
 57

Chapter 4

Final Adder in Multiplication

The previous two chapters presented several methods for generating the partial products and

accumulating (reducing) the generated partial products. Once the partial product reduction

tree using compressors reduces all the partial products into two rows of sum and carry, a fast

final adder is needed to get the result.

 Several techniques have been developed to reduce the propagation delay of the final

adder[Ling 1981, Stelling 1996, Chan 1992]. The use of a fast carry propagate adder is most

widely used in implementation. So in this chapter the best carry-lookahead adder (CLA)

structure [Hennesy 2000] is discussed which will be used in the final adder stage. A new

addition technique using RB arithmetic is also discussed. This adds sum row and carry row to

give the result in RB. It again converts it back to NB form using novel RB to NB converter.

This can act as the fastest adder as well as RB to NB converter and hence reduce the delay.

4.1 Carry-lookahead adder
The most commonly used scheme for accelerating carry propagation is the carry-

lookahead scheme. The main idea behind carry-lookahead addition is an attempt to generate

all incoming carries in parallel and avoid the need to wait until the correct carry propagates

from the stage of the adder where it has been generated. This can be accomplished in

principle, since the carries generated and the ways they propagate depend only on the digits of

the original numbers an-1, an-2,.….., a0 and bn-1, bn-2,……, b0.

 58

There are stages in the adder in which a carryout is generated regardless of the

incoming carry, and as a result, no additional information on previous input digits is required.

These are the stages where ai = bi = 1. There are other stages that are only capable of

propagating the incoming carry i.e. where ai = 0 and bi = 1 or ai = 1 and bi = 0. Only a stage in

which ai = bi = 0 cannot propagate a carry. To assimilate the information regarding the

generation and propagation of carries, two functions can be defined as:

Generate carry = gi = ii ba ⋅ (4.1)

Propagate carry = pi = ii ba ⊕ (4.2)

As a result, the Boolean expression for the carry out can be written as

ci+1 = ai .bi + ci (ai ⊕ bi) = gi + ci . pi (4.3)

Substituting ci = gi-1 + ci-1. pi-1 in the above expression yields

ci+1 = gi +gi-1. pi + ci-1 . pi-1 . pi (4.4)

Further substitutions will result in

ci+1 = gi+gi-1 . pi+-----+c0 . p0 . p1 …..pi (4.5)

This expression will allow us to calculate all the carries in parallel from the original bits.

Using this principle a tree structure of a 8-bit carry-lookahead adder is shown in Fig. 4.1. The

adder performs addition in two parts. In the first part, propagate and generate signals are

derived from the operands (from sum and carry row in our case) applied to each A-cell at the

first level of the tree structure, for the ith A-cell using equation 4.1 and 4.2.

These values are then used to find the group propagate and generate (P01 and G01)

values for group of two successive A-cells at the second level of the tree (comprising of B-

cells) using, for the first group, equations:

G01 = g1 +p1 . g0 (4.6)

 59

P01 = p0 . p1 (4.7)

P01 and G01 contain the information regarding the propagation through or generation of

carry in the group comprising of the first and second A-cells.

The values of (G01, P01) and (G23, P23) are then used by another B-cell at the third level

to find the values of group generate and propagate functions (G03, P03) for the group of four

successive cells. Similarly, values of G07 and P07 are found by combining (G03, P03) and (G47,

P47) at the fourth level of the tree structure.

In the second part, the input carry, ‘c0’ is fed to B-cell at the bottom of the tree

structure. B-cell, at the fourth, third and second level generate c4, c2 and c1 signals

simultaneously with c0 as one of the inputs using equations

c1 = g0 + p0.c0

c2 = G01+ P01.c0 (4.8)

c4 = G03 + P03 .c0

Similarly other carries c6, c5, c3 are generated at the same time using a similar logic.

Carry c7 is obtained using c6, g6 and p6 as the inputs.

An extra logic can be used if required to compute the carryout c8 of the 8 bit adder

using equation c8 = g7 +p7. c7

The sum signals are generated by individual A-cells from operands ai, bi and ci using

equations

iii bap ⊕=

si = ii cp ⊕

 60

Fig. 4.1 8-bit carry-lookahead adder

For delay analysis we will find the delay of A-cell and B-cell in normalized form and

use these delays to calculate the worst path delay of a complete CLA. In Fig. 4.2(a), the A-

cell shows that the worst-case delay is TXOR2=1, required to obtain p. Again in the reverse

direction, the worst case delay is in getting the sum from c and pi and is TXOR2=1. Similarly in

Fig. 4.2 (b) for B-cell the worst case delay for getting group generate and group propagate is

TAND2 + TOR2 = 1.225. In the reverse way to get the higher level of carry from input carry

using p and g is TAND2 + TOR2 = 1.225.

For addition of two n-bit numbers they have to flow from top to bottom to obtain the

group propagate and group generate values and again from bottom to top to get all the carries.

So the worst delay path for this 8-bit CLA is given below:

(a0,b0),(a1, b1) �(g0,p0),(g1,p1) � (G01,P01),(G23,P23) � (G03,P03) � c4 � c6 � c7

�s7

So using the delay analysis of cell A and cell B the worst-case delay will be 8.125.

 61

Fig. 4.2 Delay analysis of basic cells used in CLA (a) A- cell (b) B- cell

The structure of an 8-bit CLA can be extended to implement larger CLA like 16-bit,

32-bit, 64-bit and 128-bit. In extending an 8-bit CLA to 16-bit the number of levels increases

by one B-cell resulting in an additional delay of 2.550. In the same way the delay analysis for

different sizes of CLA are done and summarized in Table 4.1.

Table 4.1 Worst-case delay of different sizes of CLA adder in terms of normalized gate delay

CLA adder operand size Worst case delay in terms of TXOR

8-bit 8.125

16-bit 10.575

32-bit 13.025

64-bit 15.475

128-bit 17.925

4.2 Equivalent binary converter
 In chapter 3 (section 3.1, 3.3, 3.4), the accumulation methods like Array method and

Wallace tree method using 3:2 or 4:2 compressors give the accumulation results in the form of

a sum row and a carry row. Use of RB adder (in section 3.5) in the compressor tree is giving

the result in RB form, which needs to be converted to NB form. For this a number of

researchers have proposed different techniques [Ercegovac 1987, Kim 2003]. In this section

 62

we will discuss a novel architecture based on equivalent binary conversion algorithm (EBCA)
[Kim 2001, Kim 2003]. This can act as the fastest RB to NB converter as well as the fastest

adder for word lengths upto 16 bits. This converter will be used for a novel carry-lookahead

equivalent bit converter (CLEBC) in the next section, which can act as the fastest adder and

RB to NB converter for any operand size.

 The EBCA for RB to NB conversion is discussed in section 1.2 and in Table 1.4.

Thorough analysis of the table shows that ENO is independent of ENI except for X=0 and

Y=0. If X=0 and Y=0, in such condition ENO=ENI. Taking this into consideration we have

designed the circuit for generating ENO as shown in Fig. 4.3(a). Here ENI is given as one of

the input to the 2:1 multiplexer whose selection line is activated from X and Y. So as X and Y

are available at time t=0, selection of which input is to be passed is predetermined. If X=0 and

Y=0 then ENI input is just passed to give the ENO output. To pass ENI we have used n-

channel pass transistor multiplexer as shown in Fig. 4.3(b). Use of this novel equivalent bit

converter (EBC) circuit for 8-bit RB to NB conversion is shown in Fig. 4.4. This is giving

much better performance than 8-bit CLA implementation. The performance evaluation of this

EBC with respect to fastest CLA structure (discussed in previous section) is shown in Table

4.2. The plot for delay, power and EDP with decreasing channel length is shown in Fig. 4.5.

This indicates that the new circuit of block size 8 is 4 times faster than the CLA of block size

8. The power consumption is also 30% less than that of the CLA along with a smaller

transistor count.

 63

 (a) (b)

Fig. 4.3 (a) Circuit of RB to NB converter. Here A = X+, B = −X , C = Y+, D = −Y (b)
Multiplexer

 Fig. 4.4 8-bit equivalent bit converter

Table 4.2 Comparisons of CLA and EBC
Delay (Normalized) Power (Normalized) EDP(Normalized) Adder

type

No,Of

Tr used 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7

8-bit

CLA
510 4.13 4.26 4.38 4.51 4.65 4.80 1.45 1.46 1.48 1.49 1.52 1.54 6.02 6.24 6.49 6.77 7.07 7.41

8-bit

EBCA
424 1.00 1.01 1.03 1.05 1.07 1.09 1.00 1.01 1.03 1.06 1.08 1.11 1.00 1.03 1.07 1.11 1.16 1.22

16-bit

CLA
1038 1.57 1.62 1.67 1.72 1.77 1.83 0.85 0.87 0.88 0.90 0.93 0.95 1.35 1.41 1.48 1.56 1.65 1.74

16-bit

EBCA
848 1.00 1.03 1.08 1.15 1.24 1.34 1.00 1.01 1.03 1.06 1.10 1.13 1.00 1.04 1.12 1.23 1.36 1.52

 64

 (a) (b)

 (c) (d)

Fig. 4.5 Comparison between CLA and EBC (a) Channel length Vs normalized delay for 8-bit
addition (b) Channel length Vs power for 8-bit addition (c) Channel length Vs delay power
product for 8-bit addition (d) Channel length Vs delay power product for 16-bit addition.

As seen in chapter 1, two NB numbers can be added to give a RB number using the

grouping term in equation 1.1, but the result will be in excess by 1. So after forming the

grouping term we have to do RB to NB conversion as well as subtract 1 to get the result in

NB form. Now the analysis of the same EBCA in Table 1.4 shows that for ENI = 1, the

converter will convert the RB number to NB number as well as subtract one. Such an example

 65

is given in Fig. 4.6. Assume that two NB numbers to be added are A = +2 (0 0 1 0) and B = -7

(1 0 0 1). The addition of these two numbers can be given as A + B +1= (A, B) = - 4. To get

the actual result, we have to do RB to NB conversion as well as subtract 1. Now using the

EBCA algorithm of Table 1.4 and assuming the first input ENI0 at LSB side as 1, will give

the result as –5. So this indicates that the same RB to NB converter can be used as adder by

giving ENI0 =1. We also have shown that this RB to NB converter is faster than the CLA for

8-bit and 16-bit operand sizes. So use of this adder circuit will make the final stage addition

faster for 8-bit and 16-bit additions.

Fig. 4.6 An example of addition of two NB numbers using EBCA

4.3 Carry-lookahead EBC
In the previous section we have discussed that the EBC can convert RB to NB (when ENI=0)

as well as add two NB numbers (when ENI=1). This is also faster than the CLA for smaller

operand sizes. But this circuit will have a longer critical delay in comparison to CLA for

larger operand sizes, because of carry propagation. To make the addition and RB to NB

conversion faster, carry-lookahead technique along with EBCA is used to have the fastest

addition for any operand size.

In a two bit EBC the input carry (ENI) propagates as output carry if the two RB digits

are 0. So as the length of EBC adder increases, the worst-case delay path increases. To

overcome this, we have used a carry-lookahead technique. In this we have taken a block size

 66

of 8-bits, which can take 8 RB digits as input and gives 8 NB bits as output. A 16-bit carry-

lookahead equivalent bit converter (CLEBC) is shown in Fig. 4.7. This consists of two 8-bit

EBCs. Each 8-bit EBC generates a group generate G and group propagate P signal. These G

and P signals will speed up the ENI generation for each 8-bit EBC.

Fig. 4.7 A 16-bit carry-lookahead equivalent bit converter

An 8-bit EBC used in a 16-bit CLEBC is shown in Fig. 4.8. It consists of four 2-bit

EBCs. An EBC will have output carry ENO as one if it generates a carry or propagates the

input carry ENI. A carry in a 2-bit EBC will be generated if the two input digits are (0, 1),

(1 , 0), (1 , 1), (1 , 1). In EBC1 and EBC2 along with ENO, generate carry signals g1 and

g2 are also to be generated. The generate signal is obtained in a similar manner as the ENO

discussed in the previous section and is shown in Fig. 4.9(a). The only difference is that the

input to the multiplexer for obtaining generate signal is the generate signal of the previous

stage. In EBC0, no MUX is needed to get g0 as shown in Fig. 4.9(b). In EBC3 no ENO

generation is needed. Each 2-bit EBC gives the propagate signal as one for both RB input

digits as 0. So p0, p1, p2, p3 are used to get the final 8-bit EBC propagate signal P. The

generate signal of EBC3 is the final generate signal G of 8-bit EBC block.

 67

Fig. 4.8 A 8-bit EBC used in 16-bit CLEBC

Fig. 4.9 Circuit for obtaining generate signal (a) gout is same as g1 in EBC1, g2 in EBC2 and
g3 in EBC3 (b) g0 in EBC0

Based on this methodology CLEBCs are implemented using S-edit for operand sizes

of 16, 32 and 64 bits. CLAs are also implemented using the same technology for 16, 32 and

64 bit sizes. The delay results obtained from simulation are normalized with respect to the

delay of 16-bit CLEBC, which is assumed as 1 and plotted as shown in Fig. 4.10. This plot of

normalized delay versus operand size shows that the delay of addition using CLEBC is

 68

smaller than that of CLA for operand size equal to or greater than 16 bits. So this novel

CLEBC is also put to use in the final adder stage for addition and RB to NB conversion.

Fig. 4.10 Comparison of delay performance of CLA and CLEBC.

In this EBC a pass transistor based multiplexer as shown in Fig. 4.3(b) is used. But

this cell is not available in the Toshiba library. So for finding the delay of this cell, we have

implemented a 2-input XOR gate and this multiplexer with 1.2µm technology available to us.

Worst-case delays for both the cells are found and the multiplexer delay is normalized with

respect to the XOR delay and is found to be 0.16. This delay is used for the critical delay path

calculation.

In the 16-bit CLEBC the EBC block size is chosen as 8 as shown in Fig. 4.7. In an 8-

bit EBC block, the generate and propagate signals G00 and P00 are obtained from a0, b0, ….,

a3, b3. These signals are used by the B-cells to generate eni01. Finally s0, s1, …., s15 will be

obtained. So the critical delay path for this 16-bit CLEBC is given below:

15000)1,1)(0,0(94.0225.1705.2 seniGbaba  → → →

 69

The total delay of this CLEBC is 4.87.

For a 32-bit CLEBC, one more level of B-cells will be used. This will result in an

additional delay of 2.550. In the same way the delay for different sizes of CLEBC is

computed which is summarized in Table 4.3. The delay of CLEBC with CLA for different

word lengths in terms of TXOR2 delay is plotted for comparison in Fig. 4.11. This shows that

the CLEBC is much faster than CLA.

Table 4.3 Worst-case delays for different sizes of CLEBC in terms of normalized gate delay

CLEBC operand size Worst case delay in terms of TXOR
8-bit 2.865

16-bit 4.87
32-bit 7.42
64-bit 9.97

128-bit 12.52

Fig. 4.11 Comparison of delay performance of CLA and CLEBC in terms of TXOR2

