Chapter 1

Brief Review of the Background

1.1 Introduction

In last few decades, electronic-structure theory has been developed to the extent, so as
to provide extremely helpful data in the interpretation of experimental measurements
of a broad range of molecular structure and properties of importance in rotational and
vibrational spectroscopies [1], UV spectroscopies |2, 3], magnetic-resonance spectroscopies
|4, 5], linear and nonlinear optics [5-7], and so on. Quantum chemical computations allow
us to accurately predict the spectroscopic constants. These constant can be calculated at
various levels of electronic-structure theory, capable of approaching the exact value in a
controlled, systematic manner, using established hierarchical levels of theory. In present
time, methodological developments toward larger systems are being made in different
laboratories, promising to make calculations of molecular properties of systems containing
hundreds and thousands of atoms routine in the near future. Advances in the wavefunction
based correlation methods, computational algorithms as well as computer hardware, have
made it plausible not only to reach the accuracy and precision in the results, comparable
with those obtained in experiments, but also in extending it to molecules of bigger size

which were untractable even till, just about a decade ago.
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Apart from the MRCC formalisms, parellel developments such as equation-of-motion
(EOM) CC [33-39] and related methods are also noteworthy. These methods, due to
single-reference (SR) framework and relatively simpler formalism, have been very popular
for about a couple of decades and provide a handy tool for computing excitation energies
(EE), ionization energies (or ionization potentials) (IP) and electron-attachment energies
(or electron affinities) (EA). For one valence problems, such that singlly ionized or single-
electron-attached states of closed-shell system, the energies and derivatives obtained from
EOM-CC and FS-MRCC methods are formally equivalent [40] as long as the methods use
the same truncation scheme for the vectors. However, this equivalence is lost at higher
valence problems. Moreover, whereas FSMRCC is rigourously size-extensive, the EOM-CC
is not. However, if same truncation scheme is employed for EOM eigen-vectors as well
as the CC vectors, the corresponding EOM-CC variant happens to be core-extensive,
though not valence-extensive. This property is also referred to as size-intensivity. Other
approaches such as symmetry adapted cluster (SAC) CI [41], MRCI [412], CC linear
response (LR) [43], Green’s function method [44], MRPT [45], quasi-degenerate (QD) PT

|46], etc. are also known for handling certain kinds of static correlation.

While MRCC and EOM-CC approaches have been well established for computation of
energies, gradients and properties of molecules, their applicability is hindered due to the
computational cost. For example, for single and double substitution (SD) these methods
scale roughly, with sixth power of the computational size of the system. Inclusion of
triples would increase the scaling to the eighth power. Therefore, the development of cost
effective approximations to these methods becomes necessary. One way to do this is by
approximating the CC, MRCC/EOM-CC vectors as done by several researchers [47-52].
However, these approaches can achieve only limited saving in terms of computational cost.
The major source of the high computational cost of these methods are the electron repulsion
integrals (ERI’s), which are four index quantities and have high storage requirements.
Developments in this line of cost-saving resulted in the approaches such as the resolution
of identity (RI) [53-59] and the cholesky decompsition (CD) schemes [60-67]. In RI, an
auxiliary basis is used to approximate products of Gaussian functions. The four index

ERT’s are thus approximated as sum over the products of one-electron densities obtained
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corrections, which resulted in the many body perturbation theory (MBPT). MBPT is
fully size-extensive. The MBPT (or MPPT) give systematic and step-wise improvement to
the wavefunction characterised by order of perturbation. The method in which the energy
is correct up to n-th order is commonly denoted by MP,. MP,, theories were rapidly
developed and programmed in the mid-70ies[89 94] started working with MP perturbation
theory. The computational developments of MP, [89, 95] , MP3 [90, 91] , MP, [91, 92, 96,
97], MP5 [94, 98, 99] and MPg [100 103] were reported and MPPT (or MBPT) became

more popular.

According to this theory, the zeroth order wavefunction is HF wavefunction, whereas
the zeroth order Hamiltonian is the electronic Hamiltonian with actual inter-electronic

repulsion potential replaced by the effective potential obtained in HF.

Now, Hamiltonian term is summation of unperturbed and perturbed term in equation
1.1

2

H=XH 4+ 'V (1.38)

where, the A = 0 corresponds to the unperturbed Hamiltonian f]o. Wavefunction ¥ and

energy F also have unperturbed and perturbed term,
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We obtain SWE in the given form,
HU, = EW, (1.39)
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Associating the factors of A* in this equation gives a k'*-order perturbation equation,

where K =0, 1, 2, ..., N.

H9Y = EY9Y + Corresponding to A\” terms  (1.40)
AUl vl = EOW) 4 Bl + Corresponding to A' terms  (1.41)

W2 + vl = EO02 4 BY? + B2 « Corresponding to A% terms  (1.42)

and so on.

A2 associated terms in equation 1.40 provide first order correlation energy correction

which is given by,

occ

-occ 1 TR -occ
Eyp, = Zi €= Z<1.7||Z.7> = Zi & + Voo Frp (1.43)

)

This equation 1.43 is known as MP theorm which holds for electron density, dipole
moments and other one-electron properties [13]. The MP2 correlation energy correction is

given by equation,

Vo Vio
Eyp, = g Z,_F (1.44)
1>0

where, 1 = ¥# Single excitation term do not contribute because < ¢o|V|p; >= 0 as a
outcome of the Brillouin theorem. Finite matrix elements Vi, are only obtained for double
excitations ( fjb Higher excitations are excluded because of the Slater-Condon rules. The

second order correction takes the following form after applying the Slater-conden rules,

occ wir

1 < ij|lab >< ab||ij >
Paes = 1) (1.45)

Ei+6j—6a—6b

i ab

Similary, one can obtain the higher order perturbation energy correction term (e.g. MP3).

Vo1 VisVsg
Brpy =YY 1.4
MPs (Ey — E1)(Ey — ) (1.46)
1>0 3>0

and so on.
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1.5.1 The RI-MP2 and CD-MP2 methods

An extra alternative path to diminish the scaling and storage requirements is by ap-
proximating the four-index electron repulsion integrals(ERI) (uv||Ao) by resolution of
identity(RI) [53 59]. The ERIs are the major source for computational cost and hence,
computational time in conventional MP2 calculations. The computational cost can be
significantly reduced using RI as discussed in a number of articles and reviews [55, 56,

104]. For closed-shell MP2, RI was first implemented by Feyereisen and co-workers [55].

RI is mathematically defined by 7 = >7 |4 >< p| and is introduced in the M P,

expression to give

oce wir M

< gap >< w|jb > 12 < tap >< plib > — < ibp >< ulja >
Eap, = ZZZ 1 M|.7 [ 12 M|.7 [ M|.7 (1.47)

€6 —€,— €

i ab v

In the limit of complete auxiliary basis p, RI is exact, (that is, RI-MP2 would be equivalent
to MP2). However, for incomplete auxiliary basis, RI gives approximate results. The
finite auxiliary basis is usually preoptimized for given basis so as to get most accurate
results with low computational cost. Typically, the auxiliary basis optimized for RI-MP2
is about 3—4 times larger than that of the normal basis set. < ¢ap > represents the three

index overlap integrals and, < u|jb > represent the 3-index ERIs.

The computational cost of Coulomb term of MP2 energy correction (the first term
in the square bracket in Eq. 1.47) is reduced from O(N*) to O(M N?) as explained by
Almléf and co-workers [56]. This cost reduction is not possible for exchange term (the
second term in the square bracket in Eq. 1.47). RI has been extended to various other

methods including DFT, CC, EOM-CCSD, etc [68§].

Another alternative approach to reduce the scaling and storage requirements is by
approximating the four-index ERIs by Cholesky decomposition approach [60-67|. Cholesky
decomposition (CD) and RI are closely related [60, 65, 105-107]. In 1977, Beebe and
Linderberg [60] suggested to reduce the rank of the ERI supermatrix V{,,»») with the
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help of a Cholesky decomposition,

M
Viwpey = (uv)Xo) = Y BB, (1.48)
P=1

The supermatrix V(. xr) is decomposed in terms of Cholesky densities Bf,, as given in
equation 1.48. The computational details of Cholesky algorithm is discussed later in the

thesis (see Chapter 4).

1.6 Coupled Cluster (CC) theory

Coupled cluster is a well-established method. Unlike CI it is nonlinear in structure. Use
of exponential excitation operator instead of the linear operator is the genesis of the
coupled-cluster method. The non-variational coupled cluster theory [15, 16] consider that
the exact wavefunction can be developed by the action of an exponential operator on a

single Slater determinant.

Wy >= e [Py > (1.49)

where, T is hole-particle excitations on ®4 or ®4p , it can be decomposed as,

~

T=T+Ty+Ts+...+T, (1.50)

with

T = Z Z ti{ala;}

i€occ acvirt

Ty = Z Z tff{(zfl(z;)(zj(zi}

i,j€occ a,bcvirt
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and, an n—orbital cluster operator may be explained as,

. 1 a
B SN bl 151

1,J...€occ a.b...cvirt

Where, 1, 4, k, etc are occupied spin orbitals and a, b, ¢, are the virtual orbitals. With &
as hole-particle vacuum, af,b" are the particle creation operators and %, j are the hole

creation operators.

Standard Coupled-cluster equations are obtained by method of projecting the Schrédinger’s

equation to the Hartree-Fock and excited determinants,

Hel|Bg >= el |y > (1.52)
Pre-multiplying by e T left projecting with < ®g|, it follows,

< Oole TH By >= B (1.53)

where, we recognize in Eq. 1.53 that ®; > is normalized. Using the Campbell-Baker-
Hausdorff formula [81] for the similarity transformation, it can be easily shown that the

‘“unlinked’ terms in the CC expansion vanish and one obtains
B =< ®o|(Hel)o| g > (1.54)

where, the subscript C in the above equation indicates that only connected terms (all
7’s must be contracted with H) should be used. Left projections of (lﬁ]eT)c|<I>0 > with

excited determinants result in the equations for CC vectors or CC amplitudes.

< W |(HeM)eo|®g >=0 (1.55)

The connectedness of T with [T results in natural termination of the CC vector equations
after the quartic terms. Moreover, irrespective of truncation scheme in the CC vectors,

the energy expression uses only one-body and two-body terms. The connectedness of the
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terms also ensures size-extensivity of the method. Moreover, due to exponential nature,
the truncated CC also ensures excitations upto all ranks, thereby ensuring retaintion
of the size-consistency (as long as the reference wavefunction is size-consistent). If not
truncated, the method is called Full CC and is equivalent to Full CI, but much more
expensive due to non-linearity of the equations and hence, unattractive. The beauty of
CC is that it remains size-extensive (and size-consistent, for size-consistent references),

even if T are truncated. Truncating TasT — T1 + Tg resnlts in the CCSD method.

Coupled-cluster singles doubles Method (CCSD)
Hamiltonian consists of one and two body particles which is represented by,
I:]N:FN+VN (156)

and, according to equations 1.50 and 1.51,

L1+ T+ T+ (T + T2+ (T + 1)+ (T + To)* + ... (1.57)
or,
=
T+ T

[P U
+5T1 + 5712 + T1T2

Lo Loaw 1oags 1.
+§ﬁ+§ﬁ+§ﬁﬂ+§ﬂﬁ

1 . 1 .

+jﬁ+ﬂﬁ (1.58)

After multipication of equation 1.58 and equation 1.56, we obtain following equation,
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FIGURE 1.5: Diagrammatic representation/® of the T1, Iy and 13 excitation operators

[a]  — [108]

By = Shafale) o Yfidele}l | Sfidale} 4 Y fufala)

ab ij in ia

I
+

X
o o * A ki \\/
=22

+1

FIGURE 1.6: Diagrammatic representation” of each fragment if the one-particle com-
ponent of the Hamiltonian operator, Fiy.

la] — [10§]

A~ ~

HNF/T == FN +VN

disconnected diagram
+FNT1 + FNTQ + VNT1 + VNTZ
1~ o« 1~ o« IR
+5vNT%” + 5VNT;’ TV Ty
! !

disconnected diagram

1. . 1. . 1 o a0 1~ . s
+§VNT13 + QVNTQS +§VNT12T2 + QVNTVTZZ

disconnected diagram

1. .
IVNTZA

disconnected diagram

1 . .
+ZVNT14 +

N —

disconnected diagram

(1.59)



Brief Review of the Background 34
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FIGURE 1.7: Diagrammatic representation! of each fragment if the two-particle com-
ponent of the Hamiltonian operator, V.

la] — [10§]
Here, the rightmost diagramin this matrix element is T, thus its interaction line must lie

at the bottom of the final diagram and fIN must lie above the 7 interaction lines. T1 and

) diagrams produces an excitation levels of +1 and +2, respectively.

To obtain the desired amplitudes (¢ and £?) and the energy (E¢”™), amplitudes and

energy equations have to be solved.

< | (Ane |0y > = Eg (1.60)
< &Y (Hye D) |6 > = 0 (1.61)

< OU|(Hye M), |0y > = 0 (1.62)
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For the desired solution, we have to take the only connected term from the equation 1.59.

~

(I:]NF/T)C — (VN
BTy + FNTy + VT + VT

1 ~ . A A A
+?Mﬁ+%ﬂﬂ

1. - | BESEPON

T VWIT VT

1. .

VT (1.63)

The CC amplitudes are obtained by solving the simultaneous equations arizing from
left projecting the similarity-transformed Hamiltonian operator with One-body CCSD
equation provides the desired amplitude which has only two open skyward lines and we

obtain the below equation.

ENTy + VNTy + VNTo + VT Ty + VT2 = 0 (1.64)
Linear CC High order CC

Two-body CCSD equation provides the desired amplitude which has four open skyward

lines and we obtain the below equation.

ExTy + VT + VT + VT2 + VT Ty + VT2 + VT2 + VT2 + VAT = 0 (1.65)

Linear CC High order CC

These simultaneous non-linear equations are solved iteratively. The CCSD correlation

energy can be computed after solving for the CC amplitudes.

Ecesp — Eo = VnTs + VyT? (1.66)
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Higher order approximate coupled-cluster methods

The CCSD method scales with sixth power of the computational size and can now be
used for small to moderate size molecules. For small molecules, if computational facility
permits, one can go for more accurate approximations such as CCSD(T) which is a
perturbative triples correction to CCSD and has one non-iterative step of O(NT) after
the CCSD equations are converged. It is considered as gold-standard in computational
electronic structure methods. More accuracy is obtained by including full triples, which
is straightforward extension of CCSD. The utilisation of CC approximations including

higher excitations is limited due to their complexity and computational cost [109].

1.7 Equation of motion method (EOM)

Among the various available theoretical methods, the EOM-CC [33 39] has been one of
the most attractive options for direct computation of excited state energy caluclations
(e.g. EE, IP and EA) due to accuracy and scope for systematic improvements in the

description of total and difference energies.

The EOM-CC is generally employed with singles and double substitution (EOM-CCSD)
which provides an accuracy of 0.1-0.01 eV for low-lying excited states and about 0.5
eV for principle ionized/electron-attached states. Inclusion of triples enables one to go
for enhanced accuracy, particularly for studying strong near-degeneracies and high-lying
excitations, obviously at the expense of added computational cost. The inclusion of partial,
as well as, full triples has been tried within the framework of EOM-CC method [38, 43,
47, 48, 74, 110-114].

The equation-of-motion coupled cluster method approximates the excited state wave-
function by application of a linear excitation operator to the general coupled cluster
ground state. In case of RHF and UHF reference, T is zero. Using these 77 amplitudes

one can define a modified effective H’, which can be used as the reference for subsequent
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EOM calculation. Since H is not Hermitian. Therefore, wavefunction exists in different

left and right eigen vectors.

Firstly, we understand the left eigen vector.

(U] = (¢o|Le T (1.67)

The operator L. may be explained in analogy to the cluster opertator; T as a sum of cluster

operators;

f/ — fjo + f/] + sz + + f/n (168)

Where;

. 1\ 2 g
L, = (ﬁ) > Lgitit ba (1.69)

For m*" deexcitation -

; N S~ et
Ln(m) = (ﬁ) Z L% (m)iTt.. ba (1.70)

ij..ab..

Therefore, the ground state coupled cluster energy may be written as -

Bo= (W) = (W] |pp) (1.71)
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and,

1= {¢olLe THe T|go) = (go|L.H|¢o) (1.72)

Here, right and left eigen wavefunctions are assumed to be normalized -

(do|Llgpo) = 1 (1.73)

Similarly, excitation operator ( right eigen vector ).

W) = e~ Rlgo) (1.74)

The operator R also explained L operator;

E:EO‘I“El‘I“EZ‘I“...‘I‘En (175)
Where;

. 1\ = ., g
B(m) S Rl ij (1.76)

For k' de-excitation:

A 1\ & g
Rn(k)<m> > RE-(k)alb g (1.77)

Therefore, the ground state coupled cluster energy would be MP2 written as -
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E = (U|H|V)

B = (golLe TH|W)

Bo— {golle™ He " Rigo)

E = {(¢o|LHR|¢) (1.78)
For m** de-excitation and K* excitation -

B = {¢o| L(m) H R (k) o) (1.79)
Since,

HR(K)|¢o) = ExR(k)|¢o) (1.80)
Therefore,

E = <¢0\L(W)EkR(k)|¢o>

B = Byl Lm)R (k)| o)

E = Edm (1.81)

Therefore, I, and R biorthogonal to each other and can be normalized -

(ol L(m) (k) o) = Sy

(1.82)
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Now,

Hl¢o) = El¢o) (1.83)

This equation shows an eigen value problem [36] in which similarity transformed Hamilto-
nian is used. H is non-symmetric since T is not Hermitian. Now, the energy equation is

given by,

and, ampitude equations are given by,

0 = (&F(H = Ee)lgo)
0 = (#F1(H = Eeo)l¢o) (1.85)

Matrix form of Hoeogp is shown by -

(Pol Hlgo) (bl H|of) (ol HIpD)
Heo = | (¢f|H|go)  (Q2|H|o2) (o2 H|dL)
(@i | o) (@571Ho7) (0571 H |95

Using equation 1.84 and 1.85, we obtain,

Ecc <¢O|H|¢?> <¢O|H|¢?jb>
0 (QFHIoF) (O H o)
0 (OFIHISE) (S5 1H|¢5)

Heosp =
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Let us consider, ground state, single and double excitation represented by O, S and D.

Thus,

(¢olH|9{) = Hos (1.86)
<<Z5o|ﬁ|<l5fyb> = Hop (1.87)
(¢f|H|p7) = Hss (1.88)
(piHogy) = Hsp (1.89)
(G IH|¢7) = Hps (1.90)
(¢ H|og) = Hpp (1.91)
Now, matrix equation becomes -
E.. Hos Hop
Heosp=| 0 Hss Hsp
0 Hps Hpp
We get k' excitation energy by subtracting F.. from equation 1.80,
(H - ECC)]%k|¢0> - (Ek - ECC)|¢O> (1-92)

Since 7 and R are truncated at same level. Therefore, EOM-CCSD equation becomes,

0 Hos Hop Ry Ry
0 HSS - Ecc HSD Rl — Wk Rl (193)
0 Hps Hpn — B R Ry

Where, wy, = B, — E,, = k' excitation energy. Here, .. appears only in the diagonal
parts of the matrix. Equation 1.93 is solved by the generalized Davidson diagonalization

iterative procedure [115] which involves the calculations of rg, rf and r.
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1.8 Fock-space multi-reference coupled cluster method

(FS-MRCC)

The spectacular success of SRCC in predicting energies and energy derivatives |28, 116,
117] of non-degenerate ground states of molecules fueled the research in extending the
ideas to understand the near-degeneracies in the electronic states. The prominence
of static correlation over the dynamical one in the near degenerate states demanded
for multiconfigurational description of the refernce wavefunction. This resulted in the
spectrum of what are knowns multi-reference (MR) CC methods [17-27]. In these methods,
the dynamical correlation effects are brought in via action of a wave-operator on the
multi-determinantal reference. While these methods have many similarities, they differ in
the way the static correlation is treated and consequently in the types of degeneracies

they can handle.

The MRCC methods based on effective-Hamiltonian framework can be broadly classified
into two types, namely, SUMRCC or VSMRCC or HSMRCC [19, 27] and VUMRCC or
FSMRCC [17, 18, 21 26].

The former method is convenient for studying near-degeneracies arising during bond
dissociation and similar phenomena, while the latter is more suited for studying near-
degeneracies arising from ionization, electron-attachments, electronic excitations, etc
in the system. Both these methods often suffer from the intruder states problem. The
intermediate Hamiltonian approach [21, 24, 26] is found to be very robust in eliminating the
problem of intruder states by introduction of intermediate subspace for better separation

of active and inactive subspaces.

The intruder states can also be avoided in state-specific manner as shown by Mahapatra
et al [118] and Meller et al [119]. A suitable choice of active subspace can often avoid

intruder states problem within the conventional FSMRCC framework for most of the
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one-valence cases, particularly, when one is interested in computing only a few low-lying

states.

FSMRCC uses a valence universal wave-operator acting on the model space configu-
rations that can be viewed to be formed by creation of hole(s) and/or particle(s) with
respect to a common hole-particle vacuum. A suitable RHF configuration is usually chosen
as the vacuum. For example, a mono-radical state may be obtained by ionization of a
closed-shell anion or electron-attachment of a cation resulting in respectively, the IP and
EA variants of FSMRCC. To illustrate the formalism, we start with an N-electron RHF
configuration as a vacuum. Removal of an electron from an occupied orbital of RHF is
termed as creation of hole, whereas addition of electron to a virtual orbital is termed
as creation of particle. The model space determinants include h-holes and p-particles

categorised within the sets of what we call active holes and active particles.

Inactive

=}

_— } Active
Holes
J— } Inactive

FIGURE 1.8: Schematic depiction of the classification of the hole and particle orbitals
into active and inactive orbitals.

Particles

In brief, we can explain by graphical representation 1.9 -

“Single arrow lines show the inactive hole and particle; double arrows lines show active

hole and particle and arrow with circle represent to both active and inactive.”
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0] (i) (1)) ) W) (vi)

FICURE 1.9: Hole and particle representation

The model space consists of the configurations {CIDEP oh) } each of which has p-active
particles and h-active holes. Thus, the MR wavefunction is thus, a linear combination of

the model space configurations.

R N AL (1.94)
The projection operator for model space is explained by given equation,

PER =3 0P > < o) (1.95)

K3

The virtual space is the orthogonal component of the model space and its projection is

given by

Q(pyh) — 1 _ peh (1.96)

The MR description of the starting wavefunction (Eq. 1.94) takes care of the static
electron correlation. The relatively weaker component — the dynamical electron correlation
is effected through a valence universal wave operator {2 which is parameterized so that

its action would take one from model space to the virtual space. To generate exact
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states for the (p,h) valence system, the wave operator must be capable of creating all
valid excitations from the model space. Subsequently, €2 should include cluster operators

{T™M} which are defined as follows,

p h
TR = 3§ s (1.97)
k=0 1=0

The superscripted bracket in the right-hand side of the above expression 1.97 shows
that the cluster operator T can destroy exactly k active particles and [ active holes, in
enhancement to the creation of holes and particles. The T®" operator subsumes all such

lower cluster 7! operators. Using these operators, the € is defined as follows,

Q= {T""} (1.98)

The brace-bracket in equation 1.98 shows normal ordering of the cluster-operators. The

SWE for the manifold of quasi-degenerate states can be written as,

HWPY > = gluPh >
which leads to
20(73 h)(D(P h) — B0 ZC(P h)(D(P h) (1.99)

The effective Hamiltonian for (p, h) valence system can be described such that,

S HE) 0 = EuC (1.100)

J
(H(Ph)) =< (]3<kl)|Q HQ|(D<kl)

which can be described as-
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Hég;h) —_ pehg 1gopeh (1.101)

The form of the inverse of €1, in usual may not be well defined. Hence, the above

explanation is rarely used to obtain effective Hamiltonian.

Alternatively, the Bloch-Lindgren approach is generally used to define the effective
Hamiltonian. The Bloch equation is just a modified form of SWE.

HQOP = QH 4P (1.102)

This approach not only eliminates the requirement of Q0 ', but also provides an essential
criterion that must be fulfilled by the effective Hamiltonian. The effective Hamiltonian
is, in general, non-hermitian. The Bloch projection approach, involves left projection of

above equation by P and @).

PEI O — QHG PR = 0
QEIHO —QH RV PR = 0

Nk =0,...,p0=0,...,h (1.103)

The normalization condition is indirectly specified through parameterization of 2. In
the case of complete model spaces (CMS), the intermediate normalization is commonly

employed.

The diagonalization of the effective Hamiltonian within the P space provides the energies

of the corresponding states and the left and the right eigenvectors.

Hig;h)C'(p’h) — o g
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Cf(pﬁ)Hé%vh) — EC®W (1.104)

GEREPh — el Ewh) — (1.105)

The normal ordering, avoids the contractions amongst various cluster operators resulting
in the sub-system embedding condition (SEC) which is nothing but the partial hierarchical
decoupling of cluster equations. As a result, the lower valence cluster equations are
completely decoupled from the respective higher valence cluster equations. Hence, the
Bloch equations need to be progressively solved, starting from the lowest valence (0,0)

sector, step by step up to (p, h) valence sector.

Pal and co-workers [120 124] formulated and implemented LR in FSMRCCSD frame-
work and computed dipole moments of moments of doublet radicals and of closed-shell
molecules in excited electronic states. The method may be viewed as extension of
Monkhorst’s approach in SRCC [116] to MRCC and being non-variational, requires ex-
plicit differentiation of Bloch equation concerning the uniform external field. In presence of
time-independent uniform external field, the parameters T = {Hij’;}h), ceh) coh) | O}

become perturbation dependent and can be expanded in Taylor series of g.

1 1
T(g) =T+ g7 4 g T 4 g (1.106)

The first order differentiation of the Bloch equations results in the the equations for
the MRCC derivative amplitudes and the derivative effective Hamiltonian. The dipole
moments corresponding to the near-degenerate states appearing as roots of the effective
Hamiltonian are obtained up on solving the following equations.

1 0 0 1 0 1
SO + (H LY = W) + EDC) (1.107)

eff eff

i
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Due to non-variational nature of the method, the generalized Hellman-Feynman theorem

does not hold and for higher order energy derivatives, the method becomes unattractive.

Constrained variation approach (CVA) FSMRCCSD

Following the LR developments in SRCC, such as Z-vector technique [117] and the
equivalent constrained variation approach (CVA) [28], their extentions to FSMRCC were
attempted, which includes Z-vector formulation by Pal and co-workers [125], CVA linear
response formulation by Szalay [126] and independently by Pal and co-workers [29-32,
127]. The computational implementation of CVA-FSMRCCSD was done by Manohar et
al [29, 30] for analytical dipole moments and analytical dipole polarizability of doublet
radicals. The CVA-FSMRCC method of Pal and co-workers gives response of a specific
root of the multiple roots of FSMRCC. One has to project a single desired state (root of

effective Hamiltonian) for doing constrained variation.

~(p,h h h
E,= Zqﬂ’j (H Mo (1.108)

ij

We formulate the Lagrangian to minimize the energy expression 1.108, with the con-

straint that the MRCC equations 1.103 are satisfied for the state p.

Z (Y(P h) (73 h)(Y(P h)

T Z Z{P(k,l)A(k,l)P(k,l)P(k,l) [HQ — QHE@”]P““”

k=0 1=0
+P(k,l)A(k,l)Q(k,l)Q(k,l)[HQ _ Qﬁig;l)] P(k,l)}
+E,[Y - Cphcnt ) (1.109)

As in SRCC, the energy derivatives obey the 2n + 1 rule with respect to MRCC cluster

amplitude derivatives and 2n + 2 rule with respect to the Lagrange multiplier derivatives.



Brief Review of the Background 49

Other Developments

Apart from the methods discussed above, the methods such as SAC-CI [41], MRCI [42],
MRPT [45], QDPT [46], ST-EOM-CC [128|, Green function approach, CC-LRT, etc are
also well-known for their capability in treating static and dynamic correlation. An entirely
alternative approach to the wavefunction based method is the popular density functional
theory (DFT) [129]. The problem with DFT is that exact form of exchange-correlation
(XC) functional is not known. The plethora of XC functionals have been developed for
handling a variety of electronic structure problems. Though these functionals can provide
high accuracy within their domain of applicability, they fail very badly if not properly
chosen. However, due to simplicity and compactness, DFT is being widely used. The
TD-DFT [130] has extended its applicability further the developments to near-degenerate

electronic states, as well.

With this, we conclude our review of various theoretical & computational methods
that provide the background to our PhD research work that is presented in the next few

chapters.



[%] Win JPDF

This document was created with the Win2PDF “print to PDF” printer available at
http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/




RI/CD-EOM-MP2 for ionization and electron-attachment energies 76

1P
32,000 :
¥ EOM-MP2 @ RI-EOM-MP2 CD-EOM-MP2 (tol =2)
CD-EOM-MP2 (tol.=3) CD-EOM-MP2 (tol.=4)
25,600 1
— 19,200 A
=
o
=}
(=]
9
2
= 12,800 A
6,400 1 —/;
0 »=-—'———!=“‘/zé¥ -
1 2 3 4 5 6 7 8 9 10

N molecule

FIGURE 3.3: Plot of Total time vs no water clusters for IP variant of EOM-MP2

Fig 3.3 and 3.4 provide a plot of time required for the computation of a single root
(for IP and EA variants of EOM-MP2 and RI and CD approximations) versus the no of
water molecules. The data used for plotting can be found in Table 3.1 and 3.2. It can be
seen that use of RI/CD approximation leads to significant speed-up for IP and EA. Total
computational timing depends mainly upon two factors. One of them is formal scaling

and other is the 1/0.

In the case of IP and EA the formal scaling of EOM part of the computation is O(N®),
while the CCSD part of computation, which is O(N®), is eliminated and replaced by the
MP2 approximation in EOM-MP2, which scales as O(N*). Thus, for IP and EA variants,
there is reduction in scaling as one goes from EOM-CCSD to EOM-MP2. The RI or CD
implementation would further reduce the computational cost resulting in further speed up.
Following Eq. 2.22 and the related discussion, we present the plots of Int versus Inn,,oecue
for IP and EA variants of all the methods in Figures 3.5 and 3.6, respectively. The graphs
clearly show reduction in the computational timings for IP and EA variants. The EOM
parts of these variants employ less number of intermediates as compared to those required

in EE and SF. Thus, significant speed-up is already gained at EOM-MP2 level. Thus
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the advantage of RI/CD would be seen only wherever I/0O bottenecks are reduced. The

reduction in computational timing is much more prominent in EA, where the four-particle

integrals leads to significant 1/O bottleneck. The absence of four four-particle integrals

makes RI/CD based methods less advantageous in IP than that in EA. As in case of EE
and SF, among all the methods, the CD-EOM-MP2 with § = 10 ? is the fastest, followed
by the one with § = 1072 and then the CD-EOM-MP2 with § = 10~*. The computational
timings of RI are a little more than those of CD with § = 1072 but quite lesser than those

of CD(§ = 10 3), a trend very similar to the one observed in case of EE and SF variants.

TABLE 3.1: Computational timings for EOM-CCSD, EOM-MP2, RFEOM-MP2 and
CD-EOM-MP2 (in seconds) for IP energy calculations of water clusters using cc-pVDZ
basis

Cluster

EOM-CCSD EOM-MP2

RI-MP2

CD-MP2

=102 6=10° 6=10*
Monomer 13.98 11.95 11.84 13.08 14.10 16.94
Dimer 30.69 17.99 14.39 23.94 35.49 57.79
Trimer 115.43 47.26 23.80 48.80 78.23 164.65
Tetramer 533.32 141.15 51.80 119.98 197.40 416.00
Pentamer 1641.56 580.77 108.59 215.65 415.43 831.27
Hexamer 4402.71 1016.19 219.60 539.77 956.55 2071.59
Heptamer 12169.52 3046.57 517.67 967.92 1597.25 3318.21
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TABLE 3.2: Computational timings for EOM-CCSD, EOM-MP2, RFEOM-MP2 and
CD-EOM-MP2 (in seconds) for EA energy calculations of water clusters using cc-pVDZ

basis

Cluster EOM-CCSD EOM-MP2 RI-MP2 CD-MP2
=102 ¢§=10°3 6=10 ¢
Monomer 17.35 15.89 12.92 13.51 19.67 17.32
Dimer 33.75 21.72 17.88 26.70 37.26 59.94
Trimer 138.22 70.68 33.90 64.59 97.02 178.36
Tetramer 533.97 141.15 51.80 119.06 266.45 545.87
Pentamer 2443.44 1141.59 319.34 375.64 544.33 1052.83
Hexamer 5214.61 2347.02 683.92 949.09 1344.40 2424 51
Heptamer 18053.36 8404.21 1725.44  2202.48 2887.38 4877.56

3.3.2 Energies of water clusters

The energy-gap between two target states 3.3 and 3.4 gives the canonical EOM-MP2

total energies for IP, and EA target states and the relative energies of RI-EOM-MP2 and

CD-EOM-MP2 methods for these variants. The corresponding excitation energies are

summarized in 3.5 and 3.6.
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TABLE 3.3: EOM-CCSD total target state energies (hartrees) of water clusters and
errors (V) of REEOM-MP2 and CD-EOM-MP2 relative to EOM-MP2 for IP

Cluster EOM-MP2 RI-MP2 CD-MP2

=102 ¢6=10° 6=10 ¢
Monomer  -75.81264 0.000 0.003 0.002 0.000
Dimer -152.11678 0.000 0.015 0.005 0.000
Trimer -228.38223 0.000 0.008 0.039 0.001
Tetramer  -304.66502 0.001 0.022 0.012 0.001
Pentamer  -380.86701 0.000 0.045 0.017 0.001
Hexamer  -457.24425 0.001 0.078 0.021 0.001
Heptamer  -533.52662 0.001 0.052 0.025 0.002

The standard deviations of TEs in canonical EOM-MP2 method relative to EOM-CCSD
for IP and EA variants are 0.404 and 0.431 eV, respectively. This gives an idea about the
error bar of EOM-MP2 methods. However, in this study, we present our RI/CD-EOM-MP2
results relative to canonical EOM-MP2 results, because that is the maximum acuracy
possible to achieve in our RI/CD EOM-MP2 method. The TE values in RI-EOM-MP2
method are generally higher than the canonical EOM-MP2 values for all the variants.
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TABLE 3.4: EOM-CCSD total target state energies (hartrees) of water clusters and
errors (V) of RI-EOM-MP2 and CD-EOM-MP2 relative to EOM-MP2 for EA

Cluster EOM-MP2 RI-MP2 CD-MP2
=102 ¢6=10° 6=10 ¢

Monomer  -76.23479 0.000 0.004 0.002 0.000
Dimer -152.51585 0.000 0.006 0.005 0.000
Trimer -228.79288 0.000 0.033 0.009 0.001
Tetramer  -305.07643 0.000 0.031 0.012 0.001
Pentamer  -381.28175 0.001 0.016 0.038 0.001
Hexamer  -457.64114 0.000 0.066 0.021 0.001
Heptamer  -533.92405 0.001 0.041 0.025 0.002

TABLE 3.5: First ionization energies (£yqrget — Fore ference ) (€V) of water clusters computed
using EOM-MP2, RI-EOM-MP2 and CD-EOM-MP2 methods and cc-pVDZ basis

Cluster MP2 RI-MP2 CD-MP2
§=10"2 §=10"° §=10"¢

Monomer  0.775 0.775 0.769 0.774 0.775
Dimer 0.527 0.527 0.519 0.527 0.527
Trimer 0.644 0.644 0.638 0.643 0.644
Tetramer  0.638 0.638 0.633 0.636 0.638
Pentamer  0.426 0.426 0.418 0.424 0.425
Hexamer  0.432 0.432 0.424 0.430 0.431
Heptamer  0.491 0.491 0.482 0.490 0.491

The maximum deviations of TEs in RI-EOM-MP2 relative to EOM-MP2 for all the
EOM methods are 0.001 eV, only. However, the errors in CD variants depends strongly
on the tolerance used. The standard deviation in CD-EOM-MP2 ( § = 102?) TEs relative
to EOM-MP2 for IP and EA variants are 0.028 and 0.021 eV, respectively. They are an
order of magnitude less than the typical error bar of 0.2 eV -0.3 eV reported for EOM
methods [139].

TABLE 3.6: First electron affinities energies (Fiarget — Ereference)(€V) of water clusters
computed using EOM-MP2, RI-EOM-MP2 and CD-EOM-MP2 methods and cc-pVDZ

basis
Cluster MP2 RI-MP2 CD-MP2
=102 6=10° 6=10*

Monomer  0.775 0.775 0.769 0.774 0.775
Dimer 0.527 0.527 0.519 0.527 0.527
Trimer 0.644 0.644 0.638 0.643 0.644
Tetramer  0.638 0.638 0.633 0.636 0.638
Pentamer  0.426 0.426 0.418 0.424 0.425
Hexamer  0.432 0.432 0.424 0.430 0.431

Heptamer  0.491 0.491 0.482 0.490 0.491
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The error decreases on tightening the tolerance criteria. The standard deviation in
errors with § = 1073 for IP and EA variants are 0.013 and 0.13 eV, respectively. The
maximum deviations come down to 0.002 eV with § = 1074, It should be noted that the
TE in CD-EOM-MP2 is always higher than their canonical version for all the flavors of
EOM.

The DEs are much well reproduced in both RI and CD EOM-MP2 than that observed
for TE. Table 3.5 and 3.6 presents the DE values for all flavors of EOM-MP2. The
maximum deviations of DE in RI-EOM-MP2 is 0.001 eV for all flavors of EOM. The
accuracy of CD-EOM-MP2 is strongly dependent on the decomposition threshold. The
maximum deviation of DE with § = 10 ? for IP and EA variants are 0.005 and 0.009
eV, respectively. The maximum error gets reduced to 0.002 and 0.002 eV, for IP and EA
variants, respectively with Cholesky decomposition threshold § = 1072, The maximnum

errors come down within 0.001 eV with § = 10~*.

Table 3.7 and 3.8 summarises DTEs (AF)2) of water clusters computed for IP and EA
variants of RI-EOM-MP2 and CD-EOM-MP2. Both RI-EOM-MP2 and CD-EOM-MP2
predict the DTEs with good accuracy.

TABLE 3.7: Energy difference (eV) between lowest two IP target energy levels for water
clusters computed using EOM-MP2, EOM-MP2, RI-EOM-MP2 and CD-EOM-MP2
methods and cc-pVDZ basis

Cluster MP2 RI-MP2 CD-MP2

§=10 2 6=1023 =10 *
Monomer  2.259 2.259 2.261 2.259 2.259
Dimer 1.355 1.355 1.357 1.354 1.355
Trimer 0.140 0.140 0.134 0.140 0.140
Tetramer  1.322 1.322 1.324 1.322 1.322

For 1P, the CD-EOM-MP2 with § = 10 * and RI-EOM-MP2 gives identical value as that
of canonical EOM-MP2, whereas for CD-EOM-MP2 with § = 1072, 103, the maximum
deviation increases to 0.006 eV and 0.001 eV, respectively. For EA, the maximum deviation
for CD-EOM-MP2 with § = 1072 is 0.003 eV, whereas, CD-EOM-MP2 with § = 10~
gives identical value as that of canonical one. The maximum deviation for EA in the

CD-EOM-MP2 with § = 10 2 and RI-EOM-MP2 is 0.001 eV.
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TABLE 3.8: Energy difference (eV) between lowest two EA target energy levels for water
clusters computed using EOM-MP2, EOM-MP2, RI-EOM-MP2 and CD-EOM-MP2
methods and cc-pVDZ basis

Cluster MP2 RI-MP2 CD-MP2

6=102 6=1023 =10 *
Monomer  0.728 0.729 0.730 0.729 0.728
Dimer 0.847 0.847 0.850 0.847 0.847
Trimer 0.575 0.575 0.575 0.575 0.575
Tetramer  0.563 0.563 0.564 0.563 0.563

3.3.3 Electron Affinty of DNA bases

The weakly bound electrons in DNA nucleo acid bases (NAB) lead to a diverse range of
interesting properties [141-144|, which has fascinated generations of theoreticians and
experimentalists. A wide range of theories, starting from DFT [145-148] with different
functionals and basis set, to state of the art coupled cluster methods [149, 150] were used

in the simulation of electron attachment to NAB.

However, the addition of an extra electron to NAB leads to multiple quasi-degenerate
configurations, the simulation of which calls for a method which can go beyond the
single determinant picture. The EOM-CC method is quite capable of treating such quasi-
degenerate situations and can calculate electron attachment corresponding to multiple
states in a single run [37]. The EOM-IP-CC has been extensively used by Krylov and
co-workers [151 154] to study the ionization-induced changes in NAB.

However, the EOM-CC studies on the electron affinities of NAB are rather limited. To
the best of our knowledge, the one available comes from the work of Pal and co-workers
[155] and that also restricts its attention to isolated bases only. The large basis set required
to model the NAB bound anions often makes conventional EOM-CC caleulations difficult
to perform beyond isolated DNA bases. However, our RI/CD based EOM-MP2 method
because of its lower storage and memory requirements can be an efficient alternative. The

electron affinity values of NAB in different theoretical methods are presented in 3.9.
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It can be seen that the electron affinities in all the theoretical methods are negative,
which is consistent with the experimental results. It indicates the electron attached states
of NAB are not bound states, rather quasi-bound or resonance states. It can be seen
that the DF'T method gives most scattered results ranging from highly negative values to
values close to zero. The MP2 method leads to negative values. The CCSD and CCSD(T)
method also leads to highly negative values and the values are almost identical to each
other. However, the used basis set is too small to perform any meaningful comparison

with experiments.

The CASPT2 method, on the other hand, gives much less negative values. It can
be seen that EOM based methods give the best agreement with experiments. The
RI-EOM-MP2/aug-cc-pVDZ computed EA values are in good agreement with the EOM-
CCSD/aug-cc-pVDZ results of Pal and co-workers [155]. On using the aug-ce-pV'TZ basis,
the absolute values of RI-EOM-MP2 computed EAs decrease by 0.04-0.08 eV from the
corresponding EOM-CCSD results. However, it is justifiable, as Pal and co-workers [155]
removed one of the f functions from their basis set and used aug-cc-pVDZ basis set for
hydrogen. Whereas, in the present study the standard aug-cc-pV'TZ basis set is used for
all elements and it is well known that EA of NAB increases(i.e becomes less negative)

with increase in basis set.

The deviation is within the accuracy range of EOM-CCSD method. H Among all the
nucleobases, the uracil shows highest EA values of -0.12 eV in RI-EOM-MP2/aug-cc-pVTZ
level of theory, which is in excellent agreement with the optimized virtual orbital space
(OVOS) based CCSD(T)/aug-cc-pVTZ value of -0.15 eV reported by Urban and co-workers
[150]. The lowest electron affinity of -0.35 eV is displayed by adenine, which is much lower
the other theoretical methods, though it agrees well with the experimental value. The
small storage requirements and favorable computational scaling of RI/CD of EOM-MP2
allows to calculate EA values beyond single DNA bases, but that is outside the scope of

the present study and will be followed in some future work.
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3.4 Conclusion

We have presented the formulation of cost-effective RI and CD based EOM-MP2 ap-
proximations to EOM-CCSD [70]. The MP2 approximation reduces the timing and cost
by eliminating iterative CCSD procedure. Moreover, use of RI (or CD) reduces the
cost further with respect to the computational size of the system, thereby widening the
applicability of EOM-MP2 to molecules of larger size such as DNA nucleobases. Although
the RI/CD approximating doesn’t change overall scaling of the methods, it greatly reduces

the storage requirements and 1/O bottlenecks and thereby resulting in a major speed-up.

The iterative decomposition procedure in CD-EOM-MP2 is the rate-determining step
and can alter the overall timing of the job depending on the CD threshold chosen. In
terms of accuracy, RIFEOM-MP2 and CD-EOM-MP2 with § = 102 are comparable and
provide fairly good results for DEs with maximum absolute error (MAE) with respect to
the conventional EOM-MP2 to be of 0.002 eV for IPs and EAs. For DTEs, these methods
perform even better with the MAE of 0.001 eV with respect to the EOM-MP2 values for
IP and EA.

In case of availability of pre-optimized auxiliary basis, RI-EOM-MP?2 is a preferred
method over CD-EOM-MP2 as it saves the time required for iterative CD procedure.
However, CD-EOM-MP2 can be used for a more general choice of basis and suitable
threshold can be chosen to tune the desired accuracy. The small storage requirements and
favorable computational scaling of RI/CD-EOM-MP2 allows one to use these methods
for computing 1Ps and EAs of large molecules and clusters, which is beyond the reach of

both the canonical EOM-MP2 as well as RI/CD-EOM-CCSD.



Chapter 4

Cholesky Representation of
CVA-FSMRCCSD : Analytical

dipole moment of doublet radicals

4.1 Introduction

In previous chapters, we have discussed the cost-effective computation of energies and
energy differences of molecules in excited, ionized and electron-attached states. Optical
properties such as dipole moments, polarizabilities play important role in electronic
structure of molecules. Therefore, it is important to test the accuracy of a cost-effective

technique in computing these properties.

In this chapter, we present the Cholesky representation of CVA-FSMRCSSD for com-
puting analytical dipole moments of some doublet radicals. The lowest electron-attached
state of some doublet radicals is a non-degenerate closed shell state. Such radicals can be
viewed as ionized states of corresponding closed shell anions, for example, the OH, CN

and SiN radicals. One can use the IP variant of CVA-FSMRCCSD to compute the dipole
87
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moments of these radicals. On the other hand, some radicals have their first ionized state
of closed shell character. These radicals can, therefore, be viewed as electron-attached
states of the corresponding non-degenerate closed shell cations, for example, the CH, CCH,

SiH and BO radicals. The EA variant of CVA-FSMRCCSD can be conveniently employed

for computing dipole moments of these radicals.

4.2 Theory

CVA-FSMRCC method for the first order properties

The FSMRCC and CVA-FSMRCC theory has already been described in Chapter 1 for a
general (p, h)-valence sector. Here, we write the algebra specifically for one valence sector
of F'S to discuss the formulation of CVA in FSMRCC context. We fix our notations for
the quantities as follows. The [m] in the superscript indicates the m—valence sector, so
that, m = 0 would correspond to the vacuum, m = 1 would correspond to either IP or EA
, that is, the (0, 1) or (1,0) sector, respectively, as applicable, and so on. The (n) in the
superscript indicates the n** order derivatives of the quantity with respect to the external

field. The configurations of this CMS are given by,

DR e (4.1)

The dynamical electron correlation effects are brought in through a universal wave operator

Q.
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The wave operator () is parameterized such that the states generated by its action on
the reference function satisfy Bloch-Lindgren equation for effective Hamiltonian given
by equation 1.102. The lower valence cluster operator equations are decoupled from the

higher valence ones which is known as subsystem embedding condition (SEC).

The diagonalization of the effective Hamiltonian within the P space gives the energies

of the corresponding states and the left and the right eigen vectors.

HL};‘CM el

chply = pch (4.4)

Explicit differentiation of the above equations leads to the non-variational LR of FSMRCC

and involves solution of derivatives of Q and H leﬁl for every mode of perturbation separately.

We now briefly discuss the CVA-FSMRCC method for [1] Fock space. The energy of a

specific state of the ionized system is given by,
Jn

=1 1 1
E, =) il e (4.5)
i

We construct the Lagrangian to minimize the energy expression given above, with the

constraint that the MRCC equations are satisfied for the state p.
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_ ~[1] (1]~
3 = Z Cm’ (Heff)w Cju
ij
+PUAN PPN — QHl) P
+ PHANQUQM O — QHL%L] pl
4 PA L plo] plo] oy plo]

+ PIIALIQIIQILT Froy plO

A A
~E, (Z CLiCH — 1) (4.6)
ij

The A in equation 4.6 are the Lagrange multipliers. However, in case of CMS, the effective
Hamiltonian has an explicit expression in terms of cluster operators, as a consequence of
which, the closed part in the Lagrange multipliers vanishes. The equation 4.6 thus reduces

to,

+ PHANQUQM O — QHL%L] pl

+ PUALIQEI QP o plO)

511 1]
—E, (Z CiCi, — 1) (4.7)
ij

Differentiation of equation 4.7 with respect to A results in expression for cluster
amplitudes (i.e., the Bloch equation). It is obviously seen that the equations for 2
amplitudes are decoupled from the A amplitudes. The A equations are, however, coupled
with the € amplitudes. These are obtained by making equation 4.7 stationary with respect
to the cluster amplitudes. In presence of external field, the Lagrangian and the parameters
T ={H.C, C,E, 2, A} become perturbation dependent. These can be expanded in
Taylor series.

1 1
T(g) = YO 4 g7® 4 5g2T<2) + ig?’T(?’) +... (4.8)



CD-CVA-FSMRCCSD : Analytical dipole moment of doublet radicals 91

The Lagrangian defined in equation 4.7 can be differentiated with respect to the field g
to obtain the Lagrangians at every order. The zeroth order and the first order Lagrangians

can therefore, be written as

O _ (@uMmH[jﬁ]{(O)Cwm)
[
+PUAIO[FOQO — O flIO)pit

4 POl AT01(0) [H(O)Q(O)]pml

S(11(0) [110)
~E, (ZCM c, 1) (4.9)
ij

g — (@uunH%yO)Cwm) +<@[1W<0)HL%L<1>CHKO))
Mt
n (@wm Hlll <0>0m<1>)
g

+ PIARIO 000 _ 0©) HL%L@)] pll

B

1 PHANO FMQO 4 g0 Q(DHL%L(O) _ Q(O)HL%L(U]]DM
4 PlOTATOIL) gr(0)()(0) plol 4 plOT A [01(0) (1) ()(0) 4 (0) () (1) plO]

. (o)z ~[11(0) ~[11(1) ~[11(1) ~[11(0)
Eu (Cm‘ Cju +Cm Cju )
ij

B (Z Ol 1) (4.10)
ij

The equations 4.9 and 4.10 give the energy and the first order energy derivative for
the state . Because of stationarity of Lagrangian with respect to A and €2, the above
expressions are further simplified. The energy derivatives follow (2n + 1) rule with respect
to the © amplitudes and (2n + 2) rule with respect to A amplitudes. There is a (2n + 1)
rule for the eigen-vectors C'l and C™ for evaluation of energy derivatives. With these,
the expressions for Lagrangians given in equation 4.9 and 4.10 simplify. We denote this

simplified Lagrangian as
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S
50, = (@wm H;lﬁ][w)owm) (4.11)
o
1 _ ~L(0) pplLI(1)  ~[1](0
o), = ((ﬂ I >Heﬁm0)g[ I >)W

+ PIIATO[ MO _ 0 HLE&%)] pll

4 Pl A90) (1) () plo] (4.12)

The subscript Q9 indicates that the derivative effective Hamiltonian does not contain
any term formed from derivatives of the cluster amplitudes. The first order properties can
thus be obtained simply with the knowledge of €2 and A amplitudes only. Differentiation
of equation 4.9 with respect to A amplitudes leads the equations for 2 amplitudes — the

Bloch equations.

The A are obtained by differentiating equation 4.9 with respect to 2 amplitudes. It
may be noticed that the coupling within the A amplitudes in various valence sectors is
exactly opposite of SEC. Thus, one has to solve for the A amplitudes successively from

the highest valence sector to the lowest valence sector.

The CVA method is a single-root method. The A amplitudes depend on the desired
state of the molecule. Therefore, for every state one has to calculate the A amplitudes
separately. In contrast, the non-variational response of FSMRCC [120, 121] has a multiple-
root structure. However, the expensive evaluation of wavefunction derivatives for each
mode of perturbation is avoided in CVA-FSMRCC. Also, the single-root feature makes
CVA more attractive for the cases like curve-crossing studies of excited states, etc. than
the non-variational response method. It can be seen that the A equations for one-valence

problem are same as the “zeta equations” in the EOMCC method [37, 160, 161].
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4.3 CD Approach for CVA-FSMRCCSD

We briefly present the iterative procedure of CD. Following are the steps involved in

computing Cholesky vectors:

1. From the ERI matrix, fetch the diagonal elements, < pp|qq > (Dirac notation used:
< pplgg >=< p(1)p(2)|q(1)q(2) >) and store them in a separate array. Identify the

largest element of the array and label it as < p'p/|¢'q" >.

2. Define D<O)

— ! !
s =< DT|q's >.

0 /sqrtDm) for all r, s.

(
p'q,rs rapq

3. Compute the first Cholesky vectors: B,g) =D
4. Update the residual of the diagonal by subtracting the Cholesky vector obtained
in previous iterations: fo;‘)m = Dg;‘ri)lé’gé) B, (The diagonal element is obtained
when rs = pg). Compute the diagonal elements of next iteration, identify the largest
element in the updated diagonal and repeat the Step 3 with B® and D* D if the
largest element of the diagonal is still larger than the chosen tolerance. If the largest

element in the diagonal becomes smaller than the chosen tolerance, the Cholesky

decomposition procedure is said to have converged.

While the above CD procedure can in principle be done on ERI’s in either AO or MO
basis, in the present work, we have implemented the same in MO basis. The required
intermediates for CC, FSMRCC and CVA were programmed from the CD vectors. The
number of Cholesky vectors equals to the number of CD iterations, which in turn depends
on the Cholesky tolerance (§ = 10*“”). If Neop is the number of Cholesky vectors and
Nyusis 1s the number of basis functions, then in general, Nop/Ny.sis ranges roughly around
0.1 ~ 0.5 for § = 107!; around 2 ~ 2.5 for § = 107%; and around 4 ~ 4.5 for § = 1073.
Cholesky vectors, thus have a size O(N?) as compared to O(N*) of the ERI’s.

Further sorting of the Cholesky vectors into occupied-occupied, occupied-virtual and
virtual-virtual may be beneficial in using them in CC/FSMRCC equation. Use of Cholesky

vectors instead of ERI’s would reduce the scaling of the terms in which the running
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indices in the summation belong to single electron. For example, scaling of terms like
doke < aclik > t2 can be reduced by about one order if < aclik > is expressed as
Zu Bi(f;)B,i’;) (We use the orbital notations as i, j, k € occ, a, b, ¢ € virt and the index p is
the order of the Cholesky vector p = 1,..., Nop ). However, in case of the terms such as
> g < abled > tf;l, where, the summation is over the indices of two different electrons,

expressing the ERI’s, < abled > as 3, B Bég) would not gain in terms of scaling, though

there would be reduction in a pre-factor.

Thus, though scaling of many individual terms in the CC/MRCC/CVA equations can
be reduced by an order, the overall scaling does not reduce. However, one does not require
to write to the disk, the large size ERI’s like, for example, < ablcd >, as the Cholesky
B(SJPVCD)

vectors , which build them are smaller in size and can be stored in RAM.

4.4 Results and Discussion

4.4.1 Computational details

The ground state geometries of OH and C'H radicals were optimized at RI-MP2/cc-pVDZ
level of theory using Q-CHEM 4.4 [135]. The equilibrium geometries of BO, CCH, CN,

SiN radicals were obtained from various sources [162, 163].

The single point computations of dipole moment was done using cc-pV'TZ basis [164—
166]. Locally modified version of Gamess [167] was used for running RHF and fetching the
ERI’s, dipole integrals, AO-MO coefficients, etc for post-HF computations. The dipole

moments are all reported in debyes.
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Dipole moment of CH radical
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FIGURE 4.1: Plot of Bond distance vs Dipole moment for CH radical

4.4.2 (CH radical

The dipole moments of CH radical (for %II state) at various internuclear distances are
presented in Table 4.1 and plotted in Figures 4.1. In this system, we start with RHF of

CH™ cation as vacuum and compute the properties for EA states.

TABLE 4.1: Dipole moment (D) of CH radical

Bond Length CVA-FSMRCCSD CD-CVA-FSMRCCSD
d=10 1 =10 2 =10 3
te o/ D 0.50 Req 1.82479 2.08577 1.82308 1.82473
0.75 Req 1.74824 1.86315 1.74484 1.74839
Req 1.43056 1.19074 1.39851 1.43002
1.25 Req 0.95107 0.92361 0.91792 0.94948
1.50 Req 0.39427 0.29326 0.35273 0.39204
2.00 Req -0.65861 -0.73668 -0.67450 -0.65932

The qualitative trends in dipole moments computed with CD-CVA-FSMRCCSD with
§=10 ",10 2,10 2 are very similar to that of the conventional CVA-FSMRCCSD. The
§ = 107! gives rather very poor results for dipole moments. For dipole moment, the
maximum absolute errors are 0.24 D for § = 107%; 0.042 D for § = 1072 and 0.017 D for
§=1073.
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One more measure of accuracy is the non-parallelity error (NPE). It is usually used to
compare the trends in the potential energy surfaces obtained by an approximate method
versus the exact results or those obtained by most accurate method like FCI. However,
the definition can be extended to check the trends in any property upon bond stretching.
The NPE is defined as the difference hetween maximum and minimum relative errors in
property, relative to the reference value. In this context, the CVA-FSMRCCSD dipole
moments of the radical computed at different bond-distances are the reference values.
The deviations of CD-CVA-FSMRCCSD relative to these can be calculated and NPE
is just the difference between the largest positive error and the largest negative error.
(In case if all the errors are positive, smallest positive error is considered in stead of the
largest negative one, while if all the errors are negative, the smallest negative error is
taken instead of largest positive one). Using this definition, we find that the NPE of
CD-CVA-FSMRCCSD relative to CVA-FSMRCCSD in computing the dipole moments
of CH radical is 0.36 D for § = 10 ', 0.04 D for § = 10 ? and as small as 0.00086 D for
=102

4.4.3 OH radical

Table 4.2 presents the dipole moments of OH radical (for *TI state) at various internuclear
distances. The results are also plotted in Figures 4.2. For OH radical, we start with RHF

of OH anion as vacuum and compute the properties for the desired IP states.

TABLE 4.2: Dipole moment (D) of OH radical

Bond Length CVA-FSMRCCSD CD-CVA-FSMRCCSD
=10 " =10 ? =10 3
e,/ D 0.50 Req 1.31120 1.28834 1.31168 1.31103
0.75 Req 1.46000 1.46732 1.46254 1.46000
Req 1.57438 1.64292 1.57870 1.57392
1.25 Regq 1.64261 1.78289 1.64866 1.64227
1.50 Regq 1.71707 2.05485 1.73320 1.71677
2.00 Req 2.38482 2.61631 2.39166 2.38496

Like in C'H radical, here also we get the qualitative trends of CD-CVA-FSMRCCSD
very similar to those of CVA-FSMRCCSD for dipole moments. For dipole moment, the
maximum absolute errors are 0.338 D for § = 10~'; 0.016 D for § = 10~2 and 0.0005 D
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Dipole moment of OH radical
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F1GURE 4.2: Plot of Bond distance vs Dipole moment for OH radical

for 6 =10 3. The 6 = 10 ' results are very poor as in case of CH radical. The NPE of
CD-CVA-FSMRCCSD relative to CVA-FSMRCCSD for dipole moments of OH radical

also reduces with tighter convergence criterion, as in case of CH radical. The NPE is 0.36

D for § =107, 0.0156 D for § = 1072 and as small as 0.00031 D for § = 1073.

4.4.4 BO, CCH, StH, CN and SiN radicals

Geometry of BO, CCH, SitH, CN and SiN radicals are shown in Appendix B. The

dipole moments of radicals in ground (X?*) state is summarised in the table 4.3.

For BO, CCH and SiH, we start with RHF of the corresponding cations and compute
the properties for respective EA states, whereas for CN and Si/N, we start with the RHF
of the corresponding anions followed by computation of properties for the respective IP
states. The absolute errors in dipole moment of BO, CCH, StH, CN and SiN radicals
are 0.0013 D, 0.00002 D, 0.0002 D, 0.0001 D and 0.0004 D for § = 10 2, repectively.
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TABLE 4.3: Dipole moment (D) of BO, CCH, SiH, CN and SiN radicals in ground
(X?21) state

Methods BO CCH SiH CN SiN
CVA-FSMRCCSD 2.60296  0.94756  0.13593  0.18002  2.67202
CD-CVA-FSMRCCSD

§=10"1 1.99189 -1.34360 0.67423 -0.01023  2.67423
§=10 2 2.68707  0.93381  0.10436  0.16708  2.63112
3 =102 2.60430  0.94758  0.13576  0.17995  2.67237

For § = 1072, absolute errors in dipole moment are respectively, 0.0841, 0.0137, 0.0316,
0.0129 and 0.0409 D, whereas, for § = 107!, they are quite large. The values are 0.6111,
2.2912, 0.5367, 0.1903 and 0.0022 D, respectively. For CD-CVA-FSMRCCSD with § = 1072
and 10 2, we see that the percentage absolute errors for these radicals is less than the

maximum absolute errors in case of CH and OH radicals.

4.5 Conclusion

In this chapter, we have presented dipole moments of various radicals computed analytically
using CD-CVA-FSMRCCSD for IP and EA cases. CD with § = 10 2 yields very accurate
values of dipole moments at equilibrium as well as stretched geometries as illustrated for
CH and OH radicals. The maximum absolute error for dipole moment are 0.03 % and
0.57 % and for polarizability 0.07 % and 0.06 % of OH and CH, respectively for this
tolerance and the number of Cholesky vectors is about 4-4.5 times that of the number of

basis functions.

Increasing the tolerance of § = 10 ? reduces the number of Cholesky vectors to 2-2.5
times that of the number of basis functions with reduction in the accuracy of the computed
properties. The resulting maximum absolute errors for dipole moment are 0.94 % and 10.54
% of OH and CH, respectively. Further increase in the tolerance is strongly discouraged
as with § = 10~!, the dipole moment, no longer remain reliable because of the high
maximum absolute errors of 19.67 %, 25.62 % in dipole moment, which is obvious as the

number of Cholesky vectors is smaller than even the number of basis functions.



Chapter 5

Cholesky Representation of
CVA-FSMRCCSD : Analytical
polarizability of doublet radicals

5.1 Introduction

In previous Chapter, we discussed the CD-CVA-FSMRCCSD formulation for computing
dipole moments of doublet radiclas. In continuation, we present in this chapter, extension
of the one-valence CD-CVA-FSMRCC ansatz for computing the second-order analytical
properties. Specifically, we test the method for static dipole polarizabilities of doublet
radicals. There also have been developments in other CC based formulations [168, 169]
for obtaining higher order properties, although not rigorously analytical. Thus, till date,
the CVA-FSMRCC is the only known method to have reported analytically computed
dipole polarizabilities of doublet radicals, which signifies the relevance of presenting the

Cholesky representation of the method.

99
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5.2 Theory

5.3 CVA-FSMRCC method for the second order prop-

erties

In continuation with the theory discussed in Chapter 4, we now proceed with the second
order of Lagrangian and it resembles with second order energy derivatives. This is obtained
by differentiating equation 4.7 twice with respect to g for specific root of the effective

Hamiltonian.

g _ (@m<2>y§<0>gm<o>) +<(jvm<1>gsﬁl<1>gm<o>)
it it
19 (p O nlel <1>) +<(}M(0)HL1W)CHKO))
[ [

i (waO)HW(UCHKD) 4 (C 10 11 <0>Cm<2>)
olf i 7

+ PUAN@ OO 0@ ] ffm)]p[l]
+ PIARIOFMOO 4 gOQM) _ Q(O)H[jﬁlﬂ) _ Q(l)H[jﬁl(O)]Pm
+PUAOFR00 4 o) | FOo@) pll
_ PIIAMO[QO @ o g0 o@) 1O pl

PHAN® QO 4 oW g0+ @[ O p
+pmw,\mw<2>[y<0>9<0>]pmw + pml/\ml(l)[[_[(l)@(@) + H(O)Q(l)] plol
+p[0lA[01(0)[H(2)Q(0) + HOOW 4 H(O)Q(Z)]pml

F(O) Z( (2)0 1(0) + 2(Y (U(Y 1(1) + (Y (0)0 (2))

E<1>z( Pl Lle <1>)

o z (CHOen® 1) (5.1)

Following Shamasundar ef. al. [127], some terms in Eq. (5.1) mutually cancel whereas

several others vanish because of (2n + 1) and (2n + 2) rules [170]. If there is no operator
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form for H?, then equation 5.1 reduces after eliminating the vanishing terms to the

following.

2 _ ~[1)(0) 77[11(2) 1](0
ST ((ﬂ OEl® o >)W
+ PIAIIO 7@ 0© 4 70 — (9O HL%L)S&)] Pl
+p[0WA[0W(0)[[_](1)Q(1) + H(O)Qg()l)] plol
AL pr[1(0) A1) go(0) A1) ~[1)(1)
+2 (ZCM Heﬁ’ Cju Eu ZCM Cw ) (5'2)
ij 7

The subscripts O and Q) indicate that the corresponding terms are formed using up
to zeroth and first derivatives of the cluster amplitudes respectively. The second-order
properties can thus be obtained only with the knowledge of cluster amplitudes, eigenvectors
and their first derivatives with respect to the field and an additional set of perturbation

independent vectors, i.e. the A-vectors.

Due to the single-root nature of the CVA method, one has to obtain the A amplitudes
separately for every state unlike the non-variational response of FSMRCC [120, 121], which
has has a multiple-root structure. However, the expensive evaluation of wavefunction
derivatives for each mode of perturbation is avoided in CVA-FSMRCC. This feature
becomes more prominent while obtaining higher-order properties like polarizability. Also,
the single-root feature makes CVA more attractive for cases like curve-crossing studies
of excited states, etc. than the non-variational response method. maybe noted that for
a one-valence problem, FSMRCC method is equivalent to EOM-CC [37, 161]. However,

developments in the higher-order linear response of EOM-CC have yet not been reported.

The computational approaches used for obtaining first-order energy derivatives are
transparently extended in case of second-order derivatives. An additional step of evaluation
of T derivative amplitudes and storage of the resulting intermediates with Hamiltonian

gets introduced this case.
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5.4 Results and Discussion

5.4.1 Computational details

Computational details have already discussed in chapter 4. The single point computations
of polarizabilities was done using cc-pVTZ basis set [164, 165|. Locally modified version of
Gamess [167] was used for running RHF and fetching the ERI’s, dipole integrals, AO-MO
coefficients, etc for post-HE computations. The polarizabilities are all reported in atomic

units.

5.4.2 ('H radical

The polarizabilities of CH radical (for ?IT state) at various internuclear distances are
presented in Table 5.1 and plotted in Figures 5.1. In this system, we start with RHF of

CHT™ cation as vacuum and compute the properties for EA states.

TABLE 5.1: Polarizability (a.u.) of CH radical

Bond Length CVA-FSMRCCSD CD-CVA-FSMRCCSD
éd=10" =10 2 =10 3
ase/ an. 0.50 Req 8.1947 9.8857 8.2504 8.1965

0.75 Req 10.8539 13.6062 10.8949 10.8569

Regq 15.2544 19.2323 15.4352 15.2577

1.25 Regq 21.0149 24.8827 21.0539 21.0242

1.50 Regq 26.5392 29.1065 26.6478 26.5430

2.00 Req 28.2290 25.3607 27.8555 28.2121

The NPE of CD-CVA-FSMRCCSD for polaizabilities of CH radicals, with CVA-FSMRCCSD
results as reference for § = 107!, 1072 and 1072, are, respectively, 6.84, 0.55 and 0.026

a.ll.

The qualitative trends in polarizabilities computed with CD-CVA-FSMRCCSD with
§=10 ",10 2,10 2 are very similar to that of the conventional CVA-FSMRCCSD. The
§ = 10~ gives rather very poor results for polarizabilities. For polarizability, the maximum
absolute errors are 3.978 a.u. for § = 107%; 0.374 a.u. for 6 = 1072 and 0.017 a.u. for
§=1073.
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Polarizability of CH radical
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FIGURE 5.1: Plot of Bond distance vs Polarizability for CH radical

5.4.3 OH radical

Table 5.2 presents the polarizabilities of OH radical (for IT state) at various internuclear
distances. The results are also plotted in Figure 5.2. For OH radical, we start with RHF

of OH anion as vacuum and compute the properties for the desired IP states.

TABLE 5.2: Polarizability (a.u.) of OH radical

Bond Length CVA-FSMRCCSD CD-CVA-FSMRCCSD
d=10" =10 ? =10 3
Qzn/ an. 0.50 Req 4.9504 5.0296 1.9645 4.9505
0.75 Req 7.1111 7.0986 7.1138 7.1109
Regq 10.5565 10.8232 10.5866 10.5583
1.25 Regq 15.0253 15.4825 15.0400 15.0276
1.50 Regq 18.9673 20.1744 18.9557 18.9687
2.00 Req 20.6540 18.9675 20.2901 20.6393

Like in C'H radical, here also we get the qualitative trends of CD-CVA-FSMRCCSD very
similar to those of CVA-FSMRCCSD for polarizabilities. For polarizability, the maximum
absolute errors are 1.687 a.u. for § = 107" 0.364 a.u. for 6 = 1072 and 0.015 a.u. for
§ = 1073. The NPE of CD-CVA-FSMRCCSD for OH radical polaizabilities relative to
the CVA-FSMRCCSD method as reference are, respectively, 2.89, 0.39 and 0.017 a.u., for
§=10 ',10 ? and 10 3.
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Polarizability of OH radical
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FIGURE 5.2: Plot of Bond distance vs Polarizability for OH radical

5.4.4 BO, CCH, StH, CN and SiN radicals

Geometry of BO, CCH, StH, CN and SiN radicals are shown in Appendix. The
polarizabilties of radicals in ground (X?*") state is summarised in the table 5.3. For
BO, CCH and SiH, we start with RHF of the corresponding cations and compute the
properties for respective EA states, whereas for CN and Si/N, we start with the RHF
of the corresponding anions followed by computation of properties for the respective IP
states. The maximum absolute errors for § = 10° for these radicals are respectively, 0.003,

0.008, 0.0237, 0.010 and 0.050 a.u., repectively.

TABLE 5.3: Polarizability (a.u.) (a../ a.u.) of BO, CCH, SiH, CN and SiN radicals
in ground (X?1) state

Methods BO CCH SiH CN SiN
CVA-FSMRCCSD 19.1957  23.5350  37.9561 20.3795  49.4426
CD-CVA-FSMRCCSD
§=10 " 20.8522  -44.1379  49.0389  22.6224 62.8690
=10 2 19.2311  23.6568  38.0453  20.5629 50.4191
§=10 3 19.1931  23.5425 37.9798 20.3893  49.4929




CD-CVA-FSMRCCSD : Analytical polarizability of doublet radicals 105

For § = 1072, the errors increase to 0.0355, 0.1218, 0.0892, 0.1834 and 0.9765 a.u.
respectively, whereas for § = 107!, some jobs failed to converge in CCH, SiH and SiN
radicals. The error for BO and CN are 1.6566 and 2.2429 a.u., respectively for CD § =
10 '. For CD-CVA-FSMRCCSD with § = 10 % and 10 2, we see that the percentage
absolute errors for these radicals is less than the maximum abhsolute errors in case of CH

and OH radicals.

5.5 Conclusion

In this chapter, we have presented dipole polarizabilities [71] of various radicals computed
analytically using CD-CVA-FSMRCCSD for IP and EA cases. CD with § = 10 2 yields
very accurate values of polarizabilties at equilibrium as well as stretched geometries as
illustrated for CH and OH radicals. The maximum absolute error for polarizability 0.07
% and 0.06 % of OH and CH, respectively for this tolerance and the number of Cholesky

vectors is about 4-4.5 times that of the number of basis functions.

Increasing the tolerance of § = 10 ? reduces the number of Cholesky vectors to 2-2.5
times that of the number of basis functions with reduction in the accuracy of the computed
properties. The resulting maximum absolute errors for polarizability 1.76 % and 1.32 %
of OH and CH, respectively. Further increase in the tolerance is strongly discouraged as
with § = 107!, the polarizability no longer remain reliable because of the high maximum
absolute errors of 8.17 %, 26.08 % in polarizabilty of OH and C'H, which is obvious as

the number of Cholesky vectors is smaller than even the number of basis functions.



Chapter 6

Conclusion

6.1 General Conclusions

In the present thesis, we studied the effect of employing density fitting techniques such as
RI and CD on accuracy and computational cost in computing energies and properties of

molecules in near-degenerate eletronic states.

For energies, we started with the EOM-MP2 method and incorporated the RI and CD
representations of the method in a locally modified developmental version of Q-Chem.
Speaking qualitatively, we find that both RI and CD implementations give good speed
up without much compromise on accuracy. However, quantitative analysis of the results
give better insight. The since, EOM-MP2 eliminates the iterative CC procedure and
approximates the CC vectors by their MP2 guess values, the speed-ups in RI and CD would
arize majorly due to reduction in the prefactor in computation of EOM equations and in the
I/0 requirements. This in turn, depends the number and types of intermediates required
in the original EOM-MP2 method. EOM-IP-MP2 does not have costly intermediates
in its expressions and thereby, has less scope for speed-up upon RI/CD implementation

as expected. In case of EA, the speed-up gained relative to EOM-MP2 is significant

106
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because the RI/CD reduce the cost of computing four-particle and three-particle-one-hole
intermediates by density fitting. The speed-up gained in EE and SF is also due to reduction
in computation of such terms. However, in these, all kinds of intermediates are used
and effect of RI/CD will be less significant on the computational cheaper terms such as
two-particle-two-hole, one-particle-three-hole and four-hole intermediates. If we compare
the timings with that of EOM-CCSD, then all the methods will show tremendous speed
up. But, the credit goes to EOM-MP2 level.

As far as accuracy is concerned, CD with § = 10~ gives the results almost as accurate
as the conventional variant. However, this requires the rank of the CD vectors to be
about about 6 ~ 7 times larger than the number of basis functions and is thus, highly
discouraged as would hardly save any computational cost. The accuracy of CD with
§ = 10 2 results in accuracy comparable with that of RI and the rank of the Cholesky
tensors is about 4 ~ 4.5 times the number of basis functions. The standard deviation and
maximum of this method are also comparable with those of RI. The § = 10~2 gives only
semiqualitative accuracy in the results, with the rank of the tensors only about 2 ~ 2.5
times the number of basis functions. In general, the errors introduced due to RI and CD of
given rank are most prominent in computation of the total energies. The errors are much
less significant in case of gaps between reference-target states and target-target states.
Thus, the least accurate approximation like CD-EOM-MP2 with § = 10 % may perform
well in case of weakly near-degenerate systems of relatively larger computational size and
will definitely give qualitatively more correct description than the less accurate alternatives
like TD-DFT and popular methods. Thus, for given set of atoms, basis functions and
method, if a preoptimized auxiliary basis is already available, it is beneficial to go for RI
for better accuracy with less cost. However, this may not be the situation for many cases
and CD turns out to be a convenient tool. Moreover, with advances in parallel computing
facilities, CD can be better explored for more speed-ups up on parallelization. While the
EE, SF, IP and EA variants of EOM-MP2 differ quantitavely for RI and CD timings and
accuracy, the qualitative trends are very similar for all the variants, as discussed in detail in
Chapters 2 and 3. In general, from the accuracy point of view, the RI/CD-EOM-MP2 are

most suited for target-target and reference-target energy gaps rather than total energies.
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Motivated with the accuracy of CD in computing difference energies in EE, SF, IP and
EA variants of EOM-MP2, we studied the applicability of CD for computing response
properties of molecules. We, therefore, implemented CD on CVA-FSMRCCSD codes for
computing analytical first and second order energy derivatives. Specifically, we have done
the CD implementation on IP and EA variants of CVA-FSMRCCSD. In the FSMRCC
context, these correspond to the model spaces of (0, 1) and (1, 0) FS sectors. The required
ERI’s and MO coefficients were fetched from a locally modified version of Gamess. We
computed analytical dipole moments and analytical static dipole polarizabilities of doublet
radicals using CD-CVA-FSMRCCSD and compared its accuracy relative to the conventional
CVA-FSMRCCSD method. We studied the accuracy of the method for CD tolerance set
as 10 1, 10 % and 10 32, respectively. The comparative study of CD-CVAFSMRCCSD
timings versus the conventional CVA-FSMRCCSD ones could not be done because our
stand alone codes yet need to be cleaned up further and optimized more for a rigorous
study of computational time, although we do agree that the research in that direction
could be equally interesting. As per the discussions in the Chapters 4 and 5, as far
as accuracy is concerned, CD is found to perform much better for properties than for
energies. As seen for bond-stretching of OH and CH radicals, tightening of CD threshold
not only reduces the maximum absolute error in dipole moments, but also reduces the
NPE. The trend is also observed in computation of polarizabilities of the radicals, though
the percentage absolute errors are slightly more for polarizabilities than for the dipole

moments.

6.2 Future Scope of the Research Work

The outcomes in the thesis presented here open up interesting avenues for further work.
As discussed in the thesis, the RI/CD approximations scale down only the ’coulomb’-type
terms. There have been attempts of approximations that scale down the ’exchange’ type
terms. While these approaches have been studied for EOM-CCSD, extension of the methods
to EOM-MP2 and also for FSMRCCSD, CVAFSMRCCSD, etc might be interesting as that
may actually result in reduction of overall scaling of the methods. Since RI/CD reduces

cost of a few terms, it would be interesting to extend this technique for three-body and
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higher-body approximations of EOM-CC and MRCC for which conventional anasatz may
be computationally challenging. As discussed above, the percentage errors in computing
polarizability are in general, greater than those in computing dipole moments. One of
the important factors for this is probably the neglect of the orbital relaxation due to
external field. The orbital relaxation may be less prominant for first order properties like
dipole moment, but may be very crucial for higher order properties. Inclusion of orbital
relaxation will also enable for computational extensions of CVA-FFSMRCCSD as well as
its CD representation to computing higher order properties like hyperpolarizabilities of
doublet radicals. The extension of the method to computing magnetic properties would

also be challenging and interesting.



Appendix A

The Geometries

All the geometries and their enrgies reported here are in atomic units.

Water Cluster Geometries

EOM calculations done using cc-pVDZ basis

TABLE A.1: Water Monomer

I Atom X Y 7

1 O 0.0000000000 0.0000000000 0.1173000000
2 H -0.7572000000  -0.0000000000  -0.4692000000
3 H 0.7572000000 0.0000000000  -0.4692000000

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy 9.1895337609 hartrees

SCF energy —76.04139352 hartrees

MP2 energy —76.26327320 hartrees

CCSD total energy —76.27078698 hartrees
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TABLE A.2: Water Dimer

I Atom X Y 7

1 O -1.5127378002  -0.0030990744  0.1219878960
2 H -1.9127237990  0.0190629754  -0.7508981287
3 H -0.5593548001  0.0021948755  -0.0491951049
4 O 1.3851232002 0.0024320693  -0.1105280959
5 H 1.7458122999  -0.7687614223  0.3376216986
6 H 1.7471830988 0.7528396120 0.3707931343

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy = 9.1895337609 hartrees
SCF energy = —152.08814379 hartrees
MP2 energy = —152.53522842 hartrees

CCSD total energy = —152.54978468 hartrees
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TABLE A.3: Water Trimer

Atom X Y 7

—

1.5064100480 0.5852050713  -0.0835157175
0.6557334483 1.0629780145  -0.0182207968
2.0826464679 1.0015697829 0.5687483407
-0.2398302617  -1.5962040985  0.1105871003
-0.1819953913  -2.2414240223  -0.6049168981
0.5877771003  -1.0778180704  0.0511711834
-1.2655614706 1.0035656289  -0.0939039827
-1.9269358822 1.2849068035 0.5497759551
-1.2253722685  0.0292546783  -0.0118969848

© 00 N OO W N
mTTmOoOTmTmOoOTmTO

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy = 84.1987027522 hartrees
SCF energy = —228.13936341 hartrees
MP2 energy = —228.81654929 hartrees

CCSD total energy = —228.83726058 hartrees
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TABLE A.4: Water Tetramer

1 Atom X Y 7

1 O -1.3157308351 -1.4161516574  0.0050817484
2 O -1.4161515285  1.3157314018  -0.0050816943
3 O 1.4161518610  -1.3157210413  -0.0050812342
4 O 1.3157318975 1.4161421722 0.0050811801
5 H -1.8140914037 -1.7648730409  -0.7424384043
6 H -1.4886721748  -0.4444937900  0.0141405947
7 H -0.4444919534 1.4886632856  -0.0141378834
8 H -1.7648795068 1.8140924682 0.7424350500
9 H 1.7648749236  -1.8140801924  0.7424390803
10 H 0.4444946235  -1.4886659128 -0.0141402165
11 H 1.4886602532 0.4444819705 0.0141375052
12 H 1.8140940802 1.7648682086  -0.7424357259

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy = 141.5569434397 hartrees
SCTF energy = —304.19258133 hartrees
MP2 energy = —305.09986783 hartrees

CCSD total energy = —305.12641164 hartrees
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TABLE A.5: Water Pentamer

—

Atom

X

Y

Z

QO =3 O U W N

z=ji=zfaziiasfiasBaniiasfiacfaniia: NONORO NGORG]

0.9198030436
-1.7101331834
-2.0111428154

2.2990037191

0.4733580845

1.4548979752

1.5419560055

2.8138905148

1.6860633288

0.4716895440
-0.4465492958
-2.5995857781
-1.9410936194
-1.9856247318
-0.7627547315

-2.1016120414
-1.5570647807
1.1377564846
0.2146836655
2.2302535239
-1.2779399127
-1.9083078184
0.3100125742
0.9890293134
3.0143825901
1.8694519145
1.3072951261
0.1531262940
-2.0510381155
-1.7981467811

0.2720645367
-0.0999184599
-0.0135995403
-0.0433103755

0.1000913760

0.1575594961
-0.4379025714
-0.8520245979
-0.0204469389
-0.4592529672

0.0625017844

0.7305816145
-0.0732756847
-0.8798085361

0.0494481059

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy

SCF energy

MP2 energy

CCSD total energy

204.5036659804 hartrees
—380.15731741 hartrees
—381.29743420 hartrees

—381.32894483 hartrees
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TABLE A.6: Water Hexamer

—

Atom

X

Y

Y

O =3 O U W N

TIormorrmoETmoOETNOoOzZTmOIT

0.2445335213
-0.7244706404
-1.0962631451

2.7170423023

1.9240597518

1.8372931849
-2.0429791666
-1.4610774414
-1.2324148726

0.3953517498

1.3069562228

1.1780670170

1.3803183959

0.9185523519
-0.0256575214
-2.5511601752
-1.8239780232
-1.9244690619

-1.4295970476
-1.5915708055
-0.8247509940
-1.3903700358
-0.8483503324
-0.6542682504
-1.3859967435
-0.7958022540
-1.2751909326
-0.2619634294
0.0514146460
0.9168273933
1.4242669011
2.0277668819
1.8719966869
1.8509670613
1.2163476193
0.6796333490

-1.1756170484
-1.1667922867
-1.6285654237
-0.9102880647
-0.8184536722
0.1500529144
1.7885503298
1.2939457841
0.4556290991
1.7975030275
1.6572831047
1.2165049752
-0.9331902743
-0.3309642172
-0.5245400461
-0.5960671088
-0.6147015289
0.1974901499

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy

SCF energy

MP2 energy

CCSD total energy

301.9290937526 hartrees
—456.29069694 hartrees
—457.65699383 hartrees

—457.69664868 hartrees
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TABLE A.7: Water Heptamer

1 Atom X Y Y

1 O 2.8265799600  -0.5859861722  0.2569373345
2 H 3.7388439505  -0.3889787926  0.0130555959
3 H 2.3087349612  -0.5205051813 -0.5817225861
4 O -0.2241412570  2.0746308304  -0.7590273778
5 H -0.3787543260  2.9621232407  -1.1046672674
6 H -1.1196812274 1.6683906108  -0.6501768892
7 O -1.0864440321  -0.7433353608 1.7401691092
8 H -1.2605320234  -1.0250895013  2.6462507588
9 H -0.2872240918  -0.1411913513 1.7881028607
10 O 0.9532888191 0.9339889681 1.6138172130
11 H 1.7305388593 0.4609984978 1.2429026338
12 H 0.6736367805 1.5240168487 0.8894469531
13 O -2.4746091385  0.6200850714  -0.3097662017
14 H -2.2190491099  0.2246490307 0.5472463083
15 H -2.4303290682  -0.1450081882  -0.9046151622
16 O 1.0636229529  -0.2969917597  -1.8057333176
17 H 0.3514180122  -0.9158011395  -1.5528360890
18 H 0.6759818832 0.5808559904  -1.6336642276
19 O -1.0389409095 -1.9535482592  -0.7473164015
20 H -0.9814879306  -1.7630484498  0.2135708387
21 H -0.9569478299 -2.9121581592  -0.8255365921

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy = 394.5486847962 hartrees
SCF energy = —532.34533919 hartrees
MP2 energy = —533.94210320 hartrees

CCSD total energy = —533.98760671 hartrees
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DNA bases: Geometries and energies

TABLE A.8: Adenine Bases

1 Atom X Y Y

1 C -0.7095750307  -0.7732187297  0.0000000000
2 N -2.0742348209  -0.5867034910  0.0000000000
3 C -2.2879564922  0.7763530787 0.0000000000
4 N -1.1811502729 1.4731108498 0.0000000000
5 C -0.1787391419  0.5182944908 0.0000000000
6 N -0.0215873595  -1.9184432090  -0.0000000000
7 C 1.2938327702  -1.6990140577  -0.0000000000
8 N 1.9447531891  -0.5260724171  -0.0000000000
9 C 1.2275836680 0.6087890422  -0.0000000000
10 N 1.8770717768 1.7950705728  -0.0000000000
11 H -3.2847450326  1.1922233278 0.0000000000
12 H 1.3613016360 2.6584977023  -0.0000000000
13 H 2.8832905568 1.8019800038  -0.0000000000
14 H 19255729511  -2.5821972071  -0.0000000000
15 H -2.7702623401  -1.3164629117  0.0000000000

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy = 502.6117247443 hartrees

Basis set  :  aug — cc— pvdz
SCF energy = —464.58737353 hartrees
MP2 energy = —466.12422322 hartrees
Basis set  : aug — cc— pvtz
SCF energy = —464.68546833 hartrees
MP2 energy = —466.66533610 hartrees

(A1)
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TABLE A.9: Cytosine Bases

1 Atom X Y Y

1 C 1.1302982383 0.2519350032 0.0000000000
2 N 0.0813527373 1.0486913118 0.0000000000
3 C -1.1858509321  0.5305606802 0.0000000000
4 N -1.2815694802  -0.8942320599  -0.0000000000
5 C -0.2021106792 -1.7119611885  -0.0000000000
6 C 1.0478793902  -1.1857630369  -0.0000000000
7 O -2.2157233229  1.1772192088 0.0000000000
8 N 2.3536047475 0.8418798948 0.0000000000
9 H 3.2045370882 0.3083660659 0.0000000000
10 H 2.3965493562 1.8483693248 0.0000000000
11 H 19255160310  -1.8159719058  -0.0000000000
12 H -0.3942371678  -2.7780940888  -0.0000000000
13 H -2.2215908597  -1.2634258412  -0.0000000000

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy = 356.1709957013 hartrees

Basis set  : aug — cc— pvdz
SCF energy = —392.67756693 hartrees
MP2 energy = —393.93331980 hartrees
Basis set : aug — cc— pvtz
SCTF energy = —392.76555579 hartrees
MP2 energy = —394.38546489 hartrees

(A.2)
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TABLE A.10: Guanine Bases

Y

Y

1 Atom X

1 O -0.0659082384
2 H -2.2339158799
3 C -0.1816174968
4 N -1.4611867005
5 H -3.7691740023
6 C 0.8200505341
7 N 2.1974739889
8 C -1.6924935686
9 N -2.9989636137
10 C 0.5167127513
11 H -3.1817150754
12 N -0.749028 7747
13 C 2.6445401684
14 H 3.6985592242
15 N 1.6720687776
16 H 2.7478115680

-2.6635640236
-1.4842007097
-1.4459313882
-0.8307205604
0.2835169445
-0.4347618437
-0.5102510995
0.5322740727
0.9275596130
0.9265740431
1.9168854621
1.4319702136
0.7775386509
1.0141703880
1.6671067997
-1.3556758702

-0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000

-0.0000000000

-0.0000000000
0.0000000000
0.0000000000

-0.0000000000
0.0000000000
0.0000000000

-0.0000000000

-0.0000000000

-0.0000000000

-0.0000000000

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy

Basis set
SCF energy
MP2 energy

Basis set
SCF energy

MP2 energy

= 595.2592440969 hartrees

aug — cc — pvdz

= —539.47462058 hartrees

= —541.20753640 hartrees

aug — cc — putz

= —539.59144927 hartrees

= —541.82412019 hartrees

(A.3)
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TABLE A.11: Thyamine Bases

1 Atom X Y Y

1 C -0.6723048800 -0.8987539486  0.0000000000
2 C -1.1561447379  0.4870077421  -0.0000000000
3 C -0.2413790065  1.4787343208  -0.0000000000
4 N 1.1182551132 1.2417212288  -0.0000000000
5 C 1.6811108613  -0.0262914120  0.0000000000
6 N 0.7281117399  -1.0311223806  0.0000000000
7 C -2.6381666576  0.7185294443  -0.0000000000
8 O 2.8783603010  -0.2238232538  0.0000000000
9 O -1.3822353414  -1.8872278675  0.0000000000
10 H -3.1033195483  0.2602835250 0.8768310000
11 H -3.1033195483  0.2602835250  -0.8768310000
12 H -2.8685201660  1.7857491947  -0.0000000000
13 H -0.5229422149  2.5248131912  -0.0000000000
14 H 1.7775364443 2.0052412079  -0.0000000000
15 H 1.0883039085  -1.9775104911  0.0000000000

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy = 438.8181253833 hartrees

Basis set  : aug — cc— pvdz
SCF energy = —451.57286797 hartrees
MP2 energy = —452.99902890 hartrees
Basis set : aug — cc— pvtz
SCTF energy = —451.67611316 hartrees
MP2 energy = —453.51695208 hartrees
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TABLE A.12: Uracil Bases

1 Atom X Y Y

1 N 1.1731449921 0.9873449768  -0.0000000000
2 C 0.0016184038 1.7073256197  -0.0000000000
3 H 0.1185297664 2.7838522294  -0.0000000000
4 C -1.2043114477  1.1064575126  -0.0000000000
5 H -2.1235595863 1.6719869448  -0.0000000000
6 C -1.2905475412  -0.3490012972  -0.0000000000
7 O -2.3126825128  -1.0064481147  -0.0000000000
8 N -0.0318083527  -0.9887855803  0.0000000000
9 H -0.0432756652  -2.0015364902  0.0000000000
10 C 1.2224746287  -0.4048949133  0.0000000000
11 O 2.2643008072  -1.0250807858  0.0000000000
12 H 2.0705983932 1.4486912146  -0.0000000000

Standard Nuclear Orientation (Angstroms)

Nuclear Repulsion Energy
Basis set

SCF energy

MP2 energy

Basis set

SCF energy

MP2 energy

= 356.2534815774 hartrees

aug — cc — pvdz

= —76.04139352 hartrees

= —413.82428239 hartrees

aug — cc — putz

= —412.62444245 hartrees

= —414.26494971 hartrees
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4. North West Meeting On Spectroscopy, Structure & Dynamics (SSD)
BITS Pilani, India. Mar. 18 - 19, 2017
“RI/CD Scheme For MP2 Approximation”

5. Theoretical Chemistry Symposium (TCS - 2016)
University of Hyderabad, India. Dec. 14 - 17, 2016
“Resolution of the Identity and Cholesky Representation of EOM-MP2 Approxima-
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6. National Conference on Organic Chemistry in Sustainable Development:
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“Functionalized Pyranopyrazole Molecules as Corrosion Inhibitors for Mild Copper

Metal in HCI Solution: Synthesis, Theoretical Studies, and Physical Investigations”

7. International Conference on Nascent Developments in Chemical Sciences
(NDCS - 2015)
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“Fock-space multi-reference coupled-cluster with single double substitution: IP and

EA code development”

8. The 14th Theoretical Chemistry Symposium (TCS - 2014)
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2016
“Some cost-effective intermediate variants of coupled-cluster based methods for

open-shell states of molecules”
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List of workshops

1. Q - Chem User Workshop
Birla Institute of Science & Technology, Pilani, India. Oct. 19, 2015

2. National Workshop on LaTex & MATLAB for Beginners
Birla Institute of Science & Technology, Pilani, India. Dec. 24 - 28, 2014

3. Q - Chem User Workshop
IISER PUNE & CSIR-NCL Pune, India. Dec. 21, 2014

4. Workshop on Chemo-Informatics
RASA Life Science Informatics Ltd., Pune & Alard College of Pharmacy, Pune,
India. Mar. 18 - 19, 2012
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5. 2nd National Workshop on Chemo-Informatics
Biotechnology & Bioinformatics, Christ College, Rajkot, Gujrat, India. Jan. 7 - &,
2011

List of courses

1. Computational Electronic Structure Methods For Atomic and Molecular
and Solid State Systems
II'T Bhubaneswar July 07 - 18, 2016
GIAN Scheme Under MHRD, Govt. of India

2. Web Development
BITS Pilani. Aug. - Dec., 2016
Software Development & Educational Technology Unit
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2. North West Meeting - 2017
BITS Pilani, India. Mar. 18 - 19, 2017
North West Meeting on Spectroscopy, Structure and Dynamics
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Brief Review of the Background 5

1.2 Electronic Structure of Atoms and Molecules

Electronic structure theory deals with theoretical and computational study of energies,
bonding-patterns, molecular properties and spectroscopic parameters of molecules, collec-
tively termed as “electronic structure” of the molecules. Central to the electronic structure

is the time-independent Schrodinger wave equation [8, 72].

HYU = FW (1.1)

Here, we consider only non-relativistic Hamiltonian for the system of electrons and nuclei.

ﬁ:Tn+Te+Vnn+Vne+%e (12)
where,
Mo
T, = — ; e Vi +— Nucleus Kinetic Energy operator
N
. 1_, _—
= — Z ﬁvi; +— Electron Kinetic Energy operator
i=1
MM,
Vi = + Z Z #; +— Nucleus-Nucleus repulsion P.E. operator
k1o B — Ry

M ON
. A
Vie = — E E %; +— Nucleus-Electron attraction P.E. operator

—_

Vee =+ _ +— Electron-Electron repulsion P.E. operator
Z Z |Ti — Tj| P b

This equation is exactly solvable for one-nucleus one-electron system, that is, hydrogenic
atoms. However, for larger systems, the problem becomes untractable and one is bound

to go for approximations.



Brief Review of the Background 6

In 1927, Max Born and J. Robert Oppenheimer 73| observed the large difference in the
time scales between electron motion and the motion of atomic nuclei due to heavier mass

of nuclei in comparison to electron.

They proposed that-
“electron in a molecule to be moving in the field of fixed nuclei.”

In other words, the motion of atomic electrons and nuclei in a molecule can be treated
separately. This approximation, known as Born-Oppenheimer approximation (BOA),
enables a separation of the Hamiltonian operator into electronic and nuclear terms.
Therefore, cross-terms between electrons and nuclei are neglected, so that the two smaller

and decoupled systems can be solved more efficiently.

Mathematically, BOA, thus, expresses the total wavefunction of a molecule as the

product of a nuclear (vibrational, rotational, translational) and electronic wavefunctions.

quotal(fa ﬁ) - wmlclear(ﬁ) X welectronic (’UGCZU, ﬁ) (13)

where 7 = (7, s) is a composite variable and has information about position and spin
angular momentum of the corresponding electron. wnuclear(ﬁ) and Yelectronic (T ﬁ) are
a nuclear wavefunction and an electronic wavefunctions, respectively. The nuclei are
considered stationary while solving for the electronic wavefunction and thus, the electronic
wavefunction and the total electronic energy are thus, parametrically dependent on the
nuclear positions. The electronic Schrodinger equation is thus solved for various fixed
nuclear positions and the total electronic energy as a parametric function of nuclear
position, then appears as potential energy in the solution of the nuclear Schrédinger

equation. The electronic Schrédinger equation can be written as: Since, T, = 0, Thus -

I:I - Te + Vne + ‘A/ee + Vnn (14)
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Of this, the V,,, is constant for given geometry, under BOA and does not affect the

electronic wavefunction. The terms in Eq. 1.4 are mathematically expressed as under.

I:Ielec - Te + Vne + ‘766 (15)
and,
N o M N 7 N i1 1
- K
N DN IR NI
i=1 K=1 i=1 |7 — Rl i=1 j=1 Te =T
or N N
Hoeo =Y h(i) + Y Vi, j) (1.7)
i=1 P>

where, one electron part is

Now, the solution to Schrédinger wave equation is given by,

I:Ielecwelec - Eelecwelec (18)

where,

Peroe = Yo ({7} {RK})

and

Eelec - Eelec({EK})

Electronic wavefunction depends explicitly on the electronic coordinates and parametrically
on the nuclear coordinates. Electronic energy parametrically depends only on nuclear

coordinates.
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For one electron system, BO approximation can give exact electronic energy for given
geometry. However, for many electron system, the Hamiltonian becomes non-separable
due to the electron-electron repulsion term V (4, j) in equation 1.7. Thus, one needs to
consider further approximations while moving to solution of many-electron Schrédinger
equation. However, apart from going for the approximation, one needs to take care of yet
another feature of a many-electron feature. For single electron molecule, the spin-angular
momentum of electron does not play any significant role in absence of external field as the
Hamiltonian is independent of spins of electron/nuclei. However, for atoms and molecules
with two or more electrons, the role of the electron-spin becomes crucial and the Pauli

principle plays a key role in further solution of electronic Schrédinger equation.

Pauli Principle or Antisymmetry Principle Probability density of a system of
indistinguishable particles should remain unaltered due to interchange of any two identical
particles. This leads to two possibilities in wavefunction of the particles. Upon interchange
of two identical indistinguishable particles, the wavefunction should either remain the
same (symmetric) or should change its sign (anti-symmetric). However, whether the
wavefunction would be symmetric or antisymmetric is governed solely by the spin angular
momentum of the particles as studied by Pauli and based on this, the indistinguishable
particles are classified into two classes, namely, the bosons (those which obey the Bose-
Einstein statistics) and the fermions (those which obey the Fermi-Dirac statistics). The
bosons have integer spin-quantum numbers and consequently, their wavefunction must be
symmetric with respect to interchange of any two bosons. On the other hand, the fermions
have half-integer spin quantum numbers and their wavefunction must be antisymmetric
with respect to interchange of any two fermions. Since electrons have half-integer spins,
according to Pauli, a many-electron wavefunction must be antisymmetric with respect to
interchange of the co-ordinates ¥ of any two electrons. Many electron Hartree product
wavefunction does not satisfy the antisymmetry principle. Now, we require another

wavefunction form which has to satisfy the SWE and must be antisymmetric.

w(fh'"7fi7"'7fja"'7f]\7):_w(fh'"7577"'7$_)i7"'7$_)]\7) (19)
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This requirement is easily accomplished by expressing the wavefunction in terms of the
Slater determinants of spin-orbitals of electrons. In the limit of complete set of spin-
orbitals, the set of resulting Slater determinants would be complete and in principle, one
can get exact wavefunction for many electrons in this way. However, practically, it is
impossible to use complete set of spin-orbitals and thus, the wavefunction obtained this

way cannot be exact.

1.3 Mean Field Approximation and Hartree Fock Method

1.3.1 Mean Field Approximation

The essence of this approximation is to replace extremely complicated many electrons

problem into one electron problem. HF approximation proposed that,

“motion of an electron within the molecular system depends only on the average potential

of all the remaining electrons.”

In other words, this approximation replace two electron V (4, j) term in 1.7 into one
electron problem in which electron-electron repulsion is treated in an avergae way. Equation

1.7 becomes,

A

o) = h(3) + 0™ (i) = £(3) (1.10)

where, f(i) is an effective one electron operator, called the Fock operator and »™7 (i), is
the average potential of (N-1) electrons exprienced by the i** electron in the molecular

system.

Thus, we get another form of Hamiltonian,

N
Heee = > h(4) (1.11)
i=1
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where, h(i) operator contain the kinetic energy, potential energy and average potential

energy of i*" electron.

The average potential field v (i) seen by the i* electron, depends on the spin orbitals

of other electrons. thus, h(i) wil have set of spin orbitals {x;,)}. Equation 1.8 becomes,

h(i)x; (i) = Bjx; () (1.12)

Since, H is sum of one electron Hamiltonian. Therefore, many electron wavefunction
becomes separable or product of spin orbital wavefunctions for each electron which is

called “Hartree Product”. Eigenfunction of Heleca

WHE (11, 29, 3, o on) = X (1) X5 (22) X8 (23) o X (T W)

H., WP = pghP (1.13)

where, E is a sum of spin orbital energies,

B =B+ Ej+ Fy+ ...+ By,

Many electron Hartree product wave funtion has still a basic deficiency; ‘it takes no
account of the indistinguishbility of electrons’, but it distinguishes the electron-one as
occupying spin orbital x;, the electron-two as occupying spin orbital x;, ... and so on. This
shortcoming is solved by replacing the products of the orbitals by their anti-symmetrized
products — by means of the so called, “ Slater determinants” and it then leads to the

Hartree-Fock method.

1.3.2 Hartree-Fock method

First, we determine set of spin orbitals {x;} which construct Slater determinant. For N

electron system,

Wo) = |x1X2- - XiXj- - XN)
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where, W, is best possible approximation to the ground state. Assume that we have
exact ground state wavefunction |Ws) which gives exact solution for SWE. Since, the

Hamiltonian is hermitian, the solution to be orthogonal and normalized.

<XZ|XJ> - 6lj

To derive the HF equations, one minimizes the energy functional with respect to the
orbitals x; — x; + 0x:. We assume that the orbitals y are orthonormal, and ensure that
our variational procedure leaves them orthonormal. We can accomplish this by Lagrange’s

method of undetermined multipliers, where we employ a functional £ defined as

LI = Bol{xi} D) eudlili)

=1 j=1

where ¢;; are the undetermined Lagrange multipliers and < i|j > is the overlap between

spin orbitals 7 and j, that is,

/(i'ﬁ)(l( )X (1) = [i]j] = 04

Therefore, N
Eol{xi}] = Z |hli) ZZ ijllig)
or, |
o = Silhll + 5 Sl ~ [l
where,
i) = [ dmdnax; @ g ) 03) (1.14)
and,

[4]71] /dﬁd?“zxz( ) (@) x;(22)x:(22) (1.15)
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and, finally we got HF equation [9, 10] in the form of eigenvalue equation -

F@ (@) = exi(@) (1.16)
Where, (1) = To + Vi + v(21) < Fock operator (1.17)
N N
(@) = Y JiE) + Y K (1.18)
=1 =1

—

xi(27) + Coulomb operator (1.19)

x;(27) < Exchange operator (1.20)

A~

Fock operator (F(21)) [8] and is an effective one-electron operator. Average potential
v(x1) is experienced by an electrons due to motions of all other electrons and is called HF

potential.

It includes the average Coulomb interaction term which is defined by local operator
J;(21) and a non-classical potential represented by a exchnage potential operator K;(27).
Exchange operator ariese due to anti-symmetric nature of the wavefunction. Equation
1.16 - 1.20 are solved iteratively until some self- consistency is achieved between successive
equations. We will have a total energy as a function of a set of nuclear co- ordinates
{R4} by adding the nuclei-nuclei repulsion to electronic energy . We can then explore
the potential energy surface (PES) for nuclear motion by repeating the calculation for

different niclear co-ordinates.

Koopmans’ Theorm HF theory provides best set of orthogonal spin-orbitals which are
eigen functions of the Fock operator. In equation 1.16, 5** spin-orbital energy represented
by ¢;. N-electrons are occupied the N spin-orbitals with lowest energies in HF configuration
and resultant determinant is the HF wavefunction. The remaining spin-orbitals in HF

configuration are termed as virtual orbitals.

Koopmans’ theorem provides physical significance of orbital energies. This theorm provides

the explaination of total energies which is not equal to the sum of the orbital energies.
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The detailed explaination is provided by the action of adding or subtracting an electron

to the N-elctron state |Wg). Koopmans’ observed that,

“the energy of an occupied orbital in HEF ground state configuration is negative of the
energy required for removing an electron from the orbital without relaxation of the rest of

the orbitals”

The IP calculated according to this theorem are highly accurate because the relaxation
and correlation effects in ionized state partially cancel the correlation effects in the ground
state. Koopmans’ theorem also predicts the first electron affinity for the HF ground state.
However, in case of EA, the relaxation and correlation errors add up instead of cancelling

each other and thus, the Koopmans’ EA’s are no way any accurate.

In an exact treatment, the IP exact is the total energy difference between the atom A
and the ion A" with a separated electron [74]. However, these predictions are found to
be quite absurd since, the correlation and relaxation errors add up in this case. While
Koopmans’ theorem works very well for IP, it turns out to be very bad for EA for obvious
reasons. Unlike 1P, in case of EA, the relaxation energy and correlation energies both

decrease,

Brillouin’s Theorm In previous section, we have discussed that HF procedure gives
occupied and virtual spin-orbitals in HF ground state. Brillouin’s consider, there are many
other determinants which can be formed from the set of lowest-energy occupied spin-
orbitals {x;}. The set of singly excited determinants |W’) obtained from |Wy). Brillouin’s
consider only the singly excited determinants as corrections to exact ground state and

results analysed. Brillouin’s observed that [§],

“Singly excited determinants |W?) will not interact directly with a ground state

Hartree-Fock determinant [Wg).”

or,

(Wl H|W;) =0 (1.21)
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FIGURE 1.1: Restricted and unrestricted electronic system

1.3.2.1 HF approximation to restricted systems & Roothaan Equation

The Hartree-Fock approximation can be applied with or without restrictions on the spins of
the MOs. The set of spin-orbital has been presented in form of Slater determinant in which
X; is a products of a spatial orbital and a spin function ) « or 5. The trail wavefunction is
an Unrestricted Hartree-Fock (UHF) wavefunction, if there are no restrictions on the form
of spatials. It is also known as Different Orbitals for Different Spins (DODS). If there
are restrictions on the form of spatial orbitals, the trial wavefunction is either Restricted
Hartree-Fock (RHF) or Restricted Open-shell Hartree-Fock (ROHF) which depends on
the paried or unpared electron present on the system. RHF has closed shell type system
which has an even number of electrons and provide singlet system. ROHF wavefunction
has odd number of electron which is not possible to choose a unitary transformation that

makes the matrix of Lagrange multipliers diagonal in HF equation.

Therefore, ROHF provided orbitals energies are not uniquely defined and can not be
equated to ionization potentials by a Koopmans’ theorm. The ROHF or RHF determinant

is a pure eigenfunction of total spin operator, UHF determinant, in general, is not.

The Roothaan Equations : Closed Shell RHF

In molecular electronic structure computation, explicit evalution of two electron terms such

as electron repulsion integrals (ERIs) becomes difficult. Hence, Roothaan [75] proposed
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that the spin orbitals be expressed in terms of finite set of basis functions.

K
Vi =Y Cudy i=1273,.. K (1.22)
pn=1

The problem of calculating the HF molecular orbitals reduces to calculation of the set

of expansion coefficients C,;. Finally, we got Roothaan Equation 1.23,

Z FM,VCV,i - EiSu,VCV,i (123)

Where, p,v =1,2,..., K and Fock matrix is

)

F, = / dr (R ) (1) + / drp () [205(50) — Ks(E) (@) (1.24)

and C is a K x K square matrix,

Cyi Cno ... Cik
. — C.m C'zz e C?K
Cki Ck2 ... Cgk

and € is diagonal matrix of the orbital energies ¢;.

1.3.2.2 HF approximation to unrestricted systems

The UHF wave funtion contains a sum of several antisymmetrized products, each of which

contains a (doubly occupied) closed-shell W, and a partially occupied open shell Wq. Tn
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FIGURE 1.2: SCF Procedure

closed shell case ¥, the orbitals can always be subjected to a unitary transformation,
which brings the matrix of Lagrange multipliers into diagonal form. When diagonalization

has been done, the orbitals all satisfy the pseudo-eigenvalue equation 1.16.

In open shell ¥ case, we have available only the transformation which transforms the
open and closed shells within themselves. Such a transformation can eliminate only the
off-diagonal multipliers but, not the multipliers which couple the closed and open shells.
There is one exception, when the closed-shell and open-shell orbitals have no common
symmetry. Now, open-shell system equivalent to two pseudo-eigenvalue equation problems

of the type 1.16 after vanishing the multipliers which couple the closed and open shells|75].

1.3.2.3 Self Consistent Field Procedure

SCF procedure gives both the occupied and virtual orbitals. Once atomic basis sets 1.22
have been selected for each atom, the one- and two-electron integrals appearing in

Fock operator 1.24 must be evaluated.

This is a time-consuming process, but nowadays, several highly efficient computer codes

are available which allows such integrals to be computed for s, p, d, f, and even higher
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basis functions. One-electron part has NTQ computational cost while %4 required by the
two-electron integrals. The Factors of % and % arise from permutational symmetries of
the integrals. When chosen extremely large atomic orbital basis sets, modern computer

codes calculate the requisite integrals but never store them on the disk.

1.3.3 Second Quantization

Second quantization is the fundamental approach for the development of many particle
quantum theory which is the assemblies of indistinguishable particles. It is an essential
approach in the non-relativistic systems where the number of particles is fixed, however too
large for the use of Schrédinger’s wavefunction description. In 1927, Dirac - Field theory
of the electromagnetic field using creation and annihilation operators (second quantization
approach) after that Jordan & Klein (1927) and Jordan & Wigner (1928) denoted that
Dirac’s description is also useful for many-particle systems in which particles may interact

176].

This is applicable in quantum field theory (QFT) because a quantized field (CQF) is
a quantum mechanics (QM) operator with many degrees of freedom and, in condensed
matter theory (CMT) since matter involves many particles. The same algebra, without
interrupting the physics of many-electron systems can be more conveniently explained
applying the concept of second quantization. In 1932, Fock developed F'S by applying this
approach. The main advantage of second quantization is replacement of the cumbersome
determinant structure by required action of creation and annihilation operators. The
resulting developments like diagrammatic techniques [77], normal ordering and Wicks theo-
rem [77-79] more helped in simplification of the tedious algebra and also in understanding

the physics more easily.

The second quantization approach has been long back reported in the literature [8, 80].
It is more useful where especially if you want to describe processes in which particles are
created and annihilated. consider a complete set of orthonormal spin orbitals {x,(z)}.

For each spin-orbital x,, are associated, two operators a, and (z; known as an annihilation
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and creation operators respectively. A creation operator a; creates an electron in x,, if it
is empty. Similarly, if x, is occupied, the annihilation operator a, will destroy the electron.
The above-mentioned effects are observed when the operators operate on the right-hand
side. On the left-hand side, the operations of the creation and annihilation operators
are interchanged. A creation operator cannot create an electron in a previously occupied
orbital. Similarly, an annihilation operator cannot destroy an electron from an empty
orbital. A vacuum (] > or < |) is defined as a state with no electrons. These conclusions

can be compiled as follows.

0’;[)|Xq('f1)7Xr('f2)a"'7Xs(";‘:N) > = ‘Xp(f1)7Xq(f2)XT(f3)a"'7XS("Z:N+1) >

—

ap|Xp(f1)7Xq(fZ)aXr(fS)a o Xs(Sh) > = \Xq(f?l)Xr(fz), cey Xs(Tnog) >

(7;3| >= |x () > < a, =< xp(Zp)]

aplxp(Tp) >=|> ; < Xp(fp””f; =<|

a,| >= 0 =< |(1,;

=< Xp(Zp)|a (1.25)

D
=
<

3
—~~
’UR L
~—
\
\
ja)

One can thus obtain N-electron determinant by operation of N creation operators on
vacuum (or, empty space) (| >). Similarly, the action of N annihilation operators on
vacuum on the left (< |) also generates N-electron determinant. The linear vector space
spanned by determinants with different number of electrons including the vacuum is known
as FS [79]. It can be observed as a direct sum of Hilbert spaces with a different number of
electrons. The creation and annihilation operators perform the following anti-commutation

relations.

{af.al} = alal +alal =0
{ap, agy = apaq+aga, =0

{af,a,} = alag +agal, =6, (1.26)

From the given relations, it can be observed that the interchange between any two

creation or annihilation operators will outcome in change of the sign of the resulting
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determinant, thereby ensuring the antisymmetry. The electronic Hamiltonian can thus be

written in second quantized notation as follows.

. . 1 .
Heo = Z < pl|hlq > a;(zq + 5 Z < pq|g|rs > a;a;ar(zs (1.27)

pq P.q,7,5

where,

<plhlg> = / AT (F) W) x o (E)

<pqlglrs > = /dfldszZ(f1)X2(fz)§(llf1 = T ) (1) xs(2) (1.28)

The given form of electronic Hamiltonian is independent of the number of electrons which

can be applied to the full of F'S.

1.3.3.1 Normal-Ordered Second Quantized Operators

In the normal-order approach, “all the annihilation operators are shifted to the right-hand

side” [77, 79, 81| As an exapmle, consider an operator,
T = ap(zg(zr(zi

Now, we may shift the two annhilation operators to the right-hand side and therefore

write the strings in an equivalent form as,

T = (zp(zz(zr(zi
= (6pg — ”’jﬂp)“r“z
= (0pg — ”’j;”’p)(érs - ”fi”/r)
= Opglrs — 6pq(z1(zr — (57“3(1,2% + (z;ap(zi(zr
= Opglrs — 6pq(zi(zr — (5,3(1,2@,3 + (zz(ap(zi)(zr

= OpygOrs — Opgaiba, — (5rs(z2ap + (zg(ém —ala,)a,

= OpgOrs — 6pqa,ia,r — (5Ts(z2ap + 6p5(z2(zr - (zZ(zi(zpar (1.29)
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If we assume that the vaccum sate is normalized then we obtain the following eqaution
after evaluating the quantum mechanical expectation value of T operator ( 1.29 )in the

true vaccum state, | >,

T > = < Opgbns| > — < |pqala,]| > — < |5rs(7’j;ap| >+ < |5ps(7’j;”’r| > =< |”/¢T;”’1”’p”’r| >

Bgrs (1.30)

In above equation 1.30, the only term of Fﬁ, which gives a non-zero result is the one
including second quantized operators, all other terms involves uses of an annihilation

operator to | > on the right.

If we consider, T between the single particle states, < ¢;| and |¢; >,
< ¢i|T|p; >=< |a;Tal > . (1.31)
Now, assume that (ziTA(z; = 1217 then we get,

<¢i|T|p; > = <A>

= 0;i00g0ns + OsglipsOrs — 0igg0piOns — Ois0ipgls (1.32)

1.3.3.2 Wick’s Approach for the evaluation the Matrix Elements

According to Wick’s theorm,

“an arbitrary string of annihilation and creation operators, ABC ... XYZ, may be written

as a linear combination of normal-ordered strings.”

In other words, Wick’s theory [77-79] states that any generic operator sequence is equivalent
to the sum of its normal-ordered form and the normal-ordered forms of its all possible

contractions.
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1.3.3.3 Fermions and Particle-Hole Formalism

The second quantatization along with diagrammatic techanique offers a handy tool to
obtain programable expressions for various many-body methods. The diagramatic approach
is based on Feynman diagrams. The operators are represented by vertices. The operator
can be distinguished by introducing different kinds of vertices (e.g. hollow vertices, solid
vertices, etc). The creation and annihilation of fermion (electron) is represented by lines
segments with outward and inward arrows, respectively, joining the respective vertex. The
occupied orbitals are represented by downward arrow, whereas the virtual orbitals are

represented by upward arrows.

The algebra of creation and annihilation of fermions is useful for most of the SR, methods.
In case of MR methods, the configurations in the refernce state form the model space (MS)
and in general differ in the occupancy of the orbitals and the creation and annihilation of
fermions may have different effects in different configurations. It is often more convenient
to introduce the so called particle-hole formilism. A suitable configuration of electrons is
defined to be a hole-particle vacuum i.e. the configuration with zero holes and zero particles
in it. Hole is defined to be created when an electron from one of the occupied orbitals
is annihilated, whereas creation of electron in one of the virtual orbitals is equivalent to
creation of a particle. Consequently, removal of the electron from the virtual subspace
would resemble with annihilation of the particle, and putting the electron back to the
occupied subspace would result in annihilation of the hole. The MS configurations in MR
methods can thus, be labeled in terms of the number of particles and holes present in

them. This part will be further discussed later, in the context of FSMRCC 1.8.

1.3.4 Electron Correlation

The HF theory provides approximate solution to SWE where the actual inter-electronic
interactions are replaced by avergae interactions felt by the electrons due to presence of
other electrons. If the basis function is sufficiently large, the energy computed by HF is

~99% of the exact energy. However, the remaining ~1% turns out to be very important
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and is the order of few hundreds of Kcal/mole. This ~1% error is called correlation energy.

More specifically,

correlation energy = exact energy - HF energy

and is thus, always negative.

UHF type wavefunction is, to a certain degree, able to include electron correlation
energy. In RHF type wavefunction, the two electron in a molecular orbital occupy the
same physical spatial space and differ only in spin function ( a or 5 ). The spatial overlap
between the orbitals of two such pair electrons is one while, the overlap between the
orbitals of two electrons belonging to different pairs is zero, owing to the orthogonality

of the molecular orbitals.

In other words, electron-electron repulsion integrals ((1;[10;) = 0 for ¢ # j, but
(i) Albinp;) and (0] Alpjal;) are not necessarily zero. It may be expected that
the correlation effect between pairs of electrons associating to the same spatial molecular
orbitals would be the major part of the electron correlation. Correlation between the
same spin (Fermi correlation) is smaller than the correlation between the opposite
spins (Coulomb correlation) which has both intra- and inter-orbital contributions [82].

Therefore, Coulomb correlation plays major role. The electron correlation is of two types,
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namely, the dynamical one and the non-dynamical or static one. The dynamical correlation
arises by the virtue of instantaneous repulsion between electrons. The dynamic contribu-
tion belongs to the electrons which occupy the same spatial orbital. The non-dynamical
or static correlation belongs to the electrons that are avoiding each other on a more
“permanent” basis ( occupancy in different spatial orbitals). The multi-configurational
wavefunction takes account of this static correlation, but not dynamical correlation. This
is also called near-degeneracy effect. Thus, it is more important for a system where

different orbitals have similar energies.

The quality of a computation is described by the level of theory and the size of the
basis set (i.e. how much electron correlation is included). J. A. Pople was introduced
notation which is denoted as “level/basis”. This implies that the geometry is optimized at
this level of theory. The relative energy is more sensitive to the theoretical level than the
geometry. Therefore, geometries are optimized at low-level theories. This is denoted by
the “level2/basis-set-2//levell /basis-set-1” where the notation after the “//” indicates the

level at which the geometry is optimized [83].

There are two ways for calculating the correlation energy, firstly variational (e.g.
configurational interaction) and secondly, perturbational (e.g. MP2). But, the third

approach also uses which is neither variational nor perturbational (e.g. Coupled cluster).

1.4 Configurational Interaction (CI)

Like HF, CI is also the variational method. The CI wavefunction is expressed as linear
combination of determinants whose coefficients are varied so as to get energy minimum.
The determinants (and hence, the orbitals) are not varied in CI. Thus, unlike HF, it
is a linear variation method as only the linear expansion coefficients are the variation
parameters. It is worth mentioning here (although we don’t want to discuss in detail) that,
if additionally, the orbitals are also varied, it would result in multi-configuration (MC)

HF or MCSCF method which is fully variational. In the limit of complete set of basis
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FICGURE 1.4: Electron excited state configration

functions (and hence, the orbitals and hence, the determinants), CI wavefunction would
be exact. However, it is impractical. Finite set of orbitals would result in approximate
wavefunction and energy. However, if the orbitals are variationally optimized (like in HF')
and if all possible resulting determinants are considered, it results in Full CI wavefunction

which is the benchmark of the highest pragmatic accuracy.

The trial wavefunction is expressed as a linear combination of determinants with the
expansion coffecients determined by requiring that the energy should be a minimum. This
procedure is known as configuration interaction. All molecular orbitals are expanded in
a basis set of one electron function but, basis set has a finite number of members and

consequently, incompleteness of the basis set causes the basis-sef truncation error.

Wep = colgo) + Y o) + > Pl + > chiloi) + .. (1.33)

ijab ijkabe

Wer = col0) + > sl S)+ > en DY+ er|T) +. .. (1.34)

Ver = Z @i 9i (1.35)

=0
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Variational problems give the CI secular equations after introducing the Langrange

multipliers.
Hy— F Hys Hop o 0
Hsy Hgss—F Hgsp cs | 0 (1.36)
Hy Hps Hpp—FE ... cp 0
' 0
or,
(H—-FEle=0 — He=EFEc (1.37)

We get eigen values after solving above secular equation. The first excited state corresponds

to the second lowest eigenvalue.

For N electron and X basis functions, the total number of singlet determinants (or

Configuration state functions, CSFs) that can be produced is given by,

XX +1)
ENE X - Dy - E gy

Number of singlet CSF =

For example, H,O with the 6-31G(d) basis, there are ~ 30 x 10° CSFs( N=10, X=19) and,
larger basis function 6-3111G(2d,2p), there are ~ 106 x 10° CSFs ( N=10, X=41).

TABLE 1.1: Number of singlet CSFs for HyO with a 6-31G(d) basis set.

Excitation level Number of n'* excited CSFs total number of CSFs®

1 71 71

2 2485 2556

3 40 040 42 596

4 348 530 391126
ot 17 23 540 21 14 666
6 50 33 210 71 47 876
7 86 88 680 1 58 36 556
8 86 53 645 2 44 90 201
9 45 54 550 290 44 751
10 10 02 001 3 00 46 752

“ See Ref. [82].
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