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Chapter 4 

 
Final Adder in Multiplication 

 
 
The previous two chapters presented several methods for generating the partial products and 

accumulating (reducing) the generated partial products. Once the partial product reduction 

tree using compressors reduces all the partial products into two rows of sum and carry, a fast 

final adder is needed to get the result. 

 Several techniques have been developed to reduce the propagation delay of the final 

adder[Ling 1981, Stelling 1996, Chan 1992]. The use of a fast carry propagate adder is most 

widely used in implementation. So in this chapter the best carry-lookahead adder (CLA) 

structure [Hennesy 2000] is discussed which will be used in the final adder stage. A new 

addition technique using RB arithmetic is also discussed. This adds sum row and carry row to 

give the result in RB. It again converts it back to NB form using novel RB to NB converter. 

This can act as the fastest adder as well as RB to NB converter and hence reduce the delay. 

4.1  Carry-lookahead adder 
The most commonly used scheme for accelerating carry propagation is the carry-

lookahead scheme. The main idea behind carry-lookahead addition is an attempt to generate 

all incoming carries in parallel and avoid the need to wait until the correct carry propagates 

from the stage of the adder where it has been generated. This can be accomplished in 

principle, since the carries generated and the ways they propagate depend only on the digits of 

the original numbers an-1, an-2,.….., a0 and bn-1, bn-2,……, b0. 
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There are stages in the adder in which a carryout is generated regardless of the 

incoming carry, and as a result, no additional information on previous input digits is required. 

These are the stages where ai = bi = 1. There are other stages that are only capable of 

propagating the incoming carry i.e. where ai = 0 and bi = 1 or ai = 1 and bi = 0. Only a stage in 

which ai = bi = 0 cannot propagate a carry. To assimilate the information regarding the 

generation and propagation of carries, two functions can be defined as:   

Generate carry = gi = ii ba ⋅                   (4.1) 

Propagate carry = pi = ii ba ⊕                    (4.2) 

As a result, the Boolean expression for the carry out can be written as  

ci+1 = ai .bi + ci (ai ⊕ bi) = gi + ci . pi                  (4.3) 

Substituting ci = gi-1 + ci-1. pi-1 in the above expression yields 

ci+1 = gi +gi-1. pi + ci-1 . pi-1 . pi                  (4.4) 

Further substitutions will result in 

ci+1 = gi+gi-1 . pi+-----+c0 . p0 . p1 …..pi                 (4.5) 

This expression will allow us to calculate all the carries in parallel from the original bits. 

Using this principle a tree structure of a 8-bit carry-lookahead adder is shown in Fig. 4.1. The 

adder performs addition in two parts. In the first part, propagate and generate signals are 

derived from the operands (from sum and carry row in our case) applied to each A-cell at the 

first level of the tree structure, for the ith A-cell using equation 4.1 and 4.2. 

These values are then used to find the group propagate and generate (P01 and G01) 

values for group of two successive A-cells at the second level of the tree (comprising of B-

cells) using, for the first group, equations: 

G01 = g1 +p1 . g0                   (4.6) 
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P01 = p0 . p1                    (4.7) 

P01 and G01 contain the information regarding the propagation through or generation of 

carry in the group comprising of the first and second A-cells. 

The values of (G01, P01) and (G23, P23) are then used by another B-cell at the third level 

to find the values of group generate and propagate functions (G03, P03) for the group of four 

successive cells. Similarly, values of G07 and P07 are found by combining (G03, P03) and (G47, 

P47) at the fourth level of the tree structure. 

In the second part, the input carry, ‘c0’ is fed to B-cell at the bottom of the tree 

structure. B-cell, at the fourth, third and second level generate c4, c2 and c1 signals 

simultaneously with c0 as one of the inputs using equations 

c1 = g0 + p0.c0 

c2 = G01+ P01.c0                   (4.8) 

c4 = G03 + P03 .c0 

Similarly other carries c6, c5, c3 are generated at the same time using a similar logic. 

Carry c7 is obtained using c6, g6 and p6 as the inputs. 

An extra logic can be used if required to compute the carryout c8 of the 8 bit adder 

using equation c8 = g7 +p7. c7 

The sum signals are generated by individual A-cells from operands ai, bi and ci using 

equations  

iii bap ⊕=  

si = ii cp ⊕  
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Fig. 4.1 8-bit carry-lookahead adder 

For delay analysis we will find the delay of A-cell and B-cell in normalized form and 

use these delays to calculate the worst path delay of a complete CLA. In Fig. 4.2(a), the A- 

cell shows that the worst-case delay is TXOR2=1, required to obtain p. Again in the reverse 

direction, the worst case delay is in getting the sum from c and pi and is TXOR2=1. Similarly in 

Fig. 4.2 (b) for B-cell the worst case delay for getting group generate and group propagate is  

TAND2 + TOR2 = 1.225. In the reverse way to get the higher level of carry from input carry 

using p and g is TAND2 + TOR2 = 1.225. 

For addition of two n-bit numbers they have to flow from top to bottom to obtain the 

group propagate and group generate values and again from bottom to top to get all the carries. 

So the worst delay path for this 8-bit CLA is given below:  

(a0,b0),(a1, b1) �(g0,p0),(g1,p1) � (G01,P01),(G23,P23) � (G03,P03) � c4 � c6 � c7 

�s7 

So using the delay analysis of cell A and cell B the worst-case delay will be 8.125. 
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Fig. 4.2 Delay analysis of basic cells used in CLA (a) A- cell (b) B- cell 

The structure of an 8-bit CLA can be extended to implement larger CLA like 16-bit, 

32-bit, 64-bit and 128-bit. In extending an 8-bit CLA to 16-bit the number of levels increases 

by one B-cell resulting in an additional delay of 2.550. In the same way the delay analysis for 

different sizes of CLA are done and summarized in Table 4.1. 

Table 4.1 Worst-case delay of different sizes of CLA adder in terms of normalized gate delay 

CLA adder operand size Worst case delay in terms of TXOR 

8-bit 8.125 

16-bit 10.575 

32-bit 13.025 

64-bit 15.475 

128-bit 17.925 

4.2  Equivalent binary converter 
 In chapter 3 (section 3.1, 3.3, 3.4), the accumulation methods like Array method and 

Wallace tree method using 3:2 or 4:2 compressors give the accumulation results in the form of 

a sum row and a carry row. Use of RB adder (in section 3.5) in the compressor tree is giving 

the result in RB form, which needs to be converted to NB form. For this a number of 

researchers have proposed different techniques [Ercegovac 1987, Kim 2003]. In this section 
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we will discuss a novel architecture based on equivalent binary conversion algorithm (EBCA) 
[Kim 2001, Kim 2003]. This can act as the fastest RB to NB converter as well as the fastest 

adder for word lengths upto 16 bits. This converter will be used for a novel carry-lookahead 

equivalent bit converter (CLEBC) in the next section, which can act as the fastest adder and 

RB to NB converter for any operand size. 

        The EBCA for RB to NB conversion is discussed in section 1.2 and in Table 1.4.  

Thorough analysis of the table shows that ENO is independent of ENI except for X=0 and 

Y=0. If X=0 and Y=0, in such condition ENO=ENI. Taking this into consideration we have 

designed the circuit for generating ENO as shown in Fig. 4.3(a). Here ENI is given as one of 

the input to the 2:1 multiplexer whose selection line is activated from X and Y. So as X and Y 

are available at time t=0, selection of which input is to be passed is predetermined. If X=0 and 

Y=0 then ENI input is just passed to give the ENO output. To pass ENI we have used n-

channel pass transistor multiplexer as shown in Fig. 4.3(b). Use of this novel equivalent bit 

converter (EBC) circuit for 8-bit RB to NB conversion is shown in Fig. 4.4. This is giving 

much better performance than 8-bit CLA implementation. The performance evaluation of this 

EBC with respect to fastest CLA structure (discussed in previous section) is shown in Table 

4.2. The plot for delay, power and EDP with decreasing channel length is shown in Fig. 4.5. 

This indicates that the new circuit of block size 8 is 4 times faster than the CLA of block size 

8. The power consumption is also 30% less than that of the CLA along with a smaller 

transistor count. 
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  (a)       (b) 

Fig. 4.3  (a) Circuit of RB to NB converter. Here A = X+, B = −X , C = Y+, D = −Y  (b) 
Multiplexer 

 

     Fig.  4.4 8-bit equivalent bit converter  

Table 4.2 Comparisons of CLA and EBC 
Delay (Normalized) Power (Normalized) EDP(Normalized) Adder 

type 

No,Of 

Tr used 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 

8-bit 

CLA 
510 4.13 4.26 4.38 4.51 4.65 4.80 1.45 1.46 1.48 1.49 1.52 1.54 6.02 6.24 6.49 6.77 7.07 7.41 

8-bit 

EBCA 
424 1.00 1.01 1.03 1.05 1.07 1.09 1.00 1.01 1.03 1.06 1.08 1.11 1.00 1.03 1.07 1.11 1.16 1.22 

16-bit 

CLA 
1038 1.57 1.62 1.67 1.72 1.77 1.83 0.85 0.87 0.88 0.90 0.93 0.95 1.35 1.41 1.48 1.56 1.65 1.74 

16-bit 

EBCA 
848 1.00 1.03 1.08 1.15 1.24 1.34 1.00 1.01 1.03 1.06 1.10 1.13 1.00 1.04 1.12 1.23 1.36 1.52 
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                    (a)            (b) 

 

          (c)            (d) 

Fig. 4.5 Comparison between CLA and EBC (a) Channel length Vs normalized delay for 8-bit 
addition (b) Channel length Vs power for 8-bit addition (c) Channel length Vs delay power 
product for 8-bit addition (d) Channel length Vs delay power product for 16-bit addition.  

As seen in chapter 1, two NB numbers can be added to give a RB number using the 

grouping term in equation 1.1, but the result will be in excess by 1. So after forming the 

grouping term we have to do RB to NB conversion as well as subtract 1 to get the result in 

NB form. Now the analysis of the same EBCA in Table 1.4 shows that for ENI = 1, the 

converter will convert the RB number to NB number as well as subtract one. Such an example 
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is given in Fig. 4.6. Assume that two NB numbers to be added are A = +2 (0 0 1 0) and B = -7 

(1 0 0 1). The addition of these two numbers can be given as A + B +1= (A, B ) = - 4. To get 

the actual result, we have to do RB to NB conversion as well as subtract 1. Now using the 

EBCA algorithm of Table 1.4 and assuming the first input ENI0 at LSB side as 1, will give 

the result as –5. So this indicates that the same RB to NB converter can be used as adder by 

giving ENI0 =1.  We also have shown that this RB to NB converter is faster than the CLA for 

8-bit and 16-bit operand sizes. So use of this adder circuit will make the final stage addition 

faster for 8-bit and 16-bit additions. 

 

Fig. 4.6 An example of addition of two NB numbers using EBCA 

4.3  Carry-lookahead EBC 
In the previous section we have discussed that the EBC can convert RB to NB (when ENI=0) 

as well as add two NB numbers (when ENI=1). This is also faster than the CLA for smaller 

operand sizes. But this circuit will have a longer critical delay in comparison to CLA for 

larger operand sizes, because of carry propagation. To make the addition and RB to NB 

conversion faster, carry-lookahead technique along with EBCA is used to have the fastest 

addition for any operand size. 

In a two bit EBC the input carry (ENI) propagates as output carry if the two RB digits 

are 0. So as the length of EBC adder increases, the worst-case delay   path increases. To 

overcome this, we have used a carry-lookahead technique. In this we have taken a block size 
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of 8-bits, which can take 8 RB digits as input and gives 8 NB bits as output. A 16-bit carry-

lookahead equivalent bit converter (CLEBC) is shown in Fig. 4.7. This consists of two 8-bit 

EBCs. Each 8-bit EBC generates a group generate G and group propagate P signal. These G 

and P signals will speed up the ENI generation for each 8-bit EBC. 

 

Fig. 4.7 A 16-bit carry-lookahead equivalent bit converter 

An 8-bit EBC used in a 16-bit CLEBC is shown in Fig. 4.8. It consists of four 2-bit 

EBCs. An EBC will have output carry ENO as one if it generates a carry or propagates the 

input carry ENI. A carry in a 2-bit EBC will be generated if the two input digits are (0, 1 ), 

(1 , 0), (1 , 1 ), (1 , 1). In EBC1 and EBC2 along with ENO, generate carry signals g1 and 

g2 are also to be generated. The generate signal is obtained in a similar manner as the ENO 

discussed in the previous section and is shown in Fig. 4.9(a). The only difference is that the 

input to the multiplexer for obtaining generate signal is the generate signal of the previous 

stage. In EBC0, no MUX is needed to get g0 as shown in Fig. 4.9(b). In EBC3 no ENO 

generation is needed. Each 2-bit EBC gives the propagate signal as one for both RB input 

digits as 0. So p0, p1, p2, p3 are used to get the final 8-bit EBC propagate signal P. The 

generate signal of EBC3 is the final generate signal G of 8-bit EBC block.  
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Fig. 4.8 A 8-bit EBC used in 16-bit CLEBC 

               

Fig. 4.9 Circuit for obtaining generate signal (a) gout is same as g1 in EBC1, g2 in EBC2 and 
g3 in EBC3 (b) g0 in EBC0 

Based on this methodology CLEBCs are implemented using S-edit for operand sizes 

of 16, 32 and 64 bits. CLAs are also implemented using the same technology for 16, 32 and 

64 bit sizes. The delay results obtained from simulation are normalized with respect to the 

delay of 16-bit CLEBC, which is assumed as 1 and plotted as shown in Fig. 4.10. This plot of 

normalized delay versus operand size shows that the delay of addition using CLEBC is 



 68

smaller than that of CLA for operand size equal to or greater than 16 bits. So this novel 

CLEBC is also put to use in the final adder stage for addition and RB to NB conversion.  

 

Fig. 4.10 Comparison of delay performance of CLA and CLEBC. 

In this EBC a pass transistor based multiplexer as shown in Fig. 4.3(b) is used. But 

this cell is not available in the Toshiba library. So for finding the delay of this cell, we have 

implemented a 2-input XOR gate and this multiplexer with 1.2µm technology available to us. 

Worst-case delays for both the cells are found and the multiplexer delay is normalized with 

respect to the XOR delay and is found to be 0.16. This delay is used for the critical delay path 

calculation. 

In the 16-bit CLEBC the EBC block size is chosen as 8 as shown in Fig. 4.7. In an 8-

bit EBC block, the generate and propagate signals G00 and P00 are obtained from a0, b0, …., 

a3, b3. These signals are used by the B-cells to generate eni01. Finally s0, s1, …., s15 will be 

obtained. So the critical delay path for this 16-bit CLEBC is given below: 

15000)1,1)(0,0( 94.0225.1705.2 seniGbaba  → → →    
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The total delay of this CLEBC is 4.87. 

For a 32-bit CLEBC, one more level of B-cells will be used. This will result in an 

additional delay of 2.550. In the same way the delay for different sizes of CLEBC is 

computed which is summarized in Table 4.3. The delay of CLEBC with CLA for different 

word lengths in terms of TXOR2 delay is plotted for comparison in Fig. 4.11. This shows that 

the CLEBC is much faster than CLA. 

Table 4.3 Worst-case delays for different sizes of CLEBC in terms of normalized gate delay 

CLEBC operand size Worst case delay in terms of TXOR 
8-bit 2.865 

16-bit 4.87 
32-bit 7.42 
64-bit 9.97 

128-bit 12.52 
 

 

Fig. 4.11 Comparison of delay performance of CLA and CLEBC in terms of TXOR2 

 


