedance exactly matches the half-series ended simple filter
at all frequencies in and out of the pass band, and when we say this
we are speaking of characteristic impedances which are the impe-
dances of infinite chains of similar sections.

The propagation constant of this derived filter has been altered,
indeed the circuit owes its sharp peak of attenuation to the reson-
ance of the shunt coil and condenser putting a short circuit on the
line at some frequency above the cut-off, a circuit device which was

pointed out before this filter was invented, but,(to keep to_impe-
,:lances consider what the impedance ﬁmqugn_c_y curve of the filter
beco is not half-series ut double-shunt
te atgd

The answer depends on the value of m, but as the double-shunt
terminated filter has a characteristic impedance

Vab

a
«‘/ 15
The simplest way to work this expression out is to multiply by

v/ab top and bottom. It becomes
ab

i
'i ab + Fy
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Here a is now jmLw, while b is

1 1 — m?
Cmw T "am

Lw

The result is
ab

2
=

. 1 .1 —m?
B ]me(ijw+] o Lw)

" (The usual mid-series impedance)

L pu(152)
R
B é(l— —L4—sz (1— mz))

e

But £4£ = ;’1—, and ~/ é = R so, if the frequency f divided by the
cut-off frequeoncy fo is called x, then

Impedance  1— %% (1 —m?
R IRV
for the series-derived filter double-shunt ended compared with

J_L
1— x2

for the simple-shunt terminated filter. It is obvious that for the
smaller values of x at any rate, that is, for the lower frequencies in the
pass band, the effect of the changing denominator is neutralized
somewhat by the numerator, the result being to keep the impedance
more level in the pass band. . .
The method of terminating a simple ladder filter with a series-
derived portion, then, is to suppose the simple filter half-series
ended and put on a half-section, say, of the series-derived filter as
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shown in Fig. 32. The flattest result obtainable in the pass band
by varying the value of m is seen in Figs. 34 and 35, which show the"
impedance frequency curves for different values of 7 in the pass band

+ 4ut i'-u- in

T e

FiG. 32. A CompoSITE FILTER WITH HALF A DERIVED S;;c;u AT
EacH EnD
and the impedance and attenuation for a value of m = 0-7 in the
attenuation band. The full impedances in the attenuation band are
contained in Tables 10 and 11, as well as the impedances in the pass
band.
The } (mL) of the half-section derived portion may be in one

coil with the 3L of the simple ladder, giving a coil of (1 .; m)L
where L is the full coil for the simple filter.

The following tables show the impedance of filters in the pass
and attenuation bands. The formula is that for the shunt-derived
but half-series terminated ladder low pass filter and is the same
as that for the Cauer Class I filter. (See also Fig. 40(b), page 64.)

TABLE 10
IMPEDANCE OF FILTERS IN THE PASS BAND
K__ Vi—#
R 1—(1— m?a?
"= 03 0-4 0-5 0-6 07 0-8 0.9 10

X wx
0-1 1-005 1-003 1-003 1-001 1-0 0-99 0-997 | 0-995
0-2 1-014 1-01 1-008 1-005 10 0-99 0-985 | 0979
0-3 1-042 1.03 1-022 1-011 0-99 0-99 0-97 0-954
0-4 1.071 1-057 1-04 1-02 0-99 0-972 0-943 | 0-916
0-5 1-118 1-096 1-085 1-031 0-99 0-951 0-908 | 0-866
0-6 1-189 1-148 1-094 1-04 0-98 0-92 0-856 | 0-8
0-7 1-29 1-21 1-13 1-04 0-954 0-868 0-784 | 07145
0-8 1-44 1-295 1-155 1-018 0-89 0-782 0:678 | 06
0-9 1-85 1-36 1-16 0-906 0-74 0-62 0-51 0-4352
095]| 173 1-28 0-96 0-736 0-578 0-463 0-368 | 0-3123

The curves are given in Fig. 34. The impedance after cut-off is shown in Fig. 36.
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TasBLE 11

. IMPEDANCE OF FILTERS (LADDER-DERIVED) IN THE
ATTENUATION BAND

m=| 03 0-4 05 06 07 08 09 10
= - — + + + + + +

11| 4587 | 3055 | 496 | 203 | 12 0817 | 0595 | 0-4587
- — - + + + + +

12| 2145 | 317 | 83 846 | 25 137 | 0914 | 0-6641
- - - - + + + +

13 | 1542 | 1473 | 311 | 1001 | 602 | 212 | 1225 | 0-8807

— - - — + + + +
1-4 1-255 1-517 | 2-08 3-86 2:450 3-36 1-56 0-9798
- — - — — + + -+
1-5 1-085 1-258 1-63 2-54 7-6 59 1-95 1-1188
— - - - — + + + -
16 | 0-934 1-078 1-34 1-945 | 4-05 159 2:43 1-24
— — - - - - + +
17 | 0-85 0-986 1-235 1643 | 291 342 3:01 1-378
- — - — — - + +
1-8 0-765 0-864 1-04 1-39 2:29 894 3-88 1-49
- - — — — — + +
19| 0.71 0794 | 095 1236 | 1-927 54 5-16 1-621
— — — — — - + +
2:0 | 0-853 0-732 | 0-866 1-112 | 1-666 4 7-22 1-732
TABLE 12
SERIES-DERIVED LOW PASS LADDER FILTERS
Factor New Series L New Shunt C Shunt Coil
m Old Series L Old Shunt C Old Series L
1.0 1 1 0
0-9 09 09 0-052
0-8 0-8 0-8 0-1125
0-7 07 0-7 0-182
0-6 06 0-6 0-27
0-5 0-5 0-5 0-375
04 0-4 0-4 0-52
03 0-3 0-3 0-67
0-2 0-2 02 12
0-1 01 01 2:5

. These tables are intended as examples of the technique rather than as design
information. The essence is always to work in impedances and no¢ component sizes.

s—(T.271)
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Fi1G. 33. TypicaAL ATTENUATION CURVE OF A FuLL DERIVED SECTION
Two values of m are shown,
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F16. 34. IMPEDANCE CURVES OF DERIVED LADDER FILTERS IN THE
Pass BanD

The curves show a shunt-derived filter with a half-series termination. The series-derived filter
with double-shunt termination is the recip 1 of this,
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Deriving High and Band Pass Filters

If a series-derived filter is desired, the rules are just the same
as those for the low pass filter. They are—
(1) Choose the factor m from considerations of impedance in the

7‘!
6
213
PASS BAND [T S| T ATTENUATION
o |o BAND
54 w 0
z (%]
E3 é‘/
0 Q |
BFEF]
meod |21
1
O -2 -4 -16 -}8 Jr0 |2 [ (8 [r8 |20

<

|FREQUENE

]
_——

L) -1 -
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Fi1G. 35. IMPEDANCE CURVE OF A DERIVED LADDER FILTER SHUNT-DERIVED
AND HALFP-SERIES TERMINATED. VALUE OF m = (-7

(See Tables 10 and 11 for other values of m.)

.pass band or else the attenuation which may be required to be a
maximum at some particular frequency above the cut-off.
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(2) Take m of the ordinary series impedance (i.e. less inductance
and more capacity if it is a low pass filter).

(3) Take '—l’-’ of the ordinary shunt impedance (i.e. more induct-

ance or less capacity in a low pass filter).

— m?
4) Form 1—m of the ordinary series im ce calculated
4m
from Table 12.
. mn' 1 -
. i "

| g
T . T T

F1G. 36. SERIES-DERIVED HIGH Pass FILTER

wow
T
ol

(5) Connect these up in the proper way, with (3) and (4) in series
to form a shunt arm.

(6) Take half of (2) to fit on to a simple series-terminated ladder
filter.

(7) Take twice (5) to form the double shunt to go on the outside
whenever a level impedance characteristic looking into the filter is

e
;i

Fm 37 Smuns-nnnmn BAND Pass FILTER

This and the previous example are terminated in such a as to give a derived filter a good
impedance curve.

(0XU]

—

KL
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The series-derived high pass filter is shown in Fig. 36, and the
series-derived band pass filter in Fig. 37 without regard to termina-
tions. After terminating the filter as desired, balance to earth can be

secured if it is necessary, by halving all series impedances and dupli-
cating them one in each side of the line.

——
O

OROINARY | J_

- Tznc T i %‘ T N
Ot :

(a) Low pass filter, shunt-derived.

= —

5

) “|(b) Hig_h pass filter, shunt-derived.
00000 00000
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- - 000000~} - ‘_oooooo,—ﬁ‘—-{-----:
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(c) Band pass ﬁlter shunt-derlved

F1G. 38. SHUNT-DERIVED FILTERS TERMINATED TO HAVE JUST THE SAME
IMPEDANCE CURVE AS THE SIMPLE (UNDERIVED) FILTER

Shunt-derived Filters
The process here is to take the infinite filter not terminated at

Mmp e -

P - - = P
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all, that is, to use the full section component sizes of coils and con-
densers, and then place a piece of the shunt arm (a coil if it is a coil,
a condenser if a condenser, and so on) in parallel with the series arm
as in Fig. 38. The series arm is first reduced in its impedance by a
factor m, and then the extra impedance put in parallel. The impe-
dance of the shunt arm is raised in the proportion 1: m. The result
is an alteration in the attenuation curve.

It cannot be too strongly emphasized that when it is desired
to give the filter a better impedance frequency curve the shunt-derived

oOoysLE
CAPACITY

\
G000 T

IMPEOANCE T T T ) TO INFINITY
A “ e ce — s —

\,- -
(a) Low pass filter, shunt-derived.

5 § £

TO INFINITY

(0) High pass filter, shunt-derived.

90000 Y6000

—-n—J

™ WALP _IMPEDA . e
FOR THIS :An:‘nu . = R 1

=
=
[~ ™ ‘=
=
=
3

——GO?O .lu’lollcl"' T0 INFINITY

A o - - = -

(c) Band pass filter, :h\mt-derlved
F1a. 39. SHUNT-DERIVED FILTERS TERMINATED FOR GOOD IMPEDANCE AT 44



62

filter, after derivation, must be half-series terminated, for if it is
double-shunt terminated, as in Fig. 38 (), its impedance is no differ-
ent from that of the simple filter, though it has peaks of attenuation
if it is a band pass filter and one peak if it is a high or low pass.
Indeed, in getting out the formula to determine what fraction of
the impedance of the plain-shunt arm ought to be taken and placed
in parallel with the full plain series arm to give the desired circuit,
the impedance of the derived filter, double-shunt terminated, is
equated to that for the plain filter double-shunt terminated. The
idea is to make it possible to join a double-shunt terminated derived
filter to a double-shunt terminated plain filter without reflection loss.
It is when terminated the other way, namely, half-series terminated
after being shunt-derived, that a good impedance curve is obtained
(see Fig. 39).
The rule is—
“DERIVE FIRST, THEN TERMINATE”

The following table shows the impedances and how they are
obtained.

ELECTRIC FILTERS

TasLE 13
IMPEDANCES OF FILTERS IN THE PASS BAND
Derivation | Termination Characteristics
Half-series | Diagram like a quarter-circle
Plain (not Poor : falling to zero at cut-off
——| derived)
Double The reciprocal of the above
shunt Poor : rising to infinity at cut-off
Half-series | Poor: like (1)
Se;x;v ed Double Reciprocal of the one below
shunt Good : alevel characteristic going to zero at cut-off
Half-series | The reciprocal of the above
Good : a level characteristic rising to infinity at
Shunt- cut-off
~—|  derived
Double Poor : like (2)
shunt

in the Pass Band
The impedances of filters in the foregoing table are a little difficult

The Method of Derivation and Termination as it Affects Impedance

to grasp at first. They apply to infinitely long filters, though one
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ré

may at any frequency break off a filter anywhere, even after the
first half-section, and terminate it in its proper characteristic impe-
dance, in which case it will measure like an infinitely long filter.
The impedance formulas all refer to infinitely long filters.

Impedances of Filters in the Attenuation Band

The most useful thing is to know that the simple half-series ended
filter, which falls to zero at the cut-off and changes to a reactance,
rises towards infinity after cut-off. The formula for a low pass filter
Zy = RVT1— 1 in the pass band becomes Z, = jV/x*— 1 in the
attenuation band, a curve shown in Fig. 12.

If it is a double-shunt terminated filter, again not of the derived
type, it is
= IR

Vi1

which is now a negative reactance falling towards 0 ohms after cut-off.

In this work the filter is first designed as a simple filter infinitely
long, then derived, also infinitely long. Bits of these two are now
selected and put togethér. If half a derived section is put at the end
of, say, two simple sections, the half-section must be put so that the
good impedance faces the apparatus to which the filter is connected.
This is indicated in Fig. 40.

It is not essential to use derived sections at all. The derived
section has one disadvantage, as already mentioned. Although it
has a second advantage in that there is a particularly rapid rise in
attenuation after the cut-off, this is offset somewhat by the fact that
the attenuation, after its high peak value, falls to a small value. It
does not keep high like the simple section.

A whole group of curves is available in each case by varying the
value of the parameter m. The earlier the peak the lower the value
to which the curve falls afterwards.

Z

Reciprocal Impedances

It can be seen from Theorem XI (Chapter IX) that the series-
and shunt-derived filters, both derived from the same plain ladder,
are inverse impedances. That is to say, their characteristic impe-
dances multiply to produce R? at any and therefore at every fre-
quency. The easiest way of making a shunt-derived filter is to make
a series-derived filter and use Theorem XI, or else this theorem can
be used to find general formulas.

All is contained in the slogan “ Derive first, then terminate.”
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The following drawing, Fig. 40, shows the way in which a shunt-
derived filter may have a good level impedance at one end and be
no better than an ordinary plain filter at the other end. It can,
even if only half a section, be joined to an ordinary filter as in
Fig. 40 (b). Fig. 40 (c) shows the practice.

1

e ¥y

0000

WPEOANCE T T | mpToARCE
o S,
A - -]
(a) The good impedance is found at 44 when BB is connected to filter sections. The
poor or ordinary

pedancewhichls!oundatBBlsu:ehhn,asltiss table for connection to

T 1“If"""°‘*

..TTT

v
(b)

ST T

(¢) Completed three-section filter with good impedance at both ends.

Fi1G. 40. THE UsE OF DERIVED SECTIONS OR HALPF-SECTIONS AT EAcCH END
OF A FILTER TO GIVE GOOD IMPEDANCE TO MATCH THE TERMINAL
APPARATUS

Two sections of different m values may be joined directly together,
but each section must be half-series or else double-shunt terminated
before they are put together. The low pass filter will then have two
small shunt condensers together (if it is a shunt-derived filter), and
in practice these are replaced by one large condenser.

Similarly in a series-derived band pass filter. Two m sections
to be joined will each have half a series arm, each with coil and
condenser. In series these form one coil and one condenser.
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Building up Filters from Sections

When taking one or more sections to build into a complete
filter the sections must be half-series or double-shunt terminated
as shown in Fig. 41. These are ready then to go in a circuit or to have
m portions put at the ends.

Portion taken out of the infinite filter showing half-series termination.
Fig. 41. FILTER SECTIONS IN UsSE



CHAPTER III
LATTICE FILTERS

SoME time after the invention of the ladder filter, a “phase correc-
tor” circuit of lattice form was made. This contained series coils
and “latticed” or crossed condensers. It passed all frequencies and
gave phase change, but no attenuation. It was not obvious that
other circuits would act as filters, i.e. have pass and attenuation
bands. It was soon found, however, that filters could be of lattice
rather than ladder form.

Any filter whose basic formulas are easy lends itself to better
mathematical treatment.

The lattice filter has very simple formulas for its characteristic
impedance and for its propagation constant. They are—

Z,= \/a_bandtanhs}P=-'/?-

b
The a and b are the impedances of the arms of the lattice as shown
in Fig. 42.
. -———‘\N\N‘ - These two formulas come from
1' using the “open” and “closed”
/‘\r\. method common in cable testing,
b which depends on reflection pheno-

mena as shown by Oliver Heaviside.
. From the circuit the open im
c. —Ww - dance is % (@a+0b) as therle) are tl\)ve;
Fro. 42 Lu;cx NETWORK parallel paths each with & and b in
- series. This is Z, coth P. The closed
impedance is seen to be twice @ and b in parallel, which is Z, tanh
P, so we have

ZycothP =} (a + b)
2ab
a+bd
Multiplying gives Zy? = ab, and division gives
4ab

(@ + )
66

Zytanh P =

tanh 2P =
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which is ~2JE
ta,nhP=2 ab= b

a+b a

1+3

(The last step is a division by & in both top and bottom.)

It is plain that 1; is as useful to us as P is.

. 2 tanh x
Since tanh 2x = ﬁ_—m
this reduces to 5
tanh }P = J -

which is the simple working formula for the attenuation of the lattice
filter. The simplest lattice with reactance arms is a phase shift
network, but we must first study a filter circuit.

If now the 4 arm is a coil making @ = jLw and the b arm a coil
and condenser in series making

b=jlow +7Cw

then the lattice acts like a low pass filter, as may be seen from the
formula Z,* = ab, which becomes

. . 1
202 = 7Lw (]LO) + m)

in this case. The formula shows that it is a low pass filter, because
when w is below the resonance of L and C, then

1
(’Lw + wa)

is a negative reactance, making with the jLw outside the bracket
i X (—j) or 'Zy2 = (+°* real), which is a pass band. At higher
frequencies, namely above resonance, it is Z2 = j X 7, which is a
negative real or an attenuation band.

The filter acts like a half-series terminated simple low pass ladder
section. The coil L, in the 2 arm being made equal to the coil in the
b arm makes @ = b at an infinite frequency, giving infinite attenua-
tion there, which is correct. (See Fig. 43.)

It is possible by a mere change of coil size in the ¢ arm, making
b the bigger coil, to make a filter which will have the attenuation
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characteristics of a series-derived m-type ladder low pass filter also
half-series terminated. This also is shown in Fig. 43, and it will be
seen that at aninfinite frequency, when b becomesjLw, the barm does
not equal the jL,w of the a arm, so
there is not an infinite attenuation
there; but at a certain frequency
above the cut-off, which makes the
b arm look like an inductance equal
(o] to the coil in the @ arm, there is an
ﬁ e é infinite attenuation. This is correct
J1I 00 for an m-type ladder.
L The attenuation of the lattice,
Fic. 43. L, =L cives A Smee  depending as it does on tanh x, may
S“n°,’,‘b :m';f:; JEAN rj;é SIvES & be calculated from the graph of
' tanh x in Fig. 44. The x is in

népers, and as the formula glves 5 the value of x from the graph

must be doubled to give P in népers. Then a factor gives decibels,
for one néper is 8:686 db because log ¢ to base 10 is 0-4343 and db
is 20 log x.

Reverting to Fig. 36, it will be remembered that in its invention
the m-type ladder filter has the same impedance as the simple ladder

T
}

o =T

»

/

T TPy

F1G. 44. Tanu »

section if it is half-series terminated after being series-derived; so
the lattice equivalent has the same poor impedance characteristic
in the pass band as the simple ladder filter, namely a quadrant of a
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circle beginning with a value 4//% at low frequencies and falling to

0 at the cut-off, unless more comphcated arms are used as Cauer
does.

Equivalent Lattice and Ladder Formulas

It is possible to see what is the relation between a ladder and a
lattice circuit for these two have exactly the same properties if we
compare the cosh P formula of the ladder with the tanh 4P formula
of the lattice. For the ladder

coshP=l+2ib

but cosh P = 2(cosh2 g) -1
in hyperbolic trigonometry, so
1 4+ cosh P = 2 cosh? P—2+2b

P
2 __ — —_—
or cosh 2—l+lb

For .this, using
a

p P P
22 _ cinh? — — sohes . %
cosh 5 sinh 5= 1, we have sinh 3 =73

a -+ 4b

This is for a ladder. If now a lattice were made up with one arm
the same as the & in the ladder and the other arm equal to (& 4 4b),
i.e. a with four times b in series, then the new lattice would have the
same attenuation as the ladder.

The characteristic impedance of the lattice would, however, be
Va (a 4 4b), which is twice the unpedance of the ladder as it is

at
,/ab+
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If now the lattice has arms not & and & + 45, but 42 and }(a 4 45),
then it will have the attenuation and the impedance of the ladder,
as shown in Fig. 45.

Since, however, the lattice requires the & arm to contain the
elements of both arms of the ladder, it does not seem to be as cheap

a+4d a+4b

WW- O - —_—
a

(a) Equal in attenuation only.

(b) Equal in impedance also and fully equivalent.
F16. 45. LADDER AND LATTICE EQUIVALENTS

as the ladder. There is, however, something else to be said, and it is
important. There may be lattices, not derived from ladders, which
may be excellent filters and very economical, as in Fig. 46, but
which have no ladder equivalent.

Further, where the lattice calls for a coil in each of the 4 arms,

one coil will do the work of two if
¥ O wound with twice the inductance
. (not twice the turns).

This does not apply to condensers,
and so in itself does not go so far as
another circuit change. Thereis a
circuit equivalent of the lattice,
which, using a transformer only,
needs one ¢ arm and one b arm, not
two of each. This is a great saving in components.

With the equivalence of Fig. 45 one may make a lattice of any
ladder, and so get a lattice with a good impedance characteristic.

Fic. 46
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It will be appreciated that other networks than the lattice will
make a filter if suitable coils are put in, together with the right
condensers. One may take a circuit and, by finding the “open”
and “closed” impedance in terms of the separate arms with the far
end first open then closed, derive general formulas for the character-
istic impedance and for the attenuation constant in the form tanh
P = (an expression for the arms).

Once the formulas are derived using 4, b, etc., as pure resistances
for the arms, one may put any arrangement of coils and condensers
in each arm and write the § notation terms in the formula in place of
the pure resistances. Take, for example, the gate network in the
following table of general formulas.

TABLE 14
GENERAL FORMULAS

Circuit

Impedance

Propagation Constant

Ladder

T

Half-series ended :

Zy = \/z,z,,\/ 1+ 4%"

Double-shunt ended :

CoshP—l+—z—‘—

ab x db
z=of ETIEY)

— 2z
V7.2, *
Z, = ==t
1
Z,= Vab 4/5
Tanh }P = 4/7
Zo= [{aandbin parallel)] Tanh P/y =
times (d and b /a and b in par.
in parallel) d and b in par.
which is
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If a coil is put in for 4, a condenser for b, and a coil and condenser
in series for d, the gate filter becomes a low-and-band-pass filter.
If now the sizes of coils and condensers are chosen so that the band
has no width or else the attenuation band betwecn the low pass and
band pass region is zero, then a good low pass filter results and
there are two alternative sets of sizes for the components, depending
on which method of making the low-and-band-pass into a low pass
filter was used.

The network, however, can be replaced by a lattice. Then the
complicated lattice can be replaced by a simplification for a lattice
network which saves components. This strongly suggests that the
way to tackle filter design is to study many different networks.
Without, however, going any further into filter design, one may
employ the ladder formulas to build cxcellent filters, making use
of the m-derived networks, and concentrating on those which give
the best saving of coils if one is using expensive dust core coils.*

The Criterion for a Pass Band in Lattice Filters

If the arms of the lattice @ and b are of the same sign in the
notation there is attenuation. If they differ in sign, that shows a
pass band.

Since a complicated arm may change sign more than once as the
frequency is raised from 0 to infinity there may be more than one
pass band, but as practical circuits usually require one pass band
and not more, those circuits treated in textbooks are arranged to
have one pass band only. This is done by making the intermediate
attenuation bands of zero width, i.e. knocking the pass bands into
one big one, or by making some of the pass bands of zero width, or
by a combination of the two. The formulas conceal this.

This is a suitable juncture for considering two matters that arise
in practice. One is the effect of resistance losses, and the other is
the effect of the reflections at the end of the filter when it is put
into service.

* Dust core coils are now used almost always, except when intermodulation on a
carrier system calls for air cores.



CHAPTER 1V
LOSSES IN COMPONENTS

Effect of Losses in Filters

WHERE it is desired to take into account losses in coils and condensers
in filter circuits, the impedance of a coil is no longer jLw but » +
jLw. This merely complicates the formulas for propagation constant
and characteristic impedance. Take the ‘“good impedance” gate
low pass filter for which

J_C_zﬁ( 7 __L)(_L_l___l__>
Tanh“I—; _ oL\ Cw)\G GGt
j

; J _ 1
Lo — Cio Co

as an example of a formula for P now complicated by resistance in
the coil. Suppose now the coil L, has a resistance 7,, and L, has a
resistance 7,; and it must be remembered that, to be exact, these
r; and 7, should be measured at every frequency for which the final
result is wanted. As a rule, losses in condensers can be ignored if
they are good mica ones. Then

7jCow . 7 jLio +n 1 )
Tanh? P r+jlow (]sz the Czw)( jCw — CCyw?
5= .

For example, at 800 c/é. let
L, = 0-1908 mH + 72
L, = 95-4 mH + 3-59
C, = C; = 0-133uF

These complex components are now put in the above formula and
the result worked out as follows. -
C, and C; have an impedance — 1505 7, while the coil L, is 7 +
954 j and L, is 3-5 4 477 5.
73
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Tanpa B — 135 + 477 — 1505 5) (7 + 954 — 1505 7) — 15052
A g T T (= 1505/) (35 + 477) (7 + 954 — 30107)
_ _(1—5515) 511 V89°17
T B85+ 47752 2+ 477 B°%%

Tanh? i 0-578v'178°55'

-f =
Tanh IEJ = 076V 89° 27’
Here gis evidently nearly all phase change g, which is right for
a pass band. B = tan-1 0-76 = 37{°.

2
Actually it is 180° — 374° because of the minus sign.

tanh—g- + 7 tan E

Tanh £2‘3 = y, 23
1 4 j tanh 7 tan-i
B. . . A4,
Because tanh g is nearly 90°, i.e. unreal, in the above, then (as 7 s

small) the value of tan 4 is the real part of tanh 1—), i.e.0-76vV89° 27

nearly. 2
Or 076 + oo X oy = 0006 16
+ 50 X 57 = 0006 neper
making P = 0-012 néper or 0-1 db

The angle part is 180° — 743° = 1054°. -

The effect of losses in the filter is therefore very small if the coils
are good ones with low losses, i.e. small resistance. It has only
produced one-tenth of a decibel in this case.

Dealing with Vectors Nearly o° or 90° or 180°

Suppose a quantity is nearly on one of the four quarter lines of
the circle such as 0-48 /89° and it is desired to add another vector
toit. The deviation of /89° from /90° may represent the losses in the
circuit, and when the 0-48 /89° is turned to (¢ + 7b) it is important
to preserve g, in this case the “real” portion of @ + jb.
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The unreal portion is 0-48, as the 1° deviation does not affect
the length more than one part in 7000. The real portion is 0-48 sin 1°.
Here it is well to remember that sin (small angle) = (angle in radians)
and one radian = 57#°. Then sin 1° = 5iE = approx. 0-017, so
0-48 x 0-017 = 0-00816. The vector is now 0-00816 + 0-48 ;.

This is of value in dealing with circuits where losses in coils
affect the overall characteristics of the circuit, and where it is desired
to find how and to what extent the losses do affect matters.

In filter circuits the losses only affect the performance appreciably
at the resonances; but may, if large, cause a few decibels loss as the

7“

a
600 soo®

Fic. 47

cut-off frequency is approached in the case of a filter of several
sections.

In the example worked out above, the main loss is a few ohms,
namely 3-59 on each side of the line as it were joining the two end
6009 resistances (see Fig. 47). The effect of this is to reduce the cur-

. .1 1 . .
rent in the ratio 1200 to 1207 neglecting the lattice losses, so the

result is a current ratio %?—.g, which is of the right order as worked

out in full to be 0-1 db.

The Use of Charts
Seeing that the attenuation is given in the form cosh P or tanh

L what is wanted is a means of finding P as a complex number

when the right-hand side, which is the value of cosh P or tanh g,
has been worked out from the circuit components.

In other words, given & and b in the equation cosh (4 + jB) =
@ + b, it is required to find 4 and B. Expanding cosh (4 + jB)
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gives cosh 4 cos B + j sinh 4 sin B = a + jb. Reals and unreals
may now be equated.
Cosh A cos B =a
Sinh4 sinB=1b%
The trouble is the two pairs of variables. If, however, B is

assumed fixed for a time, i.e. given a particular value, a curve may
be drawn

a
cos B
b
sin B
Then, as cosh 24 — sinh 24 = 1 always,
a? b2
o* B sn?B — |

Cosh 4 =

Sinh 4 =

which is like
2 2
2P
12 m2
This is a hyperbola independent of 4 because 4 has been eliminated
In other words, fix B and the values of 4 and b for various values
of A lie on a hyperbola.
Similarly, if A is fixed the values of @ and b as B is varied lie
on an ellipse. This is the principle of Kennelly’s charts, which
contain instructions for use.

Circuit Components

It is difficult to make a good condenser, but a good mica condenser
has a negligible loss, the main loss being then in the coil. Filter coils
are usually wound on toroids of compressed iron dust and have a
value of

Reactance

Redistance

of the order of 100 as against about 4 for stampings.

General Remarks on Losses

It is necessary to take particular forml\ﬂas with particular arrange-
ments of coils and condensers to work out the effect of losses in the
components. The general formula for a lattice

qa

Tanh }P = J s
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is, naturally, no use by itself. One needs to know coils and condensers
are in use in the @ and b arms. Then, the formula for propagation
constant must be worked out for a number of different frequencies
throughout the pass band and the attenuation band.

In the pass band there is usually little loss introduced into the
propagation constant except just near the cut-off, as a result of
losses in the components. In other words, the pure phase change,
which is the B in the unreal jB (which is what P reduces to in the
pass band) without coil losses becomes P = A + jB where A
is a slight attenuation in népers. Good coils are used to minimize

’
PRd
-

F16. 48. THE EFrict oF RESISTANCE R 1S TO PREVENT THE SHUNT ARM S
AT RESONANCE FROM FORMING A DEAD SHORT CIRCUIT ACROSS THE LINE AND
sO0 CAUSING INFINITE ATTENUATION, WHICH 1S THE CASE WITH No Lossgs

the value of 4. In the attenuation band the chief effect is at fre-
quencies of infinite attenuation where the curve of attenuation no
longer rises to infinity, but merely rises to a finite peak as shown
in Fig. 48. (One néper is a voltage reduction of ¢ to 1, i.e. 2-71828,
and two népers the square of this, and so on.)

In what has gonc before, the calculated attenuations are those
which would be observed if the filter section had been used in an
infinite chain of similar filter sections, or at least in a chain of such
sections that no reflections took place.

The calculated values of characteristic impedance, too, are also
those values which would be measured at the beginning of an infi-
nitely long chain of sections all similar, or, if not similar, all built
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to have no reflections between sections (as the m-type sections are
free from reflections between sections even when the sections are not
all the same).

It may be objected, then, why use formulas for Z, (the character-
istic impedance) and tanh P or cosh P when P and Z, do not refer
to a practical case, i.e. to a case of just a few sections placed between
apparatus which will not match the impedance of the filter when
it is infinitely long? There are three good answers to this objection.
The first is that reflections make the problem so complicated as to
appear almost impossible of solution with the reflections in. Sec-
ondly, the calculated attenuations, i.e. values of P found on the
assumption of an infinite chain, are very nearly equal to those found
in practice in the pass band, and usually only a few decibels different
in the attenuation band ; so there is no need to jump out of the frying
pan into the fire and use the more exact formulas for the end reflec-
tions in studying each type of filter circuit for the purpose of learning
how each one behaves.

Lastly, the best way to develop an exact formula for the current
at the far end of a filter in a circuit is to take the infinite filter first and
calculate P and Z,, then use that information together with the
transmission line formulas that Heaviside developed for telephone and
telegraph problems. These are to be found in Hill's Transmission,
and in most books of a similar nature.

The propagation constant P and the characteristic impedance
Z, of the filter are the “bricks” to use in building the house. The
problem, then, is somewhat as follows: A certain circuit has to
have a filter put in it. It must attenuate certain frequencies by a
certain amount. If a ladder filter is decided on, one looks at the
attenuation curve for one section of the ladder. It may give, say,
20 db loss one octave above the cut-off, but one may want 50 db
at that frequency.

In that case about three sections are indicated as 3 x 20 = 60.
The difficulty now is, how will the three sections behave when taken
out of an infinite filter and put between resistance ends?

In the top portion of Fig. 41, page 65, an infinitely long filter is
shown. In the lower portion of the same illustration three sections
are taken out to be put in a circuit. The left-hand side may be an
oscillator, the right a loaded cable.

The propagation constant in Fig. 48 and those given by all the
previous formulas refer to the case of an infinite chain of sections,
as in Fig. 41, by the nature and definition of a propagation constant,
which is “the natural logarithm of the current and the voltage ratio
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. .. 1 .
the 6009 ends without the filter in, i.e. o000 Bives the loss as a
current ratio, which may be turned into decibels.

This is an easy formula to handle; for cosh P is often calculated
in the normal course of events, and its value is available to go into
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F1G6. 50. INSERTION Loss DIAGRAM FOR THE PaAss Banp

the formula straightaway. Also sinh P is easily found from cosh P,
As an example, take a single section of the gate low pass filter.
good impedance type. Its impedance and phase change in the pass
band, neglecting coil losses, are as shown on page 84.
The loss may be found from a special chart.
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The Use of the Chart (Fig. 50)

The chart is in two parts as the portion for an impedance mis-
match of 1: 10, i.e. 0-1 ratio, had to be drawn to a reduced scale.
Cos B + j sin B is a unit vector whose end lies on the circle of unit
radius. If, now, one increases the j sin B in the ratio

¢ + 3
li—

the result is another vector whose end lies on an ellipse. (It is the
same argument as that used in making sun-dials.) So use the ellipse
marked for the desired impedance mismatch, but enter the chart on
the circle at that radius shown by the phase angle and move vertically
up to the desired ellipse. When on the circle, one has unity radius
showing zero loss whatever the phase change, but when moving up
to an ellipse showing mismatch also, one is going farther away from
the centre. One moves vertically upwards, but having got to the
ellipse the new radsus tells the loss expressed as a fraction.

The following figures are calculated for the low pass gate filter
and can be used with the chart to find what insertion losses may be
expected when such a filteris put between two resistance terminations.

f Z,

£ Tinc Res B Phase Shift per Section B°
0 .

0 1 0
06 0-97 722
08 0-88 106}
09 0714 130
1-0 0 180°

The method of using this information is first to turn to the table

and find
—a for values of =~. Thus—
2 fo
fo $ + "
L $
s 2
0-6 1 nearly
0-8 1 nearly
09 1-07
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The only value for loss is 0-9 where we now evaluate
Vcos? 130° + 1072 sin? 130°
or else use the chart of ellipses for losses in the pass band.
(— 0-62)% + 1-14 (0-766)*

= (384 4 1-14 x 0-586
= (-384 + 0-668
= 1-052
V1052 = 1-03
which is about 0-25 db

The measured results show more loss than this. That probably

means there were harmonics on the oscillator wave of a few per cent
which the filter cuts off.

To use the chart, find the spot on the unit circle for the phase
angle of the network. Now go vertically up to touch the proper
ellipse for the impedance ratio. These ratios are numbered 0-1,

14

B
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F1c. 51. Tue TotrAL Loss DUE TO THE INSERTION OF THE FILTER IN THE
. Circuit (Pass BAND)
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0-2, 0-3, 0-4, 0-5, 06, and 0-7. The point on the ellipse gives the end
of the vector of current expressed as a ratio and also its phase angle.

EXAMPLE

A phase angle in the network of 76° and a mismatch of 2 : 1 gives 1-24
current ratio and about 80° phase difference between sent e.m.f. and received
current. The chart applies only to the pass band. Figs. 51 and 52, however,
take into account both the pass and attenuation bands; and from them it
will be seen that the theorem given below is true.

ol lJu N
\\

5 \\4“

\ &,
R =

A\ ATTENUATION [BAND
3 \ P.Mjn)r\
2 \\'5
\ ~L

\ b \\\.\_

NINL

= R R b

° o 2 -3 -4 X2 6 -7 8 9

Fi1G. 52. THE TorAL Loss DUER TO THE INSERTION OF THE FILTER IN THE
CIRCUIT (ATTENUATION BAND)

Theorem on the Effect of Terminal Reflections -

When a filter is put into a circuit working between two resist-
ances, reflections arise. These in general are adverse. They reduce
the loss in the attenuation band and cause an unwanted loss in the
pass band.

In the pass band where the filter itself has an internal phase
change and where it matches the line more or less exactly the follow-
ing theorem holds.

“Phase change in a filter in the pass band causes no loss if the
impedance of the filter matches that of the terminations; and lack
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of matching of these impedances also causes no loss, if there is no
internal phase change. Phase change together with lack of matching
causes loss.”

The curves have been plotted from the telegraph equation.

It was soon found that the lattice filter—the easy ones at least—
had the same attenuation curve and characteristic impedances as
certain ladder filters, and this led to the idea that certain circuits
looking very different may be very much or, rather, exactly alike
in frequency performance.

7—(T.a73)



CHAPTER V
THE EQUIVALENCE OF NETWORKS

CERTAIN four-terminal networks may be made which are exact
equivalents of other four-terminal networks. Given a ladder section,
for instance, it is possible to construct a lattice which shall have the
same Z, and the same propagation constant. The two are thus equal
as four-terminal networks, though one will usually be a simpler
circuit than the other, and this is the one to be used in building up
a particular circuit.

Ladder and Lattice Networks
It has been shown that the ladder network is equivalent to a

lattice under the conditions shown in Fig. 53. Here the a’s and b’s
—WW 2
% 5 —
2b,
2

Fi1G. 53. LADDER AND LATTICE EQUIVALENTS

have the same meaning in both cases. If a is a one henry coil, a4 is
a half henry coil. If @ is a 1 uF condenser, }a, which must be half
the impedance of a, is a 2 uF condenser. If bis a 0-1 uF condenser
then 2b is a 0-05 uF condenser, and so on, as stated in Theorem IV
of Chapter IX.

It will be seen that it is always possible, given a ladder network
with its coils and condensers, to make a lattice equal in all respects,
because the one lattice arm @2 is a copy of part of the ladder and the
other lattice arm, being af2 + 2b, is two impedances in series. The
lattice may, however, be wasteful, i.e. have more components than
a ladder would. The ladder-lattice equivalent is found from Z, for
the ladder being V'Z,Z, + 1 Z,?, but Vab for the lattice. These need

to be considered together with the attenuations to prove the above
rules for making lattices from ladders.

88
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Starting with a particular lattice, with its special coils and cone
densers, it is not always possible to make a ladder equivalent because
the shunt arm of the ladder is to be found by subtracting the two

L L

T

Fic. 55

2C o248

Fi1G. 54

lattice arms. This may not be easy if they are complicated circuits
with coils and condensers. In certain cases the result is, however,
very simple indeed as may be seen in the following example. Suppose
the lattice is as shown in Fig. 54. L

Subtract the two arms and divide 00000 o
by 2 to find 4. Subtraction gives 0-1 T T ?

#F and division of impedance by 2 C

gives 02 uF. The ladder is then as
shown in Fig. 55, which is simpler
than the lattice. The reader may
complain that the wrong arms have L
been subtracted here, but the lattice L

may be quite well re-drawn as Fie. 56

shown in Fig. 56. A phase reversal is all that has happened, the
crossing over of O and D.

The Lattice and the Gate Network

The gate is shown by the formulas for Z, and tanh P to be equiva-
lent to the lattice which has ““a and b in parallel” for one arm and
“d and b in parallel” for the other, as shown in Fig. 57.

From this it will be seen that the gate is obviously superior to
the lattice equivalent for the simpler circuits at least, because the
b arm is used twice in the gate but four times in the lattice. Last
of all, it may be shown that the gate network is equal to two ladder
networks.

The Gate and the Ladder

By using the first equivalence for the lattice portion of the gate,
and then adding the shunt & arms to the ends of the ladder, a ladder
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equivalent to the gate may be made. This equivalent network is
shown in Fig. 58.

Here a, d, and b are the arms of the gate. To form
d—a
2

it is necessary to subtract one arm of the gate from the other lattice
one. This may leave a ‘‘negative inductance” in the equivalent

Fi16. 57. THE GATE EQUIVALENT TO A LATTICE

ladder which could be realized by mutual inductance between the
two a a coils of this ladder equivalent: but mutual inductance is
not too easy to handle in practice, with the necessary inductance of
each coil as well.

The sketch shows in a general way that the gate network is equal
to two ladder sections, and is cheaper, needing fewer coils as a rule.

Fi16. 58. THE LADDER EQUIVALENT TO THE GATE

It can be shown, too, that a ladder of several sections can be replaced
by a single sestion having complicated arms. The outcome of this is
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that filters can be designed in many ways. The simple ladder net-
work has the merit of simplicity, but the two terminations trouble
beginners.  The gate network has no such complication and is
superior in performance.

There is another network which may be equivalent to a lattice
and which sometimes saves components. In any case, it is useful

F1G. 59. BRIDGED “T’ NETWORK

when one terminal of the input and one terminal of the output are
earthed, as shown in Fig. §9. It is called the bridged “T” network.
An example of this network is given later (see Fig. 63). Fig. §9
shows the way the extra resistance is added, forming a mesh.

Bridged “ T "’ Networks

This network has a delta or mesh of impedance in it. If the mesh
be replaced by a star or ““T,” then the whole thing becomes a simple
“T" or ladder. In order to design the bridged “T " from the ladder,

A

R L——TR' v A

S s'

Fi1G. 60. STAR AND MBSH NETWORKS

a theorem is needed which shows the relation between a star and a
mesh. The requisite theorem is the ‘star mesh theorem.” (See Figs.
60 and 61 for the solution to Fig. 59.)

The corresponding lattice to a ladder whose arms are 4 and b is
a lattice whose arms are }4 and (§4 + 2b). The ladder which is equal
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to a lattice having arms a and b is then one with full series impe-
dance 24 and shunt impedance

b—a
2

S s BN -t B e IO
T o3l

18

F1G. 61. THE STAR-MESH SOLUTION

The 24 full series impedance makes each arm of the equivalent “T”
of value 4. It may be impossible to construct

b—a
2

but it is possible to make a bridged “T” equivalent of the lattice
network shown in Fig. 62, and this will be seen as follows.

AL
' ':2" The Star Mesh Theorem
- SRR - B < The equivalence of the networks
B 8 in Fig. 60 depends on certain rela-
N tions between the arms of one, which
_ A _ we suppose may be anything, and
- "2 7 -—~  the arms of the other. These rela-

8 tions are found by equating the
Fic. 62. Tae Larrice Equivatenr  Tesistance across the two terminals

TO THE STAR AND MESH RS to that across RS Then ST
must be equated to S'7? and RT to R'T*. In symbols this is
B(A+C
Z_Tg.-_B—-i———% =x-+z. . . . (1)
AB+C
I$§¢%=x+y )

C(A+ B
Z--(':_B-;i———.-l-)c=y+z. . . . (3)
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Subtracting (1) from (2) gives

. AC—BC
Y=I=FITE+C
Using (3) gives
AC
Y=4a4F¥B+C
Similarly
BC AB

t=gxBro™*=g7B1C

If now ¥ = y and B = C, which is the case for building a ladder
from a bridged “T,”

A
which is 44 in parallel with B. And
B B + }4B
*=4d32B~ 4+r2B

) A
_aB__ o 28
A + 2B :;-+B

The portion on the righlt is minus half an impedance, which is
(34 and B in parallel), so that the circuits shown in Fig. 61 are

ﬂﬂw&ﬂ\

T——I '_—70 c V.O.m’:EQQQ-QUQ

F1G. 63. THE LATTICE EQUIVALENT TO A USEFUL BRILGED ‘T’ PHASE
CORRECTOR NETWORK

equivalent. The value of this lies in the fact that the lattice equiv-
alent of the ladder in Fig. 60 has simple positive arms, as shown in
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Fig. 62, because the series arm of the “T " added to twice the shunt
arm makes two negative and positive impedances add up to zero.
The lattice in Fig. 62 is not, however, a constant resistance network,
because one arm is not quite the inverse of the other.

If, however, }4 is added to the shunt arm of the ladder and
bridged “T” in Fig. 61, these become equal to the lattice shown in

M

L L, LM LM
= -M
-M
L, =M =M
— M

Fi1G. 64. A Userur EQUIVALENT CIRCUIT FOR THE CASE OF MuUTUAL
INDucTANCE BETWEEN Two ColLs

Fig. 63, which is a constant resistance network if A4 is a coil and B
a condenser.

This makes a very simple bridged “T” equivalent to a useful
but fairly complex lattice. There are certain simple bridged “T”
filters which have a very sharp cut-off.

The Use of Mutual Inductance in Filter Design

Filters with mutual inductance are most easily treated by looking
at them as equivalent circuits to certain others which contain no
mutual inductance. ’

The two pairs of equivalences in Fig. 64 are easily proved. When
two coils of inductance L, and L, are connected in series aiding each
other, M being the mutual inductance between them, the inductance
in series is L, + Ly 4+ 2M. In opposition it is L; + Ly — 2M.
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The essential thing is that in Fig. 64 the inductance measured
for each pair of terminals in the one drawing must equal that mea-
sured across the two corresponding terminals in the other or equiva-
lent sketch.

Mutual Inductance in Lattices

When four inductances in two pairs of equal windings for a
lattice are wound on the same core, there are six mutual inductances.
These are all allowed for, if the inductance round one loop 4,4,

Fi1G. 65. THE MuTUAL INDUCTANCE OF LATTICES

Loop inductance of 4,4, windings = L, henrys
Loop induct of Ay, windings = L, henrys

is called ““ L, loop,” and if the inductance round the other loop 434,
is called ““Lg loop,” and if M is defined as the mutual inductance
between the loop of inductance L, and the loop of inductance L,.
The sketch Fig. 65 refers to this case.

The equivalents mentioned above are very useful in designing
networks. The last but one, i.e. Fig. 64, enables ladder networks
with mutual inductance to be built up to give the effect of negative
inductance. The one in Fig. 63 enables a useful bridged “T” net-
work to be built up for phase shifting.

Before going farther, it might be as well to mention the tuned
transformer so much used in radio engineering in the design of
“superhets.” It can be shown that the circuit is equivalent to a
well-known lattice band pass filter. This is done as follows.

The Tuned Transformer Band Pass Filter

In superheterodyne receivers, the intermediate frequency filter
is usually a transformer with small condensers across primary and
secondary as shown in Fig. 66 (a).
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The advantages are that it is quite a simple arrangement and
that it keeps the H.T. from the plate of the previous valve off the
grid of the next one, and with so little apparatus makes a band pass
v filter. In its function as a

Sy band pass filter the circuit
< _L may show one peak or two
=L c peaks on the voltage/fre-
: T @ dquency graph of its per-
8 formance, depending on

the coupling of the coils,
the % that is, where

AR M
I l k= . When the
c M c VL,L,
I' coils are equal on the prim-
L ) ary and secondary sides

then & = % because L,L,

M

becomes L2, and —

| M VI3

c Ly W ® . becomes 70 % has a
Vow T © simple form.

(e]
|._.‘
-

0 wo,b,o,
g)

>

0000 - - This is a difficult circuit
L+ to analyse and it is not
c easy to show that there is
(N a filtering action. It has

been worked out by long
methods using the j nota-
tion, but the present
material is written to show
that it is a filter in a way
that uses only a few simple
circuit transformations.
Thiscircuit and thegrid,
leak detector are the two
difficult spots in radio
theory. All the rest, though
Fro. 66, Lyrrice Equivanext o8 & T it mmay be long, consists of
simple theory (such as V
= jLwl for a coil and I = jVCw for a condenser) used over and over
again with Ohm’s Law. The mutual inductance makes this circuit
hard to understand.
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In filter design a mutual inductance is often replaced by the
circuit illustrated in Fig. 66 (b). The circuit change shown consists
of earthing or commoning the points 4 and B. The condensers are
left in because they are in the original tuned transformer circuit.
To show that Fig. 66 (b) with its three separate coils (L — M), M and
(L — M) forming a “T" is a true equivalent of Fig. 66 () (where the
coils L,L, are coupled magnetically with mutual inductance M)
notice that if the condensers are removed, measurements on ter-
minals X and 4 give L henrys in Fig. 66 (¢) and L — M + M, which
isalso L henrys, in Fig. 63 (b). Similarly for terminals Y and B the
circuits are truly equivalent. Suppose also the tuning condensers
are equal.

The next step is to form the equivalent lattice to the “T.” Given
a “T,” one makes an equivalent lattice by taking one arm equal
to half the series arm of the “T,” which is in this case (L — M), and
taking for the other arm the (L — M) with double the shunted M or
(L— M+ 2M) giving L + M. The lattice is now as shown in
Fig. 66 (c).

It is a general rule in four-terminal networks to consider the
impedances at one end with the far end closed and also open. Two
tests are enough.

It is also known that Fig. 66 (c) is equivalent to Fig. 66 (d). A
gate may always be replaced by a lattice in that way, by shunting
the end impedance across all four lattice arms.

The result is a lattice which is recognized as a band pass filter.
The arm (L + M) with C across resonates at a lower frequency than
the arm (L — M) with C across, simply because (L + M) is bigger
than (L — M) henrys.

Further, at low frequencies the condensers do not count; and
there will be little voltage built up across terminals Y and B with
a given current through terminals 4 and X, which current usually
comes from a valve of the pentode type, and is constant whatever
the impedance in the plate circuit.

At high frequencies the coils will admit little current, and the
condensers in Fig. 66 (d) give a nearly perfect Wheatstone balance,
because the four C’s in this diagram, which is an exact equivalent
of Fig. 66 (a), are all equal.

The condition for a pass band in Fig. 66 (d) is that one arm,
which in this case is one tuned circuit, must behave like a coil (we
must therefore be below the resonant frequency of that arm) since
a parallel coil and condenser admits a “ coil current ”’ below resonance.
The other circuit must behave like a condenser (which it will do if
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we are working at a frequency above the resonant frequency of that
arm). The condition is, then, that we must work at a frequency
between the resonant frequencies of the arms (L + M)C and
(L — M)C or between

1 1
VI T V- e
Since M = Lk we have
1 1
Vicisn 4= Vica—n

Call w, the frequency of resonance of L and C, i.e. when M =0
or when the coupling in the original transformer is nil. Then

1l a1 g% 1
“= VI ™ e " ViTE e Visk

Now use wavelengths as reciprocals of frequencies in the ratios
above, and

(01=

b VTFRande— viTH

A A
Then
2
i’;,—l+k, t,— 1—%
So adding, . .
R

If 4, and 4, are nearly equal to each other and so close to 4, it
follows that 4,4, =

Since 72432 + }02).13 = 2,% 2;? from multiplying the line before,
then 4.2 4+ 4,2 = 242, or A2 is as much above 4? as 4,2 is below 4,
since they add up to 242 This is for a narrow band, which is the
practical case.

It is established, then, that it is a band pass filter, and the two
cut-off frequencies are established also, and a useful simple approxi-
mation is also found for the As or wavelengths in the practical case
of a narrow band.

When the primary is fed from a high impedance valve and a
frequency run is taken, measuring the secondary open circuit voltage,
a curious thing emerges. With biggish couplings, and a good space
between 4, and 4,, i.e. a band width not too narrow, as resonance of
either the (L + M)C or the (L — M)C arm is approached the output
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voltage rises. This is fairly obvious, because the resonance of one
pair of arms of the lattice is equivalent to open circuiting two oppo-
site arms of a bridge, and so unbalancing the bridge in a way leading
to a high open circuit voltage across the output or “detector”
terminals.

Last of all, in the case of a fairly wide band, the circuits of all
four arms are well off resonance, and so well away from their maxi-
mum impedances when we are in the middle of the pass band. This
indicates a dip in the response curve in the middle of the band (with
a wide band) which is absent with a narrow band when a looser
coupling is used. The advantages of two ““peaks” are well known
in the design of superheterodyne receivers.



CHAPTER VI
PHASE SHIFT NETWORKS

The Use of Phase Shifting Netwc‘n'ks

Four-terminal networks containing reactances which are, in general,
filters shift the phases of applied currents in the pass bands. In those
cases where there is no attenuation at any frequency the network
merely causes a shift of phase whatever the frequency, and is then
called a phase shift network. Such networks are useful for correcting
the phase shift caused by transmission lines and other apparatus.

They are made with a characteristic impedance a constant at
all frequencies, and thus introduce no reflection losses when put in
series with other resistance apparatus. If, then, only one end is
terminated correctly, this is enough to secure no extra reflections
and so the introduction of the network merely adds the unreal B
or phase shift to the circuit.

The reason for this is as follows. Phase shift alone is not neces-
sarily bad. Where the phase shiftis proportionaltofrequency through-
out the frequency range in use and where the graph of B against o
is a straight line through the origin, there is a delay of the signal,
caused by the phase shift, but there is no distortion. Phase shift is
bad when the angle of phase shift B is not proportional to w.

Itis g—g which matters and which should be constant. In the low

pass filter, Fig. 23, it will be seen that B in the pass band has a gen-
eral tendency to a straight line through the origin. For this reason
such filters pass signals with little distortion provided the frequencies
in the signals are mostly below the cut-off of the filter.

Seeing, however, that there is a steeper piece of the B —  curve
near the cut-off, and seeing that lines with loading coils act as low

. . . dB
pass filters, such lines can cause distortion due to the change of T

in the line with change of frequency near the cut-off frequency.

The result of this in transmitting pictures is that a lack of defini-
tion is caused. This may be improved by levelling up the line as
regards -f—ig In other words, at those frequencies for which the line

has a low value of % a network is designed to have a high %?, The

100
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network is then put in series with the line and it is found that im-

provement results by making % more nearly uniform.

Design of Phase Networks

The simplest lattice phase shift network (see Fig. 67) is one in
which the series arms are each a coil of inductance L and the cross

L
R-E midoea b

F1G. 67. SiMPLE LATTICE PHASE SHIFT NETWORK

arms each a condenser of value C, with resistances negligible. The

lattice formulas are now used. Here ¢ = jLw and b = Ca é in the

general lattice formulas. As Z, = V/ab the characteristic impedance

. L - . .
is J & The j’s going out shows that it is a resistance, the w’s going

out shows it is a resistance which is constant with frequency. This
may be called R, and will match a line of R ohms. The phase change

is given by tanh }P = A/ %, and thisis -‘;—_5. Since V/abis a resistance

a

R, this becomes tanh }P = a_jle or j tan §B° —]—L— or tan

R R R
Lw
{B = T
EXAMPLE

Suppose the network is to match a line of 600 ohms and is to give a shift

of 90° at 800~. Then 3 = 45° at 800~ and tan §B = 1 = 22X 200 frop,
. 600

which L = 5000 — 120 mH. Also as é=600. the value of C is 36:)2800
= 0-333 uF for each cross arm. '
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The phase shift produced by this network when terminated by
6009 is given by Table 16 below. The results are shown on'the graph,
Fig. 68.

o

s

150

100

50

2000 4000 6000 8000 C/s
F1G. 68. GRAPH OF SIMPLE LATTICE PHASE NETWORK

TABLE 16

SIMPLE LATTICE PHASE SHIFT NETWORK

Lo B B o

w = = tan 3 3 B

0 0 0 0
100 0-125 7° 7 14° 14’
200 0-25 14° 3 28° 6’

400 0-5 27° 54°
600 0-75 36° 54’ 73° 48’

800 1-0 45° 90°
1000 1-25 51° 21/ 102° 42’
1200 1-5 56° 21 112° 427
1500 1-875 681° 57 123° 54/
2000 25 68° 12° 136° 24’
3000 375 75° 4/ 150° 8’
4000 5 78° 42’ 157° 24’
6000 75 82° 12/ 164° 24’
8000 10 84° 18’ 168° 36’

oc o 90° 180°

It will be seen that the steepness %g is first fairly constant, then

falling off, just what is wanted to offset the changes in %Bi for the
line. e

_Simple Lattice Phase Shift Network :

In the case of the lattice phase corrector the lattice b arms mus
be inverse impedances with regard to the straight or a arms.



PHASE SHIFT NETWORKS 103

As described in The orem VII (Chapter IX); the way to do this is
to replace each coil of inductance L in the & arm by a condenser C

such that R = / é in the b arm, and each condenser C ‘in the @ arm

’

by a coil L’ in the b arm such that R = %— The resistance R is

that for which the network is designed, i.e. the resistance to which
it should be connected. In this, C is in farads as usual, L in henrys.

Where two components are in series
in the a arm, the inverse components
must be in parallel in the b arm. A par-
allel arrangement in the ¢ arm gives a
series arrangement in the b arm.

This is shown in Fig. 69. It so
happens, however, that this network
has a very simple bridged “T” form.
The relation between the bridged “T"”
and the lattice will best be made clear
by an example. It may be said that
the inversion principle can be used, .
however complicated the @ and b arms Fg: 89 A Mor Courricatzn
of the lattice may be.

ExaAMPLE

Suppose, then, a lattice network is designed to reverse the phase at

800 c/s and for a 6002 line. Then -;- = 22V LC because at the resonance of
: 0

L and C the current reverses and é = R, since the one arm is an inverse
impedance to the other.
R

Multiplying, L= —27f(.:
1

= 2aRf,

In this example, L = 120mH, C = 0-33uF.

C

Because of the simplicity of the lattice network this is the circuit
to use in making calculations. The calculation is

8—(T. 271)
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The parallel arm is

10-120
0-33 x 10~¢
- 710°
j0-0120 — 5aam
Then as R2 = 360,000
tan B - R2 600
2= 10° = 7108
R (633—60 - 0’120)) 0—3%' i 0'12(0

(]
When o is small (-)l:%w—- is very large, and B is small. However
iB-becomes 90° and B becomes 180° at resonance, i.e. at 800 c/s.

The phase now becomes negative and finishes at very high fre-
quency a small negative angle, i.e. a slight lead. The current must

1502

4
/
!

&

10,000 2ﬁ‘ 30400 <
=

PHASE CHANQGE

]

-

/

Fi1G. 70. PERFORMANCE OF BRIDGED ‘T’ PrAseE CORRECTOR CIRCUIT

lead at high frequency because it passes through the condenser in
the parallel combination of coil and condenser. The arithmetic is as
shown in Table 17.
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TaABLE 17
MORE COMPLICATED PHASE NETWORK
1 120 | sam 7 y
[/}] Aaa_. — U same
0-33w (tan }B) (tables) (double $B)
500 6000 — 60 + 0-101 5° 45’ 11° 80/
1,000 3000 — 120 + 0-208 11° 45’ 23° 30’
2,000 1500 — 240 + 0476 25° 30’ 51°
3,000 1000 — 360 + 0-936 43° 15° 86° 30’
4,000 750 — 480 + 2:22 65° 36’ 131° 12/
5,000 600 — 600 o 90° 180°
6,000 500 — 720 — 273 — 69° 54/ — 139° 48’
7,000 429 — 840 — 146 — 55° 36’ — 111° 12’
8,000 375 — 960 — 102 — 45° 36’ — 91° 12’
9,000 333 — 1080 — 0-803 — 38° 45/ — 77° 30’
10,000 330 — 1200 — 0-667 — 33° 30’ — 87°
15,000 200 — 1800 — 0-375 — 20° 30’ — 41°
20,000 150 — 2400 — 0-235 — 13° 20 — 26° 40’
40,000 75 — 4800 — 0-126 — 7° 10/ — 14° 20’

(See Fig. 70 for graphical results of this lattice.)

In making the bridged “T” network to be equivalent to this
lattice the 0-120 henry coil is the B of Fig. 60 and goes straight into
the “T.” The 0-33 uF condenser on the other hand is g and the
“T” circuit needs a shunt component — 1:, which is a condenser 0-67uF,

and a bridging impedance 4, which is a condenser 0-167 uF. The
actual bridged “T” i8 then as shown in Fig. 71.

. -i67uF
L=-I2H

0000 ’ Bl
QQ o

1204

N
8
0
olo

C-'SSPF
€\ *,° e7uf.

(8 Le-i2H
“\ r—| —

Ll‘l2l'l

F16. 71. EXAMPLE OF A USEFUL BRIDGED “T’ PHASE CORRECTOR CIRCUIT
AND THE EQUIVALENT LATTICE

”u

- .__:—: >
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 There is an infinite variety of such networks possible, but they
can be designed for any scale of frequency by altering L and C,
making both larger or smaller. It is quite possible to make more
complicated networks, but good results can be obtained with a num-
ber of lattices, as shown in Fig. 67 and in Fig. 69 all end to end.
These should have the same value of resistance for their characteristic
impedance, but may be different as regards frequency characteristics
in their phase shift.



CHAPTER VII
ATTENUATION EQUALIZERS

IT is desirable that all the frequencies of the voice on a telephone
system should be received at the same strength relative to their
strength at the sending end. Thus if 1 volt at 800 c/s at the sending
end gives 10 millivolts at the receiving end, it is desirable that 1 volt
at 2000 c/s should give 10 millivolts at the receiver also. In other
words, the attenuation should not vary with frequency.

The attenuation of cables and lines always does vary with fre-
quency and in carrier systems the band pass filters do not give quite

- Attenuation C Other Other |
LINE .
_—y Equalizer ) Equipment Equipment e
db
Frequency -Frequenc}

Fi1G. 72. THE PosITION AND FUNCTION OF AN ATTENUATION EQUALIZER

a constant loss through the pass band, not to speak of modulator
and other circuits. .

An attenuation equalizer is a circuit made up of coils, condensers,
and resistances, so that its attenuation will vary with frequency in
the opposite way to the circuit it is designed to correct.

Desirable Qualities for an Attenuation Equalizer

It should, in addition to providing the desired attenuation-fre-
quency characteristic, possess an impedance looking into the ter-
minals AB (see Fig. 72), which is a constant pure resistance when the
terminals CD are connected to the resistance for which the equalizer
was designed (600 ohms, say).

It is desirable that if the AB terminals are closed by this line
resistance the impedance at the CD terminals should be a constant
resistance, the same resistance R for the ‘“line” in which it is

107
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designed to be used. The “line,” by the way, may be the 6009 re-
sistance terniination at the input of an amplifier.

-In designing an equalizer for a channel of a carrier system it is
usual to provide an equalizer which gives a sloping straight Jine

something like—
25ke . . . . . 8db
26, . . . . .86,
27, . . . . . 4,

”» . . . . . ”»

The equalizer should not have too much apparatus. For example,
a lattice circuit in which the arm a is the inverse impedance of the

R
c | Z, I -2
A I c
: 2
————— R m—————
Looks like P8 To aResistance
a Resistance 'R B ‘Rohms
e CL e mme—— s Y
B8 D

F1G. 73. CoNSTANT RESISTANCE (ONE-WAY) ATTENUATION EQUALIZER

b arm is a good equalizer, but the bridged “T” is quite as good and
hag only two “impedance’ arms to make up instead of four, though
a lattice equalizer is balanced to earth if that is wanted, and the
same coil will do for both the opposite arms in every case if double
wound.

There are, then, three equalizers which are good, two beca
they are simple. '

The Constant Resistance (One-way) ‘L’ Equalizer (see Fig. 73)
This circuit, like the last, has a pair of impedances which are
the inverse of one another. It differs from the last in three respects.
The series arm is shlinted by the line resistance R. This is a resistance
spool made up to the figure R. When the shunt terminals CD are
connected to the line, if this has the value R then the impedance
looking into the AB terminals is a constant resistance R and the
reflection loss between CD and the line merges with the attenuation
proper into a total loss, which is given by a.very simple formula
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when the impedance of the series arm is known, and this loss may
be read off on a simple chart (see page 113).

Proof of Constancy of Resxsta.nce for Constant Resistance “ L "
Equalizer

The proof that there is a constant resistance at AB when CD is

2
closed with R is quite easy. Put -ZR— in parallel with R. This becomes
4

by the ‘‘product over sum” rule. Put Z, in parallel with R and add
the two.

R®

_Zi | Rz,
R _T"R+Z,
7 +R +Z,
R RZ,

=R+z,trR7z,= %

There is thus a constant resistance that way, i.e. looking into AB

when CD is closed with the proper resistance R for which the circuit
has been designed.

The Voltage Reduction Ratio of this Circuit
It is like a potentiometer where the total resistance across AB

2
is R and the part tapped off is I—IZ% with the line R in parallel. ;That is,

RS

z, _ R
L4 _
§;+R R+ 2,
A

. o R¥ _ . . . .
The ratio R: R+ 2, is the voltage ratio AB: CD. Itis




110 ELECTRIC FILTERS

This is an easy formula Let % be written as a vector r/6. Then in

Fig. 74 the 1 + — isaline OA. Therefore, a length O4 of 1:5 means

a voltage (and current) ratio of 1-5: 1. This makes the chart a series
of arcs of circles and the axes O'X and O'Y may be graduated in

resistance and reactance of %. Hence the distance 00’ = 1 is the
value of the line R as it makes Z, = R when %‘ =1

There is an interesting thing about this equalizer. If the resist-
ance on the right-hand side happens to be a filter whose resistance

is not constant and so is not
Y correctly joined to the CD termin-
als of the equalizer, and if the line
on the left is the proper resistance
R, then the transmission from
right to left will have the addi-
.zﬁ. tional total loss indicated by the
— . e chart.

o 1 © X In view of the reciprocal
Fic. 74. THE VoLTACE RA%MC OF ™E  theorem, however, the left to
right transmission is the same as
the right to left in milliamps. per

generated volt.

With this type of equalizer, then, if there is only one impedance
of the two which is a constant resistance where it is to be inserted
it should be turned so that the series arm faces the constant or more
constant resistance.

Design of Arm

It is best to take a network, say a series resonant circuit with a
shunted resistance and shunted condenser, and obtain a few values
of loss from the chart with dif-
ferent impedances. It is then o v
possible to specify these impe-
dances at, say, three or four . Cy l,___/m . s
frequencies, which finds the coil '
and condenser values in the Z, nm___
circuit (see Fig. 75).

As mentioned above, when
neither impedance looking away Fi16. 75. A TypicAL CIRCUIT FOR THE ARM

s . Z, oF AN “L" CONSTANT RESISTANCE
from the equalizer is a constant (ONB-wAY) EQUALIZER

A

Thet.eqmlim-l+-z-34
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resistance the chart figures will not be a correct loss, for there
will be an additional reflection not taken into account by the chart.

Simple Example of the “L’ Constant Resistance (One-way)
Equalizer
Suppose the arm Z 4 is 0-1 henry in series with 300 ohms. The
resistance and reactance components of this arm are

L= =300

c g —VWW—0
as shown in the following table.

TaBLE 18
ATTENUATION EQUALIZER

Resistance | Reactance Voltage
f ‘| Resistance Reactance |as a fraction| as a fraction| Ratio from
of 600 ohms | of 600 ohms Chart

200 300 125 05 0-204 154
400 300 250 05 0-417 156
800 300 500 05 0-833 172
1600 300 1000 05 1-667 2.24
3200 300 2000 05 3-333 416

The Construction of the Inverse Arm

A coil and resistance in series inverted becomes a condenser and
resistance in parallel. The resistance makes 300 multiplied by it
become R? = 360,000 ohms if R = 600 ohms, so the shunt resistance

is 1200 ohms. The condenser is é = R3, so (—)(—:1 360,000, and C =
10 o078 4F
3,600,000 — #E-

This makes the whole equalizer as in Fig. 76.

Constant Resistance (Both Ways) Attenuation Equalizers

The following bridged “T" circuit has an advantage over the
“L" type in that it has constant resistance both ways. At the same
time it is not as easy to calculate the loss with this equalizer, so it is
doubtful whether the extra work in calculation is worth the slight
risk of unknown reflection loss which may come in with the “L”
equalizer.
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A Chart for the “L” Equalizer
The formula
Voltage ratio = 1 + gRA

is a simple one: it involves no hyperbolic functions, and has an
easy pictorial representation.

600 0ohms
cC - -- -WW—-- - 2
_OQQQ—WJ
‘L henry  3000hms .I. .
278,.FT 1200 ohms
[ e

FI1G. 76. A SiMPLE CONSTANT RESISTANCE (ONE-WAY) ATTENUATION
EQUALIZER

The R for the line being a pure number like 600 ohms makes
%‘- easy to work out. As it is a vector, it is simple to affix 1 to it by

addition. The length of the combined vector is the voltage ratio.
Since the line is supposed to be R and the equalizer ‘‘looks like”’ R
when it is closed by R, equal currents are obtained by equal voltages.
Therefore the voltage and current ratio are equal.

The Construction of the Chart
It is convenient to make the chart suitable for % expressed in

the a + jb form of “effective resistance” and ‘“effective reactance”
inZ,.

Since R is usually 600 ohms the unit is put at 600 ohms. Then,
if we take a length equal to 600 ohms on the left of the origin this
will be 1. Draw circles with this centre and radius greater than 1.

These are the addition of 1 and %. Their length indicates voltage

and current ratio (see Fig. 77).
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CHAPTER VIII

MEASUREMENTS

Bridges and Measurements

THERE are two classes of measurements required in dealing with
four-terminal networks. One is measurements made on components,
i.e. coils and condensers; the other is measurements made on com-
plete networks.

The first class of measurements involves two-terminal apparatus
and is carried out by bridges. There is a variety of bridges, but the
half-dozen or so which are of greatest practical importance are
treated in the following pages.

The most important A.C. bridge from the purely theoretical point
of view was the mutual inductance bridge, for the following reason.
If no apparatus of known value were available at all, a square of
wire could be put up next to another square, both being of known
size as measured by a rule. The mutual inductance between the
squares may be calculated by Maxwell’s formulas. The result is a
primary standard of mutual inductance from which other standard
inductances may be calibrated. The Campbell mutual inductance
bridge is made up in this way and is in wide use.

It has the disadvantage that when used as a Carey Foster
bridge for measuring condensers it is hard to get the true answer
for the losses in the condenser being measured. Also, a given mutual
inductance, even with added balancing coils, will not measure very
large inductances and very small ones as well.

A Condenser as Standard

On the other hand, nowadays a good variable condenser box
makes a suitable standard with which to measure other condensers
and coils, and the box may be checked against a clock as described
later.

With ratio arms and a variable resistance box it will make four
bridges at least, and these will measure a surprising range of coils
and condensers as well as impedances such as transmission lines and
other pieces of apparatus, even where the resistance component of
the impedance is much larger than the reactance. This is impossible
with many commercial bridges.

Bridge measurements are often difficult for a variety of reasons.
One is that no single adjustment will obtain a balance as a rule.

114 '
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Both the resistance and the reactance in the apparatus to be measured
must be balanced by the bridge in order to secure the zero current
in the detector.

Another thmg is that the telephone, the commonest bridge
detector, is at its best over a very limited range of frequency unless
it be a Piezo crystal telephone, which is roughly constant from
200-4000 c/s.

The Detector

The Duddel vibration galvanometer is excellent from the point
of view of being a tuned detector and therefore not responding to
harmonics in the oscillator or in the currents flowing in the apparatus.

Possibly the best arrange- .- .
ment for ya detector is a -t ohme,
visual one, either a volt-
meter or a ‘“visual tuning
indicator” of the ‘“magic
eye” or similar type. The use
of a low pass filter leading to
the detector gets rid of any
harmonics on the oscillator
wave and also any harmonics S
due to the presence of iron Fi16. 78. THE WHEATSTONE BRIDGE
in the apparatus under test when this is a coil with an iron core,
or when it contains such a coil.

Coils with dust cores do not usually cause this trouble.

There is still another difficulty, however, and that is that the
sensitivity of a bridge, as defined by the smallest change in the
impedance under test which can be observed in the detector, depends
on the impedances of the bridge arms and those of the oscillator
and detector.

Impedance Relation in Bridges

Heaviside shows in his Electrical Papers, Vol. 1, that the ratios
a and b for greatest sensitivity in the bridge shown in Fig. 78 are

given by
= = JoE)

When oscillator, detector and all four arms are equal the very
best result is obtained, but in general this is not the case as the
impedances to be measured in light current work commonly vary
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from a few ohms to about a megohm, and the detector cannot be
altered easily.

For example, a 1 mH coil has a reactance of 5§ ohms at 800 c/s;
while a 100 henry choke at 1600 c/s is about a million ohms.

For this reason it is as well to use the best ratio which can be
formed, according to the previous formulas. _

With battery and galvanometer small resistances, b= V/de
nearly.

Proof to the Negative Series Bridge

First write ~; C 7 for the impedance of a condenser. Multiply opposite

pairs of arms, and equate. This is the result for the bridge shown in

Fig. 79.
(R+c.p) ('+cp)

So aR + C, 5 = br + C 7

The question to be asked is
can one choose values for a,
b,C and C,and the resistances
r and R, which will make the
equation true? If so, the
bridge will balance, that is to
say, it is a practicable bridge.
There are two cases whete a
bridge will balance. These
are—

(1) Balance on any wave
form whatever of whatever
frequency.

(2) Balance with a sine
wave of one frequency only.

Practically, if a bridge
balances with Heaviside’s unit function, i.e. square waves at a low
frequency, it will balance on anything. Mathematically, if the opera-
tor $ vanishes it will balance on anything, but if $? must be given
a fixed negative value, that shows the bridge comes under Case 2 and
will only balance with a sine wave, the frequency of which i is given
by p* = — .

Fi1G. 79. NEGATIVE SERIES BRIDGE
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In the present case of a negative series bridge, if aR = & and
if also :
a b
c,” C
then the equation balances whatever value p may have. Hence
for balance ;

a
r=3RandC=;C,.

Negative Shunt Bridge

This bridge is shown in Fig. 80. Here the standard arm has
resistance R and capacity C, in parallel, so it is

Product
Sum

which is
R
C.p
1
R+ o

Then multiplying opposite arms to form the equation, and calling the

condenser on test 7 4 C—‘j;’ we have

K
—Sh = (v + g5)
R+~ 4
C.p
aR  b(rCp+1)
1+ RC,p Cp
This can be made to balance only by calling p = jw. So we have

aR 1
7RG =+ ﬂf—w}

Now rationalize the left-hand side and

aR(1—jRCo) . . b
T+ RCio =71t
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Equate reals, then equate imaginary quantities—
aR
a
=35 + R°C Y
giving the resistance of the condenser C. The imaginaries give
aR*C,w b
1+ RC0? Co

RATIO ARM

=br

CAPACITY

ON TEIT RESISTANCE BOY

F1G. 80. NEGATIVE SHUNT BRIDGE

So C= ngc,wz {1 + RC 0%

b b
=20tz R2C 20?

which is the required capacity.
~ The next is a difficult looking bridge with an easy solution and
easy formulas.

Positive - Shunt Bridge

This is Maxwell’s bridge if the condenser travels along the resist-
ance R, shunting a part of it only. It is hard to arrange the tapping
on a four-dial decade resistance box, and a slider is not too accurate,
though it is used in bridges on the market. If the condenser C, is.
variable, then the condensey can be kept in parallel with all the
resistance in R and both varied (see Fig. 81).
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Write L as Lp and cross-multiply

3 DIAL CONDENSER
AND AIR CONDENSER

RATIO ARM

b

INDUCTANCE
ON TEST

F1G. 81. PosITIVE SHUNT BRIDGE

This will be true for any value of p if

L = abC,
and r = %}

The bridge therefore balances with any frequency and wave form.
If C, is in microfarads, @ = b = 1000%, and L is in henrys.

This last bridge is not easy to use with a good coil, such as a
telephone loading coil, for the coil resistance r being low makes R
need to be higher than one usually finds in a box.

Positive S‘eries Bridge :
The positive series bridge is a good one (see Fig. 82). Here

1
ab = {R + m}{r + Lp}
The bridge requires a sine wave of any frequency. Put p = jo.
S L PR
ab = {R C,w} {r + jLaw}
b=rR— 2" 4 jRLo + =
Bw=rR-tetiRety,

9—(T.271)
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Equate reals and unreals

ab—-rR—l—C . . . . . . (1)
r r
RL(O=“C’T0 “L=RC—,—CO_2' . . . (2)

Put this in (1) and
r (1 + R2C 20?)
@b =71R + prisi =" RCia?
. . _ _abCle?R
=1 CoRe
for the coil resistance.
Also from (2) we have

abC,

1 4+ C2w?R?

c for the coil inductance. Happily,
1 4+ C20®R? is often nearly equal
to unity. Ifitis, L becomes nearly
equal to (abC,) as in the previous
bridge, and if one knows the coil
resistance to be small it is sufficient
to compare the proportion of

l ; Resistance
C,w' " Reactance

L=

R to —

Then there is the same proportion
of resistance to reactance in the

other arm. This tells the loss in
Fi1c. 82. PosITIVE SERIES BRIDGE ohms in the coil.

Robinson Frequency Bridge
See Fig. 83 for the circuit of this bridge.

If a = b then
R,
JC 1
R 1 _R’+]Cw
l+]Cw

R,
T RCw— Bt it ;c,w
JCsRyw = (1 + jRCyo) (1 + jRCgw)
", jCRw = 1 — RiGR,Cyo? + jR,Cyo0 + jRyCy0.
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Equate reals and the result is quite simple—
1
= VRR,C,C,
This bridge is useful for finding frequency, but when the fre-
quency is known and R, and R, are also known it finds C,C,; as a

product. Since the first bridge in this series finds -g—l this gives a
2

valuable means of making absolute measurements in electrical work.

So

Setting up a Capacity Standard

The use of A.C. at 50 cycles
on the grid system of the country
to drive clocks has meant that
there is a frequency standard of
great exactness always available.

The Lissajou figures observed
on an oscillograph when a fre-
quency which is a multiple of 50
is put on one axis with the 50 ~
on the other gives a means of
calibrating oscillator frequencies
exactly. Thus an exact frequency
Robinson bridge can be set up (see Fie. 83. Ropmison FrEquency
Fig. 83) and two unknown con-
densers measured as C,C,. The bridge in Fig. 79 measures C, + C,,
and so the two condensers are known.

The Hybrid Coil Bridge

The hybrid coil (see Fig. 84) is very useful as a bridge for the
more exact determination of coil losses. Its exact function is illus-
trated in Fig. 85, where it forms part of a two-way amplifier or tele-
phone repeater circuit.

When energy is received from a valve 4 and fed to a coil, this
circulates a loop current, but does not energize the input to the
valve B if the network really balances the line, that is, has the same
impedance at all frequencies.

As a bridge (Fig. 84), the coil whose resistance is desired may be
tuned with a condenser C, so that the result is a pure resistance.
This is balanced against R. The advantage is low voltages in the
bridge arms and stray capacities not giving trouble.
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AC
SOURCE

CoiL
v d
ON TEST — R

YO DETECTOR
Fi1. 84. HyBriD CoIiL BRIDGE

FROM
VALVE ‘A
U
UNE NETWORK
. .

! ———10 VALVL 'F

Fic. 85. Hysrip Qo1 ‘m Two-wAY TELEPHONE REPEATER
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The Measurements of Phases in Four-terminal Networks

The easiest way to do this is to go all round the four sides of
the network with a valve voltmeter and use a generalized Kirchhoff’s
Law. This may be stated as follows—

The alternating e.m.f.’s in all the branches of any closed circuit
form a closed polygon like the polygon of forces. In the case of a
four-pole network which is symmetrical, the two voltages across

Vy
/7 N\
4 \
4
\
// \
’ \
’ \
4 \
/’ N
ad—F m Y
Vi vV,
80— ~+—0D
V: +V,
3C VaG4
Vilg/ V2
D
V., B B

F1G. 86. THE USE OF A VOLTMETER TO MEASURE PHASE CHANGE IN
PHASE NETWORKS

the terminals AC and across BD in Fig. 86 are equal and have the
same phase relation to the input and output voltages. In other
words, the first two are in line and the polygon becomes a triangle
of voltages.

To draw the polygon of voltages, draw B4 equal on some scale
to the voltage between 4 and B, the input voltage measured with
a valve voltmeter. Then draw AC, the voltage between 4 and C,
with BD parallel and equal to it. Then draw CD equal to the output
voltage. The points C and D are found by the intersection of arcs,
and show the angle required, the angle between input and output
voltages. It is given by the formula

a3 = b2 4 ¢¥— 2bc cos 6
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o — b2 + c® — a?
or €os b = ——g——
AB? + BG?— (24G)?
cos 6 =

24B . BG

The value of 6 calculated in this way is not quite the B of the
propagation constant because the measurement is not made with

FILTER a
UNOER 600
TEST
EQUALLY
SENSITIVE
DETECTORS
ATTENUATOR gso

F1G. 87. CIRCUIT FOR MEASUREMENT OF ‘' INSERTION Loss”

an infinite chain of sections, but is made with one section closed
with 6009,

This is the angle of phase change of the network when it is ““in-
serted” between 600? ends, and is an interesting way of observing
the phase changes which are calculated and produced in such net-
works.

. BG . . . . -
The ratio 1B I the insertion loss; indeed, this is what the
amplification meter measures.

Note on the Measurement of Attenuation of Filters

It is easier to measure a filter between resistance terminations.
This gives, not the attenuation proper, but a slightly different result
called the “insertion loss,” which takes into account any reflections
between the filter and the resistance terminations—which is the
usual practical case.
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It is not obvious that the circuit of Fig. 87 does effectively mea-
sure this insertion loss as between 600-ohm resistances. The proof
that it does so is to consider that it obviously does it when the oscilla-
tor has no impedance and the attenuator is set to make the two
detectors read the same. If, due to internal impedance, the oscillator
alters, the alteration is the same for both the filter and the attenuator
sending voltage. Thus the measurement, which is a comparison of
the attenuator with the filter, is not affected.



CHAPTER IX
GENERAL THEOREMS

THE general theorems are as follows—
I. Thévénin’s Theorem.
II. Maximum Power.
III. Pure Resistance Networks.
¥ IV, The Filter Theorem.
v V. Campbell’s Theorem.
VI. Impedance Multiplication.
VII. Foster’s Theorem.
VIII. Impedance Frequency Theorem.
IX. ““Change of Tempo” Theorem.
X. Resistance in Reactive Networks.
XI. Impedance Inversion.
7/ XIL. Frequency Inversion.
“XIII. No Loss Networks.
XIV. Generalized Kirchhoff’s Law.
XV. Generalized Resistance Formulas.
XVI. Reciprocal Theorem.
XVII. Linearity Theorem.
XVIII. Simplicity of Sine Waves.

Some of these are obvious enough when explained, while others
require proof. Their use saves an enormous amount of labour, par-
ticularly in alternating current problems. The majority of the
theorems do not relate specially to four-terminal networks; they
apply to any circuit. Theorems IV, V, XII, and XIII, however,
apply particularly to four-terminal networks.

In the pages that follow each theorem is first stated broadly, then
particular cases are outlined, after which proof is given and also an
example where possible.

Theorem 1I: Thévénin’s Theorem

“The current entering any circuit, due to a voltage in another
circuit connected to it, is given by
E
, Zg+ Zp
where E is the open circuit voltage across the supply terminals
4 any B in the supply circuit ”’ (see Figs. 88 and 88a).
126
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“Zp is the impedance looking into the load circuit and Zg the
impedance looking back into the supply circuit, when that circuit
is dead.” This applies to D.C., A.C., and to transients.

Proof

The following proof makes the theorem self-evident. Suppose
the two circuits joined up through an alternator of zero impedance,

—0 C
SUPPLY . : LOAD
CIRCUT ‘-ZS'E ZR — CIRCUIT
[]
3 ¢

Fic. 88. THEVENIN'S THEOREM (THE PROBLEM)

and suppose the alternator is set to oppose the actual current which
it is desired to find, making it zero, the supply circuit being alive too.
The alternator must generate a current which is equal to and

A

<—Zs Z‘-*

B = L,
F1c. 88A. THEVENIN'S THEOREM (THE SOLUTION)

opposite to the actual current. If the alternator voltage is then E,
the reverse current circulated by it is obviously
E
Zg+ Zp

as shown in Fig. 88a. But as the total current in the circuit is now
zero, the open circuit voltage in the supply circuit called E must
now appear across the terminals 4 and B even though they are
connected to an alternator and a load. This voltage is being opposed
by the alternator, so that the alternator voltage is also correctly
described as being E, the open circuit voltage across A and B.

What has been done here is to look at the circuit containing the
alternator in two ways. First the supply circuit can send a current
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{into the load and so, too,can the alternator in the opposite direction,
causing zero current as a result, or, alternatively, the alternator can
be viewed as opposing the voltage generated by the source or rather
the voltage appearing on the terminals 4 and B. The actual voltage
itself in the source network might be larger than the open circuit
voltage across AB because it may be an oscillator at the other end
of a long line, and AB the end terminals of the line in the left of
the diagram.

EXAMPLE

Suppose an oscillator has an open circuit voltage of 50® and an internal
impedance of 16000 pure resistance. What current will be delivered to a
pure resistance load of 600Q?

The result is

50

2200 — 22-7 milliamps

In any case where, as is more usual, Zgand Z are partly reactive,
the problem becomes one for the j notation, which notation is covered
by Theorem XVIII. Thévénin’s Theorem leads to another by asking
the question, under what circumstances of load impedance will
maximum volt-amperes be delivered by a given source of voltage
and current?

Theorem II: Maximum Volt-Ampere Theorem

This theorem is of fundamental importance: ‘“Maximum volt-
amperes will be delivered to a circuit whose impedance is equal
to that of the source, i.e. looking back into the source of current.”
In the case where the source has an angle the *sink”’ should have an
equal and as nearly an opposite angle as possible.

Proof
Let the source have an impedance Zg and the circuit supplied

Zp, which may be called x. The current in x is now y g by the
8
previous theorem, and the volt-amperes on x will be
xE E . xE?

Zot 1 Zgtx ' Zs+ 0P

]
Iq gther words, the reciprocal of this, LZ—%E—:-")—: should be a
minimum.
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Neglect the E as a constant factor and divide out the x. Then
72
> Tt

should be a minimum.

2
Differentiation gives xfs +1=0,o0rx=+ Zg

What is indicated here is that the apparatus x should have the ]
same impedance as the source, but the actual value of the current
and therefore of volt-amperes now x is fixed will be further increased
as the angle between the vectors Zg and Zj is made greater.

EXAMPLE

Suppose a long transmission line has a characteristic impedance 4000
and negative 45° angle. What must the load be for maximum volt-amperes?

In size, Zp must equal Z;, so it will be 400Q. The vector which is most
in phase opposition to the line will be an inductance of as nearly 90° as
possible.

When pure resistances are chosen, no angle comes in, volt-
amperes become watts, and Zg = Zp pure ohms. This is the basis
of matching two pieces of apparatus by a transformer.

Theorem III: Pure Resistance Networks with Four Terminals

“Four-terminal networks composed of pure resistances cause
attenuation; they have the same attenuation to all frequencies.
They do not cause phase change. They have a characteristic impe-
dance which is a pure constant resistance, independent of frequency."”’

EXAMPLE

The ladder network in Fig. 2 will attenuate or weaken any current applied
at S. If there is 1 ampere at 4, there will be a fraction of an ampere at B,
and a fraction of a fraction at C, and so on. The phase, however, in the case
of alternating currents will be the same at 4, B, and C.

Corollary to Theorem III

“If every resistance in a pure resistance network is doubled, the
characteristic impedance will be doubled, and so on. The attenuation
constant remains the same.”

EXAMPLE

A change from 100 to 209 and from 400 to 80% in Fig. 1 will double the
characteristic impedance, but the attenuation will be unchanged.
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Theorem IV: The Filter Theorem o

““Networks built up of pure reactances (coils and condensers)
act as filters when used with two input and two output terminals.”
Proof

The proof consists in considering the formula for the impedance
of a length of line short-circuited and then open-circuited at the
far end. In the one case

Z,= Z,tanh P . . . . . . . (1)
In the other
Zopen =cothP . . . . . . . 2

Here P is the attenuation constant of the network; it is the natural
logarithm of current ratio, and Z, is characteristic impedance or impe-
dance of an infinite number of sections connected end to end. With
a given circuit the y notation would give a result for Z open and
another for Z closed. With pure resistances, these could only be
reactive or else infinity or zero. They are both j’s, either plus or
minus in sign, but may differ in sign. Dividing (1) by (2) above,
Z,
Z open

If now Z, and Z open have the same sign the j’s cancel; tanh 3P =
real 4 ve, then tanh P is real, P is real, and there 1s attenuation. If,
however, at another frequency the two should differ in sign tanh 2P
would be negative, tanh P unreal, and P then imaginary. This
means no attenuation but phase change.

The best method of proof to the formulas Z, tanh P! for a short-
circuited line and Z, coth P! for an open-circuited line consists in
studying the reflected waves from the open or short-circuited end.
The first reflection is shown for the open circuit in Fig. 89.

Theorem V: Campbell’s Theorem

“Filters have a real characteristic impedance, i.e. a pure resist-
ance in their pass bands, and a j or fully reactive characteristic
impedance in their attenuation bands.”

Proof ,
The two equations (1) and (2) above must be multiplied, giving

Zg® = ZZypen. Suppose Z, and Z,., have opposite signs, which

is the condition for a pass band. As they are both j’s, Z, comes to

tanh ?P =
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be real and positive. Then Z,is real, i.e. pure resistance. If, however,
as in an attenuation band Z, and Z,., have the same sign to the j,
then Z? = a negative real, and Z, is imaginary, which means a pure
reactance. For this reason a further theorem is possible.

Corollary to Theorem V

“In order to study a particular filter circuit it is enough to study
Z, first of all.”

This will indicate the pass bands; formulas for sizes of coils and
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F16. 89. REFLECTION OF CURRENT ON OPEN-CIRCUITED LINE

condensers may be worked out without troubling about the formula
for attenuation. That can follow later.

Examples of this are the derivation of the formulas in the text
for low pass, high and band pass filters.

Theorem VI: The Impedance Multiplier Theorem

“The impedance of a circuit containing only pure reactances
will be doubled, at any and every frequency, if the coil inductances
are each doubled and if the condensers are each halved in capacit-
ance. Impedances may be so increased or diminished by any factor.”
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Proof
In the j notation, the impedance of a coil is jLw and therefore

proportional to L. That of a condenser is —t,l— and so mversely
proportional to C. e

Any amount of putting such in series or parallel if each is altered
by the same factor yields a result which is altered by that factor.

ExAMrPLE

A coil of 0-1 henry and a condenser of 10uF are in parallel. What will
give three times the impedance ?

Answer: A parallel coil and condenser of 0-3 henry and 3-33uF
respectively.

!
ty
f, f3FREQUENCY fs

- s e - - - - -

F1G. 90. GraPHICAL FOorM oF THEOREM VII

Theorem VII: Foster’s Theorem for Reactances

“Any network of reactances alone must present a value at any
frequency which rises in value if already positive (tends to O if nega-
tive) as the frequency is raised. Zero values alternate with mﬁmte
ones and the infinite ones are approached towards plus infinity.”

That is the theorem in words. It has a graphical expression
which is simpler still (see Fig. 90). This shows that the curves always
move upwards as the frequency is increased.

Mathematically the theorem can be expressed as follows—

.Z — JH (02 — 09) (w5® — ?) (ws* — wf)
(g — @) (03 — 0?)
Theorem VIII: Impedance Frequency Theorem

“If a circuit built of reactances only is desired to have the same
impedance to all frequencies one octave higher or lower, and so on,
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each coil and condenser (inductance énd capacitance) must be
halved or doubled, and so on.”

Proof

This follows because C and L are both multiplied by w in the
7 notation.

ExaMPLE

A coil and condenser of 0-2 henry and 4uF in series has a certain
impedance characteristic with frequency. What circuit would have a similar
frequency curve at one-fifth the frequency scale, i.e. the same at 160~ as
the above circuit has at 800~, and so on?

Answer : 1 henry in series with 20uF.

Application

This theorem enables filters with any desired impedance to be
“designed from one of, say, 600® impedance.

Theorem IX: The “ Change of Tempo " Theorem

“Circuits containing pure reactances which behave in any given
way as regards battery or alternating or other e.m.f.’s will behave
in a precisely similar way when all coil inductances and condenser
sizes are reduced, provided the tempo of the applied e.m.f. is increased
in the same ratio. The tempo of the currents flowing will be speeded
up too.”

Proof

This theorem follows for the same reason as the last, and because
of Fourier’s series and other work. That is to say, the theorem is
true even if the voltages are not sine waves. If, however, the applied
e.m.f. is Heaviside’s unit function, i.e. a 1° battery switched on and
left on, no change of tempo is.possible.

ExAMPLE

Suppose 200° 50 c/s causes a current of 10 amps. in a certain coil in a
certain circuit. If all coils and condensers are halved, the coil will now carry

10 amps. still if the frequency is put up to 100 c/s, the voltage remaining
the same.

In the first case it was 10 amps. at 50 c/s, now it is at 100 c/s.
Application

Filters for a higher or lower range of frequency may be designed
when a filter for one particular cut-off has been designed. Care is

needed with band filters, because each cut-off is doubled or halved
and so the band width in cycles is doubled or halved.
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Theorem X: Resistance in Reactive Networks

“ Any circuit derived from another using only a frequency change
keeps all resistances as they were, but an impedance change only
requires changed values of resistance.”

In Theorem VI, in doubling the impedance one doubles all resist-
ances, but in Theorem VIII they must be made the same at the new
frequency, which may mean a different quality of coil.

Theorem IX holds if all resistances are made the same at the
new frequency as the old ones at the old frequency.

Theorem XI is modified, and in working out examples complex
quantities must be used.

In general, in filter design, condenser and coil losses should be
kept low. The reactances make the filter.

Theorem XI: Impedance Inversion

“Any impedance containing reactances and resistances can be
used to produce an ‘inverted impedance’ such that the product
of the two at any and therefore at every frequency is a constant
resistance, say R%.”

Proof
This follows from the nature of the process and from putting
coils and condensers in series and parallel by the j notation.
Where two components in the first circuit are in series the corre-
sponding ones in the inverted circuit must be put in parallel.
Where two components (or portions of circuits) are in parallel,
the corresponding portions in the inverted circuit must be put in
series. A coil L in the first circuit becomes a condenser C’ in the
inverted circuit such that
1 R? L .
iC'o ~ jLo " T = B
A condenser C in the first circuit becomes a coil L’ in the second,
and ol again equals R2. A resistance 7 in the first circuit becomes

< in the second.

EXAMPLE
The arrangement is shown in Fig. 91.
Application
For making networks where the characteristic impedance is

desired to be a pure resistance at all frequencies. Also a series-
derived filter by inversion becomes shunt-derived.



GENERAL THEOREMS 135

Theorem XII: Frequency Inversion

“If a network of reactances is replaced by a new network of the
same pattern (i.e. the same geometrical circuit, say a ladder) and
each component is replaced by the one which would resonate with
it at a frequency f,, then

the second circuit at any ‘

frequency, say 3f,, a multiple 00000, r

of f,, behaves as the first Cc— c WWO
«circuit would at a frequency LL I i

!3'-’, as regards attenuation BEFORE INVERSION

and as regards the size of its ¢ c

dance angle at any particular
frequency will be reversed.”

impedance, but the impe- O-———\_QQQ_QQJ—“-I—O

A AAAA
Proof %
First, the impedance of, AFTER INVERSION
say, a coil L at one-third of FI1G. 91, INVERTED IMPEDANCES
the frequency ., which is —3-, is 1 I:;w . . . )
Note this.

1 1
The corresponding condenser C makes = Ic= =, 50 C = Lok
Lco,,g Lw,
Yo, F

is the same as (1) above, except that it is —l:or — j instead of j.

1 .
Its impedance is z=—=— 3Co, at 3w, which comes to This

The figure 3 has been taken at random just to avoid too many
symbols. It can be any number.
EXAMPLE

A coil of 0-1 henry in a low pass filter whose cut-off is 1000 c/s may be
inverted about the cut-off frequency, giving a high pass filter with a condenser
in that place of value

1

) 01 X 2n X 1000=m
Solve this for C, and the required condenser is known.
Application

A low pass filter on inversion gives a high pass filter; a high
pass, a low pass; and a band pass a band elimination.
10—(T. a71)
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Theorem XIII: Networks with No Attenuation

“If a network with no attenuation, which must therefore be
built of reactances, is placed between resistance terminations (equal
ones for simplicity), it may cause a loss or it may not. It will cause
no loss if its characteristic impedance Z, is exactly equal to the
terminal resistances even if there is phase change in the network.
It will cause no loss if there is no phase change in the network, even
if its Z, does not match the terminal resistance. It will cause a loss
if there is both mismatching and internal phase change.”

Proof

This follows from an examination of the telegraph equation,
giving the received current at the end of a line with apparatus Zg
at the sending end and Zy, at the far end. The line has characteristic
impedance Z, and propagation constant P. The reader is referred
to books on lines.

Itis

E

(Zg + Z§g) cosh P + (Zo + ZZZ )smh P

i, =

If now the cable is taken away the result is

_E
Zg+Zp

by a simple circuit. Here E is the sending end voltage. The division
of these gives the current ratio reduction caused by the insertion of
the filter. We are here calling the filter a line with Z, and P. The
current ratio turned to népers or decibels is called the “insertion
loss.” It is what the “amplification meter” measures. If Zg=Z, =
R a resistance, this is ~

CoshP+(2R+ 2Ize,)sth

This is an exceedingly useful formula. Here g is a mismatching
n

factor because we are in a pass band for this theorem and Z, is a
pure resistance like R. Call %‘ =¢.

'AsPisunreal,callith. Lossratio = cosB-f-](qS ﬁ)smB
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Here % + % is the average of ¢ and its reciprocal.

To prove the theorem, if B =0, sin B =0, cos B = 1. There-
fore the current ratio is unity.

If now ¢ is unity, the current ratio is cos B + j sin B, which is a
unit vector.

Theorem XIV: Generalized Kirchhoff’'s Law

“(1) The alternating e.m.f.’s in the separate branches of any
closed circuit, expressed as vectors, form a closed polygon, like the
polygon of forces. That is to say, the vector sum is zero.

“(2) The vector sum of the alternating currents going to any
one point is also zero.”

The result of this is that any formula for a circuit, derived for
pure resistances, can be used to obtain results with reactances, using
the j notation, and is equally valid for resistances together with
reactances using complex quantities. For example, the formula for
the impedance of a “T” attenuator can be used to find the charac-
teristic impedance of the low pass filter.

This is really an example of a further theorem.

Theorem XV: Resistance Results Generalized

Circuit formulas for Z, and P worked out for resistances may
be used at once for A.C. work if reactances are put in instead of, or
as well as, the resistances.

Theorem XVI: The Reciprocal Theorem

“If in any circuit not containing one-way paths such as one-way
amplifiers, a voltage E at a place called 4 causes a current I at a
place called B then if the voltage E were put in at B it would cause
the current I at 4.”

It is a remarkable theorem. (See Fig. 92.)

_ _
BATTERY—'F l A CIRCUT B Io AMMETER
A

F1G. 92. THE CURRENT IS THE SAME IF BATTERY AND AMMETER
ARE INTERCHANGED WHATEVER THE CIRCUIT

Theorem XVII: The Linearity Theorem

““Good reproduction of waves is not in general possible, and the
J notation is invalid, if an increase in voltage does not cause a strictly
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proportional increase in current in each part of the circuit. In other
words, the inductances and capacities must remain the same: the
constants must be constant.”

This replies to receivers. In a crystal telephone, for instance,
the motion of the crystal ought to be proportional to the voltage
on it. In practice it is, over a wide range of voltages.

Theorem XVIII: Simplicity of Alternating Currents

““If the circuit constants are really constant, because a sine wave,
differentiated, still has the same shape and frequency, and, further,
because two sine waves of the same frequency always add up to
make another of the same frequency, it follows that a sine wave
e.m.f. will cause a sime wave current of the same frequency however
much the circuit is complicated by the inductances with their intro-
duction of the differential and by condensers with their introduction
of the ntegral. This makes the j notation possible.”

It is a general law of nature on which, for example, the theory of
sound rests.



CHAPTER X
CAUER FILTERS

IN the last few years filter design has been approached from a rather
new angle. The American inventors who made the first filters (of the
ladder type) took certain circuits and made a complete study of their
possibilities. They developed a design technique over a period of
some years. The emphasis was, however, still on the circuits. The
engineer building a carrier system, for example, said, “ We need such

Fic. 93. SiMpLE LATTICE Low Pass FILTER

and such a loss at such and such a frequency: take so many sections
of such a section or use different sections each with its own circuit
and see if it is enough when the sections are all put together.” If
the estimated filter was not good enough, a bit could be added. |,

Cauer, on the other hand, started with the mathematical func-
tions. Since the lattice circuit has the simplest formula for its atten-
uation (and for its characteristic impedance, too) he worked on
lattice circuits. Then if a and b are the arms in Fig. 93 the attenua-
tion is given by the lattice attenuation formula

P a
_—— 4=
Tanh 5 = 47

an easy function.
Thus the function to be considered is J% where a is jLw + 7?('3!-6
1
if the arm is a coil and condenser in series, but different if they are
in parallel, and more complicated if the circuit is more complicated.

139
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Cauer has worked out a method of finding how many coils and
condensers are needed, that is, the number of each and their sizes,
from the attenuation and impedance requirements. This is the
proper way, and is a reversal of what is usually done.

We normally draw a filter of so many sections, calculate its
attenuation, and if it is not enough put another section on and
recalculate the attenuation. As distinct from this method, Cauer
shows tables for 1, 2, 3, etc., coils and so many condensers. Each
filter is given a “‘class”’ number for its attenuation. A low pass filter
of Class 3 can be built of three coils, so the tables show what can be
done with such and such a number of coils.

He did not neglect the characteristic impedance, but showed
how to make it level in the pass band, within such and such limits.
He considered originally lattice filters because of the simple formulas
fo:"_ the characteristic impedance and attenuation of the lattice,

gis simpler than 1 + 2ib because of the extra 1.

Anyone who has tried to make a filter with a new circuit pattern
knows that one soon gets long formulas containing powers of w,
the circular frequency.

Cauer’s work has been little understood for the reason that he
made three simultaneous advances. These were—

" (1) The use of a new symbol Q (not to be confused with the same
sign for ohms) which means

Frequency
Cut-off frequency

for a low pass filter. It is a reciprocal in the case of a high pass filter.
(We do this in drawing graphs and make the graph do for any cut-off

frequency by writing ]-‘f; for a low pass filter graph.)

0

(2) The use of trigonometrical tables to work out the frequent
expressions of the form V1 — #2. This is a good dodge in calculation.

(3) The use of Tschebbytcheff’s mathematics to get the best result
out of a given complexity of algebra, i.e. a given complexity of circuit
or number of coils and condensers.

The first advance, the use of capital Q, is one affecting the algebra,
and is closely bound up, but not necessarily so, with the polynomial
functions of Tschebbytcheff. It is a question of using a generalized

frequency Q rather than the actual frequency in cycles per second.
The Q is a function of the w, which is 2nf.
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This is common to all filter design since a low pass filter, say, of
cut-off 1000 cycles and worked at 2000 cycles will exactly compare
with a similar filter of cut-off 10,000 cycles worked at 20,000 cycles,

f

and so on. One commonly uses Z)w— or % on graphs of filter perform-
0 0

ance, as it is the ratio of frequency/cut-off frequency which counts
in low and high pass filters. Cauer has extended this to band pass

z
< w
=) 3 1
[ U
E 51/}
< [T} 4
/ '
- - - = _.!.::_‘;l'— —_—————— T =
o +O fi FREQUENCY - N
CUT-OFF FREQUENCY

Fi1G. 94. THE ATTENUATION CURVE OF THE SIMPLE Low Pass LATTICE
AND ITS EQUIVALENT LADDER CIRCUIT

filters. When Q = 0 the working frequency denoted is the mean

frequency Vf,f, musically in the middle of the pass band. Q =1
is the upper cut-off frequency f,, and Q = — 1 is the lower end of
the pass band.

This is somewhat unusual and makes Cauer’s curves difficult to
understand at first glance. The Q is a ratio and is simply the musical
tnterval between the frequency and the cut-off frequency for low
and high pass filters.

Cauer’s great advance, however, was to calculate the circuit
components from the desired attenuation. Suppose the desired atten-
uation is 50 db in the case of a one kilocycle low pass filter. No one
can make a filter with 50 db at the cut-off, because at that point
the attenuation is zero. There must then be a little space. One can
get 50 db at and above a frequency of 1200 c/s, say. The limit of
1200 can be tightened up by using more coils or else by reducing the
50 db to 40 db.

Look for a moment at the curve in Fig. 94 for a simple m-type
ladder filter. Make m small and the peak of attenuation moves
nearer to the cut-off. Make m large and it moves away to the right
merely by a change of sizes of components. Unhappily the nearer
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to the cut-off the peak is made, i.e. the steeper the attenuation curve
just after cut-off, the lower the value of attenuation to which the
curve falls, at high frequencies. Draw a horizontal line at the level
to which the curve eventually falls and produce this backwards to
cut the rising attenuation curve at A. This point 4 is a definite and
valuable point. It is a figure of attenuation af and above an associated

Peak Peak

Peak

-——- - e - - Em e e -

Value of Attenuation:

Pass Man's

Attenustion Band

Frequency
Fi16. 95. AN ATTENUATION CURVE WITH A CORRECT SET OF VALUES OF
THE COEFFICIENTS IN THE Q FUNCTION FOR THE ATTENUATION, GIVING
THE TROUGHS ALL AT THE SAME LEVEL AND LEVEL WITH THE FINAL
VALUE OF ATTENUATION

figure of frequency. The association is quite definite, but depends on
two things, on the circuit and on the value of m used. Here m is a
parameter.

The drawing Fig. 94 contains a frequency f;, which is the lowes?
useful frequency of this filter. It is the lowest useful frequency because
the attenuation is above the height 4 at all frequencies above this
fi- We have proved in an early chapter that attenuation curves
are always of zero attenuation at the cut-off frequency. They take a
number of cycles to climb up to the useful value. Thus if one asks,
““What attenuation can be secured by one, two, or three sections
of, say, an m-type ladder low pass filter?” then the request must
contain information with regard to the interval which may separate
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the cut-off frequency from the lowest useful frequency. The values
of the m’s control the initial steepness of the curve and its final
drop too.

Consider next a three-section m-type filter with the three sections
having their peaks spaced in such a manner that the troughs come
level with each other and level with the line drawn horizontally
through the level of attenuation at infinity. (See Fig. 95.)

With three sections one can make the curve steeper at first in its
initial rise, but if this is done the troughs will come lower. So with
correct design the troughs are all as shown in Fig. 95, but there is
still a certain latitude. Corresponding to any specified value of atten-
uation there is a given value of lowest useful frequency.

Thus tahles are needed, one table for a one-section filter, another
for a two-section filter, and so on, and each table must show the
value of attenuation for various values of ‘“no-man’s land,” the
(musical) interval between the cut-off frequency and the lowest
useful frequency.

This matter of a lowest useful frequency may seem hard to grasp.
Begin with a simple low pass ladder filter. Its attenuation curve
is given by cosh P = 1 — 2Q%, the Q being

Frequency
Cut-off frequency

which is a ratio or frequency interval in the musical sense.
The simple filter is called Class 1. When P = 2 népers, for ex-
ample, cosh P = 3-76. Thus 2Q%*— 1 = 376

Q=152
(See the table given for Class 1’ filter, below.)

TaBLE 19
CAUER'S CLASS 1’ FILTER
P Cosh P 2Q)* Qs Q ]
2 3:76 476 2:38 1-52 0-658
3 10-068 11-068 5:534 2:35 0-425
4 27-308 28-308 14-154 3:76 0-266
5 74-21 7521 37-60 6-12 0-164
6 100-6 101-6 50-8 7-1 0-141

In Fig. 14 one cannot use the filter at a frequency below 1:52 times the cut-off
irgguency if one desires an attenuation of two népers. This makes a reciprocal of
0-858, which is the & to be used when studying impedance variations.
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Thus, with a single section of a plain low pass filter (not a derived
section) one can get two népers at any frequency above 1-52 times the
cut-off value. Let us see what can be done with a derived filter. To
do this it is only necessary to put the frequency of infinite attenua-
tion in such a place that the attenuation in Fig. 94 finally falls to
two népers. Draw a line horizontally at a height of two népers,
and notice where it cuts the rising curve, i.e. find the frequency for
the point 4.

The calculation is best done by starting with the mathematical
functions for attenuation. The lattice has the easiest functions for

tanh }P = A/% and Z, = Vab. Notice that Fig. 93 shows the lattice

circuit equivalent to the derived type of ladder filter. It has been
shown that a ladder of several sections of m-derived type can be
replaced by a complicated lattice. This brings us to the study of
lattice filters and the possibilities which are contained in a function

[ , which is a function of frequency. The more complicated the
filter is, the more complicated A/ —:— is.

If, as in Fig. 93, the arm a is a simple coil and condenser in series,

and if the other arm is simple too, then the expression for , gmay

. Q ) ) )
be as Slmple as \/—Q_f__—_—l, or at least if not as simple as that it may be
Ve —1 where H is a fraction, a number, and €2 means frequency

or some number representing it.
The reason for this form of expression may be seen if the circuit
in Fig. 93 is considered

HereaisjLw + and bisjLyw. The result is that / 5 becomes

J JLyw
L +]Cco

- L,Clw’
11— Llcla” - m’
Lxcx

and this is



CAUER FILTERS 145
which is 1

w
HVai— g
if H is called A/ IL—l

2
It is convenient to gather up the odd constants into H and also
to express IC, as wy because this is the cut-off frequency. It is
1

recognized as the cut-off frequency because vV w? — wj? is real for high
values of w, i.e. values greater than w,, so tanh 4P is real. This
makes P real because of the property of tanh x that it is real when
% is real. 'When, however, w is less than w, the result emerges that
P is unreal and that means a phase shift, but no attenuation. Atten-
uation above w — w, but none below means w, is the cut-off, and so
it is a low pass filter.

Since it is the ratio of w to w, which controls the value of the func-

tion it is convenient to divide top and bottom by w, and ca.ll —a
new variable Q. This is one of the things that makes Cauer’s work

look hard. The formula H Var—1 does not look intelligible. Let
us discuss this formula. -

The Q is a general expression for frequency. If the cut-off is
800 c/s, a frequency of 400 c/s makes Q = }, and so on. The value
Q = 1is the cut-off, and the formula must contain v Q2 — 1 in order
to go from real to unreal values of attenuation as the frequency Q is
reduced below 1, i.e. past the cut-off frequency.

Further, at high values of frequency the % tends to become

constant and in particular tends to take the value H. Thus the
attenuation at very high frequency depends on H. At some inter-
mediate frequency between the cut-off Q = 1 and infinity, the value
of attenuation is infinite because the Wheatstone bridge balances.
That is _He 1
V-1
This brings us to the main feature of Cauer’s work. The final
attenuation at very high frequency is given by tanh }{P = H.

H decides the attenuation below which the curve will not fall after
it has gone to the peak at HO )

vQi—1
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If, then, in Fig. 96 the attenuation falls to a final value given by
the line FF’, the guaranteed attenuation OF is only reached at a
frequency QL decided by the point A, which is the attenuation the
filter finally reaches at very high frequency

Notice that if coils L, and L, are made nearly alike, then H is

>

?
&

Fi1G. 96

nearly 1 and the final attenuation is high. The filter looks a good
one, but the point 4 moves over to the right.

This is the effect of altering the factor m to a value near 1 in
the m-derived type of ladder filter. The lowest useful frequency
becomes higher up. Thus, a high attenuation from a simple circuit
means that the filter cannot be used just above cut-off. There is a
kind of “no-man’s land,” as previously stated, between the cut-off
and the lowest useful frequency. This becomes wider the nearer H
is made to 1 in the design, which means that at and above (but not
below) a value of frequency £;, the guaranteed attenuation is
reached. Q; may be called, one suggests, the lowest useful frequency.

It is better to concentrate, not on the attenuation, but on

2
ﬂlﬁ-ﬁ—l which has been called a Q function, and which is denoted
by Q(1) because it is the simplest @ function.

The graph of this function is given in Fig. 97.

The expression for the Q function may be shown in that way, or
it may be given as the reciprocal. In using tanh x tables the function
must always be a fraction, since tanh « is always fractional. In any
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case, the reciprocal merely means a phase reversal, electrically equiv-
alent to an interchange of the arms @ and b, which does net affect the
‘filter as regards its performance.
It becomes possible then to make up tables of values of {; against
values of minimum attenuation. At the same time it is convenient

[=4
o]
prors
[$]
C
(e
|CJ
Hl1 -—~—--"""---=--=--=
b X
He ==o) fommmommmommee
Pass Band Attenuation Range
r “&‘a‘o""“‘ Frequency

Fic. 97. Ture SiMpLEsT Q FuncTioNn, Q(1)
X is the peak attenuation frequency and A the point of lowest useful frequency. '
to plot H and the frequency Q, of infinite attenuation. The calcula-
tion for this simple circuit and function Q is not difficult. Select H
values and read off 4P from Tables of Hyperbolic Tangents since
tanh §P = H.
HQ

Next make Vo1 I_l-f’ and this gives the condition for find-

ing the point 4 for the lowest useful attenuation. The reasoning is
that the Q function rises from zero or else falls from infinity to 1,
passes through 1 and finishes up at very high values of Q by tending

towards a value H or else %, depending on whether the function is
put one way up or the other.
If it is rising towards % it is this % and H which represent the

final value of the attenuation, called the guaranteed attenuation.
It is the attenuation at and above the lowest useful frequency.

The H and —}{- represent equal unbalance of the bridge. When
the Q function reaches H the attenuation is the same as the final
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0 1
value, so if we put X%-n—l = H this gives Q, the lowest useful fre-

quency in terms of H for this simple function Q(1).

Thus gi:l—H’orQ’—-l—H‘Q’
H2Q — -
) Q1 — HY =1
1
Q=
T VI—H

This is the relation between the lowest useful frequency and H.

Next, when Q(1) = 1 there is infinite attenuation, so
!

Q-1
e = !
gives the Q of infinite attenuation of the filter, i.e. Q*— 1 = H2Q3
SQX(1—HY) =1
Q. =1
or ing = Vio B

One may say, since H determines the attenuation, why not aban-
don its use in favour of a given number of népers? The relation is
tanh }P = H. The reason for keeping H is that the same sort of
argument which is used throughout the attenuation band for atten-
uation is applicable to the impedance in the pass band. If it is to be

level with frequency, Vab must hug the value 1 in the pass band

to get a level impedance just as g must hug unity in the attenua-

tion band.

The Use of Trigonometry for Avoiding Arithmetic
Cauer uses trigonometrical tables to find the value of such expres-

sions as _Vf-—j:——_fﬁ This makes the reading look almost like another

language, but it is simple enough. Let H =sin 0. Then 1 — H?* =
cos30 and V1 — H?® = cos 0, so its reciprocalis sec 6. Thus ——Tv_—l:_——&'_—

called Q, = sec of an angle whose sin is H.
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This is easy to find in tables where all the functions are plotted
in parallel columns, thus— :

0 Sin Cos Tan Cosec Sec Cot
0° 0 1 0 Inf. 1 Inf,
08 1-667

It is not necessary to look at the angle; look for H = 0-8 dnder
““Sin”’ and see the 1-667 under ““Sec” on the same line. The accom-
panying table gives a few of the simpler relations.

The whole technique needs extension to more complicated circuits,
Table 20 shows how it is done.

TaBLE 20
TABLE OF FUNCTIONS FOR EASY ARITHMETIC

sin 6 = V1— cos*@
gives y = V1= a2

1

coseC O = ——
V1= cos?®
. 1
Ves Y = —————
gvesy Vviea

cosh®f = 1 4 sinh20
gives y = V1 + a?

1

sech 0 = ———
VT + sinh%

. 1
ey =Vira

A more complicated circuit.may be made by putting more coils
and condensers in the arms of the lattice. The ratio of the arms
must give an expression with VQ?— 1, or else we should not go
from a pass band to an attenuation band when Q becomes greater
than 1. In other words, it would not be a low pass filter.

The next more complicated expression is found by putting two
such filters as the above in line end to end. They should have differ-
ent peak attenuation frequencies so placed that the peak of one
section helps to fill up the long trough of the other, giving an atten-
uation curve as in Fig. 95 (page 142).
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If the filter has an attenuation which finally falls, as there shown,
at high frequencies, the bottom of the troughs between the two
peaks should lie on that line. If a trough comes below, i.e. below
the point 4, then 4 does not give the lowest useful frequency.

First let us show that the Q function for two sections has the
form

HQVQ—1

o—B
where H is a value of deviation from 1 for the whole circuit. Using
two sections, H may be much closer to 1 for a given width of “no
man’s land”’ than for one section, so for a given figure of lowest
useful frequency there is a higher attenuation. Let us call the
attenuation of the finished filter P. Then tanh 3P = the function

0(2).

But tanh 3P, = _EQ = the Q(1) for first section
VQR—1

and tanh }P; = Vg;’%—l = the Q(1) for second §ection

The H, and H, are for each section taken alone. The attenuations
add up, but the trigonometrical formula for the tanh of the total }P
is as follows—
tanh §P, + tanh }P,

Tanh }(Py + P9 = 150k 15, tanh 35,
This makes tanh }P, which is Q(2) to be
HQ H,Q
VQi—-1 + vVQI_1
H,H,)()?
I+t
Simplifying this,
(Hy + H)QVQs — 1

Q1+ HHO?
(H, + H)QvQr—1

1
(9~ ) 0 + s
Thus Q(2) has the form
HQVQ2 —
o
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where one gives values to H as before, calculates the final attenuation
from tanh P = H because the final attenuation is the guaranteed
attenuation and one wishes to find B and the two peaks, or rather
frequencies, for each of the peak attenuations. The Q(2) function
has a curve like that shown in Fig. 98.

It is desired to see that at the maximum value, i.e. the maximum
departure from unity which gives the trough of attenuation, the

value is }lI To secure this, differentiate Q(2) to find Q for the turning

1 Value of Q@)

Attenuation Range

!

[}

'
' ’ n‘- F
requency

F1c. 98. GraPH oF FuNcTION Q(2)
XX are peak attenuations.

point of the Q(2) curve and, putting it in the function Q(2), equate
the result to % This finds the constant B when one has chosen H.

Equating the curve itself to H should give the value Q, for the
point A, that is, when one has found the constant B.
To find Q for the trough of attenuation, it is convenient to differ-

entiate
HxvVx2— 1
=5

(HxvVP = 1)2x = H(x*— BY) {VF—'-I + \,%}
Multiply out

, SO

\payE—io B=B) @1
VR =T

13~—{T.a71) 20 DB.
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Multiply further
2x3(33 — 1) = (¥ — B) (252 — 1) or

224 — 2x% = (x* — B?) (2% — 1)
B B
H=gmpo] P VAR
This value of x gives the turning point of the Q function, so it must

be put in to find the value of the function, and equated to !

ﬁ-
B2
—_— . B2
1 e N
HB /J 1— B
V2B*— 1A 2Bt —1
This reduces to
2B — 2B¢ i
BVI—B
It further simplifies to
2 (B— BY) 2B (1 — BY)
A Hlor Sl Hs.
Vi B V=B

2BV1— B = H*
Square this and it becomes
4B%*(1 — B%) = H*
4(B%)®— 4(B%) + H¢ =0
This is a quadratic equation, and makes
1 VITE
- 2

This determines the function when H is chosen. Next find the
unity value of the function for the peak frequency. This is

. —_— 4 —
x3— 1_4:_‘_/2_1___{1_ = HxV%— 1

or (1 — HY) — x3(H? — 2B%) + Bé = 0.

. The solutions are the peak frequencies which are sufficient to make
the two sections.

B3
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The next thing if it is desired to calculate the lowest useful fre-
quency is to equate the Q function, not to H this time, but to—Il-{-, for
the Q function Q(2) reaches ;? in its first fall from infinity.

Once H and the useful frequency range are decided, these equa-
tions give the frequencies of infinite attenuation. In making the
filter, if the frequencies of infinite attenuation are known, one for
each section, it is easy to make up the section.

GUT-OFF FREQUENCY /N

|
|
-1

NUMERICAL VALUE OF THE FUNCTION
(M

, I._. —_—
m w PASS . .. ATTENUATION
'- BAND BAND
ol 1 .

F REQUENCYemammtp—
F16. 99. THE IMPEDANCE VARIATION OF THE CAUER Q FUNCTION FOR
IMPEDANCE IN THE PAss BanD

Ladder sections may be used rather than lattice sections. In either
case the cut-off frequency, the characteristic impedance, and the
frequency of infinite attenuation give the section. The calculation
of the best peak frequencies for more than two sections is harder,
and has been done by using elliptic functions.

Impedance Characteristics'

Cauer not only used these Q functions for getting an attenuation
curve which does not fall below a certain value, but he used the Q
functions for V/ab in a lattice which is Z,, the characteristic impe-
dance. Then H is the greatest amount by which the impedance
departs from its nominal value. There is again a useful range, so if
H = 0-9 the impedance if nominally 600 ohms varies between H times

600 ohms, which is 540 ohms, and -}? times 600 ohms. This will be
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up to a certain frequency just below cut-off. There is another “no
man’s land” here, where the impedance is too bad to be useful,
going to O or infinity at the cut-off.

Fig. 99 shows a Q function used as an impedance frequency curve
and how it is placed with regard to the value 1 used as the nominal
impedance of the filter.

Here, again, Q functions can be used upside down, for it is always
possible to make a filter having the reciprocal impedance of any other.
In ladder filter design the termination settles whether it goes up to in-
finity or down to zero at the cut-off. The first three Q functions
are shown below

Writing 5 a mstead of Q for any Q functlon gives the function for
impedance.

The Fundamental Functions
Q
1) = ———_:—‘i_._——-'
o) H\/Q 2 -1
HQ VA1

e

__ 2
0(3) —_ T giA(QA - B’ )
QE—BHVQS2—1

B, and B, are coefficients which finally settle the sizes of the
coils and condensers. Their values vary according to the desired
characteristics, even for the same cut-off frequency or frequencies.

The original Cauer design took one @ function to be used for
attenuation and the H in it settled the desired attenuation as shown
in the following table for Q(1).

TasLe 21

SINGLE SECTION OF DERIVED LADDER FILTER
(Corresponds to Cauer’s Class 1 or Q(1))

Frequency of
dab Lowest Useful Infinite
eq y Attenuation

38 324 4-52
33 2-48 3-4

20 2 2:73
25-5 1-76 228
22-8 1-49 197
20 1-34 1-74
17-5 1-23 1-58
153 1-1§ 1:41
13-1 1-09 13

11 1-08 12
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Another Q function was taken for impedahce; and the H value
in it is determined by the desired closeness to 1 of the impedance

curve in the pass band.

When used in the pass band for impedance the table is as follows—

DATA FOR A CLASS I FILTER

TABLE 22
PROPERTIES OF Q(1)

db Népers k ¥y H

38-2 4-39 0-3090 0-2213 . 1.025
36-1 4-15 0-3420 0-2455 1-032
346 3-98 0-3746 0-2699 1038
33 379 0-4067 0-2940 1-046
315 3-62 0-4384 0-3180 1-055
30-2 3-47 0-4695 0-3423 1-064

In the higher classes Cy C, Cs

there is more than one
peak attenuation; the
third Q@ function goes
through unity three times
and so has three peaks of
attenuation. To know the
function completely one
needs to decide what H is
wanted and then what
values of the coefficients
B,, B,, etc., will give the
troughsallonthesamelevel
in the attenuation curve.
Having completely settled
a function for attenuation

a

to determine the arms g and b since

o x Vi = aana v x

—]

T

%- | ita

"~ — .2

Fi6. 100. (Top) AN ARM OF A LATTICE AS
DEVELOPED BY CAUER

(Bottom) AN ALTERNATIVE ARRANGEMENT

a

J; and one for impedance V/ab, these can be multiplied and divided

=b

The arm of the original lattice is shown in Fig. 100.
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We have shown how the peak of attenuation for a Class 1 filter
depending on the Q(1) function reaching 1 may be placed in the
right position in the frequency scale to secure any desired result
within the capabilities of a
single ladder section to which
the Q(1) function belongs. We
have also shown how the peaks
are calculated for the Q(2)
function.

This matter of putting the
attenuation peaks at properly
chosen frequencies isa feature of
(@) first importance. It is easy to

P SN

%\I@ \””0 I@ ’

\ ' |
©®)

F16. 101. ONE CoMPLICATED LATTICE SECTION EQUIVALENT TO TWO SIMPLE
LarTICES

show that if two ladder-derived sections are placed end to end, each
having a Q(1) function for attenuation, the function Q(2) expresses
the attenuation of the two sections. This is useful, because it means
that the study of the function Q(2) gives information not only for
lattice but for ladder filters too.

The work of the Russian mathematician Tschebbytcheff is used.
The functions are known as Tschebbytcheff’s polynomials. Fig.
101 (a) and (b) shows that a complicated lattice has an equivalent in
the form of two simple lattices, and Fig. 102 shows a ladder filter
having two sections, each of which corresponds to a lattice section
in Fig. 101. Thus a ladder filter with derived sections corresponds
to the complicated lattice originally studied by Cauer, as regards
attenuation.

Design of Band Pass Filters ]
Whenfit is a case of a low pass filter the symbol Q is used to
. equency in use
indicate cut-off frequency’

Happily for high pass and low pass
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and also band pass filters, the same curves or tables suffice. The
Q_, has a different meaning however. For a high pass filter it is
cut-off frequency
frequency in use
compared with the frequency in the middle of the band, then the
frequency minus mid-band frequency S
half width of band in cycles  ~ P
pose we have a filter for 40-44 kc, and that it is desired to calculate

T 1

F16. 102. Tue Two-SECTION LADDER EQUIVALENT TO Two LATTICE
SECTIONS

, and for a band pass filter, where the band is narrow

value of Q2 , becomes:

its attenuation at 46 kc. Then, because the mid-band frequency is

42 ke, it follows that Q , = Zﬁé = 2. Hence Q, = 2 corresponds

to 46 kc in this case. This makes the design of narrow band filters
quite easy; for having got from curves or tables the Q, values of
infinite attenuation, this formula gives the actual frequency of infinite
attenuation and that enables the filter components to be calculated.

The peak frequencies are given by Cauer’s methods in the follow-
ing form. He has, as already mentioned, several classes, and each
has peaks of attenuation whose places depend on how near to the cut-
off one must work. In other words, one knows the lowest frequency
one wants to use, called the ““lowest usable frequency,” and the
tables give, for each class, the attenuation at and beyond that fre-
quency and also the peaks of attenuation at and beyond the ““lowest
useful frequency” (see Table 21). A 10 kc low pass filter, if desired
to have 20 db attenuation, will give it above 13-4 kc. The peak
must then be made at 17-4 kc. .



CHAPTER XI
FILTERS USING CIRCUITS WITH UNUSUAL ELEMENTS

Quartz Crystal Filters

LATELY it has been found that a flat piece of quartz placed between
two metal plates gives a “‘reactive” voltage when a pressure is fed
to the electrodes. This is due to the so-called ““ Piezo effect.”

Sometimes—as a rule in fact—the faces of the quartz are covered
with metal by sputtering, as it is called, i.e. striking an arc with the
gold or aluminium which it is desired to put on the crystal. This
forms the electrodes. A voltage applied to the electrodes causes the
crystal to alter in shape. Sometimes it is an expansion or contraction
in a direction parallel to the electrodes, sometimes in a direction at
right angles to the electrodes. This is the Piezo effect, or part of it.
Alteration in the shape of the quartz develops an electric charge on
the electrodes, and if an alternating e.m.f. is applied to the crystal,
alternating charges appear on the electrodes to which the voltage is
applied. Since a changing charge is a current, i.e. one coulomb per

_second equals one ampere, currents flow in the leads to the crystal
just as if it were a coil, a condenser, or a resistance. Indeed, it
behaves like all three in turn when the frequency is altered. This is
because the applied voltage that bends it and the currents produced
by its mechanical motion when bent depend, as regards phase, on
the mechanical phase relation between force and motion, i.e. velocity
of the crystal.

How does a vibrating plate move as regards phase of motion
when acted on by force in mechanics? The answer is that everything
depends on frequency, whether the frequency of the alternating
force is below, near to, or above the frequency of resonance (mechan-
ical resonance, that is) of the crystal. Below resonance the stiffness
counts; much above it the mass; at resonance the frictional losses

. control the motion. Further, at mechanical resonance the move-
ment is large, and so are the electric charges due to Piezo action.
The current, therefore, is quite large and may be 10 milliamps. for
one volt apphed to the crystal, which, therefore, lookslike a mere 100
ohms in that case. Above resonance, as we have said, the mass con-
trols the movement in accordance with Newton’s Laws of Motion.

Acceleration is proportional to E where E is the applied electnc
voltage which bends the crystal.

158
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. .. dv .
Since, however, acceleration is ¥7 where v means velocity, and
velocity is the cause of current (because it is change of or rate of

change of position and position means a charge) it follows that
because

Ma cEandI o< v

where a is acceleration, then

dE
I W
Thus there is a 90° phase lag between current and voltage at high
frequency. As the frequency is raised the effect of the mass is to

Fi1c. 103

make the crystal stand still, hence there is no current at an infinite
frequency.

When the correct sign is put into I o %f— it is found that E = 5

constant (w)I, which may be written E = jLwl, so the crystal appears
to have a high snductance. Much below resonance it is a leading
current just like a condenser, so the whole circuit acts like a con-
denser, a resistance, and an inductance in series. In addition, the
electrodes with the quartz between act like a small condenser,
a much larger condenser, however, than the equivalent capacity
due to the Piezo action. Thus the crystal circuit is as shown in
Fig. 103.

g'l‘he crystal acts like a low impedance near resonance, but owing
to the electrode capacity there is an anti-resonance very near to the
resonance point—just a few hundred cycles away, maybe. It is at
a slightly higher frequency than the mechanical resonant frequency
because the whole can only come into anti-resonance when the three

13A—(T.271)
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series elements look like an inductance of reactance comparable
and nearly equal to that of the electrode capacity.

The electrode capacity rather complicates the action of the crys-
tal, and often has to be balanced out. One way to do this is to use
a tapped coil such as the Heaviside equal ratio bridge. A good
“line pass filter” to pass a carrier only, i.e. a very sharp resonance,
may be made, thus (Fig. 104)—

INPUT

T L)

4

Fic. 104

The small variable condenser is used to balance the electrode
capacity of the crystal. The band width is a cycle or two. For 200-
300 cycles band width two crystals may be used of different natural
frequency, any difference in their electrode capacities being made
up by a variable condenser in parallel with the smaller, thus
(Fig. 105)—

- > o w -

——1

k4
gl

Fi16. 105

AN (0 (0 ) ) 0 o'

The condenser may be a differential one.
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It is possible to make a gate type filter with additional coils in
parallel or else in series, thus (Fig. 106)—

a

M we

oy =2¢C

A

Fic. 106

In both cases the crystals 4 and B should be of the same L and C
value. So should C and D. One pair, i.e. 4 and B or else C and D,
should have additional condensers so that all four electrode capaci-
ties can be made correct.

Co-axial Cable Filters

If pieces of co-axial cable are “T”’d into the co-axial cable at
regular intervals, the inner and outer conductors having been cor-
rectly connected at the junctions, a filter results. (See Fig. 107.)

S
} 2

F1G. 107. A Co-axiAL CABLE FILTER

The ends of the “T" pieces may be short-circuited, which is the
condition the sketch is meant to represent.

Condensers can be included in the co-axial line by breaking the
inner conductor and using a ceramic disc inside the outer conductor,
thus (Fig. 108).

Similarly, a shunt condenser may be put across the inner and
outer conductors of the cable. This requires a ceramic cylinder with
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the outer tube forming one conductor plate and a cylindrical elec-
trode inside it connected to the inner cable conductor forming the
other plate. .

The calculation of the pass and attenuation bands of such filters

is not very easy because the simple coil jLw or condenser %Z) in a
ladder or lattice circuit is replaced by a piece of cable having an

OVUTER : R RCR Rt p—

SERIES CONDENSER SHUNT CONDENSER
Fic. 108

impedance, because it is short-circuited at the far end of Z, tanh Pl.
If it is open-circuited it is the coth. Table 23 shows a few co-axial
cable filters.

The sketch (Fig. 109) shows the physical construction of a typical
co-axial cable filter.

Wave Guide Filters

The invention of oscillators for very high frequency work, namely,
over 1000 megacycles, has made possible the use of hollow tubes of

MAIN CABLE
ﬂ : - - . H

db

4

SHORT—‘ _
CIRCUIT FREQUENCY
Attenuation Curve

Fi16. 109. SKETCH SHOWING THE PHYSICAL CONSTRUCTION OF A TYPICAL
Co-axiarL CaBLe FILTER

reasonable size as ““wave guides.”” There are two types of waves, one
called “electric” or “E” type and another called ‘magnetic” or
“H” type waves.



TABLE 23
CO-AXIAL CABLE FILTERS*

THE CIRCUIT ATTENUATION CURVES
f ‘é Band Pass
Lo -0 /
i
1 High Pass with one
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Both contain electric and magnetic forces and fluxes, but there
is no magnetic flux along the pipe in an electric or “E”’ wave—it is’
all in circles—and there is no electric force or displacement current
in an axial direction in the magnetic wave—here the electric force is
in circles round the pipe..

These waves can only exist without very rapid attenuation if
the pipe diameter is larger than a certain critical value depending
on the type and “order” of the wave. Thus a narrow pipe is a high
pass filter. :

A curious and ‘remarkable filter can be constructed for “E”
waves by placing a number of copper ““spokes” in the tube. Since
the electric force is radial these short-circuit it, but allow an “H”
wave to pass.

There are three other forms of filter for wave guides which may
be possible. These are—

(1) Two pipes differing by an odd number of odd half wave-
lengths for the frequency being used which it may be desirable to
attenuate. By the word “wavelength” is here meant wavelength in
the tube, which is not the same as in an unbounded medium such
as air.

(2) Closed resonators with a small tube between to ““couple”
them.

(3) A wave guide with pieces of tube put in as “T"” pieces on the
analogy of the co-axial and acoustic filters which are constructed of
“T” pieces put into a tube at intervals. The analogy between the
co-axial and the present wave guide filter is not a perfect one, but
there is no doubt that curious and probably very useful results will
be obtained by using guides and resonators of specific geometrical
shape.



CHAPTER XII
CONCLUSION

IN view of the author’s Filter Theorem that any set of reactances
(coils and condensers) will make a filter, however they may be con-
nected, it is felt that every circuit possible ought to be mathemati-
cally investigated before one can say that one has found the best
circuit for a given number of coils and condensers.

Cauer’s work, great as it is, does not appear to the writer to spell
finality, for his method applies fundamentally to lattice networks.
The Cauer lattice may be complicated and one may even be able to
design a ladder equivalent say, but there may still be another circuit
connection for which there may be no ladder or-lattice equivalent
(because negative capacity may be wanted).

Fig. 93 shows a lattice, but Fig. 101 shows something more
complete. Why should not this be a better filter than anything one
can make out of a lattice with the same number of coils and con-
densers?

The writer has found when doing research work on filters at
Liverpool University that one can design and build a filter of very
sharp cut-off and good attenuation with only two coils, say, using
neither a lattice nor a ladder, there being no simple ladder equivalent
of the circuit in use.

The method, then, would seem to be, with each and every number
of coils and condensers, to draw every circuit which it is possible to
draw, and then to examine each for “open” and “‘closed” impe-
dance and so form Q functions which will be modified Q functions

for Z, and tanh —123, modified because the circuit may bring in, say,

(at— B?)3 and so the Tschebbytcheff polynomials as used by Cauer
might not be suitable. i

The point is that Q(n) needs so many coils and condensers all of

which must be independent and so capable of being made a different
size if the Q function calls for it.

A certain circuit tried may, however, be so complicated as to
give a complicated Q function, with, say, two B’s the same, i.e.

% V@—1) (2= ByY)
H @—B) (=B
168
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It may be objected that this is not as fluxible a function as the
ordinary Q function, where no two of the factors are the same. That
is true, but it may yet be far better than the simple Q function which
would arise from the small number of coils and condensers which
produced this special function, and the result may be a gain in
attenuation and impedance.

APPENDIX I

DESIGN OF FILTERS FOR OPERATION OVER A RESTRICTED
FREQUENCY RANGE

SuPPOSE a carrier system operates on a total frequency band which has
an upper limit of 50 kc.

When the band pass filters are designed, it may be that a simpler filter
circuit can be made, if the attenuation is allowed to fall away above 50 kc.

In other words, instead of writing the requirements of a filter thus:
“The attenuation is to be low between 26 kc and ‘30 kc, but above 70 db
below 25 kc and above 31 ke,”’ the requirements are modified as follows—

‘““The attenuation is to be low between 26 kc and 30 kc, but, though it
must be over 70 db from 31 kc to 50 kc, it may fall again after 50 kc.”
It will exceed 70 db in the region below 25 ke, but if transformed thus, will
have a smaller attenuation down at the low-frequency end.

When a filter is specified thus over a restricted frequency range onLvy,
there is difficulty in calculating where the peak attenuations ought to be
placed to secure the required performance. Cauer’'s method is to use what
he calls a ““frequency transformation.’”” Since he uses one variable Q for
frequency in all his curves (and tables), what is needed is to be able to say
what the Q value is in the table, corresponding to any and every frequency
in the “spectrum.” For a low pass filter without any frequency transforma-
tion, this is easy. If the cut-off is 10 ke, and in plotting a graph, or for
design information, we desire the characteristics at 12kc, then Q = 1-2,
because this general Q is {3, being

Frequency
Cut-off frequency

in the case of a low pass filter.
When it comes to a high pass filter,
Q Cut-off frequency
-* = 7 Frequency
and for a band pass filter it is again another function of frequency.

Thus the relation between the Q values in Cauer’s tables and the actual
frequency as marked on the oscillator varies with the type of filter. THis
RELATION Is MORE COMPLICATED WHEN FILTERS ARE MADE WITH A
RESTRICTED FREQUENCY RANGE,

So that is what Cauer does. He makes all the peaks of attenuation fall
within the desired range and, to place them in their best positions, formulas
?onnetl:ting the frequency and his ‘‘universal’’ {} are needed. He gives these
ormulas.



APPENDIX II

THE EFFECT ON THE PERFORMANCE OF A FILTER OF
SLIGHT LACK OF ACCURACY IN COILS AND CONDENSERS

EVERYTHING depends on two factors. These are: (1) the purpose for which
a filter is designed, and (2) whether it is a wide or narrow band filter,

In the design of a carrier system, it is desirable to have as much margin
as possible between, for example, the cut-off frequency of the line low pass
filter and the upper end of the range of telephone frequencies, so that if the
filter alters in its cut-off due to inaccuracy in the coils and condensers, no
harm will result in the transmission.

The following rules are useful—

- Rules for Determining the Effect of Inaccuracy in Filters

(1) A 1 per cent increase in every component of a filter gives it the same
impedance, attenuation and insertion loss curves if on the graphs all frequency
figures are made 1 per cent Low.

(2) An increase of 1 per cent in all condensers only gives a lowering of
the frequency figures of ¢ per cent.

(3) Provided all the tuned circuits have their correct resonant frequencies,
the mere change of a coil to a higher value and condenser to a lower value
cannot alter the total impedance of the filter much, except at places where
it is nearly O or infinity, which is near the cut-off.

(4) A general increase in coil inductance of 5 per cent and decrease of
capacity of 5 per cent may, or rather will, alter the impedance at every
frequency by -+ 5 per cent.

{5) Such an increase or decrease of impedance cannot alter the insertion
loss by more than a fraction of 1 db.

(6) It appears that lack of accuracy in the components of coils may be
due to self-capacity.

The self-capacity of certain coils is rather high. The remedy, if this is
important, is to add a spacer to each porcelain piece, giving four rather than
two sections of coil. Inaccuracy in most of the sections does not matter as
much as in a particular section.

(7) The section to be watched is that m section which is nearest in its
peak frequency to the cut-off frequency. Errors in the components of that
particular m section have the greatest influence on the insertion loss curve.

(8) Band pass filters with high mid-band frequency are more critical
than band filters with the same width of band but lower mid-band frequency.
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Losses, general remarks on, 77

in components, 73
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ReciprocAL theorem, 137

Resistance manipulation of formulas of
circuits, 77

—— winding, 12

ELECTRIC

SiupLICITY Of alternating currents, 139
Star mesh theorem, 92

Tann », 68
Terminating filters, 13

FILTERS

Theorems, 126

Thévénin’s theorem, 127

Trigonometry, use of in avoiding arith-
metic, 148

Tugn;d transformer, band pass ’ filter,

VEcTORS at nearly 90°, 74

WavE guide filters, 164
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