Design of Energy Efficient and Deterministic
Memory Subsystem for Uniprocessor and
Multicore Systems

THESIS

Submitted in partial fulfillment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY
by
PATIL GEETA NAYAKAPPA

Under the Supervision of
Dr. BIJU K. RAVEENDRAN

and Co-supervision of
Dr. LUCY J. GUDINO

BITS Pilani

Pilani|Dubai|Goa|Hyderabad

BIRLA INSTITUTE OF TECHNOLOGY AND
SCIENCE, PILANI
2018

Declaration

I, Geeta Patil, hereby declare that the work presented here in the thesis
titled, ‘Design of Energy Efficient and Deterministic Memory Subsystem for
Uniprocessor and Multicore Systems * is a bonafide research work done by me
and it has not been submitted previously in part or in full to this University
or any other University or Institution for award of any degree. Any literature

work cited within this thesis has given due acknowledgement and is listed in

biblicgraphy.

Signature of the student

MName of the student . PATIL GEETA NAYAKAPPA

ID number of the student a011PHXF0409G

Date : 02]11125;&

BIRLA INSTITUTE OF TECHNOLOGY AND
SCIENCE, PILANI

Certificate

This is to certify that the thesis entitled ‘Design of Energy Effi-
cient and Deterministic Memory Subsystem for Uniprocessor and
Multicore Systems’ and submitted by PATIL GEETA NAYAKAPPA,
[D.XNo. 200 1PHXF0409CG for award of Ph.D. of the Institute embodies orig-

inal work done by her under our supervision,

Signature of the Supervisor

Name in capital letters

Diesipnation - ASSISTANT PROFESSOR
Diate :

o/ 2e:fl-0
mignature of the Co-supervisor —
Name in captal letters : Dr. LUICY J. GUDIMO
Diesignation D ASSISTANT PROFESSOR

Dhate : ﬂj'&}aﬂlﬂ

Dedicated to
God,
My wonderful huge famaly

&
My best Supervisors.

Acknowledgement

I would like to acknowledge my sincere thanks to each and everyone who have
made this thesis an unforgettable experience and who have influenced this
work in some way or the other. Let me begin by thanking the Almighty God
for the innumerable blessings he has showered upon me.

Next, I would like to express my deepest gratitude to my supervisor, Dr. Biju
K. Raveendran, for giving me an opportunity to work under his guidance. His
patience, especially during the initial stages of my PhD, his vast knowledge,
excellent supervision, prompt attention, dedicated help, advice, inspiration,
encouragement and continuous support have made a deep impression on me.
I have been extremely lucky to have Dr. Lucy J. Gudino as my co-supervisor.
I have learnt the basics of computer architecture from her motivational classes.
She has provided her valuable guidance and consistent support throughout my
research work. Her suggestions in completing my thesis are highly appreciated.
I would like to thank the members of Doctoral Advisory Committee, Prof.
Bharat Deshpande and Prof. Neena Goveas, for their valuable time, guidance,
critical suggestions and comments for overall improvement of research work.
[am grateful to Prof. Souvik Bhattacharyya, Vice-Chancellor, BITS Pilani,
Prof. G. Raghurama, Director, BITS-Pilani, K. K. Birla Goa Campus, Late.
Prof. S. K. Agarwal, former Director, BITS-Pilani, K. K. Birla Goa Campus,
Prof. S. K. Verma, Dean, Academic Research Division, BITS-Pilani, Prof. P.
K. Das, former Associate Dean, Academic Research Division, BITS-Pilani K.
K. Birla Goa Campus, Prof. Bharat Deshpande, Associate Dean, Academic
Research Division, BITS-Pilani K. K. Birla Goa Campus and the members
of Doctoral Research Committee of Department of CS&IS, BITS-Pilani, K.
K. Birla Goa Campus for providing administrative support, a conducive

atmosphere and adequate facilities to carry out my research efficiently.

I am thankful to any time help of Dr. Ramprasad Joshi, and his initiation
in introducing Latex software. A special mention of thanks to my friends in
BITS-Goa Aruna Govada, Shubhangi Gawali, Sreejith V, Rajendra Kumar
Roul, Mahadev Gawas, Ashu Sharma, Shamanth N. and many more for their
timely help, constant support and cooperation.

I acknowledge my students Vijay, Neethu, Manali, Divya, Alen, Kajal, Samriti
and Ayushi who made this journey so wonderful and who were ever willing to
assist me. On this occasion I cannot forget my past teachers whose teaching
at different stages of education has made it possible for me to reach a stage
where I could write this thesis.

I owe my deepest gratitude towards my loving husband, Amol, for his eternal
support and aspirations. His love and support has always been my strength.
His patience and sacrifice will remain my inspiration throughout my life.
Without his help, I would not have been able to complete much of what I
have done and become who I am. I thank my son Pranil and daughters Sara,
Meenali and Manushri for their understanding and support throughout this
work. I am thankful to my mother Sukanti, father Nayakappa, mother in
law Jayashree, father in law Jayawant, brother Amol, brother in law Sachin,
co-sisters Siya, Sangeeta, and my entire family for believing in me and giving

me space to explore the world.

Geeta

Abstract

Energy efficiency is one of the major design considerations of the modern
day processor design. Memory subsystem consumes major portion of the
on-chip energy. This motivates the designers to come up with cache memory
subsystem design with least possible energy consumption without much per-
formance degradation. System performance can be improved by increasing
operating frequency of the system. However, increase in operating frequency
leads to increase in energy consumption which in turn leads to increase in
heat dissipation and leakage current. One of the possible solutions to this
problem is to go for multicore systems with reduced frequency. Maintaining
data consistency becomes a major challenge in multicore systems. Energy
efficient and performance centric protocols are required to maintain data
consistently in these system.

In hard real-time embedded systems, along with energy efficiency, determinis-
tic tighter upper bound on the worst case execution time of the task is also
a requirement. Deterministic tighter upper bound on worst case execution
time can only be ensured by making the entire process of accessing memory
system deterministic. The memory access model can be made deterministic
by providing a hard upper bound on the number of misses in TLB, L1 Cache,
L2 cache and main memory. This thesis addresses static energy consumption
and dynamic energy consumption of unicore and multicore system. The
thesis also addresses mechanisms to provide tighter upper bound on worst
case execution time on memory sub-system performance in order to achieve
deterministic memory performance.

To reduce energy consumption and response time of set associative caches, the

thesis proposes a novel cache architecture - Way Halted Prediction. This is

vi

achieved with the help of halt tag array and prediction circuit. Experimental
evaluation of various SPLASH benchmark programs on SESC simulator reveal
that way halted prediction architecture offers better energy efficiency over
the other architectures analyzed. Way halted prediction offers 46.64%, 6.45%
and 4.15% dynamic energy saving and 1.04%, 2.92% and -0.05% saving in
response time over the CC, WP and WH respectively.

To reduce energy consumption and response time of multicore systems, the
thesis proposes a novel cache coherence protocol Modified Owned Exclusive
Shared Invalid Forward - MOESIF - to improve the off chip and on chip
bandwidth usage for multicore systems. This is achieved by reducing the
number of write backs to next level memory and by reducing the number of re-
sponders to a cache miss when multiple copies of data exists in private caches.
Reduction in the number of write backs and the number of responders results
in reducing time, energy and bandwidth usage. Experimental evaluation of
various SPLASH benchmark programs on SESC simulators reveal that the
MOESIF protocol outperforms all other hardware based coherence protocols
in terms of energy consumption and response time. The energy savings of
MOESIF protocol over MESI, MOESI and MESIF protocol is 88.58%, 4.33%
and 88.52% respectively. The per response time saving of MOESIF protocol
over MESI, MOESI and MESIF protocol is 91.37%, 6.17% and 91.32% re-
spectively.

The thesis proposes a novel TLB architecture - Deterministic Translation
Lookaside Buffer (DTLB)- to offer tighter upper bound on the worst case
execution time . DTLB offers deterministic performance for low priority
real-time tasks. DTLB achieves a tighter upper bound on the worst case
execution time of real-time tasks by maintaining a copy of the current TLB in

PCB of the task before preemption and transferring the contents back to TLB

while resumption of the task. DTLB reduces TLB response time, dynamic
energy consumption and effective per response time by increasing TLB hit
rate. TLB hit rate is increased by 9.46% as compared to conventional TLB
for 4KB page size, with 16 preemptions and 32 TLB entries. DTLB offers on
an average 6.74% of dynamic energy savings over conventional TLB. Effective
per response time of DTLB reduced by 2.97% as compared to conventional
TLB.

To have a tighter upper bound on the worst case execution time of real time
task, the thesis presents a Deterministic Energy efficient process Aware Real-
time Cache (DEARCACHE). DEARCACHE ensures deterministic tighter
upper bound by eliminating cache related intertask interference. It allocates
at least statically identified minimum ways to each job. It obtains tighter
upper bound on number of cache misses. DEARCACHE reduces dynamic
energy consumption by 38.10% for 4-way set associative cache configura-
tion over CC with 4.39% overhead of static energy. Per response time of
DEARCACHE is improved 3.87 times over NO CACHE model and with an
additional requirement of 4.37% of per response time as compared to CC.
To get deterministic performance of L2 cache, this thesis proposes a De-
terministic Energy Efficient Process aware(DEEP) design. DEEP cache is
shared among all tasks running on different cores of the processor. It allocates
minimum number of ways to each task which is identified as a result of static
analysis. The performance of DEEP cache can be improved by using a shared
way - DEEPS. On an average per response time, per access dynamic energy
and per access static energy of DEEP is higher than conventional cache
by 10.48%, 2.13%, 15.78% respectively. The per response time, per access
dynamic energy and per access static energy of CC is higher than DEEPS by
38.50%, 71.69% and 50.01% respectively.

The thesis proposes an integrated design of deterministic memory named
as Deterministic REAl-time Memory system (DREAM). DREAM achieves
deterministic performance at TLB and L1 cache by incorporating DTLB and
DEARCACHE with DEEP as L2 cache. The per response time, per access
dynamic energy and per access static energy of conventional cache is higher

than DREAM by 27.85%, 71.40% and 46.75% respectively.

Contents

List of Figures
List of Tables
List of Abbreviations

1 Introduction

1.1 Background
1.2 Motivation oo
1.3 Problem Statement
1.4 Research Goals
1.5 Contributions
1.6 Publications 0oL
1.7 Thesis Outline

2 Literature Survey

2.1 Introduction

2.2 Uniprocessor / Unicore energy optimisations

2.3 Cache Coherency Protocols
2.4 Deterministic Memory
2.4.1 Deterministic TLB
2.4.2 Deterministic Cache

3 WHP:Way Halted Prediction Cache

XVvi

xx1ii

XX1V

3.1 Introduction 33

3.2 WHP cache architecture 34
3.3 Energy Model 40
3.3.1 Conventional Cache 40
3.3.2 Way Predicting Cache 43
3.3.3 Way Halting Cache 45
3.3.4 Way Halted Prediction Cache A7
3.4 Time Model 52
3.4.1 Conventional Cache 53
3.4.2 Way Predicting Cache 54
3.4.3 Way Halting Cache 54
3.4.4 Way Halted Prediction Cache 55
3.5 Experimental Setup 56
3.6 Experimental Analysis 57
3.6.1 Prediction Hit Accuracy 58
3.6.2 Dynamic Energy per Access 58
3.6.3 Response Time 62
3.6.4 Static Energy Per Access 71
3.6.5 Time and Area Overhead 73
3.7 Conclusion 73
MOESIF : Cache Coherency Protocol 74
4.1 Introduction 74
4.2 Widely Used Cache Coherence Protocols 75
4.2.1 MESI Protocol 76
4.2.2 MOESI Protocol 78

4.2.3 MESIF Protocol 78

4.3 MOESIF Architecture 81

4.4 Energy and Time Model 87
4.5 Experimental Evaluation 90
4.5.1 Experimental Setup 90
4.5.2 Experimental Analysis of Protocols 90
4.5.3 Experimental Evaluation 92
4.5.3.1 Hit rate and Data transfers 92

4.5.3.2 Energy Consumption 95

4.5.3.3 Response Time 98

4.6 Conclusion 100
DTLB: Deterministic TLB for Real-time System 101
5.1 Imtroduction 101
5.2 DTLB Architecture 102
5.3 Energy and Time Modeling 105
5.3.1 Energy Modelingof TLB 105
5.3.2 Time Modeling of TLB 107

5.4 Experimental Setup And Evaluation 108
5.4.1 Experimental Setup 108
5.4.2 Experimental Evaluation 110
5.4.2.1 TLB MissRate 110

5.4.2.2 Dynamic Energy 113

54.2.3 Access Time 116

5.5 Conclusion 119

DEARCACHE - Deterministic Energy Efficient Process Aware
Real-time Cache 121
6.1 Introduction 121

6.2 DEARCACHE Architecture 122

6.2.1 DEARCACHE Energy Modeling 125
6.2.2 DEARCACHE Time Modeling 126
6.3 Experimental Analysis 127
6.3.1 Tighter upper bound on WCET 127
6.3.2 Energy per Access L. 128
6.3.3 Response Time 132
6.3.4 Energy and Time comparison with energy efficient caches134
6.4 Conclusion 137
DREAM - Deterministic Memory Subsystem 138
7.1 Introduction 138
7.2 DREAM Architecture 139
7.3 Time, Power and Energy Modeling 142
7.3.1 Energy Modeling of DEEP Cache with Shared way -
DEEPS 145
7.3.2 Energy Modeling of DREAM system with Shared cache
-DREAMS 146
7.3.3 Time Modeling of DEEPS 146
7.3.4 Time Modeling of DREAMS 146
7.4 Performance Evaluation 147
7.4.1 Experimental Analysis - .2 as DEEP Cache 147
7.4.1.1 Dynamic Energy per Access 147
7.4.1.2 Static Energy per Access. 150
7.4.1.3 Effective per Access Time 152

7.4.1.4 FEnergy and Time comparison with energy

efficient caches 156

7.4.2 Experimental Analysis - Complete Memory Model . . . 157

7.4.2.1 Dynamic Energy per Access

7.4.2.2 Static Energy per Access.
7.4.2.3 Per Access Time

7.5 Conclusion

8 Conclusion and Future Directions

Publications
Biographies

Bibliography

163

166

167

170

List of Figures

1.1 Cache hit time performance of various associativities with
varying cache size
1.2 Cache hit rate performance of various associativities with vary-

ing cachesize 0

3.1 Way Halted Prediction Cache Architecture
3.2 Prediction Circuit
3.3 Prediction Rate for a 4 way, 8B line size with varying Data
Cachesize
3.4 Prediction Rate for a 4 way, 8B line size with varying Instruc-
tion Cachesize
3.5 Per access dynamic energy consumption for a 4 way, 8B, 32KB
Data Cache with varying benchmark programs
3.6 Per access dynamic energy consumption for a 2 way, 8B, 32KB
Instruction Cache with varying benchmark programs
3.7 Per access dynamic energy consumption for a 4 way, 8B, 32KB
cache with varying benchmark programs
3.8 Per access dynamic energy savings for a 4 way, 8B, 32KB cache
with varying benchmark programs over CC
3.9 Per access dynamic energy consumption for a 4 way, 8B line

size with varying cache size

XV

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Per access dynamic energy consumption for a 16B, 8KB Data
Cache with varying associativities
Per access dynamic energy consumption for a 4 way, SKB cache
with varying line Sizeo
Response time for a 4 way, 8B, 32KB Data Cache with varying
benchmark programs L.
Response time for a 2 way, 8B, 32KB Instruction Cache with
varying benchmark programs. L.
Response time for a 4 way, 8B, 32KB cache with varying
benchmark programs L.
Response time saving over CC for a 4 way, 8B, 32KB cache
with varying benchmark programs
Response time for a 4 way, 8B line size with varying cache size
Response time for a 4 way, SKB cache with varying line Size .
Response time for a 16B, 8KB Data Cache with varying asso-
clativityo
Per access static energy consumption for a 4 way, 8B, 32KB

cache with varying benchmark programs

MESI Access and Snoop State Transitions
MOESI Access and Snoop State Transitions
MESIF Access and Snoop State Transitions
Quad-core Architecture L
MOESIF cache access
MOESIF cache snoop

Design of random generator used for Quad-core Architecture .

64

65

66

67

68

69
70
70

71

72

7
79
80
82
83
84
85

4.8 Per access hit rate for varying cache sizes with 32B line size
and associativity as4 wayo
4.9 Per access write backs for varying cache sizes with 32B line
size and associativity as4d way
4.10 Per access data from L2 for varying cache sizes with 32B line
size and associativity as 4 way
4.11 Per access data from other L1 for varying cache sizes with 32B
line size and associativity as 4 way
4.12 Per access energy for varying cache sizes with 32B line size and
associativity asd way
4.13 Per access energy for varying cache line sizes with 8KB cache
size and associativity as 4 way
4.14 Per access energy for varying number of cores with 8KB cache,
16B line size and associativity as 4 way
4.15 Per access time for varying cache sizes with 32B line size and
associativity asd wayo
4.16 Per access time for varying cache line sizes with 8KB cache
size and associativity as 4 way
4.17 Per access time for varying number of cores with 8KB cache,

16B line size and associativity as 4 way

5.1 Deterministic TLB Architecture
5.2 Miss rate performance of DTLB and ASID-TLB with respect

to conventional TLB for varying page size with 16 preemptions

and 32 TLB entries

5.3

5.4

9.5

5.6

5.7

5.8

9.9

5.10

5.11

6.1
6.2

Miss rate performance of DTLB and ASID-TLB with respect
to conventional TLB for varying preemptions with 4KB page
size and 32 TLB entries
Miss rate performance of DTLB and ASID-TLB with respect to
conventional TLB for varying TLB entries with 16 preemptions
and 4KB pagesize L.
Per access dynamic energy with respect to conventional TLB
saving for varying page size with 16 preemptions and 32 TLB
entries
Per access dynamic energy with respect to conventional TLB
saving for varying preemptions with 4KB page size and 32
TLB entries
Per access dynamic energy with respect to conventional TLB
saving for varying TLB entries with 16 preemptions and 4KB
PAge SIZE
Per access dynamic energy for varying Splash benchmark pro-
GTAIMNS . . o v o e e e e e
Per access time saving with respect to conventional TLB for
varying page size with 16 preemptions and 32 TLB entries
Per access time saving with respect to conventional TLB for
varying preemptions with 4KB page size and 32 TLB entries .
Effective access time of 32 entry, 64bits TLB for varying Splash

benchmarks

Deterministic process aware partitioned real-time cache
Miss rate of CC and DEARCache by varying number of pre-

emptions

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

7.1
7.2
7.3
7.4

Per access energy for varying preemption with 8KB cache size,
32B line size and associativity as 4 way
Per access energy for varying cache size with 10 preemptions,
32B line size and associativity as 4 way
Per access energy for varying line size with 10 preemptions,
8KB cache and associativity as4 way
Per access energy for varying associativity with 10 preemptions,
8KB cache and 32B linesize
response time for varying preemption with 8KB cache size, 32B
line size and associativity as 4 way
response time for varying cache size with 10 preemptions, 32B
line size and associativity as 4 way
response time for varying line size with 10 preemptions, SKB
cache and associativity as 4 way
response time for varying associativity with 10 preemptions,
8KB cache and 32B linesize
Per access dynamic energy for varying line size with 10 pre-
emptions, 8KB cache size and associativity as 4 way
Per access Static energy for varying line size with 10 preemp-

tions, 8KB cache size and associativity as 4 way

DREAM Memory Subsystem
Deterministic Energy Efficient Process aware(DEEP) Cache
DREAM Memory Subsystem with shared way
Per access dynamic energy for a 4 way, 32B, SKB cache with

varying preemptions o000

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

Per access dynamic energy for a 4 way, 32B line size with
varying cache size [#preemptions = 10]
Per access dynamic energy for a 4 way, SKB cache with varying
line size [#preemptions = 10]
Per access dynamic energy for a 32B, 8KB cache with varying
associativity [#preemptions = 10] L.
Per access static energy for a 4 way, 32B, 8KB cache with
varying preemptionso
Per access static energy for a 4 way, 32B line size with varying
cache size [#preemptions = 10]
Per access static energy for a 4 way, SKB cache with varying
line size [#preemptions = 10]
Per access static energy for a 32B, 8KB cache with varying
associativity [#preemptions = 10] L.
Per access time for a 4 way, 32B, 8KB cache with varying
preemptionso
Per access time for a 4 way, 32B line size with varying cache
size [#preemptions = 10]
Per access time for a 4 way, 8KB cache with varying line size
[#preemptions = 10]
Per access time for a 32B, 8KB cache with varying associativity
[#preemptions = 10]
Per access dynamic energy for varying line size with 10 pre-
emptions, 8KB cache size and associativity as 4 way
Per access Static energy for varying line size with 10 preemp-

tions, 8KB cache size and associativity as 4 way

7.18

7.19

7.20

7.21

7.22
7.23

Per access dynamic energy for a 64KB L2 cache with varying
L1 cachesize 158
Per access dynamic energy for a S8KB L1 cache with varying
L2 cachesize 159
Per access static energy for a 64KB L2 cache with varying L1
cache size 160
Per access static energy for a 8KB L1 cache with varying L2
cachesize 160
Per access time for a 64KB L2 cache with varying L1 cache size161
Per access time for a 8KB L1 cache with varying L2 cache size 161

List of Tables

2.1
2.2

3.1
3.2
3.3

4.1
4.2

5.1
5.2

Comparison of Replacement Strategies 17

Cache Coherence States and Descriptions 25

SESC Components for Energy and Power Modeling of Cache . 41

WHP variablesused L. 51
SESC Components for Time Modeling of Cache 53
Read, Write and Snoop operations in MOESIF Protocol . . . 81
Energy and time modeling for cache operations 89
TLB Components for Energy and Time Modeling 106
Task Set Execution Schedule Format 109

xxii

List of Abbreviations

ASID-TLB Address Space Identifier based Translation Lookaside Buffer
CC Conventional Cache

DEARCache Deterministic Energy efficient process Aware Real-time Cache
DEEP Deterministic Energy Efficient Process aware

DREAM Deterministic REAl-time Memory system

DREAMS Deterministic REAl-time Memory system with Shared way
DTLB Deterministic Translation Lookaside Buffer Buffer

FIFO First In First Out

LFU Least Frequently Used

LFUDA Least Frequently Used Dynamic Aging

LRU Least Recently Used

MC Multi-core

MESI Modified Exclusive Shared Invalid

MESIF Modified Exclusive Shared Invalid Forward

MI Modified Invalid

MOESI Modified Owned Exclusive Shared Invalid

MOESIF Modified Owned Exclusive Shared Invalid Forward

MOSI Modified Owned Shared Invalid
MRU Most Recently Used

MSB Most Significant Bit

MSI Modified Shared Invalid

PCB Process Control Block

PLRU Pseudo Least Recently Used
RAND RANDom

RT Response Time

SA Set Associative

SESC Super EScalar Simulator
TLB Translation Lookaside Buffer
WCET Worst Case Execution Time
WH Way Halting Cache

WHP Way Halted Prediction

WP Way Predicting Cache

Chapter 1

Introduction

1.1 Background

Technology advancement has helped in increasing the processing speed for
almost all the architecture components. Processors speed increases at higher
rate than memory speed. Speed mismatch between these components is one
of the major performance bottlenecks in modern processors which upto a limit
is alleviated by using hierarchical arrangement of cache memories. Memory
subsystems improve system performance by taking advantage of locality of
reference - both temporal and spatial. Translation lookaside buffer (TLB)
helps in converting logical address into physical address and is accessed at
least once per instruction cycle. Hence, the TLB and cache plays a major
role in determining system performance.

Irrespective of the processor in use, energy efficiency is one of the major
design considerations of the modern day processor design. Shrinking size of
transistors because of the advancement in fabrication technology increases
the transistor density on chip. This improves processing power of the system
at the cost of energy consumption. Narrowing of channel width in transistors
result in reduced switching current and increased leakage current. This leads

to reduction in dynamic energy at the cost of increased static energy.

1.1. Background 2

The Dynamic energy consumption of a CMOS circuit is given as :
Edynamic = Ax V2 * f *C (11)

where A, V', f and C are cache activity factor, operating voltage, operating
frequency and effective load capacitance respectively. The Static energy

consumption of a CMOS circuit is as :
Estatic =V x]leak * N Kdesign (12>

where Ijeqr, N and K gegign are the leakage current, number of transistors in the
circuit and design dependent parameters respectively. Dynamic energy can
be reduced by reducing the voltage or frequency of operation or by reducing
the activity factor. Static energy can be reduced by reducing total number of
transistors or by shutting down some part of the system.

Memory subsystem consumes major portion of the on-chip energy. This forces
the designers to come up with memory subsystem design with least possible
energy consumption without much performance degradation.

System performance can be improved by increasing operating frequency of
the system. However, increase in operating frequency leads to increase in
energy consumption which in turn leads to increase in heat dissipation thus
leakage current. One of the possible solution to this problem is to go for
Multicore(MC) systems [1]. A shared memory MC system has more than
one core where L1 and L2 caches are local to the core. The L3 cache and
main memory are shared across all the cores. This results in possibility of

having multiple copies of data in different locations. Cores access data from

1.1. Background 3

local caches as the data transfer is much faster from/to it in comparison with
shared memory. It is possible that the cached data is modified in one of the
cores and these modifications are not reflected in other cores, leading to data
inconsistency among cores. Thus, maintaining data consistency becomes a
major challenge in MC systems. Energy efficient and performance centric
protocols are required to maintain data consistently in MC systems.

Deadline misses in hard real-time embedded system results in catastrophic
failure. In hard real-time embedded systems, along with energy efficiency,
deterministic tighter upper bound on the Worst Case Execution Time (WCET)
of the task is also required. Deterministic tighter upper bound on WCET
can only be ensured by making the entire process of accessing memory
subsystem deterministic. This helps in improving offline and online analysis
to incorporate more real-time tasks without deadline misses. One of the
major components which make the system non-deterministic is memory.
The unpredictability of memory subsystem is mainly because of the global
replacement policy where the memory entries can be replaced by other tasks.
Global replacement results in increase in memory misses on preemption. The
memory access model can be made deterministic by providing a hard upper

bound on the number of misses in TLB, all levels of caches and main memory.

1.2. Motivation 4

1.2 Motivation

The cache memory access time is calculated as equation 1.3.

Cache memory access time = Cache memory hit time (13)
1.3
+ Miss rate x Miss penalty

The cache performance can be optimised by reducing cache hit time, miss rate
and miss penalty. The cache misses are categorised as compulsory, capacity,
conflict and coherence misses [2]. Figures 1.1 and 1.2 show hit time and hit
rate performance with varying cache size and associativity, while executing
FFT - Splash benchmark program [3].

As shown in figures 1.1 and 1.2, the cache hit time and hit rate of the direct
map cache is the least as compared to the same-sized associative cache organ-
isations. This is because the requested data word is available in output bus
before hit/miss decision. Though the hit time of direct-map cache is the least,
its average access time is highest due to highest number of conflict misses.
The energy consumption - both static and dynamic - of a cache is propor-
tional to hit energy, block transfer energy and hit rate. Dynamic energy
consumption can be reduced by reducing switching activity in cache and static
energy consumption can be reduced by shutting down unused part of the
cache. Architects have to find the right cache configuration to reduce energy
consumption without much performance degradation. Though direct-map
cache offers least per access energy consumption and hardware complexity,
most of the embedded architectures prefer set associative (SA) cache because

of the moderate hit energy and the hit rate.

1.2. Motivation

9Z1S 9yDeD SUIAIRA [[IIM SOI}IAIIRIDOSSE SNOLIBA JO doURULIONDd owily HY aypde)) '] 9In3Iq

(g>1)9718 apde)

gcl 9 ce 91
G20

1S€0

I
LM
=
]

I
ok
o

(su)awt L TH

|
L7
L1
o

I
o
o

EE (em-g
EE fem-+ Z
N fem-2
N 1001p

990

1.2. Motivation

9ZIS 9yor)d wgﬁ\mmﬁ.\/ TIM SOTIIATIRBIOOSSE SNOLIBA JO @UE@EHO%HOQ 9jel Y ayde)) G'T @hﬂwﬁh

8cl

79

(d>1)azIS atpeD

ce

91

pAlBID0SSY AlIhH
EM-9|

EM-Q
EE fem-v
N fem-g
. 5010

68

968

06

506

16

S'16

c6

SN4S)

€6

€6

48]

1wy TH

1.2. Motivation 7

For a SA cache, an ideal cache hit scenario is, compare one tag and access
one data and an ideal cache miss scenario is to find a miss without accessing
tag array and data array. Various cache optimisation strategies like way
prediction [4], way halting [5] are proposed to achieve these objectives.

The growing computational demands is satisfied by adding more proces-
sors/cores to the system [6]. A coherent view of memory is crucial for these
systems. A coherent data in cache is maintained by using cache coherency
protocols. Cache coherency circuit, coherency misses and data/signal trans-
fers across the network contributes towards the energy consumption in MC
systems. Various coherency protocols are available to maintain data coherency
but there exist a requirement of reducing coherency related energy consump-
tion further [7].

In real-time systems, apart from the correct result of computation, the time
at which the result is produced is critical [8]. This is true specially when
it is used for critical applications like vehicular, aeronautical, military and
industrial. Deadline miss of some of these applications lead to system failure
and catastrophic consequences. Ensuring deadlines of critical applications
is one of the design goals of hard real-time systems. As most of these sys-
tems are battery powered, energy efficiency is equally a design consideration
along with deadline. Though cache memories are used widely to bridge
the speed mismatch between processor and memory, they make the system
non-deterministic. This is due to inter-task conflicts during execution. The
preempted job’s cache lines might get replaced by the cache lines of currently
running job. When the preempted job resumes back its execution, many of

its cache lines may not be present which increases its execution time. This

1.3. Problem Statement 8

may result in deadline misses, especially for high priority tasks with memory
operations. Design of energy efficient and performance centric hard real-time
system requires a tighter upper bound on WCET. To provide tighter upper
bound on WCET, memory subsystem needs to be designed with tighter upper

bound on misses.

1.3 Problem Statement

This thesis addresses architecture level energy and performance optimisation
of uniprocessor / unicore and MC system. With advancement in technol-
ogy, the static energy consumption became an equally important component
in total energy consumption along with the dynamic energy consumption.
Static energy can be reduced by increasing cache hit rate and thus reducing
operational time or by shutting down unused part of cache memory. Dynamic
energy consumption can be reduced by reducing switching activities during
cache access. Dynamic energy consumption is mainly due to charging and
discharging of wordlines, bitlines, sense amplifiers, precharge circuits and
decoders. To reduce dynamic energy consumption, this thesis aims at reducing
switching activities of cache memory. This thesis also ensures deterministic
tighter upper bound on memory access time in hard real-time systems. De-
tailed objective of the thesis are as follows:

Objective 1: Design of energy efficient unicore cache

The objective is to design an energy efficient cache for unicore system with
reduced response time. The optimal cache hit energy can be achieved by

accessing a tag array and a data array. The ideal cache miss scenario is

1.3. Problem Statement 9

achieved by early detection of cache misses. Early detection of cache miss
improves system performance. This objective is to achieve performance closer
to ideal cache hit and cache miss scenarios. This objective is discussed in
chapter 3 of this thesis.

Objective 2: Design of energy efficient cache coherency protocol
for MC systems

The objective is to improve the off-chip and on-chip bandwidth usage. This
work aims at designing an energy efficient cache coherency protocol by reduc-
ing coherency misses, write backs to next level memory and responders to
any request. This objective is discussed in chapter 4 of this thesis.
Objective 3: Design of deterministic TLB

The objective is to design a TLB which offers tighter upper bound on number
of misses and thus achieves a deterministic TLB performance. Details of this
objective is discussed in chapter 5.

Objective 4: Design of deterministic L1 cache

The objective is to provide tighter upper bound on WCET of L1 cache by
redesigning L1 instruction and L1 data caches. Inter-task interference makes
the system non-deterministic. This issue needs to be addressed to achieve
tighter upper bound on cache misses. Deterministic L1 cache design is dis-
cussed in chapter 6.

Objective 5: Design of deterministic memory subsystem

The objective is to provide tighter upper bound on WCET of memory sub-
system by redesigning L2 cache and combining it with redesigned TLB and

L1 cache. The determinitsic memory subsystem is discussed in chapter 7.

1.4. Research Goals 10

1.4 Research Goals

This research focuses on optimising performance in terms of energy consump-
tion and time for unicore and MC systems. Identified research goals are:
Research Goal 1: Identify time and energy impact of major components
in memory subsystem.

Research Goal 2: Optimise unicore cache architecture with minimum re-
sponse time and energy consumption.

Research Goal 3: Optimise MC cache architecture by minimising coherency
misses and network traffic to improve performance in terms of time and en-
ergy.

Research Goal 4: Eliminate time uncertainty in TLB design to offer a
tighter worst case upper bound on TLB accesses.

Research Goal 5: Eliminate time uncertainty in L1 private cache design
and offer a tighter worst case upper bound on L1 accesses.

Research Goal 6: Eliminate time uncertainty in memory subsystem used
for hard real-time systems by redesigning TLB, private L1, shared L2 and

main memory to offer a tighter worst case upper bound.

1.5 Contributions

The major contributions of this thesis are as follows :
Contribution 1: Energy efficient unicore cache
Time and energy impact of major components in memory subsystem is identi-

fied. A part of this contribution is published in Paper A. An energy efficient

1.5. Contributions 11

cache for unicore system with reduced per access time is designed and im-
plemented. This contribution is discussed in chapter 3 of this thesis and is
published in Paper B.

Contribution 2: Energy efficient cache coherency protocol for MC
systems

Identification of various cache coherency related components contributing
towards energy consumption is done. A part of this work is published in
Paper C. The off-chip and on-chip bandwidth usage is improved. An energy
efficient cache coherency protocol is designed and implemented. This work is
published in Paper D and is discussed in chapter 4 of this thesis.
Contribution 3: Deterministic TLB

This work designed and evaluated a deterministic TLB which offers tighter
upper bound on number of misses. This contribution is published in Paper E
and is discussed in chapter 5 of this thesis.

Contribution 4: Deterministic L1 cache

The tighter upper bound on WCET of L1 cache is obtained by designing and
evaluating deterministic L.1 cache. This contribution forms chapter 6 of this
thesis.

Contribution 5: Deterministic memory subsystem

The contribution provides tighter upper bound on WCET of memory sub-
system. L2 cache is redesigned and combined with redesigned TLB and L1

cache. The determinitsic memory subsystem is discussed in chapter 7.

1.6. Publications 12

1.6 Publications

Paper A: Geeta Patil, Parag Panda and Biju Raveendran, “A Survey on
Replacement Strategies in Cache Memory for Embedded Systems,” IEEE Con-
ference on Distributed Computing, VLSI, Electrical Circuits and Robotics
(DISCOVER), Mangalore, 2016, pp. 12-17.

Paper B: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “Way
Halted Prediction Cache: An Energy Efficient Cache Architecture for Embed-
ded Processors,” 28" International Conference on VLSI Design, Bangalore,

2015, pp. 65-70

Paper C: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “Simulation
based Performance Study of Cache Coherence Protocols,”IEEE International
Symposium on Nanoelectronic and Information Systems, Indore, 2015, pp.

125-130.

Paper D: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “MOESIF:
A MC/MP Cache Coherence Protocol with Improved Bandwidth Utiliza-

tion,” International Journal of Embedded Systems (In Press).

Paper E: Geeta Patil, Kajal Varma and Biju Raveendran, “DTLB: Deter-
ministic TLB for Tightly Bound Hard Real-Time Systems,”30"" International
Conference on VLSI Design and 16! International Conference on Embedded

Systems, Hydrabad, 2017, pp. 207-212.

1.7. Thesis Outline 13

1.7 Thesis Outline

The outline of rest of the dissertation is as follows:

Chapter 2 - Literature Survey - This chapter presents a survey of state-
of-the-art techniques used for energy optimisation in unicore and multicore
cache architectures. The survey also includes various techniques used to
obtain tighter upper bound on WCET of real-time tasks.

Chapter 3 - WHP : Way Halted Prediction Cache - This chapter
presents an energy efficient set associative cache architecture named Way
Halted Prediction (WHP) cache. WHP is designed to obtain reduced energy
consumption and response time(RT).

Chapter 4 - MOESIF: Cache Coherency Protocol - This chapter con-
centrates on improving cache performance by redesigning coherency protocols.
This chapter proposes an energy efficient cache coherency protocol - Modified
Owned Exclusive Shared Invalid Forward - MOESIF. The redundant re-
sponses are concisely narrowed down in MOESIF protocol.

Chapter 5 - DTLB : Deterministic TLB for Real-time System - To
have a tighter upper bound on WCET of real-time task, this chapter presents
a TLB architecture - Deterministic Translation Lookaside Buffer (DTLB)
which offers deterministic miss rate.

Chapter 6 - DEARCACHE: Deterministic Energy Efficient Process
Aware Real-time Cache - To have a tighter upper bound on the WCET of
real-time task, this chapter presents a Deterministic Energy efficient process
Aware Real-time cache (DEARCACHE). Tighter upper bound on the WCET

is achieved by eliminating L1 cache related intertask interference. It allocates

1.7. Thesis Outline 14

at least statically identified minimum ways to each job.

Chapter 7 DREAM: Deterministic Memory Subsystem - This chapter
presents an integrated design of deterministic memory named as Deterministic
REAl-time Memory system (DREAM). DREAM achieves deterministic per-
formance at TLB and L1 cache by incorporating DTLB and DEARCACHE
along with deterministic energy efficient process aware L2 cache.

Chapter 8 Conclusion - This chapter concludes the thesis by summarising

the results and future directions of the work.

Chapter 2

Literature Survey

2.1 Introduction

This chapter presents an exhaustive literature survey, analysis and comparison
of the state-of-the-art techniques used for energy optimisation in uniproces-
sor/unicore and multicore memory subsystem architectures. The survey also
includes various techniques used to obtain tighter upper bound on WCET of
hard real-time tasks. The remainder of the chapter is organised as follows:
Section 2.2 describes work done in energy efficient cache architecture. Related
work in the field of cache coherency protocols and deterministic cache in

real-time system are discussed in section 2.3 and 2.4 respectively.

2.2 Uniprocessor / Unicore energy
optimisations

The most common approach to improve the cache hit rate with minimum
energy consumption is to find the correct configuration of cache size, cache
line size and associativity for the applications. Along with the configuration
parameters, cache replacement strategy also plays a vital role in optimising

cache performance [9]. It helps in reducing the number of cache misses and

15

2.2. Uniprocessor / Unicore energy optimisations 16

hence, the energy consumption and effective cache access time. An optimal
cache replacement strategy identifies a cache line which will not be accessed
in near future as victim cache line for replacement. This is impractical as the
future references are unknown [10]. The performance of the cache replacement
strategy mainly depends on how accurately system can predict the future
reference pattern based on the past references. The selection of a programable
replacement strategy for associative caches can have significant impact on the
overall system performance. The choice of a replacement strategy is one of
the most critical design issues.

Replacement strategies are classified based on time of the future reference
(Optimal), time at which the cache line has arrived in cache (Arrival), time
of the past reference (Recency), number of past references (Frequency), com-
bination of recency and frequency (Recency + Frequency) or a random pick
(Random).

Random (RAND) [11], First In First Out (FIFO) [9], Least Recently Used
(LRU) [12], Most Recently Used (MRU) [12], Least Frequently Used (LFU)
[13], [14], Least Frequently Used with Dynamic Ageing (LFUDA) [13], [15]
and Pseudo-LRU (PLRU) [16] are some of the widely used hardware controlled
cache replacement strategies . In order to analyse and compare hardware
controlled cache replacement strategies, they are implemented on Xilinx ISE
design 12.2. Memory traces of CPU2006 benchmark programs [17] were
extracted by using Simplescalar [18] simulator. The memory traces obtained

are given as input to the implemented cache replacement strategies.

17

2.2. Uniprocessor / Unicore energy optimisations

AI}NOID POYRIDOSSE

RECHECAS Qomm

pue 39s 1od s31q N SHq NN °repdn | siq NN orepdn o8B 159d %S¢ NY1d
AI3NOI10
pojeIdOSSE puR SI9JUNOD SI9)UNO0D %00T- %00T-
198 1ad $31q NSO N NYIN 2¥epdn NYIN #repdn 18891 1V 1889 1V NHIN
SOOURIIOL X VIN XVIN = XVIN =
A10A0 I9)Je UO1RIOAO | I9JUNOD 9OUDIOJRI | IDHUNOD 9OUSIDJOT
SUIYs pue I9junod J1 s109Un0d N7 J1 s109UN0d N7
90ULI9Jal S31q X 30] YIYS + 193UNO0d YIYs + SI9JUNO0D I9MO[S
f1es d s1q X gBOI N | AT 2repdn NndT 2repdn %G1 A8ty %ST- vandal
A13mMOIn
PojeIdOSSE pue I9)UNod I9)UN0d IOMO[S
108 10d 8919 Xg30[N NAT 2yepdn AT 2yepdn %81 9FRIAY %81~ nAa1
AI3NOIO
pojeIdOSSe pue I9)UNod IOMO[S
108 10d 8319 N g30[N 0414 2yepdn ANON 9%0¢ 95eIAY %08 0414
JI07)RIOUOS
wopuey opnasJ IOMO[S
pue sj1q N Z30[Iogsi8al v ayepdn) ANON 0,7 988IOAY UTT- ANV
VN VN VN NIN %0L LdO
A13mMOID
pojeIdOSse pue SI9)UNOD SI9)UNO0D
3os 10d s31q NSOIN g1 9vepdn NYTo%epdn | IONAUHAAY | HONHUHATY Ny1
Ny
syueuoduwo)) ssTua 1Y IM 9%l UIILIOSTY
Juoweor[doy
aIempley 9D UO UOIOY oD UO UOIOY dnpeodg ssTuI ayor))

so189)eI)g Juoweor[doy Jo uostreduwo)) :1°7 o[qe],

2.2. Uniprocessor / Unicore energy optimisations 18

The recency and frequency based replacement strategies updates the state
in every access where as other strategies update the states only on cache
miss. This leads to increase in critical path delay for recency and frequency
based strategies. The most widely used protocols at this point is LRU and
its variants. There exist various implementations like counter, square matrix,
skewed matrix, link list and variants like PLRU in market. This work uses
LRU as replacement strategy for most of its implementation mainly because
of its high predictability and high performance. The detailed comparison of
replacement strategies are given in Table 2.1.

The per access energy consumption of cache can be minimized by partitioning
the cache vertically or horizontally [19], [20]. Horizontal cache partitioning
schemes reduce per access cache hit energy by introducing a small but power-
ful cache between the core and L1 cache. The cache architectures like loop
cache, filter cache [21], instruction buffer [22],[23] and buffer cache [24] falls
in this category. Though cache hit energy consumption is low, the hit rate
of these caches are low. Vertical partitioning schemes [19] try to achieve the
ideal cache access scenario, i.e., accessing only one tag and one data array
for a cache hit and accessing no tag and data array for a cache miss. This
is achieved by dividing the cache into banks and providing bankwise access
control.

Compressed tag architecture proposed by Jong Wook Kwak and Young Tae
Jeon [25] optimises energy consumption of embedded cache. Compressed tag
architecture takes advantage of locality of reference. The optimisation is based
on the understanding that majority of consecutive references will have same

most significant bits (MSB). These distinct higher order bits are maintained

2.2. Uniprocessor / Unicore energy optimisations 19

in shared registers called locality buffer register. Tag bits of desired address
are divided into 2 parts - lower order tag bits, ¢t/ and higher order tag bits,
th. tl bits of tag are stored in cache line along with the data part and th
bits of tag are stored in separate energy efficient locations. tl bits of the
desired tag are compared with lower order tag bits stored in cache line. Only
on match of ¢t/ bits, th bits are compared with higher order entry stored in
locality buffer register. On mismatch of ¢l or th bits, data is fetched from next
level memory. This method requires additional hardware to maintain locality
buffer, replacement circuit for locality buffer, circuit to maintain index to
locality buffer.

In [26], Jones et al. proposed way placement cache to save dynamic energy
consumption using static profiling to determine the most frequently used
instructions. This approach uses way hint bit to decide whether to use the
profiling information or not. Based on the hint bit, operating system sets
additional way-placement access bits in TLB . When way-placement access
bit is set, only one way is accessed otherwise all ways are accessed which
results in dynamic energy saving.

Zhang et al. [27] proposed reconfigurable cache architectures - way concate-
nation and way shutdown caches - which can configure the cache parameters
dynamically. Way concatenation cache uses two bit configurable register to
select associativity between direct map, 2-way and 4-way. Way concatenation
cache configures cache line size as 16, 32 and 64 bytes. Way shutdown cache
saves static and dynamic energy consumption by shutting down unused ways
based on application’s memory usage.

Bournoutian et al. [28] used statically calculated miss rate to decide on

2.2. Uniprocessor / Unicore energy optimisations 20

associativities. The reconfigurable cache architectures reduce the static and
dynamic energy consumption at the cost of additional hardware complexity
and reconfiguration time.

Tag less cache (TLC) proposed by Sembrant et al. [29] aimed at reducing the
dynamic energy in virtually indexed physically tagged caches. TLC eliminates
tag comparison in data cache by using extended TLB (eTLB), which stores
the way location and valid bit of each cache line of the page. eTLB eliminates
tag comparisons and detects early cache misses. TLC accesses only one data
array during cache hit and does not access data array during cache miss.
The cache line location in eTLB needs to be accessed to find out way of the
accessed data which degrades performance in terms of energy and time due
to additional data storage in TLB.

Megalingam et al. [30] proposed phased cache which accesses cache in two
phases. During first phase, it compares all the tags of the given set index. If
there exist a match, it accesses the data in next phase. Phased cache achieves
energy saving at the cost of additional time and performance.

Inoue et al. [4] proposed way predicting (WP) cache architecture. WP enables
the predicted way’s tag and data array in first cycle. It compares the input
tag bits with predicted way’s tag bits in indexed set. If the tag matches, it
accesses the data in the same cycle. If the tag is not matching in predicted
way, then it enables all the other (N-1) tag and data arrays. If any of the
(N-1) tags matches with input tag, the data is accessed, otherwise cache
miss is executed. The energy saving of this architecture is around 60% for a
4-way set associative cache with a slight performance degradation because of

prediction miss penalty. WP cache achieves ideal scenario during prediction

2.2. Uniprocessor / Unicore energy optimisations 21

hit and its energy saving depends on prediction hit rate.

Access mode prediction proposed by Zhichun Zhu and Xiaodong Zhang [31]
combines merits of phased cache and WP by using access mode prediction.
It decides upon whether to access cache by predicting way or to access cache
in phases. Performance of this is based on the accuracy of access mode
prediction.

Batson et al. [32] proposed reactive associative (R-A) cache. R-A cache
provides flexible associativity by placing most blocks in direct-mapped po-
sitions and reactively displacing only conflicting blocks to set-associative
positions. To achieve direct-mapped hit times, R-A cache uses an asymmetric
organization in which the data array is organized like a direct-mapped cache
and the tag array like a set associativity cache. The data is accessed in the
same cycle if the tag matches in direct-map way. R-A cache do not incur
additional overhead during cache miss as it detects cache miss in first cycle
itself. It needs an additional cycle if data is found in cache line other than
direct mapped line.

To improve the energy efficiency by avoiding unnecessary tag comparison,
Zhang [5] proposed way halting (WH) cache architecture. WH cache uses a
small fully associative halt tag array per way to store the least significant
4 tag bits of each set in that way. The halt tag array is compared with 4
LSB’s of address to reduce unnecessary accesses. As the halt tag comparison
is happening in parallel with decoding, there is no performance degradation.
All the ways where halt tag is hit, is compared with remaining tag bits to
find whether there exists a match.

Though WP cache saves dynamic energy during prediction hit, it consumes

2.3. Cache Coherency Protocols 22

extra energy and time during prediction miss. WH cache saves dynamic
energy during halt miss but does not offer optimal energy during halt hit as
it may enable more than one way for comparison and access. To improve the
energy efficiency and access time further, way halted prediction (WHP) cache

architecture is deisgned and implement as a part of this thesis.

2.3 Cache Coherency Protocols

Cache coherence is a well addressed problem in literature. The solutions to
cache coherency problem is either hardware based [33] [7] [34], software based
[35] [36] or hybrid [37].

Per Stenstrom surveyed various hardware and software based cache coherence
protocols for shared memory MP systems [38]. Hardware based cache coher-
ence protocols are categorized as snoopy based and directory based protocols
depending on the strategy employed for maintaining data consistency [38]
[39]. In directory based protocols, a shared global directory is used for main-
taining state of each memory block. The snoopy based protocols maintain
cache consistency with the help of local cache line states which updates itself
by snooping the signals over the network. Software based cache coherence
protocols maintain cache consistency by using compiler analyzed data. If
data can be copied as private by multiple cores then compiler marks the data
as cacheable. When data is read only or it is read / written by a single core,
the data is cacheable. If any core writes data, it has to update the next level
memory before some other core caches it. Data read/written by multiple

cores is non-cacheable. Since performance and hardware requirements of

2.3. Cache Coherency Protocols 23

protocols are different, choice of cache coherence protocol become a major
design decision [39].

Performance analysis of snoopy based, OS based and non-coherent protocols
were explored in [40]. Results obtained imply that OS based cache coherence
is very much inefficient in terms of energy consumption and performance.
Energy consumption of snoopy based protocols is the least among the three
categories of protocols explored in [40]. In [37], Chaves et al. discussed
combination of software and hardware based protocols to maintain cache
coherence. A part of this hybrid cache coherence protocol is implemented in
hardware cache controller and remaining part is handled in software by using
microkernel. In this scheme, the bandwidth utilization is improved by using
multicasting of messages over unicasting. Latency of read request is reduced
by using transition state.

In hardware controlled caches, the cache controller has to maintain states
of the cache lines based on read and write operations. The widely used
read mechanisms are look through and look aside. The widely used writing
mechanisms are write back, write through and write buffer [41]. In case of
write through mechanism, every write operation leads to update the next
level memory whereas write back mechanism updates the next level memory
on cache line replacement. Write buffer mechanism is an extension of write
through with the help of a buffer to improve write performance further. In
[42], Garo et al. combined benefits of write back and write through cache
update policies. The write back reduces bus contention and dynamic en-
ergy consumption when there are frequent updates to a given cache line.

Write through is beneficial when there are few writing operations. The cache

2.3. Cache Coherency Protocols 24

follows write through policy when cache line is updated rarely and write
back policy when cache line is updated frequently. Garo et al. [42], used
frequency shift register and write back bit for each cache line along with
global countdown register to keep track of frequency of write back operations.
The cache coherence protocols use either write update or write invalidate
mechanisms to update other cores’[7]. The write update based protocols write
the data and updates the data in other shared copies. When cache data is
updated very frequently, write update mechanism floods the network. The
write invalidate based protocols invalidate shared data in other cores before
writing to the shared copy of data. Write invalidate based protocols offer
less network traffic but suffers from high coherence miss latency [43]. In [43],
Kayi et al. proposed an adaptive data forwarding protocol on top of write
invalidate protocol for Producer-Consumer sharing pattern. This protocol
uses additional Producer-Consumer Predictor Cache (PCPC) to track the
sharing pattern. Write update mechanism is widely used for applications
that follows Producer-Consumer sharing pattern whereas write invalidate
mechanism is used for all the other applications.

In a generic cache coherence protocol, the coherence policy is defined by state
transition diagram [7]. To maintain cache coherency, each cache line has
a state associated with it along with other entries like data bits, tag bits
and valid/invalid bits. The cache coherence state transits from one state
to another according to the state transition protocol upon core read/write
operation. The general description of cache states in snoopy write-invalidate
protocols is given in Table 2.2.

Modified-Invalid (MI) is the simplest protocol in use for maintaining cache

2.3. Cache Coherency Protocols 25

Table 2.2: Cache Coherence States and Descriptions

State Clean/ Access Description
Dirty? Type
M Dirty R/W The Cache line data has been
modified by the core
Q) Dirty R The Cache line data is modified.

Other cores may have the cache
line in S state

E Clean R/W No other cache holds a copy of
the cache line data
S Clean R The Cache line data is present in
more than 1 core

F Clean R The Cache line which will act as

a responder for any requests for
the line
I - - Cache line is either not present in

cache or is invalid

coherency in MC systems. It uses two states: Modified (M) and Invalid (I).
The hardware complexity of MI protocol is the least among all the coherence
protocols. Read/write in a core results in invalidating the data in other core
if the same data exists. This floods the network with large number of invali-
dation signals which is reduced by using S state in Modified-Shared-Invalid
(MSI) protocol.

In MSI protocol, one or more cores can have valid copy of data. Data sharing
results in reducing the number of coherence misses as compared to MI. In
case of write on a shared copy of data, the invalidation signal is sent to all
other cores irrespective of whether there exist a shared copy or not. This
results in sending unwanted invalidation signals if modifying core has the
exclusive valid copy of data., which is addressed by using E state in Modified-
Exclusive-Shared-Invalid(MESI) protocol.

The E state in Modified-Exclusive-Shared-Invalid(MESI) protocol eliminates

2.3. Cache Coherency Protocols 26

unwanted invalidation signal. In MESI, for every state change from M needs
data to be written back. This may result in frequent data writes between the
core and next level when read and write alternate. This can be eliminated by
using O state in Modified-Owned-Shared-Invalid (MOSI) protocol.

In MOSI, O state allows sharing of dirty copy between different cores. But
the absence of E state results in sending invalidation signals to other cores
while attempting write to an exclusive copy. This is eliminated by combining
the states of MESI and MOSI protocols in Modified-Owned-Exclusive-Shared-
Invalid(MOESI) protocol.

In MOESI protocol, by combining E and O state reduces number of invali-
dation signals and frequency of write-back operations. However, on a cache
miss, all the sharers of requested data respond and the requestor is serviced
by redundant responses. This is addressed by introducing F state in Modified-
Exclusive-Shared-Invalid-Forward (MESIF) protocol.

MESIF protocol ensures that only the cache line in F state responds to
the read/write request of other cores. Although redundant responses are
eliminated by using F state, sharing of dirty data is not allowed in MESIF.
To improve energy consumption and response time further, MOESIF protocol
is designed and implemented as a part of this thesis. The redundant responses
in MOESI and number of write backs in MESIF are reduced by combining O
and E state in MOESIF.

2.4. Deterministic Memory 27

2.4 Deterministic Memory

Deterministic memory subsystem is a critical part of hard real-time system
to improve number of executing job with no catastrophic failure. The tighter
upper bound on WCET of memory subsystem requires tighter upper bound

on TLB, various levels of caches and main memory.

2.4.1 Deterministic TLB

In recent past, researchers proposed various techniques to improve TLB
performance. These techniques mainly focus on reducing TLB access time
and/or energy consumption. This can be achieved by employing techniques
which are implemented in hardware [44],[45], software [46] or combination of
these [47]. The access time reduction can be achieved by reducing per TLB
access time or increasing TLB hit rate. Hardware mechanism to improve
TLB hit rate is to increase the number of TLB entries. This leads to increase
in per access time and energy consumption.

Srilatha et al. [44] proposed a Banked Associative (BA) TLB design over
a Fully Associative (FA) TLB design which increases the number of TLB
entries with negligibly small impact on per access energy consumption. In
BA-TLB design, only half of the entries in TLB are looked up on each TLB
access. This reduces per access TLB energy consumption by half. BA-TLB
offers almost the same TLB hit rate as compared to FA-TLB.

Jung-Hoon Lee et al. proposed Filter TLB [45] which uses a small TLB called
filter TLB in addition to conventional TLB. Filter TLB stores most recently

accessed TLB entries. For each virtual to physical address translation, the

Deterministic TLB 28

filter TLB is accessed first. Conventional TLB is accessed only on filter TLB
miss. Use of filter TLB improves TLB performance when it is filter TLB hit.
But filter TLB needs additional time when it is filter TLB miss.

A recency based TLB preloading [48] is based on the principle of temporal
locality of reference. Group of pages referred around the same time follow
similar reference pattern. The past references can be used for predicting
the future. In this model, each page table entry maintains two pointers.
One points to page evicted from TLB just before this page and the other
points to the page evicted after this page. On TLB miss, prefetch buffer is
accessed for the required entry. If the entry is present in prefetch buffer, then
it is copied to TLB. Otherwise the entry is updated from page table. The
prefetch mechanism prefetches the entries and stores them in prefetch buffer.
This approach requires additional hardware for storing prefetch entries and it
increases size of each page table entry.

Software based approach proposed by M. Talluri and M. Hill [46] uses super
pages. Size of a super page is multiple of base page size. Large page sizes can
be used for storing big data like kernel data and large arrays. Use of large
super pages increases TLB reach without affecting TLB access time. This
model gives significant reduction in TLB misses. However, when TLB stores
frame numbers with different frame sizes, number of offset bits calculation
becomes dynamic. This dynamic decision makes virtual address to physical
address translation difficult. Secondly, time to handle page table miss is larger
for super pages with large sizes. Moreover to support the concept of super
pages, substantial OS support is required.

Kandemir et al. [49] and Ilya et al. [47] follow combination of hardware and

Deterministic TLB 29

software based techniques for TLB. Translation Registers (TRs) are used
by Kandemir et al. [49] to reduce TLB access time. TRs store frequently
used virtual to physical address translation. Kandemir et al. uses compiler
based strategy for effectively using TRs. Complier provides hints for address
translation in TRs whenever it finds that the translation is going to be used
heavily in near future. In all these approaches TLB is flushed on preemption
in multitasking environment. TLB performance is affected by flushing while
concurrently executing tasks. TLB misses increases due to interference caused
by other tasks. Thus WCET of task in hard real-time systems becomes
unpredictable. Moreover with increase in number of task in multitasking
environment, the frequency of preemption increases. Ilya et al. [47] proposes
Context-aware TLB Preloading (CTP) approach for multitasking environment.
CTP uses static information offered by the compiler and runtime information
offered by OS to identify page reference which will be made in future. CTP
stores those entries from TLB which will be used in future time slot on task
preemption. When task resumes, stored entries are loaded back in TLB and
also TLB is preloaded with some entries which are not used yet but will be
used in near future. For the smooth functioning of TRs and CTP, compiler
and OS support is required. This increases complexity of complier and OS.
System performance degradation due to TLB flushing during preemptions
and subsequent TLB misses is addressed by Girish et al. [50]. Girish et al.
added process identifier (PID) to the TLB entry in order to associate TLB
entry with the specific task. Instead of flushing TLB during preemption, TLB
is accessed by comparing valid / invalid bit, virtual address and PID stored

in each TLB entry. This approach increases storage overhead by 25% for

Deterministic Cache 30

storing PID in TLB [51]. Most recently used n TLB entries are reserved on
task preemption. Preempted task can have TLB entry reserved only if total
number of TLB entries reserved is less than 50%. This approach reduces the
number of TLB entries for executing task which increases TLB miss rate and
hence adversely affects system performance. The DTLB approach proposed
in this thesis offers least TLB misses as compared to TLB flushing and TLB

reservation model without complicating compiler and OS.

2.4.2 Deterministic Cache

Energy efficiency, timeliness and size are the conflicting requirements of a real-
time system. Energy efficiency can be attained using platform independent
optimizations like reducing the number of preemptions and cache impacts
[52],[53] and platform dependent optimizations like DVFES [54],[55] and DPM
[56]. Timing performance is very critical for hard and firm real-time systems.
Performance of a system can be analysed if tighter upper bound on WCET is
available. The tighter upper bound on WCET of a real-time job is possible
only if accurate values are obtainable from various levels of design hierarchies
like architectural level, operating system level and application level.

Davis et al.[57] compared various scheduling algorithms using parameters
like optimality, feasibility, comparability, predictability, sustainability and
anomalies. Zhang et al. [58] reported Quick convergence Processor-demand
Analysis(QPA) algorithm which reduces the schedulability analysis time
for schedulable/unschedulable task sets. The scheduling algorithms with
arbitrary preemptions induce additional cache flushes and reloads. Bril et al.

[52] performed WCET analysis based on critical instant and busy period for

Deterministic Cache 31

fixed priority preemptive scheduling.

Task preemption followed by fetching of cache lines after resumption leads
to additional delay in WCET. Ju et al. [59] presented WCET analysis with
this additional delay. Further, conflicting jobs may replace a dirty cache
line. This results in swapping of blocks between cache and memory. It
introduces two block transfers, thus twice the amount of delay and energy
consumption. Dirty cache lines of low priority jobs may impact the response
time of higher priority job and vice versa. Davis et al.[60] considered the
impact of write back caches in WCET and analyzed the schedulability of fixed
priority task with preemptive & non-preemptive schedules by incorporating
the same. Altmeyer et al.[53] reduced preemption cost in real-time system by
selecting a preemption point with lower preemption impact.

The program level memory access patterns have huge impact in architecture
level energy consumption. Minor change in the program code or program
input may lead to dramatic changes in memory behaviour. The WCET
calculation is done with unrealistic assumption that all memory references
lead to cache misses. This results in the execution time being overestimated
by several hundred percent [61]. To offer a tighter bound on architecture, the
memory system should be deterministic. Cache partitioning is one of the most
widely adopted strategies to make real-time cache deterministic. Whitham et
al. [62] described a method to reduce the cache-related preemption delay in
hard real-time systems using explicit reservation of cache memory. Chang et
al.[63] presented Cooperative Cache Partitioning scheme which makes use of
multiple time-sharing partitions that allows greater speedup and fairness.

Falk et al. [64] proposed a static compiler based cache locking mechanism.

Deterministic Cache 32

It generates execution flow graph using context-specific flow graph. It finds
the longest execution path and locks cache entries of the same. Puaut et al.
[65] proposed an algorithm which partitions the task into a set of regions.
Dedicated cache line is allotted to each region. These methods partitions the
cache memory and determines WCET by considering intra-task execution.
This thesis proposes deterministic cache memory which offers tighter upper
bound on the execution time of each task by extending process aware L1

cache and deterministic TLB along with partitioned L2 cache.

Chapter 3

WHP:Way Halted Prediction
Cache

3.1 Introduction

This chapter presents an energy efficient set associative cache architecture
named Way Halted Prediction cache (WHP). WHP aims at reducing energy
consumption and Response Time (RT). Way Predicting cache (WP) proposed
by Inoue et al.[4] offers ideal cache hit scenario in case of prediction hit, but
needs additional cycle in case of prediction miss. Way Halting cache (WH)
proposed by Zhang et al. [5] offers early detection of cache miss with the
help of additional halt tag array. WH offers ideal cache miss scenario by not
accessing any of the tag and data arrays when halt tag comparison in all
ways is miss. It also offers ideal cache hit scenario when halt tag hit happens
exactly in one way. In all other cases, WH offers higher energy consumption
than WP with prediction hit. Better performance both in terms of energy and
time can be achieved with the help of combining the merits of WP and WH.
This is achieved by combining halt tag array of WH and way prediction circuit
of WP. Halt tag array helps in early detection of prediction misses, which

saves time and energy. Prediction hit reduces the number of enabled ways

33

3.2. WHP cache architecture 34

from k — ways to 1 — way, which reduces the dynamic energy consumption
further. In this chapter, WHP is compared with conventional cache (CC),
WH and WP on the basis of energy consumption and RT.

3.2 WHP cache architecture

WHP combines the advantages of WH and WP architectures. WP uses MRU
way for prediction. WP enables the predicted way’s tag array and data array
in first cycle. It compares the input tag bits with predicted way’s tag bits
in indexed set. If the tag matches, it accesses the data in same cycle. If the
tag is not matching in predicted way, then it enables all the other (k — 1)
tag and data arrays where k is the number of ways with Halt tag hit. If any
of the (k — 1) tags matches with the input tag, the data corresponding to
that tag is accessed, otherwise cache miss is executed. WHP compares no tag
array and accesses no data array in case of halt miss which is an ideal cache
miss scenario. It compares one tag array and accesses one data array in two
scenarios (a) halt hit in one way (b) halt tag hit in more than one way and
prediction hit, which are the ideal cache hit scenarios.

WP saves dynamic energy during prediction hit, but it results in increasing the
RT during prediction miss. Prediction accuracy of WP is improved by using
halt tags in WHP. WHP uses halt tags for the early detection of probable
prediction misses in decode cycle of cache access. The early detection of
prediction miss is achieved when predicted way is a halt tag miss. This results
in WHP offering better performance as compared to WP.

In comparison with CC, WH saves dynamic energy when there exist (a) halt

3.2. WHP cache architecture 35

tag miss (b) cache hit with halt tag hit in less than k& ways. When the halt

tag hits are more than one, WHP uses prediction circuit to predict the most

recently accessed way. When predicted way is a hit, the energy consumption

in WHP will be much lesser than WH. The WHP cache architecture is shown

in Figure 3.1. The tag(t), index(i) and offset(o), for cache is calculated from

physical address. The cache access in WHP takes place as follows:

Stepl:

Step2:

The derived index is decoded and in parallel the low-order 4 bits of
the derived tag are compared against all the halt tags stored in fully-
associative halt-tag array. The parallel comparison of halt tags will
determine the ways with mis-matching tags to be halted. The output
line of the decoder is ANDed with the results of the halt tag comparison
for that row. Hence, the cache access would be continued only if the
low-order 4 bits of the tag in the decoded row are matching with the
low-order 4 bits of the derived tag. If all the halt tags are mis-match,
its a cache miss. A processor is stalled till it gets the data.

The number of ways halted will determine the activation of prediction
circuit. The prediction circuit is activated when halt-tag hit takes place
in more than one way. The prediction circuit predicts a way based on

history.

If halt tag is hit in only 1 way, the respective tag and data are accessed.
If halt tag hits in k-ways, prediction circuit is activated. The prediction
circuit used is shown in Figure 3.2. MRU way is the one selected as
the predicted way. It is checked if the predicted way is in the halt
tag hit ways. If yes, the tag and data array of the predicted way are
accessed. Otherwise, the tag and data arrays of the k halt tag hit ways

36

3.2. WHP cache architecture

9IMIOVYIYDIY dYDR) UOIIDIPaI] POIRH ARA\ (1°¢ 0InS1

&

&

XN\ 10103]aseleq /

% Y [) [Y

|mu.|_u.|uuo._|

BB

La

e i 31
(#-N) 451 n (#-N)

fs

g

T

e

L EjE(
r_

|Qqu‘UwL|

|

J13[]0J1U0) 3YIE)

UMD UoNIIPaIg

Xapu|

37

3.2. WHP cache architecture

Ae P,
paldpald

<

YOI TOMIPoL] :g'¢ oISt

)

Jaxa|dnny

(p=(xapurLzh)
195 1 sug
uoTPIpalg

{

—TT 11

T
RS sng
uonaIpaIg

1
Pg :sng
uonaIpaIg

0
PS:sng
uonAPaIg

—

s |

|

Jlapooag

X3apu|

—(IS
—(_=

+

Xapu|

mm_:.,

L1y

yd

3.2. WHP cache architecture 38

are accessed.

The output driver of the tag array comparison indicates whether the
tag is matching with the desired address tag. If the tag comparison is
unsuccessful and there is only 1 way with the halt tag hit, its a cache
miss. A processor is stalled till it gets the data. If the prediction is
a miss, the remaining k£ — 1 tag ways are compared for a possible tag
match which requires an additional cycle. If there exist no match in k

ways, its a cache miss. The processor stalls till it gets the data.

Step3: This step accesses the data array of the hit way and gets the requested

word using offset bits of the desired address.

The detailed algorithm which illustrates the working of WHP is given in
Algorithm 1.

Algorithm WHP : The WHP algorithm takes physical address (P) as input
and obtains tag, index and offset bits of P. The decoding takes place in
parallel with halt tag comparison. Number of halt-tag array hits ,C', in desired
set is obtained.

Halt-Miss with C' as 0 is the ideal scenario of cache miss with zero tag
comparisons and zero data access. The early detection of miss in the first
cycle of cache access reduces the dynamic energy spent in tag and data array
comparison. The processor is stalled till it gets the data from the next level of
memory resulting in additional cycles (miss penalty) to obtain the requested
data.

WHP directly enables tag and data array of Halt-tag hit way if C'is 1. It
compares the desired tag with enabled tag bits. If tag matches, which is ideal

cache hit scenario with one tag comparison and one data access.

3.2. WHP cache architecture 39

Algorithm 1: Way Halted Prediction

20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
37
38

39
40

Input: Physical address P
Output: Cache hit/miss and the requested data
begin

Decode P’s index bits to locate the desired set;
Compare Halt-tag array with low order 4 bits of P’s tag;
Count the number of Halt-tag hit ways, C, in the desired set;
if C == 0 then
‘ goto 37;
else
if C ==1 then
Enable the tag and data array of Halt-tag hit way;
if tag matches then
Transfer requested data from / to Processor;
return;
else
‘ goto 37;
else
Find the predicted way, Wp;
if Halt-tag array hit ways contain W, then
Enable the tag and data array of Wp;
Compare remaining tag bits of P with enabled tag array
bits;
if tag matches then
Transfer requested data from / to Processor;
return;
else
| PHIT =1;

end
else

‘ PHIT = 0;
end

end

end

Enable the tag and data array of remaining C' — PHIT halt-tag hit
ways;

Compare remaining tag bits of P with enabled tag array bits;

if no tag matches then goto 37 ;

Transfer requested data from / to Processor;

return,;

Activate Cache Miss Routine;

Transfer data from Lower level memory to Cache and transfer data
from / to Processor;

return;

end

3.3. Energy Model 40

The prediction circuit is enabled if Halt-tag is hit in more than 1 way, C' > 1.
If predicted way is in Halt-tag hit way, the remaining tag bits of predicted
way is compared with remaining t — 4, tag bits of the desired address. If it is
prediction hit, WHP achieves the ideal cache hit scenario. Remaining C' — 1
tag and data arrays are enabled in case of prediction miss. ¢t — 4 tag bits of
P is compared with tag bits of enabled ways. The mis-prediction results in
an additional cycle to determine cache hit/miss.

If predicted way is not in Halt-tag hit way then C' tag and data arrays are
enabled. t — 4 tag bits are compared with tag bits of enabled ways.

3.3 Energy Model

For energy and time modeling Super EScalar Simulator (SESC) is used. [66]
simulator. SESC is a microprocessor architectural simulator which models a
out-of-order pipeline with branch prediction, caches, buses, and processing
component of a modern processor. SESC models different cache sizes, hit &
miss latencies, replacement policies,cache-line sizes and associativities.The

components used for modeling energy and power are given in Table 3.1.

3.3.1 Conventional Cache

Cache Read Hit Energy:

Edyn,CC,CRHit = Edyn,dec + N * Edyn,ac + Edyn,op,drvr (31)

41

Conventional Cache

saLQ&c\mE\:@um

1257SPv2] g + Nwm\mvwiaﬁ\m Num\%\:\%m— ﬂmﬂwﬁm 309198
+ HﬁEwmwwtawm
TSPy DI) d _ A\\:\;Q&c\:mﬁm a:\:\.\mﬁ\:aﬁm H@umggsig\é
Q:S\ww\&sﬁm .\»uﬁ\:udﬁo &Eu\mﬁ:mﬁm HO@@M@QEOQ
25~SP YD
1 P N& rosse 9y} ST A OIdUA\
+ &q:t\mﬁws.uﬁﬁw + o SEQ&c\mﬁwo\diﬂﬁ psQ&c\wE\:aﬁm u.DQuSO ﬁuﬁm
&Euﬁﬁ&dﬁﬁ# + dmwmwwv\dmwﬁﬁ Z\AQEmew\:aﬁm
+ m::@\mﬁo\dihﬁ @w\mﬁ\&swwﬁﬁ em\mﬁd\soﬁnﬁ L dm\mﬁ:a@m + u:.:n\m.ﬁﬁﬁum sm\mﬁ:aﬁﬂ sm\w%\ﬁ\%m p@ﬂ:gaaﬂ 9SG
+ mﬁﬁ:ﬁmﬁ&dﬁ@ L m:.:S\mﬂﬁmﬁm +
+ LpsQ&o\wwﬁ&szﬁH mﬁ.&&www\v\eﬁﬁﬁ m?iawmﬁd\@ﬁm &ZQ&?&?E@%@ + sw\mﬁ\@@um miiawmﬁﬁ@um mﬁ.iawmw\?mﬁm wwﬁzﬂ ﬁm
+ dm\wv\v\dim + . wEEwwﬁw:\ﬁm +
mEE\mw\&szm + mCES\ww\v\uﬁm mQES\wﬁ\&cwwmﬂ wzxﬁwmﬁ\:@umv — swﬁawm M:E,ﬁwmﬁc\,ﬁm wzzﬁwmﬁ\:mﬁm SOUIT PIOA
UM~ SP~YDI] d +
wmﬁwmﬂ&eﬁﬁﬂ + Umﬁ\mﬁc\%m
29p~spYDI) _ aboywa) 09p~$7"YDI] 29p~SpP~YDI] 2ap=sp-ufip _ oapufip 2ap~sy-ufip 2ap~sp-ufip,
d = d d d | + d = q q C! Topov9(
opIS S¥L, | opIg wRQ opIS 8L, | opIg vRQ
sjuau

oMo 98eyearT [BI0],

syueuodmwo)) emoJ o8eyes|

ABI0U7] OTWRUA(T 12107,

squouodwo)) ASrouy orureuA(J

-odwo)) ayoe)

atPe)) Jo SUIPPOJN IomoJ pue A31aug] 10J syueuodwio) HSHS :T1°¢ 9[qRL,

Conventional Cache 42

where Fgy,, , is the dynamic access energy per way and N is the associativity.
L1 Cache uses write through as the writing mechanism and write energy is
twice the read energy.

Cache Write Hit Energy:

Eigyn cocwrit = 2 * Eayn co crmit (3.2)

Every cache miss results in cache hit.

Total cache read dynamic energy is:

Eagyn.ccr = Eayncc.cruit + Cruiss * Eayn_1a (3.3)

Total Cache write dynamic energy is:

Edyn,CC'W = Edyn,CC,CWHit + CWM'L'ss * Edyn,Tz (34)

where Crasiss; Cwriss and Egyp 7, is the cache read miss rate, write miss rate
and Egy, 7, is the data transfer energy from next level cache. Total Cache

dynamic energy is:

Eyncc = Eayn.ccr + Eayn_cow (3.5)
Total Cache static energy is:

Estatic,CC - Pleak:age * RTCC (36)

Way Predicting Cache 43

Where RT¢¢ is the response time and is given by :

RTcc = total cycles required for completion of program x cycle time

(3.7)

3.3.2 Way Predicting Cache

In way predicting cache, different components consuming energy are decoder,
prediction circuit, way access energy and output driver energy.

Prediction Hit, Cache Read Hit Energy:

Edyn,PHit,CRH'it = (Edyn,dec + Edyn,pred) + Edyn,x + Edyn,op,drvr (38>

Prediction Hit, Cache Write Hit Energy:

Eayn_prit.cwhit = 2 % Eayn_pHit CRHit (3.9)

Prediction Hit, Cache Hit Energy:

Eayn_prit.crit = Eayn_prit.crEt + Eayn_PHit.cW Hit (3.10)

Prediction Miss, Cache Read Hit Energy:

Edyn,PMiss,CRHit = (Edyn,dec + Edyn,pred) + N Edynﬂ: + Edyn,op,drvr (311>

Way Predicting Cache 44

Here additional energy is required to access remaining (N — 1) ways.

Prediction Miss, Cache Write Hit Energy:
Eayn priss.ow it = 2% Egyn piiss CRHit (3.12)

Prediction Miss, Cache Hit Energy:

Edyn,PMiss,CHit = Edyn,PMiss,CRHit + Edyn,PMiss,CWHit (313>

Prediction Miss, Cache Read Miss Energy:

Edyn,PMiss,CRMiss - Edyn,PMiss,CRHit + Edyn,T:B (314>

Prediction Miss, Cache Write Miss Energy:

Edyn,PMiss,CWMiss = 2% Edyn,PMiss,CRHit + Edyn,T:v (315>

Prediction Miss, Cache Miss Energy:

Edyn,PMiss,CRMiss = Edyn,PMiss,CRMiss + Edyn,PMiss,CWMiss (316>
Total Read Dynamic Energy:

Eayn wpr =Cpruit * Eayn_pHit CRHit
+ ((1 = Cruiss) — Cprait) * Eayn_pMiss.oRHit (3.17)

+ CRMiss * Edyn,PMiss,CRMiss

Way Halting Cache 45

Total Write Dynamic Energy:

Eaynwpw =Cpw it * Eqyn_pHit.ow Hit
+ (1 = Cwtiss) — Crwait) * Egyn_priss.ow Hit (3.18)

+ CWM'iss * Edyn,PMiss,CWMiss

where Cpruit, Criss, Cpwait, Cwariss 1S the prediction read hit rate,the
cache read miss rate, prediction write hit rate,the cache write miss rate
respectively.

Total WP Cache dynamic energy is:
Eigyn wp = Eayn wprr + Eaynwpw (3.19)
Total WP Cache static energy is:
Egaticwp = (Preakage + Ppred.ckt) * RTwp (3.20)
Where RTy p is the response time with WP and is given by :

RTwp = total cycles required for completion of program with W Px cycle time

(3.21)

3.3.3 Way Halting Cache

Cache Read Hit Energy:

Edyn,HHit,CRHit = (Edyn,dec + Edyn,halt) + k * Edynﬁ: + Edyn,op,drvr (322>

Way Halting Cache 46

where Fgy,, na is the energy required to access halt tag array and & is number
of halt tag hit ways.
Cache Write Hit Energy:

Eayn_mmit.ownie = 2 * Eayn_mmit crmit (3.23)

Halt Hit Cache Read Miss Energy:

Eayn vrit cRMiss = Eayn_vHit cRHit + Eayn 12 (3.24)

Halt Hit Cache Write Miss Energy:

Egyn vrit.cwMiss = Fayn mHit. oW Hit + Edyn 12 (3.25)

Halt Miss, Cache Read Miss Energy:

Edyn,HMiss,CRMiss = (Edyn,dec + Edyn,halt) + Edyn,T;t + Edyn,ap,drvr (326>

Halt Miss, Cache Write Miss Energy:

Edyn,HMiss,CWMiss = 2% (Edyn,dec + Edyn,halt + Edyn,op,drm") + Edyn,Tac (327>
Total Read Dynamic Energy:
Eayn wir =Cruit ¥ Eayn_wmiecrai + (Cruriie — Crua) * Eayn_HHit 0 RMiss

+ (1 — Curait) * Eayn_mMiss crMiss
(3.28)

Way Halted Prediction Cache 47

where Cryir and Cyryie i cache read hit rate and halt tag read hit rate
respectively.

Total Write Dynamic Energy:
Edyn,WHW =Cw Hit * Edyn,HHit,CWHit + (CHWHz‘t - CWHit) * Edyn,HHit,CWMiss

+ (1 — Cuwwit) * Edgyn_oiss.ow Miss
(3.29)

where Cy i and Cyw e is cache write hit rate and halt tag write hit rate
respectively.

Total WH Cache dynamic energy is:

Eaynwa = Eayn-whar + Egyn.waw (3.30)

Total WH Cache static energy is:

Estatic,WH — (Pleakage + Phalt) * RTWH (331>

Where RTy p is the response time with WH and is given by :

RTwy = total cycles required for completion of program with W Hx cycle time

(3.32)

3.3.4 Way Halted Prediction Cache

Halt Hit in 1 way, Cache Read Hit Energy:

Edyn,HHitl,CRH'it = (Edyn,dec + Edyn,halt) + Edynj + Edyn,op,drvr (333>

Way Halted Prediction Cache 48

Halt Hit in 1 way, Cache Write Hit Energy:

Eayn_mminn.cwHit = 2% Egyn g Hit1 cRrHit (3.34)

Halt Hit in 1 way, Cache Read Miss Energy:

Eiyn v mitt crmiss = Eayn_mmin criit + Edyn 12 (3.35)

Halt Hit in 1 way, Cache Write Miss Energy:

Eayn_tmin_cwmiss = Eayn_mmin_cwnit + Eayn 1o (3.36)

Halt Hit in k& ways, W,, is a halt hit way, prediction hit, Cache Read Hit

Energy:

Edyn,HHitk,Wp,PHit,CRHit = Edyn,HHitLC’RHit + Edyn,pred (3 37)

Halt Hit in k£ ways, W, is a halt hit way, prediction hit, Cache Write Hit

Energy:

Edyn,HHitk,Wp,PHit,CWHit =2x% Edyn,HHitk,Wp,PHit,CRHit (3 . 38)

Halt Hit in k£ ways, W, is a halt hit way, prediction miss, Cache Read Hit

Energy:

Edyn,HHitk,Wp,PMiss,CRHit = Edyn,HHitk,Wp,PHit,CRHit + (k - 1) * EdynJc (339)

Way Halted Prediction Cache 49

Halt Hit in k ways, W,, is a halt hit way, prediction miss, Cache Write Hit

Energy:

Edyn,HHitk,Wp,PMiss,CWHit =2 Edyn,HHitk,Wp,PMiss,CRHit (3 40)

Halt Hit in k£ ways, W, is a halt hit way, prediction miss, Cache Read Miss
Energy:

Eayn b Hitk Wp_PMiss.CRMiss = Eayn_ i Hitk wp_PMiss.CrRHit + Eayn. e (3.41)

Halt Hit in k& ways, W, is a halt hit way, prediction miss, Cache Write Miss
Energy:

Edyn,HHitk,Wp,PMiss,CWMiss = 2% Edyn,HHitk,Wp,PMiss,CRHit + Edyn,Tx (3 42)

Halt Hit in k& ways, W, is a in halt miss, Cache Read Hit Energy:

Edyn,HHitk,CRHit = (Edyn,dec + Edyn,halt + Edyn,pred) + k * Edyn,x + Edyn,op,drvr
(3.43)
Halt Hit in k& ways, W, is a in halt miss, Cache Write Hit Energy:

Eayn_mmitk-cwnit = 2 % Eayn_m itk CRHit (3.44)

Halt Hit in k& ways, W,, is a halt miss, Cache Read Miss Energy:

Eayn_mritk .crMiss = Eayn_mritk cruit + Fayn_1s (3.45)

Way Halted Prediction Cache 50

Halt Hit in k& ways, W, is a halt miss, Cache Write Miss Energy:

Eayn_wmmitk.cw Miss = 2 * Egyn_ o mvitk crmit + Eayn 12 (3.46)

Halt Miss, Cache Read Miss Energy:

Edyn,HMiss,CRMiss = (Edyn,dec + Edyn,halt) + Edyn,Ta: (347)

Halt Miss, Cache Write Miss Energy:

Eayn_tvriss.ow Miss = Layn_mmitt_owHit + Edyn 12 (3.48)

Description of various variables used to calculated total dynamic energy is
given in table 3.2.
Total Dynamic Read Energy:

Eayn wraprr =Cruin cruit * Eayn_mHitt criit + CHmBitt cRMiss * Eayn_mHitt ¢ RMiss+
CrHitk-wp_PHit CRHit * Edyn_HHitk- Wp_PHit CRHit+
CHHitk,Wp,PMiss,C’RHit * Edyn,HHitk,Wp,PMiss,CRHit+
CHHitk,Wp,PMiss,CRMiss * Edyn,HHitk:,Wp,PMisS,CRMiss+
Cruitk cruit * Eayn_mrik criit + CHRBitk 0 RMiss * Edyn_HHitk ¢ RMiss T+

CHMiss,CRMiss * Edyn,HMiss,CRMiss

(3.49)

Way Halted Prediction Cache

51

Table 3.2: WHP variables used

Variable

Description

CHuHit\ CRHit

Rate of Halt tag hit in only 1 way and Cache read hit

CHHitLCRMiss

Rate of Halt tag hit in only 1 way and Cache read miss

CHHitk Wp_PHit CRHit

Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Hit, Cache read hit

CHHitk:,Wp,PMiss,CRHit

Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Miss, Cache read hit

CHHitk,Wp,PJ\liss,CR]\h’ss

Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Miss, Cache read miss

CHHitk,CRHit

Rate of Halt tag hit in k-ways, Predicted Way not in Halt tag
hit ways, Cache read hit

CHHitk CRMiss

Rate of Halt tag hit in k-ways, Predicted Way not in Halt tag
hit ways, Cache Miss

CH]\/[iss,CRMiss

Rate of Halt miss and Cache read miss

CHHitLC’WHit

Rate of Halt tag hit in only 1 way and Cache write hit

OHHitLCWMiss

Rate of Halt tag hit in only 1 way and Cache write miss

CHHitk,Wp,PHit,CWHit

Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Hit, Cache write hit

OHHitk,Wp,PMiss,CWHit

Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Miss, Cache write hit

CHHithk - Wp_PMiss.CW Miss

Rate of Halt tag hit in k-ways, Predicted Way in Halt tag hit
ways, Prediction Miss, Cache write miss

CHHitk,CWHit

Rate of Halt tag hit in k-ways, Predicted Way not in Halt tag
hit ways, Cache write hit

CHHitk,CWMiss

Rate of Halt tag hit in k-ways, Predicted Way not in Halt tag
hit ways, Cache Miss

OHMiss,CWMiss

Rate of Halt miss and Cache write miss

3.4. Time Model 52

Total Dynamic Write Energy:

Egynwapw =Cruin_cwnit * Eayn_nrin_cwmic + Canin_.ow Miss * Eayn_mHit1 ow Misst
Cunitk wp_PHit.owHit * Edyn_HHitk-Wp_PHit_cW Hit+
CHHitk,Wp,PMiss,CWHit * Edyn,HHitk,Wp,PM'iss,CWHit+
CHHitk’,Wp,PMiss,C'WMiss * Edyn,HHitk,Wp,PMiss,CWMiss+
Crnitk.cwHit * Eayn_mmitk.cw mit + CHEitk oW Miss * Edyn_mHitk cw MissT

CHMiss oW Miss * Edyn_HMiss oW Miss

(3.50)
Total WHP Cache dynamic energy is:
Eiynwup = Egyn waprr + Eayn - wapw (3.51)
Total WHP Cache static energy is:
Estatiecwnr = (Pieakage + Ppred_ckt + Phait) * RTwup (3.52)

Where RTyw yp is the response time with WHP and is given by :

RTwpup = total cycles required for completion of program with W H Px cycle time

(3.53)

3.4 Time Model

Table 3.3 shows the access time components used for evaluating performance

parameters. Calculations for total access time for various cache architectures

Conventional Cache 53

Table 3.3: SESC Components for Time Modeling of Cache

Cache Compo- Time Components Access Time (Tyecess)
nents Data Side Tag Side
Decoder Tds,dec Tts,dec Taccess: maX(Tds,decv
Wordline Tds,wline Tts,wline Tts,dec, Tgalt) + T};red
Bitline Tds,bline Tts,bline + max ((Tds,wline +
SCHSC AmphﬁCf Tds,sa Tts,sa Tds,bline + Tds,sa)’(Tts,wline
Compa’rator 7 Tts,cmp + Tts,bline + Tts,sa
Valid Slgnal o Tts,vi + Tts,cmp)a(Tts,vi))"'
Driver Tas_opDror
Output Driver Tas_opDror —

*Where Thq and Tp,eq is the time required for accessing halt tag array and
prediction circuit respectively. Thq and Tpeq is 0 for CC, Ty is 0 for WP
, Tpreq is 0 for WH

is given in following subsections.

3.4.1 Conventional Cache

CC Read Time :
TCCR = Taccess + CRMiss * TTx (354>

Where T, is the transfer time from/to processor.

CC Write Time :

TCCW = Taccess * 2+ C(WMiss * TTx (355>

CC Time :
Too =Toocr +Toow (356)

Way Predicting Cache 54

3.4.2 Way Predicting Cache

WP Read Time :

TWPR :Taccess * CPRHit
+ (Taccess + TpredRMiss) * ((1 - ORMiss) - CPRHit)) (357>

+ Try * Cppriss.cRMiss

Where Cpruit, Crariss and Tprearniss is the prediction read hit rate, cache
read miss rate and the additional access time required in case of prediction
miss.

WP Write Time :

TWPW =2 % Taccess * C1PWHit
+ (2 * Taccess + TpredMiss) * ((1 - CWMiss) - CPWHit)) (358>

+ TTx * OPWMiss,CWMiss

Where Cpw mit, Cwariss and Tpreawariss is the prediction write hit rate, cache
write miss rate and the additional access time required in case of prediction

miss. WP Time :
Twp =Twpr + Twrw (3.59)

3.4.3 Way Halting Cache

WH Read Time :

Twar =Taccess * Cormit + Tre ¥ Crmit.crMiss
(3.60)

+ THMiss,CRMiss * CHMiss,CRMiss

Way Halted Prediction Cache 55

Where Cormit, Cumit.crrissy Camiss.orMiss a0d T gagiss.craiss 1 cache read
hit rate, halt hit - cache read miss rate, halt read miss and transfer time in

case of halt read miss respectively. (where T yariss.crmiss < Tra)

WH Write Time :

Twaw =2 * Thecess * Cowmit + Tre * Crmic.ow miss
(3.61)

+ Trnriss.ow Miss * CHMiss.CW Miss

Where Cowmit, Crmit.ownmiss, Crnmiss.ownriss and Trariss cwmiss 18 cache
write hit rate, halt hit - cache write miss rate, halt write miss and transfer

time in case of halt write miss respectively. (where Ty priss. crmiss < Tre)

WH Time :

Twre =Twar + Twaw (362)

3.4.4 Way Halted Prediction Cache

WHP Read Time :

TWHPR :Taccess * (CHHitLCRHit + CHHitk,Wp,PHit,CRHit + OHHitk,CRHit)
+ (Taccess + TpredRMiss) * CHHitk,Wp,PMiss,CRHit
+ Tro % (Cumin_ormiss + CHHitk 0 RMiss)
+ (TT:(: + TpredRMiss) * C’HHitk,Wp,PMiss,C’RMiss

+ Trnriss. crMiss ¥ CHMiss CRMiss

(3.63)

3.5. Experimental Setup 56

WHP Write Time :

Twaprw =2 % Taecess * (Crminn.owmit + Cumie wp_prit.cwmit + Crmitk.cw Hit)
+ (2 * Taecess + Tpreaw miss) * CHHitk - Wp_PMiss.CW Hit
+ Ty * (Cruit.owmiss + CHHith.cw Miss)
+ (Try + Tpreaw Miss) * CHHitk Wp_PMiss.CW Miss

+ THMiss,CWMiss * CHMiss,CWMiss
(3.64)

WHP Time :

Twup = Twurr + Twuprw (3.65)

3.5 Experimental Setup

This work uses SESC, simulation framework to model L1 cache of different
set-associative architectures. Simulation framework configures SESC sim-
ulator using smp.conf file. In smp.conf, SESC simulator accepts various
configuration parameters for Data TLB, Instruction TLB, L1 Data Cache,
L1 Instruction cache, L2 cache, main memory and processor configuration.
The simulation framework implemented in C++ estimates processing time,
power /energy components for fetch, issue, memory access, execution and
clock. It also estimates statistic of read/write access for TLB, L1 Cache, L2
Cache, main memory and branch prediction circuit. Various configurations of
set-associative caches like CC, WP, WH and WHP are implemented by using
SESC simulator. The framework uses 32-bit address and LRU replacement

policy. As all the experimenting cache architectures use same cache configu-

3.6. Experimental Analysis 57

ration parameters and replacement policy, their cache hit rate remains the
same. The prediction circuit stores the most recently used (MRU) cache line
for future prediction.

SESC simulator uses Splash benchmark programs to evaluate the performance
of various cache architectures. SESC uses CACTTI [67] to estimate time and

energy parameters of cache.

3.6 Experimental Analysis

WP

WHP
095 |

o I

g e o] e

v o t =)
: :

o
N

Prediction Rate (Data Cache)

0.55

16
Cache Size(KB)

Figure 3.3: Prediction Rate for a 4 way, 8B line size with varying Data Cache
size

Prediction Hit Accuracy 58

WP mmm
WHP o

(Instruction Cache)
S ©
© e ©
oo <o) 6]
(9)]] 9]}

Prediction Rate

o
w0
@

0.975

16
Cache Size(KB)

Figure 3.4: Prediction Rate for a 4 way, 8B line size with varying Instruction
Cache size

3.6.1 Prediction Hit Accuracy

Figures 3.3 and 3.4 show the data cache and instruction cache prediction hit
rate of WP and WHP for varying cache sizes. Irrespective of the configurations,
WHP offers higher prediction rate than WP because of early cache miss
detection and corner case elimination. An average prediction hit rate of data
cache and instruction cache for WP is 66.39% and 99.03% whereas for WHP
it is 93.17% and 99.92% respectively.

3.6.2 Dynamic Energy per Access

Figures 3.5, 3.6, and 3.7 show the data cache, instruction cache and combined
dynamic energy consumption for various SPLASH benchmark programs re-

spectively. It is observed that prediction accuracy is higher for instruction

99

Dynamic Energy per Access

swreisoxd yrewryousaq
SUIATRA)M OUDR) eYe(] gMZE ‘gl ‘Aem § ' 10] uondwnsuod ASIOUS JTWRUAD SS000R IoJ :G'¢ 9INSIq

sure1go1q yreunpuag - yserds

wuy poalenbsnielem XIpel UE320)]

n

| 1 1
ap) n o N
[} —

LN
o
(syoeD ere(q)- ([U)AZIBUH JIWEUA(] SS90V 1Bd

T
1
<t

T

1
L
-+

T
1
L

L AN A
B HM

0\

L
T}

60

Dynamic Energy per Access

swreisoxd yrewryousaq
SULAIRA)M OTPR)) UOTIONIISU] MZE ‘gR ‘Aem g © 10] uorjdmwunsuod AS10Ud IIWRUAD SS900R 19 :9°¢ 9INSI

sure1go1q yreunpuag - yserds
wuy pelenbsndelem xipel Uea20 1 I}

)
—

T T T T

1 1 1 1
© % oo
(e} (e} (@]

=0)
o
(eyoeD uononusuy) ([u)AZEUH JIWEUA(] SS90V Iod

i 1€
I 12€
I 17€
I M
=]9
1 1 1 1 1 ,I &g

«®
o

61

Dynamic Energy per Access

sureisoxd

NIRWYOUD(SUIAIRA YIM OUDRD MZE ‘g ‘Arm § ® 10] uorduwnsuod ASI0Uo0 DTWRUAD SS900R 19 :L°¢ 9INSIq

wuy

sure1go1q yreunpuag - yserds

palenbsnisrem

XIpet

UEQD0

)]

n

E M
B Hm
0\

g1

N
ol

=
o

Q
o

™ ©
o
([u)ABBUY DTWEUA(] SS920Y Bd

v'e

Response Time 62

cache over data cache. It is also observed that for all benchmark programs
under consideration WHP ’energy consumption is the least. Figure 3.8 shows
dynamic energy savings over CC for various benchmark programs. Results
show that all energy efficient caches consume less dynamic energy as compared
to CC. The average dynamic energy saving of WP , WH and WHP over CC
are 43.06%, 44.06%, 46.64% respectively. Experimental evaluation reveals
that WHP achieves on an average 6.45% and 4.15% of dynamic energy over
WP and WH respectively. The per access dynamic energy consumption for
all the architectures increase with increase in cache size as shown in figure 3.9.
Hit rate saturates with increase in cache size this results in increase dynamic
energy consumption.

Irrespective of the cache architecture in use, the per access dynamic energy
consumption decreases when associativity is changed from 4-way to 8-way.
This is due to reduction in conflict misses. However, with further increase
in associativity to 16-way output driver dynamic energy consumption out-
trades hit rate improvement. Figure 3.10 shows per access dynamic energy
consumption for various cache architecture by varying cache associativity.
Increasing line size reduces number of compulsory misses. As shown in Figure
3.11 with increase in cache line size for all cache architecture per access

dynamic energy consumption reduces.

3.6.3 Response Time

Figures 3.12, 3.13, and 3.14 show the data cache, instruction cache and
combined response time for various SPLASH benchmark programs respectively.

Figure 3.15 shows response time saving of WP, WH and WHP over CC. Figures

63

Response Time

D)) IoA0

swrerdold yrewyouoq SUIATIRA [IIM 9UDIRD (e ‘g8 ‘Aem § © 10] SBUIARS ABIOUS DIWRUAD $S000R 19 Q¢ oINSI

wuy

sure1go1q yreunpuag - yserdg
polenbsnIsiem X[pel §EERT) | u

_—
)

0\

LN o 1 o
=t =t (49| (4]
DD 1840 (9¢)3uraes ([U)AZIBUy JIWEUA(]

o
LN

]
LN

09

59

Response Time 64

2.8

T A
[T SO N

]

Per Access Dynamic Energy(nJ)
=
[\ = [+)] o]

—_

0.8

16
Cache Size(KB)

Figure 3.9: Per access dynamic energy consumption for a 4 way, 8B line size
with varying cache size

1.8 e ;
WP o
16| WH |
WHP

— —
— o S
T T T

Per Access Dynamic Energy(nJ) -(Data Cache)
o
to

8
Associativity

Figure 3.10: Per access dynamic energy consumption for a 16B, 8KB Data
Cache with varying associativities

Response Time 65

0.9

WP mm
WH
7WHP-

o o o
) N o)

o
t

Per Access Dynamic Energy(nJ)

16
Line Size(B)

Figure 3.11: Per access dynamic energy consumption for a 4 way, 8KB cache
with varying line Size

3.16, 3.17 and 3.18 show response time by varying cache size, line size and
data cache associativity respectively. Irrespective of the configuration in use,
the response time of WP is the highest among all the cache architectures and
the response time of WH is the least among all the cache architectures.

WP needs additional cycles to access remaining ways in case of prediction
miss hence its response time increases. The response time of WH cache is
equivalent to CC in case of halt hit and it saves way access time in case of
halt miss. Hence WH cache gives the least response time. The response time
WHP is better than CC due to halt tag miss scenarios. The response time of
WHP is marginally higher than WH due to additional prediction miss time.
The average response time saving of WP , WH and WHP over CC are -2.00%,
1.09% and 1.04% respectively. Experimental evaluation reveals that WHP

achieves on an average response time savings of 2.92% and -0.05% over WP

66

Response Time

sure1gold yrewypouaq SUIAIRA [JIM STPR) RIR(gMZE ‘R ‘Aem § v 10f owr) osuodsoy :g1°¢ 0Ingiyg

sure1go1g yreunpuag - yserds

wup patenbsNIsiemM XIpeI ICER) [

W

1
™
—

1
=
—

|
e«
—

\=]
(syoeD ere(q)- (Su)awmn esuodsay

N M 7
B
L T
N)

[

67

Response Time

sure1gold JIewypoua(SUIAIRA [[JIM SR UOIDNIISU] e ‘g ‘Aem 7 ® 10J owir) osuodsoy] :¢1°¢ oInsI

surerfoid yreunpuag - yserdg
wuy patenbsNIsem XIpeI B30 n[11|

7o) o)
@ o
o

)
o

(eyoen uononnsuy) (Su)swn asuodsay

S6°0

—

SO'T

—
—

ST'L

68

Response Time

swrelgold yrewyouo(SUIAIRA [[JIM DRI e ‘g ‘Aem § ® 10J owir) osuodsoy] :F1°¢ oInsI
surergoid yreunpuag - yserds
wuy — patenbsnIsiem XIpeI L2900 ng i1l
580
160
15960
A
&
i~
118
S
i mo.ﬁm,
2
101
G HM
[_I_g 7 mﬁ.ﬁ
T
[
1 1 1 1 1 OO N.H

69

Response Time

swrergord yrewyousq SUIAIRA [IIM 9DRD e ‘gR ‘ArM 7 ® I0] NH)) I9A0 SurAes oulr) asuodsay]

sure1go1d sreunpuag - yserds

uy parenbsnIalem XIpel Bad0
T T

Rl W

_—
)

A
___IKelo]

1GT'g a3y

=t
i

o

o

(@]
guraeg (su)ouin astuodsay

Response Time 70

0.99

0.985

0.9

ns)

0.97

0.9

ReCsPouse Time(

0.96

0.955

0.95

Figure

0.99

0.98

Response Time(n%
e o e ¢ e
o © ©v © ©
W = €3] [@))] ~1

e
<]
r

0.91

0.9

8

5

7

16
Cache Size(KB)

3.16: Response time for a 4 way, 8B line size with varying cache size

16
Line Size(B)

Figure 3.17: Response time for a 4 way, 8KB cache with varying line Size

Static Energy Per Access 71

1.62 cC
WP o
16 WH mm]
WHP mmm

[y — [
w w1 [9)]
=)] @

—
ul
N

Response Time(nS) - Data Cache

8
Associativity

Figure 3.18: Response time for a 16B, 8KB Data Cache with varying associa-
tivity

and WH respectively.

3.6.4 Static Energy Per Access

Figure 3.19 shows the static energy consumption of various cache architectures
for SPLASH benchmark programs. Prediction circuit and halting circuit adds
on to the leakage power of WP and WH respectively. WHP circuit has an
overhead of prediction and halting circuit. The response time outtrades these
additional overheads. The static energy per access follows the response time

pattern for all the architectures.

72

Static Energy Per Access

sureisoxd

NIRWPUO(SUIAIRA [JIM 9UORD (MZE ‘g8 ‘Aem § e 10] uordwunsuod £310U0 OI1RIS SS900€ 19 G ¢ 9INSI]

uruy

sure1go1q yreunpuag - yserds
XIpel

patenbg N Ia1em

UE2D0

ny

L

_—
)

LT
N)

orc

05¢

09¢

o @] o

[@))] @D I~

[[9]
9T J1IBIG $S900Y 1B

)
=)
™M

(J.:ﬁ)f{%’J

0ce

0ee

ore

Time and Area Overhead 73

3.6.5 Time and Area Overhead

Access time of prediction circuit is measured as 0.16% of the total access time
for 8KB, 8B, 4-way WP and WHP. Inoue [4] proposed a mode to bury this
time with the previous pipeline stages. Though this work did not bury it
with previous pipeline stages, this additional time did not increase number of
cycles required to access cache and hence did not affect critical path delay.
The area required for CC of 8KB, 8B, 4-way measured as 0.179mm? using
SESC. The WH and WHP imposes 2% additional area overhead for the halt
tag circuit. WP and WHP imposes 0.2% od area overhead for MRU and
associated circuits. The overall area overhead of WHP is measured as 2.24%

over CC.

3.7 Conclusion

WHP uses halt tag array and prediction circuit to achieve reduced energy
consumption and response time. The combination of halt tag and prediction
circuit reduces the number of ways to be activated for cache access. In WHP,
the number of active ways are reduced from k ways to one way in most of
the accesses with the prediction circuit. As the prediction circuit is enabled
only when k£ > 1, the performance of WHP cache is improved with respect to
energy and time. The results show that WHP offers better energy efficiency
over the other architectures analyzed. WHP offers 46.64%, 6.45% and 4.15%
dynamic energy saving and 1.04%, 2.92% and -0.05% saving in response time
over the CC, WP and WH respectively. The overall area overhead of WHP is

measured as 2.24% over CC.

Chapter 4

MOESIF : Cache Coherency

Protocol

4.1 Introduction

The memory subsystem of energy efficient multicore embedded processors
usually contain private split L1 caches, unified L2 caches and unified shared
L3 cache. This chapter concentrates on improving cache performance by
redesigning the most widely used cache coherency protocols, MOESI and
MESIF. Cache controller of all cores containing valid data responds to read
or write miss request in MOESI protocol. This generates redundant responses
which flood the network. This results in increased data traffic and thus
response time. The cache coherency traffic has to be be optimised by elimi-
nating the redundant responses. In MESIF protocol, if any core sends read or
write request for the modified data, the data is first written back to L3 cache
and then the requesting core receives it from L3 cache. The time and energy
required for transferring the data from L2 cache of some core to L3 cache
and then from L3 cache to the requesting core’s L2 cache can be optimised
by sharing dirty copy of data.

This chapter proposes an energy efficient cache coherency protocol - Modified

74

4.2. Widely Used Cache Coherence Protocols 75

Owned Exclusive Shared Invalid Forward - MOESIF. The redundant re-
sponses are concisely narrowed down in MOESIF protocol. In MOESIF
protocol, only the cache controller of the core in M, O or F state responds
with the requested data. This results in reduction of total number of re-
sponses thus traffic and response time. Response time is further reduced in
MOESIF protocol by sharing dirty copy of data. The core having modified
data forwards dirty copy of data to the requesting core without updating
L3 cache. This .2 to L2 transfer reduces the number of write backs to the
next level memory. MOESIF achieves energy efficiency and high performance
by optimizing data transfers between caches and with next level memory.
It improves off-schip and on-chip bandwidth usage. MOESIF reduces the
number of write backs to next level memory and the number of responders to

a cache miss when multiple copies of data exists in private caches.

4.2 Widely Used Cache Coherence
Protocols

Invalidation based cache coherence protocols maintain a state for each cache
line along with the tag and data. The coherence policy is defined by the finite
state machine in each node which changes the state of cache line based on
read/write operation. Following subsections briefs some of the widely used

cache coherence protocols namely MESI, MOESI and MESIF.

MESI Protocol 76

4.2.1 MESI Protocol

Modified-Exclusive-Shared-Invalid (MESI) is the four state protocol in use for
maintaining cache coherency in MC/MP systems. The cache line in invalid
state implies that the data present in the cache line is not valid. The shared
state allows multiple nodes to have the same data block in consistent state
with the next level memory. The cache line in E state holds an exclusive copy
of data. Data from cache line in shared / exclusive state can only be read.
If the cache line is in modified state, then it is the most up-to-date and the
only valid copy available.

In case of write hit, the invalidation signal is sent to all other cores only when
the cache line is in S state. Read/write misses are satisfied by transferring
data to the cache either from other nodes or from the next level memory. If
any node has the requested data in E or S state, the requestor is serviced
by the node upon broadcast. If a node contains data with M state then it
updates the next level memory with that data. All the cache lines containing
the requested data will be in S state for read miss and I state for write miss.
The state of requestor's cache line is set to E or S state and M state for read
miss and write miss respectively. In read miss the requestor's copy will be
in E state only if the data is transferred from next level memory. Presence
of multiple shared copies reduces the number of coherence misses in MESI.
However, for every state change from M, the data needs to be written to
the next level. This result in frequent data writes between node and next
level when read and write alternate. The state transition diagram of MESI

protocol is shown in figure 4.1.

77

MESI Protocol

suonysueliy, 93e1g dooug pue sso00y [SHIN 1§ oInsiq

'dyIgnulpuas - S
~ .
\ N
I N\
44 2yAu|puas Tlwoiqeleg / /
Id¥ownulpuas’delegpuas ‘Fwolqereq _f /_.
¥IgAU|puUaS __
A £lwol4eieg .ﬂ
I
Iy ayaupuas \ £lwoideleg
_lmwm.ﬁ_ﬁ_._@m v__u_ﬂmmu.._._.__.__:.. ﬂ_.._.mﬁ_m_um_ww_:lu \\ HN._ wal{ejeq]
ldelegpuas s |
- /
HIRG2IIM, E1Es31MNdD \

E1EQSPESYNdD /
e1eQsALIMNGD

B1EQSSNIMNLD
‘EegspeIyndod

MOESI Protocol 78

4.2.2 MOESI Protocol

The M state in MOESI protocol, allows transfer of data to a read requestor
without writing back to the next level memory. The dirty copy sharing
between different nodes using O state helps to reduce the frequency of write-
backs. Write back in MOESI happens only when the cache line in M or O
state is replaced. However, during a cache miss, all the sharers of requested
data will respond and the requestor will be serviced by redundant responses.
These redundant responses increase the traffic across the network as data
transfer takes more bandwidth than signals. The cache state transitions for a

cache access and snoop is shown in figure 4.2.

4.2.3 MESIF Protocol

The issue of redundant responses from all the sharers in MESI and MOESI is
addressed by the F state. MESIF protocol ensures that only the cache line in
F state responds to read/write request of other nodes. Among the sharers,
the last recipient of data is assigned with F state. During read miss, the
cache line in F state transfers the data and updates its state to S. Although
redundant responses are eliminated using F state, sharing of dirty data is not
allowed in MESIF. Write back happens for all the state change from M state.
The cache state transitions for a cache access and snoop is shown in figure

4.3.

79

MESIF Protocol

suoryisuel], 9ye1g dooug pue $s900y [SHOIN :¢'F 2INSIi

ldqrgnupuas

'djyaulpuag

N\
\

ddygaupuas TTwol4eElE] /
4ejEQpUaS | __ /...
|PIwALIpUES £lwoijeeg),
delegpuas
megpuss [\
lgyanupuas \ .r
Tdyogaupuas
delegpuasg 'deilegpuas elegspeayndd / __
s __
. EIWOU4EIR]
‘IJelegpuasg .
EIEQSPEIYNGD _—
E1BSaIANNd D \.
EleSpE2HNdD
'dEIBQPU3S \

E1EQSALMNGD /

/

E1EQS314MNGD

/

E1EQS3NIMNGD
‘E}ESPEaYNdD

80

MESIF Protocol

suorjisuel], oyelg dooug pue ssed0y JISHIN €'F 2InS1]

EIEQSPEIYND

/

woldeleq
fFwougeleg

\

Tdqoyaupuas
A4elegpuas

n_u__ud___._.__.__n_m

'deIegpuas

Y yaupuasg

HIYAUIPUIS
1geiegpuas

EIEQSaIAMNG D ___...I_Enwu_mu.mﬂ _f.
‘ \
/

Qaspeayndd | dYIVAUIPUIS : '
_ ‘ E}eQspeaynd)d EIHaIaeg
\nﬂm%:ﬁ AIEFBUIMN / ‘ZWwol4E1Eg
I
HIEG2UIMN ».-
e1eQspeaynd u\ /
E1EQSIIMNAD /

Vs
7

EIEQSaUIMNGD
‘e1eQspeayndd

4.3. MOESIF Architecture 81

4.3 MOESIF Architecture

MOESIF achieves energy efficiency and high performance by optimizing data
transfers between caches and with next level memory. This is achieved by
reducing the number of write backs to the next level memory and making
sure only one responder sends data to the requestor. Combining O state and
F state with MESI states helps in achieving this. This results in reduced
traffic which in turn improves response time of the system. The quad-core
processor architecture this work uses is shown in Figure 4.4. Each core has
private split L1 cache, private unified L2 cache, shared L3 cache and main
memory. Cores are connected to L3 cache using bus interconnect. Cores are

connected to other cores using point to point interconnect. Figure 4.5 and

Table 4.1: Read, Write and Snoop operations in MOESIF Protocol

Read Write
P[% P[—>
M (@] E S I F M O E S I F
M — — — — 0/S — — — — — M/ —
o O — - | S/0O]10/S — — — — M/IT | M/I —
o < | E — — — — F/S — — — — — M/I —
% 1 S — o/S| - S/S | F/S|F/S — M/ — M/I | M/I|M/I
n I |\M/T|O/I|E/I|S/IT|E/I|F/I|M/I|M/I|M/I|M/I|M/I|M/I
F — — - | S/F | F/S — — — — M/T | M/I —

4.6 show the access and snoop function in MOESIF. Corresponding state
transitions for a pair of caches (P; and P;) for read and write operations in
Py is shown in Table 4.1.

In MOESIF protocol, one of the sharers will be an owner (O state) or
a forwarder (F state). If multiple copies of shared data exist then the
broadcasted cache miss signal is satisfied either by the owner or by the

forwarder. If the cache line is in O state, all the copies in S state and itself

82

9INIVYIYDIY 2100-Penf) f'f oISr

ATOUTS[A]
Urefy]
IED L]
1a[[0nuo)
DOwRN A v 1) uAmaSeuRpy AIowajy
109U] SN
;MIED T Cunum A | ;I 1 ey ol
ayoe) ayses ||_|[=ayoed ETER) ayde) E[TE=] ayIe) E[TF]
135U 11 eled 11 || nsu 1 eleq 11 H_ 1nsu 11 eieq 11 H_ Jsu T 2leq 11
calon) ¢2100) [210D) (=100

4.3. MOESIF Architecture

4.3. MOESIF Architecture 83

CPUReadsData;
CPUWritesData

7/ CPUReadsData [coyyyrirespata

DataFromL2; /
DataFromlL3;
| /

\ DataFroml2
Voo
\
\DataFll'oml.S
\
« M\
AN NN CPUReadsData
~ NN

CPUReadsData CPUWritesData

DataFromlL2

CPUReadsData)

Figure 4.5: MOESIF cache access

4.3. MOESIF Architecture

SendDataP,

SendDataP, SendDataP,
SendinwAck

SendDataP,
SendinwickP; SendDataP,

sendinvackP, CPUReadDa

SendDataPy,
Sendinvick

SendinvAckP;

SendinvAckP,
SendDataP,

SendDataP, SendinvAckP;
SendinvickP,

Figure 4.6: MOESIF cache snoop

4.3. MOESIF Architecture 85

are the most up to date copies and the next level memory contains stale data.
The copy in O state only will act as forwarder which reduces the number of
write backs and responders.

The replacement of owner cache line in MOESI and MOESIF protocols writes
the dirty cache line back to the next level memory. The number of write backs
due to replacement of cache line in O state is reduced in MOESIF protocol
as the ownership of shared dirty data is transferred to the read requestor
serviced by the owner. If forwarder gets replaced, the MOESIF protocol
randomly picks one of the sharers as forwarder. If owner gets replaced, it
writes the data to the next level memory and randomly picks one of the sharer
as forwarder. This guarantees existence of a single responder in the system.

Design of random number generator used for selecting forwarder is shown

clk write Status Bits_from cores
I |

y

LastSelCore 2h o Priority Encoder

-
V
SelCore

Figure 4.7: Design of random generator used for Quad-core Architecture

4.3. MOESIF Architecture 86

in Figure 4.7. The circuit is activated only when forwarder or owner gets
replaced. Based on the previous selection and current status of data block in
cores, the new forwarder is selected. The cache line state remains unchanged
for read hits and write hits in M state. The cache line state updates from
O, E, S and F state to M state for write hits. The cache read misses, write
misses and write hits in O, S or F state broadcasts the request. When write
request is broadcasted, the cache controllers containing shared data copy
invalidates it and sends acknowledgement to the requestor. Upon receiving
acknowledgements from N — 1 cores, requestor updates its cache line state to
M. If any other core has the requested data in M state, that core transfers
the data to the requestor and invalidates the copy for write snoop whereas it
changes its state to S for read snoop. If any core has the requested data in
cache line with E, O or F state, that core performs L2 to L2 transfer of data.
For read snoop, the responder changes its state to S. If the core with O state
forwards the data, the requestor changes its state to O. If the core forwarding
the data is in F state or in E state, the requestor changes its state to F and the
forwarder changes its state to S. For write snoop, the responder invalidates
itself and sends invalidation acknowledgement to the requestor. The requestor
changes its state to M after receiving N — 1 invalidation acknowledgements.
When no core has the requested data, the requestor will receive data from
L3 and sets the cache line state to E and M for read and write operations
respectively.

The major modification implemented in MOESIF protocol in comparison
with MOESI and MESIF protocols are read miss cases, where the data is

received from L2 caches. In MOESIF protocol when read misses receive the

4.4. Energy and Time Model 87

modified data, the ownership of the data is transferred to the requestor core.
The requestor cache line state is changed to F when it receives a clean copy
of data. In MOESI protocol, the requestor core will be in S state. Transfer of
ownership to the latest requestor reduces the number of write backs. Read
miss for a dirty copy of data of MOESIF differs from read miss for a dirty
copy of data of MESIF protocol. The read miss request in MOESIF protocol
is served by sharing a dirty copy of data which is L2 to L2 data transfer. The
read miss for dirty copy of data in MESIF results in write back from L2 cache
of the core which is having modified copy to L3 cache and then to L2 cache
of requesting core.

To maintain cache in coherent state, MI and MESI requires 1 and 2 bits per
cache line respectively, whereas MOESI, MESIF and MOESIF require 3 bits
per cache line. Although MOESIF protocol has an overhead of additional
bits per cache line to maintain cache coherency state over MI and MESI
protocols, it reduces the network traffic by sharing of dirty data among cores.
MOESIF protocol achieves energy saving and performance improvement over
MESIF and MOESI protocol without additional hardware overhead and

communication signals.

4.4 Energy and Time Model

The cache components used in the evaluation of energy consumption and
access time based on SESC simulator [66] are shown in Table 3.1. The read

access energy, write access energy and access time of L2 cache is calculated as

4.4. Energy and Time Model 88

shown in equation 4.1, 4.2 and 4.3 respectively: Cache Read Access Energy:

Eread,access = Edyn,dec + aSSOCi@tivit?J * Edyn,x + Edyn,op,drvr (41)

where Egy, ., is the dynamic access energy per way.

Cache Write Access Energy:

Ewrite,access =2x (Eread,access) (42>

Cache Access Time:

Taccess :ma'r(Tds,decy ﬂs,dec) + max(<Tds,wline + Tds,bline + Tds,sa)a (4 3)

(T;‘/s:wline + Tts,bline + T;ts,sa + Tts,cmp)a (T;fs,m')) + Tds,opDrvr

The energy and time model for cache read and write operations in an N-
core system is shown in Table 4.2. Where Er,.,, E7rs_r2tor2, E1e_12t0r.3 and
Er. 131012 Tepresent the energy consumed for cache line invalidation and
sending acknowledgements, L2 to L2 transfer, .2 to L3 transfer and L3
to L2 transfer respectively. Tpg, Tackan, Troread, Trowrite; Tr3Reads TrL3write,
Tre_r2tor2, Tre—rotors and T, r3iore represent the time for broadcasting
address, receiving all the acknowledgements, reading L2, writing L2, reading
L3, writing L3, L2 to L2 transfer, L2 to L3 transfer and L3 to L2 transfer

respectively. The transfer time among L2 and L3 caches is calculated as

4.4. Energy and Time Model

89

Table 4.2: Energy and time modeling for cache operations

Cache Operation Energy Time
Read - Eread,access Taccess
Hit
When no L2 copies N Eread,access + TB + Tx32 + Taccess
Read .
. exist Ery_13t012
Miss < ¥hen kL2 copies | NV * Brengoceces + 5 % | T + & * Toza + Tocoens
exist Ery_ 121012
(I1<=k<=N-1)
When a Single N Eread,access + TB+TI23+TJ732 +Taccess
modified copy exist in Ery_rotors +
a L2 Ery_r3tor2
Write When no other L2 Eaccess + EPWrite TPWrite
Hit copies exist
When other L2 copies N % Eyeeess + Erne + | T + Tackau + Tewrite
exist EPWrite
. When no L2 copies N % Eyeeess + Ts +
ertc exist Ery_r3tor2 + Emny + | max(Thor, Tackau) +
Miss Fooors T
PWrite PWrite
When k-L2 copies N % Eypeess + K * Tp + max(k *
exist (1j=kj=N-1) Ere—rotor2 + Ernw + | Tor1s Tackan) + Tpwrite
EPWTite
When a single N % E,peess + T + max(Ty2 +
modified copy exist in Ere_rators + Toors Tackau) + Trwrite
a L2 ETsz3toL2 + EInv +
EPWrite

4.5. Experimental Evaluation 90

shown in equation 4.4

Tyoo = Troread + Tra—r12tor2 + Trowrite
Ty32 = T13Read + Tra—r13tor2 + TrLowrite (4.4)

Tho3 = Troread + Tra—r12t0r3 + TL3Write

When replacement results in write back of dirty data, the additional energy

and access time is added up in the energy and time calculations respectively.

4.5 Experimental Evaluation

4.5.1 Experimental Setup

The time and energy estimation is done by using SESC simulator. The
simulator estimates the energy consumption, access time, cache miss rate, L2
to L2 transfers, write backs, L3 to L2 transfers, invalidations and invalidation
acknowledgements. The experimentation uses cache size, cache line size and
associativity as 4KB to 32KB, 8B to 32B and direct mapped to 16-way

set-associative respectively.

4.5.2 Experimental Analysis of Protocols

Shared copy of data does not exist in MI protocol. The cache read and
write misses broadcast the request through the bus. If other core has the
requested data, it performs write back operation. Upon receiving write back
acknowledgement from L3, it invalidates its copy. For all cache misses, the

requestor receives the data from L3.

Experimental Analysis of Protocols 91

MESI protocol satisfies read and write misses by transferring data to the
cache either from the next level memory or from other cores. If any core has
the requested data in exclusive (E) or shared S state, the requestor is serviced
by the core upon broadcast. If a core contains data with modified (M) state
then it updates the next level memory with that data. All the cache lines
containing the requested data will be in S state for read miss and I state
for write miss. Presence of multiple shared copies reduces the number of
coherence misses in MESI over MI protocol. However, for every state change
from M, the data needs to be written to the next level. This result in frequent
data writes between core and next level when read and write alternate.

The M state in MOESI protocol allows transfer of data to a read requestor
without writing back to the next level memory. The dirty copy sharing
between different cores using Owned (O) state helps to reduce the frequency
of write-backs. Write back in MOESI happens only when the cache line in
M or O state is replaced. However, during a cache miss, all the sharers of
requested data responds and the requestor is serviced by redundant responses.
These redundant responses increase the traffic across the network as data
transfer takes more bandwidth than transfer of signals through the network.
The issue of redundant responses from all the sharers in MESI and MOESI
is addressed by the Forward (F) state. MESIF protocol ensures that only
the cache line in F state responds to the read / write request of other cores.
Among the sharers, the last recipient of data is assigned with F state. During
read miss, the cache line in F state transfers the data and updates its state
to S. Although redundant responses are eliminated using F state, sharing

of dirty data is not allowed in MESIF. Write back happens for all the state

Experimental Evaluation 92

changes from M state.

MOESIF protocol achieves energy efficiency and high performance by opti-
mizing data transfers between caches and with next level memory. This is
achieved by reducing the number of write backs to the next level memory
and making sure only one responder sends data to the requestor. Combining
O state and F state with MESI states help in achieving this. This results in
improved hit rate and reduced traffic which in turn improves response time

of the system.

4.5.3 Experimental Evaluation

4.5.3.1 Hit rate and Data transfers

Figures 4.8, 4.9, 4.10 and 4.11 show hit rate, per access writebacks, per access
data received from L3 and per access data received from other L2 respectively
for MI, MESI, MOESI, MESIF and MOESIF protocols for varying cache sizes.
Number of Conflict misses reduces with increase in cache size. As shown in
figure 4.8, for all cache coherency protocols, hit rate increases with increasing
cache size. In MI, shared copy of data does not exist where as MESI and
MESIF shares clean copy of data. The MOESIF and MOESI shares dirty
copy along with clean copy of data. Hit rate of MI is the least among all the
protocols.

Figure 4.9 shows per access write backs. The number of write backs in MI is
the highest and it reduced by 53.87% in MESI and MESIF protocol. MOESI
and MOESIF protocols reduce the number of write backs further and results

in least number of write backs.

Hit rate and Data transfers 93

Figure 4.10 and 4.11 show per access data transfer rate between L2 and

86 i

MES|
84 | MOES| mmm
MESIF

8 MOESIF [

Hit Rate
~ ®
® o

~1
(<))
T

74 L

72 L

70

8 16
Cache Size(KB)

Figure 4.8: Per access hit rate for varying cache sizes with 32B line size and
associativity as 4 way

L3 caches and among L2 caches of different cores respectively. In MI, data
transferred to L2 cache is only from L3 cache and data is not transferred
among L2 caches of different cores. In MI, the highest number of data trans-
fers occur between L3 cache and L2 cache and no data transfer occurs among
L2 caches of different cores .

In MESI and MESIF protocols, read and write miss requests for modified
data is satisfied by performing write back operation and then transfering the
requested data from L3 cache to the requestor. Data transfer rate between L2
and L3 caches is higher as compared to data transfer rate among L2 caches
of different cores for MESI and MESIF protocols.

MOESI and MOESIF protocols share a dirty copy of data without writing

Hit rate and Data transfers 94

0.3 . i
MES|

MOES| =3

0.25 | MESIF -
MOESIF mm

e
[

Per Access g’rite Backs
= e
—_ w1

0.05

4 8 16 32
Cache Size(KB)

Figure 4.9: Per access write backs for varying cache sizes with 32B line size
and associativity as 4 way

0.3 . i
MES| pmm

MOES| mmm

0.25 | MESIF |
MOESIF ==

©
o

Per Access Data from 1.2
o =
— w

0.05

4 8 16 32
Cache Size(KB)

Figure 4.10: Per access data from L2 for varying cache sizes with 32B line
size and associativity as 4 way

Energy Consumption 95

0.16

M o
MES| pm
0.14 | MOES| mmm
MESIF mmm
MOESIF ==

e
=
r

o
=

e
o
&
T

PeéAccess Dataofrom other L.1
o o
E &

0.02 L

8 16 32
Cache Size(KB)

Figure 4.11: Per access data from other L1 for varying cache sizes with 32B
line size and associativity as 4 way

back the data to L3 cache. Data transfer rate among L2 caches of different
cores is higher as compared to data transfer rate between L2 and L3 caches
for MOESI and MOESIF protocol. Similar trends are observed while varying

cache line size and associativity as well.

4.5.3.2 Energy Consumption

Figures 4.12, 4.13, and 4.14 show energy consumption with varying cache size,
cache line size and number of cores respectively. From the results, it is observed
that energy consumption of MI is the highest due to high miss rate and highest
number of write backs. Irrespective of the configuration parameters, MOESIF

protocol outperforms other protocols in energy consumption.

Energy Consumption 96

0.055 : "
0.05 | MES! pmmm |
MOES| mmm
0.045 | MESIF |
MOESIF mm
0.04 |]
=
=0.035
©oh
o
2003
[md
#0.025
o
o

4 8 16 32
Cache Size(KB)

Figure 4.12: Per access energy for varying cache sizes with 32B line size and
associativity as 4 way

0.14 Wil
MES| mmm
MOES| pmm
012 | |
MESIF mmm
MOESIF m=m
~011L 1
=
=
<)

Per Access Ener
o o
o o
[®)] [e5)

o
(=)
=

0.02

8 16 32
Line Size(B)

Figure 4.13: Per access energy for varying cache line sizes with 8KB cache
size and associativity as 4 way

Energy Consumption 97

0.3 Wi
MES| mmm
MOES| mmm
0.25 MESIF
MOESIF mmm
‘2 0.2
=
[
g
©0.15
w
&
o
Z
z 014G
o
0.05 |

2 4 8 16
Number of nodes

Figure 4.14: Per access energy for varying number of cores with 8KB cache,
16B line size and associativity as 4 way

On an average, for varying cache sizes MESI, MOESI, MESIF and MOESIF
reduces 51.41%, 94.20%, 51.66% and 94.49% of the total energy over MI. The
energy savings of MOESIF protocol over MESI, MOESI and MESIF protocols
is 88.58%, 4.33% and 88.52% respectively.

It is evident from figure 4.13 that with increase in cache line size, the total
energy consumption reduces due to reduction in compulsory misses.

MESI and MESIF have comparable energy when number of cores are less
(say 2). For a larger number of cores, MESIF consumes less energy than
MESI with a single responder for forwarded request. It is also evident that
energy consumption increases exponentially with increase in number of cores.
However, the increase is small for MOESI and MOESIF protocols over other

protocols because of dirty sharing and reduced number of write backs.

Response Time 98

4.5.3.3 Response Time

Figures 4.15, 4.16, and 4.17 show per access time with varying cache size,
cache line size and number of cores respectively. It is observed that per
access time of cache increases with increase in cache size and number of cores.
Increase in cache size results in increasing cache cycle time and number of
cores which results in increasing coherency misses. Increase in cache line size
results in reducing access time because of the increase in hit rate.

For varing cache size, per access time of MESI, MOESI, MESIF and

0.0003 ,
Ml
MES|
MOES| mmm
0.00025 L MESIF -
MOESIF ===
©0'0.0002
T
E
00015 |
&
o
o
<,
T 0.0001 |
[aW
5e-05 +

4 8 16 32
Cache Size(KB)

Figure 4.15: Per access time for varying cache sizes with 32B line size and
associativity as 4 way

MOESIF protocols reduce by 52.04%, 95.59%, 52.31% and 95.86% respectively
over MI. The per access time saving of MOESIF protocol over MESI, MOESI
and MESIF protocol is 91.37%, 6.17% and 91.32% respectively.

Response Time 99

0.0003 ,

Ml

MES|

MOES| =3

0.00025 | MESIF mmm

MOESIF m=x

@0.0002 L i
T
E

9.00015 | |
g
@)
o
<

50.0001 | il
[al

5e-05 |- il

0

8 16 32
Line Size(B)

Figure 4.16: Per access time for varying cache line sizes with 8KB cache size
and associativity as 4 way

0.0008

0.0007 t

Per AccesgTime
s ¢
=)
S
o
T

0.0002

0.0001

4 8
Number of nodes

Figure 4.17: Per access time for varying number of cores with 8KB cache,
16B line size and associativity as 4 way

4.6. Conclusion 100

4.6 Conclusion

Cache coherence protocols achieve data consistency and coherency at the
cost of performance degradation with respect to time and energy. The addi-
tional overhead can be minimized by optimizing the usage of interconnection
bandwidth. This chapter discussed MOESIF protocol which improves the
off-chip bandwidth by reducing write backs to next level memory and the
on-chip bandwidth by reducing the number of responders to a cache miss when
multiple copies of data exists in private L2 caches of various cores. For varing
cache sizes, energy consumption in MESI, MOESI, MESIF and MOESIF
protocols is reduced by 51.41%, 94.20%, 51.66% and 94.49% respectively over
MI protocol. The energy savings of MOESIF protocol over MESI, MOESI
and MESIF protocol is 88.58%, 4.33% and 88.52% respectively. For varing
cache sizes, per access time of MESI, MOESI, MESIF and MOESIF protocols
is reduced by 52.04%, 95.59%, 52.31% and 95.86% respectively over MI. The
per access time saving of MOESIF protocol over MESI, MOESI and MESIF
protocol is 91.37%, 6.17% and 91.32% respectively.

Chapter 5

DTLB: Deterministic TLB for

Real-time System

5.1 Introduction

TLB plays a crucial role in speeding up the virtual to physical address
translation. Each memory access results in accessing TLB. TLB is in critical
path of memory access. TLB misses lead to accessing main memory multiple
times which results in performance degradation both in terms of time and
energy. Performance of the system can degrade upto 50% due to TLB’s miss
penalties [68]. TLB misses result in additional energy consumption because
of page table walk through. TLB contributes upto 17% of the total on-chip
energy due to its high access frequency [69].

In hard real-time systems, TLB misses affect the deadlines as WCET of the
job increases with TLB misses. Deterministic worst case upper bound must
be guaranteed for hard real-time tasks in order to ensure a tighter upper
bound [70]. This helps in executing more tasks without deadline misses.
Predictability in hard real-time system can be ensured by making the entire
process of accessing memory subsystem deterministic, so that it can be used

without deadline misses. The unpredictable nature of TLB is one of the major

101

5.2. DTLB Architecture 102

factors which makes the memory subsystem non-deterministic, along with
unpredictability of cache memories and main memory. The unpredictability in
case of conventional TLB is because of TLB flushing on preemption. This can
be addressed by reservation based TLBs like ASID-TLB[50]. In ASID-TLB,
the number of lockable entries for a specific process is calculated statically.
These entries are not available for replacement for other tasks. This results in
reducing the size of TLB per process. This mechanism suffers with additional
TLB misses because of reserved entries. Flushing/global replacement results
in increase in TLB misses on preemption.

To have a tighter upper bound on the WCET of real-time task, this chapter
presents a TLB architecture - Deterministic Translation Lookaside Buffer
(DTLB). DTLB offers deterministic miss rate which is the least possible miss
rate and is equal to the number of misses when that task is running as the
only task in system. DTLB offers the least number of misses ever possible in
a system when all tasks are available in main memory [71] [72]. It is achieved
by storing all the TLB entries in process control block (PCB) during task
preemption. TLB entries are loaded back from the PCB into TLB when task
resumes back its execution. DTLB offers up to 24.77% reduction in TLB
miss rate as compared to conventional TLB which flushes TLB entries during

preemption.

5.2 DTLB Architecture

DTLB is designed to obtain deterministic WCET of real-time task. It im-

proves memory performance by reducing the TLB misses for low priority

103

5.2. DTLB Architecture

9INOVYYDIY [, OTISTUTWLIOO(] (T°G 9INTIg

#awely

|eaisAyg

!

SSIN

JUH gL
F 3

2Iqel
aded woJdj

gaweu

_|eudis

T SSIA gL

AJOUagA utey
g TN @053l
¢ dnyaeq
oqwanny |

TR 1

Jaxadiinwy

[—

||

-
-
JBpaIuz -~

14

s

Y

ssauppe nduj

snd A1

sIE
uon 30 L]

e |

#adng

LA

Loy gaded

5.2. DTLB Architecture 104

real-time tasks. Detailed architecture of DTLB is shown in figure 5.1. Each
entry in DTLB contains valid /invalid bit, page number, frame number of that
page in memory, protection/access bits and LRU bits. In DTLB model, PCB
contains space required for backing up all TLB entries. On preemption, a
special instruction(FC000000) is executed as a part of preemption routine.
Multiplexer is used for selecting TLB entry to be transferred through bus.
This instruction initiates the transfer of all the TLB entries to PCB of that
process. The TLB is flushed/filled with next process’s PCB contents based on
whether the process is new/already executed. The next dispatched job can use
the entire TLB without being affected by the previous job. This repopulates
the TLB with the same entries that were present at the time of preemption
and the job resumes its execution from that point without additional TLB
misses. The repopulation of TLB ensures no additional TLB misses across
preemptions. The execution times of highest priority jobs are not affected by
DTLB as it is dispatched without preemptions. Only the lower priority job
executions suffer a constant time overhead at the time of preemption which
helps in offering tighter WCET when number of preemptions are known.
DTLB guarantees that TLB entries of running job is isolated from other
ready to run jobs in the system. For deterministic real-time performance,
this work assumes that the main memory is big enough to hold the required
pages of all ready to run jobs[71] [72]. The local replacement policy ensures a
predictable upper bound on the number of TLB misses.

Experimental results prove that the DTLB offers the least number of TLB
misses. It also offers deterministic performance. However there exist overhead

associated with this model, i.e., the time taken to transfer TLB entries to

5.3. Energy and Time Modeling 105

PCB and back. The number of transfers is proportional to the number of
preemptions. The preemption depends on the number of higher priority job
arrivals when lower priority job is executing. The theoretical upper bound of
the same can be found using the task model analysis. If the total number of
slots in TLB is N, all these entries need to be copied to its PCB. The transfer
of N TLB entries to the PCB and vice versa takes approximately a cache
block transfer time. The total overhead on the system depends on the number
of preemptions that are being made and is equal to the product of the number
of preemptions and the constant transfer time. The time consumed for this

operation is deterministic. Hence the DTLB operation becomes deterministic.

5.3 Energy and Time Modeling

5.3.1 Energy Modeling of TLB

The components used in the evaluation of energy and time modeling of TLB
are shown in Table 5.1.

TLB hit energy consists of energy required for page number comparisons,
valid /invalid bit access, protection verification, replacement circuit and output

driver and is given by:

ETLB,H'L't = Ecomp + Ev/z + Eprotection + Erep,ckt + Eaccess + Eop,drvr (51>

TLB miss energy consists of additional energy required for page number

comparisons, valid /invalid bit access, page table walk energy and TLB update

Energy Modeling of TLB 106

Table 5.1: TLB Components for Energy and Time Modeling

TLB Energy Time
Component Components Components
Comparator Ecomp T comp
Valid-Invalid Ey/i T,/
Protection Bit Eprotection Tprotection
Replacement Erep_ckt Trep_ckt
Circuit
Access Eaccess Taccess
Output Driver Eop_dror Top_dror
Main Memory Ermaccess Tom_access
Access
TLB Update Etp update Tub_update
Transfer ETransfer TTransfer

energy apart TLB hit energy. TLB miss energy is:

ETLB,Miss = Ecomp + Ev/z + Emm,access + Etlb,update + ETLB,Hit (52)

The total energy of conventional TLB, ASID-TLB and DTLB is calculated
as follows:

Conventional TLB:

Errg.conv = Errp it ¥ NHit conv + ErrB Miss * NMiss_Conv (5‘3>

Reservation TLB:

Errp asip = Erep mit * Nuitasip + Erip_wiss ¥ Naiss_AsiD (5‘4>

Time Modeling of TLB 107

DTLB TLB:

ETLB,DTLB = ETLB,Hit * NHit,DTLB + ETLB,Miss (5 5)

* NMiss,DTLB + NPrem * ETransfer * 2

where NHit,C’onva NHit,ASIDy NHit,DTLB is the number Of TLB hits and NMz’ss,Comn
Nosiss asiD, Nariss. prrp 18 the number of TLB misses of conventional, ASID
and DTLB model respectively. Np,.,, is the number of preemptions. Hit rate

of DTLB is better than the hit rate of conventional and ASID model. DTLB

requires additional energy for transferring TLB entries to PCB and back.

5.3.2 Time Modeling of TLB

The access time representations of the TLB components are shown in Table
5.1.
TLB hit time is given by :

TTLB,Hit = Tpage,no,comp + Top,drvr (56>

where Tpage no_comp 15 the time required for comparing all the page numbers in
parallel and finding the matching page number from it. T, 4, is the time
required to output the frame number from the selected TLB entry.

TLB miss time is given by :

TTLB,Miss = Tmm,access + TTLB,Hit (57>

5.4. Experimental Setup And Evaluation 108

The total time of conventional, ASID-TLB and DTLB is computed as follows:
Conventional TLB:

Trie.conv = Trip it ¥ NHit.conv + TrLB Miss * Nitiss_ Conv (5-8>

Reservation TLB:

Trie.asip = Trip mit * Nuieasip + Trr miss * Niatiss ASID (5-9>
DTLB TLB:

Trie.prie = Tros_mit * Nuie_prrs + Trrp_aiss * Niriss.DTLB (5.10)

+ NPrem * TTransfer * 2

DTLB requires additional time for transferring TLB entries to PCB and
back.

5.4 Experimental Setup And Evaluation

5.4.1 Experimental Setup

The evaluation of DTLB in comparison with seminal works were carried out
with the help of SESC framework. Time and energy estimation from SESC is
used for dynamic energy and time analysis [67]. Each trace file entry consists
of the virtual memory address and the operation i.e., read or write. For each
task in the task set, a different trace file from a different program is used.

Execution schedule of the task set is specified as per the format in TABLE 5.2,

Experimental Setup 109

where 10 /Preempt/Complete is a flag to specify whether the job goes for 1/0,

preemption or completion at the end of the execution period. The memory

Table 5.2: Task Set Execution Schedule Format

Start time of job | End time of job Job ID Stack memory | IO / Preempt /
usage Complete

components in the simulator can be configured as needed. The TLB variants
used for evaluation are DTLB, ASID-TLB and conventional TLB. At the
beginning all TLB entries, the cache memory and the stack memory is free.
The simulator reads the input schedule line by line. When a new job is to be
executed, the required stack space is allocated to it. The simulator selects the
appropriate trace file based on the job ID. Each time unit of the execution is
mapped to 'x’ memory accesses in the setup. The number of traces in the
trace file is proportional to the execution time of the task. The traces offer
virtual address along with read/write operation. The page number extracted
from the virtual address is given to the TLB. A TLB hit offers the frame
number corresponding to the page number, which is in concatenation with the
offset, is given to the cache memory for instruction/data access. The mapping
function with the help of the page table finds the frame number corresponding
to the page number in case of TLB miss. This work assumes architecture
with segmentation with two level hierarchical paging. The standard page size
i.e., 4KB is used as the default page size. Counters are maintained to keep
track of the number of TLB hits and cache hits. Irrespective of the TLB
variants in use, parallel search in all TLB entries is used for finding TLB hit.
At each preemption point, the DTLB is flushed after backing up the entries

in PCB of the running task. When a preempted task resumes its execution in

Experimental Evaluation 110

CPU, the TLB entries are reinitialized with the backed up PCB content. As
these activities are happening with preemption, it never impact the critical
path delay. The number of such preemption points in real-time systems is
very less as only the higher priority jobs can preempt the executing job. The

simulator stops its execution when there exist no more jobs in the schedule.

5.4.2 Experimental Evaluation

This work compares the performance of DTLB with Conventional and ASID-
TLBs. The parameters used for comparison are TLB miss rate, dynamic

energy consumption and access time.

5.4.2.1 TLB Miss Rate

25

DTLB mm
ASID-TLB

20 |

-
w
T

—_
o
T

Miss rate reduction %

4KB 8KB 16KB
Page Size(KB)

Figure 5.2: Miss rate performance of DTLB and ASID-TLB with respect to
conventional TLB for varying page size with 16 preemptions and 32 TLB
entries

TLB Miss Rate 111

Figure 5.2 shows TLB miss rate performance of DTLB and ASID-TLB
over conventional TLB. FFT benchmark suite with 16 preemptions and 32
TLB entries for varying page sizes is used for the performance analysis. As
reachability of the TLB increases with increase in page size, irrespective
of the TLLB model in use, the miss rate decreases. The number of misses
decreases on an average by 34.67%, 32.03% and 28.63% respectively for DTLB,
ASID-TLB and conventional model with every doubling of page size. DTLB
and ASID-TLB reduces the miss rate on an average by 16.32% and 4.43%
respectively over conventional TLB.

Figure 5.3 shows the miss rate reduction of DTLB and ASID-TLB over

10

DTLB s

Ll

Number of Preempuons

Miss rate reduction %
()]

—_

Figure 5.3: Miss rate performance of DTLB and ASID-TLB with respect to
conventional TLB for varying preemptions with 4KB page size and 32 TLB
entries

conventional TLB for varying number of preemptions. FFT benchmark suite

with 4KB page size and 32 TLB entries is used for the performance analysis.

TLB Miss Rate 112

With increase in preemptions, the miss rate of DTLB remains constant
whereas the miss rate in conventional and ASID-TLB increases. The increase
in miss rate is exponential in conventional TLB because of invalidation at
each preemption point whereas the increase is marginal in ASID-TLB. The
DTLB provides deterministic miss rate which is equal to the miss rate when
it runs without preemption. Reduction in DTLB miss rate over ASID-TLB
varies from 1.86% to 8.37% when number of preemptions varies from 4 to
22. Reduction in DTLB miss rate over conventional varies from 1.98% to
9.90% for number of preemptions varying from 4 to 22. Results obtained by
varying the number of tasks show similar trend as shown in Figure 5.3 as in
real-time systems, the increase in number of tasks result in increasing number
of preemptions.

As reachability of the TLB increase with increase in TLB entries, irrespective
of the TLB models in use, the miss rate decreases. Figure 5.4 shows the
reduction in miss rate of DTLB and ASID-TLB over conventional TLB
for various TLB entries. FFT benchmark suite with 4KB page size and
16 preemptions is used for the performance analysis. Reduction in TLB
misses is due to reduction in capacity misses and conflict misses. For lesser
number of TLB entries, the ASID-TLB performs poor than conventional
model because of the capacity reduction. The number of misses decreases on
an average by 17.81%, 15.85% and 9.14% respectively for DTLB, ASID-TLB

and conventional model with every doubling of TLB entries.

Dynamic Energy 113

25 DTLE omm ‘ ‘ ‘
ASID-TLE

20 | |
R 151 |
8
3]
T 10| il
g
Q
=
2 5
E I

0l . []

-5

16 32 64
Number of TLB Entries

Figure 5.4: Miss rate performance of DTLB and ASID-TLB with respect to
conventional TLB for varying TLB entries with 16 preemptions and 4KB
page size

5.4.2.2 Dynamic Energy

Figure 5.5 shows the per access dynamic energy saving of DTLB and ASID-
TLB over conventional TLB. FFT benchmark suite with 16 preemptions and
32 TLB entries for various page sizes is used for the performance analysis.
With increase in page size, irrespective of the TLB models in use, the miss rate
decreases. However, with increase in page size TLB miss penalty increases
because of page table walk through. Increased miss penalty leads to increase
in per access dynamic energy. The dynamic energy consumption is least for
DTLB and is highest for conventional TLB. Access energy increases on an
average by 1.65%, 3.53% and 5.66% for DTLB, ASID-TLB and conventional

model respectively for every doubling of page size. Average energy savings for

Dynamic Energy 114

various page sizes of DTLB and ASID-TLB is 6.74% and 1.95% respectively.
Figure 5.6 shows the dynamic energy saving of DTLB and ASID-TLB

12

DTLE mmm
ASID-TLB mmm

10 L

Per Access Energy Saving(%)
o)

8KB
Page Size(KB)

Figure 5.5: Per access dynamic energy with respect to conventional TLB
saving for varying page size with 16 preemptions and 32 TLB entries

over conventional TLB for varying number of preemptions. FFT benchmark
suite with 4KB page size and 32 TLB entries is used for the performance
analysis. The dynamic energy consumption increases marginally by 0.01%
with increase in preemptions. This increase is due to the transfer of TLB
entries to PCB and vice versa. For ASID-TLB, the access time and energy
remains same when task uses reserved entries when it resumes. If not, the
access time and energy increases. For conventional model, the access energy
increases with increase in preemptions due to invalidation of existing entries.
Average per access energy savings of DTLB and ASID-TLB over conventional
TLB is 2.34% and 0.33% respectively.

Figure 5.7 shows the per access dynamic energy saving of DTLB and ASID-

Dynamic Energy 115

35 DTLB s
ASID-TLB mmm
31 i
9
E6 25 L1 4
s
]
. 2| i
ol
)
@ g5 |
wy
4]
o
o
< 1L |
[
ja i
05 1L i
0
4 7 10 13 16 19 22

Number of Preemptions

Figure 5.6: Per access dynamic energy with respect to conventional TLB
saving for varying preemptions with 4KB page size and 32 TLB entries

8 DTLE mmm i
7ASlD-TLB-
6L i
9
w5 |
2
w4+ 4
>
o8
g 3t 4
5]
2 2|]
&
g
< 1L]
9]
0| [| ,
1r . i
) \ .

16 2 64
Number of TLB Entries

Figure 5.7: Per access dynamic energy with respect to conventional TLB
saving for varying TLB entries with 16 preemptions and 4KB page size

Access Time 116

TLB over conventional TLB. FFT benchmark suite with 16 preemptions and
4KB page size with varying TLB entries is used for the performance analysis.
Access energy increases on an average by 46.75%, 46.90% and 48.25% with
doubling of entries for DTLB, ASID-TLB based TLB and conventional TLB
respectively. As shown in Figure 5.7, the conventional TLB outperforms
ASID-TLB for small TLB entries as reservation in ASID-TLB further reduces
number of per task available entries. The dynamic energy consumption of
DTLB is the least among all the three models for all page sizes. Overall energy
saving of DTLB and ASID-TLB over conventional TLB is 4.41% and 0.93%
respectively. On an average DTLB energy saving over ASID-TLB is 31.52%.
Figure 5.8 shows per access dynamic energy for various splash benchmark
programs. In all cases the dynamic energy consumption of conventional TLB
is highest and DTLB consumes the least dynamic energy. Energy consumption

is directly proportional to hit rate.

5.4.2.3 Access Time

Figure 5.9 shows the access time reduction of DTLB and ASID-TLB over
conventional TLB. FFT benchmark suite with 16 preemptions and 32 TLB
entries for various page sizes is used for the performance analysis. On an
average access time increases by 2.43%, 3.35% and 4.36% with every doubling
of page size for DTLB, ASID-TLB and conventional TLB respectively. The
access time of DTLB is the least among these models for various page sizes.
Average per access time saving of DTLB over conventional and ASID-TLB is
2.97% and 2.09% respectively.

With increase in number of preemptions, access time of DTLB, ASID-TLB

Access Time 117

0.0064

TLE o
ASID-TLE

000635 | DTLB mum

(n))

0.0063

0.00625

0.0062

0.00615

Per Access Dynamic Energy

0.0061

0.00605

Radix5
Splash - Benchmark

Figure 5.8: Per access dynamic energy for varying Splash benchmark programs

55 DTLB
5 |ASID-TLB

4.5

25

15}

Per Access Time Saving(%)

05|

8KB
Page Size(KB)

Figure 5.9: Per access time saving with respect to conventional TLB for
varying page size with 16 preemptions and 32 TLB entries

Access Time 118

and conventional TLB increases on an average by 0.02%, 0.18% and 0.23%
respectively. With increase in number of preemptions, the increase in access
time is the least in DTLB and the highest in conventional TLB. For DTLB,
ASID-TLB and conventional TLB, per access time increases by 0.10%, 0.94%
and 1.15% respectively when number of preemptions are increasing from 4 to
22 as shown in figure 5.10

Effective per access time decreases with increase in number of TLB entries
for all the models as shown in Figure 5.11. Per access time of DTLB is the
least for varying number of TLB entries. Conventional TLB outperforms
ASID-TLB when number of DTLB entries are 16. However with increase in
number of TLB entries ASID-TLB performs better than conventional model

as shown in Figure 5.11.

14

DTLE samm
ASID-TLB mmm

il

Number of Preemptlons

Per Access Time Saving(%)

Figure 5.10: Per access time saving with respect to conventional TLB for
varying preemptions with 4KB page size and 32 TLB entries

5.5. Conclusion 119

1.38 TLB mmm
DTLE mmm

134 L

1.32 L

—
w
T

1.28

1.26 ©

124 L

Ettective access time (nS)

1.22 L

Radix5
Splash - Benchmark

Figure 5.11: Effective access time of 32 entry, 64bits TLB for varying Splash
benchmarks

5.5 Conclusion

This chapter proposes a novel TLB architecture Deterministic Translation
Lookaside Buffer (DTLB). DTLB offers deterministic performance for low
priority real-time tasks. DTLB achieves a tighter upper bound on the WCET
of real-time tasks by maintaining a copy of the current TLB in PCB of the
task before preemption and transferring the contents back to TLB while
resumption of the task. DTLB reduces TLB access time, dynamic energy
consumption and effective per access time by increasing TLB hit rate. TLB
hit rate is increased by 9.46% as compared to conventional TLB for 4KB
page size, with 16 preemptions and 32 TLB entries. DTLB offers on an

average 6.74% and 4.91% of dynamic energy savings over conventional TLB

5.5. Conclusion 120

and ASID-TLB respectively. Effective per access time of DTLB reduced by
2.97% and 2.09% as compared to conventional TLB and ASID-TLB.

Chapter 6

DEARCACHE - Deterministic
Energy Efficient Process Aware

Real-time Cache

6.1 Introduction

The WCET of a task depends on program flow such as loop iterations, decision
statements, function calls etc. and on architectural factors such as cache,
memory, system resources etc [59]. From an architectural point of view, the
pessimistic WCET can be obtained by considering a NO CACHE model as
cache is highly non-deterministic. The non-deterministic nature of cache is
because of the global replacement and its transparency to operating system
and applications. However, this analysis gives an extremely loose WCET
which is impractical to accommodate [61].

The RISC systems like MIPS, ARM and RISC V follows load-store architecture.
All instructions except load and store variants in these architecture use
only one memory access as instruction fetch which is a compulsory memory
operation for all instructions. The load and store instructions result in

multiple memory accesses. The average number of memory accesses per

121

6.2. DEARCACHE Architecture 122

instruction will be more than one because of this. The memory subsystem
access contributes to a large portion of WCET. Design of energy efficient and
performance centric hard real-time system requires a tighter upper bound
on WCET. To find a tighter bound on WCET, the system should impose
a tighter upper bound on cache misses which depends on number of worst
case preemptions. To have a tighter upper bound on the WCET of real-time
task, this chapter presents a Deterministic Energy efficient process Aware
Real-time Cache (DEARCACHE). In process aware cache design, at each
preemption point, the OS transfers job identification number(PID/TID) to
the cache controller. Using this information, DEARCache provides tighter
upper bound on WCET by eliminating cache related intertask interferences.
It guarantees allocation of statically identified minimum ways to each job.
DEARCACHE partitions the cache dynamically based on job requirements.
It backs up allocated way(s) of job in backup storage, if the running job is in

need of more ways and the WCET calculation incorporates the backup time.

6.2 DEARCACHE Architecture

The focus of DEARCACHE is to provide a tighter upper bound on WCET
with cache memory and memory subsystem. DEARCACHE consists of
dynamically partitioned set-associative private L1 instruction cache and data
cache backed up by shared L2 cache and main memory. A new partition is
created at job arrival and is dynamically expanded/shrunk during its stay in
cache. To achieve deterministic performance, each job is guaranteed to have

lower limit on the number of allocated ways at any point in time and upper

6.2. DEARCACHE Architecture 123

limit on the number of times the ways are backed up to memory. The lower
limit on number of ways that can be allocated to the job are fixed by offline
profiling. The minimum number of ways that can be allocated to the job are
called as default ways. A special instruction in instruction set architecture is
used at preemption to allocate new ways if the job is new or backed up. At
run time, the system finds the need of additional ways with the help of miss
counters and then calls the instruction to communicate with cache controller.
The cache controller identifies the over allocated jobs or it backs up jobs to
free ways so as to allocate it to the executing job. When a job requires a
new way, if free cache way is available then it is allocated. If a free way is
not available but non-default ways of other jobs are available for use, then
find and release the least recently used non-default way from other job and
allocate it to the running job. While releasing a way from a job, the non LRU
entries in that way are shifted to the remaining allocated ways. If a job has
K ways allocated to it and each way has M sets in it, the maximum number
of cache line shifting required to keep MRU lines of the victim way is M /K.
The time taken to move M /K cache lines to other ways determines the upper
bound of transfer time. If non-default ways are not available for allocation,
the ways of least recently executed job is backed up into the storage area.
When the job resumes its execution next time, the stored backup is loaded
back into the cache. Thus, deterministic tighter upper bound on the WCET
of job is achieved.

Detailed architecture of DEARCACHE is shown in Figure 6.1. Cache obtains
the physical address P and job identifier J of the requested data. After

deriving the desired tag, index and offset, the derived index is decoded and

124

DEARCACHE Architecture

6.2.

t
SSINI/HH?

oD aw)-[eal pauorjrred areme ss9001d DIISTUTHLINID(] :1°Q 2In31]

t

Japooul

F

E1E(]

FLIEE i
PIGAY

.

o (Er—in
5....-.__.___..]
v Freen v rehe [e T _u.__:._.s__._q_; m
&
B
E]
L]
a.n....ﬂmn_ e._u..ﬂmu 5...n_ nn.:___-___r n..__ﬂm_u Tofpy -__..._n_ n_a_____.__. w
a
vHpIger T4 Aem "pIger olem |
1N) wawEae|da Ar g _

ﬁ

ayoed 1101

aiesoEdnyIed 11 E_/

- Aesogdipyaeg
, TTwaody

mRARSH0NE

Fxpojgayped 11 Yipmar
ypojg Pl 11 "prgor
Tpojgsyped 11 “pror

Sesnis dipaeg 11

| an2u iy puawadey day 5 200

75

[(rpgor | {o)esyo | ()xepur |

«———{d)ssappy [E1sAYd——n

ayde) pauoniled 11
(3)des

— adeioisdppeg

DEARCACHE Energy Modeling 125

the corresponding set is activated. In parallel, J is compared with job identifier
Jobld; stored for each way of the cache. Only ways with Jobld; matching is
activated. This reduces the total number of active ways and results in saving
cache access dynamic energy consumption. The cache components used for
modeling energy consumption evaluation of DEARCACHE are given in Table

3.1. SESC [66] is used for finding the parameters in Table 3.1.

6.2.1 DEARCACHE Energy Modeling

Total energy consumption of DEARCACHE, Fpgarcachs, 1S summation of

dynamic energy consumption and static energy consumption.

EDEARCACHE = DEDEARCACHE + SEDEARCACHE (61)

where D Epgarcacue and S Epgarcacus 18 dynamic and static energy of DEARCache
respectively. The dynamic energy consumption calculation is shown in equa-

tion 6.2
DEDEARCACHE - Naccesses * (Edyn,dec + Edyn,op,drvr)

+ Edyn,;r * W + Nmisses * DETac (62>

+ D EpEARCAcuE. Overhead

where w, Nyceesses and Npisses Tepresent the number of enabled ways, accesses
and misses respectively. The DFy..ess and D Erp, represent the dynamic
energy per way access and dynamic energy required to transfer cache block
from next level memory respectively. D EpgaRcacue Overhead 18 dynamic energy

overhead required to access job identifier, most recently used entry transfers

DEARCACHE Time Modeling 126

and recency data.

DEDEARCACHE,Overhead = Edyn,pid + Edyn,mruTransfers + Edyn,recencyData (63)

The static energy is given by,

SEpparcacus = (Pleakage T PoEARCACHE Overhead) ¥ RTDEARCache (6.4)

Where PpgaARCacus.Overhead 1 leakage power to maintain associated circuitry to
maintain DEARCACHE and RT'bgARCache 18 the response time of DEARCache.

RTDppaRCache is given by :

RTpEARCache = total cycles required for completion of program x cycle time

(6.5)

6.2.2 DEARCAcHE Time Modeling

The DEARCACHE cycle time, Ticyee, is obtained using SESC. Time calcu-

lations of DEARCACHE is as shown in equation 6.6.

TDEARCACHE = Taccess + Nmisses,DEARCACHE * TTx (66>

where Tyecess and Npisses DEARCAcH: T€Presents response time and and miss

rate of DEARCACHE respectively.

6.3. Experimental Analysis 127

6.3 Experimental Analysis

The evaluation of DEARCACHE is carried out by using SESC simulator.
Simulator selects appropriate trace file based on job ID. The number of traces
in the trace file is proportional to the execution time of the job. The traces
offer virtual address along with read/write operation. The page number
extracted from the virtual address is given to the TLB. TLB hit offers the
frame number corresponding to the page number. The mapping function
with the help of page table finds the corresponding frame number in case of
TLB miss. Frame number is concatenated with the offset, and is given to the
cache memory for instruction/data access. It simulates the cache model for a
given configuration and stops its execution when there exist no more jobs in

the schedule.

6.3.1 Tighter upper bound on WCET

Figure 6.2 shows the miss rate comparison of CC and DEARCache with
varying number of preemptions. The miss rate increases with number of
preemptions for CC due to intertask interference. When task resumes after
preemption, its data may get replaced by preempting task. This leads to
additional intertask conflict misses which increases the cache miss rate and
execution time. In DEARCache, dedicated ways are allocated to the task.
Cache lines do not get replaced by other executing tasks. Deterministic miss
rate is obtained by using DEARCache. This deterministic miss rate gives
tighter upper bound on WCET. The WCET of CC is 1.11ns and WCET of
DEARCache is 1.09ns. The WCET of DEARCache is reduced by 1.12%. The

Energy per Access 128

15.5
== CC =—#=— DEARCache

15

L 2
&»
L J
»
»
s 2

14.5

Miss Rate

14
13.5

13
0 4 10 13 19 22
MNumber of Preemptions

Figure 6.2: Miss rate of CC and DEARCache by varying number of preemp-
tions

reduced WCET can be used to schedule more number of task.

6.3.2 Energy per Access

Figures 6.3 to 6.6 shows the per access energy consumption over varying
preemptions, cache size, line size and associativity respectively for CC and
DEARCACHE. Access energy consists of two major components - static
energy and dynamic energy. The static energy consumption of cache is
proportional to its size and operational time. The DEARCACHE consumes
additional static energy because of task identifier, and way replacement
circuitry. When the number of preemptions are less hit rate of CC is higher
than DEARCACHE. When the preemptions increase DEARCACHE offers
better hit rate. DEARCACHE takes higher operational time initially because

Energy per Access 129

of lower hit rate. This results in DEARCACHE consuming higher static energy
in comparison with CC over varying preemptions, cache size, line size and

associativity. On an average, static energy consumption of DEARCACHE

0.8 o

DEARCache mmmm

0.75 L

S

Number of Pre-emptions

(=)
~
T

gy(nJ)

o
[@)]
w
T

Per Access Ener

Figure 6.3: Per access energy for varying preemption with 8KB cache size,
32B line size and associativity as 4 way

is 4.39% higher than CC for varying number of preemptions. The static
energy consumption increases with increase in the number of preemptions
and cache size because of the reduction in hit rate and increase in cache size
respectively. The static energy consumption reduces with increase in cache
line size because of increase in hit rate and it follows the similar hit pattern
with varying associativity.

Dynamic energy consumption of the cache depends on the number of active
components and hit rate. Irrespective of the parameters used, dynamic energy

consumption of DEARCACHE is lesser than CC. This is mainly because of

Energy per Access 130

5.5 =
5 | DEARCache mmm

| u _
0 II
64 128

32
Cache Size(KB)

IS
w
T

=S
T

Per Access Energy(nl)
— N
= [€2) Mo (@] W

(=]
€3]

Figure 6.4: Per access energy for varying cache size with 10 preemptions, 32B
line size and associativity as 4 way

CC mmm '
DEARCache mmm

o
o
\

o
o
T

o
)
\

Per Access Energy(nl)
o
~J

e
tn
\

0.4

64
Line Size(B)

Figure 6.5: Per access energy for varying line size with 10 preemptions, 8KB
cache and associativity as 4 way

Energy per Access 131

1.3

CC mm'
DEARCache mmm

Per Access Energy(nl)
e e o e = =
(@] ~ [e] w = =]

e
tn

04

2 4 8 16
Associativity

Figure 6.6: Per access energy for varying associativity with 10 preemptions,
8KB cache and 32B line size

the reduction in the number of active ways in use. DEARCACHE enables
on an average 1.55 ways against 4 ways in CC for a 4-way set associative
cache. Though the active components of DEARCACHE is reduced by 61.25%,
the dynamic energy saving is restricted to 38.10% mainly because of the
reduction in hit rate. For a 4-way set associative cache, CC offers 1.52%
more hit rate than DEARCACHE. As dynamic energy dominates over static
energy in overall energy consumption, DEARCACHE offers better energy
saving than CC with a deterministic upper bound on WCET. On an average
DEARCACHE offers 34.49% per access energy saving over CC.

Response Time 132

6.3.3 Response Time

The response time depends on hit rate and hit time. The plot of response
time verses varying preemptions, cache size, cache line size and associativity
are in figure 6.7, 6.8, 6.9 and 6.10 respectively for CC and DEARCACHE
using FFT benchmark.

1.125

CC mmm
1.12 7DEARCache]

1.115 |

111 L i

1.085 | i
1.08 | i
1.075 | i
107 4 7 10 13 16 19 22

Number of Pre-emptions

— —
—

[aw] —
o © & o
> v = O

Response Time(nS)

Figure 6.7: response time for varying preemption with 8KB cache size, 32B
line size and associativity as 4 way

As shown in figure 6.7, the hit rate decreases with increase in preemptions
contributing to increase in the response time. The response time also increases
with increase in associativity due to increased cycle time. The increase in
cache size and cache line size results in decreasing response time. This is
because of the increase in cache hit rate. Experimental evaluation shows that

response time of CC, DEARCACHE and NO CACHE model is 0.72ns, 0.75ns

Response Time 133

3.5

CC mmm
DEARCache mmm

3t J
2L J
| II |
0.5
64 128

32
Cache Size(KB)

N
)]
T

Response Time(nS)
w

Figure 6.8: response time for varying cache size with 10 preemptions, 32B
line size and associativity as 4 way

1.12

CC mmm

11 DEARCache mmm

1.08 L

Response Time(nS

JLesponse Time(ns)
W o o o
o [[N = [e)]

e
0
>
\

0.94 L

0.92

64
Line Size(B)

Figure 6.9: response time for varying line size with 10 preemptions, 8KB
cache and associativity as 4 way

Energy and Time comparison with energy efficient caches 134

1.105

CC mm'
DEARCache
11k
1.095
& 1.09
[}
E
£1.085

Response
= E
=]

[e5]

1.075 L

1.07

1.065

2 4 8
Associativity

Figure 6.10: response time for varying associativity with 10 preemptions,
8KB cache and 32B line size

and 2.91ns respectively. DEARCACHE requires additional 4.37% of response
time as compared to CC. The response time of DEARCACHE is improved

by 287.09% over NO CACHE model.

6.3.4 Energy and Time comparison with energy

efficient caches

The comparison of dynamic energy consumption and static energy consump-
tion of DEARCACHE with respect to CC, WP and WH is as shown in Figures
6.11 and 6.12 respectively. Hit rate of CC, WP and WH is the same and
is higher than DEARCache when number of preemptions . Irrespective of
the measuring parameters used dynamic energy consumption of CC is the

highest. CC accesses all the ways for every access. The number of ways

Energy and Time comparison with energy efficient caches 135

1.4 o . .
WP mm
WH mm
1.2 |DEARCache mmm 1

—

Per Access Dynamic Energy(nJ)
(=] (=]
o o]

o
I

0.2

8 16
Cache Size(KB)

Figure 6.11: Per access dynamic energy for varying line size with 10 preemp-
tions, 8KB cache size and associativity as 4 way

140

CC mmm'
WP pmm
WH
120 | DEARCache mmm

80 |

Per Access Static Energy(pJ)

40 |

20 | -
4 8 16
Cache Size(KB)

Figure 6.12: Per access Static energy for varying line size with 10 preemptions,
8KB cache size and associativity as 4 way

Energy and Time comparison with energy efficient caches 136

accessed increases dynamic energy consumption of CC.

WH consumes the least dynamic energy. The number of ways accessed by WH
is lesser than CC and WP. The prediction miss in WP results in accessing all
other ways. This increases dynamic energy consumption of WP over WH.
Identification based reservation in DEARCache reduces associativity per task.
The reduced associativity decreases hit rate. The decreased hit rate increases
dynamic energy consumption of DEARCache over WP and WH. The number
of ways accessed in case of DEARCache is less than CC hence dynamic energy
consumption of DEARCache is better than CC.

CC consumes the least static energy. The prediction circuit and halting circuit
incurs additional static energy in case of WP and WH respectively. The least
hit rate of DEARCache along with additional DEARCache overhead results
in highest static energy is consumption of DEARCache.

Early detection of cache misses due to halt tag misses in case of WH gives it
the least response time. Prediction misses in case of WP results in additional
response time over CC. The response time of DEARCache is the highest
among all the cache architectures.

DEARCache can be made energy efficient by incorporating prediction circuit
and halt tag circuit along with process identification. This will reduce the
dynamic energy consumption of DEARCache further. The static energy
consumption and response time of DEARCache can be improved by using
shared way which will be discussed in chapter 7. Data shared between task
can be stored in shared way. This results in improving DEARCache hit rate
and hence decreases dynamic energy consumption, static energy consumption

and response time.

6.4. Conclusion 137

6.4 Conclusion

Meeting all deadlines with least energy consumption is the major design
constraints of battery powered hard real-time systems. Real-time scheduling
algorithms perform schedulability analysis by considering the pessimistic
WCET. In conventional systems, the WCET is loosely bound because of the
non-deterministic nature of the memory subsystem. Cache memory is an
integral and crucial part of the memory subsystem. This chapter proposed
DEARCACHE a deterministic real-time cache memory. DEARCACHE elim-
inates intertask interference by allocating dedicated cache ways to tasks in exe-
cution. It obtains tighter upper bound on number of cache misses. DEARCACHE
reduces dynamic energy consumption by 38.10% for 4-way set associative
cache configuration over CC with 4.39% overhead of static energy. Response
time of DEARCACHE is improved 3.87 times over NO CACHE model and
with an additional requirement of 4.37% of response time as compared to
CC. The WCET of DEARCache is reduced by 1.12%. The reduced WCET
can be used to schedule more number of task. DEARCache can be made
energy efficient by using prediction circuit and halt tag array along with
process identification. This will reduce the dynamic energy consumption of
DEARCache further. The static energy consumption and response time of

DEARCache can be improved by using shared cache to store shared data.

Chapter 7

DREAM - Deterministic
Memory Subsystem

7.1 Introduction

Tighter schedulability analysis is crucial in hard real-time systems as deadline
misses may lead to catastrophic failure. The tighter upper bound on WCET
at all levels of memory subsystem - TLB, various levels of caches and main
memory - required to ensure scheduling feasibility. This chapter designs mem-
ory subsystem to get deterministic performance at all levels. The inter-task
and intra-task interference at all the levels of memory hierarchy makes the
memory sub-system non-determinitsic. To get deterministic performance
of L2 cache, this chapter proposes a Deterministic Energy Efficient Process
aware(DEEP) design. DEEP cache is shared among all tasks running on
different cores of the processor. It allocates minimum number of ways to
each task which is identified as a result of static analysis. It dynamically
increases/decreases the number of allocated ways based on task requirements.
It backs up allocated way(s) of task in backup storage if the running job is in
need of more ways and if the WCET calculation incorporates this time.

This chapter also proposes an integrated design of deterministic memory

138

7.2. DREAM Architecture 139

named Deterministic REAl-time Memory system (DREAM). DREAM achieves
deterministic performance at TLB and L1 cache by incorporating DTLB and
DEARCACHE with DEEP as L2 cache. Detailed discussion about DTLB and
DEARCache are done in chapter 5 and chapter 6 respectively.

7.2 DREAM Architecture

Each core in DREAM architecture consists of a TLB, private split L1 in-
struction and data caches, shared unified L2 cache and main memory. To
avoid the complication of secondary storage, this work assumes that the main
memory is large enough to hold the instructions, stack, heap and paging
information of the running jobs [72] [71]. This can be very well relaxed with
a semi-conductor memory like SSD as secondary storage. Figure 7.1 shows
the proposed memory subsystem architecture of DREAM.

DTLB offers tighter WCET bound on real-time tasks. It guarantees minimum
number of TLB misses. To achieve deterministic performance, the L1 cache is
designed as a DEARCache. L2 is designed as DEEP shared cache which locks
cache ways for tasks to achieve deterministic performance in MC systems
[73]. Tt is shared among tasks and partitioning is identified based on task IDs
(PID/TID). The DEEP cache is a V-way cache implementation that has a
conflict miss counter for each set [73]. It increases the associativity of an index
if the number of conflict misses in that index increases beyond a particular
threshold. On increasing the associativity of an index, the associativity of
another index is decreased such that the total number of enabled cache lines

remain constant. The data mapping information is stored in the tag entries

140

7.2. DREAM Architecture

wo)sAsqng ATowdN NYHY 1L 9Isig

Aowapy viepw
EEL3
» uopeuuou) Suidey moeds deay (eqo|9 5 UORINsU SBRENjUI)
Alowiaw [Ed0| 351M §SEL
SR (e _
el Lt
paucipped _ h
1

SN0 ayIed (4330)
= aypEd I

ooy

55N F1L0 .— — ﬁ _ sa1epdn guLa
maorssappy iy d - qor's53appy [Eaniyd mgors s ppy (easiyd e
e = S e

pauoiyyed _ _ _ h

asimyse} (zye34¥v3a) (ay2e04v3a) (ay2e0uvaaq)

apel 11 m m n

2107 134 .__ ___ ﬂ

algor ‘ssaappy [ENsAyd algoer ‘ss2appy [EsAYd alqer ‘ssappy ENsAyd
‘UH ‘UH “UH
a1l a1La A|4 Ll aLa | E1EQ aiLa ot meg

SS3UPPY [ENTIA SSRUPPY ENHIA SS3UPPY [ENIA

53407 20

-

au0)

&

2103

F 3

105533014

141

o)) (JHMH)eTeME SS9001] JUSIOYJH ASIoUr OIISTUINLIIS(] g’) 9IS

!

SSIMIUH
|

Japoaug 10P3E5 12Uy pEMIOY
3 & mT T o
% .._:_..;f_“_d_ Vil R Tt .._inbn_u.—

EEIPT] EET GEEET

us....ul._xu{ _ vn.._.f! _f:.-_“fd{ _ o:ln...-:ﬁ{ JT—udbnEd._ -.:Li!._. _usl._.ﬂc._usl.r—.e,t usln..i-t _ _..i}..'ﬂ W.;nﬂ.:nﬂ.‘?—.dl_.s _,.:.-_HEE.. __._-.n.HE —in o n
] :] : ! : : : g : ; : : : : ; : e
Tnaay | Twew | Toav | TuAw | | Tmav | Tew | Tav | A Thnda | Commw | oora | WA Tad | Coemd | "o | "Wa mn
TNy THigue Je) Euonppy pygeny odeue Sl jeuonppy HNpygopr Tk se Be) JenSay “pqop oleue ey mndau| 3 Oy 14 WA | "meq
T hesry mRQ

L T

s d r
[(s)sne1s Buneys T {ripmor | [[ehesye [(sepur | (i8]
+—(dis=ppy e ——»

ayoe) asemy s5330id

7.2. DREAM Architecture

7.3. Time, Power and Energy Modeling 142

such that it can be directly mapped to one location in the data array. The
data corresponding to tags in the extra or extended tag array are stored in
locations corresponding to the disabled cache lines of other indexes. Figure
7.2 shows detailed architecture of DEEP cache. DEEP cache controller is
provided with job identification J and physical address P. Tag comparisons
and validity check is done only for the ways allocated to job J. On cache hit,
data from data array is accessed by using forward pointers stored in tag array.
Performance of the proposed system can be improved by providing a shared
cache along with the partitioned cache. Shared cache improves cache hit
rate when entries are shared between multiple jobs. The allotted partitions
are accessed for the non shared cache accesses and shared cache is accessed
otherwise. The detailed algorithm which illustrates the working of L2 cache
architecture is given in algorithm 2. Detailed architecture of the complete
memory subsystem architecture of DREAM with Shared way (DREAMS) is
as shown in Figure 7.3. The shared space can be N-way set associative to
fully associative where N is at least double in number than the associativity
of the partitioned cache. Partitioned cache is accessed only for non-shared

accesses. This reduces number of active components in the system.

7.3 Time, Power and Energy Modeling

The cache components used for the performance and energy consumption
evaluation of DREAM are given in Table 3.1. SESC time, power and energy

model is used for finding the energy and time parameters from Table 3.1.

143

7.3. Time, Power and Energy Modeling

Aem poreys M wasAsqng AT0WN NYHY 'L 2Isg

Arowapy uew

uopewoju) Suidey

aoeds deay |eqo|D

] uonangsu ﬂﬁ-.__u:_u

(12e35

sAepdn aua

d

-~

- Alowiaw [Ed0| 351M §5EL
SRPPY |Eshyd
el EIEg
paucipped _ h
35IM3I0]
. pasmys ayaed (4330 J21
ayel 71
UoLWILLIOY .— — ﬁ
SR F1LT
aiqorssappy [Esiyd aiqor'ssaapey [Easiyd QIO =Y [EsAYd
e o = _B_m_u = e
IYPEJ 11 2]
AYIEDIYYIA SYIEIHYIA | FHIEDIHYIA
210] Jag us : __
alger ‘ss2ippy [BasAyd algoer ‘ss2ippy [easiyg arger ‘ssppy [BaIsAy
“UH ‘WH “WH
7L a11a A|4 mEed aiLa | E1E] aLa
FRIPPY [enUA SSRUPREY BN SRIPRY [ENULA
52107 sy -+ oy - Eles]

105532014

-

7.3. Time, Power and Energy Modeling 144

Algorithm 2: Accessing Shared DEEP cache

[= I

10
11
12
13
14

15
16
17
18

19
20
21
22
23

24
25

26
27
28
29
30
31

32
33

Input: Physical Address P, Cache sharing status .S, and task Identifier

T

Output: Process aware cache or Shared cache hit/miss and data
begin

if P is shared then

Access shared L2 cache;

if Match found for tag bits of P in tag array of shared cache

then

‘ Transfer requested data from / to L1; return;

else
Select a cache line as victim cache line in shared cache for
replacement;
Transfer data from memory to L2 cache line and transfer
data from / to L1 cache; return;

end

end
else
Extract tag bits ¢, set index bits s, and offset bits o from P;
Identify w ways alloted to task,T;;
Compare tag bits ¢, with tags of w ways of task 7; in the desired
set s;
if Match found then
‘ Transfer requested data from / to L1 cache; return;
if Any Cacheline at s in w ways is free then
Transfer data from memory to free cache line in L2 and
transfer it to L1; return;
else
conflictMissCnt[s| + +;
if w < maxAllotment; then

if conflictMissCnt[s| <= conflictThreshold then
allotedW ay = Allot L2 cache way with regular tag
array;
else
allotedW ay = Allot L2 cache way with additional
tag array;
con flictMissCnt[s] = 0;
end
else
‘ Select allotedW ay using replacement policy;
end

Transfer data from memory to cacheline at(s,allotedW ay)
and transfer data from / to L1 cache; return;

end

end

Energy Modeling of DEEP Cache with Shared way - DEEPS 145

7.3.1 Energy Modeling of DEEP Cache with Shared
way - DEEPS

Total energy consumption of DEEPS, (Epggps), is summation of dynamic

energy consumption and static energy consumption.

EDEEPS = DynamzcEnergyDEEPS (DEDEEPS) ()
7.1

+ StaticEnergyDEEPS (SEpggps)

The dynamic energy consumption calculation is shown in equation 7.2

DEDEEPS = Naccesses,PC * (Edyn,dec + Edyn,op,drvr> + Edyn,z * W+
Naccesses,SC * (Edyn,dec,SC + Edyn,op,drvr,SC + Associatwity,SC*

Edyn,az,SC') + Nmisses * DETx + DEDEARCACHE,Overhead
(7.2)

where w, Nyceesses POy Naccesses.sc and Npisses Tepresent the number of en-
abled ways, non-shared accesses, shared accesses and misses respectively.
The DEpgeps.overhead @and D Ep,, represent the dynamic energy overhead and
dynamic energy required to transfer cache block from next level memory
respectively. Egyn_dec sy Edaynz.s¢, Edyn_op.arorsc and Associativity SC rep-
resents decoder energy, access energy, output driver energy and associativity
related to shared cache.

Calculations of static energy consumption is as per equation 7.3

SEDEEPS = (Pleakage + PDEEPS,Overhead> * RTDEEPS (73>

Energy Modeling of DREAM system with Shared cache - DREAMS 146

Where Ppgeps_overnead 18 leakage power to maintain associated circuitry to
maintain DEEPS and RTpgrgps is the response time of DEEPS. RTprgps is

given by :

RTprpps = total cycles required for completion of program x cycle time

(7.4)

7.3.2 Energy Modeling of DREAM system with
Shared cache - DREAMS

Energy consumption of DREAMS, (Eprgams), is summation of energy

consumption of DTLB, DEARCACHE and DEEPS.

Epreavs = Erre pris + Epearcacne + EpeEps (7.5)

7.3.3 Time Modeling of DEEPS

TDEEPS - Taccess + Nmisses,DEEPS * TTr (76)

where Tyceess and Npisses DEEPS Te€pPresents response time and and miss rate

of DEEPS respectively.

7.3.4 Time Modeling of DREAMS

Total execution time of DREAMS is summation of time of DTLB, DEARCACHE
and DEEPS.

TDREAMS = TTLB,DTLB + TDEAR,CACHE + TDEEPS’ (77>

7.4. Performance Evaluation 147

7.4 Performance Evaluation

SESC is used as framework for the analysis of DEEPS and DREAMS is

discussed in section 3.5 of chapter 3.

7.4.1 Experimental Analysis - L2 as DEEP Cache

7.4.1.1 Dynamic Energy per Access

Per access dynamic energy consumption of CC, DEEP and DEEPS by varying
number of preemptions, cache size, cache line size and associativity is shown
in figures 7.4, 7.5, 7.6 and 7.7.

The average cache hit rate of CC and DEEP cache with varying number of
preemptions is 88.59% and 85.92% respectively. The average number of ways
accessed in case of CC and DEEP cache with varying number of preemptions
is 4 and 1.57 ways respectively. Although the per access ways of DEEP cache
is lower than CC , whenever the hit rate of CC is substantially higher over
DEEP, the per access dynamic energy of CC cache is lower than that of
DEEP. The dynamic energy consumption of DEEP cache can be reduced
by using a shared way. The shared entries between tasks are transferred to
shared way. This improves the DEEPS cache hit rate and hence reduces the
dynamic energy consumption. On an average per access dynamic energy of
DEEP cache is higher than CC by 1.12% and per access time of CC cache is
higher than DEEPS by 71.69%.

Dynamic Energy per Access 148

1.3

CC mmmiam '
DEEP mmmmm
1.2 | DEEPS m=m

1.1+

o 2 9o 9
o N
T \ \ T

=
w
T

Per Access Dynamic Energy(nJ)

03}

0.2
4 7 10 13 16 19 22
Number of Pre-emptions

Figure 7.4: Per access dynamic energy for a 4 way, 32B, 8KB cache with
varying preemptions

8 CC mmmm '
DEEP
DEEPS

7L

(®)]
T

w

w

o]

Per Access Dynamic Energy(nJ)
B

16384 32768 65536 131072
Cache Size(B)

Figure 7.5: Per access dynamic energy for a 4 way, 32B line size with varying
cache size [#preemptions = 10]

Dynamic Energy per Access 149

1.2

CC mmm

o =
[{s} = —

I
to

Per Access Dynamic Energy(nJ)
o o o
[I < RN |

©
I~

e
w

0.2

64
Line Size(B)

Figure 7.6: Per access dynamic energy for a 4 way, 8KB cache with varying
line size [#preemptions = 10]

14

CC mmmm '
DEEP
DEEPS mmm

= =
)] [o=] o o]
T T T T

=
T

Per Access Dynamic Energy(nJ)

8
Associativity

Figure 7.7: Per access dynamic energy for a 32B, 8KB cache with varying
associativity [#preemptions = 10]

Static Energy per Access 150

7.4.1.2 Static Energy per Access

Per access static energy consumption of CC, DEEP and DEEPS by varying
number of preemptions, cache size, cache line size and associativity is shown

in figures 7.8, 7.9, 7.10 and 7.11.
The per access static energy consumption of DEEP cache is higher than CC.

0.007

CC mmmim
DEEP o

0.0065 | DEEPS

0.006 |

o
o
[9]]
2]

0.005 |

0045 |

0.004 |

Per Access Static Energy(y))

0035

0.003 |

0.0025

0.002
4 7 10 13 16 19 22
Number of Pre-emptions

Figure 7.8: Per access static energy for a 4 way, 32B, 8KB cache with varying
preemptions

DEEP cache has additional static energy for maintaining core identification,
way replacement circuit and extra tag array. Static energy requirement of
DEEP cache can be reduced by making one of the way as shared way. The
shared way improved the cache hit rate and hence reduced static energy. On
an average per access static energy of DEEP cache is higher than CC by
15.78% and per access time of CC cache is higher than DEEPS by 50.02%.

Static Energy per Access 151

0.3

CC mmm '
DEEP mm
DEEPS mmmm

0.25 L

<
[N]
T

o
—
T

Per Access Static Energy(nJ)
2
w

0.05 |

8192 16384 32768 65536 131072
Cache Size(B)

Figure 7.9: Per access static energy for a 4 way, 32B line size with varying
cache size [#preemptions = 10]

0.007

CC mmmm '
DEEFP
0.0065 |

0.006

0055

0.004

0035

Per Access Statjc Energy(n/)
3
B
w

0.003

0.0025

0.002

64
Line Size(B)

Figure 7.10: Per access static energy for a 4 way, 8KB cache with varying
line size [#preemptions = 10]

Effective per Access Time 152

0.045

CC mmm

0.04 |

0.035 |

gy(nJ)

0.03 |

=)
o o
o 2
[N w

=]
(=]
=
wul

Per Access Static Ener

0.01 |

0.005 |

8
Associativity

Figure 7.11: Per access static energy for a 32B, 8KB cache with varying
associativity [#preemptions = 10]

7.4.1.3 Effective per Access Time

Per access time with varying number of preemptions, cache size, cache line
size and associativity is shown in figures 7.12, 7.13, 7.14 and 7.15.

Per access time is directly proportional to the hit rate. The per access time
of DEEP cache is higher than that of CC whenever the hit rate of CC is
higher than that of DEEP cache. DEEPS cache offers the highest hit rate
in comparison with CC and DEEP cache. On an average, per access time of
DEEP cache is higher than CC by 10.48% and per access time of CC cache is
higher than DEEPS by 38.50%.

Effective per Access Time 153

2.2

CC mmmiam '
DEEP mmmmm
DEEPS

Per Access Time(nS)
— [—
— o S o
‘ . . ‘
.

=
co
T

=
)]
T

0.4
4 7 10 13 16 19 22
Number of Pre-emptions

Figure 7.12: Per access time for a 4 way, 32B, 8KB cache with varying
preemptions

6 CC mmmm '
DEEP mmm
DEEPS
5t J
g 1
kg
=
a3l]
i
o]
o]
<
g2y]
1t J
0

32768 65536 131072
Cache Size(B)

Figure 7.13: Per access time for a 4 way, 32B line size with varying cache size
[#preemptions = 10]

Effective per Access Time 154

2.2

CC mummm
DEEP mmmmm

Per Access Time(nS)
I = = =
co = [} + ()]

I
fop)

0.4

64
Line Size(B)

Figure 7.14: Per access time for a 4 way, SKB cache with varying line size
[#preemptions = 10]

CC

4.5

Per Access Time(nS)
o w
r & w n

=
n

0.5

8
Associativity

Figure 7.15: Per access time for a 32B, 8KB cache with varying associativity
[#preemptions = 10]

Effective per Access Time 155

o o e o e o o
t = t o> ~ o3 o

Per Access Dynamic Energy(nJ)

o
o

0.1

64
Line Size(B)

Figure 7.16: Per access dynamic energy for varying line size with 10 preemp-
tions, SKB cache size and associativity as 4 way

130 o ,
WP o
120 | WH o 4
DEEP
110 | DEEPS

)

=]
(=]
T

w
=]
T

co
=]
T

~I
(=)

Per Access Static Energy(pJ

)]
o
T

[9)]
(=)
T

40

64
Line Size(B)

Figure 7.17: Per access Static energy for varying line size with 10 preemptions,
8KB cache size and associativity as 4 way

Energy and Time comparison with energy efficient caches 156

7.4.1.4 Energy and Time comparison with energy efficient caches

The comparison of dynamic and static energy consumption of DEEP with
CC, WP, WH and DEEPS is as shown in Figures 7.16 and 7.17 respectively.
Hit rate of CC, WP and WH is the same and is higher than DEEP. The
hit rate of DEEP cache is improved by using shared cache in DEEPS. CC
accesses all the ways for every access. The number of ways accessed increases
dynamic energy consumption of CC. WH cache consumes the least dynamic
energy. The number of ways accessed by WH cache is lesser than other caches.
The prediction miss in WP cache results in accessing all other ways. This
increases dynamic energy consumption of WP over WH cache. Identification
based reservation in DEEP reduces associativity per task. The reduced
associativity decreases hit rate. The decreased hit rate increases dynamic
energy consumption of DEEP over WP and WH cache. Hit rate improvement
in case of DEEPS cache results in reducing dynamic energy.

The improved hit rate in DEEPS cache results in consuming the least static
energy. The prediction circuit incurs additional static energy in case of WP.
Early detection of cache misses in case of WH results in reduced static energy
consumption in comparison with CC. The least hit rate of DEEP along with
additional DEEP overhead results in increases static energy consumption.
DEEP can be made more energy efficient by using prediction circuit and
halt tag bits along with process identification. This will reduce the dynamic
energy consumption. The static energy consumption and response time of
DEEP is improved by using shared way. Data shared between task is stored
in shared way. This results in improving DEEP hit rate and hence energy

consumption.

Experimental Analysis - Complete Memory Model 157

7.4.2 Experimental Analysis - Complete Memory
Model

Simulation results are analysized by varying L1 cache size from 8K to 32K,
L2 cache size from 32K to 128K. Results are obtained using following config-
urations :

CC : L1 and L2 cache as CC.

CD : L1 cache as CC and L2 cache as DEEPS.

DC : L1 cache as DEARCACHE and L2 cache as CC.

DD : L1 cache as DEARCACHE and L2 cache as DEEPS.

7.4.2.1 Dynamic Energy per Access

Figure 7.18 show per access dynamic energy consumption of various cache
models simulated with 8-way, 64B, 64KB L2 cache, with varying L1 cache size.
Figure 7.19 show per access dynamic energy consumption of various cache
models simulated with 4-way, 32B, 8KB L1 cache, with varying L2 cache
size. With increase in cache size, hit rate and per access dynamic energy
consumption increases. This increase in per access energy is majorly due to
increase in data access energy with cache size. Per access dynamic energy is
highest when both L2 cache and L1 cache are implemented as CC.

Per access dynamic energy of memory model decreases when L2 cache is
implemented as DEEP cache and L1 cache as CC. This decrease in per access
dynamic energy is due to reduction in number of active ways for L2 cache
from 8 ways to one way and increase in hit rate by and 5.33%. Further

reduction in per access dynamic energy consumption can be achieved when L1

Static Energy per Access 158

cache is implemented as DEARCACHE and L2 cache as CC. This decrease is
due to reduction in number of ways from 4 ways to 1.02 ways and increase in
hit rate by 9.68%. Per access dynamic energy is the least when L1 cache is
implemented as DEARCACHE and L2 cache is implemented as DEEP cache

respectively.

1.7

CC mmmm

16

— —
= w
T T

—
w
T

Per Access Dynamic Energy(nJ)
— [
— Y]

o
(=]
T

=
o]
T

0.7

16384
L1 Cache Size(B)

Figure 7.18: Per access dynamic energy for a 64KB L2 cache with varying L1 cache size

7.4.2.2 Static Energy per Access

Figure 7.20 and 7.21 show per access static energy dissipation of various
memory models by varying L1 cache size and L2 cache size respectively. The
static energy dissipation because of the internal components increases with
increase in cache size. So the per access static energy increases with increase

in cache size.

Per access static energy dissipation is the highest when both L1 cache and

Per Access Time 159

0.08
CC
CD
DC
0.07

o o o o
o o o o
@ = a1 &

Per Access Dynamic Energy(nJ)

e
o
(]

0.01

32768 65536 131072
L2 Cache Size(B)

Figure 7.19: Per access dynamic energy for a 8KB L1 cache with varying L2 cache size

L2 cache are implemented as CC. When L1 cache and L2 cache is designed
as DEARCACHE and DEEP cache with shared way, hit rate is improved by
9.68% and 5.33% over its respective CC implementations. Increase in hit rate
decreases per acess time and hence per access static energy dissipation. The
per access static energy is the least when L1 cache and L2 cache are designed

as DEARCACHE and DEEP cache respectively.

7.4.2.3 Per Access Time

Figure 7.22 and 7.23 show per access time of various cache models simulated
with 8-way, 64KB, 64B L2 cache, varying L1 cache size and with 4-way, 8KB,
32B L1 cache, varying L2 cache size respectively. With increase in cache
size, hit rate increases, and per access time decreases. Per access time of

memory model decreases when L2 cache is implemented as DEEP cache and

Per Access Time 160

0.102

0.1

gy(nl)
o
2

£0.096

0.094

Per Access Static Ener

0.092

0.09

16384
L1 Cache Size(B)

Figure 7.20: Per access static energy for a 64KB L2 cache with varying L1 cache size

0.16

CcC
cD
DC

0.14 L DD

012 L

o
=

Per Access Static Energy(nJ)
o =
o o
& ®

e
[e»]
i
T

g
(=)
]
T

65536 131072
L2 Cache Size(B)

Figure 7.21: Per access static energy for a 8KB L1 cache with varying L2 cache size

Per Access Time 161

2.6

Per Access Time(nS)
N 2 D N o
ro =] w = w

=
©

=
to

1.7

16384
L1 Cache Size(B)

Figure 7.22: Per access time for a 64KB L2 cache with varying L1 cache size

2.6

CcC
cD
DC
DD

o
[Ne)] w = w

o
=
T

N
T

Per Access Time(nS)

19 L

1.8 L

1.7

65536 131072
L2 Cache Size(B)

Figure 7.23: Per access time for a 8KB L1 cache with varying L2 cache size

7.5. Conclusion 162

L1 cache as CC. This decrease in per access time is due to increase in hit rate
by 5.33% over L2 cache as CC. Further reduction in per access time can be
achieved when L1 cache is implemented as DEARCACHE with increase in
hit rate by 9.68%. Per access time is the least when L1 cache is implemented

as DEARCACHE and L2 cache is implemented as DEEP cache respectively.

7.5 Conclusion

Tighter schedulability analysis is crucial in hard real-time systems as deadline
misses may lead to catastrophic failure. The tighter upper bound on WCET
at all levels of memory subsystem from TLB, L1 cache, L.2 cache and main
memory is required to ensure scheduling feasibility. This chapter designs
memory subsystem to get deterministic performance at all levels. This chapter
proposed deterministic memory subsystem by making TLB, L1 cache and L2
cache deterministic. This chapter combines implementation of DTLB and
DEARCACHE with DEEP cache. The DTLB, DEARCACHE and DEEP
cache gives tighter upper bound on misses of TLB, L1 cache and L2 cache
respectively and hence gives tighter upper bound on cache memory related
execution time. On an average per access time, per access dynamic energy
and per access static energy of DEEP is higher than CC by 10.48%, 2.13%),
15.78% respectively. The per access time, per access dynamic energy and per
access static energy of CC is higher than DEEPS by 38.50%, 71.69% and
50.01% respectively. The per access time, per access dynamic energy and per
access static energy of CC is higher than DD by 27.85%, 71.40% and 46.75%

respectively.

Chapter 8

Conclusion and Future

Directions

Energy efficiency is one of the major design considerations of the modern day
processors. Memory subsystem consumes major portion of the on-chip energy.
Architects are motivated to design the cache memory subsystem with the
least possible energy consumption without much performance degradation.
This thesis addresses static and dynamic energy consumptions of unicore
and multicore systems. The thesis also addresses mechanisms to provide
tighter upper bound on worst case execution time on memory sub-system
performance in order to achieve deterministic memory performance.

This thesis proposed an energy efficient cache architecture - Way Halted
Prediction. WHP cache uses halt tag array and prediction circuit to achieve
reduced energy consumption and response time. The combination of halt
tag and prediction circuit reduces the number of ways to be activated for
cache access. In WHP cache, the number of active ways are reduced from
k ways in case of WH to one way with the help of prediction circuit. As
the prediction circuit is enabled only when k > 1, the performance of WHP
cache is improved with respect to energy and time. The simulation results

show that WHP offers better energy efficiency over the other architectures

163

164

analyzed. WHP offers 46.64%, 6.45% and 4.15% dynamic energy saving and
1.04%, 2.92% and -0.05% saving in response time over the CC, WP and WH
respectively.

Cache coherence protocols achieve data consistency and coherency at the cost
of performance degradation with respect to time and energy. The additional
overhead can be minimized by optimizing the usage of interconnection band-
width. This thesis discussed MOESIF protocol which improves the off chip
bandwidth by reducing write backs to next level memory and the on-chip
bandwidth by reducing the number of responders to a cache miss when multi-
ple copies of data exists in private L1 caches of various cores. For varying
cache sizes, energy consumption in MESI, MOESI, MESIF and MOESIF
protocols is reduced by 51.41%, 94.20%, 51.66% and 94.49% respectively over
MI protocol. The energy savings of MOESIF protocol over MESI, MOESI
and MESIF protocol is 88.58%, 4.33% and 88.52% respectively. For varing
cache sizes, per access time of MESI, MOESI, MESIF and MOESIF protocols
is reduced by 52.04%, 95.59%, 52.31% and 95.86% respectively over MI. The
per access time saving of MOESIF protocol over MESI, MOESI and MESIF
protocol is 91.37%, 6.17% and 91.32% respectively.

Meeting all deadlines with least energy consumption is the major design
consideration of battery powered hard real-time systems. Real-time schedul-
ing algorithms perform schedulability analysis by considering the pessimistic
WCET. In conventional systems, the WCET is loosely bound because of the
non-deterministic nature of the memory subsystem. Cache memory is an
integral and crucial part of the memory subsystem. This thesis proposed

DEARCACHE, a deterministic real-time cache memory. DEARCACHE elim-

165

inates intertask interference by allocating dedicated cache ways to tasks
in execution. It obtains tighter upper bound on number of cache misses.
DEARCACHE reduces dynamic energy consumption by 38.10% for 4-way
set associative cache configuration over CC with 4.39% overhead of static
energy. Per access time of DEARCACHE improved 3.87 times over NO
CACHE model with an additional requirement of 4.37% of per access time as
compared to CC.

Tighter schedulability analysis is crucial in hard real-time systems as dead-
line misses may lead to catastrophic failure. The tighter upper bound on
WCET at all levels of memory subsystem from TLB, L1 cache, L2 cache and
main memory is required to ensure scheduling feasibility. This thesis designs
memory subsystem to get deterministic performance at all levels. This thesis
proposed deterministic memory subsystem by making TLB, L1 cache and
L2 cache deterministic. This work combines implementation of DTLB and
DEARCACHE with DEEP cache. The DTLB, DEARCACHE and DEEP
cache gives tighter upper bound on misses of TLB, L1 cache and L2 cache
respectively and hence gives tighter upper bound on cache memory related
execution time. On an average per access time, per access dynamic energy
and per access static energy of DEEP is higher than CC by 10.48%, 2.13%,
15.78% respectively. The per access time, per access dynamic energy and per
access static energy of CC is higher than DEEPS by 38.50%, 71.69% and
50.01% respectively. The per access time, per access dynamic energy and per
access static energy of CC is higher than DD by 27.85%, 71.40% and 46.75%
respectively.

This thesis addresses deterministic cache designs for homogeneous multi-core

166

systems. We intend to extent this work for heterogeneous MC systems with
point to point interconnections. We also intent to address deterministic perfor-
mance for homogeneous many-core systems where switched-fabric is used as
the interconnection mechanism. We also intend to address deterministic GPU
performance with tighter upper bound on local, global and shared memory

access times.

Publications based on the

research work

Paper A: Geeta Patil, Parag Panda and Biju Raveendran, “A Survey on
Replacement Strategies in Cache Memory for Embedded Systems,” IEEE Con-
ference on Distributed Computing, VLSI, Electrical Circuits and Robotics
(DISCOVER), Mangalore, 2016, pp. 12-17.

Paper B: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “Way
Halted Prediction Cache: An Energy Efficient Cache Architecture for Embed-
ded Processors,” 28" International Conference on VLSI Design, Bangalore,
2015, pp. 65-70

Paper C: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “Simulation
based Performance Study of Cache Coherence Protocols,”[EEE International
Symposium on Nanoelectronic and Information Systems, Indore, 2015, pp.
125-130.

Paper D: Geeta Patil, Neethu Bal Mallya and Biju Raveendran, “MOESIF":
A MC/MP Cache Coherence Protocol with Improved Bandwidth Utiliza-
tion,” International Journal of Embedded Systems (In Press).

Paper E: Geeta Patil, Kajal Varma and Biju Raveendran, “DTLB: Deter-
ministic TLB for Tightly Bound Hard Real-Time Systems,” 30" International
Conference on VLSI Design and 16! International Conference on Embedded

Systems, Hydrabad, 2017, pp. 207-212.

167

A brief biography of the candidate

Ms. Geeta Patil, is currently working as a Lecturer in the Department
of Computer Science and Information Systems, BITS PILANI K. K. BIRLA
GOA CAMPUS, GOA, INDIA. She received her Bachelor’s degree in Com-
puter Engineering from Goa Engineering College, Goa University in the year
2001. She did Master’s degree in Computer Engineering in the year 2010
from Gogte Institute of Technology, Visvesvaraya Technological University,
Belgaum. She is currently pursuing Ph.D. from BITS PILANI K. K. BIRLA
GOA CAMPUS, GOA. Her research interests are in areas of Cache Architec-

ture, Multi-core / Many-core systems, Multi-processors and Real time systems.
A brief biography of the supervisor

Dr. Biju K. Raveendran is currently serving as Assistant Professor in the
Department of Computer Science and Information Systems, BITS PILANI
K. K. BIRLA GOA CAMPUS, GOA, INDIA. He received his Ph.D. degree
from BITS PILANI, PILANI CAMPUS, RAJASTHAN in the year 2009. He
heads the Computer Centre Unit at Goa campus which is responsible for
the central networking and computing facilities of the campus. His research
area includes Energy Efficient Multi-core / Many-core Real-time Scheduling,
Energy Efficient Memory Architecture for Multi-core / Many-core Embedded
Systems, Predictable and Dependable Real-time / Embedded System Design
and Big Data Systems. He was one of the five recipients of Microsoft Research

India Fellowship in the year 2005 for his Ph.D. work. His passion is teaching.

168

He is a recipient of Microsoft young faculty award in the year 2009. He is
also a recipient of Best Faculty Award by BITSAA in the year 2013. He is
actively involved in collaborative projects with industries like Microsoft and

Aditya Birla Group.
A brief biography of the co-supervisor

Dr. Lucy J. Gudino is Assistant Professor in the Department of Computer
Science and Information Systems at BITS-Pilani, K K Birla Goa campus,
Goa, India. She received B.E. degree in Electronics and Communications En-
gineering from Kuvempu University, M.Tech. and Ph.D. in Computer Science
from Vishveswaraya Technological University, Karnataka, India. She has 21
years of teaching experience in the field of Electronics and Communications
and Computer Science. Her research interests are computer architecture,
wireless communications, adaptive arrays for cellular base stations and digital

filter design.

Bibliography

1]

C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on het-
erogeneous multiprocessors with adaptive mapping,” in Proceedings of the
42Nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, (New York, NY, USA), pp. 45-55, ACM, 2009.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 3 ed., 2003.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” in

Proceedings of the 22Nd Annual International Symposium on Computer

Architecture, ISCA ’95, (New York, NY, USA), pp. 24-36, ACM, 1995.

K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative
cache for high performance and low energy consumption,” in Proceedings
of the 1999 international symposium on Low power electronics and design,

pp. 273-275, ACM, 1999.

C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting cache for low-
energy high-performance systems,” ACM Transactions on Architecture

and Code Optimization (TACO), vol. 2, no. 1, pp. 34-54, 2005.

M. H. L. John Paul Shen, Modern Processor Design. New Delhi, India:
Tata McGraw Hill, 3 ed., 2011.

170

Bibliography 171

[7]

[10]

[11]

[12]

[13]

D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998.

C. Ferdinand, “Worst case execution time prediction by static program

Y

analysis,” in 18th International Parallel and Distributed Processing Sym-

posium, 2004. Proceedings., pp. 125—, April 2004.

A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High perfor-
mance cache replacement using re-reference interval prediction (rrip),”

SIGARCH Comput. Archit. News, vol. 38, pp. 60-71, June 2010.

J. Jeong and M. Dubois, “Optimal replacements in caches with two

7

miss costs,” in Proceedings of the Eleventh Annual ACM Symposium on

Parallel Algorithms and Architectures, SPAA ’99, (New York, NY, USA),
pp- 155-164, ACM, 1999.

H. Al-Zoubi, A. Milenkovic, and M. Milenkovic, “Performance evaluation
of cache replacement policies for the spec cpu2000 benchmark suite,” in
Proceedings of the 42Nd Annual Southeast Regional Conference, ACM-SE
42, (New York, NY, USA), pp. 267272, ACM, 2004.

K. So and R. N. Rechtschaffen, “Cache operations by mru change,” IEFEFE
Transactions on Computers, vol. 37, pp. 700-709, Jun 1988.

J. Alghazo, A. Akaaboune, and N. Botros, “Sf-Iru cache replacement
algorithm,” in Records of the 2004 International Workshop on Memory
Technology, Design and Testing, 2004., pp. 19-24, Aug 2004.

Bibliography 172

[14]

[15]

[20]

[21]

C. T. Do, H.-J. Choi, J. M. Kim, and C. H. Kim, “A new cache replace-
ment algorithm for last-level caches by exploiting tag-distance correlation

of cache lines,” Microprocess. Microsyst., vol. 39, pp. 286-295, June 2015.

M. Kampe, P. Stenstrom, and M. Dubois, “Self-correcting Iru replacement
policies,” in IN PROCEEDINGS OF THE 1ST CONFERENCE ON
COMPUTING FRONTIERS, pp. 181-191, 2004.

“Intel Corp. 1997. Embedded Intel486 Processor Family Developer’s
Manual Technical Report 273021-001,” tech. rep.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, pp. 1-17, Sept. 2006.

T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for

computer system modeling,” Computer, vol. 35, pp. 59-67, Feb. 2002.

C.-L. Su and A. M. Despain, “Cache design trade-offs for power and
performance optimization: A case study,” in Proceedings of the 1995
International Symposium on Low Power Design, ISLPED ’95, (New York,
NY, USA), pp. 63-68, ACM, 1995.

L. Liu, Y. Li, Z. Cui, Y. Bao, M. Chen, and C. Wu, “Going vertical in
memory management: Handling multiplicity by multi-policy,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pp. 169-180, June 2014.

J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache: an
energy efficient memory structure,” in Proceedings of 30th Annual Inter-

national Symposium on Microarchitecture, pp. 184-193, Dec 1997.

Bibliography 173

[22]

[24]

[25]

[26]

[27]

R. S. Bajwa, M. Hiraki, H. Kojima, D. J. Gorny, K.-i. Nitta, A. Shridhar,
K. Seki, and K. Sasaki, “Instruction buffering to reduce power in pro-
cessors for signal processing,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 5, no. 4, pp. 417-424, 1997.

V. Guzma, T. Pitknen, and J. Takala, “Reducing instruction memory
energy consumption by using instruction buffer and after scheduling
analysis,” in 2010 International Symposium on System on Chip, pp. 99—
102, Sept 2010.

L. H. Lee, B. Moyer, and J. Arends, “Instruction fetch energy reduction
using loop caches for embedded applications with small tight loops,”
in Proceedings of the 1999 International Symposium on Low Power
FElectronics and Design, ISLPED 99, (New York, NY, USA), pp. 267—

269, ACM, 1999.

J. W. Kwak and Y. T. Jeon, “Compressed tag architecture for low-power
embedded cache systems,” Journal of Systems Architecture, vol. 56, no. 9,

pp. 419 — 428, 2010.

T. M. Jones, S. Bartolini, B. D. Bus, J. Cavazos, and M. F. P. O'Boyle,
“Instruction cache energy saving through compiler way-placement,” in
2008 Design, Automation and Test in Furope, pp. 1196-1201, March
2008.

C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache for low
energy embedded systems,” ACM Trans. Embed. Comput. Syst., vol. 4,
pp. 363-387, May 2005.

Bibliography 174

28]

[30]

[31]

[32]

[33]

[34]

G. Bournoutian and A. Orailoglu, “Application-aware adaptive cache
architecture for power-sensitive mobile processors,” ACM Trans. Embed.

Comput. Syst., vol. 13, pp. 41:1-41:26, Dec. 2013.

A. Sembrant, E. Hagersten, and D. Black-Shaffer, “Tlc: a tag-less cache
for reducing dynamic first level cache energy,” in Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture,
pp.- 49-61, ACM, 2013.

R. K. Megalingam, K. B. Deepu, I. P. Joseph, and V. Vikram, “Phased
set associative cache design for reduced power consumption,” 2009 2nd

IEEE International Conference on Computer Science and Information

Technology, pp. 551-556, 2009.

7. Zhu and X. Zhang, “Access-mode predictions for low-power cache

design,” IEEE Micro, vol. 22, pp. 5871, Mar 2002.

" in Paral-

B. Batson and T. Vijaykumar, “Reactive-associative caches,’
lel Architectures and Compilation Techniques, 2001. Proceedings. 2001

International Conference on, pp. 49-60, IEEE, 2001.

A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation
of directory schemes for cache coherence,” SIGARCH Comput. Archit.
News, vol. 16, pp. 280-298, May 1988.

R. Komuravelli, S. V. Adve, and C.-T. Chou, “Revisiting the complexity
of hardware cache coherence and some implications,” ACM Trans. Archit.

Code Optim., vol. 11, pp. 37:1-37:22, Dec. 2014.

Bibliography 175

[35]

[36]

[38]

[39]

[40]

B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “Denovo: Rethinking
the memory hierarchy for disciplined parallelism,” in Proceedings of the
2011 International Conference on Parallel Architectures and Compilation
Techniques, PACT ’11, (Washington, DC, USA), pp. 155-166, IEEE
Computer Society, 2011.

J. K. Archibald, The Cache Coherence Problem in Shared-memory Mul-
tiprocessors. PhD thesis, Seattle, WA, USA, 1987. UMI Order No.
GAXS87-06505.

T. M. Chaves, E. A. Carara, and F. G. Moraes, “Energy-efficient cache
coherence protocol for noc-based mpsocs,” in Proceedings of the 24th

Symposium on Integrated Circuits and Systems Design, SBCCI 11, (New
York, NY, USA), pp. 215-220, ACM, 2011.

P. Stenstrom, “A survey of cache coherence schemes for multiprocessors,”

Computer, vol. 23, pp. 12-24, June 1990.

J. Archibald and J.-L. Baer, “Cache coherence protocols: Evaluation
using a multiprocessor simulation model,” ACM Trans. Comput. Syst.,

vol. 4, pp. 273298, Sept. 1986.

M. Loghi, M. Poncino, and L. Benini, “Cache coherence tradeoffs in
shared-memory mpsocs,” ACM Trans. Embed. Comput. Syst., vol. 5,
pp. 383407, May 2006.

Bibliography 176

[41]

[44]

[45]

[46]

N. P. Jouppi, “Cache write policies and performance,” in Proceedings
of the 20th Annual International Symposium on Computer Architecture,

ISCA '93, (New York, NY, USA), pp. 191-201, ACM, 1993.

G. Bournoutian and A. Orailoglu, “Dynamic, multi-core cache coher-
ence architecture for power-sensitive mobile processors,” in 2011 Pro-
ceedings of the Ninth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+I1SSS),
pp- 89-97, Oct 2011.

A. Kayi and T. El-Ghazawi, “An adaptive cache coherence protocol for

chip multiprocessors,”

in Proceedings of the Second International Forum
on Nezt-Generation Multicore/Manycore Technologies, IFMT ’10, (New

York, NY, USA), pp. 4:1-4:10, ACM, 2010.

S. Manne, A. Klauser, D. C. Grunwald, and F. Somenzi, “Low power tlb

design for high performance microprocessors,” 1997.

J.-H. Lee, G. ho Park, S.-B. Park, and S.-D. Kim, “A selective filter-bank
tlb system [embedded processor mmu for low power|,” in Low Power
Electronics and Design, 2003. ISLPED °03. Proceedings of the 2003
International Symposium on, pp. 312-317, Aug 2003.

M. Talluri and M. D. Hill, “Surpassing the tlb performance of superpages
with less operating system support,” SIGPLAN Not., vol. 29, pp. 171-182,
Nov. 1994.

[. Chukhman and P. Petrov, “Context-aware tlb preloading for interfer-

ence reduction in embedded multi-tasked systems,” in Proceedings of

Bibliography 177

[48]

[49]

[50]

[51]

[52]

the 20th Symposium on Great Lakes Symposium on VLSI, GLSVLSI "10,
(New York, NY, USA), pp. 401-404, ACM, 2010.

A. Saulsbury, F. Dahlgren, and P. Stenstrom, “Recency-based tlb preload-
ing,” in Proceedings of the 27th Annual International Symposium on
Computer Architecture, ISCA 00, (New York, NY, USA), pp. 117-127,
ACM, 2000.

M. Kandemir, I. Kadayif, and G. Chen, “Compiler-directed code re-
structuring for reducing data tlb energy,” in Proceedings of the 2Nd
IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis, CODES+ISSS 04, (New York, NY, USA),
pp. 98-103, ACM, 2004.

G. Venkatasubramanian, R. J. Figueiredo, and R. Illikkal, “On the per-
formance of tagged translation lookaside buffers: A simulation-driven
analysis,” in 2011 IEEE 19th Annual International Symposium on Mod-
elling, Analysis, and Simulation of Computer and Telecommunication

Systems, pp. 139-149, July 2011.

Y. Li, R. Melhem, and A. K. Jones, “Ps-tlb: Leveraging page classification
information for fast, scalable and efficient translation for future cmps,”

ACM Trans. Archit. Code Optim., vol. 9, pp. 28:1-28:21, Jan. 2013.

R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred

preemption,” Real-Time Systems, vol. 42, no. 1-3, pp. 63-119, 2009.

Bibliography 178

[53]

[54]

[55]

[56]

[57]

[59]

S. Altmeyer, R. I. Davis, and C. Maiza, “Pre-emption cost aware response

time analysis for fixed priority pre-emptive systems,” 32nd RTSS, 2011.

X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with dynamic
voltage and frequency scaling for energy minimization in the mobile cloud
computing environment,” IEEE Transactions on Services Computing,

vol. 8, no. 2, pp. 175-186, 2015.

A. P. Florence, V. Shanthi, and C. Simon, “Energy conservation us-
ing dynamic voltage frequency scaling for computational cloud,” The

Scientific World Journal, vol. 2016, 2016.

V. Legout, M. Jan, and L. Pautet, “A scheduling algorithm to reduce
the static energy consumption of multiprocessor real-time systems,” in
Proceedings of the 21st International Conference on Real-Time Networks

and Systems, RTNS ’13, (New York, NY, USA), pp. 99-108, ACM, 2013.

R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys (CSUR), vol. 43,
no. 4, p. 35, 2011.

F. Zhang and A. Burns, “Schedulability analysis for real-time systems
with edf scheduling,” IEEE Transactions on Computers, vol. 58, no. 9,
pp- 12501258, 2009.

L. Ju, S. Chakraborty, and A. Roychoudhury, “Accounting for cache-
related preemption delay in dynamic priority schedulability analysis,” in
2007 Design, Automation & Test in Europe Conference € Ezhibition,
pp. 1-6, IEEE, 2007.

Bibliography 179

[60]

[61]

[62]

[64]

[65]

[66]

R. I. Davis, S. Altmeyer, and J. Reineke, “Analysis of write-back caches
under fixed-priority preemptive and non-preemptive scheduling,” in
Proceedings of the 24th International Conference on Real-Time Networks

and Systems, pp. 309-318, ACM, 2016.

W.-N. Chin, H. H. Nguyen, C. Popeea, and S. Qin, “Analysing mem-
ory resource bounds for low-level programs,” in Proceedings of the 7th

international symposium on Memory management, pp. 151-160, ACM,

2008.

J. Whitham, N. C. Audsley, and R. I. Davis, “Explicit reservation of
cache memory in a predictable, preemptive multitasking real-time system,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 13,
no. 4s, p. 120, 2014.

J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip
multiprocessors,” in ACM International Conference on Supercomputing

25th Anniversary Volume, pp. 402-412, ACM, 2014.

H. Falk, S. Plazar, and H. Theiling, “Compile-time decided instruc-
tion cache locking using worst-case execution paths,” in 2007 5th
IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+I1SSS), pp. 143-148, Sept 2007.

A. Arnaud and I. Puaut, “Dynamic instruction cache locking in hard

real-time systems,” in In RTNS.

P. M. Ortego and P. Sack, “Sesc: Superescalar simulator,” tech. rep.,
2004.

Bibliography 180

[67]

[68]

[69]

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Laboratories, pp. 22-31, 20009.

B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt:
Coalesced large-reach tlbs,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-45,
(Washington, DC, USA), pp. 258-269, IEEE Computer Society, 2012.

Y.-J. Chang, “An ultra low-power tlb design,” in Proceedings of the
Conference on Design, Automation and Test in Europe: Proceedings,
DATE 06, (3001 Leuven, Belgium, Belgium), pp. 1122-1127, European

Design and Automation Association, 2006.

J. Whitham, N. C. Audsley, and R. I. Davis, “Explicit reservation of
cache memory in a predictable, preemptive multitasking real-time system,”

ACM Trans. Embed. Comput. Syst., vol. 13, pp. 120:1-120:25, Apr. 2014.

J. Feljan, Task Allocation Optimization for Multicore Embedded Systems.
PhD thesis, Méalardalen University, December 2015.

A. Thekkilakattil, Limited Preemptive Scheduling in Real-time Systems.
PhD thesis, Malardalen University, May 2016. The faculty examiner is
Associate Professor Reinder Bril, Eindhoven University of Technology;
and the examining committee consists of Professor Giorgio Buttazzo,
SantAnna School of Advance studies-Pisa; Professor Gerhard Fohler,
Technical University Kaiserslautern; Associate Professor Liliana Cucu-

Grosjean, INRIA.Reserve: Associate Professor Damir Isovic, MDH.

Bibliography 181

(73] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way cache:
demand-based associativity via global replacement,” in 32nd Interna-
tional Symposium on Computer Architecture (ISCA’05), pp. 544-555,
IEEE, 2005.

