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Abstract

Communicable diseases have been prevalent and affecting the health of pop-

ulations since very early times and remain to be a matter of global concerns.

Communicable diseases and associated outbreaks deeply affect the mortality and

morbidity rate and are responsible for billions of deaths across the globe every

years. The most common diseases caused by infectious agents are diarrhea, AIDS,

TB, Influenza and malaria. These diseases have very high mortality rate and prop-

agate due to poor sanitation, lack of awareness, dearth of treatment and paucity of

medical resources. These aspects are a matter of serious concern among the health

care providers and public health professionals. It is important to take the issue for-

ward and take the initiative to repress the pandemic by using multiple approaches.

This has led to development of numerous mathematical epidemic models to un-

derstand the dynamics of viral infection at population level as well as at cellular

level.

This thesis aims at understanding the dynamics of transmission of commu-

nicable diseases at two different levels (i) population level i.e. the transmission

of infection among individuals, and (ii) the transmission of infection among cells

within an individual at cellular level. The former is associated with epidemiology

whereas the later includes the study of virus dynamics models. During the onset

and spread of an epidemic, the rate of transmission of infection among individuals

plays a significant role. In an epidemic model the rate of transmission of infection is

defined as the number of individuals getting infected per unit time and is known as

the incidence rate. In classical epidemic models, the incidence rate has been taken

as law of mass action i.e. bilinear incidence rate which is directly proportional to

product of the number of susceptible and the number of infected individuals. In

case of an epidemic with large number of infection, use of bilinear incidence rate

is not suitable to address the same. The nonlinear incidence rate gives a better

insight of infection in case of large number of infectives due to its saturated nature.

Epidemic model analysis is a primary tool which helps in eradicating the per-

vasive infection among the populations. Many researchers incorporated treatment

rate either as a constant or as a linear function. In our thesis, it has been found

that a saturated treatment gives a better alternative due to its saturated behavior.

It is a well known fact that infection in the community can not be controlled com-
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pletely by treatments only due to limited availability of medical resources. The

dissemination of awareness about prevention, spread and treatment modalities of

infectious diseases through public/social media and health care workers is also an

important tool to control and restrain further infection.

Further, in virus dynamics models, the pathogen-immune interaction has been

modeled, analyzed and interpreted to understand the dynamics of infection at

cellular level. Immune response plays a key role in prevention and reduction of

infection. This study is further supplemented by the use of suitable drug therapy

to eliminate the infection from the body.

Acknowledging the above assertions, we have proposed and analyzed some epi-

demic models incorporating all the aforesaid epidemic tools and interventions to

control the spread of infection. This thesis is comprised of deterministic epidemic

models which are analyzed at population level (population dynamics) as well as

cellular level (virus dynamics). Our goal here is to study the analytical behavior

(stability analysis) of these models and provide an intricate details of infections

with the help of numerical simulations.

In this thesis, we investigated the dynamics of some epidemiological models

both at population level and cellular level. This thesis is organized as follows:

Chapter 1 of the thesis provides a brief introduction about the problem. It

addresses three main important questions (i) Why, (ii) What and finally (iii) How

of the thesis. Introduction comprises of background of the problem, objective

of the thesis, a brief history of mathematical models and the terminology used

throughout thesis followed by mathematical tools to analyze analytical behavior of

mathematical models. We have also provided some biological definitions and basic

terms used in epidemiology, which are required for the forthcoming chapters.

Chapter 2 of the thesis is devoted to understand the dynamics of susceptible-

infected-recovered (SIR) epidemic model incorporating nonlinear transmission rate

and nonlinear treatment rate. The global dynamics of an SIR model is inves-

tigated in which the incidence rate is being considered as Beddington-DeAngelis

type and the treatment rate as Holling type II (saturated). Analytical study of this

model shows that the model has two equilibrium points (disease-free equilibrium

(DFE) and endemic equilibrium (EE)). The disease-free equilibrium (DFE) is lo-

cally asymptotically stable when the reproduction number (R0) is less than unity.

The uniform persistence of the model has been shown under certain conditions.

This implies that infection will persist in an endemic zone and will not lead to



xi

its eradication if it is present initially. Some conditions on the model parameters

are obtained to show the existence as well as nonexistence of limit cycle. Some

sufficient conditions for global stability of the endemic equilibrium using Lyapunov

function are obtained. The existence of Hopf bifurcation of model is investigated

by using Andronov-Hopf bifurcation theorem. Furthermore, Numerical simulations

are performed to exemplify the analytical studies.

Chapter 3 is a modified version of Chapter 2. We propose a mathematical

model with different nonlinear incidence and treatment rates to study the dynam-

ics of an SIR model. The nonlinear incidence rate is assumed as Crowley-Martin

type and nonlinear treatment rate as Holling type III (saturated treatment func-

tion). The global stability analysis of disease-free equilibrium point and endemic

equilibrium point has been investigated using Lasalle’s invariance principle and

Lyapunov function. A threshold value has been found to ensure either the elimi-

nation or persistence of infection. Uniform permanence of the model has also been

examined. The nonexistence of periodic solutions has been shown using Dulac’s

criterion. This ensures non-reoccurrence of infection in future under the mentioned

condition. Numerical simulations are performed to illustrate analytical findings.

Through simulations, it is observed that the number of infected individuals can be

decreased faster in case of Holling type III treatment rate in comparison to that of

Holling type II treatment rate (from Chapter 2). When there is low availability of

treatment, infection is high. When the ample quantity of treatment is available in

the community the infection almost dies out. Infection increases with the increase

in limitation to the availability of treatment.

In Chapter 4, we considered an SIR epidemic model involving the behavioral

changes among the population. The impact of awareness programs as well as

treatment on an SIR model has been investigated. We assume that the whole

population is divided into four compartments, named as susceptible (S), infected

(I), aware susceptible (Sa) and recovered (R). Analytical findings and numerical

simulations of the model show that if the exposure to the awareness program is high

and adequate treatment is available, then the infection can be eradicated from the

population. Analysis of the model also depicts that if treatment is not available,

then infection is high even if enough awareness is present. But in the absence

of awareness an infection can not be eliminated inspite of adequate treatment.

Effective treatment can led to a diminished level of infection. Further, numerical

simulations are carried out to illustrate the analytical results.
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Chapter 5 is devoted to the study of a virus dynamics model at cellular level.

Virus dynamics models are an important source of information for research in

emerging diseases like SARS, Ebola, Influenza, HIV/AIDS, hepatitis B & C etc.

In this chapter, we studied the role of immune response and therapeutic drug

to understand the dynamics of uninfected cells, infected cells and free viruses. A

threshold value of basic reproduction number of infection in the presence of immune

response (RI) is established. Further, the global stability of virus-free equilibrium

and interior equilibrium is discussed analytically using LaSalle’s principle and Lya-

punov’s Direct method. The global stability of virus-free equilibrium ensures the

clearance of virus from the body which is independent of initial status of sub-

populations. Central manifold theory is used to study the dynamics of equilibrium

points when the basic reproductive number in the presence of immune response

is one i.e. RI = 1. It is observed that the virus-free equilibrium loses its stability

from the stable state to unstable state.

A special case, when the immune response is not present, has also been studied.

We found that basic reproductive number in the absence of immune response R0

is greater than basic reproductive number in the presence of immune response RI

i.e. R0 > RI . This implies that in the presence of immune response the number

of secondary infections will be less. It suggests that infection may be eradicated

if RI < 1. It is observed that the number of secondary infections decreases with

the enhancement of immune response and drug efficacy. This shows that RI may

be made less than one by increasing drug efficacy and improving the immune

conditions. Thus, increase in treatment is effective in controlling the number of

infected cells and free viruses. In addition, action of immune response also reduces

the virus load. Numerical simulations are performed to illustrate the analytical

results using MatLab and Mathematica.

In Chapter 6, we studied pathogen-immune interaction considering four dif-

ferent models incorporating biological features (absorption of pathogens and ther-

apeutic drug) step by step. Many common and emergent infectious diseases like

Influenza, SARS, Hepatitis etc. are caused by viral pathogens. These can be

controlled or prevented by understanding the dynamics of pathogen-immune in-

teraction in vivo. In this chapter, interaction of pathogens with uninfected and

infected cells in the presence or absence of immune response are considered in four

different cases. In the first case, the model considers saturated nonlinear infection

rate and linear cure rate without absorption of pathogens and without immune
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responses. The next model considers the effect of absorption of pathogens into

uninfected cells while all other terms are same as in the first case. The third model

incorporates innate immune response, humoral immune response and Cytotoxic T

lymphocytes (CTL) mediated immune response with cure rate and without ab-

sorption of pathogens into uninfected cells. The last model is an extension of the

third model in which the effect of absorption of pathogens into uninfected cells has

been considered. Positivity and boundedness of the solutions are established to

ensure the well-posedness of the problem.

It has been found that all the four models have two equilibria, namely, pathogen-

free equilibrium and pathogen-present equilibrium. In each case, stability analysis

of each equilibrium point is investigated. Pathogen-free equilibrium is globally

asymptotically stable when basic reproduction number is less or equal to unity.

This implies that control or prevention of infection is independent of initial con-

centrations of uninfected cells, infected cells, pathogens and immune responses in

the body. The proposed models show that introduction of immune response and

cure rate strongly affects the stability behavior of the system. Further, on comput-

ing basic reproduction number, it has been found to be minimum for the fourth

model vis-a-vis other models. The analytical findings of each model have been

exemplified by numerical simulations.

Chapter 7 deals with the dynamics of HIV infection, which is the most catas-

trophic one among newly emerging infections. The emphasis has been given to

antiretroviral therapy and combination of such therapy during primary HIV infec-

tion. In order to get better insights of dynamics of HIV infection, a virus dynam-

ics model incorporating combination of therapy (reverse transcriptase inhibitors

(RTIs) and protease inhibitors (PIs)) has been investigated. RTIs prevent viral

integration within the genome of the infected CD4+ T cells. PIs defend against

the virus by blocking the synthesis of new virus. This further prevents propagation

of virus to other cells. Both of the drugs inhibit different steps of the viruses life

cycle. They ultimately inhibit its proliferation thus drastically reduce the infection

in the individual. The proliferation of uninfected CD4+ T cells has been assumed

to be as full logistic growth term.

The model has also considered two important component of immune response,

namely the CTL and antibody. We found the critical efficacy of the combination of

therapy as a threshold for the existence of virus-free equilibrium and immune-free

equilibrium. In a real world scenario, CD4+ T cells count is used to assess the
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clinical state of an HIV patient. So we have used cell count of uninfected CD4+

T cells as measure of critical value for the existence of equilibrium points. It is

observed during the study of this chapter that antibody immune response helps in

reducing the viral load and further clearing the infection. It is also observed that

the combination of therapy reduces viral load and enhances the lifespan of HIV

infected patients. Numerical simulations are performed to illustrate the analytical

results.

Finally, the main findings of the thesis are summarized in concluding remarks

section. The future scope of the thesis is also outlined in this section. References

are provided in bibliography section.
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Chapter 1

Introduction

I simply wish that, in a matter

which so closely concerns the

wellbeing of the human race, no

problem shall be made without all

the knowledge which a little

analysis and calculation provide.

Daniel Bernoulli 1760

1.1 Background of the Problem

Communicable diseases have been a cause of global concern throughout the history

of mankind. Its outbreak severely affects the morbidity and the mortality rates

across the globe. World Health Organization (WHO, 2008) has revealed that ap-

proximately twenty percent of global deaths happened due to infectious diseases.

There are several causes of these deaths like the lack of prophylactic interven-

tions, lack of trained medicinal personnel and hospitals, inappropriate treatment,

limited resources and insufficient health awareness. Lower respiratory infections,

Diarrhoeal diseases, HIV/AIDS and Tuberculosis were among the most pervasive

infectious diseases which caused myriad of deaths (WHO, 2008).
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Last few decades have seen an emergence of new infectious diseases such as Ac-

quired Immunodeficiency Syndrome (AIDS), Severe Acute Respiratory Syndrome

(SARS), Ebola, etc. Furthermore, the major outbreak of AIDS has led to the

re-emergence in the incidence of infectious diseases (e.g tuberculosis and Candida

Albicals infection in AIDS patients) which had been earlier brought into control by

vaccination and effective medication. Most of these diseases have reoccurred due to

the weakened immune response caused by the HIV virus in AIDS patient. There-

fore, it has become the immediate concern of all countries to bolster the global

initiative to combat HIV and other infectious diseases. It was earlier thought that

most infectious diseases could be eradicated with the help of vaccines, antibiotics,

medicare and proper sanitation. But infectious diseases remain a perennial prob-

lem and a major cause of concern. The sustenance is due to many causes such

as resistance to antibodies, lack of hygiene, insufficient healthcare, natural calami-

ties and continuous evolution of pathogens in a changing environment. There is a

continuous competitive interaction between the immune system and the pathogen

present in the environment (Dubey and Mittal, 2013).

WHO statistics on infectious diseases shows that it is essential to control the

spread of infections through public health policies. It is very important to either

prevent or cure them through active interventions. It is also reported by WHO

that emerging infectious diseases mostly affected the developing countries zones as

shown in figure 1.1.

These very important issues related to health in general and infectious diseases

in particular have led to the development of mathematical modeling to make fu-

ture predictions on the outbreak and further propagation of epidemics. It is well

understood that the mathematical models would be helpful in making health deci-

sions which are more cost effective and accurate in comparison to the experimental

studies. It is not possible to conduct direct experiments in all situations, actually

real data pertaining to epidemics are available only after the event. Furthermore

conducting corresponding experiments has various practical limitations of dealing

with complicated and expensive experiments which may take a very long time.
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Figure 1.1: Percentage of deaths from infectious diseases among countries, (source:
WHO (2008)).

Mathematical models are capable to capture both qualitative and quantitative

aspects of complex systems. Mathematical models are very effective tool to un-

derstand dynamics of the transmission of infection in vitro and in vivo. Many

researchers have developed mathematical models in epidemiology to facilitate the

formation of public health policies (Bailey, 1975; Brauer and Castillo-Chavez, 2001;

Heesterbeek, 2000; Anderson et al., 1992; Hethcote, 2000; Kermack and McK-

endrick, 1927; Capasso and Serio, 1978; Castillo-Chavez and Song, 2004). The

basic tenet of these mathematical models was to investigate the underlying fac-

tors causing the disease, its progression and to predict the future course of action.

Thus information can be used to effectively deal with diseases by using appropriate

preventive and treatment measures.

1.2 Objective of the Thesis

Considering the above aspects in view, we have proposed and analyzed some epi-

demiological models which comprises of both population dynamics and virus dy-
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namics (at a cellular level). The population dynamics models investigated in this

thesis are motivated from the basic susceptible-infected-recovered (SIR) model (in-

troduced by Kermack and McKendrick (1927)). The mathematical models studied

at cellular level are motivated from the basic virus dynamics model (Nowak and

Bangham, 1996). The main focus of modeling is to involve biological features like

appropriate transmission, treatment, immune responses and social awareness in

order to reduce the mortality and morbidity of the population. Some important

objectives to develop epidemic models which are addressed in this thesis are:

• Nonlinearity of incidence and treatment rates to understand the dynamics of

infection and to provide the important modalities in controlling the disease

transmission.

• Stability analysis (local and global) of the epidemic models in order to de-

termine the behavior of outbreak subjected to large perturbations.

• Role of pharmaceutical interventions (treatment) and non-pharmaceutical

interventions (social/public media awareness) on an SIR model.

• Effect of therapeutic drug applied to both (infected cells and virus) in pres-

ence of immune response on a virus dynamics model.

• Effect of non-cytolytic cure and absorption of pathogens in pathogen-immune

interaction models.

• Effect of RTI and PI in presence of acquired immune response to understand

the dynamics of HIV infection.

• To visualize the analytical findings through computer simulations using Mat-

lab 7.10 and Mathematica 7.

The basic definitions of epidemiology and mathematical tools required to analyze

the epidemic mathematical models are discussed in the following section.
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1.3 What is Epidemiology?

As a matter of fact, all

epidemiology, concerned as it is

with the variation of disease from

time to time or from place to

place, must be considered

mathematically, however many

variables as implicated, if it is to

be considered scientifically at all.

Sir Ronald Ross, MD

Epidemiology is the study of occurrence, transmission and control of diseases in

a population. It identifies risk factors, evaluates treatment modalities and health

services, provides opportunities for prevention, treatment, planing and improving

the effectiveness and efficiency of health services. The ultimate aim of any epi-

demiological study is to eliminate or reduce health problems thereby promoting

the health and well being of the society as a whole. The scope of epidemiology is

enormously vast and includes aspects such as the measurement of (i) Birth rate

(natality), (ii) Death rate (mortality), (iii) Morbidity or disability, (iv) Prevalence,

(v) Distribution of disease, (vi) Medical needs and health care facilities, (vii) Uti-

lization of health services and other health related events, (viii) Role of social media

in increasing public awareness, (ix) Demographical variables are all included within

the bounds of epidemiology. Epidemiological studies are useful for the following

reasons:

• It provides relevant information on the rise and fall of disease in a given

population.

• Facilitates diagnosis of disease at a community level.

• Promotes planing and evaluation of health care facilities and programs.

• Risk assessment of individual.
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• Identification of new diseases and syndromes.

• Elucidate natural course of disease.

• Helps in the search of cause and risk factors for a disease.

Epidemiology provides a framework to endure the basic tenet of addressing the

determinants of infectious diseases and its distribution in specified population and

helps in the control of health related problems. The important factors relevant for

communicable diseases are mainly the infecting agent, host and the environment.

The interaction of all these processes are important in determining the initiation

and progression of a disease and can be understand from figure 1.2.

Figure 1.2: Epidemiologic concept of disease causation, (source: Park (2013)).

Epidemiology also provides tools to study and control the outbreaks of diseases

such as Ebola virus, Human immunodeficiency virus (HIV) through mathematical

models. Communicable diseases infect the population (man or animal) through

person to person contact or through environmental factors such as dust particles,

water, food, soil, and air. The infecting pathogens may be of various types like bac-

teria, viruses, parasites, protozoa, prions etc. The probability of infection increases
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because of overcrowding, unhealthy living conditions, paucity of safe drinking wa-

ter, climate change, natural calamities etc.

Communicable diseases are transmitted from the source of infection to a sus-

ceptible host. The mode of transmission may either be direct or indirect. Various

forms of direct transmission include direct contact, droplet infection, contact with

soil, inoculation into skin or transplacental from mother to neonate. The mode

of transmission of indirect contact include the traditional 5 F’s - Flies, fingers,

fomites, food and fluid. The essential requirement of indirect transmission is that

the infectious organism should be capable of surviving outside the human host in

an external environment and retain its pathogenesis.

Populations have been suffering from infectious diseases all over the world. It

is very necessary to analyze the dynamics of disease progression to control or to

eradicate a disease. The dynamics of infectious diseases has been investigated

using mathematical models at both population level (Beretta and Takeuchi, 1997;

Shulgin et al., 1998; Li et al., 1999; Brauer and Castillo-Chavez, 2001; d’Onofrio,

2005; Zaman et al., 2008) and cellular level or virus dynamics models (Herz et al.,

1996; Bonhoeffer et al., 1997; Perelson and Nelson, 1999; Nowak and May, 2000;

Perelson, 2002; Zhu and Zou, 2009). Mathematical models can be categorized

into two types depending on the technical approach applied; deterministic and

stochastic models.

Deterministic model : It is a model in which every set of variable states is

uniquely determined by parameters in the model and by sets of previous states of

these variables; therefore, a deterministic model always performs the same way for

a given set of initial conditions.

Stochastic model : It is a model in which randomness is present, and variable

states are not described by unique values, but rather by probability distributions.

Deterministic models provide the same outcome for the same set of parameters

with the same initial conditions. Whereas stochastic models show randomness and

provide different set of outcomes for the same set of parameters with same initial

conditions.
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In the next section we provide brief literature survey of epidemiological models

both at population level and cellular level .

1.4 A Brief Literature Survey of Mathematical

Models

Mathematical model, which describes the dynamics of diseases, has been playing

an important role in better understanding of epidemiological patterns and disease

control for a long time. After a certain density of infected agent, the health equi-

librium or its state of activity is disturbed and the disease becomes overt. Mathe-

matical models are useful in decision making policies for public health. Dynamics

at population level have been analyzed considering the uniform mixing of demo-

graphic population as a whole. The basic mathematical models have been studied

to describe directly transmitted diseases like Influenza flu, Mumps, and Tuberculo-

sis etc. The role of mathematical epidemiology is to model the establishment and

spread of disease under a given set of conditions.

Epidemiological models are also known as compartmental models. Since these

models are based on the assumption that the entire host population can be divided

into a number of compartments. The basic compartmental model, Susceptible-

Infected-Recovered (SIR) model (Kermack and McKendrick, 1927), comprises of

three compartments:

• Susceptible individuals, those who are healthy and can contract disease

under appropriate conditions. The size of this class is denoted by S.

• Infected individuals (I), the ones who have contracted the disease and

are now infected with it. These are capable of transferring the disease to

susceptibles via contact. As time progresses, infectious individuals loose the

infectivity, and move to either removed compartment (by death) or recov-

ered compartment (by appropriate treatment or autorecovery by the immune

system).
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• Recovered individuals (R), these recovered individuals are immune to

infectious microbes and thus do not acquire the infection again in case of

permanent immunity.

SIR models can be further categorised depending on the immunity against the

infection; (i) SIS model without immunity against the infection, is the model in

which the recovered individual will get infection again and will become susceptible,

(ii) SIR model with immunity, is the model in which the recovered individual will

not get infection again in future. The dynamics of these models has been inves-

tigated by Hethcote (1976). He has made the following assumptions to study the

epidemic models:

(i) For sufficiently large population, the total size of the population is constant and

therefore the sub-populations have been considered as continuous variable. In case

of vital dynamics, the death and birth rates are assumed to be equal.

(ii) The population is uniform. The interaction of sub-populations assumed to be

homogeneous.

(iii) It is assumed that the infection begins immediately after the infectious indi-

vidual contract to a susceptible host (i.e. latent period is zero.)

Based on the quantitative analysis of the models, he attained the following obser-

vations:

Case (1): SIS model i.e. It is the case of the disease without immunity, the

eradication of the infection is possible if the infectious contact number is less than

or equal to ‘one’ and infection will persist if the said number exceeds one. This is

independent of initial concentration of infectives. This model is useful in eradica-

tion of plague and malaria.

Case (2): SIRS model, It is the case of the disease with temporary immunity,

if the infectious contact number is grater than ‘one’ then the infection will persists

in the endemic zone for longer time otherwise the infected population approaches

to zero until the total population becomes susceptible. This model is suitable for

smallpox, cholera, typhoid fever, tetanus and influenza. He has further involved

several biological features (disease fatalities, carriers, migration, transmission by

vectors) in his SIR models to understand the asymptotic behavior of endemic equi-



10 Chapter 1. Introduction

librium points. He has involved the biological features in the models step by step

to get a better insight of dynamics of infections.

In last few decades, classical epidemiological models with add-on of certain new

factors such as different nonlinear transmission rate, treatment plans, quarantine,

vaccination, awareness programs through media as well as health care workers etc.

have been investigated (Shulgin et al., 1998; Wang and Ruan, 2004; Hu et al., 2008;

Zhonghua and Yaohong, 2010; Li et al., 2009; Funk et al., 2009; Laskowski et al.,

2015; Alexander and Moghadas, 2004). As these factors are related to reduction

in transmission of infection and eventually lead to elimination of infection.

Alexander and Moghadas (2004) developed a mathematical model introducing

generalized incidence rate to study the transmission dynamics of infectious diseases.

The nonlinearity of the incidence rate establishes rich dynamics of the infection and

describe the behavioral changes. They have described their model with examples

using two different nonlinear incidence rates. Analysis of the model observed two

important factors:

(i) Bistability is the existence of multiple equilibria in case of R0 < 1. It suggests

that the model exhibits backward bifurcation. This also confirms that controlling

the spread of infection may not be possible by reducing R0 to values less than

unity. They have cited a study of measles during an epidemic in Poland. This

study shows that there were 2255 reported cases in between November 1997 and

July 1998, irrespective of high vaccination coverage (95%) (Janaszek et al., 2003).

(ii) Periodicity, the model exhibits Hopf bifurcation under given conditions and

limit cycles exist. The periodic behavior has also been observed in case of studies

on the dynamics of some infectious diseases such as measles, whooping cough,

rubella, etc. (Earn et al., 2000; Keeling et al., 2001; Lin et al., 1999). They

have suggested that the application of the model using the realistic data for the

infections on which the model is based on, can be used to make future predictions.

Consideration of the treatment modalities in mathematical modeling has been

an important step to describe the real situations during an epidemic. Wang and

Ruan (2004) analyzed an SIR epidemic model with bilinear incidence rate and

constant treatment rate of infectious individuals to understand the effect of the



1.4. A Brief Literature Survey of Mathematical Models 11

treatment capacity on disease transmission. Here the treatment rate is taken to

be dependent on the capacity of treatment of infected individuals. The optimal

capacity of treatment is determined depending on their outcomes. They observed

that the inclusion of constant treatment rate exhibits periodic oscillations in dis-

eases while the model without the treatment is globally stable. They have shown

that the model is more realistic and useful since the ultimate behavior of the equi-

libria depends on the initial positions. This model is suitable for measles, AIDS,

flu, etc. The quantitative analysis carried out can be adapted to an SI model,

which is useful for sexually transmitted diseases or bacterial infections. The SIR

models involving the treatment of infectives are numerous in the literature (Cai

et al., 2009; Cui, Mu and Wan, 2008; Hu et al., 2008).

Further, Zhonghua and Yaohong (2010) modified the model of Wang and Ruan

(2004) to incorporate the saturated treatment rate in place of constant treatment

rate along with the eternal immunity. They argued that this treatment rate is a

better alternative for new emerging diseases such as SARS. On the onset of an

outbreak, the treatment will be less and this will increase with the improvement

in hospital’s condition, supply of drugs etc. and approaches to maximum capacity

with limited resources available in the community. Here coexistence of disease free

equilibrium and endemic equilibrium has been shown. This suggests that not only

the reduction of threshold value (R0) to the values less than unity is always effective

to control the spread of disease but also there is a need to eliminate such diseases,

to restrict the initial value of each sub-population to the domain of attraction

of the disease free equilibrium. They have shown that the model exhibits Hopf

bifurcation.

In above discussed models, nonlinearity of the incidence rate and treatment

was the major factor to control the epidemic. Authors have emphasized that apart

from incidence rate, public awareness about the preventive and treatment is also an

important tool to reduce the occurrence of infection. Nevertheless, the awareness

programs driven by media is very much needed in case of such infections like AIDS

for which no treatment is available. Funk et al. (2009) studied a model to get

insight of impacts of dissemination of awareness on the spread of an epidemic. The
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first mode of information dissemination is word of mouth, person to person. They

observed that awareness may slower the incidence of epidemic or may control an

infection to become epidemic in case of small number of infections. But in case

of large number of infection awareness can slowdown the incidence but can not

eradicate the infection. It is also supported by recent reports of National AIDS

Control Organization (NACO, 2015) that there has been significant decline in HIV

prevalence among female sex workers at national level (5.06% in 2007 to 2.67% in

2011) and in most of the states where long standing targeted interventions have

focused on behavioral change and increased use of condom.

1.4.1 Models in Virus Dynamics

Virus dynamics is the study of dynamics of infection at cellular level. Unlike

the study of spread of infection at population level, virus dynamics models study

the progression of viral infection within the host organism. Some basic models

of virus dynamics are discussed ahead to get the better insight of viral infections

like HIV/AIDS, HBV, Ebola, SARS etc. Basic models of virus dynamics was

introduced by Nowak and Bangham (1996) and Bonhoeffer et al. (1997). A very

simple model of virus dynamics can be read as
ẋ = λ− δ0x− αxv,

ẏ = αxv − δ1y,

v̇ = ky − k0v.

In the above model, x(t) is the number of uninfected cells, y(t) the number of

infected cells and v(t) the number of free virus at any time t ≥ 0. λ is the constant

growth rate of uninfected cells and δ0 is its death rate. When free virus interacts

with uninfected cells, it produces infected cells at the rate of α. δ1 is the natural

death rate of infected cells. Virus is produced at the rate k by infected cells and

k0 is the natural clearance rate of virus. In this model they have studied the

dynamics of the above system and tried to get the answer of an awaited question,

“ Whether or not the virus can grow and establish an infection that depends on the

basic reproductive ratio (R0) of the infection” (Nowak and May, 2000). Further,
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this model has been extended by several researchers (Wodarz and Nowak, 2000;

Rosenberg et al., 2000; Smith and De Leenheer, 2003; Dubey et al., 2011; ?; Zhuo,

2012; Kirschner, 1996) to introduce other biological features like immune response,

antiretroviral therapy, therapeutic drugs etc.

Nowak and Bangham (1996) proposed a mathematical model to study the dy-

namics of immune response of the host to an infectious agent. This model is just

the extension of the above basic virus dynamics model and is given by the following

differential equations: 

ẋ = λ− δ0x− αxv,

ẏ = αxv − δ1y − pyz,

v̇ = ky − k0v,

ż = cyz − bz.

Here z(t) is the density of CTL mediated immune response. This immune response

proliferates in presence of virus with the rate c and decays at the rate b. The

parameter p is the rate at which CTLs kill infected cells. The interaction between

infected cells and CTL responses has been explored. Nevertheless, the results are

also applicable for antibody or cytokine-mediated immune response. The findings

has been applied to real data on CTL responses and viral diversity in infections

with the human T cell leukemia virus (HTLV-1) and HIV-1. It has been shown

that the viral load is high in the patients with weak immune response while this

reduces to a low level in patients with strong immune response.

Perelson and Nelson (1999) studied a few models to understand the dynamics

of HIV primary infection in vivo. They considered the single ordinary differential

equation model which consists of virus compartment only. They applied clinical

data to this model and analyzed production and clearance of HIV in an infected

person. Furthermore, they considered the interaction between uninfected CD4+

T cells, productively infected cells and virus. In this model, the proliferation of T

cells has been considered by logistic growth function and the infection rate is as-

sumed to be “mass-action” since the concentration of HIV virus never gets high in

comparison to the number of T cells. They suggested that the equilibrium can dif-

fer from one patient to the another, depending upon the parameters characteristic
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of the virus and host. Further, they incorporated the combination of drug therapy

into their model to reduce the concentration of virus in the body of infected per-

son. Reverse Transcriptase Inhibitor (RTI) blocks viral infection, while Protease

Inhibitor prevents viral replication and blocks the production of infectious virus

particles. They have shown that combination of these therapies helps in reducing

viral load and providing an early treatment to the patients. It is assumed that

there may be other cells susceptible to the HIV virus. One type of these cells is

the macrophage. These macrophages may serve as production factories for the

virus and continue to produce the virus continuously. Another alternative model

was introduced, in the same article, considering latently infected cells (these cells

do not produce virus initially but upon activation they may start producing the

virus). These models provided a better insight of infection biological mechanisms.

The use of combination treatment therapy leads to an important and subtle tool to

reduce the infection. The only main important component, which was not covered

in their models, was immune response.

The viral pathogen models also considers one of important biological feature,

decline in the number of pathogens because of being absorbed into uninfected cells

during infection. This mechanism was used to get a better insight of dynamics

of deadly viruses (Murase et al., 2005; Tian and Xu, 2012; Kajiwara and Sasaki,

2010; Wang et al., 2013). Murase et al. (2005) proposed a mathematical model with

immune response and absorption of pathogens into uninfected cells. They studied

the local stability of equilibria to get an insight of the persistence of infection and

considered different cases in their models. Firstly they considered the basic virus

dynamics model and then in the next model they incorporated immune response

and ignored the effect of absorption. Further, in third case they incorporated the

effect of absorption of pathogens into uninfected cells and found that absorption

of pathogens may disturb the stability of interior equilibrium point.

It was assumed in earlier studies that the viral load can be reduced by killing of

infected cells or destruction of infected cells by either therapeutic drugs or immune

response. However, in recent viral dynamics models, authors (Ciupe et al., 2007;

Zhou et al., 2008; Guidotti et al., 1999) developed an innovative approach to cure
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the infected cells without destruction of infected cells i.e. using non-cytolytic

processes. It is biologically proved that sometimes instead of killing, the infected

cells can be cured or recovered into uninfected cells. Ciupe et al. (2007) have

shown in their model that in case of hepatitis B virus infection the covalently

closed circular (ccc) DNA can be removed from the nucleus of infected cells and in

turn the cell become uninfected cell. The detailed mechanism of the non-cytolytic

process can be explored from (Ciupe et al., 2007; Guidotti et al., 1999) and the

references cited therein. Zhou et al. (2008) introduced an HIV dynamics model in

which they established that the infected cells can be removed by two ways, either

through death (mostly immune-mediated killing) or via cure (loss of cccDNA).

They suggested that inclusion of both cytolytic and non-cytolytic mechanisms

of infected cell loss is more realistic and accurate. The next section provides

definitions of the terminology used throughout the thesis.

1.5 Basic Definition of Terms Involved in this

Thesis

In this section, we will explore the basic biological terminology used throughout

this thesis.

Infectious Disease: It is the illness due to an infectious agent or its product

capable of direct or indirect transmission from man to man or from environment

to man through air, dust, soil, water, food, etc.

Epidemic: It is the “unusual” occurrence in a community or region of a disease

in excess of “expected occurrence”. Often the term “outbreak” is used for a small,

usually localized epidemic in the interest of minimizing public alarm.

Endemic: It refers to the constant presence of a disease or infectious agent

within a given geographic area or population group, without importation from

outside. It is also referred to as the “usual” expected frequency of the disease in

the area/population. Endemic diseases when conditions are favorable burst into

an epidemic.
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Pandemic: It is an epidemic affecting large proportion of the population oc-

curring over a wide geographical area such as a continent, nation or a large part

of it.

Eradication: It is the total elimination of a disease in a given population. It

is an absolute process. Till now only one disease has been eradicated, that is small

pox.

1.5.1 Baseline Transmission Rate or Infection Rate

In epidemiological models, the disease transmission process plays an important

role in determining the incidence rate. The transmission rate is the product of the

rate of contact among individuals and the probability that a susceptible individual

coming in contact with an infectious individual will become infected (Park, 2013).

This is also called bilinear incidence rate αSI. The standard incidence rate αSI/N

has been considered in most of the epidemic models, here S is the density of

susceptible individuals, I the density of infected individuals, N the density of

total population and α the baseline transmission rate. Several other nonlinear

and saturated forms of incidence rate have been proposed by researchers. We will

explore a few of them here.

Holling Type II: This incidence rate is also known as the saturated incidence

rate and was proposed by C. S. Holling (Holling, 1959). The expression is f(S, I) =(
αI

1+βI

)
S, α, β > 0. In Holling type II, for any outbreak of the disease its incidence

is first very low and then grows slowly with increase in infection. Further, when

number of infected individuals is very large, the infection reaches to its maximum

due to crowding effect.

Holling Type III: The expression for Holling type III incidence rate is given

by f(S, I) =
(

αI2

1+βI2

)
S, α, β > 0. Holling type III defines the condition in which

incidence of infection first grows very fast initially with increase in infective and

then it grows slowly and finally settles down to maximum saturated value. After

this any increase in infective will not affect the infection rate.

Beddington-DeAngelis Type: This functional response was introduced by

DeAngelis and Beddingtoan in 1975 (Beddington, 1975; DeAngelis et al., 1975)
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independently and is given by the term

f(S, I) =
αS

1 + βS + γI
.

Here α is the transmission rate, β is a measure of inhibition effect, such as pre-

ventive measure taken by susceptible individuals and γ is a measure of inhibition

effect such as treatment with respect to infectives.

Crowley Martin Type: The Crowley-Martin type of functional response was

introduced by P. H. Crowley and E. K. Martin in 1989 (Crowley and Martin, 1989)

and is denoted by the term

f(S, I) =
αS

(1 + βS)(1 + γI)
,

where α, β, γ are positive constants. From the expression, we observe that similar

to the Beddington-DeAngelis type incidence rate, one can easily derive other forms

of incidence rates. The important difference between the Beddington-DeAngelis

type and the Crowley-Martin type incidence rate is that the latter considers the

effect of inhibition among infectives even in case of high density of susceptible

populations while the former neglects the aforesaid effect. This can be seen as

follows:

Beddington-DeAngelis type incidence rate for S →∞,

lim
S→∞

f(S, I) =
α

β
,

and Crowley-Martin type incidence rate for S →∞,

lim
S→∞

f(S, I) =
α

β(1 + γI)
.

1.5.2 Immune Response

The immune system protects our body from infection by recognizing and respond-

ing to foreign antigens. The immune system is a complex network of various type
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of lymphatic organs and blood cells, their secreted product and the interaction of

above. The immune system is characterized by its ability to differentiate between

self and non self. The inability to differentiate between self and non self leads to

autoimmunity. Rheumatoid arthritis and diabetes mellitus Type I, celiac disease

are some examples of autoimmune diseases.

On the other hand immunodeficiency is the inability to mount an immune re-

sponse against any foreign antigen. Severe combined immunodeficiency syndrome

and AIDs are examples of immunodeficiency diseases. The lymphocytes are white

blood cells which play an important role in immune system. Lymphocytes are

mainly of two types: B cells and T cells, besides this a small fraction of lym-

phocytes comprises of the Natural killer cells that are active against cancers and

virally infected cells.

Innate immune response is inherent which remains unchanged in its ac-

tion and is independent of the type of pathogens. This form of immunity does not

possess immunological memory and therefore does not improve against repeated

exposure to infections. It comprises of physical epithelial barriers macrophages,

phagocytic leukocytes, dendritic cells, the natural killer (NK) cell, circulating

plasma proteins etc. It includes physical defense such as hair in nostrils, cilia

in respiratory tract, enzymes in tears, skin oils, mucus (which traps bacteria and

small particles), stomach acid etc. It gets stimulated when any pathogen invades

the host cell and protect us from infection.

Acquired immune response sets into action after the antigen has breached

the innate or natural defense barrier. It takes about a week or so to develop and

is highly specific in its action. It gets stimulated with the exposure to various

antigens. There are two fundamental types of adaptive immune responses:

(1) Humoral immune response is generated by B-cells which are produced

in the bone marrow. These B cells produce antibodies. Theses antibodies are

specific to the same antigen which elicit its response.

(2) Cell-mediated immune response is mediated by the T lymphocytes.

T lymphocytes are of 2 types: the cytotoxic T cells (CTLs) and the helper T
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Figure 1.3: Components of immune system of the body.

cells (TH cells or the CD4+ cells). Cytotoxic T cells cause lysis of the target cells

whereas helper T cells secrete lymphokines and help in regulating the immune

response (Nowak and May, 2000). Lymphokines stimulation perform wide range

of functions such as cytotoxic T cells and B cells to grow and divide, attract

neutrophils, enhance the ability of macrophages to engross and kill microbes, etc.

The gross schematic diagram of immune system has been shown in figure 1.3.

1.5.3 Threshold to Determine Epidemic: Basic Reproduc-

tion Number

The persistence of infection in mathematical epidemic models depends upon the

threshold. This threshold is known as basic reproduction number and denoted by

R0. It is understood that when R0 is less than one then infection dies out and if

R0 is greater than one then infection will persist and this state is called endemic

state. The basic reproduction number R0 in case of population models is defined

as follows:
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The number of newly infected individuals produced by a single infected individual

when introduced into a completely susceptible population.

Further in case of cellular models of virus dynamics, the basic reproduction

number is defined as

The average number of newly infected cells that arise from a single infected cell

when almost all cells are uninfected or healthy (Nowak and May, 2000).

There are several techniques to compute the basic reproduction number R0

(Diekmann et al., 1990). In this thesis we have applied next generation matrix

method (Van den Driessche and Watmough, 2002) to determine the basic repro-

duction number R0.

Next generation matrix method: We define the next generation matrix as

the square matrix G in which the ijth element of G, gij , is the expected number

of secondary infections of type i caused by a single infected individual of type j,

again assuming that the population of type i is entirely susceptible. That is, each

element of the matrix G is a reproduction number, but one where who infects

whom is accounted for (Jones, 2007). One can easily found the basic reproduction

number R0, once next generation matrix G is determined. Spectral radius of G

gives the basic reproduction number. Spectral radius is also known as the dominant

eigenvalue of G. The next generation matrix has a number of desirable properties

from a mathematical standpoint. In particular, it is a non-negative matrix and, as

such, it is guaranteed that there will be a single, unique eigenvalue which is positive,

real, and strictly greater than all the others. Consider the next generation matrix

G. It is comprised of two parts; F and V −1, where

F =

[
∂Fi(x0)

∂xj

]
,

V =

[
∂Vi(x0)

∂xj

]
,

The Fi are the new infections, while the Vi transfers of infections from one com-

partment to another. x0 is the disease-free equilibrium state. R0 is the dominant

eigenvalue of the matrix G = FV −1.
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1.6 Mathematical Tools used in Analysis of Epi-

demic Models

In the deterministic analysis of evolution and stability of the system described

above, many mathematical approaches have been adopted. We will adopt the

following methods. Let us provide here some basic definitions of methods used.

We consider nonlinear time-invariant system

dx

dt
= f(x), (1.1)

where f ∈ C[Rn, Rn]. Assume that f is smooth enough to ensure the existence and

uniqueness of the solution of (1.1). We assume that f(0) = 0 so that the system

(1.1) admits the zero solution and x = 0 is an equilibrium point of system (1.1).

Definition 1.6.1. (Stability) The equilibrium point x = 0 of (1.1) is locally

stable if, for each time t0, and for every constant R > 0, there exists some

r(R, t0) > 0 such that

‖x(t0)‖ < r ⇒ ‖x(t)‖ < R, ∀t > t0.

The equilibrium point x = 0 is locally stable if any solution initiating in Sr(0) will

always remain in SR(0). The equilibrium is unstable if it is not stable.

Definition 1.6.2. (Asymptotic stability) The equilibrium point x = 0 of (1.1)

is asymptotically stable if; (a) it is stable, and (b) for each time t0 there exists

some r(t0) > 0 such that

‖x(t0)‖ < r ⇒ ‖x(t)‖ → 0 as t→∞.

Thus the equilibrium is asymptotically stable if the trajectories initiating from any

point in Sr(0) remain within the sphere SR(0) and will converge asymptotically to

the equilibrium point (see figure 1.4).
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Figure 1.4: Stability of an equilibrium point.

If the trajectories initiating from any point in a finite region converge to the

equilibrium x = 0, then the equilibrium x = 0 is called globally asymptotically

stable. In fact, if x = 0 is globally asymptotically stable, then the region of

asymptotic stability is the whole space Rn.

Definition 1.6.3. (Invariant Set) A set Ω ∈ Rn is said to be invariant if for

every trajectory x, x(t0) ∈ Ω ⇒ x(t) ∈ Ω ∀t ≥ t0, i.e. if a trajectory starts in Ω,

this stays in Ω for all time t ≥ 0.

Theorem 1.6.4. (LaSalle’s Invariance Principle) Let Ω ⊂ Rn be a compact set

that is positively invariant with respect to (1.1). Let L : Rn → R be a continuously

differentiable function such that L(x) is positive definite and L̇(x) ≤ 0 ∈ Ω. Define

M =
{
x ∈ Ω|L̇(x) = 0

}
.

For t→∞, the trajectory tends to the largest invariant set inside M . In particular,

if M contains no invariant sets other than x = 0, for all t then the origin is globally

asymptotically stable (Khalil, 2002; LaSalle, 1976).

(For further details on stability theory we refer to LaSalle and Lefschetz (1961);

Perko (2013); Guckenheimer and Holmes (1983); LaSalle (1976))
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1.6.1 Eigenvalue Method

The conclusion, regarding asymptotic stability of the systems very much lie in the

eigenvalues of the variational matrix, a Jacobian matrix of first order derivatives

of interaction functions. As this Jacobian is determined by Taylor expansion of

the interaction function and neglecting nonlinear higher order terms, this method

studies only the local stability of the system in vicinity of its equilibrium state.

Being a straight forward method, based purely on the sign of real parts of eigen-

values, we shall use the Routh-Hurwitz criterion (Gantmacher, 1959) to study the

local stability of wide range of systems in homogeneous environment.

Routh-Hurwitz Stability Criterion: According to this criterion, the necessary

and sufficient condition for the negativity of the real parts of all the roots of the

polynomial

λn + a1λ
n−1 + a2λ

n−2 + a3λ
n−3 + + an = 0,

with real coefficients is the positivity of all the principal diagonals of the minors

of the Hurwitz matrix

Hn =



a1 1 0 . . . 0

a3 a2 a1 . . . 0

a5 a4 a3 . . . 0

. . . . . . . . . . . . 0

0 0 0 . . . an


.

The alternate columns in this matrix consist of coefficients with only odd indices

or with only even indices (including the coefficient a0 = 1). Hence the elements

of the Hurwitz matrix Hn = bik are given by bik = a2i−k, the missing coefficients

(i.e., the coefficients with indices greater than n or less than zero being replaced

by zeros.

D1 = a1 > 0, D2 =

 a1 1

a3 a2

 > 0, D3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 , Dn = det(Hn).
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The Routh-Hurwitz criterion (Gantmacher, 1959) for particular values of n = 2

and 3 is stated below

(i) n = 2, a1 > 0, a2 > 0.

(ii) n = 3, a1 > 0, a3 > 0, a1a2 > a3.

The above method is useful to check the local stability of an equilibrium point.

The local stability describes the qualitative behavior of the solution in a certain

neighborhood. It does not give any information about the behavior of the solution

out of that neighborhood. The Lyapunov’s direct method can be useful to study

the stability behavior of nonlinear systems.

1.6.2 Lyapunov’s Direct Method

The physical validity of this method is contained in the fact that stability of the

system depends on the energy of the system which is a function of system variables.

Lyapunov’s direct method consists in finding out such energy functions termed as

Lyapunov functions which need not be unique. The major role in this process is

played by positive or negative definite functions which can be obtained in general

by trial of some particular functions of state variables, and in some cases with a

planned procedure. We shall use the following important results for the stability

analysis of our models.

Let us consider the system (1.1) and f(0) = 0 i.e. x = 0 is an equilibrium point

of the system.

Definition 1.6.5. Let V (x) be a real valued scalar function belonging to Ω for

some region Ω ∈ Rn. Assume that V (0) = 0, Then,

(i) V (x) is positive definite on the set Ω if V (x) > 0 for x 6= 0 and x ∈ Ω

(ii) V (x) is negative definite on the set Ω if V (x) < 0 for x 6= 0 and x ∈ Ω

(iii) V (x) is positive and negative semi-definite if the inequalities are not strict,

respectively or V (x) is positive (negative) semi-definite on the set Ω when V (x)

has the positive (negative) sign throughout Ω except at certain points (including

the origin) where it is zero.
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Theorem 1.6.6. If there exists a positive definite scalar function V (x) such that

V̇ (x) ≤ 0, i.e. V̇ (x) is negative semi-definite on Ω then the zero solution of (1.1)

is stable.

Theorem 1.6.7. If there exists a positive definite scalar function V (x) such that

V̇ (x) < 0, i.e. V̇ (x) is negative definite on Ω then zero solution of (1.1) is asymp-

totically stable.

Theorem 1.6.8. If there exists a scalar function V (x), V (0) = 0 such that V̇ (x)

is positive definite on Ω and if in every neighborhood N of the origin, there is a

point x0, where V (x0) > 0, then the zero solution of (1.1) is unstable.

1.7 Bifurcations

The change in stability behavior or dynamics of equilibrium points is called bifur-

cation and the equilibrium point at which bifurcation occur is called bifurcation

point (Strogatz, 2014). Poincarè (Guckenheimer and Holmes, 1983) has defined

the bifurcation term to describe the “splitting” of equilibrium solutions in a family

of differential equations. There are several additional type of bifurcations, here we

discuss two types of bifurcations: transcritical and Hopf bifurcation.

1.7.1 Transcritical Bifurcation

There are certain scientific situations where a fixed point must exist for all values

of a parameter and can never be destroyed. For instance, in the logistic equation

and other simple models for the growth of a single species, there is a fixed point

at zero population, regardless of the value of the growth rate. However, such a

fixed point may change its stability as the parameter is varied. The transcritical

bifurcation is the standard mechanism for such changes in stability. The normal

form for a transcritical bifurcation is

ẋ = rx− x2. (1.2)

For r < 0, there is an unstable fixed point at x∗ = r and a stable fixed point at

x∗ = 0. As r increases, the unstable fixed point approaches to the origin, and
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coincide with it when r = 0. Finally, when r > 0, the origin has become unstable,

and x∗ = r is now stable. The change in stability behavior of equilibrium points

from stable to unstable is called transcritical bifurcation. This is also known as

forward bifurcation.

1.7.2 Hopf Bifurcation

In case of two-dimensional system, the stability behavior of the system changes

with the change in sign of real part of the eigenvalues of Jacobian matrix. If both

the eigenvalues have negative real part then the system is stable and if eigenvalues

have positive real part then system is unstable. If the system has purely imaginary

eigenvalues then the system exhibits Hopf bifurcation.

Theorem 1.7.1 (Poincarè-Andronov-Hopf). Let

ẋ = A(α)x+ f(α, x), (1.3)

where A ∈ M2×2 and f : (α, x) ∈ R × R2 → R2 is a thrice continuously differ-

entiable vector field depending on a scalar parameter α such that f(α, 0) = 0 and

Df(α, 0) = 0 for all sufficiently small |α|. Assume that the linear part A(α) at

the origin has eigenvalues a(α)± ib(α) with a(0) = 0 and b(0) 6= 0. Furthermore,

suppose that the eigenvalues cross the axis with non-zero speed, that is

da

dα
(0) 6= 0.

Then in any neighborhood U of the origin in R2 and any given α0 > 0, there is a

ᾱ with ᾱ < α0 such that the differential equation

ẋ = A(ᾱ)x+ f(ᾱ, x)

has a nontrivial periodic orbit in U . The bifurcation is supercritical if the periodic

orbit is stable otherwise it is subcritical (Glendinning, 1994).

For further details on bifurcations see (Guckenheimer and Holmes, 1983; Stro-

gatz, 2014; Hale and Kocak, 2012).
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1.7.3 Limit cycle

A limit cycle is an isolated closed trajectory. Isolated means that neighboring

trajectories are not closed; they spiral either toward or away from the limit cycle.

Limit cycles can be stable, unstable, or half-stable according to whether the nearby

trajectories spiral towards the limit cycle, away from the limit cycle, or both.

Stable limit cycles are very important scientifically-they model systems that

exhibit self-sustained oscillations (Strogatz, 2014). In other words, these systems

oscillate even in the absence of external periodic forcing. Few examples of limit

cycles are the beating of a heart; the periodic firing of a pacemaker neuron; daily

rhythms in human body temperature and hormone secretion; etc. In each case,

there is a standard oscillation of some preferred period, waveform, and amplitude.

If the system is perturbed slightly, it always returns to the standard cycle. Limit

cycles are inherently nonlinear phenomena; they can not occur in linear systems.

The non-existence of limit cycles can be determined by using the following

theorem.

Let us consider the planar system

ẋ = f(x) (1.4)

where f = (f1, f2)T and x = (x1, x2)T ∈ R2.

Theorem 1.7.2. (Dulac’s Criterion) Let f ∈ C1(D) where D is a simply con-

nected region in R2. If there exists a function h ∈ C1(D) such that ∇.(hf) =

∂(f1h)
∂x1

+ ∂(f2h)
∂x2

is not identically zero and does not change sign in D, then (1.4) does

not have any closed orbit lying entirely in D.

Further, the existence of limit cycles can be ensured using the following theo-

rem.

Theorem 1.7.3. (Poincarè-Bendixson Theorem) Suppose that:

(i) R is a closed, bounded subset of the plane;

(ii) R does not contain any fixed points; and

(iii) There exists a trajectory C that is “confined” in R, in the sense that it starts
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in R and stays in R for all future time. Then either C is a closed orbit, or it spirals

toward a closed orbit as t→∞. Then the system (1.4) has a closed trajectory lying

inside R (Strogatz, 2014).

1.8 Thesis Organization

In this thesis, we proposed and analyzed mathematical models to understand dy-

namics of infectious diseases. The effect of various biological features has been

examined in step by step modeling which helps in prediction of future course of

action to stabilize the epidemic. The thesis is organized as follows: Chapter 1

describes the brief introduction of the problem and provides the objectives of the-

sis as well as literature survey. In Chapter 2, we discussed an SIR model with

nonlinear incidence and treatment rates. The stability analysis of the model is

investigated and validated through numerical simulations. In Chapter 3, we ex-

tended the model studied in Chapter 2 which involves different type of nonlinear

incidence and treatment rates. Furthermore in Chapter 4, we studied the effect

of awareness programs run by media on a compartmental model which comprises

of four compartments namely susceptible (S), infected (I), aware susceptible (Sa)

and recovered (R). The dynamics of interaction of uninfected cells, infected cells

and virus has been explored in Chapter 5. We examined the effect of therapeutic

drugs on infected cells as well as virus on the model proposed in Chapter 5. The

impact of non-cytolytic cure and absorption of pathogens into uninfected cells has

been studied on the pathogen-immune interaction models in Chapter 6. Fur-

ther, we developed a model to study the dynamics of HIV infection in Chapter

7. Finally, the main outcomes and future scope of the thesis are summarized in

Chapter 8.



Chapter 2

Dynamics of an SIR Model with

Nonlinear Incidence Rate and

Holling Type II Treatment Rate

Models should be as simple as

possible, but not more so.

Einstein

The incidence of infection and eventually the treatment of infection are neces-

sary tools to analyze any epidemic. This chapter deals with the basic compart-

mental model i.e. susceptible-infected-recovered (SIR) model involving nonlinear

incidence rate and treatment rate. The dynamics of infection among homogeneous

population has been studied. The baseline transmission rate is being considered

as Beddington-DeAngelis type. Further, we assumed the treatment given to the

infected population is governed by the Holling type II function. To study the an-

alytical behavior of the model theory of ordinary differential equations has been

used. Numerical simulations has been performed to exemplify the analytical out-

comes.
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2.1 Introduction

Epidemiological models have been recognized as valuable tools in analyzing the

spread and control of infectious diseases. In epidemiological models, incidence rate

as well as treatment rate play an important role while analyzing the transmission

of diseases. The number of individuals who become infected per unit of time in epi-

demiology is called incidence rate. Incidence rate has been defined in multiple ways.

Firstly, the bilinear incidence rate (Anderson et al., 1992; Bailey, 1975; Brauer and

Castillo-Chavez, 2001; Hethcote, 2000; Kermack and McKendrick, 1927; Shulgin

et al., 1998; Zhonghua and Yaohong, 2010; Ghosh et al., 2004; Shukla et al., 2011)

is based on the law of mass action (βSI, where β is infection rate and S & I

denote the susceptible and infected individuals respectively) which is unreasonable

for large population. As we can infer from the term βSI that if the number of

susceptibles increases, the number of individuals who become infected per unit of

time increases, which is not realistic. So there is a need to modify the classical

linear incidence rate to study the dynamics of infection among large population.

Several authors (May and Anderson, 1978; Wei and Chen, 2008; Zhang et al.,

2008; Li et al., 2009; Li and Muldowney, 1995; Korobeinikov and Maini, 2005; Xu

and Ma, 2009; Capasso and Serio, 1978) suggested different type of nonlinear inci-

dence rates. Like, the saturated incidence rate αSI
(1+βS)

, was introduced by Anderson

and May in 1978. The effect of saturation factor β stems from epidemical control.

Further, many authors (Mondal and Kar, 2013; Agarwal and Verma, 2012; Wei and

Chen, 2008; Zhang et al., 2008) incorporated this incidence rate into their models.

Li et al. (2009) proposed an SIR model with nonlinear incidence rate given by

αSI
(1+γI)

. In this incidence rate the number of effective contacts between infective

and susceptible individuals may saturate at high infective levels due to crowding

of infective individuals. Beddington (1975) and DeAngelis (1975) independently,

introduced nonlinear incidence rate known as Beddington-DeAngelis type incidence

rate ( αSI
1+βS+γI

). Later, some authors (Kaddar, 2009, 2010; Huang et al., 2011; Elaiw

and Azoz, 2013) used this incidence rate to describe epidemiological models.
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We are aware of the fact that the treatment is an important method to reduce

the spread of diseases. In classical epidemic models, the treatment rate of infected

individuals is assumed to be either constant or proportional to the number of

the infected individuals. But we know that there are limited treatment resources

available in community. Therefore, this is very important to choose a suitable

treatment rate of a disease. In the absence of effective therapeutic treatment

and vaccine, the epidemical control strategies are based on taking appropriate

preventive measures. Wang and Ruan (2004) considered an SIR epidemic model

with constant treatment rate (i.e., the recovery from infected sub-population per

unit time) as given below:

h(I) =


r, I > 0

0, I = 0

,

where r is a positive constant and I is the number of infected individuals. They

studied stability analysis and showed that this model exhibits various bifurcations.

Further, Zhou and Fan (2012) modified the treatment rate to Holling type II

h(I) =
βI

(1 + γI)
, I ≥ 0, γ ≥ 0, β ≥ 0.

They have shown that, with varying amount of medical resources and their supply

efficiency, the target model admits both backward bifurcation and Hopf bifurcation.

Dubey et al. (2013) have also used Holling type II, III and IV treatment rates to

study their model.

To the best of the knowledge of authors an SIR model with Beddington-

DeAngelis type incidence rate and the saturated treatment rate has not been con-

sidered. Taking these important facts into account and getting motivated from

Kaddar’s work (Kaddar, 2009, 2010), we propose an SIR model with Beddington-

DeAngelis type incidence rate and the saturated treatment rate.

This chapter is organized as follows. After introduction, Section 2.2 discusses

the formulation of the mathematical model and well-posedness of the model. In

Section 2.3, we discuss about the equilibrium points of the model, stability of
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equilibrium points and existence of Hopf bifurcation. Further, in Section 2.4,

numerical simulations are performed to validate the analytical studies. Finally,

Section 2.5 concludes this chapter.

2.2 The Mathematical Model

We assume that the entire population is divided into three classes; susceptible in-

dividuals (S), infected individuals (I) and removed or recovered individuals (R).

Susceptible individuals are those who are healthy and can contract disease under

appropriate conditions. Infected individuals are the one who have contracted the

disease and now infected with it. These are capable to transfer the disease to sus-

ceptible via contacts. As time progresses, infected individuals loose the infectivity,

and move to removed or recovered compartment (by auto recovery due to immune

response of the body or by treatment). These recovered individuals are immune to

infectious microbes and thus do not acquire the disease again. The model is given

by following differential equations:
dS
dt

= A− δ0S − αSI
1+βS+γI

,

dI
dt

= αSI
1+βS+γI

− δ0I − δ1I − δ2I − aI
1+bI

,

dR
dt

= δ2I − δ0R + aI
1+bI

,

(2.1)

S(0) > 0, I(0) ≥ 0, R(0) ≥ 0.

The interaction among the sub-populations can be understood from the schematic

diagram (figure 2.1).

Figure 2.1: Interaction of sub-populations: a flow diagram.
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Let the susceptibles be recruited at a constant rate A and δ0 be the natural

death rate of the population in each class. δ1 be the death rate of infected indi-

viduals due to infection and δ2 be natural recovery rate of infected individuals due

to immunity. In model (2.1), we take the incidence rate as Beddington-DeAngelis

type:

f(S, I) =
αSI

1 + βS + γI
. (2.2)

Here α is the transmission rate, β is a measure of inhibition effect, such as pre-

ventive measure taken by susceptible individuals and γ is a measure of inhibition

effect such as treatment with respect to infectives. It is interesting to note that

the following three types of incidence rates can be derived from the incidence rate

proposed in this chapter:

1. If we set β = γ = 0, then f(S, I) = αSI which is bilinear incidence rate

(Anderson et al., 1992; Bailey, 1975; Brauer and Castillo-Chavez, 2001; Het-

hcote, 2000; Kermack and McKendrick, 1927; Shulgin et al., 1998; Zhonghua

and Yaohong, 2010).

2. If we set γ = 0, then f(S, I) = αSI
(1+βS)

, which is saturated incidence rate with

the susceptible individuals. The inhibition effect due to the saturation factor

β, results due to the preventive measure to control the spread of epidemic

(Korobeinikov and Maini, 2005; Xu and Ma, 2009; Capasso and Serio, 1978).

3. If we set β = 0, then f(S, I) = αSI
(1+γI)

, which is saturated incidence rate with

the infected individuals. In such a case, the contact between infective and

susceptible individuals may saturate at high infection level due to crowding

of infective individuals or due to protection taken by susceptible individuals

(May and Anderson, 1978; Wei and Chen, 2008; Zhang et al., 2008; Li et al.,

2009; Li and Muldowney, 1995; Korobeinikov and Maini, 2005; Xu and Ma,

2009; Capasso and Serio, 1978).

The term h(I) = aI
(1+bI)

in system (2.1), represents the treatment term, where a is

a positive constant whereas b is a constant taking into account resource limitation

(Zhonghua and Yaohong, 2010; Zhou and Fan, 2012). From the above system (2.1)
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we can infer that S and I are free from the effect of R. Thus it is enough to consider

the following reduced system for the study:


dS
dt

= A− δ0S − αSI
1+βS+γI

,

dI
dt

= αSI
1+βS+γI

− δ3I − aI
1+bI

,
(2.3)

where δ3 = δ0 + δ1 + δ2 and S(0) > 0, I(0) ≥ 0.

2.2.1 Positivity of the Model

For the above system (2.3), we find a region of attraction which is given by Lemma

2.2.1.

Lemma 2.2.1. The set Ω = {(S, I) ∈ R2
+ : 0 < S + I ≤ A

δ0
} is a positively

invariant region of system (2.3).

Proof. Let N = S + I, then Ṅ = Ṡ + İ = A− δ0N − (δ1 + δ2)I − aI
1+bI

Then,

N(t) ≤ N(0)e−δ0t +
A

δ0

(1− e−δ0t).

Thus,

lim
t→∞

supN(t) ≤ A

δ0

.

Furthermore, Ṅ < 0 if N > A
δ0

. This shows that solutions of system (2.3) point

towards Ω. Hence Ω is positively invariant and solutions of (2.3) are bounded.

The above lemma shows that all solutions of the model are non-negative and

bounded. Thus the model is biologically well behaved. In the next section, first we

find the equilibrium points of system (2.3), then discuss the existence and stability

of equilibrium points of system (2.3).

2.3 Equilibrium and Stability Analysis

System (2.3) has only two equilibria: (i) the disease-free equilibrium (DFE)E0(S0, I0),

i.e., there is no infection and (ii) the endemic equilibrium E1(S∗, I∗), i.e., infection

persists. We can infer from system (2.3) that the disease-free equilibrium E0 is

trivial equilibrium point and given by E0(S0, I0) = E0( A
δ0
, 0).
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To compute the basic reproduction number and to study the local stability

of the DFE, we use the next generation matrix method (Diekmann et al., 1990;

Van den Driessche and Watmough, 2002). Using the same notation as in (Van den

Driessche and Watmough, 2002), we define ẋ = F (x) − V (x), where x = [I, S]T ,

F (x) is the matrix of new infection terms and V (x) is the matrix of transfer terms

into compartment and out of compartment. The Jacobian of matrices F (x) and

V (x) at DFE E0( A
δ0
, 0) is given by

F =

 αA
δ0+Aβ

0

0 0

 , and V =

 (δ3 + a) 0

αA
δ0+Aβ

δ0

 .
Then the spectral radius of new generation matrix (Van den Driessche and Wat-

mough, 2002) (FV −1) gives R0 i.e.,

R0 = ρ(FV −1) =
Aα

(δ3 + a)(δ0 + Aβ)
,

where R0 is basic reproduction number, the number of newly infected individuals

produced by a single infected person when introduced into a completely susceptible

population. We conclude the following result using the above computation for R0

and from Theorem 2 of the paper (Van den Driessche and Watmough, 2002).

Theorem 2.3.1. The disease-free equilibrium E0 is locally asymptotically stable if

R0 < 1, and is a saddle point with stable manifold locally in the S-direction and

unstable manifold locally in the I-direction if R0 > 1.

Epidemiologically, the above result depicts that small inflow of infected indi-

viduals will not be able to spread infection if R0 < 1. In this case the spread of

infection is dependent on initial sizes of sub-population. To ensure that the spread

of infection is independent of initial sizes of sub-population, we study the global

stability of the DFE in the next theorem.

Theorem 2.3.2. (i) When b = 0, then the disease-free equilibrium E0 is glob-

ally asymptotically stable if R0 ≤ 1 and (ii) when b 6= 0, then the disease-free

equilibrium E0 is globally asymptotically stable if R1 = αA
(δ0+Aβ)δ3

≤ 1.
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Proof. Let L be the Lyapunov function defined as

L =
1

1 + βS0

(
S − S0 − S0ln

S

S0

)
+ I, where S0 =

A

δ0

.

Differentiating L along the solutions of (2.3) and after simplification, we have

L̇(t) = −
[
δ0(S − S0)2

S(1 + βS0)
+

αγS0I
2

(1 + βS + γI)(1 + βS0)

]
+

(δ3 + a)I

(1 + γI)
[R0 − 1] + PI2,

where P = b
1+bI

(
αS0

(1+βS0)
− δ3

)
.

Case I: b = 0

Then clearly P = 0 and

L̇(t) < 0 if R0 ≤ 1 and L̇(t) = 0 iff S = S0 = A
δ0

and I = I0 = 0.

Case II: b 6= 0

Then

L̇(t) < 0 if P < 0 i.e., αA
(δ0+Aβ)

< δ3 and L̇(t) = 0 iff S = S0 = A
δ0

and I = I0 = 0.

This implies that the largest compact invariant set in {(S, I) ∈ Ω : L̇(t) = 0} is the

singleton set {E0}. From Lasalle’s invariance principle (LaSalle, 1976) disease-free

equilibrium is globally asymptotically stable. Hence the theorem follows.

Remark 2.3.1. (i) We observe that R0 < R1 (if a > 0) and R0 = R1 (if a = 0).

(ii) When R1 ≤ 1, then R0 ≤ 1.

This implies that the threshold value for the disease eradication is less if there

is no limitation on the medical resources availability in the community (b = 0).

However, this threshold increases as the availability of the medical resources limits

in the community (b > 0).

2.3.1 Analysis at R0 = 1

In this section, we analyze the behaviour of system (2.3) when basic reproduction

number is equal to one. We notice that the Jacobian matrix of system (2.3)

evaluated at R0 = 1 and α = α∗ = (δ3+a)(δ0+Aβ)
A

has a simple zero eigenvalue
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and another eigenvalue with negative real part. Stability behaviour of equilibrium

points at R0 = 1 can not be determined using linearization so we use Center

manifold theory (Sastry, 1999). In order to apply center manifold theorem to

system (2.3), we made following assumptions:

Let S = x1 and I = x2, then system (2.3) can be rewrite as


dx1
dt

= A− δ0x1 − αx1x2
1+βx1+γx2

,

dx2
dt

= αx1x2
1+βx1+γx2

− δ3x2 − ax2
1+bx2

,
(2.4)

Let J be the Jacobian matrix at R0 = 1 and α = α∗. Then

J =

 −δ0 − α∗A
(δ0+Aβ)

0 α∗A
(δ0+Aβ)

− δ3 − a

 .
Let w = [w1, w2] and u = [u1, u2]T be the left eigenvector and right eigenvector of

J corresponding to the zero eigenvalue. Then we have

w1 = 0, w2 = 1 and u1 = − α∗A

(δ0 + Aβ)δ0

, u2 = 1.

The nonzero partial derivatives associated with the functions of system (2.4) eval-

uated at R0 = 1 and α = α∗ are

(
∂2f2

∂x1∂x2

)
E0

=
α∗

(1 + βS0)2
,

(
∂2f2

∂x2
2

)
E0

= − 2α∗γS0

(1 + βS0)2
,

(
∂2f2

∂x2∂α∗

)
E0

=
S0

(1 + βS0)2
.

Then from Theorem 4.1 of (Castillo-Chavez and Song, 2004), the bifurcation con-

stants a1 and b1 are

a1 =
2∑

k,i,j=1

wkuiuj

(
∂2fk
∂xi∂xj

)
E0

= w2

(
u1u2

α∗

(1 + βS0)2
+ u2

2

(
− 2α∗γS0

(1 + βS0)2

))

= − α∗

(1 + βS0)2

(
α∗A

(δ0 + Aβ)δ0

+ 2γS0

)
< 0,
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and

b1 =
2∑

k,i=1

wkui

(
∂2fk
∂xi∂α∗

)
E0

= w2

(
u2

S0

(1 + βS0)2

)
=

S0

(1 + βS0)2
> 0.

Thus from Theorem 4.1(iv) of (Castillo-Chavez and Song, 2004), we conclude the

following result.

Theorem 2.3.3. The disease-free equilibrium changes its stability from stable to

unstable at R0 = 1 and there exists a positive equilibrium as R0 exceeds one. Hence

system (2.3) undergoes transcritical bifurcation at R0 = 1.

2.3.2 Existence of Endemic Equilibrium E1(S
∗, I∗)

Equating the second equation of system (2.3) to zero, we have

αS∗I∗

1 + βS∗ + γI∗
− δ3I

∗ − aI∗

1 + bI∗
= 0. (2.5)

After solving the above equation (2.5), we get S∗ in terms of I∗ as follows:

S∗ =
(δ3 + a+ δ3bI

∗)(1 + γI∗)

(α− δ3β − aβ) + (α− δ3β)bI∗
. (2.6)

S∗ is positive if

α > (δ3 + a)β. (2.7)

Now equating the first equation of system (2.3) to zero and solving we get the

following quadratic equation in S∗:

δ0βS
∗2 + (δ0 − Aβ + (δ0γ + α)I∗)S∗ − A(1 + γI∗) = 0. (2.8)

Substituting the value of S∗ from equation (2.6) into equation (2.8), we get the

following cubic equation in I∗:

A1I
∗3 + A2I

∗2 + A3I
∗ + A4 = 0, (2.9)
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where

A1 = δ0βγδ3
2b2 + δ3b

2pl,

A2 = δ0βδ3
2b2 + 2δ0δ3(δ3 + a)βγb+ bδ3ql + bp((δ3 + a)l + δ3bm− Abp),

A3 = 2δ0δ3(δ3 + a)βb+ δ0βγ(δ3 + a)2 + (δ3 + a)bmp+ q((δ3 + a)l + δ3bm− 2Abp),

A4 = δ0β(δ3 + a)2 + (δ3 + a)mq − Aq2,

and

p = (α− δ3β), q = (α− δ3β − aβ), l = (δ0γ + α), m = (δ0 − Aβ).

It may be noted that p, q > 0 under condition (2.7). Now using Descartes’ rule

of sign, the cubic equation (2.9) has unique positive real root I∗ if anyone of the

following holds:

(i) A2 > 0, A3 > 0 and A4 < 0,

(ii) A2 > 0, A3 < 0 and A4 < 0,

(iii) A2 < 0, A3 < 0 and A4 < 0.

We consider first two cases from which we have the following inequalities

(δ3 + a)l + δ0δ3b > Aαb, (2.10)

R0 > 1. (2.11)

After finding the value of I∗, we can find the value of S∗ from equation (2.6). This

implies that there exists a unique endemic equilibrium E1(S∗, I∗) if inequalities

(2.7), (2.10) and (2.11) are satisfied.

In the next theorem, we show the uniform persistence of system (2.3). Biolog-

ically persistence implies that the sub-populations exist always and will not lead

to extinction if initially they are present.

Theorem 2.3.4. Assume that Lemma 2.2.1 holds and the following inequality is

satisfied:

max

{
αA

δ0(δ0 + (β + γ)A)
,

a

δ0 + bA

}
< 1.

Then system (2.3) is uniformly persistent.
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Proof. In order to define permanence (uniformly persistence) of the system, we

assume that S(0) > 0 and I(0) > 0. Then we say that system (2.3) is uniformly

persistence (Sarwardi et al., 2014; Wang et al., 2001) if there exists positive con-

stants M1 and M2 such that

M1 ≤ lim inf
t→∞

S(t) ≤ lim sup
t→∞

S(t) ≤M2,

M1 ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤M2.

From Lemma 2.2.1, it follows that

lim sup
t→∞

S(t) ≤ A

δ0

, and lim sup
t→∞

I(t) ≤ A

δ0

.

⇒ For any ε > 0, ∃ a T > 0 such that

S(t) <
A

δ0

+ ε = Sm(say),

I(t) <
A

δ0

+ ε = Sm, ∀t ≥ T.

From the first equation of model (2.3), we have

dS

dt
≥ A− δ0S −

αS2
m

(1 + (β + γ)Sm
,

This implies that

lim inf
t→∞

S(t) ≥ 1

δ0

(
A− αS2

m

(1 + (β + γ)Sm)

)
,

which is true for every sufficiently small ε > 0. Hence for large t, it follows that

lim inf
t→∞

S(t) ≥ A

δ0

(
1− αA

δ0(δ0 + (β + γ)A)

)
= Sa(say)

and

Sa > 0 if
αA

δ0(δ0 + (β + γ)A)
< 1.
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Again from model (2.3), we have

d

dt
(S + I) ≥ A− δm(S + I)− aA

δ0 + bA
,

where δm = max{δ0, δ3}.

⇒ lim inf
t→∞

(S(t) + I(t)) ≥ A

δm

(
1− a

δ0 + bA

)
= Ia(say),

We note that Ia > 0 if a
δ0+bA

< 1. Hence the theorem follows.

Theorem 2.3.5. The endemic equilibrium E1(S∗, I∗) is locally asymptotically sta-

ble iff the following inequalities hold true:

αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
< L1, (2.12)

δ0αS
∗(1 + βS∗)

(1 + βS∗ + γI∗)2
< L2, (2.13)

where

L1 = δ0 + δ3 +
a

(1 + bI∗)2
+

αI∗(1 + γI∗)

(1 + βS∗ + γI∗)2
,

L2 =

(
δ3 +

a

(1 + bI∗)2

)(
δ0 +

αI∗(1 + γI∗)

(1 + βS∗ + γI∗)2

)
.

Proof. The variational matrix corresponding to endemic equilibrium E1(S∗, I∗) is

ME1 =


−δ0 − αI∗(1+γI∗)

(1+βS∗+γI∗)2
− αS∗(1+βS∗)

(1+βS∗+γI∗)2

αI∗(1+γI∗)
(1+βS∗+γI∗)2

αS∗(1+βS∗)
(1+βS∗+γI∗)2

− δ3 − a
(1+bI∗)2

 .

The characteristic polynomial of the above matrix is given by the following equation

λ2 + a1λ+ a2 = 0, (2.14)

where

a1 = δ0 +
αI∗(1 + γI∗)

(1 + βS∗ + γI∗)2
− αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
+ δ3 +

a

(1 + bI∗)2
,
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a2 =

(
δ3 +

a

(1 + bI∗)2

)(
δ0 +

αI∗(1 + γI∗)

(1 + βS∗ + γI∗)2

)
− δ0αS

∗(1 + βS∗)

(1 + βS∗ + γI∗)2
.

Using the Routh-Hurwitz criteria, it follows that eigenvalues of the above varia-

tional matrix have negative real parts iff a1 > 0 and a2 > 0. This implies that

the endemic equilibrium E1(S∗, I∗) is locally asymptotically stable iff inequalities

(2.12) and (2.13) hold true. Hence the theorem follows.

Remark 2.3.2. If α = 0, then condition (2.12) and (2.13) are satisfied. This

shows that if the transmission rate of infection is zero or very small, then endemic

equilibrium E1 is locally asymptotically stable.

Remark 2.3.3. If α is very large, then condition (2.12) and (2.13) may not hold

true, This implies that if the transmission rate of infection is large enough, then

the endemic equilibrium may be unstable.

Remark 2.3.4. It may be noted that condition (2.12) and (2.13) hold true if

αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
< δ3 +

a

(1 + bI∗)2
.

From equation (2.14), noticing the sign of real parts of the eigenvalues λ, we

can state the following two theorems (2.3.6) and (2.3.7).

Theorem 2.3.6. Let the following inequality hold true:

δ0αS
∗(1 + βS∗)

(1 + βS∗ + γI∗)2
> L2, (2.15)

then E1(S∗, I∗), whenever it exists, is a saddle point.

Theorem 2.3.7. If inequality (2.13) and the following inequality hold true:

αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
> L1, (2.16)

then E1(S∗, I∗), whenever it exists, is unstable.

In the following theorem, we are able to show the existence of a Hopf bifurcation

under certain conditions.
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Theorem 2.3.8. Assume that:

αS∗(1 + βS∗)

(1 + βS∗ + γI∗)2
= L1, (2.17)

and (2.13) hold true, then system (2.3) exhibits Hopf bifurcation near E1(S∗, I∗).

Proof. Condition (2.17) implies that a1 = 0 in equation (2.14) and condition (2.13)

implies that a2 > 0. Thus, equation (2.14) has purely imaginary roots. From The-

orem 2.3.5 and Theorem 2.3.7, it follows that the positive equilibrium E1(S∗, I∗)

changes its behavior from stability to instability as the parameter α passes through

its critical value α = α∗, where

α∗ =
(1 + βS∗ + γI∗)2

S∗(1 + βS∗)− I∗(1 + γI∗)

(
δ0 + δ3 +

a

(1 + bI∗)2

)
.

Again we have

d

dα
[tr(ME1)]α=α∗ =

S∗(1 + βS∗)− I∗(1 + γI∗)

(1 + βS∗ + γI∗)2

=
1

α∗

(
δ0 + δ3 +

a

(1 + bI∗)2

)
6= 0.

Hence the system (2.3) shows a Hopf bifurcation near the positive equilibrium E1

when α = α∗. Hence the theorem follows.

In the following theorem, we show the nonexistence of limit cycle under certain

condition.

Theorem 2.3.9. If b(1 + βA
δ0

) < γ, then model (2.3) does not have any periodic

solution in the interior of the positive quadrant of the SI-plane.

Proof. We define a real valued function in the interior of positive quadrant of the

SI-plane as follows:

H(S, I) =
1 + βS + γI

SI
> 0.

Let us consider,
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h1(S, I) = A− δ0S −
αSI

1 + βS + γI
,

h2(S, I) =
αSI

1 + βS + γI
− δ3I −

aI

1 + bI
.

Then we have,

div(Hh1, Hh2) =
∂

∂S
(Hh1) +

∂

∂I
(Hh2)

= −A(1 + γI)

IS2
− δ0β

I
− δ3γ

S
− a(γ − b(1 + βS))

S(1 + bI)2
.

We can see that the above expression is not equal zero and this will not change sign

in the positive quadrant of the SI-plane if the inequality b(1+ βA
δ0

) < γ holds. Then

from Dulac’s criterion (Sastry, 1999), we can say that model (2.3) does not have

any periodic solution in the interior of the positive quadrant of the the SI-plane.

Hence the theorem follows.

Epidemiologically the above theorem refers that if the given inequality hold

true then disease will not reoccur.

Since the set Ω defined in Lemma 2.2.1 is a positively invariant set, hence

the following theorem is a direct consequence of the Poincare-Bendixon theorem

(Sastry, 1999) showing the existence of a limit cycle about the interior equilibrium

E1.

Theorem 2.3.10. Assume that either (2.13) and (2.16) or (2.15) are satisfied,

then model (2.3) has at least one limit cycle in the interior of the positive quadrant

of the SI-plane.

This theorem depicts that if the positive equilibrium point E1 is a saddle point

or unstable then disease may reoccur in future.

In the following theorem, we show that the endemic equilibrium E1(S∗, I∗) is

globally asymptotically stable.

Theorem 2.3.11. Let the following inequality holds in Ω:

α2γS∗I∗(1 + γI∗)

(1 + βS∗ + γI∗)2
< X1X2, (2.18)
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where

X1 = δ0 +
αI∗(1 + γI∗)δ0

(δ0 + (β + γ)A)(1 + βS∗ + γI∗)
,

X2 =
αγS∗δ0

(δ0 + (β + γ)A)(1 + βS∗ + γI∗)
− ab

1 + bI∗
.

Then E1(S∗, I∗) is globally asymptotically stable with respect to all solutions in the

interior of the positive quadrant Ω.

Proof. We consider the following positive definite scalar function about E1:

V =
1

2
(S − S∗)2 + k

(
I − I∗ − I∗ln I

I∗

)
,

where k is a positive constant to be chosen suitably.

Now differentiating V with respect to time t along the solutions of model (2.3), we

get

V̇ = (S − S∗)Ṡ + k
(I − I∗)
I∗

İ .

Substituting the values of Ṡ and İ from model (2.3) into the above equation, we

get

V̇ = −a11(S − S∗)2 + a12(S − S∗)(I − I∗)− a22(I − I∗)2,

where

a11 = δ0 +
αI∗(1 + γI∗)

(1 + βS + γI)(1 + βS∗ + γI∗)
,

a12 =
(αγS∗I∗ + kα(1 + γI∗))

(1 + βS + γI)(1 + βS∗ + γI∗)
− αS

(1 + βS + γI)
,

a22 =
kαγS∗

(1 + βS + γI)(1 + βS∗ + γI∗)
− kab

(1 + bI)(1 + bI∗)
.

Sufficient conditions for V̇ to be negative definite are given as follows:

a11 > 0 and a2
12 < 4a11a22.

Here, we can see that a11 is positive for all values of (S∗, I∗) and another condition

for global stability a2
12 < 4a11a22 is satisfied if the inequality (2.18) holds true.

Hence the theorem follows.
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2.4 Numerical Simulations

In this section, we present computer simulation results for system (2.3) using Mat-

Lab 7.10. We choose the set of parameters given in Table 2.1. For these values

of parameters, conditions (2.7), (2.10) and (2.11) for the existence of E1(S∗, I∗)

are satisfied and E1(S∗, I∗) is given by S∗ = 301.0107, I∗ = 3.7996. We further

note that inequalities (2.12) and (2.13) in Theorem 2.3.5 are satisfied for E1 to be

locally asymptotically stable. The trajectories of S and I with initial conditions

S(0) = 245, I(0) = 45, approach to the endemic equilibrium E1(301.0107, 3.7996)

as shown in figure 2.2.

Table 2.1: List of parameters for model (2.3): dataset 1.

Parameter Value (Unit)

Recruitment rate (A) 7 (person (d)−1)

Natural death rate of each sub-population (δ0) 0.02 (d)−1

Disease induced death rate of infected (δ1) 0.05 (d)−1

Recovery rate of infected due to auto immunity (δ2) 0.002 (d)−1

Treatment rate (a) 0.2 (d)−1

Limitation rate in treatment availability (b) 0.02 (d)−1

Transmission rate (α) 0.003 (person)−1 (d)−1

Inhibition rate due to susceptible (β) 0.002 (person)−1

Inhibition rate due to infected (γ) 0.5 (person)−1

In figure 2.2, the number of infected population decreases with time due to

treatment and these individuals once recovered have become immunized to the

infection and will not get reinfected in future. Furthermore, the susceptible popu-

lation increases to attain a steady state. This increase may be due to decrease in

the number of infected individuals because of treatment. Further, we choose the

set of parameters as given in Table 2.2.

For these values of parameters given in Table 2.2, we see that the endemic equi-

librium E1(7.0861, 1.9796) exists and all conditions of Theorem 2.3.5 and Theorem

2.3.6 are satisfied. From these simulations and following figure 2.3, we conclude

that the endemic equilibrium E1 is globally asymptotically stable. This implies

that for the given set of parameters the trajectories of S and I will converge to
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Figure 2.2: Susceptible (S) and infected (I) population vs time.

Table 2.2: List of parameters for model (2.3): dataset 2.

Parameter Value (Unit)

Recruitment rate (A) 1.97 (person (d)−1)

Natural death rate of each sub-population (δ0) 0.2 (d)−1

Disease induced death rate of infected (δ1) 0.03 (d)−1

Recovery rate of infected due to auto immunity (δ2) 0.03 (d)−1

Treatment rate (a) 0.02 (d)−1

Limitation rate in treatment availability (b) 0.02 (d)−1

Transmission rate (α) 0.05 (person)−1 (d)−1

Inhibition rate due to susceptible (β) 0.01 (person)−1

Inhibition rate due to infected (γ) 0.1 (person)−1

the same value (steady state) E1 irrespective of the initial value of S and I. This

implies that for the given set of parameters the disease will restrict itself to a given

endemic zone, no matter what the magnitude of infection and susceptibility is.

In figure 2.3, we considered five different initial values of the susceptible and

infected populations. All trajectories starting from different initial values approach

to the endemic equilibrium E1(7.0861, 1.9796). All the details related to initial

values (IV) are shown in the legend.



48 Chapter 2. SIR Model with Beddington-DeAngelis Incidence rate

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Suceptible population (S)

In
fe

ct
ed

 p
o

p
u

la
ti

o
n

 (I
)

 

 

IV1 [15 28]

IV2 [20 3]

IV3 [25 18]

IV4 [30 8]

IV5 [1 27]

IV5

IV3

IV1

IV4

E
1
(7.0681, 1.9796)

IV2

Figure 2.3: Global stability of endemic equilibrium point.
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Figure 2.4: Effect of α on S and on I population respectively.

In figures 2.4(a) and 2.4(b), we plotted the effect of incidence rate α on S and

I population (respectively) for the set of parameters given in Table 2.1. In figure

2.4(a) we see that as α increases, the susceptible population S shows sharp decline

initially and after a threshold value of α (say α=0.006) S decreases slowly and get

settled to the its equilibrium point. From figure 2.4(b), we note that when the

incidence rate is high then more people will be infected and only the remaining
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noninfected people will be susceptible. Whereas when the incidence rate is low then

less people are infected and the noninfected i.e., susceptible population is larger.

We further note that for a larger incidence rate, the number of infected individuals

increases initially, then decreases and finally settles down at its steady state. This

decrease is possibly due to immunity and the treatments. When the incidence rate

is below a threshold value, then the number of infected individuals first decreases,

then increases and finally gets stabilized at its steady state. This increase may be

due to the fact that the infection is not removed completely but will persist in the

endemic zone due to inability of treatment to eradicate the infection. The details

of different trajectories and different values of α used in figures 2.4(a) and 2.4(b)

are shown in the legend, which is same for both figures.
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Figure 2.5: Effect of β on S on I population respectively.

In figures 2.5(a) and 2.5(b), we plotted the effect of measure of inhibition β (pre-

ventive measure taken by susceptible individuals) on the susceptible and infected

populations respectively, with respect to time. From figures 2.5(a) and 2.5(b), we

observe that the number of infected individuals decreases as β increases and con-

sequently the susceptible population increases with increase in β . The trajectories

of S and I settle down at their respective equilibrium levels. Figure 2.5(b) also

shows that initially the number of infected individuals decreases, then increases for
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some time and finally obtains its equilibrium level. The initial decrease in number

of infectives may be due to the prevention measures taken by susceptibles and the

treatments recieved. However, these preventive measures and treatments may not

be adequate, thus number of infectives increases slightly and gets stabilized at the

steady state. This overall implies that when the inhibition is less then more people

are infected and less people are susceptible whereas when the inhibition is more

then more people are susceptible and less are infected.
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Figure 2.6: Effect of a and b on I population.

Figures 2.6(a) and 2.6(b) show the effect of treatment rate ‘a’ and limitation

to treatment rate ‘b’ on infected population. Figure 2.6(a) shows a decrease in

infected population as treatment rate a increases and it settles down at its steady

state. But the disease is not getting totally eradicated it will persist at a much

lower level. And figure 2.6(b) shows increase in infected population as b increases

which is due to limited availability of resources in community.

Next, we choose another set of parameters for model (2.3) as given in Table

2.3. In addition to the values of parameters given in Table 2.3, we chose α = 0.15

(person)−1 (d)−1. Then it is noted that all the conditions of Theorem 2.3.5 are

satisfied. Hence E1 is locally asymptotically stable. For α = 0.06 (person)−1

(d)−1 (keeping other values of parameters same as in Table 2.3), condition (2.16)
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Table 2.3: List of parameters for model (2.3): dataset 3.

Parameter Value (Unit)

Recruitment rate (A) 7 person (d)−1

Natural death rate of each sub-population (δ0) 0.002 (d)−1

Disease induced death rate of infected (δ1) 0.005 (d)−1

Recovery rate of infected due to auto immunity (δ2) 0.01 (d)−1

Treatment rate (a) 2 (d)−1

Limitation rate in treatment availability (b) 0.02 (d)−1

Inhibition rate due to susceptible (β) 0.02 (person)−1

Inhibition rate due to infected (γ) 0.005 (person)−1

Figure 2.7: Plot of S and I population vs time for different values of α.

in Theorem 2.3.7 is satisfied. Hence E1 is unstable. Further, for α = α∗ =

0.08863 (person)−1 (d)−1 and other values of parameters are same as in Table

2.3, all conditions in Theorem 2.3.8 are satisfied, which shows the existence of

Hopf bifurcation near the interior equilibrium E1. These three different behavior

are shown in figures 2.7(a) and 2.7(b) for susceptible and infected populations

respectively.

Time series analysis of susceptible and infected population are represented in

figure 2.8 and figure 2.9, respectively. Figure 2.8 represents a stable limit cycle for

α = 0.08863 (person)−1 (d)−1 and other parameters are same as given in Table

2.3. In figure 2.9, trajectories represent unstable endemic equilibrium for α = 0.06

(person)−1 (d)−1 and other parameters are same as given in Table 2.3.
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Figure 2.8: Limit cycle in the SI-plane.

Figure 2.9: Phase portrait of model (2.3) in the SI-plane.

2.5 Conclusions

In this chapter, we have introduced an SIR model with Beddington-DeAngelis type

incidence rate and saturated treatment rate. The local and global dynamics of this

model has been studied. The analysis of the proposed model shows that there ex-

ists only two non-negative equilibrium points; the disease-free equilibrium E0( A
δ0
, 0)
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i.e., when there is no infection (as I = 0) and the endemic equilibrium E1(S∗, I∗)

i.e., when infection is present in the community. The DFE is locally asymptotically

stable when the basic reproductive number R0 < 1 and globally asymptotically sta-

ble when R1 = αA
(δ0+Aβ)

≤ 1. It is also noted that the value of the threshold R1 can

be made less than or equal to one by decreasing the incidence rate (α) and by in-

creasing the preventive measures (β) adopted by susceptibles. We have also shown

that system (2.3) undergoes transcritical bifurcation at R0 = 1 and there exists

an endemic equilibrium when R0 exceeds one. Biologically this depicts that if the

average number of newly infected individuals is more than one then infection will

persist. The endemic equilibrium is locally asymptotically stable for R0 > 1 and

under conditions stated in Theorem 2.3.5. We observed that the system changes

its stability behavior around the endemic equilibrium from stable to unstable as

bifurcation parameter α changes and system (2.3) exhibits Hopf bifurcation near

endemic equilibrium E1 for α = α∗ (defined in the proof of Theorem 2.3.8). We

have found that system (2.3) has periodic solution if inequalities as stated in The-

orem 2.3.10 hold true and there is no periodic solution if b(1 + βA
δ0

) < γ holds true.

The existence of periodic solution shows that the infection may reoccur in future.

The proposed model depicts the presence of endemic equilibrium point that is

not only globally asymptotically stable but also independent of the initial values of

the susceptible and infected individuals. This indicates the restriction of the disease

within endemic zone. This model shows a decrease in infected individuals with

both decline in incidence rate α and an enhancement of inhibition rate (preventive

measures) i.e., β. It has also been observed that number of infected individuals

decreases as the treatment rate (a) increases. However it increases as the limitation

on resource (b) increases. This shows that for effective treatment the resource

limitation should be minimized.





Chapter 3

An SIR Model with Nonlinear

Incidence Rate and Holling Type

III Treatment Rate

An approximate answer to the

right problem is worth a good deal

more than an exact answer to an

approximate problem.

John Tukey

In continuation with Chapter 2, we try to explore the transmission dynam-

ics of an SIR model using Crowley-Martin type incidence rate which gives rich

dynamics in case of large population. The treatment given to the infected pop-

ulation is given by the Holling type III function (saturated treatment function).

Qualitative analysis of the model has been shown using stability theory of ordi-

nary differential equations which has been verified using the numerical simulations.



56 Chapter 3. SIR Model with Crowley-Martin Incidence Rate

3.1 Introduction

In the field of epidemiology, interventions (e.g. treatment, vaccination, quaran-

tine etc.) play an important role in controlling the disease spread. The diseases

for which treatment is available like flu, tuberculosis, measles (Earn et al., 2002;

Rohani et al., 2002); treatment is an useful tool to eradicate them. Several re-

searchers (Hethcote, 2000; Ma et al., 2004; Sun and Yang, 2010; Qiu and Feng,

2010; Moghadas and Alexander, 2006) have studied the effect of treatment using

different type of treatment rates. In classical models treatment rate is considered

to be proportional to the number of infectives. This treatment rate is not suit-

able in case of large number of infectives due to availability of limited resources

in a community. To study this effect of limited resources, Wang and Ruan (2004)

developed the constant removal rate (i.e. recovery per unit time), which is given

by:

h(I) =


r, if I > 0

0, if I = 0

.

This removal rate is further improved by taking the following removal rate function

(Wang, 2006):

h(I) =


rI, if 0 ≤ I ≤ I0

rI0, if I > I0

,

where r and I0 are positive constants. This removal rate shows that when the

capacity of treatment is not reached then the removal rate is proportional to the

number of infectives otherwise it takes the maximum capacity. Several authors

(Hu et al., 2008; Li et al., 2009) used this removal rate to study the dynamics of

their models. Further there was a scope to improve this removal rate. Zhang and

Liu (2008) introduced the improved treatment rate as a continuous differentiable

function which saturates at its maximum value. This removal rate is given by the

term h(I) = rI
1+αI

, where r is positive constant which denotes the cure rate and α

is nonnegative constant which measures the effect of delay in treatment. The term

1
1+αI

represents inverse of the effect of delay in treatment. This saturated removal
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rate is recently studied by Zhou and Fan (2012) with little modification. This

saturated removal rate also named as Holling type II removal rate and considered

by several authors (Zhonghua and Yaohong, 2010; Dubey et al., 2013, 2015) to

study the dynamics of their models.

Dubey et al. (2013) proposed an SEIR model with three different types of

removal rates: (i) Holling type II removal rate, (as explained above) (ii) Holling

type III removal rate, this is given by the term h(I) = βI2

1+αI2
, where β is positive

constant and α is nonnegative constant, h(I) is a continuous differentiable function

and approaches to its peak or maximum value when the number of infectives is

large, and (iv) Holling type IV removal rate, which is given by h(I) = βI
I2

a
+I+b

,

where β and a are positive constants and b is nonnegative constant.

In population dynamics, transmission of infection is the process in which sus-

ceptibles are getting infected via infected population through the various channels.

Transmission plays an important role to study the dynamical behaviour of epi-

demic models. Recently, several researchers (Li et al., 2009; Capasso and Serio,

1978; Liu et al., 1987; Zhang et al., 2008; Gao et al., 2006; Mukhopadhyay and

Bhattacharyya, 2008; Korobeinikov and Maini, 2005; Alexander and Moghadas,

2004; Xu and Ma, 2009) have focused on nonlinear type incidence rate whereas in

standard models the incidence rate was defined by law of mass action i.e. bilinear

incidence rate (Hethcote, 2000; Zhonghua and Yaohong, 2010; Anderson et al.,

1992; Bailey, 1975; Brauer and Castillo-Chavez, 2001; Kermack and McKendrick,

1927; McKendrick, 1925; Shulgin et al., 1998; Ghosh et al., 2004; Shukla et al.,

2011).

Different type of nonlinear incidence rates (Dubey et al., 2013, 2015; Bedding-

ton, 1975; DeAngelis et al., 1975; Kaddar, 2010; Elaiw and Azoz, 2013) (e.g. Holling

type II, DeAngelis-beddington type, etc.) have already been implemented by the

authors in their models to study the dynamics of infectious diseases. Consider-

ing these facts, we proposed a mathematical model incorporating Crowley-Martin

type incidence rate and saturated treatment rate (Holling type III) in SIR model

to analyze the cited epidemic situation to control the spread of infection.
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In the next section, we present SIR model with nonlinear incidence rate and

Holling type III treatment rate.

3.2 The Mathematical Model

We considered compartmental SIR model divided into three compartments; sus-

ceptible S, infected I and recovered R compartments respectively. The model is

given by the following system of differential equations:
dS
dt

= A− δ0S − αSI
(1+βS)(1+γI)

,

dI
dt

= αSI
(1+βS)(1+γI)

− δ0I − δ1I − δ2I − aI2

1+bI2
,

dR
dt

= δ2I − δ0R + aI2

1+bI2
,

(3.1)

S(0) > 0, I(0) ≥ 0, R(0) ≥ 0.

The interaction of the sub-populations can be visualized from the flow diagram as

shown in figure (2.1) (Chapter 2). For this chapter, the transmission of susceptiblles

to infected individuals is defined through different functional response (Crowley-

Martin type) and the recovery of infectives via treatment is also defined by different

function (Holling type III) as compared to previous model studied in Chapter 2.

In model equations d
dt

, represent the rate of change in corresponding compart-

ment. Let A be the recruitment rate of the susceptible and δ0 be the natural death

rate of the population in each class. We assume that the infected individuals die

out at the rate δ1 due to infection. Infected individuals may get recover with

auto immunity with the rate δ2 and join the recovered class. We have also con-

sidered the treatment of infected individuals as saturated removal rate. The term

h(I) = aI2

(1+bI2)
represents Holling type III treatment rate (continuously differen-

tiable function), where a and b are nonnegative constants and can be understood

as treatment given to the infected individuals and limitation to the treatment

availability, respectively (Lamontagne et al., 2008; Hethcote and Van den Driess-

che, 1991).

Unlike the Holling type II, Holling type III treatment rate grows first very fast

and later on increases slowly with increase in number of infection and gets satu-
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rated to its maximum level a
b

(treatment capacity of community) due to limited

availability of resources in the community (Dubey et al., 2013, 2015). The term

αSI
(1+βS)(1+γI)

denotes the monotone nonlinear incidence rate, where α is incidence

rate of infection, β and γ are the effects of inhibition due to susceptible individu-

als and due to infected individuals or γ may also be understood as the crowding

effect due to infected individuals. This functional response was introduced by P.H.

Crowley and E.K. Martin in 1989 (Crowley and Martin, 1989; Shi et al., 2011)

and is known as Crowley-Martin type incidence rate. We notice that other forms

of nonlinear incidence rates can be derived from this incidence rate (Dubey et al.,

2015):

(i) If we put β = γ = 0, then αSI which is bilinear incidence rate (Zhonghua and

Yaohong, 2010; Anderson et al., 1992; Bailey, 1975; Brauer and Castillo-Chavez,

2001; Kermack and McKendrick, 1927; McKendrick, 1925; Shulgin et al., 1998).

(ii) If γ = 0, then αSI
(1+βS)

, which is saturated incidence rate with the susceptible

individuals (Zhang et al., 2008; Gao et al., 2006).

(iii) For β = 0, we get αSI
(1+γI)

, which is again saturated incidence rate but with

the infected individuals. In such a case, the contact between infective and suscep-

tible individuals may saturate at high infection level due to crowding of infective

individuals or due to protection taken by susceptible individuals (Li et al., 2009;

Alexander and Moghadas, 2004; Xu and Ma, 2009).

Unlike the Beddington-DeAngelis type incidence rate, the Crowley-Martin type

incidence rate considers the effect of inhibition among infectives even in case of high

density of susceptible populations (Edwin, 2010). This can be seen as follows:

Beddington-DeAngelis type incidence rate for S →∞,

lim
S→∞

αS

1 + βS + γI
=
α

β
,

and Crowley-Martin type incidence rate for S →∞,

lim
S→∞

αS

(1 + βS)(1 + γI)
=

α

β(1 + γI)
.
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From the above system (3.1) we can infer that S and I are free from the effect of

R. Thus it is enough to consider the following reduced system for the study:


dS
dt

= A− δ0S − αSI
(1+βS)(1+γI)

,

dI
dt

= αSI
(1+βS)(1+γI)

− δ3I − aI2

1+bI2
,

(3.2)

where δ3 = δ0 + δ1 + δ2 and S(0) > 0, I(0) ≥ 0.

3.3 Positivity and Boundedness of the System

For system (3.2), we found that all the solutions initiating in the region defined in

Lemma 3.3.1 will eventually lie in the same region even after a long time say for

t→∞ or will always stay in the same region. This can be observed as follows:

Let N = S + I, then

Ṅ = Ṡ + İ = A− δ0N − (δ1 + δ2)I − aI2

1 + bI2
.

From elementary calculus we have,

N(t) ≤ N(0)e−δ0t +
A

δ0

(1− e−δ0t).

Thus,
lim
t→∞

supN(t) ≤ A

δ0

.

Furthermore, Ṅ < 0 if N > A
δ0

. This shows that solutions of system (3.2) point

towards Ω the region defined in Lemma 3.3.1. Hence Ω is positively invariant and

solutions of (3.2) are bounded. Thus, we can state the following Lemma.

Lemma 3.3.1. The set Ω = {(S, I) : 0 < S + I ≤ A
δ0
} is a positively invariant

region of system (3.2).

The above lemma shows that all solutions of the model are nonnegative and

bounded. Thus the model is biologically well behaved.

In the next section, we discuss the existence of equilibrium points of system

(3.2).
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3.4 Equilibrium and Stability Analysis

We see that system (3.2) has only two equilibria: (i) the disease-free equilibrium

(DFE) E0( A
δ0
, 0), the state when infection dies out i.e. (I = 0) and (ii) the endemic

equilibrium E1(S∗, I∗) i.e. state when infection persists (I 6= 0). We can infer from

system (3.2) that the disease-free equilibrium E0 always exists and its existence is

trivial.

We compute the basic reproduction number using next generation matrix method

and describe the stability behaviour of DFE, which is independent of initial status

of sub-populations.

3.4.1 Computation of R0

Model (3.2) can be rewritten as ẋ = F (x)− V (x), where x = [I, S]T and F (x) be

the rate of appearance of new infections and V (x) be the the rate of transfer of in-

dividuals into compartment and out of compartment by all other means. Jacobian

of F (x) at E0 is

F =

 αA
(δ0+Aβ)

0

0 0

 ,
and Inverse of Jacobian of V (x) at E0 is

V −1 =

 1
δ3

0

αA
(δ0+Aβ)δ3δ0

1
δ0

 .
Then ρ(FV −1) gives the spectral radius (largest eigenvalue) of the next generation

matrix (FV −1) (Van den Driessche and Watmough, 2002). The spectral radius

gives the basic reproduction number, thus

R0 = ρ(FV −1) =
αA

(δ0 + Aβ)δ3

,

where R0 is basic reproduction number.

Theorem 3.4.1. (i) The disease-free equilibrium E0 is locally asymptotically stable

if R0 < 1 and is a saddle point with stable manifold locally in the S-direction and
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unstable manifold locally in the I-direction if R0 > 1.

(ii) The disease-free equilibrium E0 is globally asymptotically stable if R0 ≤ 1.

Proof. (i) We find the general variational matrix and then compute the variational

matrices corresponding to each equilibrium point. The variational matrix corre-

sponding to DFE E0( A
δ0
, 0) is given by

JE0 =

 −δ0 − αA
(δ0+Aβ)

0 αA
(δ0+Aβ)

− δ3

 .
The above matrix is upper-triangular matrix and has two eigenvalues: e1 = −δ0

and e2 = αA
(δ0+Aβ)

− δ3. We note that e1 < 0 and e2 < 0 if R0 < 1. Again e2 > 0 if

R0 > 1. Hence first part of theorem follows.

(ii) To show the global stability of DFE, we use Lasalle’s invariance principle

(LaSalle, 1976). Let us define positive definite function

L =
1

1 + βS0

(
S − S0 − S0ln

S

S0

)
+ I, where S0 =

A

δ0

.

Differentiating L along the solutions of (3.2) and simplifying, we get

L̇(t) = −
[
δ0(S − S0)2

S(1 + βS0)
+

(
a

1 + bI2
+

δ3γ

1 + γI

)
I2

]
+

δ3I

(1 + γI)
[R0 − 1],

L̇(t) < 0 if R0 ≤ 1 and ∀ S, I > 0, L̇(t) = 0 iff S = S0 = A
δ0

and I = I0 = 0.

Then let M be the largest invariant set in the set E = {(S, I)|L̇(t) = 0} for each

element of M , we have I = 0. Thus M = {E0} is the singleton set. Thus from

Lasalle’s invariance principle disease-free equilibrium is globally asymptotically

stable.

3.4.2 Analysis at R0 = 1

In this section, we state and prove the following theorem which characterizes the

behavior of the DFE at R0 = 1.
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Theorem 3.4.2. The disease-free equilibrium changes its stability from stable to

unstable at R0 = 1 and system (3.2) exhibits transcritical bifurcation.

Proof. Linearization matrix of system (3.2) at E0 and bifurcation parameter α =

α∗ = δ3(δ0+Aβ)
A

is given by

J =

 −δ0 − α∗A
(δ0+Aβ)

0 α∗A
(δ0+Aβ)

− δ3

 .
The matrix J has a simple zero eigenvalue at R0 = 1 and other eigenvalue of

the matrix has negative real part. At this stage linearization techniques fail to

conclude the behaviour of system (3.2). Centre Manifold Theory is used to study

the behaviour of non-hyperbolic equilibrium. Then from Theorem 4.1 of Castillo-

Chavez and Song (2004), the bifurcation constants a1 and b1 are given by

a1 =
2∑

k,i,j=1

wkuiuj

(
∂2fk
∂xi∂xj

)
E0

,

and b1 =
2∑

k,i=1

wkui

(
∂2fk
∂xi∂α∗

)
E0

,

where u = [ −α∗A
δ0(δ0+Aβ)

, 1]T and w = [0, 1] are right eigenvector and left eigenvector

of the matrix J corresponding to zero eigenvalue, respectively. Nonzero partial

derivatives associated with the system at E0 and α = α∗ are

∂2f2

∂x1∂x2

=
α∗δ0

2

(δ0 + Aβ)2
,

∂2f2

∂x2
2

= −2

(
a+

α∗γA

(δ0 + Aβ)

)
,

∂2f2

∂x2∂α∗
=

A

(δ0 + Aβ)
.

Hence,

a1 = − α∗2δ0A

(δ0 + Aβ)3
− 2

(
a+

α∗γA

(δ0 + Aβ)

)
< 0 and b1 =

A

(δ0 + Aβ)
> 0.

This shows that at R0 = 1, DFE changes its stability from stable to unstable and

positive equilibrium exists when R0 exceeds the threshold value i.e. ‘one’. This

emphasizes that the system exhibits transcritical bifurcation at R0 = 1.
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3.4.3 Existence of Endemic Equilibrium E1(S
∗, I∗)

Now we show the existence of endemic equilibrium E1(S∗, I∗) using isocline method

under certain threshold value or conditions. Let us assume that

f(S, I) = A− δ0S −
αSI

(1 + βS)(1 + γI)
= 0, (3.3)

g(S, I) =
αS

(1 + βS)(1 + γI)
− δ3 −

aI

1 + bI2
= 0. (3.4)

From first isocline (3.3), we observe the following:

(i) when I = 0, then S = A
δ0

= S0.

(ii) dS

dI
= − ∂f/∂I

∂f/∂S
,

where

∂f

∂I
= − αS

(1 + βS)(1 + γI)2
,

∂f

∂S
= −δ0 −

αI

(1 + γI)(1 + βS)2
.

This implies that
dS

dI
= −αS/(1 + βS)(1 + γI)2

δ0 + αI
(1+γI)(1+βS)2

< 0.

Hence first isocline (3.3) is decreasing function of I.

From second isocline (3.4), we have the following observations:

(i) when I = 0, then S = δ3
α−δ3β = S1(say) and S1 > 0 if

α > δ3β. (3.5)

(ii) dS

dI
= − ∂g/∂I

∂g/∂S
,

where

∂g

∂I
= − αγS

(1 + βS)(1 + γI)2
− a(1− bI2)

(1 + bI2)2
,

∂g

∂S
=

αI

(1 + γI)(1 + βS)2
,

This implies

dS

dI
=

αγS
(1+βS)(1+γI)2

+ a(1−bI2)
(1+bI2)2

αI
(1+γI)(1+βS)2

.
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It can be noted from the above expression that the denominator is always positive

and the numerator is positive if 1− bI2 > 0 i.e. bI2 < 1.

After substituting the maximum value of I (i.e. A
δ0

), we get the inequality bA2 < δ2
0.

Thus, dS
dI

is positive if bA2 < δ2
0 and g(S, I) is increasing function of I. This implies

that the two isoclines (3.3) and (3.4) intersects at a unique point E∗(S∗, I∗) if

S0 > S1 i.e. if R0 = αA
δ3(δ0+Aβ)

> 1. Thus the endemic equilibrium exists if the

following inequalities hold true.

bA2 < δ2
0, (3.6)

R0 =
αA

δ3(δ0 + Aβ)
> 1. (3.7)

Remark 3.4.1. It may be noted that if condition (3.7) holds, then condition (3.5)

is satisfied by default.

The graphical representation of existence of endemic equilibrium, using the set

of parameters given in Table 3.1, is shown in figure 3.1.
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Figure 3.1: Plot of two isoclines showing existence of endemic equilibrium (E1).
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The next theorem shows uniform persistence of system (3.2). Biologically per-

sistence implies that the sub-populations exist always and will not lead to extinc-

tion if initially they are present.

Theorem 3.4.3. Assume that Lemma 3.3.1 holds. Let the following inequality is

satisfied:

max

{
αA

(δ0 + βA)(δ0 + γA)
,

aA

δ2
0 + bA2

}
< 1.

Then system (3.2) is uniformly persistent.

The proof of theorem is similar to the proof of Theorem 2.3.4 discussed in

Chapter 2, hence omitted. Further, we discuss the local and global stability of the

endemic equilibrium point E1(S∗, I∗). We state and prove the following results:

Theorem 3.4.4. The endemic equilibrium E1(S∗, I∗) is locally asymptotically sta-

ble iff the following inequalities hold true:

αS∗

(1 + βS∗)(1 + γI∗)2
< L1, (3.8)

δ0αS
∗

(1 + βS∗)(1 + γI∗)2
< L2, (3.9)

where

L1 = δ0 + δ3 +
2aI∗

(1 + bI∗2)2
+

αI∗

(1 + γI∗)(1 + βS∗)2
,

L2 =

(
δ3 +

2aI∗

(1 + bI∗2)2

)(
δ0 +

αI∗

(1 + γI∗)(1 + βS∗)2

)
.

Proof. The variational matrix corresponding to endemic equilibrium E1(S∗, I∗) is

given as follows:

JE1 =


−δ0 − αI∗

(1+γI∗)(1+βS∗)2
− αS∗

(1+βS∗)(1+γI∗)2

αI∗

(1+γI∗)(1+βS∗)2
αS∗

(1+βS∗)(1+γI∗)2
− δ3 − 2aI∗

(1+bI∗2)2

 .
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The characteristic polynomial of the above matrix is given by the following equation

λ2 + a1λ+ a2 = 0, (3.10)

where

a1 = δ0 +
αI∗

(1 + γI∗)(1 + βS∗)2
− αS∗

(1 + βS∗)(1 + γI∗)2
+ δ3 +

2aI∗

(1 + bI∗2)2
,

a2 =

(
δ3 +

2aI∗

(1 + bI∗2)2

)(
δ0 +

αI∗

(1 + γI∗)(1 + βS∗)2

)
− δ0αS

∗

(1 + βS∗)(1 + γI∗)2
.

Using the Routh-Hurwitz criteria, it follows that eigenvalues of the above varia-

tional matrix have negative real parts iff a1 > 0 and a2 > 0. This implies that

the endemic equilibrium E1(S∗, I∗) is locally asymptotically stable iff inequalities

(3.8) and (3.9) hold true. Hence the theorem follows.

Remark 3.4.2. It may be noted that conditions (3.8) and (3.9) hold if

αS∗

(1 + βS∗)(1 + γI∗)2
< δ3 +

2aI∗

(1 + bI∗2)2
.

Remark 3.4.3. If α = 0, then conditions (3.8) and (3.9) in Theorem 3.4.4 and

condition mentioned in Remark 3.4.2 are always true. This shows that the decline

in the transmission rate of infection increases the feasibility of the stability of the

system.

We note that in characteristic equation (3.10) if a2 < 0, then one eigenvalue

is positive and other eigenvalue is negative. Also if a1 < 0 and a2 > 0, then both

eigenvalues have positive real parts. Hence we can state the following results.

Theorem 3.4.5. (i) Let the following inequality holds true:

δ0αS
∗

(1 + βS∗)(1 + γI∗)2
> L2.
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Then E1(S∗, I∗) is a saddle point.

(ii) Let the following inequality holds true:

L1 <
αS∗

(1 + βS∗)(1 + γI∗)2
<
L2

δ0

.

Then E1(S∗, I∗) is always unstable.

In the following theorem, we show that the endemic equilibrium E1(S∗, I∗) is

globally asymptotically stable.

Theorem 3.4.6. Let the following inequality holds in the region Ω:

α2γS∗I∗

(1 + γI∗)(1 + βS∗)2
< X1X2, (3.11)

where

X1 = δ0 +
αI∗δ2

0

(1 + βS∗)(δ0 + βA)(δ0 + γA)
,

X2 =
αγδ2

0S
∗

(δ0 + βA)(1 + γI∗)(δ0 + γA)
+

aδ0
2

(δ0
2 + bA2)(1 + bI∗2)

− aI∗
√
b

2(1 + bI∗2)2
.

Then the positive equilibrium E1(S∗, I∗) is globally asymptotically stable with re-

spect to all solutions in the interior of the positive quadrant Ω.

Proof. We take a positive definite scalar function V as follows:

V (S, I) =
1

2
(S − S∗)2 +

1

2
k1

(
I − I∗ − I∗ln I

I∗

)
.

Differentiating V w.r.t. time t along the solutions of model (3.2), we get

V̇ = −a11(S − S∗)2 + a12(S − S∗)(I − I∗)− a22(I − I∗)2

where

a11 = δ0 +
αI∗

PP ∗L
> 0,

a12 = −αS
PL

+
αγS∗I∗

P ∗LL∗
+

αk1

PP ∗L
,

a22 = k1

(
αγS∗

P ∗LL∗
+

a(1− bII∗)
(1 + bI∗2)(1 + bI2)

)
,
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P = 1 + βS, P ∗ = 1 + βS∗, L = 1 + γI, L∗ = 1 + γI∗.

Sufficient conditions for V̇ to be negative definite are a11 > 0 and a2
12 < 4a11a22.

The second condition for V̇ to be negative definite leads to the inequality (3.11)

for k1 = γS∗I∗

1+γI∗
. Hence the theorem follows.

In the following theorem, we show the nonexistence of limit cycle under certain

condition.

Theorem 3.4.7. If bA2 < δ0
2, then model (3.2) does not have any periodic solution

in the interior of the positive quadrant of the SI-plane.

Proof. We define a real valued function in the interior of positive quadrant of the

SI-plane as follows:

H(S, I) =
(1 + βS)(1 + γI)

SI
> 0.

Let us consider,

h1(S, I) = A− δ0S −
αSI

(1 + βS)(1 + γI)
,

h2(S, I) =
αSI

(1 + βS)(1 + γI)
− δ3I −

aI2

1 + bI2
.

Then we have,

div(Hh1, Hh2) =
∂

∂S
(Hh1) +

∂

∂I
(Hh2)

= −A(1 + γI)

IS2
− δ0β(1 + γI)

I
− δ3γ(1 + βS)

S
− a(1− bI2 + 2γI)(1 + βS)

S(1 + bI2)2
.

We can see that the above expression is not zero and this will not change sign in

the positive quadrant of the SI-plane if the inequality bA2 < δ0
2 holds. Then by

Dulac’s criterion (Sastry, 1999), it is apparent that model (3.2) does not have any

periodic solution in the interior of the positive quadrant of the SI-plane.

3.5 Numerical Simulations

In this section, we present simulation results for model (3.2) using Mathematica and

MatLab 7.10. Mathematica has been used for calculation of symbolic mathematical

expressions while Matlab is used to plot the figures.
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Table 3.1: Parameter values and units for model (3.2)

Parameters Value (Unit)

Recruitment rate (A) 2 (person (d)−1)

Natural death rate of each sub-population (δ0) 0.05 (d)−1

Disease induced death rate of infected (δ1) 0.001 (d)−1

Recovery rate of infected due to auto immunity (δ2) 0.002 (d)−1

Treatment rate (a) 0.02 ((d)−1)

Limitation rate in treatment availability (b) 0.0004 (person)−1

Transmission rate (α) 0.004 (person)−1 (d)−1

Inhibition rate due to susceptible (β) 0.004 (person)−1 (d)−1

Inhibition rate due to infected (γ) 0.002 (person)−1 (d)−1
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Figure 3.2: Phase portrait of endemic equilibrium point E1.

We chose the dataset of parameters as given in Table 3.1 for model (3.2). For

this set of parameters, the basic reproduction number R0 is 2.6025 > 1 and other

conditions for the existence of endemic equilibrium are satisfied. Endemic equi-

librium point E1(S∗, I∗) is given by S∗ = 33.0457 and I∗ = 3.1467. The phase

portrait of susceptible population and infected population (figure 3.2) shows that

the trajectories initiating from different initial points (initial values are given in

the legend) approach to the unique equilibrium point E1(33.0457, 3.1467). This is
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evident from figure 3.2 that the endemic equilibrium point is globally asymptoti-

cally stable for this dataset. Thus the stability of the endemic equilibrium point

is independent of initial status of susceptibles and infectives. In figures 3.3(a)
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Figure 3.3: Effect of incidence rate (α) on S and I.

and 3.3(b), we plotted the effect of variation of incidence rate α on susceptible

S and infected population I for the values of parameters given in Table 3.1. For

higher values of α the trajectory corresponding to susceptible population settles

down at low level while trajectory for infected population first decreases and then

attains its steady state at high level of infection. The initial decrease in infection is

due to treatment available in the community. The number of infectives decreases

with decrease in incidence of infection which can be controlled by treatment. We

have considered Crowley-Martin type nonlinear incidence rate so the effect of the

constant β (involved in the incidence expression) i.e. measure of inhibition with

respect to susceptible is plotted in figures 3.4(a) and 3.4(b). When β is low the

trajectory corresponding to susceptible population settles at a lower level and the

trajectory corresponding to infected population settles at high level of infection.

This shows that the number of susceptible can be increased and the number of in-
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Figure 3.4: Effect of β on S and I.

fectives can be decreased by increasing the value of β i.e. by increasing the density

of preventive measures taken by susceptible individuals.

The effect of treatment given to the community is shown in figures 3.5(a) -

3.5(d) using different treatment rates. It may be noted here that the legend for

figures 3.5(a) and 3.5(c) is same and the legend for figures 3.5(b) and 3.5(d) is

same. Figure 3.5(a) shows the effect of treatment on the infected population and

figure 3.5(b) shows the effect of limitation to the treatment resources on infected

population with Holling type III treatment rate while the same has been shown

in figures 3.5(c) and 3.5(d) using Holling type II treatment rate for comparison

purposes. In absence of treatment (a = 0) the infection increases very rapidly

and settles to its steady state (figure 3.5(a)), on the contrary, when there is no

restriction to availability of treatment (b = 0) the infection decreases sharply and

get settled to its steady state (figure 3.5(b)). Figures 3.5(a) and 3.5(c) show that

the number of infected individuals can be decreased faster in the case of Holling

type III treatment rate in comparison to that of Holling type II treatment rate

(from Chapter 2). When there is low availability of treatment, infection is high.
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Figure 3.5: Effect of a and b on I with HTIII and HTII treatment rates.

When the ample quantity of treatment is available in the community the infection

almost dies out. Infection gets increase with increase in limit to the availability of

treatment.

3.6 Conclusions

In this chapter, we addressed the pharmaceutical intervention to control the infec-

tion and a monotone nonlinear incidence rate to get the better insight of spread

of infection among the populations. We found that the model has two equilib-

ria: disease-free equilibrium E0 and endemic equilibrium E1. It has been shown

that the infection persists along with the low availability of treatment when basic
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reproduction number is greater than one. The local and global stability of each

equilibria has been studied and found that persistence or eradication of infection

is independent of initial status of the sub-populations and system is uniformly

persistence under the condition stated in Theorem 3.4.3.

This is also evident from numerical simulations that the infection increases with

increase in incidence but settles at a lower level due to availability of treatment.

Further infection will decrease with the increase in measure of inhibition taken by

susceptibles. It is also found that the eradication of infection is possible only when

the treatment given to the population managed according to the availability of re-

sources. It has also been observed that the equilibrium point changes its stability

from stable to unstable at R0 = 1 i.e. model exhibits transcritical bifurcation at

R0 = 1. Nonexistence of periodic solution under the condition defined in Theo-

rem 3.4.7 ensures that the infection will not reoccur in future under mentioned

condition.



Chapter 4

Role of Media and Treatment on

an SIR Model

Health is not mainly an issue of

doctors, social service and

hospitals, it is an issue of social

justice.

Park

“Prevention is better than cure” is a proven fact. This advises us to take nec-

essary preventive measures to be away from any kind of infection or to reduce the

further spread of any outbreak. But this is also an important fact that ultimately

cure is needed to eliminate the infection or to complete eradication of epidemic.

In this chapter, we try to model the aforesaid phenomenon in real world i.e. the

proposed model deal with the effect of dissemination of awareness through media

as well as treatment. The model is simple SIR model which is assumed to be di-

vided into four classes depending on the modeling requirement. Stability analysis

of the model has been performed which has been validated using simulations.
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4.1 Introduction

World Health Organization report (WHO, 2008) has shown that approximately 15

million people die each year due to infectious diseases. When an epidemic spreads

in a society, there is a need for effective treatment to control the epidemic. More-

over, vaccination is a prophylactic measure to control the spread of the disease

among susceptible individuals. Medical facilities and subsequent therapies may

require some time to be developed and implemented. If individuals are familiar

with the disease and have knowledge about the transmission modality of infection

then they can take necessary preventive measures to avoid infection. The suscep-

tible individuals may isolate themselves from infected individuals or they can take

necessary prophylactic measures. Infection can be reduced by awareness among

susceptibles but will not be eradicated. To control the spread of further infection

and to eradicate the infection from the society, there is a requirement of not only

the awareness programs but also treatment.

Literature shows that several SIR models have been studied with different type

of nonlinear incidence rates. Authors (Pathak et al., 2010; Kaddar, 2010; Xu, 2013;

Buonomo and Lacitignola, 2011) analyzed the dynamics of SIR models with differ-

ent type of nonlinear incidence rates. Pathak et al. (2010) proposed an SIR model

with an asymptotic homogeneous transmission function and concluded that the

spread of disease decreases as the social or psychological protection measures for

the infection increases. Kaddar (2010) studied the role of incubation period on the

dynamics of an SIR model. Further, Xu (2013) investigated the global stability dy-

namics of an SEIR epidemic model with disease relapse, a saturated incidence rate

and a time delay describing the latent period of the disease. Buonomo and Lacit-

ignola (2011) studied an SIR model with vaccination and treatment and obtained

threshold on the basic reproduction number to control the spread of disease.

Surveys indicate that people who watch television (Khanam et al., 1997; Rah-

man and Rahman, 2007) or read article or magazine related to the public health

on daily basis are more aware about the ways of spread of infection as compared

to those who do not do so. Awareness programs run by media campaigns induce
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the behavioral changes in the susceptibles towards infection. These campaigns of

awareness through media and education focus on individual’s knowledge about the

disease transmission and facilitate measures that can reduce the chances of being

infected. Annual report of NACO (2010) shows that the awareness campaigns

about the HIV/AIDS driven by government are very helpful in controlling the epi-

demic. Many authors (Liu and Cui, 2008; Cui, Tao, Zhu et al., 2008; Cui, Sun

and Zhu, 2008) have introduced models showing the effect of awareness programs

run by media to control the spread of epidemic. Liu et al. (2007) have studied the

psychological impact on epidemic. They have postulated that an increase in infec-

tion level reduces the effective contacts but they did not take into account factors

of mandatory quarantine and isolation. Funk et al. (2009) studied the impact of

awareness programs on the spread of epidemic using mathematical modeling and

showed that awareness programs play a vital role in reducing the spread of epi-

demic. Further, Kiss et al. (2010) proposed an SIS type compartmental model for

Sexually Transmitted Infections with the assumption that the whole population is

aware of risk but only a certain proportion chooses to respond by limiting their

contact with infectives and seeking faster treatment. They have assumed that the

total number of susceptibles remains relatively unchanged. The demographic fac-

tors such as natural birth rate, death rate, immigration were ignored. However, in

all these studies, the density of awareness programs is considered to be a constant

which need not be true in real life.

Misra, Sharma and Shukla (2011) proposed a non-linear mathematical model

for the effects of awareness programs on the spread of infectious diseases, like flu.

They have shown that awareness programs through the media campaigning are

helpful in decreasing the spread of infectious diseases. This is done by isolating a

fraction of susceptibles from infectives. Further, Misra, Sharma and Singh (2011)

proposed a non-linear mathematical model with delay to study the dynamics of the

effects of awareness programs on prevalence of any epidemic. In this study, they

have shown that though awareness programs can not eradicate the infection but

they can help in controlling disease prevalence. They have also shown that time

delay in execution of awareness programs destabilizes the system and periodic
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solutions may arise through Hopf bifurcation. Recently, Samanta et al. (2013)

proposed a mathematical model to assess the effect of awareness programs by

media on the prevalence of infectious diseases. They have shown that if the rate of

implementation of awareness programs through the media increases, the number of

individuals getting infected decline and the system remains stable up to a threshold

value of implementation of awareness program. But, the system becomes unstable

above that threshold. They have also observed that for moderate range of value

of immigration rate the system shows unstable dynamics, but for lower and higher

values the system becomes stable. Further, Cai et al. (2009) studied the effect

of treatment on HIV/AIDS epidemic in their model and showed that the disease

may persist or die out depending on treatment parameter values. They have also

considered time delay in their model to study the effect of time on dynamics of

endemic equilibrium. Recently, Sharma and Misra (2014) studied the impact of

awareness program on the coverage of vaccination of hepatitis B. They showed

that vaccination coverage can be increased and prevalence of the disease can be

decreased by taking appropriate steps by media.

Since awareness programs alone can not eradicate the disease, treatment of

the disease in infected population must go along with awareness programs for the

susceptible. The effect of treatment has not been considered in the models studied

by Misra, Sharma and Shukla (2011); Misra, Sharma and Singh (2011). Keeping

this aspect in view, we present here an SIR model to study the impact of two

important parameters: (i) awareness programs (run by media) and (ii) treatment

on the spread of an infectious disease.

4.2 The Mathematical Model

We assume that the whole population is first divided into three compartments,

namely susceptible population (S), infected population (I) and recovered popula-

tion (R). Next, we assume that a part of the susceptible population forms another

class called susceptible aware population (Sa). This class develops due to aware-

ness programs driven by social/electronic media of density M at any time t. When

the media interacts with the susceptible population, it starts influencing them to
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take appropriate measures so that they should not be infected by the pathogens.

This media influence is initially low and increases as the infection increases. But

media can influence susceptible population only upto a certain level after that it

gets saturated due to the resource limitation (Liu et al., 2007; Misra, Sharma and

Singh, 2011).

Generally media sources do not deal with the same topic for a very long time.

Their emphasis changes with changing social/political issues. Moreover, their im-

pact may not reach to the entire population due to factors like time shortage,

illiteracy and financial limitation of population as well as resources required to

propagate information. Thus, neither media nor its impact can go on increasing

forever and therefore attains saturation. Hence we assume that the impact of me-

dia on susceptible populations is governed by Holling Type II functional response

(Liu et al., 2007; Misra, Sharma and Singh, 2011). It is also considered that the

growth rate of the cumulative density of awareness programs driven by the media

is proportional to the number of infectives present in the population. Further, the

awareness about the disease will alert susceptibles to isolate themselves from infec-

tives and avoid being infected by forming a separate class. The effect of depletion of

awareness programs has also been considered. We also consider the treatment rate

as saturated treatment rate due to limited availability of resources in community.

The model is given by the following system of differential equations:

dS
dt

= A− δ0S − αSI − βSM
1+γM

+ δ3Sa,

dI
dt

= αSI − δ0I − δ1I − δ2I − aI
1+bI

,

dSa
dt

= βSM
1+γM

− δ0Sa − δ3Sa,

dM
dt

= µI − µ0M,

dR
dt

= δ2I − δ0R + aI
1+bI

,

(4.1)

S(0) > 0, I(0) > 0, Sa(0) ≥ 0, M(0) ≥ 0, R(0) ≥ 0.

Let the susceptibles be recruited at a constant rate A and δ0 be the natural death

rate of the population in each class. δ1 be the death rate of infected individuals due

to infection and δ2 be natural recovery rate of infected individuals due to immu-
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nity. Realistically speaking, the whole aware population may not keep themselves

isolated. Due to negligence or loss of memory, a part of the aware population may

become susceptible to the disease. Let δ3 be the rate of transfer of aware individ-

uals to susceptible class and µ be the implementation rate of awareness programs.

The awareness programs may be slowed down due to treatment of the disease or

due to the diversion caused by other hot topics of high priority coming in the me-

dia. Let µ0 be the depletion rate of awareness programs, α is the incidence rate

which is the number of persons getting infected per unit of time.

For any outbreak of the disease, its treatment initially is slow due to non-

availability of the treatment techniques and appropriate drugs. After some time,

the treatment grows with the improvement in hospitals’ conditions, effective drugs

and skillful techniques. Thus, it is better to use saturated treatment rate which is

given by

h(I) =
aI

1 + bI
,

where a and b are positive constants. In the above treatment function, a
b

(a
b

=

limI→∞ h(I)) denotes the maximum supply of medical resources per unit time and

1
1+bI

denotes the reverse effect of infected individuals being delayed for treatment

(Zhou and Fan, 2012).

Similar interpretation may be given for the term f(M) = βM
1+γM

, which denotes

the effect of media coverage on susceptible population. β can be thought of as

the dissemination rate of awareness programs among susceptibles and γ limits the

effect of awareness programs on susceptibles, β
γ

is the maximum effect that media

can put on susceptibles.

From the above system (4.1) we can infer that S, I, Sa and M are free from

the effect of R as we assume immunity in recovered individuals. Thus, it is enough

to consider the following sub-system:
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dS
dt

= A− δ0S − αSI − βSM
1+γM

+ δ3Sa,

dI
dt

= αSI − δ0I − δ1I − δ2I − aI
1+bI

,

dSa
dt

= βSM
1+γM

− δ0Sa − δ3Sa,

dM
dt

= µI − µ0M.

(4.2)

Let S + I + Sa = N, then system (4.2) reduces to

dI
dt

= α(N − I − Sa)I − δI − aI
1+bI

,

dSa
dt

= β(N−I−Sa)M
1+γM

− δ0Sa − δ3Sa,

dN
dt

= A− δ0N − (δ1 + δ2)I − aI
1+bI

,

dM
dt

= µI − µ0M,

(4.3)

where δ = δ0 + δ1 + δ2.

For the above system (4.3), a region of attraction has been found and it is given

in Lemma 4.2.1.

Lemma 4.2.1. The set Ω = {(I, Sa, N,M) ∈ <4
+ : 0 < I+Sa ≤ N ≤ A

δ0
, 0 ≤M ≤

µA
δ0µ0
} is a positively invariant region of system (4.3).

Proof. Let W (t) = (N(t),M(t)),then

dW

dt
=

(
dN

dt
,

dM

dt

)
=

(
A− δ0N − (δ1 + δ2)I − aI

1 + bI
, µI − µ0M

)
, (4.4)

We note that dN
dt
≤ A− δ0N ≤ 0 if N ≥ A

δ0
and dM

dt
≤ µA

δ0
− µ0M ≤ 0 if M ≥ µA

µ0δ0
.

From equation (4.4), dW
dt
≤ 0 for N ≥ A

δ0
and M ≥ µA

µ0δ0
.

This shows that the set Ω is a positively invariant set.

From the third equation of model (4.3), we have

dN

dt
≤ A− δ0N,

which implies that

lim
t→∞

supN(t) ≤ A

δ0

.
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From the last equation of model (4.3) it follows that

dM

dt
≤ µA

δ0

− µ0M,

and hence

lim
t→∞

supM(t) ≤ µA

δ0µ0

.

This completes the proof of Lemma 4.2.1.

The above lemma shows that all solutions of the model are nonnegative and

bounded. Thus, the model is biologically well behaved. In the next section, we

discuss the existence of equilibrium points of system (4.3).

4.3 Equilibrium Analysis

We see that system (4.3) has only two equilibria:

(i) the disease-free equilibrium (DFE) E0(0, 0, A
δ0
, 0), and

(ii) the endemic equilibrium (EE) E1(I∗, S∗a, N
∗,M∗).

We can infer from system (4.3) that the disease-free equilibrium E0 exists without

any condition. Now we need to check the existence of endemic equilibrium E1.

4.3.1 Existence of Endemic Equilibrium E1(I
∗, S∗a, N

∗,M∗)

We note that I∗, Sa
∗, N∗, and M∗ are the positive solutions of the following system

of algebraic equations:

α(N∗ − I∗ − S∗a)− δ −
a

1 + bI∗
= 0,

β(N∗ − I∗ − S∗a)M∗

1 + γM∗ − δ0S
∗
a − δ3S

∗
a = 0,

A− δ0N
∗ − (δ1 + δ2)I∗ − aI∗

1 + bI∗
= 0,

µI∗ − µ0M
∗ = 0.
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After solving the above equations, we get

S∗a =
βµ(δ + a+ δbI∗)I∗

α(δ0 + δ3)(1 + bI∗)(µ0 + µγI∗)
,

N∗ = I∗ + S∗a +
(δ + a+ δbI∗)

α(1 + bI∗)
, M∗ =

µI∗

µ0

,

and the cubic polynomial in I∗ is given as

A1I
∗3 + A2I

∗2 + A3I
∗ + A4 = 0, (4.5)

where

A1 = bδαµγ(δ0 + δ3),

A2 = α(δ0 + δ3)(µ0δb+ γµ(δ + a)) + βµδδ0b+ δ0(δ0 + δ3)δbµγ − αA(δ0 + δ3)bµγ,

A3 = α(δ0 + δ3)µ0(δ + a) + βµδ0(δ + a) + δ0(δ0 + δ3)(δbµ0 + (δ + a)µγ)

− αA(δ0 + δ3)(bµ0 + µγ),

A4 = δ0(δ0 + δ3)(δ + a)µ0 − αA(δ0 + δ3)µ0.

By Descartes’ rule of sign, one can see that the cubic equation (4.5) has unique

positive real root I∗ if the following inequality hold:

1 < R0 <
α

bδ0

, (4.6)

where R0 = Aα
(δ+a)δ0

is the basic reproductive number. After finding the value of I∗,

we can find the values of N∗, S∗a and M∗. This implies that there exists a unique

endemic equilibrium E1(I∗, S∗a, N
∗,M∗) if the inequality (4.6) is satisfied.

Remark 4.3.1. Equation (4.6) shows a threshold on the basic reproduction number

R0 which depends upon α, δ0 and b. We note that if the parameter b (delay in the

treatment) is large, then equation (4.6) may not be satisfied and thus more than

one positive equilibrium may exist.
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4.4 Stability Analysis

In this section, we discuss the local and global stability of the equilibrium points,

E0(0, 0, A
δ0
, 0) and E1(I∗, S∗a, N

∗,M∗). By calculating the Jacobian matrix at E0,

we note that three eigenvalues are always negative and the fourth one is negative

if R0 < 1 and positive if R0 > 1. Thus, we state the following theorem.

Theorem 4.4.1. The disease-free equilibrium E0(0, 0, A
δ0
, 0) is locally asymptoti-

cally stable if R0 < 1 and is unstable if R0 > 1.

Remark 4.4.1. If R0 = 1, then one eigenvalue of the Jacobian matrix evaluated

at E0 is zero with multiplicity one (simple zero) and other three eigenvalues are

−(δ0 + δ3),−δ0 and −µ0, which are real and negative. Thus, E0 is linearly locally

stable. If R0 > 1, then E0 is unstable. This shows that transcritical bifurcation

occurs at R0 = 1, which is shown in figure 4.1.

Stable E0 Unstable E0

Stable E1

0.5 1.0 1.5

1540

1550

1560

1570

1580

1590

1600

R0

N

Figure 4.1: Plot of N vs R0 showing the transcritical bifurcation at R0 = 1
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In the following theorem, we have found conditions for E1 to be locally asymp-

totically stable.

Theorem 4.4.2. The endemic equilibrium E1(I∗, S∗a, N
∗,M∗) is locally asymptot-

ically stable if the following inequalities hold true:

α >
ab

(1 + bI∗)2
, (4.7)

(
α + c1

βM∗

1 + γM∗

)2

< c1
4

9

(
α− ab

(1 + bI∗)2

)
p, (4.8)

where

c1 < min

{
2

9

(1 + γM∗)4

(β(N∗ − I∗ − S∗a))2

µ2
0

µ2

(
α− ab

(1 + bI∗)2

)
p,

2

3

αp

q
δ0

(1 + γM∗)2

(βM∗)2

}
,

p =

(
δ0 + δ3 +

βM∗

1 + γM∗

)
, q =

(
δ1 + δ2 +

a

(1 + bI∗)2

)
.

Proof. Let x = I − I∗, y = Sa − S∗a, n = N − N∗, m = M −M∗ be the small

perturbations about the endemic equilibrium E1. Using the above new variables,

we linearize model system (4.3) around the endemic equilibrium E1. Then in the

linear model, we consider the following positive definite function:

V1 =
1

2I∗
x2 +

c1

2
y2 +

c2

2
n2 +

c3

2
m2, (4.9)

where c1, c2 and c3 are positive constants to be chosen suitably.

Now differentiating V1 with respect to time t along the solutions of model (4.3), a

little algebraic manipulation yields

dV1

dt
= −1

2
a11x

2 + a12xy −
1

2
a22y

2

− 1

2
a11x

2 + a13xn−
1

2
a33n

2

− 1

2
a11x

2 + a14xm−
1

2
a44m

2

− 1

2
a22y

2 + a23yn−
1

2
a33n

2

− 1

2
a22y

2 + a24ym−
1

2
a44m

2,
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where

a11 =
2

3

(
α− ab

(1 + bI∗)2

)
, a22 =

2

3
c1p, a33 = c2δ0, a44 = c3µ0,

a14 = c3µ, a12 = −
(
α + c1

βM∗

1 + γM∗

)
, a13 = α− c2q,

a23 = c1
βM∗

1 + γM∗ , a24 = c1
β(N∗ − I∗ − S∗a)

(1 + γM∗)2
.

Sufficient conditions for dV1
dt

to be negative definite are given as follows:

a11 > 0, (4.10)

a2
12 < a11a22, (4.11)

a2
13 < a11a33, (4.12)

a2
14 < a11a44, (4.13)

a2
23 < a22a33, (4.14)

a2
24 < a22a44. (4.15)

By choosing c2 = α
q

and c3 = µ0
3µ2

(
α− ab

(1+bI∗)2

)
, we note that conditions (4.12)

and (4.13) are satisfied. If we choose c1 as given in Theorem 4.4.2, then conditions

(4.14) and (4.15) are satisfied. Finally, we note that (4.7) ⇒ (4.10) and (4.8) ⇒

(4.11). Hence the theorem follows.

In the following theorem, we show that the endemic equilibrium E1(I∗, S∗a, N
∗,M∗)

is globally asymptotically stable.

Theorem 4.4.3. Let the following inequalities hold in Ω:

α >
ab

(1 + bI∗)
, (4.16)

(
α + k1

βM∗

1 + γM∗

)2

< k1
4

9

(
α− ab

(1 + bI∗)

)
p, (4.17)
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where

k1 < min

{
2

9

(
δ0(1 + γM∗)

βA

)2
µ2

0

µ2

(
α− ab

(1 + bI∗)

)
p,

2

3

αδ0p

r

(
(1 + γM∗)

βM∗

)2
}
,

r =

(
δ1 + δ2 +

aδ0

(1 + bI∗)(δ0 + Ab)

)
.

Then E1(I∗, S∗a, N
∗,M∗) is globally asymptotically stable with respect to all solu-

tions initiating in the interior of the positive octant Ω.

Proof. We consider the following positive definite function about E1:

V2 =

(
I − I∗ − I∗ ln

I

I∗

)
+
k1

2
(Sa − S∗a)2 +

k2

2
(N −N∗)2 +

k3

2
(M −M∗)2,

where k1, k2 and k3 are positive constants to be chosen suitably.

Now differentiating V2 with respect to time t along the solutions of model (4.3),

we get

dV2

dt
= −1

2
b11(I − I∗)2 + b12(I − I∗)(Sa − S∗a)−

1

2
b22(Sa − S∗a)2

− 1

2
b11(I − I∗)2 + b13(I − I∗)(N −N∗)− 1

2
b33(N −N∗)2

− 1

2
b11(I − I∗)2 + b14(I − I∗)(M −M∗)− 1

2
b44(M −M∗)2

− 1

2
b22(Sa − S∗a)2 + b23(Sa − S∗a)(N −N∗)−

1

2
b33(N −N∗)2

− 1

2
b22(Sa − S∗a)2 + b24(Sa − S∗a)(M −M∗)− 1

2
b44(M −M∗)2,

where

b11 =
2

3

(
α− ab

(1 + bI∗)(1 + bI)

)
, b22 =

2

3
k1p, b33 = k2δ0, b44 = k3µ0,

b12 = −
(
α + k1

βM∗

1 + γM∗

)
, b13 = α− k2

(
δ1 + δ2 +

a

(1 + bI)(1 + bI∗)

)
,

b14 = k3µ, b23 = k1
βM∗

1 + γM∗ , b24 = k1
β(N − I − Sa)

(1 + γM∗)(1 + γM)
.
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Sufficient conditions for dV2
dt

to be negative definite are given as follows:

b11 > 0, (4.18)

b2
12 < b11b22, (4.19)

b2
13 < b11b33, (4.20)

b2
14 < b11b44, (4.21)

b2
23 < b22b33, (4.22)

b2
24 < b22b44. (4.23)

For the given value of k1 in Theorem 4.4.3, we note that conditions (4.22) and (4.23)

are satisfied. Again (4.16) ⇒ (4.18) and (4.17) ⇒ (4.19). If we choose k2 = α
r

and

k3 = µ0
3µ2

(
α− ab

(1+bI∗)

)
, then (4.20) and (4.22) are satisfied. This implies that V2 is

a Liapunov’s function with respect to the endemic equilibrium E1(I∗, S∗a, N
∗,M∗).

Hence the theorem follows.

4.5 Numerical Simulations

In this section, we present computer simulation results for model system (4.3) by

using MatLab 7.10. The dataset used for simulation is given in Table 4.1. For these

values of parameters, we see that the endemic equilibrium E1(I∗, S∗a, N
∗,M∗) exists

and (I∗, S∗a, N
∗,M∗) are given as follows:

I∗ = 223.42, S∗a = 20.4951, N∗ = 1032.8 and M∗ = 4.6546.

We also note that all conditions of Theorem 4.4.2 and Theorem 4.4.3 are satisfied.

This implies that E1 is locally as well as globally asymptotically stable for the set

of values of parameters in Table 4.1.

In figure 4.2, we considered the five different initial values of the infected and

aware susceptible populations. All trajectories starting from different initial values

approach to (I∗, S∗a). The endemic equilibrium point (E1) is independent of the

initial status of sub-populations. This shows that (I∗, S∗a) is globally asymptoti-

cally stable in the ISa- plane. All the details related to initial values are shown
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Table 4.1: List of parameters for model (4.3).

Parameter Value (Unit)

Recruitment rate of susceptible (A) 250 person (d)−1

Natural death rate of each sub-population (δ0) 0.2 (d)−1

Disease induced death rate of infected (δ1) 0.005 (d)−1

Recovery rate of infected due to auto immunity (δ2) 0.002 (d)−1

Conversion rate of Sa into S (δ3) 0.18 (d)−1

Treatment rate (a) 0.2 (d)−1

Limitation rate in treatment availability (b) 0.0003 (d)−1

Transmission rate (α) 0.0005 (person)−1 (d)−1

Dissemination rate (β) 0.0022 (person)−1

Limitation rate to awareness programs (γ) 0.008 (person)−1

Implementation rate of awareness programs (µ) 0.005 (person)−1(d)−1

Depletion rate of awareness programs (µ0) 0.24 (d)−1
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Figure 4.2: Global stability of (I∗, S∗a) in the ISa-plane.

in the legend of figure 4.2. Similarly in figure 4.3, we have shown that trajecto-

ries initiating from different initial points converge to the same equilibrium point

(I∗,M∗). This shows that (I∗,M∗) is globally asymptotically stable in the IM -

plane. When awareness programs are delivered to susceptible population then too

the stabilization of infected population takes place and it gets restricted to an
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Figure 4.3: Global stability of (I∗,M∗) in the IM -plane.

equilibrium point which is again independent of the initial level of awareness or

infection. All the details related to initial values are shown in the legend. This

implies that for the given set of parameters the disease will restrict itself to a

given endemic zone/population, irrespective of parameters like, the magnitude of

infected population, aware susceptible population, total population and awareness

programs.

In figures 4.4(a) and 4.4(b), we have shown the effect of information dissemina-

tion rate (β) on (i) infected population (I) and (ii) aware susceptible population

(Sa), respectively. From figures 4.4(a) and 4.4(b), we observe that when there is

no spread of awareness programs among susceptibles i.e. dissemination rate (β)

is zero, then the number of infected population is high and the aware susceptible

is zero. Further the infection decreases with increase in information dissemination

rate (β). This shows that by increasing the dissemination rate of the awareness

program, the number of infected individuals decreases but the number of aware

susceptibles increases. Some of the susceptible individuals can keep themselves

isolated and will not be infected.
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Figure 4.4: Effect of β on I and Sa, respectively.
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Figure 4.5: Effect of γ on I and Sa, respectively.

Figures 4.5(a) and 4.5(b) represent the effect of γ on infected population and

aware susceptible population. We note from figure 4.5(a) that infected popula-

tion increases as we increase γ, limitations on awareness program and is lowest

when there is no limitation on dissemination of awareness (γ = 0). The transient

kink settling down at a high infection level in former case can be explained by
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the behavioural slackness with time as information spreads. Whereas the kink

when (γ = 0) can be explained by immunity. In figure 4.5(b), we observe that

the aware susceptible population decreases with an increase in γ (limitation to

the dissemination of awareness). When there is no limitation to dissemination

of awareness, people are maximally aware but as limitations increase the aware

susceptible population declines as more people remain ignorant of the disease.
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Figure 4.6: Effect of µ on I and Sa, respectively.

In figures 4.6(a) and 4.6(b), we have shown the effect of implementation rate of

awareness program on infected population and aware suceptible population. From

figures 4.6(a) and 4.6(b), we can see that when there is no awareness program

run by media then aware susceptible population is zero and infection is high. As

we increase the implementation rate of awareness program (µ), aware susceptible

population is increasing and infection is decreasing very rapidly. This implies

that awareness programs may reduce the susceptibility to infection but will not

eradicate the infection. The transient increase in infectives at high infection level

(as observed by the kink in graph) may be due to continued infection till adequate

life style modification is made to prevent or overcome the infection. At a lower level
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of infection the downward kink may be explained by noncompliance or resistance

to making long term life style modification inspite of information. When µ = 0,

then the same can be explained by virtue of immunity in the population.
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Figure 4.7: Effect of a and µ on infected population I.

In figure 4.7, we have shown the effect of treatment rate a and awareness

program implementation rate µ on infected population simultaneously. We observe

that when there is neither treatment nor an awareness program available then the

rate of infection increases and gets saturated at high level. Further, if we increase

the treatment and awareness then we observe the decrease in infection. And finally,

when the treatment and awareness program both are at high level, we observe the

decrease in infected population and it settles down to zero level. This shows that

the disease can be eradicated if treatment availability is high and if we are able to

provide enough awareness to the susceptible population about the disease. Thus

highlighting the fact that not only treatment but awareness too is a prerequisite

for disease eradication.

4.6 Conclusions

In this Chapter, we introduced a mathematical model to study the effect of aware-

ness programs (run by media) and treatment on infectious diseases. The global
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dynamics of this model has been studied. We have shown that there exists only

two equilibrium points: the disease-free equilibrium E0(0, 0, A
δ0
, 0) i.e. total elim-

ination of infection (as I = 0) and the endemic equilibrium E1(I∗, S∗a, N
∗,M∗)

i.e. disease will persist. The DFE is locally asymptotically stable for reproduc-

tive number R0 < 1 and the endemic equilibrium exists for R0 > 1 and is globally

asymptotically stable under the conditions stated in Theorem 4.4.3. When optimal

treatment and awareness is provided then the former refers to total eradication of

the infectious disease from the population whereas the later refers to the case when

disease is localized to an endemic zone.

We have also carried out numerical simulations to validate the analytical re-

sults. We have shown that the infected population decreases as we increase the

information dissemination rate (β) as some of the susceptibles keep themselves iso-

lated and did not get infected. Thus, the aware susceptibles increase with increase

in dissemination rate (β). Further, we have shown that if awareness programs are

not available in the society then the infection is very high and if we introduce

awareness programs run by media into society infection decreases and this can be

further reduced by treatment. We have also shown that when there is enough

awareness among the susceptibles and enough treatment is available then disease

can be eradicated completely. But if either treatment or awareness is lacking then

the disease can not be eradicated.

It may be noted that small pox is the only disease that has been totally eradi-

cated but the eradication has been taken place by virtue of vaccination and aware-

ness since treatment of small pox was not available. Further, diseases like Polio

have been brought under control and largely eradicated from most of the countries

in the world. This disease too can not be treated but vaccination and awareness

regarding the disease has led to its near eradication. There are no known diseases

yet which have been eradicated by only treatment. Thus, sufficient emphasis must

be given to awareness programs to ensure total eradication of treatable emerging

infectious diseases.



Chapter 5

Analysis of a Virus Dynamics

Model with Saturated Infection

Rate and Immune Response in

Presence of Therapeutic Drug

A cell is regarded as the true

biological atom.

George Henry Lewes

Human body is composed of different type of cells, which are smallest unit of

life also known as “building blocks of life”. This chapter presents a mathematical

model to understand the dynamics of infection at cellular level. The proposed

model is based on the basic virus dynamics model involving the effect of total

immune response (innate immune response and adaptive immune response). We

describe the interaction of virus with uninfected cells using Holling type II function,

which is defined in Chapter 2. The effectiveness of the therapeutic drugs given to

virus producing cells and viruses has been studied.
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5.1 Introduction

Diseases caused by viral infections have had a major impact on populations.

Viruses may be present in the body either in a free state or as an intracellular

parasite. Free viruses enter a cell in a receptor specific manner and infect the cell.

Viral replication is possible only within a cell. The virus replicates within the

cell by utilizing the cells own machinery. Inside the cell a virus may either exist

in a latent (inactive) form for a prolonged period or it may immediately adopt

the host replication machinery and start producing multiple copies of itself. Once

large number of virus particles have been produced they come out of the cell by

destroying it. Now these viruses are free to infect other healthy cells. Within

the body virus encounters an immune response which prevents its spread from an

infected cell to adjacent uninfected cells. The present model is being proposed

to understand the dynamics of interaction between uninfected cells, infected cells,

latently infected cells, free virus and immune response.

Various virus dynamics models have been developed to understand the dynam-

ics of HIV infection in vivo (Anderson and May, 1981; Dubey and Dubey, 2007;

Huang et al., 2011; Huo et al., 2012; Nowak and Bangham, 1996; Nowak et al.,

1997; Perelson and Nelson, 1999; Roy et al., 2013; Wang and Liu, 2013; Zhou

et al., 2009). Anderson and May (1981) proposed a class of epidemic models to

describe the dynamics of host-parasite interaction. These were the basic models

to understand the dynamics of viral infection in the presence of immune response.

Immune response plays an important role to control viral infection. Immune re-

sponse fights against the virus and reduces virus load. Nowak and Bangham (1996)

proposed virus dynamics model using CTL (Cytotoxic T lymphocyte) component

of immune response. They concluded that an active CTL immune response may

reduce virus load. Wang and Liu (2013) proposed a class of delayed viral mod-

els with saturation infection rate and immune response. In their models, they

considered the CTL response (which kills infected cells) and antibody response

(which facilitates removal of viruses) separately to study the analytical behavior

of systems. Roy et al. (2013) studied the effect of CTL immune response on the
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dynamics of infected CD4+T cells, virus producing CD4+T cells and virus by in-

troducing a positive feedback parameters in the model. They also investigated an

optimal control therapy using reverse transcriptase inhibitors (RTIs) that block

new infection. Huo et al. (2012) proposed a virus dynamics model with saturated

incidence rate and humoral immunity. They studied the stability behaviour of the

nonnegative equilibria of the model.

The spread of infectious diseases, especially virus mediated is a matter of great

concern. Control of epidemics may be achieved by media (Misra, Sharma and

Shukla, 2011; Misra, Sharma and Singh, 2011; Samanta et al., 2013) and by treat-

ment with appropriate therapeutic drugs. In earlier decades, researchers have paid

attention to drug therapy or treatment (cure) of targeted cells in virus dynamics

models (Gumel and Moghadas, 2004; Hattaf et al., 2012; Liu et al., 2011; Srivas-

tava et al., 2009; Srivastava and Chandra, 2010; Tian and Liu, 2014; Wang et al.,

2010; Zhou et al., 2008). Liu et al. (2011) developed an HIV pathogenesis dynam-

ics model considering cure rate. They incorporated the full logistic proliferation

term for uninfected cells as well as infected cells in the model. In their study they

obtained a critical number (the smallest virus number released by per infected

CD4+T cells) and have shown that this critical number increases with increase in

cure rate. This shows that the HIV infection can be controlled by increasing cure

rate.

Hattaf et al. (2012) proposed and analyzed a virus dynamics model with general

incidence rate and linear cure rate of the infected cells to uninfected cells. They

have shown that the virus can be cleared and the disease dies out if the basic

reproduction number is less than one. The model and results in Hattaf et al. (2012)

were further extended by Tian and Liu (2014). Srivastava et al. (2009) proposed

a mathematical model to study the effect of RT inhibitors on the dynamics of

HIV infection. They obtained a critical value of the efficacy of the RT inhibitor

beyond which the infection level decreases. Further, Srivastava and Chandra (2010)

proposed a model to introduce the effect of time delay for the infected CD4+T cells

to become actively infected cell. They observed that time delay does not have any

significant effect on the activation of CD4+ T cells. Further, Gumel and Moghadas
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(2004) studied the role of anti-retroviral therapy in controlling the HIV infection.

They investigated the immunological and therapeutic control of HIV and found

the optimal level of anti-retroviral therapy to eradicate HIV. In these models,

treatment for free virus has not been incorporated.

Considering the above points in view, we propose a five-dimensional virus dy-

namics model with saturated infection rate and immune response with treatment

of infected cells and free virus. The main aim of this chapter is to study the con-

trol of the replication of infected cells and free virus by considering appropriate

immune response and suitable treatment therapy for infected cells and free virus.

5.2 The Mathematical Model

Let x(t) be the number of uninfected cells, y(t) be the number of infected cells

and v(t) be the number of free virus at any time t ≥ 0. Then the following virus

dynamics model has been studied in detail by several researchers (Anderson and

May, 1981; Nowak and Bangham, 1996):


dx
dt

= λ− δ0x− αxv,
dy
dt

= αxv − δ1y,

dv
dt

= ky − k0v.

(5.1)

In the above model, λ is the constant growth rate of uninfected cells and δ0 is its

death rate. When free virus interacts with uninfected cells, it produces infected

cells at the rate of α. δ1 is the natural death rate of infected cells. Virus is produced

at the rate k by infected cells and k0 is clearance rate of virus.

Model (5.1) is generalized and studied by Dubey et al. (2011) by considering

the effect of appropriate immune response on the infected cells. The model of

Dubey et al. (2011) reads as follows:
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dx
dt

= λ− δ0x− αxv,
dy
dt

= αxv − δ1y − γyz,
dv
dt

= ky − k0v,

dz
dt

= µ− µ0z + byz − ηγyz.

(5.2)

In the above model, z(t) is the density of immune response of the body, µ is the

inherent growth rate of immune response, and µ0 is its natural decay rate. Here

b is the stimulating growth rate of the immune response due to the infected cells,

γ is the decay rate of infected cells due to immune response of the body and

in this process immune response also decays at the rate η. The incidence rate

f(t) = αx(t)v(t) increases linearly with x or with v which may not be realistic in

real life. If we take the saturated incidence rate

f(t) =
αxv

1 + α1v
, α > 0, α1 ≥ 0,

then it gives a rich dynamics of the system (Huo et al., 2012; Song and Neumann,

2007; Wang et al., 2015).

It has also been found that all virally infected cells may not produce virus. A

fraction of the infected cells may be in latent state and thus do not take part in

producing virus (see Nowak and May (2000); Wang et al. (2015)). However latently

infected cells may become active upon stimulation and then join the other group of

actively virus producing infected cells. Thus, we divide infected cells y(t) into two

parts: (i) y1(t), the number of infected cells, which are capable of producing virus,

and (ii) y2(t), the number of infected cells in latent state, which are not capable of

producing virus, but upon reactivation it start producing virus, similar to y1(t).

In most of the previous work, it has been observed that immune response in-

creases due to infected cells. The virus is activating the immune system. But

infected cells are produced by virus when it interacts with uninfected cells. We

assume that the immune response increases due to infected cells as well as virus.

Keeping the above aspects in view, the virus dynamics of the system can be gov-
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erned by the system of five differential equations.



dx
dt

= λ− δ0x− αxv
1+α1v

,

dy1
dt

= qαxv
1+α1v

− δ1y1 + βy2 − γ1y1z − θ1y1,

dy2
dt

= (1−q)αxv
1+α1v

− δ1y2 − βy2,

dv
dt

= ky1 − k0v − γ2vz − θ2v,

dz
dt

= µ− µ0z + µ1y1z + µ2vz,

(5.3)

x(0) > 0, y1(0) ≥ 0, y2(0) ≥ 0, v(0) ≥ 0, z(0) ≥ 0.

The schematic diagram of model (5.3) is shown in figure 5.1.

Figure 5.1: Schematic diagram of model (5.3).

Here x(t), y1(t), y2(t), v(t) and z(t) represent the uninfected cells, infected

cells, latently infected cells, free virus and immune response respectively. The

uninfected cells grow from the sources inside the body (thymus) at the rate λ

and die out at the rate δ0. We assume that the free virus infects the uninfected

cells with the saturated infection rate which is given by Holling type II functional

response ( αxv
1+α1v

, where α and α1 are positive constants) (Huo et al., 2012). We also

considered two states of infected cells (Nowak and May, 2000; Wang et al., 2015):

virus producing state (y1), in this state infected cells produce new virions; latently
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infected state (y2), in this state infected cells do not contribute in producing new

virions but can be reactivated to produce new virions. q is the probability that

upon infection a cell enters to the virus producing state and (1−q) is the probability

that upon infection a cell enters to the latently infected state. δ1 is death rate of

these infected cells.

We assume that the latently infected cells are getting reactivated at the rate

β and join the virus producing infected cells to contribute in production of virus.

Free virions are produced by infected cells at the rate k and k0 is the clearance

rate of free virions. µ is the inherent growth rate of immune response and µ0 is its

natural decay rate. The immune response interacts with the infected cells and free

virus and the increase in immune response due to infected cells and free virus is

given by the rate µ1 and µ2, respectively. The immune response kills the infected

cells and free virus at the rates γ1 and γ2, respectively. θ1 and θ2 denote clearance

rates of the infected cells and free virus due to therapeutic drugs.

Remark 5.2.1. In the absence of immune response (z = 0) and drug therapy

(θ1 = θ2 = 0), model (5.3) reduces to the model proposed by Wang et al. (2015).

In the next section, we show that all the solutions of system (5.3) are positively

invariant and bounded.

5.3 Positivity and Boundedness of the Model

Let (x(t), y1(t), y2(t), v(t), z(t)) ∈ <5
+ be a solution of model (5.3) with the initial

conditions given in (5.3). Let T = x+ y1 + y2, then

Ṫ = ẋ+ ẏ1 + ẏ2 ≤ λ− δ(x+ y1 + y2),

where δ = min{δ0, δ1}. From elementary calculus, we have

T (t) ≤ T (0)e−δt +
λ

δ
(1− e−δt).

Thus,

lim
t→∞

supT (t) ≤ λ

δ
.
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Again we have, v̇ = ky1 − k0v − γ2vz − θ2v ≤ kλ
δ
− (k0 + θ2)v. This implies that

lim
t→∞

sup v(t) ≤ kλ

δ(k0 + θ2)
.

The last equation of model (5.3) gives

ż = µ− µ0z + µ1y1z + µ2vz ≤ µ−
(
µ0 −

µ1λ

δ
− µ2kλ

δ(k0 + θ2)

)
z,

and hence

lim
t→∞

sup z(t) ≤ µ

η
,

where η =
(
µ0 − µ1λ

δ
− µ2kλ

δ(k0+θ2)

)
> 0.

Furthermore, Ṫ < 0 if T > λ
δ
, v̇ < 0 if v > kλ

δ(k0+θ2)
and ż < 0 if z > µ

η
. This

shows that solutions of system (5.3) point towards the region Ω defined in Lemma

(5.3.1). Hence Ω is positively invariant and solutions of (5.3) are bounded. Thus,

we can state the following lemma.

Lemma 5.3.1. The set Ω = {(x, y1, y2, v, z) ∈ <5
+ : 0 < x + y1 + y2 ≤ λ

δ
, 0 < v ≤

kλ
δ(k0+θ2)

, 0 < z ≤ µ
η
} is positively invariant region of system (5.3).

This proves that the model is biologically well behaved.

In the next section, first we find equilibrium points of system (5.3). Then

determine the basic reproduction number of system (5.3). Afterwards, the local

and global stability of the equilibrium points has been studied.

5.4 Stability Analysis

From model (5.3), it is clear that the system has two non-negative equilibria: (i)

Virus-free equilibrium (VFE) E0(x0, 0, 0, 0, z0), the point where infection is not

present, (ii) Interior equilibrium (IE) E1(x∗, y∗1, y
∗
2, v
∗, z∗), the equilibrium point

where infection persists.

VFE is trivial and given by E0(x0, 0, 0, 0, z0) = E0( λ
δ0
, 0, 0, 0, µ

µ0
).

We use the next generation operator method (Diekmann et al., 1990; Van den

Driessche and Watmough, 2002) to determine the basic reproduction number. We
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are considering y1, y2 and v to be the infection compartments. Let X = (y1, y2, v)T ,

F1(X) is the nonnegative infection matrix (gain in infection terms) and V1(X) (the

matrix for transfer terms between compartments) associated with system (5.3).

Then we can rewrite system (5.3) as

Ẋ = F1(X)− V1(X)

where

F1(X) =


qαxv

1+α1v
+ βy2

0

0

 and V1(X) =


(δ1 + θ1 + γ1z)y1

(δ1 + β)y2 − (1−q)αxv
1+α1v

(k0 + θ2 + γ2z)v − ky1

 .

The Jacobian of matrices F1(X) and V1(X) evaluated at virus-free equilibrium

E0( λ
δ0
, 0, 0, 0, µ

µ0
) is given by

F1 =


0 β qαλ

δ0

0 0 0

0 0 0

 and V1 =


(δ1 + θ1 + γ1

µ
µ0

) 0 0

0 (δ1 + β) − (1−q)αλ
δ0

−k 0 (k0 + θ2 + γ2
µ
µ0

)

 .

Then ρ(F1V
−1

1 ) gives the spectral radius (largest eigenvalue) of the next generation

matrix (F1V
−1

1 ) as defined in (Van den Driessche and Watmough, 2002). Thus,

RI = ρ(F1V
−1

1 ) =
αλk(qδ1 + β)

(δ1 + β)(δ0)(δ1 + θ1 + γ1µ
µ0

)(k0 + θ2 + γ2µ
µ0

)
,

where RI is the basic reproduction number in the presence of immune response.

This can be defined as the average number of newly infected cells produced by

single infected cell, when introduced into a completely healthy cells. In the present

model, we consider immune response so the given basic reproduction is determined

in the presence of immune response. Further we can state the following theorem

using the above results and Theorem 2 of (Van den Driessche and Watmough,

2002).
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Theorem 5.4.1. The virus-free equilibrium E0 is locally asymptotically stable if

RI < 1, and unstable if RI > 1.

Local stability of virus-free equilibrium shows that the infection will die out if

basic reproduction number is less than one and infection will further go on if basic

reproduction number is more than one. To ensure that the virus-free equilibrium

is independent of initial concentration of cells, there is a need to study the global

stability, which is shown in the next theorem.

Theorem 5.4.2. The virus-free equilibrium E0 is globally asymptotically stable in

Ω if RI ≤ 1.

Proof. Let us define the following Lyapunov function

L = y1 +
β

δ1 + β
y2 +

δ1 + θ1 + γ1
µ
µ0

k
v.

Differentiating L(t) w.r.t. t along all solutions of model (5.3), we get

L̇(t) =

[
(qδ1 + β)αxv

(δ1 + β)(1 + α1v)
−

(δ1 + θ1 + γ1
µ
µ0

)(k0 + θ2 + γ2z)

k
v − γ1

(
z − µ

µ0

)
y1

]
.

After further simplification we have

L̇(t) ≤ P [RI − 1]v − Pα1v
2,

where P =
(δ1+θ1+γ1

µ
µ0

)(k0+θ2+γ2
µ
µ0

)

k(1+α1v)
.

Thus, L̇(t) < 0 for RI ≤ 1 and L̇(t) = 0 iff x = x0, y1 = y2 = v = 0 and

z = z0. This implies that the largest compact invariant set in {(x, y1, y2, v, z) ∈ Ω :

L̇(t) = 0} is the singleton set {E0}. From LaSalle’s invariance principle (LaSalle,

1976) this implies that every solution of model (5.3) with initial conditions in Ω

approaches E0( λ
δ0
, 0, 0, 0, µ

µ0
) as t→∞. Hence E0 is globally asymptotically stable

in Ω if RI ≤ 1.
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Biologically this theorem depicts that infection is cleared from the body if the

number of newly infected cells is less than or equal to one which is independent of

initial concentration of cells.

5.4.1 Existence of Interior Equilibrium E1(x
∗, y∗1, y

∗
2, v
∗, z∗)

Equating equations of system (5.3) to zero, we note that x∗, y∗1, y∗2, v∗, and z∗ are

the positive solutions of the following algebraic equations:

λ− δ0x−
αxv

1 + α1v
= 0, (5.4)

qαxv

1 + α1v
− δ1y1 − γ1y1z + βy2 − θ1y1 = 0, (5.5)

(1− q)αxv
1 + α1v

− δ1y2 − βy2 = 0, (5.6)

ky1 − k0v − γ2vz − θ2v = 0, (5.7)

µ− µ0z + µ1y1z + µ2vz = 0. (5.8)

After solving equations (5.4, 5.6, 5.7) we get,

x =
λ(1 + α1v)

δ0 + (δ0α1 + αv)
,

y1 =
k0 + θ2 + γ2z

k
v,

y2 =
(1− q)αλv

(δ1 + β)(δ0 + (δ0α1 + α)v)
.

Now substituting these values of x, y1, y2 in equations (5.5) and (5.8), we get the

following equations:

(µ1γ2

k

)
vz2 +

(
µ1(k0 + θ2)

k
+ µ2

)
vz − µ0z + µ = 0, (5.9)

γ1γ2z
2 +Bz + (δ1 + θ1)(k0 + θ2)− αλk(qδ1 + β)

(δ1 + β)(δ0 + (δ0α1 + α)v)
= 0, (5.10)
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where B = ((δ1 + θ1)γ2 + (k0 + θ2)γ1) > 0.

We solve equations (5.9) and (5.10) using isocline method. Let us consider

f1(z, v) =
(µ1γ2

k

)
vz2 +

(
µ1(k0 + θ2)

k
+ µ2

)
vz − µ0z + µ = 0, (5.11)

f2(z, v) = γ1γ2z
2 +Bz+(δ1 +θ1)(k0 +θ2)− αλk(qδ1 + β)

(δ1 + β)(δ0 + (δ0α1 + α)v)
= 0. (5.12)

From equation (5.11), when v = 0, z = µ
µ0

= z1(say).

When v →∞, we have either z = 0 or z = −µ1(k0+θ2)+µ2k
µ1γ2

. Now

dz

dv
= −∂f1/∂v

∂f1/∂z

= − µ1γ2z
2 + (µ1(k0 + θ2) + µ2k)z

(2µ1γ2z + µ1(k0 + θ2))v + (µ2v − µ0)k

This implies that dz
dv
< 0 if, v > µ0

µ2
.

Now from equation (5.12), when v = 0, we have

γ1γ2z
2 +Bz + (δ1 + θ1)(k0 + θ2)− αλk(qδ1 + β)

(δ1 + β)(δ0)
= 0, (5.13)

which gives z = −B+
√
B2−4AC
2A

= z2(say),

where A = γ1γ2, B = ((δ1+θ1)γ2+(k0+θ2)γ1) and C = (δ1+θ1)(k0+θ2)−αλk(qδ1+β)
(δ1+β)(δ0)

.

The above polynomial (5.13) has unique positive root if C < 0, this implies that

R0 > 1. R0 is the basic reproduction number in absence of immune response.

Now when z = 0 in equation (5.12), we have

v =

(
1

δ0α1 + α

)(
αλk(qδ1 + β)

(δ1 + β)(δ1 + θ1)(k0 + θ2)
− δ0

)
=

(
δ0

δ0α1 + α

)
(R0 − 1),

which is positive if R0 > 1.

dz

dv
= −∂f2/∂v

∂f2/∂z
= −

αλk(qδ1+β)(δ0α1+α)
(δ1+β)(δ0+(δ0α1+α)v)2

(2γ1γ2z +B)
< 0.

The above analysis shows that the two isoclines (5.11) and (5.12) intersects each

other in the positive quadrant if z2 > z1, i.e. RI > 1. Thus the interior equilibrium
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exists if

v >
µ0

µ2

and RI > 1. (5.14)

This shows that if the number of newly infected cells produced by a single infected

cell, when all other cells are healthy is more than one then infection persists and

interior equilibrium exists.

5.4.2 Analysis at RI = 1

To study the behaviour of the equilibrium points at RI = 1, we use the center

manifold theorem (Castillo-Chavez and Song, 2004), as at RI = 1, linearization

has a simple zero eigenvalue, hence linearization is inconclusive (Sastry, 1999). We

made following assumptions to apply center manifold theorem to system (5.3).

Let x = x1, y1 = x2, y2 = x3, v = x4 and z = x5, then system (5.3) can be rewrite

as 

ẋ1 = λ− δ0x1 − αx1x4
1+α1x4

= f1,

ẋ2 = qαx1x4
1+α1x4

− δ1x2 + βx3 − γ1x2x5 − θ1x2 = f2,

ẋ3 = (1−q)αx1x4
1+α1x4

− δ1x3 − βx3 = f3,

ẋ4 = kx2 − k0x4 − γ2x4x5 − θ2x4 = f4,

ẋ5 = µ− µ0x5 + µ1x2x5 + µ2x4x5 = f5,

(5.15)

At RI = 1, we have α as bifurcation parameter and this is given by

α = α∗ =
(δ1 + β)(δ0)(δ1 + θ1 + γ1µ

µ0
)(k0 + θ2 + γ2µ

µ0
)

λk(qδ1 + β)
.

The linearization of the above system (5.15) at E0 and for α = α∗ gives one

simple zero eigenvalue and other eigenvalues have negative real part so central

manifold theory can be applied. We find the right eigenvector u of the Jacobian

matrix at E0 and α = α∗ corresponding to the zero eigenvalue, which is given

by u = [u1, u2, u3, u4, u5]T , where, u1 = −α∗x0
δ0
, u2 = k0+θ2+γ2z0

k
, u3 = (1−q)α∗x0

δ0
,

u4 = 1, u5 = z0(µ1(k0+θ2+γ2z0)+µ2k)
k

. And the Jacobian matrix at E0 and α = α∗

has a left eigenvector w = [w1, w2, w3, w4, w5], where, w1 = 0, w2 = 1, w3 = β
δ1+β

,

w4 = δ1+θ1+γ1z0
k

, w5 = 0. Further, the associated nonzero partial derivatives of the
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functions associated with the system (5.15) at VFE E0 and α = α∗ are:

∂2f2

∂x1∂x4

=
∂2f2

∂x4∂x1

= qα∗,
∂2f2

∂x2
4

= −2qα∗α1x0,
∂2f2

∂x2∂x5

=
∂2f2

∂x5∂x2

= −γ1,

∂2f3

∂x1∂x4

=
∂2f3

∂x4∂x1

= (1− q)α∗, ∂2f3

∂x2
4

= −2(1− q)α∗α1x0,

∂2f4

∂x4∂x5

=
∂2f4

∂x5∂x4

= −γ2,
∂2f2

∂x4∂α∗
= qx0,

∂2f3

∂x4∂α∗
= (1− q)x0.

From Theorem 4.1 of (Castillo-Chavez and Song, 2004), the bifurcation constants

a and b are given by

a =
5∑

k,i,j=1

wkuiuj
∂2fk
∂xi∂xj

(E0) = − (qδ1 + β)

δ0(δ1 + β)
(α∗+2δ0α1)α∗x0−w2u2u5γ1−w4u4u5γ2.

For the given values of wk’s, k =2, 3, 4 and ui, uj’s i, j=1 to 5, a < 0, and

b =
5∑

k,i=1

wkui
∂2fk
∂xi∂α∗

(E0) = w2(u4qx0) + w3(u4(1− q)x0) =
(qδ1 + β)x0

(δ1 + β)
> 0.

Thus from Theorem 4.1(iv) of (Castillo-Chavez and Song, 2004), we conclude the

following result.

Theorem 5.4.3. At RI = 1 virus-free equilibrium changes its stability from stable

to unstable and interior equilibrium becomes positive and locally asymptotically

stable. Hence system (5.3) undergoes a transcritical bifurcation at RI = 1.

The transcritical bifurcation at RI = 1 has been demonstrated in figure 5.2.

In the next theorem, we show that E1 is locally asymptotically stable under

certain conditions.

Theorem 5.4.4. The interior equilibrium E1(x∗, y∗1, y
∗
2, v
∗, z∗) is locally asymptot-

ically stable in <5
+, if the following inequalities hold true:

9(αv∗)2x∗ < 4λ(1 + α1v
∗)2, (5.16)
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Figure 5.2: Plot of free virus vs basic reproduction number.

(
µ2k

γ2v∗
+

µ1qαx
∗

γ1y∗1(1 + α1v∗)2

)2

<
1

4

µ1µ2P (k0 + θ2 + γ2z
∗)

γ1γ2y∗1v
∗ , (5.17)

3γ2α
2x∗3v∗ < c4λµ2z

∗(k0 + θ2 + γ2z
∗)(1 + α1v

∗)4, (5.18)

where

c4 < min

{
1

3

λγ1(1 + α1v
∗)2Py∗1

µ1x∗z∗q2α2v∗2
,
1

3

x∗P (δ1 + β)2γ1y
∗
1

λµ1z∗(1− q)2β2

}
, P = (δ1 + θ1 + γ1z

∗).

Proof. Let X = x− x∗, Y1 = y1 − y∗1, Y2 = y2 − y∗2, V = v − v∗ and Z = z − z∗ be

the small perturbations about the interior equilibrium E1. Using the above new

variables, we linearize system (5.3) around the interior equilibrium E1. Then in

the linear model, we consider the following positive definite function:

W1 =
1

2
X2 +

1

2
c1Y1

2 +
1

2
c2Y2

2 +
1

2
c3V

2 +
1

2
c4Z

2,

where c1, c2 c3 and c4 are positive constants to be chosen suitably.

Now differentiating W1 with respect to time t along the solutions of model (5.3),

we get
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Ẇ1 = −1

2
a11X

2 + a12XY1 −
1

2
a22Y

2
1

− 1

2
a11X

2 + a13XY2 −
1

2
a33Y

2
2

− 1

2
a11X

2 + a14XV −
1

2
a44V

2

− 1

2
a22Y

2
1 + a23Y1Y2 −

1

2
a33Y

2
2

− 1

2
a22Y

2
1 + a24Y1V −

1

2
a44V

2

− 1

2
a22Y

2
1 + a25Y1Z −

1

2
a55Z

2

− 1

2
a33Y

2
2 + a34Y2V −

1

2
a44V

2

− 1

2
a44V

2 + a45V Z −
1

2
a55Z

2,

where

a11 =
2

3

(
λ

x∗

)
, a22 =

1

2
c1P, a33 =

2

3
c2(δ1 + β), a44 =

1

2
c3(k0 + θ2 + γ2z

∗),

a55 = c4
µ

z∗
, a12 =

c1qαv
∗

(1 + α1v∗)
, a13 =

c2(1− q)αv∗

(1 + α1v∗)
, a14 = − αx∗

(1 + α1v∗)2
,

a23 = c1β, a24 =

(
c1qαx

∗

(1 + α1v∗)2
+ c3k

)
, a25 = (c4µ1z

∗ − c1γ1y
∗
1),

a34 =
c2(1− q)αx∗

(1 + α1v∗)2
, a45 = (c4µ2z

∗ − c3γ2v
∗).

Sufficient conditions for Ẇ1 to be negative definite are given as follows:

a2
12 < a11a22, (5.19)

a2
13 < a11a33, (5.20)

a2
14 < a11a44, (5.21)

a2
23 < a22a33, (5.22)

a2
24 < a22a44, (5.23)

a2
25 < a22a55, (5.24)

a2
34 < a33a44, (5.25)

a2
45 < a44a55. (5.26)
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By choosing c1 = c4µ1z∗

γ1y∗1
and c3 = c4µ2z∗

γ2v∗
, we note that conditions (5.24) and (5.26)

are satisfied. Let us choose c2 = x∗(δ1+β)
(1−q)2λ , then conditions (5.21) and (5.25) are

equivalent and we see that (5.18)⇒(5.21) and (5.25). Further, if we choose c4 in

such a manner that it satisfies the following inequality:

c4 < min

{
1

3

λγ1(1 + α1v
∗)2Py∗1

µ1x∗z∗q2α2v∗2
,
1

3

x∗P (δ1 + β)2γ1y
∗
1

λµ1z∗(1− q)2β2

}
,

then we note that (5.16)⇒(5.17) and (5.22)⇒(5.23). Hence the theorem follows.

In the next theorem, we are able to find sufficient conditions for E1 to be

globally asymptotically stable.

Theorem 5.4.5. Let the following inequalities hold in the interior of the positive

octant Ω:

9(αv∗)2x∗ < 4λ(1 + α1v
∗)2, (5.27)(

µ2k

γ2v∗
+

µ1qαx
∗

γ1y∗1(1 + α1v∗)

)2

<
1

4

µ1µ2P (k0 + θ2 + γ2z
∗)

γ1γ2y∗1v
∗ , (5.28)

2µ1γ1µy
∗
1 < η2P, (5.29)

2µ2γ2µv
∗ < η2(k0 + θ2 + γ2z

∗), (5.30)

3γ2α
2λ2x∗v∗ < m4λµ2z

∗(k0 + θ2 + γ2z
∗)δ0

2(1 + α1v
∗)2, (5.31)

where

m4 < min

{
1

3

γ1y
∗
1(δ(k0 + θ2) + α1kλ)2P

µ1x∗z∗λq2α2k2
,
1

3

x∗P (δ1 + β)2γ1y
∗
1

λµ1z∗(1− q)2β2

}
.

Then E1(x∗, y∗1, y
∗
2, v
∗, z∗) is globally asymptotically stable with respect to all solu-

tions in the interior of the positive octant Ω.

Proof. We consider the following positive definite function about E1:

W2 =
1

2
(x− x∗)2 +

m1

2
(y1 − y∗1)2 +

m2

2
(y2 − y∗2)2 +

m3

2
(v − v∗)2 +

m4

2
(z − z∗)2,

where m1, m2, m3 and m4 are positive constants to be chosen suitably.

Now differentiating W2 with respect to time t along the solutions of model (5.3),
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we get

Ẇ2 = −1

2
b11(x− x∗)2 + b12(x− x∗)(y1 − y∗1)− 1

2
b22(y1 − y∗1)2

− 1

2
b11(x− x∗)2 + b13(x− x∗)(y2 − y∗2)− 1

2
b33(y2 − y∗2)2

− 1

2
b11(x− x∗)2 + b14(x− x∗)(v − v∗)− 1

2
b44(v − v∗)2

− 1

2
b22(y1 − y∗1)2 + b23(y1 − y∗1)(y2 − y∗2)− 1

2
b33(y2 − y∗2)2

− 1

2
b22(y1 − y∗1)2 + b24(y1 − y∗1)(v − v∗)− 1

2
b44(v − v∗)2

− 1

2
b22(y1 − y∗1)2 + b25(y1 − y∗1)(z − z∗)− 1

2
b55(z − z∗)2

− 1

2
b33(y2 − y∗2)2 + b34(y2 − y∗2)(v − v∗)− 1

2
b44(v − v∗)2

− 1

2
b44(v − v∗)2 + b45(v − v∗)(z − z∗)− 1

2
b55(z − z∗)2,

where

b11 =
2

3

(
λ

x∗

)
, b22 =

1

2
m1P, b33 =

2

3
m2(δ1 + β), b44 =

1

2
m3(k0 + θ2 + γ2z

∗),

b55 = m4
µ

z∗
, b12 =

m1qαv

(1 + α1v)
, b13 =

m2(1− q)αv∗

(1 + α1v∗)
, b14 = − αx

(1 + α1v∗)(1 + α1v)
,

b23 = m1β, b24 =

(
m1qαx

∗

(1 + α1v∗)(1 + α1v)
+m3k

)
, b25 = (m4µ1z −m1γ1y1),

b34 =
m2(1− q)αx

(1 + α1v∗)(1 + α1v)
, b45 = (m4µ2z −m3γ2v).

Sufficient conditions for Ẇ2 to be negative definite are given as follows:

b2
12 < b11b22, (5.32)

b2
13 < b11b33, (5.33)

b2
14 < b11b44, (5.34)

b2
23 < b22b33, (5.35)

b2
24 < b22b44, (5.36)

b2
25 < b22b55, (5.37)

b2
34 < b33b44, (5.38)

b2
45 < b44b55. (5.39)
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Let us choose m2 = x∗(δ1+β)
(1−q)2λ , then conditions (5.34) and (5.38) are same and

(5.27)⇒(5.33), (5.31)⇒(5.34) and (5.38). Further, if we choose m1 = m4µ1z∗

γ1y∗1
, then

(5.29)⇒(5.37) and for m3 = m4µ2z∗

γ2v∗
, condition (5.30)⇒(5.39) and for the above

values of m1 and m3 condition (5.28)⇒(5.36). Hence the theorem follows.

5.5 A Special Case of the Model without Im-

mune Response

In the absence of immune response, model (5.3) reduces to the following model:

dx
dt

= λ− δ0x− αxv
1+α1v

,

dy1
dt

= qαxv
1+α1v

− δ1y1 + βy2 − θ1y1,

dy2
dt

= (1−q)αxv
1+α1v

− δ1y2 − βy2,

dv
dt

= ky1 − k0v − θ2v.

(5.40)

Similar to model (5.3), this model (5.40) also exhibits two equilibria: (i) the

virus-free equilibrium (VFE) e0( λ
δ0
, 0, 0, 0) and (ii) the interior equilibrium (IE)

e1(x̄, ȳ1, ȳ2, v̄).

Using next generation operator method, as discussed in the previous section,

the basic reproduction number R0 can be computed, and we note that R0 is given

by

R0 =
αλk(qδ1 + β)

(δ1 + β)(δ0)(δ1 + θ1)(k0 + θ2)
.

Under an analysis similar to the previous section, one can prove the following

theorem easily.

Theorem 5.5.1. (i) The virus-free equilibrium e0 is locally asymptotically stable

if R0 < 1, and e0 is unstable if R0 > 1.

(ii) The virus-free equilibrium e0 is globally asymptotically stable in Ω if R0 ≤ 1.

(iii) Model (5.40) undergoes a transcritical bifurcation at R0 = 1.
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5.5.1 Existence of Interior Equilibrium e1(x̄, ȳ1, ȳ2, v̄)

In case of interior equilibrium e1(x̄, ȳ1, ȳ2, v̄), we note that x̄, ȳ1, ȳ2 and v̄ are given

by

x̄ =
λ(1 + α1v̄)

δ0 + (δ0α1 + αv̄)
, ȳ1 =

k0 + θ2

k
v̄,

ȳ2 =
(1− q)αλv̄

(δ1 + β)(δ0 + (δ0α1 + α)v̄)
,

v̄ =

(
1

δ0α1 + α

)(
αλk(qδ1 + β)

(δ1 + β)(δ1 + θ1)(k0 + θ2)
− δ0

)
.

It is clear that v̄ is positive if

R0 =
αλk(qδ1 + β)

δ0(δ1 + β)(δ1 + θ1)(k0 + θ2)
> 1.

This shows that the interior equilibrium in absence of immune response exists if

R0 > 1. The stability behaviour of the interior equilibrium e1 can be studied in a

similar manner as done in previous section.

By comparing R0 and RI , we note that RI < R0. This shows that rate of

infection will be slow in the presence of immune response.

5.6 Numerical Simulations

In this section, we present the numerical simulations to validate the analytical

findings. MatLab 7.10 and Mathematica 7.0 are used for simulation purposes. We

note that the interior equilibrium E1(x∗, y∗1, y
∗
2, v
∗, z∗) exists for the set of values of

parameters given in Table 5.1, and (x∗, y∗1, y
∗
2, v
∗, z∗) are given as follows:

x∗ = 948.6799, y∗1 = 1.2014, y∗2 = 0.5565, v∗ = 0.2357 and z∗ = 0.1260.

We observe that all conditions given in Theorem 5.4.4 and Theorem 5.4.5 are

satisfied. This shows that E1 is locally as well as globally asymptotically stable for

the set of values of parameters in Table 5.1.

The phase plane analysis of the sub-system of model (5.3) in the xy1, xy2,

xv and xz planes are shown in figures 5.3(a)-5.3(d). From these figures, we note
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Table 5.1: List of parameters for model (5.3)

Parameters Values (Unit)

Source rate of uninfected cells (λ) 10 (mm−3d−1)
Death rate of uninfected cells (δ0) 0.01 (d−1)

Death rate of infected & latently infected cells (δ1) 0.015 (d−1)
Virus production rate (k) 0.08 (d−1)

Clearance rate of virus (k0) 0.02 (d−1)
Infection rate (α) 0.005 (mm−3d−1)

Inhibition rate to infection (α1) 5 (mm−3d−1)
Killing rate of infected cells by CTL-mediated IR (γ1) 0.2 (d−1)

Blocking rate of virus by humoral IR (γ2) 0.3 (d−1)
Source rate of IR (µ) 0.25 (d−1)

Depletion rate of IR (µ0) 2 (d−1)
Activation rate of CTL-mediated IR (µ1) 0.0035 (d−1)

Activation rate of humoral IR (µ2) 0.052 (d−1)
Activation rate of latently infected cells (β) 0.4 (d−1)

Drug effectiveness for infected cells (θ1) 0.38 (d−1)
Drug effectiveness for virus (θ2) 0.35 (d−1)

Probability of infected cell joining y1 compartment (q) 0.55

that all the trajectories initiating from different initial values converge to the same

equilibrium point. The initial values are shown in the legend can be read as IV1→

[800, 2, 1, 0.2, 0.04], IV2→ [1100, 2.5, 0.5, 0.3, 0.03], IV3→ [920, 3, 1.5, 0.04, 0.05]

and IV4 → [850, 0.05, 0.2, 0.05, 0.01]. Since the system is globally asymptotically

stable therefore it is independent of initial status of the sub-populations.

Figures 5.4(a) and 5.4(b) represent the effect of α on uninfected cells and in-

fected cells, respectively. We observe that the concentration of uninfected cells is

high (fig 5.4(a)) and that of infected cells is low (at zero level) for α = 0.001 and

in this case RI = 0.4598 < 1. This shows that infection is no more at this stage.

Further the number of uninfected cells decreases with increase in α which is obvi-

ous for real world scenarios when infection increases the number of uninfected or

healthy cells declines. In figure 5.4(b), the number of infected cells increases with

increase in infection rate α, which is also usual in real situations. Thus, infection

can be controlled by controlling the spread of infection within the cells with the

help of immune response and appropriate drugs. Figures 5.4(c) and 5.4(d) show

the effect of α1, whereas α1 changes reversibly with infection rate. In figure 5.4(c),

we observe oscillations for small value of α1 = 0.005. In the expression for infection
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Figure 5.3: Global stability of the sub-system.

rate, when α1 approaches zero then this infection rate term αxv
(1+α1v)

becomes bilin-

ear, which is not realistic in case of large number of infected cells. It may be noted

that behavior of infected cells is complementary to the behavior of uninfected cells

so similar explanation can be given for the oscillations in fig 5.4(d).

The effect of drug therapy θ1 and θ2 on infected cells y1 and free virus v are

shown in figures 5.5(a) and 5.5(b), respectively. From these figures it follows that in

the absence of treatment (θ1= θ2 = 0), the number of infected cells and free virus are

high. As efficacy of therapeutic drugs θ1 and θ2 increases, the number of infected

cells and free virus decreases and settles down at their respective equilibrium levels.
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Figure 5.4: Effect of α and α1 on x and y1, respectively.
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Figure 5.6: Effect of µ, µ1, µ2 on y1 and v, respectively.

This highlights the efficacy of the drug in controlling the concentration of infected

cells and free virus, respectively.

Figures 5.6(a) and 5.6(b) show that when immune response is not present then

trajectories settle at higher concentration of infected cells and free virus while the

concentration of the infected cells and free virus decreases with increase in immune

response (µ) and approaches to zero for higher values of µ. In figures 5.6(c) and

5.6(d), the trajectories settle at high level for µ1 = 0 and for higher values of µ1

these trajectories are settled down at lower concentration of infected cells and free

virus but not approaching to zero as µ1 is the increase in immune response due to

stimulation from infected cells. Similar explanation can be given for figures 5.6(e)

and 5.6(f), where µ2 is the increase in immune response due to stimulation from

free virus. It is interesting to note that if immune responses are at high levels,
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then infected cells and free virus can be brought back to zero level with adequate

drugs and thus the infection can be cured.
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Figure 5.7: Variation of therapeutic drugs (θ1 and θ2) on RI .

In the last figure 5.7, we have shown the variation of RI with respect to thera-

peutic drugs given to infected cells (θ1) and virus (θ2) respectively. We observe that

for the less values of the therapeutic drug given to the infected cells (θ1 = 0.15)

and that of to viruses (θ2 = 0.3) the corresponding value of RI is 5. And it is

apparent from the figure 5.7 that if we increase the amount of therapeutic drug

given to the infected cells (θ1 = 1) and virus (θ2 = 1.1) the corresponding value of

RI decreases i.e. RI = 0.5. This emphasize that combination of therapy is useful

in reducing the viral load and ultimately to eradicate the infection.
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5.7 Conclusions

In this chapter, we examined the effect of immune response and drug therapy

on virus dynamics model. We studied global stability of virus-free equilibrium

and interior equilibrium. Global stability of the interior equilibrium has also been

shown numerically which suggests that the infection will persist in the endemic

zone. We found a threshold value, which is defined as basic reproductive number

RI . The infection will further increase if RI > 1 and infection will be eradicated if

RI < 1. The global stability of virus-free equilibrium ensures the clearance of virus

from the body which is independent of initial status of sub-populations (Theorem

5.4.2). From the analysis of the model at RI = 1, it is observed that the virus-free

equilibrium loses its stability from the stable state to unstable state. It further

ensures the existence of interior equilibrium and the model exhibits transcritical

bifurcation.

A special case of the model in absence of immune response has also been inves-

tigated. Similar to model (5.3), the analysis of model (5.40) has been performed

and we found that the virus-free equilibrium is globally asymptotically stable if

R0 ≤ 1. We found that basic reproductive number in absence of immune response

R0 is greater than basic reproductive number in the presence of immune response

RI i.e. R0 > RI . This implies that in the presence of immune response the number

of secondary infections will be less. It suggests that infection may be eradicated

if RI < 1. From the expression of RI , it is observed that the number of sec-

ondary infections decreases with the enhancement of immune response and drug

efficacy. This shows that RI may be made less than one by increasing drug efficacy

and improving the immune conditions. Thus, increase in treatment is effective in

controlling the number of infected cells and free viruses. In addition, action of

immune response also reduces the virus load. It has also been shown in figure 5.7

that the reproduction number can be reduced by applying adequate combination

of therapeutic drugs which helps in reduction of viral load and finally to combat

the infection.



Chapter 6

Modeling the Intracellular

Pathogen-Immune Interaction

with Cure Rate

Simple laws can very well describe

complex structures. The miracle is

not the complexity of our world,

but the simplicity of the equations

describing that complexity.

B. Sander Bais

Pathogens are infectious agents which cause diseases into hosts. This chapter

addresses the infections caused by viral pathogens. We proposed a class of math-

ematical models to study the pathogen-immune interaction in vivo. Main aim of

this chapter is to explore the effect of biological features i.e. non-cytolytic cure, ab-

sorption of pathogens and immune response. Out of the four proposed models, first

and third models involve non-cytolytic cure rate without absorption of pathogens

in absence of immune response and in presence of immune response, respectively.

On the contrary, second and fourth model deals with the aforesaid phenomenon

in presence of absorption of pathogens. Stability analysis of the models has been

analyzed and ratified with the help of numerical simulations.
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6.1 Introduction

Many devastating diseases are caused by intracellular viral pathogens within a

human cell. These pathogens use the host’s machinery for its own growth and

reproduction. When pathogen enters the body, this encounter the first line of

defense mechanism which is largely the innate/natural immune response subse-

quently the acquired or specific immune response develops. This includes the cell

mediated (Cytotoxic T cell mediated) immune response and humoral (antibody

mediated) immune response. The presence of immune response along with the ab-

sorption/uptake of pathogens into uninfected cells and the presence of appropriate

treatment modality play a significant role in determining the outcome and stability

of the given system.

In the last few decades some mathematical models have been developed to un-

derstand the dynamics of interactions of pathogens with host’s immune response in

vivo (Anderson and May, 1981; Nowak and Bangham, 1996; Covert and Kirschner,

2000; Pugliese and Gandolfi, 2008; Zhou et al., 2009; Dubey and Dubey, 2007;

Dubey et al., 2011; Murase et al., 2005; Nuraini et al., 2009; Kajiwara and Sasaki,

2010; Tian and Xu, 2012). This has helped us to predict reduction of viral load

and to get a better insight of spread of infection within the body. The mecha-

nisms of immune response and pathogen interaction are discussed by Denise and

the references cited therein (Covert and Kirschner, 2000). The loss of pathogens or

effect of absorption has not been considered in pathogen-immune interaction mod-

els (Anderson and May, 1981; Nowak and Bangham, 1996; Covert and Kirschner,

2000; Pugliese and Gandolfi, 2008; Zhou et al., 2009; Dubey and Dubey, 2007;

Dubey et al., 2011). Murase et al. (2005) proposed a mathematical model with

immune response and absorption of pathogens into uninfected cells. They studied

the local stability of equilibria to get an insight of the persistence of infection and

considered different cases in their models. Firstly, they considered the basic virus

dynamics model and then in the next model they incorporated immune response

and ignored the effect of absorption. Further, in third case they incorporated the

effect of absorption of pathogens into uninfected cells and found that absorption of
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pathogens may disturb the stability of interior equilibrium point. Further, authors

(Nuraini et al., 2009; Kajiwara and Sasaki, 2010; Tian and Xu, 2012; Wang et al.,

2013) considered the virus dynamics model with loss of pathogens into uninfected

cells and extended their models to incorporate the effect of immune responses. For

instance, Tian and Xu (2012) studied the delayed model with CTL immune re-

sponse and saturated infection rate considering the effect of absorption to describe

the dynamics of HIV-1 infection. They have shown that infection becomes chronic

in both cases (i) when CTL immune response is absent and (ii) when CTL im-

mune response is present. Nuning et al. (2009) studied a viral infection model for

Dengue virus. They assumed that the inclusion of immune response may eradicate

the infection and virus load decreases with increase in immune response. Wang et

al. (2013) studied viral dynamics model considering CTL immune response and

antiretroviral therapy together with loss of virus into uninfected cells. They argued

that the inclusion of absorption of virus term is important to get the better insight

of the infection in-host.

In recent viral dynamics models, authors (Ciupe et al., 2007; Zhou et al., 2008;

Srivastava et al., 2009; Liu et al., 2011; Tian and Liu, 2014; Hattaf and Yousfi,

2011; Hattaf et al., 2012) developed an innovative approach to cure the infected

cells using non-cytolytic processes (the removal of virus without destruction of

infected cell). It is assumed and biologically proved that instead of killing, the

infected cells can be cured or recovered into uninfected cells. Cuipe et. al. (2007)

have shown in their model that in case of hepatitis B virus infection the covalently

closed circular (ccc) DNA can be removed from the nucleus of infected cells and in

turn the cell become uninfected cell. The detailed mechanism of the non-cytolytic

process can be explored from (Ciupe et al., 2007; Guidotti et al., 1999) and the

references cited therein. Zhou et al. (2008) considered in their HIV dynamics

model that the infected cells can be removed by two ways, either through death

(mostly immune-mediated killing) or via cure (loss of cccDNA). The approach of

inclusion of both cytolytic and non-cytolytic mechanisms of infected cell loss is

more realistic and accurate. After that, Srivastava et al. (2009) argued that the
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infected cells revert back to uninfected cells class due to non-completion of reverse

transcription process i.e drug will not be 100% effective.

Getting motivated from the work of (Murase et al., 2005; Zhou et al., 2008), we

propose a class of mathematical models to study the effect of non-cytolytic cure

process without and with absorption of pathogens into uninfected cells in the ab-

sence of immune response. Further, we extend our model to study aforesaid effect

in the presence of immune response. We incorporated the biological features in

above models step by step to understand that which biological term affects promi-

nently the behavior of infection. Besides this, we have also considered the infection

rate as saturated infection rate, which is more realistic approach for modeling the

dynamics of the system under consideration.

6.2 The Mathematical Model

Let x(t) be the concentration of uninfected cells, y(t) be the concentration of

infected cells, p(t) be the concentration of pathogens in blood cells. We assume

that the uninfected cells are recruited at a constant rate λ from the source within

the body such as bone marrow and has a natural life expectancy of 1
δ0

days. In

general, the interaction of pathogens with uninfected cells are considered to be as

“mass-action” which suggests that rate of infection is directly proportional to the

product of concentrations of uninfected cells and pathogens. But this principle

is not always true in real life. For example, the law of mass-action will not be

followed if the concentration of pathogens is greater than that of concentration

of uninfected cells. In such case, increase in concentration of pathogens will not

increase infection. Taking this into consideration, we suggest that infection rate

can be taken as nonlinear infection rate. Here in the proposed model we have

considered saturated infection rate, also known as Holling type II infection rate and

represented by the term βxp
1+αp

; β > 0, α ≥ 0. We assumed that infected cells die out

at a rate δ1 and r is the total number of pathogens produced by an infected cell due

to its death. Let ρ be the cure rate of pathogens using the non-cytolytic processes.

If we ignore the loss of pathogens due to absorption (Nowak and Bangham, 1996;

Dubey and Dubey, 2007), then the dynamics of uninfected cells, infected cells



6.3. Positivity and Boundedness of Model (6.1) 125

and pathogen can be governed by the following system of ordinary differential

equations: 
dx
dt

= λ− δ0x− βxp
1+αp

+ ρy,

dy
dt

= βxp
1+αp

− δ1y − ρy,
dp
dt

= rδ1y − δ2p,

(6.1)

x(0) > 0, y(0) ≥ 0, p(0) ≥ 0.

Remark 6.2.1. If we take α = 0 and ρ = 0, then model (6.1) is well studied in

(Murase et al., 2005).

The interaction of sub-populations can be understood from the schematic dia-

gram of model (6.1) as shown in figure (6.1).

Figure 6.1: Schematic diagram of model (6.1).

6.3 Positivity and Boundedness of Model (6.1)

Adding first two equations of model (6.1), we get

ẋ+ ẏ = λ− δ0x− δ1y ≤ λ− δm(x+ y),

where δm = min{δ0, δ1}. Using elementary calculus,

lim sup
t→∞

x(t) ≤ λ

δm
.
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Similarly

lim sup
t→∞

p(t) ≤ rδ1λ

δmδ2

.

This proves the boundedness of the solutions of model (6.1). To show the positive

invariance of the solutions, let N = x + y and Ṅ < 0 if N > λ
δm

and ṗ < 0 if

p > rδ1λ
δ2δm

. This shows that all solutions of system (6.1) point towards the region Ω1

defined in Lemma 6.3.1. The above calculation leads to the following lemma:

Lemma 6.3.1. The set Ω1 = {(x, y, p) ∈ <3
+ : 0 ≤ x + y ≤ λ

δm
, 0 ≤ p ≤ rδ1λ

δ2δm
} is

positively invariant region of system (6.1).

The above lemma shows mathematically and epidemiologically the well-posedness

of model (6.1).

6.4 Equilibrium and Stability Analysis

It can be observed easily that model (6.1) has two equilibria; (i) pathogen-free

equilibrium E01(x0, 0, 0) and (ii) pathogen-present equilibrium point E1(x∗, y∗, p∗).

Pathogen-free equilibrium exists trivially and is given byE01(x0, 0, 0) = E01( λ
δ0
, 0, 0).

The basic reproduction number R1 for model (6.1) is given by

R1 =
βλrδ1

δ0δ2(δ1 + ρ)
.

The basic reproduction number is the number of newly infected cells produced by

a single infected cell when introduced into completely healthy cells.

From the model equations, it is easy to find the equilibrium point E1(x∗, y∗, p∗),

where

x∗ =
(λrα + δ2)(δ1 + ρ)

r(α(δ1 + ρ)δ0 + βδ1)
,

y∗ =
δ0δ2(δ1 + ρ)(R1 − 1)

rδ1(α(δ1 + ρ)δ0 + βδ1)
,

p∗ =
δ0(δ1 + ρ)(R1 − 1)

(α(δ1 + ρ)δ0 + βδ1)
.

We can easily observe from above equations that pathogen-present equilibrium

E1 exists if R1 > 1. Using the Routh-Hurwitz criteria, one can notice that the
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pathogen-free equilibrium E01 is locally asymptotically stable for R1 < 1 and

unstable if R1 > 1.

Further, taking L = rδ1
δ1+ρ

y+p as a positive definite function and using LaSalle’s

invariance principle (LaSalle, 1976), it has been found that E01 is globally asymp-

totically stable if R1 ≤ 1. This shows that the infection will be controlled if basic

reproduction number is less than one and this is independent of initial concen-

trations of sub-populations. Further, one can easily prove that pathogen-present

equilibrium E1(x∗, y∗, p∗) is locally asymptotically stable if R1 > 1. This shows

that infection may spread if R1 > 1 and infection will die out if R1 < 1.

The global stability of the pathogen-present equilibrium point E1(x∗, y∗, p∗) is

discussed in the next theorem.

Theorem 6.4.1. The pathogen-present equilibrium E1(x∗, y∗, p∗) is globally asymp-

totically stable if following inequalities hold true in Ω1:

(
ρ+

βp∗

1 + αp∗

)2

<

(
δ0 +

βp∗

1 + αp∗

)
(δ1 + ρ), (6.2)

(
βλ

δm(1 + αp∗)

)2

< δ2

(
δ0 +

βp∗

1 + αp∗

)
, (6.3)(

βλ

δm(1 + αp∗)
+ rδ1

)2

< δ2(δ1 + ρ). (6.4)

Proof. We consider the positive definite function about E1 as

W1 =
1

2
(x− x∗)2 +

1

2
(y − y∗)2 +

1

2
(p− p∗)2.

After differentiating W1 w.r.t t along all positive solutions of (6.1) and manipulat-

ing the calculation, we get

Ẇ1 = −1

2
a11(x− x∗)2 + a12(x− x∗)(y − y∗)− 1

2
a22(y − y∗)2

− 1

2
a11(x− x∗)2 + a13(x− x∗)(p− p∗)− 1

2
a33(p− p∗)2

− 1

2
a22(y − y∗)2 + a23(y − y∗)(p− p∗)− 1

2
a33(p− p∗)2,
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where

a11 =
1

2

(
δ0 +

βp∗

(1 + αp∗)

)
, a22 =

1

2
(δ1+ρ), a33 =

2

3
δ2, a12 =

(
ρ+

βp∗

(1 + αp∗)

)
,

a13 = − βx

(1 + αp)(1 + αp∗)
, a23 =

(
βx

(1 + αp)(1 + αp∗)
+ rδ1

)
.

We know from Sylvester’s criterion, sufficient conditions for Ẇ1 to be negative

definite are

a2
12 < a11a22, (6.5)

a2
13 < a11a33, (6.6)

a2
23 < a22a33. (6.7)

The above equations represent to the conditions given in Theorem 6.4.1. Hence

the theorem follows.

The above result shows that if pathogen-present equilibrium exists and if the

above inequalities hold true then the pathogen-present equilibrium will persist and

approach to its steady state irrespective of concentration of their sub-populations.

6.5 Effect of Absorption of Pathogens in Model

(6.1)

It is known that when a pathogen interacts with uninfected cells, the number

of pathogens reduces by one in blood. This process is known as absorption of

pathogens (Tian and Xu, 2012). It results in uptake of the pathogens into un-

infected cells. Presently we consider the absorption of pathogens into uninfected

cells, in this case model (6.1) reduces as follows:


dx
dt

= λ− δ0x− βxp
1+αp

+ ρy,

dy
dt

= βxp
1+αp

− δ1y − ρy,
dp
dt

= rδ1y − δ2p− βxp
1+αp

,

(6.8)

x(0) > 0, y(0) ≥ 0, p(0) ≥ 0.
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From Lemma 6.3.1 we observe that all the solutions of the model initiating in

the positive orthant will remain positive. This shows that the loss of pathogens

does not alter the positive invariance and boundedness of the solutions. Similar to

model 6.1, we found two equilibria for this model. The pathogen-free equilibrium

E02( λ
δ0
, 0, 0) and pathogen-present equilibrium E2(x̄, ȳ, p̄). The basic reproduction

number for this model is given by

R2 =
βλrδ1

(δ1 + ρ)(δ0δ2 + βλ)
.

Equating RHS of equations of model (6.8) to zero and manipulating equations, we

get

x̄ =
δ2(δ1 + ρ)(1 + αp̄)

β(rδ1 − δ1 − ρ)
,

ȳ =
δ2

(rδ1 − δ1 − ρ)
p̄,

p̄ =
(δ1 + ρ)(δ0δ2 + βλ)(R2 − 1)

δ2(βδ1 + αδ0(δ1 + ρ))
.

Here x̄ and ȳ are positive if rδ1 > δ1 + ρ. Hence the pathogen-present equilibrium

exists if rδ1 > (δ1 + ρ) and R2 > 1. Using the Routh-Hurwitz criteria, we note the

following results.

(i) The pathogen-free equilibrium is locally asymptotically stable if R2 < 1 and

unstable if R2 > 1.

(ii) The pathogen-present equilibrium E2, whenever it exists, is locally asymptoti-

cally stable.

It can also be seen that E02 is globally asymptotically stable for R2 ≤ 1. To

show the global stability of E02, we have taken the Lyapunov function same as for

E01.

In the next theorem, we have shown the global asymptotic stability of pathogen-

present equilibrium when absorption of pathogens is taken into account.



130 Chapter 6. Intracellular Pathogen-Immune Interaction

Theorem 6.5.1. The pathogen-present equilibrium E2(x̄, ȳ, p̄) is globally asymp-

totically stable if following inequalities hold true in Ω1:

(
ρ+

βp̄

1 + αp̄

)2

<

(
δ0 +

βp̄

1 + αp̄

)
(δ1 + ρ), (6.9)

(
βλ

δm(1 + αp̄)
+

βp̄

1 + αp̄

)2

< δ2

(
δ0 +

βp̄

1 + αp̄

)
, (6.10)(

βλ

δm(1 + αp̄)
+ rδ1

)
< δ2(δ1 + ρ). (6.11)

The proof of Theorem 6.5.1 is similar to that of Theorem 6.4.1 and hence

omitted.

From Theorem 6.4.1 and Theorem 6.5.1, we note that conditions (6.2) and

(6.9) are similar, conditions (6.4) and (6.11) are similar except the equilibrium

level of pathogens. However, conditions (6.3) and (6.10) are different, which shows

that stability behavior of the pathogen-present equilibrium may be altered due to

absorption of pathogens into uninfected cells.

6.6 Effect of Immune Response on Infected Cells

and Pathogens

Let z(t) be the concentration of immune response at any time t ≥ 0. Let µ be

the innate immune response of the body. When pathogens enter into the body

and attacks the uninfected cells to get it infected, then the infected cell-specific

lymphocytes proliferate with the rate µ1yz and the pathogen-specific lymphocytes

proliferate with the rate µ2pz. The corresponding decrease in the number of infected

cells and pathogens are k1yz and k2pz, respectively. The immune response decays

at the rate µ0z. Keeping this in view, model (6.1) can be modified and written as



dx
dt

= λ− δ0x− βxp
1+αp

+ ρy,

dy
dt

= βxp
1+αp

− δ1y − ρy − k1yz,

dp
dt

= rδ1y − δ2p− k2pz,

dz
dt

= µ− µ0z + µ1yz + µ2pz,

(6.12)
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x(0) > 0, y(0) ≥ 0, p(0) ≥ 0, z(0) ≥ 0.

First of all, we state the following Lemma to show the positivity and boundedness

of the solutions of model (6.12). The proof of this Lemma is similar to that of

Lemma 6.3.1 and hence omitted.

Lemma 6.6.1. The set Ω2 = {(x, y, p, z) ∈ <4
+ : 0 ≤ x+y ≤ λ

δm
, 0 ≤ p ≤ rδ1λ

δ2δm
, 0 ≤

z ≤ µ
η
} is positively invariant region of system (6.12), where δm = min{δ0, δ1} and

η = µ0 − u1λ
δm
− µ2rδ1λ

δ2δm
> 0.

This lemma proves well-posedness of model (6.12) and hence model is biologi-

cally well behaved.

6.6.1 Equilibrium Analysis of Model (6.12)

For this model, we see that there exists two equilibrium points; pathogen-free equi-

librium point E03 and pathogen-present equilibrium point E3. These equilibrium

points are E03(x0, 0, 0, z0) = E03( λ
δ0
, 0, 0, µ

µ0
) and E3(x̃, ỹ, p̃, z̃).

The pathogen-free equilibrium exists trivially. We show the existence of pathogen-

present equilibrium point using the Isocline method. The equation ṗ = 0 of model

(6.12) gives

y =

(
δ2 + k2z

rδ1

)
p.

Substituting the value of y in the equation ẏ = 0 of model (6.12), we get

x =

(
(δ1 + ρ+ k1z)(δ2 + k2z)

rδ1β

)
(1 + αp).

ẋ+ ẏ = 0 of model (6.12) yields

x =
λ

δ0

−
(

(δ1 + k1z)(δ2 + k2z)

rδ1δ0

)
p.

Comparing these two values of x, we get following equation:

[k1k2δ0 + k1k2(αδ0 + β)p]z2 + [(k1δ2 + (δ1 + ρ)k2)(1 + αp)δ0 + (k1δ2 + k2δ1)βp]z

+ δ0δ2(δ1 + ρ)(1 + αp) + βδ1δ2p− λrδ1β = 0.
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After some algebraic calculation, last equation of model (6.12) gives another

equation in p and z

(µ1k2p)z
2 + (rδ1µ2p+ µ1δ2p− µ0rδ1)z + µrδ1 = 0.

Let us assume

f1(p, z) = (µ1k2p)z
2 + (rδ1µ2p+ µ1δ2p− µ0rδ1)z + µrδ1 = 0, (6.13)

f2(p, z) = [k1k2δ0 + k1k2(αδ0 + β)p]z2 + [(k1δ2 + (δ1 + ρ)k2)(1 + αp)δ0

+ (k1δ2 + k2δ1)βp]z + δ0δ2(δ1 + ρ)(1 + αp) + βδ1δ2p− λrδ1β = 0. (6.14)

From equation (6.13), we observe the following:

(i) When p = 0, then z = µ
µ0

= z1(say).

(ii) When p→∞, either z → 0 or z → −
(
µ1δ2+µ2rδ1

µ1k2

)
.

(iii) dz
dp

= −∂f1/∂p
∂f1/∂z

= − (µ1k2z2+(µ2rδ1+µ1δ2)z)
(2µ1k2pz+(µ2rδ1p+µ1δ2p−µ0rδ1))

,

⇒ dz

dp
< 0 if p >

µ0

µ2

.

This implies that z is decreasing function of p.

From equation (6.14), we note the following:

(i) When z = 0, then p = λrδ1β−δ0δ2(δ1+ρ)
(α(δ1+ρ)δ0δ2+βδ1δ2)

, and p > 0 if R1 > 1.

(ii) When p = 0, equation (6.14) gives a quadratic equation in z

(k1k2δ0)z2 + ((k1δ2 + (δ1 + ρ)k2)δ0)z − (λrδ1β − δ0δ2(δ1 + ρ)) = 0.

From the above equation, we found two roots (one is positive and another one is

negative) if R1 > 1. For R1 < 1 there is no positive real root.

Let us say z = z2 = −B+
√
B2+4AC
2A

, where A = k1k2δ0, B = (k1δ2 + (δ1 +ρ)k2)δ0 and

C = (λrδ1β − δ0δ2(δ1 + ρ)).

(iii)
dz

dp
= −∂f2/∂p

∂f2/∂z
= −F1

F2

,
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where

F1 = k1k2(αδ0+β)z2+((k1δ2+k2(δ1+ρ)αδ0)+β(k1δ2+k2δ1))z+(βδ1δ2+αδ0δ2(δ1+ρ)),

F2 = 2k1k2(δ0 + (αδ0 + β)p)z + (k1δ2 + k2(δ1 + ρ))(1 + αp)δ0 + β(k1δ2 + k2δ1)p.

⇒ dz
dp
< 0. Hence z is decreasing function of p.

We notice that the two isoclines intersects at (p̄, z̄) if

z2 > z1,

i.e.
−B +

√
B2 + 4AC

2A
>

µ

µ0

.

Simple manipulation leads to the condition

R3 =
λrδ1β

δ0(δ1 + ρ+ k1
µ
µ0

)(δ2 + k2
µ
µ0

)
> 1,

where R3 is the basic reproduction number of model (6.12) in presence of immune

response. The above analysis shows that the pathogen-present equilibrium exists

if

R3 > 1 and p >
µ0

µ2

.

This implies persistence of infection within the body under the above mentioned

condition.

6.6.2 Stability Analysis of Model (6.12)

In this section, we examine the local and global stability of pathogen-present equi-

librium point using Lyapunov function in the following two theorems.

Theorem 6.6.1. The pathogen-present equilibrium E3 is locally asymptotically

stable if the following inequalities hold true:

ρ2 <
1

3
m3

(
δ0 +

βp̃

(1 + αp̃)

)
(δ1 + ρ+ k1z̃)

µ1z̃

k1ỹ
, (6.15)
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βx̃2

(1 + αp̃)4
<

4

9
m3

(
δ0 +

βp̃

(1 + αp̃)

)
(δ2 + k2z̃)

µ2z̃

k2p̃
, (6.16)

(
µ1βx̃

(1 + αp̃)2k1ỹ
+
µ2rδ1

k2p̃

)2

<
1

3
(δ1 + ρ+ k1z̃)(δ2 + k2z̃)

µ1µ2

k1k2ỹp̃
, (6.17)

where m3 <
1
3

(
δ0 + βp̃

(1+αp̃)

)
(δ1 + ρ+ k1z̃) k1ỹ

µ1z̃

(
1+αp̃
βp̃

)2

.

Proof. Let us assume that X = x− x̃, Y = y− ỹ, V = p− p̃ and Z = z− z̃ be the

small perturbations about the pathogen-present equilibrium E3. We first linearize

model (6.12) around E3 and then consider the following positive definite function

about E3:

V1 =
1

2
X2 +

1

2
m1Y

2 +
1

2
m2P

2 +
1

2
m3Z

2,

where m1, m2 and m3 are positive constants to be chosen suitably.

Differentiating V1 w.r.t t along all positive solutions of the linearized version of

model (6.12) and manipulating the calculation, we get

V̇1 = −1

2
c11X

2 + c12XY −
1

2
c22Y

2

− 1

2
c22Y

2 + c21Y X −
1

2
c11X

2

− 1

2
c11X

2 + c13XP −
1

2
c33P

2

− 1

2
c22Y

2 + c23Y P −
1

2
c33P

2

− 1

2
c22Y

2 + c24Y Z −
1

2
c44Z

2

− 1

2
c33P

2 + c34PZ −
1

2
c44Z

2,

where

c11 =
2

3

(
δ0 +

βp̃

(1 + αp̃)

)
, c22 =

1

2
m1(δ1+ρ+k1z̃), c33 =

2

3
m2(δ2+k2z̃), c12 = ρ,

c21 =
m1βx̃

(1 + α1p̃)2
, c13 = − m1βx̃

(1 + α1p̃)2
, c23 =

(
m1βx̃

(1 + α1p̃)2
+m2rδ1

)
,

c44 =
1

2
m3

µ

z̃
, c24 = (m3µ1z̃ −m1k1ỹ), c34 = (m3µ2z̃ −m2k2p̃).
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Sufficient conditions for V̇1 to be negative definite are

c2
12 < c11c22, (6.18)

c2
21 < c22c11, (6.19)

c2
13 < c11c33, (6.20)

c2
23 < c22c33, (6.21)

c2
24 < c22c44, (6.22)

c2
34 < c33c44. (6.23)

Now let us choose m1 = m3µ1z̃
k1ỹ

and m2 = m3µ2z̃
k2ỹ

, then conditions (6.22) and (6.23)

are satisfied. For the value of m3 as given in Theorem 6.6.1, condition (6.19) is

satisfied. We further note that (6.15) ⇒ (6.18), (6.16) ⇒ (6.20), and (6.17)⇒

(6.21). Hence the theorem follows.

Theorem 6.6.2. Let the following inequalities hold in octant Ω2:

(
ρ+

βp̃

1 + αp̃

)2

<
2

3

(
δ0 +

βp̃

1 + αp̃

)
(δ1 + ρ+ k1z̃) (6.24)

(
βλ

δm(1 + αp̃)

)2

<
2

3
(δ2 + k2z̃)

(
δ0 +

βp̃

1 + αp̃

)
(6.25)

(
βλ

δm(1 + αp̃)
+ rδ1

)2

<
4

9
(δ2 + k2z̃)(δ1 + ρ+ k1z̃) (6.26)

and m4 < min
{

2
3
(δ1 + ρ+ k1z̃)

(
η

µ21z̃
2

)
, 2

3
(δ2 + k2z̃)

(
η

µ21z̃
2

)}
. Then E3(x̃, ỹ, p̃, z̃) is

globally asymptotically stable with respect to all solutions in the interior of the

positive octant Ω2.

Proof. Let us define the positive definite function

W2 =
1

2
(x− x̃)2 +

1

2
(y − ỹ)2 +

1

2
(p− p̃)2 +m4

1

2
(z − z̃)2.
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Differentiating W2 along the solutions of nonlinear model (6.12), after some alge-

braic calculations, we get

Ẇ2 = −1

2
d11(x− x̃)2 + d12(x− x̃)(y − ỹ)− 1

2
d22(y − ỹ)2

− 1

2
d11(x− x̃)2 + d13(x− x̃)(p− p̃)− 1

2
d33(p− p̃)2

− 1

2
d22(y − ỹ)2 + d23(y − ỹ)(p− p̃)− 1

2
d33(p− p̃)2

− 1

2
d22(y − ỹ)2 + d24(y − ỹ)(z − z̃)− 1

2
d44(z − z̃)2

− 1

2
d33(p− p̃)2 + d34(p− p̃)(z − z̃)− 1

2
d44(z − z̃)2,

where

d11 =
1

2

(
δ0 +

βp̃

(1 + αp̃)

)
, d22 =

2

3
(δ1 + ρ+ k1z̃), d33 =

2

3
(δ2 + k2z̃),

d44 = m4
µ

z̃
, d13 = − βx

(1 + αp)(1 + αp̃)
, d23 =

(
βx

(1 + αp)(1 + αp̃)
+ rδ1

)
,

d12 =

(
ρ+

βp̃

(1 + αp̃)

)
, d24 = (m4µ1z̃ − k1y), d34 = (m4µ2z̃ − k2p).

Sufficient conditions for Ẇ3 to be negative definite are

d2
12 < d11d22, (6.27)

d2
13 < d11d33, (6.28)

d2
23 < d22d33, (6.29)

d2
24 < d22d44, (6.30)

d2
34 < d33d44. (6.31)

It may be noted here that for the chosen value of m4 as given in Theorem 6.6.2,

conditions (6.30) and (6.33) are satisfied. Further, (6.24)⇒(6.27), (6.25)⇒(6.28)

and (6.26)⇒(6.29). Hence the theorem follows.

In the next section, we present the last case in which effect of absorption of

pathogens has been incorporated in previous model (6.12).
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6.7 Model Involving the Effect of Absorption in

Model (6.12)

We consider the absorption of pathogens into uninfected cells. Then model (6.12)

can be re-read as 

dx
dt

= λ− δ0x− βxp
1+αp

+ ρy,

dy
dt

= βxp
1+αp

− δ1y − ρy − k1yz,

dp
dt

= rδ1y − δ2p− k2pz − βxp
1+αp

,

dz
dt

= µ− µ0z + µ1yz + µ2pz,

(6.32)

x(0) > 0, y(0) ≥ 0, p(0) ≥ 0, z(0) ≥ 0.

Similar to model (6.12), we observe that the inclusion of the absorption of pathogens

into uninfected cells does not alter the positivity and boundedness of the solutions

of model (6.32). Thus model (6.32) is biologically well behaved and the set Ω2 is

the positive invariant region for model (6.32) too. The basic reproduction number

R4 for model (6.32) is given by

R4 =
βλrδ1

(δ1 + ρ+ k1
µ
µ0

)(δ0(δ2 + k2
µ
µ0

) + βλ)
.

As usual, model system (6.32) has two equilibria; pathogen-free equilibrium E04( λ
δ0
, 0, 0, µ

µ0
)

and pathogen-present equilibrium E4(x̂, ŷ, p̂, ẑ). One can notice that x̂, ŷ, p̂, ẑ are

positive solutions of ẋ = 0, ẏ = 0, ṗ = 0 and ż = 0. From these equations, we get

x =

(
(δ1 + ρ+ k1z)(δ2 + k2z)

(rδ1 − δ1 − ρ− k1z)β

)
(1 + αp),

y =

(
δ2 + k2z

(rδ1 − δ1 − ρ− k1z)

)
p.
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Here x and y are positive if rδ1 > δ1 +ρ+k1z. After some algebraic manipulations,

we further get

f1(p, z) = [µ0k1 + µ1k2p− µ2k1p]z
2 + [((rδ1 − δ1 − ρ)µ2 + µ1δ2)p− µk1

− µ0(rδ1 − δ1 − ρ)]z + µ(rδ1 − δ1 − ρ) = 0, (6.33)

f2(p, z) = [k1k2δ0 + k1k2(αδ0 + β)p]z2 + [(k1δ2 + (δ1 + ρ)k2)(1 + αp)δ0 + (k1δ2+

k2δ1)βp]z + δ0δ2(δ1 + ρ)(1 + αp) + βδ1δ2p+ βλ(δ1 + ρ)− βλrδ1 = 0.

(6.34)

For p = 0, equation (6.33) gives

z =
−B1 +

√
B1

2 − 4A1C1

2A1

=
µ

µ0

= z1(say),

where A1 = µ0k1, B1 = −(µk1 + µ0(rδ1 − δ1 − ρ)), C1 = µ(rδ1 − δ1 − ρ).

Equation (6.33), for p→∞ gives either z → 0 or z → −
(
µ1δ2+µ2(rδ1−δ1−ρ)

(µ1k2−µ2k1

)
.

dz

dp
= −∂f1/∂p

∂f1/∂z
= −F3

F4

where F3 = (µ1k2 − µ2k1)z2 + (µ2(rδ1 − δ1 − ρ) + µ1δ2)z,

F4 = (2(µ1k2−µ2k1)p+µ0k1)z+(µ2(rδ1−δ1−ρ)p+µ1δ2p−µ0(rδ1−δ1−ρ)−µk1).

⇒ dz
dp
< 0 if µ1k2 > µ2k1 and p > µ0

µ2
+ µk1

µ2(rδ1−δ1−ρ)
.

This implies z is decreasing function of p.

Further, when z = 0, equation (6.34) gives p = λrδ1β−(δ1+ρ)(δ0δ2+βλ)
(α(δ1+ρ)δ0δ2+βδ1δ2)

, p > 0 if R2 > 1.

When p = 0, equation (6.34) reduces to

(k1k2δ0)z2 + ((k1δ2 + (δ1 + ρ)k2)δ0 + βλk1)z − (βλrδ1 − (δ1 + ρ)(δ0δ2 + βλ) = 0.

From the above equation, we found two roots (one is positive and another one is

negative) if R2 > 1. For R2 < 1 there is no positive real root.

Let us say z = z2 =
−B2+
√
B2

2+4A2C2

2A2
, be a positive real root of the above equation,

where A2 = k1k2δ0, B2 = (k1δ2 + (δ1 + ρ)k2)δ0 + βλk1, and C2 = (βλrδ1 − (δ1 +
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ρ)(δ0δ2 + βλ)). Then
dz

dp
= −∂f2/∂p

∂f2/∂z
= −F5

F6

< 0,

where

F5 = k1k2(αδ0+β)z2+((k1δ2+k2(δ1+ρ)αδ0)+β(k1δ2+k2δ1))z+(βδ1δ2+αδ0δ2(δ1+ρ)),

F6 = 2k1k2(δ0 + (αδ0 + β)p)z + (k1δ2 + k2(δ1 + ρ))(1 + αp)δ0 + β(k1δ2 + k2δ1)p.

We notice that the two isoclines intersects at pathogen-present equilibrium point

if

z2 > z1,

i.e.
−B2 +

√
B2

2 + 4A2C2

2A2

>
µ

µ0

.

After some manipulations, we get the condition

R4 =
βλrδ1

(δ1 + ρ+ k1
µ
µ0

)(δ0(δ2 + k2
µ
µ0

) + βλ)
> 1.

Thus the pathogen-present equilibrium point exists if

R4 > 1, rδ1 > δ1 + ρ+ k1z, µ1k2 > µ2k1 and p >
µ0

µ2

+
µk1

µ2(rδ1 − δ1 − ρ)
.

6.7.1 Stability Analysis of Model (6.32)

Jacobian of model (6.32) at E04( λ
δ0
, 0, 0, µ

µ0
) is

J =



−δ0 ρ −βλ
δ0

0

0 −(δ1 + ρ+ k1
µ
µ0

) βλ
δ0

0

0 rδ1 −(δ2 + k2
µ
µ0

+ βλ
δ0

) 0

0 µµ1
µ0

µµ2
µ0

−µ0


.
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The above Jacobian matrix has two eigenvalues namely −δ0 and −µ0 and rest two

eigenvalues of the matrix are given by the following characteristic equation

Q2 + (q1 + q2)Q+ q1q2 −
βλrδ1

δ0

= 0,

where q1 = δ1 + ρ + k1
µ
µ0

and q2 = δ2 + k2
µ
µ0

+ βλ
δ0
. Eigenvalues have negative real

part if R4 < 1. This shows that E04 is locally asymptotically stable if R4 < 1 and

unstable if R4 > 1.

In the following two theorems, local and global stability of E4 have been dis-

cussed.

Theorem 6.7.1. The pathogen-present equilibrium E4 is locally asymptotically

stable if the following inequalities hold true:

ρ2 <
1

4
n3

(
δ0 +

βp̂

(1 + αp̂)

)
(δ1 + ρ+ k1ẑ)

µ1ẑ

k1ŷ
, (6.35)

βx̂2

(1 + αp̂)4
<

1

4
n3

(
δ0 +

βp̂

(1 + αp̂)

)
(δ2 + k2ẑ + ξ)

µ2ẑ

k2p̂
, (6.36)

(
µ1ξ

k1ŷ
+
µ2rδ1

k2p̂

)2

<
1

4
(δ1 + ρ+ k1ẑ)(δ2 + k2ẑ + ξ)

µ1µ2

k1k2ŷp̂
, (6.37)

where n3 <
1
4

(
δ0 + βp̂

(1+αp̂)

)(
1+αp̂
βp̂

)2

L, ξ = βx̂
(1+αp̂)2

and L = min{L1, L2},

L1 = k1y1
µ1ẑ

(δ1 + ρ+ k1ẑ) , L2 = k2p̂
µ2ẑ

(
δ2 + k2ẑ + βp̂

(1+αp̂)2

)
.

Proof. Similar to the proof of local stability of E3, we assume that X = x − x̂,

Y = y − ŷ, V = p − p̂ and Z = z − ẑ be the small perturbations about the

pathogen-present equilibrium E4 and define a positive definite function

V2 =
1

2
(x− x̂)2 +

1

2
n1(y − ŷ)2 +

1

2
n2(p− p̂)2 +

1

2
n3(z − ẑ)2.
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After differentiating V2 w.r.t t along all positive solutions of the linear version of

model (6.32) and manipulating the calculation, we get

V̇2 = −1

2
e11X

2 + e12XY −
1

2
e22Y

2

− 1

2
e22Y

2 + e21Y X −
1

2
e11X

2

− 1

2
e11X

2 + e13XP −
1

2
e33P

2

− 1

2
e33P

2 + e31PX −
1

2
e11X

2

− 1

2
e22Y

2 + e23Y P −
1

2
e33P

2

− 1

2
e22Y

2 + e24Y Z −
1

2
e44Z

2

− 1

2
e33P

2 + e34PZ −
1

2
e44V

2,

where

e11 =
1

2

(
δ0 +

βp̂

(1 + αp̂)

)
, e22 =

1

2
n1(δ1 + ρ+ k1ẑ), e33 =

1

2
n2(δ2 + k2ẑ + βξ),

e44 = n3
µ

ẑ
, e12 = ρ, e21 =

n1βp̂

(1 + α1p̂)
, e13 = −ξ, e31 =

n2βp̂

(1 + α1p̂)
,

e23 = (n1β + n2rδ1), e24 = (n3µ1ẑ − n1k1ŷ), e34 = (n3µ2ẑ − n2k2p̂).

If we choose n1 = n3µ1ẑ
k1ŷ

, n2 = n3µ2ẑ
k2ŷ

and n3 <
1
3

(
δ0 + βp̂

(1+αp̂)

)
(δ1+ρ+k1ẑ) k1ŷ

µ1ẑ

(
1+αp̂
βp̂

)2

then we can see that V̇2 is negative definite under conditions (6.35) - (6.37). Hence

the theorem follows.

Theorem 6.7.2. Let the following inequalities hold true in the region Ω2:

(
ρ+

βp̂

1 + αp̂

)2

<
2

3

(
δ0 +

βp̂

1 + αp̂

)
(δ1 + ρ+ k1ẑ), (6.38)

(
βλ

δm(1 + αp̂)

)2

<
2

3
(δ2 + k2ẑ)

(
δ0 +

βp̂

1 + αp̂

)
, (6.39)

(
βλ

δm(1 + αp̂)
+ rδ1

)2

<
4

9
(δ2 + k2ẑ)(δ1 + ρ+ k1ẑ), (6.40)
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and n4 < min
{

2
3
(δ1 + ρ+ k1ẑ)

(
η

µ21ẑ
2

)
, 2

3
(δ2 + k2ẑ)

(
η

µ21ẑ
2

)}
. Then E4(x̂, ŷ, p̂, ẑ) is

globally asymptotically stable with respect to all solutions in the interior of the

positive octant Ω2.

Proof of Theorem 6.7.2 is similar to that of Theorem 6.6.2 and hence omitted.

6.8 Numerical Simulations

In this section, we performed simulations to validate the analytical results of each

model using MatLab 7.10.

Table 6.1: List of parameters for model (6.1) and (6.8)

Parameters Values (Unit)

Source rate of uninfected cells (λ) 10 (d−1mm−3)

Death rate of uninfected cells (δ0) 0.01 (d−1)

Death rate of infected cells (δ1) 0.0693 (d−1)

Death rate of pathogen (δ2) 0.67 (d−1)

Infection rate (β) 0.0018 (mm3d−1)

Inhibition to infection (α) 1 (mm3d−1)

Cure rate (noncytolytic loss of infected cells) (ρ) 0.01 (d−1)

Burst size (r) 12 (mm3d−1)
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Figure 6.2: Phase portrait of model (6.1) and (6.8) in the xyp-space.
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We chose the parameters given in Table 6.1 for model (6.1) without absorption

and immune response. We found that all conditions for existence and stability

of E1 stated in Theorem 6.4.1 are satisfied. Thus the pathogen-present equilib-

rium exists and is globally asymptotically stable (fig 6.2(a)). The trajectories

initiating from different initial points approach to the same steady state point

E1(860.3563, 18.6882, 23.2034). This implies that system (6.1) is globally asymp-

totically stable in the xyp -space. This figure 6.2(a) indicates that the uninfected

cells, infected cells and pathogen exist in a steady state in absence of immune re-

sponse and uptake of pathogens into uninfected cells. This shows that under such

conditions the infection will persist in the body. Arrows in figure 6.2 represent

the direction of motion of trajectories and in legend IV stands for initial values of

sub-populations of model (6.1) and values are given in the legend. Phase portrait

of model (6.8) with absorption has been shown in figure 6.2(b). Keeping all the

parameters same as given in Table 6.1, we found that conditions for existence of

E2 are satisfied and is given by E2(860.8709, 18.6146, 20.8957). We observe the

similar behavior of the trajectories as in figure 6.2(a). This shows that the sys-

tem is globally asymptotically stable in the xyp -space. The initial values of the

sub-populations of model (6.8) in figure 6.2(b) are same as given in the legend of

figure 6.2(a). Figure 6.2(b) too does not show any remarkable variation from this

pattern. Thus even when uptake of pathogen by uninfected cells is considered, it

will not alter the situation very much although the equilibrium point is different

and have less concentration of pathogens and a very less increase in uninfected

cells.

Further, we simulated model (6.12) with immune response and in absence of

absorption of pathogens, by choosing the parameters given in Table 6.2. We

found that E3 exists and is given by E3(870.6360, 18.6082, 21.2756, 1.1565). In

fig 6.3, trajectories for different initial points has been plotted. Figures 6.3(a)

and 6.3(b) represent the global stability of the subsystem of model (6.12) in the

xyp-space and xyz-space respectively. In the legend IV stands for initial value

of the sub-populations of model (6.12) and are given as IV 1 → [600, 30, 55, 2],

IV 2 → [950, 5, 15, 0.5], IV 3 → [750, 22, 10, 0.05], and IV 4 → [1050, 10, 28, 5]. The
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Table 6.2: List of parameters for model (6.12) and (6.32)

Parameters Values (Unit)

Source rate of uninfected cells (λ) 10 (d−1mm−3)

Death rate of uninfected cells (δ0) 0.01 (d−1)

Death rate of infected cells (δ1) 0.0693 (d−1)

Death rate of pathogen (δ2) 0.67 (d−1)

Infection rate (β) 0.0018 (mm3d−1)

Inhibition to infection (α) 1 (mm3d−1)

Cure rate (non-cytolytic loss of infected cells) (ρ) 0.01 (d−1)

Burst size (r) 12 (mm3d−1)

Source rate of innate immune response (µ) 0.265 (d−1)

Killing rate of infected cells by CTL-mediated IR (k1) 0.001 (d−1)

Blocking rate of pathogens by humoral IR (k2) 0.05 (d−1)

Activation rate of CTL-mediated IR (µ1) 0.03 (d−1)

Activation rate of humoral IR (µ2) 0.01 (d−1)

Depletion rate of IR (µ0) 1 (d−1)
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Figure 6.3: Phase portrait of sub-populations of model (6.12) in xyp-space and xyz-
space, respectively.

behaviour of uninfected and infected cells for different values of β is shown in fig-

ures 6.4(a) and 6.4(b) respectively. From these two figures, we notice that when

there is no transmission of infection i.e. (β = 0), then y(t) → 0 i.e. infected cells

tend to its zero equilibrium level, and uninfected cells settle down at higher density

of its equilibrium level. This is the normal healthy state of an individual when he
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Figure 6.4: Effect of β and α on uninfected cells (x) and infected cells (y), respectively
in model (6.12).

has not been infected by a pathogen. As the incidence of infection increases the

concentration of uninfected cells falls down and that of infected cells increases.

When infection rate is high (β = 0.05), we observe a sharp increase in infected

cells at initial stage and after some time it settles at a higher level of steady state,

whereas the number of uninfected cells decline to a lower steady state.

The effect of inhibition to infection α on uninfected cells and infected cells is

shown in figures 6.4(c) and 6.4(d) respectively. In case of α = 0, initially, we

observed oscillations with small period in uninfected cells and with high period in

infected cells and after some time trajectories for both populations traversed to

approach its steady state. When α increases, we notice that infection decreases

and settles down to its steady state. The oscillatory behaviour of the graph at

initial stage can be explained by the presence of immune response in this model
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(6.12). The immune response will counter the infected cells leading to their decline.

When the infected cells decline the immune response itself slows down resulting in

an subsequent increase in infection.
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Figure 6.5: Effect of immune responses on infected cells (y) and pathogens (p) in model
(6.12).

Effect of immune response on infected cells (y) and on pathogens (p) has been

shown in fig 6.5. When k1 = k2 = 0 i.e. when there is no killing or blocking of in-

fected cells and pathogens due to immune responses then the trajectories in figures

6.5(a) and 6.5(b) are settling at their peak level. We observe reduction in concen-

tration of infected cells as well as that of pathogens with increase in CTL-mediated

immune response (k1) and humoral immune response (k2). If immune responses

act adequately then the concentrations of infected cells and that of pathogens can

be lowered.

We plotted here the effect of cure rate (ρ) on uninfected and infected cells in

figures 6.6(a) and 6.6(b) respectively. In absence of therapeutic drugs (cure) the

concentration of uninfected cells is less and that of infected cells is high. When sup-

ply of therapeutic drugs or treatment increases the concentration of infected cells

decreases and this enhances the concentration of uninfected cells. This is possible
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Figure 6.6: Effect of cure rate (ρ) on uninfected (x) and infected cells (y), respectively
in model (6.12).

because of two reasons; (i) as infected cell is getting cured through non-cytolytic

process and become the susceptible or uninfected cell again, (ii) the uninfected

cells are no longer getting infected due to blocking of infection through immune

response. Also it can be observed that concentration of uninfected cell change

significantly with subsequent increase in therapeutic drug.

Simulation parameters for fourth case (model (6.32)), in which loss of pathogens

is considered together with immune response, are same as given in Table 6.2.

Similar to figures 6.3(a) and 6.3(b), phase portrait of sub-populations have been

shown in the xyp-space and xyz-space in figures 6.7(a) and 6.7(b) respectively. Ini-

tial values of the sub-populations has been taken same as for fig 6.3. The pathogen-

present equilibrium pointE4 exists and given as (871.3486, 18.5624, 19.2906, 1.0593).

It is observed from fig 6.7 that the pathogen-present equilibrium E4 is globally

asymptotically stable. Figure 6.8 represents the effect of β and α on uninfected

cells (x) and infected cells (y) respectively. When there is no transmission of in-

fection i.e. (β = 0), the concentration of uninfected cells are at their peak and

infected cells are stabilizing at zero level. It is evident from figure 6.8 that the

behavior of the trajectories of the sub-populations is similar as in the earlier case

(figure 6.4). It is clear that the absorption of pathogens will not significantly affect

the uninfected cell and infected cell sub-population. Further, the effect of immune
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Figure 6.7: Phase portrait of model (6.32) in xyp-space and xyz-space respectively.
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Figure 6.8: Effect of β and α on uninfected cells (x) and infected cells (y), respectively
in model (6.32).
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Figure 6.9: Effect of immune responses on infected cells (y) and pathogens (p), respec-
tively in model (6.32).

response on infected cells and pathogens has been studied in figures 6.9(a) and

6.9(b) respectively in presence of absorption. We observed almost similar behavior

of the trajectories as in fig 6.5. But in this case we found that infected cells ap-

proach to zero level for k1 = 2, whereas for the same value of k1 this does not attain

zero level (figure 6.5(a)). Similarly for the same value of k2 = 10, the concentration

of pathogens is less (1.922) in the case of absorption (model (6.32)) as compared

to the case when absorption of pathogens into pathogens is not considered (model

(6.12)).

Furthermore, we notice that the basic reproduction number is dependent on

various parameters. To understand the effect of most sensitive parameters on the

basic reproduction number, we present fig 6.10. The effect of infection rate (β) and

of cure rate (ρ) on basic reproduction number R4 for model (6.32) has been shown

in fig 6.10. It is evident from the figure that basic reproduction number (R4 = 6)

is high when cure rate is less (ρ = 0.05) and infection rate is high (β = 0.005).

Further, R4 decreases with increase in cure rate and decrease in infection rate

and can be made less than one, which blocks the existence of pathogen-present

equilibrium.
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Figure 6.10: Variation of ρ and β on R4 for model (6.32).

6.9 Conclusions

In this problem, we formulated four basic models to get an insight of host-pathogen

interaction and pathogen-immune interaction in vivo. In the first case, we studied

the interaction between uninfected cells, infected cells and pathogens with cure

rate. This case has been well studied in literature by Murase et al. (2005) with

incidence rate following mass-action law and without cure rate. We have shown

the global stability of the pathogen-free equilibrium point in each case. This study

suggests that the elimination of infection does not depend on the initial size of

sub-populations. First model is extended to take into account the case of absorp-

tion of pathogens into uninfected cells. It has been observed that loss of pathogens

can alter the stability of pathogen-present equilibrium point. Furthermore, first

model is again extended to investigate the effect of innate, humoral and cellular

immune response on the system under consideration. In absence of immune re-

sponse (k1 = k2 = 0), it has been noted that the density of infected cells and that

of pathogens both get stabilized at high equilibrium level. However, in presence

of immune response, density of infected cells and that of pathogens both can be

brought back to a lower equilibrium level, as shown in figures 6.5(a)-6.5(d). Fourth
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model is extension of the third model with absorption of pathogens into uninfected

cells. It has been observed here that the concentration of infected cells and that

of pathogens approaches towards zero equilibrium level faster in comparison to

third case. Stability behavior of the equilibrium points are studied in third case

(without absorption with immune response) and fourth case (with absorption and

immune response). Here, also we noticed that the equilibrium points are globally

asymptotically stable in each case and the stability behavior gets altered in pres-

ence of immune response along with absorption of pathogens. The effect of cure

in infected cells through non-cytolytic process has also been observed and found a

decrease in infected cells and subsequent increase in uninfected cells (figure 6.6).

Basic reproduction number in each case has been computed. It is apparent from

the expression of basic reproduction numbers in each case (R1, R2, R3 and R4)

that there is a relation between these reproduction numbers which is given as (i)

R1 > R2 and (ii) R1 > R3 > R4, i.e. the basic model (6.1) involving only cure rate

(without absorption and immune response) will have greater basic reproduction

number in comparison to other models (6.8, 6.12, 6.32) comprising absorption and

immune response. Which in turn emphasizes the importance of absorption and

immune response. Another relation is given as (iii) R2 > R4 and R3 > R4. This

indicates that when absorption is considered along with immune response then

the basic reproduction number is least. However, the basic reproduction number

of model (6.12) with immune response and without absorption may or may not

be less than that of model (6.8) (with absorption and without immune response)

depending on the effectiveness of the immune response. Thus the consideration

of both biological features (absorption and immune response) together with non-

cytolytic cure is most suitable for effective control of infection.





Chapter 7

Modeling the Role of Acquired

Immune Response and

Antiretroviral Therapy in the

Dynamics of HIV Infection

Inferior doctors treat the full-blown

disease, Mediocre doctors treat the

disease before it is manifested,

Superior doctors prevent the

disease.

Ancient Chinese proverb

Human immunodeficiency virus (HIV) acts by weakening the immune system

and thus making its host susceptible to many forms of infectious diseases and

cancers. It is a matter of grave concern that no effective cure for HIV is available

yet. The prevalence of HIV in an individual can be minimized by the use of proper

treatment and he/she may be able to live longer life. This chapter studies the

effect of combination of antiretroviral therapy on the dynamics of HIV infection.

The proposed model also involves the effect of acquired immune response.
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7.1 Introduction

The most recent global disease burden report of WHO (2013) proclaims that

around 78 million people have been infected with the HIV virus and about 39

million people have died of HIV virus. In the current scenario around 35.0 million

people are living with HIV globally. Nevertheless, the HIV burden may vary de-

pending upon the geographical region, e.g. Like Sub-Saharan Africa is the most

affected region which contributes nearly 70% of the global HIV burden (WHO,

2013). The number of people dying from AIDS-related causes has been reduced

with the increasing availability of antiretroviral therapy in low and middle-income

countries. This emphasizes the importance of treatment of HIV through antiretro-

viral therapy.

The human immunodeficiency virus (HIV) is a retrovirus that infects immune

systems’s CD4+ T cells and macrophages of the immune system. It deteriorates

the person’s immune system as infection progresses. The primary stage of infection

takes around 10-15 years to develop into a full blown case of acquired immunod-

eficiency syndrome (AIDS). HIV is transmitted through various process involving

mixing of body fluids like transfusion of contaminated blood, sharing of contami-

nated needles, unprotected sexual intercourse, childbirth and breastfeeding.

Being a retrovirus, HIV virus’s genetic information is not encoded as DNA but

instead as RNA. The HIV virus can not reproduce on its own. The reproduction

of the HIV virus takes place in a cell of the infected host. Here the HIV virus

inserts its RNA into the cell, and makes a DNA copy (called provirus) of its RNA

by the process of reverse transcription. This proviral DNA integrates itself into the

hosts DNA and is later transcribed and translated into viral proteins in non-latent

cells. These viral proteins develop into the fully functional virus and are released

by bursting open the cell. This process of replication of CD4+ T cells is known

as the HIV life cycle. The stages of HIV life cycle can be understood from figure

7.1. These changes impair the immune system which further leads to reduction in

number of CD4+ T cells count. The CD4+ T cells count in healthy individual is

1000 cells per µl of blood. The decline in the CD4+ T cell below a critical level (i.e.
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Figure 7.1: Stages of HIV life cycle (Source: Byer et al. (1999)).

200 cells per µl of blood), accentuates the immune system weakening and causes

full blown acquired immune deficiency syndrome (AIDS) (Nowak and May, 2000).

Till now there is no treatment for this infection but preventive measures may help

in controlling its prevalence. Antiretroviral drugs can control the infection and

help in increasing the life span of the infected person. Both of these drugs act on

different stages of the viral life cycle. The ultimate consequence of both is to block

viral replication but in a different manner.

In early literature, several basic mathematical models have been studied to un-

derstand the dynamics of primary HIV infection (McLean and Nowak, 1992; Perel-

son et al., 1993; Wodarz and Nowak, 2002; Wang and Li, 2006; Song and Neumann,

2007; Zhou et al., 2008; Burg et al., 2009; Srivastava and Chandra, 2010; Liu et al.,

2011; Buonomo and Vargas-De-León, 2012; Culshaw et al., 2004; Perelson et al.,

1996; Wang et al., 2007; Nuraini et al., 2009; Zhou et al., 2009). These models do

not involve the effect of treatment of HIV using therapeutic drugs or antiretroviral

therapy. The mathematical models incorporating antiretroviral therapy to reduce
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HIV viral load have been studied by some researchers (Kirschner and Perelson,

1995; Perelson and Nelson, 1999; Landi et al., 2008; Srivastava et al., 2009; Gao

et al., 2011; Srivastava et al., 2012; Wang et al., 2013). Two commonly known

drugs are reverse transcriptase inhibitors and protease inhibitors. Reverse tran-

scriptase inhibitors block the new infection by inhibiting the reverse transcription

of HIV RNA into its proviral DNA. While protease inhibitors inhibit the produc-

tion of new infectious virus particles by disabling enzymes required for viral protein

production and assembly. The combination of protease inhibitors and retroviral

drugs is more suitable for patient treatment. The effect of combination of these

therapies has been studied by authors (Kirschner and Perelson, 1995; Perelson and

Nelson, 1999; Landi et al., 2008; Srivastava et al., 2009, 2012; Wang et al., 2013).

Perelson and Nelson (1999) studied a few models to understand the dynamics

of HIV primary infection in vivo. They considered the single ordinary differential

equation model which consists of virus compartment only. They applied clinical

data to this model and analyzed production and clearance of HIV in an infected

person. Furthermore, they considered the interaction between uninfected CD4+

T cells, productively infected cells and virus. In this model, the proliferation of

T cells has been considered to be a logistic growth function and the infection

rate is assumed to be “mass-action”, since the concentration of HIV virus never

gets high in comparison to the number of CD4+ T cells. They suggested that

the equilibrium can differ from one patient to the another, depending upon the

parameters characteristic of the virus and host. Further, they incorporated the

combination of drug therapy into their model to reduce the concentration of virus in

the body of infected person. They have shown that combination of therapy helps in

reducing viral load and providing the early treatment to the patients. It is assumed

that there may be other cells susceptible to the HIV virus. One cell of this type is

macrophages. These macrophages were introduced as productively infected long-

lived cells that produce virus continuously. Another alternative model is considered

in the same article. Here latently infected cells have been considered. Latently

infected cells do not produce viruses without activation, but upon activation they

may do so. These models provided a better insight of HIV infection’s biological
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mechanisms. The use of combination treatment therapy leads to an important and

subtle tool to reduce the infection. The only main important component, which

was not considered in their models was immune response.

Recently, Wang et al. (2013) investigated the dynamics of viral infection in-

corporating the immune response along with the combination of therapy. They

proposed two models, involving CTL immune response as well as effect of RTI and

PI (i) without absorption of virus and (ii) with absorption of virus into uninfected

cells. They found the critical threshold value (dependent on the number of CD4+

T cells which is easy to count in patients blood) and studied the stability behavior

of equilibrium points. They have performed Latin hypercube sampling analysis to

investigate the existence of multiple infected equilibria. This study suggests that

the combination of therapy reduces viral load rapidly and increases the count of

CD4+ T cells.

The limitation of their model was the ignorance of humoral immune response

which is important factor in case of HIV infection. Considering all the above as-

pects, we propose a mathematical model to investigate the behavior of HIV infec-

tion. This model involves the interaction of HIV virus, acquired immune response

and the effect of combination of reverse transcriptase and protease inhibitors ther-

apy. The aquired immune response is inclusive of both the cell mediated immune

response as well as the humoral immune response.

7.2 The Mathematical Model

The proposed model involves the interaction between uninfected CD4+ T cells

x(t), infected cells y(t), free virus v(t) and both the components of acquired im-

mune response i.e. cytotoxic T lymphocytes (CTLs) C(t) and antibody A(t). We

have considered here the control strategy of infection through combination ther-

apy i.e. reverse transcriptase inhibitor (RTI) and protease inhibitor (PI). The five

dimensional ordinary differential equation model is given as
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dx
dt

= λ+ rx
(

1− x
xm

)
− λ0x− β(1− ηr)xv,

dy
dt

= β(1− ηr)xv − δ′0y − k1Cy,

dv
dt

= Nδ′0(1− ηp)y − δ1v − k2Av,

dC
dt

= α0 + α′1y + µ1Cy − µ10C,

dA
dt

= µ2vA− µ20A,

(7.1)

x(0) > 0, y(0) ≥ 0, v(0) ≥ 0, C(0) ≥ 0, A(0) ≥ 0.

Here λ is the inflow of CD4+ T cells and λ0 is natural death rate of uninfected CD4+

T cells. The logistic term rx(1 − x
xm

) in first equation represents the growth of

T-cells by proliferation of existing CD4+ T cells. In this function r is the maximum

proliferation rate and xm = xmax is the CD4+ T cell population density at which

proliferation shuts off. We assume that virus v(t) meets the uninfected CD4+ T

cells and infects them with the infection rate β. This leads to loss of uninfected cells

x(t) at the rate βxv and generation of infected cells y(t) at the rate βxv. ηr is the

reverse transcriptase inhibitor therapy to kill the infected cells and ηp is protease

inhibitor therapy to block infection or to inhibit the production of new virions. δ′0

is the death rate of infected cells and these infected cells produce new virus at rate

Nδ′0y(t) via lysis, where N is the total number of virus particles produced by an

infected cell. δ1 is the virus clearance rate of the virus due to natural factors.

In last two equations of model (7.1), we consider both the component of ac-

quired immune response CTLs and the antibody. The CTLs are produced at

constant rate α0 and deplete at the rate µ10. Moreover, we assume that CTLs

get stimulated at the rate α′1 due to the increase of infected cells, as well as from

the interactions with infected cells at the rate µ1. CTLs interact with the infected

cells and remove the infected cells at the rate k1. Further the antibody also gets

stimulated at the rate µ2 due to increase in virus and it depletes at the rate µ20.

Antibody acts against the virus when comes into contact with the virus and reduces

the number of virus at the rate k2.

This model can easily be transformed to the following model using the trans-

formation C̄ = C − α0

µ10
and the transformed model (after dropping bar) is given
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as follows: 

dx
dt

= λ+ rx
(

1− x
xm

)
− λ0x− β(1− ηr)xv,

dy
dt

= β(1− ηr)xv − δ0y − k1Cy,

dv
dt

= Nδ0(1− ηp)y − δ1v − k2Av,

dC
dt

= α1y + µ1Cy − µ10C,

dA
dt

= µ2vA− µ20A,

(7.2)

where δ0 = δ′0 + k1α0

µ10
and α1 = α′1 + µ1α0

µ10
.

In the next section, we will discuss the well-posedness of model (7.2).

7.3 Boundedness and Positivity of the Model

From the first equation of model (7.2), we have

ẋ ≤ λ+ rx

(
1− x

xm

)
− λ0x,

Using elementary calculus we get

lim sup
t→∞

x(t) ≤ x0,

where x0 = xm
2r

[(r − λ0) +
√

(r − λ0)2 + 4rλ
xm

].

Further, ẋ+ ẏ ≤ λ+ rx
(

1− x
xm

)
− δa(x+ y) and δa = min{λ0, δ0}.

This implies

lim sup
t→∞

(x(t) + y(t)) ≤ 1

δa

(
λ+

rxm
4

)
= Ma(say).

We have v̇ ≤ N1δ0Ma − δ1v, this implies

lim sup
t→∞

v(t) ≤ N1δ0Ma

δ1

= va(say),

where N1 = N(1− ηp).
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Let us assume L1 = y + k1
µ1
C, differentiating L1 w.r.t. ‘t’ we get

L̇1 ≤ β1Mava +
α1k1

µ1

Ma − δb
(
y +

k1

µ1

C

)
,

where β1 = β(1− ηr) and δb = min{δ0, µ10}. Then

lim sup
t→∞

L1(t) ≤
β1Mava + α1k1

µ1
Ma

δb
= Ca(say).

Further let us assume that L2 = v + k2
µ2
A. Then

L̇2 ≤ N1δ0Ma − δc
(
v +

k2

µ2

A

)
,

where δc = min{δ1, µ20}. This implies

lim sup
t→∞

L2(t) ≤ N1δ0Ma

δc
= Aa.

Furthermore, we observe that ẋ < 0 if x > x0, ẏ < 0 if y > Ma, v̇ < 0 if v > va,

Ċ < 0 if C > Ca, and Ȧ < 0 if A > Aa. It is noticeable that all the solutions of

model system (7.2) point towards the set Ω defined in Lemma 7.3.1. The above

results can be summarized in the following lemma.

Lemma 7.3.1. The set Ω = {(x, y, v, C,A) ∈ <5
+ : 0 ≤ x ≤ x0, 0 ≤ y ≤ Ma, 0 ≤

v ≤ va, 0 ≤ C ≤ Ca, 0 ≤ A ≤ Aa} is positively invariant region of system (7.2).

The above lemma shows that model (7.2) is mathematically and biologically

well behaved.

In the next section, we will study the analytical behaviour (stability analysis

of equilibrium points) of model (7.2).

7.4 Equilibrium and Stability Analysis

It is observed that model (7.2) has following three nonnegative equilibrium points.

(i) Virus-free equilibrium point (VFE), E0(x0, 0, 0, 0, 0),
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(ii) Immune-free equilibrium (IFE), E1(x̄, ȳ, v̄, 0, 0),

(iii) Positive equilibrium (PE), E2(x∗, y∗, v∗, C∗, A∗).

It is clear from model (7.2) that the virus-free equilibrium exists trivially and

is given by E0(x0, 0, 0, 0, 0), where x0 = xm
2r

[(r − λ0) +
√

(r − λ0)2 + 4rλ
xm

].

7.4.1 Basic Reproduction Number

We computed the basic reproduction number of model (7.2) using next generation

matrix method and is given as

R0 =
βN(1− η)

δ1

x0, (7.3)

where η = 1 − (1 − ηr)(1 − ηp). It is apparent from the expression (7.3) that the

basic reproduction number is independent of immune response parameters. It can

be understood as the basic reproduction number is the number of newly infected

cells produced by a single infected cell when introduced into completely healthy

cells. We have considered in this model acquired immune response which is highly

specific and takes time to get activated. Therefore at initial stage this immune

response is not active.

In the next theorem, we will examine the local stability of the VFE E0.

Theorem 7.4.1. The virus-free equilibrium E0 is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1.

Proof. The linearization of system (7.2) gives the following Jacobian matrix JE0

JE0 =



−j11 0 −β1x0 0 0

0 −δ0 β1x0 0 0

0 N1δ0 −δ1 0 0

0 0 0 −µ10 0

0 0 0 0 −µ20


.
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where j11 =
(

2r
xm
x0 − (r − λ0)

)
=
√

(r − λ0)2 + 4rλ
xm

> 0.

The characteristic equation of the above Jacobian matrix at E0 is given as

(ψ1 + j11)(ψ1 + µ20)(ψ1 + µ10)[ψ2
1 + (δ0 + δ1)ψ1 + (δ0δ1 − β1N1δ0x0)] = 0. (7.4)

We note that the characteristic equation (7.4) has three real and negative eigen-

values and the rest two eigenvalues have negative real part if R0 < 1. Thus the

virus free equilibrium is locally asymptotically stable if R0 < 1.

Biologically, it is observable from the above result that on the onset of infection

if R0 < 1, (i.e. number of new infections on average is less than one) then the

infection will not keep on increasing further and the system will settle to virus-free

equilibrium point.

In the next theorem, we will study the global stability of VFE E0.

Theorem 7.4.2. The virus-free equilibrium is globally asymptotically stable if R0 ≤

1.

Proof. Let us consider the positive definite function

W = N(1− ηp)y + v,

Differentiating the above function with respect to the solutions of model (7.2), we

get

Ẇ = N(1− ηp)ẏ + v̇,

Some simple manipulations lead to

Ẇ ≤ δ1(R0 − 1)v,

This implies that Ẇ ≤ 0 if R0 ≤ 1. We found that maximum invariant set in

{(x, y, v, C,A) ∈ Ω|Ẇ = 0} is the singleton set {E0}, Hence by Lassale’s invariance

principle E0 is globally asymptotically stable.
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It is apparent from the above result that the virus can be cleared from the

blood if the basic reproduction number is less than one which is independent of

the initial concentrations of sub-populations. In case of HIV the virus continues

to persist in internal tissues.

7.4.2 Existence of Immune-Free Equilibrium E1(x̄, ȳ, v̄, 0, 0)

Equating the right hand side of equations (7.2) equal to zero, we have

ẋ = 0⇒ λ+ rx1

(
1− x̄

xm

)
− λ0x̄− β(1− ηr)x̄v̄ = 0, (7.5)

ẏ = 0⇒ β(1− ηr)x̄v̄ − δ0ȳ = 0, (7.6)

v̇ = 0⇒ Nδ0(1− ηp)ȳ − δ1v̄ = 0, (7.7)

Simple calculations lead to

x̄ =
δ1x0

βN(1− η)x0

=
x0

R0

,

ȳ =
1

δ0

(
λ+

x0

R0

(
(r − λ0)− rx0

R0xm

))
,

v̄ =
Nδ0(1− ηp)ȳ

δ1

.

Here ȳ is positive if R0 > rx0
(r−λ0)xm

. After substituting the value of x0 in this

inequality and simplifying, we get to the usual threshold for the existence of infected

equilibrium i.e. R0 > 1. Thus the immune-free equilibrium exists if R0 > 1 i.e. if

the inequality x0 > x̄ holds.

Remark 7.4.1. It is easy to check that R0 > 1 ⇒ η < 1− δ1
βN
x0 = ηcrit(say).

This shows that the inequality for the existence of immune-free equilibrium point

gives the critical value of the combination of therapies η which is given by

ηcrit = 1− δ1

βN
x0.
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Thus, the immune-free equilibrium exists if η < ηcrit. When η > ηcrit, then the

immune-free equilibrium does not exists but the virus-free equilibrium exists and it

is locally asymptotically stable.

In the next theorem, we will explore the local stability of immune-free equilib-

rium E1.

Theorem 7.4.3. The immune-free equilibrium E1 is locally asymptotically stable

if v̄ < µ20
µ2

and n1 > 0, n2 > 0, n3 > 0, n4 > 0 and n1n2n3 − n2
3 − n2

1n4 > 0, where

ni’s are defined in the proof of this theorem.

Proof. The variational matrix of model system (7.2) corresponding to the equilib-

rium E1 is given by

JE1 =



−a11 0 −β1x̄ 0 0

β1v̄ −δ0 β1x̄ −k1ȳ 0

0 N1δ0 −δ1 0 −k2ȳ

0 α1 0 −(µ10 − µ1ȳ) 0

0 0 0 0 −(µ20 − µ2v̄)


.

where a11 = β1v̄ + 2r
xm
x̄− (r − λ0) = r

xm
x̄+ β1N1

δ1
λ > 0.

The characteristic equation of the matrix JE1 at immune-free equilibrium E1 is

(ψ2 + (µ20 − µ2v̄))(ψ4
2 + n1ψ

3
2 + n2ψ

2
2 + n3ψ2 + n4) = 0, (7.8)

where

n1 = a11 + δ0 + δ1 + µ10 − µ1ȳ,

n2 = a11δ0 + (a11 + δ0 + δ1)(µ10 − µ1ȳ) + δ1(a11 + δ0) + α1k1ȳ −N1β1δ0x̄,

n3 = (µ10 − µ1ȳ)(a11δ0 + δ1(a11 + δ0)−N1β1δ0x̄) +N1β1x̄δ0(v̄β1 − a11) + a11δ0δ1

+ α1k1ȳ(a11 + δ1),

n4 = (a11δ0δ1 +N1β1x̄δ0(β1v̄ − a11))(µ10 − µ1ȳ) + α1k1ȳδ1a11,

From equation (7.8), it is clear that one eigenvalue of the matrix JE1 is negative

under the condition v̄ < µ20
µ2

.
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Using the Routh-Hurwitz criteria, we found that if the aforesaid inequalities in

Theorem 7.4.3 hold true then equation (7.8) has all the eigenvalues with negative

real part. Hence the theorem follows.

From the local stability of immune-free equilibrium, one can easily depict that

the infection persists in the endemic zone in stable state under the conditions

stated in Theorem 7.4.3.

7.4.3 Existence of Positive Equilibrium E2(x
∗, y∗, v∗, C∗, A∗)

We found the coordinates of the positive equilibrium E2 by performing the same

algebraic calculation as for the existence of immune-free equilibrium. The coordi-

nates of positive equilibrium are as follows:

x∗ =
xm
2r

[
e+

√
e2 +

4rλ

xm

]
,

y∗ =
µ10C

∗

α1 + µ1C∗
,

v∗ =
µ20

µ2

,

C∗ =
m2 +

√
m2

2 +m1m3

2m1

,

A∗ =
N1δ0µ2y

∗ − δ1µ20

µ20k2

,

where e = r − λ0 − β1µ20
µ2

, m1 = µ10µ2k1, m2 = β1µ20µ1x
∗ − δ0µ10µ2 and m3 =

β1µ20α1x
∗.

We note that A∗ > 0 if y∗ > µ20δ1
k2δ0N1µ2

. After some calculation, the above inequality

reduces to

0 < C∗ <
δ0

k1

(
x∗

x̄
− 1

)
=
δ0

k1

(xcrit − 1),

where xcrit = x∗

x̄
. Thus, when R0 > xcrit > 1, then x̄ < x∗ < x0. This implies that

count of uninfected CD4+ T cells in the presence of immune response is greater

than that of uninfected CD4+ T cells in the absence of immune response. Also it
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is less than that of the uninfected CD4+ T cells in case of virus-free equilibrium

point when there is no infection in the body.

In the next theorems, we will discuss the local and global stability of positive

equilibrium point.

Theorem 7.4.4. The positive equilibrium E2 is locally asymptotically stable if y∗ <

µ10
µ1

, s3(s1s2−s3) > s1(s1s4−s5) and s3s4(s1s2−s3) > s2s5(s1s2−s3)+(s1s4−s5)2.

Proof. The Jacobian matrix of system (7.2) corresponding to E2 is given as follows

JE2 =



−b11 0 −β1x
∗ 0 0

β1v
∗ −b22 β1x

∗ −k1y
∗ 0

0 N1δ0 −b33 0 −k2y
∗

0 b42 0 −b44 0

0 0 µ2A
∗ 0 0


.

where b11 = 2r
xm
x∗+β1v

∗−(r−λ0) =
√
e2 + 4rλ

xm
> 0, b22 = δ0+k1C

∗, b33 = δ1+k2A
∗,

b44 = µ10−µ1y
∗ which is positive if y∗ < µ10

µ1
and b42 = µ1C

∗+α1. The characteristic

equation of the Jacobian matrix at E2 is

ψ5
3 + s1ψ

4
3 + s2ψ

3
3 + s3ψ

2
3 + s4ψ3 + s5 = 0, (7.9)

where

s1 = b11 + b22 + b33 + b44,

s2 = b11b22 + (b11 + b22 + b33)b44 + (b11 + b22)b33 + b42k1y
∗ −N1β1δ0x

∗ + A∗k2µ2y
∗,

s3 = b44(b11b22 + b33(b11 + b22)−N1β1δ0x
∗) +N1δ0x

∗β1(v∗β1 − b11) + b11b22b33

− b22b44k1y
∗ + a42k1y

∗(b11 + b22 + b33) + A∗k2µ2y
∗(b11 + b22 + b44),

s4 = N1δ0β1x
∗(v∗β1 − b11) + b11b22b33 − b22b42k1y

∗ + b44k1y
∗(b11 + b22 + b33)

+ b44(N1δ0β1x
∗(v∗β1 − b11) + b11b22b33) + b42k1y

∗(b2
22 + b11b22 + b33(b11 + b22))

+ A∗µ2k2y
∗(b11b22 + b44(b11 + b22) + b42k1y

∗)− b22b44k1y
∗(b11 + b22 + b33),

s5 = A∗k2µ2((b44 + b33)b11b22 + b42k1y
∗(b11 + b33)−N1β1δ0x

∗b11)

− A∗k2µ2y
∗b33(b11b22 + b33b22 + b42k1y

∗ −N1β1δ0x
∗).
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By the Routh-Hurwitz criteria, it follows that all roots of the equation (7.9) have

negative real parts if s1 > 0, s3(s1s2 − s3) > s1(s1s4 − s5) and s3s4(s1s2 − s3) >

s2s5(s1s2 − s3) + (s1s4 − s5)2. Hence the theorem follows.

Theorem 7.4.5. Let the following inequalities hold true in region Ω:

y∗ <
µ10

µ1

, (7.10)

R0 < min

{
p1X1

δ0

,
(δ0 + k1C

∗)

6

}
. (7.11)

where X1 = r
xm
x∗+β1v

∗−(r−λ0) = 1
2

[√
e2 + 4rλ

xm
− e
]
> 0. Then E2(x∗, y∗, p∗, z∗)

is globally asymptotically stable with respect to all solutions in the interior of the

positive octant Ω.

Proof. Let us consider the positive definite function about E2:

V =
1

2
(x− x∗)2 +

1

2
p1(y − y∗)2 +

1

2
p2(v − v∗)2 +

1

2
p3(C − C∗)2

+
1

2
p2
k2v
∗

µ2

(
A− A∗ − A∗ ln

A

A∗

)2

.

Differentiating V w.r.t t along all positive solutions of model (7.2) and manipulating

the calculation, we get

V̇ = −1

2
c11(x− x∗)2 + c12(x− x∗)(y − y∗)− 1

2
c22(y − y∗)2

− 1

2
c11(x− x∗)2 + c13(x− x∗)(v − v∗)− 1

2
c33(v − v∗)2

− 1

2
c22(y − y∗)2 + c23(y − y∗)(v − v∗)− 1

2
c33(v − v∗)2

− 1

2
c22(y − y∗)2 + c24(y − y∗)(C − C∗)− 1

2
c44(C − C∗)2,

where

c11 =

(
r

xm
(x+ x∗) + β1v

∗ − (r − λ0)

)
, c22 =

2

3
p1(δ0 + k1C

∗),

c33 = p2(δ1 + k2A), c44 = 2p3(µ10 − µ1y
∗), c12 = p1β1v

∗, c13 = −β1x,

c23 = (p1β1x+ p2N1δ0), c24 = (p3(µ1C + α1)− p1k1y).
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We have following sufficient conditions for V̇ to be negative definite

c44 > 0, (7.12)

c2
12 < c11c22, (7.13)

c2
13 < c11c33, (7.14)

c2
23 < c22c33, (7.15)

c2
24 < c22c44, (7.16)

It is clear that (7.10)⇒(7.12). Now let us choose p1 = X1(δ0+k1C∗)

3β2
1v

∗2 , then in-

equality (7.13) is satisfied. Further inequality (7.16) is satisfied for the value of

p3 <
4
3
p1(δ0+k1C∗)(µ10−µ1y∗)

(α1+µ1Ca)2
. Again (7.14) and (7.15) hold under condition (7.11).

Hence the theorem follows.

7.5 Numerical Simulations

In this section, we illustrate some simulation results performed to validate the

analytical results of model (7.2) using MatLab. We have selected parameters of

model system (7.2) as given in Table 7.1.

The time series analysis of sub-populations of model (7.2) using parameters

given in Table 7.1 is shown in figure 7.2. In figure 7.2(a) the trajectory of unin-

fected cells show sharp decline at initial stage, then it increases with small oscil-

lations with increase in time. Finally the trajectory saturates to maximum level

and settles to its equilibrium point. The decline in initial stage of uninfected cells

can be explained by the onset of infection and then the subsequent increase can

be due to immune response and combination of therapy given. The small oscilla-

tions may be due to the counteracting interaction between infected cells and the

immune system along with the combination therapy. The delay in implementing

the therapy and activation of immune response may also play a role in eliciting an

oscillatory behavior. The trajectory for infected cells shows oscillatory behavior

with decreasing its amplitude and settle down to its equilibrium point for similar

reasons. Also since the virus is not entirely eliminated from the body there will

always be residual number of infected cells (figure 7.2(b)). The trajectory for virus
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Table 7.1: List of parameters for model (7.2)

Parameters Values (Unit)

Recruitment rate of uninfected cells (λ) 10 (mm−3d−1)

Death rate of uninfected cells (λ0) 0.055 (d−1)

Death rate of infected cells (δ′0) 0.24 (mm3d−1)

Clearance rate of Virus (δ1) 3 (mm3d−1)

Infection rate (β) 0.002 (mm3d−1)

Activation rate of CTLs (α0) 0.265 (mm3d−1)

Stimulation of CTLs due to infected cells (α′1) 0.01 (mm3d−1)

Depletion rate of CTLs (µ10) 0.755 (d−1)

Depletion rate of antibody (µ20) 0.1 (d−1)

CTLs responsiveness (µ1) 0.03 (d−1)

Antibody responsiveness (µ2) 0.01 (d−1)

RTI (ηr) 0.57 (d−1)

PI (ηp) 0.38 (d−1)

CTL effectiveness (k1) 0.05 (d−1)

Antibody Effectiveness (k2) 0.5 (d−1)

Burst size (N) 100 (d−1)

Carrying capacity of T-cells (xm) 1500

Growth rate of T-cells (r) 0.3 (mm3d−1)

shows rapid increase in the population at initial stage and then it decreases to a

low level and then again increases and oscillates for small period of time and then

gets settle to its equilibrium point (figure 7.2(c)), respectively. These few oscilla-

tions in the trajectory behavior can be due to the intra-cellular viral growth and its

counteraction mediated by antibody produced, CTLs and antiretroviral therapy.

The trajectories of immune responses (CTLs and antibody) are shown in figures

7.2(d) and 7.2(e), respectively. The CTLs increase with increase in infection and

then start declining as infection reduces. The pattern followed here too is oscilla-

tory. Here the oscillations are caused due to counteraction between generation of

CTLs in response to virus and its decline owing to effective therapy and immune

response. The antibodies show oscillatory behavior initially and then settles to

equilibrium point at a higher level. The counteracting interactions in this case is

the antibody produced by B cells and its utilization mechanisms associated with

viral blocking. The antibodies persist in the body, at a higher level because the

virus does not get eliminated.
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Figure 7.2: Solution trajectories of model (7.2).

In model system (7.2), we have considered effect of varying doses in the combi-

nation of therapy (RTIs and PIs) to reduce the viral load. The effect of combination

of therapy on sub-populations has been shown in figures 7.3(a)-7.3(e). It is ob-

served that in the absence of therapy the cell count of uninfected CD4+ T cells

is lesser than that of with therapy and the trajectory corresponding to this sub-

population settles to its equilibrium with small oscillations (figure 7.3(a)). This is

because a large fraction of uninfected cells have got converted into infected cells.

While the level of trajectories for the rest sub-populations (infected cells, virus,

CTLS and antibody) is high in absence of therapy. When combination therapy is

started, we observed the increase in the cell count of uninfected cells (figure 7.3(a))

and decrease in infected cells, CTLs and antibody (figures 7.3(b), 7.3(d) and 7.3(e).

While the equilibrium level of the virus does not alter with the small amount of



7.5. Numerical Simulations 171

0 50 100 150 200
400

600

800

1000

1200

1400

Time

U
n

in
fe

ct
ed

  c
el

ls
(a) 

0 50 100 150 200
0

20

40

60

Time

In
fe

ct
ed

 c
el

ls

(b)

0 50 100 150 200
0

20

40

60

80

Time

V
ir

u
s

(c)

 

 

0 50 100 150 200
0

10

20

30

40

Time
C

T
L

S

(d)

η
r
 =  η

p
 = 0

η
r
 = 0.45,       η

p
 = 0.4

η
r
 = 0.7,         η

p
 = 0.75

η
r
 = 0.9,         η

p
 = 0.88

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Time

A
n

ti
b

o
d

y

(e)

Figure 7.3: Effect of RTI (ηr) and PI (ηp) on sub-populations of model (7.2).

therapy given, nonetheless the decline in the peak of oscillations is observed (fig-

ure 7.3(c)). As we keep increasing the magnitude of therapy given, the decrease

in infected cells, virus, CTLs and antibody and the corresponding increase in un-

infected cells is observed. The level of infected cells and virus can be effectively

reduced with the high amount of combination of therapy (ηr = 0.9 and ηp = 0.88)

given. This indicates the efficacy of using a combination of protease inhibitors

and RT inhibitors in reducing the infection. The level of CTLs and antibody also

declines substantially with the corresponding decrease in infection.

In figures 7.4(a)-7.4(d), we have shown the effect of CTLs and antibody on the

infected cells and virus sub-populations. In absence of CTLs the trajectory for

infected cells first increases sharply and then decreases to get settle its high equi-

librium level (figure 7.4(a)). This decrease is due to the combination of therapy
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Figure 7.4: Effect of CTLs (k1) and antibody (k2) on infected cells and virus, respectively.

given to the sub-populations. The level of infected cells decreases with enhance-

ment of CTLs. The trajectories corresponding to virus population does not show

significant change (figure 7.4(b)). This is due to the fact that CTLs does not work

directly against the virus but it kills virally infected cells. On the contrary, when

we examine the effect of antibody then the infected cells population does not alter

significantly (figure 7.4(c)). The reason behind this is that antibody on its own not

able to kill an infected cell. While the virus population in absence of antibody is

at high level and the level of virus population can be brought down with increase

in the density of antibody (figure 7.4(d)). The antibody neutralizes the virus and

block further viral production by blocking its entry. Therefore it counteracts the

viral growth and shows oscillatory behaviour initially. At high concentration of an-

tibody the virus settles at a very low residual value. The legend for figures 7.4(a)

and 7.4(b) are same and the legend for figures 7.4(c) and 7.4(d) are same.
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Figure 7.5: Effect of infection rate (β) and combination therapy (η) on R0.

The basic reproduction number is dependent on the combination of components

of antiretroviral therapy, number of virus produced and infection rate. We tried

to understand the effect of infection rate (β) and combination of therapy (η) on

basic reproduction number (R0). The values of the other parameters are same

as given in Table 7.1. We observed from figure 7.5 that the basic reproduction

number is high when infection rate is high and combination therapy is low. This

can be reduced and brought to less than one by reducing the infection rate and

increasing the amount of combination of therapy applied, which in turn implies

that the infection can be minimized by making the value of R0 < 1.

7.6 Conclusions

In this Chapter, we proposed a mathematical model to study the effect of combine

therapy along with two major components of acquired immune responses, namely

the CTLs and antibodies. We found that model (7.2) exhibits three non-negative

equilibria, (i) Virus free equilibrium, E0(x0, 0, 0, 0, 0), (ii) Immune free equilibrium,

E1(x̄, ȳ, v̄, 0, 0) and (iii) Positive equilibrium, E2(x∗, y∗, v∗, C∗, A∗). We found the

critical efficacy of the combination of therapy (η) as a threshold for the existence
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of virus free equilibrium and immune free equilibrium. These two equilibria will

coexist if η < ηcrit. Normally CD4+ count is used to evaluate the criticality of AIDS

patients and the effect of drugs on them. We have used cell count of uninfected

CD4+ T cells as measure of critical value for the existence of equilibrium points.

We have shown that if x0 > x∗ > x̄, then the immune free equilibrium and positive

equilibrium points coexist. The novelty of model (7.2) lies in the inclusion of anti-

body mediated immune response which is an important factor in HIV infection and

counteracts the virus. It is observed during the study of this research work that

antibody immune response helps in reducing the viral load and clearing the infec-

tion. This Chapter also exemplifies the fact that counteracting interactions among

various vital parameters lead to a oscillatory behavior. The effect of combination

of therapy on the sub-populations has been shown analytically and numerically

(figure 7.3(a)-7.3(e)). It is also observed that the combination of therapy reduces

viral load and enhances the lifespan of HIV infected patients. The combination

of drugs is more effective than individually because each drug acts on a different

stage of the HIV life cycle.



Chapter 8

Conclusions and Future Work

As far as the laws of mathematics

refer to reality, they are not

certain; as far as they are certain,

they do not refer to reality.

Albert Einstein

In this chapter, we encapsulate the main outcomes of the thesis. And further,

we provide a few research directions that may be studied in future course of research

work.

8.1 Conclusions

In this thesis, we have proposed and analyzed the mathematical models and es-

tablished the mechanism to control the transmission of infectious diseases. This

information may further help to reduce the overall disease burden. This study pro-

vides better insights primarily in two different aspects of transmission of infection.

Firstly, the study of disease transmission at population level (basic SIR model)

and secondly the spread of infection within an individual.

In first case, the main focus of the thesis is to emphasize on pharmaceutical and

non-pharmaceutical interventions to eradicate the infection at population level. It
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is assumed that the incidence of infection is nonlinear and saturated type which

provides desired dynamics of transmission of infection in case of myriad popula-

tions. We have studied the effect of awareness programs run by media as well

as the treatment given to infected individuals on a compartmental model. It is

shown that proposed models are biologically well-behaved. Equilibrium analysis

of the models proves and emanates the existence and uniqueness of equilibrium

points. Local and global stability analysis of the equilibrium points have been

investigated and further validated through numerical simulations. We found the

threshold parametric value of infection i.e the basic reproduction number R0 for

each model to determine the persistence of infection in the endemic zone. Analyt-

ical study of models discussed in Chapters 2, 3 and 4 suggests that the limitation

of the availability of treatment resources should be minimized for the effective

treatment. It is also inferred from analysis of these models that the awareness

and adequate amount of treatment among sub-populations about the infection are

helpful in eradication of infection in totality. But disease can not be eradicated if

either of treatment or awareness is lacking.

Secondly in Chapters 5, 6 and 7, we analyzed virus dynamics models at a cel-

lular level. The effect of therapeutic drugs on infected cells and virus has been

explored on a virus dynamics model in the presence of immune response. We

incorporated the biological features step by step in pathogen-immune interaction

models to understand the dynamics of infection. The biological features involved

in modeling process are absorption of pathogens into uninfected cells (leading to

infection) and non-cytolytic cure of infected cells. Further, the effect of combi-

nation of therapies (Reverse Transcriptase Inhibitor and Protease Inhibitor) has

been investigated in an HIV infection model with acquired immune response. We

found that the infection will further increase if basic reproduction number is greater

than one and infection will be drastically reduced if basic reproduction number is

less than one. Thus it can be inferred that the number of secondary infections

decreases with the increase of immune response and drug efficacy. Increase in

treatment is effective in controlling the number of infected cells and free viruses.

In addition, action of immune response also reduces the virus load. The consider-
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ation of both biological features (absorption and immune response) together with

non-cytolytic cure is most suitable for effective control of infection. The antibody

mediated immune response helps in reducing the viral load and further clearing

the HIV infection. The combination of therapies (RTI and PI) reduces viral load

and enhances the lifespan of HIV infected patients.

The study elucidates the mechanism of disease transmission at a population

level and at a cellular level. Its outcomes can be applied for better management

and control of diseases at an epidemiological level.

8.2 Future Work

It is observed that the mathematical models examined in this thesis are determin-

istic models. We have studied the stability behavior of these models and performed

numerical simulations. In future course of research work, we would like to explore

the following aspects:

• We would like to explore the chaos theory for the epidemic models.

• Time delay in spread of infection is an important factor. The models can be

further explored as delay differential equation model.

• The optimal level of treatment given to infected individuals can be studied

by formulating optimal control model and using the Pontryagin’s maximum

principle.

• Stochasticity can be involved to the epidemic models which gives more real-

istic dynamics of the transmission of infection.

• To include heterogeneity in the system dynamics, the development of the

agent-based models (ABM) framework is required. This is particularly de-

signed to simulate the spread of contact centric infections. Agent-Based Mod-

eling allows to construct a comprehensive representation and simulations of

the real world problems.
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