
Design of Energy Efficient and Deterministic

Memory Subsystem for Uniprocessor and

Multicore Systems

THESIS

Submitted in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

by
PATIL GEETA NAYAKAPPA

Under the Supervision of
Dr. BIJU K. RAVEENDRAN

and Co-supervision of
Dr. LUCY J. GUDINO

BIRLA INSTITUTE OF TECHNOLOGY AND

SCIENCE, PILANI

2018

Dedicated to

God,

My wonderful huge family

&
My best Supervisors.

Acknowledgement

I would like to acknowledge my sincere thanks to each and everyone who have

made this thesis an unforgettable experience and who have influenced this

work in some way or the other. Let me begin by thanking the Almighty God

for the innumerable blessings he has showered upon me.

Next, I would like to express my deepest gratitude to my supervisor, Dr. Biju

K. Raveendran, for giving me an opportunity to work under his guidance. His

patience, especially during the initial stages of my PhD, his vast knowledge,

excellent supervision, prompt attention, dedicated help, advice, inspiration,

encouragement and continuous support have made a deep impression on me.

I have been extremely lucky to have Dr. Lucy J. Gudino as my co-supervisor.

I have learnt the basics of computer architecture from her motivational classes.

She has provided her valuable guidance and consistent support throughout my

research work. Her suggestions in completing my thesis are highly appreciated.

I would like to thank the members of Doctoral Advisory Committee, Prof.

Bharat Deshpande and Prof. Neena Goveas, for their valuable time, guidance,

critical suggestions and comments for overall improvement of research work.

I am grateful to Prof. Souvik Bhattacharyya, Vice-Chancellor, BITS Pilani,

Prof. G. Raghurama, Director, BITS-Pilani, K. K. Birla Goa Campus, Late.

Prof. S. K. Agarwal, former Director, BITS-Pilani, K. K. Birla Goa Campus,

Prof. S. K. Verma, Dean, Academic Research Division, BITS-Pilani, Prof. P.

K. Das, former Associate Dean, Academic Research Division, BITS-Pilani K.

K. Birla Goa Campus, Prof. Bharat Deshpande, Associate Dean, Academic

Research Division, BITS-Pilani K. K. Birla Goa Campus and the members

of Doctoral Research Committee of Department of CS&IS, BITS-Pilani, K.

K. Birla Goa Campus for providing administrative support, a conducive

atmosphere and adequate facilities to carry out my research efficiently.

I am thankful to any time help of Dr. Ramprasad Joshi, and his initiation

in introducing Latex software. A special mention of thanks to my friends in

BITS-Goa Aruna Govada, Shubhangi Gawali, Sreejith V, Rajendra Kumar

Roul, Mahadev Gawas, Ashu Sharma, Shamanth N. and many more for their

timely help, constant support and cooperation.

I acknowledge my students Vijay, Neethu, Manali, Divya, Alen, Kajal, Samriti

and Ayushi who made this journey so wonderful and who were ever willing to

assist me. On this occasion I cannot forget my past teachers whose teaching

at different stages of education has made it possible for me to reach a stage

where I could write this thesis.

I owe my deepest gratitude towards my loving husband, Amol, for his eternal

support and aspirations. His love and support has always been my strength.

His patience and sacrifice will remain my inspiration throughout my life.

Without his help, I would not have been able to complete much of what I

have done and become who I am. I thank my son Pranil and daughters Sara,

Meenali and Manushri for their understanding and support throughout this

work. I am thankful to my mother Sukanti, father Nayakappa, mother in

law Jayashree, father in law Jayawant, brother Amol, brother in law Sachin,

co-sisters Siya, Sangeeta, and my entire family for believing in me and giving

me space to explore the world.

Geeta

Abstract

Energy efficiency is one of the major design considerations of the modern

day processor design. Memory subsystem consumes major portion of the

on-chip energy. This motivates the designers to come up with cache memory

subsystem design with least possible energy consumption without much per-

formance degradation. System performance can be improved by increasing

operating frequency of the system. However, increase in operating frequency

leads to increase in energy consumption which in turn leads to increase in

heat dissipation and leakage current. One of the possible solutions to this

problem is to go for multicore systems with reduced frequency. Maintaining

data consistency becomes a major challenge in multicore systems. Energy

efficient and performance centric protocols are required to maintain data

consistently in these system.

In hard real-time embedded systems, along with energy efficiency, determinis-

tic tighter upper bound on the worst case execution time of the task is also

a requirement. Deterministic tighter upper bound on worst case execution

time can only be ensured by making the entire process of accessing memory

system deterministic. The memory access model can be made deterministic

by providing a hard upper bound on the number of misses in TLB, L1 Cache,

L2 cache and main memory. This thesis addresses static energy consumption

and dynamic energy consumption of unicore and multicore system. The

thesis also addresses mechanisms to provide tighter upper bound on worst

case execution time on memory sub-system performance in order to achieve

deterministic memory performance.

To reduce energy consumption and response time of set associative caches, the

thesis proposes a novel cache architecture - Way Halted Prediction. This is

vi

achieved with the help of halt tag array and prediction circuit. Experimental

evaluation of various SPLASH benchmark programs on SESC simulator reveal

that way halted prediction architecture offers better energy efficiency over

the other architectures analyzed. Way halted prediction offers 46.64%, 6.45%

and 4.15% dynamic energy saving and 1.04%, 2.92% and -0.05% saving in

response time over the CC, WP and WH respectively.

To reduce energy consumption and response time of multicore systems, the

thesis proposes a novel cache coherence protocol Modified Owned Exclusive

Shared Invalid Forward - MOESIF - to improve the off chip and on chip

bandwidth usage for multicore systems. This is achieved by reducing the

number of write backs to next level memory and by reducing the number of re-

sponders to a cache miss when multiple copies of data exists in private caches.

Reduction in the number of write backs and the number of responders results

in reducing time, energy and bandwidth usage. Experimental evaluation of

various SPLASH benchmark programs on SESC simulators reveal that the

MOESIF protocol outperforms all other hardware based coherence protocols

in terms of energy consumption and response time. The energy savings of

MOESIF protocol over MESI, MOESI and MESIF protocol is 88.58%, 4.33%

and 88.52% respectively.The per response time saving of MOESIF protocol

over MESI, MOESI and MESIF protocol is 91.37%, 6.17% and 91.32% re-

spectively.

The thesis proposes a novel TLB architecture - Deterministic Translation

Lookaside Buffer (DTLB)- to offer tighter upper bound on the worst case

execution time . DTLB offers deterministic performance for low priority

real-time tasks. DTLB achieves a tighter upper bound on the worst case

execution time of real-time tasks by maintaining a copy of the current TLB in

PCB of the task before preemption and transferring the contents back to TLB

while resumption of the task. DTLB reduces TLB response time, dynamic

energy consumption and effective per response time by increasing TLB hit

rate. TLB hit rate is increased by 9.46% as compared to conventional TLB

for 4KB page size, with 16 preemptions and 32 TLB entries. DTLB offers on

an average 6.74% of dynamic energy savings over conventional TLB. Effective

per response time of DTLB reduced by 2.97% as compared to conventional

TLB.

To have a tighter upper bound on the worst case execution time of real time

task, the thesis presents a Deterministic Energy efficient process Aware Real-

time Cache (DEARCache). DEARCache ensures deterministic tighter

upper bound by eliminating cache related intertask interference. It allocates

at least statically identified minimum ways to each job. It obtains tighter

upper bound on number of cache misses. DEARCache reduces dynamic

energy consumption by 38.10% for 4-way set associative cache configura-

tion over CC with 4.39% overhead of static energy. Per response time of

DEARCache is improved 3.87 times over NO CACHE model and with an

additional requirement of 4.37% of per response time as compared to CC.

To get deterministic performance of L2 cache, this thesis proposes a De-

terministic Energy Efficient Process aware(DEEP) design. DEEP cache is

shared among all tasks running on different cores of the processor. It allocates

minimum number of ways to each task which is identified as a result of static

analysis. The performance of DEEP cache can be improved by using a shared

way - DEEPS. On an average per response time, per access dynamic energy

and per access static energy of DEEP is higher than conventional cache

by 10.48%, 2.13%, 15.78% respectively. The per response time, per access

dynamic energy and per access static energy of CC is higher than DEEPS by

38.50%, 71.69% and 50.01% respectively.

The thesis proposes an integrated design of deterministic memory named

as Deterministic REAl-time Memory system (DREAM). DREAM achieves

deterministic performance at TLB and L1 cache by incorporating DTLB and

DearCache with DEEP as L2 cache. The per response time, per access

dynamic energy and per access static energy of conventional cache is higher

than DREAM by 27.85%, 71.40% and 46.75% respectively.

Contents

List of Figures xvi

List of Tables xxiii

List of Abbreviations xxiv

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 4

1.3 Problem Statement . 8

1.4 Research Goals . 10

1.5 Contributions . 10

1.6 Publications . 12

1.7 Thesis Outline . 13

2 Literature Survey 15

2.1 Introduction . 15

2.2 Uniprocessor / Unicore energy optimisations 15

2.3 Cache Coherency Protocols 22

2.4 Deterministic Memory . 27

2.4.1 Deterministic TLB . 27

2.4.2 Deterministic Cache 30

3 WHP:Way Halted Prediction Cache 33

x

3.1 Introduction . 33

3.2 WHP cache architecture . 34

3.3 Energy Model . 40

3.3.1 Conventional Cache . 40

3.3.2 Way Predicting Cache 43

3.3.3 Way Halting Cache . 45

3.3.4 Way Halted Prediction Cache 47

3.4 Time Model . 52

3.4.1 Conventional Cache . 53

3.4.2 Way Predicting Cache 54

3.4.3 Way Halting Cache . 54

3.4.4 Way Halted Prediction Cache 55

3.5 Experimental Setup . 56

3.6 Experimental Analysis . 57

3.6.1 Prediction Hit Accuracy 58

3.6.2 Dynamic Energy per Access 58

3.6.3 Response Time . 62

3.6.4 Static Energy Per Access 71

3.6.5 Time and Area Overhead 73

3.7 Conclusion . 73

4 MOESIF : Cache Coherency Protocol 74

4.1 Introduction . 74

4.2 Widely Used Cache Coherence Protocols 75

4.2.1 MESI Protocol . 76

4.2.2 MOESI Protocol . 78

4.2.3 MESIF Protocol . 78

4.3 MOESIF Architecture . 81

4.4 Energy and Time Model . 87

4.5 Experimental Evaluation . 90

4.5.1 Experimental Setup . 90

4.5.2 Experimental Analysis of Protocols 90

4.5.3 Experimental Evaluation 92

4.5.3.1 Hit rate and Data transfers 92

4.5.3.2 Energy Consumption 95

4.5.3.3 Response Time 98

4.6 Conclusion . 100

5 DTLB: Deterministic TLB for Real-time System 101

5.1 Introduction . 101

5.2 DTLB Architecture . 102

5.3 Energy and Time Modeling 105

5.3.1 Energy Modeling of TLB 105

5.3.2 Time Modeling of TLB 107

5.4 Experimental Setup And Evaluation 108

5.4.1 Experimental Setup . 108

5.4.2 Experimental Evaluation 110

5.4.2.1 TLB Miss Rate 110

5.4.2.2 Dynamic Energy 113

5.4.2.3 Access Time 116

5.5 Conclusion . 119

6 DEARCache - Deterministic Energy Efficient Process Aware

Real-time Cache 121

6.1 Introduction . 121

6.2 DEARCache Architecture 122

6.2.1 DEARCache Energy Modeling 125

6.2.2 DEARCache Time Modeling 126

6.3 Experimental Analysis . 127

6.3.1 Tighter upper bound on WCET 127

6.3.2 Energy per Access . 128

6.3.3 Response Time . 132

6.3.4 Energy and Time comparison with energy efficient caches134

6.4 Conclusion . 137

7 DREAM - Deterministic Memory Subsystem 138

7.1 Introduction . 138

7.2 DREAM Architecture . 139

7.3 Time, Power and Energy Modeling 142

7.3.1 Energy Modeling of DEEP Cache with Shared way -

DEEPS . 145

7.3.2 Energy Modeling of DREAM system with Shared cache

- DREAMS . 146

7.3.3 Time Modeling of DEEPS 146

7.3.4 Time Modeling of DREAMS 146

7.4 Performance Evaluation . 147

7.4.1 Experimental Analysis - L2 as DEEP Cache 147

7.4.1.1 Dynamic Energy per Access 147

7.4.1.2 Static Energy per Access 150

7.4.1.3 Effective per Access Time 152

7.4.1.4 Energy and Time comparison with energy

efficient caches 156

7.4.2 Experimental Analysis - Complete Memory Model . . . 157

7.4.2.1 Dynamic Energy per Access 157

7.4.2.2 Static Energy per Access 158

7.4.2.3 Per Access Time 159

7.5 Conclusion . 162

8 Conclusion and Future Directions 163

Publications 166

Biographies 167

Bibliography 170

List of Figures

1.1 Cache hit time performance of various associativities with

varying cache size . 5

1.2 Cache hit rate performance of various associativities with vary-

ing cache size . 6

3.1 Way Halted Prediction Cache Architecture 36

3.2 Prediction Circuit . 37

3.3 Prediction Rate for a 4 way, 8B line size with varying Data

Cache size . 57

3.4 Prediction Rate for a 4 way, 8B line size with varying Instruc-

tion Cache size . 58

3.5 Per access dynamic energy consumption for a 4 way, 8B, 32KB

Data Cache with varying benchmark programs 59

3.6 Per access dynamic energy consumption for a 2 way, 8B, 32KB

Instruction Cache with varying benchmark programs 60

3.7 Per access dynamic energy consumption for a 4 way, 8B, 32KB

cache with varying benchmark programs 61

3.8 Per access dynamic energy savings for a 4 way, 8B, 32KB cache

with varying benchmark programs over CC 63

3.9 Per access dynamic energy consumption for a 4 way, 8B line

size with varying cache size 64

xv

3.10 Per access dynamic energy consumption for a 16B, 8KB Data

Cache with varying associativities 64

3.11 Per access dynamic energy consumption for a 4 way, 8KB cache

with varying line Size . 65

3.12 Response time for a 4 way, 8B, 32KB Data Cache with varying

benchmark programs . 66

3.13 Response time for a 2 way, 8B, 32KB Instruction Cache with

varying benchmark programs 67

3.14 Response time for a 4 way, 8B, 32KB cache with varying

benchmark programs . 68

3.15 Response time saving over CC for a 4 way, 8B, 32KB cache

with varying benchmark programs 69

3.16 Response time for a 4 way, 8B line size with varying cache size 70

3.17 Response time for a 4 way, 8KB cache with varying line Size . 70

3.18 Response time for a 16B, 8KB Data Cache with varying asso-

ciativity . 71

3.19 Per access static energy consumption for a 4 way, 8B, 32KB

cache with varying benchmark programs 72

4.1 MESI Access and Snoop State Transitions 77

4.2 MOESI Access and Snoop State Transitions 79

4.3 MESIF Access and Snoop State Transitions 80

4.4 Quad-core Architecture . 82

4.5 MOESIF cache access . 83

4.6 MOESIF cache snoop . 84

4.7 Design of random generator used for Quad-core Architecture . 85

4.8 Per access hit rate for varying cache sizes with 32B line size

and associativity as 4 way . 93

4.9 Per access write backs for varying cache sizes with 32B line

size and associativity as 4 way 94

4.10 Per access data from L2 for varying cache sizes with 32B line

size and associativity as 4 way 94

4.11 Per access data from other L1 for varying cache sizes with 32B

line size and associativity as 4 way 95

4.12 Per access energy for varying cache sizes with 32B line size and

associativity as 4 way . 96

4.13 Per access energy for varying cache line sizes with 8KB cache

size and associativity as 4 way 96

4.14 Per access energy for varying number of cores with 8KB cache,

16B line size and associativity as 4 way 97

4.15 Per access time for varying cache sizes with 32B line size and

associativity as 4 way . 98

4.16 Per access time for varying cache line sizes with 8KB cache

size and associativity as 4 way 99

4.17 Per access time for varying number of cores with 8KB cache,

16B line size and associativity as 4 way 99

5.1 Deterministic TLB Architecture 103

5.2 Miss rate performance of DTLB and ASID-TLB with respect

to conventional TLB for varying page size with 16 preemptions

and 32 TLB entries . 110

5.3 Miss rate performance of DTLB and ASID-TLB with respect

to conventional TLB for varying preemptions with 4KB page

size and 32 TLB entries . 111

5.4 Miss rate performance of DTLB and ASID-TLB with respect to

conventional TLB for varying TLB entries with 16 preemptions

and 4KB page size . 113

5.5 Per access dynamic energy with respect to conventional TLB

saving for varying page size with 16 preemptions and 32 TLB

entries . 114

5.6 Per access dynamic energy with respect to conventional TLB

saving for varying preemptions with 4KB page size and 32

TLB entries . 115

5.7 Per access dynamic energy with respect to conventional TLB

saving for varying TLB entries with 16 preemptions and 4KB

page size . 115

5.8 Per access dynamic energy for varying Splash benchmark pro-

grams . 117

5.9 Per access time saving with respect to conventional TLB for

varying page size with 16 preemptions and 32 TLB entries . . 117

5.10 Per access time saving with respect to conventional TLB for

varying preemptions with 4KB page size and 32 TLB entries . 118

5.11 Effective access time of 32 entry, 64bits TLB for varying Splash

benchmarks . 119

6.1 Deterministic process aware partitioned real-time cache 124

6.2 Miss rate of CC and DEARCache by varying number of pre-

emptions . 128

6.3 Per access energy for varying preemption with 8KB cache size,

32B line size and associativity as 4 way 129

6.4 Per access energy for varying cache size with 10 preemptions,

32B line size and associativity as 4 way 130

6.5 Per access energy for varying line size with 10 preemptions,

8KB cache and associativity as 4 way 130

6.6 Per access energy for varying associativity with 10 preemptions,

8KB cache and 32B line size 131

6.7 response time for varying preemption with 8KB cache size, 32B

line size and associativity as 4 way 132

6.8 response time for varying cache size with 10 preemptions, 32B

line size and associativity as 4 way 133

6.9 response time for varying line size with 10 preemptions, 8KB

cache and associativity as 4 way 133

6.10 response time for varying associativity with 10 preemptions,

8KB cache and 32B line size 134

6.11 Per access dynamic energy for varying line size with 10 pre-

emptions, 8KB cache size and associativity as 4 way 135

6.12 Per access Static energy for varying line size with 10 preemp-

tions, 8KB cache size and associativity as 4 way 135

7.1 DREAM Memory Subsystem 140

7.2 Deterministic Energy Efficient Process aware(DEEP) Cache . 141

7.3 DREAM Memory Subsystem with shared way 143

7.4 Per access dynamic energy for a 4 way, 32B, 8KB cache with

varying preemptions . 148

7.5 Per access dynamic energy for a 4 way, 32B line size with

varying cache size [#preemptions = 10] 148

7.6 Per access dynamic energy for a 4 way, 8KB cache with varying

line size [#preemptions = 10] 149

7.7 Per access dynamic energy for a 32B, 8KB cache with varying

associativity [#preemptions = 10] 149

7.8 Per access static energy for a 4 way, 32B, 8KB cache with

varying preemptions . 150

7.9 Per access static energy for a 4 way, 32B line size with varying

cache size [#preemptions = 10] 151

7.10 Per access static energy for a 4 way, 8KB cache with varying

line size [#preemptions = 10] 151

7.11 Per access static energy for a 32B, 8KB cache with varying

associativity [#preemptions = 10] 152

7.12 Per access time for a 4 way, 32B, 8KB cache with varying

preemptions . 153

7.13 Per access time for a 4 way, 32B line size with varying cache

size [#preemptions = 10] . 153

7.14 Per access time for a 4 way, 8KB cache with varying line size

[#preemptions = 10] . 154

7.15 Per access time for a 32B, 8KB cache with varying associativity

[#preemptions = 10] . 154

7.16 Per access dynamic energy for varying line size with 10 pre-

emptions, 8KB cache size and associativity as 4 way 155

7.17 Per access Static energy for varying line size with 10 preemp-

tions, 8KB cache size and associativity as 4 way 155

7.18 Per access dynamic energy for a 64KB L2 cache with varying

L1 cache size . 158

7.19 Per access dynamic energy for a 8KB L1 cache with varying

L2 cache size . 159

7.20 Per access static energy for a 64KB L2 cache with varying L1

cache size . 160

7.21 Per access static energy for a 8KB L1 cache with varying L2

cache size . 160

7.22 Per access time for a 64KB L2 cache with varying L1 cache size161

7.23 Per access time for a 8KB L1 cache with varying L2 cache size 161

List of Tables

2.1 Comparison of Replacement Strategies 17

2.2 Cache Coherence States and Descriptions 25

3.1 SESC Components for Energy and Power Modeling of Cache . 41

3.2 WHP variables used . 51

3.3 SESC Components for Time Modeling of Cache 53

4.1 Read, Write and Snoop operations in MOESIF Protocol . . . 81

4.2 Energy and time modeling for cache operations 89

5.1 TLB Components for Energy and Time Modeling 106

5.2 Task Set Execution Schedule Format 109

xxii

List of Abbreviations

ASID-TLB Address Space Identifier based Translation Lookaside Buffer

CC Conventional Cache

DEARCache Deterministic Energy efficient process Aware Real-time Cache

DEEP Deterministic Energy Efficient Process aware

DREAM Deterministic REAl-time Memory system

DREAMS Deterministic REAl-time Memory system with Shared way

DTLB Deterministic Translation Lookaside Buffer Buffer

FIFO First In First Out

LFU Least Frequently Used

LFUDA Least Frequently Used Dynamic Aging

LRU Least Recently Used

MC Multi-core

MESI Modified Exclusive Shared Invalid

MESIF Modified Exclusive Shared Invalid Forward

MI Modified Invalid

MOESI Modified Owned Exclusive Shared Invalid

MOESIF Modified Owned Exclusive Shared Invalid Forward

MOSI Modified Owned Shared Invalid

MRU Most Recently Used

MSB Most Significant Bit

MSI Modified Shared Invalid

PCB Process Control Block

PLRU Pseudo Least Recently Used

RAND RANDom

RT Response Time

SA Set Associative

SESC Super EScalar Simulator

TLB Translation Lookaside Buffer

WCET Worst Case Execution Time

WH Way Halting Cache

WHP Way Halted Prediction

WP Way Predicting Cache

Chapter 1

Introduction

1.1 Background

Technology advancement has helped in increasing the processing speed for

almost all the architecture components. Processors speed increases at higher

rate than memory speed. Speed mismatch between these components is one

of the major performance bottlenecks in modern processors which upto a limit

is alleviated by using hierarchical arrangement of cache memories. Memory

subsystems improve system performance by taking advantage of locality of

reference - both temporal and spatial. Translation lookaside buffer (TLB)

helps in converting logical address into physical address and is accessed at

least once per instruction cycle. Hence, the TLB and cache plays a major

role in determining system performance.

Irrespective of the processor in use, energy efficiency is one of the major

design considerations of the modern day processor design. Shrinking size of

transistors because of the advancement in fabrication technology increases

the transistor density on chip. This improves processing power of the system

at the cost of energy consumption. Narrowing of channel width in transistors

result in reduced switching current and increased leakage current. This leads

to reduction in dynamic energy at the cost of increased static energy.

1

1.1. Background 2

The Dynamic energy consumption of a CMOS circuit is given as :

Edynamic = A ∗ V 2 ∗ f ∗ C (1.1)

where A, V , f and C are cache activity factor, operating voltage, operating

frequency and effective load capacitance respectively. The Static energy

consumption of a CMOS circuit is as :

Estatic = V ∗ Ileak ∗N ∗Kdesign (1.2)

where Ileak, N and Kdesign are the leakage current, number of transistors in the

circuit and design dependent parameters respectively. Dynamic energy can

be reduced by reducing the voltage or frequency of operation or by reducing

the activity factor. Static energy can be reduced by reducing total number of

transistors or by shutting down some part of the system.

Memory subsystem consumes major portion of the on-chip energy. This forces

the designers to come up with memory subsystem design with least possible

energy consumption without much performance degradation.

System performance can be improved by increasing operating frequency of

the system. However, increase in operating frequency leads to increase in

energy consumption which in turn leads to increase in heat dissipation thus

leakage current. One of the possible solution to this problem is to go for

Multicore(MC) systems [1]. A shared memory MC system has more than

one core where L1 and L2 caches are local to the core. The L3 cache and

main memory are shared across all the cores. This results in possibility of

having multiple copies of data in different locations. Cores access data from

1.1. Background 3

local caches as the data transfer is much faster from/to it in comparison with

shared memory. It is possible that the cached data is modified in one of the

cores and these modifications are not reflected in other cores, leading to data

inconsistency among cores. Thus, maintaining data consistency becomes a

major challenge in MC systems. Energy efficient and performance centric

protocols are required to maintain data consistently in MC systems.

Deadline misses in hard real-time embedded system results in catastrophic

failure. In hard real-time embedded systems, along with energy efficiency,

deterministic tighter upper bound on the Worst Case Execution Time (WCET)

of the task is also required. Deterministic tighter upper bound on WCET

can only be ensured by making the entire process of accessing memory

subsystem deterministic. This helps in improving offline and online analysis

to incorporate more real-time tasks without deadline misses. One of the

major components which make the system non-deterministic is memory.

The unpredictability of memory subsystem is mainly because of the global

replacement policy where the memory entries can be replaced by other tasks.

Global replacement results in increase in memory misses on preemption. The

memory access model can be made deterministic by providing a hard upper

bound on the number of misses in TLB, all levels of caches and main memory.

1.2. Motivation 4

1.2 Motivation

The cache memory access time is calculated as equation 1.3.

Cache memory access time = Cache memory hit time

+ Miss rate ∗ Miss penalty
(1.3)

The cache performance can be optimised by reducing cache hit time, miss rate

and miss penalty. The cache misses are categorised as compulsory, capacity,

conflict and coherence misses [2]. Figures 1.1 and 1.2 show hit time and hit

rate performance with varying cache size and associativity, while executing

FFT - Splash benchmark program [3].

As shown in figures 1.1 and 1.2, the cache hit time and hit rate of the direct

map cache is the least as compared to the same-sized associative cache organ-

isations. This is because the requested data word is available in output bus

before hit/miss decision. Though the hit time of direct-map cache is the least,

its average access time is highest due to highest number of conflict misses.

The energy consumption - both static and dynamic - of a cache is propor-

tional to hit energy, block transfer energy and hit rate. Dynamic energy

consumption can be reduced by reducing switching activity in cache and static

energy consumption can be reduced by shutting down unused part of the

cache. Architects have to find the right cache configuration to reduce energy

consumption without much performance degradation. Though direct-map

cache offers least per access energy consumption and hardware complexity,

most of the embedded architectures prefer set associative (SA) cache because

of the moderate hit energy and the hit rate.

1.2. Motivation 5

F
ig

u
re

1.
1:

C
ac

h
e

h
it

ti
m

e
p

er
fo

rm
an

ce
of

va
ri

ou
s

as
so

ci
at

iv
it

ie
s

w
it

h
va

ry
in

g
ca

ch
e

si
ze

1.2. Motivation 6

F
ig

u
re

1.
2:

C
ac

h
e

h
it

ra
te

p
er

fo
rm

an
ce

of
va

ri
ou

s
as

so
ci

at
iv

it
ie

s
w

it
h

va
ry

in
g

ca
ch

e
si

ze

1.2. Motivation 7

For a SA cache, an ideal cache hit scenario is, compare one tag and access

one data and an ideal cache miss scenario is to find a miss without accessing

tag array and data array. Various cache optimisation strategies like way

prediction [4], way halting [5] are proposed to achieve these objectives.

The growing computational demands is satisfied by adding more proces-

sors/cores to the system [6]. A coherent view of memory is crucial for these

systems. A coherent data in cache is maintained by using cache coherency

protocols. Cache coherency circuit, coherency misses and data/signal trans-

fers across the network contributes towards the energy consumption in MC

systems. Various coherency protocols are available to maintain data coherency

but there exist a requirement of reducing coherency related energy consump-

tion further [7].

In real-time systems, apart from the correct result of computation, the time

at which the result is produced is critical [8]. This is true specially when

it is used for critical applications like vehicular, aeronautical, military and

industrial. Deadline miss of some of these applications lead to system failure

and catastrophic consequences. Ensuring deadlines of critical applications

is one of the design goals of hard real-time systems. As most of these sys-

tems are battery powered, energy efficiency is equally a design consideration

along with deadline. Though cache memories are used widely to bridge

the speed mismatch between processor and memory, they make the system

non-deterministic. This is due to inter-task conflicts during execution. The

preempted job’s cache lines might get replaced by the cache lines of currently

running job. When the preempted job resumes back its execution, many of

its cache lines may not be present which increases its execution time. This

1.3. Problem Statement 8

may result in deadline misses, especially for high priority tasks with memory

operations. Design of energy efficient and performance centric hard real-time

system requires a tighter upper bound on WCET. To provide tighter upper

bound on WCET, memory subsystem needs to be designed with tighter upper

bound on misses.

1.3 Problem Statement

This thesis addresses architecture level energy and performance optimisation

of uniprocessor / unicore and MC system. With advancement in technol-

ogy, the static energy consumption became an equally important component

in total energy consumption along with the dynamic energy consumption.

Static energy can be reduced by increasing cache hit rate and thus reducing

operational time or by shutting down unused part of cache memory. Dynamic

energy consumption can be reduced by reducing switching activities during

cache access. Dynamic energy consumption is mainly due to charging and

discharging of wordlines, bitlines, sense amplifiers, precharge circuits and

decoders. To reduce dynamic energy consumption, this thesis aims at reducing

switching activities of cache memory. This thesis also ensures deterministic

tighter upper bound on memory access time in hard real-time systems. De-

tailed objective of the thesis are as follows:

Objective 1: Design of energy efficient unicore cache

The objective is to design an energy efficient cache for unicore system with

reduced response time. The optimal cache hit energy can be achieved by

accessing a tag array and a data array. The ideal cache miss scenario is

1.3. Problem Statement 9

achieved by early detection of cache misses. Early detection of cache miss

improves system performance. This objective is to achieve performance closer

to ideal cache hit and cache miss scenarios. This objective is discussed in

chapter 3 of this thesis.

Objective 2: Design of energy efficient cache coherency protocol

for MC systems

The objective is to improve the off-chip and on-chip bandwidth usage. This

work aims at designing an energy efficient cache coherency protocol by reduc-

ing coherency misses, write backs to next level memory and responders to

any request. This objective is discussed in chapter 4 of this thesis.

Objective 3: Design of deterministic TLB

The objective is to design a TLB which offers tighter upper bound on number

of misses and thus achieves a deterministic TLB performance. Details of this

objective is discussed in chapter 5.

Objective 4: Design of deterministic L1 cache

The objective is to provide tighter upper bound on WCET of L1 cache by

redesigning L1 instruction and L1 data caches. Inter-task interference makes

the system non-deterministic. This issue needs to be addressed to achieve

tighter upper bound on cache misses. Deterministic L1 cache design is dis-

cussed in chapter 6.

Objective 5: Design of deterministic memory subsystem

The objective is to provide tighter upper bound on WCET of memory sub-

system by redesigning L2 cache and combining it with redesigned TLB and

L1 cache. The determinitsic memory subsystem is discussed in chapter 7.

1.4. Research Goals 10

1.4 Research Goals

This research focuses on optimising performance in terms of energy consump-

tion and time for unicore and MC systems. Identified research goals are:

Research Goal 1: Identify time and energy impact of major components

in memory subsystem.

Research Goal 2: Optimise unicore cache architecture with minimum re-

sponse time and energy consumption.

Research Goal 3: Optimise MC cache architecture by minimising coherency

misses and network traffic to improve performance in terms of time and en-

ergy.

Research Goal 4: Eliminate time uncertainty in TLB design to offer a

tighter worst case upper bound on TLB accesses.

Research Goal 5: Eliminate time uncertainty in L1 private cache design

and offer a tighter worst case upper bound on L1 accesses.

Research Goal 6: Eliminate time uncertainty in memory subsystem used

for hard real-time systems by redesigning TLB, private L1, shared L2 and

main memory to offer a tighter worst case upper bound.

1.5 Contributions

The major contributions of this thesis are as follows :

Contribution 1: Energy efficient unicore cache

Time and energy impact of major components in memory subsystem is identi-

fied. A part of this contribution is published in Paper A. An energy efficient

1.5. Contributions 11

cache for unicore system with reduced per access time is designed and im-

plemented. This contribution is discussed in chapter 3 of this thesis and is

published in Paper B.

Contribution 2: Energy efficient cache coherency protocol for MC

systems

Identification of various cache coherency related components contributing

towards energy consumption is done. A part of this work is published in

Paper C. The off-chip and on-chip bandwidth usage is improved. An energy

efficient cache coherency protocol is designed and implemented. This work is

published in Paper D and is discussed in chapter 4 of this thesis.

Contribution 3: Deterministic TLB

This work designed and evaluated a deterministic TLB which offers tighter

upper bound on number of misses. This contribution is published in Paper E

and is discussed in chapter 5 of this thesis.

Contribution 4: Deterministic L1 cache

The tighter upper bound on WCET of L1 cache is obtained by designing and

evaluating deterministic L1 cache. This contribution forms chapter 6 of this

thesis.

Contribution 5: Deterministic memory subsystem

The contribution provides tighter upper bound on WCET of memory sub-

system. L2 cache is redesigned and combined with redesigned TLB and L1

cache. The determinitsic memory subsystem is discussed in chapter 7.

1.6. Publications 12

1.6 Publications

Paper A: Geeta Patil, Parag Panda and Biju Raveendran, “A Survey on

Replacement Strategies in Cache Memory for Embedded Systems,”IEEE Con-

ference on Distributed Computing, VLSI, Electrical Circuits and Robotics

(DISCOVER), Mangalore, 2016, pp. 12-17.

Paper B: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “Way

Halted Prediction Cache: An Energy Efficient Cache Architecture for Embed-

ded Processors,”28th International Conference on VLSI Design, Bangalore,

2015, pp. 65-70

Paper C: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “Simulation

based Performance Study of Cache Coherence Protocols,”IEEE International

Symposium on Nanoelectronic and Information Systems, Indore, 2015, pp.

125-130.

Paper D: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “MOESIF:

A MC/MP Cache Coherence Protocol with Improved Bandwidth Utiliza-

tion,”International Journal of Embedded Systems (In Press).

Paper E: Geeta Patil, Kajal Varma and Biju Raveendran, “DTLB: Deter-

ministic TLB for Tightly Bound Hard Real-Time Systems,”30th International

Conference on VLSI Design and 16th International Conference on Embedded

Systems, Hydrabad, 2017, pp. 207-212.

1.7. Thesis Outline 13

1.7 Thesis Outline

The outline of rest of the dissertation is as follows:

Chapter 2 - Literature Survey - This chapter presents a survey of state-

of-the-art techniques used for energy optimisation in unicore and multicore

cache architectures. The survey also includes various techniques used to

obtain tighter upper bound on WCET of real-time tasks.

Chapter 3 - WHP : Way Halted Prediction Cache - This chapter

presents an energy efficient set associative cache architecture named Way

Halted Prediction (WHP) cache. WHP is designed to obtain reduced energy

consumption and response time(RT).

Chapter 4 - MOESIF: Cache Coherency Protocol - This chapter con-

centrates on improving cache performance by redesigning coherency protocols.

This chapter proposes an energy efficient cache coherency protocol - Modified

Owned Exclusive Shared Invalid Forward - MOESIF. The redundant re-

sponses are concisely narrowed down in MOESIF protocol.

Chapter 5 - DTLB : Deterministic TLB for Real-time System - To

have a tighter upper bound on WCET of real-time task, this chapter presents

a TLB architecture - Deterministic Translation Lookaside Buffer (DTLB)

which offers deterministic miss rate.

Chapter 6 - DEARCache: Deterministic Energy Efficient Process

Aware Real-time Cache - To have a tighter upper bound on the WCET of

real-time task, this chapter presents a Deterministic Energy efficient process

Aware Real-time cache (DEARCache). Tighter upper bound on the WCET

is achieved by eliminating L1 cache related intertask interference. It allocates

1.7. Thesis Outline 14

at least statically identified minimum ways to each job.

Chapter 7 DREAM: Deterministic Memory Subsystem - This chapter

presents an integrated design of deterministic memory named as Deterministic

REAl-time Memory system (DREAM). DREAM achieves deterministic per-

formance at TLB and L1 cache by incorporating DTLB and DEARCache

along with deterministic energy efficient process aware L2 cache.

Chapter 8 Conclusion - This chapter concludes the thesis by summarising

the results and future directions of the work.

Chapter 2

Literature Survey

2.1 Introduction

This chapter presents an exhaustive literature survey, analysis and comparison

of the state-of-the-art techniques used for energy optimisation in uniproces-

sor/unicore and multicore memory subsystem architectures. The survey also

includes various techniques used to obtain tighter upper bound on WCET of

hard real-time tasks. The remainder of the chapter is organised as follows:

Section 2.2 describes work done in energy efficient cache architecture. Related

work in the field of cache coherency protocols and deterministic cache in

real-time system are discussed in section 2.3 and 2.4 respectively.

2.2 Uniprocessor / Unicore energy

optimisations

The most common approach to improve the cache hit rate with minimum

energy consumption is to find the correct configuration of cache size, cache

line size and associativity for the applications. Along with the configuration

parameters, cache replacement strategy also plays a vital role in optimising

cache performance [9]. It helps in reducing the number of cache misses and

15

2.2. Uniprocessor / Unicore energy optimisations 16

hence, the energy consumption and effective cache access time. An optimal

cache replacement strategy identifies a cache line which will not be accessed

in near future as victim cache line for replacement. This is impractical as the

future references are unknown [10]. The performance of the cache replacement

strategy mainly depends on how accurately system can predict the future

reference pattern based on the past references. The selection of a programable

replacement strategy for associative caches can have significant impact on the

overall system performance. The choice of a replacement strategy is one of

the most critical design issues.

Replacement strategies are classified based on time of the future reference

(Optimal), time at which the cache line has arrived in cache (Arrival), time

of the past reference (Recency), number of past references (Frequency), com-

bination of recency and frequency (Recency + Frequency) or a random pick

(Random).

Random (RAND) [11], First In First Out (FIFO) [9], Least Recently Used

(LRU) [12], Most Recently Used (MRU) [12], Least Frequently Used (LFU)

[13], [14], Least Frequently Used with Dynamic Ageing (LFUDA) [13], [15]

and Pseudo-LRU (PLRU) [16] are some of the widely used hardware controlled

cache replacement strategies . In order to analyse and compare hardware

controlled cache replacement strategies, they are implemented on Xilinx ISE

design 12.2. Memory traces of CPU2006 benchmark programs [17] were

extracted by using Simplescalar [18] simulator. The memory traces obtained

are given as input to the implemented cache replacement strategies.

2.2. Uniprocessor / Unicore energy optimisations 17

T
ab

le
2.

1:
C

om
p
ar

is
on

of
R

ep
la

ce
m

en
t

S
tr

at
eg

ie
s

R
ep

la
ce

m
en

t
A

lg
or

it
h

m

C
ac

h
e

m
is

s
ra

te
w

.r
.t

.
L

R
U

S
p

ee
d

u
p

A
ct

io
n

on
ca

ch
e

h
it

A
ct

io
n

on
ca

ch
e

m
is

s
H

ar
d

w
ar

e
C

om
p

on
en

ts

L
R

U
R

E
F

E
R

E
N

C
E

R
E

F
E

R
E

N
C

E
U

p
d

at
e

L
R

U
co

u
n
te

rs
U

p
d

at
e

L
R

U
co

u
n
te

rs
N

lo
g2

N
b

it
s

p
er

se
t

an
d

as
so

ci
at

ed
ci

rc
u

it
ry

O
P

T
70

%
M

IN
N

A
N

A
N

A
R

A
N

D
-2

2%
A

ve
ra

ge
22

%
sl

ow
er

N
O

N
E

U
p

d
at

e
a

re
gi

st
er

lo
g2

N
b

it
s

an
d

P
se

u
d

o
R

an
d

om
ge

n
er

at
or

F
IF

O
-2

0%
A

ve
ra

ge
20

%
sl

ow
er

N
O

N
E

U
p

d
at

e
F

IF
O

co
u

n
te

r
N

lo
g2

N
b

it
s

p
er

se
t

an
d

as
so

ci
at

ed
ci

rc
u

it
ry

L
F

U
-1

8%
A

ve
ra

ge
18

%
sl

ow
er

U
p

d
at

e
L

F
U

co
u

n
te

r
U

p
d

at
e

L
F

U
co

u
n
te

r
N

lo
g2

X
b

it
s

p
er

se
t

an
d

as
so

ci
at

ed
ci

rc
u

it
ry

L
F

U
D

A
-1

5%
A

ve
ra

ge
15

%
sl

ow
er

U
p

d
at

e
L

F
U

co
u

n
te

rs
+

sh
if

t
L

F
U

co
u

n
te

rs
if

re
fe

re
n

ce
co

u
n
te

r
=

M
A

X

U
p

d
at

e
L

F
U

co
u

n
te

r
+

sh
if

t
L

F
U

co
u

n
te

rs
if

re
fe

re
n

ce
co

u
n
te

r
=

M
A

X

N
lo

g2
X

b
it

s
p

er
se

t
,

lo
g2

X
b

it
s

re
fe

re
n

ce
co

u
n
te

r
an

d
sh

if
ti

n
g

op
er

at
io

n
af

te
r

ev
er

y
M

A
X

re
fe

re
n

ce
s

M
R

U
A

t
le

as
t

-1
00

%
A

t
le

as
t

-1
00

%
U

p
d

at
e

M
R

U
co

u
n
te

rs
U

p
d

at
e

M
R

U
co

u
n
te

rs
N

lo
g2

N
b

it
s

p
er

se
t

an
d

as
so

ci
at

ed
ci

rc
u

it
ry

P
L

R
U

2.
5%

B
es

t
ca

se
2.

5%
fa

st
er

U
p

d
at

e
M

R
U

b
it

s
U

p
d
at

e
M

R
U

b
it

s
N

b
it

s
p

er
se

t
an

d
as

so
ci

at
ed

ci
rc

u
it

ry

2.2. Uniprocessor / Unicore energy optimisations 18

The recency and frequency based replacement strategies updates the state

in every access where as other strategies update the states only on cache

miss. This leads to increase in critical path delay for recency and frequency

based strategies. The most widely used protocols at this point is LRU and

its variants. There exist various implementations like counter, square matrix,

skewed matrix, link list and variants like PLRU in market. This work uses

LRU as replacement strategy for most of its implementation mainly because

of its high predictability and high performance. The detailed comparison of

replacement strategies are given in Table 2.1.

The per access energy consumption of cache can be minimized by partitioning

the cache vertically or horizontally [19], [20]. Horizontal cache partitioning

schemes reduce per access cache hit energy by introducing a small but power-

ful cache between the core and L1 cache. The cache architectures like loop

cache, filter cache [21], instruction buffer [22],[23] and buffer cache [24] falls

in this category. Though cache hit energy consumption is low, the hit rate

of these caches are low. Vertical partitioning schemes [19] try to achieve the

ideal cache access scenario, i.e., accessing only one tag and one data array

for a cache hit and accessing no tag and data array for a cache miss. This

is achieved by dividing the cache into banks and providing bankwise access

control.

Compressed tag architecture proposed by Jong Wook Kwak and Young Tae

Jeon [25] optimises energy consumption of embedded cache. Compressed tag

architecture takes advantage of locality of reference. The optimisation is based

on the understanding that majority of consecutive references will have same

most significant bits (MSB). These distinct higher order bits are maintained

2.2. Uniprocessor / Unicore energy optimisations 19

in shared registers called locality buffer register. Tag bits of desired address

are divided into 2 parts - lower order tag bits, tl and higher order tag bits,

th. tl bits of tag are stored in cache line along with the data part and th

bits of tag are stored in separate energy efficient locations. tl bits of the

desired tag are compared with lower order tag bits stored in cache line. Only

on match of tl bits, th bits are compared with higher order entry stored in

locality buffer register. On mismatch of tl or th bits, data is fetched from next

level memory. This method requires additional hardware to maintain locality

buffer, replacement circuit for locality buffer, circuit to maintain index to

locality buffer.

In [26], Jones et al. proposed way placement cache to save dynamic energy

consumption using static profiling to determine the most frequently used

instructions. This approach uses way hint bit to decide whether to use the

profiling information or not. Based on the hint bit, operating system sets

additional way-placement access bits in TLB . When way-placement access

bit is set, only one way is accessed otherwise all ways are accessed which

results in dynamic energy saving.

Zhang et al. [27] proposed reconfigurable cache architectures - way concate-

nation and way shutdown caches - which can configure the cache parameters

dynamically. Way concatenation cache uses two bit configurable register to

select associativity between direct map, 2-way and 4-way. Way concatenation

cache configures cache line size as 16, 32 and 64 bytes. Way shutdown cache

saves static and dynamic energy consumption by shutting down unused ways

based on application’s memory usage.

Bournoutian et al. [28] used statically calculated miss rate to decide on

2.2. Uniprocessor / Unicore energy optimisations 20

associativities. The reconfigurable cache architectures reduce the static and

dynamic energy consumption at the cost of additional hardware complexity

and reconfiguration time.

Tag less cache (TLC) proposed by Sembrant et al. [29] aimed at reducing the

dynamic energy in virtually indexed physically tagged caches. TLC eliminates

tag comparison in data cache by using extended TLB (eTLB), which stores

the way location and valid bit of each cache line of the page. eTLB eliminates

tag comparisons and detects early cache misses. TLC accesses only one data

array during cache hit and does not access data array during cache miss.

The cache line location in eTLB needs to be accessed to find out way of the

accessed data which degrades performance in terms of energy and time due

to additional data storage in TLB.

Megalingam et al. [30] proposed phased cache which accesses cache in two

phases. During first phase, it compares all the tags of the given set index. If

there exist a match, it accesses the data in next phase. Phased cache achieves

energy saving at the cost of additional time and performance.

Inoue et al. [4] proposed way predicting (WP) cache architecture. WP enables

the predicted way’s tag and data array in first cycle. It compares the input

tag bits with predicted way’s tag bits in indexed set. If the tag matches, it

accesses the data in the same cycle. If the tag is not matching in predicted

way, then it enables all the other (N-1) tag and data arrays. If any of the

(N-1) tags matches with input tag, the data is accessed, otherwise cache

miss is executed. The energy saving of this architecture is around 60% for a

4-way set associative cache with a slight performance degradation because of

prediction miss penalty. WP cache achieves ideal scenario during prediction

2.2. Uniprocessor / Unicore energy optimisations 21

hit and its energy saving depends on prediction hit rate.

Access mode prediction proposed by Zhichun Zhu and Xiaodong Zhang [31]

combines merits of phased cache and WP by using access mode prediction.

It decides upon whether to access cache by predicting way or to access cache

in phases. Performance of this is based on the accuracy of access mode

prediction.

Batson et al. [32] proposed reactive associative (R-A) cache. R-A cache

provides flexible associativity by placing most blocks in direct-mapped po-

sitions and reactively displacing only conflicting blocks to set-associative

positions. To achieve direct-mapped hit times, R-A cache uses an asymmetric

organization in which the data array is organized like a direct-mapped cache

and the tag array like a set associativity cache. The data is accessed in the

same cycle if the tag matches in direct-map way. R-A cache do not incur

additional overhead during cache miss as it detects cache miss in first cycle

itself. It needs an additional cycle if data is found in cache line other than

direct mapped line.

To improve the energy efficiency by avoiding unnecessary tag comparison,

Zhang [5] proposed way halting (WH) cache architecture. WH cache uses a

small fully associative halt tag array per way to store the least significant

4 tag bits of each set in that way. The halt tag array is compared with 4

LSB’s of address to reduce unnecessary accesses. As the halt tag comparison

is happening in parallel with decoding, there is no performance degradation.

All the ways where halt tag is hit, is compared with remaining tag bits to

find whether there exists a match.

Though WP cache saves dynamic energy during prediction hit, it consumes

2.3. Cache Coherency Protocols 22

extra energy and time during prediction miss. WH cache saves dynamic

energy during halt miss but does not offer optimal energy during halt hit as

it may enable more than one way for comparison and access. To improve the

energy efficiency and access time further, way halted prediction (WHP) cache

architecture is deisgned and implement as a part of this thesis.

2.3 Cache Coherency Protocols

Cache coherence is a well addressed problem in literature. The solutions to

cache coherency problem is either hardware based [33] [7] [34], software based

[35] [36] or hybrid [37].

Per Stenstrom surveyed various hardware and software based cache coherence

protocols for shared memory MP systems [38]. Hardware based cache coher-

ence protocols are categorized as snoopy based and directory based protocols

depending on the strategy employed for maintaining data consistency [38]

[39]. In directory based protocols, a shared global directory is used for main-

taining state of each memory block. The snoopy based protocols maintain

cache consistency with the help of local cache line states which updates itself

by snooping the signals over the network. Software based cache coherence

protocols maintain cache consistency by using compiler analyzed data. If

data can be copied as private by multiple cores then compiler marks the data

as cacheable. When data is read only or it is read / written by a single core,

the data is cacheable. If any core writes data, it has to update the next level

memory before some other core caches it. Data read/written by multiple

cores is non-cacheable. Since performance and hardware requirements of

2.3. Cache Coherency Protocols 23

protocols are different, choice of cache coherence protocol become a major

design decision [39].

Performance analysis of snoopy based, OS based and non-coherent protocols

were explored in [40]. Results obtained imply that OS based cache coherence

is very much inefficient in terms of energy consumption and performance.

Energy consumption of snoopy based protocols is the least among the three

categories of protocols explored in [40]. In [37], Chaves et al. discussed

combination of software and hardware based protocols to maintain cache

coherence. A part of this hybrid cache coherence protocol is implemented in

hardware cache controller and remaining part is handled in software by using

microkernel. In this scheme, the bandwidth utilization is improved by using

multicasting of messages over unicasting. Latency of read request is reduced

by using transition state.

In hardware controlled caches, the cache controller has to maintain states

of the cache lines based on read and write operations. The widely used

read mechanisms are look through and look aside. The widely used writing

mechanisms are write back, write through and write buffer [41]. In case of

write through mechanism, every write operation leads to update the next

level memory whereas write back mechanism updates the next level memory

on cache line replacement. Write buffer mechanism is an extension of write

through with the help of a buffer to improve write performance further. In

[42], Garo et al. combined benefits of write back and write through cache

update policies. The write back reduces bus contention and dynamic en-

ergy consumption when there are frequent updates to a given cache line.

Write through is beneficial when there are few writing operations. The cache

2.3. Cache Coherency Protocols 24

follows write through policy when cache line is updated rarely and write

back policy when cache line is updated frequently. Garo et al. [42], used

frequency shift register and write back bit for each cache line along with

global countdown register to keep track of frequency of write back operations.

The cache coherence protocols use either write update or write invalidate

mechanisms to update other cores’[7]. The write update based protocols write

the data and updates the data in other shared copies. When cache data is

updated very frequently, write update mechanism floods the network. The

write invalidate based protocols invalidate shared data in other cores before

writing to the shared copy of data. Write invalidate based protocols offer

less network traffic but suffers from high coherence miss latency [43]. In [43],

Kayi et al. proposed an adaptive data forwarding protocol on top of write

invalidate protocol for Producer-Consumer sharing pattern. This protocol

uses additional Producer-Consumer Predictor Cache (PCPC) to track the

sharing pattern. Write update mechanism is widely used for applications

that follows Producer-Consumer sharing pattern whereas write invalidate

mechanism is used for all the other applications.

In a generic cache coherence protocol, the coherence policy is defined by state

transition diagram [7]. To maintain cache coherency, each cache line has

a state associated with it along with other entries like data bits, tag bits

and valid/invalid bits. The cache coherence state transits from one state

to another according to the state transition protocol upon core read/write

operation. The general description of cache states in snoopy write-invalidate

protocols is given in Table 2.2.

Modified-Invalid (MI) is the simplest protocol in use for maintaining cache

2.3. Cache Coherency Protocols 25

Table 2.2: Cache Coherence States and Descriptions

State Clean/
Dirty?

Access
Type

Description

M Dirty R/W The Cache line data has been
modified by the core

O Dirty R The Cache line data is modified.
Other cores may have the cache

line in S state
E Clean R/W No other cache holds a copy of

the cache line data
S Clean R The Cache line data is present in

more than 1 core
F Clean R The Cache line which will act as

a responder for any requests for
the line

I - - Cache line is either not present in
cache or is invalid

coherency in MC systems. It uses two states: Modified (M) and Invalid (I).

The hardware complexity of MI protocol is the least among all the coherence

protocols. Read/write in a core results in invalidating the data in other core

if the same data exists. This floods the network with large number of invali-

dation signals which is reduced by using S state in Modified-Shared-Invalid

(MSI) protocol.

In MSI protocol, one or more cores can have valid copy of data. Data sharing

results in reducing the number of coherence misses as compared to MI. In

case of write on a shared copy of data, the invalidation signal is sent to all

other cores irrespective of whether there exist a shared copy or not. This

results in sending unwanted invalidation signals if modifying core has the

exclusive valid copy of data., which is addressed by using E state in Modified-

Exclusive-Shared-Invalid(MESI) protocol.

The E state in Modified-Exclusive-Shared-Invalid(MESI) protocol eliminates

2.3. Cache Coherency Protocols 26

unwanted invalidation signal. In MESI, for every state change from M needs

data to be written back. This may result in frequent data writes between the

core and next level when read and write alternate. This can be eliminated by

using O state in Modified-Owned-Shared-Invalid (MOSI) protocol.

In MOSI, O state allows sharing of dirty copy between different cores. But

the absence of E state results in sending invalidation signals to other cores

while attempting write to an exclusive copy. This is eliminated by combining

the states of MESI and MOSI protocols in Modified-Owned-Exclusive-Shared-

Invalid(MOESI) protocol.

In MOESI protocol, by combining E and O state reduces number of invali-

dation signals and frequency of write-back operations. However, on a cache

miss, all the sharers of requested data respond and the requestor is serviced

by redundant responses. This is addressed by introducing F state in Modified-

Exclusive-Shared-Invalid-Forward (MESIF) protocol.

MESIF protocol ensures that only the cache line in F state responds to

the read/write request of other cores. Although redundant responses are

eliminated by using F state, sharing of dirty data is not allowed in MESIF.

To improve energy consumption and response time further, MOESIF protocol

is designed and implemented as a part of this thesis. The redundant responses

in MOESI and number of write backs in MESIF are reduced by combining O

and E state in MOESIF.

2.4. Deterministic Memory 27

2.4 Deterministic Memory

Deterministic memory subsystem is a critical part of hard real-time system

to improve number of executing job with no catastrophic failure. The tighter

upper bound on WCET of memory subsystem requires tighter upper bound

on TLB, various levels of caches and main memory.

2.4.1 Deterministic TLB

In recent past, researchers proposed various techniques to improve TLB

performance. These techniques mainly focus on reducing TLB access time

and/or energy consumption. This can be achieved by employing techniques

which are implemented in hardware [44],[45], software [46] or combination of

these [47]. The access time reduction can be achieved by reducing per TLB

access time or increasing TLB hit rate. Hardware mechanism to improve

TLB hit rate is to increase the number of TLB entries. This leads to increase

in per access time and energy consumption.

Srilatha et al. [44] proposed a Banked Associative (BA) TLB design over

a Fully Associative (FA) TLB design which increases the number of TLB

entries with negligibly small impact on per access energy consumption. In

BA-TLB design, only half of the entries in TLB are looked up on each TLB

access. This reduces per access TLB energy consumption by half. BA-TLB

offers almost the same TLB hit rate as compared to FA-TLB.

Jung-Hoon Lee et al. proposed Filter TLB [45] which uses a small TLB called

filter TLB in addition to conventional TLB. Filter TLB stores most recently

accessed TLB entries. For each virtual to physical address translation, the

Deterministic TLB 28

filter TLB is accessed first. Conventional TLB is accessed only on filter TLB

miss. Use of filter TLB improves TLB performance when it is filter TLB hit.

But filter TLB needs additional time when it is filter TLB miss.

A recency based TLB preloading [48] is based on the principle of temporal

locality of reference. Group of pages referred around the same time follow

similar reference pattern. The past references can be used for predicting

the future. In this model, each page table entry maintains two pointers.

One points to page evicted from TLB just before this page and the other

points to the page evicted after this page. On TLB miss, prefetch buffer is

accessed for the required entry. If the entry is present in prefetch buffer, then

it is copied to TLB. Otherwise the entry is updated from page table. The

prefetch mechanism prefetches the entries and stores them in prefetch buffer.

This approach requires additional hardware for storing prefetch entries and it

increases size of each page table entry.

Software based approach proposed by M. Talluri and M. Hill [46] uses super

pages. Size of a super page is multiple of base page size. Large page sizes can

be used for storing big data like kernel data and large arrays. Use of large

super pages increases TLB reach without affecting TLB access time. This

model gives significant reduction in TLB misses. However, when TLB stores

frame numbers with different frame sizes, number of offset bits calculation

becomes dynamic. This dynamic decision makes virtual address to physical

address translation difficult. Secondly, time to handle page table miss is larger

for super pages with large sizes. Moreover to support the concept of super

pages, substantial OS support is required.

Kandemir et al. [49] and Ilya et al. [47] follow combination of hardware and

Deterministic TLB 29

software based techniques for TLB. Translation Registers (TRs) are used

by Kandemir et al. [49] to reduce TLB access time. TRs store frequently

used virtual to physical address translation. Kandemir et al. uses compiler

based strategy for effectively using TRs. Complier provides hints for address

translation in TRs whenever it finds that the translation is going to be used

heavily in near future. In all these approaches TLB is flushed on preemption

in multitasking environment. TLB performance is affected by flushing while

concurrently executing tasks. TLB misses increases due to interference caused

by other tasks. Thus WCET of task in hard real-time systems becomes

unpredictable. Moreover with increase in number of task in multitasking

environment, the frequency of preemption increases. Ilya et al. [47] proposes

Context-aware TLB Preloading (CTP) approach for multitasking environment.

CTP uses static information offered by the compiler and runtime information

offered by OS to identify page reference which will be made in future. CTP

stores those entries from TLB which will be used in future time slot on task

preemption. When task resumes, stored entries are loaded back in TLB and

also TLB is preloaded with some entries which are not used yet but will be

used in near future. For the smooth functioning of TRs and CTP, compiler

and OS support is required. This increases complexity of complier and OS.

System performance degradation due to TLB flushing during preemptions

and subsequent TLB misses is addressed by Girish et al. [50]. Girish et al.

added process identifier (PID) to the TLB entry in order to associate TLB

entry with the specific task. Instead of flushing TLB during preemption, TLB

is accessed by comparing valid / invalid bit, virtual address and PID stored

in each TLB entry. This approach increases storage overhead by 25% for

Deterministic Cache 30

storing PID in TLB [51]. Most recently used n TLB entries are reserved on

task preemption. Preempted task can have TLB entry reserved only if total

number of TLB entries reserved is less than 50%. This approach reduces the

number of TLB entries for executing task which increases TLB miss rate and

hence adversely affects system performance. The DTLB approach proposed

in this thesis offers least TLB misses as compared to TLB flushing and TLB

reservation model without complicating compiler and OS.

2.4.2 Deterministic Cache

Energy efficiency, timeliness and size are the conflicting requirements of a real-

time system. Energy efficiency can be attained using platform independent

optimizations like reducing the number of preemptions and cache impacts

[52],[53] and platform dependent optimizations like DVFS [54],[55] and DPM

[56].Timing performance is very critical for hard and firm real-time systems.

Performance of a system can be analysed if tighter upper bound on WCET is

available. The tighter upper bound on WCET of a real-time job is possible

only if accurate values are obtainable from various levels of design hierarchies

like architectural level, operating system level and application level.

Davis et al.[57] compared various scheduling algorithms using parameters

like optimality, feasibility, comparability, predictability, sustainability and

anomalies. Zhang et al. [58] reported Quick convergence Processor-demand

Analysis(QPA) algorithm which reduces the schedulability analysis time

for schedulable/unschedulable task sets. The scheduling algorithms with

arbitrary preemptions induce additional cache flushes and reloads. Bril et al.

[52] performed WCET analysis based on critical instant and busy period for

Deterministic Cache 31

fixed priority preemptive scheduling.

Task preemption followed by fetching of cache lines after resumption leads

to additional delay in WCET. Ju et al. [59] presented WCET analysis with

this additional delay. Further, conflicting jobs may replace a dirty cache

line. This results in swapping of blocks between cache and memory. It

introduces two block transfers, thus twice the amount of delay and energy

consumption. Dirty cache lines of low priority jobs may impact the response

time of higher priority job and vice versa. Davis et al.[60] considered the

impact of write back caches in WCET and analyzed the schedulability of fixed

priority task with preemptive & non-preemptive schedules by incorporating

the same. Altmeyer et al.[53] reduced preemption cost in real-time system by

selecting a preemption point with lower preemption impact.

The program level memory access patterns have huge impact in architecture

level energy consumption. Minor change in the program code or program

input may lead to dramatic changes in memory behaviour. The WCET

calculation is done with unrealistic assumption that all memory references

lead to cache misses. This results in the execution time being overestimated

by several hundred percent [61]. To offer a tighter bound on architecture, the

memory system should be deterministic. Cache partitioning is one of the most

widely adopted strategies to make real-time cache deterministic. Whitham et

al. [62] described a method to reduce the cache-related preemption delay in

hard real-time systems using explicit reservation of cache memory. Chang et

al.[63] presented Cooperative Cache Partitioning scheme which makes use of

multiple time-sharing partitions that allows greater speedup and fairness.

Falk et al. [64] proposed a static compiler based cache locking mechanism.

Deterministic Cache 32

It generates execution flow graph using context-specific flow graph. It finds

the longest execution path and locks cache entries of the same. Puaut et al.

[65] proposed an algorithm which partitions the task into a set of regions.

Dedicated cache line is allotted to each region. These methods partitions the

cache memory and determines WCET by considering intra-task execution.

This thesis proposes deterministic cache memory which offers tighter upper

bound on the execution time of each task by extending process aware L1

cache and deterministic TLB along with partitioned L2 cache.

Chapter 3

WHP:Way Halted Prediction

Cache

3.1 Introduction

This chapter presents an energy efficient set associative cache architecture

named Way Halted Prediction cache (WHP). WHP aims at reducing energy

consumption and Response Time (RT). Way Predicting cache (WP) proposed

by Inoue et al.[4] offers ideal cache hit scenario in case of prediction hit, but

needs additional cycle in case of prediction miss. Way Halting cache (WH)

proposed by Zhang et al. [5] offers early detection of cache miss with the

help of additional halt tag array. WH offers ideal cache miss scenario by not

accessing any of the tag and data arrays when halt tag comparison in all

ways is miss. It also offers ideal cache hit scenario when halt tag hit happens

exactly in one way. In all other cases, WH offers higher energy consumption

than WP with prediction hit. Better performance both in terms of energy and

time can be achieved with the help of combining the merits of WP and WH.

This is achieved by combining halt tag array of WH and way prediction circuit

of WP. Halt tag array helps in early detection of prediction misses, which

saves time and energy. Prediction hit reduces the number of enabled ways

33

3.2. WHP cache architecture 34

from k − ways to 1 − way, which reduces the dynamic energy consumption

further. In this chapter, WHP is compared with conventional cache (CC),

WH and WP on the basis of energy consumption and RT.

3.2 WHP cache architecture

WHP combines the advantages of WH and WP architectures. WP uses MRU

way for prediction. WP enables the predicted way’s tag array and data array

in first cycle. It compares the input tag bits with predicted way’s tag bits

in indexed set. If the tag matches, it accesses the data in same cycle. If the

tag is not matching in predicted way, then it enables all the other (k − 1)

tag and data arrays where k is the number of ways with Halt tag hit. If any

of the (k − 1) tags matches with the input tag, the data corresponding to

that tag is accessed, otherwise cache miss is executed. WHP compares no tag

array and accesses no data array in case of halt miss which is an ideal cache

miss scenario. It compares one tag array and accesses one data array in two

scenarios (a) halt hit in one way (b) halt tag hit in more than one way and

prediction hit, which are the ideal cache hit scenarios.

WP saves dynamic energy during prediction hit, but it results in increasing the

RT during prediction miss. Prediction accuracy of WP is improved by using

halt tags in WHP. WHP uses halt tags for the early detection of probable

prediction misses in decode cycle of cache access. The early detection of

prediction miss is achieved when predicted way is a halt tag miss. This results

in WHP offering better performance as compared to WP.

In comparison with CC, WH saves dynamic energy when there exist (a) halt

3.2. WHP cache architecture 35

tag miss (b) cache hit with halt tag hit in less than k ways. When the halt

tag hits are more than one, WHP uses prediction circuit to predict the most

recently accessed way. When predicted way is a hit, the energy consumption

in WHP will be much lesser than WH. The WHP cache architecture is shown

in Figure 3.1. The tag(t), index(i) and offset(o), for cache is calculated from

physical address. The cache access in WHP takes place as follows:

Step1: The derived index is decoded and in parallel the low-order 4 bits of

the derived tag are compared against all the halt tags stored in fully-

associative halt-tag array. The parallel comparison of halt tags will

determine the ways with mis-matching tags to be halted. The output

line of the decoder is ANDed with the results of the halt tag comparison

for that row. Hence, the cache access would be continued only if the

low-order 4 bits of the tag in the decoded row are matching with the

low-order 4 bits of the derived tag. If all the halt tags are mis-match,

its a cache miss. A processor is stalled till it gets the data.

The number of ways halted will determine the activation of prediction

circuit. The prediction circuit is activated when halt-tag hit takes place

in more than one way. The prediction circuit predicts a way based on

history.

Step2: If halt tag is hit in only 1 way, the respective tag and data are accessed.

If halt tag hits in k-ways, prediction circuit is activated. The prediction

circuit used is shown in Figure 3.2. MRU way is the one selected as

the predicted way. It is checked if the predicted way is in the halt

tag hit ways. If yes, the tag and data array of the predicted way are

accessed. Otherwise, the tag and data arrays of the k halt tag hit ways

3.2. WHP cache architecture 36

F
ig

u
re

3.
1:

W
ay

H
al

te
d

P
re

d
ic

ti
on

C
ac

h
e

A
rc

h
it

ec
tu

re

3.2. WHP cache architecture 37

F
ig

u
re

3.
2:

P
re

d
ic

ti
on

C
ir

cu
it

3.2. WHP cache architecture 38

are accessed.

The output driver of the tag array comparison indicates whether the

tag is matching with the desired address tag. If the tag comparison is

unsuccessful and there is only 1 way with the halt tag hit, its a cache

miss. A processor is stalled till it gets the data. If the prediction is

a miss, the remaining k − 1 tag ways are compared for a possible tag

match which requires an additional cycle. If there exist no match in k

ways, its a cache miss. The processor stalls till it gets the data.

Step3: This step accesses the data array of the hit way and gets the requested

word using offset bits of the desired address.

The detailed algorithm which illustrates the working of WHP is given in

Algorithm 1.

Algorithm WHP : The WHP algorithm takes physical address (P) as input

and obtains tag, index and offset bits of P . The decoding takes place in

parallel with halt tag comparison. Number of halt-tag array hits ,C, in desired

set is obtained.

Halt-Miss with C as 0 is the ideal scenario of cache miss with zero tag

comparisons and zero data access. The early detection of miss in the first

cycle of cache access reduces the dynamic energy spent in tag and data array

comparison. The processor is stalled till it gets the data from the next level of

memory resulting in additional cycles (miss penalty) to obtain the requested

data.

WHP directly enables tag and data array of Halt-tag hit way if C is 1. It

compares the desired tag with enabled tag bits. If tag matches, which is ideal

cache hit scenario with one tag comparison and one data access.

3.2. WHP cache architecture 39

Algorithm 1: Way Halted Prediction

Input: Physical address P
Output: Cache hit/miss and the requested data

1 begin
2 Decode P ’s index bits to locate the desired set;
3 Compare Halt-tag array with low order 4 bits of P ’s tag;
4 Count the number of Halt-tag hit ways, C, in the desired set;
5 if C == 0 then
6 goto 37;
7 else
8 if C == 1 then
9 Enable the tag and data array of Halt-tag hit way;

10 if tag matches then
11 Transfer requested data from / to Processor;
12 return;

13 else
14 goto 37;

15 else
16 Find the predicted way, Wp;
17 if Halt-tag array hit ways contain Wp then
18 Enable the tag and data array of Wp;
19 Compare remaining tag bits of P with enabled tag array

bits;
20 if tag matches then
21 Transfer requested data from / to Processor;
22 return;

23 else
24 PHIT = 1;

25 end
26 else
27 PHIT = 0;
28 end

29 end

30 end
31 Enable the tag and data array of remaining C − PHIT halt-tag hit

ways;
32 Compare remaining tag bits of P with enabled tag array bits;
33 if no tag matches then goto 37 ;
34 Transfer requested data from / to Processor;
35 return;
3737 Activate Cache Miss Routine;
38 Transfer data from Lower level memory to Cache and transfer data

from / to Processor;
39 return;

40 end

3.3. Energy Model 40

The prediction circuit is enabled if Halt-tag is hit in more than 1 way, C > 1.

If predicted way is in Halt-tag hit way, the remaining tag bits of predicted

way is compared with remaining t− 4, tag bits of the desired address. If it is

prediction hit, WHP achieves the ideal cache hit scenario. Remaining C − 1

tag and data arrays are enabled in case of prediction miss. t− 4 tag bits of

P is compared with tag bits of enabled ways. The mis-prediction results in

an additional cycle to determine cache hit/miss.

If predicted way is not in Halt-tag hit way then C tag and data arrays are

enabled. t− 4 tag bits are compared with tag bits of enabled ways.

3.3 Energy Model

For energy and time modeling Super EScalar Simulator (SESC) is used. [66]

simulator. SESC is a microprocessor architectural simulator which models a

out-of-order pipeline with branch prediction, caches, buses, and processing

component of a modern processor. SESC models different cache sizes, hit &

miss latencies, replacement policies,cache-line sizes and associativities.The

components used for modeling energy and power are given in Table 3.1.

3.3.1 Conventional Cache

Cache Read Hit Energy:

Edyn CC CRHit = Edyn dec + N ∗ Edyn x + Edyn op drvr (3.1)

Conventional Cache 41

T
ab

le
3.

1:
S
E

S
C

C
om

p
on

en
ts

fo
r

E
n
er

gy
an

d
P

ow
er

M
o
d
el

in
g

of
C

ac
h
e

C
a
ch

e
C

o
m

p
o
-

n
e
n
ts

D
y
n
am

ic
E

n
er

gy
C

om
p

on
en

ts
T

ot
al

D
y
n
am

ic
E

n
er

gy
L

ea
ka

ge
P

ow
er

C
om

p
on

en
ts

T
ot

al
L

ea
ka

ge
P

ow
er

D
at

a
S
id

e
T

ag
S
id

e
D

at
a

S
id

e
T

ag
S
id

e

D
ec

o
d
er

E
d
y
n

d
s
d
ec

E
d
y
n

ts
d
ec

E
d
y
n

d
ec

=
E
d
y
n

d
s
d
ec

+
E
d
y
n

ts
d
ec

P
le
a
k
d
s
d
ec

P
le
a
k
ts

d
ec

P
le
a
k
a
g
e

=
P

le
a
k
d
s
d
ec

+
P

le
a
k
ts

d
ec

+
P

le
a
k
d
s
w
li
n
e

+
P

le
a
k
d
s
bl
in

e

+
P

le
a
k
d
s
sa

+
P

le
a
k
d
s
o
p
D
r
v
r

+
P

le
a
k
ts

w
li
n
e

+
P

le
a
k
ts

bl
in

e
+

P
le
a
k
ts

sa
+

P
le
a
k
ts

cm
p

+
P

le
a
k
d
s
m
u
x

+
P
le
a
k
d
s
se
l

W
or

d
L

in
es

E
d
y
n

d
s
w
li
n
e

E
d
y
n

ts
w
li
n
e

E
d
y
n

x
=

(E
d
y
n

d
s
w
li
n
e

+
E

d
y
n

d
s
bl
in

e
+

E
d
y
n

d
s
sa

+
E

d
y
n

d
s
o
p
D
r
v
r

+
E

d
y
n

ts
w
li
n
e

+
E

d
y
n

ts
bl
in

e
+

E
d
y
n

ts
sa

+
E
d
y
n

ts
cm

p
)/
N

W
h
er

e
N

is
th

e
as

so
-

ci
at

iv
it

y

P
le
a
k
d
s
w
li
n
e

P
le
a
k
ts

w
li
n
e

B
it

L
in

es
E
d
y
n

d
s
bl
in

e
E
d
y
n

ts
bl
in

e
P
le
a
k
d
s
bl
in

e
P
le
a
k
ts

bl
in

e

S
en

se
A

m
p
li
fi
er

E
d
y
n

d
s
sa

E
d
y
n

ts
sa

P
le
a
k
d
s
sa

P
le
a
k
ts

sa

D
at

a
O

u
tp

u
t

E
d
y
n

d
s
o
p
D
r
v
r

—
P
le
a
k
d
s
o
p
D
r
v
r

—

C
om

p
ar

at
or

—
E
d
y
n

ts
cm

p
—

P
le
a
k
ts

cm
p

M
u
lt

ip
le

x
er

E
d
y
n

d
s
m
u
x

—
E

d
y
n

o
p
D
r
v
r

=
E

d
y
n

d
s
m
u
x

+
E

d
y
n

d
s
se
l

+
E
d
y
n

d
s
o
p
D
r
v
r

P
le
a
k
d
s
m
u
x

—

S
el

ec
t

S
ig

n
al

E
d
y
n

d
s
se
l

—
P
le
a
k
d
s
se
l

—

Conventional Cache 42

where Edyn x is the dynamic access energy per way and N is the associativity.

L1 Cache uses write through as the writing mechanism and write energy is

twice the read energy.

Cache Write Hit Energy:

Edyn CC CWHit = 2 ∗ Edyn CC CRHit (3.2)

Every cache miss results in cache hit.

Total cache read dynamic energy is:

Edyn CCR = Edyn CC CRHit + CRMiss ∗ Edyn Tx (3.3)

Total Cache write dynamic energy is:

Edyn CCW = Edyn CC CWHit + CWMiss ∗ Edyn Tx (3.4)

where CRMiss, CWMiss and Edyn Tx is the cache read miss rate, write miss rate

and Edyn Tx is the data transfer energy from next level cache. Total Cache

dynamic energy is:

Edyn CC = Edyn CCR + Edyn CCW (3.5)

Total Cache static energy is:

Estatic CC = Pleakage ∗RTCC (3.6)

Way Predicting Cache 43

Where RTCC is the response time and is given by :

RTCC = total cycles required for completion of program ∗ cycle time

(3.7)

3.3.2 Way Predicting Cache

In way predicting cache, different components consuming energy are decoder,

prediction circuit, way access energy and output driver energy.

Prediction Hit, Cache Read Hit Energy:

Edyn PHit CRHit = (Edyn dec + Edyn pred) + Edyn x + Edyn op drvr (3.8)

Prediction Hit, Cache Write Hit Energy:

Edyn PHit CWHit = 2 ∗ Edyn PHit CRHit (3.9)

Prediction Hit, Cache Hit Energy:

Edyn PHit CHit = Edyn PHit CRHit + Edyn PHit CWHit (3.10)

Prediction Miss, Cache Read Hit Energy:

Edyn PMiss CRHit = (Edyn dec + Edyn pred) + N ∗ Edyn x + Edyn op drvr (3.11)

Way Predicting Cache 44

Here additional energy is required to access remaining (N − 1) ways.

Prediction Miss, Cache Write Hit Energy:

Edyn PMiss CWHit = 2 ∗ Edyn PMiss CRHit (3.12)

Prediction Miss, Cache Hit Energy:

Edyn PMiss CHit = Edyn PMiss CRHit + Edyn PMiss CWHit (3.13)

Prediction Miss, Cache Read Miss Energy:

Edyn PMiss CRMiss = Edyn PMiss CRHit + Edyn Tx (3.14)

Prediction Miss, Cache Write Miss Energy:

Edyn PMiss CWMiss = 2 ∗ Edyn PMiss CRHit + Edyn Tx (3.15)

Prediction Miss, Cache Miss Energy:

Edyn PMiss CRMiss = Edyn PMiss CRMiss + Edyn PMiss CWMiss (3.16)

Total Read Dynamic Energy:

Edyn WPR =CPRHit ∗ Edyn PHit CRHit

+ ((1 − CRMiss) − CPRHit) ∗ Edyn PMiss CRHit

+ CRMiss ∗ Edyn PMiss CRMiss

(3.17)

Way Halting Cache 45

Total Write Dynamic Energy:

Edyn WPW =CPWHit ∗ Edyn PHit CWHit

+ ((1 − CWMiss) − CPWHit) ∗ Edyn PMiss CWHit

+ CWMiss ∗ Edyn PMiss CWMiss

(3.18)

where CPRHit, CRMiss, CPWHit, CWMiss is the prediction read hit rate,the

cache read miss rate, prediction write hit rate,the cache write miss rate

respectively.

Total WP Cache dynamic energy is:

Edyn WP = Edyn WPR + Edyn WPW (3.19)

Total WP Cache static energy is:

Estatic WP = (Pleakage + Ppred ckt) ∗RTWP (3.20)

Where RTWP is the response time with WP and is given by :

RTWP = total cycles required for completion of program with WP∗ cycle time

(3.21)

3.3.3 Way Halting Cache

Cache Read Hit Energy:

Edyn HHit CRHit = (Edyn dec + Edyn halt) + k ∗ Edyn x + Edyn op drvr (3.22)

Way Halting Cache 46

where Edyn halt is the energy required to access halt tag array and k is number

of halt tag hit ways.

Cache Write Hit Energy:

Edyn HHit CWHit = 2 ∗ Edyn HHit CRHit (3.23)

Halt Hit Cache Read Miss Energy:

Edyn HHit CRMiss = Edyn HHit CRHit + Edyn Tx (3.24)

Halt Hit Cache Write Miss Energy:

Edyn HHit CWMiss = Edyn HHit CWHit + Edyn Tx (3.25)

Halt Miss, Cache Read Miss Energy:

Edyn HMiss CRMiss = (Edyn dec + Edyn halt) + Edyn Tx + Edyn op drvr (3.26)

Halt Miss, Cache Write Miss Energy:

Edyn HMiss CWMiss = 2 ∗ (Edyn dec + Edyn halt + Edyn op drvr) + Edyn Tx (3.27)

Total Read Dynamic Energy:

Edyn WHR =CRHit ∗ Edyn HHit CRHit + (CHRHit − CRHit) ∗ Edyn HHit CRMiss

+ (1 − CHRHit) ∗ Edyn HMiss CRMiss

(3.28)

Way Halted Prediction Cache 47

where CRHit and CHRHit is cache read hit rate and halt tag read hit rate

respectively.

Total Write Dynamic Energy:

Edyn WHW =CWHit ∗ Edyn HHit CWHit + (CHWHit − CWHit) ∗ Edyn HHit CWMiss

+ (1 − CHWHit) ∗ Edyn HMiss CWMiss

(3.29)

where CWHit and CHWHit is cache write hit rate and halt tag write hit rate

respectively.

Total WH Cache dynamic energy is:

Edyn WH = Edyn WHR + Edyn WHW (3.30)

Total WH Cache static energy is:

Estatic WH = (Pleakage + Phalt) ∗RTWH (3.31)

Where RTWH is the response time with WH and is given by :

RTWH = total cycles required for completion of program with WH∗ cycle time

(3.32)

3.3.4 Way Halted Prediction Cache

Halt Hit in 1 way, Cache Read Hit Energy:

Edyn HHit1 CRHit = (Edyn dec + Edyn halt) + Edyn x + Edyn op drvr (3.33)

Way Halted Prediction Cache 48

Halt Hit in 1 way, Cache Write Hit Energy:

Edyn HHit1 CWHit = 2 ∗ Edyn HHit1 CRHit (3.34)

Halt Hit in 1 way, Cache Read Miss Energy:

Edyn HHit1 CRMiss = Edyn HHit1 CRHit + Edyn Tx (3.35)

Halt Hit in 1 way, Cache Write Miss Energy:

Edyn HHit1 CWMiss = Edyn HHit1 CWHit + Edyn Tx (3.36)

Halt Hit in k ways, Wp is a halt hit way, prediction hit, Cache Read Hit

Energy:

Edyn HHitk Wp PHit CRHit = Edyn HHit1 CRHit + Edyn pred (3.37)

Halt Hit in k ways, Wp is a halt hit way, prediction hit, Cache Write Hit

Energy:

Edyn HHitk Wp PHit CWHit = 2 ∗ Edyn HHitk Wp PHit CRHit (3.38)

Halt Hit in k ways, Wp is a halt hit way, prediction miss, Cache Read Hit

Energy:

Edyn HHitk Wp PMiss CRHit = Edyn HHitk Wp PHit CRHit+(k−1)∗Edyn x (3.39)

Way Halted Prediction Cache 49

Halt Hit in k ways, Wp is a halt hit way, prediction miss, Cache Write Hit

Energy:

Edyn HHitk Wp PMiss CWHit = 2 ∗ Edyn HHitk Wp PMiss CRHit (3.40)

Halt Hit in k ways, Wp is a halt hit way, prediction miss, Cache Read Miss

Energy:

Edyn HHitk Wp PMiss CRMiss = Edyn HHitk Wp PMiss CRHit + Edyn Tx (3.41)

Halt Hit in k ways, Wp is a halt hit way, prediction miss, Cache Write Miss

Energy:

Edyn HHitk Wp PMiss CWMiss = 2 ∗Edyn HHitk Wp PMiss CRHit + Edyn Tx (3.42)

Halt Hit in k ways, Wp is a in halt miss, Cache Read Hit Energy:

Edyn HHitk CRHit = (Edyn dec + Edyn halt + Edyn pred) + k ∗Edyn x + Edyn op drvr

(3.43)

Halt Hit in k ways, Wp is a in halt miss, Cache Write Hit Energy:

Edyn HHitk CWHit = 2 ∗ Edyn HHitk CRHit (3.44)

Halt Hit in k ways, Wp is a halt miss, Cache Read Miss Energy:

Edyn HHitk CRMiss = Edyn HHitk CRHit + Edyn Tx (3.45)

Way Halted Prediction Cache 50

Halt Hit in k ways, Wp is a halt miss, Cache Write Miss Energy:

Edyn HHitk CWMiss = 2 ∗ Edyn HHitk CRHit + Edyn Tx (3.46)

Halt Miss, Cache Read Miss Energy:

Edyn HMiss CRMiss = (Edyn dec + Edyn halt) + Edyn Tx (3.47)

Halt Miss, Cache Write Miss Energy:

Edyn HMiss CWMiss = Edyn HHit1 CWHit + Edyn Tx (3.48)

Description of various variables used to calculated total dynamic energy is

given in table 3.2.

Total Dynamic Read Energy:

Edyn WHPR =CHHit1 CRHit ∗ Edyn HHit1 CRHit + CHHit1 CRMiss ∗ Edyn HHit1 CRMiss+

CHHitk Wp PHit CRHit ∗ Edyn HHitk Wp PHit CRHit+

CHHitk Wp PMiss CRHit ∗ Edyn HHitk Wp PMiss CRHit+

CHHitk Wp PMiss CRMiss ∗ Edyn HHitk Wp PMiss CRMiss+

CHHitk CRHit ∗ Edyn HHitk CRHit + CHHitk CRMiss ∗ Edyn HHitk CRMiss+

CHMiss CRMiss ∗ Edyn HMiss CRMiss

(3.49)

Way Halted Prediction Cache 51

Table 3.2: WHP variables used

Variable Description
CHHit1 CRHit Rate of Halt tag hit in only 1 way and Cache read hit
CHHit1 CRMiss Rate of Halt tag hit in only 1 way and Cache read miss

CHHitk Wp PHit CRHit Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Hit, Cache read hit

CHHitk Wp PMiss CRHit Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Miss, Cache read hit

CHHitk Wp PMiss CRMiss Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Miss, Cache read miss

CHHitk CRHit Rate of Halt tag hit in k-ways, Predicted Way not in Halt tag
hit ways, Cache read hit

CHHitk CRMiss Rate of Halt tag hit in k-ways, Predicted Way not in Halt tag
hit ways, Cache Miss

CHMiss CRMiss Rate of Halt miss and Cache read miss
CHHit1 CWHit Rate of Halt tag hit in only 1 way and Cache write hit
CHHit1 CWMiss Rate of Halt tag hit in only 1 way and Cache write miss

CHHitk Wp PHit CWHit Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Hit, Cache write hit

CHHitk Wp PMiss CWHit Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Miss, Cache write hit

CHHitk Wp PMiss CWMiss Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Miss, Cache write miss

CHHitk CWHit Rate of Halt tag hit in k-ways, Predicted Way not in Halt tag
hit ways, Cache write hit

CHHitk CWMiss Rate of Halt tag hit in k-ways, Predicted Way not in Halt tag
hit ways, Cache Miss

CHMiss CWMiss Rate of Halt miss and Cache write miss

3.4. Time Model 52

Total Dynamic Write Energy:

Edyn WHPW =CHHit1 CWHit ∗ Edyn HHit1 CWHit + CHHit1 CWMiss ∗ Edyn HHit1 CWMiss+

CHHitk Wp PHit CWHit ∗ Edyn HHitk Wp PHit CWHit+

CHHitk Wp PMiss CWHit ∗ Edyn HHitk Wp PMiss CWHit+

CHHitk Wp PMiss CWMiss ∗ Edyn HHitk Wp PMiss CWMiss+

CHHitk CWHit ∗ Edyn HHitk CWHit + CHHitk CWMiss ∗ Edyn HHitk CWMiss+

CHMiss CWMiss ∗ Edyn HMiss CWMiss

(3.50)

Total WHP Cache dynamic energy is:

Edyn WHP = Edyn WHPR + Edyn WHPW (3.51)

Total WHP Cache static energy is:

Estatic WHP = (Pleakage + Ppred ckt + Phalt) ∗RTWHP (3.52)

Where RTWHP is the response time with WHP and is given by :

RTWHP = total cycles required for completion of program with WHP∗ cycle time

(3.53)

3.4 Time Model

Table 3.3 shows the access time components used for evaluating performance

parameters. Calculations for total access time for various cache architectures

Conventional Cache 53

Table 3.3: SESC Components for Time Modeling of Cache

Cache Compo-
nents

Time Components Access Time (Taccess)
Data Side Tag Side

Decoder Tds dec Tts dec Taccess= max(Tds dec,
Tts dec, T∗

Halt) + T∗
Pred

+ max((Tds wline +
Tds bline + Tds sa),(Tts wline

+ Tts bline + Tts sa

+ Tts cmp),(Tts vi))+
Tds opDrvr

Wordline Tds wline Tts wline

Bitline Tds bline Tts bline

Sense Amplifier Tds sa Tts sa

Comparator — Tts cmp

Valid Signal
Driver

— Tts vi

Output Driver Tds opDrvr —
∗Where Thalt and TPred is the time required for accessing halt tag array and
prediction circuit respectively. THalt and TPred is 0 for CC, THalt is 0 for WP
, TPred is 0 for WH

is given in following subsections.

3.4.1 Conventional Cache

CC Read Time :

TCCR = Taccess + CRMiss ∗ TTx (3.54)

Where TTx is the transfer time from/to processor.

CC Write Time :

TCCW = Taccess ∗ 2 + CWMiss ∗ TTx (3.55)

CC Time :

TCC = TCCR + TCCW (3.56)

Way Predicting Cache 54

3.4.2 Way Predicting Cache

WP Read Time :

TWPR =Taccess ∗ CPRHit

+ (Taccess + TpredRMiss) ∗ ((1 − CRMiss) − CPRHit))

+ TTx ∗ CPMiss CRMiss

(3.57)

Where CPRHit, CRMiss and TpredRMiss is the prediction read hit rate, cache

read miss rate and the additional access time required in case of prediction

miss.

WP Write Time :

TWPW =2 ∗ Taccess ∗ CPWHit

+ (2 ∗ Taccess + TpredMiss) ∗ ((1 − CWMiss) − CPWHit))

+ TTx ∗ CPWMiss CWMiss

(3.58)

Where CPWHit, CWMiss and TpredWMiss is the prediction write hit rate, cache

write miss rate and the additional access time required in case of prediction

miss. WP Time :

TWP = TWPR + TWPW (3.59)

3.4.3 Way Halting Cache

WH Read Time :

TWHR =Taccess ∗ CCRHit + TTx ∗ CHHit CRMiss

+ THMiss CRMiss ∗ CHMiss CRMiss

(3.60)

Way Halted Prediction Cache 55

Where CCRHit, CHHit CRMiss, CHMiss CRMiss and THMiss CRMiss is cache read

hit rate, halt hit - cache read miss rate, halt read miss and transfer time in

case of halt read miss respectively. (where THMiss CRMiss < TTx)

WH Write Time :

TWHW =2 ∗ Taccess ∗ CCWHit + TTx ∗ CHHit CWMiss

+ THMiss CWMiss ∗ CHMiss CWMiss

(3.61)

Where CCWHit, CHHit CWMiss, CHMiss CWMiss and THMiss CWMiss is cache

write hit rate, halt hit - cache write miss rate, halt write miss and transfer

time in case of halt write miss respectively. (where THMiss CRMiss < TTx)

WH Time :

TWH = TWHR + TWHW (3.62)

3.4.4 Way Halted Prediction Cache

WHP Read Time :

TWHPR =Taccess ∗ (CHHit1 CRHit + CHHitk Wp PHit CRHit + CHHitk CRHit)

+ (Taccess + TpredRMiss) ∗ CHHitk Wp PMiss CRHit

+ TTx ∗ (CHHit1 CRMiss + CHHitk CRMiss)

+ (TTx + TpredRMiss) ∗ CHHitk Wp PMiss CRMiss

+ THMiss CRMiss ∗ CHMiss CRMiss

(3.63)

3.5. Experimental Setup 56

WHP Write Time :

TWHPW =2 ∗ Taccess ∗ (CHHit1 CWHit + CHHitk Wp PHit CWHit + CHHitk CWHit)

+ (2 ∗ Taccess + TpredWMiss) ∗ CHHitk Wp PMiss CWHit

+ TTx ∗ (CHHit1 CWMiss + CHHitk CWMiss)

+ (TTx + TpredWMiss) ∗ CHHitk Wp PMiss CWMiss

+ THMiss CWMiss ∗ CHMiss CWMiss

(3.64)

WHP Time :

TWHP = TWHPR + TWHPW (3.65)

3.5 Experimental Setup

This work uses SESC, simulation framework to model L1 cache of different

set-associative architectures. Simulation framework configures SESC sim-

ulator using smp.conf file. In smp.conf, SESC simulator accepts various

configuration parameters for Data TLB, Instruction TLB, L1 Data Cache,

L1 Instruction cache, L2 cache, main memory and processor configuration.

The simulation framework implemented in C++ estimates processing time,

power/energy components for fetch, issue, memory access, execution and

clock. It also estimates statistic of read/write access for TLB, L1 Cache, L2

Cache, main memory and branch prediction circuit. Various configurations of

set-associative caches like CC, WP, WH and WHP are implemented by using

SESC simulator. The framework uses 32-bit address and LRU replacement

policy. As all the experimenting cache architectures use same cache configu-

3.6. Experimental Analysis 57

ration parameters and replacement policy, their cache hit rate remains the

same. The prediction circuit stores the most recently used (MRU) cache line

for future prediction.

SESC simulator uses Splash benchmark programs to evaluate the performance

of various cache architectures. SESC uses CACTI [67] to estimate time and

energy parameters of cache.

3.6 Experimental Analysis

Figure 3.3: Prediction Rate for a 4 way, 8B line size with varying Data Cache
size

Prediction Hit Accuracy 58

Figure 3.4: Prediction Rate for a 4 way, 8B line size with varying Instruction
Cache size

3.6.1 Prediction Hit Accuracy

Figures 3.3 and 3.4 show the data cache and instruction cache prediction hit

rate of WP and WHP for varying cache sizes. Irrespective of the configurations,

WHP offers higher prediction rate than WP because of early cache miss

detection and corner case elimination. An average prediction hit rate of data

cache and instruction cache for WP is 66.39% and 99.03% whereas for WHP

it is 93.17% and 99.92% respectively.

3.6.2 Dynamic Energy per Access

Figures 3.5, 3.6, and 3.7 show the data cache, instruction cache and combined

dynamic energy consumption for various SPLASH benchmark programs re-

spectively. It is observed that prediction accuracy is higher for instruction

Dynamic Energy per Access 59

F
ig

u
re

3.
5:

P
er

ac
ce

ss
d
y
n
am

ic
en

er
gy

co
n
su

m
p
ti

on
fo

r
a

4
w

ay
,

8B
,

32
K

B
D

at
a

C
ac

h
e

w
it

h
va

ry
in

g
b

en
ch

m
ar

k
p
ro

gr
am

s

Dynamic Energy per Access 60

F
ig

u
re

3.
6:

P
er

ac
ce

ss
d

y
n

am
ic

en
er

gy
co

n
su

m
p

ti
on

fo
r

a
2

w
ay

,
8B

,
32

K
B

In
st

ru
ct

io
n

C
ac

h
e

w
it

h
va

ry
in

g
b

en
ch

m
ar

k
p
ro

gr
am

s

Dynamic Energy per Access 61

F
ig

u
re

3.
7:

P
er

ac
ce

ss
d

y
n

am
ic

en
er

gy
co

n
su

m
p

ti
on

fo
r

a
4

w
ay

,
8B

,
32

K
B

ca
ch

e
w

it
h

va
ry

in
g

b
en

ch
m

ar
k

p
ro

gr
am

s

Response Time 62

cache over data cache. It is also observed that for all benchmark programs

under consideration WHP’energy consumption is the least. Figure 3.8 shows

dynamic energy savings over CC for various benchmark programs. Results

show that all energy efficient caches consume less dynamic energy as compared

to CC. The average dynamic energy saving of WP , WH and WHP over CC

are 43.06%, 44.06%, 46.64% respectively. Experimental evaluation reveals

that WHP achieves on an average 6.45% and 4.15% of dynamic energy over

WP and WH respectively. The per access dynamic energy consumption for

all the architectures increase with increase in cache size as shown in figure 3.9.

Hit rate saturates with increase in cache size this results in increase dynamic

energy consumption.

Irrespective of the cache architecture in use, the per access dynamic energy

consumption decreases when associativity is changed from 4-way to 8-way.

This is due to reduction in conflict misses. However, with further increase

in associativity to 16-way output driver dynamic energy consumption out-

trades hit rate improvement. Figure 3.10 shows per access dynamic energy

consumption for various cache architecture by varying cache associativity.

Increasing line size reduces number of compulsory misses. As shown in Figure

3.11 with increase in cache line size for all cache architecture per access

dynamic energy consumption reduces.

3.6.3 Response Time

Figures 3.12, 3.13, and 3.14 show the data cache, instruction cache and

combined response time for various SPLASH benchmark programs respectively.

Figure 3.15 shows response time saving of WP, WH and WHP over CC. Figures

Response Time 63

F
ig

u
re

3.
8:

P
er

ac
ce

ss
d
y
n
am

ic
en

er
gy

sa
v
in

gs
fo

r
a

4
w

ay
,

8B
,

32
K

B
ca

ch
e

w
it

h
va

ry
in

g
b

en
ch

m
ar

k
p
ro

gr
am

s
ov

er
C

C

Response Time 64

Figure 3.9: Per access dynamic energy consumption for a 4 way, 8B line size
with varying cache size

Figure 3.10: Per access dynamic energy consumption for a 16B, 8KB Data
Cache with varying associativities

Response Time 65

Figure 3.11: Per access dynamic energy consumption for a 4 way, 8KB cache
with varying line Size

3.16, 3.17 and 3.18 show response time by varying cache size, line size and

data cache associativity respectively. Irrespective of the configuration in use,

the response time of WP is the highest among all the cache architectures and

the response time of WH is the least among all the cache architectures.

WP needs additional cycles to access remaining ways in case of prediction

miss hence its response time increases. The response time of WH cache is

equivalent to CC in case of halt hit and it saves way access time in case of

halt miss. Hence WH cache gives the least response time. The response time

WHP is better than CC due to halt tag miss scenarios. The response time of

WHP is marginally higher than WH due to additional prediction miss time.

The average response time saving of WP , WH and WHP over CC are -2.00%,

1.09% and 1.04% respectively. Experimental evaluation reveals that WHP

achieves on an average response time savings of 2.92% and -0.05% over WP

Response Time 66

F
ig

u
re

3.
12

:
R

es
p

on
se

ti
m

e
fo

r
a

4
w

ay
,

8B
,

32
K

B
D

at
a

C
ac

h
e

w
it

h
va

ry
in

g
b

en
ch

m
ar

k
p
ro

gr
am

s

Response Time 67

F
ig

u
re

3.
13

:
R

es
p

on
se

ti
m

e
fo

r
a

2
w

ay
,

8B
,

32
K

B
In

st
ru

ct
io

n
C

ac
h
e

w
it

h
va

ry
in

g
b

en
ch

m
ar

k
p
ro

gr
am

s

Response Time 68

F
ig

u
re

3.
14

:
R

es
p

on
se

ti
m

e
fo

r
a

4
w

ay
,

8B
,

32
K

B
ca

ch
e

w
it

h
va

ry
in

g
b

en
ch

m
ar

k
p
ro

gr
am

s

Response Time 69

F
ig

u
re

3.
15

:
R

es
p

on
se

ti
m

e
sa

v
in

g
ov

er
C

C
fo

r
a

4
w

ay
,

8B
,

32
K

B
ca

ch
e

w
it

h
va

ry
in

g
b

en
ch

m
ar

k
p
ro

gr
am

s

Response Time 70

Figure 3.16: Response time for a 4 way, 8B line size with varying cache size

Figure 3.17: Response time for a 4 way, 8KB cache with varying line Size

Static Energy Per Access 71

Figure 3.18: Response time for a 16B, 8KB Data Cache with varying associa-
tivity

and WH respectively.

3.6.4 Static Energy Per Access

Figure 3.19 shows the static energy consumption of various cache architectures

for SPLASH benchmark programs. Prediction circuit and halting circuit adds

on to the leakage power of WP and WH respectively. WHP circuit has an

overhead of prediction and halting circuit. The response time outtrades these

additional overheads. The static energy per access follows the response time

pattern for all the architectures.

Static Energy Per Access 72

F
ig

u
re

3.
19

:
P

er
ac

ce
ss

st
at

ic
en

er
gy

co
n
su

m
p
ti

on
fo

r
a

4
w

ay
,

8B
,

32
K

B
ca

ch
e

w
it

h
va

ry
in

g
b

en
ch

m
ar

k
p
ro

gr
am

s

Time and Area Overhead 73

3.6.5 Time and Area Overhead

Access time of prediction circuit is measured as 0.16% of the total access time

for 8KB, 8B, 4-way WP and WHP. Inoue [4] proposed a mode to bury this

time with the previous pipeline stages. Though this work did not bury it

with previous pipeline stages, this additional time did not increase number of

cycles required to access cache and hence did not affect critical path delay.

The area required for CC of 8KB, 8B, 4-way measured as 0.179mm2 using

SESC. The WH and WHP imposes 2% additional area overhead for the halt

tag circuit. WP and WHP imposes 0.2% od area overhead for MRU and

associated circuits. The overall area overhead of WHP is measured as 2.24%

over CC.

3.7 Conclusion

WHP uses halt tag array and prediction circuit to achieve reduced energy

consumption and response time. The combination of halt tag and prediction

circuit reduces the number of ways to be activated for cache access. In WHP,

the number of active ways are reduced from k ways to one way in most of

the accesses with the prediction circuit. As the prediction circuit is enabled

only when k > 1, the performance of WHP cache is improved with respect to

energy and time. The results show that WHP offers better energy efficiency

over the other architectures analyzed. WHP offers 46.64%, 6.45% and 4.15%

dynamic energy saving and 1.04%, 2.92% and -0.05% saving in response time

over the CC, WP and WH respectively. The overall area overhead of WHP is

measured as 2.24% over CC.

Chapter 4

MOESIF : Cache Coherency

Protocol

4.1 Introduction

The memory subsystem of energy efficient multicore embedded processors

usually contain private split L1 caches, unified L2 caches and unified shared

L3 cache. This chapter concentrates on improving cache performance by

redesigning the most widely used cache coherency protocols, MOESI and

MESIF. Cache controller of all cores containing valid data responds to read

or write miss request in MOESI protocol. This generates redundant responses

which flood the network. This results in increased data traffic and thus

response time. The cache coherency traffic has to be be optimised by elimi-

nating the redundant responses. In MESIF protocol, if any core sends read or

write request for the modified data, the data is first written back to L3 cache

and then the requesting core receives it from L3 cache. The time and energy

required for transferring the data from L2 cache of some core to L3 cache

and then from L3 cache to the requesting core’s L2 cache can be optimised

by sharing dirty copy of data.

This chapter proposes an energy efficient cache coherency protocol - Modified

74

4.2. Widely Used Cache Coherence Protocols 75

Owned Exclusive Shared Invalid Forward - MOESIF. The redundant re-

sponses are concisely narrowed down in MOESIF protocol. In MOESIF

protocol, only the cache controller of the core in M, O or F state responds

with the requested data. This results in reduction of total number of re-

sponses thus traffic and response time. Response time is further reduced in

MOESIF protocol by sharing dirty copy of data. The core having modified

data forwards dirty copy of data to the requesting core without updating

L3 cache. This L2 to L2 transfer reduces the number of write backs to the

next level memory. MOESIF achieves energy efficiency and high performance

by optimizing data transfers between caches and with next level memory.

It improves off-schip and on-chip bandwidth usage. MOESIF reduces the

number of write backs to next level memory and the number of responders to

a cache miss when multiple copies of data exists in private caches.

4.2 Widely Used Cache Coherence

Protocols

Invalidation based cache coherence protocols maintain a state for each cache

line along with the tag and data. The coherence policy is defined by the finite

state machine in each node which changes the state of cache line based on

read/write operation. Following subsections briefs some of the widely used

cache coherence protocols namely MESI, MOESI and MESIF.

MESI Protocol 76

4.2.1 MESI Protocol

Modified-Exclusive-Shared-Invalid (MESI) is the four state protocol in use for

maintaining cache coherency in MC/MP systems. The cache line in invalid

state implies that the data present in the cache line is not valid. The shared

state allows multiple nodes to have the same data block in consistent state

with the next level memory. The cache line in E state holds an exclusive copy

of data. Data from cache line in shared / exclusive state can only be read.

If the cache line is in modified state, then it is the most up-to-date and the

only valid copy available.

In case of write hit, the invalidation signal is sent to all other cores only when

the cache line is in S state. Read/write misses are satisfied by transferring

data to the cache either from other nodes or from the next level memory. If

any node has the requested data in E or S state, the requestor is serviced

by the node upon broadcast. If a node contains data with M state then it

updates the next level memory with that data. All the cache lines containing

the requested data will be in S state for read miss and I state for write miss.

The state of requestor's cache line is set to E or S state and M state for read

miss and write miss respectively. In read miss the requestor's copy will be

in E state only if the data is transferred from next level memory. Presence

of multiple shared copies reduces the number of coherence misses in MESI.

However, for every state change from M, the data needs to be written to

the next level. This result in frequent data writes between node and next

level when read and write alternate. The state transition diagram of MESI

protocol is shown in figure 4.1.

MESI Protocol 77

F
ig

u
re

4.
1:

M
E

S
I

A
cc

es
s

an
d

S
n
o
op

S
ta

te
T

ra
n
si

ti
on

s

MOESI Protocol 78

4.2.2 MOESI Protocol

The M state in MOESI protocol, allows transfer of data to a read requestor

without writing back to the next level memory. The dirty copy sharing

between different nodes using O state helps to reduce the frequency of write-

backs. Write back in MOESI happens only when the cache line in M or O

state is replaced. However, during a cache miss, all the sharers of requested

data will respond and the requestor will be serviced by redundant responses.

These redundant responses increase the traffic across the network as data

transfer takes more bandwidth than signals. The cache state transitions for a

cache access and snoop is shown in figure 4.2.

4.2.3 MESIF Protocol

The issue of redundant responses from all the sharers in MESI and MOESI is

addressed by the F state. MESIF protocol ensures that only the cache line in

F state responds to read/write request of other nodes. Among the sharers,

the last recipient of data is assigned with F state. During read miss, the

cache line in F state transfers the data and updates its state to S. Although

redundant responses are eliminated using F state, sharing of dirty data is not

allowed in MESIF. Write back happens for all the state change from M state.

The cache state transitions for a cache access and snoop is shown in figure

4.3.

MESIF Protocol 79

F
ig

u
re

4.
2:

M
O

E
S
I

A
cc

es
s

an
d

S
n
o
op

S
ta

te
T

ra
n
si

ti
on

s

MESIF Protocol 80

F
ig

u
re

4.
3:

M
E

S
IF

A
cc

es
s

an
d

S
n
o
op

S
ta

te
T

ra
n
si

ti
on

s

4.3. MOESIF Architecture 81

4.3 MOESIF Architecture

MOESIF achieves energy efficiency and high performance by optimizing data

transfers between caches and with next level memory. This is achieved by

reducing the number of write backs to the next level memory and making

sure only one responder sends data to the requestor. Combining O state and

F state with MESI states helps in achieving this. This results in reduced

traffic which in turn improves response time of the system. The quad-core

processor architecture this work uses is shown in Figure 4.4. Each core has

private split L1 cache, private unified L2 cache, shared L3 cache and main

memory. Cores are connected to L3 cache using bus interconnect. Cores are

connected to other cores using point to point interconnect. Figure 4.5 and

Table 4.1: Read, Write and Snoop operations in MOESIF Protocol

Read Write
PI→ PI→

M O E S I F M O E S I F

S
N

O
O

P

←
P
J

M − − − − O/S − − − − − M/I −
O − − − S/O O/S − − − − M/I M/I −
E − − − − F/S − − − − − M/I −
S − O/S − S/S F/S F/S − M/I − M/I M/I M/I
I M/I O/I E/I S/I E/I F/I M/I M/I M/I M/I M/I M/I
F − − − S/F F/S − − − − M/I M/I −

4.6 show the access and snoop function in MOESIF. Corresponding state

transitions for a pair of caches (PI and PJ) for read and write operations in

PI is shown in Table 4.1.

In MOESIF protocol, one of the sharers will be an owner (O state) or

a forwarder (F state). If multiple copies of shared data exist then the

broadcasted cache miss signal is satisfied either by the owner or by the

forwarder. If the cache line is in O state, all the copies in S state and itself

4.3. MOESIF Architecture 82

F
ig

u
re

4.
4:

Q
u
ad

-c
or

e
A

rc
h
it

ec
tu

re

4.3. MOESIF Architecture 83

Figure 4.5: MOESIF cache access

4.3. MOESIF Architecture 84

Figure 4.6: MOESIF cache snoop

4.3. MOESIF Architecture 85

are the most up to date copies and the next level memory contains stale data.

The copy in O state only will act as forwarder which reduces the number of

write backs and responders.

The replacement of owner cache line in MOESI and MOESIF protocols writes

the dirty cache line back to the next level memory. The number of write backs

due to replacement of cache line in O state is reduced in MOESIF protocol

as the ownership of shared dirty data is transferred to the read requestor

serviced by the owner. If forwarder gets replaced, the MOESIF protocol

randomly picks one of the sharers as forwarder. If owner gets replaced, it

writes the data to the next level memory and randomly picks one of the sharer

as forwarder. This guarantees existence of a single responder in the system.

Design of random number generator used for selecting forwarder is shown

Figure 4.7: Design of random generator used for Quad-core Architecture

4.3. MOESIF Architecture 86

in Figure 4.7. The circuit is activated only when forwarder or owner gets

replaced. Based on the previous selection and current status of data block in

cores, the new forwarder is selected. The cache line state remains unchanged

for read hits and write hits in M state. The cache line state updates from

O, E, S and F state to M state for write hits. The cache read misses, write

misses and write hits in O, S or F state broadcasts the request. When write

request is broadcasted, the cache controllers containing shared data copy

invalidates it and sends acknowledgement to the requestor. Upon receiving

acknowledgements from N − 1 cores, requestor updates its cache line state to

M. If any other core has the requested data in M state, that core transfers

the data to the requestor and invalidates the copy for write snoop whereas it

changes its state to S for read snoop. If any core has the requested data in

cache line with E, O or F state, that core performs L2 to L2 transfer of data.

For read snoop, the responder changes its state to S. If the core with O state

forwards the data, the requestor changes its state to O. If the core forwarding

the data is in F state or in E state, the requestor changes its state to F and the

forwarder changes its state to S. For write snoop, the responder invalidates

itself and sends invalidation acknowledgement to the requestor. The requestor

changes its state to M after receiving N − 1 invalidation acknowledgements.

When no core has the requested data, the requestor will receive data from

L3 and sets the cache line state to E and M for read and write operations

respectively.

The major modification implemented in MOESIF protocol in comparison

with MOESI and MESIF protocols are read miss cases, where the data is

received from L2 caches. In MOESIF protocol when read misses receive the

4.4. Energy and Time Model 87

modified data, the ownership of the data is transferred to the requestor core.

The requestor cache line state is changed to F when it receives a clean copy

of data. In MOESI protocol, the requestor core will be in S state. Transfer of

ownership to the latest requestor reduces the number of write backs. Read

miss for a dirty copy of data of MOESIF differs from read miss for a dirty

copy of data of MESIF protocol. The read miss request in MOESIF protocol

is served by sharing a dirty copy of data which is L2 to L2 data transfer. The

read miss for dirty copy of data in MESIF results in write back from L2 cache

of the core which is having modified copy to L3 cache and then to L2 cache

of requesting core.

To maintain cache in coherent state, MI and MESI requires 1 and 2 bits per

cache line respectively, whereas MOESI, MESIF and MOESIF require 3 bits

per cache line. Although MOESIF protocol has an overhead of additional

bits per cache line to maintain cache coherency state over MI and MESI

protocols, it reduces the network traffic by sharing of dirty data among cores.

MOESIF protocol achieves energy saving and performance improvement over

MESIF and MOESI protocol without additional hardware overhead and

communication signals.

4.4 Energy and Time Model

The cache components used in the evaluation of energy consumption and

access time based on SESC simulator [66] are shown in Table 3.1. The read

access energy, write access energy and access time of L2 cache is calculated as

4.4. Energy and Time Model 88

shown in equation 4.1, 4.2 and 4.3 respectively: Cache Read Access Energy:

Eread access = Edyn dec + associativity ∗ Edyn x + Edyn op drvr (4.1)

where Edyn x is the dynamic access energy per way.

Cache Write Access Energy:

Ewrite access = 2 ∗ (Eread access) (4.2)

Cache Access Time:

Taccess =max(Tds dec, Tts dec) + max((Tds wline + Tds bline + Tds sa),

(Tts wline + Tts bline + Tts sa + Tts cmp), (Tts vi)) + Tds opDrvr

(4.3)

The energy and time model for cache read and write operations in an N -

core system is shown in Table 4.2. Where EInv, ETx−L2toL2, ETx−L2toL3 and

ETx−L3toL2 represent the energy consumed for cache line invalidation and

sending acknowledgements, L2 to L2 transfer, L2 to L3 transfer and L3

to L2 transfer respectively. TB, TAckAll, TL2Read, TL2Write, TL3Read, TL3Write,

TTx−L2toL2, TTx−L2toL3 and TTx−L3toL2 represent the time for broadcasting

address, receiving all the acknowledgements, reading L2, writing L2, reading

L3, writing L3, L2 to L2 transfer, L2 to L3 transfer and L3 to L2 transfer

respectively. The transfer time among L2 and L3 caches is calculated as

4.4. Energy and Time Model 89

Table 4.2: Energy and time modeling for cache operations

Cache Operation Energy Time
Read
Hit

- Eread access Taccess

Read
Miss

When no L2 copies
exist

N ∗ Eread access +
ETx−L3toL2

TB + Tx32 + Taccess

When k-L2 copies
exist

(1 <= k <= N − 1)

N ∗ Eread access + k ∗
ETx−L2toL2

TB + k ∗ Tx22 + Taccess

When a single
modified copy exist in

a L2

N ∗ Eread access +
ETx−L2toL3 +
ETx−L3toL2

TB+Tx23+Tx32+Taccess

Write
Hit

When no other L2
copies exist

Eaccess + EPWrite TPWrite

When other L2 copies
exist

N ∗ Eaccess + EInv +
EPWrite

TB + TAckAll + TPWrite

Write
Miss

When no L2 copies
exist

N ∗ Eaccess +
ETx−L3toL2 + EInv +

EPWrite

TB +
max(Tx21, TAckAll) +

TPWrite

When k-L2 copies
exist (1¡=k¡=N-1)

N ∗ Eaccess + k ∗
ETx−L2toL2 + EInv +

EPWrite

TB + max(k ∗
Tx11, TAckAll) +TPWrite

When a single
modified copy exist in

a L2

N ∗ Eaccess +
ETx−L2toL3 +

ETx−L3toL2 + EInv +
EPWrite

TB + max(Tx12 +
Tx21, TAckAll) +TPWrite

4.5. Experimental Evaluation 90

shown in equation 4.4

Tx22 = TL2Read + TTx−L2toL2 + TL2Write

Tx32 = TL3Read + TTx−L3toL2 + TL2Write

Tx23 = TL2Read + TTx−L2toL3 + TL3Write

(4.4)

When replacement results in write back of dirty data, the additional energy

and access time is added up in the energy and time calculations respectively.

4.5 Experimental Evaluation

4.5.1 Experimental Setup

The time and energy estimation is done by using SESC simulator. The

simulator estimates the energy consumption, access time, cache miss rate, L2

to L2 transfers, write backs, L3 to L2 transfers, invalidations and invalidation

acknowledgements. The experimentation uses cache size, cache line size and

associativity as 4KB to 32KB, 8B to 32B and direct mapped to 16-way

set-associative respectively.

4.5.2 Experimental Analysis of Protocols

Shared copy of data does not exist in MI protocol. The cache read and

write misses broadcast the request through the bus. If other core has the

requested data, it performs write back operation. Upon receiving write back

acknowledgement from L3, it invalidates its copy. For all cache misses, the

requestor receives the data from L3.

Experimental Analysis of Protocols 91

MESI protocol satisfies read and write misses by transferring data to the

cache either from the next level memory or from other cores. If any core has

the requested data in exclusive (E) or shared S state, the requestor is serviced

by the core upon broadcast. If a core contains data with modified (M) state

then it updates the next level memory with that data. All the cache lines

containing the requested data will be in S state for read miss and I state

for write miss. Presence of multiple shared copies reduces the number of

coherence misses in MESI over MI protocol. However, for every state change

from M, the data needs to be written to the next level. This result in frequent

data writes between core and next level when read and write alternate.

The M state in MOESI protocol allows transfer of data to a read requestor

without writing back to the next level memory. The dirty copy sharing

between different cores using Owned (O) state helps to reduce the frequency

of write-backs. Write back in MOESI happens only when the cache line in

M or O state is replaced. However, during a cache miss, all the sharers of

requested data responds and the requestor is serviced by redundant responses.

These redundant responses increase the traffic across the network as data

transfer takes more bandwidth than transfer of signals through the network.

The issue of redundant responses from all the sharers in MESI and MOESI

is addressed by the Forward (F) state. MESIF protocol ensures that only

the cache line in F state responds to the read / write request of other cores.

Among the sharers, the last recipient of data is assigned with F state. During

read miss, the cache line in F state transfers the data and updates its state

to S. Although redundant responses are eliminated using F state, sharing

of dirty data is not allowed in MESIF. Write back happens for all the state

Experimental Evaluation 92

changes from M state.

MOESIF protocol achieves energy efficiency and high performance by opti-

mizing data transfers between caches and with next level memory. This is

achieved by reducing the number of write backs to the next level memory

and making sure only one responder sends data to the requestor. Combining

O state and F state with MESI states help in achieving this. This results in

improved hit rate and reduced traffic which in turn improves response time

of the system.

4.5.3 Experimental Evaluation

4.5.3.1 Hit rate and Data transfers

Figures 4.8, 4.9, 4.10 and 4.11 show hit rate, per access writebacks, per access

data received from L3 and per access data received from other L2 respectively

for MI, MESI, MOESI, MESIF and MOESIF protocols for varying cache sizes.

Number of Conflict misses reduces with increase in cache size. As shown in

figure 4.8, for all cache coherency protocols, hit rate increases with increasing

cache size. In MI, shared copy of data does not exist where as MESI and

MESIF shares clean copy of data. The MOESIF and MOESI shares dirty

copy along with clean copy of data. Hit rate of MI is the least among all the

protocols.

Figure 4.9 shows per access write backs. The number of write backs in MI is

the highest and it reduced by 53.87% in MESI and MESIF protocol. MOESI

and MOESIF protocols reduce the number of write backs further and results

in least number of write backs.

Hit rate and Data transfers 93

Figure 4.10 and 4.11 show per access data transfer rate between L2 and

Figure 4.8: Per access hit rate for varying cache sizes with 32B line size and
associativity as 4 way

L3 caches and among L2 caches of different cores respectively. In MI, data

transferred to L2 cache is only from L3 cache and data is not transferred

among L2 caches of different cores. In MI, the highest number of data trans-

fers occur between L3 cache and L2 cache and no data transfer occurs among

L2 caches of different cores .

In MESI and MESIF protocols, read and write miss requests for modified

data is satisfied by performing write back operation and then transfering the

requested data from L3 cache to the requestor. Data transfer rate between L2

and L3 caches is higher as compared to data transfer rate among L2 caches

of different cores for MESI and MESIF protocols.

MOESI and MOESIF protocols share a dirty copy of data without writing

Hit rate and Data transfers 94

Figure 4.9: Per access write backs for varying cache sizes with 32B line size
and associativity as 4 way

Figure 4.10: Per access data from L2 for varying cache sizes with 32B line
size and associativity as 4 way

Energy Consumption 95

Figure 4.11: Per access data from other L1 for varying cache sizes with 32B
line size and associativity as 4 way

back the data to L3 cache. Data transfer rate among L2 caches of different

cores is higher as compared to data transfer rate between L2 and L3 caches

for MOESI and MOESIF protocol. Similar trends are observed while varying

cache line size and associativity as well.

4.5.3.2 Energy Consumption

Figures 4.12, 4.13, and 4.14 show energy consumption with varying cache size,

cache line size and number of cores respectively. From the results, it is observed

that energy consumption of MI is the highest due to high miss rate and highest

number of write backs. Irrespective of the configuration parameters, MOESIF

protocol outperforms other protocols in energy consumption.

Energy Consumption 96

Figure 4.12: Per access energy for varying cache sizes with 32B line size and
associativity as 4 way

Figure 4.13: Per access energy for varying cache line sizes with 8KB cache
size and associativity as 4 way

Energy Consumption 97

Figure 4.14: Per access energy for varying number of cores with 8KB cache,
16B line size and associativity as 4 way

On an average, for varying cache sizes MESI, MOESI, MESIF and MOESIF

reduces 51.41%, 94.20%, 51.66% and 94.49% of the total energy over MI. The

energy savings of MOESIF protocol over MESI, MOESI and MESIF protocols

is 88.58%, 4.33% and 88.52% respectively.

It is evident from figure 4.13 that with increase in cache line size, the total

energy consumption reduces due to reduction in compulsory misses.

MESI and MESIF have comparable energy when number of cores are less

(say 2). For a larger number of cores, MESIF consumes less energy than

MESI with a single responder for forwarded request. It is also evident that

energy consumption increases exponentially with increase in number of cores.

However, the increase is small for MOESI and MOESIF protocols over other

protocols because of dirty sharing and reduced number of write backs.

Response Time 98

4.5.3.3 Response Time

Figures 4.15, 4.16, and 4.17 show per access time with varying cache size,

cache line size and number of cores respectively. It is observed that per

access time of cache increases with increase in cache size and number of cores.

Increase in cache size results in increasing cache cycle time and number of

cores which results in increasing coherency misses. Increase in cache line size

results in reducing access time because of the increase in hit rate.

For varing cache size, per access time of MESI, MOESI, MESIF and

Figure 4.15: Per access time for varying cache sizes with 32B line size and
associativity as 4 way

MOESIF protocols reduce by 52.04%, 95.59%, 52.31% and 95.86% respectively

over MI. The per access time saving of MOESIF protocol over MESI, MOESI

and MESIF protocol is 91.37%, 6.17% and 91.32% respectively.

Response Time 99

Figure 4.16: Per access time for varying cache line sizes with 8KB cache size
and associativity as 4 way

Figure 4.17: Per access time for varying number of cores with 8KB cache,
16B line size and associativity as 4 way

4.6. Conclusion 100

4.6 Conclusion

Cache coherence protocols achieve data consistency and coherency at the

cost of performance degradation with respect to time and energy. The addi-

tional overhead can be minimized by optimizing the usage of interconnection

bandwidth. This chapter discussed MOESIF protocol which improves the

off-chip bandwidth by reducing write backs to next level memory and the

on-chip bandwidth by reducing the number of responders to a cache miss when

multiple copies of data exists in private L2 caches of various cores. For varing

cache sizes, energy consumption in MESI, MOESI, MESIF and MOESIF

protocols is reduced by 51.41%, 94.20%, 51.66% and 94.49% respectively over

MI protocol. The energy savings of MOESIF protocol over MESI, MOESI

and MESIF protocol is 88.58%, 4.33% and 88.52% respectively. For varing

cache sizes, per access time of MESI, MOESI, MESIF and MOESIF protocols

is reduced by 52.04%, 95.59%, 52.31% and 95.86% respectively over MI. The

per access time saving of MOESIF protocol over MESI, MOESI and MESIF

protocol is 91.37%, 6.17% and 91.32% respectively.

Chapter 5

DTLB: Deterministic TLB for

Real-time System

5.1 Introduction

TLB plays a crucial role in speeding up the virtual to physical address

translation. Each memory access results in accessing TLB. TLB is in critical

path of memory access. TLB misses lead to accessing main memory multiple

times which results in performance degradation both in terms of time and

energy. Performance of the system can degrade upto 50% due to TLB’s miss

penalties [68]. TLB misses result in additional energy consumption because

of page table walk through. TLB contributes upto 17% of the total on-chip

energy due to its high access frequency [69].

In hard real-time systems, TLB misses affect the deadlines as WCET of the

job increases with TLB misses. Deterministic worst case upper bound must

be guaranteed for hard real-time tasks in order to ensure a tighter upper

bound [70]. This helps in executing more tasks without deadline misses.

Predictability in hard real-time system can be ensured by making the entire

process of accessing memory subsystem deterministic, so that it can be used

without deadline misses. The unpredictable nature of TLB is one of the major

101

5.2. DTLB Architecture 102

factors which makes the memory subsystem non-deterministic, along with

unpredictability of cache memories and main memory. The unpredictability in

case of conventional TLB is because of TLB flushing on preemption. This can

be addressed by reservation based TLBs like ASID-TLB[50]. In ASID-TLB,

the number of lockable entries for a specific process is calculated statically.

These entries are not available for replacement for other tasks. This results in

reducing the size of TLB per process. This mechanism suffers with additional

TLB misses because of reserved entries. Flushing/global replacement results

in increase in TLB misses on preemption.

To have a tighter upper bound on the WCET of real-time task, this chapter

presents a TLB architecture - Deterministic Translation Lookaside Buffer

(DTLB). DTLB offers deterministic miss rate which is the least possible miss

rate and is equal to the number of misses when that task is running as the

only task in system. DTLB offers the least number of misses ever possible in

a system when all tasks are available in main memory [71] [72]. It is achieved

by storing all the TLB entries in process control block (PCB) during task

preemption. TLB entries are loaded back from the PCB into TLB when task

resumes back its execution. DTLB offers up to 24.77% reduction in TLB

miss rate as compared to conventional TLB which flushes TLB entries during

preemption.

5.2 DTLB Architecture

DTLB is designed to obtain deterministic WCET of real-time task. It im-

proves memory performance by reducing the TLB misses for low priority

5.2. DTLB Architecture 103

F
ig

u
re

5.
1:

D
et

er
m

in
is

ti
c

T
L

B
A

rc
h
it

ec
tu

re

5.2. DTLB Architecture 104

real-time tasks. Detailed architecture of DTLB is shown in figure 5.1. Each

entry in DTLB contains valid/invalid bit, page number, frame number of that

page in memory, protection/access bits and LRU bits. In DTLB model, PCB

contains space required for backing up all TLB entries. On preemption, a

special instruction(FC000000) is executed as a part of preemption routine.

Multiplexer is used for selecting TLB entry to be transferred through bus.

This instruction initiates the transfer of all the TLB entries to PCB of that

process. The TLB is flushed/filled with next process’s PCB contents based on

whether the process is new/already executed. The next dispatched job can use

the entire TLB without being affected by the previous job. This repopulates

the TLB with the same entries that were present at the time of preemption

and the job resumes its execution from that point without additional TLB

misses. The repopulation of TLB ensures no additional TLB misses across

preemptions. The execution times of highest priority jobs are not affected by

DTLB as it is dispatched without preemptions. Only the lower priority job

executions suffer a constant time overhead at the time of preemption which

helps in offering tighter WCET when number of preemptions are known.

DTLB guarantees that TLB entries of running job is isolated from other

ready to run jobs in the system. For deterministic real-time performance,

this work assumes that the main memory is big enough to hold the required

pages of all ready to run jobs[71] [72]. The local replacement policy ensures a

predictable upper bound on the number of TLB misses.

Experimental results prove that the DTLB offers the least number of TLB

misses. It also offers deterministic performance. However there exist overhead

associated with this model, i.e., the time taken to transfer TLB entries to

5.3. Energy and Time Modeling 105

PCB and back. The number of transfers is proportional to the number of

preemptions. The preemption depends on the number of higher priority job

arrivals when lower priority job is executing. The theoretical upper bound of

the same can be found using the task model analysis. If the total number of

slots in TLB is N , all these entries need to be copied to its PCB. The transfer

of N TLB entries to the PCB and vice versa takes approximately a cache

block transfer time. The total overhead on the system depends on the number

of preemptions that are being made and is equal to the product of the number

of preemptions and the constant transfer time. The time consumed for this

operation is deterministic. Hence the DTLB operation becomes deterministic.

5.3 Energy and Time Modeling

5.3.1 Energy Modeling of TLB

The components used in the evaluation of energy and time modeling of TLB

are shown in Table 5.1.

TLB hit energy consists of energy required for page number comparisons,

valid/invalid bit access, protection verification, replacement circuit and output

driver and is given by:

ETLB Hit = Ecomp + Ev/i + Eprotection + Erep ckt + Eaccess + Eop drvr (5.1)

TLB miss energy consists of additional energy required for page number

comparisons, valid/invalid bit access, page table walk energy and TLB update

Energy Modeling of TLB 106

Table 5.1: TLB Components for Energy and Time Modeling

TLB
Component

Energy
Components

Time
Components

Comparator Ecomp Tcomp

Valid-Invalid Ev/i Tv/i

Protection Bit Eprotection Tprotection

Replacement
Circuit

Erep ckt Trep ckt

Access Eaccess Taccess

Output Driver Eop drvr Top drvr

Main Memory
Access

Emm access Tmm access

TLB Update Etlb update Ttlb update

Transfer ETransfer TTransfer

energy apart TLB hit energy. TLB miss energy is:

ETLB Miss = Ecomp + Ev/i + Emm access + Etlb update + ETLB Hit (5.2)

The total energy of conventional TLB, ASID-TLB and DTLB is calculated

as follows:

Conventional TLB:

ETLB CONV = ETLB Hit ∗NHit Conv + ETLB Miss ∗NMiss Conv (5.3)

Reservation TLB:

ETLB ASID = ETLB Hit ∗NHit ASID + ETLB Miss ∗NMiss ASID (5.4)

Time Modeling of TLB 107

DTLB TLB:

ETLB DTLB = ETLB Hit ∗NHit DTLB + ETLB Miss

∗NMiss DTLB + NPrem ∗ ETransfer ∗ 2
(5.5)

where NHit Conv, NHit ASID, NHit DTLB is the number of TLB hits and NMiss Conv,

NMiss ASID, NMiss DTLB is the number of TLB misses of conventional, ASID

and DTLB model respectively. NPrem is the number of preemptions. Hit rate

of DTLB is better than the hit rate of conventional and ASID model. DTLB

requires additional energy for transferring TLB entries to PCB and back.

5.3.2 Time Modeling of TLB

The access time representations of the TLB components are shown in Table

5.1.

TLB hit time is given by :

TTLB Hit = Tpage no comp + Top drvr (5.6)

where Tpage no comp is the time required for comparing all the page numbers in

parallel and finding the matching page number from it. Top drvr is the time

required to output the frame number from the selected TLB entry.

TLB miss time is given by :

TTLB Miss = Tmm access + TTLB Hit (5.7)

5.4. Experimental Setup And Evaluation 108

The total time of conventional, ASID-TLB and DTLB is computed as follows:

Conventional TLB:

TTLB CONV = TTLB Hit ∗NHit Conv + TTLB Miss ∗NMiss Conv (5.8)

Reservation TLB:

TTLB ASID = TTLB Hit ∗NHit ASID + TTLB Miss ∗NMiss ASID (5.9)

DTLB TLB:

TTLB DTLB = TTLB Hit ∗NHit DTLB + TTLB Miss ∗NMiss DTLB

+ NPrem ∗ TTransfer ∗ 2
(5.10)

DTLB requires additional time for transferring TLB entries to PCB and

back.

5.4 Experimental Setup And Evaluation

5.4.1 Experimental Setup

The evaluation of DTLB in comparison with seminal works were carried out

with the help of SESC framework. Time and energy estimation from SESC is

used for dynamic energy and time analysis [67]. Each trace file entry consists

of the virtual memory address and the operation i.e., read or write. For each

task in the task set, a different trace file from a different program is used.

Execution schedule of the task set is specified as per the format in TABLE 5.2,

Experimental Setup 109

where IO/Preempt/Complete is a flag to specify whether the job goes for I/O,

preemption or completion at the end of the execution period. The memory

Table 5.2: Task Set Execution Schedule Format

Start time of job End time of job Job ID Stack memory
usage

IO / Preempt /
Complete

components in the simulator can be configured as needed. The TLB variants

used for evaluation are DTLB, ASID-TLB and conventional TLB. At the

beginning all TLB entries, the cache memory and the stack memory is free.

The simulator reads the input schedule line by line. When a new job is to be

executed, the required stack space is allocated to it. The simulator selects the

appropriate trace file based on the job ID. Each time unit of the execution is

mapped to ’x’ memory accesses in the setup. The number of traces in the

trace file is proportional to the execution time of the task. The traces offer

virtual address along with read/write operation. The page number extracted

from the virtual address is given to the TLB. A TLB hit offers the frame

number corresponding to the page number, which is in concatenation with the

offset, is given to the cache memory for instruction/data access. The mapping

function with the help of the page table finds the frame number corresponding

to the page number in case of TLB miss. This work assumes architecture

with segmentation with two level hierarchical paging. The standard page size

i.e., 4KB is used as the default page size. Counters are maintained to keep

track of the number of TLB hits and cache hits. Irrespective of the TLB

variants in use, parallel search in all TLB entries is used for finding TLB hit.

At each preemption point, the DTLB is flushed after backing up the entries

in PCB of the running task. When a preempted task resumes its execution in

Experimental Evaluation 110

CPU, the TLB entries are reinitialized with the backed up PCB content. As

these activities are happening with preemption, it never impact the critical

path delay. The number of such preemption points in real-time systems is

very less as only the higher priority jobs can preempt the executing job. The

simulator stops its execution when there exist no more jobs in the schedule.

5.4.2 Experimental Evaluation

This work compares the performance of DTLB with Conventional and ASID-

TLBs. The parameters used for comparison are TLB miss rate, dynamic

energy consumption and access time.

5.4.2.1 TLB Miss Rate

Figure 5.2: Miss rate performance of DTLB and ASID-TLB with respect to
conventional TLB for varying page size with 16 preemptions and 32 TLB
entries

TLB Miss Rate 111

Figure 5.2 shows TLB miss rate performance of DTLB and ASID-TLB

over conventional TLB. FFT benchmark suite with 16 preemptions and 32

TLB entries for varying page sizes is used for the performance analysis. As

reachability of the TLB increases with increase in page size, irrespective

of the TLB model in use, the miss rate decreases. The number of misses

decreases on an average by 34.67%, 32.03% and 28.63% respectively for DTLB,

ASID-TLB and conventional model with every doubling of page size. DTLB

and ASID-TLB reduces the miss rate on an average by 16.32% and 4.43%

respectively over conventional TLB.

Figure 5.3 shows the miss rate reduction of DTLB and ASID-TLB over

Figure 5.3: Miss rate performance of DTLB and ASID-TLB with respect to
conventional TLB for varying preemptions with 4KB page size and 32 TLB
entries

conventional TLB for varying number of preemptions. FFT benchmark suite

with 4KB page size and 32 TLB entries is used for the performance analysis.

TLB Miss Rate 112

With increase in preemptions, the miss rate of DTLB remains constant

whereas the miss rate in conventional and ASID-TLB increases. The increase

in miss rate is exponential in conventional TLB because of invalidation at

each preemption point whereas the increase is marginal in ASID-TLB. The

DTLB provides deterministic miss rate which is equal to the miss rate when

it runs without preemption. Reduction in DTLB miss rate over ASID-TLB

varies from 1.86% to 8.37% when number of preemptions varies from 4 to

22. Reduction in DTLB miss rate over conventional varies from 1.98% to

9.90% for number of preemptions varying from 4 to 22. Results obtained by

varying the number of tasks show similar trend as shown in Figure 5.3 as in

real-time systems, the increase in number of tasks result in increasing number

of preemptions.

As reachability of the TLB increase with increase in TLB entries, irrespective

of the TLB models in use, the miss rate decreases. Figure 5.4 shows the

reduction in miss rate of DTLB and ASID-TLB over conventional TLB

for various TLB entries. FFT benchmark suite with 4KB page size and

16 preemptions is used for the performance analysis. Reduction in TLB

misses is due to reduction in capacity misses and conflict misses. For lesser

number of TLB entries, the ASID-TLB performs poor than conventional

model because of the capacity reduction. The number of misses decreases on

an average by 17.81%, 15.85% and 9.14% respectively for DTLB, ASID-TLB

and conventional model with every doubling of TLB entries.

Dynamic Energy 113

Figure 5.4: Miss rate performance of DTLB and ASID-TLB with respect to
conventional TLB for varying TLB entries with 16 preemptions and 4KB
page size

5.4.2.2 Dynamic Energy

Figure 5.5 shows the per access dynamic energy saving of DTLB and ASID-

TLB over conventional TLB. FFT benchmark suite with 16 preemptions and

32 TLB entries for various page sizes is used for the performance analysis.

With increase in page size, irrespective of the TLB models in use, the miss rate

decreases. However, with increase in page size TLB miss penalty increases

because of page table walk through. Increased miss penalty leads to increase

in per access dynamic energy. The dynamic energy consumption is least for

DTLB and is highest for conventional TLB. Access energy increases on an

average by 1.65%, 3.53% and 5.66% for DTLB, ASID-TLB and conventional

model respectively for every doubling of page size. Average energy savings for

Dynamic Energy 114

various page sizes of DTLB and ASID-TLB is 6.74% and 1.95% respectively.

Figure 5.6 shows the dynamic energy saving of DTLB and ASID-TLB

Figure 5.5: Per access dynamic energy with respect to conventional TLB
saving for varying page size with 16 preemptions and 32 TLB entries

over conventional TLB for varying number of preemptions. FFT benchmark

suite with 4KB page size and 32 TLB entries is used for the performance

analysis. The dynamic energy consumption increases marginally by 0.01%

with increase in preemptions. This increase is due to the transfer of TLB

entries to PCB and vice versa. For ASID-TLB, the access time and energy

remains same when task uses reserved entries when it resumes. If not, the

access time and energy increases. For conventional model, the access energy

increases with increase in preemptions due to invalidation of existing entries.

Average per access energy savings of DTLB and ASID-TLB over conventional

TLB is 2.34% and 0.33% respectively.

Figure 5.7 shows the per access dynamic energy saving of DTLB and ASID-

Dynamic Energy 115

Figure 5.6: Per access dynamic energy with respect to conventional TLB
saving for varying preemptions with 4KB page size and 32 TLB entries

Figure 5.7: Per access dynamic energy with respect to conventional TLB
saving for varying TLB entries with 16 preemptions and 4KB page size

Access Time 116

TLB over conventional TLB. FFT benchmark suite with 16 preemptions and

4KB page size with varying TLB entries is used for the performance analysis.

Access energy increases on an average by 46.75%, 46.90% and 48.25% with

doubling of entries for DTLB, ASID-TLB based TLB and conventional TLB

respectively. As shown in Figure 5.7, the conventional TLB outperforms

ASID-TLB for small TLB entries as reservation in ASID-TLB further reduces

number of per task available entries. The dynamic energy consumption of

DTLB is the least among all the three models for all page sizes. Overall energy

saving of DTLB and ASID-TLB over conventional TLB is 4.41% and 0.93%

respectively. On an average DTLB energy saving over ASID-TLB is 31.52%.

Figure 5.8 shows per access dynamic energy for various splash benchmark

programs. In all cases the dynamic energy consumption of conventional TLB

is highest and DTLB consumes the least dynamic energy. Energy consumption

is directly proportional to hit rate.

5.4.2.3 Access Time

Figure 5.9 shows the access time reduction of DTLB and ASID-TLB over

conventional TLB. FFT benchmark suite with 16 preemptions and 32 TLB

entries for various page sizes is used for the performance analysis. On an

average access time increases by 2.43%, 3.35% and 4.36% with every doubling

of page size for DTLB, ASID-TLB and conventional TLB respectively. The

access time of DTLB is the least among these models for various page sizes.

Average per access time saving of DTLB over conventional and ASID-TLB is

2.97% and 2.09% respectively.

With increase in number of preemptions, access time of DTLB, ASID-TLB

Access Time 117

Figure 5.8: Per access dynamic energy for varying Splash benchmark programs

Figure 5.9: Per access time saving with respect to conventional TLB for
varying page size with 16 preemptions and 32 TLB entries

Access Time 118

and conventional TLB increases on an average by 0.02%, 0.18% and 0.23%

respectively. With increase in number of preemptions, the increase in access

time is the least in DTLB and the highest in conventional TLB. For DTLB,

ASID-TLB and conventional TLB, per access time increases by 0.10%, 0.94%

and 1.15% respectively when number of preemptions are increasing from 4 to

22 as shown in figure 5.10

Effective per access time decreases with increase in number of TLB entries

for all the models as shown in Figure 5.11. Per access time of DTLB is the

least for varying number of TLB entries. Conventional TLB outperforms

ASID-TLB when number of DTLB entries are 16. However with increase in

number of TLB entries ASID-TLB performs better than conventional model

as shown in Figure 5.11.

Figure 5.10: Per access time saving with respect to conventional TLB for
varying preemptions with 4KB page size and 32 TLB entries

5.5. Conclusion 119

Figure 5.11: Effective access time of 32 entry, 64bits TLB for varying Splash
benchmarks

5.5 Conclusion

This chapter proposes a novel TLB architecture Deterministic Translation

Lookaside Buffer (DTLB). DTLB offers deterministic performance for low

priority real-time tasks. DTLB achieves a tighter upper bound on the WCET

of real-time tasks by maintaining a copy of the current TLB in PCB of the

task before preemption and transferring the contents back to TLB while

resumption of the task. DTLB reduces TLB access time, dynamic energy

consumption and effective per access time by increasing TLB hit rate. TLB

hit rate is increased by 9.46% as compared to conventional TLB for 4KB

page size, with 16 preemptions and 32 TLB entries. DTLB offers on an

average 6.74% and 4.91% of dynamic energy savings over conventional TLB

5.5. Conclusion 120

and ASID-TLB respectively. Effective per access time of DTLB reduced by

2.97% and 2.09% as compared to conventional TLB and ASID-TLB.

Chapter 6

DEARCache - Deterministic

Energy Efficient Process Aware

Real-time Cache

6.1 Introduction

The WCET of a task depends on program flow such as loop iterations, decision

statements, function calls etc. and on architectural factors such as cache,

memory, system resources etc [59]. From an architectural point of view, the

pessimistic WCET can be obtained by considering a NO CACHE model as

cache is highly non-deterministic. The non-deterministic nature of cache is

because of the global replacement and its transparency to operating system

and applications. However, this analysis gives an extremely loose WCET

which is impractical to accommodate [61].

The RISC systems like MIPS, ARM and RISC V follows load-store architecture.

All instructions except load and store variants in these architecture use

only one memory access as instruction fetch which is a compulsory memory

operation for all instructions. The load and store instructions result in

multiple memory accesses. The average number of memory accesses per

121

6.2. DEARCache Architecture 122

instruction will be more than one because of this. The memory subsystem

access contributes to a large portion of WCET. Design of energy efficient and

performance centric hard real-time system requires a tighter upper bound

on WCET. To find a tighter bound on WCET, the system should impose

a tighter upper bound on cache misses which depends on number of worst

case preemptions. To have a tighter upper bound on the WCET of real-time

task, this chapter presents a Deterministic Energy efficient process Aware

Real-time Cache (DEARCache). In process aware cache design, at each

preemption point, the OS transfers job identification number(PID/TID) to

the cache controller. Using this information, DEARCache provides tighter

upper bound on WCET by eliminating cache related intertask interferences.

It guarantees allocation of statically identified minimum ways to each job.

DEARCache partitions the cache dynamically based on job requirements.

It backs up allocated way(s) of job in backup storage, if the running job is in

need of more ways and the WCET calculation incorporates the backup time.

6.2 DEARCache Architecture

The focus of DEARCache is to provide a tighter upper bound on WCET

with cache memory and memory subsystem. DEARCache consists of

dynamically partitioned set-associative private L1 instruction cache and data

cache backed up by shared L2 cache and main memory. A new partition is

created at job arrival and is dynamically expanded/shrunk during its stay in

cache. To achieve deterministic performance, each job is guaranteed to have

lower limit on the number of allocated ways at any point in time and upper

6.2. DEARCache Architecture 123

limit on the number of times the ways are backed up to memory. The lower

limit on number of ways that can be allocated to the job are fixed by offline

profiling.The minimum number of ways that can be allocated to the job are

called as default ways. A special instruction in instruction set architecture is

used at preemption to allocate new ways if the job is new or backed up. At

run time, the system finds the need of additional ways with the help of miss

counters and then calls the instruction to communicate with cache controller.

The cache controller identifies the over allocated jobs or it backs up jobs to

free ways so as to allocate it to the executing job. When a job requires a

new way, if free cache way is available then it is allocated. If a free way is

not available but non-default ways of other jobs are available for use, then

find and release the least recently used non-default way from other job and

allocate it to the running job. While releasing a way from a job, the non LRU

entries in that way are shifted to the remaining allocated ways. If a job has

K ways allocated to it and each way has M sets in it, the maximum number

of cache line shifting required to keep MRU lines of the victim way is M/K.

The time taken to move M/K cache lines to other ways determines the upper

bound of transfer time. If non-default ways are not available for allocation,

the ways of least recently executed job is backed up into the storage area.

When the job resumes its execution next time, the stored backup is loaded

back into the cache. Thus, deterministic tighter upper bound on the WCET

of job is achieved.

Detailed architecture of DEARCache is shown in Figure 6.1. Cache obtains

the physical address P and job identifier J of the requested data. After

deriving the desired tag, index and offset, the derived index is decoded and

6.2. DEARCache Architecture 124

F
ig

u
re

6.
1:

D
et

er
m

in
is

ti
c

p
ro

ce
ss

aw
ar

e
p
ar

ti
ti

on
ed

re
al

-t
im

e
ca

ch
e

DEARCache Energy Modeling 125

the corresponding set is activated. In parallel, J is compared with job identifier

JobIdi stored for each way of the cache. Only ways with JobIdi matching is

activated. This reduces the total number of active ways and results in saving

cache access dynamic energy consumption. The cache components used for

modeling energy consumption evaluation of DEARCache are given in Table

3.1. SESC [66] is used for finding the parameters in Table 3.1.

6.2.1 DEARCache Energy Modeling

Total energy consumption of DEARCache, EDEARCache, is summation of

dynamic energy consumption and static energy consumption.

EDEARCache = DEDEARCache + SEDEARCache (6.1)

where DEDEARCache and SEDEARCache is dynamic and static energy of DEARCache

respectively. The dynamic energy consumption calculation is shown in equa-

tion 6.2

DEDEARCache = Naccesses ∗ (Edyn dec + Edyn op drvr)

+ Edyn x ∗ w + Nmisses ∗DETx

+ DEDEARCache Overhead

(6.2)

where w, Naccesses and Nmisses represent the number of enabled ways, accesses

and misses respectively. The DEaccess and DETx represent the dynamic

energy per way access and dynamic energy required to transfer cache block

from next level memory respectively. DEDEARCache Overhead is dynamic energy

overhead required to access job identifier, most recently used entry transfers

DEARCache Time Modeling 126

and recency data.

DEDEARCache Overhead = Edyn pid + Edyn mruTransfers + Edyn recencyData (6.3)

The static energy is given by,

SEDEARCache = (Pleakage + PDEARCache Overhead) ∗RTDEARCache (6.4)

Where PDEARCache Overhead is leakage power to maintain associated circuitry to

maintain DEARCache and RTDEARCache is the response time of DEARCache.

RTDEARCache is given by :

RTDEARCache = total cycles required for completion of program ∗ cycle time

(6.5)

6.2.2 DEARCache Time Modeling

The DEARCache cycle time, T1Cycle, is obtained using SESC. Time calcu-

lations of DEARCache is as shown in equation 6.6.

TDEARCache = Taccess + Nmisses DEARCache ∗ TTx (6.6)

where Taccess and Nmisses DEARCache represents response time and and miss

rate of DEARCache respectively.

6.3. Experimental Analysis 127

6.3 Experimental Analysis

The evaluation of DEARCache is carried out by using SESC simulator.

Simulator selects appropriate trace file based on job ID. The number of traces

in the trace file is proportional to the execution time of the job. The traces

offer virtual address along with read/write operation. The page number

extracted from the virtual address is given to the TLB. TLB hit offers the

frame number corresponding to the page number. The mapping function

with the help of page table finds the corresponding frame number in case of

TLB miss. Frame number is concatenated with the offset, and is given to the

cache memory for instruction/data access. It simulates the cache model for a

given configuration and stops its execution when there exist no more jobs in

the schedule.

6.3.1 Tighter upper bound on WCET

Figure 6.2 shows the miss rate comparison of CC and DEARCache with

varying number of preemptions. The miss rate increases with number of

preemptions for CC due to intertask interference. When task resumes after

preemption, its data may get replaced by preempting task. This leads to

additional intertask conflict misses which increases the cache miss rate and

execution time. In DEARCache, dedicated ways are allocated to the task.

Cache lines do not get replaced by other executing tasks. Deterministic miss

rate is obtained by using DEARCache. This deterministic miss rate gives

tighter upper bound on WCET. The WCET of CC is 1.11ns and WCET of

DEARCache is 1.09ns. The WCET of DEARCache is reduced by 1.12%. The

Energy per Access 128

Figure 6.2: Miss rate of CC and DEARCache by varying number of preemp-
tions

reduced WCET can be used to schedule more number of task.

6.3.2 Energy per Access

Figures 6.3 to 6.6 shows the per access energy consumption over varying

preemptions, cache size, line size and associativity respectively for CC and

DEARCache. Access energy consists of two major components - static

energy and dynamic energy. The static energy consumption of cache is

proportional to its size and operational time. The DEARCache consumes

additional static energy because of task identifier, and way replacement

circuitry. When the number of preemptions are less hit rate of CC is higher

than DEARCache. When the preemptions increase DEARCache offers

better hit rate. DEARCache takes higher operational time initially because

Energy per Access 129

of lower hit rate. This results in DEARCache consuming higher static energy

in comparison with CC over varying preemptions, cache size, line size and

associativity. On an average, static energy consumption of DEARCache

Figure 6.3: Per access energy for varying preemption with 8KB cache size,
32B line size and associativity as 4 way

is 4.39% higher than CC for varying number of preemptions. The static

energy consumption increases with increase in the number of preemptions

and cache size because of the reduction in hit rate and increase in cache size

respectively. The static energy consumption reduces with increase in cache

line size because of increase in hit rate and it follows the similar hit pattern

with varying associativity.

Dynamic energy consumption of the cache depends on the number of active

components and hit rate. Irrespective of the parameters used, dynamic energy

consumption of DEARCache is lesser than CC. This is mainly because of

Energy per Access 130

Figure 6.4: Per access energy for varying cache size with 10 preemptions, 32B
line size and associativity as 4 way

Figure 6.5: Per access energy for varying line size with 10 preemptions, 8KB
cache and associativity as 4 way

Energy per Access 131

Figure 6.6: Per access energy for varying associativity with 10 preemptions,
8KB cache and 32B line size

the reduction in the number of active ways in use. DEARCache enables

on an average 1.55 ways against 4 ways in CC for a 4-way set associative

cache. Though the active components of DEARCache is reduced by 61.25%,

the dynamic energy saving is restricted to 38.10% mainly because of the

reduction in hit rate. For a 4-way set associative cache, CC offers 1.52%

more hit rate than DEARCache. As dynamic energy dominates over static

energy in overall energy consumption, DEARCache offers better energy

saving than CC with a deterministic upper bound on WCET. On an average

DEARCache offers 34.49% per access energy saving over CC.

Response Time 132

6.3.3 Response Time

The response time depends on hit rate and hit time. The plot of response

time verses varying preemptions, cache size, cache line size and associativity

are in figure 6.7, 6.8, 6.9 and 6.10 respectively for CC and DEARCache

using FFT benchmark.

Figure 6.7: response time for varying preemption with 8KB cache size, 32B
line size and associativity as 4 way

As shown in figure 6.7, the hit rate decreases with increase in preemptions

contributing to increase in the response time. The response time also increases

with increase in associativity due to increased cycle time. The increase in

cache size and cache line size results in decreasing response time. This is

because of the increase in cache hit rate. Experimental evaluation shows that

response time of CC, DEARCache and NO CACHE model is 0.72ns, 0.75ns

Response Time 133

Figure 6.8: response time for varying cache size with 10 preemptions, 32B
line size and associativity as 4 way

Figure 6.9: response time for varying line size with 10 preemptions, 8KB
cache and associativity as 4 way

Energy and Time comparison with energy efficient caches 134

Figure 6.10: response time for varying associativity with 10 preemptions,
8KB cache and 32B line size

and 2.91ns respectively. DEARCache requires additional 4.37% of response

time as compared to CC. The response time of DEARCache is improved

by 287.09% over NO CACHE model.

6.3.4 Energy and Time comparison with energy

efficient caches

The comparison of dynamic energy consumption and static energy consump-

tion of DEARCache with respect to CC, WP and WH is as shown in Figures

6.11 and 6.12 respectively. Hit rate of CC, WP and WH is the same and

is higher than DEARCache when number of preemptions . Irrespective of

the measuring parameters used dynamic energy consumption of CC is the

highest. CC accesses all the ways for every access. The number of ways

Energy and Time comparison with energy efficient caches 135

Figure 6.11: Per access dynamic energy for varying line size with 10 preemp-
tions, 8KB cache size and associativity as 4 way

Figure 6.12: Per access Static energy for varying line size with 10 preemptions,
8KB cache size and associativity as 4 way

Energy and Time comparison with energy efficient caches 136

accessed increases dynamic energy consumption of CC.

WH consumes the least dynamic energy. The number of ways accessed by WH

is lesser than CC and WP. The prediction miss in WP results in accessing all

other ways. This increases dynamic energy consumption of WP over WH.

Identification based reservation in DEARCache reduces associativity per task.

The reduced associativity decreases hit rate. The decreased hit rate increases

dynamic energy consumption of DEARCache over WP and WH. The number

of ways accessed in case of DEARCache is less than CC hence dynamic energy

consumption of DEARCache is better than CC.

CC consumes the least static energy. The prediction circuit and halting circuit

incurs additional static energy in case of WP and WH respectively. The least

hit rate of DEARCache along with additional DEARCache overhead results

in highest static energy is consumption of DEARCache.

Early detection of cache misses due to halt tag misses in case of WH gives it

the least response time. Prediction misses in case of WP results in additional

response time over CC. The response time of DEARCache is the highest

among all the cache architectures.

DEARCache can be made energy efficient by incorporating prediction circuit

and halt tag circuit along with process identification. This will reduce the

dynamic energy consumption of DEARCache further. The static energy

consumption and response time of DEARCache can be improved by using

shared way which will be discussed in chapter 7. Data shared between task

can be stored in shared way. This results in improving DEARCache hit rate

and hence decreases dynamic energy consumption, static energy consumption

and response time.

6.4. Conclusion 137

6.4 Conclusion

Meeting all deadlines with least energy consumption is the major design

constraints of battery powered hard real-time systems. Real-time scheduling

algorithms perform schedulability analysis by considering the pessimistic

WCET. In conventional systems, the WCET is loosely bound because of the

non-deterministic nature of the memory subsystem. Cache memory is an

integral and crucial part of the memory subsystem. This chapter proposed

DEARCache a deterministic real-time cache memory. DEARCache elim-

inates intertask interference by allocating dedicated cache ways to tasks in exe-

cution. It obtains tighter upper bound on number of cache misses.DEARCache

reduces dynamic energy consumption by 38.10% for 4-way set associative

cache configuration over CC with 4.39% overhead of static energy. Response

time of DEARCache is improved 3.87 times over NO CACHE model and

with an additional requirement of 4.37% of response time as compared to

CC. The WCET of DEARCache is reduced by 1.12%. The reduced WCET

can be used to schedule more number of task. DEARCache can be made

energy efficient by using prediction circuit and halt tag array along with

process identification. This will reduce the dynamic energy consumption of

DEARCache further. The static energy consumption and response time of

DEARCache can be improved by using shared cache to store shared data.

Chapter 7

DREAM - Deterministic

Memory Subsystem

7.1 Introduction

Tighter schedulability analysis is crucial in hard real-time systems as deadline

misses may lead to catastrophic failure. The tighter upper bound on WCET

at all levels of memory subsystem - TLB, various levels of caches and main

memory - required to ensure scheduling feasibility. This chapter designs mem-

ory subsystem to get deterministic performance at all levels. The inter-task

and intra-task interference at all the levels of memory hierarchy makes the

memory sub-system non-determinitsic. To get deterministic performance

of L2 cache, this chapter proposes a Deterministic Energy Efficient Process

aware(DEEP) design. DEEP cache is shared among all tasks running on

different cores of the processor. It allocates minimum number of ways to

each task which is identified as a result of static analysis. It dynamically

increases/decreases the number of allocated ways based on task requirements.

It backs up allocated way(s) of task in backup storage if the running job is in

need of more ways and if the WCET calculation incorporates this time.

This chapter also proposes an integrated design of deterministic memory

138

7.2. DREAM Architecture 139

named Deterministic REAl-time Memory system (DREAM). DREAM achieves

deterministic performance at TLB and L1 cache by incorporating DTLB and

DearCache with DEEP as L2 cache. Detailed discussion about DTLB and

DEARCache are done in chapter 5 and chapter 6 respectively.

7.2 DREAM Architecture

Each core in DREAM architecture consists of a TLB, private split L1 in-

struction and data caches, shared unified L2 cache and main memory. To

avoid the complication of secondary storage, this work assumes that the main

memory is large enough to hold the instructions, stack, heap and paging

information of the running jobs [72] [71]. This can be very well relaxed with

a semi-conductor memory like SSD as secondary storage. Figure 7.1 shows

the proposed memory subsystem architecture of DREAM.

DTLB offers tighter WCET bound on real-time tasks. It guarantees minimum

number of TLB misses. To achieve deterministic performance, the L1 cache is

designed as a DEARCache. L2 is designed as DEEP shared cache which locks

cache ways for tasks to achieve deterministic performance in MC systems

[73]. It is shared among tasks and partitioning is identified based on task IDs

(PID/TID). The DEEP cache is a V-way cache implementation that has a

conflict miss counter for each set [73]. It increases the associativity of an index

if the number of conflict misses in that index increases beyond a particular

threshold. On increasing the associativity of an index, the associativity of

another index is decreased such that the total number of enabled cache lines

remain constant. The data mapping information is stored in the tag entries

7.2. DREAM Architecture 140

F
ig

u
re

7.
1:

D
R

E
A

M
M

em
or

y
S
u
b
sy

st
em

7.2. DREAM Architecture 141

F
ig

u
re

7.
2:

D
et

er
m

in
is

ti
c

E
n
er

gy
E

ffi
ci

en
t

P
ro

ce
ss

aw
ar

e(
D

E
E

P
)

C
ac

h
e

7.3. Time, Power and Energy Modeling 142

such that it can be directly mapped to one location in the data array. The

data corresponding to tags in the extra or extended tag array are stored in

locations corresponding to the disabled cache lines of other indexes. Figure

7.2 shows detailed architecture of DEEP cache. DEEP cache controller is

provided with job identification J and physical address P . Tag comparisons

and validity check is done only for the ways allocated to job J . On cache hit,

data from data array is accessed by using forward pointers stored in tag array.

Performance of the proposed system can be improved by providing a shared

cache along with the partitioned cache. Shared cache improves cache hit

rate when entries are shared between multiple jobs. The allotted partitions

are accessed for the non shared cache accesses and shared cache is accessed

otherwise. The detailed algorithm which illustrates the working of L2 cache

architecture is given in algorithm 2. Detailed architecture of the complete

memory subsystem architecture of DREAM with Shared way (DREAMS) is

as shown in Figure 7.3. The shared space can be N-way set associative to

fully associative where N is at least double in number than the associativity

of the partitioned cache. Partitioned cache is accessed only for non-shared

accesses. This reduces number of active components in the system.

7.3 Time, Power and Energy Modeling

The cache components used for the performance and energy consumption

evaluation of DREAM are given in Table 3.1. SESC time, power and energy

model is used for finding the energy and time parameters from Table 3.1.

7.3. Time, Power and Energy Modeling 143

F
ig

u
re

7.
3:

D
R

E
A

M
M

em
or

y
S
u
b
sy

st
em

w
it

h
sh

ar
ed

w
ay

7.3. Time, Power and Energy Modeling 144

Algorithm 2: Accessing Shared DEEP cache

Input: Physical Address P , Cache sharing status S, and task Identifier
T

Output: Process aware cache or Shared cache hit/miss and data
1 begin
2 if P is shared then
3 Access shared L2 cache;
4 if Match found for tag bits of P in tag array of shared cache

then
5 Transfer requested data from / to L1; return;
6 else
7 Select a cache line as victim cache line in shared cache for

replacement;
8 Transfer data from memory to L2 cache line and transfer

data from / to L1 cache; return;

9 end

10 end
11 else
12 Extract tag bits t, set index bits s, and offset bits o from P ;
13 Identify w ways alloted to task,Ti;
14 Compare tag bits t, with tags of w ways of task Ti in the desired

set s;
15 if Match found then
16 Transfer requested data from / to L1 cache; return;
17 if Any Cacheline at s in w ways is free then
18 Transfer data from memory to free cache line in L2 and

transfer it to L1; return;

19 else
20 conflictMissCnt[s] + +;
21 if w < maxAllotmentj then
22 if conflictMissCnt[s] <= conflictThreshold then
23 allotedWay = Allot L2 cache way with regular tag

array;

24 else
25 allotedWay = Allot L2 cache way with additional

tag array;
26 conflictMissCnt[s] = 0;

27 end

28 else
29 Select allotedWay using replacement policy;
30 end
31 Transfer data from memory to cacheline at(s,allotedWay)

and transfer data from / to L1 cache; return;

32 end

33 end

Energy Modeling of DEEP Cache with Shared way - DEEPS 145

7.3.1 Energy Modeling of DEEP Cache with Shared

way - DEEPS

Total energy consumption of DEEPS, (EDEEPS), is summation of dynamic

energy consumption and static energy consumption.

EDEEPS = DynamicEnergyDEEPS (DEDEEPS)

+ StaticEnergyDEEPS (SEDEEPS)
(7.1)

The dynamic energy consumption calculation is shown in equation 7.2

DEDEEPS = Naccesses PC ∗ (Edyn dec + Edyn op drvr) + Edyn x ∗ w+

Naccesses SC ∗ (Edyn dec SC + Edyn op drvr SC + Associativity SC∗

Edyn x SC) + Nmisses ∗DETx + DEDEARCache Overhead

(7.2)

where w, Naccesses PC , Naccesses SC and Nmisses represent the number of en-

abled ways, non-shared accesses, shared accesses and misses respectively.

The DEDEEPS Overhead and DETx represent the dynamic energy overhead and

dynamic energy required to transfer cache block from next level memory

respectively. Edyn dec SC , Edyn x SC , Edyn op drvr SC and Associativity SC rep-

resents decoder energy, access energy, output driver energy and associativity

related to shared cache.

Calculations of static energy consumption is as per equation 7.3

SEDEEPS = (Pleakage + PDEEPS Overhead) ∗RTDEEPS (7.3)

Energy Modeling of DREAM system with Shared cache - DREAMS 146

Where PDEEPS Overhead is leakage power to maintain associated circuitry to

maintain DEEPS and RTDEEPS is the response time of DEEPS. RTDEEPS is

given by :

RTDEEPS = total cycles required for completion of program ∗ cycle time

(7.4)

7.3.2 Energy Modeling of DREAM system with

Shared cache - DREAMS

Energy consumption of DREAMS, (EDREAMS), is summation of energy

consumption of DTLB, DEARCache and DEEPS.

EDREAMS = ETLB DTLB + EDEARCache + EDEEPS (7.5)

7.3.3 Time Modeling of DEEPS

TDEEPS = Taccess + Nmisses DEEPS ∗ TTx (7.6)

where Taccess and Nmisses DEEPS represents response time and and miss rate

of DEEPS respectively.

7.3.4 Time Modeling of DREAMS

Total execution time of DREAMS is summation of time of DTLB, DEARCache

and DEEPS.

TDREAMS = TTLB DTLB + TDEARCache + TDEEPS (7.7)

7.4. Performance Evaluation 147

7.4 Performance Evaluation

SESC is used as framework for the analysis of DEEPS and DREAMS is

discussed in section 3.5 of chapter 3.

7.4.1 Experimental Analysis - L2 as DEEP Cache

7.4.1.1 Dynamic Energy per Access

Per access dynamic energy consumption of CC, DEEP and DEEPS by varying

number of preemptions, cache size, cache line size and associativity is shown

in figures 7.4, 7.5, 7.6 and 7.7.

The average cache hit rate of CC and DEEP cache with varying number of

preemptions is 88.59% and 85.92% respectively. The average number of ways

accessed in case of CC and DEEP cache with varying number of preemptions

is 4 and 1.57 ways respectively. Although the per access ways of DEEP cache

is lower than CC , whenever the hit rate of CC is substantially higher over

DEEP, the per access dynamic energy of CC cache is lower than that of

DEEP. The dynamic energy consumption of DEEP cache can be reduced

by using a shared way. The shared entries between tasks are transferred to

shared way. This improves the DEEPS cache hit rate and hence reduces the

dynamic energy consumption. On an average per access dynamic energy of

DEEP cache is higher than CC by 1.12% and per access time of CC cache is

higher than DEEPS by 71.69%.

Dynamic Energy per Access 148

Figure 7.4: Per access dynamic energy for a 4 way, 32B, 8KB cache with
varying preemptions

Figure 7.5: Per access dynamic energy for a 4 way, 32B line size with varying
cache size [#preemptions = 10]

Dynamic Energy per Access 149

Figure 7.6: Per access dynamic energy for a 4 way, 8KB cache with varying
line size [#preemptions = 10]

Figure 7.7: Per access dynamic energy for a 32B, 8KB cache with varying
associativity [#preemptions = 10]

Static Energy per Access 150

7.4.1.2 Static Energy per Access

Per access static energy consumption of CC, DEEP and DEEPS by varying

number of preemptions, cache size, cache line size and associativity is shown

in figures 7.8, 7.9, 7.10 and 7.11.

The per access static energy consumption of DEEP cache is higher than CC.

Figure 7.8: Per access static energy for a 4 way, 32B, 8KB cache with varying
preemptions

DEEP cache has additional static energy for maintaining core identification,

way replacement circuit and extra tag array. Static energy requirement of

DEEP cache can be reduced by making one of the way as shared way. The

shared way improved the cache hit rate and hence reduced static energy. On

an average per access static energy of DEEP cache is higher than CC by

15.78% and per access time of CC cache is higher than DEEPS by 50.02%.

Static Energy per Access 151

Figure 7.9: Per access static energy for a 4 way, 32B line size with varying
cache size [#preemptions = 10]

Figure 7.10: Per access static energy for a 4 way, 8KB cache with varying
line size [#preemptions = 10]

Effective per Access Time 152

Figure 7.11: Per access static energy for a 32B, 8KB cache with varying
associativity [#preemptions = 10]

7.4.1.3 Effective per Access Time

Per access time with varying number of preemptions, cache size, cache line

size and associativity is shown in figures 7.12, 7.13, 7.14 and 7.15.

Per access time is directly proportional to the hit rate. The per access time

of DEEP cache is higher than that of CC whenever the hit rate of CC is

higher than that of DEEP cache. DEEPS cache offers the highest hit rate

in comparison with CC and DEEP cache. On an average, per access time of

DEEP cache is higher than CC by 10.48% and per access time of CC cache is

higher than DEEPS by 38.50%.

Effective per Access Time 153

Figure 7.12: Per access time for a 4 way, 32B, 8KB cache with varying
preemptions

Figure 7.13: Per access time for a 4 way, 32B line size with varying cache size
[#preemptions = 10]

Effective per Access Time 154

Figure 7.14: Per access time for a 4 way, 8KB cache with varying line size
[#preemptions = 10]

Figure 7.15: Per access time for a 32B, 8KB cache with varying associativity
[#preemptions = 10]

Effective per Access Time 155

Figure 7.16: Per access dynamic energy for varying line size with 10 preemp-
tions, 8KB cache size and associativity as 4 way

Figure 7.17: Per access Static energy for varying line size with 10 preemptions,
8KB cache size and associativity as 4 way

Energy and Time comparison with energy efficient caches 156

7.4.1.4 Energy and Time comparison with energy efficient caches

The comparison of dynamic and static energy consumption of DEEP with

CC, WP, WH and DEEPS is as shown in Figures 7.16 and 7.17 respectively.

Hit rate of CC, WP and WH is the same and is higher than DEEP. The

hit rate of DEEP cache is improved by using shared cache in DEEPS. CC

accesses all the ways for every access. The number of ways accessed increases

dynamic energy consumption of CC. WH cache consumes the least dynamic

energy. The number of ways accessed by WH cache is lesser than other caches.

The prediction miss in WP cache results in accessing all other ways. This

increases dynamic energy consumption of WP over WH cache. Identification

based reservation in DEEP reduces associativity per task. The reduced

associativity decreases hit rate. The decreased hit rate increases dynamic

energy consumption of DEEP over WP and WH cache. Hit rate improvement

in case of DEEPS cache results in reducing dynamic energy.

The improved hit rate in DEEPS cache results in consuming the least static

energy. The prediction circuit incurs additional static energy in case of WP.

Early detection of cache misses in case of WH results in reduced static energy

consumption in comparison with CC. The least hit rate of DEEP along with

additional DEEP overhead results in increases static energy consumption.

DEEP can be made more energy efficient by using prediction circuit and

halt tag bits along with process identification. This will reduce the dynamic

energy consumption. The static energy consumption and response time of

DEEP is improved by using shared way. Data shared between task is stored

in shared way. This results in improving DEEP hit rate and hence energy

consumption.

Experimental Analysis - Complete Memory Model 157

7.4.2 Experimental Analysis - Complete Memory

Model

Simulation results are analysized by varying L1 cache size from 8K to 32K,

L2 cache size from 32K to 128K. Results are obtained using following config-

urations :

CC : L1 and L2 cache as CC.

CD : L1 cache as CC and L2 cache as DEEPS.

DC : L1 cache as DEARCache and L2 cache as CC.

DD : L1 cache as DEARCache and L2 cache as DEEPS.

7.4.2.1 Dynamic Energy per Access

Figure 7.18 show per access dynamic energy consumption of various cache

models simulated with 8-way, 64B, 64KB L2 cache, with varying L1 cache size.

Figure 7.19 show per access dynamic energy consumption of various cache

models simulated with 4-way, 32B, 8KB L1 cache, with varying L2 cache

size. With increase in cache size, hit rate and per access dynamic energy

consumption increases. This increase in per access energy is majorly due to

increase in data access energy with cache size. Per access dynamic energy is

highest when both L2 cache and L1 cache are implemented as CC.

Per access dynamic energy of memory model decreases when L2 cache is

implemented as DEEP cache and L1 cache as CC. This decrease in per access

dynamic energy is due to reduction in number of active ways for L2 cache

from 8 ways to one way and increase in hit rate by and 5.33%. Further

reduction in per access dynamic energy consumption can be achieved when L1

Static Energy per Access 158

cache is implemented as DEARCache and L2 cache as CC. This decrease is

due to reduction in number of ways from 4 ways to 1.02 ways and increase in

hit rate by 9.68%. Per access dynamic energy is the least when L1 cache is

implemented as DEARCache and L2 cache is implemented as DEEP cache

respectively.

Figure 7.18: Per access dynamic energy for a 64KB L2 cache with varying L1 cache size

7.4.2.2 Static Energy per Access

Figure 7.20 and 7.21 show per access static energy dissipation of various

memory models by varying L1 cache size and L2 cache size respectively. The

static energy dissipation because of the internal components increases with

increase in cache size. So the per access static energy increases with increase

in cache size.

Per access static energy dissipation is the highest when both L1 cache and

Per Access Time 159

Figure 7.19: Per access dynamic energy for a 8KB L1 cache with varying L2 cache size

L2 cache are implemented as CC. When L1 cache and L2 cache is designed

as DEARCache and DEEP cache with shared way, hit rate is improved by

9.68% and 5.33% over its respective CC implementations. Increase in hit rate

decreases per acess time and hence per access static energy dissipation. The

per access static energy is the least when L1 cache and L2 cache are designed

as DEARCache and DEEP cache respectively.

7.4.2.3 Per Access Time

Figure 7.22 and 7.23 show per access time of various cache models simulated

with 8-way, 64KB, 64B L2 cache, varying L1 cache size and with 4-way, 8KB,

32B L1 cache, varying L2 cache size respectively. With increase in cache

size, hit rate increases, and per access time decreases. Per access time of

memory model decreases when L2 cache is implemented as DEEP cache and

Per Access Time 160

Figure 7.20: Per access static energy for a 64KB L2 cache with varying L1 cache size

Figure 7.21: Per access static energy for a 8KB L1 cache with varying L2 cache size

Per Access Time 161

Figure 7.22: Per access time for a 64KB L2 cache with varying L1 cache size

Figure 7.23: Per access time for a 8KB L1 cache with varying L2 cache size

7.5. Conclusion 162

L1 cache as CC. This decrease in per access time is due to increase in hit rate

by 5.33% over L2 cache as CC. Further reduction in per access time can be

achieved when L1 cache is implemented as DEARCache with increase in

hit rate by 9.68%. Per access time is the least when L1 cache is implemented

as DEARCache and L2 cache is implemented as DEEP cache respectively.

7.5 Conclusion

Tighter schedulability analysis is crucial in hard real-time systems as deadline

misses may lead to catastrophic failure. The tighter upper bound on WCET

at all levels of memory subsystem from TLB, L1 cache, L2 cache and main

memory is required to ensure scheduling feasibility. This chapter designs

memory subsystem to get deterministic performance at all levels. This chapter

proposed deterministic memory subsystem by making TLB, L1 cache and L2

cache deterministic. This chapter combines implementation of DTLB and

DEARCache with DEEP cache. The DTLB, DEARCache and DEEP

cache gives tighter upper bound on misses of TLB, L1 cache and L2 cache

respectively and hence gives tighter upper bound on cache memory related

execution time. On an average per access time, per access dynamic energy

and per access static energy of DEEP is higher than CC by 10.48%, 2.13%,

15.78% respectively. The per access time, per access dynamic energy and per

access static energy of CC is higher than DEEPS by 38.50%, 71.69% and

50.01% respectively. The per access time, per access dynamic energy and per

access static energy of CC is higher than DD by 27.85%, 71.40% and 46.75%

respectively.

Chapter 8

Conclusion and Future

Directions

Energy efficiency is one of the major design considerations of the modern day

processors. Memory subsystem consumes major portion of the on-chip energy.

Architects are motivated to design the cache memory subsystem with the

least possible energy consumption without much performance degradation.

This thesis addresses static and dynamic energy consumptions of unicore

and multicore systems. The thesis also addresses mechanisms to provide

tighter upper bound on worst case execution time on memory sub-system

performance in order to achieve deterministic memory performance.

This thesis proposed an energy efficient cache architecture - Way Halted

Prediction. WHP cache uses halt tag array and prediction circuit to achieve

reduced energy consumption and response time. The combination of halt

tag and prediction circuit reduces the number of ways to be activated for

cache access. In WHP cache, the number of active ways are reduced from

k ways in case of WH to one way with the help of prediction circuit. As

the prediction circuit is enabled only when k > 1, the performance of WHP

cache is improved with respect to energy and time. The simulation results

show that WHP offers better energy efficiency over the other architectures

163

164

analyzed. WHP offers 46.64%, 6.45% and 4.15% dynamic energy saving and

1.04%, 2.92% and -0.05% saving in response time over the CC, WP and WH

respectively.

Cache coherence protocols achieve data consistency and coherency at the cost

of performance degradation with respect to time and energy. The additional

overhead can be minimized by optimizing the usage of interconnection band-

width. This thesis discussed MOESIF protocol which improves the off chip

bandwidth by reducing write backs to next level memory and the on-chip

bandwidth by reducing the number of responders to a cache miss when multi-

ple copies of data exists in private L1 caches of various cores. For varying

cache sizes, energy consumption in MESI, MOESI, MESIF and MOESIF

protocols is reduced by 51.41%, 94.20%, 51.66% and 94.49% respectively over

MI protocol. The energy savings of MOESIF protocol over MESI, MOESI

and MESIF protocol is 88.58%, 4.33% and 88.52% respectively. For varing

cache sizes, per access time of MESI, MOESI, MESIF and MOESIF protocols

is reduced by 52.04%, 95.59%, 52.31% and 95.86% respectively over MI. The

per access time saving of MOESIF protocol over MESI, MOESI and MESIF

protocol is 91.37%, 6.17% and 91.32% respectively.

Meeting all deadlines with least energy consumption is the major design

consideration of battery powered hard real-time systems. Real-time schedul-

ing algorithms perform schedulability analysis by considering the pessimistic

WCET. In conventional systems, the WCET is loosely bound because of the

non-deterministic nature of the memory subsystem. Cache memory is an

integral and crucial part of the memory subsystem. This thesis proposed

DEARCache, a deterministic real-time cache memory. DEARCache elim-

165

inates intertask interference by allocating dedicated cache ways to tasks

in execution. It obtains tighter upper bound on number of cache misses.

DEARCache reduces dynamic energy consumption by 38.10% for 4-way

set associative cache configuration over CC with 4.39% overhead of static

energy. Per access time of DEARCache improved 3.87 times over NO

CACHE model with an additional requirement of 4.37% of per access time as

compared to CC.

Tighter schedulability analysis is crucial in hard real-time systems as dead-

line misses may lead to catastrophic failure. The tighter upper bound on

WCET at all levels of memory subsystem from TLB, L1 cache, L2 cache and

main memory is required to ensure scheduling feasibility. This thesis designs

memory subsystem to get deterministic performance at all levels. This thesis

proposed deterministic memory subsystem by making TLB, L1 cache and

L2 cache deterministic. This work combines implementation of DTLB and

DEARCache with DEEP cache. The DTLB, DEARCache and DEEP

cache gives tighter upper bound on misses of TLB, L1 cache and L2 cache

respectively and hence gives tighter upper bound on cache memory related

execution time. On an average per access time, per access dynamic energy

and per access static energy of DEEP is higher than CC by 10.48%, 2.13%,

15.78% respectively. The per access time, per access dynamic energy and per

access static energy of CC is higher than DEEPS by 38.50%, 71.69% and

50.01% respectively. The per access time, per access dynamic energy and per

access static energy of CC is higher than DD by 27.85%, 71.40% and 46.75%

respectively.

This thesis addresses deterministic cache designs for homogeneous multi-core

166

systems. We intend to extent this work for heterogeneous MC systems with

point to point interconnections. We also intent to address deterministic perfor-

mance for homogeneous many-core systems where switched-fabric is used as

the interconnection mechanism. We also intend to address deterministic GPU

performance with tighter upper bound on local, global and shared memory

access times.

Publications based on the

research work

Paper A: Geeta Patil, Parag Panda and Biju Raveendran, “A Survey on

Replacement Strategies in Cache Memory for Embedded Systems,”IEEE Con-

ference on Distributed Computing, VLSI, Electrical Circuits and Robotics

(DISCOVER), Mangalore, 2016, pp. 12-17.

Paper B: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “Way

Halted Prediction Cache: An Energy Efficient Cache Architecture for Embed-

ded Processors,”28th International Conference on VLSI Design, Bangalore,

2015, pp. 65-70

Paper C: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “Simulation

based Performance Study of Cache Coherence Protocols,”IEEE International

Symposium on Nanoelectronic and Information Systems, Indore, 2015, pp.

125-130.

Paper D: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “MOESIF:

A MC/MP Cache Coherence Protocol with Improved Bandwidth Utiliza-

tion,”International Journal of Embedded Systems (In Press).

Paper E: Geeta Patil, Kajal Varma and Biju Raveendran, “DTLB: Deter-

ministic TLB for Tightly Bound Hard Real-Time Systems,”30th International

Conference on VLSI Design and 16th International Conference on Embedded

Systems, Hydrabad, 2017, pp. 207-212.

167

A brief biography of the candidate

Ms. Geeta Patil, is currently working as a Lecturer in the Department

of Computer Science and Information Systems, BITS PILANI K. K. BIRLA

GOA CAMPUS, GOA, INDIA. She received her Bachelor’s degree in Com-

puter Engineering from Goa Engineering College, Goa University in the year

2001. She did Master’s degree in Computer Engineering in the year 2010

from Gogte Institute of Technology, Visvesvaraya Technological University,

Belgaum. She is currently pursuing Ph.D. from BITS PILANI K. K. BIRLA

GOA CAMPUS, GOA. Her research interests are in areas of Cache Architec-

ture, Multi-core / Many-core systems, Multi-processors and Real time systems.

A brief biography of the supervisor

Dr. Biju K. Raveendran is currently serving as Assistant Professor in the

Department of Computer Science and Information Systems, BITS PILANI

K. K. BIRLA GOA CAMPUS, GOA, INDIA. He received his Ph.D. degree

from BITS PILANI, PILANI CAMPUS, RAJASTHAN in the year 2009. He

heads the Computer Centre Unit at Goa campus which is responsible for

the central networking and computing facilities of the campus. His research

area includes Energy Efficient Multi-core / Many-core Real-time Scheduling,

Energy Efficient Memory Architecture for Multi-core / Many-core Embedded

Systems, Predictable and Dependable Real-time / Embedded System Design

and Big Data Systems. He was one of the five recipients of Microsoft Research

India Fellowship in the year 2005 for his Ph.D. work. His passion is teaching.

168

He is a recipient of Microsoft young faculty award in the year 2009. He is

also a recipient of Best Faculty Award by BITSAA in the year 2013. He is

actively involved in collaborative projects with industries like Microsoft and

Aditya Birla Group.

A brief biography of the co-supervisor

Dr. Lucy J. Gudino is Assistant Professor in the Department of Computer

Science and Information Systems at BITS-Pilani, K K Birla Goa campus,

Goa, India. She received B.E. degree in Electronics and Communications En-

gineering from Kuvempu University, M.Tech. and Ph.D. in Computer Science

from Vishveswaraya Technological University, Karnataka, India. She has 21

years of teaching experience in the field of Electronics and Communications

and Computer Science. Her research interests are computer architecture,

wireless communications, adaptive arrays for cellular base stations and digital

filter design.

Bibliography

[1] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on het-

erogeneous multiprocessors with adaptive mapping,” in Proceedings of the

42Nd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 42, (New York, NY, USA), pp. 45–55, ACM, 2009.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 3 ed., 2003.

[3] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-

2 programs: Characterization and methodological considerations,” in

Proceedings of the 22Nd Annual International Symposium on Computer

Architecture, ISCA ’95, (New York, NY, USA), pp. 24–36, ACM, 1995.

[4] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative

cache for high performance and low energy consumption,” in Proceedings

of the 1999 international symposium on Low power electronics and design,

pp. 273–275, ACM, 1999.

[5] C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting cache for low-

energy high-performance systems,” ACM Transactions on Architecture

and Code Optimization (TACO), vol. 2, no. 1, pp. 34–54, 2005.

[6] M. H. L. John Paul Shen, Modern Processor Design. New Delhi, India:

Tata McGraw Hill, 3 ed., 2011.

170

Bibliography 171

[7] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:

A Hardware/Software Approach. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1998.

[8] C. Ferdinand, “Worst case execution time prediction by static program

analysis,” in 18th International Parallel and Distributed Processing Sym-

posium, 2004. Proceedings., pp. 125–, April 2004.

[9] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High perfor-

mance cache replacement using re-reference interval prediction (rrip),”

SIGARCH Comput. Archit. News, vol. 38, pp. 60–71, June 2010.

[10] J. Jeong and M. Dubois, “Optimal replacements in caches with two

miss costs,” in Proceedings of the Eleventh Annual ACM Symposium on

Parallel Algorithms and Architectures, SPAA ’99, (New York, NY, USA),

pp. 155–164, ACM, 1999.

[11] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic, “Performance evaluation

of cache replacement policies for the spec cpu2000 benchmark suite,” in

Proceedings of the 42Nd Annual Southeast Regional Conference, ACM-SE

42, (New York, NY, USA), pp. 267–272, ACM, 2004.

[12] K. So and R. N. Rechtschaffen, “Cache operations by mru change,” IEEE

Transactions on Computers, vol. 37, pp. 700–709, Jun 1988.

[13] J. Alghazo, A. Akaaboune, and N. Botros, “Sf-lru cache replacement

algorithm,” in Records of the 2004 International Workshop on Memory

Technology, Design and Testing, 2004., pp. 19–24, Aug 2004.

Bibliography 172

[14] C. T. Do, H.-J. Choi, J. M. Kim, and C. H. Kim, “A new cache replace-

ment algorithm for last-level caches by exploiting tag-distance correlation

of cache lines,” Microprocess. Microsyst., vol. 39, pp. 286–295, June 2015.

[15] M. Kampe, P. Stenstrom, and M. Dubois, “Self-correcting lru replacement

policies,” in IN PROCEEDINGS OF THE 1ST CONFERENCE ON

COMPUTING FRONTIERS, pp. 181–191, 2004.

[16] “Intel Corp. 1997. Embedded Intel486 Processor Family Developer’s

Manual Technical Report 273021-001,” tech. rep.

[17] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH

Comput. Archit. News, vol. 34, pp. 1–17, Sept. 2006.

[18] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for

computer system modeling,” Computer, vol. 35, pp. 59–67, Feb. 2002.

[19] C.-L. Su and A. M. Despain, “Cache design trade-offs for power and

performance optimization: A case study,” in Proceedings of the 1995

International Symposium on Low Power Design, ISLPED ’95, (New York,

NY, USA), pp. 63–68, ACM, 1995.

[20] L. Liu, Y. Li, Z. Cui, Y. Bao, M. Chen, and C. Wu, “Going vertical in

memory management: Handling multiplicity by multi-policy,” in 2014

ACM/IEEE 41st International Symposium on Computer Architecture

(ISCA), pp. 169–180, June 2014.

[21] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache: an

energy efficient memory structure,” in Proceedings of 30th Annual Inter-

national Symposium on Microarchitecture, pp. 184–193, Dec 1997.

Bibliography 173

[22] R. S. Bajwa, M. Hiraki, H. Kojima, D. J. Gorny, K.-i. Nitta, A. Shridhar,

K. Seki, and K. Sasaki, “Instruction buffering to reduce power in pro-

cessors for signal processing,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 5, no. 4, pp. 417–424, 1997.

[23] V. Guzma, T. Pitknen, and J. Takala, “Reducing instruction memory

energy consumption by using instruction buffer and after scheduling

analysis,” in 2010 International Symposium on System on Chip, pp. 99–

102, Sept 2010.

[24] L. H. Lee, B. Moyer, and J. Arends, “Instruction fetch energy reduction

using loop caches for embedded applications with small tight loops,”

in Proceedings of the 1999 International Symposium on Low Power

Electronics and Design, ISLPED ’99, (New York, NY, USA), pp. 267–

269, ACM, 1999.

[25] J. W. Kwak and Y. T. Jeon, “Compressed tag architecture for low-power

embedded cache systems,” Journal of Systems Architecture, vol. 56, no. 9,

pp. 419 – 428, 2010.

[26] T. M. Jones, S. Bartolini, B. D. Bus, J. Cavazos, and M. F. P. O’Boyle,

“Instruction cache energy saving through compiler way-placement,” in

2008 Design, Automation and Test in Europe, pp. 1196–1201, March

2008.

[27] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache for low

energy embedded systems,” ACM Trans. Embed. Comput. Syst., vol. 4,

pp. 363–387, May 2005.

Bibliography 174

[28] G. Bournoutian and A. Orailoglu, “Application-aware adaptive cache

architecture for power-sensitive mobile processors,” ACM Trans. Embed.

Comput. Syst., vol. 13, pp. 41:1–41:26, Dec. 2013.

[29] A. Sembrant, E. Hagersten, and D. Black-Shaffer, “Tlc: a tag-less cache

for reducing dynamic first level cache energy,” in Proceedings of the

46th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 49–61, ACM, 2013.

[30] R. K. Megalingam, K. B. Deepu, I. P. Joseph, and V. Vikram, “Phased

set associative cache design for reduced power consumption,” 2009 2nd

IEEE International Conference on Computer Science and Information

Technology, pp. 551–556, 2009.

[31] Z. Zhu and X. Zhang, “Access-mode predictions for low-power cache

design,” IEEE Micro, vol. 22, pp. 58–71, Mar 2002.

[32] B. Batson and T. Vijaykumar, “Reactive-associative caches,” in Paral-

lel Architectures and Compilation Techniques, 2001. Proceedings. 2001

International Conference on, pp. 49–60, IEEE, 2001.

[33] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation

of directory schemes for cache coherence,” SIGARCH Comput. Archit.

News, vol. 16, pp. 280–298, May 1988.

[34] R. Komuravelli, S. V. Adve, and C.-T. Chou, “Revisiting the complexity

of hardware cache coherence and some implications,” ACM Trans. Archit.

Code Optim., vol. 11, pp. 37:1–37:22, Dec. 2014.

Bibliography 175

[35] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.

Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “Denovo: Rethinking

the memory hierarchy for disciplined parallelism,” in Proceedings of the

2011 International Conference on Parallel Architectures and Compilation

Techniques, PACT ’11, (Washington, DC, USA), pp. 155–166, IEEE

Computer Society, 2011.

[36] J. K. Archibald, The Cache Coherence Problem in Shared-memory Mul-

tiprocessors. PhD thesis, Seattle, WA, USA, 1987. UMI Order No.

GAX87-06505.

[37] T. M. Chaves, E. A. Carara, and F. G. Moraes, “Energy-efficient cache

coherence protocol for noc-based mpsocs,” in Proceedings of the 24th

Symposium on Integrated Circuits and Systems Design, SBCCI ’11, (New

York, NY, USA), pp. 215–220, ACM, 2011.

[38] P. Stenstrom, “A survey of cache coherence schemes for multiprocessors,”

Computer, vol. 23, pp. 12–24, June 1990.

[39] J. Archibald and J.-L. Baer, “Cache coherence protocols: Evaluation

using a multiprocessor simulation model,” ACM Trans. Comput. Syst.,

vol. 4, pp. 273–298, Sept. 1986.

[40] M. Loghi, M. Poncino, and L. Benini, “Cache coherence tradeoffs in

shared-memory mpsocs,” ACM Trans. Embed. Comput. Syst., vol. 5,

pp. 383–407, May 2006.

Bibliography 176

[41] N. P. Jouppi, “Cache write policies and performance,” in Proceedings

of the 20th Annual International Symposium on Computer Architecture,

ISCA ’93, (New York, NY, USA), pp. 191–201, ACM, 1993.

[42] G. Bournoutian and A. Orailoglu, “Dynamic, multi-core cache coher-

ence architecture for power-sensitive mobile processors,” in 2011 Pro-

ceedings of the Ninth IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS),

pp. 89–97, Oct 2011.

[43] A. Kayi and T. El-Ghazawi, “An adaptive cache coherence protocol for

chip multiprocessors,” in Proceedings of the Second International Forum

on Next-Generation Multicore/Manycore Technologies, IFMT ’10, (New

York, NY, USA), pp. 4:1–4:10, ACM, 2010.

[44] S. Manne, A. Klauser, D. C. Grunwald, and F. Somenzi, “Low power tlb

design for high performance microprocessors,” 1997.

[45] J.-H. Lee, G. ho Park, S.-B. Park, and S.-D. Kim, “A selective filter-bank

tlb system [embedded processor mmu for low power],” in Low Power

Electronics and Design, 2003. ISLPED ’03. Proceedings of the 2003

International Symposium on, pp. 312–317, Aug 2003.

[46] M. Talluri and M. D. Hill, “Surpassing the tlb performance of superpages

with less operating system support,” SIGPLAN Not., vol. 29, pp. 171–182,

Nov. 1994.

[47] I. Chukhman and P. Petrov, “Context-aware tlb preloading for interfer-

ence reduction in embedded multi-tasked systems,” in Proceedings of

Bibliography 177

the 20th Symposium on Great Lakes Symposium on VLSI, GLSVLSI ’10,

(New York, NY, USA), pp. 401–404, ACM, 2010.

[48] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-based tlb preload-

ing,” in Proceedings of the 27th Annual International Symposium on

Computer Architecture, ISCA ’00, (New York, NY, USA), pp. 117–127,

ACM, 2000.

[49] M. Kandemir, I. Kadayif, and G. Chen, “Compiler-directed code re-

structuring for reducing data tlb energy,” in Proceedings of the 2Nd

IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis, CODES+ISSS ’04, (New York, NY, USA),

pp. 98–103, ACM, 2004.

[50] G. Venkatasubramanian, R. J. Figueiredo, and R. Illikkal, “On the per-

formance of tagged translation lookaside buffers: A simulation-driven

analysis,” in 2011 IEEE 19th Annual International Symposium on Mod-

elling, Analysis, and Simulation of Computer and Telecommunication

Systems, pp. 139–149, July 2011.

[51] Y. Li, R. Melhem, and A. K. Jones, “Ps-tlb: Leveraging page classification

information for fast, scalable and efficient translation for future cmps,”

ACM Trans. Archit. Code Optim., vol. 9, pp. 28:1–28:21, Jan. 2013.

[52] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-case response time

analysis of real-time tasks under fixed-priority scheduling with deferred

preemption,” Real-Time Systems, vol. 42, no. 1-3, pp. 63–119, 2009.

Bibliography 178

[53] S. Altmeyer, R. I. Davis, and C. Maiza, “Pre-emption cost aware response

time analysis for fixed priority pre-emptive systems,” 32nd RTSS, 2011.

[54] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with dynamic

voltage and frequency scaling for energy minimization in the mobile cloud

computing environment,” IEEE Transactions on Services Computing,

vol. 8, no. 2, pp. 175–186, 2015.

[55] A. P. Florence, V. Shanthi, and C. Simon, “Energy conservation us-

ing dynamic voltage frequency scaling for computational cloud,” The

Scientific World Journal, vol. 2016, 2016.

[56] V. Legout, M. Jan, and L. Pautet, “A scheduling algorithm to reduce

the static energy consumption of multiprocessor real-time systems,” in

Proceedings of the 21st International Conference on Real-Time Networks

and Systems, RTNS ’13, (New York, NY, USA), pp. 99–108, ACM, 2013.

[57] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for

multiprocessor systems,” ACM Computing Surveys (CSUR), vol. 43,

no. 4, p. 35, 2011.

[58] F. Zhang and A. Burns, “Schedulability analysis for real-time systems

with edf scheduling,” IEEE Transactions on Computers, vol. 58, no. 9,

pp. 1250–1258, 2009.

[59] L. Ju, S. Chakraborty, and A. Roychoudhury, “Accounting for cache-

related preemption delay in dynamic priority schedulability analysis,” in

2007 Design, Automation & Test in Europe Conference & Exhibition,

pp. 1–6, IEEE, 2007.

Bibliography 179

[60] R. I. Davis, S. Altmeyer, and J. Reineke, “Analysis of write-back caches

under fixed-priority preemptive and non-preemptive scheduling,” in

Proceedings of the 24th International Conference on Real-Time Networks

and Systems, pp. 309–318, ACM, 2016.

[61] W.-N. Chin, H. H. Nguyen, C. Popeea, and S. Qin, “Analysing mem-

ory resource bounds for low-level programs,” in Proceedings of the 7th

international symposium on Memory management, pp. 151–160, ACM,

2008.

[62] J. Whitham, N. C. Audsley, and R. I. Davis, “Explicit reservation of

cache memory in a predictable, preemptive multitasking real-time system,”

ACM Transactions on Embedded Computing Systems (TECS), vol. 13,

no. 4s, p. 120, 2014.

[63] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip

multiprocessors,” in ACM International Conference on Supercomputing

25th Anniversary Volume, pp. 402–412, ACM, 2014.

[64] H. Falk, S. Plazar, and H. Theiling, “Compile-time decided instruc-

tion cache locking using worst-case execution paths,” in 2007 5th

IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis (CODES+ISSS), pp. 143–148, Sept 2007.

[65] A. Arnaud and I. Puaut, “Dynamic instruction cache locking in hard

real-time systems,” in In RTNS.

[66] P. M. Ortego and P. Sack, “Sesc: Superescalar simulator,” tech. rep.,

2004.

Bibliography 180

[67] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:

A tool to model large caches,” HP Laboratories, pp. 22–31, 2009.

[68] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt:

Coalesced large-reach tlbs,” in Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-45,

(Washington, DC, USA), pp. 258–269, IEEE Computer Society, 2012.

[69] Y.-J. Chang, “An ultra low-power tlb design,” in Proceedings of the

Conference on Design, Automation and Test in Europe: Proceedings,

DATE ’06, (3001 Leuven, Belgium, Belgium), pp. 1122–1127, European

Design and Automation Association, 2006.

[70] J. Whitham, N. C. Audsley, and R. I. Davis, “Explicit reservation of

cache memory in a predictable, preemptive multitasking real-time system,”

ACM Trans. Embed. Comput. Syst., vol. 13, pp. 120:1–120:25, Apr. 2014.

[71] J. Feljan, Task Allocation Optimization for Multicore Embedded Systems.

PhD thesis, Mälardalen University, December 2015.

[72] A. Thekkilakattil, Limited Preemptive Scheduling in Real-time Systems.

PhD thesis, Mälardalen University, May 2016. The faculty examiner is

Associate Professor Reinder Bril, Eindhoven University of Technology;

and the examining committee consists of Professor Giorgio Buttazzo,

SantAnna School of Advance studies-Pisa; Professor Gerhard Fohler,

Technical University Kaiserslautern; Associate Professor Liliana Cucu-

Grosjean, INRIA.Reserve: Associate Professor Damir Isovic, MDH.

Bibliography 181

[73] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way cache:

demand-based associativity via global replacement,” in 32nd Interna-

tional Symposium on Computer Architecture (ISCA’05), pp. 544–555,

IEEE, 2005.

