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Chapter 2

A New Approach towards ACO through

Punishment Mechanism

2.1 Punished Elitist Ant System and Punished

Rank Ant System

2.1.1 Introduction

As discussed in the chapter 1, a fundamental principle in ACO is the ant trial

formation in which indirect interaction of the ants takes place through the me-

dia of deposited chemical pheromones. These communicative process enables ant

colonies to make adaptive choices based on local information. This stigmergy con-

cept, in general allows for a complex collective cooperative behavior of simpler

agents and inspired the genesis of quite a few number of algorithms and applica-

tions.

However, efficient flow of ants is not only concerned with shortest paths, but

also coping with the characteristics of the ants. An inefficient regulation of ants

flow will usually lead to a bottle neck situation. This is one of the most challenging

tasks in ACO. As the efficient distribution of limited resources by decentralized

individual decisions is still an open problem in many network related problems,

investigation of ant’s behaviors needs to be done cautiously and taking necessary

actions on the performance of ants will be the right move towards the betterment

of the algorithm.

Before we propose a new version of ACO with certain actions taken on the

‘poorly performed’ ants, the brief overview of the generic pheromone model in

ACO is necessary, which was broadly explained in the section 1.4.1. An isolated

ant moves randomly, but an ant encountering a multiple previously accumulated

pheromone trial paths takes decision to traverse on one of them and thereby,

reinforce it with more pheromones. The repetitions of above mechanism represent

the auto-catalytic behavior of real ant colony. Further, ACO algorithms use a
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colony of ants which are allowed to search and reinforce the pathways in order to

find the optimal ones. After initialization of the pheromone trails, ants construct

feasible solutions starting from the random nodes and then updates the pheromone

trials. At each step ants compute a set of feasible moves and select the best one to

carry out the rest of the tour. The transition probability is based on the heuristic

information and pheromone trial. In the beginning, the initial pheromone level

will be set to a small positive constant value and then ants update these values

after completing the construction phase. Different ACO algorithms adopt different

criteria to update the pheromone level. A new concept of punishing the ‘non-

performing ants’ is introduced to regulate the pheromone level at the updation

stage and this mechanism is termed as punishment mechanism.

2.1.2 Punishment Mechanism

The idea of punishment mechanism is conceived from a special class of functions

appearing in literature on constrained combinatorial optimization problems, called

as penalty functions. Of course, penalty functions have been a part of the scien-

tific articles related to the above mentioned areas for decades (Schwefel, 1995 and

Coello, 2002). Boardly, penalty functions are used to restrict the search to fea-

sible solutions and to give a scheme that will drive the population towards the

optimum (Michealewicz, 1995). While incorporating distance together with the

length of the search, into the penalty functions has been generally effective. In this

respect, they are adaptive to the ongoing success of the search and cannot guide

the search towards any particularly attractive regions or away from unattractive

regions based on what has already been observed. Thus, these penalty based meth-

ods in Evolutionary Algorithms are quite popular and their strengths, weaknesses

are throughly discussed in the paper due to Yeniay (2005).

The idea of penalization can be applied to ACO also. The implication of

punishment mechanism on ACO is that, it draws a boundary across the promising

regions in a search space and within this boundary, ants are forced to search for

the optimal solution. In this chapter, we introduce and discuss the incorporation

29



of punishment mechanism in ACO. This approach involves some new equations,

which are carefully chosen such that, evaluation process is not long, otherwise a lot

of computational function assessments may be required, thereby making algorithm

less practical. A variety of constraint handling methods have been suggested by the

researchers. Each method has its own merits and demerits. The main problem

is to define the punishment process mathematically. Consequently, researchers

have to experiment with different formula of punishment mechanism for different

problems. The generic pseudo-code for the Punished Ant Colony Optimization is

given by Algorithm 5:

Algorithm 5 Punished Ant Colony Optimization

Initialize the pheromone values.
while termination conditions not met do
START ScheduleActivities
ConstructAntsSolutions
UpdatePheromone
UpdateEliteAntPheromone
UpdateNonEliteAntPheromone
DeamonActions
END ScheduleActivities

end while

The punished ACO pseudo-code has additional two new procedures namely

UpdateEliteAntPheromone and UpdateNonEliteAntPheromone in the conventional

ACO. The UpdateEliteAntPheromone procedure reinforces the path traveled by

the elite ants and UpdateNonEliteAntPheromone procedure removes specified quan-

tity of pheromone trial on a non-elite paths. We discuss the incorporation of pun-

ishment mechanism to some variants of ACO and give detailed analysis in the

coming sections.
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2.1.3 Punishment Mechanism in Elitist Ant System (EAS)

and Rank Ant System (RAS)

The concept of elitism was introduced in AS by Dorigo et al. (1996) and it

was further extended to rank the ants by Bullnheimer (1999), where pre-specified

selected number of best (elite) paths of the iteration will be reinforced for the

second time. The basic purpose of additional reinforcement is to ensure that search

for optimal solution remain in the promising area of the search space. However,

it is possible to restrict further by incorporating the punishment mechanism. The

punishment mechanism suggests the removal of certain amount of pheromone trial

on a nonelite paths. Thus, pheromone removal process decreases the probability

of selecting the non-elite paths and ants are forced to search in the neighborhood

of the promising solutions.

The punishment mechanism has been incorporated into two versions of ant

systems namely, Elitist ant system and Rank ant system. Here onwards these new

algorithms are called Punished Elitist Ant System (PEAS) and Punished Rank

Ant System (PRAS) respectively. The basic purpose to introduce the punishment

mechanism is to favor exploitation over exploration by restricting the search in

promising area of the search space. The quantity of pheromone to be removed

will be specified by the punishment specification in the algorithm. The punish-

ment specification for PEAS specifies to decrease the quantity of pheromone trial

proportional to the quality of solution found on a non-elite paths and in case of

PRAS, all the non elite paths are weighted according to their performances and

then proportionately decreased. The generic punishment feature is given by the

equation:

τij = τij −∆τ ∗ij (2.1)

where ∆τ ∗ij is

∆τ ∗ij =

l
∑

k=1

∆τkij
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The ∆τ ∗ij represents the amount of pheromone trial decrease on a path ij due to

l number of non-elite ants.

Punishment Specification for PEAS

The punishment specification for PEAS directs to decrease the quantity of pheromone

trial proportional to the quality of solution found on a nonelite paths.

∆τkij for PEAS is given by the equation:

∆τkij =







l·Q∗/Lk if (i, j) ∈ kth ant’s non performing tour

0 otherwise
(2.2)

where Q∗ is the algorithmic constant and Lk represents the tour length of the

kth ant. If e represents the number of elite ants, then l represents the number of

non-elite ants given by the expression l = m− e.

Punishment Specification for PRAS

The punishment specification for PRAS directs that the quality of solution found

on a non elite paths must be ranked according to their performances and then

proportionately decreased.

∆τkij for PRAS is given by the equation:

∆τkij =







Q∗· (l− k)/Lk if (i, j) ∈ kth ant’s non performing tour

0 otherwise
(2.3)

It can be observed from equation (2.1) that amount of pheromone removed

from a path will be proportional to the quality of solution found. Thus, a better

infeasible solution will receive less punishment than the inferior one.
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2.1.4 Experimental Results and Performance Analysis

In order to demonstrate the superiority of the proposed algorithms, a comparative

analysis was performed with following existing ant algorithms: AS, EA, RA and

variants of MMAS - MMAS with Global best updation (MMAS+GB) , MMAS

with Global best updation and Pheromone trial smoothing (MMAS+GB+PTS),

MMAS with Iteration best updation (MMAS+IB) and MMAS with Iteration best

updation and Pheromone trial smoothing (MMAS+IB+PTS).

Parameter Settings

Inorder to assess the performance of algorithms, parameters α, β were varied from

1 to 5 and ρ was varied from 0.7 to 1.0. The algorithms were executed 10 times

independently by considering some of the datasets available in the TSPLIB (see

Table 2.1). The maximum number of iterations was set to 1, 00, 000. The dataset

considered for experimentation purpose are as follows:

Table 2.1: Datasets for ACO algorithms.

Datsets

Bays29

Att48

Eil51

St70

Eil76

Kroa100

Kroa200

Lin318

Computational Results and Comparative Analysis

Table 2.2 shows the comparative results of algorithms with that of existing ones

for best solution, average solution and percentage of deviation from the optimal

solution. The average solution was computed using the best solutions of last 50

iterations. The proposed algorithms were able to find the better solutions and
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improved averages for most of the datasets. The observed best solution for PEAS

variant has a deviation of 0.02% for eil51 and lin318 datasets and in case of PRAS,

it is 0% for kroa100, kroa200 and lin318 datasets. Table 2.2 shows that PEAS

algorithm provides better solution for smaller problem dimension. The maximum

deviation in best solution observed is 0.27% in eil76 and kroa100, which is com-

paratively lesser than the other algorithms. Similarly, the PRAS algorithm gives

slightly better solution than the PEAS algorithm for higher dimension problem

and the maximum deviation observed is 0.56% for st70 dataset. Another inter-

esting observation is that, average solutions of PEAS and PRAS have smaller

deviation from the optimal solution compared to other existing algorithms. The

maximum deviation observed in case of PEAS is 0.79% and in case of PRAS is

0.81%. Hence, it can be concluded that, these algorithms succeed in restricting

the search in promising region of search space.

Table 2.2: Performance comparision of PEAS and PRAS for various datasets with
other variants of ant algorithm.

Datasets Algorithms Best (Std Dev) Average (Std Dev)

bays29

AS 2065.6 (2.25%) 2078.3 (2.88%)

MMAS+GB 2045.2 (1.24%) 2053.3 (1.64%)

MMAS+GB+PTS 2036.4 (0.81%) 2043.7 (1.17%)

MMAS+IB 2032.1 (0.59%) 2038.1 (0.89%)

MMAS+IB+PTS 2022.1 (0.1%) 2025.3 (0.26%)

EA 2040.6 (1.01%) 2052.4 (1.6%)

RA 2030.2 (0.5%) 2037.8 (0.88%)

PEAS 2021.7 (0.08%) 2024.3 (0.21%)

PRAS 2025.7 (0.28%) 2028.9 (0.44%)

att48

AS 10880.6 (2.37%) 10895.3 (2.51%)

MMAS+GB 10690.8 (0.59%) 10704.5 (0.71%)

MMAS+GB+PTS 10666.4 (0.36%) 10680.7 (0.49%)
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Datasets Algorithms Best (Std Dev) Average (Std Dev)

MMAS+IB 10635.5 (0.07%) 10645.8 (0.16%)

MMAS+IB+PTS 10634.4 (0.06%) 10640.8 (0.12%)

EA 10810.6 (1.71%) 10825.6 (1.85%)

RA 10728.4 (0.94%) 10740.6 (1.05%)

PEAS 10640.7 (0.11%) 10654.8 (0.25%)

PRAS 10680.1 (0.49%) 10694.4 (0.62%)

eil51

AS 432.6 (1.54%) 437.3 (2.65%)

MMAS+GB 430.4 (1.03%) 434.1 (1.89%)

MMAS+GB+PTS 428.5 (0.58%) 429.2 (0.75%)

MMAS+IB 426.5 (0.01%) 427.8 (0.43%)

MMAS+IB+PTS 426.2 (0.04%) 427.8 (0.43%)

EA 427.1 (0.25%) 428.1 (0.49%)

RA 430.2 (0.98%) 434.5 (1.99%)

PEAS 426.1 (0.02%) 426.5 (0.11%)

PRAS 426.3 (0.07%) 426.8 (0.18%)

st70

AS 705.3 (4.48%) 711.6 (5.42%)

MMAS+GB 695.6 (3.05%) 702.6 (4.08%)

MMAS+GB+PTS 688.6 (2.01%) 693.6 (2.75%)

MMAS+IB 676.9 (0.28%) 682.7 (1.14%)

MMAS+IB+PTS 675.5(0.07%) 680.3(0.78%)

EA 695.3 (3%) 700.8 (3.82%)

RA 682.6 (1.12%) 688.8 (2.04%)

PEAS 675.5 (0.07%) 678.9 (0.57%)

PRAS 678.8 (0.56%) 680.5 (0.81%)

eil76

AS 580.3 (7.8%) 592.6 (10.14%)

MMAS+GB 547.4 (1.74%) 552.7 (2.37%)

MMAS+GB+PTS 544.6 (1.22%) 548.9 (2.02%)

MMAS+IB 539.2 (0.22%) 542.6 (0.85%)
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Datasets Algorithms Best (Std Dev) Average (Std Dev)

MMAS+IB+PTS 538.5 (0.09%) 539.9 (0.35%)

EA 560.7 (4.21%) 565.3 (5.07%)

RA 545.6 (1.41%) 551.4 (2.49%)

PEAS 539.5 (0.27%) 541.8 (0.7%)

PRAS 538.1 (0.01%) 539.2 (0.22%)

Kroa100

AS 21913.5 (2.96%) 22471.4 (5.58%)

MMAS+GB 21722.3 (2.06%) 21814.7 (2.50%)

MMAS+GB+PTS 21350.3 (0.32%) 21417.1 (0.64%)

MMAS+IB 21310.8 (0.13%) 21373.2 (0.43%)

MMAS+IB+PTS 21285.4 (0.01%) 21336.9 (0.26%)

EA 21780.6 (2.34%) 21890.7 (2.86%)

RA 21612.7 (1.55%) 21746.0 (2.18%)

PEAS 21340.8 (0.27%) 21450.6 (0.79%)

PRAS 21283.3 (0%) 21390.8 (0.51%)

kroa200

AS 31156.7 (6.09%) 31210.3 (6.27%)

MMAS+GB 29546.8 (0.6%) 29575.3 (0.7%)

MMAS+GB+PTS 29482.7 (0.39%) 29520.9 (0.52%)

MMAS+IB 29421.3 (0.18%) 29445.8 (0.26%)

MMAS+IB+PTS 29372.2 (0.01%) 29385.8 (0.06%)

EA 29870.6 (1.71%) 29921.6 (1.88%)

RA 29744.4 (1.28%) 29781.7 (1.4%)

PEAS 29385.8 (0.06%) 29411.3 (0.14%)

PRAS 29370.6 (0%) 29382.4 (0.04%)

lin318

AS 42780.3 (1.78%) 43139.9 (2.64%)

MMAS+GB 42593.8 (1.34%) 42647.1 (1.47%)

MMAS+GB+PTS 42454.8 (1.01%) 42496.2 (1.11%)

MMAS+IB 42280.9 (0.59%) 42289.2 (0.61%)

MMAS+IB+PTS 42035.7 (0.01%) 42055.8 (0.06%)
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Datasets Algorithms Best (Std Dev) Average (Std Dev)

EA 42670.6 (1.52%) 42711.9 (1.62%)

RA 42467.1 (1.04%) 42491.8 (1.10%)

PEAS 42038.6 (0.02%) 42057.8 (0.06%)

PRAS 42032.1 (0%) 42065.4 (0.08%)

Parameter Sensitivity Analysis

To assess the parameter sensitivity of the algorithms, a comparative analysis were

performed with the best algorithm i.e., MMAS+IB+PTS available in the liter-

ature. Figure 2.1(a) shows the comparison of the algorithms with MMAS+IB

+PTS for the smaller dimension eil51 dataset. It can be observed that PEAS

algorithm exhibits less variation in best solution compared to other algorithms for

varying number of ants and provide best result for m=30. Figure 2.1(b) shows

the comparison graph of PEAS and PRAS variants for varying pheromone trial

strength. The proposed variants are sensitive to the amount of pheromone trial

and perform better for higher pheromone strength. The PEAS variant provide

best result for ρ=0.99 and PRAS for ρ=0.9.

Similarly, Figure 2.2 shows the variation of best solution for varying number of

ants for larger dataset Kroa100, where PRAS exhibits lesser variation compared

to other ant algorithms and provide best result for m=25. It can be further ob-

served that performance of PEAS is inferior to both PRAS and MMAS+IB+PTS

variants.

Figure 2.3 illustrates the variation of best solution for varying number of pun-

ished ants. The number of ants m was set to 50. It can be observed that for PEAS

algorithm, small number of punished ants provides better result than the PRAS

algorithm. As the number of punished ants increases, quality of solution decreases

thereby indicating the difficulty to find the solution in a small search space. The

solution quality deteriorates much faster for PEAS than the PRAS variant.
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Figure 2.1: Comparision of PEAS and PRAS algorithms for eil51 dataset.
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Figure 2.2: Comparision of PEAS and PRAS algorithms for variable number of
ants for Kroa100 dataset.

Table 2.3: Parameter details for PEAS and PRAS

PEAS 1 ≤ α ≤ 2 3 ≤ β ≤ 4 0.8 - 0.9
PRAS 2 ≤ α ≤ 4 1 ≤ β ≤ 3 0.76 - 0.85
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Figure 2.3: Comparison graph of PEAS and PRAS algorithms for variable number
of punished ants.

Table 2.3 reports the observed parameter values for PEAS and PRAS algo-

rithms, when the optimal solutions were obtained. The parameter values are spec-

ified in range bounds to indicate the most common observations for the datasets

under consideration. For example, α varies from 1 to 2, β varies from 3 to 4 and ρ

varies from 0.8 to 0.9 for most of the datasets used for PEAS algorithm. Similarly,

α varies from 2 to 4, β varies from 1 to 3 and ρ varies from 0.76 to 0.85 for PRAS

variant. It can be concluded that PEAS provides better result for lower α, higher

β, ρ values and PRAS provides better result for higher α and wider range of values

for β and ρ.
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2.2 Performance Linked Elitist Ant System and

Performance Linked Rank Ant System

2.2.1 Introduction

The previous section discussed about the incorporation of punishment mechanism

in EAS and RAS algorithms. The search mechanism were static in nature and it

is controlled by composition of elite ants and non-elite (punished) ants that are

specified as parameter settings. However, it is possible to induce dynamicity in

search space by using appropriate elite selection mechanism. The elitism is multi-

factor dependent. As an operational feature of ACO, elitism provides a means for

improvising path drift towards feasible solutions by ensuring that best elite ants

are allowed to reinforce the paths. Some ants of high elitism may turn out to be

more important to the final solution than others. It is important to maintain an

adequate selection pressure of elite ants as demanded by the applications. Since,

static elitism can increase the path selection pressure by preventing the loss of

pheromones due to equal treatment on any elitistic ant. Thus, as an adjustment

of degree of elitism, we can introduce a concept of elite selection mechanism in

ACO.

2.2.2 Machine Learning

Machine learning(ML)(Ethem, 2005) is a discipline of computing field concerned

with training the machines to perform certain tasks. A machine learns to perform

the task by gaining knowledge and by remembering the past experiences. The

acquired knowledge and experience will be used to make the decisions that are

necessary to solve the task. The underlying basis for learning mechanism is the

statistical data collected from the observation and the data that will evolve in the

future. The collected data will be used to train the machine, so that it can take

appropriate decision for solving the task and the evolved data is used to adjust

the decision making ability of the machines in order to improve the accuracy and

performance. The ultimate goal of the ML is to mimic the human intelligence
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in machines. Machine learning is an interdisciplinary field and borrowed the idea

from other fields like statistics, pattern recognition, artificial intelligence, adaptive

control theory, evolutionary models etc. A machine can be trained to solve some

of the tasks like (Han and Kamber, 2004);

• Classification - The process in which machine will act as a classifier and

assign the data to the groups/classes they belong or assign the label based

on group for the previously unseen data.

• Prediction - The mechanism is similar to classification, where a machine

predicts the class of the incoming data based on past experience and knowl-

edge.

• Rule Generation - The process of generating the rules by looking into the

relations that exist between the data.

• Clustering - The process of grouping the data based on the similarities that

exist in the data.

There are many learning mechanisms in literature and some of them are:

1. Supervised learning - A machine is acquainted with the knowledge about

the number of classes and characteristic features of each class. Initially,

machine will be trained with few samples of data to perform the task. Clas-

sification (Tan et al., 2006) and prediction (Domingos and Pazzani, 1997)

tasks fall under this category of learning.

2. Unsupervised learning - In this learning mechanism, machine have no

knowledge about the number of classes and characteristic features about the

classes. Infact, machine learns by performing task. Clustering (Tan et al.,

2006) is an example that falls under this category of learning.

3. Reinforcement learning - A learning mechanism that specifies the action

need to be taken for each observation and reward the action in the form of

feedback that guides the learning process (Kaelbling et al., 1996).
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The ML methods find lot of applications in real life and some of the applications

like analyzing customer buying pattern in supermarket, face recognition, stock

market prediction etc have been commercially deployed.

2.2.3 The Elitist Ants Selection Mechanism

In this section, we will discuss the incorporation of ML philosophy in elitist ants

selection procedure. The elitist selection process can be treated as a two class clas-

sification problem, where we need to design the classifier that will automatically

classify the ants depending upon their performances. The classifier will place the

performing ants into one class and the non-performing ants into another class. It

can be observed that, ants have to remember the class they belong to, in addition

to tour length. The statistical tools will provide the decision boundary that sepa-

rates the two classes. The following statistical tools have been used in the design

of classifier:

• Mid - Range Tour Selection (MRTS): MRTS is the average of best

tour length and worst tour length in a given iteration and is given by the

equation:

MRTS =
Best Tour Length + Worst Tour Length

2
(2.4)

• Mean Tour Selection (MTS): MTS is the mean of all the tour lengths

in a given itertion and is given by the equation:

Mean = 1/n

n
∑

i=1

TLi (2.5)

where TLi represents the tour length.

• Median Tour Selection (MeTS): MeTS is the median obtained by ar-

ranging all the tour lengths of a given iteration TLi in the increasing order

i.e., TL1 ≤ TL2 ≤· · · · ≤ TLn and TLn/2 is selected as the median value.
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The MRTS, MTS and MeTS values will act as boundary separating the perform-

ing and non performing ants.

2.2.4 Performance Linked Elitist Ants Selection Mecha-

nism

The motivation for emergence of these types of algorithms comes from the following

observation. The first observation is that the papers due to Dorigo et al. (1996)

and Bullnheimer et al., (1999) do not discuss the criteria for selecting the elitist

ants and all of the ants were considered as elitist. Infact, the program execution

reveals that having fewer number of elitist ants will restrict the exploitation near

the good solutions (or smaller regions) and may not contribute much to the final

quality of solution. Similarly, if large number of ants were selected as elitist, then

most of the paths will get additional reinforcement, leading to better exploration

of search space. Although there will be improvement in quality of solution, but in

due process, there will be reinforcement for some paths that may not contribute

to the final solution. This necessitates the selection of optimum number of ants

to strike the balance between exploration and exploitation.

The second observation is that ants gain information about the search space

through exploration at the early stage of search process. It can be argued that

size of the search space will be large at the initial stage and will get reduced at

the later stage due to knowledge gained by the ants in exploration phase. The

additional reinforcement of appropriate paths in exploration stage should help ants

to look for better solution in exploitation stage. The search process should update

comparatively larger number of elite paths during exploration phase and fewer

number of paths upon transition to exploitation phase. It is interesting to observe

that overall search region is going to be dynamic in nature and the dynamicity is

introduced by selecting appropriate number of elite ants. The selection of elite ants

is purely based on the performance of ants and is done using statistical functions.
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The generic pseudo-code for performance linked Elitist ACO is given by Algorithm

6:

Algorithm 6 Performance Linked Elitist Ant Colony Optimization

Initialize the pheromone values.
while termination conditions not met do
START ScheduleActivities
ConstructAntsSolutions
SelectEliteAnts
UpdatePheromone
UpdateEliteAntPheromone
DeamonActions
END ScheduleActivities

end while

The performance linked elitist ACO pseudo-code incorporates two new proce-

dures namely SelectEliteAnts and UpdateEliteAntPheromone to the conventional

ACO. The SelectEliteAnts procedure implements a classifier that is trained to

classify the ants based on statistical functions and UpdateEliteAntPheromone pro-

cedure reinforce the selected elite paths choosen by SelectEliteAnts procedure.

2.2.5 Performance Linked EAS and Performance Linked

RAS

This section discusses about a new approach towards ACO, which is an effective

combination of existing ant algorithm and non-static elitism. A static elitism may

lead to premature convergence to a sub-optimal solution. This is because a high

selection pressure results in the population reaching equilibrium, but it sacrifices

ants diversity. Thus, it is expected to identify the ants by the strength of elitism.

This, strategy may gently push the simulated population towards the restoration

of diversity among the elite ants.

The performance based elitist selection mechanism was applied to well known

versions of ant algorithms namely EAS and RAS. The elite selection mechanism

will place all the performing ants into one class and non-performing ants into

another class based on statistical function. Suppose, if mean function is used as
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a classifier, then tour performances lesser than mean will be in performing class

and the rest will be in non-performing class. The performing ants will get chance

for additional reinforcement. Since the number of selected ants varies across the

iteration, we will name the selected ants as Influential Ants (IA). The IA will

provide the specification for reinforcement. These new algorithms here onwards

are named as Performance Linked Influential Elitist Ants System(PLIEAS) and

Performance linked Influential Rank Ants System(PLIRAS) due to incorporation

of EAS and RAS in IA. The integration of these algorithms and statistical tools,

result in six variants of ant algorithms like Performance Linked Influential Eli-

tist Ant Sytem - Mid-Range(PLIEASMR), Performance Linked Influential Eli-

tist Ant Sytem - Mean(PLIEASM), Performance Linked Influential Elitist Ant

Sytem - Median (PLIEASMed), Performance Linked Influential Rank Ant Sytems

- Mid-Range(PLIRASMR), Performance Linked Influential Rank Ant Sytems -

Mean(PLIRASM) and Performance Linked Influential Rank Ant Sytems - Me-

dian(PLIRASMed).

IA Specification for PLIEAS

The algorithmic specification for PLIEAS suggests the reinforcement of IA paths

and is given by the expression

e∗.Q∗/L (2.6)

where e∗ is the number of IA selected by a classifier in a given iteration, Q∗ is

algorithmic constant and L is the best tour length in the performing ant’s tour

list.

IA Specification for PLIRAS

The algorithmic specification for PLIRAS suggests to rank the performance of IA

and accordingly reinforce their traveled paths. It is given by the expression

∆τkij =







Q∗· (e∗ − k)/Lk if (i, j) ∈ kth performing ant’s tour list.

0 otherwise
(2.7)
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where Lk is the tour length of kth performing ant and k is the ranking index.

It should be noted that elitist selection mechanism introduces the dynamicity

in search space by varying the number of elite ants across the iterations, unlike

traditional EAS and RAS, where in, the number of elite ants were fixed as a part

of parameter settings.

2.2.6 Punishment mechanism in PLIEAS and PLIRAS

The PLIEAS and PLIRAS algorithms can be extended by incorporating the pun-

ishment features into it. In the process, non performing ants will be punished

by removing certain amount of pheromone on the traveled path. The quantity of

pheromone to be removed will be specified by punished IA specification. These

new algorithms here onwards will be named as Punished PLIEAS (PPLIEAS) and

Punished PLIRAS (PPLIRAS). The generic punishment feature for IA is given by

the equation:

τij = τij −∆τ ∗ij (2.8)

where ∆τ ∗ij is

∆τ ∗ij =
l∗
∑

k=1

∆τkij

where l∗ is the number of punished ants and is given by the expression l∗ = m−e∗.

The generic pseudo-code for Punished Performance Linked Elitist ACO is given

by Algorithm 7:

The Punished Performance Linked Elitist ACO has an additional procedure

UpdateNonEliteAntPheromone to reflect the punishment mechanism. The pro-

cedure implements a code to remove certain amount of pheromone on non elite

paths traveled by non performing ants.

Punished IA Specification for PPLIEAS

The punished IA specification for PPLIEAS specifies to decrease the quantity of

pheromone trial proportional to the quality of solution found on a non elite paths.
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Algorithm 7 Punished Performance Linked Elitist Ant Colony Optimization

Initialize the pheromone values.
while termination conditions not met do
START ScheduleActivities
ConstructAntsSolutions
SelectEliteAnts
UpdateAntPheromone
UpdateEliteAntPheromone
UpdateNonEliteAntPheromone
DeamonActions
END ScheduleActivities

end while

∆τkij for PPLIEAS is given by the equation:

∆τkij =







l∗·Q∗/Lk if (i, j) ∈ kth non performing ant’s tour list

0 otherwise
(2.9)

Punished IA Specification for PPLIRAS

The punished IA specification for PPLIRAS specifies that non elite paths are

ranked according to their performances and then proportionately decreased. ∆τkij

for PPLIRAS is given by the equation:

∆τkij =







Q∗· (l∗ − k)/Lk if (i, j) ∈ kth non performing ant’s tour list

0 otherwise
(2.10)

The equations (2.9) and (2.10) suggest that pheromone trail removal will be

proportional to the quality of solution found.

2.2.7 Experimental Results and Performance Analysis

Parameter Settings

Inorder to assess the performance of the above algorithms, parameters α, β were

varied from 1 to 5 and ρ was varied from 0.7 to 1.0. The algorithms were exe-

cuted 10 times independently by considering some of the datasets available in the

TSPLIB (see Table 2.1). The maximum number of iterations was set to 1, 00, 000.
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Computational Results and Comparative Analysis for IA

Table 2.4 provides the comparative results for PLIEAS and PLIRAS algorithms

incorporated with statistical tool (Mean, Median and Mid-Range tour selection).

These variants were compared with MMAS+IB+PTS for best solution, average

solution and the percentage of deviation from the optimal solution. The aver-

age solution was computed using the best solutions of last 50 iterations. Table

2.4 shows that PLIEASM provides best solution for att48 dataset with deviation

of 0.04% and PLIEASMed provides best solution for st70 dataset with deviation

of 0.05%. Similarly, PLIRASM provides best solution for Kroa100, lin318 with

observed deviation of 0.01% and PLIRASMed provides best results for Kroa100

and Kroa200 with no deviation. The solutions provided by MRTS deviates more

from the optimal solution compared to other tour selection mechanism for both

PLIEAS and PLIRAS algorithms and it can be attributed to updation of not so

promising paths. The algorithmic simulation suggests that median function takes

lesser number of iterations to find optimal solution than the mean function. An-

other interesting observation is that, average solutions of proposed algorithms for

most of the datasets have larger deviation from the optimal solution, indicating

lack of focus to concentrate on promising region of search space.

Table 2.4: Performance comparasion of Influential Ants on various datasets.

Datasets Algorithms Best (Std Dev) Average (Std Dev)

bays29

MMAS+IB+PTS 2022.1 (0.1%) 2025.3 (0.26%)

PLIEASMR 2039.4 (0.96%) 2055.6 (1.76%)

PLIEASM 2034.7 (0.72%) 2046.9 (1.33%)

PLIEASMed 2021.7 (0.08%) 2047.3 (1.35%)

PLIRASMR 2044.4 (1.20%) 2059.5 (1.95%)

PLIRASM 2040.8 (1.02%) 2055.9 (1.77%)

PLIRASMed 2042.2 (1.09%) 2057.8 (1.87%)
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Datasets Algorithms Best (Std Dev) Average (Std Dev)

att48

MMAS+IB+PTS 10634.4 (0.06%) 10640.8 (0.12%)

PLIEASMR 10821.8 (1.82%) 10892.4 (2.48%)

PLIEASM 10632.8 (0.04%) 10695.1 (0.63%)

PLIEASMed 10638.2 (0.09%) 10702.7 (0.7%)

PLIRASMR 10768.9 (1.32%) 10844.7 (2.03%)

PLIRASM 10656.8 (0.27%) 10690.5 (0.58%)

PLIRASMed 10643.8 (0.14%) 10697.4 (0.65%)

eil51

MMAS+IB+PTS 426.2 (0.04%) 427.8 (0.43%)

PLIEASMR 438.4 (2.42%) 448.3 (4.74%)

PLIEASM 426.5 (0.11%) 442.6 (3.41%)

PLIEASMed 426.8 (0.18%) 433.2 (1.21%)

PLIRASMR 436.2 (1.91%) 444.9 (3.94%)

PLIRASM 434.6 (1.54%) 442.7 (3.43%)

PLIRASMed 431.6 (0.84%) 439.7 (2.73%)

st70

MMAS+IB+PTS 675.5 (0.07%) 680.3 (0.78%)

PLIEASMR 712.7 (5.58%) 730.4 (8.20%)

PLIEASM 678.5 (0.51%) 710.1 (5.2%)

PLIEASMed 675.4 (0.05%) 698.3 (3.45%)

PLIRASMR 685.3 (1.52%) 710.7 (5.28%)

PLIRASM 678.5 (0.51%) 689.4 (2.13%)

PLIRASMed 677.2 (0.32%) 686.4 (1.68%)

eil76

MMAS+IB+PTS 538.5 (0.09%) 539.9 (0.35%)

PLIEASMR 552.6 (2.71%) 582.4 (8.25%)

PLIEASM 545.7 (1.43%) 551.4 (2.49%)

PLIEASMed 547.6 (1.78%) 561.2 (4.31%)

PLIRASMR 554.3 (3.02%) 575.7 (7%)

PLIRASM 542.4 (0.81%) 549.8 (2.19%)

PLIRASMed 540.3 (0.42%) 548.7 (1.98%)
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Datasets Algorithms Best (Std Dev) Average (Std Dev)

Kroa100

MMAS+IB+PTS 21285.4 (0.01%) 21336.9 (0.26%)

PLIEASMR 21890.8 (3.28%) 22140.7 (4.03%)

PLIEASM 21540.6 (1.21%) 21598.6 (1.48%)

PLIEASMed 21385.7 (0.48%) 21456.9 (0.82%)

PLIRASMR 21780.4 (2.34%) 21930.7 (3.04%)

PLIRASM 21284.6 (0.01%) 21436.3 (0.72%)

PLIRASMed 21283.8 (0%) 21385.6 (0.48%)

kroa200

MMAS+IB+PTS 29372.2 (0.01%) 29385.8 (0.06%)

PLIEASMR 31468.9 (7.15%) 31790.5 (8.24%)

PLIEASM 29640.6 (0.92%) 29689.9 (1.09%)

PLIEASMed 29536.7 (0.57%) 29590.3 (0.75%)

PLIRASMR 29840.6 (1.60%) 29994.8 (2.13%)

PLIRASM 29390.9 (0.07%) 29569.4 (0.68%)

PLIRASMed 29370.3 (0%) 29480.8 (0.38%)

lin318

MMAS+IB+PTS 42035.7 (0.01%) 42055.8 (0.06%)

PLIEASMR 44896.5 (6.82%) 45218.7 (7.58%)

PLIEASM 43220.6 (2.83%) 43312.7 (3.05%)

PLIEASMed 42870.4 (2%) 42910.3 (2.09%)

PLIRASMR 43723.6 (4.03%) 43890.4 (4.42%)

PLIRASM 42034.5 (0.01%) 42392.3 (0.86%)

PLIRASMed 42137.2 (0.25%) 42297.8 (0.63%)

Parameter Sensitivity Analysis for IA

Figure 2.4 shows the performance of PLIEAS variants for eil51 dataset. In gen-

eral, performance of MRTS variants is inferior to MTS and MeTS for varying

ACO parameters. It can be observed from Figure 2.4(a) that PLIEASMed variant

performance is better for smaller ants population and PLIEASM variant performs

well for larger ants population. Figure 2.4(b) shows the sensitiveness of PLIEAS

variant for varying trial strength. The PLIEASMed variant exhibits lesser vari-
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ation compared to other variants and provides best result for ρ=0.9. The graph

also reveals that PLIEASMed variant performs better for higher trial strength and

PLIEASM for trial strength with ρ=0.8.

Figure 2.5 shows the performance of PLIRAS variants for st70 dataset. Figure

2.5(a) reveals that performance of PLIEASM is better for smaller ants population

in the range 5≤ n ≤10 and for PLIEASMed in the range of 10≤ n ≤15. The

PLIEASM and PLIEASMed variants provide best result for n=10. Figure 2.5(b)

reveals some interesting facts. Firstly, higher pheromone evaporation rate has a

bad effect on the performance of PLIEASMed and PLIEASMR variants. Secondly,

PLIEASMed variant shows sharp improvement in the observed tour lengths for

ρ ≥0.85 with the observed best result for ρ=0.95.

Table 2.5 reports the observed parameter values, when the optimal solutions

were obtained for PPLIEAS and PPLIRAS algorithms. The parameter values

are specified in range bounds for all the algorithm variants to indicate the most

common observations for the datasets under consideration. It can be observed that

parameter α exhibits larger variation in values from 1 to 4 and β usually varies

from 1 to 3. Similar observation can be made for ρ. For the MRTS variants, better

solution quality was obtained for lower trial values and it varies from 0.7≤ ρ ≤0.82.

For MTS variants, better result was obtained for higher trial values that varies

from 0.86≤ ρ ≤0.95 and MeTS variants exhibit a larger variation in the range of

0.76≤ ρ ≤0.99.

Table 2.5: Parameter details for PLIEAS and PLIRAS

PLIEASMR 2 ≤ α ≤ 4 1 ≤ β ≤ 3 0.7 - 0.79
PLIEASM 1 ≤ α ≤ 3 2 ≤ β ≤ 3 0.86 - 0.95

PLIEASMed 3 ≤ α ≤ 4 1 ≤ β ≤ 2 0.92 - 0.99
PLIRASMR 2 ≤ α ≤ 3 2 ≤ β ≤ 4 0.76 - 0.82
PLIRASM 1 ≤ α ≤ 3 2 ≤ β ≤ 3 0.89 - 0.95

PLIRASMed 2 ≤ α ≤ 4 1 ≤ β ≤ 3 0.76 - 0.93
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Figure 2.4: Performance comparison of PLIEAS variants for eil51 dataset.
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Computational Results and Comparative Analysis for Punished IA

Table 2.6 shows the incorporation of punishment mechanism to IA. On compar-

ison with Table 2.4, it can be observed that punishment mechanism improvises

the solution and also provides the best optimal solution for some of the datasets.

Table 2.6 reveals that PPLIEASM provides best solution for att48 dataset with

the deviation of 0.03% and for st70 dataset with the deviation of 0.04%. The

PPLIEASMed provides better solution for bays29, eil51 dataset with deviation

in observed solution 0.07%, 0.02% respectively and PPLIRASMed provides best

solution for Kroa100, Kroa200 with no deviation. Similar observation can be

made for PPLIRASM that exhibits no deviation for lin318 dataset. The punish-

ment mechanism improvises the average solution for most of the datasets under

consideration, demonstrating the ability of algorithms in restricting the search in

promising area of search space.

Table 2.6: Performance comparision of Punished Influential Ants on various
datasets.

Datasets Algorithms Best (Std Dev) Average (Std Dev)

bays29

MMAS+IB+PTS 2022.1 (0.1%) 2025.3 (0.26%)

PPLIEASMR 2053.5 (1.65%) 2082.1 (3.07%)

PPPLIEASM 2022.4 (0.11%) 2027.8 (0.38%)

PPLIEASMed 2021.5 (0.07%) 2023.6 (0.17%)

PPLIRASMR 2052.8 (1.62%) 2074.4 (2.69%)

PPLIRASM 2038.9 (0.93%) 2044.9 (1.23%)

PPLIRASMed 2034.7 (0.72%) 2044.6 (1.21%)

att48

MMAS+IB+PTS 10634.4 (0.06%) 10640.8 (0.12%)

PPLIEASMR 10730.5 (0.96%) 10834.4 (1.94%)

PPLIEASM 10632.2 (0.03%) 10645.2 (0.16%)

PPLIEASMed 10630.4 (0.02%) 10638.8 (0.1%)

PPLIRASMR 10656.7 (0.27%) 10712.4 (0.79%)
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Datasets Algorithms Best (Std Dev) Average (Std Dev)

PPLIRASM 10643.2 (0.14%) 10668.8 (0.38%)

PPLIRASMed 10645.9 (0.16%) 10674.6 (0.43%)

eil51

MMAS+IB+PTS 426.2 (0.04%) 427.8 (0.43%)

PPLIEASMR 440.6 (2.94%) 455.3 (6.37%)

PPLIEASM 426.4 (0.09%) 434.3 (1.47%)

PPLIEASMed 426.1 (0.02%) 427.4 (0.32%)

PPLIRASMR 440.5 (2.92%) 452.3 (5.67%)

PPLIRASM 432.7 (1.09%) 438.9 (3.02%)

PPLIRASMed 430.8 (0.65%) 437.3 (2.65%)

st70

MMAS+IB+PTS 675.5(0.07%) 680.3(0.78%)

PPLIEASMR 698.4 (3.46%) 720.3 (6.71%)

PPLIEASM 675.3 (0.04%) 678.6 (0.53%)

PPLIEASMed 680.8 (0.85%) 685.3 (1.52%)

PPLIRASMR 691.5 (2.44%) 715.6 (6.01%)

PPLIRASM 676.5 (0.22%) 684.5 (1.40%)

PPLIRASMed 675.4 (0.05%) 682.7 (1.14%)

eil76

MMAS+IB+PTS 538.5 (0.09%) 539.9 (0.35%)

PPLIEASMR 561.4 (4.34%) 584.3 (8.60%)

PPLIEASM 541.4 (0.63%) 548.4 (1.93%)

PPLIEASMed 545.6 (1.41%) 555.4 (3.23%)

PPLIRASMR 548.5 (2%) 564.3 (4.88%)

PPLIRASM 541.4 (0.63%) 545.6 (1.41%)

PPLIRASMed 538.8 (0.14%) 543.7 (1.05%)

Kroa100

MMAS+IB+PTS 21285.4 (0.01%) 21336.9 (0.26%)

PPLIEASMR 21780.4 (2.34%) 21867.3 (2.75%)

PPLIEASM 21321.6 (0.18%) 21375.1 (0.43%)

PPLIEASMed 21330.7 (0.22%) 21367.8 (0.4%)

PPLIRASMR 21610.6 (1.54%) 21688.7 (1.91%)
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Datasets Algorithms Best (Std Dev) Average (Std Dev)

PPLIRASM 21286.3 (0.02%) 21295.7 (0.06%)

PPLIRASMed 21282.7 (0%) 21288.4 (0.03%)

kroa200

MMAS+IB+PTS 29372.2 (0.01%) 29385.8 (0.06%)

PPLIEASMR 30850.7 (5.04%) 31224.7 (6.32%)

PPLIEASM 29540.8 (0.58%) 29588.4 (0.75%)

PPLIEASMed 29444.8 (0.26%) 29489.2 (0.41%)

PPLIRASMR 29664.8 (1.01%) 29710.7 (1.16%)

PPLIRASM 29446.5 (0.26%) 29486.5 (0.40%)

PPLIRASMed 29368.5 (0.0%) 29380.8 (0.04%)

lin318

MMAS+IB+PTS 42035.7 (0.01%) 42055.8 (0.06%)

PPLIEASMR 44219.6 (5.12%) 44870.4 (6.76%)

PPLIEASM 42780.5 (1.78%) 42932.7 (2.15%)

PPLIEASMed 42540.8 (1.21%) 42624.3 (1.41%)

PPLIRASMR 43879.5 (4.40%) 43964.3 (4.60%)

PPLIRASM 42033.2 (0%) 42042.9 (0.03%)

PPLIRASMed 42045.7 (0.03%) 42094.3 (0.15%)

Parameter Sensitivity Analysis for Punished IA

Figure 2.6 shows the performance of PPLIEAS variants for eil51 dataset. Figure

2.6(a) reveals the behavior of ants for varying population size. It can be observed

that PPLIEASMed variant shows an improvement in result with the increase in

ants population. Similarly, performance of PPLIEASM variant is slightly better

for smaller ants population compared to larger ants population. The PPLIEASM

and PPLIEASMed provide best result for ρ equal to 10 and 20 respectively. Fig-

ure 2.6(b) shows that PPLIEASMed exhibit lesser variation compared to other

variants and provides best result for lower trial strength of ρ=0.7. Similarly,

PPLIEASM provides the best result for ρ=0.8.

Figure 2.7 shows the performance of PPLIRAS variants for st70 dataset. Figure

2.7(a) reveals that both the variants i.e., PPLIRASM and PPLIRASMed perform
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Figure 2.6: Performance comparison of PPLIEAS variants for eil51 dataset.
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better for smaller ants population and quite a contrasting observation for PPLI-

RASMR, which performs well for larger ants population. Similarly, Figure 2.7(b)

reveals that PPLIRASM and PPLIRASMed variants do not show any definite

trend for the varying trail strength and it is hard to make any meaningful conclu-

sion about the effect of varying trial strength. The PPLIRASM and PPLIRASMed

variants provide best result for ρ=0.8.

Table 2.7 reports the observed parameter values, when the optimal solutions

were obtained for PPLIEAS and PPLIRAS algorithms. The parameter values

are specified in range bounds for all the algorithm variants to indicate the most

common observations for the datasets under consideration.

Table 2.7: Parameter details for PPLIEAS and PPLIRAS

PPLIEASMR 1 ≤ α ≤ 3 2 ≤ β ≤ 3 0.89 - 0.96
PPLIEASM 2 ≤ α ≤ 3 2 ≤ β ≤ 4 0.73 - 0.82

PPLIEASMed 3 ≤ α ≤ 5 1 ≤ β ≤ 3 0.85 - 0.95
PPLIRASMR 1 ≤ α ≤ 2 1 ≤ β ≤ 3 0.76 - 0.82
PPLIRASM 2 ≤ α ≤ 4 2 ≤ β ≤ 4 0.92 - 0.99

PPLIRASMed 2 ≤ α ≤ 4 2 ≤ β ≤ 3 0.85 - 0.96
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Figure 2.7: Performance comparison of PPLIRAS variants for st70 dataset.
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Table 2.8: Average Ants Selection for Influential Ants

PLIEASMR PLIEASM PLIEASMed PLIRASMR PLIRASM PLIRASMed
baysg29 7.14(10) 6.88(10) 6.37(10) 7.36(10) 7.20(10) 7.26(10)
att48 7.52(10) 6.18(10) 6.47(10) 7.36(10) 6.52(10) 6.23(10)
eil51 15.42(20) 12.36(20) 12.54(20) 15.18(20) 14.83(20) 14.57(20)
st70 8.16(10) 6.44(10) 6.12(10) 7.18(10) 6.38(10) 6.24(10)
eil76 7.66(10) 6.85(10) 7.14(10) 7.84(10) 6.83(10) 6.57(10)

Kroa100 15.16(20) 13.36(20) 12.58(20) 14.94(20) 12.44(20) 12.21(20)
Kroa200 26.72(30) 20.82(30) 18.48(30) 21.76(30) 18.78(30) 18.15(30)
lin318 27.44(30) 23.13(30) 21.64(30) 23.95(30) 18.33(30) 18.68(30)

Table 2.9: Average Ants Selection for Punished Influential Ants

PPLIEASMR PPLIEASM PPLIEASMed PPLIRASMR PPLIRASM PPLIRASMed
baysg29 6.58(10) 5.14(10) 5.07(10) 6.53(10) 5.72(10) 5.53(10)
att48 6.15(10) 5.03(10) 5.01(10) 5.26(10) 5.18(10) 5.23(10)
eil51 13.84(20) 10.48(20) 10.36(20) 14.26(20) 12.20(20) 11.78(20)
st70 6.87(10) 5.18(10) 5.55(10) 6.56(10) 5.44(10) 5.21(10)
eil76 7.24(10) 5.45(10) 5.52(10) 5.70(10) 5.37(10) 5.11(10)

Kroa100 13.76(20) 10.46(20) 10.62(20) 13.56(20) 10.18(20) 10.05(20)
Kroa200 22.68(30) 16.16(30) 15.68(30) 17.44(30) 15.84(30) 15.28(30)
lin318 22.94(30) 17.74(30) 17.32(30) 21.44(30) 15.38(30) 15.47(30)
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Selection Analysis of IA and Punished IA

Table 2.8 provides the detail of average number of ants selected for second time

updation and the total number of ants considered for the experimentation. In

MRTS mechanism, 70-80% of the ants in the system were selected for additional

reinforcement and in case of MTS and MeTS it was 60-70%. The selection of

larger number of ants in MRTS indicates that the algorithm spends more time

in exploring rather than exploiting the search space to look for optimal solution.

Table 2.9 shows the details of average ants usage for punished influential ants. The

MRTS variant selects 60-70% and MTS, MeTS select in the range of 50-60% of

ants in the system for additional reinforcement. On comparison of Table 2.8 with

Table 2.9, it can be observed that punishment mechanism selects fewer number of

ants compared to non-punished mechanism. This demonstrates that punishment

mechanism has succeeded in restricting the search process in promising region of

search space.

Distribution Analysis of IA and Punished IA

Further analysis on ant’s selection mechanism was done by plotting the Box and

Whisker graphs, which provide the details of ants selection distribution in the form

of five number summary. Figure 2.8 and Figure 2.9 show spread in the distribution

of selected ants during algorithm execution for st70 and kroa100 datasets. Some

interesting observations have been made and a comparative analysis of IA variants

from statistical tool perspective were done. Figure 2.8(a) and Figure 2.8(b) show

that Inter Quartile Range (IQR) was comparatively smaller for MRTS and skewed

towards upper whisker. The MRTS incorporated IA non punished variants have

6 to 7 ants respectively at 50% (median) observation indicating that, most of the

time, algorithm selects larger number of ants. However, a better spread is observed

in MTS and MeTS variants and the observed median value is in the range of 5

to 6 ants. The punishment mechanism provides better results compared to non

punishment mechanism as shown in Figure 2.9. The punishment mechanism is

characterized by selection of fewer number of ants. In case of MRTS the observed
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median value is 6 and for MeTS, MTS it ranges from 4 to 5. In general, it can

be concluded that a better spread in selection indicates better exploration and

exploitation of search space, that leads to better solution.

2.3 Concluding Remarks

This chapter outlined the significance of influential ants and punishment mecha-

nism for ACO algorithms. The methods proposed here showed superior perfor-

mance to that of MMAS for most of the datasets. Thus, it is clear that such an

unsupervised elitism will lead to better quality of solution without unduly compro-

mising on convergence. As a result, an adequate non-static elitism imparts ants

diversity, thereby improving the performance subject to the problem specification.

Furthermore, a feasibility of these algorithms for real world applications has

been demonstrated by investigating the performance on train scheduling problem

in the Chapter 5.

63



 0

 2

 4

 6

 8

 10

PLIEASMR PLIEASM PLIEASMed PPLIEASMR PPLIEASM PPLIEASMed

N
um

be
r 

of
 A

nt
s

Performance Linked Influential Elite Ant System Variants

st70 dataset

(a) Comparative Analysis of Median Variance for Punished and Non-Punished PLIEAS
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(b) Comparative Analysis of Median Variance for Punished and Non-Punished PLIRAS

Figure 2.8: Box and Whisker plots showing the distribution of ants selection for
additional reinforcement.
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(a) Comparative Analysis of Median Variance for Punished and Non-Punished PLIEAS
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(b) Comparative Analysis of Median Variance for Punished and Non-Punished PLIRAS

Figure 2.9: Box and Whisker plots showing the distribution of ants selection for
additional reinforcement.
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