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VALUES OF VARTIOUS MATZRIAL PARANTTTRS USED TN TUIR

J;-;,_.L...a\ .L...LI B

The lonzitudinal optic phonon frequency at the centre of

) P
ol” rad sec =3

the zone. Lo = 9«37 % L
Static dielectric constant € = 12.83.

igh freouency dieleectric constant €= = 1C.32 .

Lattice constant g = 5.64 A .
Zffective mouss in the central valley nq = . T
Effective mass in the satellite valleys mg = e 04 Tig e

Ilecavy holz mass Myy = .68 Mg
Light hole mass Myo = «12 Ty o

liass of the hole in the split-off band mys = <20 mge
sound velocity 8 = 5.22x105 cri/sae

Density = 5.37 g/cme.

Acoustic deformation potential E%kf 7 aV.

3and sap Eg = 100 &V

Snergy separation between central and satellite mlﬂﬂmldey-m 33 &,

Zyuivalent intervalley phonon frocuency (e = 4.84x10~"" rad sec .

13 -1
Intervalley phonon frequency Lo, = 4.,54x10" rTod sec .
EBquivalent intervalley Gefornation potential 10- impuc¥®

9
= = 1 x 10° ev/en.

\_Jc—-

Eguivalent intervalley deformation potential for transport

=e = 10/a ev/cm.

it ) . . oo 5 s Gl 9

intervalley deformation potential for impact == 1210 ev/cm.
\

Intervalley deformation potsntial for transportk_nz 10/a ev/ciie



1 NTETRODUCT I ON

The importance of III-V compound semiconductors parti-
cularly that of Gois in the modern semiconductor technology
is too well known to need any empnasis. @Zver since the dis-
covery of QPFE effect a zreat deal of effort has been devoted
to exploit the advantages of the band structure of this materi-
al for microwave power generation. The electron transport
in GaAs hes therefore been a subject of active study during
past few years. The current interest in %MPQ?T devices has
laid much emphasis on the study of impact ionization in GaAs.
It is in the 1light of these needs of technology and to pro-
vide a more complete basic understanding of the pertinent
physical phenomena that the present study of transport

properties and impact ionization in GaAs has been carried

out .

Chapter I contains the study of electron transport.
Tmportant scattering mechanisms have been considered first
and the Boltzma;n{; transport equation has been solved using
them. Other scattering mechanisms have then been added one
by one to see now they effect the distribution function and
mobility. The effect of temperature on mOEi%i?y has also been

Stud ied o

In chapter IIT an analytical method has bsen developed

to predict threggpld energy for impact ionization. Various



processes have been c¢onsidered by wiich the electrons and
holes in GalAs cause impact ionization. Corresponding

threshold energies have been determined.

In chapter III,time dependent perturbation theory
has been used to find out the transition probabilities for
impact ionization by electrons in the cgptral and satg&}ite
valleys as functions of electronic wave vector for pProcesses
with mininum and next minimum threshold energies Jor electrons

in each valley.

In chapter IV the lonte Carlo technique has been

used to simulate on a digital computer the motion of an

e

electron in Gais under electric fields strong enough to
cause impact ionization. The ionigation coefficient for
electrons has been determined as a function of electric

iield therefrom.

Chapter V consists of a study of effect of space
charge on junction potential-field distributions and capa-

citance for an abrupt syrrmetric P=-n junction.

Chapter VI contains important conclusions drawn from
the entire study and a discussion of some 0f the problems

and difficulties in the field.
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CZAPTZR- 1.

JLICTRON TRANSPORT

Y. LiTRODUCTION:

GunnL observed microwave current oscillations in
hormogzeneous samples of n-type Gallium Arsenide and Indium
Phosphide subject to high 2lectric fields. Similar oscilla=~
tions have since been observed in n-type samplos of Cadmium
Telluridez, Gallium Arsenide Phosphide alloys- and Indium
Arsenide under uniaxial stress4o The effect which hos become
knoun a2s the Gunn effect has aroused great interest because
of its potential for the development of simple solid state
sources of microwave powel. Research into both the physical
mechanism involved and microwave applications has procceded
rapidly. 1fost of the work has been concerned with Gallium
Arsenide because of the relatively advanced state of the

technology associated with the preparation of this material.

The Gunn effect occurs in its purest form in  samples
of Gallium Arsenide having length between 100 to 2500xm
subjected to a constant bias voltage. At Loy filelds the
current merely falls slightly below the value to be expected
from Ohm's law as the field increases. The current oscilla-
tions occur when the field exceeds a threshold value of about
3 kv em L, There is then a sharp drop in the time averaged

value of the current and the current wave form consists of a
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periodic train of spikes separated by plateau regionse

The period of oscillation is close to the specimen length
divided by the electron drift wvelocity corresponding to the
plateau razions which is about 107 e sec t. By making
voltage probe measurements along the length of specimen
Gunné and Heeks et a16 showed that a narrow region of high
field was drifting through the sample. This region of high
field has come to be called the high field domain or just
domain. The spiky current waveform is due to the periodic

recirculation of domains through the specimen.

The physical mechanism involved was the subjoct
of considerable debate until the crucial experiment which
pPicked out the precise mechanism was performed by Iluston
et al’, They subjected Gallium Arsenide to hydrostatic
pressurz and observed that the threshold fisld for the Gunn
effect decreased., Out of the various possible instability
mechanisms only one predicted this behaviour : the electron
transfer mechanism proposed by Ridley and Tatkins® and
independently by Hilsumg before Gunn's original observations,
They pointed out that semiconductors having multivalley band
structures could exhibit a negative differentlal mobility at
high fields as a result of the progressive transfer of hot
carriers from high mobility valleys to low mobility wvalleys

at higher energies. Gallium Arsenide has a conduction band

Structure of the required type and the energy separation



batween the high mobility .nd low mobility valleys decreases

with hydrostatie pressarelo.

The Gunn esffect thus marked the first success in the
searcn for a nez.tive differential conductivity mechanism
capable of sustaining high frequency oOscillations which
began in early 1950s with Shockqg and Ryder suggesting that
a nezative differential mobility could be realised if the
negative effective mass states near the top of the con-
duction band could be sufficisntly populated by imparting
high energy.to carriers by the application of high electrie
fields. lowever the attempts proved abortive with only a
saturation of drift velocity at high fields being observed.
Significant population of negative mass states could not be
achiﬁed because of the 2igh energy losses associated with
optical mode scattering walch is now known to dominate the

high field behaviour,

This failure led to fresh theoretical efiorts the
consequence of which was Ridley and ’.'Iatkins8 and Hilsura9
independently realising that the population of negative
mass stotes was not essential for the production of a negative
differential mobility. A1l that was required was that
carriers should transfer rapidly from low effective mass
( high mobility ) states to high effective mass ( loy mobility)

states as the field increased.



Since the discovery of Gunn effect 2nd the electiron
transfer as its mechanism the 2lzctron transport in Gals
has been subjact of active theoretical and experimental
study. Beifore talting up the study of varlous scatltering
mochanisms and their effects on velocity field caaracteristic
and distribution function in Gaas it is worth while to Treview
the knowledge about hand structure of this material, the
theoretical formalism of Joltzmann's transport squation Tor
solving transport problems and various techniques in the
literature that have been adplied to solve the 3oltzmann's

transport equation in the cnse of Gallium Arsenide.



The minimum of the conduction band 0i zallium
~rsenide occurs at the centre of the Srillouin zone and
the effective mass ratio at the bottom of the band is
m*/mo = .C72 11,10_ The valley is spherical at all energies
of interest but non parabolic. The non parabolicit = can be
taken into zccount by relating ensrgy & to the wove voctor
k through the relationshipll

iy _ JE) = EC1+%E)

Q 'YY)‘ (lc l)
9] N)m . v ,“‘1
LI :r?) ‘
o = - ° (1.2}

using Eg = 1.5 eV , K has a value 0.576 eVt in palliunm

arsenide.

Data concerning the subsidiary valleys in che
conduction band of gallium arsenide are not yet very well
established. Photo emission studie512’13 reveal transitions
to subsidiary minima about .35, .45 and .95 eV above the
( 000 ) minimum and these were interpreted as being the
minima at the X1, L1 and X3 points in the Brillouin zone.
The identification of the lowest of these Minima is consis-
tent with the Tesults of an analysis by Zhrenreichl® of
several different kinds of data on the high temperature

Hall coefficient, variation of resistivity with pressure



and behaviour of the band zap in Ga( As, P) alloys which
showed that there are minima 0.26 eV above the ( 000 )
minimum with a combined density of states mass of about

1.2 my. These ocxperiments do not, unfortunately, zive the
location of the minima along ( 100 ) directions. According
to theoretical calculationslé’l5 these minima appegar to be
at the edge of the Trillouin zone and to have X1 syumetry.
On the basis of this evidence it has been assumed that the
loyest subsidiary minima lie in the ( 100 ) direction and
are «36 eV above the central minimum at the edge of the

Srillouin zone.

The band structure calculatlonsié'lg available

at the present time donot consistently predict the relative
positions of the (100) minima and next higher minima in (111)
directions with L} gymmetry. The latter have been calculated
to be from as much as 5 eV below to .4 eV above the (100)
minima. Pseudo potential caleulations by Cohen and Bergs-
tresser? predict the (111) minima to be .1 eV below the
(100) minima where as Jones and Lettingt0n16 usling the same
method but a different form of the pseudo Potential have
calculated the (111) minima to be .4 eV above the (1C0)
minima. k. p caleulations of Pollak et al™® place the
(111) and (100) minima at about the same energy. vanvechtenl7

and an OPY calculation by Collins et allg place (111) minima



48 o7 and .42 e7 below (100) minima. Iermant” has shown
that it is possible to adjust the Fourier coefficients of
the potential used in OPV caleulation to obtaln good agree-
ment ith the observed transition energies between the
various minima through out the band structure if the II1 and
L1l minime were .35 and .45 eV respectively above the (000)
minimum which are the energies observed in photo emission

experiments,

The calculations show another set of minima at the
zone ecdge along the (100) directions not too far from the X1
minima. These higher minima have X3 symietry. According
to calculatiOnsl5 X1 - X3 distance is about 1 eV. These are
probably identical with the subsidiary minima at .95 eV
above the (000) valley to which trangitions have been observed
in photo emission experiments. However in another caleulationl?
X1-%3 distance is only a few tenths of an electron volt.
3ince in any cose the density of states appears to be much
smaller in X3 minima than in X1 minima, the neglect of this

set of minima is justified.

For both X1 and L1 minima the constant energy surfaces
in the neighbourhood of band edge are ellipsoldal. Pollak
et al® nave calculated the transverse mass to be 0.23 mg
for X1 minima. They could not however obtain the longitudinal

mass m, for these minima. TFor (100) ninima in 3i, Iy = «19 mg
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and m, = .98 mg, while for those of GaP the caleulations
o] 15 - () \.

of Pollak et al™™ give my = .23 mgy and = 1.5 nge fOUS

m+ of Gais 1§ intermediate Dbetween n of Si and GaP and

expecting tuat y is similarly placed Conwell -nd Jasseltt

09q

ive a2 value 1.3 m, for mp of GaAse

However we have assumed the (100) minima to nhave
spherical constant energy surfaces. This is because of the
uncertainity in principal effective masses and also because
it is cxpected that anisotropic effects associaced with
these minima will be small due to strong intervalley sca-
ttering. ( Absence of anisotropic effects and orientation
dependence of Gunn effect testify to it Yo We hzve there-
fore used a scalar effective mass mo of 364 mgy for these
minima. The L1 minima have been neglected following an
argument given by Fawcett et ale. Tt may however be noted
that in their work Conwell and vasselll have used l.< m, as
the combined density of states mass for the (100) valleys.
This though looks high for The case of 3 minima and a m,
value of .364 m, for each of these minima may actually %o
20 a long way in compensating for the neglact of L1 minima
which at only .l eV above X1 minima are ggpected to be well
populated by them. Bul as Fawcelt et alzo argue, .a reasonable
choice of scattering strengthsfor various scattering mecha-
nisms in Y1 valley leads to only slight heating of the

clectrong in this valley until quite high Tields and conse-



quantly the number of slectrons in L1 minima would be
small for the fields of interest. ‘/e have therafore
assumed 3 sphericgl parabolic minima at the band edge
alonz (100) directions 0.38 eV above the (000) minimun .
The effective mass ratio for each of the (100) ninima has
been taken to be .3864 which gives a combined density of

states mass value of 757 my for these minima. The L1

minima nave been ne;lected.

Considering the free nhole absorption measurement
data furnished by Braunsteinzlkand the fact that the shape
of fundamental absorption edge22’2° appears to be consistent
wich direct transitions- Ehrenreichlo concluded that valence
bands in GaAs are gimilar to those of Ge. These experiments
yielded a value of 0.33 eV for spin orbit splitting as well
as ratios of the effective masses in the heavy mass, light
mass and split off bands. Using I{anes24 theory Lo uncangle
experimental valence band mass ratios Ehrenreichlo has given
heavy hols mass myq = 0.68 m,, light hole mass myo =0.12 mg,
and split off band holz mass mg g = 0.20 mge ‘e have also
assumed that the valence bands are spherical and parabolic,

Fig. 1 depiects the band structure pictorially.
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ITI. ZOLTZIANL'S ZOUATTION:

In thermal equilibrium; the distribution of clectron:
in ensrzy in a erystal is given in terms of the densiuy
of states function N (Z) and the TFermi function FKEE—EFQ/RPY i
The probability that a state with wave vectior k is occupied
is the same as that of a state with wave vector -% and
no transport taokes place. lnen wye have transport ol charge
or transport of energy the distribution function must be
modified by eleciric or magnetic fields or by temper.ture
gradients. It jg this modification of the distribution
function which we will now calculate. A knowledge of this
would enabdle us Lo Lnow about +the transport properties of
the erystal. Let f(i,V,t) be the probability at time“t

of occupation of the state corresponding to the wave vector
ﬁ at a voint in the crystal given by the position vector ;.
If we have a force F whose components are Fy, Fy and T,
acting on} the electrons, the value of k will change at a
rate given by '{% = f ;3 at time t + dt, i: will have
value K +A Fdt . An electron waich at time t has position
vector r and a wave vector k will at time t + dt have

- _ = -)_.
position vector r + v dt and a wave vector k +h Fdt .

The function f is then given by

e _
FRh Bt T4t t +adt) , so that the total rate

of change of f is given by
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This total rate of change in # must be brought

bpout by collisions and e shall write the rate of change

5 < '_‘{ \
of f due to collisions in the form T 'wu

n-l"f.

Thus we obtain the equation
B . B & Bt T Tt
U7 A ey ¢ (1.4)
This equation is known as the 3oltzmann's
equation and is a fundamental equation in the theory of
transport phenomzna . In steady state conditiOns,f%%=;o
and ve have
My = -Hq'f'ia?i vl v .
odt Coll Vamed
The detailed form of g{ h&a varics from
rial to materisl and with wave vector k ( or energy B )
for thas same material. The exact solution of 3oltzmann's
equation is not possible eXcCept for some simpls cascs. A
variety of technigques have been developsd in the litsrgture
to obtain approximate solution to the equation. These tech-
niques usuaglly rely upon making some assumptlons as to the
form of the distribution function 3§ (R, ¥,t) which
are physically reasonable under the given set of conditions

for yhich a solution is desired. The collision term is then



10

=g
3
=T

This total rate of change in Ff must be brought
bout by collisions and e shall write the rate of change
o

of { due to collisjons in the forn *'t]wti

Thus we obtain the equation

W B =k B F-T.%

This ecuation is known as the 3oltzmann's
aquation and is a fundamental eguation in the theory of
transport phenomzna « In steady state conditions,f%£==0

and we have
My = HF R FET
“ Gl 0
el [

The detailed form of 4f varics from

ct IM
rial to material and with wave vector k ( or enargy B )
for the same material. The exact solution of Zloltzmann's
equation is not possible 2XcCept for some simple cases. A
variety of techniques have been developed in the literature
to obtain approximate solution to the equation. These tech-
niques usually Tely upon making some assumptions as to the
form of the distribution function f{fﬁ,7;ﬁ) unich
are physically reasonable under the given set of conditions

for which a2 solution is desired. The collision term is then
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P

calculated using -umantum mechanical transition rates S(k,® )
and Sk, k) (for transition probability per second from

state & to state k' and from state k' to k respectively)

and summing over 21l transitions per second into and out of

state i o D8y
’ 5 s = f "/
'  Saanes i3 - 2~ S r I‘?) Ak
g = ) SRRy - § RS (RUED ]
itlfwj ,J Lrlh) 7,43 A= E (1.8)

L

This may scem to give the treatment a lcok of
truely ocuantum mechanical approach. Ifowever it is not so.
When-ever spatial variations like inhomogenisties or tem-
perature gradient are not present, the distribution function
takes the forn f(ﬁ)t) . .The rizorous quantum mechanical
approach to the subject is through density matrix and it will
not be considered in the present work. The Boltzmann's

equation approach remains at best a semiclassical treatment.
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IVe - SCLEARING LIoCLANTIMS:

For the soke of simplicity we shall be neglecting
the non parabolicity of the central vallay. Further the
wave vecltor dependence of cell periodic part of “loch
functions shall be neglected and 5-type wave funciions

shall be assumed.

Folloying scattering mechanisms are important in

Ga’lium Arsenide:

Polor Optical Phonon 3cattering:

Because gallium arsenide is a spme wiat polar com=-
pound, the polar variety ( due to polarization ) of optical
mode scattering is an important scattering mechanism.

The transition rate from wave vector k to k! for this
102,25

ro i i '
process 1s given by %&M]Phuﬂrﬁ“ﬁ

,.tlh)‘
. |\ | Ng%[tl‘h’)
J[RR) = ue?\ ‘M_e"‘_._“"’n =

where w, is the optical Phonon frequency, €< and €& are
the high frequency and static dielectric constants, V is
the volume, Ny 1is the optical phonon occupation number

given by
— 1

No = [Q-XP(JRQVRP)T.) » lJ (1.2)

(e~ n\ssi°“)



1y

and T is the lattice temperature. One can sum expraession
(1.7) over all values of k' to get the total transition

rate from state k { energy & ) due to this process.

PR

,}\O{R): \)4 _-,r:'\lz,":?") :_\../‘ J So (_’ RJ'}{") ‘.:\\k

"% ans

This gives : v -
R x' . L\ | Ye ELR .‘..E/'Q Ng \\ab.or}t\oh)
= W e = S y V.
Ao{k) _L_JT_’K“iC ( o to}EV& Il_, 1 EV“‘ 3 E//‘t ) LN("’])QTH Lb‘korl
2
Wheng
, £ +Ahwo (abserptan))
o e
b,

. (1.9b)

The energies B and B' gre measured from the ninimum

of the valley concerned.

Acoustic Phonon Scattering:

Gince the energy ©f an acoustic phonon is small
comparad to kBT , this process can be considered to be
elastic. The scattering rate ( including both absorption

and emission ) from k to k' for this process is given

2
S -.—_::[ A LA _EilbY
SCL(R,R/) = K7 - L lh__hf\NagLEUg) E\ka)—
A RSV -
Where N, 1s the acoustic phonon occupation muiber,
¢ 1s the density, S is the velocity of sound and =, is the

acoustic phonon deformation potential.



eXP('

. U g i Sl
. R T ho | R- k|

Ng =

(1.11)

summing (1.10) oyer all k' the total transition rate from
state k due to this process dDecomes

<

3y -
)\u.(k) = (22 "0‘1*) RBT ':"q_, EVZ (l- 1.2)

4 4.4
gme S h

Lon lcuivalent Intervalley Jcattgrings

- -

Transitions ~re possible betlween states in the central
and satellite valleys with the absorption oT enission of a
suitable27 phonon ( the inter valley phonon e It A& com=
venient to distinguish betueen the two types Os valleys
by suffices i and j . The transition rate from state k in

- . 20
valley i to state k' in valley j is given by

—X —b - A K "
2 Ny S[ER)-EfR) +45= AL <4
e =.:.: X aksov }-"on)
S ! k,R)= 2T ij‘__—-_— " _\ S (1s38F .
y R T gewyV Ny +|)ELE:;\&)—-E-LU?MAﬁ'—AL*—R»o;d‘J

(emussion)
where Wi is the intervalley phonon frequency, 25 1s

the mmber of valleys Of T¥pe j , =, is tne intervalley
deformation potential and Nij is the intervalley phonon

occupation number given by

|
N = \__*J”‘P(kwtj/pg”f) ‘\J (e )



The energies BE: -pg 3; are mecsured from the minima
of valleys denoted by i and j 3 the minima are at energies

A, and A3 for vslleys i and j respectively.

Surmming over all k' the total transition rate from

state Iz due to ti:is process becomes

%% 2 S (AhaorpYen)
o — ;' 2K p— | N‘.'
M= Zy =t e 3N
—— EJ L NL f—]) ({leS\M) (1-158-)

\j;& TT fu),_j {,.j

bt oy })710-"‘.
: ’ ‘ (1.15Db)

E’} 5 ; ' A — AL.JLj (¢ nn;;‘,ior\)

Lhe Touivslent Intervalley 3cattsring smong Sateilite Vallevs:

Just as in silicon, the scattering among equivalent
(100) valleys of Gaas by absorption or smission of the
phonons of optical branch is expected to be large. The
transition rate from state k to k' for this process is
S g 3 k) -Elk)-hwe falss on
2 J .‘ILE(&) Elk) c}a. savph )

\) A -

- T B 3m v
S (oK) = 0 0 =™ s e hu v

.10 TH i, |

Ne = -QJ‘P( rnoa/ kg T >——‘dJ (La17)

s

we 1s the inter valley phonon frequency, E, 1is the
deformation potential for this process and Ze is the

number of equivalent valleys.



Swming over all k' the total transition rate Irom

state k due to this process becomes

""J' “ / ]/J '.\1;,;(, 1 xlh"t.)
rpl)= (Ze~1) M =, BT [ Me ° J |
15516M

L + b Wwe l;.t,b&'.‘.»v')’har.)

E = e (1.13b)
| £ hae femision)

Figs. 2 and 3 depict the total transition rates from a state
as functions of energy of the state for warious scattering
mechanisms. Tt can be seen from Fig. 2a and 2b that at low
energies ( and therefore at loy fields )} polar optical

phonon scattering dominates in the central valley. idcoustie
nhonon scattering is very small at low snergias and taerefore
it can be safely neglzscted until very high fields are reached.
At nigher fields when sufficient electrons have energies

more than .35 eV, the most important scattering mechanism

in the central valley is the intervalley ( non equivalent)
scattering. This is then the principal energy loss mechanism,
and,since the intervalley scattering rate does not depend
upon the direction of k' , this is also the principal momen-
tum randomigzing mechanism. JAcoustic pnonon scatcering is
also momentum Tandomizing but its magneitude is very small

in the central valley. By contrast, the polar optical

phonon scattering is not randomizing. It is strongly
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directional. If & and &' are the initial and final
ates of the electron then from ecun (1.7) it can be
seen tiat for polur scattering the probability pPE)4s

that k' lies in a small range dj at angle £ with k is

% l/ |
pig)dpec [ E+E=R(EE") %0,5/5] E *sunBal
(1.19a)
yhere E/— E 4 ho Lo\,bso-r]nh'on) ?
E/-: E — R (e"rnissfo*n)J (1.19b)

The probabilities for both forward (A=o) and back-
ward ( P=7T ) geattering are zero and the dirsction of

maxXimum scattering depends upon the energy of the clactiron,

In the satellite valleys, again, at low energies,
the polar optical phonon scattering dominates. Next in
Line and quite close to it is the equivalent intervalley
scattering. The acoustic phonon and the non squivalent

intervalley scatterings 2are small.

iith the increase of electron energy, the effective-~
ness of equivalent intervalley gscattering riszs very rapidly.
The effeetivencss of acoustic phonon scattering also rises
fast. The non-equivalent intarvalley scattering also increases

though rather slowlyj; but the polar mode scaltering decreases

as can be seen from Fig. 3a,
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At higher energies, the equivalent intervalley
scattaring is the dominant scattering. It 1s the principal
energy loss mechanism. 30oth the equivalent intervalley
scattering and the acoustic mode scattering mainly serve

to randomize the momentum. The polar mode scattering is

again non randomizinz as in the case of centiral valley.

However it is an important energy loss mechanism at lower

electron snergiese.
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V. IECINICUES FOR SOLVING BOLTZMANMN'S TRANSPORT ACUATION

LLIUM ARSENIDT:

FOR G

lere we review briefly the various technicuzss that
have been applied in the literature to solve the 3Joltizmann's

transport equation for GaAs.

As mentioned earlisr in section III, it is not possi~-
ble to solve the Boltzmann's transport equation for Gallium
Arsenide exactly because 1t takes the form of two compli-
cated coupled integrodifferential equations for the distri-
pution functions in the two valleys. when substitution is

made for the collision term (%%JQU) in the Boltzmann's

transport equation ( equn. 5) for each valley using equn.(1.6)
and the transition rates for various scattering mechanisms

described in the previous section.

Approximations are therefore necessary to be nmade.
One such approximation is the displaced Maxwellian approxi-
nation due to Butcher and Fawcett™ . In this, the distri-
bution functions in the central and satellite valleys are

approximated by two different displaced Maxwellian distri-

bution functions. di.e. 3, —
)k Tk (R-Ki-di)
—a - ! S sk -
fik <A "”"mlkfsTL> . }J( 2y R 11 (1.20)

vhere 1 = 1 denotes the central wvalley and i = 2 dsnotes the

satellite valley. &i and 'y denote the displacement and the
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electron lemperature in the ith valley, kais the Zoltzmann's
constant, ny is the number of 2lecctrons in the ith walley
1nd i& is the position of energy minimum of the ith wvalley
in wyave vector svace. The parameters ny and Ti are iden-
tical in all the satellite valleys but have different valuss
in the central valley. The 3Joltzmann's transport equation

for distribution function in the ith valley established in

the presence of steady electric field F reads

I B _ 'n‘;ﬁnl + v FR) X v "-"*i‘-"’j
= e T—— / —_" - ot
it o3t JF ¥ SR gpE T °F e

where the first term on the RHS denotes the rate of change

of fﬂﬁ) due to the field.The second term is the rate of

change of fifk) produced by all intravalley ( and also
equivalent intervalley ) scattering processes in valley i

of which there are a large number. However, the important
intravalley scattering mechanisms for each valley have already

been mentioned in section IV and only those will be used for

further consideration.

The third term on the RHS of equn. (1.21) represents
the rate of change of +ﬂ§) produced by all ( non equivalent)
intervalley scattering processes between valleys i and j,
of which, agaln, there is a large number. However, we shall

consider only the phonon induced transitions between the
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central valley and the equivalent satellite vallzeys whose
transition rates nave already been Ziven in the previous

szction. This term 3ives rise to the coupling between the

distribution functions as we shall see later more explicitly.

after approximsting the distribution functions in the
two valleys by two diffzrent displaced Maxwellian forms
( ecun. 1.20), Dutcher and Fawcett svaluated the valu=zs of
parameters nj,Tf: and T; as functions of the electric field
from the conservation equations for electron number, wave

vector and energy for each valley. For a steady electric

field these conservallion eguations read

1 \bfﬂﬁll q%ﬁé)ji = i \?fdi)i quQLJE &
: F
l

. 2t at

b, == S : ; _“1 :-‘..\;)T’:-)
chtm $.R) Ak + ) 7?11‘#'} P, RIAR
o Fag” e diy
i JEN S
whore, as before, i = 1 denotes the central valley and
i = 2 denotes the satellite valley and ¢%ﬂéJ takes value .

1, i - ii and 2. ( i ) -4 in turn to give the number

p 3
conservation, wave vector conservation and energy conser-
vation eguations respectively. B"quns. (1.22) represent a
total of 10 equations ( one for the congervation of number
in the central valley, three for the conservation of three
components of ( I - ﬁi ) in the central valley and one for

the conservation of energy in the central valley - 2 total

of five equations for the central valley and the same
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numoer of equations for i = 2 i.e. the satellite valley )
winich can uniquely dztermine the ten parameters :n-, éf ~nd
Tie« -owever, since the displ cenents of the distribution
funetions in th: two valleys are expesclied to be opposite
to tie direction of the electric field applied, the dis~
placenents become scalars when the direction of applied
el8ctric field is chosen as one of the cocrdinate aes in

k-spoce » This rosulis in appreciable simplification and

t e number of equations to be solved becomes six.

Further, the electron number conservatlon equations
for th2 central and satellite wvalleys are equivalent since

the total number of electrons is automatically conserved.

t may here be notced that the substitution of dis-
placed laxwelllan forms for the distribution functions in
the conservation eguations reduces the original set of ten
integrodifferential equations that equn. (1.22) represents

into ten simultansous algedbraic equations in the parameters

ni, ¢35 and T4 which occur in the integrands of definite

integrals. In particulal, the integrals in the conservation
equations can be evaluated exactly and the solutions ean
be obtained by an iterative numerical procedure, Further

details and the procedure for obtaining the solution shall

be dzscribad in the next section.
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snother approach for solvins the "oltzmann's transport
uation for GaAs in the literature is due to Conuell and
Vassellle This technique relies upon the assumntion that
a relaxation time exists for a2ll the scatizrinz machanigns

-

that are Important in Gallium Arsenide. Conell and Tassel
expand the distribution function in terms of spiherical har-
monics and truncatzs the series after the second tern

sssuming that the higher order terms are small. This implies
that 2t low fields the distribution function can be thought
of as composed of nainly a spherically syimetric part with
the suparposition of a small distortion that is moximum in
the field dirsction snd decreases as One moeves awvay from

thig direction. i.c.

7~ ; . (R)Cosd
FRY = Jhd Fi (1.23)

since the valleys are spherical, this can be written as

_ =& AE) + FAE)Rg
fi(E,8)=1oi “ (1.24)

wvhere .
?L(‘E) = jii"k)

" (1.25)

and kg = k cosg 1s the component of wave vector in the field
direction. The first term on the RHS of equn. (1.24) being
sphericaglly symmetric does not contribute to the elsctron

transport,



The second term gives rise to net momentum in the
direction of field and is r=sponsible for the electric
current. The mobility of a semiconductor depends unpon the
r~te -t whiich the net momentum ( or the field dirccted nomen-
tum ) is destroyed. "nder certain COnditj.ons29 the rate of
lestruction or relaxation of such momentum is proportiional
to the existing nmonentum in the field direction. The pro-
portionality factor is the reciprocal of a time called the
relaxation time and it is this time that must be used in the
calculztion of the mobility. Iowever, a relaxation time
nmay not aluays exist. One such example is the polar mode
scattering at low energizs. In this case, the net rate of
change of momentum in the field direction due to polur mode

4 T Tad Eﬁﬁw)kEJ) is not proportional to ?ﬂf7W5 ll.
1 Fo

Only at energiss much grzater than the optical phonon energy

pEEly P

£ 7 (2} . ;
is V%I?AF)RE])Po proportional to %;E/Rg and a relazation
o .
time exists .
“hen a relaxation time exists for all the scattering

mechanisms, the transport problem is greatly simplified as

described belowe

The steady cstate .ransport eguation for the ith vallev
reads

\:ra{,\(j{)] i \?{\(E') = & [ gt
’bt F _ at 'C .




r2 the Tirst term on the IHS is the rate of
change of f;®) due to field and the second term is the

rote of change of f;U?) due to all sorts of celliisions.,

‘oW

fil) = oy &) + HE) Re (1.27)

"men a Telaxation time exists, the substitution of (1.27)

in the collision term of eoun. (1.26) permits that ternm to be

writren as

26| - () 51 K
T \ 3¢t /e T, Cie28)

wvhere T; 1s the combined relaxation time for all the

processes in valley 1. (2?%!) does not contaln l.
_ /e

o g N
Similarly LF$%JF' can also be written a2s a sum

of terms independent of kyp and terms linzar in k~. The
’afiUé)} r [’HHE)

L@t JF L 2

vanishing of coefficients of different powers o1 kp and

then implies separate

vanishing of :

it yields four coupled 2quations in fo), $r2, -y and G .

becomes evident.
As a direct result of this approximation one of these

equations is of the form

75
.o —3'
A ek =

i
o

and another is of the form

/
3 ‘I’N—il = U

= |



here primes denote derivatives w.r.t. 3. These
two z2¢rations can be used to eliminate <}, and ;. from the
other two equations. The result is two coupled second order
differential equations for 4, and s, which can be solved
numerically. .hen relaxation times do not exist, a decoup~
ling of the type mentionzd above is not possiole and the

clifferince

problem to solve the resulting four coupledjdiflerential
equations ( which then have terms like 3,w) and <) (& ¥ )

occuring in the same expression ) is a formidable onec.

A detailed calculation of the collision integrals

for various secattering mechanisms i.e. terms of ths {:ve

: atnx) etc. and the correspondlng relaxation times is
P D“'l v‘hn.LL
given by Conwell and Vassel™ They have also discussed at

length the appropriate boundary conditions for the solutions.

Roth the displaced Haxwellian approach and the
relaxation time approach are approximate technigues to
solve the Boltzmamn's transport equation, which, hitherto-
fore, has been considered to provide the necessary ( and

perhaps only ) theoretical formalism for solving the trans-

port problemse

o0 - )
However, Kurosawa® and TFawcett et a13%L, 20 have
3 soml : . . . .
carriedout theoretical calculations of distribution function

and transport propepties without the use of Boltzmann's
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transport equation. Their calculztions termed the lionte-
Carlo crlculations consist of simulating the motion of an
:lJectron in momentum space on a digital computer. In the
presence cof an a plied electric field this motion consasts
nlternately of a drift with constant velocity in tho ele~
ctric field followed by o scattering by phonons. The time
Tfor wiiich the electron drifts in the electric field, the
type of scattering process winich terminates the drift and
the Tinal state after scattering are random quantities with
probability distributions which can be expressed in terms of

the transition r-tes due to vnrious scattering processes and

the strength of the electric field.

For example, the probability that an electron will
arift for a time t in the electric field F and will then

be scotiered in the next second is given by

- c
s R S T /
Pty = A Rir] exp i - | A R )]t (1.2%4)
- 8
where = % G ert
kit) = Re
g + (1.29b)
AR = T MR
W:‘ (10290)
W -~ —- :_./
and 7\,,/(12) = jb%(h,rz 3 iz tue total transition rate

from state kx due to the qth process. Also, ko is the wave
vector at t = O3 at the beginning of the flight i,e. the

final state after the previous scattering event. The probabilit:
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that ¢th process has terminsted the flight is
I\!) Li:: |t."_&
N ., =

2. A LKt

G=1
Jandom times of Ilight which obey the probability

(1.30)

distribution (1.29) can be generated using the lonte Carlo
tecbniqueSz’Bafwr}iis tecnnique provides for generating ran-
dom nunbers from any given probability distribution with the
help of a 'basic seguence' of random numbers from cnother
probability distribution. The 'basic sequence' usually
usa2d is a sequence of random numbers T genarated with equal
( uniform ) probability between 0 and 1. This is because

it is only straight forward to generate suchh a sequence on

a compouter, The random times of flight t from <he probubi-

1ity distribution (1.29) are then obtained by sloving the

equation £

P(tSdi/

lioyever, further discussions in detail shall be taken
at a later stage. Here it will gsuffice to summarise the

procedure of simulation. First of all, a random time of
flight t is generated from the probability distribution (1.29)
using the Monte Carle technique as describad above. After

we have known the time of flight, another Tandom number %s

generated from the digcrete probability distribution (1.30)
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to detarnine wiileh process hns terminated the {1izht. A
furtiler randon number generated from the angular probgbility
distribution of final states after scattering detormnines
nzgle B Dbetwsen the scattered wave vector and T (t Yig
The - zimuthal angle $  is obtained by generatins another
uniform random number between 0 and g1 ( This is beecause
for all the scattering mechanisms mentioned in section IV
the final stabtes after scatctering are uniformly distributed
in ¢ J. Once again a new time of flight is sensrated and
the eycle repeated. This way a large number ( several tens
of thousands ) of collisions are studied. DIntire It space
is divided ( meshed ) into a large number of fine cells.
The total time that electiron spends in each c¢ell during the
entire course of collisions is recorded and it is proportionsl
to the value of distribution function in that cell. Separate
meshes are made for the central and satellite wvalleys and the
recording switches from one mesh to anothel in the apvro-
priate cell whenever the electron suffers a transition from
the central valley to the satellite wvalley Or vice-versa.
The population ratio of the two valleys is simply the ratio
of total times %hat the elzactron has spent in the tuo meshes.
The drift velocity in the jth valley is
vy = —'-7- Z (€ 4 'E*‘)
#Kj
Where ﬁj 1s the total length of the k space trajectory

in the jth valley i.e. ks = € F'Tj s where T:. is the total

R :



(SN
~

Time thcot the elsctron spends in the mesh for thes jth
valley. B35 and Bp 2re the initial and final values of
energy for a particular flight and the sum-mation is

over all the flights.

That the technigue is equivalznt to the Toltzmann's
transport equation appreoach in the limit when the nunber of
collisions considered is large has been shown by TFawcett

et al

It is now worthwhile to review the relative merits
and demerits of these three approaches. In the digplaced
Maxwellian approach, first and foremost it is very difficult
to justify the assumption that the electron distributions in
the two vallays can be Trepresented by the displaced llaxwellian
runctions. It is to be exXpected that when elzctron densities
are large, electron-zlectron collisions are very Irecuent
and any momentum and eneTgy gained by the electrons from the
rield is much more rapidly distributed among themselves than
it is lost to the phononse A4 displuced Maxwellian form may
well reppresent the electron distribution then, Jlouever,
the slectron density in GaAs is quite small and the assumption
is not very Jjustified. Stra.t‘con"S also points out that
an slectron density at which the rate of loss of enecrgy by

fast electrons to slow electrons is equal to the rate of loss
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of enerzy by =lectrons to phonons nsed not be sufficient

to balance the rate of loss of momentum to the two processes.
Tligher =lectron densities are reguired in the case of Gals
to balance the two momentum loss rates. And since it is

the rate of loss of momentum by fast elactirons to slovw
electrons that must be larger than the rate of loss of
momentum by electrons to phonons for ensuring a displaced
Maxwellian distribution, much higher electron densities

than what actually are in GaAs are required for the purpose.
tThat makes the agsumption gquite unjustifisd in case of GaAs.
However, since no further approximations are required

( at least in the simple case with parabolic valleys and
s~-type wave functions ) the method permits to toke a full
account of the inelastic scattering ( by polar modes) which

is dominant at low energies.

In the relaxation time approximation on the agher
hand, the assumption thatl a relaxation time exists for all
the scattering mechanisms is far from realistic at low
energies, and at higher energies, the neglection of terms
beyond the second term in the gpherical harmonic expansion
of the distribution function becomes extremely unjustified.
In such cases there is a strong streaming of electrons in
the field direction and the Maximum anisotropy syuproximation
due to Baraffaﬂ mast be used with a suitgble higher value

of N.
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3oth these approaches have given qualitatively
correct results but guantitative agreements are not very
satisfactory. The best quantitative agreements come from
the lionte Carlo calculatiOnzo which permits a wider dimension
for the theoreticsl study of transport at all fields. Here
no form is assumed for the distribution function, instead,
the distribution function builds up in the natural course
of collisions that the elzctron suffers. Also the effects
of nonparabolicity, and the wave vector dependence of the
cell periodic part of Bloch functions can be exactly taken
into acecount which is nearly impossible in the carlier

two analytical approaches. The method is mucn more simple

and direct compared to the analytical approacies. Iloyever
fast- computers are required and one must study a very large

number of collisions to get the desired accuracies in the

resultse.
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VI. Z0050T OF VARTOUS3 SCATTERING MBCHANISMS Ol TIIZ SCLUTION

OF 3OLTIIIANII'S TRANSPOAT 2 UATION:

To study the elfect of various scattering nmechanisms
on tne solution of loltzmann's transport equation and the
velocity fileld characteristic for GalAs, we shall start with
the solution considering only those scattering mechanisms
whiech are most imvortant at low energies. The displaced
Maxwellian approach shall be used. TFrom Figs. 2 and 3 it
can be seen thaat the most important scattering mechanism at
low energies is the polar optical phonon scattaring in both
the central and satellite valleys. One must ofcourse take
into account the intervalley ( non equivalent) scattering
since the electron transfer from central to satellite valleys
is the most important feature of electron transport in GaAs.
Considering only these two scattering mechanisms in both
the central and satellite valleys the conservation eqluations
(1.22) for the steady state for number, wave vector and

enerzy for the two valleys become:

Jl'?)f'l_ﬁ)} c)—R’+( EACUEDR +-Z‘ ( [3fik)] Je = ©

\ A : = .

L9t Jp TR P A WIS o

BT R\ (B KT ik | R-K )Pk =
"’*LTW(F—?;)JN'*‘J lﬁ;@j(p—xi_)m +ZH_Z_L‘E’*_’}\R Ko7k =o
J F (LT e JELC ‘¢ (1.32b)

It it

Ik . o

W.f;@ (Eﬂﬁ)-—a;,)dk +J P{—Lllq)}(glm oL)LJR 1_7 J I UQ):I(E,LIRJ ai)dk
Tt ' t)

¢ " ¢ " AAR Y (1.320)

The inivegrals in equns. (1.3) can be evaluated

using the displaced Maxwellian forms for fi(kR) and the
- _
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transition rates for polar optical phonon and interwvalley
scattzarings given in section IV. Necessary macvihcnatical
details of the procedure are given in appendix (A). Using
the results ( AR, Rig~ 2~ Aag )
of appendix (A), the number conservation equation for the

central valley becomes:
-~ |/

- '\le'-. -V (-a E l ii‘ " (E.)alE + " .2} s
(% Ty M/ kg. e (nau)‘l g2 (1.333)
(2] ol -

The number conservation equation for the satellite
valley turns out to be identical with equn. (1.332). After
dividing out by nidg and nzdz Tespectively the conservation
equations for the component of momentum antiparallel to the

field in central and satellite valleys reade

~Q
BE R sainf=E Fd AE
Ry 3 (RTA J“’( kBT|)in(‘ml) =T "}EUE)E

» B
o F Va. = o @) (1.33b)
—2ta () f(2E VKA g yde =0
LNJI): M. R,BT‘ 2

eﬁ—géij{ﬂzmﬁL)u%@_gﬁm.iggﬂm
8

M/ R

2 - (y (e ')Vl*“”" Ly (e )dE = 0 |
TR B | = (1.32c
3 (hgh)3j 1 S kéﬁ_ﬁ 2) (1l.332)

and after dividing out by ny and ng respectively the energy

conservation equations for the central and satellite valleys

ot 1/1

Leacona: 7 B k s
ehpd, - (For ), e (e ) VA ) St e b - megO)] ae
F"1| ’QT) 5
o By Ty -

=y ST jl%l f Va_ U1 ey Y
- ’JV{(%)';? T g fw-)‘SVi 2E \Rdly ) 3y ' TR
(kB-T‘)J\ 'L = \ ™My N—TQ}H,;“[E){')ELO




(1.33=2)

Bquation (1.33a) gives the ratio ng/n, =as a function of

dy, dg, T, and T,. BSubstituting this function for ng/ny

in esuns. (1.33 b, ¢, d and e ) we get equations of the form

F/dy = Hq(dq,T1) (1.34a)
F/dy = Hg(dg,To) (1.34b)
Fdy = 3;(dg,dgie;,To) (1.34c)
Fds = B5(dy,d93TTp ) (1.343)

These four equations determine djp, dg, Ty and Ty
a5 functions of F. However, in solving these esquations it
is more convenient to regard Tl as the independent variable
and to replace one of the four equations by the equation

obtained by eliminating F, dy and dp from the leit hand sides:

An iterative numer-ical solution can be obtalned by assigning
T4 a value above room Temperature and giving dl and do
their starting value zero in equn. (l.34e) and in the
t‘l.l’,f “'“IL;L).
right hand sides of eguns. (1.34). Zqun. (1.34¢) can then

be solved numerically for To and the solution can be substi-~

tuted in equns. (1.34a,b,c and d ) which yield value for T



nd new values for d1 and doe The process 1s repeated
with these new valucs of d; and dg and continued until
converzence is achieved. Usually six iterations su:fi%d
to give a Trcasonable accuracy. In the seventh iterantion
the change in the values of various cuantities wos often
legs tiian 1 ,o.

The velocity field characteristic rasulting fron
this calculation for a lattice temperature of BOOOK is
shown as curve (a) in Fige. 5Ha. Curvss (a) and (¢) of
Fig. 5b depict the electron tempsratures in the central
and satellite valleys respectively as functions of the electric

alectrons

5

field. Curve (a) of Fig. 5¢ shows the fraction o
in the central valley as a funetion of the electric Tield.

1t can be seen from these curves that the threshold {ield is
about 3.1kV/cm and the valley field 1s about 5.2 kV/cm. The
Low field mobility is 7800 cm=/V seec and the high field
mobility is about 750 em®/V sec . There is a very stoep
region of negative differential mobility between the threshold
and valley fields. The average negative differential mobi-
1ity has a magnitude of about 5400 em~/V sec . The electron
distribution in the central valley first heats up sloyly

with the applied field; between the threshold and vglley
fields the rate of hesating is very highj; thereafter, the

rate of heating slows down, the electron temperature rises

almost linearly with the field reaching about 4000°; at
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10 k¥/em. lMuch lzss hzating takes nlace in the satellite
valleys. The eleetron temparature in the satellite valleys
is only 290°K for a £ield of 10 kV/cm. Bayond the threshold
field thers 1is rapid transfer of electrons to the satellite
valleys resulting in a steep negative diff=rential mobility
region and a small value of valley fleld. There are only

about 5,0 of the total elecirons in the central valley at
1C kV/cn.

The low field mobility ond threshold Iield values
are in very good agreement with the experimental results
of Ruch nd Kino°2 who have reported a low field nobility
of 7500 cm2/V soc and a threshold field of 3.3 kvV/cm.

Howvever, the calculated nz2gative differential mobility and
nigh field mobility values are much.higher and the valley
£ield is much lower as compared to the experimental results.,
Ruch znd Kino report a n2gative differential mobility of
nagnitude 2600 cn“/V sec at the onset of negative differential
rmobility region. They have found no evidence of a valley
field upto 14 kV/em. It may be mentioned here that because
of the strong instability associated with the nezative
differential mobility the measurement of velocity field
characteristic for GaAs in the negative differential mobility
region had been very difficult. Out of all the experimental

investigations only those due to Ruch and Kin032 provide the

most reliable and direct measurements of drift velocity as a
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445
funcetion of field. All eallisr measurements

were indirect and for obtuining a relation betwcen the drift
veloeity ~nd appli=d field from the cxperimental data one
had to rely upon assumptions wihich are now knouwn to he rather

crude. e shall therefore make comparisions only to the

experimental results of Ruch and Kino.

Next we include the eguivalent intervalley scattering
among the satellite valleys in our calculztion of wvelocity

£ield char:.cteristic. One can include respectively terms

, k)| A Ohmﬂkﬁ K, )k _J fa(ry
like L——,bt L . J \_”bt b ) l
: 2

\gjﬁ)—Ag)JQ

in the left hand sides of equns. (1.222), (1.32b) and (1.22¢c)
ror i = 2 to tgske into account the net rate of change of
number, momentum and energy in the satellite valley because
of the equivalent intervalley scattering. Ixplicit expre-
ssions for these integrals can be substituted Irom equns(dae

4, A3a ) of appendix (A) and the conservation equations can

be solved as discussed earlier.

The resulting velocity field chaTacteristic is shown
as curve (b) of Fig. 5a « Curves (b) and (d) of Fig. 3b show
the variation of electron temperatures in the central and
satellite valleys with the electric field and cyrve (b) of
Fig. 5c shows the variation of fractional electron population

in the central valley with the applied electric rtield.
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Curve (b) of Fig. 5a shows a low field mobility
value of about 7200 ecm=/V sec which is ~bout 600 em2/7 sec
less than that shown by curve (a) of Fig. 5a. The threshold
field is about 3.3 kV/cme. The magnitude of nzg~tive differ-
ential mobility is some what less and the valley £ield is
some what hizher in curve (b) as compared to curve (z).
Finally, the slope of velocity field characteristic beyord
the valley field is significantly less in curve (b) as
compared to curve (a)e. The high field mobility from curve
{(b) 1g about 440 cmz/V sec {as compared to about 750 cmﬁ/V sec
in curve (a)) which is in good agreement with a value of

2T
400 cmg/V sec reported from Hall mobility measurements .

Other coxperimental measul‘ements:Lo give values varying as
much as from 110 cmz/v sec to 350 ecm®/V sec. curves (b) and
(3) of Fig. 5b show that the electron distributions in the
two valleys are significantly cooled by the inclusion of
eguivalent intervalley scattering. <lectron temparature

in the satellite valleys 1s about 4!50K for 5 field of
10 IV/em from curve (d) of Fig. 5b as compared to 420 K
from curve (c). Similarly the electron tempsrature in the
central valley for a field of 10 kV/em is about 33gp K s
curve (b) as compared to QOOJK in curve (a). A compar i-
sion of curves f(a) and (b) of Fig. 5¢ shows that there is

a relatively larger fraction of electrons in the central

valley at all flelds vhen equivalent intervaliey scattering

among the satellite falleys is included.
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douwever, the magnitude of nsgative differgntial
mobility is still nmuch larger and the valley Tield is still
nuch smaller as comp-red to tiie experimental resulis . e
see from curves (a) and (b) of Fig. 5a and curves (e¢) and (d)
of Fig. 5b that the inclusion of equivalent intervalley
scattering greatly lowers the nigh [ield mobility and electron
temprrature in the satellite valleys. This is to be expected
since the ecuivalent intervalley scattering is the principal
secattering mechanism for energy loss and momentum randomiza-
tion in the satellite valleys at higher energies. Other
effects due to the inclusion of equivalent intervalley
scattering which are of smaller magnitude, such as the
lowering Of loy field mobility and electron temperature in
the central valley, increase in the fractional population of

the central valley and the valley field can be understood

as follous:

The in“ervalley transitions by absOrption or emission
of an intervalley phonon can take an electron of energy T
(B >AE -#opj for absorption, and B 4 E +-Kugfor
emissicn ) in central valley to an energy E +'h“%j - 3-4ﬂw7'
in the sstellite valley or vice versa. The transition rate
for this process ( section IV) is independent of the wave
vectors of initial and final states of the elec-tron.Thus

for the intervalley scattering the total probability of
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transition from a state of energy E in one valley depends
upon the number of states that correspond to energies 3+4VW§
and B -4ﬂ’9' in the otner. Now the ratio of states in the

central and satellite valleys th~t correspond to an cnergy

i @ .
/2 g %

g '.',);.-"-/\: |’L_ :/E) i (loSS)

For large values of § ( i.e. EDDAE) Ry %4( this
provides a lower 1limit to the population ratio ) and it
inereases with decreasing B. If we neglect KL%} in com-
parision to &, then (1.36) gives the ratio between transi-
tion rates for an electron of energy % from central to
satellite valley and vice=versa. In steady state it also
determines the ratio of electron populations in the two valleys
at ensrgy E. The fraction R thus plays an important role in
determining the population ratio. Now R increases as B
decreases . Thua if equivalent intervalley scattering among
the satellite valleys 1s included the electron distribution
in the satellite valleys can be kept more cool; the satellite
electrons can be confined to lower E values and hence there

will be more transitions to the central valley than those

when equivalent intervalley scattering is neglected. Thus
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the inclusion of equivalent intervalley scattering will zive
more glectrons in the central valley for a given field

than tnose resulting from without its inclusion. 3ince the
electrons in the satellite —alleys can be confined to lower
energies, the electrons that are scattered into central
valley snall also be scattered to lower energies vhere polar
mode scattering is more effective. This results in cooling
of the electron distribution in the central valley and lower-
ing .of the low field mobility. Since both the distributions
are cooled down, there is a slower transfer of electirons to
the satellite valleys with the increase in electric field
and conseguently the magnitude of negative diffsrential
mobility is some what lowered and the valley field is some

what increased.

The inclusion of acoustic phonon scattering in the
catellite valleys did nol make any significant differences
and the resulting curves were not apprecilably different
from curves (b) of Figs. Sa, 5b and 5c. This was to be
expected since for energles that are of interegt in the range
of field considered here the equivalent intervalley scattering
among the satellite valleys is about 6 times as strong as
the acoustic phonon scattering. The acoﬁstic phonon

scattering in the central valley is Tar too weak as compared
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o other scattering mechanisms in the valley to be of
any significant importance. It was not included in the

caleulation.

It is interesting to note that the strength of
nonzguivalent intervalley scattering has appreciable effects
on the velocity field characteristic. IFor a comparision,
ve have included the results of a calculation by 3Sutcher
and Favcett®® as curve (e) in Fig. 5a. This curve was
obtained by considering the some scattering mechanisms
that we have considered for obtaining curve (b). louever,
for non equivalent intervalley scattering 3utcher and TFawcett
used a deformation potential field of 30/a eV/cm s nzainst
10/a eV/cm used by us. This resulted in a mine.'f6ld increase
in the transition rate fOr non equivalent intervalley scattterin
As a result the number of electron in the central valley with
energy greater than AE vwas far less in thelr case. The
clectron distribution in the satellite valleys is already
confined to lower energies because of the heavy electron
strong scattering mechanisms in the satellite

mass and
valleys. This increased the factor R of equn. (1.38) and
rasulted in much higher fraction of electron population in
the central valley and a slower transfer of elsctrons to the
satellite valleys with an increase in the electric field.

As a consequence the negative differential mobility was
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substantially reduced and the valley field was increased.
Since the non equivalent intervalley scattering is also an
energy loss mechanism an increase in its strength signi-
ficently q&led down the central valley distribution, as a
result, the electron temperature in the central valley

rose to only about 1500°%K at 10 kV/enm.

Thus we see that the welocity field characteristie
upto the threshold field is primarily governed by the polar
mode scattering in the central valley. Other scattering
mechanisms in the central and satellite valleys have only
very small effect on this part of the characteristic. The
curve beyond the threshold figld is governed primarily by
the non squivalent intervalley scattering. The zreater the
strengtin of this mechanisn the slower the transfer of slectrons
to the satellite valleys . Cons2quently, lesser is the magni-
tude of post threshold negative slope and hence a higher
valley field. Beyond the valley field, the characteristic
is dominated by the equivilent intervalley scattering among

the satellite valleys and to g lesser extent by acoustic and

polar mode scatterings.
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VII. OCCRCT OF o2P23.TU3s oW L0y PISLD HORILITY 1D

o P L 5

Since the low Tield mohility and the thrashold fTigld
are corrzactly predicted by taling into account only the
polar mode and intervalley scatterings., we shall be consi-
daring only these scattsring mecnanisms for the present

study. « change of lattice tenmperature erflects the distri-

wution functions in the two valleys in the following wayse..

a) Through the ch.nge in number of phonons:
This is the most important factor and effects both the polar

optical phonon and intervallsy scattering rates.

b) Through the change in AE - the energy scparation
between minima of central and satellite vallays:
This factor has not been Measured very accurately. Iouever,
despite the large errorT bars, we have used the values given
by James and M01149 and have extrapolated for higher tem-
peraturses from their curve. Table IT gives the list of A B

alues for various lattice cemperaturss.

Any changes in the effective masses, deformation
potentials and low and high frequency dielectric constants

with temperature have been neghected.

As before, the displaced Maxwellian approach was
used to solve the Boltzmagnn's transport equation., The

el

calculated velocity field characteristics for various latiice
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tempar- tures are sihoun in Fig. 6. It can be secen from the
figure that the threshold "ield decreases with The increrse
of lattice temparature. It is an interesting result in that
the calenlations by Rueh 2nd Faucett | predict results which
are on the contrary. Ilousver, the 2xperimental observations
of Ruch and Kinosza’b confirm a decrease in the threshold
~ield with increasing lattice tempsrature. An incrense .in
the efficiency of Gunn oscilliators with tenmper-ture observed

o2a,b

by 3ott et 3151 has als0O been explained in terns of the

secrease of threshold field with increasing lattice tempera-
ture.

This calculation therefore brings out the salient

that the variation of AL with temperature plays. In

their calculation Ruch and Tawcett = have neglacted the

role

yariation of A Z with temperature and hence they predict

an increase in the threshold field with temperature since at

nigher temperatures polal. optical phonon scattering in ihe

central valley becomes stronger and therefore larger elsciric

rialds are required for heating up the electron discribuiion

in the central valley sufficiently to start the intervallesy

+pansfer. However, a decrease in AZR with temperature nore
than compensates for this effect and lowers the threshold
rield. Thus the variation of AT with temperature is of
crucial importance in determining the variation of threshold

field with temperature,
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The low fisld mobility decreases with increasing
lattice temperature. Its values are 7800, 7250, G300 and
)
4900 en /V sec r-spectively for lattice temperatures of

300, 340, 400 and 460°K raspectively.

Table~-IT.
Lattice
temgerature E
; eV
300 433
34.0 . 32
400 « 30

460 . 23
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The low fiz1d mobility deecreases with increasing
latt.ce temparature. Its values are 7800, 7250, G300 and
2. 7 . .
4900 en“/7V sec rospaetively for lattice temperatures of

300, 340, 400 and 460°K respectively.

Table=1].

Lattice

temgersture 5
iy aV
300 33
340 e 32
400 « 30

460 .28
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STTDY O0F DPACT TONIZATION

Cur study of electron transport in GaAs so far
has bezn restricind to electric fields that are not very
high so that the energy picked up by the carriers from the
field is lost to optical phonon collisions of vorious kinds.
As a result a steady state is always possiblz under such
fields. The mean free path for optical phonon collisions
is essentially a constant jJuantity independent of the elesctron
energy ( This is Decause the scattering matrix elements for
collisions of various kinds involving optical phonons can be
+aken energy indepandent. Using the usual argument that the
total scatterinz rate from a state depends upon the avaiable
phase space lsads to the conclusion that the mean frec path
for optical phonon collislons A 1s essentially independent
of energy ) . The existance of a constant mean free path
means the existance of a threshold electric field below which
an average carrier is never accelerated to energies nmuch
higher than the optical phonon energy., In other yords, if
the energy gained from the field in travelling g mean free
path A is less than the optical phonon ensrgy €; s then
as soon as electron reaches energy €, 1if 1s returned to
about zero energy in the next collision after which it accel-
erates again and so on. Thus the time average energy of the
electron is £4/, implying a time average constant velocity.

This is the origin of the well known velocity ssturation
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effect in semiconductors. Iowever, if the energy gained
betueen the collisions is greater than €g , the electron
enzrgy steadily inereases on the averaze. Thus we see

that a threshold field can be defined by €g/_ ,/ 5
whére e is the electron charge and N is the mean distance
travelled by electrons in the field direction between optical
phonon collisions . TFor random veloecities N A ; but
since at very high fields the motion of an elsciron is almost
rectilinear in field direction A'w A . However, for
riolds above the threshold field, the rise in electron energy
is not unrestricted. As the energy of a carrier increases,
it can eventually attain the threshold energy for pair pro-
duction €4 , vhereafter, a new process of energy loss
that of impnact ionization sets in. The high energy con-
duction band electron ( usually called the primary electron)
gives up its energy to a Vvalence band electron in their
coulomb interaction to elevate the valence band elczciron to
the conduction band,thus Producing an electron hole pair.
This amounts to a very aigh energy loss for ths primary
Once the electrons has achieved an ensrgy greater

glectron.
than g, 5 it will have a mean free path A{ for ioni-
zation usually assumed independent of energy. In addition
to electron optical phonon and ionizing collisiong the
electrons may also undergo electron electron collisions.

Energy and momentum are exchanged in such collisions which
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therefore serve to randomise the velocity distribution.
Clearly the Tfrequency of such collisgions depends upon the
2l:ctron density. The densily needed for the veloecity dis~
tri'ution to be mointained roughly spherically syrmetric by
this m-ans ( and therefore electron-electron collisions to
be important ) at pre brealidown fields has been estimated
by 3tratton . louever , in the field swept space charge
rezions of raverse biazsed p-n junctions where impuct ioni-
zation and charge multiplication phenomena are usually
observad, the density of electrons is rather small for
electron-slectron collisions to be important. The theco-
ratical treatments for electron transport in such cases
leading to the determination of ionization cozfficient A -
which is the number of electron-hole pairs.generated by a
carrier per unit path length travelled -~ as a funection of

yplied electric field are due to wolff°”, Shockley“",

0

the a
Barar£3°139 4nd Moll and Hayer4C,

37

1oll and Overstraeten
The theorstical treatment and determination of the

critical field for the case wnen electron-eleciron collisions

are dominant ( collecuive eleciron bpreakdown ) has been given

4
by TFroiich and Paranjpeél 1] stratton-c.

However, we shall be considering here only the first

case uwhere electron electron colllsions can be neclocted.

wolf1% was the first to give a theoretical treatment

of impact ionization in semiconductors and determine A as a



function of 2. Ilis theory is essentially an application

43
of Jannier’s gas discharge theory to semiconductors in

gas
wiiich the carriers through the course of collisions glowly
-qthar energy from the fisld and 'diffuse' to energiss

beyond Ey + JO1ff also assumed that the mean free path

for ionizing collisions was considerably less than that

for phonon coliisions ond that $his would result in a
considerable attenuation of the distribution function in the
high energy tail for €>&+ o« The theory gave an exp(-l/Ez)
dependence of o on the electric field and successfully
explained the experimentally observed dependence of o on E

for very nigh fisldse. However, it failed at comparatively
Jover fields.

ixperimental results of Bartelink et a1A4 showed the
inaccuracy of the assumption that A{<<A made by lolff.
Subseguently Moll and R. Van. Overstrasten repesated Jolff's
theory dropping the assgmption At & A . Their results are
qualitatively gimilar to Wolff's but different in dstail .

The parameters involved in the itheory are E&)%)QT and Ay

shockleyJQ gave a 'ballistic! theory of ionization
ghich successfully explained the observed exp(- 1/Z) depen~
dence of & on the electric field at relatively louer fields.
shockley argued that at lower fields the effective cleciron

temperature is so0 small that an electron vhich suffors its

0o 1 '3 - . i
normal share of phonon collisions will never achisve an enérgv€1'



slectrons that cause ionization therefore rzside in a high
valoeity spike in the otherwise spherical distribution.
shockley assumed that an slectron gives up all its energy

when it encounters an optical phonon collision and makes a
start afresh- a cold starte. After several cold starts does

it happen that the elsetron can avoid optical phonon colli-
sions and reach »syond energy &4 and ionize. 3ubsequent
improvements in the theoTy were attempted by lioll and Heyeréo
who also included multiple ionization processes. 3y a multiple
ionization process we mean a process of ionization in which
an electron with energy less than the threshold energy is
Tirst accelerated to enargies equal to the threshold energy
plus one Or mors number of times the optical phonon energy,
and then emits One or more optical phonons before ionizing.
This resulted in a better quantitative agreement but large
changes in the wvalues of paramesters 2y and A were

reguired to fit the experimental data to theoretical curves.

However the most general treatments so far are due
; y L 38 o
oy Baraff38’39 who obtained exact and almost exact°9 solutions

of the Boltzmann's transport equation under the folloywing

assunptions:

1L There are no electron-slesctron interfactions.

oy Acoustie phonon scattering 1s elastic.
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3e Jlectrons emit opticsl phonon and lose a fixed
unt of enargye.
‘he probability that an elzctron is scattered from pmomen-

turr D to D! czpends only on its initial and final

. Seatiering is spherically symmetric.
b S

B The hot elsctron has a constant mean free path.

His results in Tthe form of universal curves are
plots of log (X 2) versus ©7/,gx for various values
of parameter QR/ET . This parametexr 1is constant for a
jven material. Hence tnere will be a single curve for each
material. Jxperimentally « 1is determined as a function of
rield B. By finding the curve thal gives best fit, the two
adjustable parameters A  and £+ are found. The curves
obtained were for a value «5 for r-the ratio of scattering
cross sections for ionization and optical phonon emnission.
Galculations were performed using other values of this
ratio and K was found only weakly dependent on it. 3araffrg
theory gave an exp ( - 1/3 ) dependence for o on 3 for

. A g5
lower fields and an exp ( ~1/G° ) dependence for nigher fields.
Tt also gave cerrect dependence ofX on B for intermadiate
fields where both 'ballistic' and'diffusion' processes are

important.



lowvever in all the theoretical treatments so far
the quantities £4,Z¢ A, A and r have been taken as adjus-
table porometers. Besides the assumption that the mean free
pata for impact ionization is constant is open te -umestion.
In particular, all the above mentioned mathematical models
have been developsd for a simple band structure with a single
valley ( or equivalent valleys at best ) and effective mass
in the conduction band. Their application to Gaas wiiich has
two valleys in the conduction band with vastly different
effective masses for the electrons, quite different scattering
strenzths and a field dependent population ratio looks quite
unjustified. The quantities A, Xy and €4 are expecied
to have cuite different values for the two valleys., The
use of a single , , A and £7 amounts to the loss of any
information regarding the Telative importance of the two
valleys for ionization. I includes rather crude and unreal-~
setie averaging. With a view to go into some depth of the
problem we rirst have consldered various processes by which
electrons in the central and satellite valleys ionize and
have found the corresponding threshold energies for impact
sonization. Thereafter, £O delermine the relative importance
of each of these processes we have carried out a time dependent
perturbation calculations of cransiftion probability for impact
ionization for several of these processess Finally under
certain assumptions a Monte Carlo calculation of the ionization

coefficient for electrons has been carried out.
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RESTOLD EIESRGY FOR IHPACT ICTIZATION

Aahied,

‘hreshold enargy for impret ionization
by cl:cirons.

Threshold energy for impcet ionization
by holes.

Threshold senergy for impact ionization

by electrons including non parabolicity
of thz central valley.
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TIR2SU0LD IIZRGY FOR IMPACT IONIZATION

Ldiidd:d.

I. THJ2S5.:0LD BENIRGY #OR IMPACT IONIZATION BY BLICTIONS

For the calculation of the threshold energy for
impact ionization, it is assumed that the ionization event
involves only the primary electron and the secondary pair
with or without a phonon. Also all the bands are assumed
parabolic. The energy conservation alone requires that the
minimam energy of primary electiron for ionizatlion must be at
least equal to the energy gap. Conservation of momentum in
the ionizing collision, however, places a still higher limit
on ionization threshold. lle have considered various types
of ionization processes that are possible. The corresponding
states of the primary electron, the secondary slectiron and
the hole are listed in cols. 1 to 4 of Table 2.1 and 2.2.
soth normal and Umklapp Processes have been considered. The
latter process reduces the energy requirement for ionization
in such cases where large momentum transfers &re involved in
the ionization process. TIhis is because a phonon carries
gith it a large momentum but negligible energy and thus

transfers large momenta without appreciable energy. The

momentum conzervation equations for normal and Umklaop
processes respectively are

1;|+:;¢=-~ﬁf+:ia’

(2.13)
R+ Rz R/FRS 26

(2.1b)

where [k, 1is the wave vector of the primary elesctron before
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b

-

before ionization; k, the wave vector of the elec-tron
in the valence band that is knocked out, i.2. the wave
vector of the hole; ﬁ('and ‘QQ' , the wave vectors of the
tyo electrons after ionizing collision; and (; , a reci-
procal lattice vector. The ensrgiss of these clectrons
depend upon the valley thay lie in. For the central valley,
the electron energy & is related to the electron wave

; X R _
vector R Dby the relation R K/, = €  and for “.uz
gsatellite valley, &€ = h;?( K "'?‘:-)2/;)7,,'2 where T?c gives

the minimum of the satellite valley in the wave vector space.

For GS.AS) k’
(0, 0, * 2 /a ). 5ince the energy minima lie along equivalent

has values ( + 2W/a, 0, O), (O, + 21 /a, 0),

(1, © O) directions, we shall search the minimum energy
required for ionization along these directions and can, there-
fore, treat the wave vectors as scalars., Thus for the process

corresponding to the first energy in Table 2.1, the nomentun

- = 1
and energy conservation eduactlons Jecome

/
Ryt ka= R+ Ka
(2.2)

a < / R

.3 R / o oAl LA )

KRe ~Eg- KRy = & (R=34) , % (R 3Th) | o4p
T am, § MY Sy, KRNy ¥ i

where my, mg are the efiective masses of electrons in central
and satellite valleys respectively; mp, the mass of the holej

3., the band gap; and A iig, the energy difference betusen
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the minima of central and satellite vallzys. TFor processes
involving the hole of mass C.20 my, the appropriate value

o the band zap would be 1.68 =2V since the corresponding
split off Dband lics 083 eV below the top of the valence hand

and consecduently this quantity should be added to the band

<ap value 1.35 eV.

In egs. (2 ) and ( 3 ), there are four variables

=

namely kj, ko, ki’ kb . Thus one can treat two of them as

independent variables and the other two as dependent variables.

Je treat k! and k! as independent variables and find out kq

and ko in terms of them. Since we are interested in the

minimaum velue of the primary clectron enargy, we have to get

the minimum possible value of k,, i.e. the value of kq such

that ’B k] ) kl =5

= D B

'%;;’ T DRY "

For this we adopt the following procadure:

Eliminating ko from oo, {3 ) with the help of uq.

( 2 ) we have :

- Q Q
* . i IS
KRy g, b (RrR= k)= By 274)

Rpd .5 .
+ A (N —aii) ) + Q[lL';}
3:71:,1

M), ;
\-ert,

Differentiating Zq. ( 5 ) partially with respect to ki and kb

resnectively and using Bq. ( 4 ) we have



from 2qs. ( 6 ) and ( 7 ) eliminating kl angd ké in turn

we haves:
h R ”t/- L i’.‘;‘)’ -5477/“ "/‘M}\l/w“_< )
J= - h_________’-______,_.. (2.8)
{\K = n"‘*)""l]_{ )
Substituting these back in 3g. ( 5 ) and multiplying out

[ T < we nave
by  Rvia/ i 12 nave, :

< -y 0 ey — 4Tl )
™o g1~ (B 4RAaE) ¥me — —27h (s — % T/a)
™ ! ” At it CERV )4
b oy

: (2.9)
— gme &) o
Ve | £ +’"”"\/N-A vj-:

( 9 ) is a quadratic equaticn in k_ and can be solved to

-

Dle
sive two values of k. i{he one with smaller absolute value
(& ]

is chosen and corresponding ki and ké are determined fronm

2q. ( 8 ). 1In the case considered above, it must resul: in
positive values oF ki and ké ( since botn electrons nfter
jonizing collision lie 1in the satellite valley at (27 /a,0,0))

if it is to be acceptable. If it is not so, it is rejected

and the other value of kl is chosen.

For processes involving the primary electron in the

satellite valley at ( 277/a, O, O ) only positive B kl

is to be accepted if there are both positive and necative values



resulting from the solution of equations like ( ¢ ). In
case of Doth values being positive, the one which zives a

k. ¢ 2 /a 1s chosens.

The procedure for determining kl in processes involving

klapn is identical except that the momentum conservation

T m
S

cctlation becomes:

— r !
ky + kg = Li + ko3 477/ a (8,10}

The caleulated values of ionigation thresholds fTor
the primary electron in the central and the satellite valleys
aTe shown in Table 2.1 and 2.2 respectively. For the Um!dappe

process, ( out of the plus and minus signs in Zq. (2.10)), the

results are reported only for the one which gives a lesser

value of en8rgy. 4Also for processes wiich give ionization

thresholds in excess of 10 eV, results are not reported ( blanks

in cols. 5 and 6 of Tables 2.1 and 2.2) since such processes

are of no interest.



fAr:s.old snergy for imp-ct ionizotion for an :lceiron

in the central valley

Poziiion of the valley of B lonizontion thrsshold
Zlole Tor

Ef;ﬂ%ggn gi;i?igiy iiggéign (mass ggiﬁggs Tgklapp
before after My ) (e7 ) ngﬁﬁss
impact npact
(000) (000) ( 000) 0.68 1,483 _
(CCO) (000) ( 100) 0.68 4,09 -
(COO0) (100) (-100) 0.63 2.18 -
(00C) (100) ( 100) 0.€8 = -
(600) (000) ( 00C) 0,12 1.86 _
(000) (000) ( 100) 0.12 5.58 .
(Q00) (100) (=100) 0.12 2.26 i
(000) (100) ( 100) 0.12 - S, 0
(000) (000) { 000) 0.20 2.1 _
(000) (000) ( 100) 0.20 5.73 -
(000) {100) (-1C0) 0.20 2,60 _
(000) (100) ( 100) 0.20 - 9.60



/5

1.1 =7 i
-4.?:'313—“. 2

ars.old energy for impact ionization an elscirop
in the satellite valley

Position of the valley of — gggiiigggnenerf:y Tor impact
Pfiﬁffy Socondary PTQHQPF ?ass Mormal Tnldapn
irpgaet impact (e7) ( oV )
(z,00)  (1,00) (100) .68 = 5
(1,00) (-100) (100) 0.68 8.70 _
(1,00) (-1C0) (-1C0) 0.68 - c
(1,00)  ( GOO) (100 0.63 2.00 .73
(1.00) ( 000) (-100C) 0.€8 7473 2.00
(1,00) ( C00) (000 ) 0.63 2,69 =
(1,00) ( 100) (100 ) O.1¢2 - -
(1,00)  (~1G0) (100 ) 0.12 8415 "
(1,00)  (-100) (-1CC) C.12 - 3.15
(1,0C0) ( 000) ( 100) 0.12 3.91 -
(1, 00) ( 000) (-100C) O.12 - 3.91
(1,00) ( CCO) ( 000) 0.12 4,76 _
(1,00) ( 100) ( 100) 0.20 - _

1,00)  (-100) ( 1.00) .20 3+29 -
(1,00)  (~100) (-100C) C.20 - 3.99
(1,00) ( 000) ( 1C0) 0.2C 3.93 S
(1,00)  ( 000) (-100) 0.20 - 3.63
( 000) ( C00) 0.2 4.02 _

(1,00)
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I, TURESHOLD TUBRGY FOR TP ACT IOMIZLTION T¥ ‘10L3S:

Once again, by the rguments of sesetion I the wave
. can be resarded as scalars for the purpose ol deterni-

notion of the threshold energy for impact ionization,

The momentum conservation eguations for the normal

ond nllapp processes raspectively then read:

,
=
|
AV ]
]l

where kl the wave vector of primary hole, L; that ol ths

primaly hole after impact, ké that of the secondarywy hole
and k. that of the seconinry slechtron. It should be noted

that the momentum of a nole of wave vector k 1s given by
—rK.

pssuming parabolic bands, the energy conservation

~oation becomes

3 S W, <
< R A R =
pr N o By I Bt o ri Uokd
Ty, TC Ty, LY S (812

wheTe Ehp’ Ehpc "Ehs are the positiong of tops of the

branches of val.ence band in which Tespectively pl"j_mg_ry hole,

primary hole 2fter collision and secondary hole lie mersured

downwaxrd positive with respect to the top of valence band

chosen as the reference level for en2rgy measurenents % is
g e

the position of the minimum of the valley of secondary electron



8

with respect fo the reference level measured positive up-
sards nd kg the wave vector corresponding to the cnargy

ninimure.

Squations (2.11) and (2.12) can be solved ‘or the
rninimun energy of ths primary hole ( The threshold cenearcy
ror impact ionization ) as described ir section. The results

ror various possible processes arse shown in Table 2.3 znd



Pable- 43

-~

If7setive iff-etive If7ective Iflecvlve Mhreshold enersy for

moss of nass of nass of mnss of impact ionization
the prL e Bl ettty Moerete Tomal v
Eﬂrgnzgé“ ;ftg;ﬂ? uﬁits‘of cfygnvia éggzgés g?iﬁgzg
of mg gomlls}on . units of a¥ et
in units Mg,
of mg,
0.68 0.68 0.68 0.072 2.57 5.45
0.68 0.68 .12 0.072 6413 6«25
C.68 .68 0.20 0.072 5.38 G.77
0.68 012 0,20 0.072 not possible 0,72
0.68 0.12 0,12 C.072 -do- -
0.683 0.20 0.20 0,072 -~ O~ 6,89
0.12 0.12 0.12 0.C72 19 -
0, 1.2 C.12 0.68 0.072 1.56 -
0.12 0.12 0,20 0.072 2.42 -
0.12 0.58 0,20 C.072 192 -
C.12 . C8 0.63 0,072 1.47 2,99
G 12 0.20 0.20 0.072 2,69 -
0.0 0.20 0.20 0.072 2,91 -
0,20 0.20 0.12 0.C72 2.76 >
0,20 C.20 0,68 0.072 i -
0.20 0.12 0.63 0.072 1.32 -
.20 C.12 0.12 0,072 2.84 -

020 0.68 0.62 0,072 1.18 2.4

i —=



Table-3.4

1~ aetive DBifective Lflfective ZEffective Threshold »nergy for

mass of mass orf nnss of nmass of impoct ionizantion

the pri=- the pri- the secon- <tha sec-

aary hole wery hole dary hole ond.ry Normal Unklapp

in units  after in units elsctron proeess nrocess

of mgy collision of m, in units eV eV

in unics !l of m,
Mo
C.\;S 0062 0068 0036.: 2923 :;".23
«G3 0.68 .12 0.264 240 2,40

0.€8 .62 .20 0,364 2.61 2.61L
0.63 0.12 029 G.364 2620 2,60
0.68 C.l2 0.12 0.364 Bt il 8 .99
0068 0.20 0.20 0'364 3907 ":.07
0.12 0.3 0.12 0.364 4,96 4,96
0.12 C.12 0.68 0.264 3.67 5 67
0.12 0.12 Q.20 0,364 4.92 4,60
0.12 0.63 0.20 0.364 3.84 3.24
0.12 0.63 0.68 0,364 3+12 3.12
0.12 0.20 0,20 0.364 4,95 4,05
0.20 C.20 0.20 0.364 4.13 4.13
0.20 0.20 0.12 0.384 4,07 4,07
0.20 0.20 0.68 0.364 3.22 3.99
0520 Oolz 0068 0-364 3005 3.05
0920 0.12 0012 00864 4.06 0.06
0:20 C.68 0.68 0. 364 2,60 2.G0
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ITI. T RISIOLD BISRGY FOR TMPACT IONIZATION BY IR CrhiONS

IGLUDING NOMPARABOLICITY OF THS CEIITRAL VALLZEY:

It is possible to include the non parasolicivy
of the central valley in the caleulation of thresnold energy
for imp-ct ionization. AS mentioned in section II of chaper I,

the energy wave vector relationship for this wvalley can be

written in the 1orm

AR g1 <E)
A (2.13)

=, i " < -
where O = o576 eV and mqy 1is the effective mnss of an

eslectron in the central valleye

To be porticular, let us consider a normal process

of impact ionization in which the primary electron bhefore

impact is in the central valley of the conduction band, both

the primary and socondary electrons after impact are in the

central valley and the hole produced 1is in the heavy hole

pand ( effective mass ratio 0.68 ).

e vector and energy conservation eqguations
The wavVv aq

for this processS read

3(kq) + Elkg) = 2y + E(kb) (2.15)

where Ik,; Ko ki and k' are respectively the wave vectors of



§2

primary alectron belore impact, tne hole, prim-ry 2lectron
fter impact and the secondary electron and I(k)'s are

the corresponding energiess

E= — 1+ [ 14 cr®
J% (2.18)

3

where -
2 = =< ,\
aah
Only positive sign has been taken with the square
root term in equn. (2.16)« This is because % being the enerzy
measured from the minimum of the central valley is -lways

positive for all k values. Using equn. (2.18) , ecuan. (2.15)

hecomes . _— iy e
be AR e, =1 fier?
14 ety 2 - *\ k_-.- __ g -+ =
— jT+:k“_c}- = = =2
___.('_j(— { ﬂ""])\ &K (2. ].7)
Jhere . is . band gap and my is the effective mass value

for the hole. One can now follow the procedure laid doun

9
ine.
pifrferentiating equn. (2.17) (after eliminating ko

srom it with the help of edun. (2.14)) w.r.t. ki and k& and

setting U = 0 and ’__D_k_./ = O one has
2K,/ w
-
~ LR/ R=N) = (1+ Ch,’ﬁ‘) ” (2.18)
="
2o e 122
— bR+ Ry - !%) = L 1+ ¢ Ry ) ¢ K, (2.19)

where s Qaiif

}'lk
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From ecuns. (2.18) zand (2.19) one has

Ké = ki 2+20)
s k ek / /Q-bé
1= SRer gy (3o k) (9.41)
also from equns. (2.14), (2.20) and (2.21)
ha® SR 14eRM ;_}4 (2.22)

b

substitution can be made in equn. (2.17) for kq, ko and ki
in terms of k} from equns. (2.21), (2.82) and (2.20) angd
the resulting equation can be solved for ki by an iterative

procedure. The corresponding value of k, can then be deter-
mined from equn. (2.21) and using this value of kl’ the
threshold energy can be determined from equn. (2.16). One

ean proceed in a similal way for other processes also,

The threshold enzrgies for three processes which

result in lowest threshold energies for central and satellite

valley electrons are given in table (2.5)..

Tt can be seen from table (2.1) that the lowest
threshold energy for impact ionization for central valley
electrons is 1+48 eV, There are several other threshold energic
close to 2,0 eVe The lowest thresnold energy for satellite
valley elecirons is 2.00 eV. The next lowest vaplues are

2,69 and 2.70 eV Trespectively.



Tolley of the Throsi.old energy ev
Prinary Primary Secondary Iffective Pro-  Ilon para- Paraboli
.etron electron electron mass of cess holic central
sefore after the hole central valley

impzet impact velley

(000) (000) (000) 0.68 my Normal 162 1.48
(100) (100) (000) 0.68 my MNormal 1..03 5.00
(1.00) (000) (000) 0.68 m, Iormal .69 2.69
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The calenlated valuss of threshold energics are
for the case w.ien the primary electron is noving in the
(100) direction. They are the lowest possible values for

s given process. Under the assunption of spherical constant

<

enarsy surfaces for all bands the thresnold ener;ies .or

jnp.ct iopization Zor processes involving only the zlackrons

of the central valley will be independent of the dirsction

of motion of the primary particle. Ilowever, this will not

s0 Tar processes involving the elzctrons of the zatellige

~

valleys; dilfferent threshold energies will exist for primary

particles moving in different directions.

At lower fields the process with lowest threshdld

spnergy will be the most efieciive process ( provided it has

enough transistion probability ). /ith an increase

in the elactric field, the average cnergy of the electron

distribution will. increase and processes with nigher

tl’erShold energies wj_ll start beCOming irrlpor‘tant. This perhaps

1 = T - 2
explains the range of threshold eneriz values ( between

.7 ¢ .3 eV ) required by Logan et al to fit their experimental

data to theoretical curvesSe

The inclusion 0f non parabolicity of the central
valley results in about 10% increase in the threshold energy
for impact ionization for the process with lowsst threshold
enerzy. 1In processes where only the secondary elsectron or

the primary electron after impact are in the central valley,
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the non parabolicity of this valley is not 1iksly to make
any significant differences in the threshold energzy values.
This is bzcause the energy -nd ounentum associsied with

these electrons are small enough for ths p-raboliec H-nd %o

lie close to the non porabolic bamd.

Cne can expect that Shockley kind ( ballistic ) impac-:
ionization will first initiate in The central wvallay., It is
bacause the threshold energy is lowest in this vallay and
tne elecirons being light asccelerate faster and have nore

chances to escape to energiss greater than g .

At nizher fields where Wolff type impact ionizmtion
doninates, the satellite valley may have an advantage of its
aigher population. IOwevVer one nmust first see the transition

probabilities for varlous processss before conjecturing any

furthar.
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TRAISITION PR BASILITY FOR IMPACT IONIZATION

Let us consider an enzrretic electron with energy
.ag, and wave vector El which is scatt:red t« : cnergy
~gg) with wave vector Ei , producing an eleetron holeg pair
of enérzies €RD and < (R with wave vectors ﬁé and

T pegpaectively. 7o szek the total transition probabilit;
~ J

229

per unit time for processes of this type. To be spacifie,

1ot us consider the process that gives the lowest threshold

enersy for impact jonization for an elec.ron in iile central
valleye

‘72 shall treat the problem using time dependent

perturbation theory assuming that the perturbing Hamniltonian

i - the dl-ierence ( due to the coulomb intercetion of electrons)

betueen the complete [lamiltonian for the crystal and the
Hgmiltonian wiaich is used in the one electron approxﬁnation47’48.
In the latter, the coulomb interaction is replaced by a self

. . "'.lc P * . 7 _-I-v
consistent field, containing exclusively terms waich uepend

on single electron coordinates. The coulomb interaction

torms in the complete hamiltonian are explicitly taken into

~connt only for electrons of the conduction and valence bands.
2]ectronic interactions in wihich the remaining electrons
participate zive rise 1o polarizibility, and their effects

are represcented DY the use of an effective dielectric constant

15 order to be in a position to estimate the effect

™

of electron screening on the impact ionization we shall assume
the perturbing {lamiltonian to be
2 el
1Y e ex p{~ }IV -7
L —_— = = \ E }
= Lo = i)
L/ ame v - )\

(3.1)



whnere T, and r'j are the position vectors of the ith and
- 2 ,)\-e.
jth electirons, q is the screening constant and; suzmation

tha
ig over nl%xpalrs of electrons. In accordance with the

one alectron approximation the elesctron wave functions for

the conduction und valence bands of the erystal are described

1

by Zloch funciions, and the electrons that donot talie part

in a transition are supposed to have their states unaliered

by the transition.

Let the electrons taking part in a transition be

labeled 1 and 2. Then under the conditions statad only

. ) 2 5 e i
the term involving € 2xf(-%)7-7) )/,,,né | ¥1-7.]
of the perturbation operator H!' can have a non zero matrix

element. The transition probability is then given by-7, 58

Sl IR — e ¢ 'i 2 .2
P(’R.,-*h,') kl—-’ha/ = ’:.? _*.—w [l Hi - kR |+ HEA"; R/ |+ IHE',:' Ry — H; B [/]
Wi <t

where HTé,’ g:; and H;;/_.;"f are the matrix elements of the

parturbablon glven by

s Jb “ 075 7 & exp(~ (’"‘“_;'“‘;bwu#) G.) 5P Ly

H‘El” ;;' 4HTTE \"1 3 '1] (3.3)

z +
| a4 pd ezk’—ilﬁ'JJ)¢NNJ#\*ddndr

a T, B —— Lry) ’nJ "2
Hh;/) ¥ ‘?T-:cH Fx % } ] “'1’ M (8'4)

In equn. (3.2) the terms in the bracket are due to spin

considerations; the first two arise for antiparsllel ang s

third for parallel spins, and



-v'z . :l:,j I ::f;._-‘, == 'f(T\:.) - Zk )
o ] (3.5)
The wave functions for the various statas nre
ziven in terms of their respective 3loch functions as
follows :
?DU:) = .‘-,'::‘ ) H | h‘,,‘R.) f'L}JLL ‘ ﬁll AYE r’1_’
. ¢ ) (3.5a
%.‘T"‘l-)\ — {_—J_——Z B(—Tz ;RO'S‘CPL‘(.P“;*'))‘&)‘)LL]
) v e (3.6b)
oy g By e e LR Ay TS
r];* _ ' ?A(:nzﬁl )Q{Ptl(’\.-r"h J' )
b i ,) e -T‘/_‘ 1) 4 (‘:’ ;
/;E' .‘/7V _‘;ﬁa/ uoOC)
'
B ju A Feed 5t 1Y we [ ki st yL_J
@ )= L5 AP R ) ek | 1R+ .
s -\/V ;1/
— —_ -—"‘}
where ™M), N3, N, and Mg

are reciprocal lattice vectors.
. . « St ~
substituting these functions into equns. (8.3) and (3.4)

followed by integration by standard methods yield
L . i B W

Hgrg s = £ ;A('ﬁ?,gﬂ B, RY)A KD A R?) X

Ui Zad sV —~ __ VR S— e A

';nn:x)h"i‘”#) 5_( Rl+hx"h|'“kq/§';?_\*?_-r”l"ﬂ),) syl

2+ (RV-R,/+ 7 =7/ )
RS & o
H—ia,.g', - _f:"'_\; A (%, R) BD2R)A (RR,) A (PSR, ) %
» ] =

S . ) ocew / - — — if) oyl g P JEo \ (3.8)
‘ﬂ“h&"n"‘nq E‘ h|+kl-h| —RQ)+ ‘n,+“;\':4‘77|“”4/)
V(R =Ry 4y - g )
The above expressions for HF-/,W:/ and 5 R are
’ )

: 3
maximum when the denominators

. . e g g e
'31*' {Ri—K,/+ ™ ~%')

= A~ R
f)2*>' (Ry-Ry/+w - 1d")
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are nminimum. That is vhen

- —1 — . ’l'
~ / Ny = M
M= N omd My 2 (3.3b)

Only the contribution of such terms is important and we shall
congsider only these termse

-he delta runction on tne right hand side of

equns. (3.7) and (8.8) yields momentum conservition relations

of types.
iy R, +Ry=R — = R
R +h'4 < hl"“'-ﬁzl fov fr]|+'n2-—“n, My’ =o
(3.9)
(D R/AR = Ry ARt P for T+ F R = (3.10)

The first one 1s normal process and the second one

is an Umiklapp process. e shall consider only normal Processes

here since the processes that yield lowest thresholg energies

for central and satellite valley electrons in Gaas ( chapter

1I) are normal processess Thus for a normal process and under

— —
—— -— = /7 57 3 g .
the conditions m; =™/ and n; = m, (3.8b), the matrix

elements HFJ*%’ and H;:)a’ ( equn. 3.7 and 3.8) becone

e FiFa8 (R R -R-R )

H"‘f'g' =
kR Vv Cf._}_ [-E;-.F,’)Q ! (3.11)
—_— - {_'-_. /
2™ Fifa.8 (ki ¥Rz~ k- Ra ) (3.12)

H'—‘,E*/ =

st oA g &
R‘QJ ! év 3"1._*_ { R." p.?/) -
where Fl and Fo are the overZlap integrals for the cell periodis“

parts of the 2loch functions
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» — 3 . )
F; = j uk R 7! I,U"rl/ ol B Z A(’ﬁ'“;?l),q ( ,;;“h“r’
N (8.13)

- o, E T
[ urg\'r; LLF\ ,(’J_; o ’-’)‘ ”r]:“R':(_)H I '];(_.h,! ,)
4 3 ~ (3.14)

Using relations (3.11) and (3.12) the transition pProbability

( equn. (3.2) ) baconmes.

—_ - = < _" ‘g y t Rk R R. R
ip (¢ «15)
1 Borgt e
M — ) S - ! ;)A{
Jjgiere Q C'ﬁ‘]) Q,R” Rg ) [ ?';,14 lr(.."_’;x‘)dhz) %J, +~(_R,-—p=:1/);—1
=

| 5 )
¥ { ar(L'}' CE;‘E") = o’q-"' (R, "ﬂﬁ-'z/)g

able To obtain the total transition Probability for

To be
impact ionization ( P(R,) ) for an electron with yave

vzector El s we must sum the probability (3.15) over all the

possible final states ki and all the possible elgctron hole

pairs EZ , X5 ‘thats can be produced by this elsctron, i.e,

PR, = Z 2. 2. PR-R S ReoR) (3.17)

—h‘l/ E’ Ra
Je Tirst evaluate the sum Over k:'L and 1(.'; keeping ’— fixeqd.
ki + Iy = 2k, (3.18)

The non vanishing of the kroncker delts function in the

; o Tl R g - . .
exprassion for |JQhrﬂh/3R4='&Q) Teculires the Telation
sl =+ k= 2k (3.19)



fhus out of ki and ' only one 1s independent. One

[

can eliminate ' with the help of equn. (8.19) and drop the
surm-tion over 1:'2 « The sumntion over k' ( and later also

over l~ ) can be replaced by integration as follows,

7 = ZS J Ak’

L —

= 2
" en

One thierefore has

?\F| ,"‘:2) = Z_ >:. P{;F‘*h,’;

—Ef .E:{/ )/
. R } 8RR Um/ (3.21)
= v £ ke SV SR V) Q(FI)RRnr"J( o= R:’) ! ezl
gm® we V) v

To simplify the computation Iy, and F, are assumedto be cons-

A 1 . - 5
tants‘a. 1° ia convenient to change the variable of inte-

gration from Ei to k as follows

k. = k'l ot lio (3.22)
ak = dk! (3.283
1 )
in terms of the now variable k one has
1-';'_ = 1{0 + i’; (3'248.)
5 BgmE (3.24b)
f"n"] Y X (.". %) t — (E"’“ ) {; "; ))'J‘h
R. == e y:;,c, QiR By LRF G R \3.285)
==y ‘—’ t/e
PC-EU &) S‘Tlg *K’LEQVQ {4



rrom (3.5), (3.24a) and (3.24b) one has

iR R — .o
we= LT A (kR +R)— R —<(Ry)
YT x La;;‘ ) . (3.26)

Where ninimum of the central valley of conduction
band nas been taken as the reference point for encrgy mea-
sureilents. From (3.26)

;lwl- = 'ﬁ 3 RdR
v .
l (C.27)

Using (8.26) and (3.27) the variable of integration in inte~

gral (2.25) can be changed from k‘,a)¢ to ;,‘)6)6’#) .
Since _
$vnu.)1t = TT S(Wt’) :
Wy ' o)

integraztion of (3.25) over Wy can be irmediately

he integration over angular variables.
abn)(R~k, )
choice of polar axis|makes the angular part of (3.25)

enrried out leaving t

independent of ¢> . & finzl integration over 8 yields

2

— V?FR“ eq Fif)(mk & —2mKk | [ At ?J\

P(‘ﬁ“ RJ: —’“3 l'x p AJ_BA /k QB ‘ n,-ny

where , )
A =47 + ( k, - kg )+ k7 (2.30a)
2=l -]k (3.300)
and

¢ B kJ (30300)
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To obtain P ( kq,), we should integrate (£.29) over
that region of ﬁo space which participates in impact ioni-

zation ( i.e. over all the possible holes ).

It is convenient to transform the wvariable of
integration from F. to r so that the region of ks, space
for winich ionization is possible becomes a sphere inr space.

The recuired transformation is ( see Appendix 3 ):

r o=lky + YKy (2.31)
1
where Y = 3 32)
1+ u,/my
and the radius of the sphere is given by
l 0 ~ #‘.3. <
X | aiRy)—Ea— N R 5
T 1: o j~\k " (} J‘n,}‘ : Y (:.‘). 03)
A _f]_ + .4:'__ a
vy, 4,y
o) 2 -
BLE - kl + lo 1 _ o
ko - = — (r+(1~%) 1k ) (3.34)
2 2
and i
2 - B
;: = ( ml/anh ¥ ]/4 ) ( X nax ) C‘-OS)

Using this transformation scheme, one can integrate

spherical volume of r space with radipe
(3.29) over a SP p adlus r o

to obtain P ( kq 2.

For the present case, contribution of the logarithmie

torm in (3.29) comes out to be negligible., Tor the first
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term, an angular Integration can be carried out analytiecally
-nd a final numerical integration over the radial coordinate
-ives P( il ). Sinilar techniques are used to obtain P( El)
for other processes. The re uired transformation are given
in appendix 3. For the process that gives the lowest
threshold energy for a satellite valley eleectron, it is very
difficult to Tind the contribution to P( k;) from the
product term that comes when the last term in Q ( experession
3.16) which is the square of difference in two terms is
opengd up. Iowever, the contributions of the first ang
second terms in 0 can be found out using techniques similar
to those described above. Since (3.18) is of the form

%2 4 v2 + ( X- ¥ )% with both X and Y positive, one gots

a lower limit of P( Izl> 1T one neglects the last term and
uses only the first two terms. 1If one neglects the ¥ term,
one zets an ppper limit which is twice the lower linmit. il
nave calculated the lowel limit of P{ El ) for this case.
curves (a) and (b) of Fig. 7 show P ( il) for central valley
clectrons for the process with lowest and next lowest
threshold energies regpectively. urve (a) of PFig. 2 shows
the lower 1limit of P ( kg ) for the process with lowest
threshold energy for a satellite valley electron and curve

(pb) of Fig. 8 shous P( El) for the process with next loynst
threshold energy for a satellite valley electron. The transi-

tion probabilitics have been plotted in units or ¢ Elpz)z

which was assumed to be a constant. The evaluation of (F1F2)2
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is a rrther delic- e problem. In the absence of a lknowledge

of e-act wave
elcctrons it is not possible to estimate this quantity directly
- ° & .

)]

unctions for the conduction and wvalence hand

=iy

Tndiract methods -iiich circumvent the necessity of knowing
. W o— b

ex~ct wave function have been proposed by Antoncil: and

m H 4t 3 : o &

Lands aTg . They have shoun that it is poss-ible to deduce
erlap integrals from the oscillatorl stre-

inforiation ~hout oV

n;th or effective mass data.
2 9 t. ,
n two Bloch states of the same Hand

They havz also sghoym that the

integrals betwee

overlap
The quantity ( Fle)— "1 '‘erent values

.re close toO unitye

different curves in Fig. 7 and 8 since it involves diff-

1s in each case.

£or

erent overlap integTId

ror curve (a) Of Fig- % Value of 3b0ut 016 is

obtaincd for ( Fle)z using an isotropic effective nass,
yave vectors ( ko ), ) Corfespondiﬁg to thresheld energy
and results of Antoncik and Landsberg® . The over lap inte-
in bLhis ecase are those between two conduction

grals involved
states wnich is close to unity and

valley )

conduction pand ¢ central valley ) and heavy hole

pand central

petween

valence band statese.

ig. o 2
For curve (2) of Fig 8 the value of | ‘LFo) should

i i approximately .16 since it involves the over lap
als

s betweel two con
L is close to upnity and betwsen conduction band

uction band :
integral E ( satellite valley )

iy b g
il e

States



-1y

ant i
( central valley ) and heavy hole valence band states,

B “e. P Ve A &
( F1Fg5) " for curve i, = Mgz. 8 should be less

than that for the tyo cases mentionsd above This is
® o 2

becanse it involv:s the overlap integrals batueen wave

functions of central valley elecirons and satellite wvallay

s1sctrons and betueen central valley elzctrons and heavy

hole valence band .

‘:‘ 2 < . ~y -
(Lle) for curve (b) of Wig. 7 should also be less
comparad to that for curve (a) of Pig. 7.

-1th this knouvlsdgs of ( Fle)q a comparision of

rransition probabilities is now possible from Figs. 7 and 3.
Tighest transition PTObability exists for the process for
yhich the primary slectron is in the central valley, both
primary spllision and secondary =lz2ctrons are in the
iley and the hole involved is hsavy hole ( curve

central va
o itio Dabilid is i
Transition probability is nighest for a

(2) of Fig. 7 /-
satollite valley s1l-ctron when the electron after impact
n the same sal
sacondary elzctron produced is in the

remains 1 2l1lite valley, the hole involved is

5 heavVvy hole and the

al valley ( eurv

probability for

e (a) of Fig. 8). Iowever, y Lransl-

centr

ion this process is only aout one twent%ﬁh
. chat 8f g cembral valley electron for process with highest
transition probability.
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-

‘r g “ o o v J -y 2:
oo (:{:; & o, 0 1 {3 - L s -
.ore accnrate values of ( *2) P2 desirzble

‘or dstarmining vhe tronsition probabilities _cenr taly

2l

to be 1little doubt as to the iMportance

> AN
i

:
oo V2T Lli2re Selln

U

of the central valley for impact ionization. At nizh fields

only =bout 57 of the elecirons may e expscted to remain in

the central vallasy , yet the nigh transition probadility for

imoact iopizotion in this valley may well make it domparabie
in importance to the satellite valley for impnct ionization.

sides, the tronsition probability for the process that

corresponds to curve (a) o1 rig. 7 does not ‘lepend upon the

e ! 1 : 3
direction of I, - the wave veetor of primary glsciron,

this ig not so for che process that corr:smonds to

TTowavel,
qrve (a) OFf Fige 8. .. mentionad earlier, diffarent thresholg

¢ e <

energiss and spansition probabilities may exist for different

gies ¢

curve (@) of Tig. 8 shows the transitiop

. 9 T -; - 3 b) i

robability for a direction of ky for which the throshold

For other directions the transition

directions of kl.

energy 1s minimume.
probabilities are oxpected to be lower.
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CALCULATION OF ICNIZATION GCIFTICIENTS

1

Je now apply the Monte Carlo tachnigue to determine

the ionization coefficient of elzctirons as a function of the

appli"d Qlectric fieldo FOllOI{]ing ﬁssumptj_ous i‘-\la'\f‘:—l been

nades
1. The elzctron loses all its energy in an ionizing

collision.

In the central valley, the Tratio of transition probobility

2
for impact ionization and non equivalent intarvalley
scattering by emission of an optical phonon is a constant
Lo MK ag
ALy k) . .
erymsSSion
and for the gatellite valley the ratio of transition
probability for ionization and equivalent intervalley
seattering by emiggion of an optiecal phonon is a constant
R L
igh-- = ARy
AR
‘7 ewnission
3. There is a single thresnold energy .or impact ionization

ror each valley.

The first of these assumptions has to b2 nade since

«+ iz not possiole to find the angzular distribution of -
final states after impact ionization in a closed forn. and
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npt
therefore final states could)|be zenerated using tha llonte

Carlo t~chnique. One could have made an altern-tive - ssum-~
ption chat ithe zlzetron after Imp-et is left with an enargy
certnin fraction of its energy before immact.

33
“ut we have followad Pararff in making this assunption.

wiiieh 1is

'he second ~ssumption is necesgsary becaucse the tran-
sition probebility for impaet ionization is known only for
the case of an elzctron with wave wvector in the ( 100 )
direction. Ais discussed earlisr, for all other directions,
there will be different threshold ene~rgies and transition
nrobabilities . Besides,the overlap integrals arc not aceu-

rately known. It therefore only looks reasonablc to make

assumption 2, with different Akl and Akg.

Asswaption 3 has Peen made to simplify the caleculation
and in view of the reasons for which assunptions 1 and 2 hag
to be made.

As described in section V of chapter I, the principle

£

oL
consists of simulating the motion of an electron in moma ntum

tonte Carlo method as applied to ithe transport problems

space. However, since for the present,we are not interested
- . a) 3 s \ - . o 5
in the determination of tne disuribution function,no meshing
of k space into fine 09113 1S abbempbedn n\lﬂther, e Separately

keep track of the following guantities for ench valley.



) umber of eollisions of each type .
time electron spends in the valley.

distance electron travels in the field direction

. 1ils it remains in the valley.

T
\'f 4

ny knowing the total distance ( 8 ) travelled by

tne elsciron in the field direction and the total number

of ionizing collisions ( AT ) suffered in travelling this

distance, the ionization coefficient & can bs easily found
from the relatione.

K = BN]‘.
S

The population ratio B can be found from the times T, and T,

that the electron spends in the central and satellite valleys

Lo

respectively. i.2

. £ind out the mean dist that
1t 1is also possible tO PR ek B

vels in the field direction before sulfering

electron tra

phonon collision for each of the valleys. This

an optical

also makes an in
/ - Fa

d that aAv A i1.2. the average

e tor reresting study in that in the earlisr
theories 1t was assume
.1 ~--gnece »  travelled by an elecuron in the field direction

wuffering an optical phonon collision is ih
pefore < it p iy sams &g

Opticallmean free path Dbecause of an expec -1 5 reaming

oi the electronic motion in the field direction.
1. >
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(~Trg

as dgscrived 1n ci pier I, to simulate the motion of an

tron, a rondom time of flisht t is first generated
‘rom the probuadility distribution ( 1.29a ) by solving
tion (1.31). 4fter substituting for P?(t) from equn.(1.223)

R e g
incegration over t, equn. (L.31) bocones

¢ .
AR T ELS:
Al ] ? (¢.4)

where %[E&ﬂ now includes the transition proba-
bility for impact ionization also,

For some scattering processes the integral in
quation (4.4) can be evaluated analytically and t determined

spom the random nunber I analytically or numerically,

Jowever, the complicated form of Awk) for some of the

scattering processes ( section IV chapter I ) malkss it
impossible to evaluate the integral analytically and t ecan
then be determined from I only by solving the integral

ecuation or by inter.polation in a numerical table of A as
function of t and initial components of k . However both

n

these procedufes will prove to be prohibiiively inefficient,

1je therefore follow an alvsTnative technique “?"~ to generate
ccattering processes present in the semiconductor e include

uppose in addition to the real

, fictitious process for which

REY = 2RYO(R-K
go( RY = Mo { 2.5
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since the delta function does not allow the
electron wave vector to change in the scattering event,
this self scattsring process is of no physical sirni-
ricance and then the function AR) is completely ~rhi-

%]

trary. Including this fictitious process gquation (1.29:)

become s

pit)= { AolE 0] + ?\[Em]} %

t , /
— A B + AL RIEY]) ot (4.6)
exp {= [ 2lE®) e

and we can now choose Aolk) in such a way that
the exponential factor becomes simple. The particular choice

that we have made in our work is

3

Po®) = = MR

“~
‘.)
1

where [T is a constant.

This choice of NoR)  has the advantage that

caun. (4.6) becomes simply
| _rt

PlE) = ré (o

and so has the eflfect of simulating the motion of

slectron that has an energy independent relaxation time

an
_f[— . The constant [ is taken to be at least ag large
,s. the largest value of AR)  of interest in order to avoid

nezative values oI AolR) . It has been shown in an entirely

2 i .
matherﬂatical way that the introduction of gels cattering
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Goes not alter the distribution (1+29a) of times of

flights terminated by a real scattering process; its

s et is only Vo supdivide the real flight of the electro
g n

-

spto shorter flights of durations governsed by the »probabilit
2 T 101LITY

1istribution (4.8).

determined the time of free flight, it

Javing

is nscessary to determine the scattoring process respon
[V = —

sible for terminating the flight. S5ince the probability

of the electron being scattered by process ¢ is proportional

to 7*5(-"" , and since %Z;:\"r =T" i Xt 33 IR/l
naces.: ry to ~enerate a random number s between O and [T and
tost the inequality
s T 2
9 =0 (4.9)

for all m.

> e inequality 1is L88]
hen this ined y is satisfied, the scattering
. selecieds To increase the efficiency of cal-

process m i
able to minimise the number of gelf

ayl.tion it is desir
events 51nc@ they are of no physical interest
(]

gcat vei lng
y making [ as small as possible. For

This is achieved b

4 [4
4.1 pProcertses, further random numbers are required to

all
2l state after scattering. It 15 conven

termine the fin
(4.9). Then the energy of the final stat
5 v e

de
absorption and emission as sepa

jent t
., processes in
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is also deternined by this inequality , since the energy
chanje is either independent of the change in momentum

s in polar and inlervalley scatteringgor zero as in BOEETs
scatiering,and, for impact ionization,we have alro-dy made

the assumption that an electron loses all its enargy in the

process-

It only remains to determine the components of k
corresponding to the final ensrgy after scatiering. Acoustic
scattering and all the intervalley scattering processes are
randomizing, so that once the energy of the final state
has been determined, all states on that enargy surfres are

equally probable final states. Ilence the probability that

the angle betwsen kf and the field direction z has some
is proportional to the number of states on a cirele

value #§#

with radius | k' x sing « e can then write

PB) = Asmé (4.10)

ghere A is o normalizing constant. If r is a uni-

cormly distributed random number between O and 1 then frop
: 54,858
the Monte Carlo technique angle ® from the pProbability

distribution (4.10) is given by
)
_ o
. J Pole = = (1—¢Casb) 4.11a)
+]
e e (4.11b)
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it J_‘L]_I't}'.el’ T _I’ldOm nU.meI' Geh:*rated bet*.u'ean c ;1nd
nore conv.nient to first determine the angle P betyueen

Jrom ecun. (l.7) ol chapter I
—|

, V;J‘ 5%
B E+E=3EED o] £ Ruympdp |

& and k' .

pps e =
whiere ° is a normalizing constant. Using randonm

equally distributed between O and 1, A can be

number T
obtained {rom the equne.
g e p
{ xl l- /:O“‘I )
ve [pwelp = L2 0T ) (4.13)
o .QW‘EL*Q#)

or solving for cosp

CO;,{Z = [U+ S’) - C H-:?.F) ]/f' (i, 14)

A further random numbsr betwyeen O and 271 det~rmines

the azimuthal angle and k! 1g¢ completely specificd in the

coordinate system in which Kk 1s z axis. From this system

of coordinates one can transform to the system of coordinates

in which applied field is z axis by Buler rotationg, The
3 Tr i r 3 4 .
choice of X and Y axes is a bitrary since there is symetry

about the field direction.

For our simulation, we have used assumption (2) in
o slightly different form. Rather than take 2 single value

of Akq fOT central valley, we have used the following values.
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= «25 7 eV <8 £12 ev
= .5 12 eV < B <0

Akg = .CO5 B {7 eV
= .C2 7eV $ E<12 eV
- .1 12 eV < B < o0

This allous to take a Dbetter account of the tran-
sition probabilities for impact ionization in tho %yo valleys.
e have used 1.8 eV and .- eV as the threshold energiss for
impact ionization in the central and satellite valleys rog=
pectively. These may appear some what higher in view of the
calculated values of 1.48 eV and 2.00 eV for these valleys.

However, a 1oOkK at the curves of trangition Probabilities
for impact ionization ( curves (a) of Figs. 7 and 8 ) for

the Lwo processes shows that the transition pProbabilities

become appI‘GCiable only :t about loo eV ..ni 2,3 eV rospect-

ivelye
Fig. 9 shoys the calculated variation of itk

2. The results are in good agreement with the axperimental



——— ' i
@ ) - o
(; -
ao ) AN3DE 33300 NRRYEIRG)

{

LN

113

LLECTE



113

£
For higher fislds about 25, of

sul:-s of Logan et al.
o s |

the ionizinz collisions took place in the central v ey
Clae s

y (i | i P ~ Y ] r
ction increzsed at lower fields. The mzan free

This Tr
cistance travelled by =n 2lectron before sufferine an
(ST

optical phonon collision increased with the elsctric rielq

In the central valley it increased from about 770 2° Gt

7250 kV¥/em to about 830 AO at 1500 kV/em. In the s~tellite
valley its value changed from about 17 AO to 23 Ao. "he
maan free path value used oy Losan et al in fitting their
qata to Paraffts curve is 17 Aoo This is close to the
valucs obtained by us for the satellite valley electrons,

-Towever, Logan ct al have assumed the mean free path to be
. constant independent or uhe electric field where as our
caleulation shousan ineTease In the mean Iree patn with

an increazse in the electric +leld. 4 possible ra-son for
this increase appears to be the increasing anisotropy of
+he electronic distribution function with the inere-ze in

the slectric field.
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AT A ~ T TTT T T VT
ne OMN JUNCTIOR PO'TNTMTAL

OT -_.‘ :IL C AT D el _IRI

- 1 a—— - - ~NTY _- ST ™ ATY » -
PTON, 120D DISTRIVITION AFD CAPACT T4

o

and caleulate the elftect

of mobile charge Garriers °N LIS ential, field listributions
nd copacitence in an abrupt syrmetric p-n junctiion.

In the conventional conplete depletion ~nproximation
mobile ehnrge carriors in the depletion

the presence O
nd sharp boundaries are assumed Jor

re;ion 1s n-glected
the space charge racione € heve examined the validity of
S cnrorimqtion under various bias conditions, particularly

e e o ol
the forwesrd bicg when hzavy injsctlon of mobile charge carriers
makss their neglectlon unjustified.

in the depletion region

v (P iR GENERALIZED DITFRAMITIAL STUATI0N:

Tn the quosi rermilevel theory, the electron density

n and the hole density P are expressed hy
= ek [PLY- ) o
(5.1b)

P = iy exFEﬁ( pp‘ *Y)‘]
he potential, 5 = 1/k’ and all other symbols

JheTe *1 is t

thelr psual meaningse

have
Al ionizatio :
Agsuming complete ation of donors, the charse
ity P °P n-side becomes
aens
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pm W[ NPT
(5.2)

- introduce the normalized potential J defined Dby
U=‘3[Y’)i~?”*#’d . Using equations (5.1) and the
‘ :

propsriy i ;;gP—“;p.n '/. =Y, V being the applied voltaze, squn. (5.2)

gives

0= 3 Y Ny~ g, 2HP [ 'LZV/'Q.) S }\(U)( : ;
k - 5.3

Inserting che expression for @ from equn. (5.3) in the poisson's

- s Kal e 3
ac1ation .nd making Lrans;omnaulﬂys

\ 2\
7 = [2nigf Q”P(@V/&)) .

\ & (5 -4.1‘:‘..)
- | 2a)(~FV2)
K = N’%_ n; ) (5.4b)

.nt the one parameber differential equation for
the zeneralized potential distribution in the junction as
b2y =

parameter.

K being the

ND_TECTINICUS Of O3TATIIING 30LUTION:

3OINDARY CONDITICHNS

The boundzry conditions for U are: (1) U(0) = 0, and
- N # o .
() Ulzi— © - ginh (¥). The second condition comes from
a3 20'0 . . - =
the NOLY ; of the regions for off from the junction. T ig
n uppart hound for tile potential function. A4lso 77 = 0 is a
r'_l = [
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loyar heund for tu2 potential .unction on n-side.

% a8 o DR s . e | s =
‘he solution of the seneralizsd dilferential cquation

3

- |

(5.5) by nmiricul intecr tion however encounters the diff-

jenlty 2ot one boundory condition is specified at inlinity

nd for lafze values of z th> obtained solution diverges

rapilly 7ro the sired solution. To ovorcome This di
- ~ = [7

+he we shall be followi illorgants mnroceduare of

1=

)
)

VO

C‘.Lll i O

. & md Towver bounis for | .
leul-tins close up or and lower bounds for the Zenernlized

Jotential function . let Ug(z) denote the solution of
tion (5.5) which sntisfies the boundary conditions
. and )
= (O) - QA Ué(0> - S,Hnere s is some rea.l numoer and prime
-anotes the derivative with respect to z. It can be scen
w-tion (5.5) and the nT series expansion of U_.(z)

about +he origin that
Usg(”) - 'qu.; Yy v sg = sq) sinh (z)H ©
e, 4 & A4s e slOPE 9L TS G9SIred SULUGION vith
houndaly condition: ;- ioned the beginning oI scetion 1I,
) ig an uppsT pound for th. iruz solution if ., 3

thel’l,Usl(Z L
lower bound if 1<
15 procedure some arbitrary value s is

- 'l’]j S J ~ j (L'!-OTIJ -~ I 2] 3 1 - =
o & =2 [) - ] LGD C ] ] I

(10). Inlforan
. e T e Y e
spmed for the dorivative of U at tue origin . 4 solution is
] el
’ m .
on Jonstructed using U(0) = 0 and U'(0) = s. '’z hove used
L
: -~ Trtta method £ S ati ;
mnoe Ku or construeting solutions.

. nopth ordeT
,de whether the constructad solution crosses the
m [ Ry

A check is



115

bound or dends down t0 meet the lorar onng o
iy construeted ecurva crossss the upper houng 7. ++ con

! T 4% en
never recross it Dbecause henceforth it has g positiv

second deriv-tive and therefore remains coneave upwards where

(A

is a constant. The construet:d curve thus 1= LGP

S
in the I‘egion TNara it lies b"-'O'/' 1t
2L Ov "

uppar bound thon U

Chy

»yond the point of its crossing 7, 1s a better upar bound

s4milar deliberations apply
In the rezion before crossing z-gxis +he

an in.esral curys wileh oneg

U = 0.
conatrucsed curve is an improvenen. over the loysr hound rr =0,
“eyond the point oI cTOsSiNg, = O is a better loar bound .
go 1f o curve identifies itself by naving crossed the upper
bound, it is rejected and the initial slope s is docreased to
~nothar curves. 31milarly if a curve identifies by
ver bound U = O, the curve is rejected and the

crossing the lov

ue of initial

construct

slope s 1s increased to construct another

val
sve. The computation 1S 1inited by computer accuracy and
cu .
cime. i stopped the computation when the initigl slopes
sime.
and lover bounds differed by lags than
RS

ror the upper bound
Fig.19 deplcts the technique of obtaining tho solution

~
~J
10 =
Tf one neglects sinh (U) term is equle (003, 17 diyts
electrical neutrality ang vanishing of
anishing

ns twice assuning

~rat
o

. = Z = one ca*
the slectTiC field at some s OMe gets tho ysyal space
’l =

" : 5 |

o L0y g sreiad

sl ADPFEES F
2§ 2§ 2.,

= S.Z—Kz/y
z -2
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U@ = 2wk (K) Z7 2 ’
(5.8h)
1th the space chorse boundary siven by
i 4
B .QSwarK)\“

48] ( / )

K \Ne

and

(5:7b)

chznze in the voltzge between two contacis say

“p ns x=+1L 1is ngsociated with a chan-2 in the

»

total numbar Os mopile carriers stored in the strucinre.

tyo uvyp2S O car
tss of a capacitor and therefore the capacitance

B ri rs are equivalent to the charjes on

Tne
rt 5 two Dla

of the gtructure oeco"lu

ie 2 %ij) |

. " RGO, : .
cause the junction 15 sylme2Lric, we can
0l

L
aojx‘/ (CUO LB+~ NJJO’X) (5.9)

It

mich on using equn. (§2) becomes.
(W I1

C = _:JLf 1{'.)"() —,;'."L ( EPJJ‘> (5..:19)

The total capacitance is thus split inco two P Iis:

The neutral capacltance Ch given by

A (24 p (5.11)
S e
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nd thz spoce chirie cipacitance Cp 3ziven by

xpression for the space charge capacitance conversos
ge

2 XD
AN St &

very stronzly as £ tends to infinity. Thus only neslizible

grror will be mode if we replace the upper linmit of the inte-

~ral by infinity in expression (5.12). Using (8.4b) onc i

A _prxd =-Fh 2
. g AK RS J(t-‘ab;x) (5.13)

Also using zquations (5.1b}, and the relation %~ o= ¥ one

can write

= “rliﬁx}’('»%"’/a)d"'v)’)(— V) (5.14)

Che valuss Of p and ¢ from eguations (6+1a) and (5.23) are
ted in squctions (5.11) and (5.12). The varizble of

4

ubstitu

(6]

integration is then changed from x to z using (5.4a). Finally

+he derivetives with respect to V are changed to derivatives

‘15 rogpects to K with the help of (5.13)s Thi: 2. ults in
following expressmn.; for Cp and -p "
—Ugy J
Con = Co £ o B ( Z + 4 e +’J e l G 53
T W L D{L;*’\)J

: ) A
D eV Ul = 'bULo) — 0
= KAz WoaK) 'EL&JK) (5.16)
. L
vhere zg is the z value corr2sponding to x = f and C, i the
normalising capacitance defined by
¥ V. _
R X F—
e o ELRGIRY ﬁ! B e
: ( 4 s /‘3/4 ( ""i)
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3] 7 o L 1e dpa, T = =
In 1ntion (5.15) the differentiation with rospect 4o ( log K)
is to be crrried out for a fixed value of z. /e have talen

z = 4z, “or our calculations. To zvaluate the £irst term on

D

right hond side of ecuation (5.15), we evaluated t-eo intsaral
o

xpression mumerically for the value of K for wiich Cp is

required and two values adjacent to it one on either side.

( For example to find C, for X = 1, we evaluated the integral

W]

for K values.9, 1, 1.1) the results were fitted to a second
desree polynomial in log K wnich wns then differentiated at

the value of K for wihich Cp was required. The second and

third terms in ascuation (5.15) were also evaluanted numerically

ror the value of K for which € was required. To evaluate G

2 similer technique is applied.

TV, 23BSTLTS AND DISCU3SIONS:

Table 5.1 to 5.15 contain the calculated values of
close upper and lower pounds for U and U' for diffarent z.
Pable 5.16 contains the calculated neutral, space chage and
total capacitances for different K together with the capaci-
tance obtained by using complete depletion approximation which

has been included Tor comparison.

comparision betwzen calculated generalized potential and

Figs. 11 and 13 show the

rield distributions and those obtained by using comnplete
depletion approximation for K = 10. Under the curves marked
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X
; ~I_{;er bound ?( Lower bound }( Upper bo;nd Y Lovser bound
i A X
0 0 . 099958 . 099958
L .013119 sC13119 .08183L .C81831
4 032951 .032931 . 0669368 . 066988
.é . 045093 045093 . 054835 .C54835
jg . 055032 . 055032 0 04458 . C44505
O . 063167 . 063167 . 036738 . 036738
i°4 0.75275 ,C75275 .024611 024611
. 3 . 083356 . 033356 . 014435 . 016435
" . 0583819 .088319 011041 .011041
' , 092457 ,092457 .007 394 . 007394
- . 094594 . 094394 . 004052 . 004952
, . 096526 . 096526 .003316 .C03316
| 97619 ,097619 . 002221 ,002221,
:093351 . 098350 - 001437 . 001487
A.6 . 095341 ,098840 . 000996 000996
et




’ J} ouna ILow-r bound JUpoer bound I lower bound
. S

0 0 0 . 199670 . 199670
.2 . 036187 . 036137 163410 . 163410
oA ,065801 . 065801 5188713 .133713
.3 , 109852 . 109862 . 089432 . 0394392
1.0 , 126064 . 126064 073183 .073183
1.4 »150163 .150163 .048932 . 048932
1e3 . 166273 .166273 .032703 . 032703
e ,177039 . 177039 . 021850 . 021550
2.6 . 124230 , 184230 + 014595 .014595
2.0 . 189034 . 189034 , 009743 . 009748
3.4 ., 192242 .192242 . 006510 .006510
3.8 . 194385 . 194385 - 004347 . 004347
43 . 195816 . 195815 002903 . 002902
B . 196770 .001938 001937

. 196771




T.’:ble—S ._3

U e
Ioppar bound I Lowsr bound X Upper bound I lover bound
i |

« 162842
0 223532
» 271101,
s 310741
«369079
.407550
.- 32567
449503
.A60423
. 4675883
. 4722686
- 475367

271161
« 310740
., 368073
407549
432866
. 449500
. 460419
,4673381
472277
275353

«495120
404304
.« 3299586
. 268955

. 219004
-173164
- 117634
077477
050941
.033453
.021952
. 014398
. 009442
. 006193

« 175164
2117633
077476
050839
033450
. 021948
.01439]1
. 009432

006178
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T5ple~5.4
g K =10
I U U
I'po-or bound § To:ar Jound %Upper bound JfLowar hound
0 O C . 9386603 .S6G602
o2 . 174547 . 174547 784711 754709
v .316014 ,316013 .834817 . 634315
.G . 480255 .430254 .511668 511666
oS .522176 LH22175 .410962 LA10960
1.0 59588 .525883 « 329027 . 320025
Te . 554326 654824 . 262696 562604
;,_ 701826 .701823 . 209242 209238
1.6 . 739225 , 739221 . 166334 166330
1.8 . 768951 . 765926 . 132009 . 122004
5.0 792491 ,792485 .104628 . 104621
242 .811154 .811147 082837 .082828
P 825924 .825915. . 065528 065517
20 .337604 .837592 .051300 .051786
2.8 346834 ,5463819 .040927 . 040909
3.0 354126 . 554106 .032323 . 032300
Bl . 859284 .859859 .025521 . 025492

————

——

i ———
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2 | v
iUo; v bound X Louer bound I Upper bound ;}LO‘;JGI’ e
0 0 1.81725 1.01725
.2 . 325753 . 325758 1.45136 1.45736
.4 « 584633 .534633 L+ 14696 1.14696
o .7238140 .738140 -395569 +396569
.3 , 946433 . 246433 . 093757 «SDT757
1.0  1.08839 1.06239 .532075 352075
1.2  1.16157 1. 16167 . 405046 , 205046
1o Ll 23230 1.23230 . 306487 . 306487
1.6 1028569 1,28569 . 230799 . 220799
1:8 1.32582 1. 32582 « 173154 » 173153
2,0 1.35583 1035588 . 129532 .129531
0,2  1.37835 1.37835 . 095687 . 096636
9.6  1.40753 140758 . 053624 . 053622
5,8 1041637 1.41686 . 039373 .0393870
3,2 1042839 1.42888 .022003 .0219¢8
3.5  1.43552 1.23551 .012124 .01211.6
1.43916 . 006678 .00G863

240 143917
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N s =

S

. X 5 om0 X Tomar S T .
hound ; Lower bound ¥ Upper bound Lo:27 hound

04, Pamed

O

8¢

]

i

a

(6))

t_l
N O O

D}

=

=

-
O

k_.l

%
DO m

%]

00
0

0

(V%)
L]

0 g 3.56346 3.56346

. . 077640 877640 293717 2.23717

1.18462 2.15765 2.15765

1.55094 1.53130 3130
1.80714 1.30714 1.05453 1.05453
1.98152 1.98152 709049 . 709043
2.,09775 2.09775 . 463386 3335
2.17406 2,17406 - 305573 « 305572
2,22363 2.22363 . 197669 . 197668
2,925561 2, 15560 « 127148 .127146
2,27614 2.27613 . 081484 .081481
2.29768 2.29767 . 033255 .033248
2.30645 2,30643 .013517 .013498
2,31001 2,30999 . 005437 . 005442
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ple-5.7
I = 10.0
z i 14 L Ut
{ uoper bound {iow-r bound § Upper bound I Towor vound
i R 1 i -
0 0 0 6.47029 . 47029
.2 1.10258 1.10258 4.59268 .3993G3
: 1.86048 1.86048 3.03933 . 03933
X 5.34462 9.34462 1.37015 1.37015
5 2.63450 2.63450 1.08737 1,08757
1.0  2.89143 0.89143 .332664 R
- 2.94110 2.94110 .179372 170371
1.6 296779 2. 96779 . 095989 . 095938
1.8 2.95204 2,98204 051157 051154
5.0  2.98963 2,98962 . 027201 .027196
5,2  2.99386 2.99365 . 014443 . 014432
2,4 2,99580 2.99572 . 007656 . 007636
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z I -
% Upper bound ILower bound :{ Upper bound § lovar bound
0 d 10,4657 10.4657
.2 1.70800 1.70800 6.70143  6.70143
42,7314 2.73144 3.70034 3.70034
.6 3.26200 3. 26200 1.78610 1.78610
.8 3.5075¢ 3.50754 . 790352 790346
1.0 8.51382 3.51332 » 334458 . 334444
1.2 3.55835 3.65834 «» 138710 . 133674
1.4  3.87674 3.67672 . 057060 056974
1.9 3.63430 3.58425 . 023481, . 023247
18 3.53742 363731 . 009807 . 009234
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K = 50.0
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pner bourd i Lower bound

% Upper bound_% Lowar bound

E:O 2 e . L ° . -
NN N o

W

[
.
O

l.1
1.2

1.85740
2.04313

3.61796
4,07069

4.33439
4,463896
4,53730
4,57157
4,58862
4,59706
4.60126
4,50337

0
1.55740
2.84313
3.61796
4,07069

4,33489
4,46895
4,53729
4,57155
4 .58859
4.59701
4,60115
4,60314

19.0396
14,1493

9.665651
5.99984
341791,

1.82964
. 942590
. 475357
. 237079
117616
. 058281
.029037
.014358

12.0396

14.1493
9.566550
$.92993
3.41790

1.32004

042557
. 475312
. 236936
117426
. 057896
. 023256
. 013275
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.0bhle=5.10

ds =loo . O

]
X U Ut
i Upyer bound ‘} Loer bound i( Uop-r bourd f S
2 © 0 29. 3540 29,3540

05 1.34334 1.34334 24,3943 24,3043
216 244150 2,44160 19.5633 19.5633
.15  3.30495 3.30495 15,0317 15,0317
.20  3.95329 3.95329 11.. 0057 11.0057
.25 4.41737 4,41737 7.68601 7 68601
.30 4.73504 4,73504 5.15024 5.15044
e 4.94456 4.94456 3.34104 3.34103
A0  ©.07891 5.07891 2.11698 2.11697
45 510336 5,16336 1. 32071 1.32010
B0 5.21576 5+21576 0314648 » 814632
B0  5,26770 5426769 . 304877 . 204833
- 78 5.28703 5,28701 « 112833 «112715
.80 5.22416 5.29413 .04148] 041762
.20 529677 5.29668 .014930 .014065
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Table=5.11

K = 200.0
z | U ' Ut
%‘ Upper bourd ! Lower bound % Upper bound i Lower bound
o 0 0 44,7055 44,7055
05 1.93036 1.98636 347774 34,7774
.10 3.48354 3.48354 25.2145 25.2145
.15 4.52514 4.52514 16.5987 16.6987
. 20 5,18501 5.18501 10.0579 10.0579
S 25 5456770 5.56770 5.59812 5.59312
30 5.77518 5.77518 2.96254 2.95254
.35 5.38290 5,88290 1.50836 1.50835
240 5.93746 5.93745 757409 757393
+45 5.96474 5,96473 » 377123 «377029
.50 5.97830 5,97829 . 187337 . 187269
55 5,98505 6,93504 093694 2093555
.80 5.992031 5,99027 028537 . 027965
5.99156 5,99143 .023409 . 022950




Table-0.12
K = 500,0
5L U . Ut
s g | -
{ upper bound Lower bound % Upper bound f Lower bound
0 o 768750 76,3750
3.22132 3.22132 52.0725 52.0725
5.23844% 5.23844 29.2866 X
6.20136 6.26136 13.0513 15.0513
6.58115 6.,68115 4.,38343 4,803342
6,83183 6.33183 1.87862 1.G7860
6.88236 6.38285 561056 560977
6.89999 6.39998 .193392 . 193149
6.00644 6. 90641 .090702 .082958
e ——— o
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K = 1000.0
z % . o

X Upper vound X Lower bound f Upper bound ) Louesr bound

et o i L

0 o Y 114.908 114,908

e 4,50178 4,50178 65,4862 65,4862

+10 6.68925 6.68925 95, 0405 95,0405

.15 7.39014 7.39014 6.43397 5.43397

+20 755632 7.55632 1.39948 1.39946

« 25 2.59167 7:59187 » 291404 »291293

30 7..59201 2+59598 . 063462 . 059802
7.600556 7.80047 013601 .010993




Table=5.14

K £

2000.0

140

e —————————

.12
il4
.16

Vg

F -

.20

)
i Top .r bound Y Tover bound J Upper bound BT
i_“.“.“___L_".“__ﬂ__l"_. .

€ 170.816 170,516
3,01€67 3.01667 130,882 130.382
5,235964 5.29964 91.6856 91.6856
6.,70832 6.70832 56.2329 56,2329
7.54895 7.54895 29,6512 29.6511
7,96744 7. 96744 13.8540 13.3539
S.15624 8.15623 6.02560 G.02534
2,23694 8.,23693 2,53062 .52909
8.2708% 8,27054 1.04672 1.04518
8. 23445 8.28436 . 430781, 427010
3.,92016 8.,28995 . 178429 « 169208




Table~5.15

. = 5000.0

137

.10
o 11
12
s 18
.14

U Ut
Upper bound % Lover bound % Upp-r bound ; Lower bound
O 0 286,541 226,541
2.61547 2.61547 236.565 256,565
4,73193 4,73193 186.810 186.810
635551 64 95551, 138,290 133. 290
51127 7251127 93. 9125 93, 9124
8. 26194 8.26194 5749525 57,9524
8,7C677 8.70677 32.8674 52.8673
3.95163 8.95163 175502 17 ..55C0
9,07995 9.07995 9,03212 9.03133
9,14531 9.14530 4.55439 4.55381
9.17308 9, 173806 227224 « 27106
9, 19438 9,19435 1.2.2785 1. 12546
9.20247 9.20240 559042 554202
9.20648 9,20624 . 278283 . 263430
9,2084% 9,20821 . 141467 « 121572




¢ ]

£ {‘ Gn/g_o i ¢ /Cq B _l- Ct/Cq ca’%s

s 35.327 31 35.644 it

.2 24,490 445 24,935 692

.5 14.013 .676 14.689 012

1.0 7333 o276 8.599 1.065
2.0 5.466 . 063 4.429 1.053
5,0 917 . 949 1.866 .915
10.0 . 356 .380 1.236 b
2C.0 . 110 .813 .£23 JTHE
50.0 .028 .718 . 746 .59
100.0 .114x107L 675 .686 .G14
200.0 .468x1072 .630 .635 .578
500,0 .153x1072 .580 581 ,528
1000, 0 .688x10 " 550 4551, 513
2000, 0 .316x10 ° 2523 523 481
5000.0 .119x10"° 493 .493 GG
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ually vhe aversge walue of caleulated upp-r and

=~ ._-,_‘,..t =
"k e -

lover bounds has been plotted since it is not possible in

two bounds separately becauss they are

the plot to show the

very very close. Tigs. 12 and 14 show similar comparision

for K = 5000. Trom these curves it can be seen that the

complete deplation approximation rosults are in poor n-ree-
ment for K = 10 but they are in fairly good agreencnt for

valu> of K is inereased, the

K = 5000, In fact as the
complete depletion approximation becomes a better and betiar
approximation. For reverse blases K becomes very large and

the complete depletion approximation is therefore a very zoog

However for small values of K i.e., large

approxination.

foryard biases the a proximation is not good. It results in

much higher values of peak field in the junction for such
cases and the potantial distribution is also very much diff-

erent from the actual po.ential distribution obtalned by
taking into account the nobile charge carriers. The cxtent uy
of space charge Tregion 18 mach larger than that given by the
This can be seen from Fig. 1l In the alow

approximation.
act potential towards the neutral notential

approach 6f thz eX
ror large values of z.

5imilar conclusions about the validity of complete

depletion approximation can be derived from the comparison
3 =%
of capacicancese. Ifrom Table 5.16 a comparison of total cava-

; ' int mobile charge
citance Cp calculated by taking into account 1 g
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carrisrs )
e
velues of Jie T'rom K = 20
also it can be seen {rom
Cp 1s vary large Zor low
space caarge capacicance
K €1kl at about K = & 3t
capacitance. Illenceforth
rapidly till at K = 5000
than CP .
than Cpq for valuszs of K
izher than 2, Cp

or higher wvalucs of Ko

Yy

4 comparison of Cp and C,gq shous

d the complate deplation approsination o ~ -

nce C,q siovs that the latter is erronsous for 011

onuards the agreement is &ood .,

the table that neuntral capacitance
valucs of K and dominctes over the
s o Q. it rapidly decreases with
beeonmes equal to the space ¢narge

CP dominat.s while -, keeps falling
it is three orders of m-znitude lass
that CP is less

less than about 2. For wvalues of K

is greater than C,5 and approacihes Ccd

“ut the agresement between CP and Cug

ig good for all values of K.



Jonclusion
jh. 1 Bn".i}{ A

Appendix 3

CILJDJ{.OI' "TlrI o

146
151

157



Y. * w
&0 NG T U8I 6w

e e Y et
— —
"

2 have carrie T
ad out g study of the eioget orf various

mecnanisms on electron transport in Gads usgi
ing

se~titering
displaced laxyel.izn reaeh e fi
diasr G L L ‘ per ~Lile = _nd th[}t ar lo- :
a ¢ el ener cia
Sles
tcae pol -r optical phonon scatiering is tiae dogip-r+ i &
k =~ bd L lhoid ko R LT >

mecaanism in both the central and satellite valleys and the

velocity fleld ( v - Z ) characteristic upto the threshold fielg

is primarily governed by the polar mode scattsrine in the

central valley. Other scattering mechanisms in the central and
satellite valleys have only very small effect on this part of
Beyond the threshold field, uvnto the valley

the characteristic.
charaeteristic is mainly governed by the non-

field, thz v-3
equivalent intervalley scattering. The greater the strencth

of this mechanism the slower the transfer of electrons to the

satellite valleys, consequently, lesser the magnitude of the
tive slope and nigher the valley field.

post threshold nega
Beyond the valley field, the characteristic is dominated by
the equivalent intervalley scattering among the satellite valleys

and to a lesser extent by acgustic and polar mode scatterings.

The study of effect of lattice temperature on electron
transport shows that the threshold 1ield decreases wiull incre=
A decrease in the energy separation

asing lattice tempsrature.
between central and satellite valleys with the increase oi laitice

. - r 2 & Ea P 3.
temperature has been identified as the cause for this effect.



lowever, we nave not considered the non-parabolicity
of the ecentral valley and the uave vactor dependence of the cell
periodic part of "loch functions. For a more couplete study
these factors must be talen into account. Sinee the inclusion

of these factors mzans a zreat deal of complication in the

fornulation, the semi analytical teciiniques ( the displaced

I'axwyellian and selaxation time approaches ) appear to be

in-adecuate to deal with the problem. Only the lionte Jarlo

spproach seems to be the promising approach for theoretiecal

study ol electron transport.

In the study of impact ionization, we have tried to

provide a more rijorous theoretical basis for the calculation

of ionization coefficient for elactrons in Gads. In the con-
ventional theories of 1Jolff, Shocklzay and Baraff, the threshold
energy ifor impact ionization is usually taken as fon. OF as

an adjustable parameter. A constant ratio is assuned setween
the transition probabilities for impact ionization and optical
phonon emission. Ty3, thare is no theoretical trcatment

of impact ionization in tha literature that takes into account
the presence Of non-ecuivalent central and satellite valleys in

: s Rl "
‘le have attempted tO incorporate this Ieatule 1n our

GalAse

o

Various processes have been considercd ', -c!

calculation.
1 and satellite valleys ) and

the electrons ( in the centra
holes in Gads impact ionize. An analyiical approach hos been
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T, We nave carried out a tirme
ticn coleul tion of the transition probability
ses Co cstimate their relative

e.-2ctivene s for inpact ionization. e have found that the

waen the tronsition probabilities for impact ionization
and optical pioron scattsring is strongly energy dependent. The
ratio functions are vastly different in the two valleys. 4

central valley electron of a certain energy has a mueh higher

trangition probability for Impact ionization than a satellite

valley electron of the same energy. Also the transition pro-

hapility for impact ionization for an electron, in genaral,

may depend upon not only its energy but also on the direction

of its wave vector.

lonte Carlo ealculation of ionization eoefficient for

The results show good agreement

electrons has been carried out.
The ionve varle calculation alseo

with the experimental results.
shows that about 25 to 30% of the ionizing collisions take place

in the central valley and that this percentage 1ncreases at loyer

oo 4 B
rields. Despite the fact that there are only abouv S5 of the
fields , .ne

total electrons in the central valley at these nigh
transition probability for impact ionizgation in this valley

1 . vy
o= LFoe- ]

makes this vallzy important for impact ionization.
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SVALCATION O TITEGRALS INVCLVID IN TIE CONSERVATION EZUATIONS:

@ shall evaluate here the net rate of chanse of
momentum due to eouivalent intervalley scattering in one
of the satellite valleys- The procedure for evaluating
the net 1 te of change of electron number, momentum and
energy for a valley by other scattering mechanisms is simi-

1ar and only the final results are given for them.

e want to svaluate

2 @] (R- Kk
’[?t-QWﬂé 2)

where K is the wave vector corresp8nding to the

minimum of the satellite valley. 'le have

o
- vV =
Jr[: hnﬂe\k K )dk = -::T (2e '—)?’:wdv ‘—;‘_‘ " [f}r‘)(i k.z)j[ﬂcbtfﬁd Edu—‘m;

¥ € ) —ER Hhue b ] TRITR
+ (chl)hh(tlk') &) y ﬁ] .

&K )3 EfR - EW o ' ' K- ERS+heoe | TR/IR
Ju”vka) f 5 [ne 4 £ - €5 - e FinerE ] Efo- ERS+He ]| ]

where the Tirst term 1in (41) gives the rate of change

of momentum of tne valley due to electrons scatiering out from
the valley to other equiValent valleysg by absorpiion oOr

emigsion of intervalley phonons. The second term gives the
rate of change of momentun due to electrons belng scattered
into the valley from other equivalent valleys by absorption
or emlssion Of intervalley phonons. After interchanging the
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variaoles of integration k and k' in the second tern we

can rearrange (Al) as .
J‘ | R -RpdR = 47 (2o AY. Ze \
ot # qre v TS L

i, =

(A2)

(Net ;)jj FAR)(FE )] ERI-ER)+ hewe 2 Jk T+ Ne U fk) (k“R)Ty Gie) - - hose 4 K

e adopt folliowing transformation:

koK =¥
(432)
g = I
(43b)
and take the polar axis along k - Kye The First of the
two integrals in (42) then begcomas
Qg M g
‘)CU’?)_"U—) Hive ‘H" +h vik- K. 1"““’47 Ar Sun Bl P dak
fmy Mz (A2)
= SR ‘¢:D
r:.)d:’

gince the argument of delta function is independent
of ¢ , integration over ¢ 1is straight forvard. The only

¢
. ) : ‘ - e
non zero contribution to the integral iomes from the component

of T alonff polar axis and (44) becomes.

24 B RK )com} ydr S0kt

J Ji..
Ve make following subgtitution:
'ﬁwg+$"+ﬁ'a¥]h }COSB-’Z _
Kmy Ty LAG)
Then {AS‘) Lecemes
# 7E
7 !F f/.h TR 2 Ld he™ ma ) O(2) var A2 (A7)
|k - KJJ
)‘-—, 'h*)_.‘ )
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¥ L2 S P—
wir'd Zy = -H:-J‘, + TH O ;,‘_ 'f’ h-—-K_-{)
Here ’ .i/‘n‘-] -m“

Zy = RAwg + kv _:,)E_R&,
-ﬂma g

For the intesral ower = bo be hon vanishing the si-ns of
the lover and upper limits for z in (47) must be opposite,

This me2ans © must lie betireen % and y where

=

= Yk, )~ /1‘5 ;<i|_.‘m,t Fog amd y = )F—Eﬁ/[}{.ﬁ:—”g%%
P | B4 (49)
TTence the integral (A7) becomes
r‘
— 2 9
-—‘_ N _ ,b\' o U8 ‘ -
-‘?TTJKR Ky ) } F:’ki/(" A We _-.YLmQ )y oAy R, (1)
¥ 3
TE‘ H.‘L) ,‘_‘I ];_1?_.‘))
The 1ntegratlon over I can now be carried out and (A9)
ives Yy A
— W mg Mz fU« K) quk‘)(gl(}g)._.a;z\{ggik)—dA—'kﬂw )aR
(410)

#2 )R

Kz

Similarly integration over k' can be carried out

the second term of (A2). (42) can then be written as

in
o= — I 23 '_/;.-
"2 (2e-1) AR M (KK gk L,'W.)(Ew-@ x
& alie LA S AN (a11)
R - Ka) v,

i AT
&r)‘% *W)+rhéaﬁr¢g7Lum%- +%md_]k

One can substitute the explicit form of-fﬁk) from equn(1.20)

- i for: integration over
in (A11) and carry out the straight forward in at

3 inellyv
angular variables using dy as polar axis. Finally the

i r to integration over B
integration over k can be changed ove

where B is defined as follows

E= Eslki—o02



The esvaluation of the integral over ® can not

4

be ccrried out analytically and one has to resort to

numerical solution. The various terms in the conservation
=

equations (1.22) reduced to a single integral over & are

given belou.

INTZGRALS IIIVOLVING FIBLD :

177 2GRALS INVOLVING POLAR OPTICAL

(plk]d& =o
Lt F (412)
L ——
S g - ._‘.- i - - = =)
{ "il}ip__)]}};.-k‘- yAh = B Ny F
LLat JF (413)
TS h o5 —‘.--.;‘.L'
l o1 Ux)\ LEL‘L‘?' —/-"JJ'Jk - “—.?1 o (A14)

P

¢

PIONON SCATTARIIIGE

" ,7’3{1_(?{] :'JTQ =~ 0 g

—Tht po {215
L8
) e /=E\y (&if‘ﬁ.{; }Q{QHE
JP{LE)J(EF?‘}J;: _d{%'ninﬁf XP(‘—W!T‘J M ’—{,r‘ (115)
2t Jpo .
¢ : P ("%—TL) o
o>?° f
[D{;{R}] g k— Ax_]v’k — R *\‘"’n - fL k}qu\ ) X
NT Ga 47
55
; Y2 : L)L olE
vi(iE) p { (rVPCE ) - No S E
‘Y')‘ k’ETL
whereé ) pxp(.uh_i T )
a) ER N |
JI-(LP'L == M ;',Q u’)(éﬂ“m kBT) (Als)_

+
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C4i=!°QJ
(A18)
The functions U and ¥V are defined by
B/ . .
Ulx) = 3% |’ X Laih x —— Simh =)
| (A20)
(A21)

Vi = %! Sovhx

and the functions ¢ and Q are given by

Y
PIEY = Log (Efﬂwdﬁfﬁ‘?
' (422)

(€ + k;on)!"" £ EVQ

= Vi Y _ :
&(E) = E'[(N.,ﬂ){e"ge—m,)’~+ y Bs b (E )] N
. (4]

y -
v, 2
Mo { B (B +hug Ll K PEV]
‘e adopt here and here after the convention that the sguare
roots of negative quantitles are to be set zero in order to

omit the terms having imaginery values of ( E— Hhws -

whieh correspond to emission of optical phonons by eleectrons

with energy less than the optical phonon energy.

-1y pooe
] 1! .

- e - S O S
L) 1 "l.- -’7 I‘I- (,.Jl

yloalsydand

J ?LF_EJJ it = s
% 5 e A (424)
g 6. T et e . fL::
l }ﬁgajj‘-ﬁ"‘i)dk = o ﬁﬂ’z e X
g~ B v 3m 87 (RaTi) (425)
A
por®) y ~ 2
(== U 2E \ s (£ dE
exb \ K T [ ™m ) hg’r\ j
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(3ince we have assumed the acoustic

scattering to be elastic ) (A26)

< ."‘J._'{'

e lcz "-"/t'.—.'_‘hA ‘I?E“l) e?C)D{-%‘x

3 W Akl
2 =< ’

(427)

BGRALS INVOLVIG ”0” sQUIVALZNT THTIRVALLEY SCATTIRTIGS
‘( ; )T;lh)] 71 - - Y) _'.LL- - [ )’ r'b(_E N ;Ll*_ { H.. \E, S|E ’,
JoL 9€ £ - R S
. 4 Crens i Elie
i) o 2 (128)
‘ 1/ Py
¥ PHTC IR
“d‘ fv 4 (2L ) f\_*{; (.-) ;»}i-‘- E)dE
2 ReT;J
g TRl s e

g & v { (RE \ Kely 7 . W€
. W Ay )y Cx
J _)11"*} (R - *y /J’? -, iiif'_‘f._—"—gJu'[(m,‘)RBfRJ ¥

L

ta

(N’gl

- (“’%T_f_) A
\ 0 P 4 1))

J f’bhlk} [ k) — 8 JJ d J (—"!__E_:) foly d CEIIE F
e \"a-h) A (4 0)
3t !

ekl P P s s |

VS e e

(Re T3 )" 4y LT ReTy ) 3,3

vhere '/ },,a!‘ :

i ] €Lbl-i )

|
7 o= e e (T

L3 = _f!Z._—- 9T iy Ry T ]
4 ™ H P‘r\w«,ﬂz \ / 827

™m, )'*a b L)

Vg
L
H)?E (C+‘AL D;"% ’3)_7?

and

LTT'wL)_ ,(_,,( K’g,TL [ch
Hij

(A32)

nfe ( E“’i“‘d b hoig) —?f ]

b} IIE; J abbering Ca
tt i 24 ! = 2 n i i —_ 2 ln equlls L | L / bhrou Il
.Je lnc 1 G ™ H

= ‘0“:“08

& 2

pe obtained by
(432) and noting MNzz= Ne) Zaa’
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APPRIDIN-B,

DETIRINTATION OF THE J3GION OF INTEGRATION IN
12 SPACT
Tor ziven kl, only those valuszs of k. can parti-

cip-te in impcct ionization for which the energy ond momentum
con-erv tion egu-tions can be solved to obtain real wvolues of
.—' —'
and kl.
1 2

The energy and momentum conservation ecquations are

Iﬁb" = [cti;!/) D 1 é{,é;,)— c\-ﬁ'|) = C‘FQ}] - 0

(B1)

B Ry = By Ry |
1L ue define B
n‘+ h-? - "‘!pn

and - . o (33)
R}/‘_ R‘Q = “lr{

i 1atlo 32) becones the set
then Lhe momenvum conservation equation ( ) S

of eq-uations

-E" = EJHQ (34)
k= Ro -k (55)

and

Uging \ ¢ anG
i i % n obtain
: tion equation ) we ca
i " anerdy conserva
iq eguns (1) ( g
the masnitude o It i.8e

& 4:“( R ’
= W‘. il 5 .- 3 _ E: i ...:—-3-- = —_—;_-,\ a
R "o L e d Imi )
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2 ;
R = ™ s _ N g %, R 2 e
_;'_’ [h-(’Q’., "‘E__'hki -ﬁ (H}""k&"’@kl'kl}
\'- 3 R e e it =t
¢ (l'i" 'W‘| 4 -
\ /
2 j r ] . -
v i0n ol I» aTya B P . )
t; space prrileipates in ionization for
el ici: 1: 13 & 2 3 ] e ) -3 TITT ot -~
i 334y KeBug tlle 1 OX (77) is jre’lter tl‘-}an 2870
11e 5 ofi (\r?) c=n be I’eo.rr'tn:ed to “iva
< <
- m; — » — .2
R= - [ém')"& —a K+ YR —b R
A { ‘ ‘ ¥ o4
..ere
. k-
-3¢
d = i\_ -+ 12_.
<L A 4 R & 3)
" -~
Fmy 4m, )
aeliilne ) g (Tll)
7 = )?:: + A 4 h'
2 - - e
kK= 2 'Clk‘l)'Ei'\_“‘vlb/.\hlj \ y
£4 7

for RS of (B12) to be greater than gero, j?) nust lie

between O and Tmax where

e e L

gy R
Lo = ,'/—}: ( €R1L— E:}_— "/uk' ) (313)

Thus the region of k2 space that participates in
- 15:3 3 1 ~ 1
jonization is that for which T has its magnitude loss tian Ip,,
If we transfoIm the variable of integration from k, to T with
the help Of squn. (311) , then the region of integracvion in
L = g

- . fog iy B :n dmpact 1onization)
ki, wpace ( the resion that participates in JIpPa RS

. W , 14 ~dius . . in the
is transformed in o 2 spherical region of radius fpax

Pl

T spaCee
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