INTRODUCING TESTABILITY CONSIDERATIONS
IN SOFTWARE DEVELOPMENT PHASES

THESIS
Submitted in partial fulfilment
of the requirements for the degree of
DOCTOR OF PHILOSOPHY

By
SURESH C. GUPTA

Under the Supervision of
DR. MUKUL K. SINHA

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

1993

Acknowledgements

I am grateful to Dr. Mukul K. Sinha, my thesis supervisor, for his
valuable guidance and encouragement throughout the course of this
study. I thank him for the great amount of time he has devoted to
innumerable discussions and reviews of the drafts of this thesis,

often taking time out from his consultancy work.

I am highly indebted to Dr. N. 8Seshagiri, Special Secretary &
Director General, National Informatics Centre (NIC), Planning
Commission, Government of India, for encouragement and permission
to continue this work, and for organizational support. I thank him
for the valuable advice which helped in finishing successfully and
with great satisfaction, the otherwise difficult task of writing
this thesis. I gratefully acknowledge his grant of leave which

enabled me to concentrate exclusively on writing.

I began this work while I was at Expert Software Consultants (ESC)
Ltd. I am grateful to Mr. L.N. Rajaram, Director, ESC for the
valuable technical discussions I had with him during the initial

period of this research.

I am also grateful for the opportunity to work on the TIFACLINE
Host Software Project, a large and complex distributed database
software project of the Technology Information Forecasting and
Assessment Council (TIFAC), Department of Science and Technology,
Govt. of India. It was this project which provided the challenge,
and the fertile ground for experimenting with some of the ideas in
practice as well as for judging the usefulness of other concepts

evolved during this research.

The contribution of some of the students from IIT, Delhi, JNU, and
BITS, specially Ms. Radhika Ramnath and Ms. Meenu Gupta, in
implementing some of the concepts presented in the thesis, earlier

at ESC and later at NIC, is gratefully acknowledged.

I am grateful to Mr. M. Moni, Technical Director, National
Informatics Centre (NIC), for the final reading of the thesis,
which has been helpful in improving the flow of the text.
Assistance of my colleagues, Mr. P. Venkatesan and Mr. cChandra
Kumar, in taking innumerable printouts during the course of the

preparation of this thesis, 1s gratefully acknowledged.

I am grateful to my parents, my wife, Amita, and my sons, Gaurav
and Saurabh, for allowing me time to devote to this research,

specially on weekends.

This acknowledgment would be incomplete without thanking my Guru

Maharaji for all the Grace he bestowed upon me in this endeavor.

¥

o)

7 -

ab Y B RN =

Signature :) /G
Name ¢ Suresh C. Gupta

Designation : Technical Director

pate : Nov {f, 1993 Organization: National Informatics Centre

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI RAJASTHAN

CERTIFICATE

This is Lo certify that the thesis entitled INTRODUCING TESTABILITY

CONSIDERATIONS IN SOFTWARE DEVELOPMENT PHASES and submitted by

Shri SURESH C Gupta 1D.No. 89 PHXF802 for award of Ph.D. Degree of the

Institute, embodics original work done by him under my supervision.

Signaturc in [ull of ijF%
the Supervisor S S

Name in capital block
letters DR MUKUL K SINHA

Date: NN |8, 199% . Designation DIRECTOR

TABLE OF CONTENTS
Chapter 1 : Introducing Testability Considerations
in Software Development Phases

Introduction
Testability & Maintainablility of Software
Testability : Controllability & Observability
Controllability Measures
Observability Measures

Probe Mechanism and its Salient Features

Impact of Testability Measures on Software Cevelopment
Process Model

Software Control Interface
Testability in Testing & Corrective Maintenance Phases

Testability in Testing Phase
Testability in Corrective Maintenance Phase

Testability Measures & Debuggers
Probe Coverage
Test Plans and Controllability Measures
Initial Research on Automatic Test Data Generation
Testability Measures in a Large Distributed Project
Contents of other chapters
Extended Summary of Research Contributions
Software Testability
Observability Measures
Controllability Measures
Control Interface
Corrective Maintenance

Performance Considerations
Test Data Generation & Test Driver Development

10

10

11
12

12
14
15
15
16
17
19
19
20
21
22
23

23
24

W w W
N R
NI
W N

W W W w
N N NN
nobdWw N

W W W
NN R
CRLRY
W e

Chapter 2 : Current Testing Methods

Introduction

Programming Environment

Typical Testing Environment
Print Mechanism
Debugging Tools

Code Coverage
Test Execution

Summary

Chapter 3 : Observability

Introduction
Probe Mechanism: A Mechanism for Event Recording
Prcbe Identifier Structure

Probe Name
Probe Levels
Probe Category

Probe addressing for control commands

Event Recording
Probes and Software Execution
Test-Control Commands

Probe Activation/Deactivation
Probe Breaks
Event Display

Query of Event History file

Discipline to be followed for Design and Coding

Observability Measures in Testing and
Maintenance of Software

Testing of Software
Maintenance of Scoftware

An Example from TIFACLINE HOST Project
Brief out-line of the Project

Error example 1 : Unable to Connect
Error Example 2 : Lost Messages

25
28
29
29
30
31

32

33

35
39
40
41
41
43
44
44
45
46
47
47
48
48
49

50

51

52

53

53

55
56

W W w
P
@ o
w N

[
.
0

W W
W O
N

ST T -
NN
W N

Event Message Keywords

Probe Coverage

Observability in Software Systems
Observability in Scientific Software
Observability in Non-Scientific Software
Observability in Hardware Systems

Debugger and Probe Mechanism : A Comparison

Debugger : The Salient Features
Probe Mechanism : The Salient Features

Summary

Chapter 4 : Design verification

Software Design : Need for Verification and
Analysis for Improvisation

Design Verification Using Probe Mechanism
Limitationgs of Existing Approaches

The Event History BApproach using Probe Mechanism
Design Verification & Event History Approach

Design Verification

Information Required for Design Verification
Probe Mechanism: A Mechanism for Event Recording

The Enhanced Probe Mechanism
Probe Level & Probe Category
Examples of Design /Algorithm Probe Usage
Probe Mechanism & Design Verification

An Example from TIFACLINE HOST Project

User Specifications of Help Module
Design Level Specifications
verification of TIFACLINE Host Software

specifications Verification
Design Verification

Summary

57
59
60
60
61
62

63

63
66

70

72

73
75
75
76
77

78
78

79
79
80
81
81
83
83
85

85
85

87

Chapter 5 : Controllability

Introduction
Controllability Development

Controllability Measures
Modifications Proposed in Software Development Paradigm

Controllability and Testing

Controllability and Fault Diagnosis

Examples cf Controllability
Table Handling
Filing System of an Operating System
Concurrent Systems : B-Tree
Messages based Distributed System
Communication Module of TIFACLINE HOST

Project : A Detailed Example

Controllability in Communication Module
Conclusions from Examples

Summary

Chapter 6 : Testability & Corrective Maintenance

Software Maintenance
Corrective Maintenance

Fault Diagnosis
Improving Fault Diagnosibility

Obgervability for Fault Diagnosis

Probe Mechanism & Stepwise Focusing
for Fault Diagnosis

Fault Diagnosis : Responsibilities of
Software Designer and Developers

approach for Fault Diagnosis

Controllability for Fault Diagnosis

Controllability Measures and
Fault Diagnosis

88

91

94
98

99

101

101

102

102

101

1058

106

107

108

108

111

113

114
11s

115

116

[y
[
[#2]

—
[
O

120

121

Corrective Maintenance & Observability and
Controllability Measures

Summary

Chapter 7 : Implementation Issues in Testability

Testability Overheads & Optimization Considerations
Attachable & Detachable Observability &
Controllability
Execution time Activation Control
Active Probe Identification
Logging of Probe Messages

Display of Probe Messages

On-line Behaviour Window & Filter
Off~line Behaviour Window & Filter

Query Processing
Performance Measurement using Probe Mechanism

Assertion checking

Probe Mechanism & Asserxrtion Checking

Application of Probe Mechanism in Real-Time Software

Chapter 8 : Testability Revisited.

Testability & Software Development Process

Testability Building Phases
Testablility Application Phases

Testability & Current Testing Methods
summary of Research Contributions

Software Testability
Observability Measures
Controllability Measures
control Interface
Corrective Maintenance
Performance Considerations

Test Data Generation & Test Driver Development

122

123

125

125

1286
126

128

129

129
130

131

132

133

134

135

137

137
139

141

144

144
1458
146
147
148
148
149

Chapter 9 : Future Directions

D, Test Space for Efficient Implementation of 150
Probe Mechanism

9.2 Software Dashboard For Large Software Systems 151

9,3 Ccompiler Support for Observability and Controllability 153

Appendix A : Test Data Generation
using Equivalence Classes

A.l Test Data Generation Using Equivalence Classes 155

A.2 HUTEST : An Autcomatic testing tool under HUMIS (4GL) 156
Application Development Framework

A.3 Testing of Software using RUTEST 165

A.4 Further Extensions le6

Appendix B : Test Driver Development

B.l Test Driver Development 169

B.2 Test Driver Development for 3GL Based &8
Interactive Applications

B.3 Application Development Discipline Required 169
to FPacilitate Test Driver Development

B.4 Advantages of Design Discipline for .
Test Driver Development

B.5 Building Observability in Application Logic 174

List of References

175

List of Publication

184

Chapter 1 : Introducing Testability Considerations in

Software Development Phases

Introduction

Software Testing is an important activity in software develcpment.
Better software development methodoleogies can only reduce the
incidence of errors, but not eliminate the need for testing

(Abbo86, Beiz90, Ince 85, Mosl93, Myer79, Whit87]).

In specification-driven software development paradigms [Boeh81,
IeeeB87), the sequential phases of software development are:
requirement analysis and specification, software design, detailed
design, coding, testing, installation (also called implementation),

and maintenance.

In testing phase, the software is subjected to different levels of
testing to detect different types of faults. The testing levels are
unit testing, integration testing, system testing, and acceptance
testing. Test cases are the central ingredient for successful
testing of any type. While the goal of unit testing is to test the
internal logic of each module, that of integration, system, and
acceptance testings, is to test software design, software
specification, and software functioning in real environment,

respectively.

For a software development project, its test-plans specify the
schedule of testing, test units and associated test cases, for the
entire testing process. Usually, the test planning is initiateq
after specification is frozen, and it runs in parallel to
activities of software design, detailed design, and coding phases,
Specification, design, and detailed design documents are inputs for
formulating various components of test-plans, but no component of
test-plans is ever used either in the design phase, or in detailed
design phase or in the coding phase. Consequently, no provision

exists in the developed software to ease the execution of the test-

plans.

To devise adequate test cases, based only on module {user)
interface, is extremely difficult, since the software cannot be
brought to desired state (for testing purpose) through module
interface commands easlly. Ad-hoc measures are, therefore, adopted
to execute various test cases. This lack of systematic testing,

reduces confidence in the reliability of the software.

Wwe define a software as testable software if it can be tested
easily, systematically, and externally at interface level (i.e.,
without any code modification). A software with greater testability
can only be made a reliable software. We stress that to produce
reliable software, testability must be an essential criterion for

architectural design, detailed design and coding phases.

When a large software is installed and released for use, its
corrective maintenance is the most essential post-release activity,
that the developing agency has to guarantee. Again, the maintenance
engineers of a software are invariably different from those who

were involved in pre-release development activities of the

software.

We define a software as maintainable, if a maintenance engineer
can confirm, isolate, and concretize the fault easily,
gystematically, and externally at user (maintenance) interface
level. A software with better maintainability will take less time
to rectify, and will, therefore, reduce software maintenance cost.
As per the above definition of maintainability, a testable software

only can become maintainable .

In this thesis, we try to lidentify software testability criteria
and stress that, to produce a reliable and maintainable software,
the software testability criteria has to be taken into account in
design and coding phases itself, so that the developed software is

readily testable.

Testability & Maintainability of Software

Existing software development models do not have any provision for
building testability in the software in earlier phases. It only
asserts that appropriate parts of the test-plans should be
prepared, immediately after the specification and design phases,
and in parallel with coding phase, so that these test-plans are
available at time of testing {Pres92, Ie87VV]. Test-plans are
neither made available to the designer nor to programmers to make
adequate provisions in the software, to ease execution of test-

plans.

Once a software has been built without testability considerations,
these cannot be injected afterwards, when their need is really
felt during testing and maintenance phases. For example, it has
been realized that quality cannot be injected into a product
during the last phase of quality control. Quality is a result of
activities in earlier phases [Hetz88, TIe87VV, Neuf93, 0Ould86).
Similarly, testability desired during the testing and maintenance
phases cannot be injected in a software after its coding is over.

It has to be planned and built right frem the beginning.

Most of the research in testing has focused attention on test data
selection (Good75, Rama76, Rapp853], static analysis of code
(Howd8la, Ince85, Whit87], and dynamic testing techniques [Howd81b,
InceB85, Whit87]. Not much attention has been paid to the study of

test execution process itself.

To identify the testability criteria of a software being developed
i.e., the basic requirements for facilitating the execution of
various types of tests as well as error diagnosis, the activities

of software development that need to be analyzed, in detail, are
1. Unit and integration testing

2. Design verification

3. System testing and

4. Corrective maintenance

1.3

While analyzing these activities, mechanisms that could meet the

above requirements were also explored.

Testability : Controllability & Observability

In order to understand the need for building testability, i.e.,
aspects which facilitate testing, it is important to look, first,

at the testing activity itself.

For testing, we have to first decide, the granularity of the
software to be tested. The software granule can be a unit, a sub-
module, a module, or the whole integrated software system. Then,
set of tests to be applied on each software granule, are decided
Again, for application of each test case, a software granule is
initialized to a desired specific state, in isolation, for
execution of the test toc be meaningful. When a test is executed on
a software granule, observation of its external and internal
behavior is necessary to ascertain the correctness of processing

and the diagnosis of errors discovered during this process.

Out of all the activities of testing described above, we focus our
attention only on the two activities that are related to a software
granule under testing. These two activities are : (a) to set the
initial state of the software granule as required by the test cases
prior to its execution, and (b} to observe the internal and
external behavior of the software granule during the execution of
test cases. Usually, a software is designed and developed with its
functional specification as 1its sole goal, and testability
considerations are never taken into account. As a result, on any

software granule, the two above mentioned testing activities cannot

be done easily, systematically, or through its interface commands

Conversely, a software 1is testable, if these two activities are

feasible.

In other words, a software is testable if it has two inherent

properties, viz., controllability and observability. A software

Wwhile analyzing these activities, mechanisms that could meet the

above requirements were also explored.

Testability : Controllability & Observability

In orderx to understand the need for building testability, 1i.e.,
aspects which facilitate testing, it is important to look, fairst,

at the testing activity itself.

For testing, we have to first decide, the granularity of the
software to be tested. The software granule can be a unit, a sub-
module, a module, ox the whole integrated software system. Then,
get of tests to be applied on each software granule, are decided
Again, for application of each test case, a software granule |is
initialized to a desired specific state, 1in isolation, for
execution of the test to be meaningful. When a test is executed on
a software granule, observation of 1its external and internal
behavior 1is necessary to ascertain the correctness of processing

and the diagnosis of errors discovered during this process.

out of all the activities of testing described above, we focus our
attention only on the two activities that are related to a software
granule under testing. These two activities are : (&) to set the
jinitial state of the software granule as required by the test cases
prior to its execution, and (Db) to observe the internal and
external behavior of the software granule during the execution of
test cases. Usually, a software is designed and developed with its
functional specification as its sole gecal, and testability
considerations are never taken into account. As a result, on any
software granule, the two above mentioned testing activities cannot
be done easily, systematically, or through its interface commands.

Conversely, & software 1is testable, if these two activities are

feasible.

In other words, a software is testable if it has two inherent

properties, viz., contrellability and observability. A software

granule 1is controllable, if, through granule interface commands, it
can be initialized to different states as required by the test
being applied. Again, a software granule is observable, 1if 1ts
external and internal behavior can be observed on-line and /or

recorded for post-analysis.

As described earlier, a software, in general, has neither the
controllability property nor the observability property. Extra
measures have to be built in the software during the design and
coding phases, to incorporate controllability and observability

properties.

Testability measures have been defined as composed of
controllability and observability measures. Controllability

measures are extra provisions in the software which help in the
creation of difficult states required for executing various tests.
Observability measures are provisions in the software, which enable
the tester to observe all the desired external and internal
behavior of the software, to the required degree of detail, with
the purpose of ascertaining correctness of processing as well as

diagnosis of discovered or reported faults.

some of the proposed concepts have been implemented and used
effectively in TIFACLINE Host project ([Tifa%90a, Tifa%0b}, a large
distributed database system (OVEr 150,000 lines of 'C' code).
Several examples, which are included in the thesis to illustrate
some of the concepts, are based on the various modules of this

project.

Controllability Measures

Generally, tegt conditions can be created using various commands
available at the granule interface level. All the states cannot be
created using this external interface. Therefore, some additional

functionality and interface commands are required to be built so

that difficult states can be created easily. This enhancement of

software functionality and its external interface, for purpose of
controlling the initial state of a software granule and 1its

execution in the desired manner, is termed as controllabality.

These measures can be built in the software provided the
specification-based test-plans are made available to the designer.
Also, an additional design criteria that the designed software
should facilitate creation of difficult states, is to be provided
to the design phase. It will ensure that the resulting design of

the software is more controllable.

Furthermore, many decisions are made during the design phase, and
these design decisions may not get tested, 1f the tests based only
on specification are applied. Accordingly, additional design-based
tests are required to be planned. These design-based tests can be
worked out at end of the design activity. However, conducting these
tests may be difficult, 1if no provisions are made in the design.
Therefore, before the design phase is closed, the design should be
modified or extended to facilitate execution ef these design-based
tests as well. In fact, the design and design-based test planning

activities, will have to be iterated till both of these converge.

At end of the design phase, the extra provisions made for
specification as well as design—based tests are frozen. These extra
provisions are the controllability measures that will have to be
programmed in the coding phase to make the resulting software

controllable.

Observability Measures

when a test is executed on a software granule, the output can be
examined for correctness. Any abnormal behavior at external level
will have to be diagnosed in terms of various execution steps. It
will require access to the internal behavior of the software.
Generally, print statements are introduced, temporarily, to get

access to this internal information, For smaller software granules
!

debuggers are also used. Debuggers, however, regquire more effort on
part of the programmer in putting break points and recording

various intermediate results manually (Tsub86]).

Correctness of output alone is not sufficient, to assert that
software executed without any error. Very often, a test may affect
the internal state of the software, which is not reflected in the
output behavior of the test. If, this internal state is not updated
correctly, it may affect the external behavior of the subsequent
tests. Observation of change in internal state, is thus very

essential, to assure that the test has been executed successfully.

If such an error is not detected immediately, it will be much
harder to diagnose later. An error is easier to diagnose, if, it is
possible to detect it at the point of its occurrence. More is the
gap between error occurrence and error detection, more difficult it
becomes to diagnose it due to interference of subsequent processing
and additional errors. Therefore, to ascertain the successful
execution of a test, access to internal information, including the

change of state if any. is very essential.

Observability can be built for different purposes. It can be for
purpose of assisting the programmers in wunit and integration
testing, or providing essential information to the designer to help
in design verification [Gupt92]. It can also be built to assist
maintenance engineer in diagnosis of fault, monitoring system
operations, performance, usage etc. [GuptSl]. Probes for all these
purposes, can be identified during the design and the

coding
phases, and embedded by programmers in the coding phase.

In this thesis, we have introduced the concept of probe as

an
observability measure, that can be embedded permanently in the
coftware at appropriate places to make it observable. A probe, on
[
execution, generates a message carrying the internal information

along with its identity. Probes can be controlled externally, andg
4

turned on or off dynamically, providing the desired level of

observability of a software granule.

1.5.1 Probe Mechanism and its Salient Features

Probes are Very effective tools for software testing and

maintenance, and their distinguishing features are the following: -

- Probes are embedded permanently in the code and each probe is
uniquely identified by its probe_id. Probes don't interfere
with the logical functioning of the software, though it
enhances the processing load of the software. Any amount of

observability can be implanted in a software.

- Embedded probes can be activated / deactivated using a
generic probe activation mechanism. Only activated probes

generate and record messages in an event history file.

- Information logged by activated probes in event history file
can be queried later for extracting meaningful information

for analysis.

- Probes can be associated with classification codes as part of
its message which can be very helpful in query formulation

for extracting the required information.

—~ Observability implanted can be for variety of purposes like
design verification, unit and integration testing, and fault
diagnosis during maintenance. Prcbes for such purposes can be

distinguished by attaching a category code with the probe id.

Impact of Testability Measures on Software Development Process Model

As mentioned earlier, testability cannot be built during the
testing phase when it is required for performing various tests. It
is required to be planned and built in earlier design and coding
phases. For this Purpose, test-plans, prepared based on the

specification document, which are made available only during the

testing phase, should be made available tc the design phase as
well. Only then, some provision can be made in the design of the
system, so that tests which are difficult to conduct, otherwise,
can be performed easily during the testing phase. Even the tests,
based on the design of the system, should be examined for ease of
testing and, i1f necessary, the design should be suitably modified.
This process may be iterated till the design and design-based-tests

converge.

Similarly, the observability required for design verification can
be identified, once design has been frozen, so that it can be built
in the ccde by the programmer. During coding phase, observability
required at code level can be identified by the programmers
themselves, and built in the code to help them in unit testing.
Observability required for fault diagnosis in corrective
maintenance, can be identified during the design and coding phases,
and corresponding probes must be embedded in the software by the

programmers.

Thus, testability of software can be planned and built in, during
the design and coding phases, so that it is available during the
testing as well as the maintenance phase. This requires that the
software development process be modified so that test-plans are

finalized early and made available to design phase.

In hardware systems, all the desired controllability as well as
observability measures are planned during design phase and built
into the system, as afterwards no changes can be made, even if

required or desirable. In software, controllability ang

observability measures are generally not pre-planned, as software

is considered infinitely malleable which can be changed whenever

desired. Adhoc measures therefore, have to be used, as ang when the

need arises for these measures,

Software Control Interface

The extra controllability measures built in the software to aid in
creation of difficult states have to be accessible to the tester.
These extra control commands can be made accessible through a
separate interface, which can be termed as 'software control
interface'. Similar control panels are standard features for many
physical systems. For example, tape drives have a control panel,
for use by the hardware engineers, to conduct local tape read

/write tests etc.

Ccommands to control observability measures built in the software
can also be made available through this control interface. Various
commands like enabling and disabling various probes and breaks
(discussed in Chapter 3, Section 3.1.5) could be exercised through
this control interface. Information captured by various activated
probes and recorded in event history file, can also be queried

through this control interface.

Thus the various testability mwmeasures built into the software
should be integrated properly and made available through a separate
'software control interface’'. It is highly desirable, as these
measures are not only just for the testing phase, but also have

relevance during the post-release maintenance phase.

Testability in Testing & Corrective Maintenance Phases

Testability built into the software is useful during both the
testing and the maintenance phases. Testability is relevant in the
maintenance phase, as it involves diagnosis as well as testing

activities.

10

1.8.1 Testability in Testing Phase

Testing is performed initially at unit level. Tested units are
then combined into modules, and then testing is done at module
level. Tested modules are then combined and integration testing is
performed for the complete software. For all these testing
activities, testability measures can be of great help.
Controllability measures can help in creating all the desired test
conditions easily, which, otherwise, would have been difficult for
many test cases. Observability measures can help in ascertaining
the correctness of software behavior as well as diagnosis of errors

discovered during the testing process.

Design verification can be done by applying various design
verification tests and observing the internal behaviour of the
software through appropriate design category probes. Design
category probes are identified by the designer during the design
phase and embedded in code by the programmers. As the designer need
not understand the code written by the programmers, design
verification can be done by the designer himself, independent of
the programmer. Timing information, available through observability
measures can be used by the designer to analyze the performance of
various components of the software. Based on this analysis, design
can be further refined or redone to meet the performance
constraints. A more detailed discussion on design verification is

given in Chapter 4.

During system testing, controllability measures can be used for
creating various tests conditions and observability measures can be
used for diagnosis of discovered errors. System performance can
also be analyzed in terms of the performance of various components

and necessary steps taken to improve the performance, if required

11

1.8.2 Testability in Corrective Maintenance Phase

After release of the software for use, when an error is reported,
the first maintenance step is to identify the environment under
which the error has occurred. Observability built in the system may
help in isolating the software module and identifying its internal
state in which the error has occurred. If the system 1is in

operation, very limited experimentation can be done.

The identified internal state is then recreated approximately in
the development copy of the socftware module on a separate machine
using the built-in controllability, which is available through the
control interface. The approximately identified error environment
may have to be iterated repeatedly using controllability provisions
till the reported error is recreated. Thus controllability as well
as observability is very useful during corrective maintenance phase
for fault recreation in the development environment so that it can

then be diagnosed and verified.

During maintenance Pphase, the built-in-controllability and
observability measures can also be useful in several other ways.
These measures can help, not only in error diagnosis, but also in
monitoring the system functioning, observing performance for tuning
of various control parameters, and logging the usage of the system.
Information generated by various observablility measures can be also
be used to develop some useful enhancements of the software, quite

independent of the main system.

Testability Measures & Debuggers

Debuggers are the most commonly used tools for software testing. A
debugger is specific to a programming language as well as to a
programming environment. For testing, a software has to be put
under the control of an appropriate debugger, which in turn, gives

full control to the tester to execute the software.

12

Tester can execute a specific component of code; set initial state
of the software component by initializing various variables with
desired values; stop execution at any point to view the internal
state or modify it for next execution; take up next component for
execution; or can re-execute the component with modified initial
state, etc. Many attempts have been made to further enhance the

functionality of debuggers (Agra9l, Olss%l, Shim9la, Tsub86].

Testing of a software under a debugger presumes that testing is
done by one person, who knows the internal details of the socftware
completely, i.e., the author himself. Again, the testing process is
completely interactive, and any fault when detected, is also tra =d
interactively. There is no concept of recording of internal state
of software for post-analysis. Again, testing under debugger can be
done only when the software is off-line, 1l.e., not in operation,

simultaneously.

Since a debugger provides an interactive testing mechanism to the

author of the software, it is useful only for unit level testing.

For any large scftware testing, it is very difficult to decide what
to observe on-line. Since a debugger does not provide any mechanism
to pre-specify observability, it is not of much use for testing of

large software.

Module testing, integration testing, and system testing are done by

a team of testers, who need not be authors themselves. Debugger is

therefore, not at all suitable for such type of testing.

Again, since a debugger does not provide any mechanism for

recording or to test software in operation, it cannot be used in

maintenance phase at all.

Debugger cannot handle distributed systems involving multiple

processes (tasks), as the act of breaking the execution for

observing the internal state of any one process, disturbs the
'3

dynamic behavior of the distributed software itself

13

To summarize, though apparently, a debugger appears tc have the
ability to provide observability, it is not very efficient to use.
Ability to change contents of variables is not sufficient for
creating difficult states of large software required for execution

of certain tests.

Probe Coverage

During system testing, it is important to measure the extent to
which the functionality built in the software has been exercised.
Complete functionality coverage may not necessarily result in
complete code coverage. For example, when a library of functions
are used in a software, completeness of testing of the developed
software is in no way related to the code coverage of the library
functions. Similarly, system testing of software built using
functions provided by various modules, may not result in complete
code coverage of various modules. Code coverage is useful only
during unit testing, as the tester, who is also the author of the
program, knows the program logic very thoroughly and has complete
control over its execution and, therefore, can exercise the program

exhaustively.

As against code coverage (Beiz90, Mill84], the concept of probe-

coverage has been introduced to measure the coverage of

functionalities (as defined in the specification and the design

documents) during the system testing. Probes having coverage

category are only used for probe coverage, To cover T

functionality, there can be one or more coverage category probes

Probe coverage can be measured to know the extent of th
e

functionality covered. Uncovered functionality can be ijidentified

and additional tests can be planned for its execution

Complete probe coverage is essential for completion of testing

14

1.11

Test-plans and Controllability Measures

Usually for system testing, the software 1s exercised through the
user interface. Test data generation for exercising the various
parts of the software is entirely dependent on the capability of
the user interface. A software, developed following our approach,
has a control interface, in addition to the user interface. Test-
plans generation, in this new context will now have to be based on

poth the user interface as well as the control interface.

Test-plans, which specify the various tests required to be
conducted at time of system testing, does not specify how the
required test conditions will be created. The design phase which
takes the test-plans as one of the inputs and makes provisions for
the required observability and the controllability measures in
scftware, can augment the test-plans document by specifying how the
various test conditions will be created in terms of the various
user interface and control interface commands. It can also specify
the observability measures, in terms of various probes, required to

be activated to observe the related internal behaviour.

Initial Research on Automatic Test Data Generation

Initial focus of our research in software testing, was on automatic
generation of test data based on the input data characteristics
[Raja89, Sinh89]. Our focus was restricted to software developed in

a 3GL using application development tools. This effort led to the

design and development cof an equivalence class definition language.
These data definitions were used to generate data for driving the
software. Furthermore, the design discipline to be followed to ease
development of test driver was also evolved. Using such automatic
test data generation methods, software could be exercised more

thoroughly.

15

1.13

This kind of automatic test data generation facility 1is useful,
only in exercising the software with more data, for comprehensive

testing in pre-release state.

In the initial testing phase, when the software has many faults,
the testing activity has to be assisted such that it 1is more
productive i.e. tests can be applied and necessary observation made
for analysis. Fault detected should be possible to diagnose easily.
It was observed that very significant effort was being spent in
this initial testing phase, as no effective tool or methodology was
available. The focus of research, consequently, got shifted from
automatic test data generation, to what can be dcne at a more
fundamental level, i.e., to facilitate the testing activity itself.
The need for building testability measures

in terms of

observability and controllability measures was subsequently

realized. The initial part of the research on automatic test data

generation, is also reported in more detail in Appendix A and

Appendix B.
Testability Measures in a Large Distributed Project

The concepts in this thesis have been guided by over a decade of
experience by the author in development of large complex systems.
The problems faced in testing and diagnosis of such systems have

been the main driving force for this research. One such large

project, was 'Fault Control System’, a distributed fault tolerant

software for an Automatic Electronic Exchange (over 3,50,000 1lines
r

of 'C' code), where the author managed a major component of the

software. The problems faced during the testing of software ——
later diagnosis of faults encountered during the implementatio

n
phase, provided an opportunity to look for mechanisms, which could

help in these activities. Some of the proposed concepts
’

were
evolved and used effectively during the development of anoth
er
large distributed database system, 'TIFACLINE Host Softwa
re'
(Tifa90a, Tifa90b], which was undertaken for development

subsequently (over 1,50,000 lines of code). In this project, th
5 e

software development was done in 'C°* using a RDBMS package. Some of
. [w]

16

the underlying communication layers and distributed data handling,

were designed and developed as part of this project.

Observability measures through probe mechanism were used in
resolving some of the crucial communication problems. Timing
information associated with probe messages proved useful in
improving the performance of the communication module to the
desired level. The need for controllability was clearly perceived
in testing and certain fault handling aspects. As no provision had
pbeen made in the software, adhoc measures were used. The problem,
however provided an opportunity to think and check possible
solutions for relevance and effectiveness. A post analysis led to
the concept of controllability measures, which if built could have

assisted in more thorough testing.

Contribution of a large complex project in perceiving problems and
evaluating the usefulness of possible solutions is no doubt very
significant. Many of the concepts discussed in this thesis have
proved their usefulness in actual use. A brief description of the
TIFACLINE project is given in Chapter 3. Several examples included

in this thesis, to illustrate the various concepts, have been taken

from the various modules of this projects

As the concepts presented in this thesis have great practical

significance, these can be appreciated more easily by those who

have undergone through the experience of developing, testing and

maintenance of large complex software systems.

Contents of other chapters

The following describes the structure of remaining part of this

f the contents of various chapters :-

thesis in terms O

Chapter 2 discusses the current testing methods and some of their

limitations relevant from the view point of this thesis,

17

Chapter 3 elaborates on the need for observability and proposes
externally controllable probe mechanism for building the desired
observability. The mechanism is illustrated, with examples, from a
large complex project. Limitations of debuggers, compared to probe

mechanism, are also presented.

Chapter 4 discusses, in detail, the use of testability in design
verification by the designer. An example from a complex project is

used to illustrate the concepts.

Chapter 5 discusses the controllability aspect of testability and

its role in testing and fault diagnosis. The concept is elaborated

with a few examples.

Chapter 6 elaborates on the role of testability during the
maintenance phase. Fault diagnosis activity of corrective
maintenance has been analyzed, and how it can be simplified using

the built-in testability measures, has been discussed.

Chapter 7 discusses the various implementation related issues, like

optimization considerations, probe message logging, and querying of

event history file. Use of probe observability mechanism in

performance measurement, assertion checking, and real time systems

is also discussed.

Chapter 8 discusses testability in various phases of software
development process. How testablility is built earlier in design and
coding phases and used later in testing and maintenance is
elaborated. The current testing methods are reviewed in light of
the proposed testability measures. The research contributions of
this thesis are also summarized.

Chapter 9 proposes Some New areas in software testability for more
detajled investigation. It proposes how testability can be
supported by language compilers; and test Space concept can help in

more efficient implementation of probe observability mechanism. Use

of observability measures in constructing software display panelsg

18

1,15.1

is also proposed for further investigation.

Appendix A describes some of the initial research done in the area
of test data generation using equivalence class representation of
data characteristics. Use of these, in 4GL tools, for automatic

testing of application is also described.

Appendix B discusses 3GL based application development discipline
to facilitate development of test drivers using equivalence class
data characterization.

Extended Summary of Research Contributions

The research contributions of this thesis can be described,

briefly, as follows :-

Software Testability

This research investigates the types of activities that are

required to be done during software development process to

produce testable software. A software is testable, if it has

testability property, i.e., it can be subjected to pre-defined
test-plans easily: systematically, and without following any
ad—hoe measures. This research has identified distinct

activities that need to be done during the design and coding

phases to produce testable software.

Testability property of a software is defined as a composition

of controllability and observability properties.

Usually, any scoftware produced have extremely limited
controllability and observability properties. Extra
provisions, viz., controllability measures and observability

measures, have to be ingrained in the software, for it to
acquire controllability and observability properties

respectively.

19

- Software with pre-built controllability and observability
measures would not reguire any adhoc measures to be developed
during the testing phase. All the planned tests can be

executed readily, which will result in more reliable software.

1.15.2 Observability Measures

- Observability measures have been defined as provisions in the
software to facilitate observation of internal state of the
software at appropriate level of abstraction and at

appropriate point in execution.

- The probe mechanism has been proposed as an observability
measures for a software. A probe is a permanently embedded
piece of code, that on being executed, records internal
information of the software in an event history file, without
affecting the logic of the system. Probes can be
activated/deactivated through external commands, and only

activated probes record information for post-analysis of

execution.

Probes can be of various categories, ©.g9., design verification
probes, unit testing probes, corrective maintenance probes
etc. Furthermore, probes for any category can be defined for
capturing information at multiple levels of abstractions.
Based on specification, design, and detailed design of the
software, the probes (along with its category and level) have
to be identified by the end of design and detailed design
phases, and have to be embedded by programmers while coding.,

Various refinements have also been proposed to reduce

execution time overheads.

20

1:15.3

Design verification can be performed more easily using design
category probes identified by the designer for implantation by
the programmer. Design verification can be done by the
designer independent of the programmers, as there is no need

to understand the implemented code.

For completeness of system testing, the concept of probe-
coverage has been introduced. Code coverage is more
meaningful for unit testing and not for system testing. During
system testing of large software, 100% code <coverage 1is
extremely hard to achieve. For large software, functional
coverage is more relevant during system testing, which can be
measured using the proposed probe-coverage concept more
effectively. We define system testing to be complete when 100%

probe-coverage has been achieved.

Controllability Measures

Controllability measures have been defined as provisions in
the code to bring the software to specific states which are
difficult to achieve through user interface commands for the
oxecution of state specific tests. Special conditions, error,

or boundary conditions, are some of the typical examples of

states, which are difficult to create.

Building controllability require modification of the software
development processS. The types of controllability measures and
their provisions have to be decided by the end of design
phase. The specification'based test-plans are necessary input
for the designer. S5ince design-based test-plans for design
verification can be finalized, only after the completion of
design phase, in Our model, the design phase has to be
iterated till the inclusion of all controllability measures
for design-based test-plans is properly synchronized with the

design itself.

21

- The controllability measures for specification verification
tests, design verification tests, and code verification tests

are incorporated in the software during the coding phase.

- cCcontrollability measures are required to be incorporated in
the software to
(a) Set Test Environment
(b) Set Test State
(c} Activate Observability Measures
{(d) Provide Test Input

(e} Perform Test Analysis

- To test a software component in isolation, it is required to
set test environment. A software component can be sub~module,
module or a sub-system. For setting the state of a component
and for providing test input, some additional software (even
module) may have to be built which can be activated using the

contro)l interface commands.

1.15.4 control Interface

In addition to the user interface, the software is augmented
with a control interface, that provides various commands for
activating controllability measures, in such a way that the
various tests are conducted easily, systematically, and
without following any ad-hoc measures. The observability
measures built in the software are also made available through

this control interface along with necessary documentation.

- The control interface is accessible to the designer and

programmers for testing purposes, and after release of

software, it is made available to

system administrator for
monitoring purposes and the software maintenance engineer for

fault diagnosis.

22

1.15.5

1.15.6

Corrective Maintenance

A software 1is maintainable, 1f a maintenance engineer can
confirm, isolate, and <concretize the fault easily,

systematically, and externally at user {(maintenance) interface

level.

Steps involved in corrective maintenance have been analyzed
and defined. Probes can also be inserted to build macroc and
micro level observability required for saoftware fault
diagnosis. These can also be integrated and made accessible
through the proposed control interface. 'Software maintenance
guide', describing all built-in maintainability measures, can

be made available to the maintenance engineer.

Controllability and observability measures improve fault
diagnosibility, which reduces the effort required for fault
diagnosis and rectification considerably. Thus, cost of ever

increasing corrective maintenance, can be reduced

significantly.

Performance Considerations

Some controllability and associated observability measures can
be designed ags a detachable/attachable components. They can be
selectively detached and attached whenever required, so that
their overheads can be reduced during the operational use of
the software. The attached measures become effective only when

activated through control commands.

23

1.15.7 Test Data Generation & Test Driver Development

- An equivalence class definition based test data generation
language (HUTEST), has been developed for fourth generatiocon
form-based application development environment (HUMIS). It has
been shown to be useful for more extensive and automatic
testing of pre-release version of an application software

(Appendix A of thesis).

- For 3G programming environment, an application software
structure has been proposed which can help in easy development

of an application test driver (Appendix B of thesis).

END OF CHAPTER 1

24

Chapter 2 : Current Testing Methods

Introduction

Software Testing is one of the important activities 4in

development. It is practically not possible to

software

remove all the
errors in the software by any amount of testing based on various

techniques [(Abbo86, Beiz90, Mosl93, Myer79]. Exhaustive or complete

testing would require testing for all possible paths, which can be

very large even for a simple program. Formal methods of program

proving or construction have not been successful beyond very simple
programs. Even these are prone to errors as these are not
completely automated. Most of the reported research works in
software testing have been on test data selection [Good75, Rama?6,
Rapp85), static analysis of code [Howd8la, Ince85, Whit87), and
dynamic testing techniques based on functional and structural
aspects of software [Howd81Db, Ince8%, Whit87). Comparative
effectiveness of these techniques has also been studied ([Basi87,
Haml189, Ntaf88]. Again, these research have focused largely on
scientific software. For critical applications, software structures
have been proposed to detect malfunctioning of software and take
appropriate remedial actions (Parn77]. Even then, software cannot

be made completely reliable [Parn90].

Various testing technigques are essentially trying to improve the
effectiveness of testing, so that with limited resources available
for testing, more reliable software can be produced. To test
software, first unit level testing at module level is performed.
The tests applied are based on functional specifications and the
internal design of the module. These types of tests are also known
as black and white box tests respectively. Code coverage and branch
coverage measurements techniques can be used to know the extent to
which the code has been exercised. The knowledge about the

uncovered parts of the code can be used to plan further tests.

25

After modules are tested independently, they can be integrated one
by cne and tested. If all modules are integrated in one step,
errors may be difficult to diagnose as all the module interfaces
are untested (Ince85). Stubs or drivers may have to be written
depending on whether integration has been deone top-down or bottom-
up (Pres92, Whit87]. The final integrated system is subjected to
functional tests which are derived from the system functional
specifications. Tests based on non-functional specifications like
performance, overload conditions, fault handling etc., are also
conducted [Ince85]. Several tools and techniques are available for

conducting the above activities [Lutz90, Mill84].

It is being realized increasingly that the cost of error correction
can be reduced significantly, if errors are caught earlier in the
software life cycle [(Hetz88, Neuf93, Culd86]. Many errors detected,
during testing phase, could have been prevented, if specification
and design phases were given adequate attention. Errors in earlier
phases get amplified in later phases of software development. Ban
incorrect specification can lead to incorrect design and coding. If
it is detected during testing phase, it may result in change in
design as well as coding of the software. To reduce incidence of
errors in earlier phases, concept of reviews, walkthroughs and
inspections have been introduced [Faga76, FagaB86, Ie87RA, Selb87].
Emphasis has been put on validation of the deliverables of each

phase of software life cycle, against its own inputs, before

proceeding to the next phase. Using these techniques, many errors
get caught in earlier phases of software development, thus reducing

the overall software development cost.

Standards for various software life cycle phases have also been

evolved to improve the quality of output of each phase. It

essentially defines the software development process

more
rigorously. In the IEBE standards {leee87, 1e83TD, Ie87vv, Ie89QA],
the various activities and sub-activities have been specified
clearly. Structure of various documents, which should be producead
in various phases, 1s also specified. It may be quite difficult to

implement the guidelines provided in the standards for the various

26

phases of the software development cycle. However, these can serve
as an excellent checklist to start with and can be implemented by a
software house in a phased manner. Following the standards of
software development can 1improve the quality of specification

document, design document, and code to a considerable extent.

The importance of measuring the complexity of design (modules
specification and pseudo ccde) has also been emphasized, so that
corrective action can be taken earlier in the software development
life cycle. Cyclomatic complexity has been extended to module
design complexity and integration complexity [McCa89]. Structure
metrics based on "fan-in" and "fan-out“ of procedures have also
been shown to be useful for design complexity measurements

{Henr90).

Using software inspection, static analysis techniques including
complexity measurement, and software standards, the cost of error
correction 1s reduced significantly: as errors are caught earlier
in the software life cycle. However, the need to test the software
is not reduced. The software still has to be tested thoroughly. The
only contribution, which the above process makes, 1s that the

number of errors is reduced significantly, especially those in

specification and design of software which require much more effort

to fix in later phases.

Various tools [LutzQO, Mi1184) and techniques as well as the
rigorous process defined by software standards, do not focus
attention on improving the testability of the software. It does not
propose any provision to be incorporated in the software to ease
the testing activity- The basic process of testing and diagnosis
has not been analyzed with a view to make it more productive,
especially when large amount of resources get spent. Much of the
research works focus attention on how to select test data [Good?s,
Rama76, Rapp85], do static and dynamic testing etc. {Howd81a,
Howd81b, Ince85, Whit87]. The test plans finalized for the software
are not at all used during the design phase. Neither the designer,
nor the programmer (of each module) keep the testability

of

27

software in mind while executing their tasks.

Programming Enviroament

Till recently, most of the software development used to take place
in third generation programming languages. Over the past few years,
powerful fourth generation language (4GL) tools have become
available for developing application softwares which constitute a

major part of software development.

In a 4GL programming environment, the various components of
applications like input forms, reports, queries etc., can be
specified to the system. These definitions are used toc generate
code, or are interpreted directly during execution of the
application. In such software, testing gets reduced to only
validating the application with respect to the user specification,
i.e., one only need to validate that the developed application is
as per the specification of the user in terms of functionality,

control flow etc. As the applications are simply defined, the

generated code or interpretation 1s error frees

Significant software development still takes place in third

generation programming languages, as 4 GL can take care of only

certain classes of applicationS- The third generation programming

languages are also being used for considerations of processing
efficiency. Large complex software continues to be developed in
3GL, as these provide the most general programming environment. The
testing issues related toO software discussed in this thesis are

related to 3GL Programming environment.

Various Programming languages differ from each other in terms of

error proneness. FOr example, the programming language 'C' is more

error prone compared to Pascal. Pascal is better "block structured”
and has parameter type checking built into it. Such differences may
result in some differences in programmer's productivity. Choice of

languages for software development is made by the development

28

agency based on various factors, such as, the nature of
application, available libraries of functions, control over low
level operations, execution efficiency, general industry trends
etc. Currently, for developers who are developing software for Unix
or other associated operating systems, the programming language
'Cc', is one of the most popular programming languages, as it gives
advantages of both higher level languages as well as give low level

control, even though it requires more effort in program testing.

2.3 Typical Testing Environment

The programs developed in 3GLs require considerable effort during
the testing phase. Typically, it takes more time to test the
software than to write the code. Most of the time is spent in
debugging the software, as initially the software is full of bugs
and hardly any test case run successfully without encountering
several bugs. The only commonly used tools are typical debuggers

{like 'sdb' for *C'} which are available as part of the

programming language support.

2.3.1 Print Mechanism
Typically, no provision 1§ made in the software to help in the code
testing. Once code is written, the programmer applies one test
after another. In case, &ny fault 1is found, print statements at
appropriate places inside the code are introduced, and the program
is recompiled and re-executed. The information displayed as a
result of print statement indicate to the programmer what really
happened at various suspected stages of processing. Once the error
has been traced and corrected, some of these print statements are
commented, SO that displaying of i1information is restricted to what
is needed for further analysis. A debugger is used only when the

problem is not resolved using the above simple print mechanism.

29

Advantage of print statements is that one need not put break points
and issue display commands as required in debugging environment.
All the regquired information is described by the embedded print
statements, which get printed every time the software is executed.
However, print mechanism requires frequent commenting and
uncommenting, and recompilation of code, each time changes are
made. Moreover, what to comment or uncomment for diagnosing a
particular problem requires intimate knowledge of the program. In
this style of testing, lot of efforts get spent in diagnosis of

faults.

2.3.2 Debugging Tools

A debugger is used by the author of a pregram since it requires
thorough knowledge of the program before it can be used. It is an
interactive tool, and hence takes lot of time and effort to
diagnose a fault in large applications. The mechanism is, however,

general purpose in nature. Breakpoints can be put at the entry of

any function or at any line in the source code. Variables can be

examined and modified on-line. But on-line source code level

modification 15 generally not possible. Programmer has to come out

of the debugging sess10n to do source code modification. The

modified code has to be recompiled, and again run with the debugger

for further testing. Limitations of debuggers, which are generally
available in programming environments, have been realized. Several
efforts have peen made to enrich its functionality [(Agra9l,

Shim91lb, Tsub86].

If the software development 1§ on a small scale, a debugger is

useful, but for large. complex or distributed systems, debuggers

are not that useful particularly during integration and system

testing.

30

2.3.3 Code Coverage

Code coverage [Bei12z80, Mill84] is an important measurement of
software testing activity. It can reveal which part of the software
has not been executed at all so that additional tests can be
planned to execute those parts of the software. Though execution of
every line of code cnce is not a guarantee for correctness, but it
certainly helps in removing many sSimple bugs which surface by
simple test runs. I1f every line of the code has been executed
successfully at least once, only subtle or non-trivial bugs will be
left in the software. These bugs can be removed only by more
rigorous testing, requiring comparatively more resources. Covering
fresh code through additicnal test runs, provides the best return

on testing efforts,

Profilers or code coverage measurements utilities (Unix%92) are
available which can provide detail information on coverage at
function and source code levels. AS these are availabkle as part of
operating systems like Unix etc.. these can be used easily for code
coverage measurements. Using such measurements, code which has not

been executed can be easily identifaied.

However, these tools de not provide any semantics of the uncovered
/ unexecuted code. I ie upto the programmer to figure out the
higher level concept assnciatEd with the uncovered part of the code

in order to plan fresh tests.

For large software ~egting, code coverage is more meaningful at
unit level and not act system testing level. To understand this, we
will have to first look at the way complex systems are designed and
coded: Desigi of large system takes place in two steps. The first
design step consists of overall architectural design of the
software which preaks the complex system into manageable modules
with well defined interfaces. In the second design step, the

detajiled design of each module is done, which is followed by their

ceding-

31

Each developed module can be thoroughly tested independently, i.e.,
complete code coverage can be achieved using tests based on the
specification of the module and its detailed design. Code coverage,
during module's unit testing can be measured using code coverage
tools. After each module has been unit-tested separately, these are
integrated in a phased manner, either in top-down, or in bottom-
up, or in a mixed manner. In this process, integration related
faults are discovered and rectified. Finally, the fully integrated
software has to undergo system testing. Here, tests based on
software specifications and its design architecture are performed.
These tests may not lead to complete code coverage, as certain

detailed design conditions may not occur readily.

During system testing, what is important to measure automatically
if possible, is whether all the functionality both due to
specification as well as design architecture has been tested or

not. Code coverage being at code level cannot measure this aspect.

2.3.4 Test Execution

The developed software is tested against the test-plans prepared
based on the specification as well as the design (architectural as

well as detajled design). Software is designed without any

information about the gpecification-based test-plans. Design-based

tests are concretized ONCE the design is complete. Some of these
tests are very difficult to perform as the specific state required

may be not be easy tO create using the user interface commands.

Even by reaching inside the system, many design-based tests may be
difficult to conduct, &s no thought had been given as to how A—“
would be conducted. Consequently, such tests are not done
thoroughly. In more demanding situations, if these difficult tests
have to be conducted thoroughly, adhoc measures are used which

require a lot of extra efforts. Generally, once the tests have been

performed, these adhoc measures are discarded and forgotten.

32

In case, these difficult tests are not thoroughly performed during
the testing phase, and when an error is encountered during the
system operations, the software maintenance engineer finds it
extremely difficult to rectify such errors. This is because the
maintenance engineer may not have been involved in the design and
development of the system and, therefore, is not thoroughly
familiar with the code. In such a situation, building test
environment using adhoc measures, if required, to test the software

for diagnosis purposes, is even more difficult for him.

As software is not designed for testability, not all the desirable
tests can be performed, resulting in many potentially unreliable
parts in the system. Faults in such unreliable parts lead to
increase in maintenance cost as the corrective maintenance is mare

difficult to perform.

Summary
The main points of this Chapter can be summarized as follows :-

Testing of developed software is essential as formal methods

are still inadeguate to certify correctness of large

gsaoftware.

- Software development process and software engineering
standards have given stress on reviewing the product of each
phase of development. This helps in reducing the number of
errors in the software during the development process and

hence reduces the cost of error correction.

- Even the software produced using the proposed standard

software development processes has to be thoroughly tested

pefore it can be released for use.

33

- Testability of software i.e., provisions to ease test
execution, analysis of test results, and diagnosis of

reported fault, has not been paid enough attention.

- Test-plans prepared based on specification and design of
software are not taken into account by designers as well as
programmers to ensure their ready execution. Consequently,

many tests are very difficult to perform.

-~ In 3GL programming environment, considerable efforts get

spent in debugging and testing of software.

- Print statements are often used for testing and debugging
purposes. These are somewhat cumbersome to use, as it
requires frequent commenting and uncommenting of statements,

and recompilation of program.

~ Debuggers are useful for testing by the author of the
program. It is interactive in nature and not all that useful

for large software testing and debugging.

- Code coverage measurement is useful only at the level of unit

testing. It is not very useful during the system testing,

where functionality coverage is more important.
- Certain tests are difficult to execute, as the state required
by them cannot be created easily using the user interface

level commands. For this purpose, 1t becomes necessary to use

adhoc measures which require extra efforts. Furthermore,

this approach leads tO unsystematic testing and adequate

testing of software become too difficult to achieve. Again
f

it poses difficulty in the maintenance of the software.

END OF CHAPTER 2

34

Chapter 3 : Observability

Introduction

Observability 4is one of the two 1important components of
testability. It asserts that during execution of a test, it is

important to know not only the output but also the various

intermediate results.

If the output is correct for the given input, then the test is
assumed to be successful. However, this is true only if the test
does not change the internal state of the software, which may
affect subsequent behaviour of the software. If the change in
internal state is not done correctly, and the output is correct,
clearly, even then a fault exists. This incorrect change in
internal state can be noticed, only when it is visible to the

tester at the time of the execution of the test.

In the absence of information on the change in the internal state,
it will not be noticed until it affects the results of subsequent
tests. Such errors becomes harder to diagnose in circumstances

ihers EhE Sause of error ig far removed from its visible symptom.

Therefore, it is essential to get access to the internal processing

performed by a test, so that one can be sure that not only the

output is correct but it has changed the state of the software

correctly as well,

In case the output i$ incorrect, even then to diagnose the fault,
one has to look at the intermediate results, The fault is localized
by checking the output of each of the sub-activity underlying the
test. For this purpose, sufficient information about the various

g steps should be made available to the tester,

processin who has

the responsibility of rectifying the fault observed in the output

of a test.

From the above discussion, it is very clear that access to internal

information is essential both for fault rectification as well as

38

ascertaining that a test has executed correctly i.e., observability
of software processing at the desired level of detall or

abstraction is required for beth of these activities.

As discussed in Chapter 2 on current testing methods, the above
required information is extracted using either a symbolic debugger
or simple print statements. Print statements are intrcduced in the
software to extract the desired essential information. First, a
higher level information may be extracted through very few print
statements, inserted only at the beginning and end of each block of
code, which may localize the fault to a small section of the code.
Then, more detailed information may be extracted from that section
by inserting more print statements, and repeating the test, which

helps in identifying the faulty code.

The same can also be achieved using & symbolic debugger. The
extraction of the desired information can be done, as all the
variables are available for display at any point in execution of
the software. Using breakpoint mechanism of debugger, processing
can be stopped at any point either at procedure level, or at source
code level. The process of debugging is interactive and repetitive,

and requires understanding of the control flow of the entire

software [Tsub86].

These mechanisms have worked well for testing of software of
smaller size. Invariably, large software is developed by a team of
software professionals as a project. It has been observed that in
large software development, more effort is getting spent in
debugging and testing of software, especially written in languages

like 'C', than the effort spent on writing the code itself.

Rectification of fault becomes even harder as testing goes beyond
the unit testing, which is testing in the small and is done by the
programmer who has written that portion of the code. There are no
tools available to help in system testing and fault rectification

in corrective maintenance.

36

Debuggers have become somewhat more powerful in functionality with
time, but have not changed in its basic principles. Some of the
significant developments are (a) control breaks on predicates
defined over state variables [Tsub86), (b) backtracking program-
execution (AgraSl]), (c¢) facility to observe higher level behaviour
defined in terms of primitive events [Bate83,0lss%91), (d) guidance
to programmers in error localization process based on program
structure [Kore88), and (e) automatic identification and display of
relevant parts of the code responsible for a class of errors

(Shim91b].

Debuggers give access to all the information at a point in
execution. But, what is important to observe becomes harder and
harder to decide, as one moves from unit testing to system testing
and then to corrective maintenance. It can only used be for small
programs. Debuggers also have some serious limitations in handling
distributed systems [McDo89, Cheu90), where tasks are distributed
on multiple processor sites and real-time applications; where
temporal aspects are involved. Debugger presumes centralized
control and hence cannot be utilized to test distributed software.
In case of real-time applications, the act of debugging disturbs
itself. Limitations of sequential

the processing behaviour

debuggers has led to the development of a new framework for

distributed debugging [Cheu90, Garc84, LeBl87, McDo89, Millss).

What basically one needs for this task of fault localization and
ascertaining correctness of test execution, is observations of
internal processing at various levels of abstractions and details.
The quest for a more effective mechanism led to the concept of
permanently embedded probes. Each probe has an identification code
and can be activated from outside whenever required to get the
desired information. Information captured by activated probes is
recorded in a log file, which can be queried later, for analysis.

These probes have to be planned during the design and coding phases

and implanted in the code by programmers.

37

Using probe mechanism, designer as well as programmer can plan what
is required to be observed for various purposes. Thus, later on,
one has to only choose what aspect one wishes to observe, and

corresponding probes can be activated.

Each activated probe, generates a message containing all the
necessary information at that point. Probes can be defined at
various levels of abstractions. Thus behaviour of the software can
pe observed at any level of abstraction, by activating the
corresponding levels of probes. Based on observation of software
pehavior at a higher level, fault can be localized to a specific

part of the code, which can then be observed in detail with

detailed level probes.

Probe messages with timestamp information can be used to measure
the performance of the designed system and identify weak links in
the system, for further tuning or redesign. During on-line

operational phase, such information can be used to tune various

system parameters for better performance.

Probe like mechanisms, referred to as "software monitors" and

or sof i .
"software sensors", have been used f tware instrumentation.

These have been found toO be useful in measurement of code coverage

(Rama75], during testing of software etc. [Rama75a, Schu8?7, Gupt9o2].

Instrumentation has also been shown to be useful in detecting data

flow anomalies, some Of which (like array handling) are difficult
to tackle by static analysis [(Huan79]. As probe mechanism does not
alter the dynamic behaviour of the software (except cause marginal
processing overheads) these are being used in distributed systems

to analyze problems related to dynamic behaviour at system level

[Cheu90, GracB4. McDo89] .,

The traditional probe mechanism used for event recording has been
enhanced. Concept of probes for various levels of abstraction, 1like

design verification, code testing, maintenance, system monitoring
!

etc., has been introduced (refer to Section 3.2.1.3 of this

Chapter for more details). Probe identifiers can be structured
L3

38

reflecting the structure of the software and used to address a
group of probes in a generic manner. Information gathered by active
probes is recorded in event history file, which can be queried for
analysis purposes. The proposed probe mechanism has been
implemented and wused 1in a large complex distributed database
project developed in 'C'. It was found to be very effective in

system testing and fault rectification.

The following section describes the probe mechanism in more detail.
Section 3.5 presents some examples from the distributed project
mentioned above. Section 3.8 discusses observability present in
various types of software and hardware systems. Section 3.9
compares the probe mechanism with debuggers, highlighting the
advantages of the former over the later. Section 3.10 summarizes

the important points of this Chapter.

Probe Mechanism: A Mechanism for Event Recording

Probe mechanism is best suited to record various events occurring

in the system. Probes can be empedded anywhere in the program by
the programmer.

A probe i1s a function call with the syntax:

BEEbe (probe_idr Event_message)

where Probe id is & unique structured identifier which identifies
the point of origin of the event message. The event message
contains all the important information relevant at the point where

the probe is placed in the code.

it
does not affect the control flow or legic of the software in which

As probe is a single call with certain number of parameters
!

it is embedded.

39

Events can be recorded in one or more event history files, but for
simplicity, we presume that all events are recorded in one file. By
placing probes at appropriate points in the code, all the
information required for ascertaining the correct execution of a
test can be gathered. Moreover, using the information generated by

various probes, one can reconstruct the global state of the system

as well.

Timestamp is automatically prefixed on each message generated by
probes. It is very essential for systems having multiple processes
(tasks), as it can be used to order the various events for
analysis. Also log information can be used to replay the message-
generation in proper time order. Timestamp is not required in
single process software for fault diagnosis. However, it is

essential for performance measurement and tuning.

3.2.1 Probe Identifier Structure

Each probe is identified by a probe id which can have a very simple
structure, e.g, it could just be a unigue number; or it could be a

complex structure, where various parts represent various aspects of

the information captured by the probe.

The structure of probe_id discussed in this section is what was

found to be very useful. However, the user is free to choose any
other structure suitable for one's own environment. The structure

defined here has been used in the rest of this thesis.

Examples, in this section, are being taken from the Communication
module software which 1is described in detail in Section 3.5 in
brief, this module assembles messages from various processes into

files for various destination hostsg. Similarly, messages received

in files from other systems, are dissembled and sent to queues of

various local processSes.

40

Let us start with a simple example and gradually build up a more

complex and powerful structure around probe_id.

3.2.1.1 Probe Name
At the simplest level, probe id could be of the form
fun.nl.n2.n3....

which is very similar to various sections, sub-sections of a
report. Each ©.' represents a further level of detail. *fun'
represents the abbreviated code for the function or procedure where
the probe is residing. nl represents the higher 1level of
information, n2 the next lower level and so on. This probe name

uniquely identifies a probe within a software.

For example

sqrt.l
sqrt.1.2
Tl BeKav LUy represented by such probes are basically at function

or code level.
3.2.1.2 Probe Levels

Probes can alsc capture higher level behaviour of the software. It
could be at module or sub-modules levels. Probes which capture

such higher levels can be associated with

information at "level

code" as prefix O the probe number. e.g.

L1.L2.L3/fun.nl.n2.n3 or

Module.Sub#module.File_name/fun.nl.n2.n3

41

Large software is composed of modules and sub-modules. Each sub-

module may have several files, each containing logically related

functions.

If the probe message information represents software behaviour at
module level, probe level code would have only module name present
in level code. The other parts L2 and L3 would not be present and

would be represented by ' '. For example

Comm._. /fload.l.5
represents a Communication module level probe identifier.

If the probe message information represents sub-module level
behaviour, then both module and sub-module name could be present

and only L3 would be absent. For example

Comm.Assem. /pack.l.2

The number of levels i.e. L1,L2,L3.. would depend on the particular
software. Sometime sub-module or file levels may not be present. In
that case, shorter level code structure like

L1.L2/fun.nl.n2.n3
or

L1/fun.nl.n2.n3

may be used. sometimes, if more levels exists in software, then

more levels can be created in a similar manner.

42

3.2.1.3 Probe Category

Probes can also be categorized based on what aspect of the software

behaviour is being observed. It could be for purpose of

(a)

(b}

(c)

{d)

Algorithm level behavicur for code verification by

programmers.

Design level behaviour for design verification by the

designer.

Macro and micro level behaviour for rectification of

reported faults by the maintenance engineer.

Monitoring usage of system and resources for purposes of

tuning its performance (or even charging the user).

The probes capturing the above categories of software behaviour,

can be assigned a code,

(separated by

prefixed to the level code in the probe ig

7Yy . The codes for above categories have been

defined as follows -

Code behaviour 'R
Design behaviour ‘D

Maintenance 'MAC’ for macro behaviour

'MIC' for micro behaviour

; 'MON’
Monitoring

For example

A/cgmm.Assem._/pack.l.l
p/Comm.Assen. /pack.1l
MAC/Comm.Assem._/pack.5
MIC/Comm.Assem._/pack_S_l

MON/Comm.Assem._/pack.4

43

3.2.2

3.2.3

Probe category code can also have a structure like that of level
code and probe name (i.e. . , so that maintenance probes can be

coded as M.MAC and M.MIC). But, single part category code has been

used for simplicity.

Probe addressing for control commands

2 set of probes can be referred to, by using a generic expression.

For example

D/Comm.Assem. /*
D/Comm* / *
Dif*f*

D/Comm._._/'

Here '*' matches with any numbers of any character except the code

terminator '/'. '?' would match any single character except '/'.

The first example represents all design-category probes in assemble
sub-module of communication module, i.e., 2nd level design-category
probes in 'Comm’ module. The second example represents all design-~
category probes in communication medule at all levels, i.e., first
level, second level, and third level, design probes in 'Comm’
module. The third example refers to all design—category probes in
all the modules. The fourth example represents all first level

design-category probes in Communication module,

Event Recording

when a probe is executed, the event message associated with the
probe is computed. The probe~id and the associated event message
along with a timestamp, is recorded in the event history file as

one record.

44

Event-message is a string, containing values of several variables,

each preceded by the name of the variable.

Examples
"Telephone_No : 2t Docket no : ?d Fault : ?state”
"Docket _no : ?d Fault class : ?class"

In the above examples, t, d, state, and class are program variables,
that must be valid at the probe location. For the first example, at
run time, the probe may record the fecllowing message in the event

history file.

"Telephone_No : 7254 Docket_no : 231 Fault : Dead "

3.2.4 Probes and Software Execution

For different test cases, different probes will be meaningful. 7o
avoid insertion and removal of probes from the Source code for
different test runs, we propose that the probes reside in the code

permanently, as the overheads are minimal.

Any software embedded with probes can run in one of the two modes:

test mode & operation mode. When the software runs in "Operation

mode", no events are recorded. When the software runs in "test

mode", events get recorded in the event history file. 1n "test

mode", the software is proposed to be controlled through a te +
ST=—
control position, which could bhe a workstatiaon Several commang
: nds

are available at the test-control position.

45

In a software having multiple processes, the event messages are
sent to a event monitor process, which is responsible for recording
the messages in the event history file. If the software is run in
"operation mode", this process remains in dormant state, and does
not record any message. But, when the software is run in "test
mode", this process becomes active. It then receives commands

given by the test-control position and behaves accordingly.

3.2.5 Test-Control Commands

Software can be put to a specific test run through test-control
position. Again, to have recording of only relevant event
messages, only a specific set of probes should be active for a
specific test run. Probe Activation and Deactivation commands are
available at test-control position. A deactivated probe does not
record its event in the event history file. By default, all probes

are deactivated.

The sequence of activation and deactivation commands are stored in

a probe command table. This table can also be loaded initially from

a standard command file and further commands can be added later on=-

line. On encountering a probe call, the probe command table is used

to determine the activation status of its probe id. Only active

probes generate messages, which get recorded in the event history

file.

46

3.2.5.1 Probe Activation/Deactivation

Probes can be referred to in a generic style so that a group of

probes can be addressed through a single command at test-control

position.

Examples
Enable D/*. ._/*

This will activate all the level-one design

category probes in the entire software.

Enable */Comm.Rec. /*

This will activate all level-two probes in

Receive sub-module of Communication module.

Disable */Comm._._/*

This will deactivate all level-one probes of

Communication module.

3.2.5.2 Probe Breaks

Break points can be put on selected probes from test-control
position. On encountering a preak point, execution control returns

to the test-control position t° enable the tester to activate or

deactivate other probes, or query event history file.

Example

Break on A/Comm.Rec.Deas/dispatch_5-2

47

3.2.5.3 Event Display

For displaying event messages, multiple windows can be defined on
the test-control position work-station. Each window can be
associated with a filter, i.e., a condition to select wmessages for
display. Thus, different windows can display different types of
messages from same or even different processes of the software,
This facility helps in understanding and analysing the dynamie

behaviour of the software.

3.2.6 Query of Event History file

The message recorded by all the activated probes, in event history

file, can be queried using a query language.

Examples
Select * where Telephone_no >= 7000 and Fault = "Dead"
Select * where Probe id = "*/Comm._ . /*

The second select command will display all level-one messages

generated by the Communication module. (Please note that, '*' in a

string matches with any set of characters except '/'),

The query on event history file can be done, interactively on-line
through test-centrol position, or later off-line through an Event-

Screen package.

48

Discipline to be followed for Design and Coding

To effectively use the probe mechanism, tc aid in the testing and
maintenance of software, the following design discipline is
proposed. It will help in testing as well as localizing the faults

to module, sub-module and code level.

For building observability in software, one need to plan for it
during the earlier phases of design and coding. Large software
should be designed first at architectural level. It should break
the software into modules, with well defined interfaces and their
interactions. Interaction among various modules can be capturead
using design-category level-one probes. These probes should be
defined by the designers of the system. Theése probes will help the

designer in design verification during system testing.

Each module is given to a software team for detailed design. Each
module may be further broken into sub-modules. This detailed
design should also be documented. The design category level-two

probes required to capture the iﬂternal design level behaViDUr of

the modules should also be defined.

Definitions of both level-one and level-two probes are to be
documented, and given to the coding phase so that these probes can

be inserted in the software at appropriate places in the code,

Each sup-module is given to a team of programmers for coding. The
Programmers can define the level-three probes, which are
algorithmic probes. Usually, all the functions related to an
algorithm or a specific purpose, are grouped in a file. The file
name can be used to represent this third level code. Programmer can

also introduce more detailed level probes in various functions. He

e the probe name structure to capture these

can utiliz further

levels of details at function level.

The propbe messages for various purposes should be constructed in

such a way, that it provides all the information necessary which

49

will help in testing as well as in localization of faults.

Maintenance Category Probes : Probes for maintenance (macro and
micro level observability) can also be identified during the design
and coding phases. AS the purpose of these probes 1is to localize
the reported fault and not design or code verification, these may
be different or include a subset of design and code category
probes. Macro level probes could be for capturing the occurrence of
various events. Micro level probes would have more detailed
information about various events. These maintenance probes should
also be specified during the design and coding phases, and

embedded, so that these are available during the maintenance phase.

System Monitoring Probes : Similarly, the probes for system
monitoring, in terms of usage of various resources, should also be
identified, embedded, and documented during the design and coding
phases. Information captured by such monitoring prokes can be used
for tuning of the system parameters dynamically. This information

can also be used to build add-on modules independently; for

instance, accounting module.

All the observability measures in terms of the embedded probes in

the software for various PUrposes. should be properly documented,

so that appropriate probes €20 be activated when reqguired.

Observability Measures in Testing and Maintenance of Software

The observability measures: built during the design and coding
phases using the probe mechanism, are useful during the testing as
well as the maintenance phases- These are discussed, in detail, in

the following sub-sections-

50

3.4.1 Testing of Software

Though the test probes are embedded permanently, enabling and
disabling of probes are externally controlled. During the execution
of a test, the desired probes can be activated, to observe the
relevant internal level behaviour of the software. Any incorrect
output can be analyzed in terms o©of the various processing steps.
Even for correct output, internal processing, which affect the
state of the software, can be observed to make sure that the change

of state has been done correctly.

Testing for a specific module/sub-module/procedure should be done
by activating level-two and level-three probes. Testing can be done

either top-down or bottom-up by activating different probes.

Integration and system testing can be done by activating level-one

probes. Design-verification can be done Dby the designer using the

level-one design-category probes. Performance of various components

can also be measured, using the timestamp information attached to

probe messages, for further tuning of the software,

When the software is released for the first time, the module level

probes, i.e., level-one probes (and level-two and level-three

probes of sensitive piece of codes) can be left activated all the

time, till the software stabilizes.

Thus observability measures built for various levels of the
saoftware behaviour, help in observing the internal behaviour to the
desired level of details, which facilitates test analysis and
discovered during testing or post-release

diagnosis of faults

period.

51

3.4.2 Maintenance of Software

A software designed and implemented following the above discipline
should produce a maintenance manual, which gives in detail,
information about all embedded probes, their levels, identity, and
the meaning associated with their probe messages. The software
testing or maintenance team, then, need not use code-visualization
tools, or extract design from the code, etc. [Bigg89, chik90,

Choi90, Oman90b]); to solve the corrective and adaptive maintenance

problems.

On reporting of any software error during operations, level-one

probes can be activated. Browsing through the messages of enabled
test probes (saved by the probe monitor}, the maintenance engineer

may localize the problem in a specific module. Once a module has

been identified, the engineer can disable probes related to all

other modules, and enable probes of level-two of the suspected

module, and so on. In this way, by dynamically controlling (i.e.,

activating and deactivating) the test probes in a systematic way,

bugs can be localized easily, thus, reducing testing and

maintenance time and efforts.

The ability to view the software behaviour at a global level, and

then slowly zoom—in to the possible problem area, is very useful in

fault isolation. Only when the fault has been localized to a small

part of the code, debugging aids need be used.

that in localizing the problems, the

The above scenario shows,

maintenance engineer uses probes that were thought at design and

implementation phases itself. If the probes are not able to guide

the maintenance team to isolate the bugs, it would mean that proper

attention was not given to the observability (and contreollability)

measures of the software during design and implementaticn phases.

52

An Example from TIFACLINE HOST Project

To illustrate the concepts presented above, we will take an example
from TIFACLINE HOST software [Tifa90a, Tifa90b]; a large project in
which these concepts were used in design verification and in tuning
up of the design to deliver the desired performance. The following
section gives a brief outline of the project. Section 3.5.2 and
3.5.3 describe two scenarios of faults for illustrating the use of

probe mechanism.

3.5.1 Brief out-line of the Project

The TIFACLINE project consists of a number of host machines, each
located in a different location and having information on certain
technologies available within the country. Information in all the
hosts put together constitutes the complete technology database.

The host software provides to the user a query facility over this

distributed database. Apart from this primary service, it also

provides secondary services, like bulletin board for sharing of

information among members of closed user groups and on-line

interactive help facility. Figure 3.1, depicts the overall

architecture of the TIFACLINE Host software.

User interface, interacts with users providing the various

The Handshake module keeps information about all the

facilities.
resources available in the network, and helps in establishing
connections to various resources either available locally or on

remote sites. The Communication module takes care of message

+transfers across various hosts.

The Smart database contains information which helps the user in
identifying the technology records which are of interest to him.
The TIFACLINE database Servers, service the user's request for

detail information about technology records. The Help servers
represents the logged in Helpdesks, which can be connected to any

user asking for on-line interactive help.

53

Sk e)

=

s

froormmm-e

3184293 14234 WaY3AY PaRLI3Y ¢ FERL

mm—— = = -

144143

TS

LY SR IO CR S

v IR LY o2l

54

3.5.2 Error example 1 : Unable to Connect

Fault Description : On invoking Helpdesk option (Tifa%9Ca, TifaS0b)
r

one is not able to connect to any Helpdesk, even though one can

notice a free Helpdesk.

There could have been several reasons for this fault. Some of the

possible errors could be

~Helpdesk registration not done

-Open connection message not received by Helpdesk module

-Handshake not able to process open connection

Unless one gets more internal information, one cannot reach any

conclusion. Using @& debugger to resolve this problem would have

been a very difficult exercise, &5 multiple processes were

invelved. Secondly: it would have required the presence of
programmers who had developed the Helpdesk, on-line help, and

Handshake modules.

robes were activated and the event history file was

Appropriate P
examined to check the status of the Helpdesk and see the messages
exchanged between on-line Help, Handshake, and Helpdesk processes.

it was discovered that Helpdesk was able to connect
r

In this case.,
immediately after it registered itself with Handshake module.
Afterwards, Helpdesk was not able to connect, because, on closing

of the previous connection, Handshake module was not informed by
Helpdesk, S© cwat 1t could reset its status from 'busy' to
ravailable- Therefore, next time when a request for ‘'cpen
connection' was received from Belp module, Handshake reported 'no

though one Helpdesk was available. More

free Helpdesk', even

detailed lJevel probes were activated to localize the fault
I

further, in the code.

Thus, by activating appropriate probes and analyzing the event

history file, one could localize the problem to a small section of

55

the code. The programmer who wrote the code, analyzed the faulty
part of the code further, using a debugger and the error was

rectified.

If probe like mechanism had not have been incorporated in the code,
the problem would have involved all the concerned programmers, and
would have required more effort in the initial stages of fault
diagnosis jtself, In this case, only the concerned programmer was
required to be told about the faulty part of his code, after the

problem had been analyzed and sufficiently localized by the system

designer.
3.5.3 Error Example 2 : Lost Messages

Fault Description : Some of the messages exchanged by on-line help

and Helpdesk are getting missed.

on report of the above problem, the event history file was

examined, which had only macro level or very ilmportant messages, to

avoid excessive overheads. AS the recorded information was not

sufficient, more detailea level probes were activated to get more
7

information about the internal processing.

It was discovered that the messages were being put on gqueues, but

were not received. The ‘'send message' call was not programmed

The returned 'error code' was not being processed by the

or was localized to a very small section of the

properly.
software. Once err

code, attention was focused on the problem area and the error was
r

rectified.

Thus probe mechanism helps in identifying the 1likely area of
L4

error, Lor close scrutiny, where very timited possibilities needs
f

to be examined thoroughly, mentally or using a debugging tool. In
the absence of such an efficient and flexible mechanism, adhoc
methods, including debuggers, are generally used which consume
large amount of time and effort in this initial phase of error

localization. Probe mechanism make error diagnostic more systematic

56

and efficient, reducing the effort and time significantly
Event Message Keywords

In order to facilitate query over the event history file, to t
. . ¢ ge
information about the various aspects of the software behaviour, it
i

r

is proposed to attach one or more keywords as part of the e t
ven

message.

To illustrate the usefulness of this concept, an example from
TIFACLINE Host software [Tifa%0a, Tifa90b] is given. Various
modules of this software, exchange messages for various services.
ge can be associated with some of the following keywords:-

Each messa

<description> <keyword>

Open connection oc
Register module reg
Send message s_msg
Receive message r_msg
Help Module help
Handshake Module hs
h_desk

Helpdesk

Associating relevant keywords with every exchanged message, would

make queries for wvarious aspects of the software behaviour very

simple. For example, a message sent from Help module to Handshake

module, for opening a connection with a Helpdesk, can have several

keywords, like
MSG_KEYS @ help/hs/s_msg/oc

similarly. Handshake module, on receiving this message from it
its

message gueue; can record a probe message with keywords

MSG KEYS hs/help/r_msg/oc

57

indicating that a message was received by Handshake from Help

module for open connection.

Several useful queries can be made over the event history file

using these keywords. For example,

Select * where MSG_KEYS *help* and

MSG KEYS = *hg*

would retrieve all the messages exchanged between Help and

Handshake modules for operations, like open connection, close

connection, etc. If several Help modules were operational, then
L ’

interaction of all the Help modules with BRandshake would be

retrieved. Messages of individual Help module could be identified

using the process_id field in the message. Similarly, a guery like

Select * where MSG_KEYS *help* and
MSG KEYS = *s_msg* and

MSG_KEYS = *r_msg*

would display all messages sent or received by Help module to and

from any other module, which includes Handshake and Helpdesk

modules. Similarly.

x*xhg* and

1}

Select * where MSG_KEYS
MSG KEYS = *h_desk*

would retrieve all message exchanged between Handshake and

Helpdesk. These would be for initial registration by Helpdesk, and

subsequently, open connection requests and replies, close

connection, and de-registration, etc.

Each of such gquery, represents some aspects of the software

pehaviour which is useful for analysis. Associating message
keywords, is only one of the possible mechanisms, proposed for
extracting the desired aspects of the software behaviour from the

event history file. In debugger environment, such kind of analysis

58

i ndi ,
indicating that a message was received by Handshake from Help

module for open connection.

Several useful queries can be made over the event history file

using these keywords. For example,

Gelect * where MSG_KEYS = *help* and

hg

MSG_KEYS

would retrieve a1l the messages exchanged between Help and
n

Handshake modules for operations, like open connection clo
’ se

connection, etc. 1f several Help modules were operational, then
! r

interaction of all the Help modules with Handshake would be

retrieved. Messages of individual Help module could be identified

using the process_id field in the message. Similarly, a query like

select * where MSG_KEYS = *help* and

M3G_KEYS = *s msg* and

i}

MSG_KEYS = *r_msg*

y all messages sent or received by Help module to and

would displa

other module; which includes Handshake and Helpdesk

from any

modules. similarly,

select * where MSGﬂKEYS « *hs* and

MSG_KEYS = *h_desk*

would retrieve all message exchanged between Handshake and

Helpdesk. These would be for initial registration by Helpdesk, and

gubsequently, open connection requests and replies, close

connection, and de-registration, etc.

Each of such guery; represents some aspects of the soft
ware

hich is useful for analysis. Associating me
ssage

-

behaviour W

keywords, 1S only one of the possible mechanisms, proposed f
or

extracting the desired aspects of the software behaviour f th
rom e

event history file. In debugger environment, such kind of analvsi
¥Sis

58

is not possible, which is important for facilitating error

diagnosis.
Probe Coverage

Code coverage measurement, is used to find out the parts of the
software which have not been exercised, so that more tests can be
planned and executed to exercise those parts {[Beiz9%0, Mill84]. We
assert that, code coverage 1s more meaningful at unit level and not

at system testing level.

During unit testing, complete code coverage can be achieved as

greater control is available to the programmer. Programmer

completely understands the logic which he has built, and,

therefore, can exercise it exhaustively, by direct or indirect

means.

System testing may not necessarily result in complete code
overage, even if the entire functionality is exercised. This is
C ’

because, certain decisions taken during the design of the software,
e r

not reflected in the user specification. These can only be
are

ted using the design—based tests, during module and integration
teste

testing.

sure the extent of system testing, probe mechanism can be
To mea

d very effectively. ALl the important activities of the system
used V

be associated with appropriate probes. Coverage of such probes
can

be used to identify the functionality not exercised. This
can

information will be at a higher level of abstraction, 2 FR —
info

£ tionality of the system which is easier to correlate, by the
unc

¢ and designer of the system; compared to the information
use

ided by code coverage tools, which has to be interpreted by the
prov

ogrammers toO identify the related higher level concept,
pPr

Thus probe-coverage, i.e., coverage of certain set of identified
probes can be a very effective mechanism to measure the extent of

system testing, and identify the functionality of software, left

59

untested.

3.8 Observability in Software Systems

Some degree of observability is present in all softwares. An input
usually produces an output. If the system is simple and smallPi

size, by looking at the output, one can ascertain its correctnessn
any abnormal output can be analyzed, and corresponding faulty cod;
can be localized, identified, and debugged. However, as software
gets more and more complex, and large, an incorrect output may not

immediately lead to the faulty piece of code, for debugging. I
. n

such a situation, the fault has to be diagnosed by executing th
e

software and examining or observing intermediate processing

The degree to which observability is present in a software, depends

on its nature. The following sections, discuss the level of

observability present in scientific and non~scientific software
’

and also computer hardware systems.

3.8.1 Observability 1in grientific Software

In scientific software, the output is usually a direct function of

Whereas, in many non-scientific applications, the
f

inputs as well as the state of the

the inputs.
is dependent on the
in scientific software, analysis of the output

output

goftware. Therefore,
should be sufficient to check the correctness of processing done b
b 4

the software.

However, it LB usually very difficult to say anything about th
&

correctness of processing by just observing the output results
r as

the inputs go through very complex mathematical transformati
ons.

Therefore, the stress in scientific testing techniques i
3 1s to

detect as many errors as possible in the process of transfo t
rmation

of the algorithm into programs. For example dataflow techni
ques

basically try to jdentify coding errors.

60

In scientific software, observability is essential, but presence
of desired level of observability alone is not sufficient enough
for purpose of fault identification and fault diagnosis. In
scientific software, an algorithmic solution is transformed into a
program. The first important desirable step, would be to ascertain
that execution follows the desired course of computation. For this
purpose, source code level trace facility, is highly appropriate.
It can indicate the control flow, as well as the various values
computed which affect further control flow. Thus, observability, in

the form of source level trace, is very important for scientific

software.

3.8.2 Observability in Non-Scientific Software

In non-scientific software like system software, application
software, etc..it is relatively much easier to ascertain
he output values and some

correctness of processing by observing t

internal pehavior. Moreover, the processing done is usually quite

simple, but the number of inputs and their combinations, on which
the processing depends may be large. Thus emphasis, in non-
is on exercising the software as

scientific software testing

thoroughly (using all possible meaningful combinations of inputs)

so that pal functioning, if any, can be detected by

as possible,

observing the outputs.

The behavior of the interactive part of the software, is visible to

the user and hence, there 1is no need for building any
!

observability for it. However, the application logic, may require

e level of observability to be built especially where the logic

most of the application logic i3 fairly

som

is complex. Generally,

simple. The results of processing are recorded in the database,
which are available to the user / tester through various repocrts

and interactive queries. Only for those parts of the software,

where complex processing is being performed, additional internal

observability would be desirable.

61

Certain third generation programming languages (like 'C', in which
considerable application software development takes place, for
efficiency considerations), which are gquite error prone,

observability can prove to be very useful.

Software which are highly interactive in nature, like word
processor, spread sheets, etc., errors in software will result in
improper responses which are visible to the user. Thus many
faults will get discovered simply with the use of the software. To

help in diagnosis of these faults, some level o0of internal

observability would be useful, as such softwares are quite complex

internally compared to applicaticons software, described above.

3.8.3 oObservability in Hardware Systems

ilt observability is very intrinsic to hardware systems. Probe

is an integral part of integrated circuit

In-bu

or test-point concept

(IC) chips/cards design. The hardware itself is structured into

modules with well defined interfaces. Test points brought out at

rfaces have no role in operation of the circuitry, but for

inte
ascertainang the correct functioning of wvarious internal
components at the time of testing or fault diagneosis. In other

words, testability of IC chips/cards is an important criterion in
i

chip/card design. To facilitate testing at later stage, additional

circultry L5 introduced permanently, and test points (extra pins)

are brought out [Levi92].

In hardware;, observability is built for diagnosis of faults, which

may get created during manufacturing process or due to wear and

tear of the system with use. It 1s not meant for detecting fault in

design of the hardware.

In software, as the complexity of the system is much higher, not

all the faults are possible to remove, even after very rigorous

testing. Some provision is required to help: fn the asgHoEiE of

residual faults. Observability in hardware, L8 for diagnosis of

62

faults which occur due to physical wearing out of components, which
is different from reasons of faults in software. Nevertheless,
observability has been found to be very useful and essential for
diagnosis of faults. In software also, observability 1s required
and is used in fault diagnosis, but it is not pre-planned. Building
observability a-priori, will considerably reduce the effort

required to get access to internal information later.

Probe mechanism provides a means to embed observability, which can

be activated to the desired level of details, whenever required.

3.9 Debugger and Probe Mechanism : A Compar:son

3.9.1 Dpebugger : The Salient Features

Debugger has been used very extensively for testing and error

diagnosis. It provides tremendous amcunt of execution control over
L -

the software. The tester can put breakpoints at a function as well
e .

tatement level. various global and local wvariables can be
as s

mined and their values changed during execution, on the fly, if
exa

red. Advanced versions of debuggers, permit break on change

bles or whenever the desired condition defined in

so desi

of wvalues of varia

the form of an expression holds true. The program stack can be
examined to trace the sequence of calls. Software can be executed
in step mode oOr £ill the next pbreak point. Thus debugger provides a
great deal of controllability as well as observability. However,
debugger approach to testing, has the following limitations :

(i) ARuthor Testing (Small Programs):
The above approach to program testing and debugging, requires

that the tester thoroughly understands the program, as break

points have to be put at appropriate places in the code, and
variables to be examined must be known in advance. Therefore,

debugger is most suited for unit testing by the author of the

program.

63

(ii) Interactive and Less Efficient

(211)

(iv) No History

Debugger requires more effort and time in testing and error
diagnosis, as a lot of manual intervention is involved in
this process. To examine the c¢ontent of variables,
appropriate break points have to be put. On occurrence of a
breakpeint, commands can be given to display the contents of
required variables. In case, the tests have to be repeated,
earlier effort of defining breakpoints and display commands
has to be repeated again. Though, debugger provides a
sufficient mechanism, it 1is not a very efficient or

productive mechanism for testing and diagnosis of errors.

Not Suitable for Large Software / System Testing

Debugger is suitable for testing of small programs by the

author of the program. system testing of large software,

which is developed by several teams of programmers, becomes

more difficult, as programmers only understand their own code

thoroughly. The designer understands the whole system, but is

not familiar with any of the code written by programmers. The

designer and all the concerned programmers have to work

together for fault diagnosis, which is very tedious and time

consuming.

Moreover, as the size of the software increases, from unit

testing to system testing, what to observe becomes harder and

harder to decide interactively and in on-line mode.

Flexibility to view or change any internal information,

becomes counter productive as the view increases beyond a

manageable size.

for Post Analysis (Only snapshot at Break-point)

Debugger does not record any information for post~analysis

Debugger provides whatever information is required when it

arrives at any breakpoint. There is no option with the tester

64

to post-analyze the test results (internal as well as
external information) away from the system. Intermittent
faults, are difficult to diagnose using the debugger, as it

may not occur during the debugging session.
(v) Not Suitable for Corrective Maintenance

puring the maintenance phase, when a fault is reported, the
software maintenance engineer has a difficult time in
locating the error, as he is not thoroughly familiar with the

code (required by debugger} because, usually, he was never

involved in the design or coding of the software. Even if he

was part of the development team, in a large software he

would have handled only a part of the coding. Debuggers can
help once the fault has been localized to a small part of the
code, which the software maintenance engineer can understand

without much difficulty. Therefore, debugger is not an

effective tool for fault diagnosis during the maintenance

phase.

g Distributed Systems

(vi) Limitations in Handlin

Debugger can help in creating states, which are data

dependent, and not time dependent. In fact, 1f it is used to

diagnose a time dependent fault, it seriously affects the

dynamic pehaviour itself, making it difficult to observe the

problem. In distributed systems, complexity is largely due to

dynamic interaction of various processes. Many faults are

related to this dynamic hehaviour. The c¢onventional

sequential debuggers can handle one process at a time. Even

if these are extended to handle multiple processes, they will

not be able to deal with time-dependent faults for reasons

explained above.

65

3.9.2 Probe Mechanism : The Salient Features

1f access to internal processing can be provided by scme simpler
means, & major part of the test and error diagnosis can be
performed without the need to use the debugger. Debugger may be
used when the error has been localized to a function or code level.
In probe mechanism, information of interest can be identified and
appropriate probes can be inserted permanently in the code.
Properly structured probe identifiers can be used, so that probes
at various levels of details, can be referred to easily for
activation and deactivation. The information captured by activated
is recorded in a log file, which can be analyzed using a

probes,

query language. Most of the test analysis and error diagnosis can

be done within this framework. Probes once identified and embedded
can be used whenever any testing is to be performed, or diagnosis

of any reported problem is to be done.

Externally controlled, permanently embedded, probe mechanism has

the following important features, which make it a more effective

testing tool for large software,

(i) Pre-Planned

Observability using the probes mechanism 1s pre-planned,

probe are identified during design and coding phases for

various purposes, and embedded in software during the coding

phase. These probes
internal information during the execution of tests. Though it

can be activated to get the desired

requires efforts in this planning process, but later, one

simply has to activate relevant probes to log / display the
information necessary for any test verification or even fault

diagnosis. Designers and Programmers of the software can

easlily identify the information necessary for various

purposes, including that required during the corrective

maintenance phase. Dependence on code understanding, gets

reduced considerably, for the initial stage of fault

localization.

66

(ii) Software Behaviour Categories and Levels

Probes can be identified for various purposes like code
verification, design verification, maintenance phase fault
diagnosis, software monitoring, etc. The required behaviour
of the software can be observed with different categories of
probes. Moreover, for each category of probes, behaviour of

any part of the software can be observed at any desired level

of detail.
(iii) System Testing / Post-Release

puring integration testing, debugger cannot be used very

easily, as control flows from module to module, which are

developed by different programmers. Observability, as
provided by probe mechanism, is more convenient, as break
points are not reguired to be put dynamically. Higher level
design and code category probes can be activated to observe
the system at global level. In case of any

the behaviour of

abnormal behaviour, more details of suspected parts can be

observed. Thus faults discovered during the system testing or
in post-release period, can be localized very easily to small

part of the code, which can then be rectified by the

concerned programmer.
(iv) Performance Measurement / Monitoring / Tuning

Performance of various components of the system can be
measured using the timestamp information in probe messages.
I+ can be used to identify weak points in the software so
that these can be strengthened by appropriate minor or major
redesign. During the operational use of the software, the
usage can be monitored and control parameters of the software

tuned to get better performance.

67

(v) Post Analysis

Probes to observe the desired behaviour can be activated. The
probe messages get recorded in the event history file, which
can be analyzed later using a query language. Thus, important
information about the faults can be gathered during the live
operation of the software, and analyzed, later off-line.
Based on this analysis, more detailed diagnosis can be
carried out using the development copy of the software. 1In
distributed systems, the event history file can be used to
replay the exact sequence of processing for easier
understanding of the otherwise complex dynamic behaviour of

the software.

(vi) Corrective Maintenance

(vii)

During maintenance phase, the maintenance engineer generally
does not have a complete understanding of the code, as he was

not involved in the development process. Even if, he was

involved in the development process, he would not have code

level understanding of the entire software; as large

softwares are developed by several teams of programmers

Using probe mechanism, macro and micro categories probes can

be identified and embedded in the software to help in

localizing the faults to the procedure or small part of the
code, which can then be debugged. This initial process of
localizing the fault to a small part of the software would

otherwise be very difficult.

Distributed Softwares

Probe mechanism is a very effective mechanism to hang)
e

software for distributed systems. In a distributed syste
m,
one cannot break the processing to analyze dynamic / temporal

faults, as it would affect the dynamic behaviour of th
=

distributed software itself. In such systems probe 1lik
: e

mechanism has been found very effective. The probe overheadq
s

68

can be reduced to very low levels. The various event messages
recorded in event history file can be analyzed off-line.
Replay facilities can be built to recreate the actual
sequence of events to facilitate the understanding the

dynamic behaviour for purposes of fault diagnosis.

Proposed Probe Mechanism vs. Event-based Debugger for
Distributed Systems : Event-history recording used in event-
based debuggers for distributed systems, primarily address
the problem of repeatability of dynamic behaviour faced while
using conventional sequential debuggers {Cheu90, Grac84,

McDo89]. The information recorded in event history file is

analyzed for fault diagnosis.

some of the event-based debuggers record only essential

information in event history file and use it to synchronize
re-execution for reproducing the same dynamic behaviour

[Jone87 Lebe87, Mill88]. During re-execution, breakpoints

n be put and variables examined for more detailed
ca

information for diagnosis. Observability 1is incidental in
in

these approaches, as stress is still being laid on use of

debuggers in replay mode.

I 11 the above approaches, the importance of event
n a

ording, in sequential software, 1is not being stressed at
rec ’

11. Even when analysis is entirely based on event history
all.

information various levels of abstractions of event
in 7

information is not being supported. Also, in what phases of
i

ftware development, events for recording are identified and
SO

embedded, are not clearly defined.

69

3.10

Summary

The important points of this Chapter can be summarized as follows

Observability i.e. access to internal processing at various
levels of abstractions 1is very essential for ascertaining

correctness of test execution and fault rectification.

Print mechanism and debuggers provide observabkility, but are
very efficient mechanisms only for unit testing. These are
not suitable for system testing, acceptance testing and fault
diagnosis for corrective maintenance. RAlso, debuggers cannot

be used for analysis of dynamic behaviour of distributed

systems.

Externally controlled probes, permanently embedded in the

code, is a general mechanism, which can provide any desired

level of observability in the software.

Concept of probes for capturing behaviour of the software for

various levels of abstractions, like design verification,

code testing, fault diagnosis during corrective maintenance,

and system monitoring, has been introduced.

probes for various purposes are planned during the design and
coding phases and embedded by the programmer in the software,
Wwhat to observe for what purpose is planned a-priori once for
unlike in debugger approach. It 1is, therefore, very

all,
effective for system testing and corrective maintenance.

Probe messages with timestamp information can be used to

measure performance of the designed system and identify weak

links for further tuning or redesign. During the post-release

phase, such information can also be used to tune various

system parameters for better performance.

70

-~ As probe mechanism does not alter the dynamic behaviour of
the software (except cause marginal processing overheads), it
can be used in distributed systems to analyze problems

related to the dynamic behaviour, at system level.

- Observability can be attached or detached as required.
Attached observability can be activated and deactivated
externally. Only activated probes generate messages, which

are recorded in event history file.

- Probes are be identified by structured identifiers,

reflecting the structure of the software and various levels

of abstractions. Probe can referred to by a generic mechanism

for activation / deactivation of the desired set of probes.

The probe messages logged in event history file, can be

analyzed using SQL like gquery language. Messages can be

associated with multiple classification codes, to facilitate

query for pre-defined purposes.

- Code coverage 1is more meaningful for unit testing and not

for system testing. puring system testing of large software,

100% code coverage 1is extremely hard to achieve. For large

software, functional coverage is more relevant during system

testing; which can be measured using the proposed probe-

coverage concept more effectively. We define system testing

+o be complete when 100% probe-coverage has been achieved.

The observability built in the software using the probes

mechanism, can be documented in the form a ‘'maintenance

manual'; which can help the maintenance team to localize the

fault, with considerably less effort and cost.

END OF CHAPTER 3

71

Ch : i
apter 4 Design Verification

Software Desi : £
sign : Need for Verification and Analysis for Improvisation

Development of software, as a solution to a complex problem, has a
distinct design phase. Ideally, the design activity means

exploring several alternative solutions to the same problem by sam;
or different set of persons; comparing the merits and demerits of
all the proposed feasible solutions, and then selecting the best

possible alternative for the detailed design and soft
ware

implementation.

Unfortunately, the design phase in software development does not go

on these lines. Generally, an obvious solution is adopted for mor
e

detailed analysis and improvisation. Certain problems like

problems in distributed systems,

Major contributors to this complexity are asynchronous processin
g

are quite complex intrinsically.

by multiple processes, on same or different systems, with
L4

communication links, which may not be reliable,

The design of such complex system cannot be shown tc be correct

easily on paper. Many aspects are not even comprehended clearly
the design 1is put to
consists of, not only verifying the

some test. Therefore, testing of

unless
complex software systems

developed software against the design, but also validating the

correctness of the design itself.

all the functionalities built in a software are not easily

Usually,

testable by using only the commands available at the user interfac
e

level. It is very important to test the design very thoroughly s
o

that its correctness can also be ascertained. Some extra effort
s

are required to test such aspects of the software which are not
o

easily testable.

72

Performance, which 1s ap INtrinslc requirement of any syst

cannot be predicted very accurately, just based on the dys'em'

Variables, which affect the eng response, are so many thatef:gé
) :

difficult to model the end response in terms of these varia;le;S

Therefore, measuring performance of the developed system become;

very essential, after the system has been built

Based on the performance of various sub-components, the desi
! ign can

be judged comprehensively. In case, the pPerformance is not t
upto the

mark, weak links can be identified for improvement, or redesi
’ ign and

development, to achieve the desired level of performanc
e.

Sometimes, a major redesign effort for the whole software may ha
ve

to be undertaken, since minor adjustment and component-wis
- e

redesign may not be sufficient.

Design Verification Using Probe Mechanism

Software life cycle model, consists of well defined phases of
development, which include user specification, design, coding,
testing, implementation, and maintenance phases {Gilbs8s, Fres92).
On analysis of user requirements,

input to the design phase. The

the specification document jis

prepared, which is given as an
output of design phase a design document, which should pe

validated against the specification document. The design document

is

is an input to the coding phase. Once the coding is complete, apart

from code testing, it must be verified against the design as well

as the specification documents [Hetz88, Ie89VV, Neufg3, Ouldgg],

No approach towards testing of code, distinguishes the role of
designer from that of programmers. Usually, all approaches pPresume

that either both the programmer of the code and Qesigner of the
system are one and the same person, or they are testing the Program

we assert that the verification of design ig 4 distinct

together.

activity and it can pe done by the designer himself, p Programmer s

activity is restricted to unit level testing of software, ang i
is limited to the correct implementatjionp o

responsibility

73

algorithms.

?ESLQH document not only specifies the design of the £

it also further details or concretizes the user s Eo,t?are’ but

Further, the design document defines the overall pec}flcations.

the software and behaviour of the various modules/Suifzrt:ifture of
-modules under

various sit ; ' e e base
jtuations. The description is somewhat 1lik
i rul based

specification.

verifying the pehaviour specification of the module/sub
ub-module need

not reguire the detailed knowled
ge of the underlyi
ying code. If the

necessary behavioral information can somehow be made
available t
o

the designer, he can cross check the actual behaviour agai
ainst the

specification in the design docu
ment. Issue of desi
ign verifjicati
on

arises at the tame of integration and system testing, and
' n not at

the time of unit testing.

Integration testing 1is performed after ea i
ch individual
module has

StEd at Unlt lEVEl- I“ l[ltegrat @] t
ion tes]ng s
¥ ome Qr al]

been te
ether and tested as a wh

ole. It ma

y reveal

modules are put tog

further errors; which may be due te misi
nterpretati
ocn of module
specifications, mismatch or inconsisten
- cy among
module
or unacceptable performance of the system
as a

specifications,
whole. We characterize all these errors as desi
sign errors
or design
ipterpretation errors. These errors can be tr ;
aced during desi
esign
e only.

verification tim

a designer will apply different test cases to

To verify his design,
oftware and will like to execute specific control flow
5, or

the S
different kinds of

will like to

gather data during software
required by the programmers tc test thei
T

execution than those

implementation-

te yarious testing approaches for thei
ir suitabilit
Y

We now evalua

for design verificatlon.

74

4.2.1 Limitations of Existing Approaches

Debugging have been used traditionally for unit module d
| v and even
System level testing [Akar9l, Tsub86). Sseveral attempts h b
ave een
made to enhance the capability of conventional debuggers [a 9
gra9l
Kore88, shim91b). Debuggin ’
. g cannot be a good mechanis
m for design

verification. Though any part of the state of softwar
2 can be

examined at breakpoints, it becomes dilfficult to decide hich
C wnich part
of the state :s important for design verification Th
% € act of

debugging tends to disturb the natural flow of Processing itse]
self,

and hence, performance and issues related to timing cannot b
no e

tested,

Black box testing verifies functional specifications anag hence it
i

is not useful for design verification. White box testing is meant
an

for verifying the internal control structures and is generally useq

for wunit level testing of algorithmic aspects, Similarly th
. e

concept of static testing involves off-line analysis of code ith
wi

the intention of finding logical errors in design anq Ty
g at

unit level.

Since issues of design and algorithm are so interwoven in the cod
el

the designer normally has to go through the entire code for desig
S n

the largeness of the software make
s

verification. Furthermore,

these approaches unsuitable for design verification.

4.2.2 The Event History Approach using Probe Mechanism

In the event history based approach, the testing activity has four
(1) construction of a test case; (2) embedding code with

steps:
probes to record all important information and events relevant feor

the test case; (3} application of a test case to the software apg
and (4) analysis of the recorded event history

event recording;
Ccheu90, Grac84, McDo89]. Following this approach, Software

{Bate83,
can be run under various test cases. The recorded event history can

be analyzed later tO check whether the software conformg to the
The designer can easily identify test Caseg

specifications or not.

75

and related internal information for design verification. Thus
event history approach can be readily used by the designer for

design verification.

4.2.3 Design Verification & Event History Approach

The techniques largely used for design verification require an
understanding of architecture of software, and coatrol flow and
data flow at a higher level. A programmer who concentrates at unit

level, does not have a total perspective of the software. Ang

hence, he cannot have a feeling of events that are important for

overall design verification. To verify his design, a designer will
have different test cases than those constructed by the programmer.

Again, the designer will like to get events recorded at different

points in code execution for its design verification.

A designer, apart from providing the functional specification of
each moedule to programmers, must also ask programmers to embed

probes at appropriate points in the c¢ode so that events that are

useful for design verification can be recorded. In addition to

design verification, the designer is also responsible for ensuring

a desired level of performance of the software. Unlike functional

specifications that can be frozen during the design phase,
performance of software cannot be guaranteed by the designer in

advance. After coding 1is complete and software is integrated, the

performance of the software is studied by the designer using

specific test cases. In case, the performance is not satisfactory,
the software will require tuning which can be done only when the

"performance of each software component is known. The components

that cause bottlenecks, can be re-coded to improve performance. If

the performance criteria are not met even after re-coding of

components, some modules or a set of modules will have to be re-

designed. To study the performance of various modules/sub-modules
of the software, the designer has to specify, in advance, what
events are to be recorded and where these events occur in the

Software.

76

We have extended the event history approach to take care of design
verification. In our scheme, probes have been categorized into
design and algorithm probes (also introduced, briefly, in Chapter 3
Section 3.2.1). Algorithm probes are useful for unit level testing
by programmer, whereas the design probes are used for design

verification. To understand performance behaviour, probes are time

stamped.

In Section 4.3, the concept of design verification is discussed in
detail, and the Section 4.4 describes the the design and algorithm
probes suitable for design verification. Section 4.5, gives an

example taken from a large distributed database project, viz.,

“TIFACLINE host software', where some of these concepts have been

used in practice and found useful.

Design Verification

For large software, the design document gives the overall

architecture of the software and specifications of all components

viz., module, sub-modules, processes etc. It specifies modules

interface specifications, modules behaviour under various

situations, interactions among modules, and performance criteria.

The behaviour specification is very similar to the rule based

specification in expert systems. Implementation of these rules into

a coherent procedure is largely the responsibility of the

programmer .

To verify this behaviour, it is not necessary to have an

understanding of the underlying code as long as the information

necessary to evaluate the behaviour can be made available to the

designer. For example, if module "A' has to send a message to

module “B', it is sufficient that whenever a message is sent, this

event is recorded with all the necessary information for study by

the designer later. It is not at all relevant as to how the

Programmer has implemented it at code level. The correctness of the

Underlyijing code to achieve the desired behaviour is the

respopngibility of the programmer.

77

Design specifies the behaviour of the module at a certain level of
abstraction. Thus, test results should provide the designer with
the behavioral information at the same level of abstraction so that
it is easier for him to match the actual behaviour with that 1laid

down in the specifications and also with his expectations.
4.3.1 Information Required for Design Verification

During the execution of the software, one needs a tool to record
all information of importance for post-execution analysis. It may
consist of values of parameters oOr various intermediate results,

However, it may also be necessary to have access to the system's
£

global state which may be present in various data structures in

local or shared memory, message qUEBUES files, and databases, etc.

Again, to understand the performance behaviour, timing information
L3

of wvarious events is very important. If, by execution of software,

one can identify the components that are consuming teoo much of

tim thus causing Ppoor response;, then these components can be
Ef

~ven redesigned to achieve the desired

tuned, re-coded, ©OF

response.

A Mechanism for Event Recording

4.3.2 Probe Mechanism:

echanism is pest suited to record the various events
m

The probe
Probes can be embedded anywhere in the

occurring in the system.

We have enhanced this concept to take
the programmer.
program by

are of the issue of design verification.
c

parameter of probe function can contain all the

The message

: rant information relevant at the point where the probe is
impor

laced in the code. By placing probes at appropriate points in the
plac

3 all the information required for design verification can be
code,

gathered MOoreover, using the information generated by various

probes, one can reconstruct the global state of the system as well,

78

Temporal behaviour of the various components of software can be

well understood, as the probes carry the timestamp information.

4.4 The Enhanced Probe Mechanism

The probe mechanism can be used to capture any type of information.
The designer identifies the important information for his use. The
programmer can also use it to get information to help in the
testing of programs. If the designer can distinguish its events
from that of programmers, the event history file can be browsed

independently by the designer and programmers. This makes the

designer independent of the programmer.

4.4.1 Pprobe Level & Probe Category

The probe mechanism talks about probes at various level of

ahstractions so that the problem can be understood in top-down
fashion [Gupt91) . What constitutes each level of abstraction has

been left open deliberately. For example, a designer may designate

software specifications and module specifications, as the first and
second level of abstractions. Depth of levels depends on design

approach complexity, architecture, and size of the software.
4

Similarly, the internal behaviour of software can be studied at
various categories of abstraction. We define two orthogonal
internal categories of abstraction i.e., the design category and
algorithm category. Both of these can be captured by probes, which

can be termed as design-category and algorithm-category probes,

respectively- since a probe-id is a unique structured identifier, a

probe can carry its category as a part of its probe-id. We propose
that probe—id- apart from its category should carry the module
name, function name, and a label to identify its position in the

code.

79

Examples of Probe-ids :

D/Belp/Input.5.1
A/Help/Display.5.2.3

The first probe_id represents a design category probe (denoted by
'D* in the first part of the probe id) of Help module with probe
name, "“Input.S5.1". The second probe id represents an algorithm
category probe (denoted by 'A' in the first part of the probe id)

of Help module with probe name, "Display.S5.2.3¢,

4.4.2 Examples of Design /Algorithm Probe Usage

In this section, examples are given to illustrate the use of probe

mechanism in the context of design verification.

Design Event-messages:

U MSG No.: 5 No._of Lines: 3 Total Bytes: 200
S MsSG No.: 10 Line No.: 2 MSG: xxxxxx Buffer Line No: 15§

Operation: Open From: User Process To: Hand Shake

Design / Algorithm Probe Activation / Deactivation

Enable D/Help/*

Activates all Design category probes in Help

module

Disable A/Help/Display*

Deactivates all Algorithm category probes in

"display" procedure of Help module

80

Query over Event History File

Select * where U_MSG No. = 5

This query displays the complete history of

user message no. 5 on test~control screen.

Select * where Probe_id = "D/Help/*" and Operation="Open"

This query displays all design category

messages related to operation "Open",

4.4.3 Pprobe Mechanism & Design Verification

This approach assumes that information required to verify the

design is identified and specified by the designer in the design

document. The programmers can plant the necessary probes at

appropriate places in thelir components of the software in order to

generate the desired information when the software is run in test

mode.

As probes can be readily activated externally by the designer,
specification can thus be verified, independent of the

design
and without understanding the code.

programmers,

An Example from TIFACLINE HOST Project

To illustrate the concepts presented above, we will take an example
from the TIFACLINE HOST project [Tifa%0a, Tifa90b)] described

earlier in Chapter 3, Section 3.5.1, in which these concepts were
used in design verification as well as in tuning up of the design
to deliver the desired performance. Figure 3.1, which depicts the

overall architecture of TIFACLINE HOST software, is reproduced here

for ready reference as Figure 4.1,

81

WELP

‘
SULLETIA
e
GUERY “e+Bulletin
------ TIFhC
Patabase
"""""""" Forelgn
T —— N Y
Dl{abzxo
FCRIEGH 1 h
DATABASE '
i
]] :
_l' - : ' : g
J3ER Co o [iFscme 1F " e :
SERVICE oo ' ’ Server §£rc££‘b£ . y
]] | i X (W'
| | ' 1 i : g Linu
[————— - [}]] P ¥
] ' ' \ ‘f". ! —.
']] | .
SYSTEn L EETRE! ; ' 8) 0
381815 b ; Gm" <) <"""‘°Y () , ! ¥
TRATION " ‘ | ' i ;
" l‘ """"" ! ------------------------------------ [’ : "' 1
! |) (]
User Interface : Y ! m
T L L LT R g]
Figil : Detailded Systom Architectare
Help Desh 4 —
elp Des e ¢
— 0
L]
[H Hand 8
Shale v
[A
] —
Userd —_—
User —-—F‘" User? ; ¢
[]
1
i ! :
[} Kelp Dest 0
_— Help Tesi sy "
L}

Figd? Help Screen

g2

Figed Help Servige

4.5.1 User Specifications of Help Module

For the purpose of our discussion, we will restrict ourselves to a
simplified version of the on-line Help module and ks interaction
with the Communication module. To make the presentation simple, we
have written specifications in a simple language and in brief. user

level specification of Help module can be specified as follow
5 -
— User should be able to connect to an available Helpdesk

- The screen may be split into two halves as shown in figure
4.2. The upper half can display the messages received from

the Helpdesk. The lower half can display the queries sent to

the Helpdesk by the user.

- Each message should be numbered.

It should be possible to scroll up and down the two parts of

the display independently.

It should have a response time of less than two seconds.

The above specification is perhaps complete as far as the user is

concerned.

4.5.2 Design Level specifications

on detailing the design, the fellowing additional understanding

emerges :-

- On choosing the Help option, a message should be sent to the

Handshake requesting a connection to a free Helpdesk server

available either locally or on a remote site.

If no such connection is feasible, an appropriate message
d pe displayed on user's terminal and control should be

shoul

returned to the previous menu.

83

qllel Should be packed as a message and Sen e
l d ect l in case (@] o] % an tO t]le

Communic i :
ation module if the HE]pdesk is
2mote site,

- The Helpdesk process should send the mess
age on the us
er

process dgqueue.

- The scroll up and down facility can be achieved b
copy of the displayed messages in memory buffer Y keeping a
of 5 pages of messages can be kept in buffers. ;1; A maximum
limit is exceeded, the first message in the bufer%ijflfhis
1 be

dropped to create space for new messages

The above is not an exhaustive list of design 1
related

specifications. Interaction between various relevant modul
ules .g

depicted in Figure 4.3.

The designer does the integration to the extent that he h

designed the wvarious modules and their interactions. T:S
interactions between various modules 1s also defined by th:
designer. For example, tO establish a connection with a resource,
the user process will send a request to Handshake module, which
k the request against the resources available. If the

will chec

resource in locally available,
specific resource process. In case, the resource is available
on a

remote site, it will send the request to the Communication modul
e
for transfer to the Handshake of the remote site and which, i
r n

request to its resource process. Finally, th
¢ e

will send the

turn,
indicating success or failure of

e Handshake will send a reply

remot
d by the user process along with other necessary

connection requeste
information.

different programmers implemented the

In TIFACLINE project,
Each programmer had detail knowledge of the

different modules.
.mplemented.

f modules'

But it was the designer who had a

module that he
interactions in various situations

complete knowledge ©

84

4 - -

4.5.3.1 Specifications Verification

To verify th ifi
Y e user level specifications, the info
. . rmation avai
via & ‘ . ilable
he user interface is sufficient. There is
. . ne need for a
extra information or mechanism to aid in this task ny
- In general
. the

user S 1 b at'.] 1 bl u h
pEC f C ons can be ver f ed Si][(l t e bl ac];_b s
OoX test lllg

methods.

4.5.3.2 Design Verification

what is essentially required for design verification is t
o give

acc i i i i i
ccess to internal information which identifies the
various

situations and depicts the behaviour in these situations. It i
$ is not

necessary to go through the whole code to achieve des;
sign

verification. For example, on choosing the Help option, the fi
’ lLrst

activity 1is that of establishing a connection with a resource:
which involves exchange of messages between various modules. I;
this exchange of messages, can be captured by the probes and
displayed along with their time-stamps, the designer can get a fair
idea about the way the software is behaving under this situation.
The following sample event recording depicts some aspects of the

pehaviour of the abcve scftware:

50 To : H shake CMD : Open con

10:20:52 Help_ uid

10:20:55 H_shake To: Help desk ID : 75 CHR % bpen_con
10:20:57 Help Did = 75 To : H_shake MSG : OK
ID : 50 Reply : OK Con,No:10

10:20:58 H_shake To: Help uid

85

Similarly, each time, the message is exchanged by the user
and the Helpdesk process, nhecessary information c oo
available to the designer for verification. Each of e [“éde
behaviour: speCiiication Can be: captured by switable Prob;:“i sesian
to completely verify the design. There is absolutely no . :rjer

nee or

designer to go into the cod i
e written by variou
S programmers

This mechanism was wused not only to verify th
o) e design
specifications of the Help service but also to resolve th g
e crucial

response requirement. Initially, the response was found to b
© be too

slow to be acceptable. The messages generated by the probes i
in the

Help process, Helpdesk process, Handshake and Communication modul
Cdules

were displayed on four different windows on the test-controil
=contro

screen. The timing information attached with the various e e
vent-

messages helped in identifying the bottleneck in the whole eycl
Cle.

The slow response was traced down to excessive wait at th
e

communication module. The communication module was then redesigned
ne

and tuned till reasonable response was achieved.

The designer worked at the design level and programmers worked at

the algorithm level. Programmers had their own algorithm categor
Y
probes and the designer asked each programmer to embed design

category probes, as specified by him.

whenever any problem was encountered during the integration of

above behaviour
level, which helped in identifying the

software, the was first analyzed in terms of

information at design

in the design or the
k of understanding on part of the

weakness incorrect implementation of the
design which may be due to lac

the designer was required to understand the

programmer. At no time,

code.

86

4.6 Summary

The important points of this Chapter can be summarized as follows:—

verification of design is a distinct activity compared to the

testing of the algorithm/code.

- Permanently embedded probe mechanism has been used to define

design and algorithm category probes.

Information available through design category probes can be

used to verify the design behaviour of the modules/software.

Using the probe mechanism, the designer can verify the design

without going through the code and independent of the

programmer.

Faults should be first analyzed at design level using the

information available through the design category probes,

This helps in localizing the fault, which can be further

analyzed using the algorithm category probes.

END OF CHAPTER 4

87

5.1

Chapter 5 Controllability

Introduction

Designed and developed software has to be tested thoroughly to
remove various errors which are intrinsic to the whole process of

software development, Therefore, software goes through various

phases of software testing. Test-plans are bPrepared after the
specification has been finalized. These are made available only
during the phase for System testing. Some additional tests are
prepared based on the design of the system. These tests are alsao
used during system testing. Tests are also prepared by the

programmers themselves which are used during the unit testing of

the modules developed by them.

Many of the tests based on specification and design (hencefortn

referred to as specification verification tests and design

verification tests respectively) are difficult to conduct, as the

states of the software reguired to be reached before these testg

can be executed, are very rare and cannot be created easily, using

the commands available at the user interface level. Many of these

tests are related to special conditions, exceptional conditions and
rror conditions, which do not occur normally, but have to he taken
e

are of by the software. For example, if software has provisian for
c

handling disk read error, or disk full conditions, these cannot be
an

ted readily. Various tables maintained in the software also
crea -

h logic to handle boundary conditions when table ig full. 1f
ave

b] 'S Iar e it may be difflcult to f.l 3 ¢ l|r0|lgh user
ta e 1 g ’ pR] zt
i tErfaCe COI!IIIIalldS a I]]es = ax) E‘::a]"pl rare y

ring states to which the software must be brought for testing,
occurl

i ater to concurrency, automatic fau
lex systems, which ¢
More comp ¥ Lt

recovery, etc., have complex - "
: of these conditions will not occur in
i ituations. Many
possible s1

software to handle a1} type of

the software, and also cannot bpe created by

normal execution of
ilable at the user interface. For example, .
commands avalila

. ion to lzandle Silnultaneous read and
has p[OVlSlO
B—tree SOf tware

88

:pdates by multiple users, while maintaining the consistenc

ree data at all time. Various Ehinie el ti of the

software algorithm handles through built-in P r at the

to be tested. If multi-access b-tree software mflni‘loglc, have

freely, the various important sequences of b_treelj;d eif to run
e traversal,

for which algorithm has bui :
uilt-in-logic, will have ver
y little

cases

elther adhoc m
easures are used or these cases are left
untested

H e i = tha
owever, if the test plans (tO test t the software conforms to

the ifi i
specification) can be made available to the desi
igner in the

design
g phase, as one of the inputs in addition ¢t
o the

specifi i Yy v m
P cation of the system, then some provision can be made i
. . e in the
design which can be coded, so that these difficult to create st
states

r it] .
or conditions can be created easily for performing these diff
ifficult

tests.

Similarly, the test-plans
prepared at the end of the desi
esign phase

(to verify the design of the software), should be used to
review

the design, to check, if these test-plans can be executed readil
If required, the design should be suitably modified or extendez-
The above should be iterated till the design and designed
verification tests converge, i.e., the design is such that it makes
to execute all design verification tests easily,

it possible
gimilarly, the same Pprocess should be repeated for the detailed
design phase. puring coding phase, the programmer may also have to
make some provisions, to ensure ready execution of code
All such extra provisions in the software, to

verification tests.
f otherwise difficult to execute tests
s dre

facilitate execution ©

termed as ‘controllability measures’.

what tests will be difficult to conduct in
normal

Once it is known,
one can work out what needs to be build
to

test environment,
For example, Table handling would requir
€ an

achieve testability.
artificial way to create dummy entries in the table which a

re
software 1ogic.

provided that will trigger, artificial]
14 Y,

ignored by the For disk full and bad sector

additional code has Lo be

89

such conditions through some extra control

Even interfaces constructed temporarily for internal modul
. ') esf are

basically controllability measures to do module tests in tif
artificial

environment, in the absence of other
modules, But such
» temporary

interfaces are generally built exclusively for testing purpose
(and may get discarded / destroyed) and are not an integral part :
the software, and hence, do not get designed and created with t:
same seriousness like the rest of the software, even though thes:
are also required during the entire life cycle of the software i.e

beyond the testing phase; in the maintenance phase also

In the absence of such measures, many of the tests are t
no

conducted, and the delivered software remains untested for man
Y

conditions. In critical cases, some adhoc measures may be used
e !

during the testing phase, to perform such difficult to execut
uce

tests. As all such measures have not been planned in the required
re

phase i.e. the design and coding phases, adhoc measures requi
re

more effort and even then it may not lead to systematic testing

required for producing reliable software.

Moreover, such adhoc measures (and also the temporary interfaces

built for testing of internal modules) have to be removed, as they

may not fit very well in the operational environment. Also, one
r

tends to assume that once the test have been done, somehow, there

is no need for such measures to remain with the rest of software

all the time. BHowever, 4as no software is totally error free, some
undiscovered bugs remain 2in the: sofbwarey gyen after rigoraus
testing. These bugs may surface during the operational use of the

To diagnose repo
h a view to diagnose the reported fault. If tests have

software. rted faults, it requires tests to be re-

applied wit
to be applied, which are similar to the tests for which adhoc
measures were build and discarded after the testing phase, the

will pe in a very difficult situation.

maintenance engineer;
i iliar wi
neer being not SO famili with the code, as he was

Maintenance engi

not involved in the desi
truct such adho¢ measures for testing again.

gn and coding, would find it extremely

difficult to cons

90

:h:r8fére, =dfioc measures, even if used, have to be documented and

e ? in a form, that these can be re-used, whenever ;
during the corrective maintenance phase. If such meas Feantred
last during the life cycle of the software, it ;j u%es Bhee e
these extra measures required for execution oleiijflsable chac
tests are bullt as an integral part of the software sysi:::zi;xildo
ally,

during the proper phases of design and coding

Building of such measures during the testing phase, o
and the coding has been concretized, becomes a pat;h ::ekthe Sester
If the need for such measures is known during the desig: exerCl%e-
phases, then effective systematic provisions will get iiiJdelng
become an integral part of the software and can live bey:nz ::d
testing phase. Therefore, test-plans should be used in the dESig:

to build a testable design with the required controllabilj
liity

measures, which are coded and documented, for use during testi
ing as

well as the maintenance phases.

Availability of such properly designed and coded controllabili
llity

measures, can be very useful during the maintenance phase
as the

maintenance engineer is not all that familiar with the internal
s of

the software, and needs all possible help to handle the alien cod
ode,

Controllability Development

In order to understand, how controllablility can be built in th
e

cus phases of development, let us look at the conventional and

vari
the proposed methods of software design and coding.

91

:lgure Sil (a) & (b) shows two software design and coding scenari
.n the first scenario, design phase has specification docume tlo'
input. Design phase is followed by the detailed design ph ’ .as
is then followed by the coding phase. Deliverables Oj ezc:Sj; ::1ch
ese

! { : "
* La eslgn document,

detailed design document and the developed code). In
corresponding test-plans are prepared and kept read parallel,
during the testing phase. 5tl is the SPECificationy hfo .
plans, dtl is the test-plans for design, ddtl is the te :SEd e
detailed design, and ctl is the test-plans for th;S‘:itins fzr
code

testi 5 i .
ing. In testing phase, first ctl is applied which is foll
ollowed

by ddtl, and then dtl. Finally, stl is applied. Here test-pla
3 ns are

prepared, after the corresponding specification documents (i
i.e.,

dl, ddl, cl} are ready.

In the second scenario, design phase has specification as well
as

the specification based test-plans as inputs. It produces d2 hich
¢ WNlc
after preparation of dt2 d2 may b
x e

is used to prepare dt2.
reviewed and necessary changes made, 1if reguired to reflect the
needs of dt2. For the next phase of detailed design, both d2 and
dt2 are available as input, with an objective that it should make

provisions for testing of dt2.

Once dd2 is ready, test-plans ddt2 ig prepared and dd2 is reviewed
(=]
and revised w.r.t. the requirements of ddt2. Obviously dd2, which

s well as dt2, with the objective that da2

is now based oOn g2 a
should facilitate execution of dt2, would be different from d4di1l

which had only dl as input.

s well as ddt2 are given as inputs to coding phase along

Both dd2 a
t code produced should facilitate execution

with the objective tha

Code €2 18 produced &
o reviewed and revised to take care of it demeri
s

of ddt2. nd has its corresponding ct2 tegt-
plans. c2 is als

of ct2.

92

specs st
i
|

dl dtl
€l — Gt

Figure 5.1(a) Conventional Approach

specs st

—— —ddt2

-
2 ———— €l

Figure 5.1(b) Proposed Approach

93

In the second scenario, each phas ;
objective conditions to b e has more inputs and additional

is . . & met. Even if no mechanism or methodolo
a .pronded to assist design and coding in producing th >
eliverable, meeting this additional criteria, th ; .
deliverables are bound to be different and easier ; e resultant
to the corresponding deliverable in the first Sceno FeSt, compared
to which the additional objective is achieved, wi:;l:; Tﬁ: degree
pend on the

ingenuity and experience of th
e software perso i
ns involved.

In the first scenario, st, d
5 . dtl, ddtl, and ctl
’ only state as
to what

to test, and how to test i
is left open or is ad
hoc. In the
second

scenario, st, dt2, d4dd2, and
p ct2 not only stat
e what to test
' but

ho i s
w to test is also taken care of in the corresponding phas
. es and

the following phases. The software produced as a result of
o) the

second approach has adequate provisions for executing all t
he

required tests easily, and hence, is more testable than the fi
irst

approach.

5.2.1 Controllability Measures

Controllability measures required in general to help in the vari
ious

execution are described in this Section Befo
. re

phases of test
need to integrate all the

discussed, the
in the form of a ‘control interface' is

+hese measures are

controllability measures

discussed below.

As controllability measures (as well as the

Control Intertace :
t in the software are not limited just

observability measures) buil
but have relevance even in the post release

to the testing phase,
the provisions should be properly

corrective malintenance; all
d made accessible through a proper interface. This

integrated an

ace is termed Aas ‘control interface' to distinguish it from

interf

T intertace’, through which the software is used by the

the

user.

94

These controllabilj
Pility measures (as well as Observability measures)
availabil !

e through the Control interface:’ become accessible to th
tes i)
&€ster or software Malntenance engineer only when the syst h

em has

been set to 'test mode' by the System administrator

The various contrellability Mmeasures should provide the foll
©llowing

facilities :-

1. Set Test Environment
2. Set Test State
3. Activate Observability Measures
4. Provide Test Input
5. Perform Test Analysis
(1) Set Test Environment

Initially, the test environment required for conducting the

desired test is to be identified and set, using a set of

control commands created for this purpose. It could be in

terms of isclating a component of the system for testing,

which could be a module,
aspect of the component to be tested is also specified as part

sub-module or a sub=-system. The

of the setting up of the test environment, so that relevant

commands for setting state and providing appropriate input are
made available to the tester. It may also activate some of the

embedded controllability logic built within the selected

component (it may use some control flag to signal activation).

(2) Set Test State

once the component to be tested has been identified ang
and the aspect to be tested has been selected, the

isolated;
is to bring the component to the desired state

next step
n be applied. Appropriate control commands

before the test ca
o be provided to the tester to change the required

will have t
in the desir

ed manner. These control commands are

states

ab

(3)

(4)

1mplemented usi —_—
i functionzg ‘:?éltlonal logic built ip the f

I, ;ec %ch OPerate on the state of the et

it Lo e €ived through the control comma software

ve to test the 068 Eog tablends. For

overflow

condition i Y S
' e table will have to be fllled ith umm va =)
th wi dum u
v 1 .

Activate Observability Measures

Before the test 15 executed on the desireq
software, the appropriate observability meas:3 State of the
be activated so that the internal processingrj:nwlll .
to the desired level of detail. Control break c e
on certain probes so that, when such Probes ar:n Teo be &
conFrOl Ls given to the tester so that he mayet:funtEIEd’
activation of the observability measure to focus " ange the

ention to

Other des i i t lﬁe Suggeste th
red parts as mlgh d by e occu
rrenCQ O‘

probe break.

Provide Test Input

The test is executed by providing the desired inputs. s
+ Sometime

the inputs may be given using the commands of th
.) € user
interface itself, provided it formed part of the select

cted test

environment. However, in general, for idi
t providing inpu
Pput for te

st

execution, a required test interface ma
Y also be a
part of the

This may happen, if internal modules

controllability measures.
being tested, which do not have o
e

or components are
r level commands for the desired test. In some ¢
ases, a

use
whole control modul

test inputs for
see Section 5.5.5 of this Chapter)

e may have to be developed to provide th

e

desired testing (e.g., the case ¢
(o]

communication module,

t may be directly available to the test
er

The processed outpu
to use some commands, which are ei
either a part

Ve

or he may ha
or have been built as part of "3
e

of the user interface

96

. x =
contro bl } a ures., Durlng test Executi n, a ti e P
t I ab] | t meas Q C V IObES

messages get recorded in event history $§he
(5) Perform Analysis

recorded in the event history file, can be anal d
; Ysed. For
analysing the event history file, a query language
can be
used, as event history file has large amount of info ti
rmation

which may be difficult to analyse manually.

If the test is being conducted for purpose of fault diagnosis, the
above may have to be repeated several times, as initially only
higher level probes wculd be activated to localize the problem to a
sub-system. As fault get localized to smaller and smaller part of
the software, more detail level probes will have to pe activated,

Once the fault has been localized to a small pPart of the code, 3

debugging tool can be used to debug the error. After correction of
the software, the above process should be repeated to ascertain

that error has been rectified correctly.

Controllability measures should be designed in such a manner that

these are detachable as far as possible, S0 that memory overheads

can be reduced to the minimum during the post-release operation of
the software. However, whatever controllability measures cannot be

detached, should remain as part of the software. These would cause

only memory overheads and not execution overheads, as these would

normally be in deactivated state. During pre-release period, all
the controllability measures should remain embedded, as frequent
s would be required to be done.

fault diagnosi

97

. lflca X g
ons Prop e 1 of ware Devel t P r igm
‘t os d. n s t Opmen a ad

From the ab i
ove disc i i i
ussion, it is clear that more ¢
can be produ i i
p ced, if test~plans are also mad DS
design phase j i indors, £
gn p - An objective, that necessary pr e
Oovisions h
ave to be

L lSO g Lven t

design phase.

The above implies that specification verification
prepared after the specification have been fina) fESts' HRACH: e
be prepared before the design phase and not Con;zjj; will have rg
Instead of the tests being made available during t;:;f N
ng phase,

these te ;
sts will have to be made available as additiona]
al inputs tg

the design phase itself.

Afte i e has been don
r the desj.gn Of the SthwaI e (keeping i v
. . in i
. l . lew the
testablllty Of the SpECJ.f.LCatJ-ON ver ificatio“ tests d
)a esign

verification tests should be prepared. The design should
shou now be

reviewed and modified to ensure easy execution of th
ese design

verification tests. The design review and design verif
| rification
tests, will have to iterate, till the design and th d
e esign
verification tests converge. Similarl i
. y. the detailed desj
Sign shouylg
also ensure easy execution of tests based on detailed (¢
. esign
(henceforth referred to ae detail design verification t
ests)
similar process.

unit testing. The code should alse p
=

through a The coding phase also defines 4
code

verification tests for

and modified suitably to ensure test
testability of
. code

reviewed
verification tests.
iled design and coding phases, all the test

During the design, deta
specification verification
ication test-plans, and code verification y it

ni

plans (i.e.. test-plans, design ang
detailed design verif
should be augmented with necessary procedures to e

test-plans)
in terms of usgepr

followed for condu
mands and controllab

cting the various tests

ility measures.

interface com

98

It the procedure proposed above, i followed, then durij .
?hase, 2@ exbra activitids; dn -carie of writing c;}nietEStlng
interfaces for testing of interna) modules or coding f mporary
type of adhoc measure, would be requires to be do:e oz any other
testing activities (i.e., unit testing, integration- teZt::; th:
System ‘testing); testing would sinply be performed using all ::
e

test-plans and the procedural descript;
ptions for each of
the tests.

As it is expected that residual bugs may exist, even though ¢

bugs are not likely to occur (unlike in physical ——— resh
out with use), all the controllability measures will have 85 re::z:
as an integral part of the total system (even though some of it may

be in detached form) with all the necessary documentation ready t
4 y o

be used, whenever it is required,

Controllability measures built to facilitate testing are als
2 o

useful for the corrective maintenance phase, as it also require
S

tests to be conducted for purposes of fault diagnosis, During

maintenance phase, controllability measures will help in creating

suspected states, reguired to conduct various tests to isolate

faults.

Controllability and Testing

As controllability (as well as observability) gets designed ang
built during the design and coding phases, the various test-plans

specification, design, detail design and coding verification

(L.e.,
ith procedures to be followed in terms

test-plans) get augmented w
of various user and control interface commands .

o tests can be executed using the commands available in

Most of th
ijnterface. Before the tests are executed, appropriate

the user
activated. During test

observability measures will have to be

active probe
nal behaviour of the software and internal behaviour
r

messages will get recorded in event history

execution,

file. The exte
in event

history file, can be analysed for detecting

recorded

faults.

29

For difficult testg, Controllability measures would be i

be used. Environments required by tests can be create:Ej:fred to

“set environment"” commands; and desired state can be s 'lng e

state" commands. Required observability measures L e

activated before test execution. Test is executed 1:an alsf) o

inputs through appropriate user or control interfac: Sz;;;d;ng
nds,

External as well as internal behaviou
r can be Observeq
and dnalyzed

for detecting faults,

For a complex software having several modules it may pe
: pPossible

that some of the modules are at the internal leve] and may -
no ave

any user interface associated with them. Such modules & .
re also

provided with an appropriate interface for testing as part of th
e

controllability measures. Such an interface could be at modul
ule

level, sub-module level or even at some sub-system leve) dependi
ing

on the software.

Thus, the various phases of testing (i.e., unit testing at module
level, integration testing at sub-system level or system testing)
make use of the appropriate part of the user interface and s

controllability measures (and observability measures) through
control interface.

No testing is required to be done using adhoc methods, as provision

for executing all the tests has already been made during the
Testability required in terms of observability and

earlier phases.
»pre-built” in software before it is subjected

controllability is
ting during testing phase. AsS testability 1s an integral part

to tes
all the tests performed during the unit

of the delivered software,
and system testing, can be done later

integration testing,

testing,
enance phase required for purposes of faylt

even during the maint

diagnosis.

100

Co ili
ntrollablllty and Fault Diagn i
oS1ls

the testing, implementati
buile in ees Softwareazlon and maintenance phases., Obse
system in which th =0 WELp: Lo identifying the st B e
int : e fault has possibly occurreq “t€ of the
?rmlttent, it In due to some state which - If the Ffault is
during the execution of the system. Such sus occurs very rarely
Created using the built-in controllability m:::ted states can be
ures ang relevant

te
sts can be conducted for diagnosis purpo
ses.

If any specifi i
y specific module is doubted to be faulty, it
isolation, by setti i o be e |
y tting the reguired test environment weed dn
and providj
ing

direct inputs
p through the appropriate commands availab
llable at
the

control inte]
rface. This ls possible as module, sub d
’ —module ang
sub-

SyStEIII tEStlllg Whlch 1S “Or[“ally done tllrough t 4
emporaz 1 I
Y

Constructed i][) h
terfaces; 1S now dOlle throug s”Ch
aces

integrated properly in the 'control interface'

For more a detailed discussion on fault diagnosis 1
+ Please refer
to

Chapter 6 on Corrective Maintenance.

Examples of Controllability

This section presents some examples to 1illustrate +th
e need of

controllability measures
It addresses controllabili

ty problems

related

in different problem areas ang th
eir

possible solutions.
ndling, filing system of an operati
ing system, co

ncurrent

to table ha
and message based distributed syst
ems.

systems like b-tree,
re also suggested to build the desired controllabil
ility.

Mechanisms a

A more detailed exampl
for which some controllabilit
Y measures w

ere

e from TIFACLINE host “Communi ;
nicat ion* nod
ule

is 3lao presented,

built and used.

101

5.5.1 Table Handling

Many a times, tables are required to be maintai i
various purposes. The software has O Z:fi}ln software for
when the table is full or it overflows. 1f the t an.dle the cases
getting it filled by actual data will be very di;:ie 1s large, then
Some measures are required to be built ggq tha:HJLt.rfherefore,
ueh' type o

boundary conditions can be tested

Teo handle such boundary conditiocns, provisions can p
the table artificially with dummy data through a roe made to fii]
nearly full boundary condition. However, thept:t?m to create
software will have to take care of these dummy entri:; handling
(i.e., ignore these for reference purposes, etc,). Some exfroperly
will have to be introduced in the table handling software fra Coée
purpose. Some extra code will also be required to fill the ::szhlz
re

number of dummy values in the table on specific request b
Y the

tester.

Building such a mechanism through the proper phases of design a
coding is quite simple. If it is not designed and pre-built in t:d
software a-priori, then even this simple problem of Creatin:
boundary conditions and overflow condition for tables may be

difficult during the testing phase.

5.5.2 Filing System of an Operating System
ating system, has many provisions to take

Filing system of an oper
ious gituations like index table overflow, bad SEEt oy

care of var
etc. It is also designed to deliver certain level of
Using the availab

to test such features.

occurrence,
e filing syste : 2
performance. 4 g system commands, it will be

very cumbersome

102

Index table overflow condition can p
suggested in the pPrevious sect; . by the method
' . ion. For Simulating bad sector
code for disk I/0 will have to be modified so th i L
artificially report bad sectors. The extra code j that it can
purpose could make use of the some control info:::iiijﬁ or this
control command, to guide it as to when to report ga o s
Thus even though a sector may be readable ang Writabl b:d e
has been reported as "bad", appropriate follow-up actjo uti as it
executed, which may mark the sector as "badr and so on.[;izzil -
read and write failure conditions will have to T Soa;iY;
a

the corresponding error handling code can be testeg

Similarly, a “control" module can be developed which _—
.) Y Create
files of various sizes and numbers to fill the disk Space., P
- Llen
may be deleted and created again. By exercising the filing syst
sStem

in this manner for some time, typical fragmentation of disk s
pace

will take place and performance of the filing system can then p
e

measured.

Thus the controllability regquired to create various conditions for

which the filing system has been programmed, can be created wiie

much difficulty.

s B-Tree

5.5.3 Concurrent Systems

in RDBMS for maintaining indices of tables, has to

B-tree used
handle read accesses and updations by multiple users concurrently

in such a manner that waiting time for individual users can be

To provide concurrent access to stch

reduced as much as possible.
read mode does not pose any problem. Each user

data structures in
o other user existed. If updates are

ss can proceed as if n

proce
hen access to the B-tree has to be synchronized in

also permitted, t g
operations do not lead to

fashion that concurrent

such a ‘
r incorrect updation of the tree.

inconsistent V18w o

103

To
Thehandle Suéh Problems, special algorithms are designed and
.C?de written will have to be tested simulati AT
conditions for which the algorithm has T ng all the
these conditions may be very difficult to achie::loﬁi‘ e o
Processes simply execute the developed B-tree ;Ofi multiple
ware., The

probability that such special conditions will occ b
ur
Y themselvesg

1s very remote.

It would require some extra measures to be built in th
possible measure to help in creating a desired c;:béoftfare. A
sequences of B-tree operation by multiple processeg, w::::lon of
have a stepping control over the execution of each processbeT;o
step size would depend on the particular synchronization algor;t e
hm.

Such a provision can make it i
possible to create an ;
Y combinatijion
of

sequences of execution by multiple processes.

All synchronization problems like concurrent B-tree have
¢ © be

tested for various important combinations of sequences of 1
multi-

process execution. Control of execution, in terms of the rel
evant

granularity, can be pre-built as controllability measures. p
“control flag" could be used by the software to distinguish ok
e

controlled execution from the normal execution. If the control fl
ag

software could check it at appropriat
e

is "set", then the
predetermined points in the software and stop for a go ahead signal

from the user for execution, till the next break point is

encountered. The control flag could be "set" or "reset" SHESHER:
control interface command.

Similarly, software with built-in fault recovery also has to be

tested for system failures at different points in execution. 2

flag based controllability measure can be used to

ncontrol”

similar
re to a desired point in execution, and then system

bring the softwa
made to fail artificially, so that the corresponding fault

can be
pe tested.

recovery logic can

104

5.5.4 Messages based Distributed System

In i i)
a distributed system like TIFACLINE, various proc
esses intersa
Wit i ct
h each other using the message based lnter-process
communication

mechanism.

Each process has to take care of various types
of responses, which
it may get in return for messages it sends to other p
rocesses, For
example, Help module requests for an o
Pen connection
+ In return i
PR & o
may get a message containing - “connecti
an opened"
+ O "“desired
resource not available", Sometimes, it ma
Y not ger any r
esponse at

@ll due to some problem; or it may even get a wrong messag
€ on itsg

queue. The first ¢two responses can be created by facilitj
ities

available at user interface level (i.e., the first response ;
mossage

by having a free Helpdesk and second response message by not ha
ving

a free Helpdesk). But the last two are abnormal conditions T

may occur very rarely. Even then, these have to be taken care of .
n

the software and tested.

A possible controllability measure, which can facilitate ¢Eeation

of such rare conditions, could be that each process has ———

to interact with the tester so that he can choose the desired

vcontrol flagu could be used to distiﬂguish Controlled

response. A
execut ion from normal execution of the software. The "control flag"

could be "set” by a command available in the control interface.

h a simple extension of the software can make it possible to

Suc
create an otherwise very rare condition.

mechanism can also be used to take care of interactions

Such a

between all the processes
of response by the tester,
he software behaviour, this response

in the TIFACLINE software. However,

where selection is 1likely to cause

able delay and change t

pased on pre-defined, more detailed control

unaccept

selection can be done

information.

105

5.5.5

Communication Module o
r TIFACLINE
HOST Projec
t H

A Detailed Example

To il
illustrate the concept of controllability pres
3 ented ab
will t . above,
ake an example of Communication module of TIF o
ACLINE HOST

roject i .
P j " which some of these COHCEptS were expe
in 8 rfimented with
’

and has already been describ i
ed in Chapter 3
+ Section 3.5
-2.1.

The Communi ;
ommunication module handles the transfer of me
Ssages m
othe ; ' eant fo
r host machines. It also receives messages from - r
. . Other ho
dis . Sts and
tributes them to various processes in the 1local
machine, r.

maintaij i
tains a list of connected host machines and dia] up
o numbers (o

establishing connections.

Messages are collected in various files meant for different h
n osts,

Periodically, files are closed and file transfer is initiated
- Only

a controlled load is sent for transfer, to facilitate each sid
lde in

getting frequent chances to transfer information. 1f no mess
: age Is

pending for transfer, a dummy load is sent in order to kee h
P the

connection live, and keep it ready for sending any message 1
ater

on. However, if both sides have nothing to send for a specified
ie

period, then the connection is broken.

Two message priority levels are supported. Control messages that

are used for establishing connections are short and require fast

These are sent on high priority. petailed data

turn arcund time.

which are large in size,
these two priority levels, are collected in separate

records, are sent. in low priority. The
messages for

and a file 1is closed,
file size, oOr time out period. It also keeps a

whenever it exceeds the specified

files;
number of messages,

count of total number of bytes
eceds a threshold, a message is sent to Handshake

pending for transfer to each Site

When this count exc

o indicate communicatio
g of new connections to that particular heost.

n line overload condition, which
I

module t

then, disables openin

ing load drops belo
t to Handshake module to enable opening of

w another lower threshold valuye
7

When the pend
aen

another message 15

106

fresh connections. If a llne breaks, then a retry
t]me pet‘l(l(’. A’ ter r9peated trlal, the 1]-“& 1ls dEClaIEd dead and

Handshake module is informed accordingl
Y.
5.5.
5.5.1 Controllability in Communication Modul
ule

For proper testing of the Communication Module, it is i
create all the conditions W — deSign;d . is important to
Using the external user interface controle, it willO také care of.
create many of such situations easily (e.g., overjzazlffiTUlt -

an under

load ConditionS, mix of hlgll d
an low priority messages
g ¢ faulty i
line

or host-down conditions}.

A small control module was develo i
ped which could
produce dumm
Y

messages of various sizes and priorities The di
g Lssemble

communication sub-module, on re
SRR P "
o1 reate" several messages of

cegnizing dummy messages, will

simply r"return' the message

jred sizes to simulate fetchin
communication module to activate or deactivat
vate a

requ
= g of data records. It could also

send a message to

line to create line fault or host down situations

host

ent observability was also built in using the b5
prope

mechanism to observe t

The timing information at
nderstanding the various time delays. As th
- e

diagnosis. tached to each probe messa
: : ge
proved very vital, in u

n did not deliver the desired message turn-around
und-

initial desig
a new design was WO

ased module.
to be built

rked out, after some experimentation with

time,
Providing controllability required

the first rele
in communication module An

functicnallly

additional
also developed to d

extra module Wwa g rive the communication module

in the desired manner.

could also have peen built for other modules of
O

ity
each module has

controllabil
For example,
ignoring wron
£ to create such situations, then the task

provision for handling time

spftware.

Conditionsl

g messages, etc. If requireg

out
y was puil

controllabilit
es would have been simpler

of fault diagnosis for these modul

107

5.5.6

Conclusions from Examples

From the above ples, we have seen that softwar nnot
exam
be tested ver o pendent on user
! e systems ca
. y thoroughly if one is solely de d
interface for cr i i
creation of various test condition L1
s. Genera
y, the

software is desi
esigned to cater to many special
cia condit}
ions,

exceptional conditi
ons and error conditions, which are dif
i1fficult to

create usin i uld
g the user lnterface COmmandS e t
. Testing wo
be

incomplete without testi
)o] i sting these conditions. Appropri
* riate mechanis
ms

were also proposed and di
scussed to handle
such conditio
ns.

awareness of the need for planmning for such difficult ¢

is very important. Appropriate mechanism can be found wiihdo -

difficulty. However, this exercise should be done durin out muen

phase itself, as these mechanisms are not add-ons, bu:!::t;d:Sizn
o be

rinsically in the design and co
ing the testing phase
(by that ti
me the

puilt int : x
ding itself. If these
thought, afterwards dur e

and code are already frozen), incorporating such
mechanism
s

design

ing the design as well as
the code

+ and this

would require chang
the structure of
the softw
are. These

would lead to distortion of
t oniy affect the gquality of th
e software b
ut also

changes would no

cult to carry beyond the testing phase
as an inte
gral part

be diffi

of the delivered software.

ijssues should Dbe considered during th
e

testability
so that appropriate controllabilit
Y

Therefore,
coding phases,

design and
be devised

and built into the software as
an

mechanisms can

integral part:

summary
hapter can be summarized as follow
S

nts of this c

The important pol

pility measures has been defined as provisions in
e execution of the tests requiri
ng

- controlla
o facllitat

the software L

108

states i
of software, which are difficult to achieve through
user i
interface commands, Special c¢onditions, error or
boundary conditions are some of the typical examples f
o

states which are difficult to create

Building controllability requires modification of life cycle
model. Test-plans based on specification will have to be made
available to the design phase, alongwith an additional design
criteria, that the design has to make adequate provisions for

the easy execution of the tests, which, otherwise, would b
’ e

difficult to execute.

Design should also be reviewed and modified to ensure easy

execution of the design-verification tests defined at the
end of the design activity. The design and design-

verificaticn tests will have to iterate, till the above

condition is satisfied. Similarly the detailed design should

also ensure easy execution of detailed design verification-

tests through a similar process.

gesign and coding phases, specification

During the
verification tests, design verification tests, detailed
design verification tests, and code verification tests are
augmented with procedures to be followed for conducting the
various tests in terms of user and control interface

commands.

trollability measures are required to be built to

con
set Test Environment

(a)
(b) Set Test State

(¢) Activate Opbservability Measures
(d) provide Test Input

(e) perform Test Analysis

ronment’ isolates the component required for

‘gset test envi
¢ can be 2 module, sub-medule or a sub-

The componen

quired embedded controllability is also

testing.

gystem. The X€

109

activated (usi
i
ng control flags). For settj
providing test R
" and
put, some additional software {
T e | . even module
built, which can be activat J
vated usin
g the

control interface commands

) T? illustrate the concept, controllability measur
discussed for creation of various difficult tesfS havé ?een
for concurrency, fault recovery, tables handling coneitions
based distributed system. From these examples "andImESSage
that once the objective of building controlla;ilizyl% clear
is set,

it can be achieved without much difficulty

- Controllability measures and the associated doc
. umentation
form an integral part of the delivered system. Howe
. ver, some

of the controllability measures may be detachable, which
[ic can

pe attached whenever required.

- Software with built-in contrellability measures would
u not

require any adhoc measures to be developed duri
‘ ing the

testing phase, as software would have adequate provisi
ions to

execute all the test easily.

ity measures puilt to facilitate testing are al
S0

- Controllabil
useful for the corrective maintenance phase, as it requi
uires

conducted for
s will help in creating the suspected

tests to be purposes of fault diagnosis

Controllability measure
uired to conduct the variocus tests to isolate th
e

states req
fault.

pility measures is a creative design

Building controlla
only with
Lrollability,

increasing experience 1in building and

activity.
some general principles will emerge

using con

END OF CHAPTER 5

110

Chapter 6 :
: Test 113
ability & Corrective Maint
enance
Software Maintenance

AR S
ctivities of the software maintenance phase

as COfrective, perfective and adaptive [Gilb;mve been classifieq
;?varLably, the engineers engaged ip Softwair Presg2, Schng7).
dlfferent from those, who are involveq |, t: maintenance gare
evelopment of the software. Maintenance e.design and the

understand the software pr:or to undertakirZ:é:neers have tg
ny maintenance

activicty, Fo
Y r large software, these tasks beco
with, due i i i - hewaes
’ Lo increase 1in size as well as the compl ¥ cope
been establi o
ish C
ed that more than 50% of the total ¢ e
eSources i
+ which

are
maintenanc
e phase [Pres92, Schn87). As more and more
software ¢
or

spent in t i
he life cycle of a large software are
’ sSpent in th
! e

large applications
are being developed and
Put into use i
r 1t is

consumin
g greater share of human resources engaged
in softw
are

development.,

Co i i i ini
rrective maintenance is the minimum essential actj
ivity that i
is

required for any released and in-use software. Many tj
lmes, absen
ce

of modularity and structured code, coupled with the
' inadequate
documentation of the software, make the tasks of
l corrective
maintenance more difficult. For tll-documented software
+ a lot of

research has been focused on the extraction of design d
an other
documents from the source code of software [Bi
gg89, Chik9gQ '
r chOLQO,

Ooman90b]. Book paradigm for program documentation has been gh
shown to

be very effective for use by the software mai
ntenance enqi
gineersg

[Oman9Ca] .

nas been shown to be related to soft
ware

effort
Gi1191). Software complexity metrics can g1 b
SO e

Maintenance
structure [Gibs89,

used to identify poorly structur
ctured to reduce maintenance efforts [Harrgz
r

ed component of the software
so

an be meas

Vvolum

Kafu87).
or more effective resource allocation and

ftware science 2

using so
odules [Harrd0].

restructuring of m

11l

Even :f we assume modular .
levels of code complexit design, structural coding,, acespEsE)
R ¥ and adequate documentation, a cl)
software fault AESIEEHENRS, Rl L reveal that diagnosi o e
u L5 not : is of

activitics on the €asy and it involves certain dj 'any
part of the maintenance engin Ferinet

the problems of corrective P nev::—‘r}-c F:,_-thermore,
€Pt i1n mind,

while designing and developing the softwa
re;

After rel
ease of the software, when the report
S of faultg
start

p urain].n) me
o g ’ Correctlue mal“te“ance aCt_LU:Lty e
rges out
(=]

blue. How a i
n engineer should apprcach to solve a £
Soltware faul
€,

reported a i
fter 1ts release, is never specified .
either b
Y the

designer
g or by the developer of the software. In current
Nt practice
’

the approach towards i
corrective maintenance i
S largely "ad-h
- chl and

"intuitive" in nature.

In this Chapt i
pter, the various components of corrective maj
intenance

activiti
ies are analyzed,and a systematic apprcach to c¢
orrective

maintenance is proposed. Agai
5 gain, the systemati
1c approcach i
ls

applicable only when appropriate measures ({viz,
controllability) have been taken a-priori in the design and d
coding

observability and

phases of the software development.

Observability measures are permanently enmbedded statements 11
called

probes, planted at appropriate places In the software (ref
refer

Chapter 3 Section 3.2). These probes, which are of various t
ypes

can be activated, selectively and dynamically produci
uc Lng

and levels,
at desired level of

the execution-traces of desired modules

details.

an be performed more effectively, if
!

is of software faults ¢

Diagnos
lity (macros as well as micro level) 1s in-bujlt

adequate observabi
in the software. The macro lev
e module, while the micro level SHEEEERLY

Y

el observability can aid in isolar:
- z]g

the Ffaulty softwar
concretizing the £ specific function or a

hen be rectified.

. _ : 1t to a
will aid in Re

procedure, which can t

112

Controllability measures are ¢
to the users (refer Enapie ommands in addition to hoee o
commands are incorporated v % Setnlen 5:2.1). These Pfgrldea
maintenance engineers t A€ the time of software desi sedieional
unreachable (or ver © reach those states of softwagn' to help
interface Th _Y cumbersome to reach), through re that are
conf i j B controllability me e€xternal user
rrmation of intermittent faults, iSOlatinq iifres can aild ijn

2 faulty module,

and i i
also aid in fault concretization

The obser 113
vability and controllability measures h
of well i) N
n advance. These have to be co > BARLg
nceptualiz
ed anaqg

concretized
; when modular architecture of the n
whole sof
tware j
is

bel“g frOZEH ‘Lvch in the desl n l]ase .]l[e e .
zlng o ”llCrO

level ob i]1i
servability measures may get delayed, till
' the detail
ed

design or even the coding phase

A large sof
g tware developed following the proposed
)) . approach wi
ave an associated document "Guidelines for Software M -
e Maintenance"

that i
should carry information about all obse b
rvability anp
a

controllability measures provided in the software and
nd prescribe
an

approach to be taken for fault diagnosis, when a
ny fault is

reported.

Corrective Maintenance

maintenance comprises of followi
ng activities
¢ fault

Corrective
fault concretization, fault

fault isolation,

Confirmation’
a i & i
nd testing IEPOKEEG; the

rectification
that the reported fault is in the

first activity is to "confirm”
ot a reflection of some hardware faults or underlv;
Ying

software a"d n
The task of fault confirmation is eas i
y if

system software faults.
ault can be regenerated; and is difficult if th
e

the reported f
After confirmation, the fault

fault is of intermittent nature.

needs to be {solated to the gpecific component (module) of the
fault. On fault isolation, the fault

Yy

h contains the

L5 scrutinizedf in detail, (called "fault

software whiC

software component

123

?OncrEtlzatlon } to zero-in to the pPiece of code that n
implemented incorrectly. The fault rectification gctivi 8 bean
removes the fault, but also sees £O 1t that no :lty o
Introduced in this brocess. After fault rECtifiCatiS: f::lt is
4 e new

version of the software has t
© go thorough test;
ting before it j
is

released.

For a small size software, fault isclation and fault co : ;
may be one and the same, but for large software d::riflzatlon
ARREREERN, COnpLERE, $E b extremely hard to concr;tize th: :hELr
in one step. Again, the familiarity with the design of the softjult
is essential for fault isolation and it is precisely ghis rea::e
that many researchers are focusing their attentions in extractin:

design information from the source code of the software which h
¢ aus

inadequate design documentation [Bigg89, ChoiS0, Oman90b)

6.2,1 Fault Diagnosis

The fault confirmation, the fault isolation, and the fault
concretization activities of corrective maintenance are
diagnosis activities. The effortsg

collectively called fault

required for a fault diagnosis cannot be visualized a-priori, since
there does not exist any generic approach, which can be

systematically applied to any large software. In contrast, efforts

ed for fault rectification and testing, once the fault is

requir
clearly diagnosed, can be estimated to sufficient accuracy and its

is relatively

smaller than that required for fault

volume
diagnosis.
In short, the software diagnosis efforts account for larger share
!
also of unpredictable volume

of CorrECtiUe maintenance and 1S
5 horten th fau 1t recti f , X

i t much room to s e

ince there 15 no a
E 174 |es |:l|e (:t)ttelftive maintena e acti ujt :

+ + :
Estlng aCtJ. ltle 7 nc
e can reduce the efforts requ i)

reduced, only ify W

diagnosis.

114

6.2.2

Improvin
g Fault Djia
gnosibilit
Y

We assert that, if faul
to take measures in :leﬁlagnDSlbllity £ e be Tisroved
software development itsel feston ana development Phae e have
improve ‘fault diagno .e.ft The two measures thar . ses of the
controllab:ilicy in thgslbllltYr are in-bujilt Obser:3 ?ropose to
i G oL i . software. The observabilit ability anaq
clavion mnd Faule concretizat; Measures will

on, while s

COntrOllabilit
Y measures will aid in all th
e three] t+
activi ies
-€5 of

fault diagnosis.

& i
bservability for Fault Diagnosis

All] l || to Ob rve thE lnternal bella\' 10K = S
are 1S ve
ry

es ial)2
sentia or cor i maintenance
rective aintena . Limited
observabilj
ility 4
is

available in al
1l softwares at user interface level :
+ N terms of
the

cutput respons
P e generated as a result of some input
ut, This le
vel of

observabili i
ility is not enough for purposes of fayj
ault diagnosi
is.

General i
ly, an input may not only produce an output b
) . ut it m
pdate the internal state of the software in ¢t B oatse
erms of wvarj
rious

t . es
nal a leS, ar 7 If e f th e]]pdatlons 3
1LINNCer t l) v lallles e‘t' som (@] »

e

output, but may affect subsequent behavior of the f
software I 3
. t J_s

for purposes ,of observing these changes in internal
state of
the

software, that observability is very essential

posed in Chapter 3, Sectj
ction 3.2
- and also

The probe mechanism Ppro
[Gupt91, Gupt92], is best :
suited for rec :

crding

reported earlier in

various events occurrin

n the software by the developers. B
- Y placing

Probes at

g in the software. Prob
. €s can be emb
| edd
anywhere 1 -
appropriate places in the software, all the informati
on require
jagnosis can be gathered. We propose the utilizat .
zation of

for fault d
e mechanism as ©
f the software.

pservability measure f
or the co
rrect ivn

prob

maintenance ©

145

. .
chan F u Di agnosi S

Examples in this Section are being taken from th
Module of TIFACLINE Host Software ([Tifa%90a, Tif e Communication
already been described in detail in Chapte; 51 a%90b), which has
:fiEfr this medule assembles messages from varioiZcZ;iT Seese
.L ij]for various destination hosts. Similarly, messa cesses into
in iles are de—assembled and sent to gqueues of vjtf; received

icus local

processes.

Probe Identifi
ntifier structure can reflect the wvari
abstraction. o
The probe messages should be constructed f
such that all

. ‘ : 3 .

diagnosis. For example,

Probe_id 3

MAC/Comm.Send/Assemble.5.1

MIC/Comm.Rece/Dissemble.3.2.1

Probe message

Msg_todsend From_id : 25 Pri s LB
size : 45 Destﬂhost s 5 To id : 35

Msg_recd Size : 50 Process_id : 25

the example above represent a macro level

given in
robe
P name, Assemble.5.1, 1in "Send"

probe ids
y strang 'MAC'}

(represented b
o level

le and a micr
8.3-2-11 in

y string

(represented by string 'MIC’} probe

sub-modu
sub-module of Communication

nReceive"

name, pissembl
‘comm') respectively. The messages

presented b
d important for each packet, that i
s

Module (€
contain information, considere
out Or received.

being sent

116

P can be aCt.‘LUatEd ar d aCtlvated durln EXECU.t
| [~ 10n. A
eact 1Lva d probe h R y i g i the lO - A (@] X
d‘ te does not wr te an th n n g S pr be d
1
v]. J:Obes can be ou d sSs d by a

single command, e.gq.,

Enable MAC/Comm. * / *

Disable MIC/Comm.Rece/+

Enable command given Lr the example iv
¢ P) activates all
macroe LEVei

probes in all the sub-modules and proceduresg £
o] Communic i
dtiaon

Module. The second command deactivates all micro level prop
robes in

all procedures of "Receive" sub-module of the Communication M d
Odule,

Though we have given examples of only two levels (viz macro d
“ip an

micro levels), there can also be multiple levels. How many level
els

of probes should be embedded in the software, depends on th
e

modular architecture of the software, and the step-wise focusin
g

approach that the designer will like to provide to the maintenance

engineer for the fault diagnosis.

while vrunning the software for fault

A maintenance engineer,

alsc put break points on selected probes. on

diagnosis, can

occurrence of a break point, control is given to the console. For

example,

Break on MAC/Comm.Send/Assemble.5.1

This statement will bring back the control to the console when the

cution encounters probe name, "Assemble.5.1", in "Send" sub-

exe

module of Communication module.

neer c<an then activate or deactivate other

The maintenance eng:l
guery the event history

i or
probes, put additional break points,
1 11 the messages generated Dby active probes are
a
to be noted that breakpoint can be put only on pre-
s to
t on Aanv statement chosen on the fly. This

file in which

recorded. It 1L

and no

: 1 debuggers.
- : it from the usua
stinguishes

embedded probes

characteristic di

117

6.3.2

Query can b
e made usj
sSing a query 1anguage
- For exam
ple

Selec
t * where probe id = “mpc/
— Comm.*/*u
and

Pri : Hi
1 ¢ High and Dest haost
— =S

i 3 g ' i ®
(ade] al r i : L o
t nwn P 1 - ngh and 'DeSt hOSt
T = 5' (. e
— I3 all hig
h

priority messa
ges sent to desti
tination h
ost §),

Fault Diagnosi
o -
gnosis ! Responsibilities of Soft
ware Desgi
gner

and Developers

In our
proposed sche
me, any released software
must cga
Ir'y man
4

permanentl emb
y embedded probes, which will be helpf
pful for f
ault

diagnosis i co e
in the])
rrective maintenance phas Whil
- lie desig i
ning a

large SOftwa p e ro
re t kee in Vv t
¥) the dESlgner mus ’ I iew h
! p blems
Of

the maintenan e re
c i i
) e engineer. On finalization of averal
of the softwa i v o arene
re, the designer must advise (the o) o
rogrammer) t
O put

appropr e
lat probes (macro 19'81) at pr Fer locatlons SO th f
at auilt
l

isolation can easi Y ngineer in
be done easily by the maintenance engin
fOllDw'
g

step-wise focusing approach.

in detailed design and coding phases, the d
’ eVelOpers

Similarly,
should also keep the issue of corrective maintenance i
in mind, and

some additional probes (micro
level) so
that faul
t

should put
concretization becomes easier for th i

e malntenance i

engineers

ro as well as micro 1
evel, can b
e controll
ed

at both the mac
addressing possible, due to th
e

using generic
This provides

Probes,

selectively,
structure of the probe_id. a very powerful
way to

ention on any desired
when a
.n disabled state.

part of the software t
© the requi
red

focus att
is released for use all
]

of details.

software

degree
embedded probes must be

118

Probes are like simple statements, and hence, embeddin i
not introduce any logical bug in the Program. Sinceg - wfll
consume resources, both designers and developers aszrObes 'WLll
against excessive probing. The set of embedded probes mus:a:::z::d
Y

necessary and sufficient conditions for fault Qia
gnosis,

A software that has been designed and g
eveloped, followj
’ ing this

approach, will have an associated document that gives inf
lntormation

about all the embedded probes.

6.3.3 Approach for Fault Diagnosis

Enhanced observability makes fault isolation and concretizat
Doty 10on

easier. Maintenance engineers are advised to follow Step-wis
5 e

focusing approach for fault concretization.

on fault confirmation, it Ls advised to enable only macro level

probes to start with. Information captured by these probes can be

analyzed using the query language, and faulty module of the
software can be isolated. In the next step, only the micro level

probes of the faulty module can be enabled to pinpoint the fault to

code level,

The document giving information about probes must also contain ap

for fault diagnosis,
levels of probes and how to analyze the various

such as, the successive steps for

approach

enabling various
since all softwares have their own specificity, each

logs.

types of :
ts own document for maintenance.

software will have i

139

Co . : . .
nt fDr gnosls

Any software syst .
user intErface% ;?1 2iloperated by the user through
available through thi = maneclossliny built jinte ththe Soveee
cevtarn e © ssf user interface. However, the system 1g
e e S o Eware, which may not pe readilEre may be
large softwar .prOVldEd at user interface ey Y Sehievanle
N e have internal states —— .91. Most of the
ructures of the software represent its sta::f in internal data
and hence, Same

.'anut may i n Q
Ccaslcn
8.

In case, a reported fault is of intermittent rEtuE
such a behavior might be that it is a state depender one reason of
zhe.Stat%’ less frequent is the occurrence ointffaUlt’ Rarer
onfirmation of an intermittent fault is hard, since thZult_ Fault

rare state

may not be easil
y recreated through us i
er interface
commands .,

Many large roc
ge softwares are composed of multiple proce
| | . . sses interna]h
and it is very difficult to determine the state at
' an iv i
| Y given time
The indeterminacy of the state stems from independent .
execution of

ite i
various processes. In case, the intermittent fault i
1s related

to the temporal characteristics of processes, it will
Y be almost

impossible to confirm the intermittent fault only by exte
. rnal u %
interface [Cheu90, McDo89]. e

characteristics and data-dependent
n

software having temporal

For
t additional controllability measure
5 to

it is proposed tha

state,
ware module to desired state must be provided. Th
. ese

set each soft
help the maintenance engineer to

controllability measures will
etize the fault easily.

confirm and concr

re having multiple components, where each

for soilLwa
additaional controllability

Again,
independence,

component has relative
ired, for maintenance engineer to scrutinize

measures would be regu

some of them 1in jgolation.

120

6'4!1

O summar
r a ! C t ll y e r 1r d 10 Ctl ltle
1 |~ Sures ar Equ
e r
lLze ontro abll t mea a v
=3

of fault diagnosis.

Controllabilit
Y Measures and Fa
ult Diagnos;
S8

Controllability measures Proposed in this thes;
Fransparent to users and are made accessible t:Sls are totally
interface termed as 'control interface, CDntr011%Oﬁgh 4 separate
may remain dormant in normal execution runs, but abilicy measures
by maintenance engineer for fault diagnosis. O:ri;:jnyated only

vation, the

maint : ;
ntenance engineer applies the controllability me
asures thre

ugh

the control interface.

Confirmation of intermitt
ent fault can be easjer i
with the hel
P of

additionally provided controllability measures If a £
) < auvlt g

doubted due to specific state, the desired state can b
€ Created

with the help of additional commands before running the sof
Oftware.

Similarly, if a specific process is doubted to be faulty, it
p can be

tested in isolation by providing input, not from other pro
cesses,

but from additionally provided commands through control interf
ace.

Controllability measures built in the software may exist as
an

integral part of software as well as independent modules. The part
. s

attached to the software, intrinsically, may be activated b

Y
setting some control parameters through the control interface
Independent control modules are entirely executed through

command .
In the released software, some of

1 interface commands.

the contro
es need not be linked with the software to

the former type of measur
these measures

when a fault is reported,

reduce memory overheads.
poses of fault diagnosis. Independent

can be linked again for pur
cause any memory overhead in normal

control modules don't
s of the softwaré, as these get invoked only when required

operation
during fault diagnosis-.

121

We want to
assert that
fo
r large software, provi
ision of i
addition
al

controllabili
ility meas
ure
S are crucial to red
uce the
ever inc
reasing

cor i i
rective maintenance cost

Corrective i
Mainten
ance & Observability and Cont
ontrollabiliji
ity Meas
ures

Observabili Y ui
ilit an ili t
Y d Controllabilit measures b n oftware)

fault di i rllmor.e easier Fault
iagnosis 1 iv i -

g is in corrective maintenance fa
diagnosi i n |]

is 1 i i
5 manpower intensive and consume - '
lot
of re
ocurces

H ce . s E] l] .
en r pr Dpar pr oVl LC .' 1 :y alld co I ! :
y in

software i i i v o
18 hlghly desu:able, even if it incurs
some overh
rhead So
. me

lEUel Of Obser i 'ty 3 ll)_llt a e]eft
Perlllanen

in software, and
. the rest can be attached or detached
r as and whe
n

required, for fault diagnosis.

For generic
g hardware systems; observability and controllab
ability ar
e

extensively bui i i
Yy ilt for fault diagnosis. All internal state
s are mad
e

Hardware also have provision t
a

directly or indirectly observable.
at wvarious points inte
rnal to the
system,

set desired states
t diagnosis is entirely de
2nt v pendent on in=bui
-built high

nd controllability.

Hardware faul

level of observability 2

nd using observability and controllabilit
LCY

rience of building &
¢ like TIFACLINE has shown ve
ry

stripbuted Pprojec
that such concepts are also being

Expe
in large di
the fact

effective results.

widely used 1
e engineers to S
r than depend

n hardware testing and maintenance, should encour
age

ystematically provi
on brute force adhoc methods at the

de for these concepts 1in

softwar

goftware, rathe

time of crisis.

ce engineer in fault diagnosis, a manual

formation related t
m should be provided. It

e maintenan
o observability

To assist th
g all the
1ity puilt
+ of all t

necessary in
in the syste
he macro and mic

containin

and controllabi
ro level probe

ain & 1is
which can be made on

should cont
. auer Les,
son and im o

portant grandard
mmands and parameters, GoRtEGL

informat
control co

the event hist

122

modules and processes, a
should also be documente:d L comes e pau
1S attachable, and the o iprten of e i in_bUiln vt o
be described. In bri el e i e
. rief, this document should gi T showe e
Ve "Guidelines for

Software Maintenance",

Observabili Y ause overheads in terms
ility and 11]
y controllability measures c
of memory requi e rocessing. Even though
uire |
q ments and execution time p
such measu n be '
res c 1 t .
an be built, such that, mos F
- OI these
measure
S are

ur i e s ft
ad a a3
Ched W
hen

needed for fa i O v
u i
1t dlagnOSLs. Some measures h
’ wevey =1
' hDUld be
e

present all the ti
time so that preliminary fault anal
¥Sis can b
e done

with the s i i
ystem in operation and then, suitabl
€ compone
nt of

COntrOllab' } i
ility and observabllity measures can be plugged in £
se j_n (:ha
pter

s '

In ~ti
real-time system, these

ho
wever, cannot be eliminated totally.

measures are al apt
so very relevant {refer Ch e
pter 7 Sect]j
lon 7.7) A
« nn

real-time i i i
applications are highly time-critical h
s Suc measu
res

should be used very judiciously.

Summary

The important points of this Chapter can be summarized as foll
ollows: -

s of corrective maintenance are composed of f
ault

Activitie
isolation, fault concretization fault
4

fault
The first three activities

confirmation,
n and testing.

collectively called "fault diagnosis™,
jor share of corrective maintenance

rectificatio
are indeterministic
' 4

and accounts for ma

fault diagnosis can be reduced, if

for
considered in design and coding

required
ault diagnosis are

development

- rfforts

issues of f
itself.

phases of the goftware

123

- Probe mechani
filsm can provide the desired le 1
ve of

observability in the sof
tware required f
or fault diagnosi
S.

- Controllability 1s reguired to make the soft
. ware or a
component of it, to reach a state
+ NOt readily reach
able by

user interface.

- Software designed and developed with observabilj
1Llity and

controllability measures, will show improved co
rrective

maintainability.

_ +Guidelines for Software Maintenance' describing all th
e
controllability and observability measures built in th
e
software, can greatly simplify the fault diagnosis task

performed by the maintenance engineer.

Observability and controllability measures load the software

and hence they should be used judiciously. The concept may

not be readily usable for time-critical applications.

END OF CHAPTER b6

124

"
te 7 Iﬂl le r.lt o 5u lt

7.1 Te
stabilit
Y Overheads & Optimization ¢
onsiderat
iong

memory Sspace
P - To reduce these overh
possible, sev o
. eral approaches have been work nhee
ed out
and degcyr;
ribed j
n

the following sections

7.1.1 Attach
abl
e & Detachable Observability & Cont
ntrollabi]j
ity

We ha\]e II[t][]l)s : mea
ed that Observablllty a”d CDllttOllah 1 1 od
)
Y sSur
es

should be embedd
ed permanently in the code. Furth
& ermore W
' e have

classified th
es
e measures as design level
¢ QUNit levwy
el
' ang

maintenance 1
evel. In order to reduce the overh
erhead of
these

measures
(once the software has been thoroughly test
sted), the desij
Sign

level and i ili
unit level cbservability and controllabilit
- ity measur
detached (removed) from the code, before releas;j D
1ng the
. soft
r use. Detachment of observability and controllabil -
ility measur
es

can be i '
achieved, either through a compile time switch
+ Or through
a

specially designed pre-processor for the source cod
e which ca
n

recognize the observability and controllability me
asures and

removes them from the code.

the detached observability and controllability
measures

In case,
a version

are needed later in the software for fault diagnosis
’

with these measures can pe re-created. On-line fault diagnosi

is 1is
software version
ility measures have been detached

from which some of its

not possible for

observability Aand controllab

Detachment of sSCm€ observability and controllability measures
ell as memory overheads.

reduces processing as W

125

r

fach probe call
A table

S0 that i f
status processing o probes can be expedited
having two bi .
its for each probe, called probe status table, can be
:

maintained. it i
Initially the state is unknown for all the probes. On

encounterin i
g a probe call, if its status is found to be unknown
!

then it j
ils proc o
p essed through the activation / deactivation command

e re

it is not
necessary to check against the command table, which

time,
its status can be simply

Next time,

1s :
much mere time consuming.
This mechanism can reduce the

r
ead from the probe status table.

processin i
g overheads of deactivated probes to a very large extent.

”lleneve tiva an e coO d 1S (l[ven 1ts
r a new ’

entr is §
Y made in the command table. As it may change the status of

the probe status table is reset to unknown state

any of the probes,
In this

for a
1l the probes, so that these are reprocessed afresh.

approac
P h, the status of only the encountered probes are processed.

An i ici
alternate solution to efficiently implement checking of probe

acti i
vation status would be, to reset the probe status table at the
whenever any

beginning, and update the status of all the probes,

activation and deactivation

ex i . :
ecution, activation status of any probe can be simply read from
in this alternative,

command is given. Thus, during

However,

updated, any

the up-to-date probe status table.

have to be whenever

status of all the probes

activation or deactivation command is given.

activation /[

use, the required

For software released for
commands can be put and probe

e-computed and stored for ready loading a
d during the operations of the
line and handed

affect

deactivation in a contreol file,
status table pr t execution
For additicnal commands require
probe status file can be prepared off-
ands processing overheads do not

time.
system, new
over for use, SO that comm

the response of the system.

127

Probe cal i :
? il is implemented as a macro c¢all. First, test mode is

on", then probe activation status is tested. Cnly

" 4 .
t{ probe i i) :
P S an active probe, then its message is constructed and a

function i
call is made to record the message. This procedure avoids

unnece :
Ssary construction of messages for deactivated probes.

Logging of Probe Messages

E » 2 .
vent history or log file used by probe mechanism, records messages
generated only through activated probes. This log file is, later,

used for analysis using a query language.

For a software having multiple processes (tasks) internally, there

are

(a)
(b) there is only one system-wide log file.
by taking into consideration,
it will be

two options for logging messages generated by active probes

each software process has its own process-specific log file, or
In the former case,

fault diagnosis can be done, log

files of all processes o©of the software, and hence

relatively difficult.

into the log file is handled by 2

In the latter case, recording
processes send

'*logger process'. Various

distinct process called
messages generated by the active probes to this logger process for

Each message is timestamped, before it is dispatched to

recording.
sequence can be

so that correct relative execution

the logger,
the messages reach the logger process in any

extracted, even if,

order.

there are two

In the former case of process-specific log file,
inct process

options for logging : (a) logging may exist as a dLSE
or (b) it is linked with each of the software processes.
te logger process mechanism has several advantages over
message sending

ad 1s less.

condition,

The separa faster than
is as
the latter option.

k file,

Firstly, as
the executlion overhe

Secondly,

writing to a dis ' pese o
ess crashes due to some Lnterna
if any proc

128

743.1

even the 1
ast message generated by it, will be recorded in th
e

Process-specifi i
p ic log file, It makes it easier to locate the point

of process crash.

In the latte i
r option, where the logger is linked with the software

process i
tself, messages towards the end of process crash will get

lost, as ¢ i i
hese may still be in the unflushed buffers. Closing log

file or f1 i
ushing buffers, after every message recording, may retard

the executi
ution of the process beyond acceptable limits. Thus, a

Separate :
logger process provides a faster and more effective way to

record message
s :
g9 generated by various processes of the software,

even where process-specific log file is kept

Display of Probe Messages

Event i i

nt history or log file generated through active probes are used

fo - i v [
r the post-analysis of the software behaviour. Many a time, th

designer or the software maintainer may like to view the messages

as they are generated, so that they can take decision on-line,

either to stop the execution instantly or let it continue further.

Facilities to scroll the messages can be provided as well.

On-line Behaviour Window & Filter

We propose to associate a behaviour window with the log file that
ctivated or deactivated selectively. ©On being activated,

is mapped to a specific terminal and displays
ser may attach a

can be a

the behaviour window
egsages logged in the log file on-line. The u

the window is attached with a

all m
he window. In case,

filter with t
sages that satisfy the filter criterion are

only those mes
t cannot pass through the

filter,
displayed, and the remaining messages EHE
filter, are not displayed.-

129

7.3
. = 2 P
Off-line Behaviour wind

The conce
t 3 5
pt of single behaviour window can be extended to multiple
with multiple

b -

behav10ur windows. A software can be associated
f::aViour windows, each one€ sttached with distainct pehaviour
ters. Depending upon the type of testing being doner a specific
monitoring the

set of .
pehaviour WwWinuow can be activated ‘or
softwa
re be : .
haviour. This kind of Le=ting environment is specially
suLted o,
Lol imitware havind pultiple F[a:csgeg and distributed

8
ystem softwares.

an be, further. 0xt¢ndcd ro create

1tiple windows C
cifin £ilter on-

Th
e concept of mu
1ine and to

ndow with SP€
in this

an ;

d activate a behaviour Wl

jcally as well. mode, the
=11l as the depth ©

wWe
any

wopn-line”

f obneyvability can be

of software

modify its filter dynam

di ;
irection of focus a3
LLECBLLDHS

ntrolled. which can gave M
In this

dynamj_cal ly co
Lnformation.

v analysis of
n destroycd

ex :
ecution compared ro "Off-line
ated and eve

a window can bke deactiv

|lo - > ;
n-line" mode,

dynamically.

ow and FIlter

The behaviour window concept: proposed for on-line mOnLEUEan of
software behaviour: can D€ equally used for off-line analysis of

log files

1 j £ pe re yaved off”
The probe LnformatLOﬂ recorded 1R the lo9 syle can plai
' i i of 8 eed of going
line, where complet® sontrol 18 provided 10 terms P
c be
tware pehavior can
forward, ©r even goind pack, S© that sof
analysed easilY:
41 T seed systems,
For softwar® havindg multLple processes or distribt
ied for vay LouUE
independent Hghav eyt wingowe may P¢€ gpecif
n 2
- gion in various window?s needs to be
processes: The jnformé 1 f O spd
-eplay® the actual sequenc® of P
i o that v reps il
SYHChroanEd - ved usingd the t;mestamped informa i
e
This synchronizatxon ya ach?
- ssage:.
contained 1T sach prob” mesS2J

130

7.4

Query Processing

The probe
m
€SSage has two parts. The first part is fixed in format

l.e., it contains

(Probe_ id,

Time_stamp)

The se i
cond part contains probe dependent information. Each value is

ta . :

gged with a legend or field name. The fixed part can be loaded
1 ;

Nto a relational table and the variable part can be put in the
v .

4riable length sub-record in the same record. Query can be made

USing a standard relaticnal SQL on the fields of the fixed part of

th
-7® record. The query language has to be extended for handling the
sub-record. Here, each

in the wvariable length

fields contained

field has to be referred
Processing will require scanning all the records. Each record has

using the tagged legend. The gquery

to be first checked for the presence of the fields referred in the

Query, and then process it for for the selection condition. If the
then these can be

fields of the fixed part appear in the query,
used first to filter out the records, and then processed as
Suitable indices can be used to expedite

described above.
Processing of the fields of the fixed part.

As messages generated from the same probe contain the same
Structure of information, some pre-processing can be done to attach

a unique record type with each such class of messages. In guery
as it contains the

once a message is found relevant,
then all the records of its class can

processing,
so that filtering of

fields referred in the gquery,
'relevant for query processing'

be flagged as
records can be done more efficiently.

to be noted that efficiency 1in processing the query 1is
as analysis does not

It is

important, pbut not really a stumbling block, .

demand very quick real time response. It may not be worth while to
in optimizing the query processor, as it L8

invest large effort
r software testing.

only a tool fO

131

Per
formance Measurement using Probe Mechanism

In a i
ny software, performance is certainly an important issue. The

designer has the performance at the back of his mind, while engaged

in the creative process of design. His thinking is guided in the

direction through which, the expected level of performance will be
possible. However, by reviewing the design, one cannot predict very

accurately that the system constructed with the proposed design

will certainly deliver the anticipated performance. Performance is

usually measured in terms of response time. It is the final outcome

of many activities in the system, many of which cannot be
characterized precisely. Only where margins are very large,
acceptable response will result easily. However, in very demanding
where design is heavily influenced by performance

the resulting performance will rarely be achieved in one
system will be

The

systems,

criteria,

attempt. Therefore, some analysis of the built

in order to see the effectiveness of the design.

required,
system to achieve the

analysis may lead to some tuning of the

or may lead to minor or major re-design

desired performance,

activity,

in complex software, performance analysis is very essential

Tnus,
and tuning or redesign, Aif

for the evaluation of the design,
For performance measurement,

the scoftware 1is

processing time taken by

a must., An overall

required.
components in
to be comprehended,

so that the weak link can be

of performance of

various
in terms

performance has
identified for

various components

further tuning or re-desigh.
y captures the timing information

mechanism very naturall
18 timestamped.

The probe
as each probe mesSsSage

through out the
information <an

software,
of wvarious

pe used to derive performance

no extra effort would be

Illls
p h S,
nts T u
q d in p 15 h S en used e Soft”
requlired, Case, X Dbe n ECha“ m a be in th

for observability.

132

T

in d 1 i } ;
timing information is of greater

Etributed systems,
as 1t indicates how various independent processes has

-

importance,

& . : . :
Xxecuted in real time in relation to each other. Using this

replay utilities can be developed to give the illusion

information,
be

o i :
£ avtusl execution, Messages from various processes can

that the interaction can be

displayed in different windows so
of

edasily understood, with a view to ascertain the correctness

software behavior or diagnose a reported fault.

Assertion checking

Programs are written to transform input-data into an output which
Satisfies certain desirable properties. For example, a sorting
Program may take a set of records and convert them into an ordered
Sequence of records using any of the techniques for sorting.

Similarly, an update of a database modifies the database in such a

that certain properties continue to hold true even after

fashion

updation. It may require relatively very simple program to check
whether the post-processing conditions hold true or not. For
example, sorting may be a very complex program, but to check the

correctness of sorted output may be a very simple order-checking

Checking the correctness of an output against a certain

program.
. { rs
valid assertion may be another simple way to detect possible erro
In fact, in non-

in program, which is transforming the data/state.
; : y " . &
scientific application, such as business applications, 1t 1s very
by simple

eagy to ascertain the validity of an output even
This is because we are mentally checking for certalin

Observation.
which the output must satisfy.

agssertions,
: ked only through processing.
tions can be chec
More complex asser
istency of database 1s dependent on several layers
consi
has to be supported by complex database logic,

For example,
asic functionality provided by

It

1s based on some b

of information.
umulative result of all these factors can

which, n turn,

i The ¢
the filing system. ' e
checking the various assertions or consls y
be checked by . o consistens
that the database has toO satisfy
e may be easier through program.

consistency
Checking for such

133

L(‘Lo[e dat se wl[l (h majr be u e min an(i hen(:e
aba q
’ 1t resource consumi g; r

cannct be done
very frequently. If assertions checking takes very

‘ittle time, then it can b
p e a
e used not only to detect faults but also

If assertion checks are performed after

Y0 localize the faults.

Every sin i
gle action [Stuc7?7}, and if the check fails, then fault

l 4 .
1€s obviously in the last action.

The real
advantage of assertion checks will accrue where the logic

L2 ver
Y complex [Haye86) and several factors contribute to lack of

in the final delivered software. For example, a

confidence
fault recoverable, indexing system is

co i
Ncurrently accessible,

uit
q e complex. The consequences of various situations
In such a situation,

as well as

complexity of program is extremely high.

assertion checking would be of great help.

indexing system
corrective action can be

Periodic assertion

is correct, and any

checking will ensure that
lnconsistency can be reported so that

taken.

The assertion checking in above concurrent environment would

require that the software has been brought to a gquiescent state,
i.e., non-transient state before the assertion checking is

Performed.

«6.1 pProbe Mechanism & Assertion Checking
then any

hecking is done after every single action,
action.

If assertions C
inconeistency can be obviously attr the last
iately localized. However,
ecking, after every single action

even though insertion of

ibuted to
in general, L% wiil

Thus, fault is immed
be impractical to do assertion ch
e.g index checking will take very long,
2 -

y take very little time.

a key value md
hanism c¢an pe helpful 110 fault isolation, even Y ¢
Probe mecha |
king i85 applied periodlcally i.e. not after every
heckl i
i n be used to log changes made to

assertion
Probe mechanism ca

single action.
134

the state i
(here index system) by various parts of the prograr

r any assertlon J.nCOl’]SJ.Sten .i.S e ’ t f
da

“lessage 1 v
entrles; after the laSt alid assertion Checking can be
!

analyzed to locate the fault.

Ihus) W [1,‘()][5 Clle(:kl]l(j ot
r

af v i i
ter e ery Smele change in the state of the software probe
?

m 3 . . .
echanism makes it possible to use assertions checking effectively

for fault isolation.

Application of Probe Mechanism in Real-Time Software

Since real time software has to satisfy stringent time constraints,

controllability measures may be

of observability and

overheads
However, limited

difficult to be accommodated in such software.
application of these may still be useful and feasible. Certain type

observability can also be built at hardware

cf low level
execution time

architectural 1level without causing any

overheads[Tsai%90]).

Limited observability concept is already being used in many real-
time applications. For example, in power stations, critical
are constantly recorded in a circular

parameters of the systems
so that these are available for analysis, in case

recording medium,
some malfunctioning. 1In

of tripping of the system, due to
after reporting of faults, the system

applications of these kinds,
Re-running the system

must be rectified before it can be restarted.
to recreate the fault (for fault diagnosis) is out of gquestion.

black-box recorder records important

Similarly in avionics, flight
includes conversation of the

flight and system parameters which
taff. The black-box can survive any accident and

~ase of an accident. If

pilots and ground S
lable for post-analysis,
mited observability are no
to find and fix.

in
t made, causes of

is aval
These

provisions for such 1t
e will be almost

have

impossible
the system to

accidenc

i with
observability measures to be provided

135

Prevent such failure in future.

In rea i i
1 time systems, the basic cbhjective is to sense the various

state pa i
pParameters and exercise appropriate controls automatically to

whatev i
€r extend it 1s possible. The important state parameters are

al
SO0 displayed at the control panel. Controls are also provide to

Oor supervisor to directly affect the functioning of

the operator
process control systems,

various components. In computerized

Sénsed parameters may also be logged for later analysis.

Thus, the requirements of observability and controllability

Measures is very essential to real-time systems. However, all these
which is to be controlled. The

dre required for the environment,
in such systems, undergo very rigorous testing and

software used,
usuvally very large and

is very

Quality tests as the cost of failure is
unacceptable. As rigorous testing of real-time systems
essential, observability and controllability measures can help in

this very objective, by helping in testing of a large part of the
software, where time critically is not involved. Thus Observability

and controllability measures are of relevance for the testing phase

at least.

systems, the system failure, eaven though
Firstly,

For real-time

unaffordable, may still happen for two d
in the sense that the system may fail

Secondly,

istinct reasons.

the system may be imperfect,
situation.

to respond appropriately to some unroresech
inspite of rigorous

the socftware may still have some residual bugs,
it is important
as recreation of such

In both situations, that sufficient

testing.
ig recorded for post analysis,

information
r impossible or too costly to afford.

faults are eithe
minimum level of observability s highly essential 1in

Thus some

real-time systems.

END OF CHAPTER 7

136

Chapter 8 : Testability Revisited.

8.1 ili
Testability & Software Development Process

T —— : ; : :
Stability is the intrinsic property of the software which

e 1 1
acilitates the process of test execution and analysis. Also during

test, the internal behaviour should be

the execution of the
Observable for test analysis as well as to help in localization of
discovered faults. Testability requires extra provisions in the

software to execute the desired tests easily,
level (2 B0 - Y

systematically and

without any code

externally at interface

modification}.

Testability measures has been defined in terms of observability and
which should be built in the software in

controllability measures,
{(iL.e., during

a pre-planned manner and cannot pe added on the fly
phases) - The existing software

and maintenance

do not support which are

the testing
activities,

models

development Pprocess
e software testable.

essential for making th

which need to be done to build testability as

accivities,
ility of =& software for

Various
utilize the puilt-in testab

well as to
have been discussed Ln this

tenance purposes,
ve already been discussed in the context of
of software

testing and main

thesis. These aspects ha
observability and controllability properties
following sections briefly describe these

individually. The
e various software development phases.

s viewed from th

antivities a
t during the design and coding phases and used

Testability 18 buxl

e testing and maintenance phases.

during th

8.1,1 Testability puilding Phases
pased test-plans

fication

R ci
: rability, SP°
o built tes . .
In order ¢t = wrale vailable to the design phase. It will
pared an at the various tests proposed

B ch th
help in designing che software Su

137

Ca“ be COnduC e eas I}’ Q e ma nhave some
1 - T a hleve thls, the dES.Lgn \ a

Oovisio i i
ns 1n terms Of addltional C‘ontrol Code Commands etc
' .

The design p
g ased test-plans pPrepared after the design phase is

ComPlE‘te, sh
ould also be used to review and modify the design

Lltoelf. Th ;
e modification in the design should enable the software

Lo execute ;
these design verification tests easily. The same process

could be ,
reépeated for the detailed design verification test-plans.

sh
code verification test-plans are defined. The

At the end of coding,
€ode shou :
ld also be reviewed to ensure that these tests can also be

The above process will ensure that the required

&xXecuted easily.
the design and the

co o . ;
Fontrollability is identified and built into

Code of the software being developed.

Durj
ing the above process, the observability required for analysis
Probe mechanism

Of test-plan execution should alse be identified.

h :

48 been shown to provide observability for observing the various
dspects of the software behaviour at any desired level of
The observability built using the probe mechanism can

abstraction.
be turned "on" and "off" as required. Observability can be built-in

can be for the purpose of providing

It
in verifying bhis

for different purposes.
essential information to the designer to help
design, or for the purpose of assisting the programmer with his
unit testing and integration testing. It can also be built-in to

of software

engineer in dliagnosis

assist software maintenance
for monitoring

and to provide system administration aids
performance, and usage, etc. For

System operations,
the types and positions of all preobes in the
coding phases.

faults,
all these

various objectives,
design and

jdentified during the

software can be
emped these probes during the coding phase.

Programmers should
measured built into the

observability

The controllability and

software during the design and ceding phases have to be documented.

Various test plans should be augmented with procedures to be
g of the yariou# commands (user or control

f:tllowed lnnu::nrdms) for execution of the tests as well as to

sreace rnal bpehavionr. Extra commands for

o well as for activating

he 5pecifiod
as

obgerve t
red controllability

invoking the desi

138

IObES fO ll Qbse Val) - hi b p
p Y (i l) e Ys 5 are

bunched
together i
n a separate 'control interface' of the soft
ware.
limited to the testing

It

Use of
these measures is not only just
but alsoc h
av
e to last the entire life of the software

phase,
testing phase,

implies t
hat, when the software comes to the

everythin
g has be
en planned and no ad-hoc measures are required to

aid in testing.

phase should

The te ili v e
stab i

lity required for corrective maintenanc

qu:[

also be i
planned during the design and coding phases.
ential a=z No

diagn i

osis i i i s
, which is an important activity and is es

free, can be alded by

soft
ware can be developed totally error
Certain

buildi i v
ng appropriate macro and micro level observability.
rhe system

obse i1
rvability can also be built for monitoring

performance during its operations.
Thu 113

s, the controllability and observability measures required for

during testing and maintenancée

g the

ex i i
ecution of various types of tests.

puilt and documented durin

jdentified,

phases, should be
hases of the softwa

re itself.

design and coding p

8.
1.2 fTestability Applicatzon Phases
the software 18 useful during the testing as

Testability built into

well as the maintenance phases. Testability 1is relevant in the

maintenance phaser 2% it involves diagnosis as well as ——
n of fault) activities.

{after rectificatio
evel and then at modaie

at unit 1

ed LnJ.C'LallY
and integration testing

g is perform
ined,

d modules ar
r all these testing
g the desired test €O

abpility mea
the diagnosis of

controllability

Testin
e then comb

ivities,

act
ndition and executing

level. Teste

is performed. Fo

measures help 1P creatin sures help i
in

q test ru wherea$s g

e softwar

during this

selecte ns, ~

observing th e behavior a
rccess.

faults discovered P

139

Design v i
g erification can also done by the designer by applying

Various te i i re e v
Sts and observing the design lated internal behavior of
the softwar Lgn- need
€ using the design category probes. The designer nee

unde i
rstand the code written by programmers and can do the

independent of the programmer. Timing

not

design verificatioen himself,

informati i
lon available through Observability measures can be used

Lo analyz
Yze the performance of various components of the software.

To im
Prove the performance, necessary tuning of the design can be

done,

Simi 3
ilarly, for system testing, contrellability measures can be used

fo ‘ .

T <creating various tests conditions prior to executing the
co ;

rresponding test run, and then executing the test run,

0 . . + 3
bservablllty measures facllitate localization of discovered faults

to small component of the software. Various levels of observability
the ability to dynamically

software and
help in

measures build in the
dctivate and deactivate the desired observability measures,

focusing attention to the desired component of the software as well
as to control the depth of observation, which may be very useful
for fault diagnosis. System performance can also be analyzed, in
terms of the performance of the various software components, and

can be taken to improve the

then, if required, necessary steps
Probes can alsoc be defined to measure the coverage of

rerformance.
n or system level.

built-in software functionality at desig

the built-in controllakility and

-~
Iie < g

mainuena

res can be useful in many ways. These measures

For software

cbservability measu
in fault diagnosis, wmonitoring the system functioning,
ance for tuning of various control parameters,

can help
Certain types of

observing the perform

e usage of the system as well.

and logging th
¢ the softwar also be done, using the information
on O £

ious observabil

: e cartl
extensl
ity measures.

accumulated by Var

140

Thus, softw i1
are ctestability measures, built-in during the dee:gn and

codin hn
9 phases, are useful both during the testing as well as the
ma intenan
ce phases. The software can be tested more thoroughly and
the

these measures can provide to

VEry conveniently. The help,
as the software

is very wvaluable,

]

oftware maintenance engineer,

Maintenan i
¢€e 1s performed by persons, who are usually not involved

the coding phase of the software

€lther in the design phase or

development .

Testabllity & Current Testing Methods

in . ' \
‘N Chapter 2, on 'current Testing Methods', typical testing
envi : . s

fvlronment was discussed which consisted of use of simple
statements, debuggers, and code coverage

Mechanism 1like 'print!
reliable

Other practices for producing more

each phase by
of

Measurement tools.
incidence of error in

Software by reducing the
the role

walkthroughs etec., and also

Yeviews, inspections,
Standards, were discussed.

in this thesis, focused attention on the

presented
It consists of creation of test

The concept,
test execution activity itself.
and running the test and observation of

tonditions / environment,
test execution. Testability of

the internal processing during
ease of test execution) has been defined in terms

Software (i.e.,
of controllability a
Controllability measures Aare provisi
opservability measures are provisions to
any desired degree of detail to
and help in fault

nd observability properties of scoftware.

ons to help in creation of

difficult-to-reach states.
pehaviour to

of test execution

observe internal
correctness

agcertailn

diagnosis.
pservability, but it is adhoc

1 rOVided 2
1ally P + has to be removed

rl-llt IIIEChanLSIII ESSellt
p.l a!‘lnEd a“d 1
ts are

4 ; &
0 e @R ehae XE e int oduced when
£ing s ever . : bersom
after testl i . cum N
commenting and uncommen g) e
encountered. ‘ — 5
depbugger N
f 11 rovided by
Controllability: P

141

change cont
ents o i
f variables, is very rudimentary and is not at all

SuffiCient f execut 10N ()f va c'()nte”t.s
or i i (;
I3

any breakpoint, but what

cf an vari
'Y variable can be examined at
as

variables to i
examine becomes more and more difficult tec decide
from unit i '
téesting to system testing of large software.

one goes
ties the tester down

D(Pk)u(‘]'l’ n c v]I erore

and
are useful for debugging of a fault, once it has

completely;
(refer to Chapter 3

b
€en localized to a small part of the code

s ;
ection 3.9 for more detailed discussion)

Observabilij i
ity, as provided by probe mechanism, is planned

obse i1i : ;
rvability, which is externally controllable as well. Moreover,

one is y
working at software behaviour level rather than at code
Behaviour of the software can be observed at various levels

level,
marco and micro

(e.g., design level, code level,

is not possible with debugger.

of abstractiocons
Observability

levels etc.), which
can be used by the designer himself to

implemented by the programmers, without the need to understand the
of the programmer. Debuggers cannot

verify the design as

independent

code and also
systems where temporal behaviour is

important.

handle concurrent
but

Distributed debuggers also use the concept of event recording,
and

do not support the concept of various levels of abstractions
for

are largely dependent on sequential debugger like mechanisms
for

(refer to Chapter 3 Section 349

analysis during "replay" mode

more detail discussion).

Probe observability mechanism can also be used for more meaningful
Code coverage is more relevant only during

coverage measurement.
puring system testing, it is not possible to achieve

unit testing-
as detailed design decisions taken at code

level. During system

complete code coverage,
at that

level cannot be easily exercised
importaﬂt to exercise the entire functionality built

testing, it 3%

in the software 2
pProbes can be embedded i
Probe coverage m

s specified in the specification and the design
n the software at places where
easurement can help

documents.
is coded.
The uncovered

this functionality

k i the extent ©f the functionality covered.
nowin i

. re easily jdentified and exercised through

functionality ©an

142

additional testing.

Con i3
trollability concepts asserts that we need to plan how various

t i 5
€5ts will be applied. Some tests, which will be difficult to apply

due 3]
to difficult to Create states via user interface, have to be

itself so that adequate provision

considered during design stage
& :
an be made in the software. At present, test-plans are made

avaj : ;
ailable only during the testing phase. The test-plans should be

if controllability of

an essential input to the design phase,

software is to be ensured.

All the observability and controllability measures, built in the
separate control

Software, can be made available through a
Though

ilnterface, even for the post-release maintenance phase.
these measures cause memory and execution overheads, these can be
built as attachable / detachable (pluggable) components. Some of

these measures that are highly integrated with the software, can

remain permanently in the software. The attachable component can be
attached only for testing and fault diagnosis. These testability

measures can be of great help to maintenance engineer in fault
;solation, fault concretization, fault

confirmation, fault

rectification, and testing.

cannot be injected on the fly during the

Testability, like quality,
If testability 1#® appropriately planned and built
of software can be made more

testing phase.

Lnto W testing
L the SOft are, the S -
:110[Oug'l a d 1ess time consunling, a“d thereby pIOdUC]ng more
+h = b 5 y o 3
| burli—4a1 testa llity, the maintainabilit
with
and cost of

reli software. . .
liable LHiproves: reducing the time

of the software also
matntanance significantly.
eing developed, the
lex softwares are b g :
As more and more comp e e have G e
l1ity ©

i inabl
testability and maintain

important.

143

8.3 Ext
ended Summary of Research Contributions

Th
€ research Contributions of thisg

thesis can be described,

briefly, as foliows g

8.
3.1 Software Testability

This i ;
research investigates the types of activities that are

regui i

quired to be done during software development process to
produce testable software. A software is testable, if it has
te ili i :

stability property, i.e., it can be subjected to pre-defined

and without following any

systematically,
identified distinct

test-plans easily,

ad-hoc measures. This research has

activities that need to be done during the design and coding

Phases to produce testable software.

Testability property of a software is defined as a composition

of controllability and observability properties.

Usually, any software produced have extremely limited
controllability and observability properties, Extra
controllability measures and observability

viz.,
for 1t to

have to be ingrained
and

provisions,
in the software,

measures,
&SRS controllability cbservability propercies

respectivelY-
controllability and observability

y adhoc measures to be developed
be

pre-bUllt

Software with

5 would not reguire an
tests can

measure
testing phase- all the planned
in more reliable software.

the
h will result®

during

executed readily. whicC

144

8.3,2

Observability Measures

Observabilit
Y measures have been defined as provisions in the

software to ili
facilitate observation of internal state of the
and at

software i
at appropriate level of abstraction

o ; .
PPropriate point in execution.

The probe i
mechanism has been proposed as an observability
ils a permanently embedded

A probe
internal

measures for a software.

Pirece i
of code, that on being executed, records

informati :
tion of the software in an event history file, without
Probes can be

logic of the system.
and only

affecting the
external commands,

activated/deactivated through
acti 1
tivated probes record information for post-analysis of

execution.

Probes can b 1 i

e of various categories, e.g., design verification
unit testing probes, corrective maintenance probes
probes for any category can be defined for

abstractions.

prohes,

etc. Furthermore,

at multiple levels of

information
and detailed design of the

capturing

Based on specification, design,
the probes (along with its category and level) have

software,
identified by the end of design and detailed design

to be
and have tc be embedded by programmers while coding.

proposed to reduce

phases,
also been

refinements have

various
execution time overheads.

ed more easily uoing design

cation can pbe perform
ed by the designer for implantation by

Design verifi
b# done by the

ory prcbes jdentifi
Design

cation can
as there

categ
uefif -~

the programmer.

r independent of
e implemented code.

the programmers, is 2 prea

designe

to understand th
of probe-

1ng, the concept
iB more

of system test
coverage

Ior L\.h"l)lctﬂn(7:’]
g i . o
cove (=] t)een nt C de
me g fo UI’lJ.t testlng and nOt for Syste!“ t.651 1
‘ r
anln ful ng Dur

145

software, 100% code coverage is

System testing of large
functional

Lo achieve. For large software,

éxtremely hard
which can be

covera
g€ 1s more relevant during system testing
7
TEasured us
ing the proposed pProbe-coverage concept more
cffecrivel i
Y. We define system testing to be complete when 100%

probe—coverage has been achieved.

8.3.3
Controllability Measures

Controllability measures have been defined as provisions in
: o 3
he code to bring the software to specific states which are

difficult to achieve through user interface commands for the
execution of state specific tests. Special conditions, error,
Or boundary conditions, are some of the typical examples of

states, which are difficult to create.

Building controllability require modification of the software

development process. The types of controllability measures and
have to be decided by the end of design

their provisions
on-based test—-plans are necessary input

phase. The specificati
since design-based test-plans for design
only after the completion of

for the designer.
be

e finalized,

the design phase has to

verification can b
rollabil j_ty measures

in
the inclusion of all cont
lans L= properly synchronized with the

design phase, our model,

iterated till
for design-based test-p

design itself.
specification verification

res for
and code verification tests

ollability measu
rification tests,
g the coding phase.

The contr
e software durin

tests, design Ve
are anorporaaed in th

146

Co 113
Ntrollability measures are required to be incorporated in

the software to

(a) Set Test Environment

(b) Set Test State

{c) Activate Observability Measures

(d) Provide Test Input

(e} Perform Test Analysis

To test a software component in isolation, it is required to
set test envirenment. A software component can be sub-mocdule,
of a component

module or a sub-system. For setting the state

and for providing test input, some additional software (even

module) may have to be built which can be activated using the

control interface commands.

Control Interface

the software is augmented

In addition to the user interface,
that provides various commands for

with a control interface,

activating controllability measures, in such a way that the

systematically, and

various tests are conducted easily,
without following any ad-hoc measures. The observability
easures built in the software are also made available through

m
this control interface along with necessary documentation.

is accessible to the designer and

interface

for testing purposes,
available to system administrator for

control
after release of

The
and

programmers

it is made

sgftware,

d the software maintenance engineer for
. F rposes an
monltorlng Pu

fault diagnosis.

147

8'3n6

Corrective Maintenance

if a maintenance engineer can

the fault easily,

= A Scftuare is maintainable,

confirrm, lsolate, and concretize

dystematically, and externally at user (maintenance) interface

level.

© Steps involved in corrective maintenance have been analyzed

Probes can also be inserted to build macro and

and definedqd.
for software fault

level observability required

micro
integrated and made accessible

diagnosis. These can also be
through the proposed control interface. 'Software maintenance

guide', describing all built-in maintainability measures, can

be made available to the maintenance engineer.

Controllability and observability measures improve fault
diagnosibility, which reduces the effort required for fault
diagnosis and rectification considerably. cost of ever

maintenance, can

Thus,
be reduced

increasing corrective

significantly.

Performance Considerations

some controllability and associated observability measures can

gned as a detachable/attachable components. They can be
soc that

be desi
electively detached and attached whenever required,
: 10onal use of

their overheads can be reduced during the operat
e

; when
The attached measures becomée effective only

the software.
4 through control commands.

activate

148

8.3.7 i
Test Data Generation & Test Driver Development

= An equivalence class definition based test data generation
language (HUTEST), has been developed for fourth generation
form~based application development environment (HUMIS). It has
automatic

been shown to be useful for more extensive and
testing of pre-release version of an application software

(Appendix A of thesis).

an application software

- For 3G programming environment,
structure has been proposed which can help in easy development

of an application test driver (Appendix B of thesis).

END oF cHAPTER 8

149

Chapter 9 : Future Directions

Test Spac ici
pace for Efficient Implementation of Probe Mechanism

Ihe a (&) i n W v h
ttached pr bes 1i ked ith the executable ersion of t
e

even if not activated during the

software incur memory overhead,

execution of the software.
commands

A probe library is also linked,

imple i
Plementing the probe and the associated message

This library is contiguous and, therefore may not
r

recording logic.
it would get swapped out if not executed.

pose much overhead, as

However, the code for various embedded probes will be spread
a

through out the scftware, and that part of code has to be present

in the place where the probe call has been made. As this code is
not an integral part of the software, and is required only when
activated, it may be worthwhile to have some internal architectural

support to reduce this overhead.

are designed to have two modes (some times

processors
user mode and kernel mode, Some Llnstructions

Usually,

three) of operations
y in kernel mode, and if these instructions are

can be executed onl
execution is

d when processor 1S in
s taken to a specific routine. We propose

user mode, the

encountere
interrupted and control 1
31 mode for the processor called the "test"

addition
as to provide a set of test instructions.

to have an

The hardware also h
.5 in test mode,

sor is in any other mode, they are treated
gimilar to

mode.
the test instructions are

In case the Proc
when the prnces

essor

in the memory,

executed.
Further more,

as "no"op" (no-—operat ion).
"instruction space” and "data space”, there should be an additional
- which is also an instruction space for
"test space ! p
space called
all practical purposes:
s should result into test instructions

be command
code pertaining to

embedded ’

should g°
0 encguntering the test monitor

all the

but
into the test

Compilation of pre
the prope Le space. If
commands .

expansion of probe)
cuted in test mode
eturn addre

where
ss on stack; otherwise,

software 1S exe -
jump to test sSpace jg made Wi

150

the instr i
uctio i
N 1s treated ag No~-op (no operation) The "test
" est-
code shoul
d have access to all the variables, as if it is

spaCe"
Thus probe related code will be

a : :
bPart of the main instruction space.,
which will get loaded only if required

N "test- gpace- pages and
1f memory

s Or execut]o“' ot erw W l)e(i out
I3 h r .LSE, these may get S ap ’

contention arises.

will reduce the

The
Provision of "test-mode” and "test-space”

ion and memor
Y overheads to a very insignificant level. In

EXecut
sufficient observability may be left

a8y ; i
8uch a hardware environment,
that can be activated, whenever

lin} i
inzed with the executable version,

ne i
eded, and without the need to recompiled the software.

Software Dashboard For Large Software Systems

DBMS packages, communication

Large software systems like os,

software, distributed applications etc., are very complex in design
Very little attention has been paid to provide
their functioning during operations. Some

resources

and operation.
adequate insight into
adhoc commands are provided to see the internal states,
As these commands are considered extra provisions,
and essential part of the total system

and

Uused, etc.

are not as an 1integral

specification and design, they are generally neither comprehensive
nor properly presented. This 1is because, the main focus of
development 1s on providing the desired services and functionality.

of such

If adequate attention is paid to depict the operations
systems in graphical/non-graphical faorm in a systematic manner,
1 the important and relevant informati

petter understanding and control
also make the

on is available,

over the

such that al
have a

ahility of such information will

the user will
ion has been

The availl
Graph.ic visualisat

like behaviour of

jon and diagnosis
of

system.
systems casjier.

such
contexts,

specialised

link-1list fault detect
at various

’ ¥
maintenance ©Oi
use:’ul in
levels

shown to be
t91),

grams [Hea

state

observation

parallel pre
and process®

[Shim91a].,
MoheB88] -

abstractions [
151

interacting modules/components

A
ny complex System is composed of
On

which can p i i
€ diagramatically represented on the screen

should be further expandable into more

Selecticn, any block
should be

detailed
level blocks. Relevant internal information

depicted j -
1n easy-to-understand character or graphical form. Thus,

System operati i
P 1on will be easy to understand, administer, and tune

to get b
g etter performance. These objectives are not difficult to

SEHi .
hieve, once their usefulness is realized

The dis i
Play software can be built provided the reguired information
Some of the required information is

18 available from the system.
However,

internal state of the software.

@vailable in the
inf 3 i

ormation about the dynamic behaviour of the software (e.g. a
mes i i

#a4ge sent) which is not recorded in the system state, may also

B&. 4
€ 1mportant for purposes of the display. Therefore, such display

i ; :
oftware can be built provided the dynamic behaviour is also

recorded and made available.

What is basically required, is observability of the behaviour of
the software, which can be in terms of the state / dynamic behavior
The probe mechanism can be used very conveniently

of the software.
to get the observability required for building the appropriate

termed as scftware dashboard. AR display-category probes
activated

tSDI)'

and

display,
embedded,

{coded as

can be defined

permanently.
can be developed to provide the degired

recorded in a separate

An independent module
using the wmessages

display facilities
As the display software is written independent of
ystem also does not

display log file-
the main software, the complexity of the main s

increase.
in Chapter
line multiple behaviour window feature, discussed i p
The on-1l1 seues e
3.1 can be used to define & primitive S ware
7 seeerer - 1 software

For more powerful dashboards, genera

r

dashboard: d to facilitate their development. Once
building such a software

can be identifie
~imitives is available.,

prlmltlves
pri!

a library of Sl
152

dashboard
for an
Y software, baseqd ©en the informati
1on captured by

the d.‘{_spla
Y—category probe
S, would be ver i
Y simple.

bu: ldin
< ng of !J'JLtable dis la
P Y software independent of the b
ase

software, wh
v WHIch 1n ver i
Y essential for better user understanding and

control of the software.

Cotnpller Su pf, ot) erv b 1 t
Y

d to use deb i
UYggers arises primarily to observe the changing

The neg
it has one serious limitation in

gta = li
ate of the Software' owever
!

tex”lb Of itS (o] a a kllowled e Cf
u . i

e l"lt]’.'Ol f o Pp p

l" co l w Of the SOftware S0 that a ro riate break pOillts

Can bhe ut
B ¢+ relevant values of variables can be observed and

changed 1 i
ged, and if desired, to continue processing further

A sji
imple and more elegant way to achieve what largely a debugger

would be to extend the programming languages so that the

provides,
what wvariables he

Programmer can specify in the program itself,
and changing dynamically for

would be interested in observing

testing purposes. Variable declaration can be associated with

additional attributes like “:display' :change' etc.. A default
the compiler itself. User can be

when specific

attribute can be associated by
step

control the execution

provided facility to

conditions are met.
ort will be required for debugging the software,

observe the displayed values,

no extra eff
This kind

simply execute the software,

riables, and control further execution.
in ascertaining

modify desired va
very helpful
can be quickly traced back

ervability will be
e software, and any problem

Thusg,

One will
correct

of obs

working of th

code for correction.

to the

153

T :
he above may also be considered a pre-planned debugging. The
effort spent in planning the "display" and “change” variables

beforehand, eliminates the effort required to mentally identify the

required variables and g:.v:.ng "display" and "change" commands
repeatedly, 1in every debug session. However, it should also be
iew 15 not

possible to invoke the debugger, if the pre-planned Vv

sufficient.

lay, grouping of variables into various

control over layout of disp

can be somé useful extensions 1n this context. FoOr

windows, etc..

this purpose, user handles over variables for display and changes,
prary can be designed and provided.

and a suitable 1i

observability required can be built-in by making

Thus, basic
The facility

v change the contents of

sary declarations.

neces
state of the software)

changing the

riables (L-8-
1lability reguired to exercise

observable Vva
ow level contro

would provide some 1

the various parts of the software.

END OF CHAPTER 9

154

-1

A - Test er at v sses
en icn uslng Equl alence Cla

Appendix

Test Data i
Generation Using Equivalence Cl
asses

n a l)
A on consisis j (@] Qo res abDut wh].C]l

informati i
on 1ls st |
ored in a database. Each entit h
y may ave oneg or

lbutes Ea .h N .
1t can t v

ch i i
aracteristics. For example
r

or from a set o
f values, etc. The set of values
r

range of data,

attrlbute, ma be d pe de“ on the Ualues (Jf some

r te. i
[a d

t .
he values valid for an attribute
I
combinat i] i
ijons with valid values of other relevant attribut
utes, should

as well as their meaningful

be tested.

In m mode i i g a a ew
anual i SOft‘NaIe ener l
d Of testl“g Of appl-‘-catlo“ . ly f

and their combinations
with values
of other

due to the 1lack
s attributes and their inter-dependenci
cies

values

important
sufficient time. If the

attributes get tried,
values valid for variou
n some well defined format, dat
a for testin
g the

can be specified 1
In this way, more

can be generated automatically.

application
n be done without much effort.

extensive testing c2
e been made for defining test cases in s

ome
software,
jve functions available at

Several attempts hav
test cases can be

For applice

guences of primit
% defined test sequences|McCa85),

generic forms- cion
d in terms of se
evel and alread

auages pased
1so been evolved

@xXpresse
equivalence classes over

[Balc89, Sinh8g,

user interface 1
on

jcation 1and

Test specif
input and output domaips have @

identifying

Ostr88]).
gypeful in

vary

ved
ip defina2d as a not of

The equivnlence class concept has pro
rest cases: An eguiva

lence clas
= ocesgin logi i
same pr g gic 1g

he

important

values for zn attributo. for which

peing used in the software- For each Jttripute, its equivalence
e qefined. BANY one valué€ from each of these

classes ¢an b

155

“qQuivalenc
e cl . §
asses s considered sufficient for testing (for that

e’l.j'“a"-. >
*terdsence class). As bo
) S undary values are often used in branch

Conditio 3
ns. which 3 =
*S % potential source of errors, it is important

fruare
for various boundary values. For this purpose,

Lo tes: e 50
1HCErLOr b
oun
dary values of the class and the exterior boundary

+ values just outside the boundary of the class) are

values (j.e,
should also be

These outside values

z]l‘_",v: i .
<fpocrtant for testing.
An attribute may have a set of

Froperly handled by the software
®Quivalenc i
@ classes associated with it. Minimum one value from each

“Quivalenc ;
© class and all the interior and exterior boundary values

©f the class should be tested.

A2 HU
TE- . :
ST : An Automatic testing tool under HUMIS (4GL)
Application Development Framework
HUTEST (HUMIS Testing Tool) is a software testing tool, which
Utilizes the equivalence class concept, for HUMIS [Raja89). HUMIS
In HUMIS,

a 4GL application software development environment.

1s
submenus, forms for entry /[

Specifications of various menus,
updation of information can be defined on-line and interactively.
Appropriate header files

Their definitions are kept in a database.
are also generated for use in the 'C' application software to be
written, containing the application dependent logic. Higher level

o do forms based input/output. Input is

primitives are provided t
Field level user triggers

taken in terms of one form at a& time.
(for field validation etc.) are defined in the application scftware

written in ‘'C'-.
e to the HUMIS form-handler.

L odul

HUTEST was developed as an add-on i
pecified using an eguivalence class
dependencies within same form

Each field characteristic is s
Inter—field

also supported. L
£ output forms so that output

range of

specification language- t also has a facility
as well as across forms are
i o
to specify fields characterist1Cs
st
could also be checked again

lence class Spec
run

+he expected
generated ifications are pre-processed to
The egquiva
ata base for us

time.,

values.
e at the

create a d

156

Figures A.la & A.lb show the syntax of the test data specification
language. Figure A.2 shows a sample application input and output
Figures A.3a & A.3b show the corresponding data definitions

forms.
Figure A.4

using the proposed test data specification language.

depicts the header file generated by the HUMIS system for use by
Figure A.5 shows

The

the application program written in 'C' language.
the architecture of HUMIS and the associated HUTEST system.

details of HUTEST system are given in [Sinh89].

157

E
QUIVALENCE_CLASS

CLASS
INTEGER
<¢class id> {nl, n2
’ :n3/stepl
)i
3 s i i
. e tepl is the increment value
| (rl, r2:n3
STRING | .
<class id>
. (stringl, 5tring2-string3
:)i
CLASS SET
lass_+d.

INTEGE
R <cla
i ss set_id> [int
- = eger class 1 d ;
- = ' lnteger c
real_class

(real_class 1d,

<class_set_id>
S_Ld,

<class_set_id> -
- - str ;

{ lngﬂclaSS_Ld, string_clas
FIE

LD_ASSOCIATION
INPUT FORM <form s
F

IELD_ORDER field_xd. field_ids ;

FIELD <fieldﬂid> <eXp” | <Cl_5pecs>;

FIELD <fieldﬂld> CASE <log_exP , : <exp> <ol specs>i
<log_eXP > (3 ZeXp”> <Cl_sp955>.
<OTHEFNISﬁ> . <eXp” <cl specs>i

gND_CRSEi

where e odl 8 specs (0l n?:nJ/scepl }

(ri :2:r3f5tepl)
(a:rl, str2:str3)
<class_id>
<:1nqs_5et_xd> |
{clas; ids classdid,..]
on L3P uad gyntax
Figur® B- - Test pata Spec;l;cats g

id, -

| 7

OUTFORM_FORM <form id>

FIELD <field id> <exp> | <cl_specs>;

FIELD <field id> CASE <log_exp > : <exp> <cl specs>;
<log_exp > : <exp> <cl specs>;
<OTHERWISE> : <exp> <cl_specs>;

END CASE;

SPECIFIC_SESSION <session_id>

RANDOM | BOUNDARY | EXHAUSTIVE

INPUT FORM <form_id>

FIELD_ ORDER field id, field 1d, +--7

FIELD <field_id> { <exp> <cl_specs=> }i

<exp> <cl_specs>i
<exp> <c]___specs).'
<cl gpecs>:

{ CASE <log_exp > @
<log_exp > *
<OTHERWISE>: <exp>

FIELD <field_id>

END_CASE;

where { } contains optional clause

F' re .] - eCcl f] CEtJO“ L llg,]l 5 ntax
J.gu

159

Employee Code 2

Designation Code: Input
Form

Total Salary 5

Employee Code

Output
Test Form

pesignation Codes:

Basic Salary

Total salary

160

EQUIVALENCE CLASS

CLASS
INTEGER

STRING
STRING
STRING

INTEGER
INTEGER
INTEGER

INTEGER

INTEGER
INTEGER

CLASS_SET

STRING class_set*desgn

claos code

class_desgn-mg
class—-desgn_am
class_desgn_cl

class basic_mg
class basic_am
class_basic_cl

class_total_mg
class_total_am
class_total_cl

FIELD ASSOCIATION

InpUT_FORM £l

FIELD £1_code

FIELD £1_desgn
FIELD fl_basic

ouTPUT_FORM £2

Figure a.3a ~

Test pefin

{1:10,

("MG");
{("AM"};
("CL");

{3000:5000/200);
[2000:4000/100);
(1000:3000/50) 7

{SOOO:TOOO];
(4000:6000) ;
(3000:5000};

[class_desgn'mg,
class_desgn_as;

class_ccde;

lass_set_desgﬂ?

101:999/10)

7

class_desgn_cl];

C
CRSE f1_desgn = "MG®
fl‘desgn = ||mr
fl_desgﬂ - "CL"
END_CASE;
fl_code;
£1 desgni
¢1 _pasici Viags
CAEE fl-——desgn) ..MGII
g1 _desgn® = ““"
END__CP‘SE;

161

jeian File

PRI

class_basic_mg
class_basic_am
class basicﬂcl

class_total_mg
class_total am
class_total_cl

SPECIFIC_SESSION 1
EXHAUSTIVE
INPUT_FORM
BOUNDARY

INPUT FORM

SPECIFIC_ SESSION 2
EXHBAUSTIVE

INPUT_FORM

SPECIFIC_SESSION 3

EXHAUSTIVE

INPUT_FORM

Figure A.3b

fl

f1

fl

f1

£1

FIELD

FIELD

FIELD

FIELD

FIELD

f1_desgn;

fl basic;

fl1 desgn class_desgn_mg;

fl_basic;

fl _desgn;

rTest Definition File

162

struct Fl1 { int parl;
char par2(3);
int par3;
Yo £

struct F2 { int parl;
char par2 {3);
int par3;
int par4;
y £2;

#define F-FORM1 1
#define F-FORM2 2

#define fl code fl,parl;
#define f1 desgn fl.par2;
#define fl basic fl.par3;
#define f2 code f2.parl;
#define f2 desgn f2.par2;
#define f2 basic f2.par3;

f2.pard;

#define f2_ total

Figure A.4% - HUMIS Generated Include File

163

USER

Man Machine Interface Definitior

HUTEST

JI

HUMIS
Nucleus

Shell

HUMIS

DataBase

Test Data
Definition
File

Compiled
Test Data
Defn. File

HUMIS 1/0
Include
File

Compiled
Program

‘C'
L| Application
Program

Application
DataBase

Fig A5

164

A'3

Te i
sting of Software using HUTEST

For a ¢ g
€sting an a ; .
Pplication software developed under HUMIS

environment, ¢t .
’ he in
put forms can be entered by the tester hi 1£
imself.

An applicatj
ation sof
tware developed under HUMIS environment can b
e

tested in
cne of t
aut he three modes manual semi-automatic d
ematic. In ma ’ B p 0
nual mode of testing, the tester puts the

in all fields of

application soft
ware under a t
est run and fills
On display of an output
or detects a

the input forms interactively
. form, the

te cOo t:est,

fault.

The applicat
P ion software can also be tested with the help of HUTEST

in either semi- i
mi-automatic mode or automatic mode. In semi-

module,
HUTEST behaves as an aid to the tester.

automatic mode of testing
2

When an input
P form appears on the screen, the tester can fill in
to generate a

or use function keys driven by HUTEST,
field pointed by the cursor, or

Using the

the form,

valid value for the
generate valid values for all the fields of the form

current

HUTEST generates

equivalence class definitions specified earlier,
The

values randomly or in the order specified in the definitions.

values generated by HUTEST could also be medified by the user
Forms values could also be stored for retrieval

before processing.
later for re-use during re-runs or post-analysis.

g all input

In automatic mode of testing, the software goes through a set of
for forms are

valuea
ntion.

test runs under HUTEST, where
generated by HUTEST, on-line and without any tester's interve
the output forms are checked against the expected

lasses. Tester 1S

In addition,
displayed

defined earlier using equivalence ¢
y mismatch occurid either through a

in a

values,
report

informed whenever an

through a
ns can be tested using t
The automatic m

us modes.
jer and less time consuming.

log file. Various

he data generated as a
ode of testing

record

message OF

generation optio

t of testing in vario

resul
e testing of software €as

makes extensiv

165

A.4 Further Extensions

Functional Coverage : Automatic testing helps in more thorough

functional testing which results in greater code coverage.
Measuring functionality covered from code coverage tools will be
difficult as discussed in Chapter 2 Sectjon 2.3.3. HUTEST can be

extended to keep track of the functionality covered during testing.

Extending other 4GL Tools : The concept underlying HUTEST was

developed as an extension to HUMIS and can also implemented for

other 4GL products, which support form-based application
development tools. The form-handler of these tools can be extended

to make use of the equivalence class based data definitions for

data generation.

END OF APPENDIX A

166

Appendj 3
1X B : Test Driver Development

Test Driver Development

test driwve
dr 'r. Test i
oo driver can generate test data using data
rization i
o based on €quivalence class definitions. Using test
ver, applicati i
p tion is exercised without risking the actual

Again, the software

wi
lthout much effort, as data are generated
Pres92j. Without

Environment.
can be put to test using large

number of test Suits,

meani i
ningfully and automatically (Mil184, Panz78,

only sketchy testing will be feasible, as the

Such a facility,
data manually will be

effort required in generating the

Comparatively enormous.

a fashion that it

transactions

be developed in such

generates and frequency of

resembling real life situations. For example,
it could generate specified number of

users added etc.

The test driver can
various

typical volume
in the case of a

library informaticn system,

books issued, returned,

books added to library,
Test driver developed with suitable control over the number aad
can be used to

frequency of various transactions to be generated,
number of

simulate working of the library systems for the desired
days. The various reports produced will also be realistic in
character, and various other options 1ike over-due books, Fhorres
option, reminder generation etc., can alsc be exercised more
comprehensively. sufficient data can be loaded into the database
real life situations, like normal lecad or
e in various states of

various

ations etc. Testing can pbe don
herwise would

resembling
which ot

overloaded situ
the database, which may reveal many faults,
during the actual use of the software.

have surfaced

167

Most of the g
c ata base appli i
Ppilcations usually have provisions to

update the dat
abase anqg generate various reports. The updation

could be off-1i i
N& 1in batch mode, or on-line in interactive mode. As

computer systems i
became widely available, interactive applications

have becom
e common. § 5l
The facilities provided in interactive mode are

gquite large a :
g nd complex in nature. The application programs have

very large com
g ponent of code devoted to handle the user interface.

Off-1in i i
€ applications take transaction files as an input to update

the database in batch mode.

. To test such applications, one had to
simply create transaction files containing various types of
transactions. Testing of on-line interactive applications consists
testing of user interface and testing

of two distinct components :
of application processing logic. These two are generally intimately

interwoven in the code.

how the control flows from one field to

i.e.,
can be easily tested by

The interface logic,
another, from one form to another etc.,
simply exercising the various options available in various menus.

There is no need to build any extra observability for testing of

user—-interface 1logic, as any anomalous behavior is readily

observable.

For testing of the application processing logic, 1f the meaningful
or if one wishes to load the system with

combinations are large,
procedure will be very cumbersome

reasonable amount of data, manual
and time consuming. Therefore, driving the application
test driver with meaningfully generated data,

automatically through

will be highly desirable.

ystem using &n equivalence class
The

The data can pe defined to the s -
i dix]
tion language, 1ike described in HUTEST (&ppen)
definitio el
be easily extende
4GL products, can
e handier ° i c data generation, and for

initions for automat2

168

driving the ;
appli i
Ppilcation. In 3GL Programming environment, these

definitions
cannot be utilized very easily. The next section
usses the g
pPplication develoment discipline to be followed, to
using

dige
facilit
ate tog i
©5t driver develoment in 3GL environment

éguivalence class definitions

Applicati :
EP ion Development Discipline Required to Facilitate

Test Driver Development

the a i i .
pplication software is one monolithic whole, which

Normally,
access to

has :
code to take care of interaction with the users,
and i . :
processing of application logic., To drive such an
input data using the

will be quite

database,
application automatically, by providing
indirection mechanism (which is possible in Unix),
difficult, as one will have to anticipate the entire sequence in

some of the

which the user-software interaction will take place.

sequences of inputs may be dependent on data base state, which is

very difficult to anticipate.
To facilitate test driver development in 3 GL environment, it 1S

proposed, that the application software should be developed in such

a way that it has the following two well-defined components.

1. User Interface
2 Application Dependent Logic

code for these two tasks are intermixed, as there is no

Normally.
requirement to keep them separate. Though, application
part in any software, the user

expllicict
re complexity due to the required

code forms a major

dependent
code also tends to acqui

interface
friendliness and flexibility in operations.
user—
dependent logic can be developed independent of the
pbe done on the database e.g.,
®ECq,

The application
user interface. Any processing o : tations

. trieving, appending. updation or compy
validations: re pllcatLO“ dependEﬂt logic components as

e done bY the ap

169

i us funct - Ill use st) 41 |,h
vario ilons e i
1n 0 r g ese

appllCatlon fu“ct on g
1 5 to e‘,llel the us ntera f,
CTl ¥

ive
g shape to the total application

If the above desi
& e o
sign discipline is followed, i.e these two aspect
.e., cts

of applicatio
n ar
e developed as separate modules, writing a test

to test the i i
application dependent logic component, can

The i
test driver can be developed using the
class

driver

become an easy task

equivalence

function
s for data generation based on

definitions of dat
a characteristics and the application dependent

p h \ i tecture
IO 1C com Olle“ts. Flgure t | 1C tion
(; B-l Shows e app a o arch-‘l—

present in softw
are, developed in a conventional manner, Fi B.2
shows the appli 1 i e e
pplication architecture in the proposed h £
approac or

test driver development.

Th 1 '
e test driver can provide user commands for
| | | executing the test
driver in the desired manner. It can provide opti
icns, to generate

various types of transactions in required number d
. . s an frequencies.

The application reports can be tested using the actual
ctual application

t can use the data created during the test

as 1
the

The test
e typical volume of daily transactions

software itself,
driveyry can be used to r
un

driver execution.

application to reflect tbh
an be advanced in time and tran
sactions can be

The application ¢
d for the next day.
n one testing session

.0,

Thus, the application can be executed

processe
itself. In this way, one

for number of days i
me dependent features,
reminder generation,

e exerCiSEdr
d in the test driver. Aand

can test ti in the case of a library
pverdue books, renewal of Journal
subscription Whatever can b
plication, need not be develope
1d use a mix of actual applicatio

system:
- s theroughly, using the

n execution through

actual ap
for purpose of

driver

henceé, one ahow

its user interface: and the test
comprehensive resting of application testing:
C -2 e

170

Application ; Data
, Base

User |
-I{J }—%
f Software '
L N
Fig B.1 Conventional Application Software Structure
Application Sofltware
[| _ |
Application Application ! r
Us User Software . Zemeicg Data |'
ser/ ; ; Base
T ———| Interaction Functions :
ester)
Logic | |
|
$ 5 Equivaletice
Equivilence class F '"‘”"Ti_,' clusa Defindtions

TQS(CI')E’ Test Phiver #

osed Application Software st
i Driver Development in 3GL

ructure to facilitate Test

Fig B.2

17!

For e
Xample i
fin gz
-ibrary
7 Clrculation System, t i
+ TO 1issue/retu
rn a

book, t]
he lnputsg Teéguired are

T user ig
- book_;d (or Accn. No.)

iSsue/return

Ar’ter [
e user id 1 i
15
input, it has to be checked
for va]idity,

l.e lV er r Ser a
- a u v
’ Ctl e us s O h
EtC 7 b e T L= ¢ er All
- efor
he nEXt lnput i = |8 "k :

done j{
in the function called

Valiag
dte user (user id) which

1('[“[‘“!- I
nName tus ca.tegoI numa
(r Sta f y

category of user, number

The calil
returns wWith, the name stat
1E ’ atus,
contain the application

.LSSUEd e . hs Q 1 e W.ll
1 Y uta i

dEPendent 109 Q t -

¢+ calil “an r-te made to f i
5 input a o) unctions

dis '
piay houil (book id) returns (title, author,..)

© 1Ssue_book (book_id, user id) returns (error no)

The firs : ;
t function will return some information about the book,
On selection of issue

which can be displayed for confirmation.
option, the function issue book (book_id, user_id) can be called,
If it 1is

which will check whether the book can be issued or not.
possible to 1ssue the book, it will perform the reguired updations

it will return the appropriate error
s of the book,

i.E-l

in the database, otherwise,
number. Here also, interpretation of various state
igsued, returned etc., are hidden in this function.
once the application has been decomposed into separate modules,
application logic and usger interface; functions of these
to write a test driver. The driver can gensrate
rnitions, and

modules can be used

; { v =NC ag defi
the user id and book id based on egquivalence classe
- - ey fanes.
on functions for per forming various operat it

call the applicati
172

In the
above =«
examples,
W& saw, that only providing f
g facility to

randomly
generate d
ata b
ased on data characteristics is t
not enough

for 3)
valid tpg
= nsaction.
The randomly generated val h
ue has to be

validated
dgainst th
e
current state of the databa
se. The value has
a v i i
alid wvalue is encountered.
up randomly from the

like serial

O be ge“eratEd agal” tlll
!

Alterﬂ =
at Ue]U 2 : n e plee
Speclal Cases'

appropriate da
tabase
table. Ev
. en,
handled with very little

5 l:
r ccess
(@] dcces LOnN I]l.”llber, can e

Programming effort

The can
trol flow
logic
The tes of a test dri i
T river is not compl 1
- . plex in nature.
A% It uses alreaq pment is also simplified to a great extend
Y deve ‘
loped application logic and the library for

test dat
4 creatj
-ion. Thuy
s
done relatively ea . the development of the test driver can be
S1ly,
Y- The return of the investment, in test

driver dev
- EIme
ent i] amcunt
¢+ 1S vye $ derabie
ry quxck, as it saves consi

of time
and effam
°rt reqgui
quired for executing same amount Of tests

manually,

Advantages of
Design] 1 -
gn Discipline for Test Driver Development

everal

Separation of a i i
pplication logic from interface logic has S

benefits.
modularisatxon.

This framework provides another very t 1 £
natural way @
¢ and sub-

The first level i
of modularisation is achieved by the men
ption ©F a set of

gach menu ©
This <¢an

ed.

menu structuring of the applicatio
n.
goftware- SEparation

menu © tions defines be deve ap
P ’ & separate program to 1
zontal slicing

pe considered as the vertical slicing of the

che interface

of interface and the application logi
ogic,
software. Any fault can be either in
or in the application logic component - Again, whenever,
¢ takes place,

terface compo

of the
it can be

component,
e in application processing logi
nent.,

any chang

very easily: without worrying about tne *f

done

173

Again . .
g 7 MaRy ©of the application'sg funct:ional units, are usable in

mule i i
“itiple places. For Sxample, user id has to be validated in

several OPtions like, book issue, book return etc. As, the above

P
tscipline, forces the programmer to create a separate function,

any change in validation logic, will have to be made in one place.

Thus, even the application logic component, will also be very well

Structured, ang hence, easier to maintain.

The behavior of the interactive PArt of the .software is visible o

the user, and hence, there is no need for building any further

the application logic may require

observability inte Tt However,
where the

some level of observability to be built~in, especially,
logic is complex. Generally, MOSt of the application logic is

fairly simple, and the result of the Processing is recorded in the

database, which is accessible Lo the user through various reports

and interactive queries. Only ain complex parts of the code where

direct observability is desirable, jt should be built-in using the

probe mechanism. Certain third generation languages, like 'C' (in

which considerable application software development is done,

specially where efficiency is a major consideration), which are

quite error prone, Observability can prove to be very useful for

fault rectification and performance improvement purposes.

END OF APPENDIX B

174

References

{Abbo86 |

[AgraSl)

(Arak9l)

{Balc89]

[BasiB87]

[Bate83]

[Beizgo]

[Boeh81]

Abbott J a
. Soft i
, ware Testing Techniques", NCC Publication UK
r f

1986.

Agrawal i
!“I. De
¢ mlllo R.A. and Spafford EOII'I ““

Backtracki
n
g Approach to Debugging”, IEEE Software pp 21-26

May 1991.

Araki K
. Furuk
awa. Z. ‘and Gheng Js; "B General Framework for

Debugging"
g", IEEE Software, pp 14-20, May 1991

vautomatic Generation of

Balcer M
-+ Hasling W, and Ostrand T
A 4
of ACM

Test Scri
ipts fro
m
Formal Test Specificati0n5': Prot.

analysis &

SIGSOFT'8¢%
r 3rd :
Symposium on Software Testing.

Verifi i
ication, pp 210-218, 1989

Basili V.R
-R. and Selb
y R.W., "Comparing the Effectxvenens ot

software End .. vol.

software T i
esting Strategies", IEEE T
P rans.

SE"l NoO.
3, 12, pp 1278-96, Decemper 1987

Deb“qung of

Bate o . i -
5 P Cc angd Wlleden J.C “High Le
b7
rOaCh ¢

pistributed Systems:
S: The Behavioural apstraction APP

Journal
ournal of Systems and Software 3, pp 205-214/ 1983.

van Nostrand, gnd

geizer B., "Software Testing Technigues’
iques” ¢

pdition, 1990.
"Design Recovery for Maintennnce and Reuse” s

piggerstaff T-Js
[BEE computer, PP 36-49, July 1989.

poehm 8- ngoftware Engineering gconomics’ s
EagleWood c1iffs, NJ, 1981 .

175

[CheuS0}

[Chik90)

[Choi%0)

[Faga76)])

{Faga86)

(GarcB84]

(Gibs89)

[Gilb88]

[511191]

[Gcod75]

Cheung W.H., Black J.P. and Manning E., "A Framework for
Distributed Debugging”, IEEE Software, pp 106-115, January

1990.

Chikofsky E.J. and CrossII J.H., "Reverse Engineering and

Design Recovery", IEEE Software, January, 1990.

Choi S8.C. and Scacchi W., "Extracting and Restructuring the

Design", IEEE Software, January, 1990.

Fagan M.E., "Design & Code Inspections to Reduce Errors in

Program Development”, IBM Systems Journal, Vol. 15, No. 3, pP

182-211, 1976,

Fagan, M.E., "Advances in Software Inspections", IEEE Trans.

Software Eng., SE-12, No.7, pp 744-51, July 1986.

Garcia-Molina H., German F. JR., and Kohler W.H., "Debugging a

DistrlbutEd CDmputing Systemll’ IEEE Trans. software Eng. ’

Vol. SE-10, No. 2, pp 210-219, March 1984.

and Software

Gibson V.R. and Senn J.A., "System Structure

Maintenance Performance", CACM, pp 347-57, March 1989.

g Management”,

Gilb T., "Principles of Software Engineerin

Workingham, England, Addiscon-Wesley, 1988.

Gill G.K. and Kemerer C.F., "Cyclomatic Complexity Density
software

and Software Maintenance Productivity", IEEE Trans.

voi. 17, No. 12, pp 1284-88, December 1991.

Eng-. s
2 t Data
coodenough 1.B., and Gerhart S.L "Toward a Theory of Tes
oo
. - 156
1 tion" YEEE Trans. Software Eng.. se~d Moo g E8
selecC £ 7
73, June 1975¢

176

[Gupt92} Cupt g
. -~ S- > i
Pta C. ang Sinha y, K., "Resign Validatjon Using Probe
Mech i = i
&nism*, in Proc, 12th Worig Compurer Congregs, IFIp
Conqrmas'gz, Spain, PP 24-3), Septomber 1992,

[Gupt91} Gupta S.c. and Sinhg M.K., "Testab)

or ;
Software Pesian an, “Mpiementationn,

Croteris 4

Lity ang Maintainability as

270 v
S0 e

Proe, Intr],

BESTITEE I 23ngeiore, India, pp _ .~ -

October 1991.

(Hamlgg)

Halmet R., "Theoretical Comparision of Testing Methods”, Proc.
; sis
of ACM SIGSOFT 89, 3rg Symposium on Software Testing, Analy
& Verification, pp 28-37, 1989,
[Harrgs

" lying
Harrison W., Magel K., Kluczny R. and DeKock A., pp

i " IEEE
. nce"”,
Software Complexity Metrics to Program Maintena

2.
Computer, Vol. 15, No, 9, pp 65-79, September 198

i the
= 3 Improving
(Harr90) Marrison W. and Cook C. , ~Insights on p ot
" Proc. ®
Maintenance Process through Software Measurement !

390,
. - November 1
Software Maintenance, San Diego, CA, pp 37-44,

i o IEEE
1 Testing",
(H 86) Hayes I.J "Specification Directed Module .
aye J., e
= - 1, pp 12
Vol. SE-12, No ’
Trans, Software Eng.,
i986.

ce of
i iz the Performan
th M.T. and Etheridge J.A., "Visualizing .
H N - e - Septem
e 1 Programs", JIEEE Software, pp 29-39, r
Paralle e ’
ity at
-Code Complexl
d Selig C "Predicting Source-Code
y .
” o e - March 199
e tage", IEEE Software, pp 36-44,
Design Stage"”,

- 2nd
Testing
i Software
1l B "The complete guide to
Hetze -
{Hetz88]

i988.
. ’ s, Inc.,

tion Scilences,

4 EP Informa

Edition, @

177

(Howd81la]

[Howd81b)

[Huan79)

[Iece87)

(Ie83TD]

[Ie87UT]

[Ie87VV]

[Ie88RA]

[1989QA]

[Ince85]

Howden W.E., "A Survey of Static Analysis Methods", IEEE
Tutorial on Software Testing & Validation Techniques, EQ.

Edward Miller & W.E. Howden, pp 101-115, 1981}.

Howden W.E., "A Survey of Dynamic Analysis Methods", IEEE
Tutorial on Software Testing & Validation Techniques, Ed.
Edward Miller & W.E. Howden, pp 209-231, 1981.
Huang J.C., “"Data Flow Anomoly Detection through FProgram
Instrumentation", IEEE Trans. Software Eng., Vol. SE-3, No-
3r PP 226-36, May 1979,

+ IEEE Std., “Software Engineering Standards”, IEEE

Press, 1987.

—————— + IEEE std B29-1983, Standard for Software Test

Documentation, IEEE Publication, 1983.

 IEEE std 1008-~1987, Standard for software Unit Testing,

IEEE Publication, 1987.

IEEE std 1012-1987, Standard for Software Verification

7

and Validation, IEEE Publication, 1987.

: d
, IEEE std 1028-1988, Standard for Software Reviews an

Audits, IEEE Publication, 1988.

lit
, IEEE std 730-1989, Standard for Software Quatisy

e e e e

Assurance Plans, IEEE Publication, 1989.

. . cing of

ince D., "The Validation, Verification and TE€S

, Vol.

software”, in Oxford Surveys in Information Technolod¥
o

2 pp 1”4'9! 1985.
'

178

[Jonesy

[Kafu87j

[Koreas]

fKOregol

[LeBlg7)

lLevi?ZJ

[Lut290]

[McCag85)

[McCa89]

[McDo89]

Jones g H
) i & Barkan H .M 9
Distrinue,y | ~7r and Wittie r.p., "Bugnet: A Real Time
© "% Uebuggin '
- g SyStem..
Reliapj); : r Proc. 6th .
ity in Dige- Symposium on
Tohited Software ang Database systems, I1EEE
L

PubliCAtion, PP 56-65, 19g9

Kafurg D
- dnd Reg
dY G-R-, ":'f'.q'_- .".'-_y._a Df SC’::WQI'L‘ COmplexitY

‘n S()
ware ng.,

1.3 No
3PP 335.43, 1987

Korel g
*+ "PELAg
R
Yoegram Ffror-Locating Assistant System",

IEEE o
rans. soft
-
Fe Eng., vVol. 14, No. 9, pp 1253-60,

septEmber 1985

Korel g
L "Automat
e
¢ Software Test Data Generation", IEEE

Trans, gq
2 ftware

En
9-, Vol, 16, No. 8, pPp 870-79, August 1990.

"Debugging Parallel
of Int'l Conf. on

LQ?'J}_[t M E
. .. -.ASIC TeSt : i
May 1995, ing Upgraded", IEEE Spectrum, pp 26-29,

Lutz, yu
ni g et. a 5 " .
Lk Testing tools”, IEEE Software, pp 53-7,

May 1990,

"System Testing Aided by
IEEE Trans.

1985.

MccCab
e T.J., and Schulmeyer G.G

Structured
Analysig. a Practical E peri "
Xxperience",

Software En
9., Vo
L. SEB-13, No. 9, pp 917-21, September,

Complexity Measurement

be T- . a]ld Butle[C- F\I DESlg”
Ca J . 9
Decen

and Testing"
ng", CACM, voi. 32, No. 12, pp 1415-25,

McDowell C.E.
and Helmbhglg D.P., "Debugging Concurrent
4, pp 5%83-

Programs", ACM Computing Surveys, Vol. 21, No

622, December 1989,

179

{M1117g;

(Mill84

(Mi1188g)

{MoheBB]

[Mos193;

[Myer?gj

[Neuf93)

[Ntaf88]

[OlssS1]

:‘f....t:‘.' :
E.F. and Howden w.p. i:ds & contributora), “Tutorial:
Softw i :
are Testing g Val: jatjon Techniques”, IpEE Computer

Society, 197g.

An Overview",

MLl r -
ler £.§ Y., "Software Testing Technology
in
Handbook op Software Engineering, Ed. ¢.R. Vick and C.V.
Rama ' !
moorthy, van liostrang Reinhold Company Inc., pp 359-378,
1984,

"A Mechanism for Efficient

Debuyg
#91Ng of Paraj)e; Programs', Proc. of SIGPLAN'88 Conf., pp

Moheyr H " i
G., PROVIDE. , Process Visualization and Debugging

El"lVlron a
Meag, IEEE Trans. software Eng., Vol. 14, No. 6, pp

849‘857; June
l98sg,

Mos]
ley D.d., -7he Handbook of MIS Application Software
Te 3 "
Sting~, Yourdon press Computing Serie, New Jersey, 1993.
- i &
Myers g. Yoo "The Art of Software Testing”, Jeohn Wiley

Song, New York, 1979,

Neufelder a.y, ‘EBnsuring software Reliability", Marcel

Dekker. Inc., 1993,

Ntafos §.C., np Comparijigon of Some S8tructural Testing
Strateglea", rggpgp Trans. software Eng., Vol. 14, No. 6, PP

868-874, June, 19gg.
..Sequential

Olsson R.A., Crawforgdg R.H., Ho W.W. and Wee C.E.,

IEEE Software, pp 27-

Debugging at High Leve) ©f Abstraction",

36, May 1991,

180

0]" o'
Ook C P. ’ "‘I' po ra th t

Cosmetic”
” CACH,
Vol ., 33; Nao, 5., Pp 506-52¢
- + May 199p,

!OIIIaHQOb OIIIEI . e a j\fa 1Nt en I()() E E twaz e.r FF
} n
’ t- l-
’ E SOf

{Oabogo)

antrBBj

lDulGBG)

{Patn77,

{Parn90]

[Panz78])

(Presg2)

[Rajagg)

64, May, 1890,

Osborne
W.Mm.

and ChikOfskly B —

-J., Fltting Pieces to the

Ce uzz (&3 IE -] uar .
Q an ’

Ostrang
T.g
= dndg Bal.- .
ior SPEleYing ang “OF M., erhe Category-Partition Method
Q2 Vo
CLnoratl“U Functional Tests", CACM, Vol.

31, nNo
, -6
¢+ pp 676~686, June, 19
. 1988.

software

Oulgy
M.a
: and .
DEVelopmentu YoniEn C. Ed., "Testing in
¢ Brltish o
Presg, 19gg. h Campye gy Society, Cambridge University
Parnpa
s D'L
ST "The
Influence ©f Software Structure on

Reliapj;;
llltyu
’ in e
Currane Trends jn Programming Languages Vol.

I, &g R
* faymong
T.Yeh, Prentijice Hall, New Jersey, pp 111-19,

1977,

NEValuation Of

and Kwan S.P.,

Parnas
D.
L., SChouwen A.J.V,
6, pp 636-648,

Safety C
CTr
ltical Softwaren CACM, Vol. 33, N
June 1999 ’ ’ o ’ N
Panz] D
1 O o
. u y
e ' tcmatlc SEftwave Test Drivers", Computer, PpPp
s Apri) 1978,
Pressman R.s
g SOftware Engineering - A Practioner's
Edition,

Approach”, 3p4 it i
Edltlon, McGraw~Hill International

1992,

and Gupeg S.c nan Integrated Framework for
‘s

Ra iaraln L'1J° 1 Proc.
I]]teract L‘Ue h l]'Cati()n Develcp “ :
Fp san FranCi g *

Ugser-Driven
1lth World Computer Congregg
USA, pp 357-362, August logg

IFIP Congress'89,

181

(Rama75s]

[Rama75a]

[Rama76]

[RappBS]

[Schng7)

[Schug7)

[Selbg7)

(Shim91a]

[Shim91b)

D
ata Flow Information”, IEEE

Ramamoor
thy C.v
-V. and Ho
S.F., "Testing Large Software with

are Vv
. 7 rrent

Programmin
g Metho
all dology, Vol. II, Ed. Raymond T. Yeh
. Ye i
, New Jersey, pp 112-150, 1977 e
Ramamoorth
y C.V. and Ki
im K.H., "Optimal Placement of Software
software

!"!Onj..tors A‘ i
i E Trans.

Eng., Vol =
3 - SE-1, No. 4, pp 403-410, 1975

Ramamoorth
Y C'V'I HO
S.F. and Chen W.T., "On the automated

Generation
of Pro
gram Test Data", IEEE Trans. software Eng-»

Vvol. SE-2, N
, No. 4, pp 293-300, December 1976.

re Test pata tysrLng

Ra s all(i e][ke E S I t “‘I wa
pp S- W y }a .J., U e a(I’ SOEt 'a

Trans. Software Eng- -

1
1, No. 4, pp 367-75, April 1985.

Sch i i
neidewind N.F., "The State of Ssoftware Mé’nte“ance"' 1ERE
Trans.
s. Software Eng., vol. SE-13, No-. 3, PP 303-3107 Haret
1987.

for

mechanish

wan Approach and
processlﬂg

pp

Schultz R.D. and cardenas A.F.,

Testable advanced Transactioﬂ

Auditable and

System”, IEEE Trans. Software Eng-. vol. SE-14., No. 8¢
666-676, June 1987.

Selby R.W., Basili V.R., and Baker L "cleanroom sgftware
Development: AN Empirical Evaluation”. IEEE Transd- goftwar®€
Eng., Vol. Sg-13, No. 9, PP 1027-37. september: 1987.

i : (o
shimomura T. & Isoda S.,. "Linked*list Visuallzatlcn r
Debugging®, IEEE Software, PP 44-52, May ;|_991.I

; i nt
shimomura T. and Isoda S. wCHASE © A Bug—Locathg agsistd
are and
SYStem"o Proc. 15th Annual Int'l cgmputer SthW
A) i . ion, PP 412"17: 1991'
ppllcatxons conference, IEEE puplicatr@s

182

[Sinhgg Sinhga MUK, Gupta g . SN Hadh g Ramnath, "HUTEST : ap
Automat ;. Testing Too] An ‘Ategratey Application
DevelOPment Environment", Intern, Report, Expert Software
Consultants,

New Delny, 1989

fStuc??} Stucki L.G.,

Automated Tools for Improving
SOftware Qual;.,.

el hac

‘elogy, ve; . Ir
?rﬁnt;Ce Hall,

Current Trends ;, Programming

T.Yeh,
frogram Yalidation, Egq. Raymond
Jersey, pn 80~111, 1977,

MNew

i ion Document”,
(T:1fag0a e TIFACL e Hose software - User specification
; 1990.
TIFAc, Dept of Science Yechnology, New Delhi,
ki,
: Lagn Documen
Tifasgy, TIFACLINE poge Software - petaijeq Desig
Delhi, 1990.
TIFac, Dept of SClence g Technology, New
[Tsai90} Tsay g.3 P

"A Non-

Bi Y.D.,

+ Chen H.Y., and a1 orime
i for

ring ang Replay Mechanism

are Eng.,
DebUQQiﬂg", IEEE Trans. Softw
¢ Now 8y huaeg 1990,

igh
"A Hig
- T..,
hikawa
{Taubeﬁj Tsubotan; H., Monden N.. Tanaka M. and Ic t to Support
; en
Levej Language~8aseﬂ Computing sayirenn IEEE Trans.
) mS"I
Productian And Executjon °f Reliable Progra bruary 1986.
-146, Fe
Software Eng., Vol, SE~12, nNo. 2, pp 134-14
t
. Suppor
n
i ¢ & FRrogramming
[Unix92} == _ i Programmor Guide - ansy
Toolg"

¢ AT&T ypj, Syst

R of
4 r1Cce

I a5e Manual; Pre

India' 992.

s
Advance
[Whit87} White L.J.,

. L1 in
i fication”,
"SOftwnre Testing and Verifi
in Computers, Val 26, Pp 335-391, 1987.

END oF REFERENCES

183

Lige of Publicnt;ous

‘ ; ’ i Probe
lCuyt9zJ Gupta g C. ang Sinha . ¥, "Design Validation Using
: IFIP
HEChanlsm". in Prec. 12th we, Computer Congress,
C°”9’°3”'92: Spain, bp 24-3; Septomber 1ags.
. A . i . . ilitY as
(Guptg,, Gupe 2-C. ang Sinha MUK, "Testabilziy and Maintainab 1
F 4 Intl 5
> n C'
Cfiter;s for t'-L'th:t«ralre Pesign am Implementation . Pro -
; ‘ 10-21,
Conf- on Software E 2 A CONSEG'gi, Bangalore‘ India, PP
O:coher 1sg; .
lGupt93) Guptg S.c. ang Sinhga M.K.
by Obsep-

sent for
t1ability Measures", to be
publication, 1993
k for
; Framewor
fRaJaBQJ Rajaranm L.N. and Guptg Se8., iFn fntegrated in Proc.
ent"' L
User~Dr1ven InteractivE Appllcation bevelopm Francisco,
r San
lleh Worlg Computer Lﬁnqregs, IFIP Ccongress 839,
Sa, Pp 357-62, August 1989,
{aanhBQJ Sinhga M.k

r s An
Y"HUTES ?

d Radhika Rai !
an

. Lon
licatl
d App
Testing Too] for An 1Integrate t Software
Exper
Dey Lopmen > Ttfonmeng « nternal Report,
Consultants, New Delhi, 1989,

END oF THES1S

184

7 S o
5 E] :
xecution time Activation Control

Observabili
ility and controllability measures, which h
ave remained

attached wit
ith the executable software version c b
iy an e furthe
b o

control i i (o) v
led at execution time ¢ reduce their h
- overheads. The
observability measures (probes) remain deactivated
; unless

control commands.
event history file. Similarly
’

activated by
Thus only activated probes will

in

record information
integrated in the main logic or existi
ing as

controllability code,
additional functi i
tions, will get executed onl
y when activated
through

llltEI fa e COllllllalldS. Execu o t ro
C e tion ine p ce
Ss:l.ng Overh
Eads

be reduced to minimum.
ing overheads but not memory overheads

control
Deactivation of these measures

c¢an, thus,

reduces process

7. .
1.3 Active Probe Identification

If large number of probes are embedded in the executable versio £
n o

then certain overheads will be incurred to check
ec

the software,
tive or not. We propose to run software in

whether the probe 1s ac
= "operation" mode and "“test" mode. When th
. e

one of the two maodes

.n “operation" mode, all observability measures are

software runs
one would have to check the

"no-op". INn rtest" mode,

treated as
h time a probe is encountered. Checking

probe activation status eac
rus of a probe requires checking against a command

of activation sta
£ all the activation and deactivation

containing entries ©

testing against
her the probe 1S active or not.

table,
After all the entries, the resultant

commands.
sed to decide whet

status is u

may be divided into breoad

{(like design,
Thus checking can first

checking, Pprobes

ieS Of p!‘ﬂhes

sub-modules etc.
only if the related class flag

performed. Also the check can

To expedite this
maintenance,

pased on categor

modules,

clagses,

monitoring etc.}.
e against these majo
detail check can
that class aiune-
le categories,

r classes:.

be don
be

then more
1f any activation /

ted to entriés of
refer to multip

is on,
entries would

be restric

deactivation command

e in each category table.

have to be mad

126

