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Chapter – 2 

 
Partial Product Generation 

 
 
In a multiplication the first step is the partial product generation. The simple method of partial 

product generation involves the multiplication of every multiplicand bit by every multiplier 

bit. So for a multiplication of two n-bit numbers n partial product rows of n bits each will be 

generated. Here no sign bit is taken in to consideration. To generate every bit of partial 

product in a row an AND gate can be used. In this method of partial product generation, 

accumulation hardware will be required to accumulate n partial product rows and accordingly 

time delay will be there. 

Using any technique in the above, if the number of partial product rows can be 

reduced to n/2 or less, then the hardware required to accumulate them as well as the 

accumulation time will be reduced. Keeping this as objective Booth [Booth 1951] in 1951 had 

proposed an algorithm which was modified later by Rubinfield [Rubinfield 1975] and given 

the name Modified Booth’s Encoding (MBE) algorithm. Using this algorithm the number of 

partial product rows will reduce to half. Based on this algorithm various efficient circuit 

techniques have been developed by a number of researchers[Choi  2001, Khoo  1999, Villeger 

1993]. One such circuit technique has been developed and compared with others as a part of 

this thesis work. The number of partial product rows can be reduced further by using simple 

extensions to Booth’s algorithm by recording larger number of inputs (called as higher radix 

encoding) [Atkin 1970, Sam 1990]. But for this purpose time-consuming and complex partial 

product generation circuits are required, which are discussed in detail in this chapter. 
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It is true that for higher radix encoding, the partial product generator will have higher 

delay. But in this work a new RB arithmetic based scheme has been proposed to generate 

partial products using radix-64 encoding. This will reduce the number of partial product rows 

by a factor of 6, but with significantly smaller delay as compared to the reported work of 

radix-64 encoding by Sang-Hoon Lee [Hoon 2002]. 

2.1 Non-Booth method of partial product generation 
The simplest method for partial product generation is called non-Booth. This is illustrated by 

the use of the dot diagram for the 16x16 bit multiplication in Fig. 2.1. Here each row of dots 

represents a partial product row and each dot represent a bit in the partial product. A partial 

product row can be either zero or the multiplicand row depending on whether the 

corresponding multiplier bit value is 0 or 1. The partial products are shifted to account for the 

weights of multiplier bits with which the multiplicand is multiplied. The partial product 

generation logic consists of a row of single AND gates for each bit of partial product. The 

inputs for each AND gate are bits of the multiplier and multiplicand, such that the sum of the 

bit’s arithmetic weights is equal to the column’s arithmetic weight. 

 

Fig. 2.1 A 16 x 16 bit non-Booth encoding 
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2.2 Booth’s algorithm 
In the non-Booth’s method of partial product generation the number of partial product 

rows is same as the number of multiplier bits. But by using Booth’s algorithm with different 

radices the number of partial product rows can be reduced by a factor of two or more. This 

will lead to reduced accumulation time and smaller area. But the price is paid in terms of the 

partial product generation complexity and the time required to generate the partial products. 

2.2.1  Booth radix-4 encoding 

The most widely used technique for partial product generation in parallel multipliers is 

radix-4 modified Booth encoding (MBE). This can reduce the number of partial product rows 

to be generated by a factor of two thus reducing the accumulation hardware cost as well as the 

accumulation time. According to MBE a signed binary number in two’s complement form can 

be partitioned to overlapping group of three bits as shown in the Fig. 2.2. By coding each of 

these groups into single signed digit as shown in Table 2.1, an n-bit signed binary number can 

be represented as n/2 sign digits. Here each signed digit takes the possible value of 0, +1, -1, 

+2, -2 and accordingly the partial product will take a value of 0, +A, -A, +2A, -2A where A is 

the multiplicand. The truth table for coding used in the radix-4 MBE is shown in Table 2.1. 

Table 2.1 Partial product selections in   radix-4 encoding 

bj+1 bj bj-1 Code 

0 0 0 0 

0 0 1 +A 

0 1 0 +A 

0 1 1 +2A 

1 0 0 -2A 

1 0 1 -A 

1 1 0 -A 

1 1 1 0 
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Fig. 2.2 Multiplication of two 16-bit numbers using radix-4 MBE. 

Depending upon the coded value of each group the 0, +A, +2A can be obtained easily 

by selecting zero or A or shifting A one bit position. For –A and –2A each bit is 

complemented and finally the code polarity bit Cp = 1 is added at least significant bit (LSB) 

position. This indicates that the maximum possible number of bits in a single column to be 

added is n/2 +1. In the present example 15th column is having maximum number of bits. But 

for positive number multiplication the MSB bit of multiplier will be always 0. So the 

maximum number of bits in a single column in this case is n/2, provided n is even. If n is odd, 

the maximum number of bits in a single column will be (n+1)/2. 

The polarity of a partial product row is dependant on both the multiplicand polarity as 

well as the code polarity (Cp). A partial product row is negative i.e. the sign bit of the partial 

product is 1 only when one of multiplicand or the code polarity is negative. So the sign bit can 

be obtained as S = Cpa ⊕15 , where Cp is the code polarity of that specific code and a15 is 

the sign bit of the multiplicand. To preserve the sign bit of the partial product sign extension 

of partial products to the left most bit position is to be done. The sign extension can be 

replaced by what is shown in Fig. 2.2. A proof of this replacement is given in [Vassiliadis 

1991]. 
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2.2.2  Booth radix-8 encoding 

The radix-8 encoding is the extension of radix-4 encoding. In this the binary number 

in two’s complement form is partitioned into overlapping groups of four bits as shown in Fig. 

2.3. By coding each of these groups, a n-bit signed binary number can be represented as a sum 

of n/3 signed digits. The partial product code generation is given in Table 2.2. Here each 

signed digit takes the possible value of 0, ± 1, ± 2, ± 3, ± 4 and accordingly the partial 

product will take a value of 0, ± A, ± 2A, ± 3A, ± 4A, where A is the multiplicand.  

Table   2.2 Partial product selections in   radix-4 encoding 

Multiplier bit Selection Multiplier bit Selection 

0000 +0 1000 – 4A 

0001 +A 1001 – 3A 

0010 +A 1010 – 3A 

0011 +2A 1011 – 2A 

0100 +2A 1100 – 2A 

0101 +3A 1101 – A 

0110 +3A 1110 – A 

0111 +4A 1111 – 0 

 

Depending upon the coded value of each group partial products 0, +A, +2A, + 4A and 

–2A, -4A can be obtained easily by selecting 0, A, shifting A or taking two’s complement of 

A and adding 1 in the LSB position. But to get 3A one carry propagate addition is to be done. 

This will increase the latency of the circuit. The complexity of the selection logic will also 

increase.  

Using the same method of grouping, more bits can be grouped and the number of 

partial product rows can be reduced. But because of selection complexity and the requirement 

of carry propagate adder to generate partial product like 3A the performance will degrade. 

Because of this reason the most widely used Booth encoding is limited to radix-4. So in the 
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next section we will discuss the best circuits for partial product generation using radix-4 

MBE. 

 

Fig. 2.3 Multiplication of two 16-bit numbers using Radix-8 encoding. 

2.3  Circuits for radix – 4 MBE 
The most widely used technique for partial product generation in parallel multipliers is 

radix-4 MBE. The main features of this encoding are that the partial product rows can be 

generated using low latency simple circuits. Because of this many researchers have 

concentrated on decreasing latency and area. So in this section we will discuss some of the 

best circuits proposed by others and a new circuit proposed by us. The circuit performances 

are compared based on simulation results and our circuit is found to out perform others. 

2.3.1 Modified Booth encoding 

As discussed earlier a signed binary number in two’s complement form can be partitioned into 

overlapping groups of three bits that are mapped to a signed digit. Here each signed digit 

takes the possible value of 0, +1, -1, +2, -2, and accordingly, the partial products will take 

values of 0, +A, -A, +2A, -2A; where A is the multiplicand. The truth table for the radix-4 

MBE [Goto 1997] along with the required control bits is shown in Table 2.3. Using these 

control bits the partial products can be generated by the following expression [Goto 1997]. 
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Table.  2.3 Truth table of MBE 

Inputs  Sign select 

bj+1 bj bj-1 Func. Xj 2Xj PLj Mj 

0 0 0 0 0 1 0 0 

0 0 1 +A 1 0 1 0 

0 1 0 +A 1 0 1 0 

0 1 1 +2A 0 1 1 0 

1 0 0 -2A 0 1 0 1 

1 0 1 -A 1 0 0 1 

1 1 0 -A 1 0 0 1 

1 1 1 0 0 1 0 0 

 
 

So partial products can be obtained by getting control signals Xj, 2Xj, Mj, PLj by a 

circuit called as Booth encoder (BE) and applying these to a selector logic, called Booth 

selector (BS) to get the final partial product. 

2.3.2  Best proposed circuits by others 

The implementations of the best-reported circuits are done in same way as are reported by 

authors. In case of non-availability of specification the circuit technique used is made uniform 

for all circuits and also mentioned. 

The first circuit pair elements are given the names BE-I and BS-I [Goto 1997] and are 

shown in Fig. 2.4(a) and (b). Here the XOR gate is implemented using pass transistor logic 

and for all other circuits CMOS logic is used. The encoder part uses 38 transistors and for 

generating a single partial product the selector circuit uses 10 transistors. This circuit was the 

least transistor circuit reported till date for single partial product generation.  
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The next circuit pair BE-II and BS-II are reported in [Ohkubu 1995] and are shown in 

Fig. 2.4 (c) and (d).  Here the multiplexer used is based on complementary pass transistor 

logic and the XOR gate used is based on pass transistor logic. This BE-II uses 36 transistors 

and BS-II uses 18 transistors. The delay path of encoder and selector, which is responsible for 

critical delay, is shown in the Fig. 2.4 (c) and (d) by dotted lines. 

In the third implementation [Changyeh 2000] in Fig. 2.4 (e) and (f) the encoder part 

BE-III is very simple and having least delay. Here the partial product generation part BS-III 

uses 18 transistors and encoder part uses 18 transistors. For XOR implementation pass 

transistor logic is used. Here the critical delay path is from Y to out put. Though the transistor 

count for the encoder is very small, it is not so for the partial product generation. In fact in a n 

x n multiplier only n/2 +1 number of encoders are used where as n x (n/2 +1) number of 

selectors are used. So the transistor advantage in the encoder in this implementation does not 

give overall advantage in transistor count. 
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                (a)                             (b) 

 
                        (c)                               (d)            

 
    (e)                      (f) 

Fig. 2.4. Booth encoders and selectors  (a) BE-I (b) BS-I  (c) BE-II  (d) BS-II  (e) BE-III (f) 

BS-III. 

2.3.3  New Booth encoder (BE-new) and new Booth selector (BS-new) 

The BE-new proposed by us generates three control signals Xj, Mj, PLj which are used by BS-

new to generate partial products. Looking to the Table 2.3 and using ground less XNOR gates 

[Bui 2002] its implementation is shown in Fig. 2.5(a). The XNOR is called as ground less 

XNOR as it has no direct path from Vdd to ground as shown in Fig. 2.5(c). Thus the power 

consumption is less. The BS-new design using high-speed n-channel multiplexer is shown in 

Fig. 2.5(b). The n-channel multiplexer used here is shown in Fig. 2.5(d). The MUX-1 in BS-
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new contains an inbuilt inverter to generate the inverse of SEL i.e. SELB from SEL. In this 

implementation for BE-new only 26 transistors are used and the selector part generates two 

partial products using 16 transistors. So the new implementation needs only 8 transistors per 

partial product generation. The critical path for BE and BS combination based on simulation 

result is shown in Fig. 2.5(a) and (b) by dotted lines. 

    (a)                 (b) 

 

    
(c) (d)  

 

Fig. 2.5.  New circuits (a) BE-new (b) BS-new (c) Ground less XNOR (d) n-channel 

multiplexer. 
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2.3.4  Comparison of the BE-new and BS-new 

The above new circuit and the other three reported circuits are implemented using S-edit. The 

performance evaluation is done based on normalized delay and power obtained from 

simulation results. 

To verify and compare the performance of above circuits each booth encoder and 

selector is simulated for all possible inputs. For proper understanding a typical input 

combinations for BE is given in Fig. 2.6(a). As the circuit responds differently to different 

input patterns we used three input patterns C1, C2, C3 formed from inputs I1, I2, I3 as shown 

in Fig. 2.6(a). Each pattern is simulated 5 times using frequency ranges 2MHz, 5 MHz, 10 

MHz, 15 MHz, 20 MHz. All input signals have a rise time and a fall time of 500ps. Thus for 

each circuit 15 TSPICE simulation are run and in each case the rise time delay and fall time 

delay are noted down and the critical delay and average power consumption is reported for the 

circuits. During a simulation session a single power measurement is taken by averaging the 

instantaneous power over a period of three pattern cycles starting from the beginning of 

second cycle to the end of fourth cycle. The measurement does not include the first cycle to 

avoid transient glitches. Every time the channel length is scaled down and the simulation 

results in normalized form are noted in Table 2.4 along with transistor count. With scaling 

down of channel length the delay, power and energy delay product (EDP) are plotted in Fig. 

2.6(b), 2.6(c), 2.6(d).  
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Table 2.4 BE and BS comparisons 

Delay 

 (Normalized) 

Power 

(Normalized) 

EDP 

(Normalized) 

No of 

tr. 

Used Channel Length in micron Channel Length in micron Channel Length in micron 

Type of 

Booth 

encoder 

and 

booth 

selector 

BE 

 

BS 

 

1. 2 1. 3 1.4 1. 5 1. 6 1. 7 1. 2 1. 3 1. 4 1. 5 1. 6 1.7 1. 2 1. 3 1. 4  1. 5 1. 6 1.7 

BE-I 

and 

BS-I 

38 10 1.00 1.02 1.05 1.07 1.10 1.13 1.44 1.46 1.49 1.52 1.55 1.58 1.44 1.50 1.57 1.64 1.71 1.80 

BE-II 

and 

BS-II 

36 18 1.69 1.73 1.77 1.82 1.87 1.92 1.82 1.85 1.88 1.92 1.95 1.99 3.10 3.22 3.35 3.50 3.67 3.84 

BE-III 

and BS-

III 

18 18 1.53 1.56 1.59 1.62 1.66 1.69 2.04 2.06 2.08 2.11 2.14 2.17 3.13 3.22 3.33 3.44 3.56 3.69 

BE-new 

and BS-

new 

26 8 1.00 1.02 1.04 1.06 1.09 1.11 1.00 1.02 1.05 1.07 1.10 1.13 1.00 1.05 1.09 1.15 1.20 1.26 
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                          (a)                (b)  

    
               (c)                           (d) 

Fig. 2.6.  (a) Inputs applied to BE-BS combinations and the plots for normalized (b) Delay  

   (c) Power (d) Energy delay product. 

From the delay plot of Fig. 2.6(b) it is clear that the new design is having delay 

comparable to that of BE-I and BS-I pair. But this is achieved with less power consumption 

and less energy delay product (EDP) as observed from Fig. 2.6(c) and 2.6(d) along with 

transistor advantages. The power advantage is coming because of the use of ground less XOR 

gate and the delay advantages is coming because of the use of n-channel pass transistor 

multiplexer.  
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The delay of BE-new and BS-new pair is compared with the delay of a two input XOR 

gate as shown in Fig. 2.7, implementing both of them with S-edit. The normalized delay of 

this BE-new and BS-new pair with respect to this XOR gate is found to be 2.11. This delay is 

used in chapter 5 for delay calculation of partial product generation stage in terms of TXOR. 

 
Fig. 2.7 Two input XOR gate 

 

2.4 Radix-64 encoding using redundant arithmetic 
It has been discussed in the previous section (section 2.2) that to avoid complexity and 

delay involved in higher radix encoding radix 4 encoding is mostly preferred. Hoon [Hoon 

2002] has proposed an innovative architectural idea for higher radix multiplier. This 

architecture is improved upon by us to decrease the delay further. 

 In radix-64 encoding the binary number in two’s complement form is partitioned into 

overlapping groups of seven bits. However this requires 65 multiplying coefficients such as –

32, -31, …….., 0,……., 29, 30, 31, 32, and accordingly the partial product rows will take 

values of –32X, -31X, -30X, ……., 0, ……., 29X, 30X, 31X, 32X, where X is the 

multiplicand. A partial product row with multiplying coefficients in the form of 2i (where i 
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=1, 2, 3, 4, 5) is easy as it can be obtained just by shifting X. Generation of other partial 

product rows with multiplying coefficients 3, 5, 7, 9, 11, ---, 31 will be difficult. However all 

the partial product rows can be obtained by single addition of two numbers mX and nX. Here 

m and n are coefficients, one is chosen from 0, ± 1, ± 2, ± 3, ± 4 (called as T-group or Tgr 

coefficients) and the other is chosen from 0, ± 8, ± 16, ± 24, ± 32 (called as S-group or Sgr 

coefficients) as shown in Table. 2.5. The addition of these two numbers (mX and nX) can be 

redundant binary addition as discussed in Table 1.4 of chapter-1 to avoid any carry 

propagation. 

Now the two basic groups of numbers required as multiplying coefficient of X are 0, 

1, 2, 3, 4 (Tgr) and 0, 8, 16, 24, 32 (Sgr). All the numbers of both the groups can be obtained 

from 0 or by shifting either X or 3X. Obviously 24X can be obtained by shifting 3X three-bit 

positions. 3X can be generated by adding X and 2X using a carry look-ahead adder as is done 

by Sang-Hoon. This also can be obtained as 4X-X. The computation of 4X-X using RB as 

discussed in chapter 1 equation 1.2 is just grouping of 4X and X. So the 3X can be computed 

with only routing delay in place of large carry propagate adder delay. 
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Table 2.5 Choosing the S group and T group number from fundamental coefficients 

y6 y5 y4 y3 y2 y1 y0 n Tgr Sgr  y6 y5 y4 y3 y2 y1 y0 n Tgr Sgr 

0 0 0 0 0 0 0 0 0 0  1 0 0 0 0 0 0 -32 0 -32 

0 0 0 0 0 0 1 1 1 0  1 0 0 0 0 0 1 -31 1 -32 

0 0 0 0 0 1 0 1 1 0  1 0 0 0 0 1 0 -31 1 -32 

0 0 0 0 0 1 1 2 2 0  1 0 0 0 0 1 1 -30 2 -32 

0 0 0 0 1 0 0 2 2 0  1 0 0 0 1 0 0 -30 2 -32 

0 0 0 0 1 0 1 3 3 0  1 0 0 0 1 0 1 -29 3 -32 

0 0 0 0 1 1 0 3 3 0  1 0 0 0 1 1 0 -29 3 -32 

0 0 0 0 1 1 1 4 4 0  1 0 0 0 1 1 1 -28 4 -32 

0 0 0 1 0 0 0 4 -4 8  1 0 0 1 0 0 0 -28 -4 -24 

0 0 0 1 0 0 1 5 -3 8  1 0 0 1 0 0 1 -27 -3 -24 

0 0 0 1 0 1 0 5 -3 8  1 0 0 1 0 1 0 -27 -3 -24 

0 0 0 1 0 1 1 6 -2 8  1 0 0 1 0 1 1 -26 -2 -24 

0 0 0 1 1 0 0 6 -2 8  1 0 0 1 1 0 0 -26 -2 -24 

0 0 0 1 1 0 1 7 -1 8  1 0 0 1 1 0 1 -25 -1 -24 

0 0 0 1 1 1 0 7 -1 8  1 0 0 1 1 1 0 -25 -1 -24 

0 0 0 1 1 1 1 8 0 8  1 0 0 1 1 1 1 -24 0 -24 

0 0 1 0 0 0 0 8 0 8  1 0 1 0 0 0 0 -24 0 -24 

0 0 1 0 0 0 1 9 1 8  1 0 1 0 0 0 1 -23 1 -24 

0 0 1 0 0 1 0 9 1 8  1 0 1 0 0 1 0 -23 1 -24 

0 0 1 0 0 1 1 10 2 8  1 0 1 0 0 1 1 -22 2 -24 

0 0 1 0 1 0 0 10 2 8  1 0 1 0 1 0 0 -22 2 -24 

0 0 1 0 1 0 1 11 3 8  1 0 1 0 1 0 1 -21 3 -24 

0 0 1 0 1 1 0 11 3 8  1 0 1 0 1 1 0 -21 3 -24 

0 0 1 0 1 1 1 12 4 8  1 0 1 0 1 1 1 -20 4 -24 

0 0 1 1 0 0 0 12 -4 16  1 0 1 1 0 0 0 -20 -4 -16 

0 0 1 1 0 0 1 13 -3 16  1 0 1 1 0 0 1 -19 -3 -16 

0 0 1 1 0 1 0 13 -3 16  1 0 1 1 0 1 0 -19 -3 -16 

0 0 1 1 0 1 1 14 -2 16  1 0 1 1 0 1 1 -18 -2 -16 

0 0 1 1 1 0 0 14 -2 16  1 0 1 1 1 0 0 -18 -2 -16 

0 0 1 1 1 0 1 15 -1 16  1 0 1 1 1 0 1 -17 -1 -16 

0 0 1 1 1 1 0 15 -1 16  1 0 1 1 1 1 0 -17 -1 -16 

0 0 1 1 1 1 1 16 0 16  1 0 1 1 1 1 1 -16 0 -16 
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y6 y5 y4 y3 y2 y1 y0 n Tgr Sgr  y6 y5 y4 y3 y2 y1 y0 n Tgr Sgr 

0 1 0 0 0 0 0 16 0 16  1 1 0 0 0 0 0 -16 0 -16 

0 1 0 0 0 0 1 17 1 16  1 1 0 0 0 0 1 -15 1 -16 

0 1 0 0 0 1 0 17 1 16  1 1 0 0 0 1 0 -15 1 -16 

0 1 0 0 0 1 1 18 2 16  1 1 0 0 0 1 1 -14 2 -16 

0 1 0 0 1 0 0 18 2 16  1 1 0 0 1 0 0 -14 2 -16 

0 1 0 0 1 0 1 19 3 16  1 1 0 0 1 0 1 -13 3 -16 

0 1 0 0 1 1 0 19 3 16  1 1 0 0 1 1 0 -13 3 -16 

0 1 0 0 1 1 1 20 4 16  1 1 0 0 1 1 1 -12 4 -16 

0 1 0 1 0 0 0 20 -4 24  1 1 0 1 0 0 0 -12 -4 -8 

0 1 0 1 0 0 1 21 -3 24  1 1 0 1 0 0 1 -11 -3 -8 

0 1 0 1 0 1 0 21 -3 24  1 1 0 1 0 1 0 -11 -3 -8 

0 1 0 1 0 1 1 22 -2 24  1 1 0 1 0 1 1 -10 -2 -8 

0 1 0 1 1 0 0 22 -2 24  1 1 0 1 1 0 0 -10 -2 -8 

0 1 0 1 1 0 1 23 -1 24  1 1 0 1 1 0 1 -9 -1 -8 

0 1 0 1 1 1 0 23 -1 24  1 1 0 1 1 1 0 -9 -1 -8 

0 1 0 1 1 1 1 24 0 24  1 1 0 1 1 1 1 -8 0 -8 

0 1 1 0 0 0 0 24 0 24  1 1 1 0 0 0 0 -8 0 -8 

0 1 1 0 0 0 1 25 1 24  1 1 1 0 0 0 1 -7 1 -8 

0 1 1 0 0 1 0 25 1 24  1 1 1 0 0 1 0 -7 1 -8 

0 1 1 0 0 1 1 26 2 24  1 1 1 0 0 1 1 -6 2 -8 

0 1 1 0 1 0 0 26 2 24  1 1 1 0 1 0 0 -6 2 -8 

0 1 1 0 1 0 1 27 3 24  1 1 1 0 1 0 1 -5 3 -8 

0 1 1 0 1 1 0 27 3 24  1 1 1 0 1 1 0 -5 3 -8 

0 1 1 0 1 1 1 28 4 24  1 1 1 0 1 1 1 -4 4 -8 

0 1 1 1 0 0 0 28 -4 32  1 1 1 1 0 0 0 -4 -4 0 

0 1 1 1 0 0 1 29 -3 32  1 1 1 1 0 0 1 -3 -3 0 

0 1 1 1 0 1 0 29 -3 32  1 1 1 1 0 1 0 -3 -3 0 

0 1 1 1 0 1 1 30 -2 32  1 1 1 1 0 1 1 -2 -2 0 

0 1 1 1 1 0 0 30 -2 32  1 1 1 1 1 0 0 -2 -2 0 

0 1 1 1 1 0 1 31 -1 32  1 1 1 1 1 0 1 -1 -1 0 

0 1 1 1 1 1 0 31 -1 32  1 1 1 1 1 1 0 -1 -1 0 

0 1 1 1 1 1 1 32 0 32  1 1 1 1 1 1 1 0 0 0 
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2.4.1  Example of partial product generation using radix-64 algorithm 

Assume X (= 010010 100011) and Y (= 010011 101001) are to be multiplied as 

shown in Fig. 2.8. Now from Table 2.5 grouping of 7  LSB bits after padding 0 in the LSB 

position gives the code digit =n0 = -23. So the first partial product  = -23 X. As to Table. 2.5 

this can be represented as the addition of two numbers 1X (one from Tgr ) and  -24X (other 

from Sgr). 

i.e.  –23X = X – 24X. 

 

Fig. 2.8. Example of partial product generation using radix-64 algorithm. 



 29

So the partial product generation can be divided into two parts. One part is the 

generation of 0, 1X, 2X, 3X, 4X(Tgr) and 0, 8X, 16X, 24X, 32X(Sgr) and the other is 

selecting the correct Tgr and Sgr digit using seven bits (y6j+5 , y6j+4, y6j+3, y6j+2, y6j+1, y6j, y6j-1), 

where j = 0, 1, 2,. …. , n/6. 

As we have discussed 2X, 4X, 8X, 16X, 32X can be obtained just by shifting X. 24X 

can be obtained by shifting 3X, 3 bit position left and padding three zeros at LSB side. So 3X 

is to be obtained. To get 3X we can add 2X(X shifted by one bit) with X by using CPA. In 

this case the delay will be same as that of CPA and it increases with the size of X. We also 

can obtain 3X in RB form as 4X –X using equation 1.2 without any carry propagation delay. 

So 3X = 4X – X = (4X, X). Grouping of 4X and X to get 3X in the present example is shown 

in Fig 2.8. So the required 24X is obtained just by shifting of 3X by 3-digit position. Now all 

the bits in 24X are inverted to get –24X. This –24X is in RB form. So all other Sgr and Tgr 

elements are to be represented in RB form. In the present example –24X (in RB form) is to be 

added with X. So X is represented in RB form as X=X-0 = (X, 0). The same method can be 

used for representing 0, 2X, 4X, 8X, 16X and 32X in RB form. 

Now the other part is selecting the correct Tgr digit (Tgr+
i,j , Tgri,j

-) and Sgr 

digit(Sgr+
i,j, Sgr-

i,j) using seven bits (y6j+5 , y6j+4, y6j+3, y6j+2, y6j+1, y6j, y6j-1) where i = 0, 1, 2, 

…….., n+5, n+6 and j =0, 1, 2,. ….. , n/6. Tgr digit and Sgr digit are obtained by using the 12 

control signals (S1Xj, S2Xj, S3Xj, S4Xj, S8Xj, S16Xj, S24Xj, S32Xj, ZEROA, ZEROB, 

y6j+5, y6j+2) in selector circuit of Fig. 2.9. These control signals are obtained from seven 

consecutive bits of Y (y6j+5, y6j+4, y6j+3, y6j+2, y6j+1, y6j, y6j-1) using expressions of equation 2.2. 

 Here it is assumed that j=0. So the seven consecutive bits of Y are y5, y4, y3, y2, y1, y0, y-1 

S1X = ).()( 0112 yyyy ⊕⊕ −  
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S2X = )( 011101 yyyyyy +⋅+⋅⋅ −−  

S3X = )()( 0121 yyyy ⊕⋅⊕ −  

S4X = )()( 10121012 yyyyyyyy ++⋅+⋅⋅⋅ −−  

ZERA = )()( 21012101 yyyyyyyy ⋅⋅⋅++++ −−  

ZERB = )()( 54325432 yyyyyyyy ⋅⋅⋅++++  

S8X = ).()( 2345 yyyy ⊕⊕ s 

S16X = )( 234234 yyyyyy +⋅+⋅⋅  

S24X = )()( 3254 yyyy ⊕⋅⊕  

S32X = )()( 23452345 yyyyyyyy ++⋅+⋅⋅⋅                ----(2.2) 

 

Fig. 2.9 Partial product selector. 

In the example of partial product generation in Fig. 2.8 the Sgr coefficient is 1 and the 

Tgr coefficient is –24. So using encoder and selector circuit, we can get all the Tgr digits as X 

and Sgr digits as –24X. Now these two RB numbers are added using the rules of Table 1.4 

discussed in chapter 1 without any carry propagation. So this method of partial product 

generation in the higher radix multiplier will have the least delay. The encoder and selector 
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circuits are implemented in S-edit. The worst-case delay of this encoder and selector circuit 

combination is obtained. This is normalized with respect to the delay of standard XOR gate 

shown in Fig. 2.7 implemented with same S-edit. The normalized delay is found to be 2.92. 

This delay is used in chapter 5 for delay calculation of radix-64 partial product generator 

stage. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


