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Abstract 
 

Automobiles have provided a great freedom to the society in terms of mobility and 

convenience. On the other hand, the price has been paid in terms of ecological 

imbalance. The conventional Internal Combustion Engine (ICE) based vehicles emit 

copious measure of toxic gasses; strangling the environmental balance and are serious 

threat to human life. The availability of petroleum resources are limited and need to 

be consumed sagely to run for a longer incumbency. Hasty usage of fossil fuels has 

resulted in rapid depletion of natural resources and price inflation. These concerns 

encourage the modern society to ascertain new alternatives for the sustainable future 

transportation. One prominent solution could be to adopt hybrid vehicles as part of the 

modern transportation scheme.  These vehicles can be the path-breaker to reshape the 

transportation arena and face of the market with poise between petroleum 

consumption and toxic emissions. Various aspects like sources of pollution, 

decreasing level of fossil fuel, dependency on oil energy are discussed in this thesis. 

Several government schemes to focus on securing its energy resources, trim down 

reliance on fossil fuels and to promote hybrid vehicles on roads are discussed. Hybrid 

vehicles employ two power sources namely, ICE and an alternative/renewable energy 

source; spruce down the usage of petroleum. By introducing hybrid vehicles on road 

brings many techno-economical challenges in accepting them. Remedies to these 

challenges are also suggested before inviting them on roads. 

Hybrid Electric Vehicles (HEVs) use ICE and an electrical energy source 

(battery); therefore batteries play a vital role in HEV’s proficient performance. 

Various types of rechargeable batteries are available in market and a wise and worthy 

choice is of utmost importance. Hence, proper selection of battery is of prime 

concern. The base of this thesis work is to identify relevant battery using multi criteria 

decision making methods for HEV applications. Ashby's methodology, Technique for 

Order Preferences by Similarity to an Ideal Solution (TOPSIS) and VIse Kriterijum-

ska Optimizacija Komprominsno Resenje (VIKOR) methods are employed to assess 

various battery attributes like specific energy, energy density, electrical efficiency, 

self-discharge rate, nominal cell voltage, energy per cycle, cost and durability of the 

battery. On the basis of battery selection charts, it is found that Li-ion and Ni-MH 

batteries outperform and would serve the purpose. 
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Today, the major challenge is to utilize battery power efficiently without 

deteriorating its health while minimizing fuel consumption for HEVs. Hence, accurate 

information about battery operating conditions and State of Charge (SOC) level are 

essential. Therefore, analysis of suitable battery model and SOC calculation are 

required to predict its characteristics. Since battery performance greatly depends on 

the temperature and SOC level, a generalized thermo electric model is proposed to 

predict its I-V characteristic and dynamic behavior of battery.  Three battery models 

namely, model 1, model 2 and model 3 presented here represent cover the resistance 

offered by electrolyte, diffusion and double layer effects developed at the contact 

points of electrode and electrolyte to realize its operational characteristic. 

Temperature alters the operating conditions and self discharge rate affect the shelf life 

of battery; thus both are given attention while calculating current and voltage. The 

conventional SOC estimation method (based on current) is emended and a modified 

SOC estimation method is deduced. Proposed method, observe both voltage and 

current and blend them using a weighting factor to calculate precise SOC. A 

correction factor is also formulated to read absolute SOC useful for varying 

temperature and different loading circumstances. Thermal behavior of Li-ion battery 

is investigated for wide temperature range and its effect on resistance, capacity and 

open circuit voltage (OCV) is analyzed.  

 In HEVs, presence of ICE and battery together inevitably postulates for power 

split between these. Different optimization techniques available in literature for 

energy management of HEVs are detailed in depth. These techniques with its features 

and limitations are presented and a comparison of all the control strategies to optimize 

the power split is carried out.  

In this thesis work, efficient energy management strategies are developed to 

split power between ICE and battery. The vehicle performance is analyzed using 

different battery models using proposed modified SOC estimation method are 

employed to analyze the vehicle performance. HEVs’ governing parameters are 

optimized using DIviding RECTangle (DIRECT) method firstly considering default 

SOC estimation algorithm and fuel economy is determined. Further, to improve the 

performance of the vehicle, Genetic Algorithm (GA) based control strategy is used. It 

is observed that the vehicle performance is altered due to varying temperature 
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conditions because battery charging/discharging efficiency, resistance, capacity and 

OCV varies. Effect of temperature is analyzed to restrict the operating range of the 

vehicle to achieve the fuel efficient performance along with the longer battery life. 

The GA based method proves to be better as compared to DIRECT. GA based control 

strategy is applied to various battery models to opt for the best model. The engine is 

operated in its most efficient region during the analysis promises for fuel consumption 

diminution. Further, Pontryagin's Minimum Principle (PMP) is articulated, features 

with a lesser computation time and real time implementable. To decide the threshold 

power level at which engine should be turned on/off, optimal values of various 

governing parameters from GA are fed to PMP and promising improvement in fuel 

efficiencies are found. 

 The Indian market is very emerging in almost all the sectors and for vehicle 

fleets, it ranks second after China. Hence, an smart analysis of HEVs’ performance 

before casting them on road can lead to strategized and successful projection. It is 

imperative to check the nature and response of a hybrid vehicle on different driving 

cycles because road profile parameters play an important role in determining the fuel 

efficiency. Typical parameters of road profile are reduced to a useful smaller set using 

size reduction techniques and then various considered driving cycles are ranked in 

order of their fuel economy using multi criterion optimization methods. These results 

are further validated using GA based intelligent power split control strategy. The 

results reveal that Indian city driving cycle offers higher fuel economy for an HEV as 

compared to other countries’ driving cycles. This may attract more HEV 

manufacturing giants and would lead to further reduction in toxic emissions and 

improvement in the economic growth of the country.  

Finally the overall conclusion and future scope of further research work is 

hashed out. 
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Introduction 
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Chapter 1                                                                           

Introduction 
 

 

Internal combustion engine (ICE) based vehicles are the backbone of the modern 

transport sector. These vehicles use fossil fuels as a source of energy to propel it and 

emit toxic gases. These noxious gases harm the environment and causes human health 

problems. Hasty usage of fossil fuels results in rapid depletion of these resources and 

price inflation. These concerns encourage the modern society to discover alternatives for 

sustainable future transportation. This chapter discusses about various aspects like 

sources of pollution, decreasing level of fossil fuel, society’s dependency on oil energy 

and need of green vehicles. A broad literature analysis and statistics compilation is 

carried out to emphasize the move towards green vehicles (EVs and HEVs). It suggests to 

adopt fuel efficient technologies, tells the challenges in accepting them as part of the 

transportation system and their remedies also. The status of hybrid vehicles on the roads 

worldwide and initiatives taken by different governments are discussed in lucent manner. 

This chapter deliberately describes governments’ schemes to focus on securing its energy 

resources, trim down reliance on fossil fuels and to promote hybrid vehicles on roads to 

make pollution free world.  

1.1 Background 

Call forth of the automobiles and its pulsation towards development and economic 

growth has liberated the society with greater mobility and convenience. The growth of 

modern society relies on efficient modes of transportation and satisfied many needs of 

everyday life. The automobile industry plays an imperative function in leading world’s 

economy and has an effect on each level of population. ICE is the strength of automobile 

sector and uses fossil fuels as a source of energy. These ICE based transportation causes 

large amount of toxic emissions of carbon dioxide (CO2), carbon monoxide (CO), 

nitrogen oxides (NOx) and unburned hydrocarbons (HCs) which results in environmental 

pollution and global warming. Exponential rise in population and increase in personal 
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transportation interest have amplified the number of automobiles around the globe. It has 

caused and prolong to cause severe environmental problems and a hazard to human life.  

 Due to several reasons, i.e. air pollution, greenhouse gas emissions, rapid 

depletion, cutting level of natural resources and rise in oil prices; humanity need to move 

towards the a greener solution for transportation. These issues are described here in 

detail.  

1.1.1 Air Pollution 

As a result of chemical reaction between fuel and air, ICE produces heat as well as CO2 

and unburned HCs. Jos et al. revealed that air pollution is a major environmental jeopardy 

to health and causes approximately two million premature deaths worldwide per year. 

Around 620,000 premature deaths occur in India due to air pollution-related diseases [1].  

1.1.2 CO2 Emission 

Emission of CO2 is the main cause of global warming. It has reached to a dangerous 

amount of 34 billion tonnes globally in 2011. After China, the United States, the 

European Union, the Russian Federation; India is fifth with a 6 percent contribution to 

CO2 emission [2]. According to the ‘Ministry of environment and forests’ report, toxic 

emissions are contributed by road transport, aviation, railways and navigation. In 2007, 

Indian transport sector contributed 142.04 million tonnes of CO2 eq. in which road 

transport contributed 87 percent and aviation sector added 7 percent [3]. Energy sector 

emitted 1100.06 million tonnes of CO2 eq., of which 719.31 million tonnes are emitted 

from electricity generation and 142.04 million tonnes from the transport sector [4]. 

‘Centre for Science and Environment’ expects that CO2 emissions on Indian roads will 

reach to a hazardous level of 1212 million tonnes by 2035. Figure 1-1 shows CO2 

emission in India since 1980 [5].  

23 percent of total CO2 emissions in the world is caused by the transport sector. 

Automobiles and light trucks contribute over 60 percent of emissions from the transport 

sector [6]. The upper safety limit for atmospheric CO2 is 350 parts per million (ppm) 

which has stayed higher than 350 ppm since early 1988 [7].  
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Figure 1.1: Increasing CO2 emission in India 

 CO2 emission from liquid fuel consumption worldwide has increased by 

approximately 0.9 percent per year which results in an increment of 3.5 billion metric 

tons from 2010 to 2040. The coal related CO2 emission has decreased for ‘Organization 

of Economic co-operation and Development’ (OECD) countries by 0.1 percent per year, 

whereas, an increase of 1.7 percent per year is observed for non-OECD. As a result, the 

OECD’s CO2 emissions from liquid fuels will decline from 52 percent (2010) to 39 

percent (2040) as shown in figure 1.2 [8].  

 

Figure 1.2: World energy consumption by fuel type 

 The use of energy sources is increasing over the time horizon. In non-OECD 

countries, with increasing gross domestic product (GDP) and a rise in living standard; an 

increase in the travel and freight transport is expected to happen. This will result in high 
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energy demand. Figure 1.3 shows the comparison of energy consumption between OECD 

and non-OECD countries.  

 

Figure 1.3: Energy consumption by OECD and non-OECD countries 

2.0-2.5 percent growth in transportation energy use is recorded per year globally 
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Figure 1.4: Sector wise CO2 emission per year   
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transport sector, which accounted for about 23 percent of total worldwide CO2 emissions 

in 2005, of which roughly 73 percent was generated by road transport [10]. 

1.1.3 Green House Gas Emission 

Due to the greenhouse effect, earth’s atmosphere is slightly warmer than it should be. The 

greenhouse gases (GHG) trap the heat and increase earth’s temperature. CO2  emission 

along with other gases like CO, NOx, etc. is the major contributors to GHGs. It has been 

investigated that, within the time period of 1980 to 2000, number of vehicles increased by 

nine times and gasoline/diesel consumption for road transportation became quadrupled 

[11]. The road transport sector in India is the largest consumer of liquid fuel and accounts 

for nearly 35 percent of it. India’s GHG emissions increased by 4.2 percent in 2000 with 

the quantity of 1301.21 million tonnes compared to the data recorded in 1994 [12]. 

Report of ‘Ministry of Environment and forests’ state, net GHG emissions from India in 

2007 was 1727.71 million tonnes of CO2 eq. of which, CO2 was 1221.76 million tonnes, 

CH4 was 20.56 million tonnes and nitrous oxide (N2O) was 0.24 million tonnes [3]. 

1.1.4 Increasing Oil Prices 

According to Silicon India, on an average approximately 30 percent of worldwide energy 

consumption is by the transportation sector, of which 95 percent is supported by liquid 

fuel. By the report of Business Line, it is estimated that a sustained $10 increase in oil 

prices leads to a 1.5 percent reduction in the GDP of developing countries.  

 

Figure 1.5: Petroleum oil consumption in India 
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From the updates of Commodity Online, oil imports during April-October, 2012-

13 are valued at $95569.0 million, which is 9.99 percent higher than the oil imports of 

$86887.7 million in the corresponding period last year. Today, over 80 percent of India's 

requirements of petroleum products is being imported which is likely to increase 

continuously. India’s oil import bill leaped 40 percent to a record of $140 billion in 2011-

12. In 2011, 3426 thousand barrels of petroleum per day are recorded in India, which is 

the fourth largest amount of consumption in the world [13]. Petroleum oil consumption 

since 1980 to 2011 in barrels per day is shown in figure 1.5 for India.   

Global economic conditions are highly dependent on oil demand and pricing. 

According to the IEA, negative impact on the global economy is measured due to 

increase in oil prices. According to [14], price path assumptions are made on the basis of  

possible production levels and the world oil price path and it will be approximately $160 

per barrel in 2035. Figure 1.6 shows the consumption of petroleum by different sectors 

from 1990-2040 with projections. It is projected that total liquid consumption peak at 

19.8 million barrels per day in 2019 whereas it falls to 18.9 million barrels per day in 

2040.  And it can be easily analyzed that the largest share of total consumption is 

accounted by the transport sector. It is expected to fall in 2040 to 68 percent from the 72 

percent in 2012. The reason behind this may be the improvement in vehicle efficiency by 

following the ‘Corporate Average Fuel Economy’ (CAFE) standards [15]. 

 

Figure 1.6: Consumption of petroleum and other liquids by sector (1990-2040) 
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 An Increment in the crude oil prices has been observed all the time. The average 

U.S. retail price of regular gasoline rose from $3.25 per gallon on December 17, 2012 to 

$3.78 per gallon on February 25, 2013.  Over the past ten years, the ‘Chained Consumer 

Price Index’ (C-CPI-U) which is a measure of change in the cost of living has 

approximately tracked the movements of the international Brent crude oil price [16]. 

1.1.5 Extraction of Natural Resources 

Ever-increasing consumption of liquid fuel is causing hasty extraction of crude oil 

throughout the world. In 1980, extraction of crude oil was less than 200 thousand barrels 

per day in India and became 782.34 thousand barrels per day in 2011. Crude oil 

consumption per day in India is shown in figure 1.7 for period of 1980-2011. India ranks 

24
th

 position in total crude oil production in the world. India’s petroleum production per 

year is very less as compared to its demand; therefore its net export/import decreases year 

after year.   

 

Figure 1.7: Crude oil consumption in India 
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worldwide, which accounts around 32 billion barrels per year. It is expected, China will 
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countries demand will decrease because their governments’ are implementing the 

required policies on fuel efficiency and high vehicle prices. From the figure 1.8, it is 
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Figure 1.8: World crude oil production year wise 
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 position by producing the highest amount of crude oil. 
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  Much of the growth in energy consumption occurs in countries outside the non-

OECD, where demand is driven by strong long-term economic growth. Energy usages in 

non-OECD nations increased by 85 percent whereas only 18 percent increase is observed 

for the OECD economies. 

1.1.6 Dependence on Oil Energy 

World use of petroleum and other liquids has increased from 85.7 million barrels (2008) 

to 97.6 million barrels (2011) per day. Existing studies reveal, despite of rising fuel 

prices, use of liquids for transportation is increasing by an average of 1.4 percent per 

year, or 46 percent overall from 2008 to 2035. Figure 1.10 represents the oil consumption 

for various sectors, i.e., transportation, industrial, buildings and electrical power 

generation. The use of liquids will increase for transport sector. 

 

Figure 1.10: Sector wise world liquid fuel consumption 
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share, which is expected to grow with the discovery of new gas deposits. Figure 1.11 

shows the energy contribution of different sources [18].  

 

Figure 1.11: Share of different energy sources 
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supported National Renewable Energy Laboratory (NREL) is working to improve 

supportive energy sources for hybrid vehicles. A lot of research is in progress to improve 

the performance of Li-ion battery. NREL expects significant role of the battery based 

vehicles in coming 30 years [20].   

'International Council on Clean Technology' is working to improve the environmental 

performance and efficiency of cars, trucks, buses and transportation systems in order to 

protect and improve public health, environment and quality of life.  In July 2012, the 

‘European Commission’ proposed regulations for new passenger cars and light-

commercial vehicles and labelled it mandatory to achieve year 2020 CO2 emission 

targets. The IEA provides support for over 40 international co-operation and 

collaboration agreements in energy technology research and development, deployment 

and information dissemination. 

 In 2012, the global sales of hybrid vehicles have tripled to 2.2 million units. 

Germany, France, Norway, Netherlands, United Kingdom and Sweden will be the top six 

European countries to use Battery Electric Vehicles (BEVs) in the year 2020 and these 

will capture more than 67 percent of the total market. In case of PHEVs, only four 

countries are expected to exceed a volume greater than 100,000 vehicles. In this 

case Germany, France, Italy and United Kingdom will have 52 percent of total hybrid 

vehicles across the globe [21]. According to Pike Research forecast more than 1.8 million 

BEVs, 1.2 million PHEVs and 1.7 million HEVs will be on Europe's roadways by 2020 

[22].   

 By taking a step forward IEA is conducting huge research and analysis for the 

transportation area to reduce GHGs and policy making to have a healthy environment in 

the future. IEA efforts in analyzing transport system to reduce GHG emissions and oil 

dependency. 

Several projects are led by IEA and other external stakeholders to have a greener 

tomorrow. 

1.2.1.1 The Mobility Model Partnership 

Since 2003, a global transport spreadsheet model has been developed, known as Mobility 

Model (MoMo). For transport sector's energy and GHG emission implications, MoMo 

collects historical data by mode, by fuel, and by region and provides projection for 2050. 
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It performs the quantitative analysis and contributes in publishing 'Energy Technology 

Perspectives' and 'World Energy Outlook' and shares with other partners. The MoMo is 

divided into 29 regions covering all modes of transportation. It analyses the future fuel 

pathways and the impact of new technologies on energy use, GHG emission, vehicle and 

fuel cost and other concerned matters.     

1.2.1.2 Global Fuel Economy Initiatives 

According to ‘Global Fuel Economy Initiatives’ (GEFI) which includes the ‘United 

Nations Environment Program’ (UNEP), ‘International Transport Forum’ (ITF) and 

‘Federation International Automobile’ (FIA) foundation claims that improved fuel 

economy will decrease CO2 emission by half by 2050 and a 6 billion barrel oil per year 

can be saved.  

1.2.1.3 The Electric Vehicle Initiatives 

Electric Vehicle Initiatives (EVI) is a multi-government policy forum dedicated to rapid 

introduction and adoption of EVs worldwide. EVI is adopted by the ‘Clean Energy 

Ministerial’ (CEM). CEM involves the world's major economies' energy ministers. 

Fifteen member governments from Africa, Asia, Europe, North America and EIA are 

included in EVI. It aims to deploy around 20 million passenger car EVs, including 

PHEVs and fuel cell electric vehicle (FEV) globally by 2020. EVI is planning to launch a 

'World EV cities and ecosystem web portal' which will be able to capture deployment 

progress all over the world. EVI include China, Denmark, Finland, France, Germany, 

India, Italy, Japan, Netherlands, Portugal, South Africa, Spain, Sweden, the United 

Kingdom and the United States. The IEA facilitates and coordinates the collection, 

analysis and dissemination of EVI data.    

1.2.1.4 The Partnership on Sustainable, Low Carbon Transport 

To improve the knowledge of developing countries (government and business) about 

sustainable, low carbon transport and to help them to develop better policies regarding 

greener transport, ‘Partnership on sustainable, low Carbon Transport’ (SLoCat) is 

formed. Over 50 organizations including United Nations, multilateral development banks, 

Technical co-operation agencies, non-government organizations and research 
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organizations are part of SLoCaT.  More than 350 million conventional vehicles are 

expected to be on the road of OECD and non-OECD countries by 2020. It will increase to 

400 million by 2030 for non-OECD whereas conventional vehicles are estimated to 

decrease for OECD countries and hundred million hybrid vehicles are expected to be on 

the roads.  

1.2.2 Scenario in India 

In India, transport sector accounts for about one-third of the total crude oil consumption 

and 80 percent of this is utilized for road transport. By Indian Transport Portal, the Indian 

automobile market is the second fastest growing in the world and has shown nearly 30 

percent of growth in 2011-12. The government is also keen in electric-operated vehicles 

to avoid over dependency on scarce fossil fuel. The Indian government is carrying out 

encouraging policies to entice eco-friendly hybrid car manufacturers and started many 

plans to make these vehicles more popular in India and reachable to all [23]. Das explores 

that investment in greener cars; capitalization of under-utilized area (hybrid vehicle 

industry) and development of the infrastructure will enhance economic growth and 

reduce emissions. This initiative of Indian government will promote the Indian 

automotive industries to shift to newer and cleaner technologies for environmental 

sustainable products, innovation and knowledge [24]. 

 An Indian government initiative for 'National Electric Mobility Plan' deals with 

cash subsidy and financing facilities for the end consumers. To create a network for 

vehicles’ charging is under consideration of this plan. These policies will actuate 

automobile companies for research and development of cheaper, greener and better 

mileage vehicles. Since battery is the vital component of HEVs, more research is required 

to develop batteries with lower running cost, lesser maintenance and higher efficiency. 

 Department of Heavy Industry is going ahead with the ‘National Mission for 

Electric Mobility’ (NMEM) to have a significant number of EVs and HEVs on road by 

2020. To encourage manufacturing and selling of alternative fuel-based vehicles 

'National Mission for Hybrid and Electric Vehicles', 'National Board on Electric 

Mobility’ and ‘National Automotive Board' have set up a body to facilitate interaction 

between government and automotive industries for the growth of HEVs.  
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 Societies of Indian Automotive Manufactures and Ministry of New & Renewable 

Energy Sources have initiated a 'National Hybrid Propulsion Program' to develop high 

energy density batteries for the best performance. 

 In a move to reduce the dependency on fossil fuels for vehicles, India has set up a 

target to produce six million green vehicles by 2020 and four to five million are expected 

to be two-wheelers. At present, only about 1,500 electric four-wheelers and four lacs 

electric two-wheelers are on roads. Live mint reports that the government will save Rs 

30,0000 million in fuel by giving Rs 14,0000 million subsidy to industries for 

manufacturing EVs and the  industrial contribution would be about Rs 8,0000 million.  

 The Budget of 2011-12, proposed to reduce excise duty from 10 percent to 5 

percent of development and manufacturing of hybrid vehicle kits as well as a full 

exemption on customs and counter-veiling duty on import of special hybrid parts. 

 An autonomous research body under the ‘Union Ministry of Petroleum and 

Natural Gas’, 'Petroleum Conservation and Research Association' signed a memorandum 

of understanding with the 'Bureau of Energy Efficiency' to develop fuel economy 

standards under the 'Energy Conservation Act 2001'. The fuel efficiency standard is 

applicable for all types of vehicles including cars, trucks and buses. According to 

government projections, the country would be saving up to $36 billion, if fuel efficiency 

can be improved by 50 percent by 2030 in all sectors [25]. 

1.3  Challenges 

For the greener tomorrow in terms of automotive solutions, hybrid vehicles are one of the 

promising and feasible options. Leaping into the era of hybrid vehicles, will benefit the 

humanity and the environment both. But at the same time, many challenges are waiting to 

get resolved. Adaptation, dissemination and penetration of hybrid vehicles will not be an 

easygoing job. Despite of enormous research, they have numerous weaknesses in terms 

of fuel efficiency, refuelling, price and many others. Few issues are listed here. 

1.3.1 Battery Concern 

The battery is one of the power sources in HEV and has following issues: 
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 It is heavy, expensive and generally affected by the atmospheric temperature. 

Temperature variation causes to change in behavior of the battery. Hence an 

efficient battery management system is required. 

 It takes long charging time as well as is sensitive to overcharge/undercharge.  

 It contains toxic heavy metals; hence disposal of waste becomes a challenge to 

face. 

 Resolving these issues will allow the BEVs to run on the road. A powerful energy 

support system for BEVs should be provided with extensive research in the domain of 

advanced electrodes, efficient electrolytes and best suited battery modeling. Li-ion 

batteries are widely used now-a-days due to their higher specific energy and energy 

density, durability as well as low self discharge rate. 

1.3.2 Development of Energy Management Strategies 

Power split between engine and battery is of utmost importance to minimize the fuel 

consumption without affecting the vehicle speed. Due to complex structure of 

HEVs/PHEVs, the design of control strategies is a challenging task. The preliminary 

objective of the control strategy is to satisfy the driver’s power demand with minimum 

fuel consumption and toxic emissions with optimum vehicle performance. Moreover, fuel 

economy and emissions minimization are conflicting objectives; a smart control strategy 

should satisfy a trade-off between them. 

1.3.3 Public Awareness and Participation 

Public awareness and participation is very important to penetrate any policy into their 

lives. To relate pollution and social health, a widespread environmental education 

program will promote public involvement. As far as the case of India is concerned where 

literacy rate is around 74 percent and larger part of the population lives in villages, to 

conduct a mass awareness program is very challenging. For developed countries, the 

mass awareness program for the vehicular pollution control will be bit easier. 

Government and private sector participation with lucrative and cost-effective schemes 

will attract the consumer and encourage the hybrid usage. Participation of media will also 

help in spreading the responsiveness about the causes of pollution, impact on human life 

and the environment.  
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1.3.4 Smart Charging Infrastructure 

Development of roads, expressways, flyovers and bridges will ease the vehicle motion on 

roads and hence less pollutant emission. Hybrid vehicles should be considered as the 

future vehicles. For the greener tomorrow, a supportive and smart infrastructure must be 

proposed. To bring green vehicles on road, smart charging is inevitable. The smart 

infrastructure should consist of sensitive and smart charging stations, billing and metering 

system to facilitate the user. The concept of two way communication is employed to 

exchange such information. To attract towards the green vehicle, user preferences should 

be considered. Infrastructure should be sensitive to collect/send the data between grid and 

user. "Better Place", a California based venture is building the world's first large scale 

public EV charging network in Israel and planning to expand it in Denmark, Hawaii, 

Australia and California [26].  

1.3.5 Impact on Grid 

As PHEVs/EVs are charged from power plugs in several hours to run uninterruptedly on 

roads, so append additional electricity demand on the grid. With the increase in the 

number of these vehicles on the road, the power demand will also increase. The 

conventional modes of power generation may not suffice the demand. Worldwide 

countries should focus to generate power through alternative energy sources like wind, 

hydro and solar power to meet the demand and develop the smart grids. Vehicle to grid 

(V2G) concept can be entertained here. This concept works on the balance of the 'off-

peak' and 'peak' demand. With this facility during ‘off-peak’ hours user can fulfil his own 

demand and can store the power in batteries. And, during ‘peak’ hours when power 

demand is very high, user can sell it back to the grid, thus satisfy the need of own and 

other's. Smart grid projects have been started across the globe including India to address 

this issue. Morgan very nicely explains the potential barriers of V2G and concludes that 

V2G is likely to develop more slowly than grid to vehicle (G2V). But smart grid 

technologies certainly have the potential to meet future power demand, which will 

support V2G. 
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1.3.6 Cost 

High price of an efficient battery hikes the market price of hybrid vehicles. Due to higher 

prices, hybrids are not affordable to middle income group who are the major portion of 

the population. Development of vehicle control strategy, a good battery management 

system and less costly component utilization can decrease the purchase and operational 

cost. Government should provide subsidies in purchasing and maintaining the hybrid 

vehicles. The fuel saving is very attractive feature of hybrids and can be compensated 

with tax relaxation and other incentives provided by the government. Involvement of 

feature like 'regenerative braking' and 'idle stopping' will benefit the various components 

of the vehicles. Electric accessories reduce load on the engine and hence reduce the 

maintenance cost. 

1.4 Motivation and Scope of Research 

Based on available literature, the scope and motivation of the research work carried out is 

briefed as follows: 

 Battery is a complex system and very important component of HEV. Analyzing a 

battery on cell level reveals that it may go under various effects like diffusion and 

double layer at the contact points of electrolyte and electrode. The hindrance in 

current flow may be contributed by electrolyte which opposes the charge 

movements through it. These phenomena need to be incorporated while modeling 

a chosen battery to analyze its behaviour. 

 Battery performance is affected by handling, charging/discharging pattern, 

loading, heat exposure and its calendar life. It gets discharged even when not in 

use. The battery is one of the most expensive components of the vehicle. Its 

performance is generally characterized by State of Charge (SOC) level which is 

left charge in the battery. Thus, an accurate knowledge of SOC level is important 

while propelling a vehicle to estimate how long a vehicle can run on battery 

power. In the available literature on HEVs, SOC estimation is performed only 

using ampere hour counting method. Although several available literature on 

batteries says that open circuit voltage consideration is also important for SOC 

calculation. Here, a modified SOC estimation method incorporating both, ampere 

hour counting and open circuit voltage is proposed. During current calculation, 

self discharge current is also considered because it affects the battery life even 
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when kept on the shelf. As battery performance is greatly affected by temperature, 

therefore temperature effect is also incorporated while calculating current and 

voltage. Hence, an adaptive SOC estimation method is developed to follow up the 

charge level while in use. 

 Both engine and battery together or alone need to power the vehicle to fulfil 

driver's demand. At the same instant, it is required to restrict the engine to work in 

its efficient region only and use the battery capability to its fullest without 

deteriorating its health. Hence, a power split between these two sources is of great 

importance to minimize the fuel consumption and maximize the power utilization. 

Thus, an intelligent energy management strategy development to split power 

demand between these two sources is an important consideration for HEV 

manufacturers and engineers. So, development of control strategy and 

optimization requires a lot of efforts to make HEV work with its supreme 

performance achievements. 

 Battery modeling and development of energy management strategies are the 

major issues in an HEV. The subsequent chapters will elaborate these in detail. 

1.5 Objectives 

Based on the literature review and research gaps, the research endeavors to develop 

battery models, synthesize the modified SOC estimation method and power optimization 

strategies to improve the fuel economy of HEV are performed. The objectives are 

elaborated as follows: 

1. Selection of the best suitable battery for HEV application and its modeling 

involving diffusion, double layer effects with self discharge current and 

temperature variation. 

2. Development of adaptive SOC estimation method using Ampere hour counting 

and open circuit voltage and determination of threshold SOC level to deplete the 

battery during operation without deteriorating its health.  

3. Exploring the optimization techniques to calculate the thresholds of various 

vehicle parameters responsible to turn on/off the engine for optimal power split 

and maximum fuel efficiency using developed battery models and SOC 

estimation method. 
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4. Feature extraction of various driving cycles and analyze the vehicle performance 

over these including Indian road conditions. 

1.6 Structure of Thesis 

The research work carried out in this thesis is organized as follows:  

Chapter 1: Elaborate the problems caused by ICE based vehicle and leads towards the 

solution.  The inspiration to carry out a research in the area of HEVs is the 

outcome of the study performed.   

Chapter 2: Performs study for the selection of the suitable battery for HEV applications 

using multi criterion optimization methods like, Ashby, VIKOR and TOPSIS.   

Chapter 3: Modeling of Li-ion battery is performed in this chapter incorporating 

temperature effect and self discharge current. A modified SOC estimation 

method is proposed and a threshold SOC level determination is performed.   

Chapter 4: Various architectures of HEVs are discussed in this chapter. A detailed 

literature survey of various existing energy management strategies is 

performed to choose a suitable method to optimize the power split between 

engine and battery.  

Chapter 5: Elaborates the various developed energy optimization strategies to minimize 

fuel consumption in HEVs. DIRECT, genetic algorithm and Pontryagin's 

minimum principle is used to determine the fuel economy. The developed 

battery models and proposed modified SOC estimation methods are 

incorporated in ‘ADvance VehIcle SimulatOR’ (ADVISOR). Effect of 

temperature on vehicle performance is studied.  

Chapter 6: Feature extraction of several driving cycles is performed using independent 

component analysis and principle component analysis. HEV performance on 

various driving cycles is analyzed and fuel economies are calculated. Indian 

road conditions are studied to check the feasibility of using HEVs on it.   

Chapter 7: Finally the main findings of the research work are summarized and future 

scope is discussed.  
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Chapter 2                                                                                                                   

Battery Selection for Hybrid Electric Vehicle 

Applications 

 

 

The main component behind the HEV’s efficient performance is presence of rechargeable 

battery. The power delivered by the battery is mainly dependent on its SOC. Being a key 

component, battery performance and cost plays a vital role in manufacturing efficient 

and economical HEVs hence the selection of a proper battery for HEV application 

becomes inevitable.This chapter proclaims the battery selection for HEV applications 

using multi-objective optimization techniques. Ashby's methodology, ‘Technique for 

Order Preferences by Similarity to an Ideal Solution’ (TOPSIS) and ‘VIse Kriterijum-ska 

Optimizacija Komprominsno Resenje’ (VIKOR) methods are employed here for the 

assessment. Various considered attributes, specific energy, energy density, electrical 

efficiency, self-discharge rate, nominal cell voltage, energy per cycle, cost and durability 

are considered here for investigation. The batteries considered for analysis are Li-ion, 

Ni-MH, Ni-Cd and Pb-acid. Based on the performance indices and battery attributes, 

selection charts are plotted and influential data are tabulated. Ashby's method, TOPSIS 

and VIKOR converge to unique outcome, i.e. Li-ion. It is observed, Li-ion batteries are 

most suitable for hybrid vehicle applications followed by Ni-MH batteries. The results 

obtained are also matched up with actual practices in automobile industries. 

2.1 Types of Batteries 

The batteries available in the market are basically of two types, primary and secondary.  

Primary batteries produce current immediately and are most commonly used in portable 

devices with lower current drawn. Primary cells cannot be recharged, since the chemical 

reactions are not easily reversible and active. These batteries have high energy density, 

but are expensive in terms of cost per kilowatt hour [27]. Secondary batteries, also known 

as rechargeable batteries, are composed of active materials and get (re)charged by 

applying electric currents. The chemical reactions are reversible hence battery can be 

charged and recharged subsequently. The most commonly used secondary cells are Lead-
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Acid (Pb-acid), Nickel-Cadmium (Ni-Cd), Nickel-Metal Hydride (Ni-MH) and Lithium-

ion (Li-on). The market has shifted towards secondary cells because of its lower unit 

prices, useable time and repetitive charging/discharging. The batteries chosen for analysis 

are explained below. 

2.1.1 Lead-Acid Battery 

Pb-acid battery is the oldest type of rechargeable battery. Pb-acid batteries are designed 

for high power applications and are inexpensive, safe and reliable [28]. They have low 

specific energy, short calendar life and temperature sensitive performance. The Pb-acid 

cell contains electrodes of Pb metal and lead oxide (PbO2) in the sulfuric acid (H2SO4) 

electrolyte. The chemical reaction results in potential or voltage. The overcharging of Pb-

acid cell causes emission of hydrogen and oxygen. The following reactions occur at the 

electrodes. 

At anode:        
                                        

At cathode:          
      

                 

2.1.2 Nickel-Cadmium Battery 

The Ni-Cd battery came into the market to compete with Pb-acid batteries in 1899. It has 

a significantly higher energy density than Pb-acid battery. It contains Nickel Oxide 

Cadmium Hydroxide as the positive electrode, Cadmium (Cd) as the negative electrode 

and potassium hydroxide as the electrolyte. Potassium hydroxide is not consumed in the 

reaction. Cd is heavy metal and is highly toxic. Ni-Cd batteries are costlier that Pb-acid 

and have negative temperature coefficients [29].  These exhibit thermal runaway hence 

avoided by car manufacturers.  

At anode:                                   

At cathode:                                  

2.1.3 Nickel-Metal Hydride Battery 

Ni-MH batteries have 2 to 3 times higher capacity than equivalent Ni-Cd cell and have a 

much higher life than Pb-acid batteries. These batteries have been used successfully in 
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electric vehicles. Metal hydride, as anode, Ni(OH)2 as the cathode and potassium 

hydroxide as the electrolyte are used in Ni-MH  cell. The active material is hydrogen in 

the cell. The issues with Ni-MH are high self discharge rate, heat generation at higher 

temperature and higher cost.  The chemical reactions are as given: 

At anode:                    

At cathode:                                

2.1.4 Lithium-Ion Battery 

Li-ion battery with higher energy per unit mass, high energy efficiency, better 

performance at all temperatures and low self discharge rate is dominating the current 

market. One of the best features of Li-ion battery is that it can be recycled. These 

batteries use carbon anode and oxides of cobalt, manganese and nickel as cathode. The 

chemical reaction equations are as given: 

At anode:                   

At cathode:                             

Firstly, it is required to understand which battery will serve the purpose of high 

power demand with good life span for hybrid vehicle applications. For that, battery 

attributes like energy density, specific energy, electrical efficiency, durability, 

energy/cycle, self-discharge rate and cost are considered and studied in detail. Using 

Ashby’s approach, TOPSIS and VIKOR methods, best suitable battery for HEV is 

chosen. 

2.2  Battery Indices 

The performance indices of batteries vary with respect to a range of variables, i.e. energy 

density, specific energy, electrical efficiency, self discharge rate, energy per cycle, cost, 

durability etc. These are described here in detail:  

2.2.1 Specific Energy and Energy Density  

The energy density of fuel per unit mass is known as specific energy of that fuel. Specific 

energy is the amount of electrical energy stored for every kilogram of battery mass. More 
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the energy can be stored or transported for the same amount of volume, it is said to have 

high energy density. Mass is the greatest source of energy as      , where m is mass, 

  is the speed of light, and   is the energy stored/released. Energy density is the amount 

of electrical energy stored per cubic meter of battery volume. To maximize energy 

density and specific energy, specific energy density can be calculated and higher value 

shows the efficient energy storage [30].  

2.2.2 Electrical Efficiency 

This is another very important parameter and it is defined as the ratio of electrical energy 

supplied by a battery to the amount of electrical energy required to return it to the state 

before discharge. Higher efficiency will prove a better battery type.  

2.2.3 Self Discharge Rate 

The batteries discharge when not in use, this phenomenon is called self discharge. This 

reduces the charge level of the battery without any use even. The discharge rate varies 

with battery type and temperature. The self discharge rate is a measure of how quickly a 

cell will lose its energy while sitting on the shelf due to unwanted chemical actions 

within the cell [31]. These side reactions can be reduced to some extent by storing the 

battery at lower temperature [32].   

2.2.4 Energy/Cycle 

Energy delivered per cycle has a significant impact on choosing a battery. The amount of 

energy in every discharge cycle should be high and it should be continued for larger 

numbers of cycles with repetition. 

2.2.5 Cost 

The initial cost and lifetime cost of batteries may vary. The installation and initial 

purchase of Li-ion battery is high as compared to the other batteries of the same capacity, 

but durability and high performance of Li-ion battery repay it back in terms of good 

performance. Different chemistries need a different type of charger to charge it; this also 

leads to the cost raise. 
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2.2.6 Durability  

Number of charge/discharge decides the durability of the battery. It varies with the type 

of battery and how it has been used in the past. This is a significant attribute of battery 

which decides the life of the battery and performance duration. Good durability with high 

installation cost may repay back to the customer in terms of economy.  

Table 2.1 shows the numerical values of different attributes of the related battery 

[33, 34].  

Table 2.1: Attributes of different material battery 

2.3 Different Methods used for Battery Selection  

Ashby's method, TOPSIS and VIKOR are used here to rank the batteries on the basis of 

their attributes. These are described in detail as follows: 

2.3.1 Ashby's Methodology 

To meet the product performance and minimize the cost, Ashby presented a novel 

method for selection of materials in different applications [35]. Ashby's approach is used 

here to determine the optimal performance battery for hybrid vehicle applications. Using 

an objective function, under the influence of some constraints, the desired function is 

optimized to minimize/maximize the performance; is the basic idea behind the Ashby's 

approach. This approach optimizes a performance index   , based on objective functions 

are used here to apply in battery selection as in (2.1). 

                                                                                                                                             

Battery attributes Unit Li-ion Ni-MH Ni-Cd Pb-acid 

Specific energy Wh/kg 180 70 50 35 

Energy density Wh/l 180 140 100 70 

Electrical efficiency Percent 85 66 90 90 

Self-discharge rate Percent/month 5 30 10 20 

Nominal voltage Volts 3.6 1.2 1.2 2.0 

Energy /cycle Wh 8.6 7.5 4.5 24 

Cost/kWh $ 24 18.5 11 8.5 

Durability Cycles 1200 1000 2000 800 
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  is functional, i.e. function of a function, F is battery functional requirement, P is battery 

properties and M is the material.    

2.3.2 TOPSIS Method 

TOPSIS is a Multi Attribute Decision Making (MADM) method for measuring relative 

efficiency of alternatives. Yoon and Hwang [36, 37] introduced the TOPSIS method 

based on the idea that the best alternative should have the shortest distance from an ideal 

solution. They assumed that if each attribute takes a monotonically increasing or 

decreasing variation, then it is easy to define an ideal solution. Such a solution is 

composed of all the best attributes’ values achievable, while the worst solution is 

composed of all the worst attribute’s values achievable. The goal is to propose a solution 

which has the shortest distance from the ideal solution in the Euclidean space. Such a 

solution may need to simultaneously have the farthest distance from a negative ideal 

solution [38, 39]. TOPSIS method considers both the distances and tries to choose 

solutions which are simultaneously close to the ideal solution. The procedure can be 

followed in six steps: 

Step 1: Construction of decision matrix: The decision matrix is expressed as (2.2). 

D=  
       
   

       

                                                                                                                        

dij is the rating of the alternative Ai with respect to the criterion Cj. 

Step 2: Construction of the normalized decision matrix: Each element rij is obtained by 

the Euclidean normalization as (2.3).  

    
  

     
  

   

                                                                                                     

Step 3: Construction of the weighted normalized decision matrix: The weighted 

normalized decision matrix vij is computed as (2.4):            where 

    

 

   

                                                                                                                                            

Step 4: Determination of the ideal solution A* and the anti-ideal solution A
-  

as (2.5). 
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 For desirable criteria 

  
                     

  
                     

 

 For undesirable criteria 

  
                    ,   

                     

Step 5: Separation of each alternative from ideal and negative ideal solution is calculated 

as (2.6). 

 

  
       

 

 

   

                

  
       

 

 

   

                

 
 
 
 

 
 
 

                                                                                      

Step 6: Ranking: Calculate the relative closeness to the ideal solution of each alternative 

as (2.7): 

  
  

  
 

  
    

                                                                                                                      

A set of alternatives can be ranked according to the decreasing order of Cj *. 

2.3.3 VIKOR Method 

The VIKOR which is a means of multi-criteria optimization (MCO) and compromise 

solution method, was developed by Opricovic and Tzeng [38, 40, 41]. The method can be 

defined as a multi-criteria optimization of complex systems and it is based on ranking and 

selecting from a set of alternatives under conflicting criteria. Assuming that each 

alternative is evaluated according to each criterion function, the compromise ranking 

could be performed by comparing the measure of closeness to the ideal alternative. The 

compromise solutions could be the basis for negotiations, involving the preference of 

decision makers by criteria weights [42]. The VIKOR algorithm also determines the 

weight stability intervals for the obtained compromise solution with the input weights 



   

Battery Selection for Hybrid Electric Vehicle Applications 

27 
 

given by the expert. This method focuses on ranking and selecting from a set of 

alternatives in the presence of conflicting criteria.  

 It introduces the multi criteria ranking index based on the particular measure of 

‘closeness’ to the ‘ideal’ solution. Development of the VIKOR method started with the 

following form of Lp-metric [43]: 

Step 1: Determine the normalized decision matrix: The normalized decision matrix can 

be expressed as (2.8): 

 

          
 

    
   

     
  

   

                       

 
 
 

 
 

                                                                        

and     is the performance alternative with respect to the j
th

 criteria. 

Step 2: Determine the ideal and negative ideal solutions: The ideal solution S* and 

negative ideal solution S
-
 are calculated as (2.9): 

 
                                                

    
       

   

                                                
    

       
  
               

where  

                                                 

                                                  
                                                         

Step 3: Calculate the utility and regret measure: The utility measure and the regret 

measure for each alternative are as (2.11): 

 

          
 

 

   

         
    

  

            
  
     

  
    

   
 
 
 

 
 

                                                                                             

   represents utility measure,    represents the regret measure and    is the weight of the 

criteria j. 

Step 4: Calculate the VIKOR index: The VIKOR index can be calculated as (2.12): 
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   represents the i
th

 alternative VIKOR value i=1,....,m. 

and   

         
         
         
          

 
 

 
 

                                                                                                                         

  is usually set to 0.5 [44, 45]. 

2.4 Result and Discussion 

The primary requirement to use an HEV is a large driving range with minimum liquid 

fuel consumption over the roads. The optimal performance of hybrid vehicle varies with 

the batteries used during propulsion. Out of various available batteries, battery selection 

is performed based on various attributes for HEV applications. The selection chart and 

calculations obtained from various methods are presented in following sections.  

2.4.1  Ashby's Methodology 

These battery performance indices affect the overall fuel economy of hybrid vehicles and 

performance. The optimal battery is selected here by placing the battery attributes in 

selection map. Figure 2.1, 2.2 and 2.3 are plotted using table 2.1's relevant attribute data. 

Figure 2.1 shows the variation of specific energy and energy density. It is considered that 

specific energy density should be high to store more energy. From the figure, it is clear 

that Li-ion battery has significantly higher specific density and specific energy, both as 

compared to others.   

 A good battery should have high electrical efficiency and low self discharge rate. 

Figure 2.2 infers that, Ni-Cd, Pb-acid and Li-ion have a trade off in terms of its electrical 

efficiencies. Ni-Cd and Pb-acid battery shows higher efficiencies with higher self 

discharge rate whereas Li-ion battery with very low self discharge rate exhibit good 

percentage of electrical efficiency. 
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Figure 2.1: Specific energy versus energy density variation 

 

Figure 2.2: Electrical efficiency versus Self discharge plot of different batteries 

Figure 2.3 exhibits the energy drawn from the battery in every discharge cycle 

versus its durability. The Pb-acid battery has a highest 'Watt hour energy per cycle' but 

lowest durability. As durability reduces the running cost of vehicle increases, hence Pb-

acid battery will not be suitable for this application. Ni-Cd has higher durability among 

all but has very low energy delivery in every cycle. Hybrid vehicles demand high energy 

from battery; thus Ni-Cd is also not suitable for hybrid vehicle applications. Ni-MH and 

Li-ion batteries have a trade off in this case with very close values.  
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Figure 2.3: Cycle versus durability plot for various batteries  

On the basis of the selection charts plotted in figures 2.1, 2.2 and 2.3, Li-ion 

battery is found to be most promising and Ni-MH ranks as second. 

2.4.2 TOPSIS Method 

The various available batteries and their attributes are given in table 2.2. Here, self 

discharge rate and cost are minimization type and rest others are maximization type 

attributes. The normalized decision matrix is formed using (2.3) and the same is given in 

table 2.3. Weighting factors of the various attributes are computed using the ratio method 

and are listed in table 2.4. The weighted normalized decision matrix is obtained using 

(2.4) and is presented in table 2.5. Ideal and negative ideal solutions are estimated using 

(2.5) in table 2.6. Distance of each alternative from the ideal and negative ideal solutions 

is listed in table 2.7 using (2.6). The ranks of batteries are calculated using (2.7) and the 

same is shown in table 2.8. The table shows that highest score is achieved by Li-ion 

battery which makes it a best suitable option to use in hybrid vehicle applications. 

Similarly, Ni-MH ranks second, Ni-Cd ranks third and fourth position is occupied by Pb-

acid battery.  

Table 2.2: Batteries and Attribute 

 Parameter 

 

 

Battery 

Energy 

density 

Specific 

energy 

Cell 

voltage 

Electrical 

efficiency 

Self 

discharge 

rate 

Cost Energy/cycle 

Li-ion 180 180 3.6 85 5 24 8.6 

Ni-Mh 140 70 1.2 66 30 18.5 7.5 

Ni-Cd 100 50 1.2 90 10 11 4.5 

Pb acid 70 35 2 90 20 8.5 24 
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Table 2.3: Normalized decision matrix 

   Parameter 

 

Battery 

Energy 

density 

Specific 

energy 

Cell 

voltage 

Electrical 

efficiency 

Self 

discharge 

rate 

Cost Energy 

/cycle 

Li-ion 0.6959 0.8886 0.8082 0.5099 0.8675 0.2801 0.3190 

Ni-MH 0.5412 0.3456 0.2694 0.3959 0.2052 0.4450 0.2782 

Ni-Cd 0.3866 0.2468 0.2694 0.5399 0.7350 0.6700 0.1669 

Pb acid 0.2706 0.1728 0.4490 0.5399 0.4701 0.7450 0.8904 

 

Table 2.4: Weighting factors of different attributes 

Parameter 

 

Energy 

density 

Specific 

energy 

Cell 

voltage 

Electrical 

efficiency 

Self 

discharge 

rate 

Cost Energy/ 

cycle 

Weighting 

factor 

0.3668 0.2508 0.0059 0.2478 0.0486 0.0464 0.0333 

  

Table 2.5: Weighted normalized decision matrix 

   Parameter 

 

Battery 

Energy 

density 

Specific 

energy 

Cell 

voltage 

Electrical 

efficiency 

Self 

discharge 

rate 

Cost Energy/ 

cycle 

Li-ion 0.2553 0.2229 0.0048 0.1263 0.0422 0.0130 0.0106 

Ni-MH 0.1985 0.0866 0.0016 0.0981 0.0099 0.0206 0.0092 

Ni-Cd 0.1418 0.0619 0.0016 0.1338 0.0357 0.0311 0.0055 

Pb acid 0.0992 0.0433 0.0026 0.1338 0.0228 0.0345 0.0297 

  

Table 2.6: Ideal and negative ideal solution 

Parameter 

 
Energy 

density 

Specific 

energy 

Cell 

voltage 

Electrical 

efficiency 

Self 

discharge 

rate 

Cost Energy/ 

cycle 

A* 0.2553 0.2229 0.0048 0.1338 0.0099 0.0130 0.02973 

A- 0.0992 0.0433 0.0016 0.0981 0.0422 0.0345 0.0055 

 

Table 2.7: Separation of each alternative from ideal and negative ideal solution 

Battery Li-ion Ni-MH Ni-Cd Pb-acid 

S
*
 0.038185416 0.153411313 0.200946167 0.239213630 

S
-
 0.240596446 0.113945285 0.059015989 0.047246682 

 

Table 2.8: Battery Ranking 

Battery Li-ion Ni-MH Ni-Cd Pb-acid 

Cj 0.863027617 0.426192156 0.227017618 0.164932733 

 



   

Battery Selection for Hybrid Electric Vehicle Applications 

32 
 

2.4.3 VIKOR Method 

The normalized decision matrix table 2.3 is used for step 1 matrix formation as 

mentioned in (2.8). Determination of ideal and negative ideal solution is presented in 

table 2.9 using (2.9).  Utility and regret measures are collected in table 2.10 using 

expressions given in (2.11). It finds utility measure Si and regret measure Ri according to 

(2.11). The VIKOR index for all the batteries are calculated in table 2.11 using (2.12). 

The minimum value set of the desired alternative by VIKOR method is for Li-ion battery 

type. Hence, Li-ion battery will be the best alternative to choose with minimum cost and 

self discharge rate while maximizing other attributes.  

Table 2.9: Determination of ideal and negative ideal solution 

Parameter Energy 

density 

Specific 

energy 

Cell 

voltage 

Electrical 

efficiency 

Self 

discharge 

rate 

Cost Energy/ 

cycle 

S
*
 0.6959 0.8886 0.8082 0.5399 0.1324 0.2549 0.8904 

S
-
 0.2706 0.1728 0.2694 0.39597 0.7947 0.7198 0.1669 

  

Table 2.10: Calculation of utility and regret measure 

Battery Si Ri 

Li-ion 0.124424152 0.051630977 

Ni-MH 0.684380212 0.247828691 

Ni-Cd 0.548299239 0.266819135 

Pb acid 0.650893481 0.366876310 

  

Table 2.11: VIKOR index 

Battery Li-ion Ni-MH Ni-Cd Pb acid 

Qi 0 0.811182583 0.719792283 0.970098787 

 Ranking outcomes of TOPSIS and VIKOR methods are put together in figure 2.4. 

Like Ashby, TOPSIS and VIKOR methods also rank Li-ion battery the best. TOPSIS 

ranks batteries in the order: Li-ion>Ni-MH>Ni-Cd>Pb-acid, whereas VIKOR ranks like 

Li-ion> Ni-Cd > Ni-MH >Pb-acid.  
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Figure 2.4: Comparison of TOPSIS and VIKOR 

 The spider web plot in figure 2.5 summarizes all parameters mentioned in table 

2.1 which also shows that Li-ion battery is covering a wide range of desirable attributes.  

 

Figure 2.5: Spider web plot for attributes of the different batteries 

 Aforementioned discussions recommend Li-ion battery as the best suitable option 

for hybrid vehicle applications followed by Ni-MH. 

It is also investigated that the absence or presence of any attribute in any decision 

making method affects the ranking order. Many combinations are tested and in all cases 

Li-ion battery proves to be the best except one case. In this particular case, energy density 

and specific energy are ignored, which leads to lower ranking of Li-ion battery. The 

sequence of ranking in this case is Pb-acid > Ni-Cd > Li-ion > Ni-MH.  
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High energy density and high specific energy allow vehicle to perform 

satisfactorily in case of acceleration and energy regeneration. Further, hybrid vehicles 

require battery with high energy density to provide a large mileage in one charge cycle. 

This concludes that for HEV applications, Li-ion battery will be an appropriate choice 

with respect to good mileage, reliability and durability. Based on this analysis, this thesis 

work uses Li-ion battery to model and optimize the power of HEV. 

Hence, Li-ion battery and Ni-MH battery proves to be descent options for use. 

The table 2.12 below summarizes the usage of these battery technologies in various 

hybrid vehicles.   

Table 2.12: Overview of battery technology used in several vehicles 

Company Vehicle model Battery technology 

GM Chevy-Volt Li-ion 

Ni-MH Saturn Vue Hybrid 

Ford Escape 

Fusion 

MKZ HEV 

Escape PHEV 

Ni-MH 

Ni-MH 

Ni-MH 

Li-ion 

Toyota Prius 

Lexus 

Ni-MH 

Ni-MH 

Honda Civic 

Insight 

Ni-MH 

Ni-MH 

Hyundai Sonata Lithium Polymer 

Chrysler Chrysler 200C EV Li-ion 

BMW X6 

Mini E 

Ni-MH 

Li-ion 

BYD E6 Li-ion 

Daimler Benz ML450 

S400 

Smart EV 

Ni-MH 

Ni-MH 

Li-ion 

Mitsubishi iMiEV Li-ion 

Nissan Altima 

Leaf EV 

Ni-MH 

Li-ion 

Tesla Roadster Li-ion 

Think Think EV Li-ion, Sodium/Metal chloride 

2.5 Summary 

The optimal battery selection for HEV applications using multi criteria decision making 

methods like, Ashby, TOPSIS and VIKOR methods are presented. The performance 

indices of battery are optimized against several battery attributes. On the basis of battery 

selection charts, it is found that Li-ion and Ni-MH batteries outperform and would serve 

the purpose in hybrid vehicles. Further, very high specific energy and energy density of 

Li-ion against Ni-MH battery, advises to opt for Li-ion battery. A powerful battery 
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management system can be used to increase the performance and life of Li-ion battery. 

Li-ion batteries are inviting lots of research attention due to its lower self discharge rate, 

high specific energy density and high specific power. Various technologies are being 

explored by researchers to manufacture low cost batteries with improved performance. 

As a result, in near future smaller size, powerful and long live Li-ion battery will attract 

not only hybrid vehicle manufacturers but manufacturers of all the relevant disciplines 

with reduced cost.  
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Chapter 3                                                                                                                      

Battery Modeling and Formulation of SOC 

Estimation Method 
   

 

In hybrid vehicles, battery is one of the propulsive power sources and its effective usage 

can minimize the liquid fuel consumption. Correct information about its operating 

conditions are essential, therefore, an accurate battery model is required to predict its   

I-V characteristic and dynamic behaviour. This chapter presents a highly effective 

thermo-electric model of Li-ion battery developed in Simulink. An algorithm is proposed 

for adaptive estimation of State of Charge (SOC) and Open Circuit Voltage (OCV) to 

notify the accurate charge level for better utilization of battery power and optimal vehicle 

performance. Thermal behaviour of Li-ion battery is investigated for wide temperature 

range and its effect on resistance, capacity and OCV is recorded. The threshold SOC 

level to which battery should be depleted, is calculated using gradient method.  

3.1 Overview of Existing Models 

Sean proposed PSPICE macromodel to simulate battery with sufficient characterization 

data. THis model shows voltage dependency on SOC, discharge current, resistance and 

capacity variation with respect to temperature [46]. This is further used to propose a 

discrete-time model which is capable of battery lifetime estimation [47]. In 1994, 

‘National Renewable Energy Laboratory’ (NREL) modeled Li-ion battery with a voltage 

source and internal resistance as a function of SOC, temperature and current flow 

direction in ADVISOR. Saft America developed the high-power Li-ion cells and 

implemented 2-capacitance battery model in PSPICE. It shows a slightly better 

performance in comparison to NREL’s model [48]. Chen et al. proposed a model to be 

used with an equilibrium potential and two internal resistances R1 and R2 where R1 is a 

function of discharge current, temperature and life cycle and R2 is a function of SOC and 

temperature but did not count for transient response of the battery [49]. 

 Gao et al. demonstrated a dynamic model of Li-ion battery which depicts a 

capacity variation on the basis of C-rate (known as charge and/or discharge current rate 
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per hour), temperature change, equilibrium potential and transient response of the battery 

[50]. It consists of equilibrium potential, internal resistance and a capacitor but doesn't 

account the self discharge current and diffusion effect between electrodes. Tremblay et al. 

presented a battery model, for dynamic simulation software and added same in the 

SimPowerSystems library MATLAB/Simulink [51]. It consists of an internal resistance 

and a voltage source which is a non-linear function of battery SOC. It does not account 

for self discharge current, Peukert and memory effects as well as temperature variation.  

 Lee et al. used Li-ion battery model with internal resistance, 1RC combination 

and a voltage source. They estimated SOC using ampere-hour counting and capacity 

estimation, neglecting OCV based SOC method [52]. Using lumped model, SOC 

estimation algorithm is developed at varying temperatures in [53, 54]. It consists of one 

resistance with two components (series and charge transfer), 1RC ladder (diffusion 

resistance and capacitance) and voltage source (OCV) but does not account self-

discharge current. A circuit based Li-ion battery model using AMESim is developed and 

the temperature rise in core and the crust was represented. But model considers only 

particular discharge rate and different temperature and discharge rate factor functions for 

different rates [55]. [56] combined the electric model developed in [54] and thermal 

model developed in [55] to derive a thermo-electric analytical model. This model can 

inspect the behavioural change of battery due to temperature variation, but contains other 

lacking of [49]. 

 For online SOC estimation, [57] proposed a model with internal resistance, OCV 

and 2RC circuit combinations. For SOC estimation, only ampere counting is considered 

and OCV based counting is neglected. The model developed in [58] is a blend of 

previous models and overcomes few of their limitations. It predicts runtime, steady state 

and transient response accurately by capturing all the dynamic electrical characteristics of 

batteries. The RC network is modeled to account the effect of self discharge loss due to 

long time storage and also includes transient response but does not include thermal 

effects. [59] used a model developed in [58] and incorporated temperature and capacity 

fading effect. To determine online SOC of Li-ion battery, estimated electrical parameters 

with temperature variation are estimated by [60]. Determination of battery SOC using a 

second order model is introduced in [58, 61].  
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 Kroeze and Krein proposed two models for predicting SOC, terminal voltage and 

power losses.  These are: 1) SOC can be predicted when temperature and cycle number 

are given and 2) transient behavior of terminal voltage can be figured out where each 

parameter is a function of SOC [62]. Zhang et al. constructed an equivalent circuit of 

battery cell which is based on Thevenin’s theorem. It describes SOC variation with 

current [63]. This also neglected self discharge current. Randles’ model [64] developed 

for lead-acid batteries, is remapped by [65]. They implemented an equivalent circuit 

model to determine state of function of Li-ion battery, but did not consider the 

temperature effect. Based on experimental results, 2RC battery model is proposed and 

mathematical modeling is performed, but self discharge current is not considered [66].  

References [67, 68, 69, 70] also proposed 2RC battery model, but there is no discussion 

found with respect to the self discharge current.  

3.2 Modeling of Battery 

Since batteries play a vital role in HEVs, it is essential to study their behavior before 

incorporating them as power source. A holistic understanding would result in better 

performance of the vehicle. The battery can be modeled using electrochemical, 

mathematical, analytical and stochastic approaches. Impedance based and electrical 

circuit based modeling can also be performed. The electrical circuit based model depicts 

the battery behavior easily [71]. Electric circuit based models are of varying degrees of 

complexity and are able to capture the battery performance with respect to a set of 

parameters. The parameters are explained in detail in further sections of the chapter.  

 Here three electric circuit based battery models showing internal resistance, 

diffusion and double layer effects, self discharge current and temperature dependence of 

parameters are developed. A thermo-electric Li-ion battery model and effect of thermal 

behaviour of various battery parameters are studied here. The battery models are 

designed with Matlab/Simulink which suits for dynamic simulations. Values of electrical 

components used during modeling are decided using [51, 58]. Battery modeling 

specifications are given in Table A1 (Appendix A). 
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3.2.1 Model 1 

When the power source delivers the current, output voltage is lower than the no load 

voltage because there is a voltage drop due to the internal resistance (Rint) offered by the 

battery. This resistance is resultant of hindrance caused by electrolyte in the flow of 

charged ions.  Model 1 consists of a power source and an internal resistance illustrated in 

figure 3.1. Rint consists of both, ohmic resistance and the polarization resistance [72]. 

OCV will be presented by (3.1) where V(t), V'(t) and i(t) are OCV, output voltage and 

current respectively at time t. 

 
Figure 3.1: Model 1 battery equivalent circuit 

 

                                                                                                                                  

3.2.2  Model 2 

Due to the double-layer formation at electrode/electrolyte interface capacitive effects 

arise [73]. This capacitance consists of purely electrical polarization and diffusion 

capacitances [74]. The transient response of the battery is influenced by double layer and 

diffusion capacitances when the rates of reactions are high. This effect is modeled using a 

single lumped capacitance in parallel with the resistance [75]. To predict the run-time 

behavior of the battery, transient R1 and C1 (in parallel) are connected in series with Rint 

as illustrated in figure 3.2. The time constant characterizes the time varying response of 

the battery. OCV for figure 3.2 is given as (3.2). 
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Figure 3.2: Model 2 battery equivalent circuit 

3.2.3 Model 3 

Double layer and diffusion capacitances in model 2 are represented as R1 and C1 

combination. But, to represent them separately, 2 of such combinations are employed in 

model 3. Model 3 is presented in figure 3.3, composed of voltage source which is a 

function of charge remaining in the battery, internal resistance Rint, diffusion and double 

layer resistances and capacitances R1, R2, C1, and C2 respectively. Governing equation of 

OCV for the model 3 is given as (3.3).  

 

                       
        

    
  

  
 

    
 
    

        
    

  
  

 
    

 
           

Equations (3.1), (3.2) and (3.3) demonstrate the open circuit voltages of models 1, 

2 and 3 respectively. Temperature effect and self-discharge current considerations will be 

included and explained in further sections. OCV and current calculations should include 

both temperature and self discharge current during simulations and analysis to realize the 

impacts over the performance of the battery. A number of Li-ion cells are connected in 

series and parallel to simulate a powerful battery to be used in hybrid vehicles. 

 Knowledge of the amount of charge left in the battery compared with the energy it 

had when it was full, gives the user an indication of how long a battery will continue to 

perform before it needs recharging. Next section is dedicated to determine SOC and used 

the above discussed models for the simulation purposes.   
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Figure 3.3: Model 3 battery equivalent circuit  

3.3 Proposed SOC Estimation Method 

The vehicle performance is characterized by SOC of battery, defined as the ratio of 

remaining capacity to fully charged capacity given as (3.4). 

         
 

    
        

  

  

                                                                                                  

     is the initial SOC level of battery,      is the current from battery at time t,    Is 

time from where SOC starts to deplete and    is the final time up to which discharge is 

allowed.  

A large number of researchers attempted to calculate exact SOC of the battery. 

Major methods used are 1) Direct method 2) Specific gravity measurement 3) Voltage 

based (OCV) and 4) Current based (Ampere hour counting). Direct measurement is not 

useful because it considers the discharging rate only and specific gravity method is useful 

for Pb-acid batteries as it measures the changing weight of active materials. Voltage 

based and current based measurement have been used and suggested by various 

researchers. Although, they also suffer with some negative effects but have advantages 

also.  

Pang et al. used OCV method to calculate SOC (i.e. SOCv) of battery [76]. The 

OCV based SOC estimation technique is advantageous in various aspects like i) OCV 

versus SOC characteristic is independent of the age of the Li-ion battery [77], ii) this is 

very accurate, but suffers with a disadvantage that it requires some rest time after full 
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charge [78]. Ampere-hour counting method (i.e. SOCi) is a suitable method to estimate 

SOC of the battery as it is easy, direct and easily implementable. If the current 

measurement is accurate, then the method is reliable also. But it may have some initial 

value or accumulated error problems [79]. Initial value problem occurs as knowledge of 

correct initial SOC is not available generally. Accumulation error problem at an instant is 

defined as the difference between the analytical and numerical solutions. It is resultant of 

truncation and round off both. Moreover, the SOCi calculation needs capacity 

information of the battery. If calculation gets stuck to any wrong reading, incapability of 

correcting it advises to go for an alternative SOC estimation method. To overcome the 

shortcomings of both and to utilize the added advantages, these two methods can be 

combined together. [80] and [81] identified the contribution of both SOCv and SOCi 

together to estimate accurate SOC of the battery but do not include the effects of 

temperature. It is appreciable to characterize Li-ion battery to dynamically compute SOC 

even in case of temperature variation. Li-ion battery is very reactive chemically and gets 

affected by temperature significantly. Under optimal temperature range batteries behave 

as prescribed, but outside, battery cell experiences severe loss of capacity. To 

characterize the battery performance under the influence of temperature, thermal effect 

during modeling is deemed here for mentioned models. In this thesis work, a generalized 

SOC estimation method is proposed using both SOCv and SOCi. The block diagram of 

same is given in figure 3.4. This method includes the effect of temperature and self 

discharge current. The proposed method is applied to all three battery model developed in 

the previous section. The details of steps involved in SOC estimation are given in coming 

sections.  

 

Figure 3.4: Proposed SOC estimation method   
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3.3.1 SOCv Calculation 

Cell voltage under reversible conditions, i.e. all the reactions are balanced is called 

equilibrium voltage which is occasionally referred as OCV or rest voltage. With this 

OCV, voltage based SOC at temperature T can be estimated using equation (3.5). 

        
 

  
                                                                                                                 

Where    = battery terminal voltage when SOC = 0% and    = battery terminal voltage 

when SOC = 100%. Due to change in temperature, equilibrium voltage of battery at any 

temperature T gets changed as (3.6). 

             
  

  
                                                                                               

  

  
 is temperature coefficient and is constant for the considered temperature range. So the 

consideration of this OCV with temperature effect will lead to modify      and will 

contribute in the absolute SOC computation.  

3.3.2 SOCi Calculation 

The Ampere hour involves the current integration flowing through the battery to estimate 

SOC. SOCi at temperature any temperature T can be computed as (3.7) considering self 

discharge current. 

        
 

  
                                                                                                  

Cp is battery capacity in Ah. 

From the Arrhenius equation, the reaction rate is given as (3.8). During the 

electron transfer reaction, electrons require the additional amount of energy to surmount 

the energy barrier is called the activation energy (Ea=J-mol
-1

) and depends on 

temperature. As for every 10C temperature increase current gets double, so for a ∆T 

temperature change, reaction rate ratio is articulated as (3.9). 
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K0 = reaction constant, R = gas constant, Ea = activation energy and T= operating 

temperature. K is reaction rate (mole/s) and can be expressed as current. Suppose K1 is 

the reaction rate at temperature (T+∆T) i.e. K1= K (T+∆T) and K2 at temperature T i.e. 

K2 = K (T). To represent effect of temperature on Ea, (3.8) and (3.9) are equated as (3.10) 

after taking natural logarithm and then Ea is computed to have effect of temperature on its 

evaluations as in (3.11).  

  
       

    
 
  
 
 
 

  
 

 

       
   

  

  
                                                                      

 

       
 

  
                                                                                                                 

Li-ion batteries exhibit self discharge phenomena, even at moderate oxidation 

levels. It is primarily due to losses occurring at the negative electrode, which results from 

several side reactions, each with their own activation energy and rate constant. From 

Arrhenius equation (3.8), self discharge current can also be modeled. The battery 

capacity also affects it; hence self discharge current is sculpted as (3.12) considering the 

effect of temperature on activation energy from (3.11).  

          
 

  
       

      
 
  

                                                                                       

The temperature dependent SOC can be deduced as (3.13) by combining      

and      with a weighting factor w. Charging and discharging efficiency influences 

battery dynamics to a great extent and weighting factor allied with SOCi governs the 

combined SOC. Correction factor (CF)   is integrated here, which is a function of SOC 

as (3.14) which helps in getting exact SOC during discharging. Weighting factor 

calculation is presented in next section in detail. 

    𝑤        𝑤                                                                                                 

     
    
   

                                                                                                                        

3.3.3 Weighting Factor Calculation 

To calculate the weighting factor, the steady value of OCV and time required to achieve 

this should be considered because under steady conditions      has a higher accuracy 
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[82]. The entire OCV range is divided into 100 sections and each section's weighting 

value is calculated as (3.15).  

𝑤           
  

   
                                                                                             

 From the discharging characteristics, average time taken by OCV to get steady 

condition is ts=1278s and time between two samples is t=192.78s. As t<ts, weighting 

factor w is deduced as (3.16).  

𝑤  𝑤  
 

  
                                                                                                                                       

 Weighting factors using (3.15) and (3.16) are computed and collected in table 3.1; 

correction factors corresponding to different SOC levels are also computed at 25    and 

cognated with weighting factors in table 3.1.  

Table 3.2 brings together the reference SOC values to be generated during 

discharging and values obtained from the proposed method. The values obtained from 

proposed method are very close to the reference values for 100 to 50 percent SOC range. 

The error is very less and is in the range of 0-0.5 percent. From 50-36 percent SOC 

ranges, the error between the reference and obtained SOC is less than 2 percent but error 

starts increasing below 35 percent and continues till empty state. 

Table 3.1: Weighting factors and correction factors corresponding to varying SOCs 

Weighting factors Correction factor 

SOC (%) 𝑤       

100 0.0420 0.9580 0.0 

90 0.0340 0.9600 0.1 

80 0.0250 0.9750 0.2 

70 0.0171 0.9829 0.3 

60 0.0085 0.9915 0.4 

50 0.0000 1.0000 0.5 

40 0.0085 0.9915 0.6 

30 0.0171 0.9829 0.7 

20 0.0250 0.9750 0.8 

10 0.0340 0.9660 0.9 

0 0.0428 0.9571 1.0 

Continuous recording of SOC during vehicle propulsion is important to update 

power management system, which command to toggle between battery and engine for 

minimum fuel consumption and better energy efficiency. Change in temperature due to 

any reason (environmental effect or battery pack utilization) alters the characteristic of 

the battery.  Self discharge current and effect of temperature change is considered in the 
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proposed algorithm. Flow chart of the proposed algorithm is shown in figure 3.5. The 

simulation data are analyzed to obtain the effect of temperature on OCV, SOC, resistance 

and capacity of the battery and are discussed in later sections.  

Table 3.2: Comparison between reference and obtained values of SOCs 

Reference 

SOC (%) 

Obtained 

SOC (%) 

Error (%) 

 

Reference 

SOC (%) 

Obtained 

SOC (%) 

Error (%) 

 

100 100.0 0.0000 36 36.67 1.8611 

90 90.09 0.1000 35 35.73 2.0857 

80 80.32 0.4000 34 34.79 2.3235 

70 70.39 0.5571 33 33.85 2.5758 

60 60.28 0.4667 32 32.92 2.875 

50 50.00 0.0000 31 31.99 3.1935 

40 40.44 1.1000 30 31.05 3.5000 

39 39.50 1.2821 20 21.82 9.1000 

38 38.55 1.4474 10 12.68 26.800 

37 37.61 1.6486 00 1.07E-07 00.000 
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Figure 3.5: Flow diagram of online SOC estimation 
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3.3.4 Correction Factor Assessment for Varying Temperature 

Determination of CF is an important and complex process. As the battery supplies energy 

to the load (vehicle), at that time accurate SOC information is very important under 

dynamic state of charge/discharge to the driver and controller both. Under operational 

conditions, current transfer rate affects the CF. CF is closely related to the charging and 

discharging rate. The performance of the battery with the load is expected to vary and CF 

gets modified for the varying conditions. Here variation of CF with SOC and temperature 

is verified and a mathematical expression is proposed. When battery alone is considered 

then CF can be estimated as given in (3.14), but as it gets associated with the load, it 

varies significantly and can alter the performance of the vehicle. 

At high SOC levels, the kinetic rates are high due to the presence of more un-

reacted active mass and presence of higher level of electrolyte concentration which leads 

to rapid material conversion. At low SOC levels, the kinetic rates are relatively low and 

lead to 100 percent charge efficiency [83]. Change in temperature directly influences the 

rate of reaction and governs the CF. It can be summarized that CF is a function of both 

temperature and SOC.  Simulation results verify the effect of SOC and T over CF. The 

proposed CF derived can be stored or calculated 'on-the-fly' and applied incrementally to 

correct the SOC. The CF variation with the SOC and temperature is shown in figure 3.6. 

 

Figure 3.6: Correction factor variation with temperature and SOC 
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 Exploration of CF for the range of SOCs with wide temperature series is 

performed i.e. 0˚C, 25˚C, 50˚C, 60˚C (very low, room temperature and high) which helps 

in finding a healthy operating range for the battery. The pattern achieved is more or less 

follows Cauchy's distribution. At room temperature (25˚C), CF is higher for lower SOCs 

and becomes low with higher SOC values. The same pattern is observed for 0˚C, 50˚C 

and 60˚C; only the quantitative measures are changed. Based on the simulation results 

and extensive mathematical analysis, a modified CF is proposed (at other than room 

temperature) and given in (3.17). According to this developed relation, CFs are calculated 

‘on the fly’ subsequently SOCs are estimated adaptively and found to be same as 

reference values.   is the error tolerance band and is found to be between 0-5 percent. 

SOC is in percent and T in Kelvin.  

                 
 
   
     

     
                                                                                                

 

 Table 3.3 collects the correction factors calculated at different temperatures 

corresponding to varying SOC levels.  

Table 3.3: Correction factors at different SOCs 

Correction factor at different temperatures 

SOC (%)   ˚  25 ˚C 50 ˚C 60 ˚C 

100 1.0996 1.08405 1.09000 1.0740 

90 1.0764 1.07670 1.09300 1.1146 

80 1.1227 1.12290 1.13200 1.1435 

70 1.1067 1.10690 1.11150 1.1177 

60 1.0625 1.06145 1.10634 1.0659 

50 1.0000 1.00000 1.00000 1.0493 

40 1.0960 1.09580 1.09800 1.0999 

30 1.2740 1.27440 1.28000 1.2850 

20 1.5950 1.59800 1.68080 1.6190 

10 2.2110 2.21000 2.22500 2.2450 

0 0.0000 0.00000 0.00000 0.0000 

3.3.5 Threshold SOC Determination 

Li-ion batteries are used extensively in HEVs to propel the vehicle as primary power 

source, hence it is essential to monitor its SOC continuously. Overcharging and depletion 

below a specified level deteriorates battery health. Since batteries are expensive, it is 

compulsory to take care of their health for durability. Battery mainly operates in two 

modes: 1) charge depletion and 2) charge sustaining. In HEVs both the modes together 
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are used in such a way that initial and final SOC at the end of the trip are same. Further, 

batteries get charged either by the engine (indirectly by fuel) or by regenerative braking. 

 

Figure 3.7: SOC vs. OCV at different temperature 

In available literatures, no proper justification to choose the lowest SOC level to 

which battery should be allowed to discharge is found. Based on data collected during 

discharge from 100 to 0 percent SOC at various temperatures, the threshold SOC level 

using gradient method is proposed. The curves shown in figure 3.7, are seventh order 

equation at 25˚C and can be approximated as (3.18).  

                                                                    

where p1 = -6.9991e+007, p2 = -8.6071e+007, p3 =2.8379e+008, p4= -2.3169e+008,  

p5= 0.0481e+007, p6=1.8831e+007, p7=2.0122e+006, p8 = -86693 and z= OCV. 

 The rate of SOC variation is linear from 90 to 35 percent SOC range and OCV is 

constant hence this range is the best for vehicle propulsion. Below 35 percent, a rapid 

decline in OCV is observed and SOC changes abruptly. These also get authenticated from 

table 3.2. The proposed threshold level of SOC is 35 percent and operating below this, is 

not recommended as shown in figure 3.8. This has been analyzed by observing gradient 

at each and every SOC point. When a battery operates at higher temperatures, threshold 

occurs sooner and at lower operating temperatures, it occurs later as compared to the 
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room temperature case, the same can also be observed in figure 3.7. Corresponding to 35 

percent threshold SOC, OCVs will be 369.09 V, 370.13 and 372.08 at 278K, 298 K and 

313 K respectively.    

 

Figure 3.8: Determination of Threshold SOC 

3.4 Effect of Temperature on Battery Performance 

Li-ion battery performs very well in ambient environment (at room temperature). A 

change in temperature alters the characteristic of the battery so it is advisable to keep the 

battery temperature in a limited range. Sometimes, the variation may be so significant 

that it alters the complete performance characteristic of the battery. To validate the 

temperature dependent characteristics, the proposed battery models are used with a load 

set to draw a constant current of 25.6 A, but with the environmental temperature set to 

various values. The battery was then discharged repeatedly from full SOC to zero SOC at 

each temperature. The simulation data are analyzed to obtain the relation between the 

OCV and SOC and effect on internal resistance and capacity of battery as given in the 

following sections.  

3.4.1 Effect on Open Circuit Voltage 

Concentration of Li-ions of solid phase with respect to intercalating material represents 

OCV and gets affected by changes in chemical composition, pressure and temperature as 
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presented in [84]. OCV represents batteries’ chemical reaction phenomenon. In Li-ion 

batteries concentration of lithium ions of the solid phase with respect to intercalating 

materials (Li-ions) determines the open circuit potential [85]. 

 Battery SOC consists of OCV as the major component which defines the 

thermodynamic properties of the battery. To see the effect of temperature on OCV, 

proposed models are simulated for a wide temperature range from -20C to 60C to see 

the response and corresponding curves are plotted in figure 3.9 (a), (b) and (c). At 

different SOC values ranging from 10 to 90 percent, a variation in OCV is seen due to 

temperature change. OCV increases as temperature gets higher than room temperature 

and decreases with decreasing temperature. From -20C to 40C, OCV curves are very 

close to each other. OCV values changes a lot in comparison to the average OCV after 

40C. Results obtained here are compared with the practical results given [86, 87] and are 

found to be optimistic.  

As temperature increases, OCV values gets differ for considered models at 

various SOC ranges. Figure 3.10 (a), (b) and (c) shows OCV at 0C, 25C and 60C for 

all three proposed models respectively. OCVs at 0C and 25C don't differ much but 

beyond 45C results fluctuate and a large difference is found at 60C. 
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(b) 

 

(c)  

Figure 3.9: Effect of temperature on OCV (a) model 1, (b) model 2 and (c) model 3 
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(b) 

 

(c)  

Figure 3.10: Temperature effect on OCV, (a) model 1 (b) model 2 and (c) model 3 

3.4.2 Effect on Capacity 

The capacity of battery can be defined as the total electrical charge relinquished by 

battery from its fully charged state to empty. Amount of charge contained by a battery is 

its useable capacity. Capacity of the battery extensively varies with operating conditions 

and strongly depends on the internal impedance of the battery. It gets much influenced by 

the temperature change. At high temperatures, chemical reaction requires less activation 
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energy so with a very less amount of energy more intercalation and de-intercalation of 

lithium ions occur resulting in a higher cell voltage. Due to higher temperatures lithium 

ions can diffuse faster, which means a higher current can flow, which increases the power 

and discharge capacity of Li-ion cells. At low temperatures, the intercalation and de-

intercalation requires higher activation energy for the chemical reactions. So less lithium 

ions can participate in the active cell mechanism which results in a temporary loss of 

capacity [88]. With the increase in temperatures, capacity increases with decrease in 

resistance. For model 1, 2 and 3 the increase in capacity above room temperature is 

recorded and presented in table 3.4.   

Table 3.4: Temperature effect on capacity 

Temperature (C) Increase in Capacity (%) 

Model 1 Model 2 Model 3 

35 4.3 4.73 4.52 

40 4.88 5.41 5.58 

45 6.2 6.27 5.73 

With decrease in temperature the capacity of the battery diminishes. At low 

temperatures, the resistance increases and current drawing capability decreases due to 

slower reaction rates. Figure 3.11 depicts the actual remaining capacity of battery as 

temperature decreases. Since self discharge current is also considered, so the battery 

capacity at room temperature even cannot be achieved to be 100 percent. It will be little 

bit lower than rated capacity.  

 

Figure 3.11: Capacity variation over wide temperature range for model 1, 2 and 3 
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3.4.3 Effect on Resistance 

Terminal voltage of cell is lesser than the source voltage and higher voltage is required to 

charge the cell which reduces its effective capacity as well as decreases its 

charging/discharging efficiency. It signifies, there is voltage drop offered by internal 

resistance of cell. Higher discharge rates, give rise to higher internal voltage drops which 

explains the lower voltage discharge curves at high C-rates [89]. The internal resistance 

of the battery varies with change in various parameters and can never be considered as 

constant even though the manufactures label it as constant. It majorly depends on C-rate, 

SOC and temperature. At low temperatures, cell may be very inefficient due to larger 

impedance and reduced capacity. But at higher temperature, efficiency improves due to 

the lesser internal impedance because rate of chemical reactions increases. For lower 

internal resistance, self discharge rate increases and cycle life deteriorates.  

High resistance is observed below room temperature, but as temperature increase 

resistance decreases rapidly which can be clearly observed here. At and below room 

temperature resistance experienced by model 1 and 2 are same, but at higher 

temperatures, resistance of model 3 is greater than model 2. Thus, it is seen that model 3 

combination imposes an impact at higher temperatures, but doesn’t alter the performance 

at room temperature and below this. Figure 3.12 (a) shows resistance offered by model 3 

is more than others at low temperatures. A magnified view to make it clear is given in 

figure 3.12 (b).  
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(b) 

Figure 3.12: Resistance comparison of models (a) at and below room temperature (b) low 

temperatures 

Figure 3.13 (a) compares resistance variation above room temperature for all the 

models. The resistance offered by model 3 is lower than model 1 and 2 as figured in 3.13 

(b). Behavior of model 3 at all the temperatures are varied compared to model 2 which 

makes it clear that 2 RC combination imposed during modeling will certainly affect the 

battery characteristics and hence the performance of HEVs wherever it will be used. The 

observations at various temperatures demonstrate the similar results as in [90]. 
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(b)  

Figure 3.13: Resistance comparison of models (a) at and above room temperature (b) high 

temperatures 

For the fixed temperature, battery resistance varies minutely or is almost constant 

for a complete SOC range from 100 to 10 percent [91]. Figure 3.14 (a), (b) and (c) 

depicts the behavior of resistance over a wide temperature and SOC ranges for model 1, 2 

and 3 respectively. At high temperatures, offered resistance is very less compared to the 

lower temperatures. While discharging battery from the 100 percent SOC level to 10 

percent, the resistance offered by models is recorded and shown in figure 3.15 (a), (b) and 

(c) which portray very clearly that a minute change occurs in resistances in the whole 

range of SOC variation at any particular temperature. This figure illuminates, as SOCs 

varies, resistance changes. It elucidate that internal resistance doesn't remain constant 

during discharging. During vehicle performance analysis, constant internal resistances are 

generally considered by researcher. In this research work, resistance offered by battery is 

considered varying with respect to the SOC, not constant. It will lead towards real time 

mechanism. During modeling, it is assumed that charging and discharging characteristics 

are same.   

For utilizing the larger capacity of the battery, offered resistance should be less 

because an increase in resistance decreases capacity. Figure 3.16 demonstrate the 

resistance and capacity variation together for model 3 which is true for rest of the models 

also. 
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(a) 

 

 (b) 

 

(c) 

Figure 3.14: Variation in resistances for different temperatures at different SOC ranges (a) model 1, 

(b) model 2, and (c) model 3 
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(c) 

Figure 3.15: Variation in resistances With respect to temperatures (a) model 1, (b) model 2 and (c) 

model 3 

At low temperatures, battery cell is inefficient due to more impedance, but at 

higher temperature, efficiency improves because the rate of chemical reactions increases 

due to lesser impedance offered.  Johnson et al. locate an increment of three times in 

resistance as the temperature drops from ambient to 0˚C [92]. Johnson articulates that 

resistance can get varied by eight times depending upon discharge rate [89]. Battery 

capacity extensively varies with operating conditions and strongly depends on its internal 

impedance. With changing temperature, impedance of a battery varies a lot, hence 

capacity. At lower temperatures, cell reaction rate decreases, hence low current flows and 

vice-versa at higher temperatures. Therefore, the usable capacity decreases at low 

temperatures and increases at high temperatures. At higher temperatures, current drawn 

from battery increases rapidly, and battery depletes swiftly. Battery operation at 

enormously high temperatures causes an increase in rate of thermal reactions leading to 

even higher heat generation. Many electrochemical side reactions are damaged in the 

process. An efficient convective cooling system can avoid such high temperature 

excursions during repeated cycling.  

100 90 80 70 60 50 40 30 20 10
93.2

93.4

93.6

93.8

94
at 273K

SOC (%)

R
e
s
is

ta
n
c
e
 (

o
h
m

)

100 90 80 70 60 50 40 30 20 10
33.65

33.66

33.67

33.68

33.69
at 288K

SOC (%)

R
e
s
is

ta
n
c
e
 (

o
h
m

)

100 90 80 70 60 50 40 30 20 10
16.875

16.88

16.885

16.89

16.895
at 298K

SOC (%)

R
e
s
is

ta
n
c
e
 (

o
h
m

)

100 90 80 70 60 50 40 30 20 10
8.466

8.467

8.468

8.469

8.47
at 308K

SOC (%)

R
e
s
is

ta
n
c
e
 (

o
h
m

)



   

Battery Modeling and Formulation of SOC Estimation Method 

61 
 

 

Figure 3.16: Resistance and capacity variation with temperature 

3.5 Summary 

For HEV applications, researchers have generally used Model 1 along with Ampere hour 

counting and significance of other battery models is not explored. In this chapter battery 

models are developed including self discharge current and effect of temperature on 

battery operation. Further a modified novel SOC estimation algorithm is developed based 

on Ampere hour counting and OCV. An expression of correction factor is proposed here 

to take care of temperature effect during SOC calculations. All these developed models 

along with SOC estimation method will be used in vehicle and impact on vehicle 

performance will be analyzed in coming chapters.  

  

298 293 288 283 278 273 268 263 258 253 248 243
0

50

100

150

200

250

300

350

400

Temperature (K)

R
e
s
is

ta
n
c
e
 (

o
h
m

s
) 

a
n
d
 c

a
p
a
c
it
y
 (

A
h
)

 

 

Resistance

Capacity



   

Review of Power Optimization Techniques 

62 
 

Chapter 4                                                                                                                     

Review of Power Optimization Techniques 
 

 

Various HEV architectures and important components are summarized in this chapter. 

Input power split architecture is chosen in this thesis work. This architecture features 

with an ICE, battery and Planetary Gear Set (PGS). Presence of an alternative energy 

source along with the ICE in HEVs appeals for optimal power split between them for 

minimum fuel consumption and maximum power utilization. An intelligent energy 

management strategy along with PGS makes it possible. Energy management algorithms 

decide the power split between engine and motor in order to improve the fuel economy 

and optimize the performance. This chapter describes various energy management 

strategies available in the literature. Considerable amount of research work has been 

conducted for energy optimization. These control strategies are summarized here in a 

coherent framework.   

4.1 Architecture of HEVs  

Hybrid vehicles use electric, hydrogen or fuel cell traction system and an ICE to deliver 

power during vehicle propulsion. It generally incorporates either two or more energy 

storage devices on board. An HEV discussed over here consist an electrical battery and 

ICE and makes its architecture complex and is defined in terms of connection among 

ICE, battery, motor, generator and PGS. An efficient architecture of HEV should be able 

to harness desirable characteristics of both sources. This should meet out driver power 

demand with minimum toxic emissions and maximum fuel economy.  

In HEVs, two types of power flow occur: 1) electrical and 2) mechanical. On the 

basis of power flow directions, they are classified mainly into three categories: 1) series 

hybrid 2) parallel hybrid and 3) series-parallel (power-split) hybrid. These are discussed 

in detail as below.  
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4.1.1 Series Architecture 

The series configuration shown in figure 4.1 consists of an electric motor with an ICE 

without any mechanical connection between them. In this configuration, two electrical 

powers are added together in the power converter, which functions as an electric power 

coupler to control the power flows from battery and generator to electric motor or from 

electric motor to battery. ICE is used for running a generator when the battery doesn’t 

have enough power to drive the vehicle, i.e. ICE drives an electric generator instead of 

directly driving the wheels. Series hybrids have only one drive train, but require two 

distinct energy conversion processes for all operations. These two energy conversion 

processes are gasoline to electricity and electricity to drive wheels. Fisher Karma, 

Renault Kangoo, Coaster light duty bus, Orion bus, Opel Flexetreme, Swiss auto REX 

VW polo uses series configuration.  

 

 

Figure 4.1: Series architecture 

4.1.2 Parallel Architecture 

In the parallel configuration two mechanical powers are added together in a mechanical 

coupler and power flow is controlled by both the power plants. Architecture shown in 

figure 4.2 consists of a single electric motor and ICE in such a way that both individually 

or together can drive the vehicle. Parallel hybrids allow both power sources to work 

simultaneously to attain optimum performance. While this strategy allows for greater 

efficiency and performance, the transmission and drive train are more complicated and 

expensive. Parallel configuration is more complex than the series, but it is comparatively 
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advantageous. Honda’s Insight, Civic, Accord, General Motors Parallel Hybrid Trucks, 

BAS Hybrid such as Saturn VAU and Aura Greenline, Chevrolet Mali by hybrids utilize 

parallel configuration.  

 

 

Figure 4.2: Hybrid vehicle configurations 

4.1.3 Power-split Architecture 

Power split hybrids have a combination of both series and parallel configuration in a 

single frame. The basic feature of this configuration is that it incorporates two power 

couplers: electrical and mechanical. In this configuration engine and battery can, either 

alone or together power the vehicle and battery can be charged simultaneously through 

the engine. Basically, it extends the All Electric Range (AER) of hybrid vehicle. The 

current dominant architecture is the power-split configuration which is categorized into 

two modes 1) one (single) and 2) two (dual) mode. Single mode contains one PGS and 

dual mode contains two PGS which are required for a compound power split. It is further 

classified into three types, 1) Input-split, 2) Output-split and 3) compound-split as 

determined by the method of power delivery. 

4.1.3.1 Input-split configuration 

In the input-split power configuration or single mode electro-mechanical electronically 

variable transmission (EVT), planetary gear is located at the input side as shown in figure 

4.3. The input power from the ICE is split at the planetary gear. It gives low efficiency at 

high vehicle speed [93]. Toyota Prius employs an input split power configuration. 
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Figure 4.3: Input split configuration 

4.1.3.2 Output-split configuration 

The output-split power train consists of one planetary gear at the output side as shown in 

figure 4.4. The output-split system uses power recirculation at low vehicle speed and 

power splitting at high vehicle speed. Power recirculation means that a portion of the 

engine power is re-circulated by the charging of any one motor/generator and discharging 

of the other. Due to charging and discharging efficiency of the motors, re-circulated 

power negatively affects the system efficiency. Hence output-split power train displays 

poor performance at low vehicle speed compared to input split [94]. Chevrolet volt uses 

output split configuration.  

4.1.3.3 Compound-split configuration 

In compound-split configuration, the two clutches provide a torque advantage of the 

motor at low speed while fundamentally changing the power flow through the 

transmission as shown in figure 4.5. When the first clutch is applied and the second 

clutch is open, the system operates as an input-split. When the second clutch is applied 

and the first clutch is released, the system operates as a compound-split. This hybrid can 

shift between these two in a synchronous shift, involving only torque transfer between 

elements without sharp changes in the speeds of any element. Lexus HS250h, RX400h, 

Toyota Camry and Highlander, Lexus GS450h, LS600h use compound split 

configuration. The combination of a compound-split and an input-split enables a two 

mode hybrid system. The use of dual mode solves the problems of the single mode power 

train and provides better vehicle performance with respect to fuel economy, acceleration 
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and motor size. In dual mode, PGS are used for both the input split and compound split 

[95]. Two mode hybrids includes General Motors two-mode hybrid full-size trucks and 

SUVs, BMW X6 Active Hybrid and Mercedes ML 450 hybrid, Allison EV Drive, 

Chrysler Aspen, Chevrolet Tahoe, GMC Yukon hybrid.  

 

 
Figure 4.4: Output split configuration 

 

 

Figure 4.5: Ccompound-split configuration 

 Toyota Prius is an input split new generation hybrid automotive system 

introduced in 2003 by Toyota Motor Corporation. It uses an ICE and a battery powered 

motor for propelling the vehicle. It increases overall fuel economy using following 

energy saving techniques:            

1) Automatically stops the engine during idling.  
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2) Applies regenerative braking to capture kinetic energy generated during 

deceleration or braking.  

3) ICE and motor works together when cruising. 

4) Motor is run during low power requirement but ICE is made on to operate in its 

most efficient regions for generating electricity [96].  

4.1.4 Planetary Gear System 

In Toyota hybrid system, PGS is used as a speed coupler. PGS contains carrier, sun, ring 

and several pinion gears as shown in figure 4.6 form three axis: sun axis, ring axis and 

carrier axis. Among three shafts any can be indulged as input or output.  The ring gear is 

attached to the motor and final drive, engine to the carrier and generator to the sun. Gear 

speeds and radii are related as (4.1). 

                                                                                                                         

where   ,    ,    are  ring,  sun and  carrier angular speeds respectively and     ,    are 

ring and sun radii respectively. Neglecting energy losses in steady state operation, torques 

acting on sun, ring and carrier have the relationship as (4.2). 

                                                                                                                                    

      and    are the torques acting on carrier, sun and ring gear,               and 

           ang    is gear ratio. While moving, engine speed     motor speed    and 

generator speed    are related as (4.3). 

  

     
    

  

     
                                                                                                  

For Prius,    =78 and   =30, so (4.3) becomes (4.4);   

                                                                                                                       

This equation describes that     is directly proportional to the linear speed of the vehicle 

with a quantitative change due to tire radius and final drive ratio [97].  
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Figure 4.6: Planetary gear system 

 This chapter includes several powerful methods of energy optimization available 

in literature. These methods are not mutually exclusive and can be used alone or in 

combinations. The authors have compiled more than 100 papers cognate to optimal 

performance of HEVs published till 2013. Figure 4.7 shows the summary of papers 

published from various refereed journals, conferences and magazines. This data is based 

on the papers studied and cited in this paper.  

4.2  Overview of Different Optimization Strategies  

Due to the complex structure of HEVs, the design of control strategies is a challenging 

task. The preliminary objective of the control strategy is to satisfy the driver’s power 

demand with minimum fuel consumption and toxic emissions. Moreover, fuel economy 

and emissions minimization are conflicting objectives, a smart control strategy should 

satisfy a trade-off between them. 

 Various control strategies are proposed for optimal performance of HEVs. A 

detailed overview of different existing control strategies along with their merits and 

demerits is presented. A broad classification of these strategies is given in figure 4.8. All 

these strategies are compared in terms of structural complexity, computation time, type of 

solution (real, global, local) and a priori knowledge of driving pattern. 
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Figure 4.7: Graphical representation of papers published per year 

There is no commonly accepted answer for “structural complexity” but the 

intersection of almost all answers is nonempty. Structural complexity deals with the 

complexity classes, internal structure of complexity classes and relations between 

different complexity classes. Complexity class is a set of problems of related source-

based complexity and can be characterized in terms of mathematical logic needed to 

express them. Computation time is the length of time required to perform a computational 

process. A controller designed for a particular set of parameters is said to be robust if it 

performs fairly well under a different set of assumptions. To deal with uncertainty, robust 

controllers are designed to function properly with uncertain parameter set or disturbance 

set. Locally optimal of an optimization problem is optimal (either maximal or minimal) 

within a neighbouring set of solutions. A globally optimal, in contrast to local, is the 

optimal solution amongst all possible solutions of an optimization problem.   

 Control Strategies are broadly classified into rule-based and optimization-based 

control strategy and all other subcategories are classified based on these two main 

categories. 
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Figure 4.8: Classification of control strategies 

4.2.1 Rule-based Control Strategies 

Rule-based control strategies are fundamental control schemes that depend on mode of 

operation. They can be easily implemented with real-time supervisory control to manage 

the power flow in a hybrid drive train. The rules are determined based on human 

intelligence, heuristics, or mathematical models and generally, without prior knowledge 

of a drive cycle.  

 The rule-based controllers are static controllers. Basically, the operating point of 

the components (ICE, traction motor and generator etc.) is chosen using rule tables or 

flowcharts to meet the requirements of the driver and other components (electrical loads 

and battery) in the most efficient way. The decisions are related to instantaneous inputs 

only. This strategy is further subcategorized into deterministic rule-based and fuzzy rule-

based.   
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 By recognizing the road load, an energy management system for Belt Driven 

Starter Generator (BSG) type hybrid vehicle is developed by [98]. It gives a good fuel 

economy as well as launch performance. The dynamic performance and drivability is also 

improved at the same time. For energy and power management of a multi-source (battery 

and super-capacitor) hybrid vehicles, a two level of management scheme is formulated. 

First level uses a certain set of rules to restrict the search area and second level uses a 

meta-heuristic approach. Trovao et al. provides a quality solution for sharing energy 

online between the two energy sources with improved range and extended battery life 

[99]. 

4.2.1.1 Deterministic rule-based control strategy 

The rules are designed with the aid of fuel economy or emission data, ICE operating 

maps, power flow within the drive train and driving experience. Implementation of rules 

is performed via lookup tables to share the power demand between the ICE and the 

electric traction motor. Kim et al. proposed a concept of hybrid optimal operation line for 

parallel HEV, which is derived based on effective specific fuel consumption with 

Continuously Varying Transmission (CVT). They determined the optimal values of 

parameters (such as a CVT gear ratio, motor torque and engine throttle) while 

maximizing overall system efficiency [100]. For the optimal robust control, [101] 

developed a rule-based control algorithm and tuned it for different work cycles.  

 Thermostat control strategy uses the generator and ICE to generate electrical 

energy used by the vehicle. In this strategy the battery SOC is always maintained 

between predefined high and low levels, by simply turning on/off the ICE. The strategy is 

simple, but it is unable to supply necessary power demand in all operating modes.  

4.2.1.2 Fuzzy-rule based control strategy 

L.A. Zadeh introduced the term fuzzy logic and described the mathematics of fuzzy set 

theory. Fuzzy logic system is unique to handle numerical data and linguistic knowledge 

simultaneously. Fuzzy sets represent linguistic labels or term sets such as slow, fast, low, 

medium, high etc. In fuzzy logic, the truth of any statement is a matter of degree. Fuzzy 

control is simple, easy to realize and has strong robustness. It can converse experience of 

designer to control rules directly. Fuzzy logic is a form of multi-valued logic derived 

from fuzzy set theory to deal with reasoning that is approximate rather than precise.  
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 The knowledge of an expert can be coded in the form of a rule-base and used in 

decision making. It is a non-linear structure and is especially useful in a complex system 

such as an advanced power train. In essence, a fuzzy logic controller (FLC) is a natural 

extension of many rules based controllers implemented (via look-up tables) in many 

vehicles today. Fuzzy logic based methods are insensitive to model uncertainties and are 

robust against the measurement of noises and disturbances, but requires a faster 

microcontroller with larger memory. 

a) Traditional fuzzy control strategy 

Efficiency is decided based on the selection of input, output and rule-based control 

strategy. Two operating modes; namely, optimize fuel use and fuzzy efficiency modes, 

are used to control drive train operation. The FLC accepts battery SOC and the desired 

ICE torque as inputs. Based on these inputs as well as the selected mode, the ICE 

operating point is set. The power required by the electric traction motor is the difference 

of total load power required and power required from ICE.  

 In the optimum fuel use strategy, the FLC limits instantaneous fuel consumption, 

calculated from the fuel use map and maintains sufficient battery SOC, while delivering 

demanded torque. In the fuzzy efficiency strategy, the ICE has operated in its most 

efficient operating region. The operating points of the ICE are set near the torque region, 

where efficiency is highest at a particular engine speed. Load balancing is achieved using 

electric motors. This control strategy uses a motor to force ICE to operate in the region of 

minimal fuel consumption while maintaining SOC. Load balancing is necessary to meet 

power demand and avoid unnecessary charging and discharging of the battery. A major 

drawback of this control strategy is that the peak efficiency points are near high torque 

region, thereby ICE generates more torque than required, which in turn increases fuel 

consumption. Also, during load balancing, heavy regeneration overcharges the battery. 

To avoid this, the control strategy should be used with a downsized ICE.  

b) Adaptive fuzzy control strategy 

This strategy can optimize both fuel efficiency and emissions simultaneously. However, 

fuel economy and emissions are conflicting objectives, which means an optimal solution 

cannot be achieved by satisfying all the objectives. The optimal operating point can be 

obtained using weighted-sum approach optimization of conflicting objectives. Due to 
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various driving conditions, appropriate weights have to be tuned for fuel economy and 

emissions. Considering stringent air pollution laws, operating points with high emissions 

are heavily penalized. The conflicting objectives within the adaptive fuzzy logic 

controller include fuel economy, NOX, CO and HC emissions. In order to measure the 

interrelationship of the four contending optimizing objectives with a uniform standard, it 

is essential to normalize the values of fuel economy and emissions by utilizing the 

optimal values of fuel consumption and emissions at current speed. The optimal values of 

fuel economy and emissions at particular ICE speed can be obtained from the ICE data 

map.  

 The relative weights are adaptively assigned to each parameter based on their 

importance in different driving environments. Moreover, weights must be selected for 

each ICE based on their individual data maps. This control strategy is able to control any 

one of the objectives, by changing the values of relative weights. Further, tremendous 

reduction in vehicle emission is achieved, with negligible compromise in fuel economy.  

c) Predictive fuzzy control strategy 

If the information on the driving trip is a priori known, it is extremely trivial to obtain a 

global optimum solution, to minimize fuel consumption and emissions. However, the 

primary obstacles entail acquiring further information on planned driving routes and 

performing real-time control. This problem can be resolved using global positioning 

system (GPS) which can easily identify the probable obstacles like, heavy traffic or a 

steep grade. The control strategies can be developed for specific situations, e.g. if a 

vehicle is running on a highway and will enter into a city (where heavy traffic may be 

encountered), it is advised to restore more energy by charging the batteries, for later use. 

General inputs to the predictive FLC are vehicle speed variations, the speed state of the 

vehicle in a look-ahead window and elevation of sampled points along a predetermined 

route. Based on the available history of vehicle motion and its variability in the near 

future, FLC determines the optimal torque that ICE contributes to the current vehicle 

speed. The predictive FLC outputs a normalized GPS signal in (−1, +1) which informs 

the master controller to charge or discharge the batteries and to restore enough energy for 

future vehicle operating modes.  
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 Being robust and fast, it is advised to design FLCs for non-linear and uncertain 

systems. FLCs result in small overshoot, short adjustment time and good dynamic/static 

quality. Using mix-modeling approach, Arsie et al. implement an FLC to control the 

parameters related to the driver-vehicle interaction, torque management and battery 

recharging strategy [102]. To improve energy conversion efficiency, several fuzzy logic 

based energy management strategies are implemented [103, 104, 105]. [106] implement a 

fuzzy logic based proportional integral (PI) controller for nonlinear control of the plants. 

Lee et al. introduce an FLC for driving strategy implementation. This is useful for 

nonlinear and uncertain systems and is not affected by vehicle load variation and road 

pattern [107]. Bauman et al. demonstrate the effectiveness of FLC to increase the fuel 

economy and show that it works well for a non-linear, multi domain and time-varying 

plant [108]. Tao and Taur design a less complex PID-like FLC with a heuristic functional 

scaling which is easy to adjust even in the absence of the plant’s complete mathematical 

model [109]. [110] apply driver command, battery SOC and motor/generator speed as 

fuzzy sets to design an FLC for parallel HEVs. Patel and Mohan design a very simple PI 

controller using fuzzy logic with less number of universes of discourse [111]. Bathaee et 

al. [112], Khoucha et al. [113], Zhang et al. [114] implement an FL based controller for 

optimal energy management strategy. Poursamad and Montazeri [115] introduce a GA 

tuned FLC to minimize the fuel consumption and emissions and to improve the driving 

performance of a parallel HEV. To improve its accuracy, adaptability and robustness, a 

compressibility factor was used with PSO. Won and Langari propose an IEMA based on 

the concept of driving situation awareness for parallel HEV. The authors basically 

implemented an IEMA which gives knowledge about driving situation awareness. They 

simulated the controller using ADVISOR for the different driving/road conditions and 

showed a significant reduction in exhaust gases and improvement in fuel economy [116]. 

Kachroudi et al. design a predictive decision support system for optimal energy flow 

distribution among engine and other auxiliaries. They determined the global optimum 

using PSO, which was further, validated using hardware-in-loop (HIL) technique [117].  

4.2.2 Optimization-based Control Strategy 

In optimization based control strategies, the goal of a controller is to minimize the cost 

function. The cost function for an HEV may include the emission, fuel consumption and 

torque depending on the application. Global optimum solutions can be obtained by 
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performing optimization over a fixed driving cycle (DC). These control techniques do not 

result in real-time energy management directly, but based on an instantaneous cost 

function, a real time control strategy can be obtained. This instantaneous cost function 

relies on the system variables at the current time only. It should include equivalent fuel 

consumption to guarantee self-sustainability of electrical path. Optimization based 

control strategies can be divided into two main groups, namely global optimization and 

real time optimization. These are discussed in the following sections in detail.  

4.2.2.1 Global optimization 

A global optimization technique for energy management strategy in an HEV requires the 

knowledge of entire driving pattern which includes battery SOC, driving conditions, 

driver response and the route. Due to computational complexity, they are not easily 

implementable for real time applications. Linear programming, dynamic programming 

and GA, etc. are used here to resolve vehicle energy management issues. Based on 

optimal control theory and assuming that minimizing the fuel consumption reduces the 

pollutant emissions, a global optimization algorithm is developed [118]. Delprat et al. 

proposes a global optimization strategy for HEVs performance analysis, but do not 

provide optimal results [119]. Delprat et al. suggest a global optimization strategy for 

known DC and for all SOC ranges. This offers the quick global optimal solution and 

minimizes the fuel consumption [120]. To get a better optimal solution for HEV design 

and control, another global optimization technique has been suggested by [121]. 

a) Linear programming 

 

The fuel economy optimization is considered as a convex nonlinear optimization 

problem, which is finally approximated by Linear Programming (LP) method. LP is 

mostly used for fuel efficiency optimization in series HEVs. Formulation of fuel 

efficiency optimization problem using LP may result in a global optimal solution.  

 In hybrid power trains, better degree of freedom to control exists. By controlling 

the gear ratio and torque, an optimized design and control of a series hybrid vehicle is 

proposed in [122]. The problem is formulated as a non-linear convex optimization 

problem and approximated as a linear programming problem to find the fuel efficiency. 

Kleimaier and Schroder propose a convex optimization technique for analysis of 
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propulsion capabilities using LP, which provides independence from any specific control 

law [123]. Pisu et al. designed, supervisory control strategies for hybrid electric drive 

trains to minimize fuel consumption. They designed a stable and robust controller using 

linear matrix inequalities [124]. Miaohua and Houyu design a sequential quadratic 

programming based energy management strategy to minimize fuel consumption. They 

consider balanced SOC as a constraint and showed improved results [125]. 

b) Dynamic programming 

Dynamic Programming (DP) was originally used in 1940 by Richard Bellman to describe 

the process of solving problems where one needs to find the best decisions successively. 

DP is both a mathematical optimization method and a computer programming method. In 

both the contexts, it refers to simplifying a complicated problem by breaking it into 

simpler sub-problems in a recursive manner. 

 The very essence of this technique is based on the principle of optimality. Having 

a dynamical process and the corresponding performance function, there are two ways to 

approach the optimal solution to the problem. One is the Pontryagin’s maximum 

principle and the other is ‘Bellman's dynamic programming’. It has the advantage of 

being applicable to both linear and nonlinear systems as well as constrained and 

unconstrained problems. But it also suffers from a severe disadvantage called curse of 

dimensionality which amplifies the computational burden and limits its application to 

complicated systems. 

 Since the knowledge of the duty cycle is required beforehand, the DP algorithm 

cannot be implemented in real time. However, its outputs can be used to formulate and 

tune actual controllers. The power management strategy in an HEV is computed through 

dynamic optimization approach by various researchers as mentioned below. 

 An adaptive neural-fuzzy inference system (ANFIS) along with DP is used to get 

the optimal solution to the problem [126]. Using DP and a rule based approach; optimal 

power split between both of energy sources is obtained for a series HEV [127]. They 

suggest that to increase computational efficiency, the discrete state formulation approach 

of DP should be used. To reduce the fuel consumption, a DP based optimal control 

strategy for a parallel hybrid electric truck is reported in [128]. They developed a feed-

forward, parallel HEV simulator in order to maximize fuel efficiency and proposed DP 
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and rule based power optimization algorithm for sustaining mode of battery operation. 

Sundstrom et al. study the hybridization ratio of two types of parallel HEVs namely, 1) 

Torque assist and 2) full hybrid. Further, using DP optimal fuel consumption is achieved 

for different hybridization ratios. The results show that both fuel consumption and need 

of hybridization are less in case of the full hybrid model [129]. A medium-duty hybrid 

electric truck is implemented using DP to optimize the power and fuel economy. It results 

in 45 percent higher fuel economy than ICE truck. A near optimal power management 

strategy is obtained using DP, considering sustained SOC as a constraint [130]. Koot et 

al. proposed an energy management strategy for HEVs and verified it through DP, 

quadratic programming and modified DP (DP1) strategies [131]. To keep energy levels in 

a prescribed range without affecting the battery health in HEVs, [132] formulated a finite 

horizon dynamical optimization problem and solved it using DP. Keulen et al. solve an 

energy management problem for HEVs and optimize it using DP in charge sustaining 

mode [133]. Sundstrom et al. propose a generic DP function, to solve discrete time-

optimal control problem using Bellman’s DP algorithm [134]. [135, 136] use DP and on-

board implementable energy consumption minimization strategy (ECMS) for charge 

depletion mode operation. They conclude that for long distances and large size batteries, 

ECMS and DP provide a similar fuel economy and SOC profile. Again DP and classical 

control theory is used by Ngo et al. and they report improvement of 11 percent in fuel 

economy [137]. Kum et al. firstly found an optimal solution using DP and estimate 

battery SOC with respect to remaining trip distance using energy-to-distance ratio. Then 

they implement an adaptive supervisory power train controller to reduce fuel 

consumption and emissions based on extracted results from EDR and catalyst 

temperature system [138]. For a multi source HEV containing gen set, [139] proposed a 

DP for optimizing power management system. In case of known trip distance it can give 

global optimal solution and save 12.6 percent gasoline. Ravey et al. initially proposes a 

method to minimize the size of the components (energy source) using GA. Later they use 

DP to optimize the power management strategy and claim a higher fuel economy [140]. 

Shams-Zahraei et al. implement an optimal energy management strategy using DP 

considering the significance of temperature noise factors. With the variation in 

temperature, fuel efficiency and emissions changes even for the same driving patterns 

and conditions [141].   
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c) Stochastic control strategy  

Stochastic strategy is a framework for modeling optimization problems that involve 

uncertainty. In this strategy, an infinite-horizon stochastic dynamic optimization problem 

is formulated. The power demand from the driver is modeled as a random Markov 

process. The Markov driver model predicts the future power demands by generating the 

probability distribution for them. The past decisions are not required for this prediction. 

The optimal control strategy is then obtained using Stochastic Dynamic Programming 

(SDP). The obtained control law is in the form of a stationary full-state feedback and can 

be directly implemented. It is found that the obtained SDP control algorithm outperforms 

a sub-optimal rule-based control strategy trained from deterministic DP results. As 

opposed to deterministic optimization over a given DC, the stochastic approach optimizes 

the control policy over a family of diverse driving patterns. 

i. Stochastic Dynamic Programming 

Optimization method which uses random variables to formulate an optimization problem 

is called stochastic optimization. In DP if, either state or decision is known in terms of 

probability function, it is called SDP. A high performance computing technique is 

required to solve the stochastic optimal control problem.  

 For better optimality in comparison to supervisory control strategy, [142] propose 

an infinite-horizon SDP in which power demand by the driver is modeled as a random 

Markov process. The control law obtained, is real-time implementable in HEVs. In a 

parallel hybrid electric truck, both infinite-horizon SDP and Shortest Path SDP (SP-SDP) 

optimization problems are formulated which yield a time-invariant causal state-feedback 

controller. In SP-SDP power management strategy variation of battery SOC from a 

desired set-point is allowed to get a trade-off between fuel consumption and emissions. 

The SP-SDP based controller is advantageous over SDP as it offers better SOC control 

and lesser number of parameters to be tuned [143]. Using SDP, [144] formulated a hybrid 

power optimal control strategy using Engine-in-Loop (EIL) setup, which instantly 

analyzes the effect of transients on engine emissions. Tate et al. [145] used the SP-SDP to 

find a trade off between fuel consumption and tailpipe emissions for an HEV, facilitated 

with a dual mode EVT. With simple methods SP-SDP solution takes eight thousand 

hours while using linear programming and duality it takes only three hours.  Using SP-
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SDP, [146] proposed a real-time energy management controller. This considers drive 

cycle as a stationary-finite scale Markov process. This controller is found to be 11 

percent more efficient than an industrial baseline controller. Wang and Sun [147] 

proposed an SDP-Extremum Seeking algorithm with state-feedback control.  It contains 

the nature of global optimality of SDP and SOC sustainability. Further extremum seeking 

output feedback compensates for its optimal control error. Opila et al. develop an energy 

management strategy based on SDP and implemented successfully in a prototype HEV. 

The feature of this controller is that they run in real-time embedded hardware with classic 

automotive computing ability and the energy management strategy gets updated very 

frequently to yield a strong driving characteristic [148].  

ii. Genetic Algorithm 

GA is a heuristic search algorithm to generate the solution to optimization and search 

problems. This is a branch of artificial intelligence inspired by Darvin’s theory of 

evolution. GA begins with a set of solutions (chromosomes) called a population. The 

solutions from one population are taken according to their fitness to form new ones. Most 

suitable solutions will get a better chance than the poorer solutions to grow and the 

process is repeated until the desired condition is satisfied. GA is a robust and feasible 

approach with a wide range of search space and rapidly optimizes the parameters using 

simple operations. They are proven to be effective to solve complex engineering 

optimization problems, characterized by nonlinear, multi-modal, non-convex objective 

functions. GA is efficient at searching the global optima, without getting stuck in local 

optima. 

 Unlike the conventional gradient based method, GA technique does not require 

any strong assumption or additional information about objective parameters. It can also 

explore the solution space very efficiently. However, this method is very time consuming 

and does not provide a broader view to the designer. 

 Piccollo et al. utilize GA for energy management of an on road vehicle and 

minimize the cost function containing fuel consumption and emission terms [149]. For 

dynamic and unpredictable driving situations, a fuzzy clustering criterion is used with 

GA which reduces the computational effort and improves the fuel economy [150]. GA in 

HEVs is used simultaneously to optimize the component sizes and to minimize the fuel 

consumption and emissions [151, 152, 153, 154]. A MOGA is further used by [155] to 
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solve the optimization problem of HEVs which optimizes control system and power train 

parameters simultaneously and yields a Pareto-optimal solution. MOGA is developed to 

reduce fuel consumption and emissions as well as to optimize power train component 

sizing [156]. Using non-dominated sorting GA (NSGA), a pareto-optimal solution is 

obtained for reduced component sizing, fuel consumption and emissions [157].  

 GA is a powerful optimization tool which is particularly appropriate to multi 

objective optimization. The ability to sample trade-off surfaces in a global, efficient and 

directed way is very important for the extra knowledge it provides. In the case where 

there are two or more equivalent optima, the GA is known to drift towards one of them in 

a long term perspective. This phenomenon of genetic drift has been well observed in 

nature and is due to the populations being finite. It becomes more and more important as 

the populations get smaller. NSGA varies from GA only in the way the selection operator 

works. Crossover and mutation operations remain the same.  This is similar to the simple 

GA except the classification of non-dominated fronts and sharing operations. MOGA is a 

modification of GA at selection level. MOGA may not be able to find the multiple 

solutions in case where different Pareto-optimal points correspond to the same objective.  

d)  Dividing Rectangle (DIRECT) 

DIRECT is sampling based algorithm and was developed by Donald to find a global 

minimum and is derivative free. The algorithm starts with the hypercube search space. 

The function is then sampled at the center point. The hypercube is then divided into 

smaller hyper rectangles and center points of these rectangles are again sampled. 

DIRECT identifies sets of optimal rectangle for every iteration. DIRECT is the 

modification of Lipschitz approach which does not specify the Lipschitz constant. When 

Lipchitz constant is not used, all the possible searches are performed for a predefined 

number of iteration [158, 159, 160].  

The research target is to improve fuel economy of an input split series-parallel 

HEV using DIviding RECTangle (DIRECT) algorithm. DIRECT is applied to find the 

optimal values of parameters to make engine on. No liquid fuel consumption will happen 

for engine off condition. Among all the non-gradient based techniques DIRECT is good 

for HEV application [161]. Fellini et al. used DIRECT and complex (derivative free 

algorithms) to optimize the components sizes used in HEVs and DIRECT was observed 

better than complex [162]. Dosthosseini et al. used DIRECT method to find the solution 
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to for power management optimization in HEVs [163]. Zhang et al. proposed DIRECT 

algorithm for optimizing set of parameters of logic threshold control stratgey realized in 

HEV. Author claim that DIRECT is useful for off-line parameter optimization and can 

consume lesser time if used in real vehicle [158]. Wang et al. proposed a power control 

strategy to optimize fuel consumption and emissions in HEVs using PSO and compared 

with DIRECT algorithm. By simulating these strategies for several DCs, PSO is found to 

be better than DIRECT [164]. Gao and Mi investigated studied various optimization 

methods for the optimization of HEVs. They predict that DIRECT is efficient for HEV 

related optimization issues [165]. 

4.2.2.2 Real-time optimization 

Due to the causal nature of global optimization techniques, they are not suitable for real-

time analysis. Therefore, global criterion is reduced to an instantaneous optimization by 

introducing a cost function that depends only on the present state of the system 

parameters. Global optimization techniques do not consider variations of battery SOC in 

the problem. Hence, a real-time optimization is performed for power split while 

maintaining the battery charge. 

 Instantaneous optimization techniques based on simplified model and/or 

efficiency maps are proposed in [166, 167]. Reference [166] presents the concept of real 

time control strategy for efficiency and emission optimization of a parallel HEV. It 

considers all engine-motor torque pairs which forecast the energy consumption and 

emissions for every given point. [167] developed a control strategy for parallel hybrid 

vehicle in a charge sustaining mode of operation for instantaneous fuel efficiency 

optimization. And to implement the global constraint, the authors developed a nonlinear 

penalty function in terms of battery SOC deviation from its desired value. 

a) Equivalent consumption minimization strategy 

Paganelli et al. propose the concept of equivalent fuel consumption for energy 

management strategy. It reduces a global optimization problem into an instantaneous 

minimization problem and provides solution at each instant. Energy consumption 

minimization strategy (ECMS) calculates the fuel equivalent as a function of current 

system status and quantities measurable on board, online. It does not require prior 

knowledge of driving pattern to get an optimal solution and it is real-time implementable.  
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ECMS is developed by calculating the total fuel consumption as sum of real fuel 

consumption by ICE and equivalent fuel consumption of electric motor. This allows a 

unified representation of both, the energy used in the battery and the ICE fuel 

consumption. Using this approach, equivalent fuel consumption is calculated on a real-

time basis, as a function of the current system measured parameters. No future 

predictions are necessary and only a few control parameters are required. These 

parameters may vary from one HEV topology to another as a function of the driving 

conditions. ECMS can compensate the effect of uncertainties of DP. The only 

disadvantage of this strategy is that it does not guarantee charge-sustainability of the 

plant. 

 Equivalent fuel consumption is calculated based on the assumption that SOC 

variation in the future is compensated by the engine running at current operating point. 

Jalil et al. use thermostatic control strategy to turn the engine on/off based on SOC profile 

but did not yield optimal results [168]. Paganelli et al. implement an ECMS to minimize 

fuel consumption of HEV by splitting the power between ICE and electric motor. They 

achieve a reduction in the fuel consumption by 17.5 percent as compared to ICE based 

vehicle alone [169]. Supina and Awad suggest to on/off the engine according to the 

battery energy level and thus results in improved fuel efficiency of 1.6 to 5 percent over 

the thermostat control [170]. Without the knowledge of future driving conditions to find 

the real-time control of fuel consumption of parallel HV is presented in [171]. It uses 

ECMS for the instantaneous optimization of the cost function and it depends only upon 

the current system operation. Won et al. propose an energy management strategy for 

torque distribution and charge sustenance of HEV using ECMS [172]. In this, a multi-

objective torque distribution strategy is formulated first and then it is converted into 

single objective linear optimization problem. [173, 174] implement a modified ECMS for 

a series HV configuration with two different energy sources which is a generalization of 

instantaneous ECMS proposed in [170]. For real-time energy management, [175, 176] 

propose an adaptive ECMS (A-ECMS). It continuously updates the control parameter 

according to road load condition and provides a quasi-static solution for supervisory 

control in comparison to ECMS and rule based strategy. Using ECMS, [177, 178] present 

real time implementable control strategy which even in the absence of future driving 

information supply optimal results for fuel consumption minimization and toxic emission 
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reduction. Tulpule et al. propose an ECMS, which requires knowledge of total trip 

distance instead of driving pattern information to improve fuel economy [179].  

a) Model predictive control  

Model Predictive Control (MPC) is a good method for dynamic model of the process 

which is obtained by system identification. The main feature of the MPC is to allow 

current time slot to be optimized keeping future time slots into account. This is achieved 

by optimizing a finite time-horizon and implementing the current time slot only. MPC 

can anticipate future events and can take control actions accordingly. 

 Real-time implementable energy management strategy of an HEV using MPC is 

presented in [180]. In classical MPC, at each step an online optimization problem is 

required to solve. To address this, an MPC with improved speed is implemented by 

[181]. Kermani et al. implement a Lagrange formula based global optimization algorithm 

using MPC [182]. An energy management strategy for a series HEV is proposed by [183] 

using MPC and quadratic programming. Using a quasi-static simulator developed in the 

MATLAB environment, MPC algorithm is applied. They also investigate the length and 

type of predictions. Ripaccioli et al. describes a hybrid MPC strategy to co-ordinate 

power train subsystem and to enforce state and control constraints. Firstly, authors 

develop a hybrid dynamical model using linear and piecewise affine identification 

method; and then design an MPC to reduce emissions [184]. Borhan et al. develop a 

nonlinear-MPC for HEVs to solve the power split optimization problem online [185]. In 

the absence of a priori knowledge of driving pattern, [186] presented a stochastic-model 

predictive control for power management of series HEV. Power demand from the driver 

is modeled as a Markov chain. This algorithm optimizes over a distribution of future 

requested power demand from the current demand at each sample time. Borhan et al. 

proposes an MPC based minimum fuel consumption strategy for power-split hybrid 

vehicles. The complex energy management problem is divided into two levels. For the 

first level (supervisory level) MPC is used to calculate future control sequences that 

minimize a performance index and then is applied to the first element of the computed 

control sequence of the hybrid vehicle model [187]. For a parallel HEV, an MPC torque-

split strategy is developed by [188] considering the effect of the diesel engine transient 

characteristic. The authors conclude that the MPC based method can improve the fuel 

economy. For minimization of fuel consumption and to keep the SOC within a specified 
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range, [189] presented an MPC-based controller which works on torque demand 

predictions estimated from the desired SOC and desired vehicle speed.  

b) Neural Networks 

McCulloch and Pitts in 1943 firstly designed the neural network and Hebb in 1949 

developed the first learning rule. Artificial Neural Network (ANN) is a network of 

artificial neurons and is a parallel computation technique consisting of many processing 

blocks connected together in a specific way to perform a specific task. ANN is a powerful 

computational method which learns and generalizes from training data. This uses the 

principle of function approximation. The output of a neuron is a function of the weighted 

sum of the inputs and a bias. The function of the entire neural network is simply the 

computation of the outputs of all the neurons.   

 NN’s adaptive structure makes it suitable for any control applications. A well 

designed network can get fit to any lookup table and can adapt itself by training to update 

the table data. This feature makes it better than rule based controllers. Recurrent NNs are 

networked with dynamic feedback which means they can also be modeled as dynamic 

controller. NN is an effective approach for pattern recognition and function fitting.  

 Bauman et al. used ANN and fuzzy logic for implementing a load levelling 

strategy and implemented a supervisory controller, which takes care of fuel economy and 

reduced emissions in case of different drivers and driving pattern [190]. For analysis and 

control of power split in a parallel HEV, Arsie et al. modelled a dynamic system with 

vehicle-driver interaction, ICE and electric motor/generator. Using this, vehicle load 

estimation is performed using NN to optimize the supervisory control strategy for the 

optimized performance of the vehicle [191]. Mohebbi et al. presented a neuro-fuzzy 

controller, which is implemented using ANFIS method.  This controller is designed based 

on 1) torque required for driving and 2) battery SOC; and it maximizes the driving torque 

and minimizes the fuel consumption [192]. For the nonlinear control system, Jun  

implemented a high accuracy fuzzy neural network (FNN) controller. The membership 

function of FNN is optimized using modified GA and error-compensation method and 

results are found better than the normal FLC [193]. Murphey et al. used NN to predict 

road and traffic conditions optimal power-split in HEVs. The authors first developed a 

machine-learning framework for energy optimization in an HEV then they present three 



   

Review of Power Optimization Techniques 

85 
 

online intelligent energy controllers: 1) IEC_HEV_SISE; 2) IEC_HEV_MISE; and 3) 

IEC_HEV_MIME. The three online controllers were integrated into the Ford Escape 

hybrid vehicle model for online performance evaluation. All three online intelligent 

energy controllers were trained within the machine-learning framework to generate the 

best combination of engine power and battery power to minimise the total fuel 

consumption. The performance of IEC_HEV_MISE controller was found best and led to 

fuel savings ranging from 5 to 19 percent as compared to default Ford Escape controller 

[194].  

c) Particle swarm optimization 

Particle swarm optimization (PSO) is a faster, inexpensive, robust stochastic global 

optimization technique developed by R. Eberhart and J. Kennedy in 1995. This technique 

is used for continuous non-linear function and was developed based on the swarm in 

nature as bird [195, 196].  PSO  is  a  heuristic  evolutionary  search  algorithm  which  is  

an  iterative optimization method using particles (population of candidate solutions), and 

moving these particles around in the search space according to a mathematical formula 

over the particle's position and velocity. In PSO, particles move around a search space 

and are guided by best known positions in the search space as well as entire swarm’s best 

known position. When improved positions are discovered, these will guide the 

movements of the swarm particles. The process is repeated, but does not guarantee the 

satisfactory solution.   

  PSO is a meta-heuristic approach as it makes few or no assumptions about the 

problem being optimized and can search very large spaces of candidate solutions. 

However, meta-heuristics such as PSO do not guarantee an optimal solution. More 

specifically, PSO does not use the gradient of the problem being optimized, which means 

PSO does not require the optimization problem to be differentiable as is required by 

classical optimization methods, such as gradient descent and quasi-Newton methods. 

PSO can therefore also be used on optimization problems that are partially irregular, 

noisy, change over time, etc. 

 The multilevel hierarchical control strategy optimized by the improved PSO 

algorithm can properly determine the direction and quantity of the energy flow in the 

HEVs and make the main power train components operate at high efficiency so that the 

fuel consumption can be reduced. 
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 For parallel HEV, a multilevel hierarchical control strategy is proposed by [197, 

198] using Matlab/Simulink/Stateflow and optimized it using PSO to get an optimal 

energy flow between engine and electric motor. Jian et al. implemented an FLC for 

energy management system. Membership function and the rules of FLC are optimized by 

using PSO to find improved fuel economy and decreased emissions in HEVs. For a 

charge sustaining operation this strategy gives better fuel efficiency [199]. Aawar et al. 

combined PSO and electro-magnetic-team fuzzy logic (EM-TFL) together   for   the   

design   optimization of the HEV power train system to find best electromechanical 

component sizes for higher efficiency and reduced fuel consumption [200]. Desai and 

Williamson optimized both power train and control strategy (objective function and 

constrained function) parameters using PSO for improved fuel economy and efficiency 

and reduced emissions [201]. Hegazy and Mierlo conclude that PSO consumes lesser 

time than GA to obtain a solution and is easier to implement [202]. Varesi and Radan 

used PSO to find the optimal degree of hybridization in series-parallel HEV using 

ADVISOR to optimize the vehicle performance with reduced fuel consumption and 

emissions [203]. To optimize the various components of HEV, EM-TFL with PSO has 

been used by [204] in the form of a case study which concludes that a smaller size 

engine, electric motor performance is optimized and fuel economy is improved by 22 

percent and reduction in toxic emissions is noticed. Wu et al. optimized the component 

size and control strategy simultaneously in parallel HEVs. This proposed a self adaptive 

PSO algorithm and uses applied fuzzy set theory to extract the best suitable solutions 

[205]. 

d) Pontryagin’s minimum principle 

Pontryagin’s minimum principle (PMP), formulated in 1956 by the Russian 

mathematician Lev Semenovich PMP gives the best possible control to take a dynamical 

system from one state to another state in the presence of constraints for some state or 

input control. PMP is a special case of Euler-Lagrange equation of ‘calculus of 

variations’. For an optimum solution, PMP provides only necessary conditions and the 

sufficient conditions are satisfied by Hamilton-Jacobi-Bellman equation.  In PMP, the 

number of nonlinear second-order differential equations linearly increases with the 

dimension so the control based on PMP takes less computational time for getting an 

optimal trajectory but it could be a local optimal, not a global solution. Under certain 
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assumptions optimal trajectory obtained by PMP should be considered as a global 

optimal trajectory. These are 1) Trajectory obtained from PMP is unique and satisfies the 

necessary and boundary conditions, 2) Some geometrical properties of the optimal field 

provide the possibility of optimality clarification and 3) As a general statement of the 

second approach, the absolute optimality is, mathematically, proven by clear proposition 

[206]. 

 Geering  explains  PMP  to  reduce  a  global  energy  optimization  problem  into  

a local optimization problem [207]. Serrao and Rizzoni  implement an optimal control 

strategy using PMP to get an optimal solution. They have converted global optimization 

problem into an instantaneous optimization problem [208]. Stockar et al. used PMP to 

build an optimal supervisory controller by reducing a global optimization problem into 

local. The advantage of this is that it reduces computational requirement and gives the 

freedom to solve the problem in the continuous time domain [209]. For real-time 

implementation of an energy management strategy, the tools used by [210] consist of 

PMP based off-line optimizer which results in ECMS and is implementable in real-time 

environment. A real time optimal control can be obtained using PMP as it uses 

instantaneous minimization of the Hamiltonian function. Kim et al. state that solution 

based on PMP can be a global optimal under some certain assumptions [211].  Kim et al. 

finds that PMP provides a near-optimal solution for optimal power management of HEVs 

if future driving conditions are known. It is suggested to find proper co-state to keep SOC 

at a desired and predefined level [212]. 

 As the trajectory derived from PMP might not be a global optimal solution, 

therefore, the control based on PMP can be considered as inferior to the DP. DP requires 

more computing time than PMP because DP solves all possible optimal controls to find 

the optimal field. Since DP is a numerical representation of the HJB equation, it needs a 

similar computation load as the Hamilton-Jacobi-Bellman equation, which solves a 

partial differential equation. PMP solves just nonlinear second-order differential 

equations. The drawback of DP with regards to the computational load becomes 

compounded due to the “curse of dimensionality”.  
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4.3 Summary 

As HEVs are gaining more popularity, the role of the energy management system in the 

hybrid drive train is escalating. A thorough description and comparison of all the control 

strategies to optimize the power split between the primary and secondary sources of 

HEVs used, is given here. Evolution of control strategies from thermostat to advanced 

intelligent methods is included in the study.  

Rule-based controllers are easily implementable, but the resultant operation may 

be quite far from optimal, i.e., the power consumption is not optimized for the whole trip. 

In order to achieve the global optimality priori information of trip is required. Although, 

real-time energy management is not directly possible using optimization based methods, 

but an instantaneous cost function based strategy may result in real time optimization. 

The strategies are real-time implementable and are robust in nature.  

The concluding table 4.1 serves as a guide to choose the correct method of 

optimization. It is suggested that strategies should take less computational time, provide 

global optimal results and get fit to the dynamic simulation environment.  

Table 4.1: Comparison chart for various control strategies 

Methods Structural 

complexity 

Computation 

time 

Type of 

solution 

Requirement of 

priori knowledge 

Fuzzy Logic N S G Y 

Genetic Algorithm Y M G N 

Particle Swarm 

Optimization 

N M G N 

Energy Consumption 

Minimization Strategy 

Y S L N 

Pontryagin's Minimum 

Principle 

N S L Y 

Dynamic Programming Y M G Y 

Model Predictive N S G N 

Stochastic Dynamic 

Programming 

Y M G N 

Neural Network Y S G Y 

DIRECT N M G N 

 

G=Global, L=Local, N=No, Y=Yes, M=More, S=Small  



   

Development of Power Optimization Strategies 

89 
 

Chapter 5                                                                                                        

Development of Power Optimization Strategies 
 

 

Energy management strategies significantly influence the fuel efficiency of HEVs. They 

play a crucial role in splitting the power between two sources, ICE and the battery. 

Intelligent power split between these two will enhance the fuel economy and regulate the 

power flow. This power split depends on SOC of battery, power required at the wheels 

and engine's operating range. Various parameters of power train are considered to 

control the toggling between engine and battery. To achieve parameter optimization, 

various optimization algorithms are practiced to realize the optimal performance. 

Vehicle parameter optimization over different battery models with modified SOC 

estimation algorithm is performed in different situations and a comparative study is 

presented. 

Toyota Prius is an input split new generation hybrid automotive system 

introduced in 2003 by Toyota Motor Corporation is used here for simulation purposes.  

5.1 Modes of Operation 

Motor/generator (M/G) sets take or provide power from the PGS according to their mode 

of operation. Power split HEVs work in four different modes to fulfil driver’s power 

demand and is explained as follows with pictorial diagrams: 

5.1.1 Mode 0: Launch and backup 

For the duration of key on and moving at low speed, M/G2 supplies the primary tractive 

energy as (5.1). Motor is powered from the battery. Power flow is shown in figure 5.1 (a). 

     
  

  
                                                                                                                                      

Where   ,    are number of teeth at input of PGS and      is output torque provided by 

motor. In the starting motor propels the vehicles but, if SOC is small, engine may start 

immediately. As the required vehicle speed increases, the engine starts.  
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5.1.2 Mode 1: Normal driving conditions 

Under normal driving conditions, the engine's power is divided into two paths: one 

portion drives the wheel as (5.2) and (5.3) and another portion drives the M/G1 to 

produce electricity as (5.4). The motor doesn't supply power in this condition as (5.5) 

until cruising is required. Energy flow of mode 1 is shown in figure 5.1 (b). 

   
  

     
                                                                                                                                 

     
  

  
                                                                                                                                       

   
  

     
                                                                                                                                  

                                                                                                                                                     

5.1.3 Mode 2: Full acceleration 

In this mode, engine along with M/G2 propels the vehicle and supplies the demand as 

(5.6).  MG2 is supplemented by power from the battery. The power flow is shown in 

figure 5.1(c). 

     
  

  
                                                                                                                              

5.1.4 Mode 3: Deceleration or regenerative braking 

MG1 is operating as generator to produce electricity to charge the battery and at the same 

instant also provide braking torque to the final drive. The braking energy dissipated at 

high speed is recovered with high generator efficiency. At lower speeds, recovering 

energy will be low because at low motor rotational speeds, motor electromotive forces 

are low. 

 Both, engine and motor participate in supplying the demanded power as per the 

control strategy used. The engine on/off condition depends on battery SOC, requested 

power, vehicle and engine speed and coolant temperature. Engine on/off conditions are 

obtained with the following criteria: 
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a) If vehicle operates at low speed, coolant temperature is acceptable and if 

sufficient SOC preserves to deliver demanded power, then vehicle operates 

in electric mode only. 

b) If SOC is more than the targeted SOC and engine is ‘on’ then engine and 

motor both provide the demanded power. 

c) If SOC is less than targeted SOC value, then engine powers the vehicle and 

also provides extra power to charge the battery. 

d) If requested power goes negative and the engine is ‘off’, then this entire 

power is stored in the battery by regenerative braking. 

It is targeted to operate the engine in its efficient region to achieve better fuel economy.  

 

(a) 

 

(b) 
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(c) 

Figure 5.1: power flow direction in (a) mode 0, (b) mode 1 and (c) mode 2 

5.2 Vehicle Power Demand Analysis 

Prior knowledge of trip length can estimate tractive force required at wheel as calculated 

by (5.7). A vehicle of mass M moving with the speed of V on a tilted road with angle  , 

rolling resistance and aerodynamic drag oppose vehicle's movement. The total force 

applied to a vehicle to move in the forward direction is given as (5.7). 

   
 

 
           

                                                                                                

   is frontal area,    is aerodynamic drag,   is air density,   is vehicle speed and    is 

component of wind speed,    is rolling resistance,   is road angle and P is force acting on 

the center of a standstill tire. Torque on driven wheel transmitted from power plant is 

given as (5.8).  

                                                                                                                                              

  is gear ratio of transmission,   is gear ratio of drive line,    is efficiency of driveline 

from power plant to the driven wheels and    is the torque output from the power plant. 

   might be the torque of engine or motor or combination of both depending upon the 

requirement. As per figure 5.2, there might be three different cases, how engine and 

motor alone or together fulfil the driver's demand. Speed and torque levels are decided 

based on component's specification. The speed and torque ranges used in this thesis are 

mentioned in Table A2 and A3 (appendix A).  
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Figure 5.2: Vehicle performance criteria impacted by the engine and motor characteristics 

 It is clear that high torque is required to start the vehicle. At lower speed, motor's 

horsepower is 2 to 3 times higher than the rated horsepower and engine's torque is found 

to be very less. This condition typically suits to the section 1, where the motor is used to 

start the vehicle and hence no fuel consumption. After certain speed the engine starts up, 

charges the battery as well as powers the wheels. If the speeds and torques are chosen 

wisely and engine is chosen to work in its efficient region, then the fuel consumption will 

be optimum. Mode 1 and mode 2 lies under section 2. In mode 1, by following the speed 

torque characteristic of engine, it works in the best efficient region; hence performance 

will be good enough to maximize the fuel efficiency. Charge level in the battery increases 

through M/G1, which is described as (5.4). M/G2 doesn't work in mode 1. In section 2, in 

case of cruising, where engine and M/G2 both works, motor and engine both will have 

good electrical and chemical efficiencies respectively. Supposedly trip requires long 

hours of cruising at higher speed and engine and motor continue to supply the demanded 

power, efficiency may go down. This case is best represented by section 3, where both 

engine and motor will fulfil the demand but will not work in efficient ranges, hence fuel 

economy will get down and battery will get depleted rapidly. The torque on driven wheel 

in these three cases is as below: 
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Case 1: Only motor  

Here motor works as power plant and utilizes the charge depletion (CD) mode of 

operation. 

              
   

   
  

  

  
                                                                                                    

    is mean effective pressure,   is volumetric density.  

Case 2: Only engine  

It uses the engine power and acts like conventional ICE based vehicles. 

         
     

   
                                                                                                                         

   is load toque when mechanical load is applied, J is moment of inertia, B is viscous 

friction and 
  

  
 represents rotation speed.  

Case 3: Engine along with motor 

This is used  in cruising and utilizes charge sustaining (CS) mode of operation. 

         
     

   
      

   

   
  

  

  
                                                                                

5.3 Powertrain Control Methodology 

Power-split HEVs have the potential to improve in fuel efficiency than series or parallel 

hybrids because engine speed and torque can be decoupled completely or partially from 

the driven wheels. By applying a suitable control strategy fuel efficiency can be improved 

provided it follows the control objectives, like 1) driver torque and speed demand is 

fulfilled 2) engine operates in its best efficiency region, 3) target SOC level meets at the 

end of the trip and 4) maximum braking energy is recuperated while braking or 

decelerating. While making the control strategies different approaches can be followed as 

elaborated below: 

5.3.1 Engine Speed Control Strategy 

Vehicle speed ranges are divided into three regions, namely 1) low, 2) medium and 3) 

high vehicle speed as shown in figure 5.3.  
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Figure 5.3: Various vehicle speeds ranges 

In low speed region, speed coupling mode is used. It avoids the condition to make 

engine work at too low speeds which is inefficient operation. Low vehicle speed   , 

threshold can be decided by the lowest engine speed allowed with zero M/G speed as in 

(5.12).  

   
            

     
   
 

 
                                                                                                                 

Where        is the minimum engine speed allowed,    is the wheel radius,     
    

  
 

where    is the gear ratio and is defined as 
  

  
 and     is the gear ratio of the ring gear to 

drive train wheels. In this region motor/generator operates with a positive speed      as 

in (5.13).  

                
      

      
                                                                                                    

V is the vehicle speed in m/s (     .  From (4.2) torque produced by motor/generator 

is applied to the sun gear and has direction opposite to its speed. Therefore, M/G absorbs 

part of the engine power to charge the battery. Power on the M/G shaft      can be 

expressed as (5.14).      is torque produced by motor/generator. 

     
  

  
         

  

  
         

   
     

                                                                     

When the vehicle speed is higher than    but lower than    given by (5.15), M/G is de-

energized and sun gear is locked to the stationary frame of the vehicle. Drive train 

operates in torque coupling mode. Engine speed is proportional to the vehicle speed.  
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Where        is the maximum engine RPM allowed. In this medium speed region all the 

engine power is delivered to the wheels. 

 When the vehicle speed is higher than   , for limiting the engine speed below the 

maximum engine allowed speed       , M/G has to operate in the direction opposite to 

the engine speed. It can be expressed as (5.16). 

                
         

      
                                                                                             

Where     .  Then M/G is motoring, and motoring power can be expressed as (5.17). 

     
  

  
         

   
     

    
  

  

   
     

                                                              

5.3.2 Traction Torque Control Strategy 

In low vehicle speed region when sufficient SOC is available, traction motor torque     

can be given as (5.18). 

    
  

  

    

   
  

      

   
 

   
      

      
    
     

      

 
 

   
       

                       

Where     is gear ratio from the traction motor to the driven wheels and     is traction 

motor speed. 

 In case of medium vehicle speed range, torque coupling mode is employed, i.e. 

sun gear is locked to the vehicle stationary frame and engine speed is proportional to the 

vehicle speed. In high speed region, engine speed is controlled by        and the M/G 

works in motoring mode. If the commanded traction torque is higher than the torque that 

the engine can produce with its optimal throttle at the speed of        and SOC of the 

battery is lower than        and the battery cannot be discharged any more to support 

motoring mode, the engine will be forced to operate at the higher speed (beyond the 

optimal range) to fulfil the driver power demand. In this case, engine alone mode can be 

used with torque coupling or engine can run at somewhat higher speed so that a M/G 
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work in generating mode to feed the traction motor to support engine by providing 

additional torque. For the latter case,    can be calculated as in (5.19) 

   
      

      
                                                                                                                                     

If SOC is higher than       , then the engine should be controlled at its        with 

optimal throttle and traction motor provides additional torque to engine to support the 

driver torque demand. 

 If the commanded traction torque is smaller than the engine torque and SOC is 

lower than       , engine is operated according to (5.15) and traction motor works in 

generating mode. If SOC is in between range of        and       , traction motor may 

be de-energized and engine alone mode can be projected. If SOC is greater than       , 

engine better shut down and traction motor alone can propel the vehicle.  

5.4 Objective Function Formulation and Constraints 

Here, the objective of the optimization problem is to maximize the fuel economy. The 

total fuel consumption in a driving cycle is given by (5.20). 

                                                                                                                                                     

Where      is time rate of total fuel consumption. Fuel consumption is inversely 

proportional to battery power   . A larger battery power will cause vehicle to consume 

lesser fuel and vice-versa and     is directly proportional to SOC. Battery power    bears 

a quadratic equation of    ,    and    given as (5.21). The solution of this equation can 

be given as (5.22). 

            
                                                                                                                     

   

          
        

    
                                                                                                 

     is the time rate of     and can be expressed as (5.23). 
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Further simplifying (5.23) using (5.22) gives relation between battery power    and      

as in (5.24).  

     
        

       

     
                                                                                                       

Relations between M/G1, M/G2, engine and requested torques and speeds are 

summarized in (5.25). 

  

       
 

    
      

                        

       
 

      
  

          

 
      

              
 
 
 

 
 
 

                                                                              

Where      ,       are torques and      ,       are speeds of M/G1, M/G2,     is 

engine torque,    is engine speed,      requested speed,    is gear ratio and    is final 

drive ratio. While solving the objective function for HEVs, following constraints are 

considered as given in (5.26).  

 

                 

                         

                         

                 

                        

                         

                   

 

 
 
 
 

 
 
 

                                                                                               

where       ,        ,          ,          ,          ,          ,       ,        , 

         ,          ,          ,                  and        are the minimum and 

maximum values of constraints for engine, M/G1, M/G2 and SOC respectively.  

Various optimization strategies are introduced here for optimal splitting of power. 

These strategies are tested on standard driving cycle ECE_EUDC which is shown in 

figure 5.4. Figure 5.5 shows the force and torque required with respect to the vehicle 

speed. The positive torque symbolizes power required by the driver and it should be 

fulfilled either by engine or motor or both together. The negative torque is due to 

deceleration and indicates that the power is being generated (regenerative braking) during 
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vehicle propulsion and the battery can get charged. All the developed strategies are 

verified by checking whether requested speed is met by the achieved speed or not. The 

best matching promises the validity of the control strategy developed. 

 

Figure 5.4: ECE_EUDC driving cycle 

 

Figure 5.5: Force and torque required by ECE_EUDC 

This chapter is divided five parts now onwards. Every part is a presentation of 

published paper(s). Section heading represents the published article. 
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5.5 Part 1: Fuel Efficiency Optimization of Input-Split Hybrid Electric Vehicle 

using DIRECT Algorithm 

 DIRECT optimizes the ‘cs_eng_on_soc’, ‘cs_min_pwr’, ‘cs_electric_launch_spd’ 

and ‘cs_eng_min_spd’. ‘cs_eng_on_soc’ is the minimum value of SOC below which the 

engine must be on. ‘cs_min_pwr’ is the minimum power commanded of the engine. 

‘cs_electric_launch_spd’ is the vehicle speed threshold; below this speed, the engine is 

turned off. ‘cs_eng_min_spd’ is the speed below which engine will be on but does not 

utilize the fuel. Parameters individually or/and under the influence of each other affects 

the performance of the vehicle. The analysis is performed on the default Rint model 

provided in ADVISOR and conventional SOC estimation method is used. To analyze 

this, parameters are grouped in different sets, i.e., Set 1, set 2, set 3 and set 4. Set 1 

contains the individual parameters considered, set 2 contains group of two parameters, set 

3 contains a group of 3 parameters and set 4 contains group of four parameters. Various 

sets and the contained parameters are shown in table 5.1. Value selection of these 

parameters affects the engine on/off status; hence have an impact on fuel consumption.  

Table 5.1: List of selected parameters 

Set Parameters Fuel economy 

(mpgge) 

Set  of 1 

individual 

parameter 

cs_eng_on_soc 44.61 

cs_min_pwr 45.41 

cs_electric_launch_spd 43.43 

cs_eng_min_spd 44.61 

Set  of 2 

parameter 

cs_min_pwr and cs_electric_launch_spd 43.54 

cs_eng_on_soc and cs_eng_min_spd 42.59 

cs_eng_on_soc and cs_min_pwr 42.59 

cs_eng_on_soc and cs_electric_launch_spd 42.56 

cs_min_pwr and cs_eng_min_spd 43.43 

cs_electric_launch_spd and cs_eng_min_spd 43.39 

Set of  3 

parameter 

cs_eng_on_soc, cs_min_pwr and cs_electric_launch_spd 43.28 

cs_eng_on_soc, cs_min_pwr and cs_eng_min_spd 43.35 

cs_eng_on_soc, cs_electric_launch_spd and cs_eng_min_spd 42.19 

cs_min_pwr, cs_electric_launch_spd and cs_eng_min_spd 43.35 

Set of  4 

parameter 

cs_min_pwr, cs_electric_launch_spd, cs_eng_min_spd and 

cs_eng_on_soc 

42.89 

 

‘cs_min_pwr’ shows the highest fuel economy in all the cases considered. The 

different plots are gathered to verify the authenticity of the proposed discussion. The 

initial charge on battery cs_init_soc=70 percent and minimum allowable range up to 

which the battery can be depleted is 30 percent. The variation of SOC over the entire trip 

is shown in figure 5.6 (a). Figure 5.6 (b) shows the engine off/on status with respect to 
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varying SOC as shown in figure 5.6 (a). Analyzing figure 5.6 (a) and (b) together, clarify 

that whenever the engine is off, the SOC is decreasing, i.e. propulsion power is provided 

by a motor. Similarly, when the engine is on, SOC level is either increasing or held 

constant, i.e. the battery is getting charged either through regenerative braking or by 

engine or no effect. Figure 5.6 (c) and (d) show the engine and motor characteristics 

according to the speed and torque values which have been used during vehicle propulsion 

over the trip. 

 

(a) 

 

(b) 
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(c) 

 

(d)  

Figure 5.6: Analysis of DIRECT method (a) SOC variation over entire trip, (b) Engine on/off 

decision, (c) Engine and (d) Motor speed torque characteristics 

24.32, 15.21 and 5.77 mpgge fuel is saved by proposed method compared to [161, 

164, 165] respectively. The various vital parameters are optimized here for maximizing 

the fuel economy and the results of different combinations are tabulated. Detailed 
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analysis is performed to check the impact of these considered parameters over each other 

and variation in fuel consumption is observed. 

To improve the FE and to check the effect of other battery models, some more 

optimization techniques are used and given in subsequent sections. 

5.6 Part 2: Optimal Fuel Control of Series-Parallel Input Split Hybrid Electric 

Vehicle using Genetic Algorithm based Control Strategy 

The genetic operation includes crossover, mutation, reproduction, gene duplication and 

gene deletion. After initial random population creation, a fitness test is performed to all 

individuals and new population is formed by genetic operators like reproduction, 

crossover and selection. In crossover operation, two parents are combined to form two 

new offspring. With each generation some of the existing population is selected as 

offspring and called elitist. Mutation is a genetic operator used to maintain genetic 

diversity between two succeeding populations. The purpose of mutation is to avoid 

falling all the solutions in the local region. Fitness evaluation process is iterated till the 

terminating criterion is met. Benefits of GA are a) parallel processing b) vast solution set 

can be scanned at a very fast rate c) suitable for complex, discontinuous and noisy fitness 

function and d) global optima is achieved. The population size, mutation and crossover 

play a vital role in GA. A wise selection of initial population trims down the computation 

time. Initialization of the population influences the ultimate solution and makes a 

significant impact on the convergence speed as well. A vast range random search wastes 

the time, whereas a very confined area random search may also be not promising as it 

may turn up with bad genes. High mutation rates provide the facility of wide exploration 

in search space, but faces problems of finding optimum solutions. On the other hand, 

lower mutation rates may result in premature convergence. So, here a wide range of 

mutation rates from low values of 0.1, 0.5 to high mutation rates of 0.1, 0.7, 0.9 are 

explored to select the mutation rate useful for HEV application.   

 Figure 5.7 presents the process of finding the optimized solution. Using all the 

constraints and parameters the fitness function is evaluated and best possible value is 

determined. This process continues till the terminating conditions are satisfied. 
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 Table 5.2 figures out the fuel economies for  set of 1  parameter cases, table 5.3 

for set of two parameters, table 5.4 for set of parameters of three parameters, table 5.5 for 

set of four parameters and table 5.6 for set of five parameters. It is observed that mutation 

rates of 0.1, 0.5 and 0.7 are giving considerable results. Although different mutation rates 

are also tried, but are not included here in the table because they are either giving similar 

or deteriorated results. 70 percent mutation rate is chosen to perform the simulations 

shown in thesis because sometimes it gives considerably much improved fuel economy 

Start 

  
   

     
   

 

Step 2: Initialization of population 

Set of random solutions are 

initialized in a predefined search 

space. 

 

 

Step 3: Evaluation of a 

solution 

Every solution is evaluated, 

checked for its feasibility and 

fitness values is assigned 

Step 1: Representation of solution 

A solution vector x is initialized 

 

Step 5: Variation operators 

a) Crossover: Two solutions are picked from the mating pool  

at random and an information exchange is made between the 

solutions to create one or more off spring solutions 

b) Mutation: Perturbs a solution to its vicinity with a small 

mutation probability. Mutation uses a biased distribution to 

be able to move to a solution close to the original solution 

 

 

One 

generation 

of GA is 

completed 

Step 4: Reproduction operators 

Selects good strings in a population 

and form a mating pool 

 

Figure 5.7: Genetic algorithm process flow 
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than other mutation rates. Population sizes of 5 to 7 times of number of parameters are 

giving considerable results. Here, 6 times to the number of parameters are chosen. 

Table 5.2: Set of  one parameter 

Set of one Parameter 

Name of parameters Population size 

Mutation rates 

0.1 0.5 0.7 

cs_eng_on_soc 

3 43.04 43.04 43.06 

4 43.04 43.04 43.04 

5 44.34 44.34 44.34 

6 44.34 44.34 44.34 

7 44.34 44.34 44.34 

8 43.04 43.04 43.04 

cs_min_off_time 

3 43.05 43.05 44.09 

4 43.23 43.06 43.05 

5 45.64 45.97 49.69 

6 46.59 42.35 52.6* 

7 47.1 48.68 47.39 

8 46.37 48.8 46.1 

cs_min_pwr 

3 40.31 40.31 40.31 

4 40.31 40.31 40.31 

5 42.44 42.44 42.44 

6 42.44 42.44 42.44 

7 42.44 42.44 42.44 

8 40.31 40.31 40.31 

cs_electric_launch_spd 

3 43.41 43.41 43.41 

4 43.41 43.41 43.41 

5 43.41 43.41 43.41 

6 43.41 43.41 43.41 

7 43.41 43.41 43.41 

8 43.41 43.41 43.41 

cs_eng_min_spd 

3 42.45 42.45 42.45 

4 42.45 42.45 42.45 

5 42.45 42.45 42.45 

6 42.45 42.45 42.45 

7 42.45 42.45 42.45 

8 42.45 42.45 42.45 
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Table 5.3: Set of two parameters 

Set of two Parameters 

Name of parameters Population size 

Mutation rate 

0.1 0.5 0.7 

cs_eng_on_soc and 

cs_min_off_time 

7 47.15 46.21 47.15 

8 47.15 46.22 48.97 

9 47.2 47.2 47.2 

10 47.11 47.2 47.11 

11 49.95 47.18 43.49 

12 46.35 46.23 46.35 

13 47.39 46.23 50.88* 

14 47.38 46.23 47.38 

15 46.37 46.23 46.37 

cs_eng_on_soc and 

cs_min_pwr 

8 42.45 42.45 42.45 

9 42.45 42.45 42.45 

10 42.45 42.45 42.45 

11 42.45 42.45 42.45 

12 42.45 42.45 42.45 

13 44.31 42.45 44.31 

14 42.45 42.45 42.45 

15 42.45 42.45 42.45 

cs_min_off_time and 

cs_min_pwr 

7 48.21 48.21 48.21 

8 48.21 48.21 50.11 

9 48.17 48.17 52.75* 

10 48.17 48.17 44.35 

11 48.17 48.17 48.16 

12 47.35 47.31 49.95 

13 43.39 47.31 47.45 

14 47.38 47.38 52.74* 

15 48.21 47.38 47.38 
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Table 5.4: Set of three parameters 

Set of three Parameters 

Name of parameters Population sizes 

Mutation rate 

0.1 0.5 0.7 

cs_eng_on_soc,  

cs_min_off_time and 

cs_electric_launch_spd 

14 59.05 59.05 59.05 

15 57.51 59.05 59.05 

16 59.05 49.55 49.55 

17 59.05 58.93 58.93 

18 59.05 50.52 59.05 

19 59.05 59.05 59.05 

20 58.55 58.77 59.05 

cs_eng_on_soc, 

cs_min_off_time and 

cs_electric_launch_spd 

14 44.16 44.27 44.27 

15 43.79 44.16 43.8 

16 43.8 44.09 43.73 

17 44.22 44.18 44.18 

cs_eng_on_soc, 

cs_min_off_time and 

cs_min_pwr 

14 46.56 44 46.9 

15 46.66 46.66 48.58 

16 47.65 46.59 48.12 

17 46.73 46.59 48.96 

18 46.47 48.11 47.6 

cs_eng_on_soc, cs_min_pwr 

and cs_eng_min_spd 

15 43.13 43.26 43.23 

16 43.21 43.23 43.21 

17 43.29 43.21 43.25 

18 43.22 43.23 43.27* 

19 43.29 43.13 43.13 

20 43.13 43.13 43.13 

 

Table 5.5: Set of four parameters 

Set of four Parameters 

Parameters Population size 

Mutation rates 

0.1 0.5 0.7 

cs_eng_on_soc,  

cs_min_off_time, 

cs_min_pwr, 

cs_electric_launch_spd and 

cs_eng_min_spd 

20 54.95 54.15 53.77 

22 53.25 61.17* 54.31 

24 54.82 61.1 53.25 

26 61.17* 60.98 54.44 
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Table 5.6: Set of five parameters 

Set of five Parameters 

Parameters Population size 

Mutation rate 

0.1 0.5 0.7 

cs_eng_on_soc,  

cs_min_off_time, 

cs_min_pwr, 

cs_electric_launch_spd and 

cs_eng_min_spd 

25 53.68 63.42* 53.68 

27 61.33 53.68 54.04 

29 51.22 62.96 51.69 

30 50.69 54.1 59.55 

5.7 Part 3: Hybrid Electric Vehicle Performance Analysis under Various 

Temperature Conditions 

Under varying temperature conditions, battery charging/discharging efficiency changes, 

hence vehicle performance is affected. To investigate this, proposed modified SOC 

estimation method along with GA based control strategy is exercised to find the optimal 

fuel economy for the HEVs at various temperatures.  

GA is used to optimize the performance of the vehicle on the basis of some 

parameters given as 1) cs_eng_on_soc, 2) cs_min_off_time, 3) cs_min_pwr, 4) 

cs_electric_launch_spd and 5) cs_eng_min_spd. Five different sets corresponds to the 

individual, group of two, three, four and five named as set 1, set 2, set 3, set 4 and set 5 

are considered here. These parameters individually and in the different combinations 

affect the vehicle operation. Population size is taken six times of the number of 

parameters considered during simulation with 0.7 mutation rate. Model 1 with modified 

SOC estimation method is used here. The battery is supposed to have 80 percent initial 

charge while the trip starts and is assumed to maintain the same at the end of the trip. 

Figure 5.8 shows the variation of SOC over the entire DC at different 

temperatures. At 0˚C battery discharge level is lesser than at 60˚C. A much deeper 

discharge is observed at 50˚C in comparison to 60˚C, but it should also be noted that 

during charging, at 60˚C charge level is much higher level than 50˚C. This characteristic 

can get change as shown in figure 5.9 which depends on the initial charge level and 

considering the case up to which point battery needs to be (re)charged before finishing 

the trip.  

The observable facts make it clear; at low temperatures the battery energy cannot 

be utilized properly whereas at higher temperature much deeper discharge level can be 
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achieved. The continuous usage of battery at higher temperature promises for the good 

fuel economy but needs frequent charging (either through engine or regenerative braking) 

to cover the trip using electrical energy. Frequent charging and discharging reduces 

battery durability. Battery is a costly component and lesser durability may affect the 

hybrid vehicle's market in terms of economy.  

 

Figure 5.8: SOC variation at different temperatures with 80% initial charge 

 

Figure 5.9: SOC variation at different temperatures with 70% initial charge 
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Engine on/off level corresponds to the battery charging/discharging status is 

shown in figure 5.10 (a) for 25˚C. The same should be followed for all the cases as well, 

but at very high and low temperatures it is not observed shown in figure 5.11 (b) and (c). 

At 0˚C and below as well as at 50˚C and above, the corresponding on/off state of engine 

doesn't follow the battery charging/discharging sequence, hence using battery at these 

temperatures may lead to improper execution of the control strategy developed for the 

vehicle.  

 

(a) 

 

(b) 
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(c) 

Figure 5.10: Engine on/off sequence with charge/discharge at (a) 25 ˚C, (b) 0 ˚C and (c) 50 ˚C 

Figure 5.11 depicts the engine on/off status i.e., during the trip coverage, at 

different time instances engine is off/on. A high status symbolizes the engine ‘off’ 

condition and low status as engine ‘on’ state. At 60˚C, on/off transition counts more 

compared to other lower temperature conditions, results in frequent charging/discharging 

of battery.  

 

Figure 5.11: Engine on/off sequence at different temperatures 
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Figure 5.12 shows the current flown in/from battery at 0˚C, 25˚C, 50 ˚C and 60˚C  

temperatures. At 0˚C the current seems to be minimum but for increased temperature 

values, the current drawn from battery increases. It again verifies the effect of 

temperature on impedance offered by battery. Other than 0˚C temperatures, sufficient 

current exist and can power the motor to propel the wheels. Positive current shows, 

power is given to wheels and negative current shows that battery is getting charged either 

through engine or regenerative braking. 

 

Figure 5.12: Battery current at various temperature 

Table 5.7 collects the fuel economies obtained at temperatures 0˚C, 25˚C and 

50˚C. Every time it is checked that how correction factor (discussed in chapter 3) is 

operating. Involving correction factor confirms that the accurate SOC will be measured. 

Throughout the table contents, it is observed that correction factor is able to measure the 

exact SOC at start points of simulation. An error between reference and measured SOC 

values lies in band of 0 to 5 percent. 
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Table 5.7: SOC and Fuel economy calculation at various temperatures 

Set                                                       Temperature 

 

Parameters 

0˚C 25˚C 50˚C 

SOC mpgge SOC mpgge SOC mpgge 

1 cs_eng_on_soc 79.03 43.80 80.00 47.33 76.65 48.53 

cs_min_off_time 80.20 46.06 80.00 45.51 77.63 47.90 

cs_min_pwr 80.30 44.17 80.00 45.45 76.78 46.84 

cs_electric_launch_spd 79.12 43.91 80.00 47.32 76.64 47.52 

cs_eng_min_spd 79.12 43.91 80.00 47.33 74.50 46.15 

2 cs_min_pwr and cs_electric_launch_spd 82.45 44.77 80.00 47.33 80.00 50.80 

cs_eng_on_soc and cs_eng_min_spd 80.00 44.10 80.00 46.85 80.00 49.44 

cs_eng_on_soc and cs_min_pwr 80.00 44.10 80.00 47.33 80.00 50.14 

cs_eng_on_soc and cs_electric_launch_spd 80.00 44.69 80.00 44.52 80.00 45.12 

cs_min_pwr and cs_eng_min_spd 82.45 44.74 80.00 47.33 80.00 50.29 

cs_electric_launch_spd and cs_eng_min_spd 82.45 44.77 80.00 47.33 77.00 46.93 

cs_min_off_time and cs_eng_on_soc 80.30 50.81 80.00 49.20 77.00 51.22 

cs_min_off_time and cs_min_pwr 80.00 52.5 80.00 49.16 80.00 55.21 

cs_min_off_time and cs_electric_launch_spd 80.30 48.08 80.00 52.04 77.00 52.04 

cs_min_off_time and cs_eng_min_spd 80.30 48.94 80.00 53.44 80.00 79.10 

 3 cs_eng_on_soc, cs_min_pwr and 

cs_electric_launch_spd 

82.45 44.77 80.00 47.33 77.00 48.89 

cs_eng_on_soc, cs_min_pwr and 

cs_eng_min_spd 

82.45 44.74 80.00 47.33 77.00 48.43 

cs_eng_on_soc, cs_electric_launch_spd and 

cs_eng_min_spd 

82.45 44.77 80.00 47.33 77.00 49.09 

cs_min_off_time, cs_electric_launch_spd and 

cs_eng_min_spd 

82.45 57.67 80.00 51.59 80.00 53.66 

cs_min_off_time, cs_min_pwr and 

cs_electric_launch_spd 

82.45 57.67 80.00 52.02 80.00 72.41 

cs_min_off_time, cs_eng_on_soc and 

cs_min_pwr 

82.45 44.71 80.00 51.52 77.00 62.96 

cs_min_pwr, cs_electric_launch_spd and 

cs_eng_min_spd 

82.45 44.77 80.00 47.33 77.00 48.33 

cs_min_off_time, cs_eng_on_soc and 

cs_electric_launch_spd 

82.45 43.07 80.00 51.77 77.00 70.21 

cs_min_off_time, cs_eng_on_soc and 

cs_eng_min_spd 

82.45 57.67 80.00 51.52 79.68 71.30 

 4 cs_min_pwr, cs_electric_launch_spd, 

cs_min_off_time and cs_eng_on_soc 

80.30 50.62 80.00 51.59 77.00 52.72 

cs_min_pwr, cs_eng_min_spd, 

cs_min_off_time and cs_eng_on_soc 

82.45 51.36 80.00 50.92 77.00 52.43 

cs_min_pwr, cs_electric_launch_spd, 

cs_eng_min_spd and cs_eng_on_soc 

82.45 44.77 80.00 47.36 77.00 49.09 

cs_min_pwr, cs_electric_launch_spd, 

cs_eng_min_spd and cs_min_off_time 

82.45 52.66 80.00 51.77 77.00 49.46 

cs_eng_on_soc, cs_electric_launch_spd, 

cs_eng_min_spd and cs_min_off_time 

82.45 57.67 80.00 49.20 77.00 52.14 

 5 cs_min_pwr, cs_electric_launch_spd, 

cs_min_off_time, cs_eng_min_spd and 

cs_eng_on_soc 

82.45 54.33 80.00 51.54 77.00 62.06 
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5.8 Part 4: Energy Management Strategy for Hybrid Electric Vehicles using 

Genetic Algorithm 

It is observed from an extensive literature survey that for hybrid vehicle  applications,  

model 1 has  only used [211, 212, 213, 214,  215, 216, 217, 218, 219, 220, 221, 222, 

223]. This simplified battery model is mainly used by researchers to minimize the circuit 

complexity. The other battery models (model 2 and 3) are accepted by the fraternity to 

depict the phenomenon of a real battery but are not used in HEV applications. In HEVs, 

battery is a very important component, thus it is necessary to investigate that how other 

proposed battery models would affect the HEV performance. This motivated to use the 

above stated three battery models and then chose one with better efficiency and lesser 

complexity. 

 In this section also ECE_EUDC driving cycle is considered but a probability 

distribution approach is applied to it. Probability distribution approach gives idea about 

the power requirement (less or more) for different portions of trip. Probability of power 

demand is analyzed with zero initial and end speed, to predict the nature of the drive 

cycle. Figure 5.13 explaines the procedure using GA and probability distribution analysis. 

 

Figure 5.13: Energy management process flow using GA 
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 Probability distribution function for the drive cycle is shown in figure 5.14 up. 

The distribution follows a Weibull distribution (WD) and is obtained after Kolmogorov-

Smirnov and Anderson Darlington tests. This is a continuous probability distribution 

function [224].  Table 5.8 summarizes the parameters of WD and table 5.9 collects the 

descriptive statistics.  

 

Figure 5.14: Probability density and cumulative probability curves 

 

Table 5.8: Weibull distribution parameters 

Parameters Symbol Value 

Continuous shape parameter   22.771 

Continuous scale parameter   7.50e+5 

Continuous location parameter   7.34e+5 
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Table 5.9: Descriptive statistics of Weibull distribution 

Statistics Value 

Sample size 1186 

Mean -1246.2 

Variance 1.6503e+9 

Standard deviation 40624 

Standard error 1179.6 

Skewness -2.0794 

Kurtosis 8.8721 

 The probability distribution function of WD is defined by      as in (5.27). 

Cumulative distribution function of WD is given by (5.28) and is plotted in 5.14 (down) 

which predicts the power demand distribution with probability values. 

 

     
 

 
 
   

 
 
   

      
   

 
 
 

                                                                                   

 

             
   

 
 
 

                                                                                                     

5.8.1 Engine on/off Condition Analysis 

Figure 5.14 up is divided in three windows, i.e. 't1', 't2' and 't3'. The projections from the 

cumulative distribution to the probability density signifies that 't1' demands 

approximately 13 percent of power from the power plant, whereas a leap of 

approximately 65 percent in power demand is observed in 't2' and rest of the power is 

demanded in 't3'. This also has the analogy with figure 5.2.  For 't1', 't2' and 't3' portions 

(5.9), (5.10) and (5.11) can be used to calculate the torque at the wheels for considering 

driving cycle and can be expressed as (5.29), (5.30) and (5.31) respectively. 

                
   

   
  

  

  
  

  

  

                                                                                    

           
     

   
 

  

  

                                                                                                           

           
     

   
      

   

   
  

  

  
 

  

  

                                                                 

For optimal operation, engine 'on' threshold point should lie in 't2' and can be obtained 

using optimization algorithms.  Various parameters are optimized to make the engine 

operate in its efficient range and thus improve the fuel efficiency.  
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5.8.2 Result Discussion  

In the optimization process, parameter ‘cs_eng_on_soc’, ‘cs_min_off_time’, 

‘cs_min_pwr’, ‘cs_electric_launch_spd’ and ‘cs_eng_min_spd’ are considered 

individually and also in the set of two, three, four and five respectively as given in table 

5.10. 

Table 5.10: List of selected parameters 

Set name Parameters 

Set of 1 

individual 

parameter  

cs_eng_on_soc 

cs_min_off_time 

cs_min_pwr 

cs_electric_launch_spd 

cs_eng_min_spd 

Set of 2 

parameters 

cs_eng_on_soc and cs_min_off_time 

cs_eng_on_soc and cs_min_pwr 

cs_eng_on_soc and cs_electric_launch_spd 

cs_eng_on_soc and cs_eng_min_spd 

cs_min_off_time and cs_min_pwr 

cs_min_off_time and cs_electric_launch_spd 

cs_min_off_time and cs_eng_min_spd 

cs_min_pwr and cs_electric_launch_spd 

cs_min_pwr and cs_eng_min_spd 

cs_electric_launch_spd and cs_eng_min_spd 

Set of 3 

parameters 

cs_eng_on_soc, cs_min_off_time  and cs_min_pwr 

cs_eng_on_soc, cs_min_off_time  and cs_electric_launch_spd 

cs_eng_on_soc, cs_min_off_time  and cs_eng_min_spd 

cs_eng_on_soc, cs_min_pwr and cs_electric_launch_spd 

cs_eng_on_soc, cs_min_pwr and cs_eng_min_spd 

cs_eng_on_soc, cs_electric_launch_spd and cs_eng_min_spd 

cs_min_off_time, cs_min_pwr and cs_electric_launch_spd 

cs_min_off_time, cs_min_pwr and cs_eng_min_spd 

cs_min_off_time, cs_electric_launch_spd and cs_eng_min_spd 

cs_min_pwr, cs_electric_launch_spd and cs_eng_min_spd 

Set of 4 

parameters 

cs_eng_on_soc, cs_min_off_time, cs_min_pwr and cs_electric_launch_spd 

cs_eng_on_soc, cs_min_off_time, cs_min_pwr and cs_eng_min_spd 

cs_min_off_time, cs_min_pwr, cs_electric_launch_spd and cs_eng_min_spd 

cs_min_pwr, cs_electric_launch_spd and cs_eng_min_spd and cs_eng_on_soc 

cs_electric_launch_spd and cs_eng_min_spd, cs_eng_on_soc and cs_min_off_time 

Set of 5 

parameters 

cs_eng_on_soc, cs_min_off_time, cs_min_pwr, cs_electric_launch_spd and 

cs_eng_min_spd 

 Based on the parameters to be optimized and constraints, engine 'on' threshold is 

identified; and corresponding fuel consumption is calculated. The GA is applied to 

produce the new engine 'on' threshold using selected parameters through succession of 

elite selection, mutation and crossover. This process continues till the terminating 

conditions are met. The results obtained for various possible combinations of parameters 

and battery models with modified SOC estimation method are given in table 5.11. It is 

clear from the table that the fuel economies are similar at large for battery models 2 and 

3. For ease of understanding, in figure 5.15, bar graph is plotted to analyze the fuel 
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economies for various battery models. Tabulated results contain cases with and without 

trace miss. Trace miss is defined as that the vehicle does not provide the requested speed 

and runs at lower than required. By considering the perfect values (cases neglected with 

trace miss) model 2 is having the highest mean, whereas model 1 and model 3 are 

inferior. Trace miss can be understood in a generalized way by figure 5.16 (a) and (b). 

Figure 5.16 (a) shows that requested speed is always achieved by the driver and no trace 

miss is observed. Figure 5.16 (b) shows the case of trace miss, i.e. requested speed is not 

achieved at all the instances. There may be various reasons behind traces miss: (a) 

driving cycle demands such accelerations which cannot be achieved by vehicle, (b) loss 

of sufficient battery power and (c) under powered vehicle. Here a standard test driving 

cycle and vehicle of sufficient component sizes are considered. Only battery models are 

being tested. According to the primary assumption of HEVs that driver's demand should 

be fulfilled; model 2 is capable enough to execute this criteria and suggested to be used.  

Table 5.11: Fuel efficiencies of parameter sets for different battery models 

Set name Model 1 (mpgge) Model 2 (mpgge) Model 3 (mpgge) 

Set of 1 individual parameter  47.33 51.37 51.12 

45.51 59.80 51.06 

45.45 51.37 51.12 

47.32 51.40 51.41 

47.33 47.33 51.12 

Set of 2 parameters 49.20 60.74 65.74 

47.33 51.37 53.23 

44.52 43.93 48.91 

46.85 51.37 51.12 

49.16 60.74 59.13 

52.04 67.52 65.96 

69.59 69.59 65.87 

47.33 51.40 51.41 

51.31 51.37 51.12 

51.40 51.40 51.41 

Set of 3 parameters 51.00 65.78 65.49 

56.00 65.83 65.54 

52.72 65.60 65.49 

47.36 53.56 51.39 

47.33 51.37 53.23 

47.33 53.51 53.54 

53.67 65.82 65.52 

51.93 65.70 65.41 

51.95 65.82 65.52 

47.33 51.40 51.41 

Set of 4 parameters 51.62 70.65 70.03 

52.13 70.65 70.03 

57.30 65.82 65.52 

54.84 69.81 70.19 

49.84 60.79 60.59 

Set of 5 parameters 51.54 69.59 66.16 
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 An efficient control strategy should consider all the governing parameters in 

optimization. The value of fuel economy for considering all these 5 parameters in model 

2 is 52.25 without trace miss and 69.59 with trace miss as against 66.16 for model 3. 

Thus, model 2 is proposed to use over model 3 due to lesser complexity. It is also 

apparent; model 2 leads to significant improvement in the fuel economy in HEVs over 

traditional Model 1. This part considers a modified SOC estimation approach which 

incorporates the effects of both, voltage and current in SOC estimation; whereas, the 

most of the literature speaks about the effect of current only. It is verified that, the 

modified method provides better results over conventional method. 

 

 

Figure 5.15: Comparison chart of fuel economies for different battery models 
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(b) 

 

Figure 5.16: Trace miss analysis (a) no trace miss (b) with trace miss 

Figure 5.14 advocates the requested power percentage in three different working 

windows of engine and motor. The simulation results satisfy driver's power demand by 

keeping the engine 'on' in its efficient region. Figure 5.17 shows the cumulative 

distributions plot of achieved power in response to requested power. The resemblance of 

figure 5.14 (down) and figure 5.17 proves the authenticity of proposed energy 

management scheme with modified SOC estimation method. 

 

Figure 5.17: Cumulative distribution of achieved power of power plants 
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 From Table 5.12, it is clear that an improvement of 20.25 percent in terms of fuel 

economy is observed when GA with modified SOC estimation using battery model 2 

compared to Rint conventional model and Ampere hour counting. 

Table 5.12: Fuel economy comparison using GA 

Battery model Fuel economy (mpgge) Trace miss analysis 

Rint conventional model 43.45 No trace miss 

Model 2* 52.25 No trace miss 

*Modified SOC estimation method 

 

5.9 Part 5: Development of Energy Management Strategy in Hybrid Electric 

Vehicles using Pontryagin's Minimum Principle and Genetic Algorithm 

Tuned Controller 

 

PMP is a technique which finds only one trajectory and declares it optimal based on prior 

calculations, hence features with less computational time against other techniques. PMP 

provides the facility for implementing real time controller for the relevant operation. 

PMP based optimal control is applied here to calculate the fuel economies for different 

battery models with modified SOC estimation approach. The results are compared with 

the conventional SOC estimation. Four different cases are analyzed here;  

1) Rint battery model with conventional SOC estimation available in ADVISOR  

2) Model 2 with the modified SOC estimation method 

5.2.1 Pontryagin’s Minimum Principle 

To optimize any problem using PMP, the Hamiltonian is formed firstly and minimized 

with respect to the control input. Then state and co-state equations are obtained by 

following the set procedure. The flow diagram of PMP is given in figure 5.18.   

For the performance measure of the form                                 
  
  

 with 

the terminal cost S             , instantaneous cost                
  
  

 and the state 

equation of the form                     ; Hamiltonian constructions involve 

instantaneous cost and state equation with a time varying vector multiplier   as in (5.32).  
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According to PMP, optimal control trajectory      , optimal state trajectory       and 

corresponding optimal co-state trajectory       minimize the Hamiltonian such that; 

                                             

The following relations and constraints (5.33) must hold with the above condition; 

 
       

  

  
                     

        
  

  
                     

                                                                                        

 Initial condition    and final condition     
  

  
 
  
      

  

  
         

 

  
    

both are assumed to be zero. If PMP conditions are satisfied, the solution will be extremal 

and if a global solution exists, it will be the global solution. 

 

  

  

 

 

 

State equation      and objective 

function     is formed 

              

Hamiltonian formation 

 
 

Run the vehicle in ADVISOR to get the 

vehicle parameters to make state equation 

                                                   

Minimize H with respect to SOC 
  

      
  ; obtain value of control input. 

 

 

Solve the set of 2n state and co-state equations with boundary 

conditions      
  

  
 ;    

  

    
 

;           

Start 

Figure 5.18: PMP process flow 
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 In ADVISOR, Using GA and PMP the power optimization strategy is developed 

as shown in figure 5-19.  

 

Figure 5.19: Energy management using GA and PMP 

5.9.2 State Formation 

To distribute the power between engine and motor, torque and speed requirements of 

driver and SOC play the role of control inputs. Torques and speeds are controlled using 

certain laws explained in section 5.2 and 5.3. SOC should be considered as unknown 

control input useful to toggle between engine and motor. SOC is the unknown trajectory 

obtained after the optimization so battery should be modeled as a dynamical system. And, 

it can be described as a first order differential equation [225, 226]. First order differential 

equation of SOC is explained by (5.23) and (5.24). 

5.9.3 Observations 

Various governing parameters of vehicle are firstly optimized using GA and then a power 

threshold calculation is performed using PMP. Calculation of thresholds initially using 
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GA gives a better chance to improve the fuel efficiency. Here, fuel efficiency is derived 

for different battery models incorporating modified and conventional SOC estimation 

methods. Fuel efficiency comparison for different battery models with GA and without 

GA application is shown in table 5.13. By considering all 5 governing parameters, the 

fuel efficiency of model 2 is improved from 52.8 mpgge to 60.62 mpgge using PMP and 

criteria of no trace miss is also met. PMP provides an improved result compared to 

default SOC estimation method. Application of GA has made the fuel economies even 

better compared to alone PMP. Because GA gets the optimum values of other power train 

parameters whereas PMP finds the threshold level for power only. As discussed in part 1, 

five important parameters are selected here to control the engine on/off conditions. The 

pictorial representation of these is given in figure 5.20. 

Table 5.13: Fuel economy comparison for different battery models 

Battery model Fuel economy (mpgge) Trace analysis 

With GA Without GA Improvement (%) 

Rint conventional model 55.92 44.97 24.32 With trace miss 

Model 1* 60.62 51.37 18.00 Without trace 

miss 

* with modified SOC estimation method 

 

 

Figure 5.20: Engine on/off decision pictorial representation 



   

Development of Power Optimization Strategies 

125 
 

To verify the correctness of proposed strategy, requested speed and delivered 

speed of the vehicle is compared and shown in figure 5.21. The figure infers that these 

two matches perfectly and there is no trace miss. Vehicle requested power is fulfilled by 

different components alone or together. Figure 5.5 signifies the time instances of negative 

torque, i.e. kinetic energy ( 
 

 
   ) stored in vehicle's translating mass can be 

recuperated during these moments. The traction motor operates as generator to recuperate 

the energy and charges battery as shown in figure 5.22. Positive current flow delivers the 

current from the battery and negative current signifies the state of battery charging.  

 

Figure 5.21: Vehicle requested and delivered speed comparison 

 

Figure 5.22: Battery current variation 

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

Time (s)

S
p
e
e
d
 (

m
/s

)

 

 

requested speed

achieved speed

0 200 400 600 800 1000 1200 1400
-60

-40

-20

0

20

40

60

Time (s)

C
u
rr

e
n
t 

(a
m

p
)

 

 

battery current



   

Development of Power Optimization Strategies 

126 
 

Battery SOC variation over the trip is shown in figure 5.23 at 25ºC with initial 

SOC as 80 percent and target as 70 percent. An increment in the battery charge (with 

negative current) is either by engine (to fulfil target SOC requirement) or through 

regenerative braking (whenever negative torque exists).  

 

Figure 5.23: SOC variation over the trip 

Figure 5.24 shows a combined plot of SOC variation with engine on/off 

condition. When engine is off in section 1, SOC is decreasing. SOC is constant also in 

section 1, shows that the speed requested is zero. In section 2, engine is on and battery is 
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actions taken by engine and motor with SOC variation over the entire trip with a closer 

look.   
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Figure 5.24: SOC variation with engine on/off condition 

 

Figure 5.25: Fuel used in liters 
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Table 5.14: Trip analysis with engine and motor state consideration 

Time (s) Engine or motor on/off Torque analysis Trend in SOC 

variation  

1-53 Engine off and motor on Zero No change 

54-65 Positive Decrease 

66-77 Negative Increase 

78-91 Zero No change 

92-128 Positive Decrease 

129-138 Negative Increase 

139-159 Zero No change 

160-197 Positive Decrease 

198-206 Negative Increase 

207-218 Positive Decrease 

219-230 Negative Increase 

231-249 Zero No change 

250-261 Positive Decrease 

262-266 Negative Increase 

267-287 Zero No change 

288-323 Positive Decrease 

324-334 Negative Increase 

335-355 Zero No change 

356-395 Positive Decrease 

396-401 Negative Increase 

402-414 Positive Decrease 

415-426 Negative Increase 

427-445 Zero No change 

446-457 Positive Decrease 

458-462 Negative Increase 

463-483 Zero No change 

484-490 Positive Decrease 

491-847 Engine on and motor off Positive Increase 

848-859 Engine on and motor on Decrease 

860-873 Engine on and motor off Increase 

874-877 Engine on and motor on Decrease 

878-887 Engine on and motor off Increase 

888-938 Engine on and motor on Decrease 

939-946 Engine on and motor off Negative Increase 

947-1014 Engine on and motor on Positive 

 

Decrease 

1015-1028 Engine on and motor off Increase 

1029-1144 Engine on and motor on Decrease 

1145-1163 Engine on and motor off Positive Increase 

1164-1172 Engine on and motor on Decrease 

1173-1199 Engine on and motor off Negative Increase 

 1200-1206 Engine off and motor off 

1207-1226 Engine off and motor off Zero  No change 
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(a) 

 

(b) 

Figure 5.26: Operating points; (a) engine and (b) motor 
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catalyst temperature are balanced or not and based on these decides to idle the engine 

[227]. Performance analysis of HEVs including idling is discussed in literature [228, 229, 

230]. Interest in exploring the effect of idling and engine shut down rather, and its impact 

on fuel economy goaded to perform a comparison between these two cases. The results 

for proposed model are tabulated with and without idling in table 5.15. By excluding the 

trace miss cases, an improvement in fuel economy of 4 to 4.5 percent on an average is 

achieved. But, turning the engine on and off very often can reduce the life of engine 

components.  

Table 5.15: Effect on fuel economy with avoided engine idling condition 

Set name With  idling Trace miss analysis Without idling Trace miss analysis 

Set of 1 

individual 

parameter  

51.37  Trace miss persist 53.84 Trace miss persist 

59.80 Trace miss don't exist 53.86 Trace miss don't exist 

51.37 Trace miss persist 54.01 Trace miss persist 

51.40 Trace miss persist 53.84 Trace miss persist 

47.33 Trace miss don't exist 53.84 Trace miss don't exist 

Set of 2 

parameters 

60.74 Trace miss don't exist 69.22 Trace miss don't exist 

51.37 Trace miss persist 53.75 Trace miss persist 

43.93 Trace miss don't exist 48.13 Trace miss don't exist 

51.37 Trace miss don't exist 53.84 Trace miss don't exist 

60.74 Trace miss don't exist 63.48 Trace miss don't exist 

67.52 Trace miss persist 67.03 Trace miss persist 

69.59 Trace miss persist 63.68 Trace miss persist 

51.40 Trace miss persist 53.84 Trace miss persist 

51.37 Trace miss persist 53.97 Trace miss persist 

51.40 Trace miss persist 53.84 Trace miss persist 

Set of 3 

parameters 

65.78 Trace miss persist 70.32 Trace miss persist 

65.83 Trace miss persist 70.92 Trace miss persist 

65.60 Trace miss persist 70.32 Trace miss persist 

53.56 Trace miss don't exist 53.89 Trace miss don't exist 

51.37 Trace miss persist 53.97 Trace miss persist 

53.51 Trace miss don't exist 53.74 Trace miss don't exist 

65.82 Trace miss persist 69.66 Trace miss persist 

65.70 Trace miss persist 69.67 Trace miss persist 

65.82 Trace miss persist 69.69 Trace miss persist 

51.40 Trace miss persist 53.80 Trace miss persist 

Set of 4 

parameters 

70.65 Trace miss persist 75.29 Trace miss persist 

70.65 Trace miss persist 75.29 Trace miss persist 

65.82 Trace miss persist 69.67 Trace miss persist 

69.81 Trace miss persist 69.67 Trace miss persist 

60.79 Trace miss don't exist 63.47 Trace miss don't exist 

Set of 5 

parameters 

52.25 Trace miss don't exist 54.07 Trace miss don't exist 

5.11 Summary 

Battery modeling and SOC estimation methods are the roots of HEV functioning and 

play an important role in determining its performance. Their accurate knowledge greatly 
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decides the engine on/off condition. Available literature talks about various battery 

models and methods of SOC estimation, but only Rint battery models and current based 

SOC estimation methods are widely used.  In this work, various battery models are 

explored along with modified SOC estimation method to analyze the vehicle 

performance. Various governing parameters of HEVs are considered in optimization and 

their optimum values are evaluated using GA and DIRECT based control strategies. The 

application of GA further improves the fuel economy significantly over classical method. 

Model 2 and 3 show better fuel economy over battery model 1. Based on the results, 

model 2 along with modified SOC estimation method should be used further to achieve 

better HEV performance.  

 While implementing the strategy, all the important consideration like 

aerodynamic drag, vehicle glider mass, accessory loads and prescribed SOC level 

conditions, etc are given utmost attention. PMP along with GA and with modified SOC 

estimation techniques presents promising energy management system. Various governing 

parameters of vehicle are firstly optimized using GA and then a power threshold 

calculation is performed using PMP. Calculation of thresholds initially using GA gives 

better chance to improve the fuel efficiency.  

 The performance of the battery varies with the load and temperature, which can 

be approximated to the nearby true value using a correction factor derived in chapter 3. 

Temperature variation affects the current, voltage and SOC of the battery which affects 

the engine transition (on/off) decisions. Effect of temperatures is analyzed to restrict the 

operating range of the vehicle to achieve the fuel efficient performance along with the 

longer battery life. As SOC estimation is promising, the proposed method may provide 

the real time values of fuel economies. At lower temperature fuel economies are lesser 

and at higher temperature these are high compared to the room’s temperature, thus verify 

the theory of temperature effect on rate of reaction of battery cell. Vehicle performance 

varies abruptly other than nearby room temperatures and at higher temperature fuel 

economies are found to be better compared to the lower temperature. But, usage of 

battery at high temperatures for longer time reduces its life and diminishes vehicle 

performance.  

  



   

Effect of Driving Cycles on HEV Performance 

132 
 

Chapter 6                                                                                                                         
Effect of Driving Cycles on HEV Performance 
 

 

This chapter aims to find the nature and response of a hybrid vehicle on various standard 

driving cycles. Road profile parameters play an important role in determining the fuel 

efficiency. Typical parameters of road profile can be reduced to a useful smaller set 

using principal component analysis and independent component analysis. Resultant data 

set obtained after size reduction may result in more appropriate and important parameter 

cluster. With reduced parameter set fuel economies over various driving cycles, are 

ranked using TOPSIS and VIKOR multi-criteria decision making methods. The ranking 

trend is then compared with the fuel economies achieved after driving the vehicle over 

respective roads. Control strategy responsible for power split is optimized using genetic 

algorithm. Model 2 and modified SOC estimation method are considered for the 

simulation and improved results compared to default are obtained.     

6.1 Need of Driving Cycle Analysis for Fuel Economy Interpretation 

HEV's performance will obviously vary over type of road, driver's 

aggressiveness/behavior, road conditions and weather conditions. Kuhlar [231] and 

Karstens and Fomunung [232] introduced few parameters which characterize the roads. 

These parameters have been used to model emissions or fuel economies or others.   

 These parameters may be able to describe a driving cycle (DC) behavior, but are 

not able to clearly identify a DC which would result in the best fuel economy (FE). The 

aim of the study is to find independent parameters of DC able to define the FE. Using 

size reduction techniques, the few governing parameters are selected and with these 

parameters DCs are ranked using TOPSIS and VIKOR. Now, the vehicle is run over the 

different considered DCs to find out their FE using genetic algorithm based control 

strategy and then ranked accordingly. These two results are compared to get a sense that 

how DC parameters are linked with FE.  

 Ten parameters (trip time, average speed, maximum deceleration, average 

acceleration, idle time during the trip, number of stops, distance, maximum speed, 
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maximum acceleration and average deceleration) are considered in most of the literatures 

for DC characterization. These parameters for seven different DCs of city profile are 

collated in table 6.1. For ease of analysis, numbers of parameters are reduced here. 

Principle component analysis (PCA) and independent component analysis (ICA) are 

dimension reduction techniques, but retain the important properties of dataset. PCA 

developed by Karl [233] and Hotelling [234] is a statistical procedure to un-correlate the 

variable and reduce the dimension of the data. PCA yields orthogonal vectors of high 

energy content in terms of covariance. ICA also decomposes the variables into smaller 

sets and extracts the independent variables from a multivariate dataset. ICA was 

developed by Jueten and Herault [235] and Comon [236] used to solve cocktail party 

problems and for blind source separation.  

Table 6.1: City driving cycle characteristics 

Parameters UDDS ECE_EUDC LA92 US06 Indian Japan 10-15 WVUCITY 

Time (s) 1369 1225 1435 600 2689 660 1408 

Distance (miles) 7.45 6.79 9.82 8.01 10.87 2.59 3.3 

Maximum speed 

(mph) 

56.7 74.56 67.2 80.3 38.87 43.48 35.82 

Average speed (mph) 19.58 19.95 24.61 47.97 14.54 14.09 8.44 

Maximum 

acceleration (ft/s^2) 

4.84 3.46 10.12 12.32 5.68 2.6 3.75 

Maximum 

deceleration (ft/s^2) 

-4.84 -4.56 -12.91 -10.12 -6.9 -2.73 -10.62 

Average acceleration 

(ft/s^2) 

1.66 1.78 2.21 2.2 1.06 1.87 0.97 

Average deceleration 

(ft/s^2) 

-1.9 -2.59 -2.47 -2.39 -1.29 -2.12 -1.27 

Idle time (s) 259 339 234 45 267 215 427 

No of stops 17 13 16 5 52 7 14 

 Out of these parameters some need to be maximized and the others should be 

minimized according to their role in defining fuel economy. This requires MCDM 

measures. Based on the obtained reduced parameters by PCA and ICA, TOPSIS and 

VIKOR, which are valuable MCDM methods, are applied here to rank the DC in order of 

their FE.   

Further, to support the analysis obtained by these methods, an intelligent power 

split control strategy is developed using GA to split power between engine and the 

battery. To control the engine on/off threshold values of governing parameters’ values 

(which are responsible for power split) are obtained using optimization techniques and 

fuel economy is determined. 
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6.2 Feature extraction of Driving Cycles 

Table 6.1 lists the parameters of seven DCs of city profile considered for study. To 

extract features of these DCs, PCA and ICA methods are used and explained in the 

subsequent sections. PCA and ICA are actually performed over 23 different types of DCs 

and have data strength of [10x23], including the seven used here. 

6.2.1 Principal Component Analysis 

PCA is useful to the dataset which heavily rely on Gaussian features and utilizes first and 

second moments of measured data.  For the feature extraction, PCA is applied over 23 

different DCs and have length of [10x23], including urban and highway. PC8 onward all 

PCs are zero. PC1, PC2 and PC3 are significant and are considered for interpretation of 

data. The first principal component PC1 is strongly correlated with eight of the original 

variables. PC1 can be viewed as a measure of 1) distance, 2) average speed, 3) maximum 

acceleration, 4) maximum deceleration, 5) average acceleration, 6) average deceleration 

and 7) number of stops. It would follow that the DCs with good fuel economy would tend 

to have lesser average speed, maximum acceleration, average acceleration and higher 

value of maximum deceleration, average deceleration and number of stops. The second 

principal component (PC2) increases with only one of the values i.e., decreasing distance. 

This component can be viewed as a measure of how less the distance is covered by 

vehicle on a driving cycle. The third principal component (PC3) increases if the idle time 

in the driving cycle increases. This recommends that greater the idle time, the greater the 

fuel economy.  PCs are unit vectors and are orthogonal identity matrix. Identification of 

the variables of driving cycle through PCA will help to find the required data proved to 

be useful while analyzing the fuel economy of any vehicle over different driving cycles.   

6.2.2 Independent Component Analysis  

For the hidden feature extraction, ICA is also used and is popular technique. ICA is 

statistical and computational technique to identify the meaningful hidden features. Here, 

ICA is applied on [10x23] size data set where 23 different cycles and 10 different 

parameters of driving cycles are considered. In contrast to PCA, ICA extracts six 

parameters significant for the analysis. ICA finds contribution of six parameters of DCs 
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to be most informative out of ten named as trip time, average speed, maximum 

deceleration, average acceleration, maximum acceleration and idle time during the trip. 

6.3 Nature Identification of Driving Cycles 

The driving cycle is the speed trace at each time instant. To know the nature of DCs, 

probability distribution functions of these are determined. The mean and standard 

deviations (SD) of the distributions are recorded and listed in table 6.2. It can be observed 

that no DC follows a normal distribution with mean=0 and SD=1. This enables us to 

choose ICA for feature extraction as this is fit for non-Gaussian data set. Various DC 

distributions are plotted in figure 6.1.  

Table 6.2: Mean and standard deviations of various distributions 

Driving cycle Mean 

(Location parameter) 

Standard deviation 

(Scale parameter) 

Distribution type 

INDIAN -3.1518 33.79 Generalized Pareto 

UDDS 4.2804 5.0278 Gumbel maximum 

ECE_EUDC -1.7264 22.386 Johnson SB 

LA92 -1.7373 35.69 Johnson SB 

WUVCITY 1.3645 2.4398 Generalized extreme value 

US06 -5.1976 80.503 Generalized Pareto 

JAPAN 10-15 -1.7264 22.386 Johnson SB 

 

 It is observed; DCs chosen here follow non-Gaussian distribution. So, for the 

feature extraction, techniques useful for non-Gaussian type of data set should be applied. 

ICA can be used to extract the useful information.   
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Figure 6.1: Probability distribution plots of DCs, (a) ECE_EUDC (b) INDIAN (c) LA92 (d) UDDS (e) 

US06 (f) WVUCITY (g) JAPAN 10-15 
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6.4 Ranking Method Implication  

In order to rank DCs for fuel economy, TOPSIS and VIKOR methods are applied here. 

VIKOR is multi-criteria optimization and a compromise solution method. It was 

developed by Opricovic and Tzeng [38, 41, 237]. The method is based on ranking and 

selecting the alternatives from a set of conflicting norms. Each alternative is estimated 

according to each criterion function. Ranking is performed by comparing the gauge of 

closeness to the ideal alternative.  

 TOPSIS is a multi attribute decision making method.  It is used for measuring 

relative efficiencies of alternatives. Yoon and Hwang [36] and Yoon [37] introduced the 

TOPSIS method. It is based on the scheme that the prominent alternative has the shortest 

distance from the ideal solution. If each attribute takes a monotonically escalating or 

falling variation, ideal solution can be defined simply. Such a solution is composed of all 

the best attributes’ values achievable. Worst solution will be composed of all the worst 

attributes’ values achievable. The shortest distance from the ideal solution in the 

Euclidean space is the best solution. It may concurrently have the farthest distance from 

negative ideal solution [39]. So, TOPSIS method chooses the solutions those are all 

together close to the ideal solution. 

 VIKOR and TOPSIS are applied to the extracted features from ICA and PCA to 

rank various DCs in order to get estimation about their FEs without running a vehicle. 

The results for VIKOR and TOPSIS with ICA and PCA are tabulated in table 6.3. The 

results infer that Indian DC is getting invariably first position with all the ranking 

methods. Hence, Indian road conditions are proven to be better for HEVs as they will 

consume lesser liquid fuel and will further minimize the pollutant emissions. The low 

acceleration rate, lower speed and frequent start/stops prompt the motor to work more 

and keep the engine in shut off condition or operate in its most efficient region. This 

becomes a favorable condition for an efficient HEV. Although other DCs are not found to 

be same ranked as FE are achieved. A close observation of LA92, UDDS, WVUCITY 

and ECE_EUDC reveals that most of their parameters are very close to each other, hence 

taking VIKOR/TOPSIS towards the unintended ranking level.  
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Table 6.3: Driving cycle ranking by VIKOR and TOPSIS 

VIKOR with PCA VIKOR with ICA TOPSIS with PCA TOPSIS with ICA FE ranking 

Indian Indian Indian Indian Indian 

WVUCITY LA92 WVUCITY LA92 UDDS 

JAPAN 10-15 UDDS JAPAN 10-15 WVUCITY ECE_EUDC 

UDDS WVUCITY UDDS UDDS LA92 

LA92 ECE_EUDC ECE_EUDC ECE_EUDC WVUCITY 

ECE_EUDC US06 LA92 US06 US06 

US06 JAPAN 10-15 US06 JAPAN 10-15 JAPAN 10-15 

6.5 Analysis of Fuel Economy over Different Driving Cycles 

The presence of two power sources in HEVs focuses on the need of designing an energy 

management strategy to split power between them. The strategy should be able to 

minimize the fuel consumption and maximize the power utilization. Fuel economy of 

Toyota Prius over considered city driving cycles is performed in ADVISOR.  

From chapter 5, part 4 discussion model 1 is chosen to use here. Threshold values 

of deciding parameters, responsible to turn on/off the engine are estimated using GA and 

fuel economies are recorded. Table 6.4 records the threshold values of ‘cs_eng_on_soc’, 

‘cs_min_off_time’, ‘cs_min_pwr’, ‘cs_electric_launch_spd’ and ‘cs_eng_min_spd’ 

obtained after GA simulations. Table 6.5 collects the efficiencies of engine, motor and 

generator and the fuel economy over various DCs with the threshold values obtained in 

table 6.4. Among all the driving cycles, Indian urban driving cycle is giving best fuel 

economies. India being the land of opportunities for automotive industries to invest, the 

favorable road conditions can be path breaking to bring HEVs on Indian roads as a part of 

NMEM.    

Table 6.4: Optimized parameter values of drive cycles using GA 

Drive cycle SOC (%) Off time (s) Power 

(watt) 

Electric speed 

(rad/s) 

Engine speed 

(rad/s) 

UDDS 39.65 9.61 9276.9 10.79 209.43 

ECE_EUDC 33.08 6.10 6805.9 12.48 281.66 

LA92 38.91 4.26 9306.6 11.08 254.23 

US06 38.01 9.80 9318.6 10.63 254.92 

Indian 33.60 6.70 9280.2 10.88 252.97 

Japan 10-15 33.10 9.71 9762.3 10.64 230.53 

WVUCITY 39.11 2.13 9128.3 10.07 230.12 
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Table 6.5: Efficiency evaluation of components using GA 

Drive cycle Engine efficiency 

(%) 

Motor efficiency 

(%) 

Generator efficiency 

(%) 

Fuel economy 

(mpgge) 

UDDS 30.30 83.65 64.77 59.32 

ECE_EUDC 27.32 81.67 92.46 52.25 

LA92 31.48 82.59 67.22 48.18 

US06 33.08 82.54 60.58 44.72 

Indian 30.34 84.17 23.56 61.44 

Japan 10-15 19.16 92.89 80.54 43.00 

WVUCITY 21.07 79.39 74.63 46.99 

 

Figure 6.2 shows the distance covered in a DC and time taken to complete the 

route. As time and distance both are more for Indian DC; it seems to have more fuel 

consumption as compared to others.  

 

Figure 6.2: Distance covered and time duration of various drive cycles 

But, figures 6.3, 6.4 and 6.5 show that average acceleration and average speed are 

lesser and the 'number of stops' are more for Indian DC as compared to others. If we look 

deeper into favorable working conditions of HEVs, it can be concluded that low 

acceleration rate, lower speed, frequent start/stops will motivate motor to work more and 

will keep the engine in shut off condition or operate in its most efficient region thus 

minimizing the fuel consumption to a great extent. Further, frequent start/stop will make 

generators recuperate more energy when the brakes are applied. Therefore, Indian road 

condition will offer lesser liquid fuel consumption and better utilization of hybridization 

concept.  
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Figure 6.3: Average acceleration plot of various drive cycles 

 

Figure 6.4: Average speed plot of various drive cycles 

 

Figure 6.5: Number of stops for various drive cycles 
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Further simulations are performed with the modified SOC estimation algorithm 

which promises to give better results in terms of fuel efficiency and speed trace. Table 

6.6 performs the comparison between ‘default SOC estimation method’ with ‘Rint battery 

model’ and modified SOC estimation method with proposed model 2. The modified SOC 

estimation algorithm is either improving fuel economy or trace or both. 

Vehicle performance is varied much by the idling time of the trip. In general 

cases, idling are allowed at the stops, i.e., engine runs with some speed to give power to 

the accessories. But if, idle stopping is implemented (engine shut down rather) the 

significant amount of fuel can be saved. The comparative study of the fuel economy in 

case of idle stopping with zero engine speed and engine on is tabulated here. Results in 

table 6.7 show noteworthy improvement in fuel economies for all DCs and Indian DC is 

dominating. Two major reasons idle time and number of stops may play momentous 

functionality. Idle time is considerable, but a high number of stops will recuperate more 

kinetic energy which will motivate the vehicle to run more on electrical energy, hence 

improves fuel economy. Highest regenerative efficiency is obtained from Indian DC, 

shown in table 6.7. Regenerative efficiency is the ratio of energy captured during 

regenerative braking to the energy generated due to negative forces in a trip.  

Table 6.6: Fuel economy comparison with default and modified SOC estimation method 

Drive cycle Fuel economy with default SOC 

estimation method and Rint model 

(mpgge) 

Fuel economy with modified SOC 

estimation method and  model 2 (mpgge) 

UDDS 59 (with trace miss) 59.3291 (without trace miss) 

ECE_EUDC 46.7 (without trace miss) 52.2579 (without trace miss) 

LA92 44.3 (with trace miss) 48.1884 (without trace miss) 

US06 42 (with trace miss) 44.7263 (without trace miss) 

Indian 54.7 (with trace miss) 61.4473 (without trace miss) 

Japan 10-15 41 (without trace miss) 43.00 (without trace miss) 

WVUCITY 46.7 (with trace miss) 46.9988 (without trace miss) 

 

Table 6.7: Fuel economy comparison with and without engine idling 

Drive cycle FE with EI 

(mpgge) 

FE without 

EI (mpgge) 

FE 

improvement 

(%) 

Idling 

time (%) 

No. of 

stops 

Regenerative 

efficiency  

UDDS 59.32 62.33 5.06 18.9 17 119.59 

ECE_EUDC 52.25 54.05 3.44 27.6 13 -78.77 

LA92 48.18 50.44 4.69 16.3 16 185.33 

US06 44.72 51.58 15.3 7.50 5 217.77 

Indian 61.44 85.32 38.8 9.92 52 250.30 

Japan 10-15 43.00 44.45 3.37 32.5 7 -381.93 

WVUCITY 46.99 48.74 4.61 30.3 14 -193.28 

*EI=engine idling 
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6.5.1 Validation of Control Strategy 

The suitability of the proposed control strategy is calculated through numerous 

simulations performed over different DCs repeated over diverse geographic provinces. 

The simulations are performed on model 2 with the modified SOC estimation method. In 

all instances, the demanded power and speeds are met and can be observed from figure 

6.6.  
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(f) 

 

(g)  

Figure 6.6: Speed and time traces of driving cycles (a) ECE_EUDC, (b) Indian, (c) LA92, (d) UDDS, 

(e) US06, (f) WVUCITY and (g) JAPAN 10-15 

 Various studies also show that HEVs can give better fuel efficiency on Indian 

roads in comparison to the developed country road [238, 239].  

6.7 Summary 

The efficiency of an HEV is obviously dependent on the road profiles. A profile is a 

composition of various parameters. Few vital parameters are identified using size 

reduction techniques and DCs are ranked in order of their fuel economy using multi 
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criterion optimization methods. The results are further validated using GA based 

intelligent power split control strategy. It is concluded that the Indian urban DC is 

promising and provides higher fuel efficiency for an HEV as compared to other countries. 

For Indian DC, 61.4437 mpgge FE without engine idling and 85.3290 mpgge with engine 

idling is achieved. In the automobile sector, the Indian market is ranked second after 

China with 8.9 percent growth rate.  The favorable Indian road profiles will attract more 

people to use HEVs, thus boom in the automobile manufacturing market is expected. 

This will further reduce toxic emissions and will contribute to the Indian economy. It is 

also recommended that ICA should be applied rather than PCA for extracting urban DC 

parameters to analyze the performance as they follow non-Gaussian distribution. Engine 

idling should be considered as a powerful feature for improving fuel economy on city 

roads. 
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Chapter 7                                                                             
Conclusion and Future Scope 
 

 

ICE based vehicles are keystone of the modern transportation system. These vehicles use 

fossil fuels as a source of energy to propel and let out noxious gases. These gases are 

harmful for the environment and cause human health problems. Emanation of noxious 

gases, apace extraction of fossil fuel resources, rising oil prices and increasing concerns 

regarding energy security; making the ICE based vehicles a reason of environmental 

pollution and damaging the ecosystem. These concerns encourage the society to discover 

alternatives for sustainable future transportation. 

 HEVs are chosen here to fulfil the requirement of the modern transportation 

system while balancing the petroleum usage and emission of toxic gases. Battery is an 

important part of HEV and controls the performance over a long run. To achieve real 

time performance of the vehicle, critical study of battery models should be performed as 

part and parcel of a vehicle. As the battery gets associated with the vehicle; the load, the 

vibrations generated during movement, the temperature and the aging effects, all will 

influence its performance. 

7.1 Conclusion  

Selection of suitable battery for HEV application is performed using Ashby, TOPSIS and 

VIKOR methods. Highest relative closeness value (0.863) found out using TOPSIS and 

minimum index value (0) obtained using VIKOR and from selection charts made by 

Ashby's approach, Li-ion battery is selected as the best suitable battery. Li-ion battery is 

rated first, followed by Ni-MH battery using above stated methods. Since Li-ion batteries 

have high energy density and high specific energy, they are useful for promising HEV 

performance. They weigh half compared to other batteries, hence will surmount in the 

future.  

 Three battery models are developed here to be incorporated into vehicle for 

propulsion. Effect of temperature on these batteries is studied. Variation in OCV, 



   

Conclusion and Future Scope 

148 
 

resistance and capacity of battery is analyzed for all the three models. From temperature 

effect analysis, it is observed that the battery should not be operated above 40-45 C. 

Increase in temperature increases battery capacity by 4-6 percent which is also observed 

in practical/experimental data available in literatures of concern. Since self discharge 

current is included, the battery capacity is not found to be 100 percent as labelled, but it 

will be a little bit lower than rated capacity.  

 The threshold SOC level from the SOC-OCV curves at different temperatures is 

estimated to be 35 percent using gradient method. At lower temperatures this threshold 

comes later and at higher temperatures his will come sooner compared to room 

temperature point. 

 Voltage and current based SOC estimation method is proposed which eliminate 

the disadvantages of conventional current based method of SOC estimation. A weighting 

factor associates the voltage and current based SOCs to forecast its precise value. 

Involving a correction factor reckons the accuracy of SOC calculation in varying 

temperature and loading conditions. Battery, when placed in the vehicle, deviate from its 

sterilized behavior. Modification in correction factor is required with load (when battery 

is place in vehicle to power) and also if operating temperature is varied. A more refined 

correction factor suitable for loading and varying temperature is proposed. The SOC can 

be calculated 'on-the-fly' using proposed formula or look up table technique can also be 

practiced. Proposed SOC estimation method without load is able to estimate SOC with 

the error band of 0-2 percent above 35 percent SOC level point. As the load gets 

involved, the error between calculated and reference SOC is found to be in between 0-5 

percent band. 

 To split power between the engine and the battery intelligently, DIRECT, GA and 

PMP are implemented to determine the fuel economies of vehicle. These optimization 

techniques help in finding the optimized values of governing parameters of vehicles like 

power, speed, time of travel and SOC. These optimization techniques are practiced using 

modified SOC estimation method and a comparison opposite to the conventional SOC 

estimation method is performed. Proposed method provides significant improvement in 

fuel economies. It is observed that GA provides an improvement of 21.82 percent over 

DIRCT method. PMP provides a fuel economy of 60.62 mpgge, which calculates the 

improvement of 16.01 percent compared to GA. Trace misses are tried to be removed 
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every time. To have an insightful comparison of applied algorithms with developed 

battery model and proposed modified SOC estimation method using GA provides 20.25 

percent and PMP provides 7.75 percent improvement compared to the default battery and 

conventional SOC estimation method is observed. 

 By temperature analysis, it is observed that at lower temperatures fuel economies 

are lesser and at higher temperature it is high compared to room temperature. Because the 

current drawn from battery is lesser at low temperatures and at high temperature current 

drawn is high; vehicle performance varies abruptly other than nearby room temperatures. 

Continuous charging/discharging of battery at high temperature reduces battery life and 

diminishes vehicle performance, hence avoided. 

 Driving cycle parameters are reduced using ICA to a smaller set of six out of ten 

parameters. TOPSIS and VIKOR methods grade Indian driving cycle first and predict to 

have a better fuel economy over other driving cycles. These results are further validated 

using GA based method. In the automobile sector, the Indian market is ranked second 

after China with 8.9 percent growth rate.  The favorable Indian road profiles will attract 

more people to use HEVs, thus boom in the automobile manufacturing market is 

expected. This will further reduce toxic emissions and will contribute to the Indian 

economy. 

7.2 Future Work  

Considering the battery technology most eminent for the future transportation, following 

effort can be put in order to improve its performance and hence HEV's fuel efficiency: 

1. Analysis and modeling of effects of inhomogeneities like Aging, degradation and 

failure.  

2. Implementation of battery management system is most challenging and 

demanding for optimized battery operation in HEVs. 

In HEVs, lots of scope exist which may help to improve the performance as follows: 

1. Implement the proposed algorithm to work in real-time. 

2. Implementation of other algorithms to improve the efficiency. 

3. Minimize engine emission. 
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 In HEVs, although battery and engine two power sources are present, engine only 

has to work as power source. Battery gets charged through regenerative braking during 

deceleration otherwise engine is used to charge the battery. So, indirectly engine only 

works as power source. A more refined version of hybrid vehicles is PHEV. PHEV 

consist of a large on-board rechargeable battery along with the smaller size engine. 

Battery is charged through mains power supply and can be depleted up to its lowest 

allowable limit. Development of energy management strategies for PHEVs will be next 

step towards the green transportation.  

 Vehicle-to-grid (V2G) concept also gets cherished with  the concept of PHEVs. 

With the facilities of large batteries which can be charged at offices, parking lots or at 

homes during off peak hours can be used to run household appliances and can be sold to 

grids back during peak hours. An effective two way communication between consumer 

and grid, smart grid implementation and smart metering infrastructure development, will 

support the V2G concept to nourish.                 
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Table A1: Parameters used during battery modeling 

Parameters Values Definitions 

   345 volts Battery nominal voltage 

     69.5Ah Battery capacity) 

Ambient temperature 25
0
C=298 K Room temperature 

   8.3143J/mole/K Gas constant 

 

Table A2: Vehicle parameters used in simulations 

Parameters Values Definitions 

tx_pg_s 78 Number of teeth in ring gear 

tx_pg_r 30 Number of teeth in sun gear 

wh_1st_rrc 0.009 Rolling resistance coefficient 

veh_gravity 9.81      Acceleration imposed by earth 

fd_ratio 3.93 Gear ratio of driveline 

fc_fuel_den 749     Volumetric density 

fc_min_spd 104.7198 rad/s Minimum allowable engine speed 

wh_radius 0.2870   Wheel radius 

fc_max_spd 418.8790 rad/s Maximum allowable engine speed 

veh_CD 0.30 Aerodynamic drag coefficient 

veh_FA 1.7460    Vehicle frontal area 

veh_air_density 1.2 kg*   Vehicle air density 

tx_spd_dep_upshift 

and  

tx_spd_dep_dnshift 

[0 6.6667 11.1111 17.7778   

20.8333  277.7778] 

Gear ratio of transmission 

vc_idle_bool 1 Idling of engine is allowed 

0 Engine shuts down rather than idle 

cs_hi_soc 0.95 (%) Highest state of charge allowed 

cs_lo_soc 0.65 (%) Lowest state of charge allowed 

cs_target_soc 0.70 (%) Expected state of charge at the end of 

trip 

ess_initial_soc 0.80 (%) Initial state of charge of battery 

mc_inertia 0.0226 kg*   Rotational inertia of motor 

mc_inertia 0.0226 kg*   Rotational inertia of generator  

fc_air_fuel_ratio 14.5 Air to fuel ratio (on mass basis) 

fc_fuel_lhv 42600       Lower heating value 

fd_ratio 3.93 Final drive ratio 

wh_radius 0.287   Rolling radius of tire 

mc_mass  56.75 kg Mass of motor and enclosure 

gc_mass  32.7 kg Mass of machine and enclosure 

wh_inertia  

 

    3.3807 kg*   Rotational inertia of all wheels, tires, 

and axles 
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Table A3: Vehicle components' specifications 

Component Specification 

Motor 

specification 

30-kW permanent magnet synchronous motor 

Torque range=[0 5   35  65  95  125 155 185 215 245 275 305] N-m 

Speed Range=[0  52.3  104.7  157.0  209.4  261.7  314.1  366.5  418.8  471.2  628.3] rad/s 

Engine 

specification 

1.5L Atkinson cycle engine 

Maximum Power 43kW @4000rpm, Peak Torque  75 lb-ft @ 4000 rpm 

Torque range =[8.5428   16.9500   25.4928   34.0356   42.4428   50.9856   59.5284   

67.9356   76.4784   85.0212   93.4284  101.9712] N-m 

Speed range=[104.7198  130.8997  157.0796  183.2596  209.4395  235.6194  261.7994  

287.9793  314.1593  340.3392  366.5191  418.8790] rad/s 

Battery 

specification 

Nominal Cell Voltage: 1.2V 

Total Cells: 240 (6 cells x 40 modules 

Nominal Voltage: 288 V 

Capacity: 6.5 Ah 

Generator 

specification 

15-kW permanent magnet synchronous generator 

Torque range=[0 5 15 25 35 45 55] N-m 

Speed range=[0  52.35 104.71   157.07  209.43  261.79  314.15] rad/s 
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