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Chapter -1 

 
Introduction 

 
 
Multiplication is one of the basic arithmetic operations used in almost all signal processing 

algorithms [Oppen. 1999]. As per Oberman [Oberman 1997] 8.72% of all instructions in a 

typical scientific program are multiplications. In present scenario the increased level of 

integration brought about by modern VLSI technology has rendered possible the integration 

of many complex components in a single chip [Abnous 1996, Catthoor 2000, Chien 2001]. 

This has made the systems faster and thus useful for real time applications like mobile digital 

signal processing, multimedia applications, scientific computations etc. The growing market 

for fast floating-point processors, digital signal processing chips, and graphics processors has 

also created a demand for the high speed, area-efficient multipliers. Current multiplier 

architectures range from small, low-performance shift and add multipliers, to large, high-

performance array and tree multipliers. Taking this into consideration various researchers 

[Balsara 1996, Gnana. 1985, Saleh 2001, Goto 1992] have developed novel algorithms and 

circuit techniques to provide higher speed and optimized use of silicon area. 

This thesis explores most important circuit techniques, algorithms and architectures 

available. Along with this, new circuits and two novel architectural improvements are 

proposed to increase the speed of multiplication  

1.1   Multiplication process 
Multiplication is a three-step process [Twaijry 1997] as shown in Fig. 1.1. 
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I. Generation of partial products: Partial products are generated from the inputs. A 

partial product is represented by a row of dots in the figure. The partial products 

are all produced in parallel. There are several ways of generating the partial 

products. The different methods are discussed in detail in chapter 2. 

II. Summing up of partial products into two rows: The generated partial products 

need to be accumulated to produce the final result. However the simple addition of 

each partial product involves a relatively long latency carry propagation 

computation. For the purpose of speeding up, all the partial product rows are first 

summed up to give only two rows (called sum and carry rows) by using special 

adder architectures, which are dealt with in detail in chapter 3. 

III. Addition of the two rows (sum and carry rows generated by summing process) by 

carry propagate adder: Sum and carry rows together represent the result of 

multiplication. The final result is obtained only by adding sum and carry rows 

together. Two architectures for the final addition are explained in chapter 4. 

 

Fig. 1.1 Multiplication steps. 
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1.2   Multiplier architecture 
Multipliers are used starting from very low speed arithmetic calculations, medium speed 

applications to very high-speed real time multimedia computations. So depending upon the 

application speed, trade offs are done at architecture and circuit levels to have small silicon 

area and power consumption. This thesis explores the most important circuit techniques, 

algorithms and architectures available for hardware implementation of parallel multipliers. 

Based on synthesis results for a multiplier of required operand size and preferred figure of 

merit (delay, power, area) the best architecture is proposed. New circuits for partial product 

generation, accumulation and final addition are also proposed for better performance. A novel 

partial product generation method using radix-64 encoding is proposed, which outperforms 

the existing one [Hoon 2002] in terms of delay. 

1.3  Terminology 
Before we start the main part, defining some terms like normalized gate delay model and 

basics of redundant binary (RB) number system are discussed to make the understanding of 

multiplier architectures self contained.  

1.3.1  Normalized gate delay model 

Any architectural implementation will use some basic gates. By knowing the delay of each 

gate we are using, we can approximately compute the latency of each specific architecture. It 

will definitely not give as accurate results as post layout simulation. But getting a good 

approximation of delay will guide us to choose a specific architecture for our requirement. 

The delay model we have used is obtained from Toshiba library [Toshiba] for 130 

nanometer technologies. In this, for a specific cell, a number of models are available with 

different driving strength. An example of a standard cell NAND2 with different models to 

support the required driving strength in design is given in Table 1.1. In this two input NAND 
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gate for any model the delay to the output from two different inputs are different. Again the 

delay measured at rising edge and that measured at falling edge are also different. Among all 

the rising edge and falling edge delays and for all the models of a standard cell the worst-case 

delay is taken as the delay of standard cell. In this NAND2 cell, the worst-case delay is rise 

delay of ND2D0 from A2 to ZN and is 103-pico sec (psec.). So the NAND2 cell delay is 

taken as 103-psec. 

In the same way the delay for other standard cells are obtained from the Toshiba 

library and summarized in Table 1.2. Now all the delays are normalized with respect to a two 

input XOR cell delay. This normalized delay will be used for delay approximation for 

different architecture in chapter 2, 3 and 4. 

 

 

 

 
 
 
 
 

Cell name Actual 
delay in 

p.sec 

Normalized 
Delay 

Two input 
NAND 

103 TNAND2 = 0.351 

Two input 
NOR 

128 TNOR2 = 0.436 

Two input 
AND 

158 TAND2 = 0.539 

Two input 
OR 

201 TOR2 = 0.686 

Two input 
XOR 

293 TXOR2 = 1 

Two input 
XNOR 

284 TXNOR2 = 0.969 

Inverter 88 TINV  = 0.300 
Three input 
NAND 

126 TNAND3 = 0.430 

Three input 
NOR 

147 TNOR3 = 0.501 

Table 1.1 Different models of NAND2 gate 
taken from Toshiba library and their delay 
characteristic for different load 
 

Table. 1.2 Delay characteristic of 
different standard cells 
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1.3.2  Redundant binary (RB) number system 
 
RB number system is a part of signed digit representation proposed by Avizienis [Avizienis 

1961]. It has a fixed radix 2 and a digit set {1,0,1} where 1 denotes –1. An n-digit RB integer 

Y = [yn-1 yn-2 . . . . . . . y0] SD2 where yi � {1, 0,1} has the value �
−

=

1

0

2*
n

i

i
iy . It is similar to an 

unsigned binary integer except that yi can be 1. To represent these three symbols two bits are 

required. The most commonly used coding scheme, which is also used in this work, is shown 

in Table 1.3.  

Table 1.3 RB coding scheme 

X  + X- RB digit 
0 0 0 
0 1 1  
1 0 1 
1 1 0 

 

1.3.3  Addition of two natural binary (NB) numbers to give a RB number 

The addition of A and B is expressed as [Makino 1996] 

A + B = A- (-B) = A – (
_

B +1) = (A – 
_

B ) – 1 = (A, 
_

B ) – 1               (1.1) 

So this expression indicates that two natural numbers can be added to give the result plus one 

by just taking the combination of A and complement of B. But to find out the actual value of 

A+B, one is to be subtracted. For finding out subtraction the above expression can be written 

as: 

A - B = A +(-B) = A + (
_

B  +1) = A+
_

B  +1= (A,B)                (1.2) 

An example of subtraction of B from A is shown in Fig. 1.2 using equations 1.1 and 

1.2. The subtraction of B = 31 from A=19 results in –12. Now by using equation 1.1 grouping 

of A and 
_

B  is done as shown in Fig. 1.2(a) and the RB digit corresponding to each group is 
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assigned looking to Table 1.3. So the result obtained in RB form has value –11. The addition 

of A and -B is obtained by subtracting 1 from (A, 
_

B ). This equation (1.1) is used to design a 

novel final adder in a parallel multiplier along with equivalent bit conversion algorithm in 

chapter 4. Now we also can use equation 1.2 to do this subtraction, which is shown in Fig 

1.2(b). The analysis of use of this equation (1.2) with the previous one (1.1) shows an 

important conclusion that, to get the final result no carry-propagate subtraction of 1 is needed. 

This equation is used in radix-64 partial product generation in chapter-2 to reduce the latency 

significantly.  

    
           (a)      (b) 

Fig. 1. 2 Subtraction of 31 from 19 (a) Subtraction using addition of equation 1.1 
(b)Subtraction using equation 1.2. 

1.3.4  Addition of two-RB numbers 

The RB number representation allows representing an integer in several ways. For 

example, [0101] SD2, [011 ] SD2, [1 01] SD2, [1 1 ] SD2, [10 ] SD2 all represents decimal ‘5’. 

Because of this property addition of two RB numbers can be performed without carry 

propagation in two steps [Takagi 1985]. 

Carry propagation free addition is performed in two steps: 

First step: In this step intermediate carry Ci {�� , 0,1)} and the intermediate sum digit S i {��

� , 0,1)} are determined to satisfy the equation ai + bi =2 Ci + S i where ai and bi are augend 

and addend digits, respectively. But Ci and S i are determined such that both Si and Ci-1 are 
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neither 1’s, nor are they ’s. So the rules for computation for intermediate sum Si and carry Ci 

looking to the augend and addend digit (Xi, Yi) and the digits at the next lower –order position  

(Xi-1, Yi-1) is given in Table 1. 4. 

Second step: In the second step, the sum digit Z i {�� ,0,1)}is obtained at each position by 

adding the intermediate sum digit S i and the intermediate carry Ci -1 from lower-order 

position without generating a carry. 

Table 1.4 Computation rules for the first step in carry propagation free addition 

Augend 

Digit 

(Xi) 

Addend 

digit 

(Yi) 

Digits at the next-lower-

order position 

(Xi-1,Yi-1) 

Intermediate 

carry 

(Ci) 

Intermediate 

Sum 

(Si) 

1 1 Any value 1 0 

Both are nonnegative. 1  1 

0 

0 

1 Otherwise 0 1 

0 0 

1  

 1 

 

Any value 

 

0 

 

0 

Both are nonnegative. 0  0 

 

 
0 Otherwise  1 

  Any value  0 

 

An example of addition of two RB numbers is given in Fig.1.3. Here the two numbers 

67 and 157 are represented in RB form. In the first step digits of same bit location of augend 

and addend are added to get the intermediate sum and intermediate carry following the rule 

given in Table 1.4, just looking at the digits of next lower-order position. In the next step 

intermediate sum and intermediate carry are added without any carry generation to give the 

final result. 



 8

 

Fig. 1.3 Example of carry propagation free addition. 

Thus in redundant binary number system, parallel addition of two numbers by a 

combinational circuit is performed in a constant time, independent of word length of 

operands. 

1.3.5  Some properties of RB number 

Getting negative of a RB number: The negation of a RB number is directly derived by 

changing the sign of all non zero digits in the number i.e. by inverting all the bits. This is 

explained through an example shown in Fig. 1.4(a). 

Multiplying a RB number by 2n: 

A RB number can be multiplied by 2n where n is an integer by just left shifting the bits 

and padding zero as is done in case of NB number. The Fig.1.4 (b) explains this. 

    

 
      (a)          (b) 

 
Fig.  1.4 Properties of RB number (a) The –ve of –12 is obtained by inverting all the bits i.e. 
same as changing the sign of all non zero numbers (b) Multiplication of -12 by 4 is shifting it 
left by two position and padding by (0,0) in two lest significant bit positions.  
 

1.3.6  RB to NB conversion 

In Fig. 1.2 the NB numbers are added or subtracted and the result obtained is in RB 

form. But finally the RB number must get converted back to NB number to be used for further 

processing. For this conversion from RB to NB, equivalent binary conversion algorithm 
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(EBCA) is used. The EBCA [Kim 2001, Rulling 2003] is based on the fact that the NB 

numbers are subset of the RB numbers. So in this algorithm attempt is made to find a suitable 

representation of the final RB product, which is also a valid representation in the NB domain. 

The algorithm is a three-step process. First the blocks of an RB word which contains 0 0 0 ---- 

01 are replaced by an equivalent form of 111 ----11. In the second step, blocks of 111 -----11 

are replaced by an equivalent RB form of 0 0 0 ----0 1. Replace the most significant bit 

(MSB) 1 by 1 in third step if MSB is 1. Use of this to convert a RB number to NB number is 

shown in the Fig. 1.5. The truth table [Kim 2003] for converting RB to NB is shown in the 

Table 1.5. 

 

Assume that number to be converted from RB to NB is –105. 

0 0  0 1 0 1 1 1 0 0 1  = -105  

1            1 1 1 0 1 1 1 1 1 1   1st step 

1 1 1 1 0 0 1 0 1 1 1   2nd step 
 
1 1 1 1 0 0 1 0 1 1 1   3rd step 
 

Fig.  1.5 RB to NB conversion using the equivalent bit conversion algorithm. 
 
 
So the final result obtained in third step is –105 in two’s complement form. 
 

Table 1.5 Truth table for RB to NB conversion 

ENI = 0 ENI = 1 X    Y 
Z1   Z2   ENO Z1   Z2   ENO 

0     0 

0     1 
0     1 

0      0      0 
1      1      1 
0      1      0 

1      1      1 
1      0      1 
0      0      0 

1     0 

1     1                 

1     1 

1      0      1 
 
0      1      1 
1      1      1 

0      1      1 
 
0      0      1 
1      0      1 

1     0 

1     1 
1     1 
 

1      0      0 
0      1      0 
1      1      0 

0      1      0 
0      0      0 
1      0      0 
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1.4 Thesis structure 
The thesis is structured as follows: 

Chapter 2: Deals with the circuit techniques and algorithms of partial product generation. In 

this various algorithms are discussed and for each algorithm circuit implementation 

techniques are also explored.  

Chapter 3: In this chapter frequently used adder architectures for summing the generated 

partial products into two rows (the sum and carry rows) are discussed in terms of normalized 

gate delay. The advantages of one technique over the other in specific conditions are pointed 

out which will be useful in a complete multiplier implementation. 

Chapter 4: Deals with the addition of finally generated sum and carry rows. Fastest carry-

lookahead adder architectures are explored and also a novel EBCA based adder circuit is 

proposed which outperforms exiting circuits in terms of delay.  

Chapter 5: This chapter draws upon all the circuits for parallel multipliers discussed in chapter 

2, 3, 4 and explores various possible combinations for parallel multiplier implementations that 

are possible. Their delay performance in terms of normalized delay with respect to two input 

XOR gate (obtained from Toshiba library) is analyzed. 

Chapter 6: In this chapter multipliers are implemented for different word lengths using 

different ways as discussed in chapter 5. In every case the cell count, the delay and the power 

consumed are estimated. Finally analyzing the post route estimates the best possible 

architecture for smallest delay (T), area (A), power (P), A*T*P, AT2 is proposed. 

Chapter 7: Gives conclusion of the entire study. 

 
 


