
Analysis and Design of FFT
Processor Architecture for OFDM

Applications

THESIS

Submitted in partial fulfilment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Ganjikunta Ganesh Kumar

ID. No. 2013PHXF0007H

Under the Supervision of

Prof. Subhendu K Sahoo

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE - PILANI

2018

http://universe.bits-pilani.ac.in/


BIRLA INSTITUTE OF TECHNOLOGY

AND SCIENCE - PILANI

CERTIFICATE

This is to certify that the thesis entitled, Analysis and Design of FFT Processor Archi-

tecture for OFDM Applications and submitted by Ganjikunta Ganesh Kumar ID No.

2013PHXF0007H for award of Ph.D. of the Institute embodies original work done by

him under my supervision.

Supervisor

Prof. Subhendu K Sahoo

Associate Professor,

BITS-Pilani, Hyderabad Campus

Date:

i

http://universe.bits-pilani.ac.in/
http://universe.bits-pilani.ac.in/


Acknowledgements

I wish to express my sincere gratitude to my supervisor Prof. Subhendu K Sahoo

for his continuous help and valuable guidance, without which this work would not

have been accomplished. His unwavering support through-out the journey has been a

constant source of encouragement. I am grateful to Prof. G. Sundar, Director, Birla

Institute of Technology and Science - Pilani, Hyderabad Campus, for providing all the

necessary facilities required to carried out my research. I also take this opportunity

to thank the previous and current Heads of the Department of Electrical Engineer-

ing, Prof. Y. Yoganandam and Prof. Sanket Goel, respectively for the support and

help extended to me. I would also like to thank my Doctoral Advisory Committee

(DAC): Prof. Prabhakara Rao and Dr. S. K. Chatterjee, for their timely feedback

and insightful comments. I heartily thank Prof. Pramod Kumar Meher, School of

Computer Engineering, Nanyang Technological University, Singapore, for his support

throughout the research work. To all my friends in the department, thank you for

your cooperation and camaraderie - especially to Mr. Avinash S Vaidya, Mr. Sai

Phaneendra P, Mr. Goutham Makkena, and Mr. Chetan Kumar V for helping me to

overcome difficult phases and not letting me give up. Lastly, my warmest acknowl-

edgments to my parents, Mr. Venkata Ramudu and Mrs. Lakshmi Devi, my sister

Mrs. Bhargavi and my brother-in-law Mr. P Manohara for their unconditional love,

and support throughout my Ph.D.

ii



Abstract

The aim of this thesis is to analyze fast Fourier transform (FFT) at algorith-

mic, architecture, and arithmetic level and the possibilities to reduce complexity and

power consumption of the twiddle factor multiplication in FFT for IEEE 802.11a and

802.15.4−g OFDM systems. In algorithmic level, we have analyzed various algorithms

in terms of arithmetic complexity (number of real multiplications and real additions),

that effect accuracy, area, and power consumption of the architecture. At architecture

level, different FFT architectures are analyzed and compared with respect to num-

ber of complex multipliers, complex adders and memory. Further, the design choice

of FFT algorithm and architecture for OFDM systems is discussed. At arithmetic

level, the hardware implementation of the twiddle factor multiplication is presented.

Initially, the implementation of twiddle factor multiplication using general complex

multiplication is discussed and then, the twiddle factor multiplication architecture

based on constant multiplications are investigated.

Based on the FFT analysis, two architectures are proposed: i) fixed length (64-

point) FFT for IEEE 802.11aWLAN application and ii) variable-length (16/32/64/128-

point) FFT for IEEE 802.15.4 − g WPAN application. For fixed-length FFT, novel

pipelined single-path delay feedback (SDF) architectures are proposed for radix-22 and

radix-23 algorithms using modified complex constant multipliers. These architectures



iv

result in low hardware complexity and consumes low power compared to earlier FFT

architectures.

For variable-length (16/32/64/128-point) FFT, a SDF architecture is proposed

based on mixed-radix algorithm to reduce the number of complex multipliers. It

employs a configurable complex constant multiplier (CCCM) structure instead of

fixed constant multiplier to perform variable-length twiddle factor multiplication. A

hardware-sharing mechanism is introduced to reduce the memory space requirements

of the proposed FFT computation scheme. Both Field Programmable Gate Array

(FPGA) and Application Specific Integrated Circuit (ASIC) targeted synthesis re-

sults of the proposed variable-length processor are presented.



Contents

Certificate i

Acknowledgements ii

Abstract iii

Contents v

List of Figures x

List of Tables xiv

Abbreviations xvi

1 Introduction 1

1.1 Discrete Fourier Transform: . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Computational complexity of DFT . . . . . . . . . . . . . . . . 6

v



Contents vi

1.2 Fast Computation of DFT: A Historical Perspective . . . . . . . . . . . 8

1.2.1 Applications of FFT . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Advancements in FFT Algorithm 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Complex-valued FFT Algorithms . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Radix-2 FFT algorithms . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Radix-4 FFT algorithm . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Radix-2i and Higher radix FFT Algorithms . . . . . . . . . . . 22

2.2.4 Split-Radix FFT . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.5 Computational Complexity for Complex-Valued FFT Algorithms 29

2.3 Real-valued FFT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Computation of the RFFT using the CFFT . . . . . . . . . . . 31

2.3.2 FFT of Real-Valued data . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Fast Hartley Transform . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.4 Quick Discrete Fourier Transform . . . . . . . . . . . . . . . . . 37

2.3.5 Computational Complexity for Real-Valued FFT Algorithms . . 38



Contents vii

2.4 Special cases of the FFT algorithms . . . . . . . . . . . . . . . . . . . . 39

2.4.1 FFT Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Fast Fourier Transform of Sparse Input . . . . . . . . . . . . . . 40

2.4.3 Scaled DFTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.4 Multidimensional FFTs . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.5 Quantum Fourier Transform . . . . . . . . . . . . . . . . . . . . 43

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 FFT Architectures and Design choice for OFDM systems 47

3.1 Memory based Architectures . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Single Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Dual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 Array Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.4 Cached Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Pipelined Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Delay Feedback Architectures . . . . . . . . . . . . . . . . . . . 53

3.2.1.1 Single-path Delay Feedback (SDF) . . . . . . . . . . . 53

3.2.1.2 Multi-path Delay Feedback (MDF) . . . . . . . . . . . 58

3.2.2 Delay Commutator Architectures . . . . . . . . . . . . . . . . . 59

3.2.2.1 Multi-path Delay Commutator Architectures . . . . . 59



Contents viii

3.2.2.2 Single-path Delay Commutator Architectures . . . . . 62

3.3 Design choice for OFDM systems . . . . . . . . . . . . . . . . . . . . . 63

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Twiddle Factor Multiplication and its Hardware 68

4.1 General Complex Multiplication . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Fixed-width Multiplication . . . . . . . . . . . . . . . . . . . . . 72

4.2 Constant Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Single Constant Multiplication (SCM) . . . . . . . . . . . . . . 75

4.2.2 Multiple Constant Multiplication (MCM) . . . . . . . . . . . . . 78

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 80

5.1 Design consideration of the FFT for 64-point . . . . . . . . . . . . . . 81

5.2 Proposed Modified FFT Architectures . . . . . . . . . . . . . . . . . . 82

5.2.1 Butterfly unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Modified CSD Complex Constant Multipliers . . . . . . . . . . . 85

5.2.2.1 CCM W64 multiplier unit . . . . . . . . . . . . . . . . 90

5.2.2.2 CCM W16 multiplier unit . . . . . . . . . . . . . . . . 94

5.2.2.3 CCM W8 multiplier unit . . . . . . . . . . . . . . . . 95

5.3 Comparison and Experimental results . . . . . . . . . . . . . . . . . . . 96



Contents ix

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Variable-Length FFT Architecture for MR-OFDM 102

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Decomposition and Twiddle Factors at each stage of FFT . . . . . . . . 106

6.3 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Multiplexer switching to perform variable-length FFT . . . . . . 110

6.3.2 Modified Complex Constant Multipliers . . . . . . . . . . . . . . 111

6.3.2.1 Configurable W128 Multiplier . . . . . . . . . . . . . . 114

6.4 Comparison and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusions and Future Work 123

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 126



List of Figures

1.1 A sine wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Illustration of the DFT for N = 4 of a sine wave. (a) Finite-length

sequence x(n) (b) DFT magnitude. (c) DFT phase. . . . . . . . . . . 5

2.1 Length-4, DIT Radix-2 FFT. . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Length-4, DIF Radix-2 FFT. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Radix-4 FFT butterfly. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Signal flow graph of 16-point radix-22 DIF FFT. . . . . . . . . . . . . 25

2.5 Split-Radix FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Quick Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . 36

2.7 FFT pruning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Single memory architecture. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Dual memory architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Array memory architecture. . . . . . . . . . . . . . . . . . . . . . . . . 51

x



List of Figures xi

3.4 Cached memory architecture. . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Basic building blocks of R2SDF architecture. . . . . . . . . . . . . . . . 53

3.6 R2SDF 4-point DIF FFT architecture. . . . . . . . . . . . . . . . . . . 54

3.7 N -point R2SDF Architecture. . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Length-64, R4SDF Architecture. . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Length-64, R22SDF Architecture. . . . . . . . . . . . . . . . . . . . . . 57

3.10 Multi-Path Delay Feedback Pipelined FFT Architecture. . . . . . . . . 58

3.11 R2MDC 4-point FFT architecture. . . . . . . . . . . . . . . . . . . . . 59

3.12 Operation of the commutator in R2MDC architecture. . . . . . . . . . 60

3.13 Step-by-step process of an 4-point R2MDC FFT architecture. . . . . . 61

3.14 R2MDC N -point FFT architecture. . . . . . . . . . . . . . . . . . . . . 62

3.15 Length-16, R4MDC Architecture. . . . . . . . . . . . . . . . . . . . . . 62

3.16 Length-64, R4SDC Architecture. . . . . . . . . . . . . . . . . . . . . . 63

3.17 Block diagram of FFT based OFDM system . . . . . . . . . . . . . . . 64

4.1 General complex multiplier. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Approach I with four multipliers and two adders. . . . . . . . . . . . . 70

4.3 Approach II with three multipliers and five adders. . . . . . . . . . . . 71

4.4 Approach III with three multipliers and three adders. . . . . . . . . . . 72

4.5 Partial product array for n× n unsigned multiplication. . . . . . . . . . 73



List of Figures xii

4.6 General constant multiplier. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Constant multiplier using shifters and adders. . . . . . . . . . . . . . . 76

4.8 Optimized constant multiplier. . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Constant multiplier using MCM. . . . . . . . . . . . . . . . . . . . . . 78

5.1 Radix-2i pipelined SDF 64-point FFT : (a) R22SDF , (b) R23SDF, and

(c) R24SDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Butterfly units BU1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Butterfly units BU2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Proposed modified CSD multiplier for CCM1 and CCM2 . . . . . . . . 87

5.5 CSD complex constant multiplier for CCM3 . . . . . . . . . . . . . . . 88

5.6 Block diagram of CCM W64 multiplier unit . . . . . . . . . . . . . . . 89

5.7 Block diagram of CCM W16 multiplier unit . . . . . . . . . . . . . . . 95

5.8 Block diagram of CCM W8 multiplier unit . . . . . . . . . . . . . . . . 95

5.9 SQNR versus twiddle factor word length for R22SDF and R23SDF . . . 99

6.1 Radix-22 butterfly constructed from two Radix-2 butterflies . . . . . . 107

6.2 Proposed 16/32/64/128-point SDF pipeline FFT architecture . . . . . . 109

6.3 CSD complex constant multiplier for CCM1 and CCCM . . . . . . . . 112

6.4 CSD complex constant multiplier for CCM2. . . . . . . . . . . . . . . . 112

6.5 W128 configurable constant multiplier block diagram . . . . . . . . . . . 114



List of Figures xiii

6.6 Sharing block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.7 Constant Multiplier Block1 . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8 Constant Multiplier Block2 . . . . . . . . . . . . . . . . . . . . . . . . . 116



List of Tables

2.1 Twiddle factor at each stage to compute N -point FFT . . . . . . . . . 27

2.2 Number of real multiplications to compute a length-N Complex DFT . 29

2.3 Number of real additions to compute a length-N Complex DFT . . . . 29

2.4 Number of real multiplications to compute the DFT for a real-valued

input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Number of real additions to compute the DFT for a real-valued input . 38

3.1 Data output order of the R2SDF pipelined architecture for 4-point FFT 55

3.2 Comparison of the number of complex multipliers, adders, and memory

units for various pipelined architectures . . . . . . . . . . . . . . . . . . 65

5.1 Base number of twiddle factor at each stage to compute 64-point FFT . 82

5.2 CSD representations of eight sets constant values for composing twiddle

factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Selection of the Twiddle Factors in CCM1 . . . . . . . . . . . . . . . . 92

xiv



List of Tables xv

5.4 Selection of the Twiddle Factors in CCM2 . . . . . . . . . . . . . . . . 95

5.5 Selection of the Twiddle Factors in CCM3 . . . . . . . . . . . . . . . . 96

5.6 Comparison of the proposed R2iSDF architectures to other architec-

tures for the computation of a 64-point FFT . . . . . . . . . . . . . . . 97

5.7 Comparison of number of adders for CCM W64 multiplier unit . . . . . 97

5.8 Comparison of various 64-point FFT architectures . . . . . . . . . . . . 99

6.1 MR-OFDM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Decomposition of four different FFT lengths . . . . . . . . . . . . . . . 106

6.3 Sequence of the 16/32/64/128-point FFT twiddle factor computation

for mixed-radix FFT Algorithms . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Selection of variable-length FFT . . . . . . . . . . . . . . . . . . . . . . 110

6.5 CSD representations of 16 sets constant values for composing twiddle

factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Selection of the Twiddle Factors in CCCM . . . . . . . . . . . . . . . . 118

6.7 Comparison of the proposed architecture to other architectures for the

computation of a 128-point FFT . . . . . . . . . . . . . . . . . . . . . . 120

6.8 Comparison of the proposed architecture to other architectures for the

computation of a 128-point FFT . . . . . . . . . . . . . . . . . . . . . . 121

6.9 Comparison of various 128-point FFT architectures . . . . . . . . . . . 122



Abbreviations

DFT Discrete Fourier Transform

IDFT Inverse Discrete Fourier Transform

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

OFDM Orthogonal Frequency Division Multiplexing

FPGA Field-Programmable Gate Array

ASIC Application-Specific Integrated Circuit

CORDIC COordinate Rotation DIgital Computer

CFFT Complex-valued Fast Fourier Transform

DIT Decimation In Time

DIF Decimation In Frequency

RFFT Real-valued Fast Fourier Transform

SRFFT Split-Radix Fast Fourier Transform

SDFT Scaled Discrete Fourier Transform

SDF Single-path Delay Feedback

CSD Canonical Signed Digit

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

3GPP 3rd Generation Partnership Project

LTE Long Term Evolution

MDCT Modified Discrete Cosine Transform

xvi



List of Abbreviations xvii

SFFT Sparse Fast Fourier Transform

QFT Quantum Fourier Transform

PEs Processing Elements

R2SDF Radix-2 Single-path Delay Feedback

R4SDF Radix-4 Single-path Delay Feedback

BF Butterfly

R22SDF Radix-22 Single-path Delay Feedback

MDF Multi-path Delay Feedback

R2MDC Radix-2 Multipath Delay Commutator

R4MDC Radix-4 Multipath Delay Commutator

SDC Single-path Delay Commutator

R4SDC Radix-4 Single-path Delay Commutator

DAC Digital-to-Analog Converter

ADC Analog-to-Digital Converter

R2iSDF Radix-2i Single-path Delay Feedback

SRMDC Split-Radix Multi-path Delay Commutator

LSP Least Significant Part

MSP Most Significant Part

SCM Single Constant Multiplication

MCM Multiple Constant Multiplication

ROM Read- Only Memory

CSD Canonical Signed Digit

CCM Complex Constant Multiplier

CCCM Configurable Complex Constant Multiplier

SQNR Signal-to-Quantization-Noise Ratio

MR-OFDM Multi-Rate and multi-regional Orthogonal

Frequency Division Multiplexing

MR-FSK Multi-Rate and multi-regional Frequency Shift Keying



List of Abbreviations xviii

MR-OQPSK Multi-Rate and multi-regional Offset Quadrature

Phase Shift Keying

DSSS Direct Sequence Spread Spectrum

SUN Smart Metering Utility Networks

AMR Automatic Meter Reading

RF Radio Frequency

LR-WPAN Low Rate Wireless Personal Area Network

WPAN Wireless Personal Area Network

DSP Digital Signal Processing

WLAN Wireless Local Area Network

nm Nanometer

ns Nanosecond

µm2 Square Micrometer



Chapter 1

Introduction

The discrete Fourier transform (DFT) is the most widely used tool in digital signal pro-

cessing (DSP) systems. It has indispensable role in many applications, such as speech,

audio and image processing, signal analysis, communication systems, and many oth-

ers. It maps time domain sequence to a frequency domain sequence of the same length,

while the inverse discrete Fourier transform (IDFT) performs the opposite. The brute-

force computation of the DFT of length N requires O(N2) multiplications. Due to

such high computational requirement, it was not possible to use that for real-time and

online DSP applications until 1965, when Cooley and Tukey [1] developed the famous

fast Fourier transform (FFT) algorithm. It could be possible to reduce the operation

count of DFT from O(N2) to O(N log2N), for a DFT of length N . During the last 50

1



Chapter 1. Introduction 2

years, the innovations in algorithms and architectures have made remarkable progress

in the efficiency of computation of the FFT.

This chapter is organized as follows: In Section 1.1, the specifications of DFT and

its computational complexity are presented. The basic technique, namely the divide

and conquer approach (FFT algorithm) that reduces the computational complexity of

DFT is presented in Section 1.2. The motivation of the thesis is discussed in Section

1.3. This chapter further discusses the main objectives and organization of the thesis

in Sections 1.4 and 1.5, respectively.

1.1 Discrete Fourier Transform:

The N -point DFT/IDFT are, respectively, calculated as

X(k) =
N−1∑
n=0

x(n)W nk
N , k = 0, 1, 2, ...,N− 1, (1.1)

and

x(n) =
1

N

N−1∑
k=0

X(k)W−nk
N , n = 0, 1, 2, ...,N− 1, (1.2)



Chapter 1. Introduction 3

where n is the time index and k is the frequency index. The twiddle factor W nk
N can

be represented as:

W nk
N = e−j2πnk/N = cos

(
2πnk

N

)
− j sin

(
2πnk

N

)
(1.3)

In equations (1.1) and (1.2), the data sequence x(n) may be complex while the kth

spectral component X(k) is always complex. These two equations differ only in the

sign (−) of the exponent of the twiddle factor WN and the scale factor 1/N . Therefore,

the algorithms for efficient computation of DFT could be applied for the efficient

computation of IDFT [2] by simple and straightforward modifications.

Significance of the DFT

To illustrate the significance of DFT let us consider a 4-point DFT of samples of a

sinusoidal signal of 10Hz which is expressed as:

x(t) = sin(2π · 10 · t) (1.4)

For this sine wave, the fundamental period T0 = 0.1 s as shown in Fig. 1.1. Let us

take the sample rate fs = 40Hz i.e. the input is sampled at every 1/fs = T = 0.025 s.

Because N = 4, we need 4 input sample values which could be obtained as follows:

x(n) = x(nT ) = sin(2π · 10 · nT ) = sin

(
nπ

2

)



Chapter 1. Introduction 4

Time index
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
m

pl
itu

de

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.1: A sine wave.

at n = 0, x(0) = sin(0) = 0

at n = 1, x(1) = sin(π
2
) = 1

at n = 2, x(2) = sin(π) = 0

at n = 3, x(3) = sin(3π
2

) = −1

The finite-length sequence of x(n) is shown in Fig. 1.2(a), where x-axis represents

the values of n and y-axis represents the amplitude. The twiddle factors for N = 4

are defined as:

W nk
4 = cos

(
2πnk

4

)
− j sin

(
2πnk

4

)
(1.5)

where nk = 0 to N − 1 i.e., 0 to 3. From equation (1.5), W nk
4 values are: W 0

4 =

1,W 1
4 = −j,W 2

4 = −1,W 3
4 = j.



Chapter 1. Introduction 5

n
0 0.5 1 1.5 2 2.5 3 3.5 4

x(
n)

-1

-0.5

0

0.5

1

k0 0.5 1 1.5 2 2.5 3 3.5 4

M
ag

ni
tu

de

0

0.5

1

1.5

2

k
0 0.5 1 1.5 2 2.5 3 3.5 4

P
ha

se

-2

-1

0

1

2

(a)

(b)

(c)

Figure 1.2: Illustration of the DFT for N = 4 of a sine wave. (a) Finite-
length sequence x(n) (b) DFT magnitude. (c) DFT phase.

The general equation for the 4-point DFT could be written as

X(k) =
3∑

n=0

x(n)W kn
4

= x(0)W
(k)(0)
4 + x(1)W

(k)(1)
4 + x(2)W

(k)(2)
4

+ x(3)W
(k)(3)
4 0 ≤ k ≤ 3 (1.6)

The DFT output values are obtained for k = 0, 1, 2, 3 as

X(k) = [0 − 2j 0 2j]



Chapter 1. Introduction 6

From the DFT output values, the sinusoidal signal can be plotted in terms of its

magnitude and phase as shown in Fig. 1.2(b) and 1.2(c), respectively. The value X(k)

is said to provide information about the kth frequency bin.

The frequency resolution can be obtained as:

4f =
1

T0

=
1

NT
=
fs
N

(1.7)

As the fundamental period of a sinusoidal signal is 0.1 s, so the frequency resolution is

10Hz. From equation (1.7), one can observe that to increase the frequency resolution,

the number of points of data N must be increased [3].

1.1.1 Computational complexity of DFT

Computation of each DFT component directly using equation (1.1) requiresN complex

multiplications and (N−1) complex additions. Therefore, to compute all the N values

of DFT requires a total number of N2 complex multiplications and N(N −1) complex

additions.



Chapter 1. Introduction 7

The DFT of N -point complex-valued input sequence, x(n) then can be expressed

as

X(k) = XR(k) + jXI(k)

=
N−1∑
n=0

[xR(n) + jxI(n)]
[
W kn
RN + jW kn

IN

]
=

N−1∑
n=0

[
(xR(n)W kn

RN − xI(n)W kn
IN)
]

+j
[
xR(n)W kn

IN + xI(n)W kn
RN

]
(1.8)

where k = 0, 1, 2, ....., N − 1. Assuming that each complex multiplication in equation

(1.8) is realized by 4 real multiplications and 2 real additions, while each complex ad-

dition is realized by 2 real additions, the direct computation of equation (1.8) requires

4N2 and 2N(N−1) number of real multiplications and real additions, respectively [4].

Moreover, the computation of DFT also requires a number of indexing and addressing

operations to fetch the input values, intermediate results, and complex coefficients

W kn
N and to store the final results. For large values of N , the arithmetic complexity of

DFT is very high. Therefore, different algorithms have been proposed to reduce the

arithmetic complexity for fast and efficient computation of DFT.



Chapter 1. Introduction 8

1.2 Fast Computation of DFT: A Historical Per-

spective

The computational complexity of DFT is substantially reduced by using the following

trigonometric symmetry and periodicity of the twiddle factor W kn
N :

W
k+N

2
N = −W k

N(Symmetry Property) (1.9)

W k+N
N = W k

N(Periodicity Property) (1.10)

These properties were known for a long time even before the inception of digital

computation. Heideman et al. [5] have traced the first appearance of the FFT back

to Gauss in the year 1805. Gauss developed an algorithm to calculate the DFT which

is equivalent to one of the Cooley-Tukey algorithm. However, Gauss never published

his algorithm outside his collected works. A prior work of Danielson and Lanczos [6]

referred to Runge [7] for their doubling algorithm in X-ray scattering problems. Their

algorithm showed how to reduce a DFT in 2N points to two DFTs on N points with

only slightly more than N operations. The complexity of these algorithms was much

less than N2 but more than N log2N .

The early discoveries of the FFT not noticed till the publication of Cooley and

Tukey’s article in 1965 [1]. This article presented an efficient algorithm based on divide



Chapter 1. Introduction 9

and conquer approach in order to compute the DFT. Divide and conquer approach

was applied to the DFT recursively, such that a DFT of any size N = N1N2 computed

in terms of smaller DFTs of sizes N1 and N2. If N can be factored into N = N1N2,

the indices n and k in equation (1.1) for N -point DFT can be rewritten as:

n = N2n1 + n2


0 ≤ n1 ≤ N1 − 1

0 ≤ n2 ≤ N2 − 1

k = N1k2 + k1


0 ≤ k1 ≤ N1 − 1

0 ≤ k2 ≤ N2 − 1

(1.11)

The index representation of equation (1.11) can be used in equation (1.1) to write

X(k) as:

X(k) =

N2−1∑
n2=0

(N1−1∑
n1=0

x(N2n1 + n2)W n1k1
N1︸ ︷︷ ︸

N1−point DFT

W n2k1
N︸ ︷︷ ︸

twiddlefactor

)
W n2k2
N2

︸ ︷︷ ︸
N2−point DFT

(1.12)

where 0 ≤ k1 ≤ N1 − 1 and 0 ≤ k2 ≤ N2 − 1.

The calculation of X(k) according to equation (1.12) can be carried out in three steps:

(i) compute N1-point DFT, (ii) multiply by twiddle factors, and (iii) finally compute

N2-point DFT. The above three-step procedure can be carried out successively till

N1 = 2. The computational complexity of the DFT by this recursive divide and

conquer approach is reduced from O(N2) to O(N log2N) operations [1]. This was the



Chapter 1. Introduction 10

major turning point for real-time DSP applications of the DFT.

1.2.1 Applications of FFT

The fast Fourier transform finds limitless applications in the general areas of sig-

nal/image processing. It plays a key role in many applications of digital signal pro-

cessing, including frequency and phase estimation [8], and to perform operations such

as convolutions or multiplying large integers [9, 10]. Accurate frequency and phase es-

timation are required in many applications such as speech recognition, speech coding,

determining the object position in radar systems, biomedicine, multimedia systems

etc.

FFT is used in medical imaging for image filtering, image analysis and image recon-

struction [11]. In the Fourier representation of images using FFT, spectral magnitude,

and phase tend to play different roles. Correlation between phase-only versions [12, 13]

of the two images to be aligned is used for image matching. Some of the important

applications based on the FFT-based image matching include face recognition, iris

recognition, palm print recognition, finger print matching and waveform matching.

FFTs are also extensively used in multi-carrier transmission systems, specifically

for applications in Orthogonal Frequency Division Multiplexing (OFDM) systems,



Chapter 1. Introduction 11

such as Digital Broadcasting [14, 15], Worldwide Interoperability for Microwave Access

(WiMAX) [16], IEEE 802.11 standards [17], and Long Term Evolution (LTE) [18].

1.3 Motivation

The FFT algorithm reported by Cooley-Tukey in 1965, named as radix-2 algorithm

was shortly followed by its extension to higher radices which include, radix-4 [19],

radix-8 [20, 21], and radix-16 [22] algorithms. Higher radix algorithms involve signif-

icantly less computational complexity in terms of the number of complex multiplica-

tions, but the implementation of these algorithms is not simple. Among numerous

further developments, the FFT introduced by Duhamel and Hollmann [23] demon-

strated a reduction in the number of multiplications at the cost of input and output

mapping. The complexity issue has been studied detail in [4], and showed that the

split-radix algorithm requires low arithmetic complexity. However, the implementa-

tion of split-radix algorithm is difficult, owing to its irregular structure.

Later in 1996, He and Torkelson [24] proposed a radix-22 algorithm using index

decomposition technique. It has exactly the same number of complex multipliers as

radix-4 algorithm, but has a butterfly structure similar to that of radix-2 algorithm.

This led to, radix-23 [25], radix-24 [26], modified radix-24 [26], radix-25 [27], modified

radix-25 [27] and radix-2i [28] FFT algorithms being proposed by various researchers

using the same index decomposition technique, in order to further reduce the number



Chapter 1. Introduction 12

of multiplications. The main advantages of the generalized radix-2i [28] algorithm are

high throughput and low latency with less area and less power consumption. This

makes radix-2i algorithms more attractive for different applications in communication

systems [28].

Twiddle factor multiplication requires both memory and complex multipliers. The

implementation of complex multipliers has a large impact on the accuracy, speed,

complexity, and power consumption of the design as well. A complex multiplier can

be realized by different approaches such as direct implementation of the complex mul-

tiplier [29], and algorithms based on constant multiplication [30, 31]. In all these

implementations, there is a trade-off between the complexity and the accuracy of the

twiddle factor multiplication. In FFT designs the scenario of twiddle factor multi-

plication is distinct, and impacts the selection of algorithm and architecture. The

main aim of this thesis is to select an appropriate FFT algorithm and architecture

and to optimize twiddle factor multiplication in the FFT for IEEE 802.11a and IEEE

802.15.4− g standard OFDM systems.

1.4 Objectives of the Thesis

The FFT used in OFDM system is the most complex and power hungry block. As

this system is used mostly in the battery driven wireless applications, low power



Chapter 1. Introduction 13

consumption is desired. This thesis aims at designing ASIC and/or FPGA FFTs for

OFDM systems. The main objectives of this thesis are as follows:

• To choose the best FFT algorithm and an appropriate architecture with less

hardware complexity suitable for IEEE 802.11a and IEEE 802.15.4−g standard

OFDM systems.

• Modify designs at basic processing elements (adder, multiplier and delay buffers)

to achieve enhanced performance.

• Simulate the proposed FFT architectures to verify the correctness of the func-

tionality.

• Synthesize the FFT architectures to obtain ASIC and/or FPGA implementation

and compare its performance with recent implementations in the literature.

1.5 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 introduces the advancements of FFT Algorithms and provides their overview

from a mathematical perspective. These algorithms include complex-valued FFTs,

real-valued FFTs and special cases of FFTs.



Chapter 1. Introduction 14

Chapter 3 is a survey of architectural techniques for creating hardware efficient and

low-power implementations of the FFT. These architectures include memory-based

and pipelined architectures. The important design choices and considerations are also

discussed and investigated here.

Chapter 4 discusses various possibilities to implement twiddle factor multiplication and

its hardware. It includes general complex multiplication and constant multiplication.

Chapter 5 introduces the design consideration of a 64-point FFT for OFDM based

IEEE 802.11a standard system. A novel area-efficient and low power 16-bit word-

width 64-point radix-22 and radix-23 pipelined Single-path Delay Feedback (SDF)

FFT architectures are presented based on modified complex constant multiplier. The

remainder of this chapter describes the implementation details and comparisons with

recent implementations in literature.

Chapter 6 presents a novel 16/32/64/128-point pipelined SDF FFT architecture based

on mixed-radix algorithm for IEEE 802.15.4-g standard system. Both FPGA and

ASIC targeted synthesis results are presented. The comparison of this structure with

other published results is provided at the end.

Chapter 7 concludes with a summary of total contributions of this thesis. It also

discuss and made suggestions for future research possibilities using the optimized

twiddle factor multiplication.



Chapter 2

Advancements in FFT Algorithm

2.1 Introduction

The basic principle of divide and conquer approach leads to a variety of efficient

algorithms. As these algorithms improves the performance in terms of computation

time, these are known as fast algorithms or fast Fourier transform algorithms. In this

chapter, we have classified the FFT algorithms as complex valued FFTs (CFFTs),

real-valued FFTs (RFFTs) according to the input values and special cases of FFTs.

Finally, this chapter concludes with comparison of FFT algorithms that can be helpful

to choose the best algorithm for OFDM applications.

15



Chapter 2. Advancements in FFT Algorithm 16

2.2 Complex-valued FFT Algorithms

In this subsection, we discuss the popular FFT algorithm followed by some algorithms

that can improve the computational speed and reduce the hardware complexity.

2.2.1 Radix-2 FFT algorithms

The basic FFT algorithms are decimation-in-time (DIT) and the decimation-in-frequency

(DIF) radix-2 algorithms. These algorithms are applicable to compute the DFT of

integer power of 2 lengths.

i) Decimation-in-Time Radix-2 FFT Algorithm

This algorithm decomposes the time domain sequence {x(n)} into successively smaller

subsequence. Therefore, it is called as decimation-in-time algorithm [32].

The principle of radix-2 DIT FFT algorithm is illustrated in the following by

considering N = 2M , where M = 1, 2, 3, .... . Since N is an even integer, the N -point

input data can be split into two (N/2)-point sub-sequences {x1(n)} and {x2(n)}, which

correspond to the even and the odd-indexed samples of the input {x(n)}, respectively,



Chapter 2. Advancements in FFT Algorithm 17

that is,

x1(n) = x(2n)

x2(n) = x(2n+ 1), n = 0, 1, 2, ...., N/2− 1 (2.1)

Now the N -point DFT can be derived from two half-length DFTs by the decimation-

in-time process as follows:

X(k) =
N−1∑
n=0

x(n)W nk
N

=

N
2
−1∑

n=0

x(2n)W 2nk
N +

N
2
−1∑

n=0

x(2n+ 1)W
(2n+1)k
N

=

N
2
−1∑

n=0

x(2n)W nk
N/2

+W k
N

N
2
−1∑

n=0

x(2n+ 1)W nk
N/2 (2.2)

Similarly, the (N/2)-point DFTs can be computed from a pair of (N/4)-point

DFTs. The decimation process is continued till it contains only two-point DFTs. For

a power of two length sequences, decomposition of N -point DFT into 2-point DFTs

could be completed in M = log2N steps of decimation.

Figure 2.1 shows the decomposition of 4-point radix-2 DIT FFT using the simpli-

fied butterflies which involves 2 stages, each with 2 butterflies per stage. The input

data to this is in bit-reversed order and the DFT output is in normal order.



Chapter 2. Advancements in FFT Algorithm 18

 

𝑋 0  𝑥 0  

𝑥 2  

𝑥 1  

𝑥 3  

𝑊4
0 

𝑊4
0 

𝑊4
1 -1

-1

𝑊4
0 

-1

-1

𝑋 2  

𝑋 1  

𝑋 3  

Figure 2.1: Length-4, DIT Radix-2 FFT.

ii) Decimation-in-Frequency Radix-2 FFT Algorithm

This algorithm is based on computing the DFT by decomposition of the sequence

of DFT coefficients X(k)s into smaller subsequences, hence called as decimation-in-

frequency algorithm [32].

In case of radix-2 DIF FFT, the DFT computation is split into two parts such that

the first part involves the first N/2 data points and the second part involves the next

N/2 data points, as follows:

X(k) =

N
2
−1∑

n=0

x(n)W nk
N +

N−1∑
n=N

2

x(n)W nk
N (2.3)

Since W nk
N = e−j2Πk/N and W

kN/2
N = (−1)k, equation (2.3) is simplified as:

X(k) =

N
2
−1∑

n=0

(
x(n) + (−1)k · x

(
n+

N

2

))
·W nk

N (2.4)



Chapter 2. Advancements in FFT Algorithm 19

 

 

𝑋 0  𝑥 0  

𝑥 2  

𝑥 1  

𝑥 3  
 -1

-1

-1

-1𝑊4
1 

𝑊4
0 

𝑊4
0 

𝑊4
0 

𝑋 1  

𝑋 2  

𝑋 3  

Figure 2.2: Length-4, DIF Radix-2 FFT.

The radix-2 DIF algorithm rearranges equation (2.4) into even-indexed and odd-

indexed frequency bins as

X(2k) =

N
2
−1∑

n=0

(
x(n) + x

(
n+

N

2

))
·W nk

N/2 (2.5)

X(2k + 1) =

N
2
−1∑

n=0

((
x(n)− x

(
n+

N

2

)
·W nk

N/2

)
·W nk

N/2

)
(2.6)

According to equations (2.5) and (2.6), the even-indexed and odd-indexed fre-

quency outputs X(k) can be computed by a pair of N/2-length DFTs. The entire

process involves M = log2N stages of decimation, where each stage involves N/2

butterflies. Figure 2.2 shows the flow graph of radix-2 DIF decomposition of a 4-point

DFT computation. In this flow graph the input is in normal order and the DFT

output is in bit-reversed order. To compute the 4-point DFT, it requires 4 complex

multiplications and 8 complex additions.



Chapter 2. Advancements in FFT Algorithm 20

The computation of N -point DFT via the DIF or DIT FFT algorithms require

(N/2) log2N and N log2N number of complex multiplications and complex additions,

respectively. For a radix-2 algorithm the operation count can be further reduced by

realizing each complex multiplication by 3 real multiplications and 3 real additions

(a 3/3 algorithm) [33]. When 3/3 algorithm is used for complex multiplications the

arithmetic complexity of radix-2 FFT could be given by:

RM =
3N

2
log2N − 5N + 8 (2.7)

RA =
7N

2
log2N − 5N + 8 (2.8)

where RM and RA are the real multiplications and real additions to compute an N -

point DFT, respectively.

2.2.2 Radix-4 FFT algorithm

It can be used when the DFT length N is a power of 4 (i.e., N = 4M). Unlike

the radix-2 FFT algorithm in the radix-4 algorithm during every step, decimation is

carried out by a factor of 4 [19].

In the first step of radix-4 DIT FFT, the input N -point data is split into four

subsequences as x(4n), x(4n+1), x(4n+2), and x(4n+3), where n = 0, 1, ...., N/4−1.



Chapter 2. Advancements in FFT Algorithm 21

W0

W1

W2

W3

x(n)

x(n+N/4)

x(n+2N/4)

x(n+3N/4)

X(k)

X(k+2N/4)

X(k+N/4)

X(k+3N/4)

1

1

1

1

1

-1

1

-1

1-j

-1

j

1j

-1

-j

Figure 2.3: Radix-4 FFT butterfly.

Then

X(k) =
N−1∑
n=0

x(n)W nk
N

=

N
4
−1∑

n=0

x(4n)W nk
N/4 +W k

N

N
4
−1∑

n=0

x(4n+ 1)W nk
N/4

+W 2k
N

N
4
−1∑

n=0

x(4n+ 2)W nk
N/4

+W 3k
N

N
4
−1∑

n=0

x(4n+ 3)W nk
N/4 (2.9)

As the FFT length of a radix-4 is N = 4M , it requires M = log4N = log2N
2

stages

of decimation where each stage involves N/4 butterflies. The radix-4 FFT butterfly

structure is shown in Figure 2.3. The decimation process of each stage is similar to

radix-2 algorithm. Since W 0
N = 1, each radix-4 butterfly involves 3 complex multiplica-

tions and 8 complex additions [34]. Therefore, the number of complex multiplications



Chapter 2. Advancements in FFT Algorithm 22

is
3N

4
log4N . Comparing with the radix-2 approach, this requires less number of

complex multiplications, although it uses the same number of complex additions. The

total operation count for N -point radix-4 FFT is [4]:

RM =
9N

8
log2N −

43N

12
+

16

3
(2.10)

RA =
25N

8
log2N −

43N

12
+

16

3
(2.11)

2.2.3 Radix-2i and Higher radix FFT Algorithms

The twiddle factor multiplicative complexity can be reduced by using higher radices

like radix-8 [20] or radix-16 [22]. But, the implementation complexity grows as the

radix becomes higher. In 1996, He and Torkelson [24] discussed about radix-22 and

radix-23 FFT algorithms. These algorithms have the same number of non-trivial1 mul-

tiplications as radix-4 and radix-8 algorithms, respectively. However, these algorithms

differ in the twiddle factors at different FFT stages, but maintain the same butterfly

structure of radix-2 algorithm. Followed by He and Torkelson [24], several radix-2i

[28] algorithms are developed for higher radices that include radix-24 [26], modified

radix-24 [26], radix-25 [27], and modified radix-25 [27] algorithms. The idea of these

radix-2i algorithms is to get simpler butterfly structure with less multiplicative com-

plexity. The following subsection explains the derivation of the radix-22 algorithm,

1Twiddle factor multiplication by 1,−1, j and −j are trivial and other multiplications like
W 1

8 ,W
1
16 are non-trivial.



Chapter 2. Advancements in FFT Algorithm 23

which can be extended for higher radices.

i) Radix-22 Algorithm

In [24], the authors have proposed a radix-22 algorithm using index decomposition

technique. To illustrate the derivation of this algorithm, the time and frequency

indices for i = 2 are decomposed as follows:

n =
N

2
n1 +

N

4
n2 + n3

{
n1, n2 = 0, 1, n3 = 0 ∼ N

4
− 1

}
k = k1 + 2k2 + 4k3

{
k1, k2 = 0, 1, k3 = 0 ∼ N

4
− 1

}
(2.12)

Substituting equation (2.12) in (1.1) we can get the following expression:

X(k1 + 2k2 + 4k3)

=

N
4
−1∑

n3=0

1∑
n2=0

1∑
n1=0

x(
N

2
n1 +

N

4
n2 + n3)

W
(N
2
n1+N

4
n2+n3)(k1+2k2+4k3)

N

=

N
4
−1∑

n3=0

1∑
n2=0

{Bk1
N/2(

N

4
n2 + n3)}

W
(N
4
n2+n3)(k1+2k2+4k3)

N (2.13)



Chapter 2. Advancements in FFT Algorithm 24

where

Bk1
N/2(

N

4
n2 + n3) = x(

N

4
n2 + n3) + (−1)k1x(

N

4
n2 + n3 +

N

2
) (2.14)

The decomposition of common twiddle factor in equation (2.13) is the key difference

from the decomposition of the radix-2 algorithm, which can be expressed as

W
(N
4
n2+n3)(k1+2k2+4k3)

N = (−j)n2(k1+2k2)W
n3(k1+2k2)
N W n3k3

N
4

(2.15)

Substituting equation (2.15) in (2.13) the components of N -point DFT could be

obtained from four DFTs of length N/4 as follows:

X(k1 + 2k2 + 4k3) =

N
4
−1∑

n3=0

{Bk1k2
N/4 (n3)W

n3(k1+2k2)
N }W n3k3

N
4

(2.16)

where

Bk1k2
N/4 (n3) = Bk1

N/2(n3) + (−1)k2(−j)k1Bk1
N/2(n3 +

N

4
) (2.17)

An N -point DFT is now decomposed into four DFTs of length-(N/4) DFTs, ac-

cording to (2.16). Each DFT of length N/4 can be further decomposed in the same

way until length-2 or length-4 DFTs are reached.



Chapter 2. Advancements in FFT Algorithm 25

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Stage 1 Stage 2 Stage 3 Stage 4

Figure 2.4: Signal flow graph of 16-point radix-22 DIF FFT.

Figure 2.4 shows a flow graph of 16-point radix-22 DIF FFT. It requires the trivial

multiplication by W 4
16 = −j in the first and the third stages, whereas it requires non-

trivial multiplications in the second stage. This flow graph is different from that of

radix-2 algorithm in which non-trivial twiddle factors are needed at the outputs of

every stage (except the last one). This algorithm has a great structural advantage

compared to other algorithms (radix-2 and radix-4) when they are implemented in

pipeline architectures [26].



Chapter 2. Advancements in FFT Algorithm 26

ii) Higher Radix Algorithms

The linear index decomposition scheme of radix-22 algorithm can be extended for

higher radices, e.g, radix-23, radix-24, modified radix-24 (Radix-M.24), radix-25 and

modified radix-25 (Radix-M.25). The N -point FFT computation with radix-2i al-

gorithm involves log2N stages. Table 2.1 shows the twiddle factor at each stage to

compute the N -point FFT for various radix-2i algorithms (Number of stages are shown

upto 8 in Table 2.1, which can extend to log2N stages). These algorithms have the

same butterfly structure but the twiddle factor multiplication structure is varied with

the exponent i. The twiddle factor multiplications are classified into trivial (W4 which

is multiplication by −j), and other multiplications are non-trivial[28].

From Table 2.1, one can observe that radix-23 [24] algorithm requires trivial multi-

plication at first stage, and non-trivial multiplications at the second and third stages.

This type of sequence is repeated for every three stages in order to obtain radix-23

algorithm. Radix-24 includes trivial multiplication at first stage, and non-trivial mul-

tiplications in the next three stages. In [26], a modified radix-24 algorithm have been

proposed, which requires less number of multiplications. In the modified algorithm of

[26], the twiddle factor of third stage W16 is transfered to the second stage. A modified

radix-25 algorithm is suggested in [27], which is a combination of two decomposition

methods of radix-25 algorithm. In [28], the authors have presented the decomposition



Chapter 2. Advancements in FFT Algorithm 27

Table 2.1: Twiddle factor at each stage to compute N -point FFT

Algorithm

Stage 1 2 3 4 5 6 7 8

Radix−22 W4 WN W4 WN/4 W4 WN/16 W4 WN/64

Radix−23 W4 W8 WN W4 W8 WN/8 W4 W8

Radix−24 W4 W8 W16 WN W4 W8 W16 WN/16

Radix−M.24 W4 W16 W4 WN W4 W16 W4 WN/16

Radix−25 W4 W8 W16 W32 WN W4 W8 W16

Radix−M.25 W4 W8 W32 W4 WN W4 W16 W4

of radix-2i algorithm which further reduces the number of multiplications. The radix-

2i algorithms have the advantages of lower multiplicative complexity and structural

advantage to be used in pipeline architecture.

2.2.4 Split-Radix FFT

The split-radix FFT (SRFFT) algorithm was introduced in [35], but this was clearly

described in [23]. The split-radix algorithm decomposes an N -point DFT into one

N/2-point DFT and two N/4-point DFTs as:

X(k) =
N−1∑
n=0

x(n)W nk
N

=

N
2
−1∑

n=0

x(2n)W nk
N/2 +W k

N

N
4
−1∑

n=0

x(4n+ 1)W nk
N/4

+W 3k
N

N
4
−1∑

n=0

x(4n+ 3)W nk
N/4 (2.18)



Chapter 2. Advancements in FFT Algorithm 28











4

3N
nx











2

N
nx











4

N
nx

-1

-1

-j

j

𝑊𝑁
𝑛  

𝑊𝑁
3𝑛  

𝑋 4𝑘 + 1  

𝑋 4𝑘 + 3  

𝑋 2𝑘  

)( nx

Figure 2.5: Split-Radix FFT.

This algorithm makes use of both radix-2 and radix-4 (radix-2/4) behaviour si-

multaneously on upper and lower half of the signal flow graph as shown in Figure 2.5.

The arithmetic complexity of SRFFT algorithm is given by [23]:

RM = N log2N − 3N + 4 (2.19)

RA = 3N log2N − 3N + 4 (2.20)

The SRFFT algorithm [23] requires less number of multiplications and additions

compared to radix-2 and radix-4 algorithms. Followed by the SRFFT algorithm of

[23], many split-radix algorithms [36, 37, 38, 39] were suggested by researchers to

further reduce the number of complex multiplications and additions over the radix-2,

radix-4 or any higher radix-based algorithms.



Chapter 2. Advancements in FFT Algorithm 29

Table 2.2: Number of real multiplications to compute a length-N Complex
DFT

N Radix-2
Radix-4/
Radix-22 Split Radix

16 24 20 20

32 88 - 68

64 264 208 196

128 712 - 516

256 1800 1392 1284

512 4360 - 3076

1024 10248 7856 7172

Table 2.3: Number of real additions to compute a length-N Complex DFT

N Radix-2
Radix-4/
Radix-22 Split-Radix

16 152 148 148

32 408 - 388

64 1032 976 964

128 2504 - 2308

256 5896 5488 5380

512 13566 - 12292

1024 30728 28336 27652

2.2.5 Computational Complexity for Complex-Valued FFT

Algorithms

Table 2.2 and Table 2.3 shows the comparison of the number of real multiplications

and real additions to compute an N -point DFT. From these tables one can observe

that, the split-radix FFT requires less number of arithmetic operations compared to



Chapter 2. Advancements in FFT Algorithm 30

the other algorithms. However, the flow graph of this algorithm results in an irregular

structure due to the mix of FFTs of different lengths in different parts.

2.3 Real-valued FFT Algorithms

When the input sequence x(n) is real-valued, the DFT components exhibit conjugate

symmetry behavior, i.e., X(k) = X∗(N − k). Therefore, we need to compute only

half the number of DFT components in this case. But the FFT algorithms for the

computation of complex-valued input cannot be used directly to reduce the compu-

tational complexity to half, when we want to compute the DFT of real-valued input.

FFT of real-valued data and FFT of complex-valued data are generally referred to as

real-valued FFT (RFFT) and complex-valued FFT (CFFT), respectively.

Moreover, efficient realization of RFFT has received great attention due to its

several important and emerging applications in the area of bio-medical engineering

and health-care, audio and video processing, time-series analysis, and many others

[40]. Several algorithms are therefore proposed for the RFFT computation. Real-

valued FFTs [20] provide area and speed improvement over the CFFTs. The RFFT

algorithms are generally tailored for real-valued data by using the trigonometric sym-

metries and periodicities [20]. In the following sub-section, initially we discuss different

approaches for the computation of FFT of real-valued data.



Chapter 2. Advancements in FFT Algorithm 31

2.3.1 Computation of the RFFT using the CFFT

The simplest way of using the CFFT algorithm to compute the RFFT is to set the real-

valued sequence into the real part of complex-valued input and to set the imaginary

part of the input values to zero [3]. This approach does not provide significant saving

of computation over the CFFT since the intermediate results become complex-valued

just after the first stage, when the complex twiddle factors are multiplied. Therefore,

doubling algorithm and packing algorithm are proposed to compute the RFFT [3].

i) Doubling Algorithm

In this algorithm a pair of real-valued input sequence is used at a time [27]. The first

real-valued data sequence is used as the real part and the second real data sequence as

the imaginary part of the complex-valued input sequence of the CFFT. The complex

input values thus obtained is expressed as:

x(n) = p(n) + j.q(n) (2.21)

where p(n) and q(n) are elements of two real-valued data sequences. An N -point

CFFT of complex input {x(n)} is then obtained as:

X(K) = P (K) + j.Q(K) (2.22)



Chapter 2. Advancements in FFT Algorithm 32

Since p(n) and q(n) are real-valued data, the following symmetry holds

P ∗(N − k) = P (K)

Q∗(N − k) = Q(K) (2.23)

hence follows the output sequence as:

X∗(N − k) = P (K)− j.Q(K) (2.24)

By using equations (2.22) and (2.24), P (k) and Q(k) can be obtained as:

P (k) =
1

2

(
X(k) +X∗(N − k)

)
Q(k) =

j

2

(
X∗(N − k)−X(k)

)
(2.25)

In order to separate P (k) and Q(k) according to equation (2.25), 2(N − 1) extra

additions over the normal complex FFT are required. Using the 3/3 algorithm for

complex multiplication, the RFFT requires 1
2
MN− 3

2
N+2 multiplications and 3

2
MN−

1
2
N additions [41]. This algorithm requires almost half of the arithmetic complexity

of the CFFT algorithm.



Chapter 2. Advancements in FFT Algorithm 33

ii) Packing Algorithm

This is another approach to compute N -point FFT of real-valued input using N/2-

point CFFT [41]. It uses the odd and even indexed samples of the N -point real-

valued input sequence to form the (N/2)-point complex data. This is called packing

algorithm, since it packs the N -point real-valued sequence into (N/2)-point complex

valued sequence. The real-valued data can be represented in the form of a complex

data as:

x(n) = x(2n) + j.x(2n+ 1) (2.26)

where n = 0, 1, 2, ...., N − 1.

Let p(n) = x(2n) and q(n) = x(2n + 1), then the DFT output X(K) can be

obtained by using CFFT as in doubling algorithm. Therefore, this also requires 2(N−

1) extra additions to separate the outputs of the CFFT as in the case of doubling

algorithm. Moreover, it requires an additional stage to compute the outputs of the

RFFT. The corresponding RFFT requires 1
2
MN − 5

4
N multiplications and 3

2
MN −

1
4
N − 4 additions by using 3/3 algorithm for complex multiplications [41].



Chapter 2. Advancements in FFT Algorithm 34

2.3.2 FFT of Real-Valued data

The reduction in the arithmetic complexity can be obtained by using specific algo-

rithms such as DIT FFT algorithm for the computation of the RFFT. This can be

achieved by applying the conjugate symmetric property, and computing only one half

of the intermediate outputs in each stage, since the others can be obtained by conju-

gating those intermediate values. This results with less arithmetic complexity for the

radix-2 DIT FFT algorithm [40]. By assuming a 3/3 algorithm, radix-2 DIT FFT for

a real-valued sequence require
3

4
MN − 5

2
N + 4 multiplications and

7

4
MN − 7

2
N + 6

additions.

The radix-4 and higher radix algorithms [42] for real valued inputs can be obtained

in the way similar to that of the radix-2 DIT FFT. As the split-radix algorithm is more

efficient in terms of arithmetic complexity than higher radix algorithms. It requires

only 1
2
MN − 3

2
N + 2 multiplications and 3

2
MN − 5

2
N + 4 additions [40]. However,

these algorithms are not valid for the DIF decomposition of the FFT because it is

not possible to apply the conjugate symmetry at each stage. In [43], an alternative

algorithm is proposed to obtain the same savings for the DIF decomposition. In [44],

the authors have proposed a modified radix-2 algorithm for the computation of the

RFFT which solves the irregularities of the RFFT. This approach is valid for both

DIT and DIF decompositions and could be generalized for any number of points,

which is power of 2. In [45], the computation of RFFT was based on a modified



Chapter 2. Advancements in FFT Algorithm 35

radix-2 algorithm which removes the redundant operations from the flow graph. This

modified flow graph contains only real data paths instead of complex data paths in a

regular flow graph. In [46], a mathematical formulation was presented for removing

the redundancies in the radix-2 DIT RFFT. This formulation regularizes the flow

graph in order to compute folded RFFT with a simple control unit.

2.3.3 Fast Hartley Transform

The DFT of real-valued data could be computed from the Discrete Hartley Transform

(DHT) [47] of the same data. The DHT of a real valued input sequence is defined as:

X(k) =
N−1∑
n=0

x(n)

[
cos

(
2πkn

N

)
+ sin

(
2πkn

N

)]
(2.27)

for k = 0, 1, 2......N − 1.

Unlike the DFT, the DHT takes real-valued input and provides real-valued output.

The absence of complex arithmetic makes the DHT faster than the DFT. Algorithms

similar to the radix-based FFT can also be applied to DHT computations called as

Fast Hartley Transform (FHT) algorithm. Generally, FHT algorithms involve the

same multiplications and (N − 2) more addition compared to the corresponding FFT



Chapter 2. Advancements in FFT Algorithm 36

Discrete 
Sine

Transform

N=8

n k

14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

15

14

Discrete 
Cosine

Transform

N=8

-1
-1
-1
-1
-1
-1
-1

-1
-1
-1
-1
-1
-1
-1

j

j

j

j

j

j

j

Figure 2.6: Quick Discrete Fourier Transform

algorithm. The split-radix FHT algorithm requires 2N
3

log2N − 19N
9

+ 3 + (−1)M

9
mul-

tiplications and 4N
3

log2N − 14N
9

+ 3 + (−1)M 5
9

additions.

An N -point DFT of real-valued data can be computed from the DHT of the same

data as follows:

Re(DFT (k)) =
DHT (k) +DHT (N − k)

2

Im(DFT (k)) =
DHT (k)−DHT (N − k)

2
(2.28)



Chapter 2. Advancements in FFT Algorithm 37

Table 2.4: Number of real multiplications to compute the DFT for a real-
valued input

N
CFFT

Direct

CFFT

Packing

CFFT

Doubling

Radix-2

RFFT

Split-radix

RFFT
FHT

Quick

DFT

16 20 12 10 12 10 12 11

32 68 40 34 44 34 42 37

64 196 112 98 132 98 124 105

128 516 288 258 356 258 330 273

256 1284 704 642 900 642 828 673

512 3076 1664 1538 2180 1538 1994 1601

1024 7172 3840 3586 5124 3586 4668 3713

2.3.4 Quick Discrete Fourier Transform

This algorithm computes the DFT via Discrete Cosine Transform (DCT) and Discrete

Sine Transform (DST). It decomposes the N -point DFT into (N/2 + 1)-point DCT

and (N/2− 1)-point DST. The Quick DFT for 16-point data is shown in Figure 2.6.

This computes the DCT and the DST seperately by taking the complex operations at

the last stage. The arithmetic operations required by this algorithm to compute the

N -point DFT are as follows:

RM =
N

2
log2N −

11

8
N + 1 (2.29)

RA =
7

4
N log2N − 3N + 2 (2.30)



Chapter 2. Advancements in FFT Algorithm 38

Table 2.5: Number of real additions to compute the DFT for a real-valued
input

N
CFFT

Direct

CFFT

Packing

CFFT

Doubling

Radix-2

RFFT

Split-radix

RFFT
FHT

Quick

DFT

16 148 88 88 62 60 64 66

32 388 228 224 170 164 166 186

64 964 556 544 442 420 416 482

128 2308 1308 1280 1082 1028 998 1186

256 5308 3004 2944 2586 2436 2336 2818

512 12292 6780 6656 5978 5636 5350 6530

1024 27652 15100 14848 13658 12804 12064 14580

2.3.5 Computational Complexity for Real-Valued FFT Algo-

rithms

Although most of the FFT algorithms are developed for complex-valued inputs, by

taking the advantages of redundancies and trigonometric symmetries, the computa-

tional complexity is reduced in all of these RFFT algorithm. The number of real

multiplications and real additions required for the operation of real-valued are shown

in Table 2.3 and Table 2.4, respectively. If a CFFT is used directly for real inputs,

it requires more arithmetic complexity. The packing and oubling algorithms involve

more additions than a Split-radix RFFT algorithm [40] for a real-valued input.

Split-radix FHT requires less number of multiplications and additions than radix-2

RFFT for N greater than 16. However, it requires more number of multiplications

and additions than split-radix RFFT. The Quick DFT algorithm requires more real

multiplications than the doubling algorithm.



Chapter 2. Advancements in FFT Algorithm 39

2.4 Special cases of the FFT algorithms

The FFT algorithm could be optimized for some special cases, e.g., when only a part

of the output is desired or when there are a large number of zeros in the input or

when the input is non-power of two or multidimensional inputs. In this subsection, we

discuss some special cases of FFT algorithms that are useful for specific applications

like, Third Generation Partnership Project (3GPP) Long-Term Evolution (LTE) [18],

and modern microscopy [48], and radar signal processing.

2.4.1 FFT Pruning

If the data sequence contains 2l non-zero data points out of 2m data points, where

m > l, then the corresponding FFT can be computed by means of the pruned FFT

which accomplishes time saving. A slight modification to radix-2 DIT algorithm allows

a time-saving of approximately (m-l)/m where 2m points are transformed of which only

2l are non-zero [49].

The FFT pruning for l = 2,m = 3 is shown in Figure 2.7. There are four non-zero

data points and three stages. Pruning is applied to first stage, but second and third

stages cannot be pruned [49]. When pruning is applicable, we compute only the partial

butterflies instead of entire butterflies. In general, if there are 2l non-zero data points

in a set of 2m data points, then the number of stage(s) where pruning can be applied



Chapter 2. Advancements in FFT Algorithm 40

0

n

2

1

3

W0

W2

W4

W6

-W0

-W2

-W4

-W6

W0

W1

W2

W3

W4

W5

W6

W7

-W0

-W1

-W2

-W3

-W4

-W5

-W6

-W7

K

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

Figure 2.7: FFT pruning.

(m− l) stages. FFT pruning is used when there are a large number of zero’s that are

known in the input. However, it only allows l to be a power-of-two. The asymptotic

run-time of the pruned FFT is O(N. log a), where N is the FFT length and a is the

number of non-zero inputs. The main drawback of pruning is that the data sequence

is to be known in advance, so that one can find the non-zero input values.

2.4.2 Fast Fourier Transform of Sparse Input

The computation time of DFT generally corresponds to its size N . However, in most of

the applications like spectrum sensing and radar signal processing, only a few selected

output of the FFT is used. An algorithm to compute those coefficients of its Fourier



Chapter 2. Advancements in FFT Algorithm 41

transform is called Sparse FFT (SFFT) [50], whose runtime is sublinear in the signal

size N .

In [51], the first sublinear algorithm was presented, which is followed by several

other sublinear algorithms [52, 53, 54] were developed for Fourier transform over the

complex input. There are several versions of SFFT algorithms described in [50]. A

hardware implementation of SFFT algorithm is recently published in [55]. However,

it is implemented for a specific signal size. Therefore, in [56], the authors have pre-

sented the hardware implementation of a million-point SFFT design, that can provide

configurable parameters. Robust Sparse Fourier Transform (RSFT), which is a modi-

fication of Sparse Fourier Transform (SFT) is presented in [57] that extends the SFT

advantages which are useful for short-range radar signal processing. It is shown that

the RSFT is robust in detecting frequencies when exact knowledge of signal sparsity is

not available. It has further investigated the trade-off between detection performance

and computational complexity [57].

2.4.3 Scaled DFTs

In certain applications like orthogonal frequency division multiplexing demodulation

and modern microscopy [58], the input length of DFT is length-q∗2M , where q is a odd

number. However, fast algorithms for such sequence lengths generally require complex

computational structure and are less efficient than that of power-of-two length DFTs.



Chapter 2. Advancements in FFT Algorithm 42

Zero-padding technique was often used to get the DFT of such sequence lengths.

However, this technique requires more computations. Therefore, a scaled DFT has

been proposed in [58], which can be flexibly used for length-q ∗ 2M DFTs. Several

algorithms [39, 58, 59, 60] have been proposed thereafter, in order to further reduce

the arithmetic complexity for scaled DFT computation.

2.4.4 Multidimensional FFTs

The multidimensional fast Fourier transforms (FFTs in 2D or more dimensions) are

used in many applications such as image processing, applied physics etc. These appli-

cations require large amount of computations.

The general form of the multidimensional FFT is as follows:

X(u1, u2, ......, um) =

N1−1∑
v1=0

N2−1∑
v2=0

.....
Nm−1∑
vm=0

W u1v1
N1

W u2v2
N2

.....

W umvm
Nm

x(v1, v2, ....., vm) (2.31)

where WNk
= exp(−2πj

Nk
), uk = 0, 1, ....., uk−1; uk is the length of the kth dimension

k = 1, 2, ....,m and x(v1, v2, ....., vm) are the complex input data sequences.



Chapter 2. Advancements in FFT Algorithm 43

Equation (2.31) is converted into m one-dimensional FFTs in order to simplify the

computation as follows:

X(u1, u2, ......, um) =

N1−1∑
v1=0

W u1v1
N1

N2−1∑
v2=0

W u2v2
N2

.....
Nm−1∑
vm=0

W umvm
Nm

x(v1, v2, ....., vm) (2.32)

This provides the simplest algorithm where each one-dimensional FFT can be com-

puted by the Cooley-Tukey FFT [1], so this algorithm is known as row-column algo-

rithm [61].

Several algorithms have been proposed for the multidimensional FFTs such as the

vector-radix algorithms, the polynomial transform algorithms and the split vector-

radix algorithms [62, 63, 64]. These algorithms reduces the complexity over row-

column algorithm. In [65], a fast algorithm has been derived based on vector coding

for multidimensional integral points. This algorithm has reduced the multiplication

complexity and the number of recursive stages without increasing the number of ad-

ditions. However, the most popular one among these algorithms is the row-column

decomposition algorithm, due to its simple structure and easy to program.

2.4.5 Quantum Fourier Transform

The Moore’s law [66] has been consistent for several decades, but sustaining the pace

of scaling has become increasingly difficult in recent years. To meet the performance



Chapter 2. Advancements in FFT Algorithm 44

and power requirements of exa-scale systems, quantum computers may be one of

the alternatives which possibly could offer exponential speedup for certain types of

calculations.

The Quantum Fourier Transform (QFT) is used in Quantum computers, which is

similar to FFT [67] . But the QFT operates on quantum bits instead of operating

on vector elements. If 2p elements are considered for both transforms, these can take

p2p operations and p(p+ 1)/2 operations to compute FFT and QFT, respectively. By

comparing the quantity of operations, it is evidenced that the QFT is efficient than

the FFT. Nowadays, significant attention is given for research to implement the QFT

algorithms [68, 69, 70].

Basic quantum computers are developed in many labs across the world. Compa-

nies such as Microsoft, IBM and Google are all developed their own prototypes [71].

However, these prototypes are very simple with only a small number of qubits. The

Quantum hardware emulation is also critical in developing practical QFT algorithms

before large-scale quantum computer becomes viable. Therefore, a comprehensive

methodology to perform accurate mapping of quantum algorithm for FPGA emula-

tion purposes have been demonstrated through the emulation of QFT hardware in

[68, 69, 70, 72].



Chapter 2. Advancements in FFT Algorithm 45

2.5 Conclusion

This chapter briefly reviewed three classes of FFT algorithms that comprises of com-

plex valued FFTs, real-valued FFTs and special cases of FFTs. In complex valued

FFTs, the radix-2 DIT and DIF algorithms have simple structure that makes easy to

implement and is suitable for generic FFT implementation. However, these algorithms

require large memory to store data at inner stages, which increases the hardware com-

plexity for implementation. The radix-4 or higher radix algorithms require less multi-

plications than radix-2 algorithm. However, this algorithm is suitable only when N is

a power of 4. This chapter also discussed radix-22 and higher-radix algorithms using

index decomposition technique. The radix -22 algorithm has the same multiplicative

complexity as radix-4 algorithm, but retains the butterfly structure of radix-2 algo-

rithm, which is very suitable for ASIC implementation. As compared to radix-based

algorithms, the split-radix FFT algorithm require less number of multiplications and

additions. However, the FFT implementation is difficult due to its irregular structure.

In real-valued FFTs, the RFFT computations can be obtained by using the CFFT

(doubling algorithm and packing algorithm) based on complex conjugate symmetry.

In the direct use of CFFT for RFFT computation, the complexity increases as the

imaginary part of CFFT is considered by making it as zero. In the other CFFT based

techniques (doubling algorithm and packing algorithm), the arithmetic complexity is

much less than the direct computation of CFFT. This chapter also discussed specific



Chapter 2. Advancements in FFT Algorithm 46

algorithms for the computation of RFFT based on radix-2 and split-radix algorithm.

Among these split-radix requires fewer operations than a radix-2 or even for higher

radix algorithms.

Further we have discussed the special cases of the FFT algorithms based on some

constraints. FFT pruning is considered when the data sequence contain large number

of zeros. However, the data sequence has to be known in advance. By using sparse

FFT, where fewer than N inputs are required and the data sequence does not known in

advance. Scaled DFTs are preferred only for length-q ∗ 2M DFTs. Multidimensional

FFTs are required for 2-D or higher dimensional FFTs. A brief description about

Quantum Fourier Transform is also discussed which are going to be implement in

future. These are the special cases of FFT algorithm that further reduces the hardware

complexity of the algorithm. However, these algorithms are considered only for specific

applications.

Nowadays, based on literature research, either radix-2i or combination of radix-2i

algorithms are most suitable for FFT implementation of OFDM system. This thesis is

constrained to design FFT for OFDM system. So, more detailed analysis is discussed

in the next chapter 3 combined with architecture choice.



Chapter 3

FFT Architectures and Design

choice for OFDM systems

The key to high performance in FFT hardware is to have the computational elements

organized in such a way that they match the structure of the computational algorithm.

In chapter 2, FFT algorithms were discussed particularly about the optimization of

the number of operations. In real implementations, often the number of operations is

not as important as the amount of resources required and the utilization of those.

The FFT architecture generally consists of one or more processing elements (PEs)

that includes butterflies and twiddle factor multipliers with memory and data man-

agement circuits. Each butterfly comprises of adder and subtractor, which is usually

47



Chapter 3. FFT Architectures and Design choice for OFDM systems 48

reused to compute several butterflies of the FFT algorithm. Similarly, complex twid-

dle factor multipliers can be reused to perform several twiddle factor multiplications.

This reuse of the processing element reduces the area of circuit.

After the Cooley and Tukey’s publication along with various FFT algorithms,

several different architectures came into existence for implementing those FFT algo-

rithms. The most common FFT architectures are the Pipelined architectures and the

Memory based architectures. Among them, the selection of the algorithm depends on

the signal processing specifications such as accuracy, application specifications such as

latency and throughput, and hardware device specifications which include area and

power consumption. In Section 3.1, we discuss about various memory based archi-

tectures. Further, we explain different types of pipelined architectures in Section 3.2.

At the end of this chapter, we discuss about the design choice (FFT algorithm and

architecture) for OFDM based applications.

3.1 Memory based Architectures

Memory based architectures consists of processing elements that calculate all butter-

flies and twiddle factor multiplication of the algorithm. This requires one or more

memories to store the value. For large size FFTs, this is an efficient architecture with

less hardware. In this section, we discuss about the single memory, dual memory,

array memory and cached memory architectures.



Chapter 3. FFT Architectures and Design choice for OFDM systems 49

Main MemoryProcessor

Figure 3.1: Single memory architecture.

3.1.1 Single Memory

In chapter 2, Figure 2.1 shows the traditional 4-point DIT radix-2 FFT flow diagram

with two stages. This can be implement by using single memory architecture as shown

in Figure 3.1. This architecture contains a processor (an arithmetic block for process-

ing the data) and a memory (to store inputs or outputs) connected to a bi-directional

data bus. We can see that for each of the two stages, two butterfly calculations are

required and the whole data are read and written back to the main memory in every

stage. As the FFT size increases, the number of stages also increases. As a result, the

data movement will cause much power consumption and long execution time. In this

architecture single memory is used for storing the inputs and the processed outputs

which takes more execution time.

3.1.2 Dual Memory

The problem that arises in single memory can be solve by adding extra memory for

storing the incoming data. The dual memory structure connects the processor with

two memory blocks as shown in Figure 3.2. The data inputs from one memory are



Chapter 3. FFT Architectures and Design choice for OFDM systems 50

Main MemoryMain Memory Processor

Figure 3.2: Dual memory architecture.

passed through the processing element to another memory and vice versa till the

transform is completed. At first, the data is read from the first memory and it is

processed in the arithmetic block. Later, the data are written to the other memory.

The data are now read from the second memory block and are written into the first

memory block. In a pipelined way, the next data are read from the first memory

block and processed. The same process repeats for the next stage till the transform

is completed. The Honeywell DASP processor [73] use the dual-memory architecture.

3.1.3 Array Memory

The whole processing of an array memory architecture is shown in Figure 3.3, which

is divided into a number of independent processing elements with local buffers. They

are connected through a network. This architecture is mainly used for large number

of data processors. This architecture has high throughput and low latency, but the

hardware cost is increased as compared to single memory architecture. The Cobra

FFT processor [74] uses an array architecture with multiple chips where each chip

contains one processor and one local buffer. The FFT processor by O’Brien et al.,



Chapter 3. FFT Architectures and Design choice for OFDM systems 51

  

  

 
 

 
 

Processor +
Buffer

Processor +
Buffer

Processor +
Buffer

Processor +
Buffer

Figure 3.3: Array memory architecture.

[74] uses an array-style architecture on a single chip with four data paths and four

memory banks.

3.1.4 Cached Memory

The cached memory architecture [75, 76] is similar to single memory architecture

except that a small cache memory is present in between the processor and the memory

to reduce the number of main memory access as shown in Figure 3.4. In conventional

FFT, architecture data and identical twiddle factors are stored in main memory itself.

If the number of points of a FFT is increased, the size of the memory is increased, and

simultaneously the speed of the processor is reduced. To overcome this problem, data

and identical twiddle factors are stored in cache memory. The size of the cache memory

is very small compared to main memory and the speed of the cache memory is very

fast compared with main memory. Cached memories architectures are mainly used



Chapter 3. FFT Architectures and Design choice for OFDM systems 52

Main MemoryProcessor Cache

Figure 3.4: Cached memory architecture.

for reducing the power consumption, since the frequent access of the main memory

are reduced.

3.2 Pipelined Architectures

A Pipeline implementation of the FFT was first proposed in [77] by Groginsky. In

Pipelined architectures, each stage has its own set of processing elements. Each stage

reads a series of FFT samples, processes them sequentially and gives the outputs to

the next stage. All stages are computed as soon as the data are available. At the input

stage all the processing is done in serially, therefore the memory requirement is low to

store input data. Furthermore, by adding registers it is possible to increase the clock

frequency to divide the critical path. Hence the architectures are suitable for real time

applications. In [24], He and Torkelson have been classified the pipeline architectures

into two categories: Delay Feedback and Delay Commutator. These architectures are

discussed briefly in the subsequent sub-sections.



Chapter 3. FFT Architectures and Design choice for OFDM systems 53

X

+

-

Shift Registers 

(SR)

Mux

Mux

Mux

S1

S3

S2

BMR2

Input

Output

Complex 

Multiplier

Figure 3.5: Basic building blocks of R2SDF architecture.

3.2.1 Delay Feedback Architectures

3.2.1.1 Single-path Delay Feedback (SDF)

The Single-path Delay Feedback architecture contains a butterfly processing element

and a feedback shift register (SR) at each stage. The input and output data of

each stage share the same shift register. This makes the shift registers that are more

efficiently used in the Radix-2 SDF (R2SDF) and Radix-4 SDF (R4SDF) architectures.

The SDF architectures are either designed based on the DIF FFT algorithm or

can be re-designed based on the DIT FFT algorithm. Now we describe, the R2SDF

architecture that uses a simple strategy to schedule the computations of the DIF FFT

signal flow graph of Figure 2.2. The basic building blocks of this architecture are

shown in Figure 3.5. The block diagram comprises of



Chapter 3. FFT Architectures and Design choice for OFDM systems 54

-------------------------

---------------------

------------------------------

-------------------------

+

-

G1 G2

X +

G3

-

BF1 BF2

Node A Node B Node C Node D

Input

Output

Complex 

Multiplier

Figure 3.6: R2SDF 4-point DIF FFT architecture.

1. Butterfly module using radix-2 (BMR2) which performs the addition and differ-

ence operation.

2. A complex multiplier which performs multiplication of the twiddle factor and

the input comes to it.

3. Shift registers to store the intermediate data.

4. Multiplexers to pass the input data into the shift register without any com-

putation or to pass the input data into the butterfly module to perform the

computation.

The R2SDF implementation of the 4-point DIF FFT is shown in Figure 3.6. It

requires two butterfly modules (BF1 and BF2), three shift registers (G1, G2 and G3)

and a complex multiplier. For simplicity multiplexers are not shown in Figure 3.6. It

also shows different nodes (Node A, Node B, Node C, Node D), in order to explain

the data output order of this architecture as shown in Table 3.1.



Chapter 3. FFT Architectures and Design choice for OFDM systems 55

Table 3.1: Data output order of the R2SDF pipelined architecture for 4-point
FFT

Cycle Node A G1 G2 Node B Node C G3 Node D
1 - - x(0) - - - -

2 - x(0) x(1) - - - -

3
x(0)
x(2)

x(1) x(0)−x(2) x(0)+x(2) - - -

4
x(1)
x(3)

x(0)−x(2) x(1)−x(3) x(1)+x(3) - x(0)+x(2) -

5 - x(1)−x(3) - x(0)−x(2)
x(0) + x(2)
x(1) + x(3)

X(2) X(0)

6 - - - x(1)−x(3) - x(0)−x(2) X(2)

7 - - - -
x(0)− x(2)
−jx(1) +
jx(3)

X(3) X(1)

8 - - - - - - X(3)

Basically the operation of R2SDF architecture is as follows. In the first two cycles,

the first butterfly (BF1) module allows the inputs x(0) and x(1) to pass unchanged

into the shift registers G1 and G2. In the third cycle at node A, the data x(0) in shift

register G1 and the incoming data x(2) are inputs to butterfly (BF1) which computes

a 2-point DFT. Then, the output x(0) + x(2) is sent to the complex multiplier which

multiplies with the twiddle factor, while x(0)−x(2) is sent back to the shift register G2.

In the fourth cycle, the second butterfly (BF2) module allows the input x(0) + x(2)

to pass unchanged into shift register G3, while BF1 computes the inputs x(1) and

x(3) and the outputs x(1) + x(3) and x(1) − x(3) which are computed and sent to

the complex multiplier and to the shift register G2 respectively. In the fifth cycle,

the second butterfly (BF2) module computes the inputs x(0) + x(2) and x(1) + x(3),

where the DFT result X(0) = x(0)+x(2)+x(1)+x(3) appears at the output node D,

while X(2) = x(0) + x(2)− x(1)− x(3) is sent to shift register G3. In the next three



Chapter 3. FFT Architectures and Design choice for OFDM systems 56

Input Output
BMR2 BMR2

SR

N/2

X BMR2

SR

N/4
SR

1

X  .

Figure 3.7: N -point R2SDF Architecture.

consecutive cycles, the remaining DFT outputs X(2), X(1) = x(0)−x(2)−jx(1)+x(3)

and X(3) = x(0)− x(2) + jx(1)− jx(3) are obtained in the bit-reversed order.

The number of pipeline stages can be extended to N -point DFT as shown in

Figure 3.7. For radix-2, multiplexers of first stage switch their position after N/2

clock cycles and for every N/4 clock cycles in the consequent stages. Likewise, the

memory requirement is only N − 1 as it requires N cycles to provide first output. In

general, a R2SDF architecture for FFT is considered as an optimal choice in terms of

the hardware cost and performance for many applications.

Radix-4 Single-path Delay feedback (R4SDF):

This architecture [78] is a radix-4 version of R2SDF. A 64-point DIF R4SDF FFT

architecture is illustrated in Figure 3.8. It comprises of butterfly module using radix-4

(BMR4), three shift registers per butterfly with various lengths and complex mul-

tipliers. Since radix-4 algorithm is used, the number of multipliers are reduced to

(log4N)–1 compared to 2((log4N)–1) for R2SDF. However, the hardware requirement

of R4SDF is more compared to R2SDF.



Chapter 3. FFT Architectures and Design choice for OFDM systems 57

BMR4 BMR4

3x16

X BMR4XInput Output

3x4 3x1

Figure 3.8: Length-64, R4SDF Architecture.

BU2
8

BU1
4

BU2
32

BU1
16

BU2
2

BU1
1

Input

Output

X

X

Figure 3.9: Length-64, R22SDF Architecture.

Radix-22 Single-path Delay Feedback (R22SDF):

R22SDF architecture is based on radix-22 algorithm which is shown in Figure 3.9. By

using a pair of modified radix-2 butterflies, this architecture reproduces the radix-4

butterfly elements. In Figure 3.9, BU1 is a standard BMR2, which is similar in the

R2SDF pipeline. The BU2 element is slightly modified, that allows selected inputs

to be multiplied by ‘− j ’. This architecture requires non-trivial multipliers at every

second stage, whereas in R2SDF it requires at every stage as shown in Figure 3.7.

Thus, this architecture reduces the number of multipliers required compared with the

R2SDF architecture.



Chapter 3. FFT Architectures and Design choice for OFDM systems 58

M-path SR

M-path Butterfly

...

OutputInput

X
X

X

M-path SR

M-path 

multiplication

M-path Butterfly

...

X
X

X

M-path SR

M-path 

multiplication

M-path Butterfly

...

 ..

Figure 3.10: Multi-Path Delay Feedback Pipelined FFT Architecture.

3.2.1.2 Multi-path Delay Feedback (MDF)

Multi-path Delay Feedback pipelined FFT architectures are also referred as parallel

feedback architectures. These architectures have parallel SDF pipelined FFT architec-

tures for processing the input samples [79, 80, 81, 82]. The MDF architecture utilizes

50% of butterflies. Therefore, parallelism does not improve the utilization ratio. As

this architecture process the input samples parallely, it has high throughput at the

expense of hardware cost.

MDF architectures can use different radices, such as radix-2 [80], radix-22 [82],

and radix-24 [79]. Figure 3.10 shows the radix-r MDF architecture. This architecture

contains radix-r butterfly blocks which are used to compute r-point FFTs. As shown

Figure 3.10, it requires complex multipliers in each path for twiddle factor multiplica-

tion. In order to reduce the number of complex multipliers, this architecture uses the

specified constant multipliers that are based on sharing the same complex multiplier.

Furthermore, shift registers are used in the feedback loop, which feed the samples to

butterfly stages according to data flow requirements of the circuit.



Chapter 3. FFT Architectures and Design choice for OFDM systems 59

BMR2

2

1X

BMR2

1

Input Output

Commutator
S

De-

Mux

Figure 3.11: R2MDC 4-point FFT architecture.

3.2.2 Delay Commutator Architectures

3.2.2.1 Multi-path Delay Commutator Architectures

The most straight forward implementation of FFT algorithms are Radix-2 Multi-

path Delay Commutator (R2MDC) [83] and Radix-4 Multi-path Delay Commutator

(R4MDC) [84] pipelined FFT architecture. These architectures operates by reschedul-

ing the butterfly inputs through delay elements, therefore they are known as the

feed-forward FFT architectures. The main difference compared to delay feedback

architectures is that, these architectures do not have any feedback loop.

The MDC architectures can also be designed based on DIF FFT algorithm or DIT

FFT algorithm. As Figure 3.11 illustrates the architecture of an 4-point R2MDC DIF

FFT that consists of two butterfly modules, delay elements, a complex multiplier, a

de-multiplexer and one commutator (direct pass/ cris-cross switches).



Chapter 3. FFT Architectures and Design choice for OFDM systems 60

when control = 1' when control = 0'

Figure 3.12: Operation of the commutator in R2MDC architecture.

The butterfly module performs the addition and subtraction operations. The delay

elements are used to schedule the data properly to the butterflies for proper compu-

tation. Complex multiplier performs the complex multiplication of twiddle factors

and the complex input data arrives to it. The de-multiplexer is used to send half of

the input data to the delay element and remaining half data to the butterfly, which

provides correct input order to the butterfly. The operation of the commutator which

uses dynamic switches are shown in Figure 3.12. When control=‘0’, the switch is

in the direct pass mode till the upper branch outputs are shifted into the delay el-

ements. The switch is toggled to criss-cross mode when control=‘1’, providing the

correct ordered input pairs to the next butterfly stage.

The step-by-step process of the R2MDC architecture is shown in Figure 3.13. The

input data is considered as 0, 1, 2, and 3. As data arrives to the R2MDC architecture,

the first two input data (0 & 1) are de-multiplexed to the top-left delay elements which

are delayed by two samples and the next two data directly to the butterfly. In this

way, the first two data (0 & 2) and the next two data (1 & 3) arrives to the butterfly



Chapter 3. FFT Architectures and Design choice for OFDM systems 61

Input    3 2 1 0
        .  .  1 0

       3 2  .  .De-Mux Butterfly

 1   0

 3   2 

 1   0

 3   2 Delay

        .   1   0

       3  2   .

Delay

Switch

        .   2   0

        3   1    . Delay

 2   0

 3   1 Butterfly

 2   0

 3   1 
Output

Figure 3.13: Step-by-step process of an 4-point R2MDC FFT architecture.

for processing as a correct pair. Then, the upper branch output of the butterfly is

sent directly to the commutator, while the lower branch output is passed through

the complex multiplier with one delay sample to the commutator as shown in Figure

3.13. The switch is in the direct pass mode till the first output data is shifted to the

delay element, and then the switch is toggled to criss-cross mode thereby providing

the correct data to the next butterfly with one unit of delay. Finally, the first two

outputs are arrived at the output of the butterfly after processing. In the next cycle,

the remaining two outputs also arrive.

The 4-point MDC pipeline structure can be extend to N -point FFT architecture

as shown in Figure 3.14. As the architecture computes the input data samples in

parallel, it can provide higher throughput compared to SDF architecture but, the

hardware cost is more.

The architecture of R4MDC [84] is similar to R2MDC, where the input data are

separated by 1-to-4 de-multiplexer and 3N/2 delay elements at the first stage. A

four-path delay commutator is used between two stages. The computation takes place



Chapter 3. FFT Architectures and Design choice for OFDM systems 62

BMR2

N/2

1X

BMR2

1
Input

Output

Commutator
Sel

De-

Mux

N/4X

BMR2

N/4

Commutator

Input

Figure 3.14: R2MDC N -point FFT architecture.

C4 BFR4 C4

X

12

8

4
1

2

3

X

X
BFR4

3

2

1

Input

Output

Figure 3.15: Length-16, R4MDC Architecture.

only when the last part of the data is multiplexed to the butterfly. A length-16 DIF

Radix-4 Multipath Delay Commutator (R4MDC) FFT is shown in Figure 3.15. Each

stage (except the last stage) has 3 multipliers and this architecture requires in total

3(log4N − 1) multipliers for an N -point FFT which is more than the R2MDC or

R2SDF. Moreover the memory requirement is 5N/2− 1, which is the large compared

to R2SDF and R2MDC. From the view of hardware and butterfly utilization, it is not

a good structure.

3.2.2.2 Single-path Delay Commutator Architectures

In [85], G. Bi and E. V. Jones proposed a simplified radix-4 butterfly, which pro-

duces one output when compared to four in the conventional butterfly of R4MDC.



Chapter 3. FFT Architectures and Design choice for OFDM systems 63

Commut-

ator
BMR4 X

Commut-

ator
BMR4 X

Commut-

ator
BMR4

Input Output

Figure 3.16: Length-64, R4SDC Architecture.

To provide the same four outputs, the butterfly works four times instead of just once.

Furthermore, the simplified butterfly needs additional control signals, and so do the

commutators. This architecture requires only 2N −2 memory elements by using com-

bined delay commutators when compared to R4MDC that requires 5N/2− 1 memory

elements. The architecture of a 64-point DIF Radix-4 Single-Path Delay Commutator

(R4SDC) FFT is shown in Figure 3.16. The main drawback of SDC architecture is

low throughput compared to MDC architecture.

3.3 Design choice for OFDM systems

The basic block diagram of FFT based OFDM system is shown in Figure 3.17. The

serial input data stream is converted into parallel data stream and mapped to symbols

from constellation mapper (Binary Phase Shift Keying/Quadrature Phase Shift Key-

ing/Quadrature Amplitude Modulation). Then these symbols are given to IFFT that

generates a digital OFDM symbol with N orthogonal subcarriers. The output of the

IFFT is serialized and converted to analog signal using Digital to Analog converter



Chapter 3. FFT Architectures and Design choice for OFDM systems 64

Serial 

To

Parallel

Constella-

tion 

Mapper

IFFT

Parallel

To

Serial

Constella-

tion 

Demapper

FFT

Input 

Data

Output 

Data

Channel

DAC
Parallel 

To

Serial

ADC
Serial 

To

Parallel

Figure 3.17: Block diagram of FFT based OFDM system .

(DAC). The complete OFDM symbol is transmitted through the channel. On receiver

side this OFDM symbol is converted back to parallel stream and converted to digital

signal using Analog to Digital Converter (ADC). An FFT is used to decode the OFDM

subcarriers and then mapped to constellation demapper. Finally, the received signal

is serialized to get the output data. The implementation of FFT and IFFT blocks

in OFDM systems require more hardware and also consumes more power. Therefore,

there is a need to implement FFT/IFFT block with less hardware and consumes low

power.

An FFT processor for OFDM systems (IEEE 802.11a and IEEE 802.15.4− g) can

be implemented by using either memory based architecture or pipeline architecture.

The memory based architecture is the one that requires less hardware resources; there

is a lot of resource sharing, and the data must be carefully directed to the correct



Chapter 3. FFT Architectures and Design choice for OFDM systems 65

Table 3.2: Comparison of the number of complex multipliers, adders, and
memory units for various pipelined architectures

Architecture Complex Multipliers Complex Adders Memory

R2SDF 2(log4N − 1) 4 log4N N − 1
R4SDF log4N − 1 8 log4N N − 1
R22SDF log4N − 1 4 log4N N − 1
R23SDF log4N − 1 4 log4N N − 1
R4SDC log4N − 1 3 log4N 2N − 2
R2MDC 2(log4N − 1) 4 log4N 3N/2− 1
R4MDC 3(log4N − 1) 8 log4N 5N/2− 1
R23MDC 2(log4N − 1) 2 log4N 3N/2− 1
SRMDC 4(log4N − 1) 12 log4N − 8 3N/2− 1

functional units. It also require higher clock frequency to perform all the required

butterfly operations along with complex multiplications which consumes more power.

Therefore, pipeline architectures can process the FFT at the sampling rate, and exhibit

low power consumption.

Table 3.2 tabulates the resource requirements of each of the pipelined FFT archi-

tectures discussed. It includes information on complex multipliers, complex adders,

and memory requirements. The complex multipliers perform twiddle factor multipli-

cations which require more hardware to implement than complex adders. Therefore,

various possibilities to implement complex multipliers will be discussed in the next

chapter 4. From Table 3.2, one can observe that, due to the efficient use of shift

register elements, SDF architecture has the minimum memory requirement of (N −1)

words. The MDC architecture can provide higher throughput than SDF pipelined

architecture, as it can compute several samples in parallel at the cost of hardware.



Chapter 3. FFT Architectures and Design choice for OFDM systems 66

Based on this information, the SDF architectures are better because of the reduced

hardware requirements for IEEE 802.11a and IEEE 802.15.4 − g standard OFDM

systems.

3.4 Conclusion

The most common FFT architectures are explained in this chapter, which includes

memory based and pipelined architectures. The memory based FFT architecture

requires the least amount of hardware resources. However, the memory requirement

is more and also consumes more power. Furthermore, two popular styles of pipelined

hardware architecture for FFT implementation are discussed in this chapter, which

comprises of delay commutator and delay feedback architectures. These architectures

have their own merits and demerits based on different approaches.

The delay feedback architecture is always efficient than their corresponding Com-

mutator architecture in terms of the memory requirement and the utilization, since

the butterfly utilizes the same delay element for the storage of the incoming and

outgoing samples. Therefore, delay feedback architectures are considered an optimal

choice in terms of the hardware cost and performance for many applications. The

butterfly structure of the radix-2i architectures is simpler than the radix-2 butterflies.



Chapter 3. FFT Architectures and Design choice for OFDM systems 67

Therefore, the radix-2i processing elements are better utilized. Also the radix-2i sin-

gle path architectures utilize the multiplier in efficient manner as compared to their

corresponding radix-2 single path architectures.

In chapter 2, it is discussed that radix-2i algorithms are the best option with re-

spect to the number of operations. In this chapter, it is shown that SDF architectures

are better choice in terms of resources required and its utilization. From these obser-

vations, the R2iSDF can be concluded as the ideal choice for OFDM systems (IEEE

802.11a and IEEE 802.15.4− g).



Chapter 4

Twiddle Factor Multiplication and

its Hardware

The twiddle factor multiplication can be implemented by different techniques, regard-

less of which FFT algorithm and architecture is chosen. These techniques include

general complex multiplication and complex constant multiplication. To implement

complex multiplier in FFT hardware, fixed-width multiplier is required in order to

prevent the result from growing in size after every multiplication. Based on the trade-

off between the hardware cost and the accuracy of the output signals, all the input

signals and twiddle factor coefficients have to be considered fixed-width of data. The

complex constant multipliers are multiplier-less implementations, where shifters and

adders are used to implement the twiddle factor multiplication.

68



Chapter 4. Twiddle Factor Multiplication and its Hardware 69

X

Memory

x + j y

c + j s

X + j Y

Figure 4.1: General complex multiplier.

In this chapter, Section 4.1 presents the implementation of general complex mul-

tiplier with different approaches. Further, we discuss various fixed-width multiplier

designs in the literature. In Section 4.2, we present two types of constant multiplica-

tions that are single and multiple constant multiplications.

4.1 General Complex Multiplication

The block diagram representation of a general complex multiplication is shown in

Figure 4.1. This consists of a memory to store the real and imaginary parts of the

twiddle factor coefficients and a complex multiplier. The twiddle factor multiplication

of a complex input (x+ jy) and twiddle factor (WN = c+ js) can be calculated as:

(x+ jy) ·WN = (x+ jy)(c+ js)

= x · c+ j ·x · s+ j · y · c+ j2 · y · s

= (x · c− y · s) + j(x · s+ y · c)

= X + j ·Y (4.1)



Chapter 4. Twiddle Factor Multiplication and its Hardware 70

X

x 

X

X

X

+

+

y

c

s

X

Y

-

Figure 4.2: Approach I with four multipliers and two adders.

where X and Y are the real and imaginary parts of the result.

Approach I: The common approach of implementing equation (4.1) is by using

four real multipliers and two real adders. The direct implementation of the complex

twiddle factor multiplication is shown in Figure 4.2. However, this approach require

more hardware due to 4 real multipliers.

Approach II: The twiddle factor multiplication in equation (4.1) can be rewritten

in the following approach as:

(x+ jy)(c+ js) = [x · (c+ s)− (x+ y) · s] + j [x · (c+ s) + (y − x) · s]

= X + j ·Y (4.2)

This approach requires three real multipliers instead of four as in Approach I, but the

number of real adders are increased to five. The structure of equation (4.2) is shown



Chapter 4. Twiddle Factor Multiplication and its Hardware 71

x 

+

y

c s

X

Y

+

+

X

X

+

X

-
+

-

Figure 4.3: Approach II with three multipliers and five adders.

in Figure 4.3.

Approach III: Another approach to rewrite the twiddle factor multiplication

(4.1):

(x+ jy)(c+ js) = [(x+ y) · c− x · (c+ s)] + j [(x+ y) · c+ y · (s− c)]

= X + j ·Y (4.3)

Based on equation (4.3), the implementation structure is depicted in Figure 4.4. It

requires three multipliers and three adders, therefore this is called as a 3/3 algorithm.

However, it needs to store c + s , c − s and c coefficients in memory. In most of the

FFT applications this approach is considered as this reduces the hardware complexity

of twiddle factor multiplication.



Chapter 4. Twiddle Factor Multiplication and its Hardware 72

x 

+

y

c+s

X

Y

+ X

X

X

+

-

c

s-c

Figure 4.4: Approach III with three multipliers and three adders.

4.1.1 Fixed-width Multiplication

Multipliers play a key role in designing the FFT architectures, as it takes more hard-

ware resources to implement. In literature there are various types of multipliers that

include Baugh-Wooley multiplier, Wallace tree multiplier, Booth’s multiplier, Modi-

fied Booth’s multiplier, Vedic multiplier, serial multiplier and serial-parallel multiplier

[86, 87, 88, 89, 90, 91, 92]. In general, the multiplication operation of two operands

doubles the result when compared with the input bits. In pipelined FFT architec-

tures as discussed in chapter 3, each stage performs twiddle factor multiplication that

results with increasing the number of bits at each stage. Therefore, the output of

multiplication result need to be truncated or rounded to lower the number of bits.

The selection of the number of bits mainly depends on the hardware cost and the

accuracy of the output signal.



Chapter 4. Twiddle Factor Multiplication and its Hardware 73

a1bn-1

a1b2 a2b2 --------

a1b1 a2b1 an-1b1-------

h = 0
h = 1

h = n-1
h = n

----

n columns
n + 1 columns

2n columns
2n - 1 columns

MSP

 

anbn-1--------------

an-1bn anbn--------

anb2

a2bn

LSP

a2bn-1

an-1b2

a1bn

anb1

neq= n-h 

Figure 4.5: Partial product array for n× n unsigned multiplication.

By directly truncating n-bit Least Significant Part (LSP) partial product array

of a full width multiplier, a fixed-width multiplier can be obtained. However, di-

rectly truncating the Least Significant Part (LSP) partial product array of the mul-

tiplication product leads to truncation error [93]. In order to mitigate this trunca-

tion error, many error compensation methods have been proposed in the literature.

In [94, 95, 96], simplest techniques are used by compensating the truncation errors

with a fixed bias. The accuracy of truncated multiplier is significantly improved in

[97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107], where an error compensation cir-

cuit is obtained by adaptive correction method to estimate sum of the LSP terms. In

[97, 98], Swartzlander et al. proposed a variable correction method for fixed-width

multiplication as shown in Figure 4.5. In this multiplier, neq = n − h where n rep-

resents the number of multiplier bits and h is the design parameter that range from

0 to n. This multiplier sums partial product bits by keeping n + h most significant



Chapter 4. Twiddle Factor Multiplication and its Hardware 74

columns of the partial products to obtain the final product for fixed-width multiplica-

tions. There are also different error compensation methods are available in literature

[89, 108, 109, 110, 111, 112, 113, 114] for fixed-width multipliers to optimize error per-

formance. The designer has to choose the trade-off between the accuracy and area of

the fixed-width multiplier. However, it is quite difficult to conclude that a particular

method is suitable for FFT application. The selection can be made based on circuit

complexity, speed, and error performance of the fixed-width multiplier.

In [112], the authors have presented a method for compensating the truncation

error of fixed-width booth multipliers in contrast with the 128-point FFT. Most of

the existing research [115, 116] is using complex Booth multipliers for the twiddle fac-

tor multiplication. However, if the twiddle factor has a small number of coefficients,

then the complex constant multiplier can be useful for the twiddle factor multiplica-

tions. The complex constant multiplier requires less area compared to complex Booth

multiplier.

4.2 Constant Multiplication

A constant multiplication can be used when one of the operands is already known, for

example the twiddle factor coefficients are already known in advance before the twid-

dle factor multiplication in the FFT architectures. The implementation of constant



Chapter 4. Twiddle Factor Multiplication and its Hardware 75

91x f = 91x

Figure 4.6: General constant multiplier.

multiplication can be done by using shifters, adders and subtractors, instead of using

general multipliers. Therefore, it is called as a multiplier-less implementation.

Adders and subtractors have the same arithmetic complexity in the implementa-

tion of complex multiplier. Therefore, the term adder can be used for both adders

and subtractors in the entire circuit implementation. As shifters does not have any

effect on hardware cost, the numbers of adders have to be reduced for an optimal

implementation of constant multiplication.

4.2.1 Single Constant Multiplication (SCM)

Figure 4.6 shows the constant multiplier block diagram for the multiplication of a

variable x by a known constant number (91). The straight forward single constant

multiplication [117] implementation is by translating 1’s binary representation of the

constant 91 into shifts and adds up the shifted inputs as follows:

f = 91x = 010110112 x

= (x << 6) + (x << 4) + (x << 3) + (x << 1) + x (4.4)



Chapter 4. Twiddle Factor Multiplication and its Hardware 76

x

<<6 <<4 <<3 <<1

+ + + +
f = 91x

Figure 4.7: Constant multiplier using shifters and adders.

The implementation of above equation (4.4) require four adders as shown in Figure

4.7. However, this direct implementation require more adders which can be reduced

by using canonical signed digit (CSD) technique [118].

CSD can reduce the number of non-zero bits in the constant value. It is a useful

technique that can reduce the area of hardware implementation of constant multiplier.

It includes some properties as follows:

• Represents the constant number in the form of 0, 1 and 1̄ (−1).

• The number of non-zero bits are minimal and unique.

• No two consecutive numbers are non-zero.



Chapter 4. Twiddle Factor Multiplication and its Hardware 77

x

<<7 <<5 <<2

+ + +
f = 91x- - -

Figure 4.8: Optimized constant multiplier.

Using CSD, the previous example in equation (4.4) can be represented as follows:

f = 91x = 010110112 x

= 101̄001̄01̄2 x

= (x << 7)− (x << 5)− (x << 2)− x (4.5)

Based on equation (4.5), the structure is shown in Figure 4.8. This technique

reduces the numbers of adders from four to three compared to straight forward imple-

mentation. This reductions helps to reduce the hardware and also power consumption

of the multiplier design.



Chapter 4. Twiddle Factor Multiplication and its Hardware 78

4.2.2 Multiple Constant Multiplication (MCM)

A variable can be multiplied by a given set of fixed-point constants using a multiplier

block that consists exclusively of additions, subtractions, and shifts. The generation

of a multiplier block from the set of constants is known as the multiple constant

multiplication. In equation (4.1), c and s are the known twiddle factor coefficients in

the FFT architecture. It can be seen that these constants are multiplied by unknown

values x and y. In [119], the authors have proposed an algorithm for obtaining MCM

with two constants. A general block diagram of the complex multiplier using MCM

is shown in Figure 4.9. This contain two blocks, where constant value of c and s is

implemented by shifters and adders. To obtain twiddle factor multiplication two more

Shifters and

Adders

Shifters and

Adders

x

y

y . c

x . s

x . c

y . s

+

+

-
X

Y

Figure 4.9: Constant multiplier using MCM.



Chapter 4. Twiddle Factor Multiplication and its Hardware 79

additional adders are used. The complexity of the twiddle factor multiplication based

on MCM depends on the accuracy requirement of a particular application. The CSD

representation can also be used in the MCM blocks to reduce the hardware complexity

of the implementation. In [26, 120] twiddle factor multiplier for {W8,W16, and W32}

using constant multiplication were proposed. The hardware implementation of these

constant multipliers require less area compared to complex Booth multipliers.

4.3 Conclusion

This chapter briefly presented different possibilities to implement the twiddle factor

multiplication. These include general complex multiplication and constant multiplica-

tion. It described that the general complex multiplication can be realized by different

approaches. Among these, a 3/3 algorithm (Approach III) is used in most of the FFT

architectures with less number of real multipliers. Further, we have discussed about

various types of fixed-width multipliers that are in the literature.

Finally, in this chapter we have presented constant multiplication that uses shifters

and adders. That includes single constant multiplication and multiple constant multi-

plication. In the next chapters 5 and 6, the pipeline FFT architectures are proposed,

which uses an optimized MCM approach using sharing mechanism.



Chapter 5

Pipeline FFT Architecture Design

for an OFDM-based IEEE 802.11a

In this chapter, an area-efficient and low-power 16-bit word-width 64-point radix-22

and radix-23 pipelined SDF FFT architectures for an OFDM-based IEEE 802.11a

wireless LAN baseband are presented. Based on the analysis discussed in chapter

2 and chapter 3, the designs are derived from radix-2i algorithm and adopts a SDF

architecture for hardware implementation. To eliminate the complex multipliers and

memory in twiddle factor multiplication, the proposed 64-point FFT employs a CSD

complex constant multiplier (CCM) using adders, and shifters.

Rest of this chapter is organized as follows. In Section 5.1, the design consideration

for 64-point FFT is presented. Section 5.2 presents the pipelined radix-2i SDF FFT

80



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 81

architectures with modified CSD complex constant multipliers. The comparison and

performance evaluation of various FFT architectures are then discussed in Section 5.3.

Conclusions are given in Section 5.4.

5.1 Design consideration of the FFT for 64-point

Now-a-days, the demand for wireless devices are increasing rapidly that requires less

hardware and low power FFT architecture. According to IEEE 802.11a standard,

the required sampling frequency (fs) is 20 MHz and the total number of subcarriers

is 64, which determines the FFT size [121]. The FFT has to be computed within

3.2 µs, which is the multiplication of the inverse of sampling frequency with FFT size

(TFFT = 64 1
fs

). To meet these design constraints, pipelined architectures are suitable

as these can take less hardware and consumes low power.

In general, the FFT computation require complex multipliers in order to multiply

the twiddle factor with input signals and also read-only memory (ROM) to store

the required twiddle factors, that takes large area and power consuming. Chu Yu

et.al. [108] proposed a ROM-less pipelined FFT to reduce the hardware of the design.

However, the design uses a reconfigurable complex multiplier that takes more area. In

[121], the authors have presented a ROM-less and multiplier-less FFT using shifters

and adders. As the proposed architecture is targeted at the IEEE 802.11a based

OFDM system, the main design challenge is to reduce the complexity of multipliers.



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 82

Table 5.1: Base number of twiddle factor at each stage to compute 64-point
FFT

Algorithm
Stages 1 2 3 4 5

Radix-2 W64 W32 W16 W8 −j
Radix−22 [24] −j W64 −j W16 −j
Radix−23 [122] −j W8 W64 −j W8

Radix−24 [123] −j W16 −j W64 −j

5.2 Proposed Modified FFT Architectures

An 64-point FFT computation with radix-2i algorithm is composed of 6 stages. The

radix-2i algorithm retains the structure of radix-2 algorithm and it has the same

butterfly structure regardless of i. However, the twiddle factor multiplication position

is different for different values of i = 2, 3 and 4. Table 5.1 describes the sequence of

64-point FFT twiddle factor computation at each stage for radix-2 and radix-2i FFT

algorithms.

Figure 5.1 shows the architectures of the Radix-2i SDF (R2iSDF) pipelined FFT,

where k = 2, 3 and 4, for N = 64. The implementation uses two types of butterfly

units (BU1 and BU2), several delay buffers of various lengths and multiplexers for

data shuffling to get proper data at the butterfly input. The symbol
⊙

represents

the modified CSD complex constant multipliers (CCM1, CCM2 and CCM3). A 6-

bit counter is used to switch the butterfly units between different modes and also to

provide a proper twiddle factor multiplication, which is not shown in Figure 5.1. In



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 83

BU2

8

BU1

4

BU2

32

BU1

16

BU2

2

BU1

1

input

output

CCM2

CCM1

BU2

8

BU1

4

BU2

32

BU1

16

BU2

2

BU1

1

input

output

CCM1

CCM2

BU2

8

BU2

4

BU2

32

BU1

16

BU1

2

BU2

1

input

output

CCM3

CCM1

CCM3

(a)

(b)

(c)

.

.

.

.

.

.

.

Figure 5.1: Radix-2i pipelined SDF 64-point FFT : (a) R22SDF , (b)
R23SDF, and (c) R24SDF

the next sections, the functions of the butterfly units and the modified CSD complex

constant multipliers are explained in detail.



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 84

+

+

+

+

Delay 

Buffers

0

1

0

1

0

1

0

1

Rin

Iin

Rout

Iout

D_Iin

D_Rin

D_Iout

D_Rout

- 

- 

Figure 5.2: Butterfly units BU1

+

+

+

+

Delay 

Buffers

0

1

0

1

0

1

Rin

Iin

Rout

Iout

D_Iin

D_Rin

D_Iout

D_Rout

0

1
0

1

0

12's 

- 

- 

Figure 5.3: Butterfly units BU2

5.2.1 Butterfly unit

In the pipelined architectures of Figure 5.1, two types of butterfly units (BU1 and

BU2) [124] are used as illustrated in Figure 5.2, and Figure 5.3, respectively. Butterfly



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 85

unit performs complex addition and complex subtraction with the delayed input. In

Figure 5.2, Rin and Iin are the real and imaginary input data, Rout and Iout are the

real and imaginary output data after processing the input data. Similarly D Rin, and

D Iin, are real and imaginary inputs to delay buffers, D Rout, and D Iout are real and

imaginary outputs of delay buffers. At each stage of BU2 unit, it has to compute

the multiplication by −j and 1. Therefore, multiplication by −j is obtained by just

swapping the real and imaginary parts and changing the sign by using 2’s complement

as shown in Figure 5.3.

5.2.2 Modified CSD Complex Constant Multipliers

In general, the output data values from the butterfly unit need to be multiplied by

the non-trivial twiddle factors. The twiddle factors W q
N = e−j2Πq/N = Xq + jYq, where

q = 0 to N−1 are divided into eight types. Here, Xq and Yq are the real and imaginary

parts of the twiddle factors. By utilizing the symmetry property of twiddle factor only

(N/8) sets of constant values, i.e., W q
′

N = Xq′ − jYq′ , where q
′

is from 0 to (N/8) in

Type1 are needed for the twiddle factor multiplication.

The Type1 operation is represented as follows:

Type1 : (Rin + jIin)W q
N = (Rin + jIin)(Xq′ − jYq′ ), 0 < q ≤ N/8 (5.1)



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 86

The twiddle factors of other types can be obtained by mapping q to a number q
′

in

Type1, as follows:

Type2 : (Rin + jIin)W q
N = (Rin + jIin)(Yq′ − jXq′ ),

N/8 < q < N/4 (5.2)

Type3 : (Rin + jIin)W q
N = (Rin + jIin)(−Yq′ − jXq′ ),

N/4 < q ≤ 3N/8 (5.3)

Type4 : (Rin + jIin)W q
N = (Rin + jIin)(−Xq′ − jYq′ ),

3N/8 < q < N/2 (5.4)

Type5 : (Rin + jIin)W q
N = (Rin + jIin)(−Xq′ + jYq′ ),

N/2 < q ≤ 5N/8 (5.5)

Type6 : (Rin + jIin)W q
N = (Rin + jIin)(−Yq′ + jXq′ ),

5N/8 < q < 3N/4 (5.6)

Type7 : (Rin + jIin)W q
N = (Rin + jIin)(Yq′ + jXq′ ),

3N/4 < q ≤ 7N/8 (5.7)

Type8 : (Rin + jIin)W q
N = (Rin + jIin)(Xq′ + jYq′ ),

7N/8 < q < N (5.8)

Based on the eight operation types (Type1-Type8 ), the complex multiplications

for N -point FFT will be reduced to the computation of (N/8) sets of constant values.



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 87

2's 

0

1

+

0

1

+

S1

Constant

Multiplier

Constant

Multiplier

Rin

Iin

a

b

0

1

0

1
2's 

2's 

0

1

2

3

0

1

2

3

S2 S3

Rout

Iout

c

d

f

e

Figure 5.4: Proposed modified CSD multiplier for CCM1 and CCM2

This reduces the number of twiddle factors to compute the FFT. In [108], the authors

have designed a reconfigurable complex constant multipliers that reduces the size

of ROM using these (N/8) sets of constant values for twiddle factor multiplication.

However, this design uses complex multiplier that takes more area. Some simplification

scheme has been presented in [121], by using CSD based constant multipliers instead

of complex multipliers. However, this design requires more adders to design complex

constant multiplier. Therefore, we employ CSD representation and common sub-

expression sharing methods for complex constant multiplier in order to reduce the

area cost.

Figure 5.4 shows the proposed modified CSD complex constant multiplier. Here,

a and b are the inputs to the constant multiplier that are obtained based on the select

signal S1. The outputs of the constant multiplier units are c, d, e and f . These output

are the product of the complex input and the twiddle factor constants of the constant



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 88

+

+ 2's

-

 0

 1

 0

 1

  0

  1

  0

  1

Rin

Iin

Rout

Iout

CCM3_s1 CCM3_s2

CCM_W8

CCM_W8

Rin × 0.7071 

Iin × 0.7071 

Figure 5.5: CSD complex constant multiplier for CCM3

multiplier units. The final complex multiplication output is obtained by the selection

of the signals S2 and S3.

For a 64-point FFT, various complex constant multipliers (CCM1, CCM2 and

CCM3) are required as shown in Figure 5.1. Here, the non-trivial type of operations

for CCM1 structure can be obtain by using CCM W64 multiplier unit of Figure 5.6

as a constant multiplier and similarly CCM2 can be obtain by using CCM W16 of

Figure 5.7 multiplier unit as a constant multiplier in Figure 5.4. The trivial type of

operations can be obtain without selecting the CCM W64 or CCM W16 multiplier

units in Figure 5.4. The CSD complex constant multiplier for CCM3 is shown in

Figure 5.5, it can be designed by less hardware compared to CCM1 and CCM2. The

detailed description of these constant multipliers is described in the next subsections.



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 89

+

2
's

 

+

+

0

- 

- 

2 3

8
6

8
4

0
1

2
3

 4

  5
6

7

4
9

4
8

1
1

7
4

5
6

3
2

5
1

9
4

1
1

8
7

2
1

7
6

1
1

1
0

5
4

+
+

a

a

- 
 a

a
×

(1
-2

-2
)

-a
×

(1
-2

-2
)

a
×

 (
1

+
2

-2
)

-a
×

(1
+

2
-2

)

 a
×

(1
-2

-3
)

a
 ×

 X
q
 

a
 ×

 Y
q
 

2
's

 

2
's

 

0
1

2
3

 4

  5
6

7
0

1
2

3
 4

  5
6

7
0

1
2

3
 4

  5
6

7
0

1
2

3
 4

  5
6

7
0

1
2

3
 4

  5
6

7
C

C
M

1
_

s1

0
1

0
1

C
C

M
1

_
s2

c
d

F
ig

u
re

5
.6

:
B

lo
ck

d
ia

gr
am

of
C
C
M

W
6
4

m
u
lt

ip
li
er

u
n
it



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 90

5.2.2.1 CCM W64 multiplier unit

In [121] for 64-point FFT, it is stated that 49 non-trivial constants (W q
64) are to be

multiplied to the intermediate results. As the twiddle factors have 1/8 symmetric

property, only eight sets of non-trivial constant values are required for the multiplica-

tion operation. They are (0.9952, 0.0980), (0.9808, 0.1951), (0.9569, 0.2903), (0.9239,

0.3826), (0.8819, 0.4714), (0.8315, 0.5556), (0.7730, 0.6344), (0.7071, 0.7071), where, in

each set, the first entry corresponds to real part (Xq′ ) and the second one corresponds

to the imaginary part (Yq′ ) in the expansion of W q
64.

The eight sets of constants can be represented in CSD form as shown in Table

5.2. Furthermore, hardware-less realization of CCM W64 constant multiplier can be

achieved by utilizing the common sub-expression sharing of the eight sets of constants.

In Table 5.2, one of the term “-10-1”as enclosed by black ellipses is used as one of the

common sub-expression. The remaining seven terms “0”, “1”, “-1”, “101”, “10-1”,

“-101”, and “100-1” are also used to realize the common sub-expression sharing block.

Exploring the advantage of presence of such common sub-expressions, a hardware

efficient CCM W64 multiplier structure is given in Figure 5.6. The sharing block

consisting of shifters, adders and two’s complement are shown in Figure 5.6 within

dashed line box. The square boxes represents right shifted values of the input given

to it. These shifters are realized using simple hardware connections. For one among

the eight twiddle factor constant multiplications, six 8-to-1 multiplexers are used to



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 91

T
a
b
le

5
.2

:
C

S
D

re
p
re

se
n
ta

ti
on

s
of

ei
gh

t
se

ts
co

n
st

an
t

va
lu

es
fo

r
co

m
p

os
in

g
tw

id
d
le

fa
ct

or
s

S
et

C
on

st
an

t
va

lu
e

of
th

e
re

al
p

ar
t

C
S

D
re

p
re

se
n
ta

ti
on

of
re

al
p

ar
t

C
on

st
an

t
va

lu
e

of
th

e
im

ag
in

ar
y

C
S

D
re

p
re

se
n
ta

ti
on

of
im

ag
in

ar
y

p
ar

t

20
2−

1
2−

2
2−

3
2−

4
2−

5
2−

6
2−

7
2−

8
2−

9
2−

10
2−

1
1

20
2−

1
2−

2
2−

3
2−

4
2−

5
2−

6
2−

7
2−

8
2−

9
2−

10
2−

11

1
0.

99
52

1
0

0
0

0
0

0
0

-1
0

-1
0

0.
09

80
0

0
0

1
0

-1
0

0
1

0
0

0

2
0.

98
08

1
0

0
0

0
0

-1
0

-1
0

0
0

0.
19

51
0

0
1

0
-1

0
0

1
0

0
0

-1

3
0.

95
69

1
0

0
0

-1
0

1
0

1
0

0
-1

0.
29

03
0

0
1

0
0

1
0

1
0

0
1

0

4
0.

92
39

1
0

0
0

-1
0

-1
0

0
1

0
0

0.
38

26
0

1
0

-1
0

0
0

1
0

0
0

0

5
0.

88
19

1
0

0
-1

0
0

0
1

0
0

-1
0

0.
47

14
0

1
0

0
0

-1
0

0
0

1
0

1

6
0.

83
15

1
0

-1
0

1
0

1
0

1
0

-1
0

0.
55

56
0

1
0

0
1

0
0

-1
0

0
1

0

7
0.

77
30

1
0

-1
0

0
1

0
-1

0
0

0
1

0.
63

44
0

1
0

1
0

0
0

1
0

1
0

-1

8
0.

70
71

1
0

-1
0

-1
0

1
0

1
0

0
0

0.
70

71
1

0
-1

0
-1

0
1

0
1

0
0

0



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 92

Table 5.3: Selection of the Twiddle Factors in CCM1

Control Signals

Twiddle

Factors 1 W 1
64-W 8

64 W 9
64-W 15

64 −j W 17
64 -W 24

64 W 25
64 -W 31

64 −1 W 33
64 -W 40

64 W 41
64 -W 47

64

S1 0 0 0 1 1 1 0 0 0

S2 0 1 1 0 1 1 0 1 1

S3 0 0 0 3 2 2 1 1 1

CCM1 s1 x 0-7 7-1 x 0-7 7-0 x 0-7 7-0

CCM1 s2 x 0 1 x 1 0 x 0 1

get the appropriate result.

The multiplication operations of the complex inputs and the twiddle factors are

conducted using five control signals as given in Table 5.3. The S1, S2 and S3 are

the control signals in Figure 5.4 and CCM1 s1, CCM1 s2 are the control signals of

the CCM W64 multiplier unit in Figure 5.6, which is used as a constant multiplier

in Figure 5.4. Here, ’x’ denotes the don’t care value. The trivial type of operations

(1,−j,−1) can be obtained by selecting only three control signals S1, S2 and S3. The

non-trivial type of operations can be obtained by proper selecting the five control

signals as shown in Table 5.3.

The procedure of complex multiplication can be explained as follows. If the com-

plex input (Rin + jIin) is to be multiplied with W 1
64 (Type1 ) constants 0.9952 and

0.0980 (real and imaginary part of the first set of non-trivial constant). The output



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 93

of the CCM1 module is

Rout = Rin × 0.9952 + Iin × 0.0980 (5.9)

Iout = −Rin × 0.0980 + Iin × 0.9952 (5.10)

In order to obtain the complex multiplication output, the control signal S1 is

selected as 0 that passes the Rin and Iin to a and b respectively. The constants 0.9952

and 0.0980 are decomposed in terms of power of 2 as (1 − 2−8 − 2−10) and (2−3 −

2−5 + 2−8) respectively. The outputs of the constant multiplier units are a × 0.9952,

a× 0.0980, b× 0.9952 and b× 0.0980 represented as c, d, e and f respectively. These

outputs are obtained by selecting the constant multiplier control signals CCM1 s1 and

CCM1 s2 as 0 and 0 respectively. The final real and imaginary outputs of the CCM1

module are obtained as shown in equations 5.9 and 5.10, by selecting the control

signals S2 and S3 as 1 and 0 respectively. Thus with the CSD representation and

common sub-expression sharing block, the multiplication of (Rin + jIin) with these

constants effectively turns into additions or subtractions of a series of right shifted

values.



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 94

5.2.2.2 CCM W16 multiplier unit

In the similar way of utilizing symmetric property of complex sinusoidal functions for

W q
16, both real and imaginary parts of twiddle factors can be derived from two sets of

non-trivial constant values, (0.9239, 0.3826) and (0.7071, 0.7071). In Table 5.2, Set4

and Set8 represents the CSD form of these two sets of constants respectively. The

constant multiplier operation in terms of power of 2 can be expressed as

out1 = a× 0.7071 = a× {1− 2−2 − 2−4 + 2−6 + 2−8} (5.11)

out2 = a× 0.9239 = a× {1− 2−4 − 2−6 + 2−9} (5.12)

out3 = a× 0.3826 = a× {2−1 − 2−3 + 2−7} (5.13)

The three multiplication operations can be obtained by simply using seven addi-

tions and six shift operations as shown in Figure 5.7. The twiddle factor selection in

CCM2 with control signals are given in Table 5.4. In order to select the two sets of

twiddle factor multiplications, two 2-to-1 multiplexers are used in the CCM W16 mul-

tiplier unit. If CCM2 s=0, the two multiplexers selects the multiplication operation of

the input ‘a’ and the first set of constants 0.9239 and 0.3826. If CCM2 s=1, it selects

the multiplication with the second set of constants 0.7071 and 0.7071. The area cost

of the CCM W16 multiplier unit is much less than the area cost of CCM W64, as it

can be realized using two sets of constants.



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 95

0

1

0

1

c 

d 

CCM2_s

+

2

-

-

-

a
out1

out3

out2

+

++

+

+

+

7

4

1

5

2

Figure 5.7: Block diagram of CCM W16 multiplier unit

Table 5.4: Selection of the Twiddle Factors in CCM2

Control Signals

Twiddle
Factors 1 W 1

16 W 2
16 W 3

16 −j W 6
16 W 9

16

S1 0 0 0 1 1 1 0
S2 0 1 1 1 0 1 1
S3 0 0 0 0 3 1 1

CCM2 s x 0 1 1 x 1 1

+ + +>>2Rin

Rin ×  0.7071 
>>2

>>4

Figure 5.8: Block diagram of CCM W8 multiplier unit

5.2.2.3 CCM W8 multiplier unit

This multiplier unit requires only one set of constant value (0.7071, 0.7071) for mul-

tiplication operation. Figure 5.8 shows the CCM W8 multiplier unit for CCM3 in

Figure 5.5. In CCM3, the multiplication operations of the complex input and the

twiddle factors, 1, W 1
8 , −j and W 3

8 can be obtained by using two control signals



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 96

Table 5.5: Selection of the Twiddle Factors in CCM3

Control Signals

Twiddle
Factors 1 W 1

8 −j W 3
8

CCM3 s1 0 1 0 1
CCM3 s2 0 0 1 1

CCM3 s1 and CCM3 s2 as shown in Table 5.5. By employing this multiplier unit,

CCM3 can be designed using only eight adders and six multiplexers.

5.3 Comparison and Experimental results

Table 5.6 compares the hardware requirement and performance of the proposed R2iSDF

architectures to other pipelined architectures for the computation of a 64-point FFT.

The hardware requirement is measured in terms of number of complex multipliers,

CSD constant multipliers, complex adders and memory. The performance is rep-

resented by critical path delay, latency and throughput. The critical path delay is

defined as the path in the pipelined architecture with the maximum delay. Latency is

the number of clock cycles that the architecture takes to process an input sequence by

considering a continuous flow of data. Finally, the throughput indicates the number

of samples processed by the architecture per clock cycle.

The proposed architectures does not require any complex multipliers, as the mul-

tipliers are realized with the modified CSD complex constant multiplier unit. The



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 97

Table 5.6: Comparison of the proposed R2iSDF architectures to other archi-
tectures for the computation of a 64-point FFT

Architecture
Complex
Multipliers

CSD
Constant
Multipliers

Complex
Adders

Memory
Critical

path delay
Latency Throughput

R2SDF [125] 4 - 12 63 TM + 2TA + TMUX 127 R
R4SDF [125] 2 - 24 63 TM + 3TA + TMUX 127 R
R4SDC [125] 2 - 9 126 TM + 3TA + TMUX 127 R

R22SDF [125] 2 - 12 63 TM + 2TA + TMUX 127 R

R23SDF [126] 1 2 20 63 TM + 2TA + 2TMUX 127 R
R2SDF [108] 1 2 12 63 TM + 3TA + 5TMUX + 2TC 127 R
R8SDC [121] 0 3 48 171 9TA + 2TMUX 64 8R
Proposed

R22SDF
0 2 12 63 5TA + 5TMUX + 3TC 127 R

Proposed

R23SDF
0 3 12 63 5TA + 6TMUX + 3TC 127 R

Proposed

R24SDF
0 2 12 63 5TA + 5TMUX + 3TC 127 R

Table 5.7: Comparison of number of adders for CCM W64 multiplier unit

CCM W64

multiplier unit
Adders

[121] 54
Proposed 14

hardware complexity of the proposed architectures is reduced by adopting the multi-

plication units using CSD representation and common sub-expression sharing. Table

5.7 shows the comparison of the number of adders required for the proposed modified

CSD complex constant multiplier with the constant multiplier in [121]. The proposed

modified constant multipliers requires less adders, that reduces the total area of the

FFT design.

From Table 5.6, even though the number of complex adders are less for R4SDC

architecture, but the memory requirement is more and also control unit is complex.



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 98

The number of complex adders and memory requirement is more in [121]. The pro-

posed modified architectures requires the same number of complex adders and memory

compared to that of other SDF architectures with simple control.

The critical path delay [127] of the proposed designs is 5TA + 5TMux + 3TC , and

5TA+6TMux+3TC for R22SDF and R23SDF, respectively, where TA, TMux and TC are

computation time of an adder, multiplexer and two’s complement, respectively. The

proposed architecture latency and throughput is same as the other SDF architectures

[108, 121, 125]. From Table 5.6, it can be observed that R22SDF and R24SDF have the

same hardware complexity. Therefore, we have considered only R22SDF and R23SDF

for implementation.

To have a more generalized comparison, the word length is chosen as 16-bit in

the proposed implementations. Before the hardware implementation, a proper twid-

dle factor word length of the proposed architectures is determined by a fixed-point

simulation using MATLAB. Figure 5.9 shows the Signal-to-Quantization-Noise Ratio

(SQNR) evaluation versus word length of the twiddle factor inputs. It can be observed

that the SQNR increases as the word length of the twiddle factor increases from 8 to

12 bit, after that increasing the word length does not improve the performance. There-

fore, the twiddle factor word length of 12-bit is selected for both R22SDF and R23SDF

architectures.

The functionality of the proposed FFT architectures is verified using MATLAB



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 99

30

35

40

45

50

55

60

65

70

8 9 10 11 12 13 14 15 16

S
Q

N
R

(d
B

)

Twiddle Factor word length (bits)

Radix-2² Radix-2³

Figure 5.9: SQNR versus twiddle factor word length for R22SDF and
R23SDF

Table 5.8: Comparison of various 64-point FFT architectures

Design
Word

Length
Gate

Counts
Technology Power

Normalized
Power

[121] 16 – 250nm,1.8 V
41 mW

@20 MHz
9.88

[128] 16 – 180nm,1.8 V
68.95 mW
@50 MHz

6.65

[109] 16 – 130nm,1.2 V
2.27 mW
@5 MHz

4.92

[99] In: 12, Out: 20 38,168 350nm,3.3 V
507.85 mW
@150 MHz

4.85

[108] 16 33,590 180nm,1.8 V
9.79 mW
@20 MHz

2.36

[129] 12 - 180nm,1.8 V
21.43 mW
@50 MHz

2.06

Proposed
R22SDF

16 28,880 180nm,1.8 V
7.86 mW
@20 MHz

1.89

Proposed
R23SDF

16 28,826 180nm,1.8 V
7.89 mW
@20 MHz

1.90

and the models are converted into Verilog by HDL coder. Then the proposed models

are synthesized using Synopsys Design Compiler with TSMC 180 nm, 1.8 V Standard

Cell Library. Power dissipation is estimated from the synthesis netlists by feeding

them into Synopsys Prime Time to perform full transistor-level power simulation.



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 100

The performance comparison of the proposed architectures with various recent

64-point FFT architectures is summarized in Table 5.8. To have meaningful com-

parisons among the different implementations, the gate count and normalized power,

irrespective of frequency and FFT size are considered as comparison parameters. The

normalized power per FFT is considered as follows [108]:

Normalized power per FFT =
Power

(V oltage)2 × (FFTsize)× Frequency
× 1000

(5.14)

With respect to normalized power under the same process technology, the power

consumption of the proposed R22SDF and R23SDF implementations is around 1.08

times lower than the design in [129]. As the proposed R22SDF and R23SDF archi-

tectures adopt modified CSD complex constant multiplier, the gate count is lesser

compared to the architectures proposed in [99] and [108]. The maximum operating

frequency of the proposed architectures is up to 125 MHz. The operation speed can

be further improved by proper placement of pipelined registers in the design. These

features show that though it has been developed primarily for application in the IEEE

802.11a standard, it can be used for any application that requires less hardware as

well as low power consumption.



Chapter 5. Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a 101

5.4 Conclusion

In this chapter, we have proposed R22SDF and R23SDF pipelined 64-point FFT ar-

chitectures that are suitable for OFDM based IEEE 802.11a wireless systems. The

proposed architectures employs radix-2i algorithm and pipelined SDF architecture

that provides lower multiplicative complexity and less hardware. The hardware cost

of the architectures is further reduced as the complex multiplier is realized by using

modified CSD complex constant multipliers. The implementation results show that

at 20 MHz frequency the proposed R22SDF and R23SDF architectures require 28.8K

total gates and dissipates only 7.86 mW and 7.89 mW respectively. As the proposed

design is cost-effective with low power consumption, it can be also useful for many

other OFDM based wireless systems like IEEE 802.11b/n/ac. However, the proposed

design is suitable only for a fixed length of 64-point FFT and it is not suitable for

variable-length FFTs. Therefore, in the next chapter, we propose a modified constant

multiplier that can be suitable for variable-length FFTs.



Chapter 6

Variable-Length FFT Architecture

for MR-OFDM

A fixed length of 64-point FFT is presented in chapter 5. In this chapter, we present

a 16/32/64/128-point SDF pipeline FFT architecture targeting the Multi-Rate Multi-

Regional (MR)-Orthogonal Frequency Division Multiplexing (OFDM) physical layer

of IEEE 802.15.4−g. In the following sub-sections, Section 6.1 provides a brief descrip-

tion about IEEE 802.15.4−g standard systems. In Section 6.2, we give an introduction

to the decomposition of four different FFT lengths for N = 128, 64, 32, and 16 and

their FFT twiddle factors. Section 6.3 presents the proposed FFT architecture for the

SUN applications. The hardware requirements and performance evaluation of various

102



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 103

FFT architectures are discussed in Section 6.4. Finally, Section 6.5 concludes this

work.

6.1 Introduction

Currently, manual or semi-manual operation is performed for remote-metering of elec-

tricity, water, gas, etc. To improve service efficiency with cost effectiveness, the utility

service providers need more intelligent metering systems. Automatic Meter Reading

(AMR) [130] Radio Frequency (RF) modules are combined with smart meters to elim-

inate the expense of human meter readers. In 2012, IEEE released an amendment to

the IEEE 802.15.4 standard, which is named as IEEE 802.15.4− g [110]. This amend-

ment addresses the needs of Smart Utility Networks (SUN), in the context of Low Rate

(LR) Wireless Personal Area Network (WPAN). The standard is designed to achieve

data rates up to 800 kbps and works in several frequency bands, from 450 MHz to 2.4

GHz. The standard proposes three Physical Layers named as Multi-Rate and Multi-

Regional (MR) orthogonal frequency division multiplexing (OFDM), MR frequency

shift keying (MR-FSK) and MR offset quadrature phase shift keying (MR-OQPSK).

MR-FSK [110] provides good transmitter power efficiency due to the constant en-

velope of the transmitted signal. It supports the data rates from 5 kbps to 400 kbps.

It is a simple solution for applications requiring hardware simplicity, at the expense of

compromised system performance. The MR-OQPSK [110] uses Multiplexing Direct



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 104

Sequence Spread Spectrum (MDSSS) or Direct Sequence Spread Spectrum (DSSS).

This supports multiple data rates ranging from 6 kbps up to 500 kbps. Nowadays wire-

less systems require high data rate and robustness against frequency selective fading

channels. In this regard, MR-OFDM [110] provides attractive technical advantages,

at the expense of a more complicated circuit design. This can support data rate from

50 kbps up to 800 kbps. The MR-OFDM is a suitable candidate for SUN applica-

tions operating in challenging environments with severe fast fading degradation. In

urban environments where obstructions and reflectors are the major cause of a lossy

propagation channel, MR-OFDM can prove to be an ideal solution.

The key cores in the MR-OFDM are fast Fourier transform and inverse fast Fourier

transform (IFFT). The MR-OFDM physical layer can operate in four modes, each with

different FFT sizes as 128, 64, 32 and 16, with modulation schemes binary phase shift

keying (BPSK), quadrature phase shift keying (QPSK) and 16-quadrature amplitude

modulation (QAM). Table 6.1 summerizes the main parameters for four operation

modes. The implementation of an FFT processor is one of the most difficult parts in

the realization of MR-OFDM systems as its hardware complexity is very high. Many

FFT algorithms and architectures evolved in order to reduce hardware complexity

with high speed.

The main area to be concentrated in FFT architectures is twiddle factor mul-

tiplication. In [131], the input stage of an N -point decimation-in-frequency (DIF)

Radix-2 SDF FFT unit of an OFDM transmitter is designed based on pass logic. It



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 105

Table 6.1: MR-OFDM parameters

Parameters Option 1 Option2 Option 3 Option 4
Sampling Rate
(MSamples/s)

1.333 0.666 0.333 0.166

FFT Size 128 64 32 16
FFT Duration

(µs)
96 96 96 96

Dta Rate
(kbps)

100∼800 50∼800 50∼600 50∼300

is used for specific OFDM applications with BPSK and QPSK modulation. How-

ever, this design results in high hardware cost because of large Read-only memory

(ROM) used to store the required twiddle factors. Therefore, to remove the ROM

for area-efficient consideration, in [132] the authors proposed an efficient ROM-less

64-point FFT/IFFT processor. However, the hardware cost because of the multipliers

used is high. In chapter 5, a modified complex constant multiplier using common

sub-expression sharing block is proposed to reduce the hardware cost of multipliers.

However, these architectures [131, 132] are not suitable for variable-length FFTs.

The main motivation of the proposed work is to design an alternative architecture

for FFT computation that satisfies the standard IEEE 802.15.4− g with less area and

low power consumption. Therefore, we propose an efficient SDF pipeline FFT with

variable lengths using a hardware sharing mechanism. The important contributions

of this proposed work are:

• A mixed-radix (radix-22 and radix-2) FFT algorithm is adopted to reduce the

complexity of twiddle factor multiplications for the proposed design.



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 106

Table 6.2: Decomposition of four different FFT lengths

N 1 2 3 4

16 22 22

32 22 22 2
64 22 22 22

128 22 22 22 2

• A configurable complex constant multiplier (CCCM) is proposed for twiddle

factor W32, W64 and W128 multiplications, as it is required for variable-length

FFT.

• A hardware-sharing mechanism is employed to reduce the memory space require-

ment for the proposed variable-length FFT.

6.2 Decomposition and Twiddle Factors at each

stage of FFT

According to IEEE 802.15.4 − g standards, four FFT lengths are required N =

128, 64, 32, and 16. Although radix-r (where r is power of 2) FFT algorithms are of-

ten adopted to reduce the FFT computation complexity, it still needs large amount of

twiddle factor multiplications. Therefore, in this chapter, a hardware-efficient mixed-

radix (radix-22 and radix-2) FFT algorithm is employed to reduce the number of

complex multiplications. The decomposition of four different FFT lengths is shown

in Table 6.2. Here, we fold the four FFT lengths using radix-22 butterflies as many



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 107

R-2
2

2b b

R-2

2b

R-2

b

-j

Figure 6.1: Radix-22 butterfly constructed from two Radix-2 butterflies

Table 6.3: Sequence of the 16/32/64/128-point FFT twiddle factor compu-
tation for mixed-radix FFT Algorithms

N 1 2 3

16 W16

32 W16 W32

64 W16 W64

128 W16 W128 W8

times as possible. From Table 6.2, one can observe that the first two stages of the four

FFT lengths can share the same hardware. The last two stages are configurable for

both radix-22 and radix-2 computation. Therefore, the proposed design can perform

variable-length FFT computation using multiplexer switches at stage 3 and stage 4.

The Radix-22 (R-22) butterfly is constructed from two Radix-2 (R-2) butterflies, sep-

arated with a trivial multiplication (−j), as shown in Figure 6.1. Here ‘b’ denotes the

delay buffer length. Another two sub-stages are formed for a single Radix-22 butterfly.

Table 6.3 shows the sequence of twiddle factors for 16/32/64/128-point FFT in

Table 6.2. At stage 1 and stage 3, it requires W16 and W8 multipliers respectively

that can be designed by using constant multipliers. W128 multiplier is a non-trivial

multiplier so far designed by using complex Booth multipliers. We have designed a



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 108

novel configurable constant W128 multiplier that can acts as W128, W64 and W32 mul-

tiplier. The detailed description about configurable multiplier is discussed in section

6.3. Note that the proposed design shares W16 and W128 multipliers at stage 1 and

stage 2 respectively and W8 multiplier at stage 3 such that it obtains variable lengths

of FFT. Sharing the multipliers can reduce the total hardware of the design.

6.3 Proposed Architecture

The SDF pipeline 16/32/64/128-point FFT architecture proposed for 802.15.4 − g

standard is shown in Figure 6.2. This architecture uses the radix-22 and radix-2

butterflies for mixed-radix FFT computation. Here, the first four stages are four

radix-2 butteries and are common for 16/32/64/128 computation. The last three

stages are configured using multiplexers and switched depending on FFT computation

requirement. So, the architecture has seven stages (ST1-ST7). As radix-22 contain

two radix-2 butterfly structures, the number of stages considered seven (ST1-ST7)

including the last stage with radix-2.

The proposed architecture comprises of two butterfly units (marked as BU1 and

BU2 which are similar to Figures 5.2 and 5.3), several delay buffers of various lengths

(indicated by numbers enclosed in rectangles), six 4-to-1 multiplexers (data shuffling),

four 2-to-1 multiplexers (to select variable-length FFT) and three complex constant



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 109

B
U

2

8

8

1
6

3
2

0 1 32

s1

B
U

1

4

4

8

1
6

0 1 32

s2

B
U

2

2

2

4

8
0 1 32

s3

B
U

1

1

1

2

4
0 1 32

s4

B
U

2

1

1

2
0 1 32

s5

B
U

1

1

1
0 1 32

s6

B
U

1

1

0 1

0 1

0 1

1
0

0
0

s7

s8

s9
s1

0

.

.
.

S
T

1
S

T
2

S
T

3
S

T
4

S
T

5
S

T
6

S
T

7

C
C

M
1

C
C

M
2

C
C

C
M

O
u
tp

u
t

In
p
u
t

F
ig

u
re

6
.2

:
P

ro
p

os
ed

16
/3

2/
64
/1

28
-p

oi
n
t

S
D

F
p
ip

el
in

e
F

F
T

ar
ch

it
ec

tu
re



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 110

Table 6.4: Selection of variable-length FFT

N s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

16 3 3 3 3 x x 1 1 1 1
32 2 2 2 2 2 x 0 0 1 1
64 1 1 1 1 1 1 0 0 0 1
128 0 0 0 0 0 0 0 0 0 0

multipliers (CCM1, CCM2 and CCCM using shifters and adders). In the next sub-

sections, the description about multiplexer switchings and the design of configurable

constant W128 multiplier are explained in detail.

6.3.1 Multiplexer switching to perform variable-length FFT

The proposed design performs 16/32/64/128-point FFT computations using the seven

butterfly unit stages by means of multiplexer switching is shown in Figure 6.2. Several

delay buffers of various lengths and multiplexers (MX1-MX6) with select lines s1-s6

are being used for data shuffling to get proper data at the butterfly input. The outputs

of the variable lengths of FFTs are separated by one de-multiplexer (DMX7) and three

multiplexers (MX8-MX10) located in the last four stages with select lines s7-s10.

For an 128-point computation, the multiplexer select lines are selected as shown

in Table 6.4. A 128-point FFT computation is performed using the seven butterfly

stages ST1-ST7, in which the sizes of the delay buffers in the seven butterfly stages are

64, 32, 16, 8, 4, 2 and 1, respectively using multiplexers MX1-MX6 with select lines



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 111

as ‘0’. The outputs of the 128-point FFT are obtained by selecting the DMX7 and

MX8-MX10 as ‘0’. Based on the select lines as shown in Table 6.4, 64, 32 and 16-point

FFT computations can also be obtained. Here ‘x’ denotes the don’t care value. The

reconfigurability of this architecture renders flexibility to perform 16/32/64/128-point

FFT operations with less hardware.

6.3.2 Modified Complex Constant Multipliers

In [116], the authors have designed a configurable complex constant multipliers that

reduces the size of ROM using (N/8) sets of constant values for twiddle factor mul-

tiplication. However, the FFT architecture in [116] uses complex Booth multiplier

that takes up more area and it is not suitable for variable-length FFTs. In this work,

we proposed a configurable constant multiplier CCCM after stage 4 as shown in Fig-

ure 6.2. This multiplier can select any one of the coefficient W32, W64 and W128 for

multiplication, which is suitable for variable-length FFT.

For 16/32/64/128-point FFT, three complex constant multipliers (CCM1, CCM2

and CCCM) are employed as shown in Figure 6.2. Here, the non-trivial type of

operations for CCM1 and CCCM structure can be obtained by using W16 and W128

multiplier units as a constant multiplier in Figure 6.3, respectively. The W16 constant

multiplier is considered as shown in Figure 5.7. The CSD complex constant multiplier

for CCM2 is shown in Figure 6.4, that uses a W8 multiplier unit which is shown in



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 112

2's 

0

1

+

0

1

+

S1

Configurable 

Constant

Multiplier

Ri

Ii

a

b

0

1

0

1
2's 

2's 

0

1

2

3

0

1

2

3

S2 S3

Ro

Io

c

d

f

e

Configurable 

Constant

Multiplier

Figure 6.3: CSD complex constant multiplier for CCM1 and CCCM

+

+ 2's

-

 0

 1

 0

 1

  0

  1

  0

  1

Ri

Ii

Ro

Io

CCM2_s1 CCM2_s2

CCM_W8

CCM_W8

Ri × 0.7071 

Ii × 0.7071 

Figure 6.4: CSD complex constant multiplier for CCM2.

Figure 5.8. The W16 and W8 constant multipliers are considered that are described in

chapter 5 in sub-sections 5.2.2.2 and 5.2.2.3 respectively. The detailed description of

the W128 constant multiplier is described below.



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 113

T
a
b
le

6
.5

:
C

S
D

re
p
re

se
n
ta

ti
on

s
of

16
se

ts
co

n
st

an
t

va
lu

es
fo

r
co

m
p

os
in

g
tw

id
d
le

fa
ct

or
s

S
et

C
on

st
an

t
va

lu
e

of
th

e
re

al
p

ar
t

C
S

D
re

p
re

se
n
ta

ti
on

of
re

al
p

ar
t

C
on

st
an

t
va

lu
e

of
th

e
im

ag
in

ar
y

C
S

D
re

p
re

se
n
ta

ti
on

of
im

ag
in

ar
y

p
ar

t

20
2−

1
2−

2
2−

3
2−

4
2−

5
2−

6
2−

7
2−

8
2−

9
2−

1
0

2−
11

20
2−

1
2−

2
2−

3
2−

4
2−

5
2−

6
2−

7
2−

8
2−

9
2−

1
0

2−
11

1
0.

99
88

1
0

0
0

0
0

0
0

0
-1

0
1

0.
04

90
0

0
0

0
1

0
-1

0
0

1
0

0

2
0.

99
52

1
0

0
0

0
0

0
0

-1
0

-1
0

0.
09

80
0

0
0

1
0

-1
0

0
1

0
0

0

3
0.

98
92

1
0

0
0

0
0

-1
0

1
0

0
1

0.
14

67
0

0
0

1
0

1
0

-1
0

-1
0

0

4
0.

98
08

1
0

0
0

0
0

-1
0

-1
0

0
0

0.
19

51
0

0
1

0
-1

0
0

1
0

0
0

-1

5
0.

95
69

1
0

0
0

0
-1

0
0

0
0

1
0

0.
24

29
0

0
1

0
0

0
0

-1
0

0
0

1

6
0.

95
69

1
0

0
0

-1
0

1
0

1
0

0
-1

0.
29

03
0

0
1

0
0

1
0

1
0

0
1

0

7
0.

94
15

1
0

0
0

-1
0

0
0

1
0

0
0

0.
33

69
0

1
0

-1
0

-1
0

-1
0

0
0

1

8
0.

92
39

1
0

0
0

-1
0

-1
0

0
1

0
0

0.
38

27
0

1
0

-1
0

0
0

1
0

0
0

0

9
0.

90
40

1
0

0
-1

0
1

0
0

0
-1

0
-1

0.
42

76
0

1
0

0
-1

0
0

-1
0

-1
0

-1

10
0.

88
19

1
0

0
-1

0
0

0
1

0
0

-1
0

0.
47

14
0

1
0

0
0

-1
0

0
0

1
0

1

11
0.

85
77

1
0

0
-1

0
0

-1
0

0
-1

0
0

0.
51

41
0

1
0

0
0

0
1

0
0

-1
0

0

12
0.

83
15

1
0

-1
0

1
0

1
0

1
0

-1
0

0.
55

56
0

1
0

0
1

0
0

-1
0

0
1

0

13
0.

80
32

1
0

-1
0

1
0

0
-1

0
-1

0
0

0.
59

57
0

1
0

1
0

-1
0

0
0

1
0

-1

14
0.

77
30

1
0

-1
0

0
1

0
-1

0
0

0
1

0.
63

44
0

1
0

1
0

0
0

1
0

1
0

-1

15
0.

74
10

1
0

-1
0

0
0

0
-1

0
-1

0
1

0.
67

16
1

0
-1

0
-1

0
-1

0
0

0
0

-1

16
0.

70
71

1
0

-1
0

-1
0

1
0

1
0

0
0

0.
70

71
1

0
-1

0
-1

0
1

0
1

0
0

0



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 114

Sharing

Block

Constant 

Multiplier Block1

Constant 

Multiplier Block2

0

1

0

1

a
8

(#1 to #8)

c

d

b1

b2
CCCM_s2

Figure 6.5: W128 configurable constant multiplier block diagram

+

2's 

+

+
0

- 

- 

2

3

a

-a

a×(1-2-2)

-a×(1-2-2)

a× (1+2-2)

-a×(1+2-2)

 a×(1-2-3)

2's 

2's 

#1

#2

#3

#4

#5

#6

#7

#8

a

Figure 6.6: Sharing block

6.3.2.1 Configurable W128 Multiplier

In the proposed FFT architecture shown in Figure 6.2, the output data from stage

4 (ST4) will be multiplied by proper twiddle factors W32, W64 and W128 for 32, 64

and 128-point FFT respectively. To reduce the multiplier area, a new configurable



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 115

+

1
0

6
5

4
4

9
4

8
1
1

7

C
C

C
M

_
s1

0
1

2
3

 4

  5
6

7
8

9
1
0

1
1

 

1
2

1
3

1
4

1
5

0
1

2
3

 4

  5
6

7
8

9
1
0

1
1

 

1
2

1
3

1
4

1
5

0
1

2
3

 4

  5
6

7
8

9
1
0

1
1

 

1
2

1
3

1
4

1
5

8
6

1
0

8
4

8
3

9
6

4
7

4
5

6
9

1
0

9

#
1

#
2

#
3

#
4

#
5

#
6

#
7

#
8

b
1

F
ig

u
re

6
.7

:
C

on
st

an
t

M
u
lt

ip
li
er

B
lo

ck
1



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 116

+

4
3

2
1

2
4

7
1

C
C

C
M

_
s1

0
1

2
3

 4

  5
6

7
8

9
1
0

1
1

 

1
2

1
3

1
4

1
5

0
1

2
3

 4

  5
6

7
8

9
1
0

1
1

 

1
2

1
3

1
4

1
5

0
1

2
3

 4

  5
6

7
8

9
1

0
1

1

 

1
2

1
3

1
4

1
5

3
2

7
5

1
5

1
7

9
4

4
1

3
6

#
1

#
2

#
3

#
4

#
5

#
6

#
7

#
8

9
8

1
1

7
7

1
0

8
5

1
1

1
0

9
8

b
2

F
ig

u
re

6
.8

:
C

on
st

an
t

M
u
lt

ip
li
er

B
lo

ck
2



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 117

multiplier structure for twiddle factor multiplication is considered as shown in Figure

6.3. The corresponding block diagram of a constant multiplier W128 is shown in Figure

6.5. It contains a sharing block, two constant multiplier blocks (Block1 and Block2)

for multiplication of real and imaginary coefficients with the data coming from the

butterfly unit and two 2-to-1 multiplexers with select line CCCM s2.

For the multiplication operation of 128-point FFT, by considering the N/8 sym-

metry property only 16 sets of non-trivial constant values are required. A simplified

design of the multiplier unit can be done by exploiting the fact that the complex con-

stants to be multiplied are known a priori. Table 6.5 shows the CSD representation

of 16 sets of complex constant values for composing the twiddle factors. Similar to

the common sub-expression sharing methods as in chapter 5 (Table 5.2), the eight

terms (“0”, “1”, “-1”, “101”, “10-1”, “-101”, “-10-1”, and “100-1”) in CSD form are

used to construct the common sub-expression blocks. The sharing block consisting of

shifters, adders and two’s complement units is shown in Figure 6.6. The square boxes

in Figure 6.6 represent right shifted values of the input given to it. These shifters

are realized using simple hardware connections. For one among the 16 twiddle factor

constant multiplications, six 16-to-1 multiplexers are used in the constant Multiplier

Block1 and Block2 of Figure 6.7 and Figure 6.8 respectively, to get the appropriate

result. The data of each path are fed to appropriate constant W32, W64 and W128

multipliers according to scheduling of the twiddle factor, as shown in Table 6.6. For

example, W 1
128-W 16

128 multiplication can be obtain by selecting the multiplexer select



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 118

Table 6.6: Selection of the Twiddle Factors in CCCM

Control Signals

Twiddle

Factors 1 W 1
128-W

16
128 W 17

128-W
31
128 −j W 33

128-W
48
128 W 49

128-W
63
128 −1 W 65

128-W
80
128 W 81

128-W
95
128

S1 0 0 0 1 1 1 0 0 0

S2 0 1 1 0 1 1 0 1 1

S3 0 0 0 3 2 2 1 1 1

CCCM s1 x 0-15 14-0 x 0-15 14-0 x 0-15 14-0

CCCM s2 x 0 1 x 1 0 x 0 1

lines CCCM s1 and CCCM s2 as (0− 15) and ’0’ respectively.

Due to the recursion property W 2
N = WN/2, W32 and W64 twiddle factor coefficeints

can be obtain from W128. For example, W 2
128 = W 1

64 and W 4
128 = W 1

32, the other values

can also obtain from W128. Therefore, the entire constant multiplication calculation

can be implemented using 16 sets of constant values by swapping the real and imag-

inary parts appropriately and choosing the appropriate sign, following the mapping

table (Table 6.6).

So far, the complex constant multipliers are proposed in the literature [132, 133,

134] for the twiddle factor multiplications of W8,W16,W32 and W64. However, all

of these multipliers are fixed constant multipliers that cannot be useful for variable-

length FFT architectures. Therefore, we proposed W128 configurable complex constant

multiplier. It can perform the twiddle factor W32 and W64 multiplication, which

are required for variable-length (16/32/64/128-point) selection of the proposed FFT.

However, the constant multipliers are preferred for less than 256-point FFT, as the

number of non-trivial constant values increases for greater than 128-point FFT.



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 119

6.4 Comparison and Results

The hardware requirement and performance comparison of the proposed SDF archi-

tecture with other pipelined architectures for the computation of a 128-point FFT is

shown in Table 6.7. The first column shows the type of architecture. The second,

third, fourth and fifth columns show the hardware requirements for the architecture:

complex adders, complex multipliers, CSD complex constant multipliers, and memory

respectively. The last two columns compares the performance in terms of critical path

delay and throughput. The critical path delay is defined as the maximum delay that

it takes in the pipeline architecture. Finally, the throughput (R) indicates the number

of samples processed by the architecture per clock cycle.

In Table 6.7, it can be observed that all SDF architectures require same number

of complex adders and memory with a throughput of R. These architectures differ in

terms of complex multipliers and critical path delay. In [24], the FFT architecture

employed six complex multipliers (Booth’s multiplier) for the multiplication operation

which takes more area. In [131], the multiplier in the nth stage of R2SDF FFT is re-

placed by the pass logic that reduced the area of multiplier. However, the number

of complex multipliers are still high. Therefore, in [125, 135] the number of complex

multipliers are reduced to three by using Booth’s multiplier. However, most of the

existing designs [24, 125, 131, 135] uses complex Booth’s multiplier for the twiddle

factor W128 multiplication. In the proposed design, we have designed a CCCM for



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 120

Table 6.7: Comparison of the proposed architecture to other architectures
for the computation of a 128-point FFT

Architecture
Complex
Adders

Complex
Multipliers

CSD
Constant
Multipliers

Memory
Critical

Path Delay
Throughput

R2SDF [24] 14 6 0 127 TM + 2TA + TMUX R

R22SDF [125] 14 3 0 127 TM + 3TA + TMUX R

R23SDF [135] 14 3 0 127 TM + 3TA + TMUX R
R2SDF [131] 14 5 1 127 TM + 2TA + TMUX R
Proposed 14 0 3 127 5TA + 3TC + 5TMUX R

the twiddle factor W128 multiplication. Further, we have employed two CSD complex

constant multipliers CCM1, and and CCM2 for W16 and W8 twiddle factor multiplica-

tion respectively. As the proposed constant multipliers does not require any complex

Booth’s multiplier, these can reduce the area of entire FFT design.

The critical path delay of the proposed design is 5TA + 3TC + 5TMUX , where TA,

TC and TMUX are computation time of an adder, two’s complement, and multiplexer

respectively. The critical path delay of the proposed architecture is less compared to

other architectures as it does not include the computation time of multiplier (TM).

At first, the proposed 128/64/32/16-point FFT architecture is modeled in simulink

using MATLAB. Based on the simulation results using MATLAB, we determined the

word length of the proposed FFT to be 12-bits in both real and imaginary parts in

order to meet IEEE 802.15.4−g system requirements. Then the design is converted to

Verilog using HDL coder. Finally, it has been implemented in Virtex-5 FPGA device

XC5VLX110T-1FF1136. Table 6.8 shows the utilization report in terms of slices and

DSP blocks. Compared to the architectures in [24, 131], the proposed architecture



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 121

Table 6.8: Comparison of the proposed architecture to other architectures
for the computation of a 128-point FFT
Virtex-5 Algorithm Slices DSP blocks
[24] R2SDF 9939 64
[131] R2SDF 9468 64

Proposed Mixed-radix 7952 0

utilizes less hardware slices and also does not used any DSP blocks. The reduction in

area of the proposed design is due to the usage of complex constant multipliers.

Furthermore, the proposed architecture is implemented using UMC 90 nm CMOS

Technology with a supply voltage of 1 V. The design is synthesized using Synopsis

Design Compiler and Prime Time is used to calculate the power consumption. Table

6.9 compares the post-synthesis results of the proposed design to other 128-point FFT

architectures reported in the literature [17, 131]. As various designs use different

CMOS technologies and supply voltage, to have a meaningful comparison, the total

gate count based on 2 x 1 NAND gates and normalized power are considered as

comparison parameters. The normalized power is calculated as

Normalized power =
Power consumption

(Tech./90 nm)× (VDD/1.0)2
(6.1)

From Table 6.9, it is evident that the proposed architecture gives an advantage in

terms of hardware complexity compared to the architecture in [131]. The reduction in

hardware is due to CCCM structure and hardware-sharing mechanism which reduces



Chapter 6. Variable-Length FFT Architecture for MR-OFDM 122

Table 6.9: Comparison of various 128-point FFT architectures
[17] [131] Proposed

Process (nm) 180 180 90
Level of FFT length / streams Variable/Single or Multiple Variable/Single Variable/Single

Operation Mode 128/64 8 to 128 16 to 128
Wordlength (bits) 16 16 12

Voltage (V) 1.8 1.8 1
Gate Count – 69,665 22,329
Power (mW) 65 99.5 3.832
Normalized

Power (mW)
10.030 15.354 3.832

the memory space requirements. With respect to normalized power, the proposed

design outperforms compared to the architectures reported in [17, 131].

6.5 Conclusion

A novel 16/32/64/128-point SDF pipeline FFT architecture based on mixed-radix al-

gorithm has been proposed for IEEE 802.15.4− g systems. The proposed architecture

is the most area-efficient architecture by employing several performance-enhancement

techniques, including a reformulated radix-22 and radix-2 algorithms, a new config-

urable complex constant multiplier and a hardware-sharing mechanism to map the

memory. The FPGA implementation results of the proposed architecture shows that

it is more area-efficient compared to the earlier reported design. Furthermore, ASIC

implementation of the proposed design reveals that it reduces the total gate count and

power consumption.



Chapter 7

Conclusions and Future Work

In this thesis, the possibilities to improve complexity and performance of the twiddle

factor multiplications in FFT at algorithmic, architecture and arithmetic level were

investigated. Based on the optimization of the number of multiplication operations

at algorithmic level, it is shown that either radix-2i or mixed-radix algorithm is most

suitable for FFT implementation of IEEE 802.11a and IEEE 802.15.4 − g standard

OFDM systems. These FFT algorithms will have the same butterfly operations and

data flow of radix-2 algorithm, but differ in the twiddle factor multiplication. The

difference among these FFT algorithms lies in terms of the number of non-trivial

multiplications, the coefficient memory complexity, and the accuracy, which are related

to the area, power consumption and performance of the circuit.

123



Chapter 7. Conclusions and Future Work 124

Different FFT processor architectures are compared on the architecture level and

it is found that SDF architecture is the ideal choice for OFDM based IEEE 802.11a

and IEEE 802.15.4 − g systems with regard to the memories and arithmetic blocks

utilization. Important FFT architecture choices and considerations are also examined

and concluded.

The thesis also investigated two types of techniques to implement twiddle factor

multiplication, which includes general complex multiplication and constant multipli-

cation. Among these techniques, the constant multiplication is preferred for lower

twiddle factor coefficients (less than 256-point FFTs), as it is achieved by using shifters

and adders with less area than the general complex multiplication.

Based on the analysis of FFT at various levels, R22SDF and R23SDF pipelined

64-point FFT architectures are proposed that are suitable for IEEE 802.11a OFDM

systems. The proposed architectures focus on improving the efficiency of complex

multipliers for non-trivial twiddle factors. It takes small-area and consumes low-power

for IEEE 802.11a systems. The functionality of the proposed FFT architectures are

verified and ASIC based synthesis results are presented.

For MR-OFDM physical layer of IEEE 802.15.4− g system, a 16/32/64/128-point

SDF pipeline FFT architecture is proposed. To reduce the area of the architecture,

it employed a mixed-radix algorithm, a new configurable complex constant multiplier

and a hardware sharing mechanism. Both ASIC and FPGA based synthesis results



Chapter 7. Conclusions and Future Work 125

are provided for the proposed variable-length FFT architecture. The results show that

the proposed FFT architecture takes less area and consumes low power by considering

modified constant multipliers.

7.1 Future Work

This thesis has focused on the SDF FFT architecture with twiddle factor multipli-

cations implemented using shift-and-add. The SDF architecture was chosen due to

its serial nature for low data rate applications. However, it is possible to apply this

method to parallel pipelined architectures for high throughput applications. The hard-

ware complexity increases for high throughput applications, therefore there is a scope

to reduce the hardware complexity by using the modified constant multipliers in FFT

architectures.



Bibliography

[1] James Cooley and John Tukey. An algorithm for the Machine Calculation of

Complex fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[2] Sanjit Kumar Mitra and Yonghong Kuo. Digital signal processing: a computer-

based approach, volume 2. McGraw-Hill New York, 2006.

[3] Winthrop W Smith and Joanne M Smith. Handbook of real-time fast Fourier

transforms, volume 55. IEEE press New York, 1995.

[4] Pierre Duhamel and Martin Vetterli. Fast Fourier transforms: a tutorial review

and a state of the art. Signal processing, 19(4):259–299, 1990.

[5] Michael T Heideman, Don H Johnson, and C Sidney Burrus. Gauss and the

history of the fast Fourier transform. Archive for history of exact sciences, 34

(3):265–277, 1985.

126



Bibliography 127

[6] Gordon Charles Danielson and Cornelius Lanczos. Some improvements in prac-

tical Fourier analysis and their application to X-ray scattering from liquids.

Journal of the Franklin Institute, 233(4):365–380, 1942.

[7] C Runge. Zeit. f. Math. u. Phys, 48:443–456, 1903.

[8] Yizheng Liao. Phase and Frequency Estimation–High-Accuracy and Low-

Complexity Techniques. PhD thesis, Worcester Polytechnic Institute, 2011.

[9] Steven W Smith et al. The scientist and engineer’s guide to digital signal pro-

cessing. 1997.

[10] Martin Fürer. Faster integer multiplication. SIAM Journal on Computing, 39

(3):979–1005, 2009.

[11] Alan V Oppenheim and Jae S Lim. The importance of phase in signals. Pro-

ceedings of the IEEE, 69(5):529–541, 1981.

[12] Xuelei Sherry Ni and Xiaoming Huo. Statistical interpretation of the importance

of phase information in signal and image reconstruction. Statistics & probability

letters, 77(4):447–454, 2007.

[13] Karl R Gegenfurtner, Doris I Braun, and Felix A Wichmann. The importance

of phase information for recognizing natural images. Journal of Vision, 3(9):

519–519, 2003.



Bibliography 128

[14] Jun-Rim Choi, Soo-Bok Park, Dong-Seok Han, and Se-Ho Park. A 2048 complex

point fft architecture for digital audio broadcasting system. In IEEE Interna-

tional Symposium on Circuits and Systems, volume 5, pages 693–696. IEEE,

2000.

[15] Richard M Jiang. An area-efficient fft architecture for ofdm digital video broad-

casting. IEEE Transactions on Consumer Electronics, 53(4):1322–1326, 2007.

[16] Shen-Jui Huang and Sau-Gee Chen. A memory-efficient continuous-flow FFT

processor for Wimax application. In IEEE International Symposium on Circuits

and Systems (ISCAS), pages 17–20. IEEE, 2012.

[17] Bo Fu and Paul Ampadu. An area efficient FFT/IFFT processor for MIMO-

OFDM WLAN 802.11 n. Journal of Signal Processing Systems, 56(1):59–68,

2009.

[18] Sheng-Yeng Peng, Kai-Ting Shr, Chao-Ming Chen, and Yuan-Hao Huang.

Energy-efficient 128 2048/1536-point FFT processor with resource block map-

ping for 3GPP-LTE system. In International Conference on Green Circuits and

Systems (ICGCS), pages 14–17. IEEE, 2010.

[19] W Morven Gentleman and Gordon Sande. Fast fourier transforms: for fun and

profit. In Proceedings of the November 7-10, 1966, fall joint computer conference,

pages 563–578. ACM, 1966.



Bibliography 129

[20] Glenn D Bergland. Numerical Analysis: A fast Fourier transform algorithm for

real-valued series. Communications of the ACM, 11(10):703–710, 1968.

[21] Qing Li, Nengchao Wang, Baochang Shi, and Chuguang Zheng. Extendible

look-up table of twiddle factors and radix-8 based fast fourier transform. Signal

processing, 82(4):643–648, 2002.

[22] Daisuke Takahashi. A radix-16 fft algorithm suitable for multiply-add instruction

based on goedecker method. In International Conference on Multimedia and

Expo, volume 2, pages II–845. IEEE, 2003.

[23] P. Duhamel and H. Hollmann. ‘Split radix’ FFT algorithm. Electronics Letters,

20(1):14–16, 1984. ISSN 0013-5194. doi: 10.1049/el:19840012.

[24] Shousheng He and M. Torkelson. A new approach to pipeline FFT processor.

In The 10th International Parallel Processing Symposium, pages 766–770, 1996.

doi: 10.1109/IPPS.1996.508145.

[25] Shousheng He and Torkelson. Designing pipeline FFT processor for OFDM

(De) modulation. In URSI International Symposium on Signals, Systems, and

Electronics, pages 257–262. IEEE, 1998.

[26] OH Jung-Yeol and LIM Myoung-Seob. New radix-2 to the 4th power pipeline

FFT processor. IEICE transactions on electronics, 88(8):1740–1746, 2005.

[27] Taesang Cho, Hanho Lee, Jounsup Park, and Chulgyun Park. A high-speed low-

complexity modified radix-25 FFT processor for gigabit WPAN applications. In



Bibliography 130

IEEE International Symposium on Circuits and Systems (ISCAS), pages 1259–

1262, 2011. doi: 10.1109/ISCAS.2011.5937799.

[28] M. Garrido, J. Grajal, M.A. Sanchez, and O. Gustafsson. Pipelined Radix-

2k Feedforward FFT Architectures. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 21(1):23–32, 2013. ISSN 1063-8210. doi: 10.1109/

TVLSI.2011.2178275.

[29] Keshab K Parhi. VLSI digital signal processing systems: design and implemen-

tation. John Wiley & Sons, 2007.

[30] Koushik Maharatna, Eckhard Grass, and Ulrich Jagdhold. A 64-point fourier

transform chip for high-speed wireless LAN application using OFDM. IEEE

Journal of Solid-State Circuits, 39(3):484–493, 2004.

[31] Fahad Qureshi and Oscar Gustafsson. Low-complexity constant multiplication

based on trigonometric identities with applications to ffts. IEICE Transactions

on Fundamentals of Electronics, Communications and Computer Sciences, 94

(11):2361–2368, 2011.

[32] William T Cochran, James W Cooley, David L Favin, Howard D Helms,

Reginald A Kaenel, William W Lang, George C Maling Jr, David E Nelson,

Charles M Rader, and Peter D Welch. What is the fast Fourier transform?

Proceedings of the IEEE, 55(10):1664–1674, 1967.



Bibliography 131

[33] Oscar Buneman. Inversion of the helmholtz (or laplace-poisson) operator for

slab geometry. Journal of Computational Physics, 12(1):124–130, 1973.

[34] Fred J. Taylor, G Papadourakis, Alexander Skavantzos, and A Stouraitis. A

radix-4 FFT using complex RNS arithmetic. IEEE Transactions on Computers,

100(6):573–576, 1985.

[35] R Yavne. An economical method for calculating the discrete fourier transform.

In Proceedings of the December 9-11, 1968, fall joint computer conference, part

I, pages 115–125. ACM, 1968.

[36] P. Duhamel. Implementation of ”Split-radix” FFT algorithms for complex, real,

and real-symmetric data. IEEE Transactions on Acoustics, Speech and Signal

Processing, 34(2):285–295, 1986. ISSN 0096-3518. doi: 10.1109/TASSP.1986.

1164811.

[37] Martin Vetterli and Pierre Duhamel. Split-radix algorithms for length-p/sup

m/dft’s. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(1):

57–64, 1989.

[38] Daisuke Takahashi. An extended split-radix fft algorithm. IEEE Signal Process-

ing Letters, 8(5):145–147, 2001.

[39] Weihua Zheng, Kenli Li, and Keqin Li. A fast algorithm based on srfft for

length dfts. IEEE Transactions on Circuits and Systems II: Express Briefs, 61

(2):110–114, 2014.



Bibliography 132

[40] H V Sorensen, D Jones, Ml Heideman, and C Burrus. Real-valued fast Fourier

transform algorithms. IEEE Transactions on Acoustics, Speech and Signal Pro-

cessing, 35(6):849–863, 1987.

[41] E Oran Brigham. The fast fourier transform and its applications. UK: Prentice

Hall, 1988.

[42] G Bergland. A radix-eight fast Fourier transform subroutine for real-valued

series. IEEE Transactions on Audio and Electroacoustics, 17(2):138–144, 1969.

[43] B Raja Sekhar and KMM Prabhu. Radix-2 decimation-in-frequency algorithm

for the computation of the real-valued fft. IEEE transactions on signal process-

ing, 47(4):1181–1184, 1999.

[44] Mario Garrido, Keshab K Parhi, and Jesús Grajal. A pipelined FFT architecture

for real-valued signals. IEEE Transactions on Circuits and Systems I: Regular

Papers, 56(12):2634–2643, 2009.

[45] M. Ayinala, Y. Lao, and K. K. Parhi. An in-place fft architecture for real-valued

signals. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(10):

652–656, Oct 2013. ISSN 1549-7747. doi: 10.1109/TCSII.2013.2273841.

[46] Pramod Kumar Meher, Basant Kumar Mohanty, Sujit Kumar Patel, Soumya

Ganguly, and Thambipillai Srikanthan. Efficient vlsi architecture for decimation-

in-time fast fourier transform of real-valued data. IEEE Transactions on Circuits

and Systems I: Regular Papers, 62(12):2836–2845, 2015.



Bibliography 133

[47] Ronald N Bracewell. Discrete hartley transform. JOSA, 73(12):1832–1835, 1983.

[48] Huazhong Shu, Xudong Bao, Christine Toumoulin, and Limin Luo. Radix-3

algorithm for the fast computation of forward and inverse mdct. IEEE Signal

Processing Letters, 14(2):93–96, 2007.

[49] J. Markel. FFT pruning. IEEE Transactions on Audio and Electroacoustics, 19

(4):305–311, 1971. ISSN 0018-9278. doi: 10.1109/TAU.1971.1162205.

[50] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly Optimal

Sparse Fourier Transform. CoRR, abs/1201.2501, 2012.

[51] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier

spectrum. SIAM Journal on Computing, 22(6):1331–1348, 1993.

[52] Anna C Gilbert, Sudipto Guha, Piotr Indyk, S Muthukrishnan, and Martin

Strauss. Near-optimal sparse Fourier representations via sampling. In Proceed-

ings of the thiry-fourth annual ACM symposium on Theory of computing, pages

152–161. ACM, 2002.

[53] Anna C Gilbert, S Muthukrishnan, and M Strauss. Improved time bounds

for near-optimal sparse Fourier representations. In Optics & Photonics, pages

59141A–59141A. International Society for Optics and Photonics, 2005.

[54] Mark A Iwen. Combinatorial sublinear-time Fourier algorithms. Foundations of

Computational Mathematics, 10(3):303–338, 2010.



Bibliography 134

[55] Omid Abari, Ezz Hamed, Haitham Hassanieh, Abhinav Agarwal, Dina Katabi,

Anantha P Chandrakasan, and Vladimir Stojanovic. 27.4 a 0.75-million-point

fourier-transform chip for frequency-sparse signals. In IEEE International Solid-

State Circuits Conference Digest of Technical Papers (ISSCC), pages 458–459.

IEEE, 2014.

[56] Abhinav Agarwal, Haitham Hassanieh, Omid Abari, Ezz Hamed, Dina Katabi,

et al. High-throughput implementation of a million-point sparse fourier trans-

form. In 24th International Conference on Field Programmable Logic and Ap-

plications (FPL), pages 1–6. IEEE, 2014.

[57] Shaogang Wang, Vishal M Patel, and Athina Petropulu. The robust sparse

fourier transform (rsft) and its application in radar signal processing. IEEE

Trans. Aerosp. Electron. Syst., 53(6):2735–2755, 2017.

[58] Guoan Bi and Yan Qiu Chen. Fast dft algorithms for length n= q* 2 m. IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

45(6):685–690, 1998.

[59] Saad Bouguezel, M Omair Ahmad, and MN Srikanta Swamy. A new radix-2/8 fft

algorithm for length-q× 2 m dfts. IEEE Transactions on Circuits and Systems

I: Regular Papers, 51(9):1723–1732, 2004.

[60] Kenli Li, Weihua Zheng, and Keqin Li. A fast algorithm with less operations

for length-dfts. IEEE Transactions on Signal Processing, 63(3):673–683, 2015.



Bibliography 135

[61] Charles Van Loan. Computational frameworks for the fast Fourier transform.

SIAM, 1992.

[62] D Harris, James H McClellan, D Chan, and H Schuessler. Vector radix fast

fourier transform. In IEEE International Conference on Acoustics, Speech, and

Signal Processing, volume 2, pages 548–551. IEEE, 1977.

[63] Henri J. Nussbaumer and Philippe Quandalle. Computation of convolutions and

discrete fourier transforms by polynomial transforms. IBM Journal of Research

and Development, 22(2):134–144, 1978.

[64] Stanley C Chan and KL Ho. Split vector-radix fast fourier transform. Signal

Processing, IEEE Transactions on, 40(8):2029–2039, 1992.

[65] Zhaodou Chen and Lijing Zhang. Vector coding algorithms for multidimensional

discrete fourier transform. Journal of Computational and Applied Mathematics,

212(1):63–74, 2008.

[66] I PRESENT. Cramming more components onto integrated circuits. Readings

in computer architecture, 56, 2000.

[67] Hoi-Kwong Lo, Tim Spiller, and Sandu Popescu. Introduction to quantum com-

putation and information. World Scientific, 1998.

[68] Mahdi Aminian, Mehdi Saeedi, Morteza Saheb Zamani, and Mehdi Sedighi.

Fpga-based circuit model emulation of quantum algorithms. In IEEE Computer

Society Annual Symposium on VLSI, pages 399–404. IEEE, 2008.



Bibliography 136

[69] José F Rivera-Miranda, Álvaro J Caicedo-Beltrán, Juan D Valencia-Payán,

John M Espinosa-Duran, and Jaime Velasco-Medina. Hardware emulation of

quantum fourier transform. In IEEE Second Latin American Symposium on

Circuits and Systems, pages 1–4. IEEE, 2011.

[70] M Khalil-Hani, YH Lee, and MN Marsono. An accurate fpga-based hardware

emulation on quantum fourier transform. Quantum, 1:a1b3, 2015.

[71] Gabriel Popkin. Quest for qubits, 2016.

[72] Ahmed Usman Khalid, Zeljko Zilic, and Katarzyna Radecka. Fpga emulation

of quantum circuits. In IEEE International Conference on Computer Design:

VLSI in Computers and Processors, pages 310–315. IEEE, 2004.

[73] S Magar, S Shen, G Luikuo, M Fleming, and R Aguilar. An application specific

DSP chip set for 100 MHz data rates. In International Conference on Acoustics,

Speech, and Signal Processing, pages 1989–1992. IEEE, 1988.

[74] Glen Sunada, Jain Jin, Matt Berzins, and Tom Chen. COBRA: An 1.2 million

transistor expandable column FFT chip. In IEEE International Conference on

Computer Design: VLSI in Computers and Processors, pages 546–550. IEEE,

1994.

[75] Bevan M Baas. A low-power, high-performance, 1024-point FFT processor.

IEEE Journal of Solid-State Circuits, 34(3):380–387, 1999.



Bibliography 137

[76] Bevan M Baas. A generalized cached-fft algorithm. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, volume 5, pages v–89.

IEEE, 2005.

[77] Herbert L Groginsky and George A Works. A pipeline fast Fourier transform.

IEEE Transactions on Computers, 100(11):1015–1019, 1970.

[78] N. Aghaee and M. Eshghi. Design of a pipelined r4sdf processor. In 2009 17th

European Signal Processing Conference, pages 963–967, Aug 2009.

[79] Song-Nien Tang, Jui-Wei Tsai, and Tsin-Yuan Chang. A 2.4-GS/s FFT proces-

sor for OFDM-based WPAN applications. IEEE Transactions on Circuits and

Systems II: Express Briefs, 57(6):451–455, 2010.

[80] Erling H Wold and Alvin M. Despain. Pipeline and parallel-pipeline FFT pro-

cessors for VLSI implementations. IEEE Transactions on Computers, 100(5):

414–426, 1984.

[81] Hang Liu and Hanho Lee. A high performance four-parallel 128/64-point radix-

24 FFT/IFFT processor for MIMO-OFDM systems. In IEEE Asia Pacific Con-

ference on Circuits and Systems, pages 834–837. IEEE, 2008.

[82] Nuo Li and NP Van Der Meijs. A Radix-22 based parallel pipeline FFT processor

for MB-OFDM UWB system. In IEEE International SOC Conference, pages

383–386. IEEE, 2009.



Bibliography 138

[83] Lawrence R Rabiner and Bernard Gold. Theory and application of digital signal

processing. Englewood Cliffs, NJ, Prentice-Hall, Inc., 1975. 777 p., 1975.

[84] Earl E Swartzlander, Wendell KW Young, and Saul J Joseph. A radix 4 delay

commutator for fast Fourier transform processor implementation. IEEE Journal

of Solid-State Circuits, 19(5):702–709, 1984.

[85] Guan Bi and EV Jones. A pipelined FFT processor for word-sequential data.

IEEE Transactions on Acoustics, Speech and Signal Processing, 37(12):1982–

1985, 1989.

[86] Charles R Baugh and Bruce A Wooley. A two’s complement parallel array

multiplication algorithm. IEEE Transactions on Computers, 22(12):1045–1047,

1973.

[87] Christopher S Wallace. A suggestion for a fast multiplier. IEEE Transactions

on electronic Computers, (1):14–17, 1964.

[88] Andrew D Booth. A signed binary multiplication technique. The Quarterly

Journal of Mechanics and Applied Mathematics, 4(2):236–240, 1951.

[89] Yuan-Ho Chen. An accuracy-adjustment fixed-width booth multiplier based on

multilevel conditional probability. IEEE Trans. Very Large Scale Integr. (VLSI)

Syst, 23(1):203–207, 2015.



Bibliography 139

[90] G Ganesh Kumar and V Charishma. Design of high speed vedic multiplier using

vedic mathematics techniques. International Journal of Scientific and Research

Publications, 2(3):1, 2012.

[91] EE Swartzlander. The quasi-serial multiplier. IEEE Transactions on Computers,

100(4):317–321, 1973.

[92] Hawkins H Yao and EE Swartzlander. Serial-parallel multipliers. In Signals,

Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh

Asilomar Conference on, pages 359–363. IEEE, 1993.

[93] Sunder S Kidambi, Fayez El-Guibaly, and Andreas Antoniou. Area-efficient

multipliers for digital signal processing applications. IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, 43(2):90–95, 1996.

[94] YC Lim. Single-precision multiplier with reduced circuit complexity for signal

processing applications. IEEE Transactions on Computers, 41(10):1333–1336,

1992.

[95] Michael J Schulte and Earl E Swartzlander Jr. Truncated multiplication with

correction constant [for dsp]. In [Workshop on] VLSI Signal Processing, pages

388–396. IEEE, 1993.

[96] Michael J Schulte, James E Stine, and John G Jansen. Reduced power dissi-

pation through truncated multiplication. In IEEE Alessandro Volta Memorial

Workshop on Low-Power Design, pages 61–69. IEEE, 1999.



Bibliography 140

[97] Eric J King and Earl E Swartzlander Jr. Data-dependent truncation scheme for

parallel multipliers. In Conference Record of the Thirty-First Asilomar Confer-

ence on Signals, Systems &amp; Computers, volume 2, pages 1178–1182. IEEE,

1997.

[98] Earl E Swartzlander Jr. Truncated multiplication with approximate rounding.

In Conference Record of the Thirty-Third Asilomar Conference on Signals, Sys-

tems, and Computers, volume 2, pages 1480–1483. IEEE, 1999.

[99] James E Stine and Oliver M Duverne. Variations on truncated multiplication.

In Euromicro Symposium on Digital System Design, pages 112–119. IEEE, 2003.

[100] Hyuk Park and Earl E Swartzlander Jr. Truncated multiplication with sym-

metric correction. In Fortieth Asilomar Conference on Signals, Systems and

Computers, pages 931–934. IEEE, 2006.

[101] Yen-Chin Liao, Hsie-Chia Chang, and Chih-Wei Liu. Carry estimation for two’s

complement fixed-width multipliers. In IEEE Workshop on Signal Processing

Systems Design and Implementation, pages 345–350. IEEE, 2006.

[102] Jer Min Jou, Shiann Rong Kuang, and Ren Der Chen. Design of low-error

fixed-width multipliers for dsp applications. IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal Processing, 46(6):836–842, 1999.



Bibliography 141

[103] Lan-Da Van, Shuenn-Shyang Wang, and Wu-Shiung Feng. Design of the lower

error fixed-width multiplier and its application. IEEE Transactions on Circuits

and Systems II: Analog and Digital Signal Processing, 47(10):1112–1118, 2000.

[104] Lan-Da Van and Chih-Chyau Yang. Generalized low-error area-efficient fixed-

width multipliers. IEEE Transactions on Circuits and Systems I: Regular Pa-

pers, 52(8):1608–1619, 2005.

[105] Antonio GM Strollo, Nicola Petra, and Davide De Caro. Dual-tree error com-

pensation for high performance fixed-width multipliers. IEEE Transactions on

Circuits and Systems II: Express Briefs, 52(8):501–507, 2005.

[106] Nicola Petra, Davide De Caro, and Antonio GM Strollo. Design of fixed-width

multipliers with minimum mean square error. In 18th European Conference on

Circuit Theory and Design, pages 464–467. IEEE, 2007.

[107] Nicola Petra, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio GM

Strollo. Truncated binary multipliers with variable correction and minimum

mean square error. IEEE Transactions on Circuits and Systems I: Regular Pa-

pers, 57(6):1312–1325, 2010.

[108] Nicola Petra, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio

Giuseppe Maria Strollo. Design of fixed-width multipliers with linear compen-

sation function. IEEE Transactions on Circuits and Systems I: Regular Papers,

58(5):947–960, 2011.



Bibliography 142

[109] Davide De Caro, Nicola Petra, Antonio Giuseppe Maria Strollo, Flaviano Tessi-

tore, and Ettore Napoli. Fixed-width multipliers and multipliers-accumulators

with min-max approximation error. IEEE Transactions on Circuits and Systems

I: Regular Papers, 60(9):2375–2388, 2013.

[110] I Wey, Chun-Chien Wang, et al. Low-error and hardware-efficient fixed-width

multiplier by using the dual-group minor input correction vector to lower input

correction vector compensation error. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 20(10):1923–1928, 2012.

[111] I-Chyn Wey, Chien-Chang Peng, and Feng-Yu Liao. Reliable low-power multi-

plier design using fixed-width replica redundancy block. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 23(1):78–87, 2015.

[112] Hong-An Huang, Yen-Chin Liao, and Hsie-Chia Chang. A self-compensation

fixed-width booth multiplier and its 128-point fft applications. In 2006 IEEE

International Symposium on Circuits and Systems, pages 4–pp. IEEE, 2006.

[113] Yuan-Ho Chen, Chung-Yi Li, and Tsin-Yuan Chang. Area-effective and power-

efficient fixed-width booth multipliers using generalized probabilistic estimation

bias. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

1(3):277–288, 2011.



Bibliography 143

[114] Yuan-Ho Chen and Tsin-Yuan Chang. A high-accuracy adaptive conditional-

probability estimator for fixed-width booth multipliers. IEEE Transactions on

Circuits and Systems I: Regular Papers, 59(3):594–603, 2012.

[115] Sang-In Cho and Kyu-Min Kang. A low-complexity 128-point mixed-radix FFT

processor for MB-OFDM UWB systems. ETRI journal, 32(1):1–10, 2010.

[116] Chu Yu, Mao-Hsu Yen, Pao-Ann Hsiung, and Sao-Jie Chen. A low-power 64-

point pipeline FFT/IFFT processor for OFDM applications. IEEE transactions

on consumer electronics, 57(1), 2011.

[117] Jason Thong and Nicola Nicolici. An optimal and practical approach to sin-

gle constant multiplication. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 30(9):1373–1386, 2011.

[118] Rui Guo and Linda S DeBrunner. A novel fast canonical-signed-digit conversion

technique for multiplication. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 1637–1640. IEEE, 2011.

[119] Andrew G Dempster and Malcolm D Macleod. Multiplication by two integers

using the minimum number of adders. In IEEE International Symposium on

Circuits and Systems, pages 1814–1817. IEEE, 2005.

[120] Fahad Qureshi and Oscar Gustafsson. Low-complexity reconfigurable complex

constant multiplication for ffts. In IEEE International Symposium on Circuits

and Systems, pages 1137–1140. IEEE, 2009.



Bibliography 144

[121] Koushik Maharatna, Eckhard Grass, and Ulrich Jagdhold. A 64-point Fourier

transform chip for high-speed wireless LAN application using OFDM. IEEE

Journal of Solid-State Circuits, 39(3):484–493, 2004.

[122] Yunho Jung, Hongil Yoon, and Jaeseok Kim. New efficient FFT algorithm and

pipeline implementation results for FDM/DMT applications. IEEE Transactions

on Consumer Electronics, 49(1):14–20, 2003.

[123] OH Jung-Yeol and LIM Myoung-Seob. New radix-2 to the 4th power pipeline

FFT processor. IEICE transactions on electronics, 88(8):1740–1746, 2005.

[124] Sang-In Cho and Kyu-Min Kang. A low-complexity 128-point mixed-radix FFT

processor for MB-OFDM UWB systems. ETRI journal, 32(1):1–10, 2010.

[125] Shousheng He and Mats Torkelson. Design and implementation of a 1024-point

pipeline FFT processor. In Proceedings of the IEEE Custom Integrated Circuits

Conference, pages 131–134. IEEE, 1998.

[126] Lan-Da Van and Jin-Hao Tu. Power-efficient pipelined reconfigurable fixed-

width baugh-wooley multipliers. IEEE Transactions on Computer, 58(10):1346–

1355, 2009.

[127] Zeke Wang, Xue Liu, Bingsheng He, and Feng Yu. A combined SDC-SDF

architecture for normal I/O pipelined radix-2 FFT. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 23(5):973–977, 2015.



Bibliography 145

[128] Wei Han, T Arslan, AT Erdogan, and M Hasan. Novel low power pipelined

FFT based on subexpression sharing for wireless LAN applications. In IEEE

Workshop on Signal Processing Systems, pages 83–88. IEEE, 2004.

[129] Denise C Alves, Gabriel S da Silva, Eduardo R de Lima, Cesar G Chaves,

Daniel Urdaneta, Tiago Perez, and Maique Garcia. Architecture design and

implementation of key components of an OFDM transceiver for IEEE 802.15.

4g. In IEEE International Symposium on Circuits and Systems, pages 550–553.

IEEE, 2016.

[130] Md Rahat Hossain, Amanullah Maung Than Oo, and ABM Shawkat Ali. Evo-

lution of smart grid and some pertinent issues. In 20th Australasian Universities

Power Engineering Conference, pages 1–6. IEEE, 2010.

[131] V Arunachalam and Alex Noel Joseph Raj. Efficient vlsi implementation of

fft for orthogonal frequency division multiplexing applications. IET Circuits,

Devices & Systems, 8(6):526–531, 2014.

[132] Koushik Maharatna, Eckhard Grass, and Ulrich Jagdhold. A 64-point fourier

transform chip for high-speed wireless lan application using ofdm. IEEE Journal

of Solid-State Circuits, 39(3):484–493, 2004.

[133] Taesang Cho, Hanho Lee, Jounsup Park, and Chulgyun Park. A high-speed

low-complexity modified radix-25 FFT processor for gigabit WPAN applications.



Bibliography 146

In IEEE International Symposium on Circuits and Systems, pages 1259–1262.

IEEE, 2011.

[134] Yu-Wei Lin, Hsuan-Yu Liu, and Chen-Yi Lee. A 1-gs/s fft/ifft processor for uwb

applications. IEEE Journal of solid-state circuits, 40(8):1726–1735, 2005.

[135] Trio Adiono, Muh Syafiq Irsyadi, Yan Syafri Hidayat, and Ade Irawan. 64-point

fast efficient FFT architecture using radix-23 single path delay feedback. In

International Conference on Electrical Engineering and Informatics, volume 2,

pages 654–658. IEEE, 2009.



Publications Related to this Thesis 147

Publications Related to Thesis

[1] G. Ganesh Kumar and Subhendu K sahoo, “An area-efficient and low-power 64-

point pipeline fast Fourier transform for OFDM applications,” in Integration, the

VLSI Journal, Vol 57, pp. 125-131, 2017.

[2] G. Ganesh Kumar and Subhendu K sahoo, “A High-Performance Signed/Unsigned

Multiplier using Vedic Mathematics ,” International Journal of Information Tech-

nology (Springer), (Accepted).

[3] G. Ganesh Kumar and Subhendu K sahoo, “Power-Delay Product Minimization in

High-Performance Fixed-Width Multiplier,” in International Technical Conference

of IEEE Region 10 (TENCON 2015), pp. 1-4, IEEE, 2015.

[4] G. Ganesh Kumar and Subhendu K sahoo, “Implementation of A High Speed

Multiplier for High-Performance and Low Power Applications,” in 19th International

Symposium on VLSI Design and Test (VDAT), pp. 1-4, IEEE, 2015.

[5] G. Ganesh Kumar, Pramod Kumar Meher and Subhendu K sahoo, “50 Years of

FFT Algorithms and Applications,” IEEE Transactions on Circuits and Systems I:

Regular Papers , (communicated).

[6] G. Ganesh Kumar and Subhendu K sahoo, “An Area and Power-Efficient Variable-

Length Fast Fourier Transform for MR-OFDM Physical Layer of IEEE 802.15.4-g,”

IET Signal Processing, (communicated).



Biographies 148

Biography of the Candidate

G Ganesh Kumar obtained his Master of Technology in VLSI System Design from

Jawaharlal Nehru Technological University (JNTU) - Anantapur, Anantapur. He has

been working as a research scholar at BITS Pilani, Hyderabad Campus from 2013-

2018 under the supervision of Prof. Subhendu K Sahoo. His research interests focus

on VLSI arithmetic circuits and Digital Signal Processing.



Biographies 149

Biography of the Supervisor

Subhendu Kumar Sahoo completed his B.E. in Electronics and telecommunication

engineering from Utkal University, Orissa, India in the year 1994 with honors securing

fifth position in the university. He obtained his M.E. in Electronic Systems and Com-

munication from R.E.C.(NIT) Rourkela in 1998. He received the Ph. D. degree in

Electrical Engineering from Birla Institute of Technology and Science, Pilani, in 2006.

He was working as a faculty in Electrical and Electronics Engineering department

from 2009 till 2011. Presently he is working as Associate Professor in Birla Insti-

tute of Technology and Science, Pilani Hyderabad campus. His areas of research are

high performance arithmetic circuits and VLSI circuits for Digital Signal Processing

application.


	Certificate
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Discrete Fourier Transform:
	1.1.1 Computational complexity of DFT

	1.2 Fast Computation of DFT: A Historical Perspective
	1.2.1 Applications of FFT

	1.3 Motivation
	1.4 Objectives of the Thesis
	1.5 Organization of the Thesis

	2 Advancements in FFT Algorithm
	2.1 Introduction
	2.2 Complex-valued FFT Algorithms
	2.2.1 Radix-2 FFT algorithms
	2.2.2 Radix-4 FFT algorithm
	2.2.3 Radix-2i and Higher radix FFT Algorithms
	2.2.4 Split-Radix FFT
	2.2.5 Computational Complexity for Complex-Valued FFT Algorithms

	2.3 Real-valued FFT Algorithms
	2.3.1 Computation of the RFFT using the CFFT
	2.3.2 FFT of Real-Valued data
	2.3.3 Fast Hartley Transform
	2.3.4 Quick Discrete Fourier Transform
	2.3.5 Computational Complexity for Real-Valued FFT Algorithms

	2.4 Special cases of the FFT algorithms
	2.4.1 FFT Pruning
	2.4.2 Fast Fourier Transform of Sparse Input
	2.4.3 Scaled DFTs
	2.4.4 Multidimensional FFTs
	2.4.5 Quantum Fourier Transform

	2.5 Conclusion

	3 FFT Architectures and Design choice for OFDM systems
	3.1 Memory based Architectures
	3.1.1 Single Memory
	3.1.2 Dual Memory
	3.1.3 Array Memory
	3.1.4 Cached Memory

	3.2 Pipelined Architectures 
	3.2.1 Delay Feedback Architectures 
	3.2.1.1 Single-path Delay Feedback (SDF)
	3.2.1.2 Multi-path Delay Feedback (MDF)

	3.2.2 Delay Commutator Architectures
	3.2.2.1 Multi-path Delay Commutator Architectures
	3.2.2.2 Single-path Delay Commutator Architectures


	3.3 Design choice for OFDM systems
	3.4 Conclusion

	4 Twiddle Factor Multiplication and its Hardware
	4.1 General Complex Multiplication
	4.1.1 Fixed-width Multiplication

	4.2 Constant Multiplication
	4.2.1 Single Constant Multiplication (SCM)
	4.2.2 Multiple Constant Multiplication (MCM)

	4.3 Conclusion

	5 Pipeline FFT Architecture Design for an OFDM-based IEEE 802.11a
	5.1 Design consideration of the FFT for 64-point 
	5.2 Proposed Modified FFT Architectures 
	5.2.1 Butterfly unit
	5.2.2 Modified CSD Complex Constant Multipliers
	5.2.2.1 CCM_W64 multiplier unit
	5.2.2.2 CCM_W16 multiplier unit
	5.2.2.3 CCM_W8 multiplier unit


	5.3 Comparison and Experimental results
	5.4 Conclusion

	6 Variable-Length FFT Architecture for MR-OFDM 
	6.1 Introduction
	6.2 Decomposition and Twiddle Factors at each stage of FFT
	6.3 Proposed Architecture
	6.3.1 Multiplexer switching to perform variable-length FFT
	6.3.2 Modified Complex Constant Multipliers
	6.3.2.1 Configurable W128 Multiplier


	6.4 Comparison and Results
	6.5 Conclusion

	7 Conclusions and Future Work
	7.1 Future Work

	Bibliography



