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Abstract

Background to the Research Work

The growth of Satellite Communications in the last four decades had been
phenomenal, with increase of the satellites orbited into Geo-stationary orbit (GSO).
The area of Communication Satellites in GSO has become one of the dominant sectors
of Space field, with 340 satellites, currently in GSO, being used operationally. The
inter-satellite orbital separation has become less than even 2 deg longitude in many of
the orbital slots. The other technical developments like frequency re-use, high power
communication transponders, use of higher frequency bands for communications, and
wide range of Services have further added to complexity of Satellite Communications.
The applications today cover TV broadcasting, Telecommunications, Radio
networking, Mobile Communications and Closed-User-Group networks employing
VSATs. Digital modulation, data compression, and coding technologies, being used in
recent times, have increased the efficiency of transmission of number of bits per Hz of

the bandwidth — at the same time increasing complexity of satellite communications.

The subject of interference is as old as communications, and has also grown in
complexity along with the developments in the Satellite Communications field.
International Telecommunication Union (ITU), with its scope of Regulation of
spectrum use and orbital slots in the unique GSO circle, contributed significantly in
the technical areas of frequency sharing and avoidance of interference. These

technical studies of ITU have a direct relevance to the Investigations taken up in the

Research work.

Indian National Satellite System (INSAT) is one of the strongest domestic satellite
communication systems. Presently, six operational communication satellites are
positioned in five orbital slots in the GSO circle - at 48 deg E, 55 deg E, 74 deg E, 83
deg E and 93.5 deg E. Total onboard transponder capacity of all these satellites put
together is 132, and they are being used for applications like Telecommunications to

the far-flung and inaccessible areas, TV broadcasting carrying 83 TV ang Feeder



transponders, and VSAT Networks employing 30.000 VSAT terminals. It is not
surprising that such a wide communication network and applications experience a

number of interference issues.

The interferences in Satellite Communications result in loss of usable bandwidth, loss
of revenue. customer dissatisfaction, and disruption of traffic during critical phases.

Efficient operation of the System requires quick resolution of such interference

problems.
Objective of the Research

Objective of the Research is to carry out the Investigations into typical and complex
interference problems in the INSAT system, with the aim of deriving a generalized
approach to characterise the interferences, analyze the problems and resolve the

interference situations in a systematic manner. The goals of the research were:
e Identification of the interference signals in the downlinks.

* Analysis of the data to differentiate between satellite-generated interferences, and

ground-generated interferences (reaching the satellites as uplink signal).

* Analysis of the modulations on the interferences signals and their effect on the

wanted signals.

e Measurement and analysis techniques to localize the ground sources of

interference.

e Possible methodologies to eliminate the interferences, or reduction of

interferences.

Investigations are carried out into eight Interference Cases as below:

" Case 1 : Uplink interference from adjacent satellite network into INSAT-2E

transponders.

* Case 2 : Radar interference into INSAT-2E lower Ext. C band transponders.



* Case 3 : Wide band noise interference in Ext. C band channels of INSAT-3C.
* Case 4 : Wide band noise floor interference in the transponders of INSAT-3C.

= Case 5 : FM Radio pick up by VSATs and retransmission as uplink interference to

the satellites.

* Case 6 : Interference during the relocation and drift-orbit phase of the satellites.
* Case 7 : Radar interference into the MSS payloads, and
* Case 8 : On board generated intermodulation interference in INSAT-3A.

The ITU Recommendations on avoidance of interference in shared frequency bands,
on off-axis radiation patterns of ground antennae, off-axis EIRP limits from terrestrial
microwave communication Earth Stations, and power flux density limits on the
radiation from the satellites, are studied for their relevance to the Investigations, and
also to help the Coordination process to resolve the problems. Similarly, the
interference tolerance criteria of analog and digital TV, and the specific characteristics

of VSAT terminals are also studied in the course of Investigations.

The Investigations in each of the Cases involved extensive study and characterization
of interference, estimation of the characteristics of suspected source of interference,
simulations to confirm the estimates, Coordinated network tests, and approximate geo-
location of the source of the interference (in some cases) using Time Difference Of
Arrival (TDOA) and Frequency Difference Of Arrival (FDOA) principles. The
analytical aspects connected with TDOA and FDOA, signal detection, cross
correlation of weak signals were studied and used in the Investigations. A large
number of antennae, in different frequency bands, downlink and uplink equipments,
spectrum analyzers, etc. are utilized for tests and measurements connected with the
Investigations. A specialized equipment called Telecom Carrier Analyzer (TCA) was
procured with specifications specially suited for interference measurements, and the

experiments were designed using TCA.



The Investigations into interference cases required extensive work as described above,

and resulted in resolving most of the problems during the last four years at MCF.

Most Important conclusions of the Research Work

The Research work resulted in the following important results:

N

Very complicated interference cases were resolved and the bandwidth, which
was not usable due to interference, was retrieved successfully. Each of the
cases investigated was a real challenge, requiring extensive experimental and

analytical work to resolve the interferences.

Detailed understanding of interference-coupling mechanisms resulted in
additional input to the knowledge base, and to establish procedures for

systematic experimental Investigations.

Some of the complicated signatures of the interference were due to non-
adherence to certain ITU Regulations, or poor maintenance of outdoor

equipments — and the Investigations led to preparation of technical guidelines

for use by Network Operators.

The importance of TDOA / FDOA measurements and geo-location of the
source of interference were brought out by the Investigations. The TDOA
measurements and geo-location using the measurement results helped to
identify the source of interference in one of the cases investigated. The other
cases of investigations also brought out the limitations of the methodology and

their non-applicability in certain cases of interference.

Coordinated tests involving Users resulted in attendant awareness on

interference problems and the seriousness of the problems.

A generalized engineering approach to systematically investigate interference

cases had been synthesized based on the experience of the interferences faced.



The present Research is also useful for further development of automated softwares,
development of a light-weight measuring equipment. and further development of

spectalized software with many capabilities.

o o o
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Chapter-1

Introduction

Introduction to the Chapter

This Chapter introduces the growth of communication satellites, and presents the
status of the Geo-stationary orbit in terms of the number of satellites and
categorization of them. The other features of the growth of satellite communications
in terms of frequency re-use, collocation of satellites, use of VSAT Terminals etc. are
briefly covered to give the background of the present day scenario of interference in
satellite communications. The earliest cases of interferer}ce are covered, along with

the highlights on the contributions of International Telecommunication Union (ITU)

to the reduction of interference in satellite communications.

The research work is briefly described, and the organisation of the Thesis Report is

presented.

1.1  The growth of Communication Satellites in Geo-Stationary Orbit (GSO)

The field of communications had experienced an unprecedented expansion and
development both on the theoretical and applied fronts in the 20™ century. The
communications over a pair of cables had grown into communications using terrestrial

radio links, communications utilizing satellites and communications using optical

fibres as the media.

The concept of Geo-Stationary Orbit (GSO) was first proposed in 1945 by Arthur. C.
Clarke in an article titled “Extra-Terrestrial Relays” published in the journal “Wireless
.--World® [ 1 ]. He proposed in the Article that “it will bevobser.ved,\t,hgt one orbit, with
the radius of 42,000 km, has a period of exactly 24 hours. A body in ‘suchwan orbit, if
its plane coincided with that of the earth’s equator, would revolve with the earth and
would thus be stationary above the same spot on the planet’. One of his conclusions in

the paper said ‘it is the only way in which true world coverage can be achieved for all



possible types of services’. This concept became practical in 1960s with the launch of

Syncom-II satellite into GSO in 1963.

The designation “Geo-Stationary Orbit (GSO)” is used all through this work in
preference to the term “Geo-Synchronous Orbit”. Though both of them refer to the
orbit, which is synchronized to the Earth’s rotation, ‘Geo-Stationary’ is more specific
as the circular orbit in the equatorial plane with the orbital period equal to Earth’s

sidereal period.

In the last four decades, the subject of Satellite Communications had grown by leaps
and bounds, and reached into a highly profitable commercial area. Today, the Satellite
Communications, using the satellites in GSO, is one of the most profitable areas of the
Space field itself. The initial launches of spacecraft into GSO was followed by a large
number of satellites being launched for communications. Table 1.1.1, which is
compiled from the statistics of the annual launches of satellites, gives the number of

commercial communication satellites launched and placed in GSO, decade- wise :

Table-1.1.1 : Commercial Geo-stationary Communication
Satellite - Launches by Decade
Decade No. of Satellites No. of Satellites per year
1960’s 13 1.3
1970’s 35 3.5
1980°’s 69 6.9
1990’s 200 20

The number of satellites being launched into GSO continue to be 20 to 25 per year so

far.
1.2 Occupancy of GSO - the present status

" Geo-Stationary ‘Orbit is recognized as a unique natural resource available to the
humankind. The data base with respect to objects in the region of Geo-stationary orbit

is regularly compiled by European Space Agency (ESA), and the Reports on the status



of these space objects are released every year [ 2 ]. Even through this database is
generated mainly for the space debris purposes, the data-base is an important source of

information for investigations of interference cases.

As of end 2003, the total number of objects in the geo-stationary region is 1036. They

can be classified as follows:

* 340 are controlled (217 under longitude and inclination control, and the remaining

controlled in longitude only),
* 395 are in drift orbits,
* 140 are in libration orbits around stable points,
= 87 are uncontrolled with no orbital elements available,

= 10 could not be classified (i.e. there are too few orbital elements available).

64 are un-catalogued objects.

Thus, it shows only about one-third of the objects near GSO are controlled satellites

used operationally. Fig. 1.2.1 represents the above break-up as pie chart.
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Fig. 1.2.1: The classification of objects in geo-stationary region



The satellites which are functional and are in control, and thus important for
interference studies, are examined for their occupancy in GSO. Most of the controlled
satellites are being used for Satellite Communications and a few for Meteorological
observations. The tremendous growth of the communication satellites in the GSO has
reduced the inter-satellite orbital separation. Two degrees, or sometimes even one-
degree separation between two satellites in the GSO has become a common practice
today. Number of satellites are, nowadays, being positioned and maintained at the
same orbital slot, which is called ‘Collocation’, in many orbital slots having
advantageous footprint and visibilities to the commercially active regions. Fig. 1.2.2

gives number of objects in 2 deg. longitude bins [ 2 ].

Geosynchronous satellites under ccntrol
Distribution of the longitude
Status : Jonuary 2004
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Fig. 1.2.2: GSO satellites — distribution of the longitude of the satellites under control.

As can be seen from the Fig. 1.2.2, there are some orbital slots around which even two

degrees of orbital separation between satellites does not exist.



1.3  The other developments in the Satellite Communications

C band frequencies were allotted originally by ITU for GSO satellite communications,
with uplinks being in 5925 to 6425 MHz and downlinks in 3700 to 4200 MHz. Later
Ext. C band, with uplinks in 6725 to 7025 MHz and downlinks in 4500 to 4800 MHz,
was also allowed to be used for the GSO satellite communications. However, the
uplinks were in a shared band with the terrestrial radio links. A total of 500 to 750

MHz only was thus available for satellite communications in these frequency bands.

Along with the increase of the launch of communications satellites into GSO, another
important technological innovation led to the expansion of satellite-based
communications. It was “frequency reuse” i.e., utilizing same frequency bands for
satellite communications from within the same footprint region utilizing orthogonal
polarizations. This concept was conceived and developed by the organisation

INTELSAT to double, and later to multiply many times, the bandwidth available for

communications [ 3 ].

The continuous pressure for the increase in the bandwidth for satellite
communications has lead to use of higher frequency bands for satellite
communications like Ku and Ka bands with consequent availability of the larger
bandwidth. The use of higher frequency bands have also led to a very revolutionary
communication network concept using Very Small Aperture Terminals (VSATSs). The
VSATs made possible reception of Direct-To-Home (DTH) TV, as well as Corporate

Networks for data transfers, more popularly in Ku-band.

Another important change in the communications field had been the growth of digital
communications from late 80s onwards. The digital communications and associated
developments in the data compression and computer technologies made it possible to
transmit a large amount of data on available bandwidths by increasing the bits
transmitted per Hertz of the bandwidth. The coding and compression technologies
developed for the digital communications have also led to the digital video standards

like MPEG. Today a large amount of satellite communications is carried out in the



digital domain at the baseband level. These technologies brought forward a big change

in interference tolerance criteria, and susceptibility to the interferences.
1.4  The International Telecommunication Union

ITU is a specialized Agency of United Nations (UN) to maintain international
cooperation for the improvement and rational use of telecommunications of all kinds.
It also promotes development of telecommunication facilities and their efficient
operation to improve telecommunication services. The structure of ITU is divided into
three sectors called Radio Communications Sector, Telecommunication
Standardization Sector, and Telecommunication Development Sector. The aim of the
Radio Communication Sector is to ensure rational, equitable, efficient and economical
use of the Radio Frequency Spectrum and Satellites Orbits. The Radio Regulations of
ITU are intended to establish procedures and limits to prevent harmful interference
from effecting the proper operation of services sharing the same frequency bands or

networks of a certain service operating in the same frequency bands.

The world has been divided into three Regions for the allocation of the frequencies

[ 4], as shown in Figure 1.4.1.
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India falls in the Region-3 for the purposes of allocation of frequencies by ITU.

Right from its establishment in 1963, International Telecommunication Union (ITU)
had done a yeoman service to the field of reliable communications and avoidance of
interference. A number of technical studies were carried out by ITU on various
aspects of radio wave propagation, interferences, protection criteria, coordination
procedures etc., and a number of Recommendations were issued on this subject. Most

of these Recommendations have become the basis of regulating the use of frequencies

and transmission in many Countries [ 5 ].
1.5  The subject of Interference

The subject of Interference is as old as the subject of Communication itself. The
interference mechanisms have also grown in the same order as the growth of the
satellites, in terms of complexity. The details of interference between the Earth
Stations of terrestrial microwave systems and domestic communication satellite
systems were examined in a paper published by AIAA in 1968 [ 6 ]. Interference
became a subject of concern because the domestic communication satellite systems
were proposed based on sharing the frequency band of 5925-6425 MHz for Earth-to-
Space use along with the terrestrial microwave systems. Simultaneous with this

proposal, the interference avoidance by adhering to certain sharing criteria was studied

and proposed by the CCIR.

Similarly, the XI Plenary of CCIR adopted recommendation 406-1 which advised to
avoid pointing the antennae of terrestrial radio relay systems towards the Geo-
Stationary Satellite Orbit. The recommendation also provided a computation method
to be used by the terrestrial radio relay system planners. The emphasis of the
recommendation was on the refraction of the microwave signals in the atmosphere
during the signal propagation and for different climatic conditions. The CCIR
recommendation also provided a limit on the amount of power flux density that could
be radiated by the satellites in the shared bands, not to affect the terrestrial microwaye
communications. This recommendation, its impact and the implementation of the

recommendation to avoid interference between satellites in GSO and terrestrial



stations was examined in a technical paper published by AIAA 1968 [ 7 ]. At that time
there were only eight satellites in the GSO.

As the satellite communications and TV broadcasting through satellites grew, the
reception of TV signals with a dish antenna became quite widespread in USA. One of
the pioneering satellite TV broadcast Operators, Home Box Office, decided on 15%
January 1986 to scramble its signals and charge the programme fees. This has led to
the often quoted incident of ‘Captain Midnight’. When HBO was airing a movie
through satellite on 27" April at 12:32 a.m., the satellite bandwidth was captured by a

stronger signal and for 42 minutes and the following message flashed on all the TVs

[8]:

“Good evening HBO
From Captain Midnight
$ 12.95 / month
No Way!
(Showtime/Movie channel beware)
This became the first infamous incident of deliberate interference into the satellite
communication channel. Similarly in a recent incident, China Central TV channel
(CCTV) of Peoples Republic of China was captured for ten minutes with a strong
uplink in August 2002, allegedly by a group called Falun Gong. They displayed big
posters, which were against Chinese Government. The same was repeated on two days
during August 2003 capturing the TV channel being carried by SinoSat satellite.
These deliberate capture of the communication satellites brought forward in a
dramatic way the vulnerability of satellite communications to deliberate jamming /

interference.

1.6  The Interference in Satellite Communications

Interference in communications is inevitable as long as we use the radio spectrum.
The Interference, which is dealt with in this Thesis work, concentrates on the subject
of Interference in the Satellite Communications with special emphasis on the satellites

in the GSO. The investigations covered in this Thesis deal with inter-system



interference, or interference caused by different networks and different systems into
each other. Hence, only the detectable unwanted signal, which degrades the quality of
the wanted signal is considered to constitute the Interference. In that sense, for the
present Thesis, Interference is defined as the effect of an unwanted signal on the
reception of a wanted signal. The detectability of interference depends on the

characteristics of wanted signal, the unwanted signal, and the communication system /

channel characteristics [ 9 ].

The subject of Interference in Satellite Communications has become a complicated

field due to:

- Sharing of the frequency bands among the satellite communications and the

terrestrial microwave radio relay communication systems.

- Increase in the number of satellites in the GSO and the reduction of orbital

separation between the satellites.

- Use of higher frequency bands for communications, and hence use of satellites
with higher EIRP onboard (due to exclusive use of these frequency bands and lack

of necessity to avoid higher EIRP from frequency sharing criteria).
- Use of VSAT terminals with wider beam-width.

- Tremendous growth of number of VSATs and their Hub Stations which are

employed in the satellite communication networks.
- Use of orthogonal polarization within the same satellite system.

- Deliberate jamming / causing interference into the operational channels of the

satellites.

Lack of expertise and operational discipline in dealing with a highly sophisticated
field like satellite communication by the Operators have further complicated the basic

technical reasons listed above in increasing the interference cases.



The impact of interference can be mitigated by making the receiving systems (and the
modulation techniques employed) more tolerable to the interference. Another solution,
where this approach cannot work, is to identify the exact location of source of

interference, and then to coordinate to avoid harmful radiation.
1.7 EMI/RFI

Another type of interference also became popular by the name “Electro-Magnetic
Interference (EMI)”, or “Radio Frequency Interference (RFI)”. The subject of EMI
and RFI is more relevant and concentrates on the electronics subsystems, within
which the interference phenomena takes place. The use of a large number of electronic
devices, miniaturization of the circuits, and use of Integrated Circuits and large-scale
integration had all led to interference between various sections of electronic
subsystems. The branch of reducing or mitigating the effects of EMI had become
popular with subsystem and system designers. The subject of mitigating the effect of
EMI is more commonly known as Electro-Magnetic Compatibility (EMC) [ 10 ].

However, this type of interference is not the subject of study of this research work.
1.8 Interference between GSO and non-GSO satellites

Non-Geostationary satellites (non-GSO) systems, in particular using low orbiting
satellites, are being considered for establishing mobile and fixed communication
networks. A few systems are already in operation but many other systems, which were
earlier planned were dropped recently due to financial viability problems. Systems
using non-GSO are proposed in the FSS and the frequency bands 18.9 to 19.3 GHz
and 28.7 to 29.1 GHz were allocated by ITU to the non-GSO on a primary basis at
World Radio Conference (WRC) —95.

WRC - 95, and WRC - 97 allotted the following frequency bands for the feeder links

of non-Geostationary satellites in the mobile-satellite service:
* Uplink : 5091 to 5150 MHz and Downlink : 6700 to 7075 MHz

= Uplink : 15430 MHz to 14630 MHz



* Downlink : 6700 to 7075 GHz

* Uplink : 5150 to 5250 MHz and Downlink : 5150 to 5256 MHz

* Uplink : 19310 to 19700 GHz and Downlink : 15430 MHz to 15630 MHz
*= Uplink : 29100 to 21500 GHz and Downlink : 19310 to 19700 GHz

All the above mentioned pairing is not compulsory and, except for those frequency

bands being used for GSO communications in the same direction.

Sharing between non-GSO and GSO networks are analyzed by ITU in terms of
interference and performance criteria for Forward Band Working (FBW), and Reverse

Band Working (RBW) in which the uplink frequency and downlink frequency of one

system with respect to another system are reversed.

Non-GSO satellites being in low earth orbit, interference occurs for any satellite
communication link only for a brief period when the non-GSO satellites come in-line
of Earth Station and GSO satellites. GSO Earth Stations suffer severe interference

from non-GSO satellite downlink when an in-line situation occurs (non-GSO satellite

within the main beam of the GSO Earth Station).

In WRC 97 ITU’s Regulation states “Non-GSO satellite system shall not cause

unacceptable interference to GSO satellite system in the FSS and BSS operating in

accordance with ITU Regulation”.

An excellent survey on interference suppression techniques in mobile communications
interference / fading problems is given by Stavroulakis in a recent paper [ 11 ]. Even
though this type of interference is one of the important areas, the present research

work does not deal with this aspect because such interferences in the INSAT system

are not a serious concern today.
1.9 The Research Work

The present research work is taken up in the context and the background described

above. The Indian National Satellite System (INSAT) is an important geo-stationary



satellite segment of Indian Space Research Organisatiion. Presently, there are six
operational communication satellites of ISRO in the GSO at five orbital slots between
48 deg E to 111.5 deg E longitudes. The number of transponders available in the
Space segment are about 130 covering frequency bands of C, Ext. C, MSS (SxC &
CxS), and Ku bands. The satellites are being used for Telecommunications, TV
broadcasting, networking of AIR signals, and various types of VSAT networks. 203
Earth Station / Hub Station antennae and a total of 30,000 VSATSs are involved in the
Networks which work with various transponders of INSAT system. A total of 83 TV

channels, private and Prasar Bharati channels put together, operate through the various

transponders of INSAT satellites.

There are a number of foreign satellites, servicing different countries and areas of
Asia-Pacific region, which are also located in the longitude range of 50 deg to 130 deg
East longitude. The geographic coverage of these satellites and the frequencies being
used were as approved by ITU. However, a number of practical deviations occur in

the final usage, and certain restrictions, accepted during Coordination, might be

violated unintentionally.

Due to the vast size of the INSAT network, and the other reasons described, a lot of
interference cases in satellite communication had cropped up in the use of INSAT
system during the last five years. Some of the interference cases led to loss of revenue
due to inability to use the leased bandwidth by the customers. Active investigations

were carried out into each of these cases. Many of the major interference problems

were resolved, some of them in a record time.

In the context of interference in INSAT satellite communications described above, the
present Research is taken up with objectives of systematic study and analysis of
different types of interferences experienced in the INSAT system using the extensive

facilities available at the MCF. The goals of the research were:

° Identification of the interference signals in the downlinks.



o Analysis of the data to differentiate between satellite-generated interferences,

and ground-generated interferences (reaching the satellites as uplink signal).

) Analysis of the modulations on the interferences signals and their effect on the

wanted signals.

° Measurement and analysis techniques to localize the ground sources of
interference.

o Possible methodologies to eliminate the interferences, or reduction of
interferences.

The Investigations into the interference problems in INSAT communications are
undertaken as a Research work under the Ph.D. course of BITS, Pilani. The cases for
detailed systematic analysis and investigations are selected from the severe
interference problems experienced in INSAT system, which were causing heavy

disruption to the traffic and to the effective utilization of the bandwidth.

The present Thesis Report records all the work carried out and the results achieved in

the course of this Research.

1.10 Organisation of the Thesis Report

The subsequent Chapters of this Thesis Report describe in detail the work carried out:

Chapter-2: Review of Literature — This chapter covers the Literature survey carried

out, and reviews important contributions to the field of interference in satellite

Communications, as reported in the Literature.

Chapter-3: The Interferences in Satellite Communication — This chapter covers
different causes of interference in the satellite communication with special emphasis

on satellites in Geo-Synchronous Orbit.

Chapter-4: ITU Regulations and their relevance to the interference studies - This

chapter deals with the various Regulations and recommendations of ITU on the






subject of interference. ITU recommends the AT/T method and C/] method to
calculate the expected interference, and also recommends the tolerance levels. One of
the important recommendations of the ITU is on Off-axis radiation pattern of the
ground antennae involved in satellite communications. Summary and important
aspects of these recommendations are given, as a background material used in the

Investigations into the interference cases.

Chapter-5: Analytical & Experimental tools for Interference studies — This chapter
covers the analytical and experimental tools used in the Investigation of interference
cases. The localization of the source of interference involves the principles of Time
Difference of Arrival (TDOA), and Frequency Difference of Arrival (FDOA), and the
measurement of the same. The theory and analysis of cross-correlation of signals, the
measurements of TDOA, FDOA, and the limitations of TDOA-FDOA test

methodology in handling all types of interferences are covered in this Chapter.

Highly sophisticated equipment and a number of antennae are used to configure and
carry out the measurements required during the investigations. An equipment called
“Telecom Carrier Analyzer (TCA)” with customized features was procured specially

for interference measurements. Experiments with TCA and its use in developing cross

correlation software are also covered in this Chapter.

Chapter-6: INSAT System & Investigations of Interference Cases - This is the
main chapter, and the first section briefly outlines the INSAT system, its current
transponder capacity, and various applications of INSAT system — which forms the
background to understand the interference cases experienced. Remaining sections
cover Investigations of eight major interference cases, experienced in the INSAT
system. The cases included interference from adjacent satellite networks, interference
from ground-based radars, wideband noise-floor-rise problems, pick-up and
retransmission of FM radio signals, interference during flyby operations, interference
into the MSS transponder, and the interference generated on-board the satellite
payload. The description of the interference problem, characterization of interference,

special measurements carried out to understand the interference coupling mechanism



analysis carried out to define the features of source of interference, and finally

localization of the source / resolution of the interference are covered for each of the

cases investigated. The interference cases are covered in eight sections of this Chapter.

Chapter-7: Most important conclusions of the thesis and further work — The
chapter summarises the Investigations carried out on the interference cases and
identifies different approaches used to characterize and resolve the interference cases.
The approaches used in investigating all major interference cases are used to develop

a step-by-step generalised approach in a Flow Chart form, which can be used in future

by anybody to resolve interference problems quickly.
The further scope of the work is also outlined as a section of this Chapter.

References: All the References used during the Investigation of interference cases are

given at the end.

Next Chapter covers the review of literature on interference problems in Satellite

Communications.
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Chapter-2

Review of Literature

Introduction to the Chapter

Reference material is drawn from published literature in the course of the
Investigations into the interference problems in INSAT system. Review of the
Literature on interference problems in Satellite Communications is covered in this
Chapter. Many Books on Satellite Communications covered ‘Interference’ as one of
their chapters. Articles were published in journals on specific works carried out on
different aspects of interference. Recently, an informal Group of Experts was formed
by the Satellite Operators to exchange their experiences on interferences in Satellite
Communications. This Group, called ‘Satellite Users Interference Reduction Group’,

meets every year, and technical presentations on interference problems are made in

these meetings.

The references used from all these sources are reviewed in this Chapter.

2.1  Review

Arthur C. Clarke proposed the concept of Geo-stationary orbit in an Article published
in the Journal “Wireless World” in October 1945. This Article [ 1 ] is a visionary
document for the subsequent work carried out to orbit the Communication Satellites
into Geo-stationary earth orbit (GSO). The number of Communication Satellites
launched every year increased in the past four decades. The number of satellites in the
GSO, and the Space Objects in the Region of GSO has become a subject of current
concern even from the Space Debris point of view. European Space Operation Center
(ESOC) of European Space Agency (ESA) maintains a database on geosynchronoys
objects and classifies them and releases a document every year giving the status of

GSO and the objects in the GSO Region. The latest database document released in



transmission of Home Box Office (HBO) in 1986 [ 8 ] brought home the importance

of the subject of ‘Interference and jamming’ among all the concerned.

The subject of interference, for the purposes of systematic analytical study, is clearly
defined by Wilbur Pritchard [ 9 ]. He defined interference as the effect of a detectable
unwanted signal on the reception of a wanted signal. He also covered excellently the

analysis of optimizing the inter-satellite orbital separation from interference point of

view using C/I method.

Electromagnetic interference is also very popular subject for subsystem designers.
Henry W Ott covered the subject of EMI in terms of cabling, grounding, shielding etc.
in a book [ 10 ]. This book mainly deals with the conducted and radiated
electromagnetic interference between electronic circuits / subsystems ; and the
methods to achieve Electro-Magnetic Compatibility (EMC). Similarly, the
interference between GSO and non-GSO satellites in terms of frequency use and
satellite visibilities is well covered in the ITU Hand Book on Satellite
Communications. The developments in the subject of interference for the mobile
satellite communications was reviewed by Stavroulakis [ 11 ], specially covering
interference suppression techniques by using different modulation schemes, using
‘more stringent cross-correlation properties, and transversal combining’ etc. However,
EMI of subsystems and Interference in mobile communications are not dealt with in

the present Research work, because such interferences in the INSAT system are not a
serious concern today.

Unintentional interference originating from ground radars, and the geometric and
power spectral aspects of the same were analyzed by Charles C. Wang et. al. [ 12 ].
This paper illustrated an approach to assess the impact of such interference on a geo-
stationary satellites. Several factors, which influence the level of interference, such as
geography, frequency, power and time were considered in the analysis. The paper
suggested RFI Free Zone (RFZ) from which a scanning radar signals cannot reach the
satellites in the GSO. But the RFZ suggested in the paper can be computed only if the
elevation angle, at which the interfering radar operates is known, which is generally

not the case in many practical applications. R J Matheson et al. carried out an



excellent work of monitoring the spectrum of various types of radars, and the same
was reported in NTIA Report [ 13 ]. This work clearly brought out the amount of
spurious generated by the Transmitter Tubes used in many radars. The report
documented systematic spectral measurements carried out on different types of radars
— Airport surveillance radars in S-band, long-range air route surveillance radars in L-

band, air-transportable height-finder radars in S-band, and weather radars in C-band
and S-band.

The SSPAs used in the ground terminals, sometimes, oscillate and create sweeping
CW interference. One such case was Investigated very carefully, and Siegfried Fiedler
of EUTELSAT reported their work in the SUIRG meetings of the years 2000 and
2001 [ 14 ], [ 15 ]. A detailed analytical model was generated for the SSPA, and it was
found out that the amplifier was marginally stable in cold weather conditions. Ken
Kashin of PANAMSAT reported generation of spurious intermodulation signal in Ku
band in one of the ground terminals, and its re-transmission to the satellites [16],
which was Investigated by them in 2001 / 2002. The details on such reported

problems are all used in the present Research work to list all causes of interference,

and link them to the experience of INSAT system.

Adherence to the ITU Regulations is important in disciplined operation of ground and
satellite systems, and to avoid interferences. Richharia excellently summarizes the
role of ITU in equitable use of radio spectrum, and its role in carrying out technical
studies to avoid interference. The ITU Recommendations dealing with maximum
permissible off-axis EIRP levels, off-axis radiation pattern of ground antennae, and
the procedures for determining whether Coordination is required ornot [ 18], [19]
[ 20 ] are very important for the Investigations taken up in the present Research work.
Similarly, the procedures of AT/T and C/I calculations for establishing interference
tolerance criteria [ 21 1, [ 22 ], are useful to consider the intensity of interference
cases. All these ITU Recommendations are studied, and recommendatory/ regulatory
technical details are given in Chapter 4 of this thesis, as ready reference to the

interference investigations carried out.



The interference tolerance criteria for analog FM TV and digital TV were covered by
Benoit [ 23 ], [ 24 ], by Gomez [ 25 ], and Ken Ryan [ 26 ]. The technical details of
direct broadcast satellite communications system were detailed by Donald C. Mead
[ 27 ], which is essential to deal with interference in digital TV. The details given in
these books on digital TV and its interference related aspects clearly bring how high

C/I values are required for proper operation of digital TV compared to analog TV.

Even though the use of VSAT terminals in the satellite communications is very
widespread today, no common standard or Regulation exists. The technical aspects of
VSAT system design and interferences are covered in the INTELSAT Handbook
[ 28 ] and in the ITU Recommendations [ 29 ]. The INTELSAT handbook covers

Network design details, in addition to clear technical description of VSAT
configurations.

The analytical and experimental tools used during the course of present Investigations
into interference cases are derived from many references. The concept of geometry
involving an un-known interference source and two adjacent satellites was covered by
Wilbur Pritchard and Joseph Sciulli [ 30 ]. The principle of TDOA and FDOA were
covered by Chestnut [ 31 ]. William Smith Jr. and colleagues can be credited with the
first work on interference location system using TDOA and FDOA principles. Their
work was reported in an Article in 1989 [ 32 ]. These papers elaborated the principles,
measurement techniques, and use in geo-location of the TDOA and FDOA. The
articles also provided detailed examination of the accuracies achievable in the

measurement and in geo-location of the source of interference.

Interference signal detection is an important aspect of TDOA / FDOA measurement
and Spectrum Analyzers can be very effectively used for the same [ 33 ]. The case of
detecting the weak interference signals was covered by Charles Knapp and Clifford
Carter [ 34 ]. The maximum likelihood estimator was developed for determining the
time delay between signals received through separate antennae by them. The
correlation of signals by Angle Of Arrival methods was also covered by Richard
Wiley [ 35 ]. The optimum angle of separation of the inter-sector satellites for geo-

location of frequency hopping transmitters was covered by Alexendar Sonnen Schein



et al. in an article [ 36 ] in 1993. The fundamentals of cross-correlation and
computation of the same in frequency domain using digital signals were well covered
in the book on Interferometery in Radio Astronomy by Richard Thompson et al.
[ 37 ]. The procedure for cross correlation for digital signals was also studied in
standard mathematics books [ 38 ], [ 39 ], [ 40 ], [ 41 ]. All these articles provided the
fundamental basis for cross-correlation of two signals, especially if one of the signals
is near-noise level. The principles covered both the time-domain and frequency-

domain analysis.

The work on interference localization system was reported by Haworth, Smith et al. in

1997 [ 42 ]. This paper covered practical demonstration of localizing the source of

interference using EUTELSAT satellites, along with discussion on accuracies.

The Telecom Carrier Analyzer (TCA) has been configured at MCF for detailed
interference studies like cross correlation of signals, and detection of interference

embedded in the occupied spectrum. The features of Telecom Carrier Analyzer and its

use are covered in its Operational Manuals [ 43 ].

The cases of interference reported by other Satellite Operators like Indonesian Palapa
system [ 44 ], SES Astra [ 45 ], by SATMAX [ 46 ], and by Singapore Telecom [ 47 ]
in the SUIRG meetings are studied during the course of Investigations. The
interference into INSAT system was also presented in the SUIRG meeting of 2002 [

48 ], to derive the benefit of discussions with other Experts.

The analysis of pick-up of FM radio signals and their retransmission to the satellites is
covered by Molnar et al. [ 49 ]. Precautions to be taken in the ground stations to avoid

such pick-up is explicitly given in the Users Manual of Intersputnik [ 50 ].

In a personal communication, Mr. Bruce Nelson, Interference Expert at INTELSAT,
suggested that development of a light-weight, portable measurement equipment will

greatly help VSAT operators, and future interference studies. This idea is further
progressed at MCF and is covered in the last Chapter briefly.

The above Review of Literature covers only the references cited in the present Thesis

Report, depending on their direct applicability
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Chapter-3
The Interferences in Satellite Communications

Introduction to the Chapter

The various causes of interferences in the satellite communications are examined in
this Chapter. The sources of interference and the interference coupling mechanisms

into uplink / down link satellite signals are explained.

The spurious signals generated by the radars, much beyond their operational
frequency band, were often found to be the reasons for interference from radars to
satellites. Ground-based radars can also cause interference if their peak power is high,

or their operational elevation angle happens to coincide with the satellite elevation
angle from that site.

.The pick up of FM radio signals by the VSAT terminals and re-transmission of the
same to satellites, after frequency conversion, is a very dominant interference problem
in the Asian Region. Poor shielding of the cables or un-terminated ports (at IF level)

in the VSATS usually pick up the radio signals and cause this type of interference.

The interference in the satellite communications can happen due to radiations from
adjacent satellites or due to the ground networks operating on the adjacent satellites.

In some cases SSPAs of VSATs were found to oscillate and cause sweeping CW

interferences.

Undisciplined increase of uplink power, poor maintenance of outdoor equipment by
the Network Operators, SNG terminals uplinking to wrong satellites fall under the
category of the causes which are due to lack of professional standards and guidelines,
or non-adherence to the guidelines in the operations. However, these causes can create

very complex interference problems as experienced in the INSAT system.

Antennae with bad off-axis radiation or with poor cross-polarisation isolation cause
interference either to the same satellite or to the satellite operating in adjacent orbita]

slots.






A study of the causes of interference is taken up based on experience in INSAT
satellites, and also based on the reported interference cases of other Operators. These
causes are explained briefly in the following paragraphs. Some of the cases of
interference experienced in the INSAT satellites are given as examples wherever

relevant.
3.2 The Causes of Interference

Following are some of the types of interferences, which are being experienced. The

causes are also identified in each case:

3.2.1 Ground-based radar transmitters

Radar systems may be operating in the frequency bands adjacent to the ones allotted
for Earth-to-Space or Space-to-Earth communications. Also, the radar transmitters
may have harmonic emissions, which fall within the frequency bands used by the
Satellite / Earth Station receivers. Usually, the Earth Stations are located away from

the vicinity of major airports to avoid downlink interference from airport radars.

The occurrence and level of unintentional uplink interference from the ground based
radars depend on the geographic position of the radars, the footprint of the satellite,
frequency, power, and spatial relationship between the radar and the effected satellite.
Two most important parameters out of the above are: geographic location of the radar
and the interference power caused by the spectral components of the radar. As the
nature of the radar is generally to detect any low-flying objects, the elevation angle of
this scanning region has an upper limit. Similarly, the interference power up-linked to
the satellite depends on the total spectral power of the radar and the frequency
separation between the radar and the satellite. However, some of the weather
monitoring radars scan up to an elevation angle as high as 70 deg. In such cases radar
signals can easily reach the GSO satellites as interference through the side-lobes of the

radar antenna.

The Fig. 3.2.1 and 3.2.2 given below illustrate the relationship between the source of

interference and affected satellite [ 12 ].
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Because the scanning radars are limited by the maximum elevation angle, the radars

located in a particular circle centered on the sub-satellite point of the effected satellites

will not cause interference. Therefore, a “RFI-Free Zone” (RFZ) exists. The radius of

RFZ is given by:

R
r= Re COS{¢max + Sin-l(R =—cos max J:I (1)

GEO

R, = radius of Earth
Rgro = radius of Geostationary orbit

Omax = Maximum elevation angle of the radar.

Based on the RFZ, certain geographical area can be eliminated in the geo location

process.



The interference power of the radar spectrum (which is given in the F ig. 3.2) is given

by the equation:

AYRY

P()= de.sincz(Tdf) (2)
v-8

B = one sided receive frequency band of the satellite
Af = Centre frequency off set between the interfered satellite and the radar
Sinc (x) = sin(x)/x ...... PDF of the rectangular pulses
Based on the above equation, the interfering power from a radar into the reception
band of the satellite can be computed. The interference exists if the computed power is

above the detection threshold of the affected satellite.

It was also reported that the magnetrons used in some of the radars, over a time, can

generate a lot of spurious outputs beyond their frequency band [ 13 ].

INSAT system experienced uplink interference from ground-based radars in one of its
transponders. Through the Time Difference Of Arrival (TDOA) measurements, the
approximate location of the ground-based radars causing the interference was
identified. The Coordination resulted in solving the problem. Fig. 3.2.3 gives two
spectrum plots of the transponder affected by uplink interference from ground-based
radars.

3.2.2 Terrestrial FM radio signals

FM radio signals sometimes appear as unauthorized carriers in the satellite
transponders.

ITU has allocated 87-100 MHz, and 100-108 MHz for terrestrial broadcasting. FM
radio transmissions work in these bands. The satellite VSAT networks usually employ
70 MHz as the IF frequency with a range of +20 MHz, before up converting to the
satellite transmit band. But the bandwidth of the up-converts are generally wider than
+20 MHz needed. Hence, IF equipments or cables can pick up FM radio signals and

cause interference, if they are in the vicinity of these radio stations.

Usually, FM radio signals are picked-up by long and unprotected cableg of VSATs

and these signals are up-converted to the satellite uplink band. Poor SCreening at IF



four to five transponders. (i.e. range of 200 MHz). The rate of sweep and staying time

at any one frequency differ from case to case.

3.2.5 Undisciplined Uplink Power Increase

Usually the customers increase their uplink EIRP whenever they find some small
degradation in the E,/N,. If this degradation happens to be due to noise floor rise, the
increase of the EIRP further aggravates the problem and there will be further rise in
the noise floor. Some times the aggravated noise floor can cause problem to the
adjacent traffic. Strict discipline in the uplink power control by the customers is very

essential for normal functioning of all the traffic.

A similar case occurred in the case of INSAT system. Fig. 3.2.6 gives the spectrum
plots of the rise in noise floor, which happened due to one of the customers raising the

uplink power. The same was corrected after the customer was alerted.

3.2.6 Operator Errors or Omissions

4
High levels of skills and standards are required to operate ground systems in the

satellite communications. Very serious interferences to the satellites can occur due to
the operational mistakes in the ground terminals.

A severe interference problem was experienced by two transponders in the INSAT
system for more than a month, with degradation of E,/N, to the VSAT traffic. The

VSAT traffic in the affected channels was very heavy, and consequently the
diagnostic testing became very difficult. It was found that the noise floor of the

transponders was disturbed, and a peak-to-peak variation of 10 to 15 dB was
measured, through coordinated testing.

After detailed analysis and coordinated testing, the interference was estimated to be
caused by a loop-back between downlink and uplink in one of the ground terminals,
An alert to all the VSAT Operators made the offending ground personnel to realize
their mistake. The problem disappeared after the alert.

3.2.7 SNG terminals uplinking to wrong channel/wrong satellites

Satellite News Gathering terminals usually move to the site of action, from where they

uplink video to the hub station of the customers. They set up the ground antenna and



adjust the azimuth and elevation angles to look at the satellite to be used. In this
process of trial and error, some times these SNG terminals, cause interference to the

satellites which are adjacent to their intended satellite.

The tuning of the uplink frequency allotted to them is also done many times without

proper equipments, thus causing interference to the adjacent transponders of their

intended satellite.
3.2.8 Antennae with wrong adjustment of polarization

The ground antennae employed by the customers have to be adjusted for proper uplink
polarization. If the polarizer is not adjusted correctly, interference into the orthogonal
polarization of the same satellite, or interference into the adjacent satellites
(employing orthogonal polarization) can occur. Many such cases can be analyzed only
with the complete knowledge of the traffic plans of the concerned transponders. It is
always better to take care of such possibilities while approving the traffic plans. Many
cases of interference into INSAT system occurred due to wrong polarization

adjustment of the ground terminals, and the same were tackled with real time

Coordination.

3.2.9 Antennae with bad off-axis radiation

The antennae employed in the uplinking station have to meet off-axis radiation limits
of ITU recommendation S.580-5. In the case of India, NOCC of DOT is the Agency to
test and certify that the antennae meet the ITU recommendations. The criteria to

approve the Ground Transmitting antennae should be strictly adhered to, for avoiding
interference into satellite systems.

But in mahy cases the validation procedure of ground antennae in the other countries
in the Region is not clear. Specially, VSAT networks employ 3.8 mto 1.2 m antennae,

which have wide beam widths. Interference can occur from the ground antennae

employed by VSAT networks to the nearby satellites.

3.2.10 Insufficient testing of new equipment

The new equipments have to be tested completely before they are put into service. The

upconverters and SSPAs / HPAs create spurious in some cases. These spurious will



Such cases of onboard generated spurious can be confirmed by eliminating the other
causes and conducting subsystem on/off operations. One serious intermodulation
interference case occurred in INSAT-3A, and it was confirmed as due to unintended
coupling between the downlink and uplink signals in the on-board payload. Fig. 3.2.7

gives spectrum plot of interference generated on-board INSAT-3A.

3.2.14 Interference due to drifting satellites

The communication satellites drift to their final orbital slot at the end of orbit raising
operations. The drift rate usually is around 2 deg of longitude per day. Some times, a
satellite may have to be relocated to a new orbital slot, which is done by raising /
lowering the orbital altitude, thus allowing it to drift westward / eastward respectively.

Interferences to others satellites can occur during such drifting phase of the satellites.

Fig. 3.2.8 shows interference experienced in one of the transponders of INSAT-2E

due to an unknown satellite, which was in drifting phase.

QQ

3.3  Conclusion

Various types of interference, along with the causes are explained. Relevant examples
from the interference cases experienced in the INSAT system are given. All the major
causes of interference were investigated, and reported in detail in Chapter 6. But

before proceeding to investigations, the ITU Regulations / Recommendations on

mitigating interferences are examined in the next Chapter.
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Chapter-4

ITU Regulations and their relevance to Interference studies

Introduction to the Chapter

The investigations into interference cases require the knowledge on the allocation of
frequency bands for various services, and their actual use. Similarly, tolerable
interference levels have to be considered before attempting to resolve the interference

cases. In the case of interference from adjacent satellite networks, there should be a

common technical basis to carry out Coordination.

International Telecommunication Union (ITU) is the agency, which regulates use of
frequency spectrum, and allocates orbital slots. ITU has also developed excellent
knowledge base on interferences, and recommended standard procedures to
quantitatively define the interference. Hence, all relevant aspects of ITU

Recommendations with respect to interference are summarized in this Chapter.

Section 4.1 introduces the concept of detectable interference and tolerance criteria.
Section 4.2 identifies the main types of satellite communication services, as defined
by ITU. Section 4.3 elaborates different modes of interference and the ITU
recommended solutions in terms of off-axis power flux density / limitations on the
radiations. This Section also covers interference tolerance aspects of analog and

digital TV. Section 4.4 covers VSAT communications and the limits for off-axis

emissions for VSAT being considered by ITU.

The contents included in this Chapter were studied and considered in the interferences

cases investigated and reported in Chapter 6.

4.1 Interference, Detectable Interference, and Tolerance Criteria

Interference can be defined as the effect of an unwanted signal on the réception of a

wanted signal. Only when this effect is of such a level as can be detecteq by the
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system, then the detected interference becomes an issue of concern. The detectability
of interference depends on the characteristics of the wanted signal, the characteristics

of unwanted signal and the communication system. [ 9 ]

Interference affects a number of Services and Applications which are based on
Communication satellites. Traditionally, the voice communications across the
Continents was a leading Application utilizing satellites. The Applications and

Services are of varied nature today. The dominant Applications of the Communication

Satellites are:

Analog TV broadcasting

e Digital TV broadcasting
e Radio Networking
e Voice communications

e  Mobile communications
e Data, voice and video communications using VSATSs

All other Applications will be a combination of the above. Each of these Applications
require certain minimum level of signal power, or more precisely Signal-to-Noise-
Ratio S/N, for its proper functioning. The quality of each of these Applications is a
function of S/N, which is in turn a function of Carrier-to-Noise-Ratio C/N. The
interference can also be visualized, ultimately, as an element in the total system noise,

and thus will contribute to the composite carrier-to-signal-ratio C/N.

Each of these Applications will have certain tolerance to the unwanted signal, i.e
interference. Hence, the interference problem has two main parts: the relative strength

of interference compared to the wanted signal, and the tolerance of the system to the

interference.
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Minimum acceptable performance standards of each service define maximum noise
level which can be tolerated under specified conditions. Specific fractions of this
maximum level of noise are allotted to signal degradation occurring within the system,
to the interference from other subsystems of the same Service (intra-system
interference) and the interference from networks of other Services (inter-system

interference). The last two components can be combined and can be called

“Permissible Interference”.

4.2 Classification of services by ITU

The radio spectrum is a limited natural resource, which should be shared by all types

of radio services. ITU allots the frequencies for each service on a global and regional

basis to avoid interference between the various services.

ITU has categorized the radio services according to their broad functions. Frequency
allocations are made for each service, either globally or in a particular Region. At
present, ITU has defined 35 radio services. The present work deals with only Fixed
Satellite Service (FSS), Broadcast Satellite Service (BSS), and the Mobile Satellite
Service (MSS). The FSS applies to systems, which interconnect fixed points through
satellites. BSS refers to Broadcast Satellite Service of television or radio programming

directly to the public. MSS service refers to communication to mobile terminals and

individuals using satellites.

Many networks might be working in the sub-bands of a single Service to which a
frequency band is allotted. The various networks, if do not operate within their

allotted limits, cause interference to other networks in the same Service.

When a frequency band is shared between two Services, there are bound to be
interferences between the Services — for example between terrestrial radio relay
Service and Fixed Satellite Service (FSS). When the frequency spectrum is allotted by
ITU, the allocations are of three categories — Primary, Permitted and Secondary.
Primary and Permitted Services have equal rights, with Primary Service also having

priority in choice of frequencies. Secondary Services have no rights against Prim
ary
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or Permitted Services concerning the potential for harmful interference transmitted or
received. The interference between the Services with allocation of equal status is

mostly resolved by adhering to the stipulated limits and coordination.

The terrestrial microwave communication, which is traditionally a part of the domestic
communication network in many countries, works in C-band as well as in Extended
C-band. The satellite Services and terrestrial communication services are having equal
status in sharing the Extended C-band frequency spectrum. This is a classic case of the

tvpe of possible interference described above.

The uplink and downlink signals of a particular satellite system can reach the adjacent
satellite system as interference, due to improper antenna radiations or improper system
_parameters. This is more frequent where the orbital separation between adjacent
satellites is reduced from 3 deg to 2 deg, (and further to 1 deg in certain Regions). The
interference problems between the Networks / Services of two adjacent satellites are

resolved usually by prior planning and Coordination.

One of the satellite applications of recent origin is the mobile telephony using Low-
Earth Orbit (LEO) satellite constellations. These constellations (like Globalstar,
Orbcom etc.) and their mobile telephony applications have potential to cause
interference to the communication satellites in GSO, due to usage of common

frequency bands, and / or generation of spurious signals in the frequency bands used
by GSO.
Military satellites are also used for a large amount of voice and data communications.

Even though the frequency bands allotted for these applications are different, there -

were cases of interferences generated by such systems.

In this context, ITU worked on interference in satellite communications, since its

inception, mainly to harmonize various services and achieve optimum usage of

frequency spectrum.

The subsequent sections cover inter-system interference, and the various methods as

recommended by ITU to compute and specify interference tolerance criteria, and also
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to quantify the impact of the interference on various Satellite Communications

Applications.

4.3  Modes of Interference in the FSS, & ITU Recommendations

The different modes of interference between terrestrial stations, satellite earth stations,

the satellites, and between the networks using satellites is shown in Fig. 4.3.1. [ 5]
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Fig.4.3.1 Modes of interference concerning the FSS in the frequency bands allocated with equal rights for
terrestrial radio communications.

This figure and the nomenclature used are taken from the ITU recommendations,

Difference modes of interference are as below:

Al  Terrestrial-station transmissions possibly causing interference to reception by

an satellite earth station.
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Bl

Cl

C2

Satellite Earth-station transmissions possibly causing interference to reception

by a terrestrial station.

Space-station transmission of one satellite possibly causing interference to

reception by an earth station of another satellite network.

Earth-station transmissions of one satellite network possibly causing

interference to reception by another satellite.

Satellite transmissions possibly causing interference to reception by a terrestrial

station.

Terrestrial-station transmission possibly causing interference to reception by a

satellite.

ITU provides a number of recommendations and regulations to deal with the planning,

coordination and resolution of the type of interference problems described above.

These regulations / recommendations can be summarized under the following

categories: [ 17 ]

Frequency allocation for various satellite communication services.

Constraints on the maximum permissible RF power spectral density from earth

stations.

Restrictions on the antenna pattern of earth stations.

Constraints on the maximum permissible transmission levels from satellites.

Permissible interference from other networks.

The general practice recommended is to coordinate and change characteristics of two

networks if the interference originates from a limited number of identifiable stationg

If the number of interfering stations is potentially large, then constraints on the

characteristics on all such stations are imposed so that the aggregate level of

interference will be acceptable.
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Fig. 4.3.2 schematically identifies the type of solutions recommended by ITU for

different modes of interference.

Interference from

Interference from

Space Station to

Terrestrial Station to

Terrestrial Station to Earth Station to s
a ft
Earth Station Terrestrial Station Terrestrial Station pacecra
Al A2 c1 c2
+« Coordination for « No radiation below 3 o Limits on maximum + Limits on direction
location of Stations deg El angle power flux density at of radiation towards
Earth's Surface GSO
< Limits on Radiated Energy —>
(Maximum eirp limits)
Downlink
Interference - Uplink Interference-- Satellite to Satellite
Spacecraft to Earth Earth Station to Interference
Station Spacecraft
B1 82 E

« Limitations on off-axis « Similarto 81 & B2

antenna radiation pattern
Increase in equivalent satellite link
Noise Temperature

Fig. 4.3.2 : Modes of interference between Satellite Networks. and Satellite Systems to Terrestrial Stations in
Sharing FSS Band; and ITU recommended solutions

4.3.1 Limits on Radiated Energy

(A) To avoid interference in the A2 mode - i.e., interference from satellite earth
station to the terrestrial station, ITU restricts earth station antennae from
transmission at elevation angles less than 3 deg above the horizontal plane.
Also, the maximum permissible EIRP in any direction towards the horizon
when the elevation angle of the antenna is less than or equal to § deg is

given below in Table-4.3.1.

Table-4.3.1 : Maximum permissible EIRP for A2 mode of interference

Frequency bands | E/s e.ir.p. (dBW) | Bandwidth (kHz) | 3° < 8 <5%e.ir.p.
(F, GHz) (8) (dBW)
1<F<I5 40 4 40+3.8

F>15 64 1000 64+3.9§

No restrictions for elevation angle  above 5 deg.
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(B)

Mobile Service (MS) stations, i.e., mode C2 type of interference, the Stations are

To avoid interference to the satellites in GSO from the Fixed Service (FS), or

restricted in the transmission of EIRP beyond the limits given in Table-4.3.2.

Table-4.3.2 : Maximum allowed EIRP for C2 mode of interference
Fr:::;:cy Maximum allowed EIRP as a function of N;:;:;T;'g ::)ot‘;;zr
(GHz) avoiding angle 6 from the GSO (dBW) antenna (dBW)
1-10 +35 &>2° +13
10-15 +45 > 1.5° +10
The maximum EIRP of a Station in the FS or MS shall not exceed +55 dBW.

(C) To avoid interference of mode B2 type i.e., radiation from an earth station to

the unintended satellite in the GSO, maximum permissible levels of off-axis EIRP

density from earth stations were recommended by ITU and given in the Table-4.3.3

below [ 18 ]:

Table-4.3.3 : Maximum off-axis EIRP density for B2 mode of interference

Frequency bands | E/s EIRP (dBW) | Bandwidth (kHz) | ¢° (angle off the
(F, GHz) main lobe axis)

6 32-25 log (¢) 4 25°<§<7°

14 39-25 log (¢) 40 25°<3<7°

32-25 log (@)* 20°<5<7°

The off-axis EIRP for FM-TV emissions at 14 GHz with energy dispersal (or
properly modulated) should not exceed the following value: 53-25 log (¢) dBW.

*For VSAT earth stations operating with GSO satellites in 14 GHz band.

The off-axis EIRP when an FM-TV is being transmitted from an earth station, could
be incompatible and may not conform to the ITU recommendations in certain cases —
specially if low level carriers like Single Channel Per Carrier (SCPC) transmissions
are involved in the adjacent satellite network in the same frequencies. Recognizing

this type of severe incompatibility, the conclusion reached was that adequate
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protection could not be attained, either by satellite separation or by EIRP restrictions.

The type of solutions recommended in such cases are:

* Frequency planning to ensure the TV transmissions in one network do not use the

same frequencies as SCPC telephony transmission in a network using adjacent

satellite.

* Usage of different methods of carrier energy dispersal for the TV transmissions to

reduce their power spectral density.

Often the above procedures are used in the Coordination / Negotiations in the satellite

systems planning.

(D)  The side-lobe characteristics of earth station antennae is one of the main factors
in determining minimum orbital spacing between the satellites, and to efficient use of
the radio frequency spectrum in the management of Geo-Stationary satellite Orbit
(GSO). Hence, ITU recommended the maximum allowable envelop for the side-lobe

peaks of the antennae as given below in Table-4.3.4, with reference to Fig. 4.3.3.

[19]

Table-4.3.4 : Off-axis radiation pattern recommended by ITU
Allowable gain of at least 90%
D/A of the side-lobe peaks Remarks
I°<@<20°
> 150 G=29-25logo for new antennae to be
installed
bet 1°0r 100
Between 50 and 150 G=32-25logo ¢ between 285 004/Dto
¢ between 1°or 100 A/ D to
Between 50 and 150 G=29-25logo 20°; and for antennae installed
after 1995
The recommendation on side-lobe envelope for D/ A <50 to be finalized

This recommendation of the ITU is the most widely used in the earth station designs.
This is practically adopted as the regulation in many Countries. The full text of the
ITU Recommendation S.580-5, dealing with this subject, is included as Annexure at

the end of this chapter, for ready reference.
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Fig. 4.3.3: Example of a zone around the GSO to which the design objective for earth-station antennae applies

(E) The maximum allowable power flux density produced by satellite on earth’s
surface was recommended by ITU to avoid interference to the earth stations in the
networks of adjacent satellites (B1 mode of interference), or to the earth stations in the
terrestrial services (C1 mode of interference). These limits, which are of relevance in

the C and Ku-bands services for India (Region 3 of ITU), are given in the Table-4.3.5.
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Table-4.3.5 : Maximum power flux density from the satellites (B1 and C1 modes of
interference)
Frequenc Maximum power flux-density as function of a arrival .
rang‘: (GH);) angles 5 (dB (W/m”)) Service
o Reference
0°<5<5° 5°<§<25° 25°<5<90° bandwidth
In any 4 kHz GSO FSS (and
2.500-2.690 | -152 [-152+0.75(8-5) | -137 band MSS)(an
3.400-4.200 In any 4 kH
4.500-4.800 | -152 | -152+0.5(8-5) | -142 g GSO FSS
7.250-7.750
In any 4 kHz GSO and non-GSQO
- -150+0.5 (6- -14
10.7-11.7 150 | -150+0.5 (8-5) 0 band FSS
11.7-12.2 148 | -148+05(5-5) |  -138 Inany4kHz | BSS Plan or G50
i band and non-GSQ Fsg
12.2-12.5 148 | -148+0.5(5-5) | -138 Inany4kHz | GSO and non-Gi36
' w1 Es




4.3.2 Maximum Permissible Interference : AT /T method

AT / T method was recommended by ITU as one of the methods to calculate
interference between GSO networks sharing the same frequency band. This method is
based on the concept that the noise temperature of the system, subject to interference,
undergoes an apparent increase due to the effect of the interference. Since the number
of parameters characterizing interference are so large, this simple method is devised to
determine whether there is any risk of interference between two given satellite
networks. The power of interference signal is assumed to be spread evenly over the
frequency bandwidth, with a power density equal to its maximum power density.
Although, this would result, in most cases, in a pessimistic result, the method is simple
ed irrespective of the modulation characteristics and the exact carrier

and can be us

frequencies employed by the interference source and the affected system.

The ratio AT / T is expressed as a percentage.

The geometry of wanted and interfering networks sharing the same frequency band for

both uplinks and downlinks is given in Fig. 43.4.120]

|
82(54) h 62 :
\\ l s /
£301) N //
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/
,/
f 5 /I
81((9)
l Pe
& i

Fig. 4.3.4 Schematic of Interference for AT / T calculations.
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The parameters are defined as follows (for the wanted satellite link):

T:

AT:

De:

82

84

the equivalent satellite link noise temperature, referred to the output of the

receiving antenna of the earth station (K)

the receiving system noise temperature of the satellite, referred to the output of

the receiving antenna of the satellite (K)

the receiving system noise temperature of the earth station, referred to the output

of the receiving antenna of the earth station (K)

apparent increase in the equivalent noise temperature for the entire satellite link

referred to the output of the receiving earth station antenna, caused by

interference emissions from other satellite networks

Free space loss on the downlink

Free space loss on the uplink

Transmission gain of a specific satellite link subjected to interference, evaluated
from the output of the receiving antenna of the satellite to the output of the

receiving antenna of earth station (numerical power ratio, usually, less than 1)
Maximum power density per hertz delivered to the antenna of the transmitting
earth station.

Transmitting antenna gain of earth station

Receiving antenna gain of the satellite

Receiving antenna gain of the earth station

Topo-centric angular separation between the two satellites
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Calculation of the equivalent satellite link noise temperature AT/T

In bent-pipe transponders, AT/T can be calculated using the transmission gain y, and

the fundamental Transmission Equation. The procedure is given below: [ 20 ]

The transmission gain is expressed as follows:

_ psgj(n.-l)g.; lu (1)
- Pg18:(8.) 4

!
where g, and g, are the maximum (on-axis) transmitting and receiving gains of the

earth station antenna respectively.

o e.i.r.p.,g.; BO,‘4TC _ (C/l\'g)d Iﬁ (2)
= W) 1s BO2  (CiNo), T,

The equivalent link noise temperature is expressed as follows:

(C/No)a
= N, e ©

where:

(C/Ny,, - up-link carrier-to-noise density ratio including only thermal and other
background noises (numerical ratio)

(C/Ny, : down-link carrier-to-noise density ratio including only thermal and
other background noises (numerical ratio)

(C/Ny, : total link equivalent carrier-to-noise density ratio including intra-
satellite impairment (intra-satellite interference, intermodulation),
thermal and other background noises (numerical ratio)

eirp.: satellite saturation €.i.r.p. (W)
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A the wavelength (m) of the up-link frequency

BO;: transponder input back-off with respect to single carrier saturation

(numerical value)

BO, : transponder output back-off with respect to single carrier saturation

(numerical value)

W,: saturation power flux density at the satellite (W/m2).

AT between the wanted and interfering networks sharing the same frequency band (in

the same direction of transmission) can be calculated as below:

The parameters AT, and AT, are given by the following equations:

AT = Pe & (f;) 2 (3.) @
AT, = Di &3 (2;,) gs(0) 5)
d

The increase in the equivalent satellite link noise temperature is the result of

interference entering at both the satellite and earth station receiver of the wanted link.

This can therefore be expressed as follows:

AT = yAT, + AT, (6)

.81 3)  pigi ()8 (@)
a7 - yPEELREEE + BT 7

Hence the above equation combines the up-link and the downlink interference.

Having calculated AT and T, the ratio of AT/T can be computed. If the AT/T

(expressed in percentage) is more than or equal to 6%, the interference between the

two networks requires coordination / negotiations. 6% threshold value is g general

criteria recommended by ITU. [ 20 ]
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However, this is a conservative number and admissible AT/T can be computed by a
method of power density-averaging bandwidth, if details of the network and
modulation parameters are available. In such cases, the AT/T threshold values higher
than 6% can be allowed. ITU also recommends admissible equivalent link noise
temperature (AT/T) for Single-Carrier-to-Single-Carrier with different types of
modulations employed by the required carrier and the interfering carrier. The

recommended values are given in the Table-4.3.6.

Detailed computations for representative services (like FM-TV, digital SCPC etc.) are

given in the ITU Recommendation [ 21 ].

Table-4.3.6: Single carrier to single carrier AT/T threshold values
Interfering carrier FDM-FM Wideband digital SCPC FM-TV
Wanted Boc
carrier (MHz) <3 |37} 715 [>15]| <3 3.7 7151515 PSK |Afs7]| Af>7

<3 13 [12 12 |11 |38 0| 10| 8] 9 1 1
3-7 25 |14 12 [12 |1 10| 10| 8] 29 1 13
FDM-FM 7-15 40 |20 14 112 (17 10 f 10 8 | s6 12 19
> 15 102 |46 24 |14 |40 19 | 1 8 | 148 | 23 45
<3 15 [10 919 9 9 9| 21 9 9
Wideband 37 49 |21 9 |19 9 9o 9 7 1 21
digital (2) 7-15 100 [+ 21 |11 |39 7 o 91| 22 T
> 15 176 |77 | 38 [15 |69 3t 159 [2s7] 39 77
SCPC PSK (%) 9 9 9 9 9 9 9 9 9 2 )
CFM () 1|1 1 jn B N D O I O Y 21 36
FM-TV AfST 73 |32 16 | 6 |29 13 6 [ 21107 16 32
Af >7 23 |10 512109 4 2| 1| 34 5 10

Note

(1) Criterion used: 800 pWO0p sing
satellite interference is assumed.

(2) Criterion used: 6% single entry 2
interferences is assumed and a va
(BER = 1079).

The above Recommendations of [TU refers to Single-Entry Interference and criteria

for Coordination. But, noise is introduced into the satellite communication network by

le entry and 7000 pWOp total. For PM-TV interference a 20% allocation to external

nd 70% total. For FM-TV interference a 20% allocation to external satellite
lue of 12.3 dB is assumed for energy per bit to noise power density ratio

other satellites and terrestrial systems in both the uplinks and downlinks. A tota]
interference noise budget of 20% is a reasonable compromise for most purposes (i.¢.,

Interference Noise = 20% of total allowed noise).
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4.3.4 Maximum Permissible Interference — C/I Method [9],[22]

The system tolerance criteria are usually defined in terms of C/I, the ratio of the
wanted signal power C to the unwanted interference power I. The Carrier-to-

Interference-ratios can be used for all modulation methods and signal types.
Using the transmission equation, the power received can be calculated as:
C =P~-G,-L+G, (8)
Where
P, = transmitted power in dBW
G, = transmit antenna gain, dB
L = free space loss in dB

G, = receive antenna gain in dB

Using the same Fig. 4.3.4, we can compute the interference power also using the same
equation (as used for computing carrier power above).

The ratio C/I can be computed by combining the equations for the received Carrier

Power, and Interference Power.

C/I=AE- ALy + AGy + Y4

Where

AE = the difference in EIRP of wanted and interfering transmissions

ALy = the difference between downlink free space path loss for wanted and
interfering signals.

AG, = is the difference of the earth station receive antenna gain between main

axis pointed towards the wanted satellite, and the gain in the direction of

interference.



Table-4.3.8: Subjective quality grades for analog TV
Grade Q0 P(e)r::li i‘;;d WeSi%:ted C/N

5 Excellent >45dB >16dB

4 Good >41 dB >12dB

3 Correct picture |38 dB 9dB

2 Poor 36 dB 7dB

1 Bad / Unusable | <35dB

For many practical television applications, the Quality Grade between 4 and 5 is often
recommended, for which the required C/1 is 25 dB. Weighted Signal-to-Noise-ratio of

the order of 45 dB can be achieved with a satellite signal received with C/N of the

order of 15 dB.

Energy Dispersal for Reduction of Interference

The FM modulation of the analog TV results in an RF signal of almost constant
frequency containing all the transmitted energy which could result in interference with
the neighbouring services like SCPC, voice signals of adjacent satellite network. To
avoid this type of problem an energy dispersal system consisting of a saw tooth of
25 Hz, of which the slope is inverted at every field of synchronization is superimposed

onto the modulating video signal. Such a video signal with energy dispersal signal is

shown in Fig. 4.3.5.

FTmmmmmmo—mmmmmmmommTmTT o
: energy
; dispersal Pt — .
s 120 mV pp vgrttcal:
’ yne : *
-v ——————
Al | 1
horizontal ; horizontal
' syne ; sync !
vertical | i Jerica :
" e LR
) 20 ms i 20 ms &__,:

Fig. 4.3.5: Video signal with (exaggerated) energy dispersal signal
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Fig. 4.3.6 below shows spectral density distribution of the analog FM-TV carrier
modulated by a live video signal plus energy dispersal causing 1 MHz peak-to-peak

deviation not exceeded for various percentages of time.
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bution of a 20 MHz FM-TV carrier modulated by NTSC live video plus 1 MHz energy

Fig.4.3.6: Spectral distri .
dispersal

FM-TV usually creates interference to the narrow band SCPC signals in the same

frequency band. If the interference from FM-TV is found to exceed the permissible

C/1 level, it is not usually necessary t
o arrange for quite small frequency separation

o eliminate completely the overlapping between

carriers and it may be sufficient ¢

between the carriers, resulting in an increased interference reduction factor.

In the analog FM-TV, the protection ratio i.e. C/I can be reduced by increasing the

deviation. Thus a higher deviation can tolerate higher co-channel interference.

43.6 Tolerance Criteria for Digital-TV [23],[24],[25]and [26]

Digital-TV is the most popular mode of satellite TV broadcasting, both for Direct-To-

Home reception (DTH) in Ku-band, as well as for reception by Cable TV service
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providers in C-band and Ext. C-band. As the digitization of the signal results in large

bit rates, compression techniques are used for reducing the occupied bandwidth

MPEG-2 is widely used, and gives an integrated transport mechanism for multiplexing
the video, audio and other data through packet generation. Using MPEG-2, VHS
quality movie can be transmitted at an information bit rate of 1.5 Mbps, a news or

general entertainment TV programme at 3.4 to 4 Mbps, and live sports programmes at

4 to 6 Mbps.

However, de-multiplexing and decompression process of MPEG-2 are highly sensitive
to bit error rates (BER). As a result, an extremely low BER is required to provide

acceptable service. The maximum BER that can be tolerated is of the order of 10" to
10",

Digital-TV usually employs QPSK modulation, for reduction in the occupied
bandwidth. But, the BER at the output of the QPSK demodulator is usually low.
Hence, the systems employ error correction inner codes and outer codes (Viterbi
coding, and Reed-Solomon coding) to improve BER performance. Thus, the BER of
the order of 10”2 at the output of QPSK demodulator is improved to a BER of 107"

after RS decoding. Fig. 4.3.7 depicts this improvement schematically [ 25 ].

R-S

Convolutional] R Digital
D, Encoder || Interleaver encoder channel
(204, 188, 8)

iterbi Deinterleaver decoder 3%

decoder f! (204,188,8) |

’
4
»
/
»

t

BER=2.10 * BER=10"

5
BER=10

Fig. 4.3.7: BER improvement at different stages in the Digital-TV process

s required for QPSK to achieve BER of 10!

A C/N ratio (or Ey/N,) ratio of 13.5 dB 1
and RS codes, a C/N ratio of 4.5 B ig

without any coding. With the use of Viterbi

sufficient to achieve the same level of BER ratios.
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One of the major consequences of Digital-TV is with respect to interference. The
reception of digital signals from satellites requires a cleaner interference environment
than analog signals, with little tolerance from undesired in-band noise. The low C/N
ratios, at which the high compression of bit rates are achieved, puts a high demand on
the management of interference. A C/I ratio of 25 dB gives very small degradation of
C/N in analog TV, but a low level of interference has to be achieved (a C/I ratio of the

order of 35 to 40 dB), not to degrade the composite C/N beyond 10 dB, for good

quality Digital-TV reception.
4.3.7 Effect of the rain on System Noise Temperature [ 27 ]

The rain causes heavy attenuation in the Ku-band used for Direct-TV broadcasting.
The rain causes three effects — attenuation, depolarization of the signal, and increase

in the System Noise Temperature. The increase in the System Noise Temperature is

given by:

1
AT:T,*[I—TJ (10)

P
Where T, = ambient temperature to be taken as 273°K

A, = total rain attenuation computed using rain attenuation models

A 3 dB increase in the rain attenuation will usually result in increase in the System

Noise Temperature, and reduction of G/T of ground station by 3 to 3.5 dB.

This aspect also has to be considered while computing C/N ratios, and allowable C/1

which will not degrade the composite C/N ratio.

44 VSAT Communications

A relatively recent application of satellites communications is the Corporate networks

using Very Small Aperture Terminals (VSATs). A typical VSAT consists of
communication equipment and small antenna with diameter less than 3.5 m The

transmitting RF amplifier is usually incorporated in the outdoor unit of the VSATs.
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VSATs are configured either in Mesh configuration or in Star configuration. In the
Mesh configuration any terminal can be connected to any other terminal through the
satellite. But in the Star configuration the traffic from one remote VSAT has to reach
the destination VSAT only through the Hub station - i.e., with two hops through the
satellite. The Hub stations are usually located where the bulk of the network traffic
originates and/or terminates. Most of the traffic in VSAT systems use QPSK
modulation. Because the links are bandwidth limited, BPSK modulation, which is not

bandwidth-efficient, is avoided. BPSK is used only if the on-axis emission constraints

are exceeded with other types of modulations.

A comprehensive treatment of VSAT configurations and the practical System design

aspects are covered in the VSAT Handbook of INTELSAT [ 28 ].

The interference aspects connected with VSATs are relatively bad due to:

e Antennae being of small size, the beam-widths are large.

The outdoor equipment develop problems due to environmental effects.

The cables, which interconnect indoor equipment and outdoor equipment, cause
often problems.

Even though a few recommendations of ITU are available with respect to VSAT

characteristics, no Standard has evolved. Practically, every major manufacturer

of VSAT systems has his own specifications.

Fig. 4.3.8 below summarizes the ITU recommendations [ 29 ] on the maximum

permissible level of spurious emissions from VSAT:.
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Fig. 4.3.8: Limits for Off-Axis Spurious Emissions

The on-axis spurious limit in any 4 kHz band is 4 dBW.

However, it is reasonable to state that a large number of interference problems in the
satellite communications today are due to VSAT systems. This is partly due to the

large number of VSAT networks employed presently in any satellite system.

4.5 Conclusions

1. The classification of services as per ITU are explained and the ITU

Recommendations with respect to different types of interferences are compiled.

The off axis radiation pattern recommended by ITU is elaborated, which is

o

essential to analyze and investigate interference cases.

3. The computations for maximum permissible interferences for various services,

along with tolerance criteria are detailed. The specific features of VSAT

communications are also given.
This background information was used during investigations of interference cases, and

included here for complete understanding of the investigations reported in Chapter 6.
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Annexure
Reference [ 19 ]

RECOMMENDATION ITU-R S.580-5

RADIATION DIAGRAMS FOR USE AS DESIGN OBJECTIVES FOR

ANTENNAS
OF EARTH STATIONS OPERATING WITH GEOSTATIONARY
SATELLITES

The ITU Radiocommunication Assembly,

considering

a)

that efficient utilization of the radio spectrum is a primary factor in the
management of the geostationary-satellite orbit (GSO);

b) that the side-lobe characteristic of earth-station antennas is one of the main
factors in determining the minimum spacing between satellites and therefore
the extent to which the radio spectrum can be efficiently employed;

¢)  that the radiation diagram of antennas directly affects both the e.i.r.p. outside
the main radiation axis and the power received by the side lobes;

d) that the construction of antennas with improved side-lobe characteristics may
be envisaged using current design techniques but that their practical
applications may involve increase in cost;

€) that the Radiocommunication Study Groups are studying the potential
advantages of using antennas with improved side-lobe characteristics for a
better utilization of the GSO,

recommends

L. with regard to antennas having a D/A exceeding 150:

—  that new antennas of an earth station operating with a geostationary satellite
should have a design objective such that the gain (G) of at least 90% of the

side-lobe peaks does not exceed:

G =29 -25log @ dBi
(G being the gain relative to an isotropic antenna and being the off-axis
angle in the direction of the geostationary-satellite orbit referred to the
main-lobe axis).
This requirement should be met for any off-axis direction which is withjn
3° of the GSO and for which 1° <@ = 20° as illustrated in Fig, 1;
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2. with regard to antennas having a D/A between 50 and 150:

— that antennas should have a design objective such that the gain (G) of at
least 90% of the side-lobe peaks does not exceed:

G =32-25log o dBi

that antennas installed after 1995 (this date takes into account the needs of
developing countries and every effort should be made to achieve the design
objective at an earlier date) should have a design objective such that the
gain (G) of at least 90% of the side-lobe peaks does not exceed:

G =29 -25log ¢ dBi
These requirements should be met for ¢ between 1° or (100 A /D)
whichever is the greater and 20° for any off-axis direction which is within

3° of the GSO;
3. for an off-axis angle, ¢, greater than the limits specified above,
Recommendation ITU-R S.465 should be used as a reference (see Note 7);

FIGURE |

Example of a zone around the GSO to which the design objective
for earth-station antennas applies
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4. that the following Notes should be considered part of this Recommendation

Note | — This Recommendation does not apply to existing antennas.
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Note 2 - This Recommendation primarily addresses the GSO sharing criteria.
However, it must be emphasized that the application of this Recommendation should
not prejudice the antenna characteristics concerned with frequency coordination
between the fixed-satellite service and terrestrial services (see Recommendation ITU-

R S.465).

Note 3 — When elliptical beam antennas are used the side-lobe radiation in the
direction of the GSO can be reduced if the minor axis of the beam (major axis of the
antenna) is oriented so that it is parallel to the GSO. Further study is required on the
application of this Recommendation in the case of the minor axis of the antenna which
would correspond with a D/A < 50.

Note 4 - Further study is required to determine a design objective for antennas having
a D/A less than 50.

Note 5 — The method of statistical processing of side-lobe peaks is dealt with in

Recommendation ITU-R S.732.

Note 6 — This Recommendation may need modification in the light of further
decisions made by future World Radiocommunication Conferences, especially in the
orbital arcs and frequency bands where recognition is given to the special needs of

developing countries.

Note 7 — In those cases where there is discontinuity between this design objective
Recommendation and the reference radiation patterns of Recommendation ITU-R
S.465, the gain (G) of at least 90% of the side-lobe peak is defined as follows:

G = -3.5 dBi for20° < ¢ < 26.3°

Note 8 — Small earth-station antennas with improved main beam and side-lobe
characteristics are being developed. It is indicated that the efficient use of the GSO

may necessitate reflecting these improved characteristics in the ITU
Radiocommunication Assembly texts and Recommendations.

Note 9 — The performance objectives in § 2 have been met by off-set-fed type
antennas operating in the 10-14 GHz with D/A > 35 and by off-set-fed type receive

only antennas operating in the 10.7-11.7 GHz band with D/A > 22.

Note 10 — Theoretical calculations supported by preliminary test results of the side-

lobe radiation pattern, in the diagonal plane, for square microstrip array antennas with

D/\ = 26 meet the current design objective of § 2. These tests were performed on an

active array in the 14 GHz band. Further studies are required to confirm that this

design objective can be applied to square microstrip phased array antennas.
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Chapter-5

Analytical & Experimental tools for Interference studies

Introduction to the Chapter

This chapter covers the analytical and experimental tools used during the
Investigations of interference cases. Use of these tools had become essential during
the investigations to correctly characterise the interference signals, and to

approximately identify the geo-location of the interference sources.

Section 5.1 describes the principles, the measurement methodologies, and the
fundamentals of geo-location, concerned with localization of the source of
interference. If an uplink signal reaches two adjacent satellites as interference and gets
translated to the downlinks of both the satellites, these signals can be measured at a
single measurement site to derive Time Difference of Arrival (TDOA) and Frequency
Difference of Arrival (FDOA) of the signals (through the two satellite paths). These

values can be used in the geo-location equations to generate loci on which the source

of interference lies.

The received signals can be detected either by spectrum analysers or through the
cross-correlation of signals. The zero span provision of the spectrum analysers can be
gainfully used to detect the interference signal and get the video output. The cross-
correlation methods will have advantage of detecting the weak interference signals.

The principles of TDOA, FDOA, geo-location, and cross-correlation using digital

signals are detailed. Also, the conditions for successful interference source location

using these methods, and the limitations of the methodology are highlighted.

Section 5.2 describes the experimental tools used in the Investigations. The
generalized measurement setup and important specifications / parameters of different

€quipment, which are relevant for interference measurements, are highlighted.
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An equipment called Telecom Carrier Analyser (TCA) with custom-built features was
procured for detailed interference measurements. This Section covers the details of the

TCA, and experiments designed and carried out to demonstrate the features of TCA.

A software was designed to implement the cross-correlation of two digital signals,
which were the outputs of TCA, and same was demonstrated with simulated inputs.

This software will be very useful for future investigations of interference cases, if one

of the signals is very weak compared to the other.
Section 5.3 gives the photographs of the antennae, earth station equipment, TCA,
digital video signal detection equipment used in the measurements carried out during

the Investigations.

5.1 Localisation of source of Interference

The interference scenario being considered here is the interference to the
communication satellites from an unknown uplink station. Usually, the Earth Stations
uplink the signals to the satellites in the Geo-Stationary Orbit. The signal being
uplinked to a satellite can reach another satellite in the GSO through the side-lobe of

the uplinking antenna. This signal reaching from an unintended uplink Station can

cause interference to the normal signal traffic in another satellite.

This problem is aggravated due to close spacing of the satellites in the GSO, and
deployment of Earth Stations with smaller diameter antennae (with a resulting broad

beam, and higher levels of side-lobes). This situation in a general form is shown in the

Fig. 5.1.1[30].
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Fig 5.1.1: General Schematic of Satellite Interference from an un-known source

A method to estimate the location of transmitter using the measurement of Time
Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA) of the
interference through two satellites was developed and reported in the literature. The

principles of TDOA and FDOA are described in the following sections:

5.1.1 Geometry considerations of the TDOA

The signal from unknown uplinking station will travel through satellite-1 and satellite-
2 to the measuring Earth Station. THE if the r; and r; are the total distances travelled

from the unknown uplinking station to the measurement station through satellites S1

and S2 respectively, the time difference between the signals received is [ 31 ]:

T=(m-r)/c (1

Where T = The Time Difference of Arrival, and ¢ = the velocity of propagation of

signals, which is nearly same as the velocity of light.

Further, referring to Fig. 5.1.1,
(2)

r =dy; +dim

3)

r; =dy; + dam
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Where di; = distance between unknown terminal to Satellite-1

d,\s = distance between Satellite-1, and the measurement terminal

dy»> = distance between unknown terminal to the Satellite-2

d-\s= distance between the Satellite-2 and the measurement terminal.

Hence
T=(dy| + djv) — (dg2 + dam) / € 4)

The location of the satellite] and satellite2 with respect to the measurement terminal

are assumed known. Hence, dIM and d2M are known.
Then, the equation can be rearranged as below:
(dyi-dy2) + (diy—dam) =T . C

This can be further rearranged as:

(dup-dw) =T .c-(dm—dam) =K (6)

Where is K is a constant

For a given TDOA value of T, and hence for a given constant value K, the above
equation represents the surfaces of constant delay between the satellites. These
surfaces, in the two dimensional case, form a hyperboloid of two sheets centered
along the axis of the line segment connecting both satellites and opening away from

the centre point of the segment. The two intersections of these hyperbolic branch

surfaces with the sphere of the Earth provide terrestrial curves of constant delay,

which include the location of uplink station. [32].

Fig. 5.1.2 gives the basic geometry of satellite in GSO [ 30 ].
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¢ = goecentnc latitude of earth station at £
A = difference in longitude between £ and subsatellite point S
(taken positive if arth station is to the west of satellite)
v = great cucle arc £S5 =& £0S
7 = argle of inciimaron at satellite
R, = equatonal radus of the earth
& = satellite alutude
d = angle of elevation at carth station
A2 = azzmuth angle at earth station = X NES (measured through
east ‘rcm north)
d = slant range {rom satellite to carth station

P a atellite

Fig. 5.1.2: Basic Geometry of Earth-Satellite in GSO

The slant range between receiving Earth Stations and the satellite, d, is given by:

d =[R. + (R, +h)* = 2R (R, + h)cosy o
d= \/hz + 2R (h+R)(1—cos® cosA) ®)

Knowing  Rg= Radius of Earth = 6378 km,

h = height of the GSO above Earth’s surface = 35786 km

0 = latitude of the Earth Station and

A = the relative longitude of the Earth Station with respect to the sub-

~ satellite point

The above equation reduces to [ 17 ]-

d =35786[1+0.4199(1 — cosB cosA)]"? km )

By substituting (9) into (6) the measured TDOA value is related to the latitude of the
unknown uplink station, and the difference of longitude between the unknown Earth

Station with the sub-satellite points of each of the satellites.
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Since, the variables to be found are two — i.e. the longitude and latitude of the

unknown Earth Station, the measurement of TDOA alone cannot solve the location

problem unambiguously.
5.1.2 Geometrical consideration of FDOA

The measurement of the frequency of the received signal traveling through the two
spatially separated moving satellites can be measured to estimate the location of the
uplink transmitter. This measurement is called Frequency Difference of Arrival
(FDOA). The basic concepts of this measurement are the same as the one developed

by radio astronomers, and this is also called Differential Doppler or the Time
Derivative of TDOA.
If the signal is monitored for a time AT, then the average frequency over this interval

is given by [ 31].

fav=fc—(r13-—r,|)/lAT (10)

Where £, = the transmitted frequency

A = wavelength

r;,, I = the distances from the unknown transmitter to the
measurement site at the beginning and end of the time

interval AT.

When the frequency of the signal traveling through the two adjacent satellites is

measured over time interval of AT, two average frequency values f| and f, will be

obtained. The FDOA is defined by:

FDOA =fi—

= (1 /AAT) [tz = £~ Tz + 1) (11)
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This equation defines a surface in three-dimensional space on which the unknown
transmitter must lie [ 31 ]. The intersection of this surface with the spherical Earth
defines a curve on the Earth on which the unknown emitter lies. It is essentially same

as : . :
measuring the relative range rate of the two satellites with respect to the unknown

transmitter and the measurement site.

The intersection of the curves obtained with the FDOA and TDOA measurements

provides the estimate of the location of the unknown transmitter.

5.1.3 TDOA Measurement Set-up

The interference signals have to be received from two adjacent satellites in a coherent
manner for TDOA measurement. The measurement setup typically consists of two
antennae, each looking at each of the adjacent satellites, and the attendant downlink
electronics like LNAs, Down Converters etc., and a system to coherently

synthesize/demodulate the signals. A typical measurement set-up is shown in Fig

5.1.3.
Adjacent [ PrimarySatellite
Satellite &5
NS
A Monitoring
Station
®— Unknown
LNA Ref freq o— TCA Localisation PC| Transmitter
Source
Down gown ], Dual Trace
Converter Function | Converter Oscilloscope
*® generator T ? e
Spectrum v Spectrum © ® ©
Analyser EXT-TRG | Analyser Video
Video CID) ©

Fig. 5.1.3: A Typical TDOA measurement set up

If the incoming interference signals are well above the noise floor of the spectrym

analyzer, they can be detected using zero span method. The time domain signals can
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be compared using a dual trace oscilloscope which is triggered using a coherent
trigger source. The TDOA value will not exactly indicate which of the two signals is
leading. This uncertainty can be resolved by calculating the latitude and longitude of
the unknown source assuming one of the signals as leading or lagging compared to the
second signal. This method will give two curves on the surface of the Earth each
falling on the east and west side of the centre line between the two adjacent satellites.
General knowledge of the likely location of the interference source can be used to
eliminate the ambiguity. Alternatively, the FDOA curve can be determined which will
intersect only one of the TDOA curves. Another way is “TDOA-only” measurements

with two pairs of satellites, the primary affected satellite being common in both the

pairs.

5.1.4 Signal Detection

TDOA and FDOA methods require coherent detection of signals received from two

adjacent satellites. The signals in the frequency domain can be synthesized into

signals of time domain for measurement using spectrum Analyzers.

Spectrum Analyzers operate according to the principles of heterodyne receivers. The

block diagram of such a receiver is shown in Fig. 5.1.4. [ 33 ]

i Envelope
Mixer If filter Detector ~ Video Filter
o 1
D ) A > Bt A
1 If Amplifier Logarithmic
Input l Amplifier Y
Local
Oscillator Y
- E

Display

Sawtooth

Fig. 5.1.4: Block Diagram of Spectrum Analyzer Operating on Heterodyne principle

The heterodyne receiver converts the input signal with the aid of a mixer and a Loca]

Oscillator (LO) to an Intermediate Frequency (IF). The tunable Local Qgcijator
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converts the Input Frequency range to a constant intermediate frequency by varying

the LO frequency. The resolution of the analyzer is then given by a filter at the IF with

fixed centre frequency.

The converted signal is amplified before it is applied to the IF filter which determines

the resolution bandwidth. This IF filter has a constant centre frequency so that the

problems associated with tunable filters are avoided.

Most of the spectrum analyzers include features of minimum peak, maximum peak
and auto peak detection. By setting the span of the spectrum analyzer to ‘0’ the ramp
tuning signal to the LO is cut off, and LO becomes fixed value. In that configuration,
the spectrum contained in the resolution bandwidth is detected by envelope detector

and is available at the output of video filter. This Y output signal of the spectrum

analyzer can be used as the demodulated time domain signal.

The configuration of the detectors is shown in Fig. 5.1.5.

Max Peak
Tt —
Logarthmic Amplifier
lin )
log
Envelope Delector AJD Converter
Sample T—
A
i oy % —+———— T~ 7
N - .
vVideo Filter Display
—_—
IF Signal
I—D X 1]
Min Peak

Fig. 5.1.5: Analog Realization of Detectors

The max peak detector displays the maximum value. From the samples allocated to a

Pixel the one with the highest level is selected and displayed. Even if wide spans are

displayed with very poor resolution bandwidth (span/RBW >> number of pixels on
frequency axis), no input signals are lost. Therefore this type of detector is particularly

useful for interference measurements. The min peak detector selects from the samples

allocated to a pixel the one with the minimum value for display. The auto peak



detector provides for simultaneous display of maximum and minimum value. The two

values are measured and their levels displayed, connected by a vertical line.

Quasi peak detector is a peak detector for interference measurement applications with

defined charge and discharge times.

With a constant sampling rate of the A/D converter, the number of samples allocated

to a certain pixel increases at longer sweep times. The effect on the displayed trace

depends on the type of the input signal and the selected detector.

The above features of signal detection by spectrum analyzer were utilized during
Investigations of interference caused by radars into one of the communication satellite

transponders. However, this type of signal detection has some inherent limitations.

Limitations

The spectrum analyzer detectors cannot perform detection on the following:

* Phase modulated signals

¢ Non-periodic waveforms

e The signals, which are below the noise floor of the spectrum.

When the signals are very close to noise levels, correlation by Cross Ambiguity

Function (CAF) methods have to be used.
5.1.5 Correlation Method for Detection of Signals

own interference source, traveled through two adjacent

A signal emanating from unkn
and monitored at the measurement sites with two receivers can be

satellites separately,
mathematically modeled as [ 34 ]:

X1 (t) =8 (t) + 1 (t) (12)

(13)

x, (t) = as; (t+7) + 02 (1)
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Where s;(t) is assumed to be uncorrelated with the noises n,(t), and

ng(t).

1 is the time difference between the signals received.

Various parameter estimation methods were proposed for estimating the value of T,

which are the general forms of cross-correlation function.

The block diagram of a correlation process is given in Fig. 5.1.6.[35]

Delay
- Non
X1(t) o — Coherent Coherent
—p Integration square Law .
- g Device Integration

g
=

—  p LPFh —P (12 —» P —P

X2(t)
Fig. 5.1.6: Block Diagram of a Correlation Process

The Time Difference of Arrival (TDOA) of signals can be directly estimated by
djacent satellites.

correlating the two incoming signals, coming through each of the a
orrect TDOA of

The correlation results in a peak of the correlation function for the ¢

value 1. The correlation technique is specially advantageous with the signals having

unknown structures.

The generalization of the correlation function known as the Cross Ambiguity Function

(CAF) is given by [ 36 ]:

A, f)= [ s (14)

Where s, & 2= complex envelopes of two waveforms that have common

component

¢ = Time lag, or TDOA

f = Frequency offset, 0f FDOA
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s Represents the complex conjugate of s,

The absolute value of CAF { A(‘c.f) ] achieves its peak for values of t and f for the

actual values of TDOA and FDOA respectively. The integral is the Fourier transform

of the product s, (¢)s. (s —1) over the time window t =0 to T.

The CAF processing technique provides a means of accurately computing FDOA and
TDOA in the presence of noise and interference signals. Implicit in this cross-
correlation approach is that the time delay obtained is always an integer multiple of

sampling interval. Hence, the accuracy of TDOA measurement through this technique
will be high with higher sampling rate.

The output Signal to Noise Ratio (SNR) for the CAF computation is given by [ 36 ]:

2

ZBT[SJ
N
(15)

R aIes)

Where (—S\;] = Qutput SNR

[ J Input SNR

B = Channel noise bandwidth

T = Integration time

K = Input SNR of main channel=Input SNR of adjacent channel

The term 2BT is called the Processing Gain, which is equal to number of sample

itizing the signal. Hence, the sampling rate of the input

points per channel while dig
Signal determines the Processing Gains. An output SNR of 20 dB is required for a

Clear correlation, free of spurious correlations.
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3.1.6 Digital Signal Processing for cross-correlation

If the signal processing for Cross-Correlation is carried out with digital data, the
accuracy of compensating time delays to measure correlation improves greatly.
Correlators with time delays whose accuracy depends only on the sampling time

pulses, and with wide dynamic range can be implemented easily.

A simplified schematic diagram to perform correlation with two input signals is given
in Fig. 5.1.7 [ 37 ]. The convolution signal in time domain is nothing but the product
in the frequency domain [ 38 ], [ 39 ], [ 40 ], [ 41 ]. Hence, correlators can be
implemented easily with digital spectral measurements. Correlators can be realized by

measuring correlation of the spectrum samples of two signals as a function of time

offset.

Spectral correlator design involves Fourier transformation of the signals before Cross-
Correlation. For each antenna, both in-phase and quadrature components of each
signal are sampled, as in sampling for a complex correlator. The samples then go to a
special processor that performs a Fast F ourier transform (FFT) in which sequences of
N samples emerge as N values of complex signal amplitudes. The phase in these

output values is measured relative to the sampler clock. The complex amplitudes are

then cross-correlated by pairs, and the time delay (or equivalent shifting of number of

Spectral samples) where the correlation peaks gives the value of the delay time
between the two signals. This approach is chosen for implementing Cross-Correlation

for investigation of interference cases, and a software is developed, which is described

in section 5.2.4.
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Fig. 5.1.7: Correlation process with two digital signals as inputs

5.1.7 Conditions for Successful Location of Interference Source

The TDOA and FDOA measurements as described above should be carried out with

Certain conditions met, for the location of the unknown transmitter with least

uncertainty/ambiguity. They are:

* There should be two adjacent satellites operating in the same frequency band in

which the unknown uplink transmitter is radiating the signals.

" The position of the two spacecrafts relative to the measurement station should be

known precisely.

" The differential time delay through the tWo paths should be less than 1/f (where f

is the frequency of the signal) to identify the location of the unknown transmitter

Unambiguously.

" The TDOA can be measured successfully on the modulated signals by measuring

the differential time delay of some uniq

measurement of TDOA on CW signals is very diffic

ue portion of the waveform. But, the

ult.
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The measurement of FDOA is essentially range rate measurement over a time. If
there is no motion then the measurement is not possible; the greater the motion, the
more accurate results will be obtained. Hence, the estimate of emitter location is
extremely sensitive to the relative motion of the two adjacent satellites in the GSO.
If the two adjacent satellites are well controlled with respect to East-West and

North-South Station Keeping, the FDOA measurement will be difficult.

The FDOA measurement requires precise satellite ephemeris data at the time of

measurement. If the adjacent satellite used for the TDOA and FDOA |

measurements is an inclined orbit satellite, the knowledge of ephemeris_is very

important. Otherwise the RMS location error (from the measured values of TDOA
and FDOA) may tend to infinity twice per day.
If the two adjacent satellites do not belong to the same Operator, it is difficult to

get the accurate satellite ephemeris data.

The signals from the two paths have to be correlated together with different time

and frequency offsets until a peak response in the correlation power is obtained. If

correlation is not possible, alternatively, the signal may have to be synthesized

from the frequency domain to time domain, which is a much more difficult

problem.
d FDOA measurements may have to be made at times

The combined TDOA an
| hours to yield good result for the location of source of

usually separated by severa

interference.

The small driﬁs in the Local Oscillators of the satellites will set the ultimate limit

on the accuracy of measured F DOA.

nal traveling through the adjacent satellite

It is difficult to assess whether the sig
the SNR will be sufficient for a proper

will be detectable or not — i.€. whether

correlation / detection. Many times, through the knowledge of the environment and

the measurement terminals employed, it will be possible to infer the limit to the

EIRP of unknown interference radiation.
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generated in the measurement setup. This may not be possible sometimes, if th
, e

adjacent satellite is occupied at the frequency of interest.

* The frequency hopping interference sources (like the military radars which keep
changing the RF frequency randomly) pose a special problem for the

measurements described above. The FDOA measurements fail unless the

correlation time is much faster than the interval of frequency hopping.

5.1.8 The Accuracies of Location of Interference Source

The accuracies achievable in the TDOA and FDOA methods are also analyzed in

some published papers [ 321, [ 351, [42].

(A) Table-5.1.1 identifies the error sources to be considered in the TDOA and FDOA

measurements, to arrive at RMS errors.

: Table-5.1.1: Errors sources in TDOA & FDOA measurements
Error sources for TDOA Error sources for FDOA measurement
measurement
LO residual

Delay residual
Reference residual

Thermal noise
Thermal noise

Ionospheric noise
Jonospheric noise

Orbit position error
Orbit velocity error

Orbit position error

sources, have to be converted into

RMS errors, as computed with the above listed
RMS Geo-location error. Usually, the result of the combined TDOA-FDOA

Measurement will be an ellipse o1 the surface of the Earth with the location of the

unknown source lying within the ellipse.
11 of the order of 10 to 20 ng

Usually, the TDOA errors are anticipated to be sma
These €rrors are negllgible compared With the gCO'IOCHtiOH errors due to frequency
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measurements. The geo-location errors due the errors in the FDOA measurement are

much larger compared to TDOA errors.

(B) The factors contributing to the errors in FDOA are:

* Propagation
* Satellite translation oscillators

* Satellite relative velocity with respect to the other satellite

* Oscillators used for earth station down-converters

The large errors in the FDOA are primarily caused by the limitation in the accuracy of
satellite ephemeris information available, and also due primarily to very low
inclination of the well-maintained satellite. If one of the satellites in a pair (receiving

the interference) is in an inclined orbit, an order of improvement in the location
accuracy is possible.

Minimum achievable error is dominated by the errors of the satellite ephemeris, which

is due to the errors in the ranging and prediction of satellite velocities. Two techniques
Can be used to refine ephemeris information:

i i to derive corrections to the
® To perform geo-location on sources at known locations

ephemeris.

" To use the initial geo-location of sources to find a closer source to the unknown

source as a reference. and make FDOA measurement on that reference signal.
b

The main disadvantage of the second method is the need for a source of known

location in the vicinity of unknown source.

(C) The typical errors quoted for the case of experiment involving Eutelsat satellites

are as below [42]:

* The mean error of location due to errors in the FDOA is 69.3 km, which is

' is i ation.
Primarily caused by the accuracy of ephemetis inform

21



® The mean error of location due to errors in the TDOA is 4.85 km, when measured

in a sample bandwidth of 300 KHz.

Even after using a reference signal for canceling common errors, the residual errors

estimated for EUTELSAT experiments are:

* For TDOA Of the order of 0.1 us

" ForFDOA Of the order of 14 mHz

The gradients of the TDOA and FDOA in this experiment were 5 km / s, and 1 km /
mHz. Thus the FDOA error dominates the final geo-location ellipses. The FDOA

accuracy of 14 mHz translates to frequency stability of 2 x 10"* at 6 GHz.
(D) In the case of INSAT system the accuracies are as below:

" Short-term stability of the onboard transponders

-8
over a day (IOT results). 5x 10
" The accuracy of satellite position estimate 5km (3 o)
100 mm /s

" Accuracy of satellite velocity estimate

The satellite position accuracy is expected to improve to around 200m (3 o) by

implementing two-station ranging in near future.

One of the biggest problems in carrying out geo-location using FDOA is the
knowledge of satellite ephemeris of the adjacent satellite, which does not belong to the

same satellite Operator. The only source is the NASA’s Orbital Two Line Elements

(TLEs), which are not very accurate.

5.2 Experimental Tools

The Communication Satellites of ISRO are located at six orbital slots in the Geo-

Stationary Orbit (GSO). The commu
t‘r(z"(?luency bands like C, Ext. C, Ku, and M

nication transponders operate in different

S (CxS and SxC).



The different orbital locations and the frequency bands used for communications
require different antennae to receive signals from each of the satellites. The satellites
being in GSO at an altitude of 35,786 km, received signal strength at the ground
station is very low, of the order of —130 dBm. Hence, a high gain ground antenna is
required to receive and analyse the signals (i.e. antennae with high G/T). The antennae
should also be capable of being driven in azimuth and elevation to point towards

satellite of interest. After pointing towards the satellite, the antenna should be capable

of auto-tracking the carrier.

MCF has various antennae to cater to different frequency bands. Two types of
antennae are deployed — one type capable of 360 deg azimuth movement which are
called Full Motion Antennae (FMA). These antennae are used during the orbit raising
operations, and satellite relocation operations. The antennae used to receive signal
from well-controlled GSO satellites need to have only limited capability of movement

in the azimuth angle — usually 120 deg. These antennae are called Limited Motion

Antennae (LMA).

The signals received by antennae in microwave frequency bands are usually down-
converted to an intermediate frequency (IF) using down-converters. Similarly, the
ignals to be injected at the LNA point of antennae, are

signals to be up-linked or s
quencies, and they need to be up-converted to the

generated at 70 MHz IF fre
nd amplified to the levels required. The up-converters

appropriate frequency band a
and the High Power Amplifiers achieve these functions.
ments are carried out using either the Spectrum

Most of the interference measure .
Analyzers or specialized equipment at the IF level. Wherever required, these signals

are demodulated to Base-band level for further investigation. Spectrum Analyzers and
a specialized equipment called Telecom Carrier Analyzer (TCA) are used at the IF
level for the above purpose.

MCF s specially equipped, for its regular satellite maintenance operations, with
s, Up-converters, Down-converters, Spectrum

Antennae in different frequency band |
ors. The TCA was specially configyred for

Analyzers, Modulator, and Demodulat
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Table-5.2.1: Important specifications of the different equipments used in the
experiments/measurements during Investigation of Interference cases

Equipments used for
Investigation

Important Parameters
relevant to Interference

Value

1 Im Ext-C Band Antenna

Band of operation

TX:6.7-7.0 GHz

RX:4.5-4.8 GHz
Maximum EIRP 85 dBW
G/T 31.8 dB/deg K
XPD(LP) 33dB
Tracking Step track system
| 7.2m C Band Antenna Band of operation TX :5.8- 6.4 GHz
RX:3.7-4.2 GHz
Maximum EIRP 82 dBW
G/T | 28dB/degK
XPD(LP) 33dB
Tracking Step track system
Low Noise Amplifier Noise temperature . 45degK
Gain t 60 dB
l Gain Flatness [ <0.01 dB/MHz
'LNBC Input Frequency 3.7t0 4.2 GHz
4.5t04.8 GHz
Output Frequency 950 to 1450 MHz
Gain 50dB
Noise Temperature 25degK
Up converter Frequency range 70 MHz to 5.8-6.4 GHz
Step Size 1KHz
Gain 35dB
Instantaneous bandwidth 40 MHz
3.7-4.2 GHz to 70 MHz

Down Converter

mPower Amplifier

Integrated Receiver
Decoder

Frequency range

1KHz

Step Size

Gain 45 dB
[nstantaneous bandwidth 40 MHz
Frequency range 5.8-6.4 GHz
Number of channels 24
[nstantaneous bandwidth 40 MHz
Gain 60 dB

utput Power 2.5 KW
Rated 0T 950 to 2150 MHz

Input Frequency

-65 dBm to -25 dBm

Signal level

1 to 45 M symbols/s

Symbol rate
Demodulation QPSK .
Decoder Input DVB-AS; input
FEC decoder Convolution code rates 1/2,
2/3,3/4,5/6 and 7/8
: MPEG?2 4:2:0
52::: T Composite video
Audio Analog and Digital
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Spectrum Analyzer Frequency 9 KHz to 22 GHz
Resolution Bandwidth 10 Hz to 10 MHz
Frequency Span 0, 10 Hz to 20 GHz
Video bandwidth 1 Hz to 10 MHz
Swee?time 2.5ms to 16000 s
Frequency Counter 1Hz to 10 KHz
resolution
Signal Generator Frequency 10 MHz to 20 GHz
Frequency Stability 1 x 107/ day
i Calibrated output -110 to +15 dBm
Internal Modulation AM, FM, PM and Pulse
! modulation
"Frequency Resolution 1 Hz
i Level Resolution 0.01 dB ”

5.2.2 The Telecom Carrier Analyzer (TCA)

A standard equipment to store the database and monitor the satellite communication

traffic is called Telecom Carrier Analyzer (TCA). Usually, this standard equipment

icrowave frequency. An equipment with two inputs to

has only one input at the m
easurements was required for investigations of

carry out TDOA / FDOA m
interference cases.

One of the interference localization methods is the Time Difference of Arrival

(TDOA) and Frequency Difference of Armival (FDOA
signals translated through two adjacent satellites. Hence, th

TDOA / FDOA measurements should have two inputs. The acc
nd on sampling rate and the bandwidth. The higher the

) measurements between two
e equipment to facilitate
uracy of the TDOA /

FDOA measurements depe

Sampling rate, better will be accuracy. Some of the interference can occupy a large

the equipment used for the measurement should

bandwidth in a transponder. Hence,
handle bandwidth of one transponder completely 1.€., 36 MHz.

The standard TCA does not have interference localization capability. However, it was

considered that use of TCA and development of in
offective solution. The localization software was

terference localization software

Outside of this equipment as a cost-
rm of a specia
sed data of the two input channels should be

Planned to be developed in the fo ] PC-based software, which has to run

N a separate PC. Hence, the digiti
quisition into an outside PC.,

available from TCA on a serial port for ac
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Based on the above specific requirements, the TCA was procured for the following

specific features:

* Should handle two RF inputs.

* Both inputs should be at the down-converter output frequency - i.e., 70 MHz.

* Both signals should be digitized at high sampling rate within the TCA.

spectrum displays, unauthorized carrier detection should be available.

standard feature of TCA should be available.

* The digitized data of both ch
through TCP/IP protocol.

The configuration of TCA is given in Fig. 5.2.2.

All the standard features of TCA, like carrier measurement (power, C/N etc.),

The detection of carriers embedded within an occupied spectrum, which is also a

annels should be made available to an outside PC

TCA
Calibration VXI Bus eee
AFs1 Module \
Down IF#1
P Converter #1
# Digitizer#1 Computer
Controller Local
. e Module
RFg2 Down Switching Agilent
Con Module
1 verter #2 . > Digitizer#2
IF#2 *
TCP/P
Computer Remote

Fig. 5.2.2: Configuration of TCA

The other specific features of the confl
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* Single Calibration Module is used for performing frequency and power calibration

of digitizer#1 and digitizer#2

* Switching unit is used to switch calibration module and IF inputs between two
digitizers.

e Controller Module connects digitizer#1, digitizer#2, calibration module, and

switching unit over VXI bus and provide IEEE interface to PC.

Down Converters can be controlled by Local/Remote PC over RS232 interface.

* Remote PC can acquire data over TCP/IP.
Specifications of TCA [ 43 ]

Digitizer-

© Two digitizers

O Resolution: 12bit

© 90dB sfdr (Spurious free dynamic range)
O 95 M samples/sec

© I/Plevel 30dBm to —111dBm

© Input Freq 70 MHz (IF)

O Input BW 36 MHz

Measurement Accuracy-

O Power: +/- 0.2 dB

© C/NO: +/-0.3 dB

© Freq: +/- 1% of defined BW
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O Bandwidth: +/- 1% of defined BW

Signal Acquisition and Processing-

o Up to 200 million of acquired data points

o FFT processing

Measurement Performances-

O Power: up to 50 carriers/sec

© Full monitoring: up to 25 carriers/sec
Principal Capabilities of TCA-

* RF Measurements of single or set of carriers
O Carrier power

o Carrier to noise ratios (C/N,C/No,Ex/N, for digital ones)
O Carrier occupied BW

O Carrier center frequency

* Spectrum Trace Acquisition.

* N (Noise density) Measurement

* I&Q (Raw) Data acquisition.

ioital demodulation
* Analog Demodulation(AM/F M/PM) and Digl

insi arrier
* Carrier Detection over a defined BW or inside a defined

* Auto calibration of digitizers.

* Externa] TCP/IP Interface for Remote use.
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5.2.3 Experiments using TCA

Studies were carried out to experimentally demonstrate the specific feature of TCA to

detect interference embedded within an occupied bandwidth:

A signal at 70 MHz, after combining with an interference signal at a frequency which

was within the occupied bandwidth, was given to the Ch #1 of TCA. The TCA was

configured to detect the embedded interference, and to take spectrum plot showing the

R WV

interference (Fig. 5.2.3).

F . Ext-C to "OMHZ
rom LNA CCD Data, QPSK Modulation

—_—p> Down Converter

TCA
IFCOMBINER [P

A
—»
—>

B

SIGNAL
GENERATOR L

PURE CARRIER

Fig. 5.2.3: Test configuration for detection of embedded carrier

the satellites was received in the Extended C-band
e bit rate of the data is 1228.75 kbps, and is QPSK

converted to 70 MHz and given to Ch #1 of TCA.
MHz. The main lobe of the

The CCD data from one of
frequency of 4508.5 MHz. Th

modulated. This signal was down-

The normal spectrum of this signal occupied about 5

Spectrum occupied +0.5 MHz.
be within the main lobe of the occupied spectrum at

Another pure carrier is selected to
—~70 dBm was combined with the CCD data at IF

70.3 MHz. This signal at a level of

level before inputting to TCA.
t the interference signal, from the total spectrum,

The objective of the test was to detec
the interference and the signal.

and to take separate spectrum plots of
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Principle:

This involves a carrier demodulation. Carriers defined in the currently loaded carrier
set can be demodulated (if clearly defined) to extract the “error vector spectrum”,
which is the difference between the received spectrum and a reference spectrum,
which is re-modulated using recovered bits and the defined modulation characteristics.

Error vector spectrum is then analyzed by detecting signal level which is above

specified threshold parameters for detection inside a carrier.

Parameters to be configured:

* Known carrier parameters: Frequency, Bandwidth, Type of modulation and for

Digital ones Bit rate, FEC, Reed Solomon, Overhead etc.

* Threshold: This value is the absolute power that is used for carrier detection. If
Error vector spectrum bin goes through this value, the carrier is analyzed to

determine all its RF parameters. User can enter this value. In this case same value

is used for the whole frequency range. If auto is selected the threshold is

automatically calculated from the NO (Noise Density) values previously measured

or entered. So noise calibration is required before this measurement.

he resolution bandwidth of the acquired spectrum over

* Resolution: this value is t
ed. This threshold can be entered by user or set to

which the detection is perform
Auto. In the Auto case, the resolution is automatically calculated to be around

0.1% of the channel bandwidth.

Output Plots:

The figures given below, clearly jdentified the embedded interference:

Fig. 5.2 4: The spectrum plot of Combined Signal & Embedded Interference

Fig. 555. The spectrum plot of Detected known Carrier & Detected Interference

Signal.
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S.
24 Implementation of Cross

The Cross-Correlation of sign

Implemented using TCA. The procedure is

(A).

(B).
(C).

(D).

Fig. 5.2.4: The spectrum plot of Combined Signal & Embedded Interference

democulated 7 messured

Fig. 5.2.5: The spectrum plot of Detected known Carrier & Detected Interference Signal.

-correlation using TCA

als in digital domain, described in section 5.1.6, was

s below:

TCA digitizes the signal at 70 MHz with a sampling rate appropriate for the

signal bandwidth. The spectral bandwidth and the s
selected depending upon the type of signal being received. FFT is carried out

ampling frequency can be

on the samples.

[ and Q components.
s computed as A=m _

litudes Al and A2 from the spectral samples of

TCA provides each sample as

The amplitude of each spectral sample 1

An array is formed with the amp

the two signals.
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(E).

(E).

Fig. 526 gives flowchart of the so
into PC. Fig. 5.2.7 gives flowchart for cross

The correlation output is computed using the formula:

=M 2
H= ) (Al A2)+(A1;A2,,)+(A1,A2,,) ... and

j=1

j==M 2
H= Y (A1.A2,)+(Al1,,.A2,)+(Al;,A2)) .......

j=-1
Where M = maximum number of samples.

The above equations compute the sum of the product of spectral samples with
one sample shift for every value of j, with second signal being shifted one

sample at a time with respect to the first signal, and then repeating the same for

the first signal.

The plot of j Vs correlation output H will peak for a particular value of j, which

when multiplied with the sampling period / number of samples offset gives the

time delay T between the signals.

The value of t thus found out will give the difference of time delay between the

two signals given to the two input ports of TCA.

ftware developed for acquisition of data from TCA

_correlation of two sets of data acquired

from TCA.
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Initialize & Calibrate
Digitizers

¢

Request Spectrum of
Two channels

Check Input & Setup

Signals No
OK?

¥ ves

Confirm Center freq
& Band Width
of Two Signals

o

Request Simultaneous
|Q Data On both

Channels -

Vary Signal Bandwidths
and Sample Duration In IQ
Request

v

Store 1Q Data in a file

No
1Q Data

OK?
Yes

Process Data to
Calculate Delay
between two signals

Fig. 5.2.6: Flowchar
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Open IQ Data File

v

Read Date & Time of
Sampling

7

Read Sampling freq

(Fs)
v

Initialize Sample
Counter Ts =0

9

Initialize iteration
countert k=1

+ <t
Initialize Sum
S(k-1)=0. S(-k+11=0

v

Initialize iteration
counter2 j= K

-

S(k-1) = S(k-1) + A1{j-k+1)"A2())
S(k#1) = S(ke1) + A2(k+ 17 ATE)

%

Read Data
1141), Q1(i), 12(1). C2{)
Ts=Ts +1

v

No

Yes

llnitialize loop counter '
i=1

#/—

Calculate amplitudes
A1(i) = (11()2 + Q1(i)? )%
A2(i) = (12(i)2 + Q2(i)? )2

No

Fig. 5.2

7- Flowchart for cross-correla

Yes
No
Yes
Is k <= Ts/2
?
No

Plot S(k) Versus Time
Delay of each sample

v

Find Peak S(k) Sum
counter = pK

!

’ TDOA = pk/Fs

tion
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Experimental demonstration of cross-correlation

A measurement was carried out to verify the Cross-Correlation in the spectral domain

between two signals, as designed in the TCA. The test setup is given in Fig. 5.2.8 and

Fig. 5.2.9.

A pulse modulated signal at 70 MHz was used, first with zero delay and then with a

delay of 1.156 micro seconds. The delay was introduced by passing the signal through
a filter.

The characteristics of the signal and sampling parameters used were:

Modulation : Pulse modulation

Pulse width = 2 micro seconds

Pulse repetition rate = 2.5 KHz (PRT of 400 msec)

Bandwidth = 3 MHz

Sampling frequency = 5.94 MHz

Sigral
Gererator

Pulse Modulated Signal

PW-2 usec, PAF-2.5KHzZ
70MHz,-30¢Bm
Divider TCA -
Calibraion VXl Bus £
1934
IF#1 Mocdule *
Digitizer#1 Certroller &
P Module
—P Switcning Agilent C‘Tpuller )
oca
IFa2 — P Mode ___p| Dighizer#2
I
iTCP/lP
Computer-
Remote

Fig. 5.2.8: Test Set-up-1
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Sigral
Generatcr

Pulse Modulatec Signal
PW-2 ysec, PRF-2 5SKH2

70MHz,-3CcBm
Owrder TCA
Cairbrauon v Bus |1 %’;E
IFa1 Module *
+ Digitizer#? Controiler x
Mocdule Computer-
—P Switching agient
IF$2 Module — Local
'F =Iter > Digtizers2
Delay* 15656 usec : Ll T
TCPIP
i ) ’ ) . . o C -
Compuier-
Remcte

Fig. 5.2.9: Test Set-up-2

Results

The figures, which follow in this section, give the results. The details are:

Fig. 5.2.10: Correlation plot for pulse modulated signals (time delay = 0 nsec)

Fig. 5.2.11: Correlation plot for pulse modulated signals (time delay = 1.179 p sec)

Fig. 5.2.12: Filter delay measured in network analyzer

1
0000140000 : I
| i
0000120000 ! _ ;
Il
X ]
0000100000 | | __ ] ‘
3 )
2 | )
‘Q 00000
3 -
2 | .
i ]
g, 0000050000 _—_!_________J_________________——-
-]
s :
| Tt
0000040000 | T
[
9000020000 A —
90000000 A N ppe . Y pyy P
‘ 242 ,
Reel B a8 fime Delay of S wirt S2in}sec

Fio 5.2.10: Correlation Plot (TDOA=0 psec) Date: 11/9 Time: 05:35:09.47
ig. 5.2.10:
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Fig. 5.2.12: Filter delay
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Summary of initial experiments with TCA

1. Tests were designed and the capability of TCA to detect an interference embedded

in the occupied bandwidth was verified.

A software was developed to acquire TCA signals into an external PC for

)

processing.

3. A software was designed to implement Cross-Correlation algorithms.

4. Tests were designed with Telecom Carrier Analyzer (TCA) equipment and an

external PC to demonstrate Cross-Correlation between two input signals.

>. The time delays measured through Cross-Correlation matched very well with the
independently measured delay of the delay line (filter). The difference in time

delay was found to be 0.022 microseconds for the pulse modulated signal, which is

1.9% of the value of the time delay measured.

3.3 The equipments used in the experiments

The photographs of antennae and other equipments used as experimental tools are

is section. The IRD and video monitor shown in Fig.

given as Fig. 5.3.1 to 5.3.9 in th
5.3.7 were specially used to demodulate and see the video interference / signals

€Xperienced.
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Fig. 5.3.1: Ext. C-band antenna

100



okt A

_ f,‘ﬁﬁ?‘i ,.
) Al A

tion 7.2m antenna

Fig. 5.3.2: Limited Mo
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Fig. 5.3.3: Down Converter
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Fig. 5.3.4: Telecom Carrier Analyzer (TCA)
1€, J.0.4.
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Fig. 5.3.5: TCA with remote PC

104



et Tpeeh i pOOC Y SCELE WS

s ——

S O e
f b m———

Fig. 5.3.6: Spectrum Analyzer
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Fig. 5.3.7: Spectrum Analyzer,
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Fig. 5.3.8: Up-converters
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g.5.3.9: High Power Amplifier
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Annexure

T . .
ransmit Antenna Gains to the Spacecrafts at different Offset Longitudes
=]

NOte:

}Assumptions Made:

'Guam ( Longitude of E/S: 143° E; Latitude of

Earth Station E/S: 13°N)

‘Antenna Dia 7.5m

Frequency 'C Band ( 6 GHz)

Longitude of ref. S/C_ |94° E

.~ Long A Long | El Az AAzZ . Gain (dB)

74 | 20 | 1187 265 6.13 | 9.548362

76 18 388 | 26448 | 561 | 1059794 -

| 78 -16 15.9 | 263.94 507 | 11.79869

80 -14 17.93 | 263.39 452 | 13.16252

82 -12 19.96 | 262.83 396 |, 14.73077
g4 | -10 22 262.24 3.37 . 16.63078

8 | -8 24.06 | 261.62 2.75 | 19.00432

[ 88 | -6 26.12 | 260.98 211 | 22.06353
o0 | -4 78.19 | 260.31 1.44 26.41294
902 | -2 30.26 | 259.61 0.74 33.86088
94 | O 32.34 | 258.87 0 51.6
96 2 34.43 | 258.07 0.8 33.5156
98 4 36.52 | 257.26 1.61 26.20475

Wﬁ_ﬁaﬁ_ 2.5 21.73186

T 2 lﬁ‘ f—%_sm 3.44 18.59506
T0a 0 | 42719 25441 4.46 16.12949
T06 B j‘_‘;&i_ﬁﬁﬂ— 5.56 14.11861
0% 12 | 46.98_ [ 252.12 | 6.75 12.4226
110 16 ﬂﬂ& 8.04 10.96243
13 g | 513 24941 9.46 9.666258
T4 30 ﬂ___gﬂ_gs__ 11.02 8.514788

It is assumed that the E

located at 94°E longitude.

The off-axis radi

ation pattern is comp

G=29.25*l0g {AAZ * cos(ED)]

arth Station antenna is di

uted as per ITU R:580-5 ie.,

rectly looking at the satellite
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Chapter 6

INSAT System & Investigations of Interference Cases

Introduction to the Chapter

Indian National Satellite System (INSAT System) is described in the section 6.1.
INSAT System consists of Communications and Meteorological satellites in Geo-
Stationary Orbit, and their Service segment covering Telecommunications, TV
broadcasts, Radio networking, and VSAT networks. The meteorological segment
involves ground reception systems and data processing. INSAT space segment started

with INSAT-1 series of multipurpose satellites, and later grew into INSAT-2 and

INSAT-3 series of satellites. Some of the satellites in the INSAT-2 and INSAT-3

series were multipurpose type (with Communications and Meteorological payloads),
and the remaining are exclusive satellites for Communications and Meteorology. This

Section covers the communication payload details of currently operational satellites

and their associated Service segments. As the cases investigated related to interference

INto satellite communications, emphasis is given only on the communication payloads

and their ground networks.

into an interference case

Section 62 covers the details of the investigation
AT-2E. The interference was analysed and

®Xperienced in the transponders of INS
om one of the ground terminals of an

found to be an uplink interference originating fr

adjacent satellite — Raduga 1-6 of Russia. The interference was eliminated after the

Tesults of investigation were presented and Coordination was carried out with Russian

Adminjstrafi
nistration.
ienced in the lower Ext. C-band

Section 6.3 covers radar type interference €Xper
chanism of radar signals coupling into the INSAT

ansponders of INSAT-2E. The me

transmnders was investigated and the interfering radar signals were characterized.

he approximate location of the source of interference was found out using Time



Difference of Arrival (TDOA) measurements, and the results were presented to FCC
of USA (as the transponders involved were leased out to INTELSAT) and the

approximate location was found to be Guam. The interference disappeared after

discussions with FCC.

Section 6.4 covers a wideband noise experienced in Ext. C-band channels of INSAT-

3C, which were carrying VSAT traffic. The interference coupling mechanism was

analysed and found to be a loop-back at IF level in one of the ground terminals. The

characteristics of the ground terminal generating the noise were estimated, and all the

VSAT network Operators were alerted. The cause of the interference was eliminated

by the Operators, and the interference ceased.

Section 6.5 covers the investigations into wideband noise floor rise experienced across

5 transponders of INSAT-3C. The network and the ground terminal originating the
noise were found out through the coordinate
the noise, was identified and det

d switch-off test. The exact terminal,

ailed tests were carried out to

Which was pumping
understand the mechanism of noise generation. The configuration of culprit terminal

was corrected and the interference problem was solved.

M radio and VHF signals by the

Section 6.6 covers the investigations into pick-up of F
em to the satellite after conversion

hanism of interference coupling was clearly

were identified. The interference was

VSAT terminals, and uplinking th from IF level to
satellite uplink frequency band. The mec

understood and the interfering FM radio stations

T terminals wWere corrected with proper shielding of

solved after the concerned VSA

the interface cables.
s during the drift orbit phase, and

Section 6.7 covers the interference 10t0 satellite
erienced by INSAT system,

s. The interferences exp

felocation phase of the satellite
fring INSAT satellites, were investigated and

and by other Operators because of the dn1 |
the coupling mechanisms Were understood. The interferences were resolved in real

time,



Section 6.8 covers the interference experienced in the MSS payload of INSAT system
from the ground-based radars. The investigations carried out so far are detailed in this

section. As the exact source of interference is still not identified, the problem is

unresolved.

Section 6.9 covers the case of intermodulation interference generated onboard the
communication payload of INSAT-3A. Detailed investigations resulted in
understanding the interference generation mechanism and identifying the uplink /

downlink signals whose intermodulation products were falling in the bandwidths of

the other transponders. Two transponders were switched-off, thus eliminating the

interference into the other transponders.

6.1 INSAT System

Indian National Satellite (INASAT) System was conceived to provide domestic
national services for Telecommunications, TV broadcasting, Radio networking, and

the Closed-User Group VSAT networks. |
s. Among them INSAT-2B, and 2C were In

The INSAT-1 series of satellites were

Succeeded by INSAT-2 series of satellite
terference cases were started as part of

service in 1999, when the investigations nfo 1f

both the satellites were re-orbited at the end of their

this thesis work. Subsequently,

Operational life in 2003.

6.1.1 Presently operational satellites
onal in the Geo-Stationary Orbit, and one satellite

Was positio the orbital slot onl |
p e o U to India. Current operational satellites and

Positioned in the GSO slots allotted by IT
their orbital slots are as below:
GSAT-2 at 48 deg E Jongitude
INSAT3E  at 55 deg E longitude

INSAT-3C  at 74 deg E longitude



Kalpana-1  at 74 deg E longitude

INSAT-2DT at 82 deg E longitude

INSAT-3B at 83 deg E longitude
INSAT-2E  at 83 deg E longitude
INSAT-3A at 93.5 deg E longitude

Among the above satellites, INSAT-2DT is being used only to protect the particular

orbital slot. Kalpana-1 is an exclusive meteorological satellite. INSAT-2E and

INSAT-3A have meteorological payloads along with communication payloads. All

other satellites carry only communication payloads.

of INSAT system is roughly Rs. 4,000 Cr.

The total value of on-orbit assets

Fig. 6.1.1 gives the location of INSAT satellites in the GSO.

GSAT-2 (48°E) E
ot ASCamtn

8 Collocated
Fig. 6.1.1:

e
=
st 2= CNGAT-3C (T4°E) :
mommres alpana-1 (T4°E)
INSAT-2DT (82°E)

Location of Geo-stationary Satel

1ok &
ol N
e i'j\lft‘:’

" 1?.:*!:;;9:

v

INSAT-3A (93.5°E)

3°E)
3

INSAT-3B (8
8

lite of ISRO

; tem

e g lites
The communication payloads different satel

&iven in Table-6.1.1.

operate in the frequency bands as



Table-6.1.1: Frequency bands used in INSAT system

Normal C-band | Uplink frequencies 5925 to 6425 MHz

Downlink frequencies 3700 to 4200 MHz
6735 to 6975 MHz
4510 to 4750 MHz
6450 to 6670 MHz

Ext. C-band Uplink frequencies

Downlink frequencies

R

Lower Ext. C- | Uplink frequencies
band (only in
INSAT-2E) Downlink frequencies

MSS band Forward link frequencies (CxS)

3425 to 3645 MHz
6450-6470 MHz/2500-2520 MHz

2670-2690 MHz/3680-3690 MHz
14250 to 14500 MHz
11450 to 11700 MHz

Return link frequencies (SxC)

Ku-band Uplink frequencies

Downlink frequencies

Downlink telemetry carriers are located at the upper edge of the C-band between 4190
0 4200 MHz, and the uplink commanding and ranging frequencies are located

between 6413 to 6420 MHz.
all operational satellites put together is 132 in
capacity are spare and 12 transponders to be

y of the INSAT system. This rate of

The total transponder capacity of

Various bands. 13 transponders out of this

allotted presently, thus giving 82% of occupanc

n the Asia Pacific region, and will further increase when the 12

OCcupancy is highest i

Ext. C-band transponders are allotted to users. Table-6.1.2 gives the total transponder

Capacity in the INSAT system.



Table-6.1.2: Transponder Capacity in the INSAT System
Transponder Ty
Spacecraft & P il
Location N e Ext.C
Norma Ku MSS
L Lower | Higher BSS
INSAT-3A (93.5° E) 12 - 6 6 - )
INSAT-3B (83° E) - - 12 3 - -
INSAT-3C (74° E) 24 - 6 - 1 2
INSAT-2E (83° E) 12 5 = 5 : -
GSAT-2 (48°E) 4 . . 2 : -
INSAT-3E (55° E) 24 g W2 ] ] ]
I 36
Total 76 41 1 2 4
P IR AP
Total Transponders Available: 132
_“___; s

The footprint of the satellites COVET [ndian land mass and islands for both uplink and

the downlink, except for INSAT-2E. INSAT-2E R

and downlinks extending from Gulf area in the west t
nders (of equivalent 36 M

E were leased to INTELS

as a wide coverage for both uplink
o Australia in the east, and upto

Russia in the north, 11 transpo Hz bandwidth) out of the total

17 transponders of INSAT-2

Coverage and the specific extende

AT due to the extended

d C-band frequencies required by them.

6.1.3 Utilisation of INSAT transponder capacity

harati, VSAT Operators, and Private TV

Department of Telecommunications: Prasar B
pacity, as of now, in the decreasing

OperatorS are the four major users of INSAT ca
Telecommu

Lakshadweep islands are configured using

nications to the North-East India



exclusively INSAT capacity by DOT, keeping in view the difficult land terrain and the
nature of islands. The utilization of INSAT capacity for the above mentioned

telecommunication services is in addition to the telecommunication traffic between

metros, part of which is also carried on the satellites.

168 TV channels are being beamed over India presently, which includes 55 TV

channels of Doordarshan. INSAT system carries 83 of these total channels, including

Doordarshan channels and those private channels operating on the transponders leased

by INTELSAT.

Closed user group VSAT networks are being operated by DOT before 1994, when the

Government of India permitted operation of private VSAT networks over INSAT

System. Today, the VSAT networks, utilizing INSAT, is one of the largest segments

jonal Stock Exchange, Banks,

with about 30,000 operational VSAT terminals. Nat
onnected through the VSAT

Financial Institutions and Credit Card Companies are ¢

networks. Roughly 20% of daily economic transactions in the country are carried over

these VSAT networks.
ps are allowed on the VSAT communications. The

Presently, data rates upto 2 MD
The VSAT terminals

and star type connectivity.

networks utilize both mesh type :
r. and the Hubs use antennae of the size of 3.8 m

utilize antennae upto 1.8 m diamete

and above.

Table-6.1.3 gives the allocation of INSAT transponders to varous Users.



Table-6.1.3: INSAT Transponder Utilisation
. _— Uulisation
;"PJJC‘( raft & Transponder Type g 3
Lcation & Availability | pot [ DD P‘.}.‘{f'“ I.:”S‘i']“ AIR | MSS | INTELSAT [ DOS | GovtUse | Spare
Normal C 12 3 5 1 - - 2 5 1 (RRI) - 2
INSAT-3A — -
(93.5°F) Ext. ¢ 6 - - 1 i - - - 1 3 1
Ku 6 - - 4 2
INSAT-3B Ext.C 12 9 2 1
(83 }-} Ku 3 1 1 - - L 1(.‘\]3)
Normal C 24 12 7 1 2 2
INSAT-3C S 5 1
Py b ~XL ( 6 - - -
(74 E} Ext )
BSS 2 2 5
MSS 1 !
INSAT-2F Normal C 12 3 5 - - i 4
(83" F) Lower s _ _ = s % - 5
S Ext.C
- . - : - 4
Normal C 4 - - -
GSAT-2 . ) ] : - . . %
(48" E) Ku 2 - . |
MSS 1 . - - : : v - - -
NormalC | 24 | 11 7 . d - - - - - 6
T Normal C 2
INSAT-3E (55° E) _ i : . - 12
Ext.C 12 - = - ' = : = =
1 2
Toal | 132 | 29 | 24 8 17 2

6.1.4 Interferences in the INSAT System

The utilization of the INSAT transponders is very extensive with different types of
atellites. The type of ground terminals

Services being operational through the S
ices and the modulations used are

dep]oyed, the size of the networks, the type of serv

highly varied over different transponders in the IN
me cases a mix o

he rules and regulations on the leased

SAT system. The Operators were

f trained and untrained

highly experienced in some €ases, and 1n SO

Staff are involved. Sometimes the violations of t

ide networks,
power levels or bandwidth by even one

t in many cases being unintentional.
ransponders occur in such W

HOWever, violation of either the operatlonal
r the remaining network Operators.

Operator can cause a lot of difficulties fo
s were experienced in the communications

In this context a number of interference
£, INSAT is no

s have also reported different types

t the only system experiencing

invOlVing INSAT system. Howeve

i . i erator
Mierferences, other international Satellite Op

of Interferences.



A number of severe interference cases were investigated in the last four years in the

INSAT system, and many problems were solved. A few of the problems continue to

be under investigation. Eight typical interference cases were investigated

systematically and thoroughly as a part of this thesis work.

Some of the interference problems presented by other Satellite Operators in the

SUIRG meetings, having a relevance to the present investigations, are also studied
of some case studies. A few cases of

during the analysis [ 44 ], [45 ], [ 46 1, [ 47 ]
ng 2002 in

interferences into INSAT system were also presented in the SUIRG meeti

Singapore [ 48 ] to gain the benefit of discussions with other Experts.

Subsequent sections deal with each case, giving in detail the Investigations carried out

through measurements and analysis to resolve the problems.



6.2 Case Study-1: Uplink interference from adjacent satellite network

6.2.1 Introduction

Nine Transponders in INSAT-2E, two of them with 72 MHz bandwidth, were leased

to INTELSAT. One of the Transponders (Transponder #6) has an uplink center
frequency of 5890 MHz, and the downlink center frequency of 3665 MHz, and

bandwidth of 72 MHz. The lower half of the transponder was occupied by 2 TV

carriers, and the upper half was identified by the Customer for VSAT traffic.

INSAT-2E is located at 83 deg E longitude. and has a wide footprint for both uplink
and downlink. The satellite has a G/'T of =5 dB/K 1n it_s”primary coverage. The EIRP

of the transponder is 39 dBw.

6.2.2 Statement of the Problem

An interference in the upper half of the Transponder #6 was observed. The initial

observations showed that the interfering spectral components change in frequency and

vary in level (Fig. 6.2.1, 6.2.2, 6.2.3). The following details of the interference were
g. 6.2.1,62.2, 0.2

also noted:

) The spurious at 3669.99 MHz had 8 PSK modulation with side bands of 8

KHz.
SK modulation but with a higher data

) The spurious at 3657.2 MHz also had 8 P

rate.
most all the time, and a few of

i |
) A few of the interfering carriers Were present a

the interfering carrie

rs pop up occasionally and stay for a few hours.

re narrow in bandwidth an analog TV carrier,

the il’l e tsS wE

t rfCI"eIlCC COI'ﬂpOIleH

ran n I 1 ff c
CCupyjng Complete ”pper half Of the t d SpO de s WOUld not have bee a CCt d by

thig type of interference. But, the particular bandwidth was not coordinated for use
n ; :

With apg TV .. during the orbit / frequency allocation coordination process.
0g carrier



Hence, such a use was not possible, and the upper half of the transponder became

unusable due to this interference, resulting in loss of bandwidth and revenue.

6.2.3 The measurements at MCF

The interference was confirmed by monitoring the satellite downlink in the frequency

band of the affected transponder. Detailed plots were taken on each interfering

component to identify the possible modulation on the spurious signals. (Fig. 6.2.4 to

6.2.9). Summary of the modulations are given in Table-6.2.1.

- Table-6.2.1: Summary of Modulations on Interference Signals
Centre Frequency (MHz) Bandwidth Modulation
3657 200 KHz 8 PSK
3669 20 KHz 8 PSK
3671 40 KHz PSK
[ e8| 20 KHz QAM
3691 30 KHz PSK
I
nterference.

The above details indicated that digital data traffic was appearing asi

6.2.4 Identification of the interference coupling mechanism

The interference with narrow-band modulated signals was possible by the following

three coupling mechanisms:
e from the ground terminals of INSAT Network.

-

Uplink interferenc
erminals of neighbouring satellite

from the ground t

Uplink interference
coverage area fors

» atellite receive antenna.

network, owing to wide

D ‘ ce from 2 neighbouring satellite having undesired
ownlink interferen

Coverage.
d out on the transponder of INSAT-2E by

(A) & rie
he experiments WE€TC car
P o interference components were measured by

changing onboard BOA settings. Th



ch i _
anging the onboard attenuator. The level variation of the interfering component
o S

C N = i
orresponded to the change of onboard attenuation, which confirmed that the

interference was being created by unknown uplinks.

(B)  The close analysis of INSAT carriers, operating on this satellite, and the

monitoring of corresponding uplink levels at ground amplifier output ruled out the

possibility of interference from INSAT network.

It was concluded that the interference was being caused due to uplink from a

neighbouring satellite network.

sured for each of the interference components

(C)  The downlink C/KT were mea
alue of 28.5 dB / deg K. The C/KT values were

using a 7.2 m dia antenna witha G/'T v
converted to EIRP by comparing with the injected carrier. The values are given in

Table-6.2.2.
_
Table-6.2.2: EIRP Estimation for the Interference Components
sponding uplink
kias ff:;:Zn;;y using a[I)l LO C/KT (dBH EIRP (dB
requency value of 2225 MHz (BEKZ) (dBW)
(MHz) OMHZ)
| 3657.2030 5882.2030 54.44 10.18
| 3660.8860 5885.8860 52.19 9.55
| 3663.2305 5888.2305 60.05 2.82
| 3666.3729 5891.3729 51.28 6.18
| 3673.0010 ~ 5898.0010 62.87 6.21
| 3680.1028 5905.1028 59.07 2.57
| 3683.2530 ___,29,0@10——/ 62.56 3.77
| 3684.9216 ‘_;5299’.9’2_1_6,,,4__*59-37 1.81

bove measurements / computations

The levels of interference as estimated from the 2
¢ ITU Recommendations, if being

Were much hijther than the limits applicable as pe
ected to be).

“aused by the adjacent satellite network (as was SuSP



6.2.5 Identification of probable Network causing interference

(A) By going through the GSO satellite database, it was identified that a Russian

satellite Raduga 1-6 is at 85 deg E location, and is one of the adjacent satellites to the

INSAT-2E. The following details of Raduga series of satellites were collected from

different literature:
®* Raduga | series of satellites were second-generation military communication
satellites of Russia, carrying data traffic.

Each satellite in the Raduga | series was launched, and reached to GSO and left

with an inclination of -1.4 deg without correction. This inclination would gradually
come down and cross the equatorial plane and would increase upto ~1.4 deg in
roughly four vears’ time. The satellites were used generally in the inclined orbit for

a period of four years from launch.

® Raduga 1-6 was launched in October 2001, and the inclination of the satellite was

- 0.77 deg when the interference was . dentified in INSAT-2E in August 2002.

Raduga 1-6 has 6 transponders in C-band. The transponder plan is given in Table-

6.2.3 below.

duga Satellite

Plan of the Transponders in the Ra

Table-6.2.3: Frequency

Transponder No. Bandwidth (MHz) mnter Frequency (MHz)
1 36 5750
\“\2————/’3?’/” 5800
“‘“‘—M3——~/’3g”/ 5850
\“—*——4——-———//’%/ 5900
\*———5————/—’3'6’”/ 5950
\6————f T 6000
w//J

The polarization is LHCP for satellite receive, and RHCP for satellite transmit signals.

The transponders have 32 dBW EIRP and

Australjs

with a footprint covering Africa to



The frequency plan clearly indicated that there are uplinks to the Raduga satellite
corresponding to the transponder of INSAT-2E which is experiencing the interference

~ i.e., in the uplink frequency band of 5890 MHz to 5930 MHz. Transponder #4 of

Raduga 1-6 has uplink frequencies in this affected band.

(B)  The Raduga 1-6 satellite was in the inclined orbit with an inclination of 0.77
deg. If an adjacent satellite is in inclined orbit, and if the culprit ground antenna is
tracking it, the level of interference reaching 2E will have variations. The inclination

of the satellite induces a variation in the instantaneous latitude of the satellite, and the

longitude drift rate. The change in satellite longitude over-a-day for this small value of

inclination will be only of the order of 0.01 deg. Similarly, the inter-satellite distance

varies over a day depending on the values of eccentricities of both the satellites. If the
variations of this distance is large, then again the interference levels vary.
Hence, to verify the cause of variations in the interference levels, the inter-satellite

distance between the Raduga 1-6 and INSAT-2E were computed. (Fig. 6.2.10). The

NSAT transponder were monitored

downlink signal levels of the interference in the I
as found that the level variation of interference

for 24 hours for a few days and it W
Signal was about 1.5 dB peak'IO'Peak (Fig.

Small, the systematic change in the level of interference com
r several days indicated that the

6.2.11). Though the level variations were
ponents (which were
always present) over-a-day s interference could be
from the networks operating on the adjacent satellite, which could b

acent satellite 18 2325 MHz as given in the

e in inclined orbit.

©)  The LO frequency of the adj
Published literature. Using this informat
Satellite was monitored to identify any

Mterfering signals of INSAT transponder.
established_

ion, the downlink spectrum of the adjacent
correspondence between its signals and

No exact correspondence could be



above LO value was used. the correspondence between the downlink signals of the
o

Raduga satellite and the interference signals in the INSAT-2E transponder could be
established. (Fig. 6.2.12).

From all the above measurements / data / analysis, it was concluded that some uplink

signals to the Raduga l-‘6”satellite were reaching unintentionally to the INSAT-2E

causing the interference.

6.2.6 Resolution of the Problem

The findings of the MCF were conveyed to the Russian Administration as per the

Coordination procedure. More details, including the ground station characteristics and

ce, were requested by the Russian Administration

24 hours monitoring of the interferen
ear of continuous coordination. the

and the details were provided. After a ¥

Administration was convinced that the interference was
atellite network. The Administration removed the

originating from one of the

ground terminals of their s

interference source from 17" November 2003.

Fig. 6.2.13 gives the spectrum of the complete transponder, with interference, taken
r spectrum plot of the sam
6.2.14. The spectrum plot of

during  October 2002. Simila e transponder, with
interference, taken on 3 November 200

the transponder after solving the interference pr

3 is given in Fig.
oblem is given in Fig. 6.2.15:

Conclusions
! The complaint of the Customer on interference was confirmed.

o characterized as digital data traffic.

2. The interfering components Wer
s of data, it was concluded that the

. Through the measurements and analysi

d by an uplink signal to Raduga 1-6, unintentionally

Interference was being cause

Ieaching [INSAT-2E.

gs were held with the Russian Administration, and

Detailed Coordination meetin

the interference was eliminated-
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6.3  Case Study-2: Radar type interference in INSAT-2E

6.3.1 Introduction

In Satelli icati - :
ite
communication, Radio frequency interference from ground radars had
never been a concern in the early days while using analog modulation schemes. This

was due to the fact that interference levels received at the geo-stationary height from
ground radars were far below the power level of the desired signal, so as to cause

noticeable performance degradation. But in the recent years, with the introduction of

tion technologies such as digital modulation and

numerous advanced communica
liable data communications can be

signal coding in Satellite communication, re
ates a possibility of even a small interference

achieved with very low Ey/No. This cre

power making systems susceptible to interference.

One such Interference from ground radar was observed in INSAT system. Nine

Transponders of INSAT-2E were leased to INTELSAT. Transponder #1 to #5 use

and downlink frequencies in the

uplink frequency in the range of 6450 to 6650 MHz,
e lower extended C-band).

range of 3425 to 3625 MHz (i.e., the downlink in th

ected Radar bursts were first observed in the downlink

Interference in the form of susp
er in the Transponders 4 and 5.

Signals of Transponder #3. and lat

rference was characterized and the source was

Through tests and analysis, the 1nte

localized.

6.3.2 Statement of the Problem
f spurious on the leased capacity of

' May 1999, INTELSAT reported high levels ©
ndicated Radar lik

3400-3700 MHz

r radar purst occurT
sing lock. Wwide band digital video links (high

y BER degradation in the presence of these

. ) : e burst interference in the lower
INSAT. Initial observations 1 _
); The interference affected low

e
Xtended c-band transponders (
ed, burst errors were observed

Power/low data rate links. Wheneve
N the data links and the links were 100

Power/ high data rate) survived without anl

rference was found to be random in nature

in :
terference signals. The radar burst inte

a
"d hopping in frequency Over 3 transponders-



Fig. 6 . _
g. 6.3.1 shows the Radar burst interference monitored in the downlink spectrum of
0

the transponders.
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Fig. 6.3.1: Spectrum plots showing rada

6'3 L
3 Initial analysis
he following tests were carried out t0 confirm whether the interference was due to an

upl; o
Plin or due to the downlinks of other satellites:

which are geographically separated

l' .
ple Stations,

) - If the inte
d to the downlink frequencies, then the

Observations involving multi
(Beijing, MCF and VSNL Chennal
through e uplink and gets translate

rference reaches the satellite



Stations  whi )
tations, which are widely separated geographically, receive the same

interference. If the interference is downlink interference, all stations will not be

affected equally.

_[\J

Checking for receiver front end overload
3. ; - -
Varying on board attenuator and monitoring the variation in the level of

Interference signals.

4. Monitoring the downlink spectrum with transponder OFF. If the interference

then the interference disappears when the

originated through the uplinks,
rence will be present in the downlink signals

transponder is made off. The interfe

if its origin is in the downlink of other satellites.

rmed that the interference was uplink interference,

The results of the above tests confl
reaching INSAT-2E from some unknown ground terminal / radar.

6.3.4 Characterization of Interfering Radar

6.3.4.1 Characteristics of interfering radar
rize the radar bursts. Higher

The downlink signals were monitored characte
rum analyser to captur

an option of the spectrum analyser was used

domain. Fig. 6.3.2 gives the spectrum

resolution bandwidth was used on spect ¢ the line spectrum of
Ypical (Sin x / x) shape. Similarly zero sP

t i
O capture the reconstructed radar pulses 1t time
| components; and Fig. 6.3.3 gives the detected

3.4 gives the scan rateé of the radar.

Plot showing the line-spectra

Nterference signal pulse shape- Fig. 6.
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Based € cas 1Sti h
on these measurements the characteristics of the radar generating the
> o o

int R _
erference. were estimated. Table-6.3.1 gives the characteristics of the radar

captured using spectrum analyser.

Table-6.3.1: Characteristics of interfering radar
Pulse width | 2 toSusec

PRF 1 350 to 400 Hz

Scan rate | 15to I8 RPM

EIRP towards Satellites | 48 dBW ]
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Fig. 6.3.4: Radar Scan raté measurement

6. .
3.4.2 Estimation of Radar EIRP
g station, and the

at the LNA of the receivin
ence. Thus the

rum observed in the interfer
ue was translated to the satellite EIRP,

was estimated. Table-6.3.2 gives the

A pulse modulated signal was injected
‘evel was adjusted to match the lin€ spect
downljnk signal level was estimated. This val
d the power level of the interfering radar
“Alculations and the estimate of the power of the interfering radar.



Table-6.3.2 : Calculation of power of interfering radar

Injected level of the modulated signal at LNA input -47.74 dBm
Offset factor (from LNA inject point to the satellite
- . 83.9
including path loss)

4.24 dBW

Spacecraft EIRP

Earth Station EIRP to achieve 4.24 dBW at spacecraft

48 dBW (approx)

Im antenna gain at 6 GHz

35dB

Power required

I3 dBW (20 W)

Pulse width

4 micro seconds

Pulse repetition

7.5 ms (400 Hz)

12.5 kW

Peak power
R

6.3.4.3 RFI-free zone for radar interference

The scanning radars operating within an upper limit of elevati
s too close to the nadir point

s as a circle of radius r with th
Based on the RFZ, certain geographical area can
ier in Chapter 3,

the satellites in GSO, if the radar i
Hence, a RFI-free zone (RFZ) exist
of the affected satellite as the centre:
be eliminated in the geo location PT

S€Ction ‘3.2.1 Ground-based radar tran

smitters -

The radius of RFZ is given by:

r : . -
Re COS{({) max TSI I[

R

Re coSs d) max JJ
R

GEO

¢ = radius of Earth

Rew — .. . -
GEo = radius of Geostationary orbit

max = Maximum elevatl

The value of RFZ is computed for appmXi

on angle of the radar.

Elevation angle 10deg 7~ 6045 kam
Elevation angle 20 deg 7~ 5620 ki

ocess. This 1s explained earl

mate operational elevation

(D

s as below:

on angle cannot view
of the satellite. [ 12 ]

e sub-satellite point



The abo ; . . .
ve computation indicated that the radar causing interference should be at |
east

560 _—_ )
0 km away from the sub-satellite point of the satellite being affected
6.3.5 Radar interference coupling mechanism

Many : . .
y types of Radars are used at airports, ships and at meteorological observatories

The 5 "
se radars operate in different frequency bands. The radar signals can reach the
GS U : . .

O satellites, if the operating elevation angle and distance (from the sub-satellite

o) ; r
point) to the radar match the required conditions. The Radar signals can also reach the
satellj : : : ,

ellites through the antenna side lobes, if the transmitter pOWer1s sufficiently high.

Fi S o _— : .
ig. 6.3.5 gives schematic view of Radar interference coupling mechanism to the GSO

satellites.
Fixed
_/;_ Satellito ” ~—
e Arboine \\ﬁ ’,":l GHzx
g:a:"ia‘;"s '\5 ,‘, Downlink
"
;,/*/’;’.' .E 5 nang
—
: o a
4 GHaz Fixed-Satsllite
= Enrth Station
Shipborne =
-‘ja.‘!":-r
Srations Terrestrial Radar
Stations
Fig. 6.3.5 Radar interference coupling mechanism
The general characteristic of the Radars in use were verified to check which type
e. Table-6.3.3 below gives the details of

c .
ould be the potential source of the interferenc

t
he Radars, collected from the literature.



[ .
Radar Tvp:ab.lggi.: :L?;:E‘pes of Radars in. use and their-Characteristics ]
m h : _ . | Typical characteristics ]
| | Alrport surveillance | Freq. : 2700-2900 MHz
i | Pulse width : Usually 1 pn Sec
| gRl; : 411880 to 1100
, eak power kW
‘| ARSRs . Long-range Freq. - L-band, 1215 to 1400 MHz
! | detection: Air-route | Pulse width 2 pSec
| ' surveillance PRF : 350
e | Peak power : 4 MW
[ ype Height finding Freq. - 2730 to 2800 MHz
' Radars Pulse width : 2to4 u Sec
PRF - 300 to 400
WeR . Peak power : 41to SMW
type Weather Radars Freq. - C-band, 5540 to 5640 MHz
S-band, 2840 to 2890 MHz
Pulse width : 2to 4 u Sec
PRF - 160 to 320
| Peakpower : S00KF

None of the known type of radars as listed above op

Create interference to INSAT-2E i.¢-

erate in the frequency band to

in 6450 to 6650 MHz range. However, three

Possibilities existed as below:

The radar transmitters can generate spurious signals much beyond their operating
range. The coaxial magnetrons used in some of the Radars can be the source of
the C-band weather Radars were found to generate

Spurious signals. Some of
[13]

Spurious beyond 5700 MHz range-

to 6700 MHz 18 allo
TU. The Mobile services, in

The frequency band of 5925 tted to Moblle Services’ in
addition to ‘Fixed Satellite (E

stations, maritime m
2 radar being used for mobile

arth-to-Space)’ bY 1
obile service, and aeronautical

Principle, include mobile earth

Mmobile services. Hence, interference can be from

Services.

¢ working in this band with advanced features

Military Radars were suspected b '
pserved during the interference monitoring.

like frequency hopping, which was (¢



The estimated peak power of the radar interference was a high value of 12.5 kW
which eliminated the possibility of spurious signal as the cause of interference’
The estimated peak power of interference was 16 to 25 dB below the operational
peak power of the radars given in Table 6.3.3, which indicated the interference

could be reaching INSAT-2E through one of the side lobes of the radar antenna.

Hence, it was decided to carry out TDOA measurements to geo-locate, at least

approximately. the operational area of interfering radar.

6.3.6 Localization of source of interference through measurements
6.3.6.1 TDOA Measurements
rrival (TDOA) and Frequency Difference of

s being used to localize the source of

present problem, ‘TDOA-only’

Measurement of Time Difference of A
Arrival (FDOA), and analysis of the data i
interference. During the investigation of the
Measurements were carried out with two pairs of satellites, and the locus on which the

source of interference could lie was plotted. The TDOA
ital slot) and ST-1 (88 deg

(at 78.5 deg E orbital slot) as

measurements were carried
out USing INSAT-2E (83 deg E orb E orbital slot) as one
Pair, and with INSAT-2E and Thaicom-3

satellites.

another pair of

cting the three satellites, which are

Since the interference from unknown radar was affe
e TDOA value wi

face of the earth. The
e location of the source

th each pair of satellites could

S
Cparated by 10 deg of orbital arc, th
intersection / convergence

be _
used to generate two loc1 on the su
of interference.

Ofthe loci could indicate the approximat
en in Table-6.3.4 and 6.3.5.

The results of the TDOA rneasurements are giv

t for radar interference 00 INSAT-2E and ST-1
en
path

Table-6.3.4: TDOA measurcm
i —— | TDOA path

RF TDOA 4 Distance | Distance
FRE TDOA with | TDOA with Distance D}Stas'll‘i"’l with 2E | With ST-
(MH? 2F leading | ST-1leading |  with2E W{;‘fh o | fending | 1leading

) (m.sec) (m.sec) leading (km) leading (km) (km)
\ //—‘_-—-—-"'_'—_f
6559 R P e 364.5 391.5 260 49’5"‘



Table-6.3.5: T -
: TDOA measurement for radar interference on INSAT-2E & THAIC
oAl & OM-3

RF FR T
(MH:;Q “l-ilt)ho‘;; '1T-DOA with §f 2o THORA path
leadi:u; II-IAI'COM Diftance Distance Distance Diptath
se g eading W lth.ZE With With 2E ‘svz.mce
.sec) (m.sec) leading THAICOM leading TH{II(tjh
- (km) leading (km) (km)a lf.:adin(;M
| 632 1.46 1.125 438 337.5 462 (;(;Z)

6.3. .
6.2 Geo-location of the source of interference

Th
e TDOA values were used in geo-location software. T

g i
oftware is as below:

The value of Time Difference of Arrival (of

he approach used in the

interference signals through two

nge from the unknown

satellites) is due to the difference between the ra
i.e., uplink range) and from satellites to the

interference source to each satellite (

easurement site (i.e., downlink range).

d for each satellite to the measurement site, with

e concerned satellite. Through this step,

he uplink ranges from unknown

on5.1.1)

The downlink range is calculate
the knowledge of the orbital location of th

the TDOA value is converted to the difference in t
air. (As described in sectl

source to both the satellites in the p
lue and height (above the mean sea

One location with a longitude value, latitude va
e is assumed, and th

ce of the uplink ranges m
DOA value, the assumed location is

e uplink ranges to the two

| )
evel) for the interference SOUIC
atches with the

satellites are computed. If the differen
d from the T

Uplink range difference compute
n the surface of the

|
0gged as one point of the locus ©

earth.

s of longitude and latitude, within the

f the locus. The height of the
consistent with the

The process is repeated for different value
¢ of points ©

ra .
Nges defined, to obtain numbe
sea level) was used

in
terference source (above the mean
m :

casurement error possible it the TDOA values:



6.3.6.3 Results of the geo-location

The result of the geo-location software, with the TDOA values measured with each
pair of satellites, is given in Fig. 6.3.7. The loci indicated the approximate location of

the radar, which was causing interference. The distance as indicated by the

intersection / convergence of the loci from the sub-satellite point was also consistent

with the computation given in section 6.3.4.3, and was approximately 7000 km from

the sub-satellite point of INSAT-2E.
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6.3.6.3 Results of the geo-location

The result of the geo-location software, with the

TDOA values measured with each

pair of satellites, is given in Fig. 6.3.7. The loci indicated the approximate location of

the radar, which was causing interference. The distance as indicated by the

intersection / convereence of the loci from the sub-satellite point was also consistent

with the computation given in section 6.3.4.3, and was approxi

the sub-satellite point of INSAT-2E.
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6. . S r .
4  Case Study-3: Wideband Noise Interference In Satellite Channels

6.4.1 Introduction

One of the transponders of INSAT-3C carrying VSAT networks, experienced 5 to 6

B degradation in the Ey/N, value. This variation caused disruption to the traffic

carrvi . . . o
( arrying low data rate signals). The E,/N, degradation for the carriers in a transponder

can happen due to:

* Degradation of the EIRP of the transponder.

" Rise in the noise floor due to over drive .1 the allotted adjacent bandwidth.

. .
Interference from ground terminals.

[t was decided to investigate the problem and identify the cause.

6.4.2 Preliminary investigation
caused by overdrive by checking the

[t was verified that Ey/No degradation was not
who were allotted bandwidth in the

uplink transmit levels of different Operators

transponder
r to rule out the possibility of

p of the transponde

t with shutdown of networks in the

It was planned to verify the EIR
rmance. A €S

rpose- During this t€
e floor with 2 peak
nder, when carriers O

ectrum plot showed

st, when all networks were
amplitude of 10 dB was

f all the Operators were

degradation of transponder perfo
transDOnder was planned for this pu

Shutdown, a wide band disturbed nois

Observeq
. Spect lots for the transpo
peetmm P the following details:

brought down is given in Fig. 6.4.1. The sp
-peak variation of around 10 dB.

" An uneven rise in noise€ floor with peak-to
" ghly 18 4B and 6 dB C/N value.

Two unknown carriers with 104
of this type of disturbed noise

in the presence
e in the noise floor level was

El _
RP measurement was Not pOSSIble .
fy whether the 118

flo :
0 .
- HOWeVer, it was decided to verl



du / :
e to any degradation of the transponder or due to the presence of extra noise in the

Input signals to the satellite.

Onboard attenuation for the affected transponder and the adjacent transponder were

vari . . ) ;
aried and spectrum plots showed corresponding change in downlink noise floor. (Fig.

6.4.2). The spectrum plots also showed a rise in the noise floor in the upper end of the

adjacent transponder. (Fig. 6.4.3).

This test indicated that the additional noise was present at the input of the transponder,

and could most probably due to the noise be

~one of the ground terminals. The presence 0
S generating wideband noise.

ing generated and being uplinked from

f the noise in a part of the adjacent

transponder also indicated that the source wa

e noise floor, which in turn

The degradation of Ey/N, was basically from the rise of th
could be due to noise being uplinked Over 60 MHz bandwidth. Simulations were
Carried out to identify the wideband noise generation and coupling mechanism.

6.4.3 Simulation, Analysis & Identification of Wideband Noise Coupling

Mechanism from ground terminals

the affected transponder, and the downlink

(A) A low level carrier was uplinked to - | !
Was monitored. Multiple downlink returns were observed for the single uplink carrier
(Fig. 6.4.4). The multiple returns observed in the Jownlink had to be explained.

ie., multiple returns) were analyzed

Hence, the downlinks spectral components (

Carefully for the frequency offset, and time delay:
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Fig . - .
6.4.5 shows the typical block diagram of IF loop-back in a satellit
ite

o

. . .
ommunication terminal.

Satellite Transponder

*

LO=2224.999 MHz

(Offset of -1KHz)

6815 MHz
¥ 4590.001MHz

Unintention
6815 MHz al loop back
————
70 MHz /
Up converter L— - /
BASEBAND
- : _
: EQUIPMENT
P 4590.001MHz Down B
—_— | converter
V 70.001 MHz
S

Fig. 6.4.5: Block diagram of IF Joop-back in satellite communication terminal

(say 6815 MH?) i

) frequency only s

y inked to t d
eally, when a carrier frequency S Upl:i . ;?Szon elr,nlil
hould appear. The downli

doven 1-
OWnlink carrier at (4590.001 MHz

Signa] frequency should be Jower than uplink frequenc
Mboard L0 (2224,999MHz) i.e: DoWlTK Frequency = (Uplink frequency-onboard

LO). If the terminal is tuned for 681 5 MHz uplink frequency and 4590 MHz downlink

f .
®quency, it will have 70 MHz at1t5 ¢

y by an amount equal to

plink IF and 70.001MHz at its downlink IF.

n this terminal, multiple

quency 1 assumed |
board LO offset) will

If .
80 unintentional loop back at 8% [F fre
uplj .
Plinks with offset in frequency bY |KHz
0 P
CCUr. The Table-6.4.1 shows the multiple ¥

(Col-responding to on

plink frequencies which will get generated



in the event of IF loop back at this terminal and the corresponding downlink and IF

frequencies.

—

| Table-6.4.1: The Uplink and Downlink Frequencies if a loop back at IF is present
' at the ground terminal

S
| | Uplink | Uplink on gl
| ink | | i
' S/L No i‘ pIF board F ownlink Downlink
| " " | Frequency LO requency IF (MHz)
L_—*_—L (MHz) (MHz)  (MHz) (MHz)
| " 70.000 | 6815.000 ; 4590.001 70.001
A ’ | :
Pz\ 70001 | 6815001 2224999 | 4590.002 70.002
3 70.002 ' 2375000 | T 4590.003 70,003
’ |
] -
] [ |
[ Andsoon....

e to a loop

This analysis explained the presence of multiple returns should be du
back at one of the ground terminals. The resulting rise in the noise could have
Caused degradation of Ev/No when the traffic is present.

th an intentional Joop-back at IF level of the

(B) A simulation was carried out W1
ut to up converter,

MCF ground terminal by directly patchi
re transponder.

ng the down converter outp

nd uplinking the signal to another spa
The wide band noise (similar to that observed in transponders 5 and 6) was observed
6.4.7). The amplitude of this noise was found

ility of the ground terminal. The response of

] at the ground terminal IF.

on this test transponder (Fig. 6.4.6 and

to )
have direct relation to the EIRP capab

h leve

this pe: _

S noise floor also varied with mismatc

©) : ion was understood, the power level being
Once th ism of no1se generatlo

¢ mechan's [ was € ch with the observed

tr ; .
“Smitted by the culprit ground term1na
' ower re
oise floor rise in the downlink spectruttt- The HPA P . :
itude in the downlink noise was measured

stimated to mat
quired to generate

-
'debang noise of 10 dB peak-to-peak ampl

U the g i or. The EIRP of the ground terminal to generate wideband noise
a coupler. 1he




interferen - :
6 ce was estimated using the test results and Transmission equation as to b
0 dBW. By looki : 0 be
. By looking at this EIRP value. the VSAT and HUB terminals operating
g on

thi
s transponder were analyzed. Table-6.4.2 and 6.4.3 give the maximum EIRP

capability . _
pability of the VSATSs and Network Hubs operating on this transponder.

Table-6.4.2: Estimation of EIRP of VSAT terminal

Antenna diameter (m) 1.2 1.8 3.8 !
Gain (dBi) @ 6815 MHz (66% officiency) | 36.8 40.4 46.9 4
; Power output (dBW) 1)35W 7.0 7.0 7.0 Tf
| 2w | [T 13.0
WT EIRP (dBW)—n{&__‘f 138|474 [53.9(5W)
59.9 (20w)
i Table-6.4.3: The estimation of EIRP of Network Hubs
' Antenna diameter (m) Tjg————rg’O’ 11.0
"Gain (dB1) @ 6815 Mz (66% efficiency) 554|546 |60
“Power output (dBW) 400 W 260|260 260
Wave guide loss (dB) 20 |20 |27
HUB EIRP (dBW) max. 764|786 |00
IS USSR B

The EIRp causing wideband noise interference was estimated carlier to be around 60
n the user network was suspected.

d e ]
BW. Hence, 2a 3.8 m terminal with 20W amplifier 1
s, based on the above findings to

. The problem disappeared

t was concluded that an

o all the Operator

An alert message was sent, t
e VSAT network SItes

Verg :
ty and remove IF loops 111 th
With S, Thus i
hin a few hours of alert messa I d the wide band
.15 caused the wide band noise

(D)

unin .
tentional loop back at one of t
problem.



The spectrum plots of disturbed noise floor and traffic, and normal noise floor plus

traffic in the affected channels are given in Fig. 6.4.8a & 6.4.8b.

Conclusions

I. " A big interference problem involving two transponders and nearly 3000 VSAT

t one month (June to July 2002) affecting the service

operators occurred for almos
s gave clue to identify the possible

severely. Coordinated tests and simulation

source of interference.
a wide band noise causing interference to

2. A small VSAT terminal can create
s between uplink and downlink at

whole of the transponder, if a loop back exist

any ground terminal.
3. The Interference coupling mechanism Was identified through monitoring, testing

and simulation.

and noise interference, with large number

4. Localization of terminal causing wideb ‘
try, requires understanding of network

of VSAT network spread across the coun

and co-operation from the Operators.
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65 C
. ase Study-4: Investigati
y-4: Investigations into the wideband noise floor i
or interference

problem

6.5.1 Introduction

The INS/
NSAT Sys - ‘
ystem as on April 2003 had around 27000 VSATSs operating i
ing in it, with

bulk of
the services i i
rvices operational in the Extended C-band transponders of INSA
h T-3B at

E. During the last week of June 2003, many

83 deg
eg E, and INSAT-3C at 74 deg
AT-3C,

VSAT servi

servi iders ino i

exper ce providers, working in the Extended C-band transponders of INS

enced deg i { |
egradation of the quality of service / disruption in their networks

#] operating on transponders #25 &

29) of INSAT-3C complained of

owing to abnormal rise in the

Som
e of the V i
% o e VSAT service providers (Customer
= an Cu 1 .
stomer #2 operating on transponder #

degradati ra
atio i i i
n / disruption of their network operations
reported was of the order of

noise floor j floor rise
oor i i The noise
in their operational bands. The nois I ris

egradation in the Ey/N, of the service carriers. No

S to 6
dB, with an associated d
s was however reported.

degradation i
ation in the absolute power level

6.5.2 :
Identification of Problem
s VSAT service providers in the

The o
C
cupancy of Ext. C-band transponders bY variou

INSA
T-3C satellite is given in Table-6.5.1:

6.5.1 : Occupancy of transponders of INSAT-3C
ccupancy ooy [ Bandwidh Occupied (T2
36

Table-

— ChannelNo.
5 W/Jff
. % ] /gmn/_ej’fl/f____————i’—s———————
o W /’ﬂg// —/t___________'
Customer #4 ' 18
13.5

— Customeli—
——Cusomet B =
vwf——ig————
— Cusiomer i — 5
Customer #1 0 9!

9.0

4 W -

159




6.5.3 (A) Initial Analysis

* Preliminary observations at Master Control Facility (MCF) indicated a uniform

rise in the noise floor spanning the whole of the Extended C-band. Comparison of

en during June 2002, with same

spectrum plots with the reference plots tak
3 to 6 dB (Fig. 6.5.1t0 6.5.6).

measurement setup showed the rise in noise floor by

No degradation in the absolute power levels was however observed, indicating

nominal onboard transponder gains.

had, in the meanwhile,

Network Operations Control Centre (NOCC) near Delhi,
in their

received complaints from Customer #2 about the noise floor rise
#29. C oordinated switch-off tests were C
g generated within

onducted

operational band in transponder
ossibility of the noise bein

on the 28th June to ascertain the p
o change in the noise floor situation with the

their Network. There was, however, I

Switch-off test.
s available with 30 dB On-Board

A spare transponder (Transponder #27) wa
8 dB and noise floor measurements

Attenuation (OBA). The OBA was changed to
were taken in this channel, which indicated

ount of noise floor 115

for individual transponders are given in Table-6.5.2.

I Hl l 6 - - I l —]

Channel No. (dB)
| M s
6

4 rise in the noise floor in this
e with respect to nominal values,

transponder also. The am

;
i

@
|

se Spread across the whole 240 MHz of the

Thl . ; floor ri S
S type of uniform noise for the first time. Also, 3 to 6 dB rise in noise

Extended C-band spectrum Was seen

160



(B)

} l

traffic (pres
ence of the traffic carri
ers usually suppress the noi
noise floor level)

June-J
uly 2002. How '
) 2. However, the noise floor rise
| affected onl ‘
g tha period y two channels at a time
The wi
vide b is ' ‘ ‘
and noise coupling covering €ntire Ext. C-band was possible due t
0

followi
lowing two reasons:

i W' . .
ide band noise interference from a ground VSAT terminal.

= O 3 %
n-board receiver malfunction.

Yor: . ;
erification of Normalcy of Onboard Transponder

e Spacecraft, the following tests were conducted on

To
confirm the normalcy of th
ngallm ground station terminal.

t
he vacant Transponder #27 usi

- 8 : . :
aturated EIRP to validate nominal gains of the transponder.

- Spacecraft G/T to validate the nominal Nois€ Figure at the front end.

T "
he tests indicated:

Nominal Gain of the transponder
G/T of the order of

during the earlier in-

12 dB. (-12 dB/deg K in

- D . .
egradation in the Spacecraft
orbit tests)

place of original 0.34 dB/deg K
sent at the input

the wideband noise is pre

cecraft or Ground terminal) could not be

D
egraded spacecraft G/T confirmed that
of

the Spacecraft. But still the source (Spa

localized_
r into operation and observe the

redundant Recelve

e out the possibility of any degradation in the

It w .
as decided to switch-on the

im
Pact on the noise floor tO rul

161



(€)

Receiver.

[t was 1
confirme te
irmed., through this test, that the source of the noise was not the onboard

Receiv
er. All f . o . .
All further tests were carried out with the original on-board Primary

Receiver i
eiver in the operational chain.

Simulations at MICF
o check whether any VSAT uplink with

wid : .
eband front-end equipment could be causing the problem (owing to overdrive

of
the up converter/Wide band amplifier st

Sim
ulated tests were conducted at MCF t

age). Tests were conducted by

ith the up converter and final

tran
smitting onto the vacant transponder #27, W1

maximum gains. A noise floor rise of the order of 3

Power ampler (TWTA) set for
t
04 dB spread over about 80 MH

7 was observed under this condition.

tch with the reported problem with respect

0 MHz filter existing in the up-converter

Thi "

his condition of noise floor did not ma
t

0 affected bandwidth, mainly due 0 the 8

use ; .
d for the simulation test.
cruration that could

RF

link was estimated to charactenze ag

240 MHz of the spectrum into the spacecraft
dtoa terminal, which could

SStlll'laUOIl pOlIltC

wing configuration:

e

8enerate, and pump noise across

Which i< of .
hich is given in Table-6.5-3- This

b ;
€ generating the noise, with the follo

0
3.8m antenna

e than 20 watts of RF power

O Transmitter delivering mor
© Wide band up converter (Possibly operating in the L-band with bandwidth of
300 MHz)
TA) being overdriven.

o
A degraded preamplifier (SSPA/ W



Table-6.53 - I ink _
-6.5.3 : Link Calculations for Estimating the EIRP of the Terminal Causing
Interference 5

5.0 dB (Average)

Noise floor raise

Bandw;i
ndwidth - 240 MHz

C/K
T 5.0+ 10log 240 E +6 = 83.8 dBHz

El
& C/KT+PL-G/T~K = 60.2 dBW

Noise power calculations
Nomj )

ominal Noise level measured in transponder #27 -55.0 dBm (in 2002)
50.0 dBm (in 2003)

In - :
terfering Noise level measured in transponder #27 = =7
RiSE in the noise power = =51.65 dBm
Bandw:
dwidth (Over 6 transponders) = 240 Mz
32.15dBm

MHz =
rminal with 3.8m and 20 watts
onverters, in an

Abs
0 . )
lute noise power increased over 240

This inds
S indicates nearly 3.0 dB rise I noise power at a ter!
-band Trarlscelvers/Up c

of
SSPA. The terminal should also use L .
eband (240MHZ) noise.

Over 1 . . &
driven condition to generate a wid N
0 dB over 240 MHz bandwidth and it 1S

Asstrms: )
Umption: A terminal is uplinking 2 C/N of 5.

Uplink limite d
\\-——

6.4

4 (A) Localization of Source of Interference
ing mechanism was ground based, NOCC and
witch—off test, during

HaVin
g confirm oi enerat

Mc
F Proceeded with the coordinated S

Whj .
ch yielded the following results:
round 2210 Hrs on 5th July, with many of

L]
The noise floor rise abruptly vanished 2

: itters.
"he operators yet to shut down their transmitter

ough out the turn-off exercise, which

L]
uly 2003 after which time, operators

T :
fe nojse floor continued tO
W

4S completed around 0300

w .
Cre permitted to resume their t



* The nois '
se floor ris |
o r rise abruptly reappeared in the transponders around 0315 H
uly, during —
3 ing the process of the restoration of the services by operat
erators

illdicatillﬂ o ‘

= [hat one Of [he tennllldls. \VhiCh I'CPC”Ed tEl:l - t t\
crea ed he prob en [} 6 D |
r t I 1 ] (Fi_.- -.-'8)'

The Netw :

Woik?‘ne:“i:r:] :vhlch restored their services around this time, was of Customer #12,

sen-ice; - bL transponder #30. They were immediately asked to shutdown their

dentifiog th} C.me. During this exercise, the terminal causing the problem was

i the De s the VSAT located in Kolkata, working in the Network of Customer #12
mand Assigned Multiple Access (DAMA) mode.

of times, and at every instance of

The term;

e :

rminal was turned-on and off for a couple
nders was observed.

turn
-on, the e

the increase in noise floor across the transpo
erminal and the noise floor

Cust
(0] + . . i z
! mer #]2 was instructed to stop SErvices with this t
€Cam .
e normal since then (Fig. 6.5.9)-

(B)
Tests & Analysis at Customer’s site
d MCF visited the VSAT site at Kolkata, to

gurations that could have caused

Ajo'
in X

t team of engineers from NOCC an
ment confi

stigations and tests Were conducted, the

Study B
. Y the site-specific conditions and equip
€ ab . 3 1
normal noise floor rise. Detailed 1nve

hi hli IT1
ghlights of which are:
the analysis ca ied

n matched with
t fed 3.8m

gured around an offse
tate Power Amplifier providing

L]
T : ;
he terminal size and front-end configuratto

out at MCF. The VSAT terminal Wwas confl
t final Solid S

BW. The front-end electronics employed are:

dan .
tenna,  employing 40-Wat

m .
aximum E[RP of around 62 d
L to Extended C-band converter

ta make. The interface with the
e U/L, and 950-1450 MHz in

e converter-cum-amplifier in

© Outdoor Radio Unit (ORU
and a 5 W power amplifier of
Indoor Units (IDU) was at 750 £ 18 MHz 11 B

D/L. The IDU output had +18 MHz filter but th

the ODU had no filter-
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I_

40B-OD serial no. 4997.

The VSA-
SAT configuration is given in Fig. 6.5.10

A heljax ¢
X cable was usc¢
e was used between the data channel unit (Indoor Equipment) and th
nd the

front end
utdoor Radio Unit (ORU) carrying IF signals at 750 = 18 MHz to th
= e

Uplink_ a 3 < ;
~and 950-1450 MHz in the downlink. Connector of this cable was found

f the ORU, causing intermittent contact and

loos
ely mated with the input 0
r. The connector, on detailed inspection, was

im ;
: proper grounding at the connecto
ound to hav :

have broken connectivity between the body and the shielding.

tests were carried out at the site

Based
it on the preliminary observations, ground
V]t the T .

original equipment configuration. The tests included
late any possible cause at

channel-end (Indoor) to iSO

o 1
Measurements at the data
bserved even with the RF

the .
source (L Band): No anomalous behavior Was 0

output being saturated.
on at the ORU input

nce the cable connecti
possibility of noise

o M
easurements at 5 Watt ORU: Si
re made to simulate the

w
as observed to be loose, efforts we
It was obs€

rved, during this test, that the noise floor

input connector wa

(RG213) did not sh

generation at this end.
s disturbed. Similar

Jumps abruptly whenever the cable /
ow any abnormal

exercise with a freshly laid [FL cable

(Fig. 6.5.11)-

in » .
crease in noise levels
0 Watt final

tt SSPA: Measurernents with the 4

cable/connector

showed:

0
Measurements at 40 Wa
(at SW transmitter input)

amplifier with the disturbed
ver the whole pand (Fig. 6.5.12)

Abnormal noise response ©

- 7.8 dB response OVer 240 MHZ
- at the peginning of the EXtL. C band, slowly tapering

- High Noise Floo

towards the end of the pand.



s lth

= - . ' .
C .

o Test with
alternate set up: Tests were also carried out with the alternat
ate

setup arrang i : -
ged at the site to verify nominal performance and compare with

those obtai i 2t
btained with the original configuration. This set up however had a

- 1 8 .\’ - . . .0
{Hz filter built in, thus band limiting the operations to the assigned
o

sponder. The configuration is given in Fig. 6.5.13.

ing the nominal

ngle Carrier Operation): After verify

« I
e s
sts with the Satellite (S
were carried out, with the satellite using

perfo
rmance of the ground systems: tests

the al
t . .-, :
ernate setup. Tests were initially carried
nly one CW carrier was

ng increased from minimu
e in the Noise Floor was observed

out on Transponder #27 and
brought up during the

ther
eafter on Transponder #30. O
m to maximum,

tests, wi 2
, With the carrier level gradually bei

to s
aturate the SSPA (Outdoor Unit). No ris

during these tests.

©
Results of Investigation
SAT site, it was concluded that:

F]‘O
m the tests

tests and observations at the Vv
the Ext. C-band Transponders was

oor Unit and the Outdoor Unit.
nd the outer shield of the

Th
€r . : »
eported wideband noise€ rise across

attr
ributable to the bad connection petween the Ind

onnector body 2

The
severed connection between the ¢
pand noise.

caused the wide

h .
cliax cable at the ORU-end
Atlanta ORU, wideband noise

y the RF equipment and
noise floor. The

he Scientific

Jter in t

The i m
re being no band limiting fi
d connection W

using the an
ed to amplify

gen ;
erated owing to the ba
omalous rise in the

radj
ated on to the Spacecraft, ca
the noise rise.

40
W booster amplifier also contribut



lbe 1= tlI g l I 1
l 'eather CO it

The site w
€ w o 4N . .
eather condition was in general humid. The situation could
occur at

other sites also, which i '
tes also, which incorporate similar configurations.

°* Th . :
e alternate setup involved interface at [F (70 MHz) between the Indoor and the

0 Fodly, coctole B :
utdoor Unit with inherent filtering of center frequency +18 MHz. This type of

contio > , 4 5
figuration would not generate wideband noise.

6.5.5 Simulation Tests at MCF

The wi .
ide band noise generating mechanism observed during the reported anomaly
tion of the ground at the ORU-end, causing

was 3
found to be an improper connec
e SSPA. It was therefore important to

interm; :
rmittent ground and resultant noise by th
the noise generation. This test

Sim S .
ulate this situation and validate the possibility of
Was carrj : ; : :

carried out at MCF to simulate and validate the noise generating mechanism
s as illustrated in Fig. 6.5.14.

ow]
ing to the bad grounding. The setup Wa
ing at the SSPA input end. (Fig.

The na;
noise plots were taken with improper ground

ns during these tests are:

6.5 i
15 and 6.5.16). The observatio
th input drive Jevels up to 6 dB back-off

The SSPA performance was nominal wi

(3 dB Output Back Off), with or without proper grounding at the connector.

ear saturation with an

d the SSPA driven to
bserved along

* A
S the drive levels were increased an
eband noise floor was O

Improper grounding at the connector, Wid

wi .
ith the signal at the output.
evels were increased.

wider, as the drive |

Q
The bandwidth of the noise floor gets
ends on how bad is the connection.

The leye] of the noise floor deP
wide band amplifier with

ncluded that a

it was €O
ector, while operating near saturation
3

i M the above observations,
m )
Proper/broken ground at the input cont

rated wideband noise at its output.



6.5.6 Conclusions

l. A wideband noise floor rise, spanning the whole of the Extended C-band, causing

degradation/disruption in services in the Extended C-band transponders of the

satellite was observed during the last week of June 2003. The problem was

resolved through coordinated tests and simulations.

a VSAT operating on Transponder

2. . , _ .
The cause of the wideband noise floor rise was
ng to the broken /

#30, and pumping wide band noise 0nto the satellite owi

Intermittent ground at the input of the transmitter.

oenerate and pump wideband noise spanning
o

ft degrading/disrupting service
sm is intimately related to the
tegrity of the Inter-facility

3. A single VSAT terminal could
s in the whole

multiple transponders in the spacecra

of the band. The noise generating mechanl

site-specific conditions like equipment configuration, 1l

link, equipment rating, and local weather.
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6.6 C
ase Study-5: estioati F &
v-5: Investigation of interference of FM radio and VHF sig l
nals

through VSA-
gh VSAT terminals into INSAT satellites

6.
6.1 Introduction

In this
estigation of FM radio and VHF transmitter interference into INSAT-

3B and [N
INSAT-3C
NSAT-3C Spacecrafts was carried out.
VSAT
0 TN
perators in INSAT 3C (extended-C Band) experienced the interference in

Detailed testing/analysis of the

thejr
com : :
Mmunication traffic during July 2002.

interf;
erenCe T .
was carried out In co-ordination NOCC.

6.6.2
<« F) 5
I Radio interference in INSAT satellites

6.6.2 1IN
INSAT-3C Case
INSAT-3C. The

rence signals

(A)
B .

M Radio interference was 005
ils of the interfe

Meag
ured :
spectrum is given in Fig. 6.6.1, and the

\Vere
an
alysed for their content.
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By d
Y demodulati
_ ion and heari
originating from tl sacing (e Andi; it was observed that th
g the three F : at the interf
ee FM radio broadcasts from Mumbai. T S e
i. Table-6.6.1 gi
.6.1 gives test

results fi
or the obs
served interfe
erference components, as well as the translated fi
ated frequenc
y

of th '
€ culprit Radio Stations

Table-6.6
6.1: INSA =
g T 3C Transponder interference from FM Radio si
'No FM ) FM radio | Center ° S'g'fals J
‘ Station rf'ammittcr | Frequency " Occupied N J " |
. : Frequency | . at D/L Bandwidth (dB'H‘;) EIPaCC Craft |
| Radio i interference - i RP (dBW) |
i | Middav 1925 | | |
—] 1 92.5 MHz | 4612.5 MHz ! | : ==
| ‘ - 2.5 MHz 2 5
[ Radi | | ;-OOKHZ §:4dBHz -28dBW
! | Today i 935 | j |
— 3.5 MHz 5 |
i {Hz 4613.5 MHz | 200KHz |66 dBHz nggdBw
E | Radio : :
Mi . ‘
&m | 94.6MHz | 46146 MHz 00 KHz
(B) |
. Fig. 6.6.2 shows the fi
e frequency response of an up—com‘erter. The up—converter’s
frequency

i practicc it accepts
). This bandwidth is m
e band TWTAs arc
k-up FM Radio

ore

om 20
MHz to 125 MHz (total 105 Mz bandwidth

tha
N 25 ¢
-2 tim .
es the bandwidth of 2 81Ver tra

Mon]
yu

sed as an output stage ofa VSAT termin
transmits t0 the sa

nsponder. wid
als, which cal pic
rellite. This plot also depicts
ink frequencies and the
ge of 10 MHz to 130

ng in Transponder

Slo
Snals
plify the interference, and re

F bg
n
d of frequencies, transponder upli

g signals 10 the ran

Chy
inels af
fected due to the possible interferin
SAT operati

My
z. Hep
ce, the FM Radio pick-UpP could be by 2 i

#26,
e studied OVer a long

f the interferi

obstructio

ference ©
th VariatiOﬂ 0
Cather COﬂditi

(C)
The l
e o :
vel variations of the inter
ng signals over a

tim
€. Fj
12. 6
Perigg od 6.3 shows the signal streng
ti :
me, due to various reasons like

l‘adi
0 trg
n .
smitters and VSAT terminal, de

N on, n between FM

gree 0

Sig
Hatu
res .
analysed in the yariation of s1g11
a cornmorl
o ioql for all the signals o

yer @

the :
€
lntErf
Cre . § .
te nce is taking place in
he Variati()ﬂ

inalg g
for individual signals- It !
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period of time, then the re-transmission is taking place by a common VSAT terminal

1 . - - x . - . ino.
and if the variation in each signal is not identical then the re-transmission is taking
Place by separate VSAT terminals for individual signals.

. 1 conducted by
Detailed analysis of the problem was carried out. The coordinated tests

i i Ited in
the teams of Eneineers at MCF, NOCC, AIR and the FM radio stations resu

idemif_\'ing the VSAT which was picking up the interference.
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6.6.2.2 INSAT- 3B Case

(A) In
te!’f’ SR . s
erence from FM radio signals was observed in Transponder #12 of
20

INSAT-3B.
The spectrum plot of the downlink of Transponder

6.6.4. All

tl

1e interfering components Were analysed with small value of span in
6.6.5 and

#12 is given in Fig.

SpeCtI‘Um
ana
66 lyser, and their content identified by envelope detection. Fig.
0. gl\.e th“ . i}
e detailed spectrum plot for two of these components, and all components

are listed in Table-6.6.2.

T I
T -
___é_r_ able-6.6.2: FM / VHF Transmitters interfered in INSAT 3B Transponder
. C .
No. Ff:”mer L Frequencx of Type of carrier Occupied
*r-—-._____ equency interfering signal /"i//__ Bandwidth
17 ] |
o 08.8 MHz 88.8 MHz Mobile radio telephony 700 KHz
<~ a7 2 - . |
J = 3 4_-_____——-'—-_-_
4 .
— 710 MHz 90 MHz Popeals, ey I
= el .
5 371 1.73 MHz | 91.73 MHz IDR 5%
| *71L.799 MHz |91.799 MHz V __13_K_H—Z-——-
i i . .
] 5 | Affecting the
47 FM Bangalore usable BW
. 213MHz | 101.3 MHz ’liljllilf/"' Frequency.
N [ e Affecting the
. 1729 FM like carriers usable BW
| <2.9 MHz 102.9 MHz (\{oblle radio telephODY) Frequency-
e e
8 4748 FM like analog modulated 200 KHz
[ |VSIMEz 582 MHz M//
T D r— I d carrier 40 KHz
—~—] 4750 MHz 90 MHz Analog M modulate c
i R MO

rence

(B)

) were

Observations and Analysis of Interfe
iJe radio telephone

bly fro
s operating in the

My
ti
Ple FM carriers and VHF carriers (proba
he VSAT terrnlnal

of t
: . Bangalore.

tran
Smitted 1o [NSAT — 3B by °°

fang
Ponder #11 with a frequency 6915 MHz /
e was carefully analysed.

Teg
re ¢ d the 111 int€
oordinated by NOCC an 1 the conce orned VS AT Operator.

€p
I'()b
lem was solved in CO- ord1nat10n wi
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Chapter-7

of the thesis and further work
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