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ABSTRACT

An equation of motion for isotropic, elastic plates
subjected to transverse loading has been developed. This
equation includes the effects of shear flexibility end
rotatory inertia terms. The approach has the flexibility
of choosing the shape functions dependent on the actual
problem in hand and is capable of including the additional

terms due to the vertical compression also.

The Navier type analytical solution of a simply-
supported plate is attempted. A problem of the vibration
of a moderately thick concrete plate having thickness-
wldth ratio of 0.1 is solved. The natural frequencies of
the plate are obtained and tabulated. The load-deflection
curves are plotted for different types of pulses. The
contribution of rotatory inertia and shear deformation is
then studied for a rectangular pulse, The results are

also obtained for a steel plate.

The finite difference analgg for the equation of
motion of the plate is prepared with an object of tackling
the different types of boundary and loading conditions,
The analog is checked for the stability criterion and the
results obtained for a sigply supported rectangular plate
are compared with the corresponding analytical solution,

The method is then applied for solution of a square plate,



fixed on its boundaries. A plate subjected to a triangular
pulse (i.e. blast wave) is also solved., The time-deflection

curves are plotted for all these cases.

The solution for a clrcular plate, fixed on all
the sides is then obtained by using the polar coordinate

system.

The technique developed earlier is found to be
applicable to this problem also.
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NOTATION

The following symbols are adopted in this thesis,

a H Length of a plate

a 3 A constant used in the series solution,
B H A particular coefficient of the series,
b : Width of a plate.

D s Flexural rigidity

F(t) : Function of time

£(s), £1(s) Laplace transforms of ﬁmn and F(t)

respectively.

G s Sheer Modulus.

H s Plate thickness.,

i,},k,m,n : Integers.

n ! Dimensionless parameter used in the
solution of circular plates,

K $ Numerical factor taking into account

the parabolic shape of the shear
stress distribution.

Mx’M ’Mz’Mx : Moment components per unit length of

Yy J
the plate.
2 .2 2.2
5 . mpn % nn‘n
a p°
q : Irensverse loading per unit area.
q, : Meximum value of the uniformly

distributed load acting on the plate

in the transverse direction.



w1, v1,w

Xy Y92

X

AKXy AY, LT

E,F,I,H, M1'%QS'RNR

Shear components per unit length of
the plate.

Time paraumeter,

duration of application of the load.
Digplacement components 2long X,y,z
directions of the plate respectively,
Static deflection (em).

The unknown displacement components
of a plate meparating the variation
w.r.t, its thickness.

Virtual displacements,

The Cartesian coordinates used for the
solution of a rectangular plate.
Young's lModulus.

Finite-~differences in the x,y,t
directions respectively.

Constants appearing in the eguation of
motion relating the various plate

properties,

A, A1,m4,m41,m42 ;m43 ,p4,44: Constants appearing in the

a',a1,b',cfd1vd2oesf’

transformed eguation of motion.

The constants appearing in the

£,82,h1,h2,h11,h21,h12 ,h22, finlte-difference analog of the

m,n1,n2,pt,r, 8,81, 4R, 1 equation of motion in Cartesian

coordinates,
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The constants defined in the finile
difference znalog of the equation of

motion in polar coordinates.

The polar coordinates used for the
solution of a circular plate,
Finite-differences in r,¢ directions
respectively.

Function of time.

Average rotations of the section

x = constant, y = constant respectively,
Natural frequencies.

A function defining relationship between
ul,vi.

Poigson's ratio

Mass density per unit volume of the
material,

Normal strain components.

Normal stress components.

Shear stress components

Shear strain components,

Average transverse shear strainsg for
the section x = constant, y = constant
respectively.

Laplacian operators in Cartesian and

Polar coordinates respe ctively,
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INTRODUCTTIOMN

1e1 GaNSRAL RILIARKSS

Some systems are subjected to abrupt excitations.
Physical examples cre a punch prees, the striking of
a harmer, automotive travel on a rough road, the
shooting of a gun, gust force on an airplane and the
droppinz of a packege. The problem of dynamic response
of plates also arises in ving theory, in connsction
with turbulent boundary leyers and very coumonly in
machine design (mechanical vibration), An abrupt
excitation can cause strong transient vibrations which
arg important to aialyse if the system is elastiec. 4n
engineer mey be celled upon to minimize the edverss
effeots of undesirable vibrations, or, at other times,

to enhance desirable vibrations,

The study of a system subjected to the dynanic
impulsive loading is considered to be of great importance,
particularly when it is exposed to the nuclear weanons,
the modern aircraft industry and the miseile structures.
For a pulse excitation, the steady state response is
zerd end one 18 only interested in the transient motion

whose amplitude verietion can be repid.



In common engzineering practice, it 18 recognised
that a plate is simplest and the rost common element
in many structures, lany investijutors have worked on
the solutions of plaie problems, but, its study for a
repidly applied force, displacement, or velocity
excitation whose time duration is quite short and that
has some large first deriv:tive values (i.e., blasts,
ges exploeion, sonic booms and other accidental loads)
is very much limited. Fresent investigation is an
atterpt in this direction,

The claspical 'Thin-plate' (thickness-width
ratio € 0.1) theory fails to :ive reasonable velues
for the situations when the system under consideration
irvolves the plates with higher thickness-width ratio.
Zxamples of such systems ere the Launching pad of a
launching station, the concrete plug of en open caisson,
or, some special purpose floor slabs. The present
investigation makes an attempt in rsmoving this limita-
tion of thickness-width ratio by incorporating the
rotatory inertis and shear deformation terms in the

analysis.

It is easy to see that during vibration the elesrents
of a plate perform not only a translatory motion but
also rotaete. The veriable engle of rotation i3 equal
to the slope of the deflection curve. Thig slope will

obviously hove the correspondinz comnonents of the



angular velocity and the anjuler acceleration.
Therefore, the inertisl moment of the plate about

an axis throuzh 1ts centre of mass and perpendicular
to the respective plane will =also come into picture.
This moment is taken into account while writing the
equations of dynamic equilibrium of a plate elament,
Tuis contribution in the equation of motion is termed

es tre 'Rotatory Inertiae?,

The classical theory is not entirely satisfactory
for determining the transverse shears in a plate.
Because of the faet that ehear stresses T;z = r;n =0
is the basic assumption of the clazssical theory, the
fi nal expression for the intensity of transverse shecring
force 'y ' is a function of the poisson's ratio ');:
whila, the expression for the shaear Vy = Qy + -£¥5
is not a function of the poisson's ratic, It is
inconsistent with the gquilibrium requiremcent for the
strip of the plate. Thils fact was culled to the

attention of Langhaar(23) by ¥.C, Stippes.

The governing eguations of the Reissner thaory(1?’14'15)
for the bending of homogensous isotropic plates included
the expressions for the averege rotations j& end ﬁy
of the section x = constent, and, y = constent
respectively. The neture of the expressiones indicsted
that the straeizht liness originally normal to the

middle surface remained straight but not normal to the



deforred middle surfece, IFurther, the average

rotation of a section wazs teken as the rotation in

which normal remein perpendicular to the middle surface
plus an additionel rotetion due to the 'Trensverse
Sheer'. Referrinz to figure (1.1.1), tha total rotation
g, cen be written as

ow
g, (x,7) = = 4-9;(x,y) (1.1-a)

where, T, denotes an average trensverse shear
strain for the section X = constant, and, w i8 the
trensverse, displacement,.

Similerly, for the gection Yy = constant,

aw
#y(x.yJ= 5 * ‘E"y(x.y) (1.1-b)

The displacement at any point within the plate
in the Relssner theory were computed on the basis
that the total rotatlons ‘x and ‘y were small and
that the transverse strain ez = %E was negligible,
In the preeent investigation, ez is not assumed to bhe

Zaro.

The dynamic loads-?re fandom in time and spnee or
Al L) 1™ 0
in time orly. If the load is short compared with the
natural period of the structure, it is considered to

be en 'Impulse’, which represents the anount of energy



that must be absorbad by the system.

A good exemple of dynemiec loading condition
with a short time history is the blast wave from
a nearly instantaenaous release of enargy such as an
gxplosion. Blast waves in an air media induce three
geparate and distinct suxiliary wave functions
namely over pressure, dynsmie pressure and reflsction.
Tle y can be considered us super-imposed dynamic loeading
conditions that pley the major role in the design of

r
atructures‘1e).

The blaet waves are approximated by
triangular force-pulse with zero rise tims (Fig.1.1.2.4).
Similarly, the rectangular pulse (fige. 1.t1.2.a), the
sawtooth pulse (fig. 1.1.2.b) and the triangular pulse
(fig. 1.1.2.c) ere a few examples of such types of

anproximations.

The enalysis of pulge and other discontinuous
excitetion problems cannot be essily dons by classical
me thodes hence, the energy methods are usually emmloyed
for such problems, Jince the advent of computer, numesrical
methods have developed very fast, which render handlinsz

of verious inltial, boundary end loading conditions aasy.

1.2 HISTORICAL 3iCK GROUNDS

The problem of flexural vibration of rectanuler,

single panelled plate of uniform thickness has been



investigested by many investizators. (xaet analytical
solutions to plete problems (for thres-dimensional

case ) have not been found, except for cases where two
parallael edzes of a uniform plate are freely supported.

To analyze any other type of plates, arproximate

techniques have been employed. Of these approximate
methods, the most widely used so far huve bsen the Rayleigh,
and, the ayloigh-Ritz metnods(®?), The successbs

these energy methods depends on the accurate initiel
assumption of the waveform of the vibrating plete

under consideration.

Warburton (1354) obtained resulis for rectengular,
igotraopic, uniform plates with all tlhe combinations of
frec, freely supported and clamped adges using the
Rayleizh method, while Kenzawe and Kawai (1352 ) studied
the orthotropic plate problem for seversel conditions by
integral equation method. Huttirgton and Hoppriaun
(1958) used a Ie'vy type approach and considered the
cagse of orthotrspic plates in which two of the opposite
edges ore simply gupported. lisermwen and Rajeppa (1353)
geve frequency equations for orthotropic plates with

siuply supported, and, clemped edges.

Melosh (1363) used the principle of minimum
potential energy to obtain the finite element



formuletion for complex structures, Galleghey (1363),
Dawe (1365), Schmidt: (1368), Ldosrdo (1363), slferd

and Cherles (1370), Richaxd and cmmatt (1371) made e
significant contribution in the development of the
finjite=-2lement method for the solution of plate problemsg.

(17,32) (41)
(33)

Herrmenn y Kurata and Ghannura(BS), Raju

Deverzl and Thorne etec., have glsgo done significant
work towards the vibration study of the plate problems,
but none of ther hes made any atterpt to ineclude either
rotatory inerties or the shear deformation terms in

thaly studies,

The firet, succesaful atterpt to include the
effects of transverse shear deformuzion and normal
pressure wag made by Reiasner(13'14'15). The thick
plate theory developed by him in 1345 is significant
end is widely accepted. It is characterized by a
sixth-order system of linear partial di:ferenti=l
equations in terms of the transverse deflections, w,
and the two shear Biress resultants U and Qy.

The nature of zoverning equations permits the epeclfi~-
cation of three boundary conditions on an edge and
requires the evaluation of only two functions, Thus,
the twisting moment & __, on edges whieh are free

Xy
from sheering stresses r;y' is required to vanish,



Elemants along these od ;s may then experience

sheazr deforr ations parallel to tha edges.

Analysis of the Heissner theory have been
presented Ly Donnell, Oruckar, and, Goodier(d).
Green(1’) has shown that Reissner's equations can be
converiantly derived from the stress equilibrium
equations and the stress-strain relations. Salerno

ond Goldberg(51)

applied Relssner's theory to the
bending of simply supported rectangular plates sub-
jected to a uniform transverse load. The edze boun-
dary conditions were taken to be the vanishing of
deflection, normzl bending moment, and rotation of

the edges in the direction of the edges,

Carley and Lenghaar have also anplied the
Reissner's thaory to the bending of a simply supported
rectanguler plate subjscted to a unifornm transverse
load. In their studies, the tiird bvoundery condition
was teken to be the vanisiing of the edge twisting
monient mxy, that elimlnated the presae:ice of concen=-
trated corner rouctions w.aich were necessayy to
preserve static equilibrium in the classical Kirchoff-
Love theory. Frederick(16) presented solutions to
the Reissner's thickeplate equations for problems

concerning the bending of rectanguler plates supported

by an elastic foundation. He mode a specizl mention



about the need of three houndery conditions per edge.
an gvtempt wes made towards the study of the thick-
nass~-width parameter at wihich the inclusion of the
effects of shear deformetion and norrial pressure

could become important.

Discrete element analysils techniques including
the effects of trensverse shasr deforretion have been
surgested in recent literarure, but, have not been
investireted in detedl. Smith(is) has included the
effacts of transverse shesr in the developuent of a
stiffness petrix for a raectangular, medarately thick
plete element. Love's theory for moderately thick
plates was adgpted for tihis formulaetion, bescause the
stress resultants were expressed es distinect functions
of the tramsverse displacenent. Thus, sdditional
degrees 0f freedom associated with shear deforr ation
were not considered. The taeory using szventh order
displacement functions, which ensure inter-zleuent
compatibility and the gen:ralized nodal displacerents
was applied to four exawmples, For the case of a Boueare,
simply sunported plate with a uniformly distributed
load and a thickness-width ratio of 0,9, the analvsis
zeve en increasg in the central deflaction of 3.5
p:rcent ovar the thin nlate value. The Reissnar's

(51)

theory ‘ave an incraasa of 4.4 parcent of this

cage.
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Anderheg;en(z) developed a finite-eclement
procedure for solving: plate bendinz problems based on
a complementary enesrgy or equilibrium approach. A
two field formulation has b2en deseribed in which
the unknovns of the problem ware both the stresses
and displacerent perameters, The displacament para-
meters were La rangian multipliers which provided
spproximate inforration on the deflected shape of
the plate. Beceuss both stresses end displacement
perameters could be Specified along a boundsry, the
eneraliss found in {iie Lirchoff-liove theory such as
'{ircnoff-shear forces' and 'coacentratad corner
forces ' were not preseat, Howaver, the straln energy
due to transverse shaar doformation was not included
in the devalopnent, a2nd, the transverse shear forces
Jx and {y’ were defined by the moment equilibrium
equetions, The procedure geve resulig that were in
agreemant with the clessical theory for thin, wniformly
loaded rectangular plates with various support

conditions,

Herrmann(24) included the effects of transverse
shear deformation by employing a mixed veriational
principla. The unimown nodal paremetsrs ware the

trensverse deflection w and the three moment resnl-

tants 1, “y and ﬁxy‘ The analysis when applied



to 2 thick ecircular plate simply supported at its
outer edse and subjected to a central hole, gave
results in excellent zgreement with an exact thick

plate solution.

Clough and Fellippa(T) described a simple
shear distortion mechanism which could be incorpor-
ated into an existing finite-element formulation
without alterin:g its basic structure. The mechanism
is implerented by expressing the total rotation of
a cross-section as the sum of mid surface plus a
straight line rotation whicn represents a uniform
shear strain through the thickness., The stiffness of
a triangular sub-element is developed by considsring
two additional degreegﬁireedom due to shear distortion
of each corner node. The shear deformation degrees
of freedom are later suppressed by a static condensa-
tion procedure which 1s performed at the element level.
Thus, the structure of the triangular sub-element is
not altered by the inclusion of the shear deformation
and it can be summed with similar sub-elements to form
a quadrilateral element. The analysis has been applied
to the bending of a square, simply supported plate
subjected 1o a uniform load and to a central concentrated

load. To test the shear deformation capability a

rmoderately thick plate with a thiclkness-width ratio



of 0.1 was chosen. The increase in central deflection
over the clessi al thin plete valua was found to be

10 percent for the plate with & uniform load and 234
percant for the plate with a cantrael concentrated
load. +his is in disagreenent with Reissner's theory,
wnich gave a result of 4.4 percent for the plate with
uniform load and with Smith's result of 3.7 percent

for the plate with z eentrel concentrated load.

A finite-element anglysis for the bending of
rectan ular plastes, with a trensverse shear defornma-
tion capability has bzen developed by Pryor(G). The
field equations of the Reisaner theory are used cs
asuidelines for forruleting displacer ent functions
aspociated with shaear deformation degrees of freedor.
The procedure is similer to that deseribed by Clough

(7) with certala funderental differencaes

and ¥ellippa
such as the retention of the degrees of fresdor
asgociated with shearin: deformatioas in the structural
assembla;e snd the troatnent of three boundsary conditions
on en edge. To test the cepability of the enalysis,
results ware compsred with that of the Reissner theory
for several exaple problsms, Of particular interest

is the ability of the finite-element aualysis to satisfy
the edge condition of twistin~ wonent Mxy’ and to

accurately represent the distribution of shesr strass



B

resultents, . and Ly along an sdge. lesulis

ers in e wedlent =greerent with thosge of the Relscner
theory for maximu: displacerenta cnd for distribution
of stress resultants along supports. 1The added trans-
verse shear degrees of freedowm enable the elemant to
patisfy boundary conditions that could not be handled
by customary finite-elerent analysis,

An experimental verification of the shear
effect was nade by Goens(12). The need to considsr
the ehear deformation in the case of impaect on a beauw
has been discussed by Flﬁggész). Ain interesting study
of ti.e contribution of rotatory inertie and shear
deformation for boams appears in a recent bLook on
'vibration problems in <uginesrin ', by Yimoshenko,
Young and daaver‘57).

Dubey(3'10)

solved tlhe complete anuation of
motion for a simply supported rectangular bea: thet
included thae sheer deformation as well as the rotatory
inertie terms., He used the finite~-truneform techiie
ique(54) for the solution, ile developed a finite-
difference analog for the same, ile has sucrested for

a simllar analysis to be perforred for the plates,

Abott(36) has slso siressed the utility of the
finite=-difference mathod. He found this mathod to

be very successful in celeuloting the dynapde behaviour
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of a trolley wire overhead contact system for

electric railways.

sxtenslve studies have been done in the field
of vibration of plates. 3ut surprisingly enoush,
except Mindlin(46’47), no body hes made any atteupt
towards the inclusion of rotatory inertis zlinz with
the shear deformation in the studv of vibraetion of
plates. He deduced & two-dinensional theory of
flexural motion of isotropic, elastic plates from the
three-dimensional theory of elasticity. ihe theory
included the effscts of these terms in the same
manner as Timoshenko's one dimensional theory of bars(?7)
Velocities of straight crested weves were computed and
found to ezree with those obtained from the three-
dimensional theory. 4 uniqueness tusgory revaealed
that theee edge conditions were required. The theory
of flexural notiione of elestic plates includin: thesa
effects was aextended to the crystal plate5<47). The
aquatlions were solved epproximately for the case of
a rectan mlar plate excited by thickness-sheer defor-
cation perallel to one ed@ge. HResulis of comnutation
of resopent frequencies of rectangular Al=cut,
quartz plates were shown and compared with experimentel

datae.
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Reismann(zs) has presented a method for the
sol ition of dynanic bound:ry value oroblems of elastic
plates subjected to tire-dependent normal surface
loeds gnd/or time-dependent boundzry conditions, An
explicit, exact solution of a ring plate, clanped
at the outer bowudary end subjected to & suddeunly
applied transverse sheer foree, has hcen presented.
lie plotted the ring plate frequency spectrum and the
vaeriation of the radial bending moment at its outer

and inner edges versus time,

1.3 Pisound IRVISTIGATIONS

Although 1ind1in‘4®) hes nade a so0d attempt
towards the inclusion of rotatory inertia and shear
deformation tervs in the gquation of motion for a
plate, he hes not attempted its solution for thre
transverse deflections for any initial, or, bo mdery
conditions for any type of the loading. Since the
deflection is en important design criterion for an
enginser, eny attenpt to eveluate it precisely will be
a 8hot in his arm to produce effieclent design. ihe
present investiation aims at the detailed study of

this particular aspect.

Bosed on the prineiple of virtual worik, an
equation of motion for a plate is developed herein,

ihie approuch has been illustrated by Vlasov and



Leont'eV(GO) for the static analysis of pletes. The
iavier type analytical solution of the equation of
motion for a rectangular plete is atteupted., 4 1list
of natural fregquencies is prepared for couicrete and
a steel plate. The deflections are studied when the
plate is subjected to the forced vibrations (i;e.,
Rectangular, sSawtooth or Irienular pulses). The
indlin's eguetion of rotion is also solved and the
results are compared with the results of the present
gquation of motion. A etudy of the contribution of
shoar deformation and roteatory inertia terre is azlso

atteumpted,

A three-dimensional finite~dif erenee anslog is
then devaloped. The results for a simply sunported
plate are compered with the analyticel solution to
check the accuracy of the finite-~difference method,

A rectengular and a square plate fixed on all the sides
ere then solved for a rectangular pulse, The plate is
then solved for a trianguler pulse with zero rise time.
The govarning differential z2quetion of nmotion is then
gxpressed in the poler coordinute systen., A circular

plate fixed on its pouniaries 1is then solved.

1§ ¢
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CHAPY ER-2

DEVELOPMENT OF EQUATION OF MOTION

Based on the prineiple of virtual work, an
equation of motion for a plate is developed herein.
This approach has been illustrated by Vlasov and
Leont'ev(Go) for the static analysis of plates.

2.1 DZVELOPMENT OF THS HYUATION:

Consider a three-dimensiongl elastic plate of
thickness H. Let the unknown displacement components
of a point M(x,y,z,%t) be u(x,y,z,t), v(x,v,z,%t)
and w(x,y,z,t). Here x,y,z represent the coordinate
system and 't' is the time parameter. The displace-~
ments are considered to be positive when their direc-
tions coincide with the positive directions of the
corresponding coordinate axes (Fig. 2.1.1). The
unknown displacements are represented in the following

manner:

u(x,¥,2,t) = wi(x,y,%). ¢4(z)
v(xly!z't) = 71(nyvt)- ﬁa(z) (2.1.1.)

w(x,y,2,t) w1(x,¥y,%). ﬁz(z)

The functions ¢1(z) and dé(z) determine

the variation with thickness of the horizontal and



vertical displacements respectively and are acssumed
to be known, linear functions; whereas ul(x,y,t),
v1(x,y,t) and wi(x,y,t) are the dimensionless, un-

known displacement components of the plate.

The plate is assumed to be perfectly elastic
and is of the homogeneous and continuous material
distributéd over the volume so0 that the smallest
element cut from the plate possesses the same
specific physical properties of the plate. Further,
it is assumed that the plate is Isotropiec, i.e., its

elastic properties are same in all the directions,

It is also assumed here that there are
enough constrainis to prewent the body from moving
as a rigid body, so tha}, no displacements of
particles of the body are possible without a deformae-
tion of 1t. The Hookds law is applicable to the body;
non~linear terms and the terms of higher order are

neglected,

It should be emphasized at this stage that
in the present analysis the cross-sections of.the plate
are not assumed to remain plane during bending. In
other words, the 'shear deformations' are not
neglected. Similarly, in conitrast with the c¢lassical

thin plate theory, 'Rotatory inertia' terms are also



included.

The normal and shearing stresses in the case

of a three-dimensional plate are given by:-

"j_i = —_"ZG (1—)') '?L}:- +,"'( 'a"!' + M )J

xy = ‘yx oy T X
I S
r&z r%y ¢ (5% * oy /
- - _6_1_1 oW
sz“rxz'G(az+ax’

eref2.1.2)

where,”%,0y, 9% are the normal stress components

f;y, T&Z, U,x are the shear stress components.

Y is the poilsson's ratio.

G is the shear modulus defined as g funetion

of the Young's modulus Y gag
Y

S 2(14)




N
ot —

We also know that

fu v, - ow
=&’ &y i €= &

Xy oy z 8z @y
- QW 2u
sz ox v 0z

cee(2.1.3)

Where,

€y ey, e, are the normal strain components.

7/ .
\‘;y, \x‘;z, \rzx are the shear strain components,

Substituting Egqs.(2.1.1) in Bgs. (2.1.2), the

following expressions are obtained:

= 2G \ ov 4 b
“x -(::;;-; (1=Y) "a'yl 1‘1 +V('al;'1 ﬂ, +w1.#;)_|

Oy =26 [l T g oy (m gf o+ Q01 m]

(1-2v) oy o
e Fromd o B4 B 4]
raul 4 , ot ¥
'('xy== Tyx=G L}T { Gxﬁ1_l



not(2.1o4)
where, the primes denote the differentiation with

respect to =z,

In order to determine the displacement compo-
nents ul,v1 and wi; a cut from the plate of an
elementary column of hiéight H and sides dx = 1,
dy = 1 (Figs. 2.1.1, 2.1.2) is made. This colum

posgesses three degrees of fresdom in three direc-

tiong at a particular time ¢,

The gen:ralized equilibrium conditions of the
elementary colum considered as virtual displacements

can, therefore, be written as follows:

SRRy 4 [ T ff a2+ [ By e

2
-J‘E'g;glﬁ dz = 0
o
[ pan - 1T, dlae v S 4w

2
Y SR o -SRI
Bt 1
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ol
dz - [z ﬁg dz + f'—Eﬁx g, dz

2
-fr?ia—:} 5 dz + [ q gy dz = 0

RO <. I

where, ¢ is the mass density per unit volume of the
material end q = q{x,y,t) 1s the transverse loading

per unit area.

Bgqns. (2.1.5) state that the total work done
by all the external and internal forces acting over
the elementary colum over the virtual displacements

2
equals zero, The terms J P 2—§1 #1 dz and

ot
f*,a v ﬁE dz appearing here are due to the rotatory
ﬁt
inertia.

It may be noted that,

ux,y,2,t) = #1(2); T(x,5,2,t) = g,(z);

wi(x,y,2,t) = ﬂz(z)

for unit virtual displacements,

ut(x,y,t) = 1; Vi(x,7,t) = 1,

;1(3(’3"1") = 1,

Substituting Bgqns. (2.1.4) in dqns.(2.1.5),



the following system of partial differential equations

for the functions ut, v1 and wi are obtained -

26G »
J (1-2¥) E1

owl A
axay y + "2)]”‘1‘15

- I o(uig] + 2L 4) 6] a4 fe(f’yg1 g 4+ g;g;, #; )z

.2
- iﬁlﬁ iz = 0O
)

2 2
2G |, 6 vi : g ul
f(1-2))) \1—))) _;a 2_ ‘1 ¥ J’(% ﬁ‘g + ex‘;y ¢1 ) ]¢1dz

- fG(v1p‘: + %-"7—1- $,) p{dz
2 4
(e + E3 41z - e 823‘ #7 4z=0
1 1
oL 4] 4 ?ﬂ— #)8, oz ~ f(—ﬁ*;_-}-,, [(1-m o
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The functions ﬁ1(z} and g,(z) are assumed
to be linearly independent, and, their selection
must actually be based on an experimental law.
The elastic plate is considered to be a suificiently
thick slab, cepable of subtaining normal and tangen—
tial loads. The solution for a thick isotropic
plate ie approximated from the viewpoint of the
theory of elasticity(51). In the present study, even
the simplest model prescribed by the functions g,
and #, is expected to be closer to the reality. For
a plate resting on its boundaries for any type of

boundary conditions, these functions can be assumed

to be (Fig. 2.1.3) =
gy(z) = 522

¢2(Z)= 1.

Integration of the functions within the
limits of the plate thickness yields:

i H 3
of(;f) az = [ (5%2)%0: « K

(o]
H H
[Pz = [ (P a2 =u
o o

H
S48 0z =0
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H
of (4)2 dz =

n
e o

H., .2

I (¢,) d=
c

H { .
of ﬂg ¢1 dz = =~

It i8 agssumed that no body forces aect on
the plate and that a vertical surface load

q(x,y,t) is applied to the plate. Note that

Jalx,¥,%) #,(0) dz = q.
Thug, substituiing above relations in
(2.1.6) ¢ =

2 3 2 3
uli H 3 V1 H
T [ S e B

- g(ut.H -2 H) 4+ G(62u1 32v1) %

8x By? Yoxoy’ 12
3 0
Wp3 L <y
3t
' 2 3 2 3
20 B1->))—5--§-1— %+V(%{-‘5—‘y.$’-)]
(1=-2Y) oy

owl rar u1 H3
~GH(VI-5=) + ey * -Q-z—)

QH3 2
v



G oul 62 N
A L wl 52
[‘()+a:c B|+om (&0 -2)
" iy~ oy
- 62w1
.= 4 =
ot 1 0

s ke 3T
or,

(1-2y)

§1-v2 l:
(1=y) 5—2— +) nga;,:[ + GH(-u1 + -‘-?’&1‘!1)

+D(1--) [820.1 ﬂv €HS  a%ud
xay |~ T2 g =0 ()

(1-»)[ ; 2u1
(1 v v 8
R RV’ ) I (IR 1
y

G-27) a7 ox oy
-
D(1- [a w . o%v1 | eu?
« 2120 | w5y Td-v-fz%'lﬂ--(ii)
GH ( W - ou1
I:;fxr £L) + ('H- jl
2
-QHaW1
-5?4-(1:0 ...(111)

.+.(2.1,8)
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12(1 =)

fhere,

1s the flexural rigidity

of the plate. The terms lSrH(—m + am ):] and

|:GH (-v1 + 20 ):l in the above equations are due

to the influence of shear deformation

¢ 2 2
terns (-.;%I—. g'zul) d ('3';5{- . '@'"gi)
- at™ ot

, while, the

are evolved

because of the effect of rotatory inertia.

Differentiating Bqn. (2.1.8(1))
and Egn. (2.1.8(11)) w.r.t. ¥,

D(1=Y) 8ou1 371 Gul Pt
(1-v) == +V -| - o [— TP
(1-2v) [ 8x” ey | T
+ Do) §3u12 . 3312” _%{_3. §3u12 = 0., (21,81
- axay ¢x~ 9y _ ax ot
- E 2
DU-V} 1-)) —3- +y 5~ el - 2y
1=2y [ ax ey =2 oy 0
D(‘l—V)l— v :I 12 gPve
- = 0..(2.1.8.11
. .Qjcayz & 8y w oyat? ~

Adding (2.1.8.4a) and (2.1.8.1iia),

D(1-) }‘( V) ﬂ3u1 4-)»'-5—- 2u1
(1-2Y) wo | 8x 2

WDt X

iy

+(1-2v) & .
ix oy

]



211_-_"1 _2..‘,’_1. 62v1 62v1

eud o2
- GH (¥ -VW) et Q;g =0 ...(2.1.82)

3
Jul avi
Where, § = == + 3y
w2 e a2
Introducing the operstor Y = ;- 4 ——2- in Eqn.(2,1.8a),

D(1-))° eH> ° 2
ATl J-GHY - =~ GHvywl ... (2.1.9)
(1= 2y) L] -a:g

From £gn. (2.1.8.1)

62 w1

(2.1.10)
ot°

2 e
Substituting the value of ¥ in Eqn.(2.1.3), the

following equation is obtained:-

(1-2v) at®
2
- GH vfm-(.a"”+G
at
en? % | 2. 2 Pw B
T g TRt W

OR,
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2 ok cH(1=2y) &
5 v+ 5 8
ot (1- u) ot

| [ = 3 LAY -
i_+ [EH? (1=-2) ¢ D

(1-) -

3 4
4 =8 (1-2er) d £
12¢ (1=2)" at ]

o 2
). gt R:o -(——-%"2' e :l...(2111)

1-V) Gl 126 (1-4)° &t

The 2qn.{2.1.11) 18 the present equation of
motion, as compared to the Mindlin's equation of

motion given belows-

P 2 2
i H D 2 H
ot
+ - _1_34 —’ 1
—— w
128k at i
D 5 PR 2
& 3 a A
s 1 «a=—V" + o (Do e 12
I: KGH 12kG  at° ]? ( )

Where, k was the numerical factor that took
into account the parabolic shape of the shear

stress distribution.

2,2 CONTRIBUTION OF DIFFERENT TYPES OF EFFECTS:

If the rotatory inertia terms in Equ.(2.1.8)

are neglected, the following equation of motion (instead



of Egqn.(2.1.11) is obtained:

4 , 2 ” 2
D Vot - 2 & A 4 SHO2Y) S
8t (1=V) ot

-~

(1- 2v)

* E a-grVa

(2.2,1)

If the shear deformation terms are neglected,

the following equation of motion is obtained:

b (wd (1-22) o hg L PE(O-2Y) Pwl
DY Wl = —— —_— 7 w
12 (4_y)y  at° (1-Y)°  at?

-E"—""—l-? q (2.2.2)

1-V)

Similsrly, if both the shear deforwmation and the

rotatory inertia terms are neglected,

pohy L FHO=2Y) £e1  _ 122y L (2.2.3)
(1-v)% at’ (1=1)2 )

This equation is gimilar +to the equation of motion

of the classical thin plate theory, according +o

whi ch,

¥
D v wi +K’H—T= q (2.2.4)

51
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2.3 THICK PLATH RESTING ON A RIGID FOUNDATION :

If the plate under consideration is resting
on a rigid foundetion, the function ;52(2) as described

above will not work. Instead, a function gp(z) = s

(Fig. 2.3.1)is expected to be closer to the reality.

Hence,

H
J Pz = f-LPaz= ]
0

H Eafo?
omR)z dz = ﬁﬂ az = &

o
S
9
"
o

H
3 ,
gy an = FOSER (-
o
H
1 H
of ‘R ‘1 dgs = =~ 5
Substituting these expressions in Eq.(2.1.6)i-

2 2
D(1=Y) (1 o uil ., 8w 1 oawil
-v)—-r-c-, = GH (1 = s =5
(1-2V) ax axdy _ ( 2 ox )

& 2
D(1-Y) , 8 ui
+J.2_).(.a_x7_+av1)

Xy

3
-%{—.ﬂ—gi =0 .... (1)

D(1=)) 1v)av1 am] 1 gwl
(1-2) amoy 4 - VT -z gy )

2(1=2) P17 el &
i I:axay %—]-%‘—.:tz" =0 ..(i1)



ag

2
1 8ut . 1 2wl _ 26 (1=
GH(- 7 33 3 )=~ iy ™
2 2
1 gv1e .1 3wl SH 3w a
#OB-F i tE R 8 g FU” (141)

Differenting Egqn.(2.3.1(1)) w.r.t. x and Eqgn.
(2.3.1(i1)) w.r.t. ¥, and, adding -

N

_U_'L ¥ GH QHB 0
(1-2Y) W Vo at’

2
uf oy = 3
where, | = __gx + "_"ay1 and V = —92- + =

- 71,- GH Ywl (2.3.2)

From Eqn. (2.3.1);

26 (1=¥) CH  °wi

_ - - 2
3""” T 3 +q:|§1—{(2.3.3)

1=2V kD

Substituting Hgn. (2.3.3) in Egn. (2.3.2), the
following equation of motion is obtainedi-

YE ey T (-2y) *1 2V
+ P_l-l 2=3) 32 + @ 34 j wi
3 (:{52 2 e 186 otd
yga-( 3 2D (1-)2’3
- [1 atz - E'I-{ (1_2\‘()‘73 q (2-3-4)
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Where, the term Eg

is due to the vertical compression, Thus, in

(1-2)))

contrast to lindlin's, the present approach is

capable of including these additional terms &lso,

2,4 SXPRESSIONS FOR NOMaANTS AWD ShiBaR COLPONSHIS:

An exact solution of the governing plate
equation (£gn. 2.1.11) must simultaneocusly satisfy
the differential equation and the boundary condi-
tions of any given plate problem. Bending moment,
torsional moment and the transverse sheazr are the
various force components to be considered, parti-
cularly when the gtatic boundary conditions are
required. The expressions for these components

are obtained as followsi-

H
. H 2G
i, = J77x.g 4z = f =27 ) (1=v) %:—*1/(% + %g):lz.dz

o
H
(%Gz») (1) ZE e VG Aye w1 ) oo

GH aul . vl
B 6(1-2%) ]—_(-))) Yy :I

D(V=1 .y oul v 1
-é—_-ﬁ—} E‘.-.)'&;—'*V‘gy—:l (2.4.1)

(
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H o v ow iﬂ.
o = (1 2v) [1") P )]Z'dz
= D=1) [1_v) BVL 4 3 a‘“] (2.4.2)
(1=2)

M, = [z as - m-») gy o EL g+ By, o

0

26 3 = HB) L aV1 ]

= Taoayy 120 L™ T ey (2.4.3)
M, = oerxy.z.dz =OIHG(-§;‘7 + $)z. 8z

_ D(v-u [am aﬂ] (2.4.4)
S OIH (,-dz = @ j (ut ﬁf + ?—g{’l) dz

= on (2w ) (2.4.5)
o = £ Tpean= o S A B

= GH( —— - v1) (2.4.6)

The components Mx, M&, MZ, in the above

Xy
expressions are the moment components per unitg

length of the plate, while, Q. and Qy are the shear
components per unit length of the plate.
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b

Substituting squations (2.4.1) %0 (2.4.3) in
(2.1.8), the followinz set of equations is

obtained: -

1 3 2
oo ey =-Qx+%—. ﬁgi N EY

9x oy
_;_Ec_x_frlx - - q +;g3 : 323" oo (1)
ot
1:)( .\ :33':_ q +(H :—;%’-1- . CEEY
«l2: 4:'T)

From equatfons (2.4.1) to (2.4.3), (2.4.5) and (2.4.6)

the following equation is obtained:

“x 31
My = 6(1-2))) [ ] Exix
D(1-v) T[¢4_ i & wi
(125 Lﬁ V) _6x2 + Y ;z-] (2.48 )

From eqn. (2.4.7(1i1)) and Zqn. (2.4.8),

VP + 0" 33§1:] " # %;;

> 6(1-2y) |+ T\ T

) e |
2 = (?_%)-L [(1-.0 -5;5’1 + *gg'ﬂ] (2.4.9)



Similarly,
; 2
M 4 l' +on &g - %Eb_qx
Y "6(1-25) o ad
. D1I§» [(,_ ) Cwl L 245.1] (2.4.10)
ox
and

i [ 0, Ny 22w
A - e B - D 1- L 2 ® ‘S
- £Vl 5y T X (1-v) B (2.4.11)

The above expressions are writien in a form
similar to that given by Reissner(13). These

equations can be used for the struss analysis

of the plate.
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CHAPTER=?

ANALYTICAL SOLUTION

3.1 GINJRAL REMARKS:E

The Navier type solution of a plate simply
supported on all the edges is attempted. The

Eqn.(2.1.11) is written in the following form:

2 2 -
Ev"vz;E v PS5 41 3-4_1 wl
at ot ot
[ 62 ﬁ‘
= M1 + M — = N ’:Iq (314
at° )
where,
Pl (1-2 ) €D

B = _12'(1_)2*ET

M1 -(—-‘—z

(312

The solution of Eqn. (3.1.11) is at tempted
by the help of following boundary conditionsi-




(1) The plate is simply supported on all the
sides, thus,
at x = 0,a wl M _ are zero

at y=0,b wl My are zero

(11) The faces of the plate are tzken free from

the tangential tractions. Thus,

awl | _ - owl | _
G[_-v1+ay —G[u1+ax]_o

Hence, from (i) anda (ii),

wl(x,0) = w1 (x,b) = wi(0,y) = wi(a,y) = O

2 2 2 2
- B-;..)})L? +V -;%}'1] =-D [(1-1/)%—"’% PIVECR N B
8x y y

x=0,a %" J=0,b

(3.1.3)

For these boundary conditions, it is seen that,
whatever functions of w! may be, 1t can always be
represented within the limits of the rectangle by

double series

o0 oo
X , n
L m£1 n£1 $up+ Sin 5E . sin S (3.1.4)

where, the sine functions, Sin EEE and S E%I .

are the 'orthogonal functions' and ﬁmn is a function



of time. m,n are the integers.

Performing the vaerious differentials on the

Bgn. (3.1.4), followirig expressions zre obtained:

2 oo oo 2 2
3 wi m-x mEx n
- = E z ( — - ). Sin St Sh —y
axé m=1 n=1 "mn a‘e a '
2 oo o3 2
8 wi n'w ns
= £ £ g (= ). Sin == , Sin
oy  m=1 n=1 B b
4 © oo 4 4
3wl It " T mnx y
—4 z z ﬁ . ' . sin . Si
ax4 m=1 n=1 ™ a -
4 oo o 4_4

4 o o 2 2
0wl = : ¢ g (-5F ). sin EEX g1y DAY
ox at2 m=1 n=1 e a = b
o "wi 3 5 ‘ ( n_n ) Si mx nny
6y2 at2 m=1 n=1 b

2. o R mx n

W mmx T
.g?_. -z [z o, Sin T . sin BEY
o' . T % d sin B2%  sin B

at =1 n=1 &0 &

Where dot represents differentiation of g

with respect 1o time. Substituting all these



derivatives in the equation of motion (Bqn.3.1.1):

© 4_4
<o m T mirx nx
D !;.-_1 nzr,1 g = sin =% sin 35

@ oo 4 4
+ I g —Tn" . Sin ZX | gqn 2RV
m=1 n=1 .y -
e =@ m2 n2 Il21t2 X nny :’
+ 22 z ﬁ . Z 2 -Sin e Sin .
m=1 n=1 - a b -

s ) oo ’e 2 2
= B n R nm
- - .S =
E |z g ( - ).Sin Sin BLY

m= 1 n=1 = a b
vz e ﬂ (-"72-’52)3111'“—’“‘-5111 M_I
m=1 n=1 & b & L.
% 2 Y mRx nny
n=1 n=1 = - b
+ I £ L g, Sin B gy DLV
m=1 n=1 = =
& 2
= [hﬁ +“;;2"NVI q (301.5)

The above equation is now solved for the required

get of the Initial conditions.

3,2 FREE VIBRATIONS:

From the definition of free vibrations, it

is known thal no loading exists on the plate ,i.e.,



q = 0. ZEqn.(3.1.5) is thus modified as follows:

oa @™ a8 _ mz_u n2“2 .-
z z It‘m+LE("*“§"+*T)+F:]I‘m
m=1 Il.=1 a bb
2 2.2
m % n"n 2
+ [D( ) h2 ) 1 dmn
sin B2 sm Ed =0 (3.2.1)

Multiplying both the sides of &gn.(3.2.1) by
Sm"..’..'%‘-.’i .dx. Sin 1—1-;-51 dy and integrating in the

1imits from O to g, and from C to bi~

r.

: 2 2 2.2 . B
"zfil-"mn* [B(’Lﬁ--r ’-l—bf- FLE

2 2 2.2 '
Do 5F + 23 2 ¢ml|= 0 (3.2.2)

2 2 2 2
Puttingp=gj§t—+n?f" ’
Ify, + (Bp + F) f, + D p° g =0 (3.2.3)

_ 1A t
For the case of harmonic motion "um = e 'mn
Thus,
LAY - @ +BN® +® =0 (3.2.4)
m mn

Solving lgn.(3.2.4), the following expression

for various natural freguencies }\m 1s thus obtalned:



i i

(8p+F) + |(8p+F)® - 41 Dp?
- - p— (3.2.5)

The natural frequencies will obviously be
differsnt if shear deformation and/or rotatory

inertia terms are neglected.

If rotatory inertia is neglected, the Egns.

(3.2.4), (3.2.5) are modified as:

Dp2 - (Bygep + F) %xznn =0 (3.2.4a)
and, ,
A D2
Aoy = - E_ﬁ—_NR'p"'F (3.2.5a)
fD

Where, ENR ol &

If shear deformation is neglected,

Dp? - (Bygp+E) A2 =0 (3.2.40)
and 5

A = 'tj:'u;% (3.2.5b)
Where'

NS = 12 1=y

If both the shear deformation and rotatory

inertia terms are neglected,



[ESnS
s 5

2
Dp? = F\> =0 (3.2.4c)
and
523

An attempt is made herein to study the effect
of rotatory inertia and shear deformation terms on
the various natural frequencies of a moderately
thick steel and a concrete plate. The effect of
these terms is also studied in the equation of

motion proposed by Mindlin(45),

3,% FORCED VIBRATIONS:

Phe loading function ¢(x,y,t) can be expressed

as

a{x,¥,t) = alx,y). P(t) (3.3.1)

where F(%) = function of time

a(x,¥) = loading function of x,y only,

Iet a(x,y) = &£ ¥ a_ . Sin BEE gy BREY
lIh'l:‘l n=1 gt & in b

(3.3.2)

where, a_, 18 a constant,



R Yot

To calculate any particular coefficient

emin1 of this series, multiply both the sides of
niny

Bqn. (3.3.2) by Sin B T by and integrate from O

to b, as follows:

b oo
S a(x,y). sin BIEL gy - §mz1 a., Sin 2 _.(3,3,3)
o =

Multiplying both the sides of above equation by

sin B ax and integrating from O to a

8 P . omlnx nix ab
of of q{x,y). Sin e Sin -?-1 dxdy = ol Yo

Performing the integration indicated in Eqn.
(3.3.4) for a given load distribution, the coeffi-
cients Bpqny  2L° found. The given load is represented
as a sum of partial sinusocidal lOadings(50’58). The
deflection produced by each partial loading is
being calculated and the summaiion of such terms is

the total deflection, Hence, the equetion of motion

Bqn.(3.1.1) becomes :

E oz FIBy, +(Bp+), + Sin REX n
iy aly I I ¢ D, | st BE i 2

= [ M + M—E—i-z - 9V ] alx,y) F(t) --- (3.3.5)



The above equation is solved here for the
uniformly loaded plate, i.e., q(x,y) = ¢y For

this loadlng value of constant 8rqpny 18 given

by:
o minx ni
fminy = 3 S S ape Stn B sin MY axay
0D O
I
T em—— (3.3.6)
1T mm
° 2 109 ommx o onay (s o« -
qx,y) = & I 5= Sin == 8in = (3.3.7)

m=1 n=1 7

Substituting the value of gq(x,y) in Bon. (3.3.5)

o:‘a g % = o > m Yt
mi1 n§1 CI.¢,, +(2p+F)f + D" 4 T Sin —?Ea Sin —SI

16 q e
= £ = = [ F(t)-l-MI'('b):[Sin-!-l%J-c.Sinn—’E‘x

m=1 n=1 T 1m

(3.3.8)
Multiplying both the sides of Eqn. (3-3-8) by
ape m12x dx. Sin E%EX dy and integrating from

0 to a from O to b, the following equation isg

obtained:



loD
X

s .2 .o 16 a s
Ig_ + (ip+F)F + Dpod = ——2 (WF(t) + w#(t) ]
T Hm

(3.3.9)

The solution of Eqn.{(3.3.9) is attempted for the
following initial conditions:

Initial displacement, velocity, acceleration

and Jerk are assumed to be zero, Thus,

d(x!y'!o) = p;(x:yro) = 3(3(937!0) = ﬁ'(x,y,o)z O

(5.3.10)

Taxlng Laplace transform of both the sides of

Bgn.(3.3.9 ):
" 3 5 ; e
1 [s*.£(8) - 5°¢(o) = 5° glo) ~ 54(0) = g(e)7]

+ (@p+F) [5°£(8) - S4(0) - #(0)] + Dp2.2£(S)

16(]_0 i Sz . )
= I M S) - S -
7= Cs £,(s) Flo) -~ Flo) J+ m.r,(s)j

(3.3.11)
Where £(S) = L(g,) end £,(8) = L[F(t)].

Introducing the initial conditions Bqn,(3,3%,10) in

the transformed Lqn, (3.3.11):=



|
e

16
£(5) [[15%+(2p+F)PL+mp? ] = -?3 [01s® 4101 )2, (S)
T am "

~MS F(o) - MP(o) |-(3.3.12)

Eqn.(3.3.12) is now solved for different types of

pulses, as follows:

7,3, 4 RAECTAWGULAR PULSE:

A rectangular pulse of ma.mitude % acts

on the surface of the plate for a duration to .

For this pulse,

Ft) = 1 for t < to
oo (B B.A0 )

F{{) = 0O for t > <o

Talkking the Laplace transform of this funection,

L [P(t)] = T [u(t) - u(t-to) ] =% [T e—to.sj

(3.3.42)

Thus, i'I‘Om Eqno (3. 30 12 )'

1€ ]
£2(s) [1.5% + @pam)? + pp® ] = 2 [L. 25
T m

or,



16q i 1 - -to,
£2(S) = = 0 (3 ~ ¢
7t In 2 2
(1s*+(Ep+F)s® + Dp?)
Or,
]__ _ e_-:bo.S )
16q, . M1 . 3
Blie - I 2
k14 >, = 1
(3.%.43)
Lats
2 Ip+F |2 i
Py = ( E; J e 2%-
2 Ep+F
my = 2T " P4
2 Ep+F
55 TPy
Eqn.(3.3.43) 13 thus written as
1 8-to.S
P 16q, b1 [w~=9q—1
£t ==y
wml () ()
Or,
16q, M1 ‘{ 1 1 : l_ |
£(8S) 5 " Trwe 8
e m (q4-mi) 32+111“)“ S +q‘4 LT



o
j S

f(s) = 123‘0“1 5D E"'_‘_212 - ]
n mnI(q4—m4) S(8% 4 ) S(;?+qL)

-t0.S5 -t0.S
L 2 ‘ (3.3.44)
+ -

s(s +1114) S(3 +q4) 1
Use of partial fractions gives
—e— = 5 [3- 7251
5(5° +my ) mg 5% 4
and

00(3‘03.A5)

1

1 l S
P By 7 L 3- . i
Thus, from gn.(3.3.44)

1 S \
() = 4 {F (G- g - h- g

vm4 S +m4 q_4 S +q4
+ ——:E;;E~ S _Eé___) - E:E;L?. 1 s )E
<3 2 ~
m4 2 S I, Qg S 52‘"‘“54 _l
(3.3,26)
whare

’ 16q°.m1
A = =3




“
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Taxing Inverse Laplace trsasform of Sgn.(3.3.46),

and, making use of the second shiftinz theoremn;

g = A,!—%—(‘I-Cosm“.t) - —%— (1-Cosq,.%)
- (= q +
* 4
+ ;u%- E1—Cosm4(t-'bo Yeu(t-to0) -.1
4
- =~ [1-Cosq,(t~to).u(t-to) I  (3.3.47)

q i)
4

Note the discontinuity in the response that is being

caused because of the discontinuity in the applied

force at t = to.

For t < to, the Egn. (3.3.4A7) gives

dmn = A E;%—(1—Uosm4.t) - E%— (1-Cosq4.t)] (3.3.48)

4 4
while, for t > to

L . o
g = A{::i— I:Cosm4(t—to) - bosm4.t:[

1 ;
e ?_ [Cosq4(‘t_t°) - Cosq4.t .1]! (3-3;-&9)
" =

thus, the transverse displacements are determined asi
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]

w(x,y,z,t) = W1(x9.}'it)'42(z)
- onx nn
m£1 n§1 B+ Sin =I= | 5in &L #,(z)

(3.3.410)

Bgn.{(3,3.A10) sums up the various terms and
thue zives the total deflection for a rectangular

pulse of magnitude gq, and duration to.

Z¢3 AN Rotatory Insortia and/or Shear Deformation

Neglected:

Equn.(3.1.4) satisfies all the boundary cond-
itions (Bgn. 3.1.3) and also the equations 2.13
to 2.15 {Chapter 2). Only two initial conditions
are now required for the complete solution., The
initial dieplacenent and velocity sre assumed 1o be

Zero.

If rotalory inertia is neglected,

1 6(1. e Ilri

(3HRp+F)i;n - Dpzﬁmn = ;g;i"‘ P(t) (5.3.4N1)

Taking Laplace transform ané its Inveree, following

expressions are now obtained for t < to

by = 41(1-Cosm, . %) {3.3.412)



for t > to

= A1 [Cos m, 4 (t-=to) - Cos Myqe¥ T (3.3.4n83)

Vhere,
2 Dp?
m =
+ By g ¥
«« (3.3.404)
16q_. M1
A1 = g—~2-—g"'
n o Dn

If shear deforuationds neglected, idgn.(3.3.AN1)

is modified as:

i% & 16q°M1
(Byep + FlB oy + Do B, = = — CF(t)  (3.3.405)
Trus, for % £ to
B = A E-Cos(m42.‘t):] (3.3.416)

and for t > to,

B = A1{Cos m4_2(‘t-to) - Cos my,t ) (3.3.4n7)

Where,
2L mE
42 SpgeP+F

Similerly, 1f both the rotatory inertia and shesr

CMy o

.



deformation terme arc nezlscted:

ﬁmn = A1{1-Cos m43.t) (3,3, AN8)
t £ to
= A1(Cos m43(t—to) - Cos m43.t) (3.3. AN9 )
t >to
WNnere;
Mz = F

The transverse displacements are then determined

by Eqn.(3.3.410).

3,58 TRIANGUL R PULSE:

For a trian-ular pulse of magnitude q, ard

duration 2 to,

F(t) = t/%o for t < +to
= 2 - t/to for to £ t £ 2t%o
=0 for ¥+ > 2to

(3.3.B1)

Taking the Leplace iransform of this function

£(8) = =g [1 472005 . gg0e57) (.3.82)

o
YY)
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Thus,

1 1 A
A.f (S) .[__'_'-—"' — J = - A
L 2 puf 2 v .
S +1y S '0-(1_4 t0.5°(S +m§) to,g’-(s-?ﬂg)
+ W M b A'e_?to's - 4.9,e %08
t05%(5%+u5 ) tos?(+q2)  tos (el
-t0S
A.2.8
* Bra (3.3.B3)
to.52(52+§§3

Or,

1 - 1 = A 1 = 1
A'f‘l(s) E?.,?i 52+qi :[ C1:0.1112 (? ?ﬂni)

4
A ( 1 - 1 - ) + A.e-Zto'S ( 1 _ 1 )
to.qi g% §2+q4 to.mi 55 S§+mi
Are.-z.to's ( % _ 1 e A.2.e'_t0n S( 1 ) 4
to qi S 32+qi to.mﬁ EE S°+mi
~t0.5
A.2e ( 1 = 1 ) 1 (
* B35 Y- 3.3.B4)
to.qi Ez S +q,

paking Inverse Laplace transform of the above

aquations

A [t - Sin(mg.t) ] _ 4 Sin q,.t
dmn = to.m" [ m4 J Eo_q24 Ct - -E%. ]



—4& — [Qt-2t0)-5in 1-2—

m, (t-2%0)
+{ syl — A
to.m4 4 to.q4

Sing.{t-2t )
HQQ( 0):1} u(t_gto)

[(t-2t0) =
%

{ Sin m4(t-t0)

+. = 2 [ (t-to) -
[ to.m4 m4

Sin q,(t-to) ||

+ —24-“—-,2- C (t-to) - ]J u(t-to)
to.q4 9
(3.3.B85)

Note the discontinuity in the response at two
points which is due to the discontinuity in the

applied force at t = to and at t = 2to,

For %t £ to, Ggr.(3.3.B5) gives

Sin m .t ’ Sin .t
A 4y _ A 9y
= sy (b= ) = —Se— (b - )

¢ - to.mi m4 to. Q4 4
Sin m,(t-to)
& ._2.2‘—2 [{t-to) - m4
tcn.m4 4
Sin q, (t-to)
+ =25 Llt-t0) - - (3.3.B7)

ey
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o8
and for t > 2to,
i - i - Sin m,.t . 28in m4(t-to) ) Sin_?g(t-2to) ]
Sl TK 4 "4 .
4 4
\ A (2 Sin q4(t—to) . Sin AQpet . Sin q4(t-t32
to.qi 4 94 Ay

(3.3.88)

Thus, the transverse displacements are determined

by Eqn.(3.3..k10).

3,3C SAWTOOTH PULSE:

For a Sawtooth pulse of magnitude 4 and

duration %o,

F(t) = t/to for t < to
= 0 for t > to

¢« (34361 )

Paking the DLaplace transform of this function

£, (S) = ! I 1=(to.S + 1) G"to'S_T(3.3.02)

to.S?

Thus,

N I R L e A R T
A.f,(8) m W to.mf o



_ A r '__21_2-_-1._ kbl S T )
to.gi Ef S +a, to.mﬁ E§ 82+m3
-%0.5 ~-%0.5
A, 1 1 A, e
B b~ Rl sl R
0°q.4 ﬂ4 m4 S-HII4
-t0.S
A, : 1 s
+ 28— (- ) (3.3.03)
C].4 +q-4.
Taking Inverse Laplace transform,
ﬁ’ _ A (t _ Sin ml.t ) _ % (t Sin q‘.t )
- 2 n 2=
" to.nf 4 to.qj a4
Sin m, (t-to)
- —2 - [ (t=t0) - & T u(t-to)
to-m4 m4
_ Sin q,(t-t0)
¢ =R [C(t-to) - 4 TJ.ult-to0)

g
. u(t-to) (3:3:04)

s _mg-—[*t-cOS my(t-t0) ] u(t-to) + —4 [i- Cosg, (t-to) J
4

Note the discontinuity at t = to. Thus for

t £ to;
Sin m,.t Sin
1 4 1 s T,
#imn Eto.mi = to.qy ( Qq )

(3.3.05)



for t > to;
Sin m,.% 519 et
g = A-Y——"-Q—('b— L) - 12 (t-——qJ—)
st , to.m 9 to.q 4
1 4 4
Sin m, (t-to)
- 1 [ (t-to) - 4
to.mi "4

Sin q4(t—to)

+ — [(t-to) -

to.q4 q
- = (1-Cos m,(t~t0) + ! (1=Cosq (t-to)ﬂ
;i' 4 ;i 4 \

(3.3.06)

The transverse displacements are then determined by

zgn.{ 3.3.410),

e
29
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CHAPT iR—4

DEVELOPMENT OF FINITE DIFFERENCE ANALOG

4.1 GELERAL REMARKS:

The equation of motion (Equ. 2.1.11) has been
solved analytically (Chapter 3). The major diff-
iculty in solving the boundary velue problem gover-
ned by the equation consists in finding e proper
combination of the displacerent components that
would exhibit the property of orthogonality which
is ecsential in obtaining a solution. For this
reason, even the analytical solution of a

fixed beam has not been found yet(10),

For a plate simply supported on all the sides,
the boundary conditlons are homogeneous and the
loading can be expressed mathematically. Thus,

the orthogonal 'sine' functions could be used.

The numerical solutions are expected to be

adaptable to different types of boundary, initial,

or, loading conditions. The finite-difference

and the finite-element methods look to be the two
most powerful methods. The finite-element approach
is viewed as minimigation of a functional without

reference to the differential equations, while in



the finite~difference approach, the governing
differential equations are approximated without
reference to the functionals. What happens in a
finite-element is determined entirely by nodal
displacewents, while in a finite-difference mesh,

there are nodes outslde each element, -

Available  information suggests that there
are types of problems to which the finite-differ-
ence method is better suited than the finite-
element method and vice versa. It appears that
neither method will wholly supplant the other,
For a ziven number of degrees of freedom, both

appear capable of about the same accuracy.

Iets computer time and storage capacity may
be needed to generate the solution by the finite=-

difference method. The solution of the present

equation of motion (Eqn. 2.1.11) is now attempted

by this method.

4,2 FILITE DIFFSRWNCE FORM OF THS EQUATION OF MOTION :

Finite-difference analog to Sgn. (2.1.11) is
developed from standard central difference operators,
fvery standard book on the finite~difference methods,
for instance, 'The Computing Methods - Vol, II',

C
by Berezin and Zhidkov(“) containsg these operators,
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The operators required by the pregent equation of

motion are:

g 21 R . Cwt (x=1,5,841) = 2wl (x,y,t+1) + wi(x+1,y,t41) 7]
0x (4x)

= 7 Tw1 (x=2,y,t+1 )=4wl (x~1,y,t+1 )+6wl (x,y,t+ )
ax (ax)

—4wl (41,7, t+1) + wi{x42,y,%+41) ]

B 1 .
v . Cwl(x, ¥, t=1)=-2wi(x,7,t) + wi(x,y,t+1) ]
ks 2
ot (4t)
g wil _ 4 EW1 (x,yst“a)'4W1(x:yyt—1)+6’”1(xyyyt)

st*  (4%)
~4wt (x,y,t+1) +wi (x,y,t+2 )J

a4\2q1 = );(4 - [ wi(x=1,5=1, t+1)-2wt (x,y=1,%+1)
ox 0y AX y

+wl(x+1,y=1, t+1 )~2w1 (x=1,y, t+1)
+4w1(%y, t41 )=2wi (x+1,5, t+1)

w1 (x=1,y+1,t+1)=2w1 (X, y+1,t+1)
4wl (x+1,y+1,t+1) |

4
gwt . 1)4 C wi(x,y-2,t+1)=4wi(x,3~1,t+1)+6w1(x,y, t+1)

4
e Uy w
y ~4wl (X, y+1,t4+1 Yewi (x,y+2, 641 ) 1

4 1

awl . wl (x=1,y,t-1)=2wl (x,y, t-1)+wl »

axzatz (Ax)z(“)a I: Vs R ) (x+1,y,t 1)
=2w1 (x-1,y,t)+4w1(x,y,t)—2w‘l (x+1,y,t)

+1 (X=1, 7, 541)-201 (2, 7, 541 ) 4w (41,3, t41)



=%

a4w1 2 1
ayfotc (ay)P(at)®

2wl (x,y=1,t)+4wl (x,y,t)-2w1 (x,y+1,t )

Cwi{z,y91,t=1) <2wi(x,y,t~1)+wl (x,y+1,t=1)

4wl (X, y=1, t41 )=2w1 (X, y, t+1 )+w1(x,y+1,5+1 ) 7]

2
g - = (1”3 Ca(xyyit=1)=2q(x,5,t) + qlx,y,t+1) ]
ot A

2
= = [alx=1,5,t) - 2a(x,5,t) + q(x+1,5,%) ]
ax (ax )"

_,3. F E q(x,y=1,%) =~ 2a(x,y,t) + a(x,y+1, t)j
v)

Where, 4x, Ay, At are the respective finite-differ-
ences in the x,y and t directions.
Introducing the above =Xpressions in the squa-
tion of motion (Egqn.3.1.1):
|_

D 1 y Cwi(x-2,y,t+1) ~ 4wl (x=1,y,t+1) + 6wi(x,y,t+1)
I(AX)

- 4wl (x+1,y,t+1) + wi(x+2,y,t41) ]

+ (A1)4 L'-_ w1 (K.Y-'2:t+1) _— 4-w1(X,y-1,t+1) + 6W1 (xsy|t+1)
y

- 4wi(x,y+1,t+1) + wi(x,y+2,%+1) 7]

(m Cwt(x~-1,y=1,t+1) = 2wi{x,y~1,t+1)

+ wi(x+t,y-1,5+1) = 2w1(x=1,y,t+1) + 4w (x,¥,t+1)



- 2vi1{x+1, ¥, t+1) + wi(x=1,y+1,t+1) = 2wi(x,y+1,t+1)

+ wl(x+1, y+1,t+1 )j’;

1(x=1,¥5,5-1) - 2wl (x,y,t-1) 1(x+1, ¥,
- B Tt " IR b RIS

-~ 2wi(x=1,y,%) + 4wi(x,y,t) - 2wt (x+1,y,t) + wi(x=1,y,t+1)

- 2wi(x,y,t+1) + wi(x+1,y,t+1) ]

" (4y1)2 (A“g C wi(x,y-1,t=1) = 2w1(x,y,t=1)

+ wi(x,y+1,t=1) = 2w1(x,5-1,%) + 4wi(x,y,t)~ 2wi(x,y+1,t

+ wi(x,y=1,t+1) = 2wi(x,y,5+41) + w1(x,y+1,t+1)]}

———-2- E w1(x,y,t—1) - 2W1(x!y't) + W1(X’Ylt+1):l
(4%)

4 =t C wilx,y,t-2) - 4wi(x,y,t~1) + 6wi(x,y,t)
(4t)

~ 4wl (%, 7,841 ) + wi(x,y,t42) )

Eq(xvY: t=1 )-2[1(3{’3’;17)

M
= M1.Q_(Xsy!t) + (At)2

|
+ q(:c,y,‘b-i-‘l)___l - f*]

(:x)g EQ(X“1ly!t)-QQ(X,y,t)

# aGertyys8) I+ Ze Latoy=1,8) - 29(x,,%)
+ alx,y,+1, t)_‘_[j

.(4.2.1)



Rearranging the terms of Egn.(4.2.1):

a'wl(x,7,5) + b'Lwi(x=1,y,t) + wi(x+t,y,t) J+ £ [wi(x,y=1,t)
4wl (x,y+1,t) J+ e [wl (x=2,7,t+1) + wi(x+2,y,t+1) ]

+ e[ wi(x,y=2,t+1) + wi(x,y+2,t+1) ] + n1 [wl{x=1,y,t+1)

+ wi(x+1,¥y,t+1) J+ m2[wi(x,y-1,t+1) + wi(x,y+1,5+1) ]

+ h2.wt (X, ¥y, t+1) + L wi(x-1,5-1,%+1) + wi(x+1,y-1,1+1)

+ wl(x=1,7+1,t4+1) + w1(x+1,y41,541) ] + a1 wl(x=1,y,t=1)

+ wi{x+1,y,t=-1) ] + @[ wi(x,y=1,t~1) + wi (x,y+1,t=1) ]

+ h1.wi(x,y,8-1) + gL wi(x,y,%42) + wi(x,y,t-2)7]

p1.q(x, ¥y, t) + *[ alx,7,t=1) + q(x,y,t+1) ]
+s|:q(x-1,y,13) + Q(xryst) +Q.(X+1!yl't)j

+ a1 [q(x,y=1,t) + a(x,y+1,t) ]

eoe §4.2.2)

Where,
48 4E 2F 61
a' = - B - ar )
(ax)"(at) (ay )P (2t )° (At)* (at)
. 28

=(Ax ) (st )



mm,

20
3;’)F‘;(«£tt)"2
e = -—D—z
(4x)
e = 2
y)*
nt = - 42 - 4D 5: Ez 3
)t (x)Py) Gx)(t)
R 4p _ _ _4D - £
RE =T Gt uxPy) Gy Plas)?
25 30 s o el
B e P (et ) Par)? ) @R ()t
6D 6D 8D 25 2 oR
B2 = g Y L)F axPlay ) xP et (ayP(at)
LB Al
(2t ) (at)?
a1 = - £ 2
(Ax)z( at)
3
@=- (ay P (at)°
I - P——
™= ax ) (ay)*
. S
8 = Tas)
oN 2N _ ZM'T
pl = 1 + -—(“‘)2 * y)E (at)
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(ax y4
r = M
i (2t)
N
1. ;
° (ay )

i 5 o{d:2:3)

It is to b2 noted that the finite-dlfference
approsach 1@ besically one of developing an zlgorithm
or recurrence formulz, which predicts the deflected
position of each node at sowme future time t+2,
based upon the knowledge of deflections at times
t+1, t, t-1 and t-2. The 2qn.(4.2.2) is re-written

in a form suitable for the programulngs:
Wl (x, 5, t+2) =-1E {p1.q(x,y.t)+rE1(X.y.t-1) + qlx,y,t41) ]
+ s[g(x-1,7,t) + qlx+1,y,%) J+s1[a(x,y-1,1t)
+ q(x,y+1,t) ] - a.wil(x,y,t-2)-a' w1 (x,y,t)
- b [wt(x-1,5,%) +wl(x+1,y,t) ]
~ Fwl(x,591,t) + wi(x,y#1,t) T « ¢[wl (x=2,7, t+1
+ wl (x+2,y,t+1)j - e tw‘l (x,y.2,t+1)

+ Wl (x,y42,641) 1 = w1 [wi(x-1,y,441)
+ wi(x,y+2,t41) I = n2 et (x,y-1,t41)



+ wi(x,y+1,t+1) |- h2.w1(x,y,t+1)

- [ wi(x=1,y-1,t41) + wi(x+1,y=1,t+1)
+ W (x=1,5+1,5+1) + wi(x+1,y+1,t41) ]

- 81 [ (=1, t=1) 4 wl{x+1,y,t-1) 7]

- a2 wi(x,y-1,4-1) + wi(x,y+1,4=1) ]

- h1.w1(x,y,t-1)w
j vomwl Ao Pedl)

The #Zgn.(4.24) is represented by Molecule I

(Fig. 4.2.1). If the valuss of w1 at times t-2,

t-1, t+ and t+1 are knovn, the vszlues can be

obtained at time t+2, in an explicit manner.

4.% INITIAL CONDITIOKS:

Since the values of w1 at time $+1 are usually
not defined by the initial conditions, the i#qn.(4.2.4)

cannot be used to start the solution,
The solution is attempted here for the following

initial conditionsi—~

(i) Deflectiona w1 are assumed to be zero for

t < 0.
(ii) At the time of application of load, the rate
of change of acceleratior is assumed to he

constent. ITherefore, for the first time increment
L 4



second partial derivative of acceleration with

regpect to time 1s gero, i.e.,

4
8 f = ——, [W(xy,8-2) ~ 4w (x,y,t-1)46w1 (x,7,t)
at (4t)

- 4wi(x,y,t41) + W (x,y,t42) ] (4.3.1)

Hence, for the first time increment, the W©yn.(4.2.4)

ig modified as:

1
wt(x,y,t+1) = h_ZT[P1-Q(X,Yst) + rCalx,y,t=1)+q(x,y,t+1) ]

+ sl a(x=1,y,t)+q(x+,y,t) ] + o1 [alx,y-1,t)
+ q(x,y+1,3) J - at.wl(x,y,t)- b' [§1(z~1,y,1t)
+ wi(x+41,y,8) ] = £Lwi(x,y-1,%)

+ wl(x,y+1,t) ] = e[ wl(x-2,y,t+1)

+ wl(x42,¥,6+1) J= e[ wi(x,y-2,t+1)

+ wl(x,y42,t+1) J = n1 [ wl(x-1,y,t+1)

+ wl (x41,7,t41) J = n2 [0 wi(x,y-1,%41)

+ wi(x,y+1,t+1 ) J - n11.wi(x,y,t-1)

~ a1 [wt (x=1,7,8=1) + wl(x+1,y,t-1) ]

- a2[w (,7=1,1=1) + wi(x,y+1,t-1) j%

J

(4.3.2)



where,
6T
a1 - a'I' - —
(4t)4
41
h1l= h1 +
(at)
(at)

(4.3.3)

Eqn.{4.3.2) 1is represented by the Molecule II
(Fig. 4.3.1). It can be solved impliecitly. Knowing
the values of wil at times -1 and %, the values are

determined at time t+1,

After the first time increment, the secong
partial derivative of acceleration with respect to

time is constent. So, for the second time inerement
?

the Egn.(4.2.4) 18 modified as:

7/
71

.
wi(x,y,t+1) = — J pl.a(x,y, )+ (C 2%y 7y 5=1)4q (x, 5,1+ ) 7]

21

+ 8[a(x~1,y,t) + q(x+1,y,t) J + s1[ q(x,y=1,t)
+ q_(x,y-f-'f,t)j_ - a2.w1(x,y,t) = b'EWT(JC—‘I,y t)
+ wi(x+1,5,t) J= £Lwi(x,y-1,t) + w1 (x,y+1,t):]

- c[ wi(x-2,y,t+1 AW (x42,5,t41) 3
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-e [w(x,y-2,%41) + wi(x,y+2,t+1) ]

- n1 [w(x=1,7,t41) + wi(x+1,y,%+1) ]

- n2 [wl(x,y~-1,t+1) + wi(x,y+1,t+1) ]

-~ m [ wl(x=1,7=1,t+1) + wi(x+1,y~1,t+1)

+ Wl (x=1,7+1,t41) + wt(x+1,y+1,%+1) ] = d1 [w1 (x-1,y, t-1
+ wi(x+1,y,1-1) 1 - a2 [§1(x,7-1,5-1) + Wl (x,541,%-1) ]

- h12.wi(x,y,t-1) - g2.w1(x,y,t-2) = g.wi (x,y,t-B)j

(4.3.4)
where,
» L, me = m+ 2L
HikE a +(At)4 i “t)
41 - - 4L
32 = a (At)4 i 52 (A't)4
(4.3.5)

Eqn.(4.3.4) is represented by Nolecule III (Fig.4.3.2),
T+ can be solved implicitly. Knowning the values of

w1 at times t-3, -2, t-1 and ¥; the values are determined

at time t+1.



4.4 BOUNDARY CONDITIONS:

gqn.s(4.2.4),(4.3.2) and (4.3.4) are solvable
for any type of the boundary conditions, For a
plaie simply supported on all the four sides (Fig.
4.4.1)3
(i) Deflections are zero at x = 0, a and at

y = O,b. Thus,

Cwi(o,y,t) = wi(a,y,t8) = wi{x,0,t} = wi(x,b,%)= 0

(4.4.1)
(i1) Bending moments (Mx)xzo,a= (My) =0
Y=0,0
Thug for X = 0,&;]
(1=V)
(—'35 [ wl(x=1,7,t) = 261 (x,¥,%) + wH(z+1,¥,¢ 1
AX
- _—U‘)'E Cwl (x,5=1,%)-2w1 (x, ¥, t)+wl (x,y+1,%) 7]
AY
(4.4.2)
substituting £gn.(4.4.1) into Eqn. (4.4.2);
1(=1 t) = -wi(1 t
wi(=1,5» ) wi(1,5,t) (4.4.3)

wi(att,y,8) = =wi(a=1,5,%)

Similarly for Yy = 0o,b;



- W1(x'1’t)

it

wl(x,-1,t)

wi(x,b+1,t) = = wi(x,b-1,1t) (4.4.4)

Bgns.(4.4.1),(4.4.3) and (4.4,4) are the required

boundaery conditions for the complete sslution of

a simply supported rectangular plate.

4.5 STA3ILITY AND CONVERGEHCE:

Sinece, in a finite-difference solution, it isg
possible for the higher harmonies to introduce errors
which grow exponentislly and thus cause the calculated
deflections to become unbounded as the time approaches
infinity, the solution might become unstable. Detaileda
studies of a 1}mited number of partial differential
equations indicates that stability implies convergence .
The case of free vibrations is used here to zet an
approximate idea about the time increment required for

a stable solution. 2gn.(2.2.3) can be written in the

followirg form:

md

2
R 1 wi (x-2,y,t) + W1(x+2:Yit) + wi (x,y—E,t) + wl (X,y‘+2’1;)

+ 20.w1(x,y,t) = 8wl (x=1,y,%t) + w (x+1,y,t)
+ wl(x,y+1,t) + Wi (x,y=1,t) T + 2 [ wi (%=1 1,741,1)
+ wi(x+1,y+1,t) + wi(x~1,5-1,%) + @i (x+1,5-1, t):H
+ [wi(x,y,t-1) - 2wi(x,7,t) + W1(":Y;t+1)1
(4.5.1)



D(1-))% (2t )°

where, R2 _ Bl 7
(1-27) (21)
(4.5.2)
AX Ay
il 3

Two inltial conditiouns and eight boundary conditions

are prescribed. At t = t and thereafter, the only

unknown ig wi({x,y,t+1). To investigate stability,

a series solution of Iqu.{4.5.1) is assumed to be

wi(x,y,t) = P sin(i.ap). sin(j.g,) (4.5.3)

where, A 1s a constant and 1 = 0,1,2,...M;

j _0,1,2,-300N. a-rld k=2’3,... oo,
Substituting ®#an.(4.5.3) into 2qn.(4.5.1);

eF + of {4-32|:(°°S“m'2 ) + (Cosp,;~2 > - dectony, JCosg ]
- zj +1 = 0, (4.5.4)

For a rectangular plate with M Dby N elemwents and
hinged supporis along the edges, the deflections
must satisfy Bqn.s(4.4.1,4.4.4,4.4.5). These boun-

dary conditlons are gatisfied for



/6
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am = g R ms= 1,2,.-t’M-1
] (4.5.5.)
and Bn = ﬁ- TL n = 1,2, L ’N-1

Thus, dgn.{4.5.3) becomes;

=1 N-1 4 :
wl(x,y,t) ot ( =5~). sin( 7 Ec1e 1°% + cz.e"Z k:]
(4.5.6)
vhere, ¢, and ¢, ere the constants,
For stability;
lef1 | = lef2 | <1 (4.5.7)

An examination of 2qn.(4.5.4) shows that Egn. (4.5.7)

is gatisfied if the diseriminant.

| 2 [
[ 482 [ (Coso, -2 ) + (Cosp -2)"-4~2Cosa_.Cosp, ] -2 v -4<0

(4.5.8)

In the limit as m ~ M and n = N; Zgn.(4.5.8) is

2
gatisfied if R .ST%- .

Thus, for a stable explicit solution; the value of

D(1=Y )2 (4 t)z < 1
= 76
P oyt (4.5.9)




.
k. i

4,6 SQLUTION STiPpS:

The solution of a plate problem is now obtained

in the following manner:-

1.

The dimensions and the material properties of
the plate are defined.

A suitable mesh size is chosen and the various
constants reguired by the equation of motion
are calculated,

The loadinz and the initial conditions are

then defined.

A suitable time increment is chosen to satisfy
the stability requirements.

By the help of Molecule II and the eight

boundary conditions, the deflections are obtszined
in en implicit manner for the first time incre~
zant.

By the help of Molecule III and the same eight
boundary conditions, the deflsctions are obtained
for the second time increment,

Jor the remeining time increments, the results
are obtained in ar explicit manner. Molecule I
is now used to obtaln the solution upto the
desired time steps. It 1s to be noted that,

in contrest to the analytical solution, the

results are now obtained for a future time, only



"8

if the deflections at the previous time steps

are already inown,

4.7 RECTANGULAR PLAL: WITH FIX3D EDGES:

If the plate is fixed along all the four sides
Fiz. (4.4.2), the following boundary conditions

have 1o be gatisfizd:-

o _\ —
(" )gmo,2 = 7 (3% ’x=0,a = °
(4.7.1)
= O: ol
("1)y=o b 03 (ay y=0,Db 0
Thus,

wl(x,b,t) = O

w1l (O,Y,t) = W1(a!yvt) = W1(x!07t)

wl(=1s5,%) = wi(1,7,%)
wi(a+1,y,t) = wila=1,7,%)

w1(X,=1,%) = wi({x,1,%)

wi(x,b+1,%) = w1 (x,b=1,%)

(4.7.2)

The steps reguired for the solution of e fixed

plate are same as indicated in Art.4.6 for a plate

gimply eupported on all the sides.
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Fig.4-21: MoLECSULE .2'
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CHAPT ER~

CIRCULsR PLATES

5.1 GEl:EZRAL R&MARKS:

The Eqn.{(2.1.11) has been solved numerically

(Chapter 4). The Cartesian coordinates were used

to obtain the desired results. ‘hen circular plates

are analyzed, it 19 convenient to express the

;overning differential equatioh of motion in a

polar coordinate system. This can be accomplished

by coordinate transformation. An elternative

approach, based on the equilibrium condition of
an infinitesimal small plate element(50) is analogous

+o the derivation given in Art. 2.1(Chapter-2).

If the coordinate transformation technique is
used, the following geometric reletionships between

the Cartesian coordinates (x,y) and polar coordinates

(r,8) are applicable (Fig. 5.1.1)3

x = r Cosg
r Sing

2
r=q 4y (5.1.1)

-1 X
X

y:

d:Ta’ﬂ



Since x 1s a function of r and 4, the
?
derivatives of wi(r,#,t) with respect to x are
transformed into derivatives with respect to r» and
g. Thus,
awl _ 8wl 9r 9wl B
& - or X W"?a}% (5.1.2)
Using Bqn.{(5.1.1),
ar _
" Cosg
o {5+143)
3 = 3in ¢
Therefore,
3wl Bl .1 w1
From which,
2 2
1 2, 9w L 2
L1 o cos?s TF + 7, s 941 41 siny 2
ax or r 0
1 sin2g fut 2 sin2g 2%
r arog e K (3.4.5)
In a similer mannel,
awl _ a‘” + - Cos gurl
2 - sing G e (5.1.6)
2
ol - 51n¢-"—2-r-+ - C°S”‘LZ‘+‘C°8# s
Wl _ ~ Sinog
2 %3‘ (5.1.7)

... sineg L=
+ ard ﬁ r



2 2 4 2
dwl 1 sinop &8 1 ogng BW1 1 " w1
y ¢ ﬁaf r ﬂdp R d

X 0 2r° of
1 w1 1 62 1
\' . —— — w
- Jin2g 3T + > Cos2g W (5.1.8)

The Laplace operator becomes:

o (5.1.9)

Thus, the equation of motion of a plate takes the

following form:

% ol PHO =2¥ °D .2 tH(1-2v) 8°
DY, V, = I: - g | T s o
{ A 12 2 at” ' (1-yF sl
P (1-2v) 8t ]
+ > w1

126 (1-¥)° a4 |

riev_n_ 2, CK (1-21!2) ,9_2___] .

L¢1-y)® cg % 126 (1=y )~  #t°

(5.1.,90)
where, wl = wi (rvﬂ’lt)
a = q (r,d8,t)

If the plate is under the action of lateral

1oeds, which are radially synmetric with respect to



o<
op

the origin and the supporits have the same type of

symmetry, w1 will be independent of g. Thus,

the Laplacian opergtor becomes

2

D
Ve &5 4

or

2
or (5.1.10a)

] b

Consequently, the equation of motion of the

circular plate has the following form:

(o)

4 b 2
atwl . 2 927wl _ 1 8wl 1 3wl
p | B b X e Gl

¢ H (1-2Y) 2w1 P HO (1 1=2v) QD
(1=9)2 - [Hh -]

[atet 1 2w ]+?LH3 (1-22)  a%wt
L arfat® * oeret 126 (1-y)°  atd

+

D (2, 1 S (1) @2 )

s
j1-2Y "

(1-y)2  GH  or

(5.1.11)

where,
wl = wi (v, 1)

Q(rs t)
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5.p FInIDSE DIFFERENCE ANATOG OF B UATION OF MOTION:

The operators required by sgn, (5.1.11) are:

2

2wl _ ) [ w1 (-1, 541)=2w1{r,%+1) + wi (r+1, t+1)_l
ar (dr

4

g wi wi (z=2,t+1 )=4w1(r=1,t+1 Y+6w1(r,t+1)
go. g |

or (4ar)

— w1 (r+1,t+1) + wi(r+2, t+1) |

3% & __1____9 i wi{r,t-1) - 2w (r,t) + wi (r,'l:+1)]

3t (at)” +

3421 e " (o, 52 )-dw (2,51 )46w1 (z, 6 )=4w1 (7, 541
ot (At) ut + wi(r, 'I:+2):|

1 wi A wi(z-1,t41) + 1 w1+ t+1)]
o Tl L T e T
2 2wl - ___1_1 [..% wi(z=2,t+1) +% wi{r-1,t+1)

r ar3 (2r)

- -121- wl{o+1,t+1) +;11- wi (r+2,t+1 )]

oWl . i S _;_ wl (=1, 5+1) + % wi (r+1,t+1)]

oz (43

4 1 —1,t=-1) = 2wi(r,t-1) » wi
3wl =52 [W“ (x-1, ’ (r+1,t-1)

- 2wi{z=1,t) + 4wi{x,t) - 2wi(r+1,t)
+ wl(z=1,t+1) -2w1 (r,t+1) +wi1(z+1,t+1 )l]
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3
orwl . L wl(T41,t=1) = 2wi(r+1,t)+wl (2+1,t+1)
at? ar 2(at)°(az)

- wi(r=1,t=1)+2wi(r-1,1 )=wl(x=1, t+1)

where,
s

7l = e——

Ar

Substituting above expressions in 8gn. (5.1.11);

4 I: ol (2=2,t+1) = 4wl (r=1,%+1) + 6wi{r,t+1) = 4wl (r+1,t+1)

(2xr) 4 5
+ wl(r+2,t+1) + —-w1(r~2.1:+1) + --.w1(r-1.t+1)

1
2 wi(r+1,t+1) + - wl(r+2,t+1) +-—3 wl(r-1,t+1)

+-13 . w1(r+1,t+1)_| - [‘;33 §1-i>) LD :I

on
7 £ [-m (r=1,%=1)- 2w (x,t=1) + wi(r+1,t-1)
(Ar)d(,,t)
- 2wl {r-1,%) + 4w1(z,t) - 2wl (z+1,t )4wl (2=1,%+1)

1
- 2wl (r,t+1) + wi (r+1,t+1):| + -—-————(dr)z(dt_)z

[ 2 (W'}(I‘—" t+1) - 2wl (1‘-1 'ti) + wi (I‘-—1 tm ))

+§__ (w1 (241, 5=1 1) = 2wi(r+1,t) + wi(r+1 t+1))_,

ﬂl.i_z_.)__z [w1(r,t—1) - 2wi(r,t) + wi(r, t+1)]
ag)*(1-v)

Fud  (1=2V [w1 (r,t-2) - 4wi(r,t-1)+6wi(r,t)

_’

Y 12e (1-¥) (at)*

_ awt (r, ) * wi(r,t+2)

. . a(r-1,t) - 2q(r,t
1—2,2 g(ryt) - e [ q(r )+q(r+1,t)]

(1=y)



5d

1 .
ol =erer [-Mrﬂ.t) - q(r-1.t)]

¢ B (1=2Y)
+ P (1_)))2(41;)2 EQ(r,t-1) -2q(r,t )+ q(r,t+1)]

(5.2.1)
Or,

wl (r_z,t+1) [(j)rJ4(1- ;11')] + wl (r—1pt+1) [ ‘—.}——Edf)4+ 1.2? Z;,t)4

nE(Ar)4 2n’(ar)t (ar)*(t)? W

(41\1:*)2(411:)2 -]

6D = B —
& WiizysH) [(ar)4 "2? ant Tar R

¥ 41 =40 2 D
- + wi(r+1,t+1) - & —
2 (at)° (M)4] [ (ar)t % (ar)4

bR B 1 _ & -
")t " adn)t (@l aep " (-ar)z(-at)‘?_l

+ wl{(r+2,t+1) [ (fr)4 (1+ n-!-) ]+ w1 (r=1,t+1)

=B

1
_(.A_r) (A‘t)rz ( 1= 2'!1_)] + wi(r+1,t-1)

B i T ' 1(r,t- 28
[z oo ] o meann]

(ar)*(at)2
A ) T P S = o )
+-(-A—"—)z (At)4_—_, [ (Arﬁt)g n(mr)‘?(at)2 -
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8
)

,t =45 2F __ 61
+ wi{xr,t) I_ _r——(ar) (At)2 _T(At) + L ]

+ vl{z+1,t) I:{A-—r—-gr)‘ (t) gl 4 +45 ):I

+wi(r,t-2) + wi(r,t+2)) o

- Mi.q(r,t) - [(1 ~ )Q(I'—1 t) +(1+ -——)q(r+1 %)

- 2.-1(1-.1;):] + (#)g— [q(r-t—ﬂ - 2q(r.t)+q(r.t+1)]

(5.2.2,)

Or,
£,.wl(T-2,3+1) + dy-wi(r=1,%4+1) + dowi(r, t+1)
+ e wi(z+t,t41) + f1.w1(r+2,t+1) + h1-w1(r-1,t..1)

+ hy.w (r+1,5-1) + cowl(r,t=1) + b wi(r=1,%)+a.wi(r,t)

+ 8 Eﬂ (r,t-2) + wi (r,t+2):l + by.wi(es,t)

RB-(]_(I‘,'t) - R11Q(r"1!t) — R21.q(r+1 ,t)

R, [q(r,t+1) + q(r,t—1):|-

(5.2.%)

Where,

. 4B . AL 4 g
: (47)*at) (a%) (21 )4
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b = 5 (2 - 1 )
b, = — 2 + 1)
(ax)°(at)
g = —-—:,;I
(at)
_ 28 , _ 41
° (0t)° (¥ (at)®  (ag)*
6D 2 _D 28 P _41
z = (ap)? +n2 (Ar)4+(Ar)a(dt)2 Y )2 (@t )t
__dp. R D P _ _E
- . (ar)4 B oar)* n°@r)t 2:3(41-)4 (ar)(at)?
2n(ar)2(dt)2

o S (All'))4 i =3

By '(Ar;gz(m)z g~ 1

P2 7T (Ar)ngt)z Care V)

SRR -y iale e OIS o
o (1= 2%—)

E r
= (a 1')2(,11:)2
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R - b

2 7 (@sf

) N__
1{3 o M - 2R2 + 2.(4r>2

Ii
R”'C;-)'g(‘l--%;)

- -"jl1; (1 + 5%— )

R
21 (4T)

Rewriting sqn. ( 5.2.3) in a form suitable for

programming:

wi{r,t+2) = é I:- g.wi(r,t=2) = c.wi(r,t=1) = by wi(r+t,1-1)

- hy.wi (r-1,t-1) - b1.w1(r—1,‘b) - a.wi(zr,t) - b, . wi (r+1,t)

= f2.w1(1-2,1:+1) - dqewi(z=1,%41) - d.wi(r,t+1)

- e.wi(z+1,t4+1) = f1.w1(r+2,t+1) + Rgeq(myt) - Ryqealr-1,t)
- 321.q(r+1,t) + Byeq(r,t+1) + Rz-q(r,t-ﬂ]

(5.2.5)

Thus, knowing the values of w1 at times t-2, -1 and
the values ot time t+2 cal be calculated in an

t+1,
explicit manner.
9e ) INITIAL COlDITIONSS

5) is golvabtle 1f the values of w1l at

Eqn. {5.2.
But, usually the initial conditions



aveilable are not of this kind. In the present

investigation, the initial conditions are assumed

as under:

(1) Deflections are zero for t < O.

(ii) At the time of application of load, the rate
of change of accelergtion 1is constant, so,
the second partial derivative of accelsration

with respect to time is =zero, i.e.,

a1 - 14 ':w1(r,t-2) - 4wi(z,t~1) + 6w1{r,t)
st*  (at)
- 4wi(r,t+1) + wi Cr,t+2)] =0
(5.3.1)
Hence, for the first time increment;

|
/’ Ro.q(r,t) + & L[alr,t41) + a(z,t-1) ]

1
wi (r,t+1) =T
do

~ Ryqea(r=1,t) = Roqealr+t,t) - £5.wl(r42,t41)
d1,w1(r—1,t+1) - e.wi(r+1,t+1) =L wi(r+2,541)

h1,w1(r—1,t-1)-hg-W1(r+1.t-1)-co.w1(r,t—1)

byowi(r-1,%) = do.wi(e, t)-b,.wl (r+1,t)j'

(5.3.2)



94

where,
ad = G 61
(at)*
do - d + 41
(2t )*
co = cC + _i;r
(4t)

(5.3.3)

Bqn.(5.3.2) is solvable in an implicit manner,

Knowing the values of wil at times -1 and t, its

velue can be obtained at time t+1.

After the first time inerement, the second partial

darivative of acceleration with respect to time jis

constant, hence,
] [33-‘1(1':1;) + Rg EQ(I""';'”) * fl(rpt—‘i)J

doty L

wl(r,t+1) =

- d1.w1(r-1,t+1)-e.w1(r+1,t+1)-f1.w1(r+2,t+1)
- n1.w1(r-1,t—1)-h2.w1(r+1,t-1)-co1.w1(r,t_1)
- b1.w1(r-1,t)-ao1.w1(r,t)-b2,w1(r+1’t)

- gy.wi(z,t-2) = gguv (r,t-a)j'

(5.3.4)
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wherse,
dol = d+ €1
(at)4
41
a01 = 8 -
(at)*

A

cot = ¢ + E_fsz

(5.3.5)

sqn. (5.3.4) is solved in en implicit manner.

Knowing the values of wi at times t~3,t-2,t=1 and 1,

the values are obtained at time t+1.

5.4 BOUNDARY CONDITIOIIS:
rixed on its periphsry (Fig.5.4.1)

A circular plate,

ig solved here. the boundary conditions for such a

plate are:
(i) paflections are zero at I = 10,
wi(zo, %) = O (5.4.1)
(i1i) The slope ( ;Eﬂ.) = 0.
[+ S
wi(p+l,t) = wi( r=1,1) (5.4.2)
owl - e
(11i) The slope (=5 )r=0 = 0
t) = wi ( 1.,%) (5‘4.3)

W1 (-1 ’
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(5.44)
W (0,%) = wi(1,t)

I 1 o Traite
J.'anﬁl . (50 .

) (5.3. ))
; 4 ( ),(5!3. 4
q (

r the (31]!“ i te Ed on

its periphery.



w1 (B,t) = w3, t)
Wita, by = 9

Wy (0.8) = w1t
W 1t = @y tt, 4l

CIRCULAR PLATE FIXRED ON !

TS PERIPHERY,

G2
a7
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a8
CHAPT R~ 6

RASULLS AND DISCUSSIONS

A rectangular plate having thickness~width ratio

is solved with the following data;:-

of 0.1
Iength of plate = 200 cm.
Width of plate = 160 cm.
Thickness of plate — 16.0 cm,
Loading intensity = 1.0 kg/en®
Durgtion of application
= C.2 sec.

of load

For a concrete plate;

Modulus of elasticity = 1.4 x 10° kg/cm2
0.15

2vd gm/cm3

Poisson's ratio

Unit weight

For a steel plate;

Modulus of elasticity = 2,0 x 106 kg/cm2

0. 30
7.6 gm/cm3

Poisson's ratio

Unit weight
An IBM 1130 computer available in the Birla

Institute of Technology and Science is used for the
solution of free as well as the forced vibration

problems.
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6.1 FREE VIBRATIONS:

The natural frequencies of a simply supported

rectangular plate are obtained for myn =1 to 7 The

results are tabulated in ascending order for first

twenty frequencies of the system,
The results of Author's equation of motion

(Zqn.3.1.1) for a concrete plate are listed in table

(6.1.1). Col (1) indicates the results if rotatory

inertia terms are neglected, Col (ii) represents the

results 1f shear deformation terms are neglected., Thae
frequencies of Col (iii) are obtained if both these
Col (iva) indicates the results

effects are neglected.
In col (ivb) the

1f both the effects are included,
results of meximum natural frequencies are listeq,

Similar results are obtained for a steel plate ang

are listed in table (6.1.2).
Similarly, table (6.1.3) and (6.1.4) represent

the results of the Mindlin's equation for a concrete

and a steel plate respe ctively.
Study of these tables reveals that the effeet 0F eale i
v

rotatory inertia terms is to reduce the natural frequ-
encies of the svstem, while, the effect of neglecting
shear deformation terms is to increase its natural

If both the effects are neglected, an

frequencies.
increase in the natural freguencies is observed,



The natural period of the simply supported
concrete plate in the present investigation is 0.273

sec., while, it 1s 0.1175 sec. for a steel plate of

the szme dimensions. The solution of Mindlin's equa

“tion indicated the natural period of 0,282 sec. fo
. & T

concrete plate, and, 0.13 sec. for the steel plate

Thus, the present equation of motion gives lower

value of natural period as compared to the Mindlin's

equation,

If the rotatory inertia and shear deformation term
S

in the Author's equation of motion are naglected, the

natural period is 0.2715 sec. for the concrete plate, ang
’ »

0. 114 sec, for the steel plate. Thus, there appears

+o be about 3 percent reduction in the vslues of the

natural period.
4 eriticael study of the tables (6.11.) to (6.1.4)

indicates that, while the effects of shear deformation

y inertie terms dvf-—almo 1t uaf:ligible i‘or Fe_
—r(hqé/f A,%L.,\_ x.,' oy

and rotator.

!owfd— "‘Aoa((, flute €44t A ome

lower modes, the differencd 1n—%he—vaiues—poeg—unﬁprapa__
Apart from thig,

zga fast fo
s to the precise nature of the restraint

uncertainty 2

exerted by the supports,
may be expected 1o have a much greater effect

dempings,
on the higher modes. Thus, the correction for these
terms should not remain me

Py ®

as well as the influence of

rely an academic Interest,
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The classical thin plate theory that iznores

the shear deformation and rotatory inertia terms is not

expected to give accurate walues of the frequencies of

higher modes. fre inclusion of these terms ghould give

a better insight of the design problem in hand of an

engineer. Also, 2 correct estimate of natural irequen-

t suggest far improved technigues for the control

cies mus
of noise end vibrations. The suthor, therefore, strongly
(=]

hese terms in the analysis

recommends the inclusion of t

of plates.

¢

6.2 FORCuD VIBRATIONS:

The analytical solution of a simply supported

plate is obtainad for a ragtanmaler

rectangular steel
ctions obtained from the

The central defle
atod (table 8:2,1 3
(3.3.A10) are

pixlce.
10 are tabul The vslues

r the solution of &an.
(3.3.48) and (%.3.49).

tigrie (Ze3edee
of ﬁmn reguired fo
ed by the help ©
je (6.2.1) 118
ms of the geries are ¢
deflections of

f Zgns.

calculat
ta the values of deflections

Col (i) in vab

if first eleven ger
col (ii) 1ists th
cen terms of the

sngidered,

while, e corresponding

the first fift

geries. Yhus the series

golution of the present equatiol, 1ike that of the thin

converge

s very fast. Hence, it is

plate golution,

consider the firat eleven terms of the

sufficient to

geries only.
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The solution of Miandlin's equation of moiion

(Eqn.2.1.12) is obtzined for a simply supported

rectangular steel plate. The deflection at the centre

of plate is maximum, hence, is of an interest for a

These deflections are plotted in Fig. (6.2.1)

designer,
for three different types of pulses.
maximum for a rectangular pulse.

jo of dynamic v/s static

nterest v/s

The deflections

are observed to be

The figure represents the rat

deflections against the ratio of time of 1
The static

the duration of application of the load.
deflection czlculated by the finite-element method for

- coneideration is 0.5266 x 10~2 om.,

the plate und
while, the max 1 mu deflection for the first peak 1n the
wetenzulal pulse i
4 sawtooth pulses,

gt peak 18 ouly 0.65

g 1.05 X 10~¢ em. For the

cagse of
the mmximum central

trianguler @1
-2
x 10 © cm,

deflection.in the fir

0.2) to Fig. (6.2.4) represent the

ained by the
d to tha goiution of

Figl (6.
deflections obt

5.1,11) compiTs
24.12) for various pulses.

central snplution of author's

mmawﬁn(ﬁwh
It

ﬁllll.

yindlin's equatiod (
a that the Aut
tions a6 comp&

or's equation gives lower

is observe
raed 1o d4ndlin's. The

values oOf deflec
is about 14.3 percent

difference in
e of rectangul

ar pulse (Fig. 6.2.2) woile, 1%

jn the cas
{n the case of triangular

of the order of 20 porcent

is
and sawtooth pulses (Fige- 6.2.3, 6.2.4)



103

Figs. (6.2.5), (6.2,6) represent the central

deflections for the rectangular and triangular pulses

respectively, for a similar concrete plate. The

Author's equation is still observed to give lower

values as compared to the Mindlin's equation, but,

the difference is very small. It is about 2.8 per-

in the case of rectangular pulse and 1 percent

cent

in the case of triangular pulse,
cates the trend of deflections upto a time of 2.0 seconds

for a triangular pulse.

Fig. (6.2.8) represents the contribution of

rotatory inertia and/or shear deformation terms in

the Author's eguation of motion. Table (6.2.2) also

gt and IInd peak values for the sake of
g not much of a difference in the

ection, But, the trend

1ists the 1

comparison. There 1

first peak value of the defl
in the deflections from the second peak

of values
jifferent because of the inclu-

onwards 1is entirely d
guation of motion., The

hese terms in the €

sion of ¥
e value of gsecond peak is of the

difference in th
percent (Table 64242 )s

order of about 30 to 35

6.3 NUMERICAL SOLUTION:

a rectangular concrete plate is now

The solution of
gular pulse. The size of mesh

attempted for 2 ractang
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used is Ax =Ay = 20 cm, The time increment

At 1is zoverned by the stability crieterian
(Eqn. 4.5.9), according to whichAt < 0.00756 seconds

The solution is obtained for At = 0.0094, 0.0003 and

0.0002 seconds also, Fig. (6.3.1) shows the variation

of deflections as a function of time. The solution

looks to be stable and convergent for a time interval
of 0.0003 seconds. The central deflection for first
peak is now obgerved to be 0.056 ecm for a plate fixed

on all the sides.
Fig. (6.3.2) compares the results of finite-

difference solution for a simply-supported plate against

the analytical solution. The difference in the first

peak value is only about 3.3 percent.

Fig. (6.3.3) represents the results for a sguare

) fixed on all the sides. The

plate (140 cm X 140 cm
first peak value for the central deflection now is

a 16 cm thick plate, while, its value is

0.025 em for
m for an 8 cm thick plate,

observed to be 0.17 ¢
The plate, simply supported on all sides 1s also
pulse with zero rise time.

solved for a trianguler
re (6.3.4).

The results are plotted in figu
fixed on its periphery

A circular concrete plate,
is also solved with the following datas



Radius = 70 cm,
Thickness = 16 cm.
Modulus of slasticity s 1.4 x 10° kg/cm?
Poisson's ratio = 0.15

- 2.4 gm/cm3

Unit weight

The solution for the plate problem is obtained by

including both rotatory inertia as well as the shear
deformation terms. The solution is found to be stable

gent for a time increment of 0,0002 seconds.

end conver
Solution 18 elB0 obtained without the inclusion of

Fig.(b.3.5) represents the relative

these termsS.
= 30 em. The results for

n time curves at r =
a1so plotted (Fig. 6.3.6). About 25

e deflections ig observed because

deflectio
r = 50 cm. are

cent increase in th

per
e rotatory inertia terms.

of the shear de formatinn and th

6.4 cOnCLUSIOnSS

g effects of she
ost negligible for 1
goes on propageting Very

yhile th ar deformation and rotatory
ower modes,

inertia terms 13 alm

the difference in the values

fast for the highe
gation of motion £
pared to the Mindl

1ower bound values of

r modes
jves lowelr value

The present eq
in's enuation.

of natural period ag col
aption also rives

pet of the yindlin's equation.

the present €d

deflections than 1
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For a simply-supported rectangular plate, the
contribution of shear deformation end rotatory inertia
terms 18 significant from the second peak onwards. The
contribution of shear deformation and rotatory inertia
is found to be very significant even for the first peak

value in the case of a circular plate fixed on all its

periphery.

The finite-difference analog prepared here
gives results that are in close agreement with the
corresponding analytical solutiom of the plate problem,
The method is found to be very good for determining
the time-displacement curves, which are expected to

increase the intutional understanding of the dynamic
behaviour of the uystemn.

6.5 RECOMMENDATIONS FOR FUTURE VWORK3

It may be noted that in the present equation of

motion the effect of damping has been neglected, since,

it has been found to be of little importence in the

z
problem of gtructural dynamics(’g). One is usually

interested in the first peak value of deflection and

not in a continuous state of vibration, Anyhow, the

effect of damping may be expected to have a much greater
influence on the higher modes; particularly for the

design of vibration elements used 1o control the electroniec

circuits. So, further study 1s recommended in this direction,



The selection of functions #,{z) and 4,(z)
2

must actually be based on an experimental law. Thus
’

if some work is done in this direction, the present
solution might possibly be improved.

Available information su7zgests that there are
types of problems to which the finite-differences
are better suited than the finite elements and vice

versa, It is recommended that the solution of the

present problem be attempted by the finite-element

method.
Further work is also recommended for the plates

resting on an elastic foundation,
Plates of variable thickness, Annular plates,

plates subjected to the concentrated loads, etc,, are

geen in mauny practical problems. The present work

can be extended to handle such situations,

A plate is the basic element and is liable to

be very much affected due to an sarthquake. The effeet

of such an event is strongly recommended to be studied,

since, the contribution of these terms is expected to
be very high, and thus, 18 expected to give a better

insight of the design problem in hand of an engineer,
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TABLS 6.1.1

Naturel Frequencies For Various llodes of Vibrations

(Rad/sec)

Author's idquation Concrete Plate

Neglocting Neglecting Teglecting Includ ing both

gr. ;\mm Rotatory ghear defo- both Ro- the effects
Oe inertia rmation tatory In- ). )
(1) (3i) ertia and min mn ‘ max
Shear de- (iva) (1vb)
formation.
(111)
1A, 20.9680  22.7845  22.9378 22,4322  1115.06
2. A,y  41.6819 49.0780  49.7918 47,5064  1142,82
3. Ayp  92.0173 63.6923  64.8372 61.1098  11157.93
be Do,  68.6392 89.3701  91.7513 84.4358  1183.98
5, Mgy 91820 129.779  134.829 120.120 1223.87
6. Ay 104.. 660 454,500  161.683 141,293 1257. 69
Te Aqg 134.463 218.266 232.735 278.474 1404,12
8, My 144,526 241.776  259.583 212,976 1328.99
9. M5 177.642 325,870  358.613 278,474 1404,12
10. A5 185,768 348,009  385.467 295.253 1423, 50
11.A71 204.856 402.195 452,602 335,630 1470.35
12.A72 216,027 435.259 494.562 359,836 1498, 58
13,0y 220.638 449.186  512.464 369,943 1510.40
14,05 227,397 469.880  539.318 384,872 1527.89
15. 05 233,572 489.071 564.494 398,623 1544. 05
16,}\74 256,281 561.873 662.399 450,061 1604.77
18,350 269,043 604.233 721.143 473,517 1633.76
19 Mg 282,977 651.510 788,278 512.038 1678.58
63.

20, hyg  312.669 755,650  942.199 582. 543 1765.58
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TABLE 6.1.2

Natural Freguencies for Varioug modes of Vibrations (Rad/sec. )

Author's Zquation Steel Plate

Leglecting Lleglecting heglecting Ircluding both

Sr. A Roteatory Shear def- ©both the the effects.
Lo, | mn  Inertia ormation effects o)
o mn ‘min. Wy de,
(1) (ii) (iii) (iva) (ivb)
1o Ayq 48.5559 54,6419 55.0095 53. 4343 Bl
2. hpq 93.9524 117.698 119.410 112,373 2314. 69
30 Agp 115.938 152047 155.636 144,042 2353.53
4. hpp 150.628 214.327 220,038 198.023 2420. 34
5« M3 198,021 311,236 323,348 279.265 2522 .01
6. Dy 225.933 370,522 387. 750 527,050 2582.44
7. )4 283.489 523, 447 558, 145 444.783 27%3,28
8. Ay, 303.474 579.829 622.546 486,485 2787.%7
9, )15 369.003 781,503 860,027 629.557 2975.56
10, Mg 385.046 834.597 924.428 665.868 3023.96
1. A71 422.707 964,546 1085.43 752,755 3140,80
12. A72 444.737 1043.85 1186.05 804.532 3211.11
13. X4 453.831 1077.23 1228.99 826,087 3240.53
14, Ag 467,158 1126.86 1293.39 857.855 3284.04
887.0 24.
15. ,\73 479.334 1172.89 1353. 77 7.053 3324.20
. 722 3475.0
16, A74 524.119 1347.48 1588.56 935.7 o 4
1029.59 3522, 49
7. Aqq 537. 934 1402.91 1665.04 >
! 1.8

18, .. 549.307  1443.07 1729.44 103753 7

& 1890.44 1125.63 3658.13
19. ). 576.730 1562 .45 .

= 2259.41 1272.24 3868.26
20, Aog 6%5. 418 1812.20 .
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TAJLE 6.1.3

NAT URAT FREUAICHE 35 FOR VARIOUS HODES OF VIBRATIONS(Rad/Sec.):

Lindlin's Bguation Concrete Plate

eglecting lLeglecting Neglecting  lncluding both

i hm Rl e e e
m ‘min CAmnzmx
(1) (i1) (1i1) (iva) (ivb)

1o Aqq 20,9737 22,4269 225778 22,0244 1020.47
2. Nogq 42,2638 48,3077 49.0104 46.5225 1048.59
3 A12 53,0606 62.6927 63,8787 53.7646 1063.87
4. Apo 70,6234 87.9676 90.3113 82,4570 1030.16
5. Ay 99.4422 127. 742 132.713 116.866  1130.32
6. Az 109.316 152,075 159. 146 137.235  1154.26
T. Mg 141.760 214.841 223,082 187.791  1214.20
8. My 152,712 237,382 255.515 205,808  1235,74
3. A15 189,139 320,756 352.985 268.025 1310.85
10. 325 198,084 342 .547 379.418 283.905 1330,20
11, Ay 213.117 395.887 445,439 322,034  1376.95
12, Agp 034,436 428.428 486.800 344.837  1405.5%1
13. Mg 236,524 442,136 504,422 354,348  1416.89
14. Aog 243, 381 462.505 530,854 368,382  1434,33
15. A3 250.795 481,336 555,632 381.299  1450.43
16, A7s 275.860 553,055 652.004 429.515 151,093
17. Aqq 283.590 575,806 682. 392 44f.588 1529.98
18. Mym 283.954 594 . 750 703,825 45:.062 1545.79
19, A75 305,327 641.285% 775,906 48%.424  1584.44
20. A 338,098 743.791 927,343 553,086  1668.86
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TABLE 6.1.4

NATURAL FRsgUsnCI?S FOR VARIOUS NOD3S OF VIARATIONS(Rad/sec):

Mindlin's Equation Steel Plate

TNl el g A
Inertia deformation effects ’
¢ MY P O T
(1) (i1) (11d) Cive) (1vd)
1. Mg  44.5476 47.6343 43.7015 48.2345 2046.39*
2. )y,  83.7673 102, 604 107.888  101.621 2111,03
3. Mo 112,699 113.158 140,619 130.291  2146.03
4. \,p 190.002 186.841 198.806 179.185 2206.13
5e A13 202.717 271.321 292,148 252.827 2297.63
6, oz 232, 184 323,004 350,335 296.172  2352,03
Te Dy 597.086 456,317 504.288 403,046 2487.86
B. Ay, 324.485 505,469 562,476 440.918  2536,57
9. A15 401.729 681.273 777.041 570.953 2706, 11
10, s 420,727 727,564 835,228 60%.975 2749.71
11, Ay 465,401 84C.8438 980,636 683.015 2854.99
12, A72 431.566 909.971 1071.61 730.132  2918.35
13 Mg 502 712 3%9.087 1110.40 743.751  2944.86
4. Mg 518.211 982 . 351 1168. 57 778,670 2984,08
15, %73 532,683 1022. 47 1223.14 805,252  3020.27
16. A74 585, 920 1174.67 1435.28 90f.213 3156,22
17, Mg 602,339 1222.99 1504-?: 99:;‘50;2 :;:j.oo
- )‘27 15:097 g 152:.2 1022. 57 3521.::
19, ), 648.509 1362, 07 1708507 _6°20 3510-
718,114 1579.72 2041.40 1156. 70
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TABLE 6.2.1

S.S. Rectangular Steel Plate Subjected to a Rectansular Pylse:

Central deflections (om.) x 10™¢

s Ko gég? (1) 1st 11 terms (11) 18t 15 terms
of series of series,
1% 0.003 0.003680 0.003687
2, 0.C06 0.014763 0.014775
3. 0. 009 0.033445 0.033446
4. 0.012 0.062305 0.062296
5. 0.015 0. 105802 0.105803
6. 0.018 0, 165221 0.16523%2
7. 0.021 0.235820 0.235822
8. 0.024 0.312489 0.312481
9, 0.027 0.39158t 0.391587
10. 0.030 0.467784 0.467804
i1 0.033 0.573713 0.543727
12. 0.036 0.620611 0. 620608

13. 0.039 0.694248 0.694240
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Central Deflections of a S.8. Rectanmlar Concrete Plate:

Rectangular pulse of magnitude

and duration +o,

18 _Peak 2nd Peak
Sr, Percentage Pereantag:
No. Deflection difference  Deflection difference
(em. ) as compared (Cm, ) as compare
to (1) to (1)
1. Shear deformation 0.164793 0.122389
and Rotatory Ine-~
rtia Included
2. Shear deforma- 0.160223 2.74 0.081311 33.4
tion neglected
3. Rotatory Iner- 0.159922 2.8 0.080953 33.6
tia neglected

4., (Classicgl Thin
nlate Theory
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