

i

ACKNOWLEDGEMENTS

It gives me immense pleasure to thank everyone who has played a major role in the

process of me doing my Ph.D. There are a number of people without whom this thesis

might not have been written, and to whom I am greatly indebted.

I would like to express my deepest gratitude to the vice chancellor, Registrar and Dean

Research and Consultancy Division, BITS Pilani for giving me an opportunity to do this

research and enhance my professional carrier.

I would like to thank Prof. Dr. R.N. Saha, Director, BITS Pilani, Dubai Campus. I thank

him for the constant encouragement, facilities and support that he has provided to carry

out my research work.

I would like to acknowledge former-Director Prof. M. Ramachandran, for his

encouragement to register for the Ph.D Programme and former-Director Prof. Dr. R.K.

Mittal for his constant support to pursue the same. Sincere thanks to Dr.Neeru Sood,

Associate Dean Academic Research and consultancy, BITS Pilani, Dubai campus and Dr.

K.K. Singh, General Manager, BITS Pilani FZ LLC, for their constant motivation and

update on research guidelines.

I would like to gratefully and sincerely thank my supervisor, Prof. Dr. S. Vadivel,

BITS Pilani, Dubai Campus for his guidance, patience, technical inputs and

encouragement which I felt are the most essential to my Ph.D. study.

I would like to thank the members of the Doctoral Advisory Committee BITS Pilani,

Dubai Campus Dr. B.Vijay Kumar, Associate Professor, HOD, CS, BITS Pilani, Dubai

Campus, Dr. V. Santhosh Kumar, Assistant Professor, BITS Pilani, Dubai Campus for

their valuable suggestions during seminars and presentations.

ii

Further, I would like to thank Dr. Sujala D Shetty, the Doctoral Research Committee

Convener and Dr.Madiajagan, Assistant Professor and DRC member in BITS Pilani,

Dubai campus for their constant support and advisory role throughout my research work.

I thank all my department colleagues for their insightful opinions and valuable

suggestions during my seminars.

I would like to thank the IT Support Team and Mr. Sheshadri, Librarian, BITS Pilani,

Dubai campus for extending excellent technical facilities and providing excellent library

resources on time which really helped me to complete my thesis. I would like to thank

Mr. Asif Masood Library Assistant, BITS Pilani, Dubai Campus for helping me in taking

print outs of my thesis.

I acknowledge all my colleagues, department technical staff for their support to complete

my research work.

I am very thankful to my family for providing constant support these years to complete

my research work.

Above all, I would like to thank the Almighty for giving me an opportunity to dream, to

work and to reach to this level.

SUSILA.S

2008PHXF030U

iii

ABSTRACT

Web Services are internet enabled software components. Integration of Enterprise

applications can be provided by composing Web Services,. Web Services are being used

extensively by many enterprises like IBM, Microsoft and oracle every day. Web Services

are becoming a major technique for building loosely coupled distributed systems.

Service-oriented architecture (SOA) has been widely employed in e-business, e-

government, automotive systems, multimedia services, process control, finance, and

many other domains. As many Web Services are available in the internet for similar

functionality, which service will be the best for the client requirement, is an elusive task

for Web Services operators. So Web Services Selection (WSS) is an indispensable

process for Web Services composition.

Quality-of-Service (QoS) is usually employed for describing the non-functional

characteristics of Web Services and employed as an important differentiating point of

different Web Services. With the prevalence of Web Services on the Internet, Web

Services QoS management is becoming more and more crucial. The important issue

recognized in the web service selection is the inability to successfully identify a web

service that can meet the user's specific nonfunctional requirements in real time.

In this thesis, an extended SOA is implemented for Web Services selection based on

quality metrics. The QoS data provided by the service provider through the modified

WSDL, is collected by an agent web service by searching many of the Web Services

published in the UDDI in that particular functional domain. The web service users can

get the address of the agent Web Service for weather forecast which will guide the client

for further selection process in that functional domain.

There is lack of web enabled service which can classify the web services into different

classes based on their quality metrics. Design and implementation of a QoS classifier

Web Service has been carried out using modified ID3 algorithm which uses entropy

based discretization technique. This classifier Web Service takes QoS parameters as input

iv

and applies an entropy based discretization algorithm and yields the classification of Web

Services into different classes namely excellent, good, average and poor based on QoS

values to the web based client. The decision tree rules arrived by the Classifier algorithm

is given as input to the visualization Web Service to have tree view of the decision rules.

To invoke services one after another a BPEL engine is used. First, the QoS ARFF file is

sent to the data mining service, which then gives the output in the dot format. Then, the

visualization service is invoked which gives the tree output.

There is a need to have a third party service which can give promised QoS values for the

web services in the same functional group In this thesis, an agent Web Service has been

designed to measure important QoS parameter namely throughput in real time and to

create a repository for the same. The agent in turn uses SOAPUI to perform a

performance testing and the results from SOAPUI are then stored in the agent. When the

user looks for a Web Service in a particular functional domain, the agent presents the

client with the available QoS parameters, which the client can use to make a selection.

A Hospital Management Application has also been built using Web Services that can

implement functions like online appointment booking, preparing a prescription online,

online room reservation, storing patient‟s medical history etc. Web Services are

developed as REST Web Service and SOAP Web Service and tested in SOAPUI for their

performance. The QoS attributes of REST and SOAP Web Services are analyzed and

compared. The scalability test showed that REST Web Services perform better compared

to the SOAP Web Services. The application is designed and developed in Eclipse and is

deployed to the Google App Engine to make it available online.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. i

ABSTRACT .. iii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF ACRONYMS ... xiv

CHAPTER 1 .. 1

Introduction ... 1

1.1 Motivation ... 3

1.2 Research Gap... 4

1.3 Objective and Scope of the thesis ... 6

1.4 Methodology ... 8

1.5 Limitations .. 9

1.6 Thesis Organization... 9

CHAPTER 2 .. 13

Literature Survey .. 13

Background of Web Services ... 13

2.1 Web Services Standards .. 14

2.1.1 WSDL ... 16
2.1.2 UDDI.. 17
2.1.3 SOAP ... 18

2.2 Benefits of Web Services .. 20

2.3 QoS elements - ontology, classification ... 22

vi

CHAPTER 3 .. 29

Implementation of Agent for WSS using Data mining technique. 29

3.1 Agent Based Architecture. .. 29

3.2 Describing Web Services with QoS .. 31

3.3 WSDL extension with QoS ... 31

3.4 Trustworthiness of claimed QoS ... 32

3.5 QoS attributes that are considered for WSS .. 34

3.6 Feedback from Web Services client .. 38

3.7 Summary ... 39

CHAPTER 4 .. 40

WSS using Entropy Discretization Method. .. 40

4.1 About the Dataset .. 41

4.2 Data Normalization ... 42

4.3 WEB SERVICES RELEVANCY FUNCTION (WsRF) .. 42

4.4 Service Classification .. 44

4.5 ENTROPY DISCRETIZATION METHOD .. 45

4.5.1 Introduction .. 45
4.5 .2 ENTROPY .. 46

4.5 3 Selecting the Best Split .. 48
4.5.4 Applying entropy-based Discretization on Quality of Web Services Dataset . 49

4.6 Summary ... 63

CHAPTER 5 .. 64

Implementation of Agent for WSS using Entropy Discretization

method. ... 64

5.1 Decision tree construction ... 65

5.1.1 Decision tree rule induction algorithm using entropy based discretization 67

5.1.2 QoS Classification Web Services .. 69

vii

5.2 Summary .. 72

CHAPTER 6 .. 73

Implementation of Agent for WSS through Web Services Composition

 73

6.1 Composition of Web Services ... 73

6.1.1 BPEL4WS ... 74

6.2 WEKA ... 75

6.3 Graphviz .. 80

6.4 Implementation of J48 Classifier Web Service ... 82

6.5 Implementation of Visualization Web Service .. 85

6.6 Composition Of J48 Classifier Web Service and Visualization Web Service 92

6.6 Summary ... 94

CHAPTER 7 .. 96

Implementation of Agent for Measurement of QoS parameter using

SOAPUI ... 96

7.1 SOAPUI ... 97

7.2 Features of SOAPUl ... 97

7.3 Agent Implementation using SOAPUI .. 98

7.3.1 Weather Forecast Service- Example Service .. 99
7.3.2 Creating Project For Sample API ... 99
7.3.3 Generating Load TestSuite ... 101
7.3.4 Creating an Average Load Test Case for API ... 101

7.4 Functioning Model of Agent Architecture .. 103

7.4.1 DATABASE CREATION IN MYSQL USING PHPScript 103
7.4.2 EXTRACTING QoS ATTRIBUTES FROM MySQL DATABASE 104

7.5 Summary ... 105

CHAPTER 8 .. 107

Analysis of QoS attributes for REST and SOAP Web Services........... 107

viii

8.1 REST Web Services .. 107

8.1.1 Characteristics of REST .. 108
8.1.2 Example of REST Web Services .. 108

8.2 Design and Implementation Of Database driven Hospital Management System

using Web Services .. 109

8.2.1 Tools used .. 110

8.2.2 Methods.. 110
8.2.3 Simple Hospital Management Database in MySQL 111
8.2.4 ER Diagram of the database model .. 112
8.2.5 Implementation Of Hospital Management Syatem Using REST Web Service

... 113

8.2.6 OUTPUT of the REST Web Services ... 114
8.2.7 LOAD test for the REST Web Services .. 118

8.2.8 Implementation Of Database driven Hospital Management Using SOAP Web

Services ... 122

8.2.9 OUTPUT of database driven SOAP Web Services 124
8.2.10 LOAD test for the SOAP Web Services .. 126

8.2.11 Performance Comparison of SOAP and REST Web Services 127
8.2.12 Summary .. 129

8.3 Performance measurement of Hospital Management Application using REST Web

Service Deployed On Google SQL Cloud .. 130

8.3.1 Database created for the Hospital Management Web Services 130

8.3.2 SQL .. 130
8.3.3 Connecting to the database in Google SQL Cloud .. 131

8.3.4 Home page for the Web Services... 132
8.3.5 Performance of the Web Services .. 134

8.5 Summary ... 139

CHAPTER 9 .. 140

Conclusion, Contributions and Future work ... 140

9.1 Conclusion ... 140

9.2 Contributions ... 142

9.3 Future work ... 142

REFERENCES .. 144

APPENDICES ... 157

APPENDIX – A ... 157

ix

System configurations. .. 157

Software used .. 158

APPENDIX – B-1 .. 159

Functions and their actions for the Decision Tree Construction for Continuous

attributes .. 159

APPENDIX – B-2 .. 160

WSDL File .. 160

APPENDIX – B-3 .. 161

Functions and their actions for the Web Service Composition 161

Appendix B-4 ... 169

Code Details of Hospital Management Web Service .. 169

APPENDIX - C .. 174

Data set on QoS .. 174

LIST OF PUBLICATIONS ... 185

International Journals .. 185

International Conferences ... 186

BRIEF BIOGRAPHY OF THE CANDIDATE 187

BRIEF BIOGRAPHY OF THE SUPERVISOR 188

x

LIST OF TABLES

Table 4.1 Non-functional attribute values with units 41

Table 4.2 Input Dataset ... 45

Table 4.3 Sorted Dataset ... 49

Table 8.1 Observation Table for LOAD test .. 119

Table 8.2 Observation table for LOAD test ... 120

Table 8.3 Observation Table for LOAD test .. 126

Table 8.4 tps of REST and SOAP .. 128

Table 8.5 bps of REST and SOAP.. 128

Table 8.6 bps of REST and SOAP.. 129

Table 8.7 restrial1.appspot.com .. 135

Table 8.8 RESTtrial1.appspot.com/doctors.jsp .. 135

Table 8.9 RESTtrial1.appspot.com/patients.jsp ... 136

Table 8.10 resttrial1.appspot.com/rooms.jsp .. 136

Table 8.11 resttrial1.appspot.com/reserve.jsp .. 137

Table 8.12 resttrial1.appspot.com/login.jsp .. 137

Table 8.13 resttrial1.appspot.com/patient_history.jsp 138

xi

LIST OF FIGURES

Fig 2.1 Protocol stack of Web Services ... 15

Fig 2.2 Web Services Interactions .. 16

Fig 2.3 WSDL structure[11] ... 17

Fig 3.1 Extended SOA for WSS ... 30

Fig 3.2 Part of WSDL file. ... 35

Fig 3.3 Table maintained by the agent ... 36

Fig 3.4 Classification output .. 37

Fig 3.5 Cluster output .. 37

Fig 3.6 client feedback form .. 38

Fig 4.1 Distribution of range of points ... 45

Fig 4.2 Partial Tree Constructed 1 .. 51

Fig 4.3 Partial Tree Constructed 2 .. 51

Fig 4.4 Partial Tree Constructed 3 .. 53

Fig 4.5 Partial Tree Constructed 4 .. 54

Fig 4.6 Partial Tree Constructed 5 .. 56

Fig 4.7 Partial Tree Constructed 6 .. 56

Fig 4.8 Partial Tree Constructed 7 .. 58

Fig 4.9 Partial Tree Constructed 8 .. 59

Fig 4.10 Partial Tree Constructed 9 .. 60

Fig 4.11: Partial Tree Constructed 10 ... 61

Fig 4.12: Partial Tree Constructed 11 ... 62

xii

Fig 5.1 Agent based architecture for Web Services selection. 67

Fig 5.3 Decision tree traversal and classification using Decision tree rule

induction algorithm ... 69

Fig 5.4 IDE‟s tester page for the QoS classification Web Services. 70

Fig 5.5 IDE’s Method invocation trace for the QoS classification Web

Services. .. 70

Fig 6.1 Graphviz Output ... 81

Fig 6.2 J48 Visualization service output .. 92

Fig 6.3 BPEL process ... 93

Fig 6.4 Composite application of the BPEL module 94

Fig 7.1 Weather Forecasting Agent Implementation using SOAPUI 99

Fig 7.2 Snapshot of New Project Dialogue box ... 100

Fig 6.3 Snapshot of Load Test Suite ... 100

Fig 7.4 Snapshot of Generate Test Suite .. 101

Fig 7.5 Snapshot of Run Test results .. 102

Fig 7.6 Load test Statistics Log File ... 103

Fig 7.7 Automatically generated SQL query .. 104

Fig 7.8 SQL table generated in PHPMyAdmin .. 104

Fig 7.9 Snap shot of database obtained. ... 105

Fig 7.10 Snapshot of application front end... 105

Fig8.5ER Diagram of the database model created in MySQL Workbench 113

Fig 8.6 Part of code showing the path definition and the GET method 114

Fig 8.7 Output of the REST Web Services- index.jsp file 115

xiii

Fig8.8WADL of the Web Services ... 116

Fig 8.9 Page displayed when URL http://

localhost:8080/WebApplication19/resources/staffs is accessed 117

Fig8.11Graph for LOAD test 2 ... 121

Fig 8.12 Graph for LOAD test 3 ... 121

Fig 8.13 Graph for LOAD test 4 ... 122

Fig8.14Web Operations of a SOAP Web Services 123

Fig8.15 Output of the SOAPWeb Services when it is tested 124

Fig 8.16 Output on entering the address id in the web operation 124

Fig 8.17 Output of the addressDetails web operation when address id “2” is

inputted ... 125

Fig 8.18 Graph for LOAD test 2 ... 126

Fig8.19 Graph for LOAD test 3 .. 127

Fig 8.20 Homepage for the Database driven Web Services hosted on the

Google Cloud .. 132

xiv

LIST OF ACRONYMS

 API Application programming interface

 ARFF Attribute-Relation File Format

 BPEL Business Process Execution Language

 BPEL4WS Business Process Execution Language For Web Services

 GAE Google App Engine

 NF Non- Functional

 QoS Quality Of Service

 SOA Service Oriented Architecture

 SOAP Simple Object Access Protocol

 SOAPUI- Simple Object Access Protocol- User Interface

 SQL Structured Query Language

 UBR UDDI Business Registry

 UDDI Universal Description, Discovery and Integration

 URI uniform resource identifier

 URL Uniform Resource Locator.

 WADL Web Application Description Language

 WEKA Waikato Environment for Knowledge Analysis

 WSDL Web Services Description Language

http://en.wikipedia.org/wiki/Business_Process_Execution_Language
http://en.wikipedia.org/wiki/Business_Process_Execution_Language

xv

 WSRF Web Service relevancy function

 WSS Web Service Selection

1

CHAPTER 1

Introduction

Research on applying data mining technology to the Web, or Web mining, is given a

boost when “information overload” becomes a reality in the Web community. Over

recent years, the Web has evolved beyond just being a source of data to also being a

source of applications that provide services to users for a variety of requests (e.g. Google

for content search, Expedia for travel requests, Interflora for flower delivering, and

Amazon for e-commerce related search and purchasing activities). Building blocks for

Web-based description, discovery and invocation have been evolving in order to enable

increasing degrees of automated processing. This has resulted in the development of the

Web Services architecture and its related set of standards and methods. From a

consumer‟s point of view, knowing the Quality of Service (QoS) of the Web Services

plays a crucial role in choosing a particular Web Service over its alternatives. QoS

describes the capabilities of a product or service to meet the requirement of consumers. It

serves as a benchmark to differentiate the services and the service providers. Quality is

the totality of features and characteristics of a service that bears on its ability to satisfy

stated or implied needs. Therefore, knowing Web Services ranking based on its QoS

becomes vital for both the Web Services provider and the Web Services consumer.

Users who request either for simple or for composite Web Services face the problem of

identifying “what is out there on the Web” which is similar to the search problem faced

by the users looking for available text content. Just as the users looking for page ranking

need Web mining, the users looking for services need service mining. Similarly, methods

to search for available services need efficient and knowledgeable means of identifying

relevant options for a satisfactory response to the service request.

2

Service mining is discovery and analysis of Web Services registered with the registry by

using the service knowledge. In the Web Services model, the service registry has access

to the knowledge required for service mining. Service discovery mining aims to discover

services that meet the specified requirements in terms of the service profiles, grounding,

and QoS constraints.

It is all about service knowledge. Services are semantically more complicated than data.

Different aspects of services are needed to be considered. Therefore, an important part of

the service mining is analyzing QoS attributes and properties that describe the services.

With the swelling use of Web Services in standardization of basic content integration,

support of complex service-oriented architectures, provision of seamless integration of

business processes and applications etc. has led to a boost in numbers of both - Web

Services consumers and providers. Thus, QoS becomes a very important aspect in

distinguishing the success of a Web Services provider.

The attributes of interest in a Web Service can come under two broad categories -

functional attributes and non-functional attributes. In the case of functional attributes,

they are described as what the Web Services is about with respect to domain specific

details. Functional properties include the input, output, Conditional output, precondition,

access condition and effect of service. These can be well understood only by the users

who have interest in the specific business domain, whereas Non Functional (NF)

attributes are described as how the Web Services are in terms of quality. Here Web

Services selection is done based on the NF attributes of the Web Services. The Agent

based architecture is proposed for the selection of Web Services based on their different

QoS attributes, and the agent is implemented using different techniques. Composition of

Web Services is done to achieve Web Services Selection based on desired QoS. A

database driven Web Service is implemented using SOAP and REST protocol. An

attempt is made to do QoS comparison of Web Services implemented using SOAP and

REST Web Services for the same application.

3

 Hospital management System has been developed using SOAP and REST Web Services

and they are compared for their QoS. The same application is deployed in Google cloud

and their performance in the cloud is also analyzed.

1.1 Motivation

"Web Services are loosely-coupled, self-contained, Web-accessible programs that can be

published, discovered (or located), composed, invoked, and executed. Web Services

provide a standardized means for diverse, distributed software applications to be

published on the Web and to interoperate seamlessly".[1] Corporations are progressively

providing services or programs within and between organizations either on corporate

intranets or on the cloud[1]. With the increase in number of Web Services providing

similar functionalities, more emphasis is placed on how to find the best Web Service that

fits the client‟s requirements.

Let‟s see an example. A travel Agency is looking for a Web Service to obtain the real

time plane ticket booking for its business management system. By searching some UDDI

registries, such as those provided by IBM and Microsoft, the company could find

hundreds of Web Services for any particular functional domain. Then, if the company

tries to contact the service providers, there might be many of them that are not available

right away due to several reasons. In this scenario, if a trust worthy service is available

that can help the company identify which service provider has the best QoS attributes, the

company can use that information to its benefit instead of wasting time in identifying

which Web Service works the best.

In addition, allowing current consumers to rate the quality of services they receive can

provide consumers with valuable information on how to rank services and how to select

Web Services. The traditional means of Web Services discovery is to navigate directly to

a known Web Service address. The problem with traditional methods is that the

4

performance metrics of most of the available Web Services are generally not known to

any user.

This makes having searching techniques to discover the Web Services of interest

essential. With organizations implementing SOA for daily transactions in business to

business and business to customer processes, a huge amount of effort is being put into

making the discovery of services automatic and more accurate. Recently, Quality of

Service (QoS) has been considered as an important parameter and thus methods have

been proposed to improve the accuracy of service discovery considering the QoS of Web

Services as an important aspect.

1.2 Research Gap

Web Services can be discovered from UDDI, which is an XML-based registry, enabling

companies to publish and discover Web Services on the Internet. By crawling Web

Services information in, there are about 21,358 addresses of WSDL (Web Services

Description Language) files, which provide XML-based descriptions of Web Services

interfaces.

Seekda.com [2] reports that there are totally 28,529 public Web Services in the Internet.

From that it can be understood that there are so many Web Services available for the

same functionality. Industrial practice witnesses a growing interest in the ad-hoc model

for service composition in the areas of supply chain management, accounting, finances,

eScience as well as in multimedia applications. There is always a need for composition of

web services. As the number of web services available for any functional domain is

increasing more and more, the composition problem becomes a decision problem on the

selection of component services from a set of alternative services that provide the same

functionality but differ in quality of service parameters[3].

Web Services selection is the process of selecting suitable service according to the

client's needs. Web Services selection is an indispensable process for Web Services

5

composition to select best Web Services according to a client's requirement. Which

service will be the best suited for the client's requirement is an elusive task for Web

Services operators. Service registries are becoming very large, preventing users from

discovering desired service. Sometimes users may not be aware of services that can be

most beneficial to them.

The present research work addresses the following issues as research gap,

 Main issue identified in this research area of QoS based web service selection is

the inability to successfully identify a web service which can meet the user's

specific nonfunctional requirements in real time.

 For analyzing the QoS values of web services, already available repositories are

used in plenty of methods whereas in this thesis modified WSDL is suggested,

from where the extraction of quality attribute values will be done by the agent

web service.

 Further, there is lack of literacy for web service client communicating with the

software for identifying the web service that satisfies his QoS requirements.

Previous work did not take the advantage of developing agent for web service

selection itself as web service.

 In previous research work, the efficient classification algorithms work fine with

discrete and nominal value attribute values where as the proposed thesis could

classify the continuous values of QoS metric into different groups using entropy

discritization method.

 There is a lack of common framework for measurement of unknown values of

quality attribute values of web services. There is a need to have third party service

which can give promised QoS values for the web services in the same functional

group.

6

 There is a deficiency in the experimental QoS values for SOAP and REST

services in the real time scenario.

1.3 Objective and Scope of the thesis

With the corporate world moving towards Service Oriented Architecture (SOA), Web

Services has become very vital today. In most service-oriented architectures, business to

business systems, Web Services play a major role in conducting daily transactions and

information exchange. A Web Service is a public interface of an application which can be

invoked remotely to perform a business function or a set of functions.

Knowledge of Web Services includes service profile information, such as service

provider‟s contact information, service operation input, service operation output and

service grounding information such as the protocol used to interact with the service, and

service usage data such as patterns associated with the set of the service. With current

Web Services implementations, knowledge of service profiles and of service grounding is

described and presented in service description documents.

However, the discovery of these two types of knowledge is limited, because all the

relevant aspects of services such as their non-functional properties are not presented in an

obvious manner. This limits the use of profile and grounding information in discovering

services. The third type of knowledge, i.e. knowledge about service constraints, is

presented in service description documents, but there are major limitations with the

nature of constraints that can be represented and in how to process those constraints for

service discovery. Due to the above problem, the results of service discovery often fail to

satisfy the needs of the service request, and the extent of the service discovery failure

increases with more complicated, composite service requests.

The solution for the problem of discovering Web Services is to mine the services for the

process of selection, which is known as Service mining. Web mining is the use of data

7

mining techniques to automatically discover and extract information from Web document

and services. The differences between Service mining and Web mining, however, are that

for the former, a catalog of the services already exists in the service registry. It is not

necessary to build an index structure by the discovery agent. Since, service information is

well categorized and organized in the catalog, a basic search on the catalog by the service

registry is more efficient than exploring the untamed Web space using a Web robot, such

as WebCrawler or AltaVista. After interesting services are identified, direct accesses to

the service description documents in the providers‟ Web sites are simple for the user.

Service description documents are semi-structured XML documents, none or very little

data cleaning and preprocessing in Web content mining is required here. The second

difference is that service mining operates on services and aims to discover services

amongst the ones registered with the registry based on QoS. So, this is not simply

document mining or text mining.

For carrying out Web Service mining, Web Service is mined for its QoS properties.

Selecting an appropriate approach for service selection is a very important task. However,

selection procedure can be very complex and challenging as many non-functional

properties like availability, accessibility, integrity, performance, reliability, regulatory,

security have to be kept in mind. The main issues that need to be addressed at time of

service selection are-

a) Finding a group of services that serves the client‟s needs in terms of pure service

methods and parameters (functional attributes)

b) Evaluating the performance of the services

c) Comparing the performance of various services to enable the user to make the best

possible choice based on QoS.

The first and fundamental objective of the thesis is to ease the process of selecting a Web

Service when there are plenty of Web Services registered for the same purpose in the

UDDI registry. To select Web Service in that particular functional domain, there is going

to be a Web Service which aids the process of selection of Web Services. So, this Web

8

Service, which aids the process of selection, is named as Agent Web Service. This Web

Service has to know the details of all QoS attributes of all Web Services. Comparative

Performance analysis on QoS of REST Web Service and SOAP Web Service is done

with the help of database driven application. And performance analysis is carried out

after deploying the application in the cloud environment.

The objectives of this thesis are:

 Study the research works to better understand the needs and the work already

done for Innovative research for Web Service Selection for the same functional

domain.

 Define Quality of Service for Web Services.

 Propose extended service oriented architecture for service mining based on QoS.

 Propose architecture to evaluate Web Services for their QoS Attributes.

 To measure and compare QoS attribute values for REST and SOAP Web

Services.

 To measure the response time of REST Web Service deployed in cloud, by

performing stress testing.

1.4 Methodology

Web Service providers need to register with UDDI registry with extended WSDL file

where in the QoS details of the Web Services are also provided along with other details.

The client can also register his feedback after consuming the service. The QoS Agent

Web Service collects the QoS attribute values of Web Service from their respective

9

WSDL documents in a database table. The feedback of the client who consumes the Web

Service is also added to the database, maintained by the QoS Agent Web Service. A new

entropy based data mining algorithm is proposed for the classification of Web Services

under different classes, namely Excellent, Good, Average and Poor by the agent.

SOAPUI a software tool is used in measurement of QoS attributes of Web Services for

creating a new repository of Web Services with QoS. A Database driven SOAP and

REST Web Services are created for the same application and their QoS attributes are

compared.

1.5 Limitations

Handling the dynamic nature of Web Services, such as sudden disappearance of certain

Web Services, or consumer‟s challenge of business process or requirements for Web

Services is still a challenging problem. To achieve the goal of dynamic Web Service

selection which will enable the consumers to discover Web Services satisfying their

requirements automatically at run time instead of at design time, QoS enhanced Web

Service selection must be automated dynamically. Hence, the limitations of the thesis are

to identify the trustable source of QoS data and deal with dynamic Web Service selection.

1.6 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2

It deals with the literature review of the research topic and gives overview of Web

Services and its standards.

Chapter 3

Agent based method for Web Services selection is discussed in this chapter. Here, the

WSDL file is extended to have QoS attribute tags described by the service provider. After

10

using the Web Services, the client is asked to specify his experiences about the QoS

metrics via his interface. Data mining algorithms are applied on the data that are collected

from Extended WSDL files and feedback that are taken from the Web Services users. By

applying data mining, the agent can discover some interesting QoS patterns for the future

users of the Web Service.

Chapter 4

 This chapter deals with manual way of ranking and selection of Web Services on the

basis of Entropy-Based Discretization with the help of QoS constraints values and

classifying them under corresponding service class. Using ranking (service classifier),

client can easily choose the relevant Web Services. The algorithm is explained in detail in

this chapter.

Chapter 5

The ranking and selection of Web Services on the basis of Entropy-Based Discretization

with the help of QoS values is explained properly. In this chapter, the same process is

implemented using JAVA programming, and having discovery agent Web Services

perform the job of Web Services selection for the consumer reduces the complexity for

the end user in selecting the Web Service based on their QoS values.

Chapter 6

In this chapter, the implementation of real time data mining for service discovery is

done using composition of Web Services. Since the classification rules can be better

understood with tree visuals, Web Service Composition using BPEL engine is used. The

data mining algorithms for classification and visualization will be exported as Web

Services and then the SOAP response of classification algorithm will be used to generate

visualization outputs as SOAP response in the forms of graphs and trees.

11

Chapter 7

Most of the service providers do not supply vital performance related information about

their Web Services. In general, the most significant QoS attribute of the Web Service is

throughput. Due to that, load test is conducted on Web Services using SOAPUI software

to create a repository of Web Services that incorporate QoS attributes. This chapter's

primary goal, is to create a repository of QoS value for the Web Services in any particular

functional domain. It can assist the user in selection of an appropriate Web Services

based on throughput requirements.

Chapter 8

In this eighth chapter, an attempt is made to compare the QoS of a database driven

application implemented using REST and SOAP Web Services which so far is done

only using Multimedia messages. Here, a Hospital Management Application is built

using Web Services that can implement functions like online appointment booking,

preparing a prescription online, online room reservation, storing patient‟s medical

history etc. The application is designed and developed using MySQL workbench, Net

beans, Eclipse, Google SQL cloud and Google App Engine. Two different methods are

considered for developing a hospital management application. One method implements

this application as REST and another as SOAP Web Services hosted within the server

running on local host. The application designed and developed is deployed to the Google

App Engine to make it available online and to facilitate online transactions via the

internet. The scalability testing of the cloud enabled hospital management system has

also been done using a custom developed software tool.

Chapter 9

In this chapter, the conclusion, contribution and future scope of the thesis is discussed.

12

The Appendices provide supplementary details on system configuration. The code details

that are used to implement the algorithms are also given. The reference and the list of

publication relating to this thesis is given at the end.

13

CHAPTER 2

Literature Survey

Background of Web Services

“Web Services are encapsulated, loosely coupled contracted functions offered via

standard protocols”[4] where:

 “Encapsulated” defines the implementation of the assignment is absolutely not

distinguished from the outsider.

 “Loosely coupled” defines varying the implementation of one operation does not

require modification of the called operation.

 “Contracted” defines there are explicitly available definitions of the operation‟s

activities, how to relate to the operation along with its input and output

constraints.[4]

A Web Service is a method of communication between two electronic devices over a

network. The W3C defines "Web Services" as "a software system designed to support

interoperable machine-to-machine interaction over a network[4]. It has an interface

described in a machine-processable format (specifically Web Services Description

Language WSDL). “Other systems interact with the Web Services in a manner prescribed

by its description using SOAP messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards." [4]

Web Services constitute a distributed computer architecture made up of many different

computers trying to communicate over the network to form one system. “They consist of

a set of standards that allow developers to implement distributed applications - using

radically different tools provided by many different vendors - to create applications that

use a combination of software modules called from systems in disparate departments or

from other companies.”

14

A Web Service contains some number of classes, interfaces, enumerations and structures

that provide black box functionality to remote clients. “Web Services typically define

business objects that execute a unit of work (e.g., perform a calculation, read a data

source, etc.) for the consumer and wait for the next request. Web Services consumer does

not necessarily need to be a browser-based client. Console-based and Windows Forms-

based clients can also consume Web Services. In each case, the client indirectly interacts

with the Web Services through an intervening proxy. The proxy looks and feels like the

real remote type and exposes the same set of methods. Under the hood, the proxy code

really forwards the request to the Web Services using standard HTTP or

optionally SOAP messages.”

2.1 Web Services Standards

One of the key attributes of Internet standards is that they focus on protocols and not on

implementations. “The Internet is composed of heterogeneous technologies that

successfully interoperate through shared protocols [5]. This prevents individual vendors

from imposing a standard on the Internet. Open Source software development plays a

crucial role in preserving the interoperability of vendor implementations of standards.”

Web Services standards provide an open standards based communication framework that

operates within the purview of W3C guidelines. Web Services provide a

platform/technology independent communication methodology while SOA is an overall

IT strategy framework that aims to provide business agility. The protocol stack of the

Web Services is described in figure 2.1.

15

Fig 2.1 Protocol stack of Web Services[6]

SOAP- xml –based protocol to exchange structured information among services

WSDL-interface between service provider and service consumer and describes

abstraction functionality of a service.

UDDI-service registry- Defines a set of API to support publication and discovery of

Web Services.

BPEL-xml based language for formal description of business and business interaction

protocols

WSRP-gives definition of Web Services interface for accessing and interacting with

interactive presentation oriented Web Services.

The following standards play key roles in Web Services: Universal Description,

Discovery and Integration (UDDI), Web Services Description Language (WSDL),

Simple Object Access Protocol (SOAP).The relationship between these standards is

described in figure 2.2 and are explained further in detail.

16

Fig 2.2 Web Services Interactions

2.1.1 WSDL

The Web Services Description Language (WSDL) is an XML-based language that

provides a model for describing Web Services.

The WSDL defines services as collections of network endpoints, or ports. “The WSDL

specification provides an XML format for documents for this purpose [7,8,9]. The

abstract definitions of ports and messages are separated from their concrete use or

instance, allowing the reuse of these definitions. A port is defined by associating a

network address with a reusable binding, and a collection of ports defines a service.

Messages are abstract descriptions of the data being exchanged, and port types are

abstract collections of supported operations. The concrete protocol and data format

specifications for a particular port type constitute a reusable binding, where the

operations and messages are then bound to a concrete network protocol and message

17

format.” In this way, WSDL describes the public interface to the Web Services as shown

in figure 2.3.

Fig 2.3 WSDL structure[9]

2.1.2 UDDI

Universal Description, Discovery and Integration (UDDI) is a directory service where

businesses can register and search for Web Services. “UDDI is a platform-independent

framework for describing services, discovering businesses, and integrating business

services by using the Internet. UDDI uses World Wide Web Consortium (W3C) and

Internet Engineering Task Force (IETF), Internet standards such as XML, HTTP, and

DNS protocols. UDDI uses WSDL to describe interfaces to Web Services. For example,

if the industry published an UDDI standard for flight rate checking and reservation,

airlines could register their services into an UDDI directory. Travel agencies could then

search the UDDI directory to find the airline's reservation interface.

18

When the interface is found, the travel agency can communicate with the service

immediately because it uses a well-defined reservation interface.

2.1.3 SOAP

SOAP is a protocol used to communicate between different applications and to exchange

information in a Web Services. A SOAP document is written in XML and is language

and OS independent.

A SOAP message contains the following elements

1. Envelope

2. Header

3. Body

4. Fault

Envelope

Envelop is the most important part of a SOAP message. This part distinguishes the SOAP

document from other normal XML documents, i.e. the envelope part identifies the XML

document as a SOAP message. [10,11]

Header

The header part of a SOAP message is optional and can be included when required.

Body

The central part of a SOAP message is the BODY. It contains the actual function of the

request i.e. it contains the message that is to be executed to get the desired output.

Fault

The fault element in a SOAP message is an optional element which contains errors of the

SOAP message.

19

The HTTP Protocol for SOAP

HTTP communicates over TCP/IP. An HTTP client connects to an HTTP server using

TCP. After establishing a connection, the client can send an HTTP request message to the

server. WSDL document for this Web Service is given in APPENDIX B-2

SOAP Request

“POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.example.org/stock">

 <m:GetStockPrice>

 <m:StockName>IBM</m:StockName>

 </m:GetStockPrice>

</soap:Body>

</soap:Envelope>”

20

SOAP Response

“HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-

envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.example.org/stock">

 <m:GetStockPriceResponse>

 <m:Price>34.5</m:Price>

 </m:GetStockPriceResponse>

</soap:Body>

</soap:Envelope>”

2.2 Benefits of Web Services

Exposing the function on to network: “A Web Service is a unit of managed code that

can be remotely invoked using HTTP, i.e., it can be activated using HTTP requests [12].

Hence, Web Services allows you to expose the functionality of your existing code over

the network. Once it is exposed on the network, other application can use the

functionality of your program.”

Connecting Different Applications: “Web Services allows different applications to talk

to each other and share data and services among themselves. Other applications can also

use the services of the Web Services. For example, VB or .NET application can talk to

java Web Services and vice versa. Thus, Web Services is used to make the application

platform and technology independent.”

21

Standardized Protocol: “Web Services uses standardized industry standard protocol for

the communication. All the four layers (Service Transport, XML Messaging, Service

Description and Service Discovery layers) use the well defined protocol in the Web

Services protocol stack. This standardization of protocol stack gives the business many

advantages like wide range of choices, reduction in the cost due to competition and

increase in the quality.”

Low Cost of communication: “Web Services uses SOAP over HTTP protocol for the

communication, so the existing low cost internet can be used for implementing Web

Services. This solution is much less costly compared to proprietary solutions like

EDI/B2B.”

Support for Other communication means: “Besides SOAP over HTTP, Web Services

can also be implemented on other reliable transport mechanisms. Hence, it gives

flexibility to use the communication means of requirement and choice. For example, Web

Services can also be implemented using ftp protocol (Web Services over FTP).”

Loosely Coupled Applications: “Web Services are self-describing software modules

which encapsulates discrete functionality. Web Services are accessible via standard

Internet communication protocols like XML and SOAP. These Web Services can be

developed in any technology (like c++, Java, .NET, PHP, Perl etc.) and any application

or Web Services can access these services. So, the Web Services are loosely

coupled applications and can be used by applications developed in any technology. For

example, Web Services developed using Java technologies can be used in VB or .NET

applications.”

Web Services sharing: “These days due to complexity of the business, organizations are

using different technologies like EAI, EDI, B2B, Portals etc. for distributing computing.

Web Services supports all these technologies, thus helping the business to use existing

investments in other technologies [[9]. [11

22

Reusable Components: Any independent function or operation can be made available to

the REST of the world in the form of a Web Services. Exposing the frequently used

operations as Web Services can increase the reusability. For example, there is a Web

Service for currency conversion which can be used by any application on the web [10].

Software Integration: Since the Web Services is based on XML and is not specific to

any language or platform, any software implemented on any platform can interact with

each other. This is also an excellent means of integrating with already existing software.

2.3 Literature Survey on QoS elements - ontology, classification

In the paper „A taxonomy and classification of web service QoS elements‟ quality

metrics are grouped into different QoS categories, namely performance, correctness,

security, reputation, standards compliance and monetary. The performance QoS category

of web service represents the parameters affecting the execution of a service. How fast

the service request is accomplished is determined by this category. The major QoS

elements under this category are availability, accessibility, throughput, response time,

servability, capacity, scalability, and reliability. Correctness is defined as the probability

of the data provided by the consumer being incorrect and incomplete. In such a situation,

it is crucial that the service doesn't fail, and is handled effectively. It is expected to

generate error report or process request with the same input data. The scenario of

handling an erroneous input correctly by a service is essential to the selection process.

The robustness and accuracy of quality metrics are the two main elements in this

category. Security is one of the important attributes for message content integrity.

Reputation refers to rating, trust, and reputation of a service. Standards compliance is a

measure of extent to which the service complies with standards. Monetary elements are

price, taxes, validity, etc. The ontologies of these QoS elements are explained

diagrammatically.[11]

23

1. Availability is the likelihood of a service to reply to client requests and is

considered as an incrementing element. Classically, Availability is contradictory to

capacity and analogous to reliability a bit. There are two subclasses for availability.

Uptime, is the time period during which the service is functioning constantly without

breakdown. MTTR, is the mean time to repair, denoting the mean time for reinstating

an unsuccessful service.

2. Reliability is the probability that a service can be used effectively. It comprises

of Fault Rate: the rate of invocation failure; MTBF: mean time between failures;

Consistency: the failure rate‟s lack of variability; Recoverability: how good is the

recovery of a failed service; Failover: whether the failed resources are utilized by

a service, and how promptly; Disaster Resilience: how good the ordinary and

manual disasters are resisted by the service.

3. Capacity is the limit on the number of requests a service can deal with. When a

service is operated beyond its capacity, its availability and reliability are

negatively affected.

4. Economic captures the economic conditions of using the service and Cost is a key

economic attribute.

5. Interoperability evaluates the interoperation performance of a service, whether

the service is compliant with a general standard or the specific version of

standards.

6. Performance expresses the functional performance from users‟ perspective. The

main aspects are Throughput: the rate of successful service request completion)

and Response Time: the duration from the request to getting a response from the

service.

24

7. Security represents the safety measures of a service, comprising Audit Ability:

auditable capacity is maintained by the service; Authentication: means whether the

unidentified requesters are accepted by the service; Encryption: represents the

category and strong point of encryption technology; Non Repudiation: means

whether the service could be denied if already used by the requester.

8. Trustworthiness mainly depends on users experiences of using it and evaluates

the credibility of user reports.

9. Scalability defines whether the service capacity can improve as the consumer‟s

requirement.

10. Integrity is an evaluation of capability of a service to resist illegitimate right to

use and protect totality of its information.

11. Stability is the rate of modification of the constraints of a service.

12. Robustness measures resilience to imperfect input and incorrect Web Services

composition. This ontology specifies domain independent quality semantic and

should be completed by a domain-specific lower ontology, which can both meet

the users‟ satisfaction and increase the providers‟ gains.

The Web Services selection problem has been studied mainly in business process and e-

science area. In service-oriented architecture (SOA) environment, end-users have to

achieve two phases to invoke Web Services. Firstly, fulfill the objective service

description, which usually presents as a WSDL document, and query it in the UDDI

registry. A set of functionally equivalent services which does the same function but

differs from nonfunctional characters, is expected to result from this query. Secondly,

select the service which enables the best QoS guaranteed from the set and invoke that.

The process of selecting the best QoS guaranteed Web Services from the other Web

25

Services of same functionality is known as service mining. Service mining is a solution to

service overload. The following papers analyze the process of service mining using

different techniques.

In the paper "Importance Levels of QoS Elements in Selection of Information Delivery

Web Services" by Godse and Mulik, they have identified twenty eight QoS elements

which can be considered for any web service. But, out of these quality metrics, which are

all relatively more important, QoS metrics for the web service selection is identified by

the process of survey among practitioners. In this paper, they have tabulated the

responses received and the table shows the importance level on a scale of 1 to 5 by

taking weighted average of response for each QoS metric which helps in the process of

web service selection.[13]

2.4 Literature Survey on QoS based discovery

Al-Masri, E.; Mahmoud, Qusay H., in the paper "Discovering the best Web Services: A

neural network-based solution", discussed about discovering Web Services of interest

based on the quality attributes using back propagation method [14]. To achieve this

task, they have used the publicly available QoS for Web Services (QWS) Dataset as

inputs for the neural network. The feature set is mainly dependent on several factors such

as response time, throughput, availability, compliance, among others. The use of neural

networks provides a way to optimize the selection of the best available Web Services.

The proposed solution provides an effective discovery mechanism for finding the high

quality Web Services based on non-functional properties, but it is observed that the back

propagation neural network takes a long time during the training mode due to the large

data size which could become an issue when implementing such system in real-time

manner. In addition, the ability of the system configuration to quickly adapt to current

26

data being fed into it might become infeasible since the proposed method defined the

number of hidden nodes prior in the training mode. So the above method is suitable for

off line discovery of Web Services based on QoS.

Xiaopeng Deng; Chunxiao Xing in his paper, "QoS-oriented optimization model for Web

Services selection from a Web Services group", a lightweight QoS model which includes

four quality attributes namely functionality satisfaction degree, performance satisfaction

degree, cost satisfaction degree and trust satisfaction is built up [15]. Then, the set of the

QoS vectors are generated from the the QoS parameters of the Web services in the group.

Then the QoS vectors are clustered by hierarchical merging clustering approach. But the

problem with this approach is, it aims at only four QoS properties, it could have been

multi-dimension QoS, as there are many attributes available as QoS parameters for a Web

Services, which are all concerns for the Web Services client.

Badr, Y.; Abraham, A.; Biennier, F.; Grosan, C. discussed about a simple Web Services

selection scheme based on user‟s requirement of the various non-functional properties

and interaction with the system. The proposed framework utilizes user preferences as an

additional input to the selection engine and the system ranks the available services based

on the requirement [16]. The disadvantage with this method is that instead of specifying

the real value for the non-functional properties, the user has to specify the importance of

the different attributes as well.

2.5 Literature Survey on QoS based composition techniques

In this "Policy-based Web Services composition," paper by Soon Ae Chun; Atluri, V.;

Adam, N.R., the inter-organizational process is modeled as a composite Web Services, a

workflow called service flow [17]. Each participating organization has a set of services to

offer, called component (or atomic) services. A composite service is made up of these

component services from each organization. However, service composition first requires

to select the services that are compatible. They consider three levels of service

27

compatibility in order to make sensible compositions - syntactic, semantic and policy

level compatibilities. Their approach to Web Services composition is based on building

the knowledge of policy rules using OWL, DAML-S, RuleML and RDF standards. In this

they have not discussed about how to handle conflicting rules of different participating

organization that are distributed and heterogeneous. Also, how to derive at policy rules

from the organization diverse documents and how to maintain the updates of the

organizations rules are not discussed. The ontology for user policy specification needs to

match for correct identification of applicable rules. The ontology interoperability between

organizations must also be developed.

2.6 Literature Survey on QoS of REST and SOAP Web Services

 “Latencies of Service Invocation and Processing of the REST and SOAP Web Services

Interfaces.”, studies the latencies experienced by the Web Services client invoking a

proprietary multimedia messaging service with both REST and SOAP Web Services [18].

This study has been made utilizing XML, JSON, MTOM/XOP and Google Protostuff

message and message content encodings. By using the same underlying service logic and

implementation, they were able to clearly measure and make distinctions between these

two service access styles in detail to analyze the service invocation complexities and

performance penalties of each solution in detail. The measured details included service

request building and invocation, request parsing, request and response transmission, and

execution of the service logic. However, the effects of the measured details need to be

tested on a more realistic networking environment. Further, the above study does not pay

attention to databases in the backend which is not the case present in most of the

applications that use Web Services. This comparison requires a challenging and careful

synchronization mechanism of the time stamping instrumentation clocks, if using two

separate networked computers.

In real time scenario, for example when the web service client is looking for weather

forecast web service, there are many services available that satisfies the functional

28

requirements. but the services may vary in terms of their relative quality metrics. In order

to identify the one that meets the functional as well as QoS requirements of the web

service client, one has to go for web service selection procedure. And currently there are

many solutions to provide the web service client with their QoS values but in this thesis

data mining algorithm is applied on these collected QoS data and interesting patterns are

given as the outcome of the mining process to the web service client. In the coming

chapter an extended service oriented architecture is designed for web service selection

based on QoS values.

29

CHAPTER 3

Implementation of Agent for WSS using Data mining

technique.

Web Services play a major role in developing business applications in this internet era.

As there are many Web Services available for a particular function, finding appropriate

Web Services based on our criteria is becoming a tedious process. Currently, finding the

exact Web Services with the keyword based search method of UDDI registry doesn‟t

return the Web Services of user interest at all times. An agent based method for Web

Services selection, from the information that is given in the modified WSDL file by the

Web Services provider is proposed in this chapter. For analyzing the QoS of web

services, the already available repository of quality metrics is used in most of the

previous research works. Here, the WSDL file is modified to have embedded QoS

metrics in it, from where the agent can easily extract the data and maintain database of

QoS metrics of all web services in that functional domain. Data mining is done on those

data that are collected from WSDL files and also the feedback taken from the Web

Services users, by the agent to discover some interesting patterns for further users of the

Web Services. The rest of this chapter is organized as follows - firstly, how Web Services

are described using WSDL with QoS extension. Further, it explains about how the agent

applies data mining into the QoS data collected and produces output for the client who is

interested in the particular functional domain.

3.1 Agent Based Architecture.

Service Oriented Architecture (SOA) service descriptions [19] are saved in a repository

that behaves in a similar manner to a telephone directory. The required applications can

be searched in the UDDI directory. However, keyword based searching mechanisms for

finding web-services does not satisfy the rapidly growing need for QoS (Quality of

Service) based searching [20,21]. Many Web Services often provide the same

30

functionalities to the user, but may differ in their non-functional properties. Considering

both the functional and non-functional type of properties during the discovery process,

enables us in selecting a reliable service.

Nowadays, the Service providers as well as the clients pay a lot of importance to the QoS

values of web-services [22]. According to a client‟s view point, a quality based service

discovery involves a multi-criteria decision making mechanism which needs the

knowledge of both the working of the service and its QoS parameters. However, many of

the service requesters are not qualified to test the services for their QoS characteristics

themselves and simply accept the information given by the service provider. Based on the

above need, a WS-QoS Agent based architecture is proposed to facilitate the discovery of

appropriate Web Services with the specified QoS values.

 Fig 3.1 Extended SOA for WSS

In the above figure 3.1, there are blocks which are very familiar, namely service registry,

service consumer and service provider. One new block involved is Agent, which helps

the service consumers to select best Web Services in terms of QoS attributes.

Accordingly, the Service Consumer will search to get Agent Service for the functional

domain he is sending Agent Service discovery query for as mentioned in the above figure

31

3.1. After he gets the WSDL of agent service, client contacts the agent service to select

service with QoS.

The agent service will reply to the client with the best available web service in terms of

QoS. This extended SOA is implemented using SOAP Web Service in the following

chapters.

3.2 Describing Web Services with QoS

Functionality in Web Services is defined in WSDL, an XML standard which specifies the

operations that the Web Services can perform. The information provided in the WSDL

covers all the data needed to invoke the Web Services itself but lacks specifying the

Quality of Service. On the other hand, those services may be registered in a UDDI. A

UDDI is a library of Web Services which are used to discover them; subsequently the

client can select the one which suits him the most in terms of functionality. Nevertheless,

discovering Web Services are founded on using keyword‐based search techniques, which

may not return suitable results to clients' requirements since they might not reach the

desired QoS[23].

In order to fulfill these problems there are several proposals to extend WSDL Standards

with QoS information. Notice that this information might not represent the real Quality

values for the set of attributes which may vary on run time, but the one claimed by the

provider instead. Therefore, the provider‟s trustworthiness is another important part to

take into account. Web Service QoS certifier plays major role in checking the

trustworthiness of the provider.

3.3 WSDL extension with QoS

WSDL (Web Services Description Language) is an XML format for describing network

services as a set of endpoints operating on messages containing either document‐oriented

or procedure oriented information.

32

In a WSDL document, the functionality of a service is specified as it defines the methods

of the service and how they are invoked. Nevertheless, it lacks support for specifying

nonfunctional properties such as QoS. In order to resolve this problem, several proposals

of extending WSDL with Quality of Service information has been presented. [22]

Several works needs WSDL extension with QoS as a basis for their contributions. Most

of these contributions use a simple WSDL extension. For instance, YunHee Kang

proposes the use of annotations[22], which is currently supported by WSDL standard, to

describe WSDL with QoS information. An annotation is similar to a comment, and is

used in WSDL mainly to embed the documentation.

As semantic Web Services are increasing on popularity, a new kind of annotations has

emerged: SAWSDL (Semantic Annotation for WSDL and XML Schema). SAWSDL is

an extension of WSDL that provides semantic annotations through the use of ontologies

[5]. This WSDL extension is a W3C Recommendation since 2007.

Using SAWSDL, a service provider can advertise his Web Services linking its

components with an ontology written in OWL. However, because of the novelty of

SAWSDL, most of approaches in QoS extensions are still focused in WSDL Using this

structure, WSQDL expresses a way to define a QoS attribute for a Web Services as a

complex Type in the WSDL of the Web Service.

3.4 Trustworthiness of claimed QoS

Once the Quality of Service is defined by the service provider, there‟s an imperative need

to check that the QoS claimed is consistent with the real Quality of the Service. This is

especially significant for those dynamic quality attributes whose values may vary on run

time.

In order to achieve this point, monitoring or testing is needed in order to compare the

obtained values with the claimed ones. One of the first and most significant works in this

33

area is the addition of a new actor in the Web Services discovery [24]. This new actor is

known as the Web Services QoS Certifier and is responsible to validate that the quality of

Service advertised by the provider is the actual Quality of Service.

In this approach, QoS information is stored and managed by the agent as an intermediary

between the client and the service provider. The Agent is responsible to manage and

provide to the client the QoS for Web Services. For that purpose, the agent might use an

extended WSDL or store the QoS in an internal component of the framework. It may also

retrieve the list of Web Services from the UDDI or implement its own Web Services

registry. This kind of approach is most used in the literature of Web Services discovery.

Most of the agents‟ proposals include, apart from a Web Services registry with QoS

information, a monitor to obtain those dynamic quality attributes. That is, the agent

would be responsible by monitoring the registered services and store those dynamic

attributes of the Web Services, whereas static quality attributes such as price should be

stored declaratively. Another component of the agent is the module that implements the

ranking algorithm for Web Services selection taking into account the QoS of the different

Web Services. Obviously, the service user should perform the discovery over the agent

instead of using the UDDI directly.

Actually, Agents are working for only one particular functional domain Web Services.

For example, agent Web Services can be made for web content search engines, Travel

assistance, flower delivering, and e-commerce related search and purchasing activities. In

this, Weather Forecast Services are taken as an example and appropriate agent is

designed for that. So, there are ten Web Services created for weather forecasting service,

where in their WSDL file is extended to have QoS attribute values.

34

3.5 QoS attributes that are considered for WSS

Availability: It is the degree of readiness of the service for immediate consumption.

Response Time: Time elapsed from the Submission of a request to the time the response

is received.

Price: This represents price that a consumer of a Web Services must pay in order to use

the Web Services.

Security: This is ability of the Web Services to provide security mechanisms like

encryption, authentication, and access control.

Latency: It is the time delay involved in start servicing the request of the client.

Reliability is the probability that a service can be used effectively.

Scalability: number of throughput at given interval.

Successability: the extent to which Web services yield successful results over request

messages. Successability can be calculated as the number of successful response

messages over the number of request messages.

All these seven QoS attributes taken as quality metric for the Web Services. The values

for the attributes can be from 1 to 5. Five specifying the most preferred characteristic e.g.

if the response time is less, it is given value 5 and if the response time is too high it is

given value 1 for a particular Web Service. These values that are specified in the WSDL

file by the Web Services provider are extracted by the agent. There are going to be 4

classes in our classification of Web Services namely platinum, gold, silver and bronze.

The WSDL file from ws1 is shown in figure 3.2. If all the attributes are having values 5,

it will come under platinum class. If all the values are 4 it is gold, if the values are

between 3 and 2 it will come silver and the value 1 in all attribute make the Web Services

to come in class bronze. Part of Extended WSDL is shown in the figure 3.2. As

35

mentioned in the figure below, the availability 5 means the service is too good in terms of

availablity, same in the case of security, latency, response time, price and accessibility.

Fig 3.2 Part of WSDL file.

The Agent Web Services extract these details from the WSDL link of all Web Services

available for the particular functional domain, in our case weather forecast, and maintain

a table. All the WSDL files provided by the Web Services provider ws1, ws2…ws10

have values for the QoS attributes that are selected. This quality metric information is

extracted from the WSDL file by the agent shown in figure3.3. Web Services client, after

using the service, logs his comments and feedbacks to this agent.

36

Fig 3.3 Table maintained by the agent

WEKA is applied on this data, and the preprocess tool in WEKA produces output which

can be used by the classifier. Figure 3.4 shows the J48 classification obtained in this way.

With the help of this pattern, any new instance which is to be classified can be put into

the class it belongs to. In WEKA, simple K means clustering is selected to produce

clusters shown in figure 3.5. From right clicking on the instance, which instance or Web

Services is coming under what class can be found as shown in figure 3.6. Hence,

whenever client wants to call a Web Service for a particular domain, he can call the agent

for that and the agent will infer about quality of the all the Web Services available for

weather forecast.

37

Fig 3.4 Classification output

Fig 3.5 Cluster output

38

3.6 Feedback from Web Services client

The QoS attributes that are discussed here like security, speed, latency, response time that

are provided by the service provider, can be validated if the client accepts to give

feedback on them. So, option is given for the client to enter his views about attributes like

response time, latency, throughput and speed. He is guided on how to evaluate the Web

Services by giving values 1 to 5. The feedback that the user wants to give about these

attributes is collected in a user log access file. Then data mining can be done on these, to

extract the Web Service information that satisfies the QoS demands of the future user.

Fig 3.6 client feedback form

39

The database maintained by the agent is updated with the ones from the client‟s feedback

forms.

3.7 Summary

In this chapter the service mining of Web Services is done using the QoS data provided by

the service provider whose validity cannot be confirmed. Eyhab Al-Masri counted and

statistically analyzed the attribute in real time and arrived at a dataset [24,25] which is having

actual values for almost all attributes of importance and provided a great path for the

researchers who are into Web Services selection based on QoS attributes Further in this

thesis, improved data mining algorithm is applied on these data sets for the classification of

Web Services based on QoS attributes.

40

CHAPTER 4

WSS using Entropy Discretization Method.

In conventional technique, service requester is not capable to explore the Web Services in

accordance to the non-functional attributes. Non-functional attributes [26, 27] such as

response time, availability, throughput, etc are referred by Quality of Service (QoS) of Web

Services. QoS based service selection includes, the Web Service selection based on

requester‟s preferences on QoS constraints in that particular functional domain of Web

Services, in comparison to the usual selection procedure. Web Services selection process

using QoS provides a selection of service on requested quality of service. The limitations in

the previous procedure is services are invoked by the functional configurations, in the

conventional procedure of Web Services selection [28, 29, and 30]. Therefore, the requester

could not make out the characteristics of the provided Web Services on web. In addition,

UDDI does not offer standards of QoS for publishing and querying Web Services.

There are various methods proposed earlier for Web Services selection based on QoS such as

based on, QoS constraints, QoS ontology, Fuzzy approach, QoS agent and various other

methods [31, 32]. In the most of the previous work in this area, only few attributes of quality

metrics is considered and no practical solution is arrived to handle multiple QoS constraints

which will naturally be a very large dataset. In this proposed method, Web Services are

classified under four classes like poor, average, good and excellent, according to the values

of their non-functional attributes. In order to classify the Web Services, Entropy

Discretization algorithm is used since other algorithms require only discrete or nominal

values. This involves dividing the possible values into sub ranges called buckets or bins.

Using this, a tree can be built that is used to classify any new Web Services according to its

non-functional attributes to one of the four classes. All the available Web Services that match

the functional request could be listed to the service requester with the class that they belong

to. These services could also be listed according to the provided values of quality of service

attributes and matching them to the available services and then notifying requester the

classification of the service alongside [33, 34, and 35].

41

4.1 About the Dataset

The updated QWS (QoS of Web Services) Dataset Version 2.0 includes a set of 5,507 Web

Services and their QWS measurements that were conducted in March 2008[3,10]. Each row

in this dataset represents a Web Services and its corresponding nine QWS measurements

(separated by commas). The first nine elements are QWS metrics that were measured using

multiple Web Services benchmark tools over a six-day period. The QWS values represent

averages of the measurements collected during that period. The last two parameters represent

the service name and reference to the WSDL document. The input data set used for the

decision tree induction and QoS classification is the “QWS Dataset” [10]. The QWS dataset

consists of data from over 5000 Web Services out of which the public dataset consists of a

random 365 Web Services which have been chosen and nine QWS(Quality of Web Services)

attributes have been measured. Each Web Services was tested for over duration of over ten-

minutes for three successive days. The most important objective of this dataset is to put

forward a foundation for Web Services researchers. Each instance in the dataset matches up

to an accessible Web Services execution available on the open Web nowadays. The non-

functional attribute values with units are shown in Table 4.1

Table 4.1 Non-functional attribute values with units

42

4.2 Data Normalization

Mostly, all of the quality of service constraints varies from one another in direction as well as

in value range of the utility increments. There is no comparison between them. Therefore,

calculation of the weighted average of quality of service constraints is not useful. Constraint

values must be transformed such that they reflect the true value in a standard range and also

providing the same incrementing direction. All attributes used here are normalized values.

Let‟s say that raw value of constraint, Q, is denoted by q, threshold value is denoted by qth

and qmin denotes the minimum [36].

Data normalization of a constraint is calculated according to equation (1) if the effectiveness

of it increases with the value of the constraint, q. Or else, equation (2) is applied.

Q‟ =
(𝑞−𝑞𝑚𝑖𝑛)

(𝑞𝑚𝑎𝑥 −𝑞𝑚𝑖𝑛)
, if qmax – qmin ≠ 0 (1)

Q =
(𝑞𝑡ℎ−𝑞)

(𝑞𝑡ℎ−𝑞𝑚𝑖𝑛)
, if qth – qmin ≠ 0 (2)

4.3 WEB SERVICES RELEVANCY FUNCTION (WsRF)

WsRF is brought into play to evaluate the quality standing of a Web Services based on

quality metrics. QWS parameters help decide which of the accessible Web Services is most

excellent appropriate for a client search. Because of their importance, QWS attributes is

selected as shown in Table 4.1(1 through 9).

A Web Service with the highest calculated value for WsRF is the most desirable and relevant

for the client based on his/her preferences. Due to the fact that QWS parameters vary in units

and magnitude, QWS metrics must be normalized to be able to compute the WsRF and

perform QWS-based ranking. Normalization provides a more uniform distribution of QWS

43

measurements that have different units. In addition, normalization allows for weights or

thresholds to be associated with QWS parameters and provides clients with effective ways to

fine-tune and control QWS search criteria.

In order to allow for different circumstances, there is an apparent need to weight each factor

relative to the importance or magnitude that it endows upon ranking Web Services based on

QWS parameters. Each weight in this array represents the degree of importance or weight

factor associated with specific QWS property values. The values of these weights are

fractions in the sense that they range from 0 to 1. In addition, all weights must add up to 1.0.

Each weight is proportional to the importance of a QWS parameter to the overall Web

Services relevancy ranking. The larger the weight of a specific parameter, the more important

that parameter is to the client and vice versa. Here to emphasis equal importance to equal

weightage is given to all the attributes.

The importance level corresponding to each QWS varies since these properties vary in unit.

Due to the fact that each QWS property chosen by clients has an associated unit that is

different from other properties (i.e. response time in milliseconds, and throughput in

invokes/second), it is mandatory to clarify that each weight represents a different degree of

significance which must be optimized.

On the whole, final rank value is calculated using weighted sum of the quality of service

constraints which were normalized, according to equation (3) in which V represents the rank

value of the Web Service.

V = 𝑊𝑖 × 𝑄𝑖𝑛
𝑖=0 (1)

44

4.4 Service Classification

The service classification characterizes the services into different classes based on their QoS

attributes as shown below.

1. Excellent (High quality)

2. Good

3. Average

4. Poor (Low quality)

On the whole, Web Services that belong to a particular functional service group can be

classified in the above said classes using their computed WsRF values. Using WsRF values

found for every Web Services, classification format is applied to relate each Web Services to

a particular service group. The classification can be useful to distinguish between ranges of

services that offer the similar functionality. The implementation of this algorithm is done in

the kernel Microsoft Windows XP, Professional Version 2002 Service Pack 3, v.5938 in

Computer Intel(R) Core (TM) 2 CPU , 4400 @ 2.00 GHz, 2.00 GHz, 0.99 GB of RAM

The part of the dataset is shown in table 4.2.

45

Table 4.2 Input Dataset

4.5 ENTROPY DISCRETIZATION METHOD

4.5.1 Introduction

Entropy is a measure often used in data mining algorithms to measure the disorder of a set of

data. For a range of real values in which every point is associated with one of the two class

labels, the distribution of the labels can have three main basic shapes as shown in figure 4.1.

Fig 4.1 Distribution of range of points

46

a) Big intervals in each containing the same class of points like C1 and C2

b) Big intervals but not all of them containing the same class of points

c) Class points randomly mixed over the range.

Using the middle point between the two classes, the entropy method partitions the range in

case of Figure 4.1(a) into two intervals. The entropy of such a partition is 0. For the case of

Figure 4.1(b), the method partitions the range in such a way that the right interval contains as

many as C2 points as possible and contains as few C1 points as possible. This is to minimize

the entropy of this feature. For the case of Figure 4.1(c), the method ignores the feature as

mixed points over a range do not provide rules for reliable classification. That a range is

partitioned into at least two intervals is called discretization. In general, ideally

discriminating features (as shown in figure 4.1(a)), sub-optimal features (as shown in figure

4.1(b)), and those features with random class distributions can be effectively identified by the

entropy-based discretization method.

4.5 .2 ENTROPY

Initially, the range of a continuous variable, from a database sample, is divided into intervals

which contain at least one case each. This is done after sorting on the variable values. At

most, there would be m intervals (O(m)) for m cases. This converts the continuous variable

into a discrete one, with O(m) values [37].

Entropy, or information, is maximized when the frequency probability distribution has the

maximum number of values. Since there is a discrete partition for every distinct value in the

continuous distribution in the database, there is no information or entropy loss from the

database sample.

The entropy of a discrete random variable X is defined as

Entropy (t) = - 𝑝 𝑖 𝑡 log2 𝑝 𝑖 𝑡 𝑐−1
𝑖=0 [1]

47

Information Gain, which calculates the reduction in entropy (Gain in information) that would

result on splitting the data on an attribute, A.

 Gain (S,A) = Entropy (S) -- │𝑆𝑣│

│𝑆│
 Entropy (Sv) 𝑣𝑒𝐴

Where v is a value of A, |Sv| is the subset of instances of S where A takes the value v, and |S|

is the number of instances

Using Entropy-based Discretization, classification of Web Services could be done easily.

Using this classification the requester could choose the most suitable Web Services

according to the functional requirements and his QoS preferences. Using Entropy-based

Discretization a tree is obtained whose nodes belong to the QoS attributes. Tracing these

nodes, leave nodes can be reached which represent the classification of the Web Services into

four classes.

In order to present the most suitable service to the service requester, the Quality of Service

attributes are used, as they completely define the quality of a Web Service. In this section, a

method is proposed to use Entropy-based Discretization in order classify Web Services into

four classes, i.e. Poor, Good, Average and Excellent. Using this method a classifier tree is

obtained. Using this tree, any new Web Services whose QoS submitted by client can be

classified into one of the four classes mentioned earlier by tracing the tree according to their

QoS attribute values.

There may be several features that are immaterial to the classification in data mining. Taking

such features into consideration during classification leads to an increase in the

dimensionality of the problem. It subsequently raises several computational difficulties and

possibly introduces noise effect on the classification accuracy [38,39]. So, how to select

important features among the many available for classification is a problem that has been

attracting tremendous research effort previously and currently. Here there are only five

attributes namely throughput, response time, successability, reliability and availability are

considered.

48

This classifier consisting of a committee of cascading decision trees. Each tree is constructed

by using one of the top-ranked features as its root node. In this example availability is taken

as root node. The learning phase of this classifier is to construct a certain number of

trees[90].

The following steps are used to construct the tree.

Suppose n is the number of features describe a given data. To construct K (K<=n) number of

trees, the following steps are used

Step 1: Use gain ratios to rank all the features into an ordered list with the best feature at the

first position.

Step 2: i=1

Step 3: Use the i
th

 feature as root node to construct the i
th

 tree.

Step 4: Increase i by 1 and goto Step 3, until i = K

4.5 3 Selecting the Best Split

The idea is to first rank all individual features according to their entropy value, then use the

average entropy value as a splitter to cut off all the lower ranked features. The steps are as

follows:

1. Rank all features into an ascending order according to their entropy values,

2. Remove those features that are ignored (not discretized) by the entropy-discretization

method,

3. Calculate the average of the entropy values of the remaining features, and

4. Select those features that have smaller entropy values than the average for

classification

49

4.5.4 Applying entropy-based Discretization on Quality of Web Services Dataset

In all services, count the number of services that are under each category like poor, good

average and excellent, then,

Number of services for each classification.

Poor (P) = 35

Average (A) = 159

Good (G) = 96

Excellent (C) = 10

Table 4.3 Sorted Dataset

Entropy (E) = 1.53665

Sorting the table (part of the table is given in table 4.3) in ascending order according to

Availability column,

Options for splitting points (T): 55 and 79 (for availability attribute)

Sl.

No

Response

Time
Availability Throughput Successability Reliability Classification

1 255.08 12 8.1 13 53 POOR

2 64.96 18 4.3 18 60 POOR

3 68.91 19 4.4 20 60 POOR

4 451 23 1.8 24 42 AVERAGE

5 136.94 26 3.1 26 67 POOR

6 542.87 26 4.4 26 53 POOR

7 382.71 27 5.7 28 73 POOR

8 501.79 28 4.8 28 73 POOR

9 316.07 32 1 32 60 POOR

50

First, choosing T as 55:

For S1 (Av ≤ 55), it comes like,

P = 24

A = 3

E (S1) = 0.50325

For S2 (Av > 55), it becomes,

P = 11

A = 156

G = 96

C = 10

E (S2) = 1.35301

E (S|55) = 1.27653

Gain (55) = 0.26012

Now choosing T as 79,

For S1 (Av ≤ 79), P = 32

A = 58

E (S1) = 0.93894

For S2 (Av > 79),

P = 11

A = 156

G = 96

C = 10

E (S2) = 1.32086

E (S|79) = 1.20628

Gain (79) = 0.33037

51

Since Gain (79) > Gain (55), then choose splitting point as 79. Obtained incomplete tree

(figure 4.2):

Fig 4.2 Partial Tree Constructed 1

For Availability ≤ 79, from table:

 For Availability ≤ 52, Classification = Poor (27 / 3)

Now the incomplete tree looks as shown in figure 4.3

Fig 4.3 Partial Tree Constructed 2

In the remaining table for Availability > 52, then

P = 29

A = 34

E = 0.99545

Now, arrange the remaining table in ascending order, according to Response Time (RT).

Options for T: 825 and 1730

52

Choosing T = 825:

For S1 (RT ≤ 825),

P = 2

A = 51

E (S1) = 0.23181

For S2 (RT > 825), then

P = 6

A = 51

E (S2) = 0.97095

E (S|825) = 0.34913

Gain (825) = 0.64632

Now choosing T = 1730,

For S1 (RT ≤ 1730),

P = 5

A = 55

E (S1) = 0.41382

For S2 (RT > 1730),

P = 3

E (S2) = 0

E (S|1730) = 0.39411

Gain (1730) = 0.60134

Since Gain (825) > Gain (1730), then choose splitting point as RT = 825. Obtained

incomplete tree (figure 4.4):

53

Fig 4.4 Partial Tree Constructed 3

For RT ≤ 825, from the remaining table

 For Reliability (Rel) ≤ 80 : Classification = Average (48)

 For Rel > 80, from remaining table then

For Av ≤ 64 : Classification = Poor (2)

 For Av > 64 : Classification = Average (3)

For RT > 825, from the remaining table

 For Rel > 78 : Class = Poor (2)

 For Rel ≤ 78, from the remaining table

 For RT ≤ 1730 : Classification = Average (5 / 1)

 For RT > 1730 : Classification = Poor (3)

Obtained incomplete tree (figure 4.5):

54

Fig 4.5 Partial Tree Constructed 4

For Av > 79, from the remaining table

P = 11

A = 156

G = 96

C = 10

E = 1.32086

Now, arrange the remaining table in ascending order according to Throughput (Tp).

Options for T: 8.2 and 21.4

Choosing T = 8.2:

For S1 (Tp ≤ 8.2),

P = 3

A = 68

G = 35

E (S1) = 1.08427

For S2 (Tp > 8.2),

A = 33

G = 61

55

C = 10

E (S2) = 1.3018

E (S|8.2) = 1.192

Gain (8.2) = 0.12886

Now choosing T = 21.4,

For S1 (Tp ≤ 21.4),

P = 3

A = 100

G = 90

E (S1) = 1.09811

For S2 (Tp > 21.4),

A = 1

G = 6

C = 10

E (S2) = 1.22104

E (S|21.4) = 1.10807

Gain (21.4) = 0.21279

Since Gain (8.2) < Gain (21.4), then choose splitting point as Tp = 21.4. Obtained incomplete

tree (figure 4.6):

56

Fig 4.6 Partial Tree Constructed 5

For Tp > 21.4, from the remaining table

 For Successability (Su) ≤ 95 : Classification = Good (6 / 1)

 For Su > 95 : Classification = Excellent (11 / 1)

Obtained incomplete tree (figure 4.7):

Fig 4.7 Partial Tree Constructed 6

For Tp ≤ 21.4, from the remaining table

57

P = 3

A = 100

G = 90

E = 1.09811

Now, arrange the remaining table in ascending order according to RT.

Options for T: 725 and 2835

Choosing T = 725:

For S1 (RT ≤ 725),

A = 87

G = 90

E (S1) = 0.9998

For S2 (RT > 725),

P = 3

A = 13

E (S2) = 0.69621

E (S|725) = 0.97463

Gain (725) = 0.12348

Now choosing T = 2835,

For S1 (RT ≤ 2835),

A = 99

G = 90

E (S1) = 0.99836

For S2 (RT > 2835),

P = 3

A = 1

E (S2) = 0.81128

58

E (S|2835) = 0.99448

Gain (2835) = 0.10363

Since Gain (725) > Gain (2835), then choose splitting point as RT = 725. Obtained

incomplete tree (figure 4.8):

Fig 4.8 Partial Tree Constructed 7

For RT > 725, from the remaining table

 For RT ≤ 2835 : Classification = Average (12)

 For RT > 2835 : Classification = Poor (4/1)

Obtained incomplete tree (figure 4.9):

59

Fig 4.9 Partial Tree Constructed 8

For RT ≤ 725, from the remaining table

A = 87

G = 90

E = 0.9998

Now, arrange the remaining table in ascending order according to Rel.

Options for T: 60 and 67

Choosing T = 60:

For S1 (Rel ≤ 60),

A = 6

G = 42

E (S1) = 0.54356

For S2 (Rel > 60),

A = 81

G = 48

E (S2) = 0.95226

E (S|60) = 0.84143

60

Gain (60) = 0.15837

Now choosing T = 67,

For S1 (Rel ≤ 67),

A = 20

G = 58

E (S1) = 0.82128

For S2 (Rel > 67),

A = 67

G = 32

E (S2) = 0.52666

E (S|67) = 0.86971

Gain (67) = 0.13009

Since Gain (60) > Gain (67), then choose splitting point as Rel = 60. Obtained incomplete

tree (figure 4.10):

Fig 4.10 Partial Tree Constructed 9

61

For Rel ≤ 60, from the remaining table

 For Tp > 3.1 : Classification = Good (25)

 For Tp ≤ 3.1, from the remaining table

 For Av > 86 : Classification = Good (11)

 For Av ≤ 86, from the remaining table

 For Rel > 53 : Classification = Average (4)

 For Rel ≤ 53, from the remaining table

 For RT > 375 : Classification = Average (2)

 For RT ≤ 375 : Classification = Good (6)

Obtained incomplete tree (figure 4.11):

Fig 4.11: Partial Tree Constructed 10

For Rel > 60, from the remaining table

 For Tp ≤ 8.1 : Classification = Average (55)

 For Tp > 8.1, from the remaining table

62

 For RT ≤ 127 : Classification = Good (24/1)

 For RT > 127, from the remaining table

 For Rel ≤ 67 : Classification = Good (7)

 For Rel > 67, from the remaining table

 For Tp ≤ 13.3 : Classification = Average (11/2)

 For Tp > 13.3 : Classification = Good (15/1)

Now all the instances of the table have been classifies and hence the final and complete tree

is obtained as in (figure 4.12):

Fig 4.12: Partial Tree Constructed 11

With the help of this tree any new service can be classified according to its non function

attributes of quality of service into four classes. And using these classifications service

63

requester can choose the most appropriate Web Services matching to the requirements of the

same.

The algorithm is tested for many real data set against its training data set, where the result of

the algorithm which puts the web services in one of the four classes namely EXCELLENT,

GOOD, AVERAGE and POOR is checked manually by calculating the WSRF value for the

web services based on its quality metrics. The class arrived using the WSRF value and

algorithm is same all the time. This proves the tested data or unsupervised data works fine

with the trained data set.

4.6 Summary

In the initial stages of service-oriented computation, in order to obtain a suitable Web

Services one has to search into UDDI Business Registries (UBRs). Since the numbers of

Web Services available were very less and countable in hundreds, there was no requirement

for any advanced web-service search engine. But now, numbers of Web Services in the

registry are increasing rapidly and hence, access points to the registries, i.e. WSDL, are no

more a meager as there are a lot of web registries, containing Web Services, are available on

the internet.

Using Entropy-based Discretization, classification of Web Services could be done easily.

Using this classification the requester could choose the most suitable Web Services

according to his/her functional requirements and QoS preferences. Using Entropy-based

Discretization a tree is obtained, in which the nodes belong to the QoS attributes. Tracing

these nodes, could reach leave nodes, which represent the classification of the Web Services

into one of the four classes. In this chapter classification algorithm for Web Service

Selection with specific QoS is explained in detail and in the next chapter the implementation

of the same is discussed.

64

CHAPTER 5

Implementation of Agent for WSS using Entropy Discretization

method.

In order to obtain a better reach for any Web Service amongst consumers involves making

the consumer‟s task of discovering that Web Service easier and letting the consumer know

about how good the Web Services is [41, 42]. Data mining can help us accomplish both the

above mentioned goals. Data mining can enable us to simplify Web Services discovery by

employing data mining techniques such as text mining on the UDDI registry to help the

consumer find the service he needs, by mining on the list of different services available in the

UDDI registry[42,43]. The data mining classification algorithm is applied in the QoS

database which can help, to determine how good a Web Services is.

Classification is the process of determining to which group/class a new object belongs. Given

a set of objects (training set), where each object contains a set of characteristics and a class.

Classification finds a model based on the training set such that the class of previously unseen

objects (test set) could be determined (as accurately as possible) using the values of their

characteristic attributes. The use of classification to determine the quality of Web Services

have been explained further and implemented in this chapter.

In order to classify Web Services a decision tree classifier is constructed using Entropy based

discretization. Decision tree classifier is a classification model in data mining which

represents the class to object relationship in the form of a tree and Entropy based

discretization is a data transformation technique which is used when certain algorithms

require only discrete or nominal values. This involves dividing the possible range of values

into sub ranges called buckets or bins.

65

5.1 Decision tree construction

The entropy based discretization is used to construct the decision tree using a variant of the

ID3 algorithm [44, 45]. ID3 algorithm looks through the attributes of the training set and

extorts the attribute that best splits the given examples. If the attribute perfectly classifies the

training sets then the ID3 algorithm stops; else it recursively executes on the split subsets to

get their "best" splitting attribute. The algorithm exploits a greedy search technique. The

“best” splitting attribute is determined by means of entropy and information gain [46,47].

The variant of ID3 that has been used is modified to handle continuous attributes in the test

and training sets. The pseudo code of the algorithm "Decision Tree construction for

Continuous Attributes" is as follows,

66

Once the decision tree has been constructed using the algorithm, the decision tree could be

used to classify new Web Services based on their QoS parameters namely response time,

availability, throughput, success ability and reliability. The function details used for this

algorithm implementation in given in APPENDIX B -1

The time complexity of this algorithm is O (mn
2
), where m is the number of records and n is

the number of attributes. This is because, there are m records and at a time and for computing

information gain, it has to consider each of the n attributes. So in a particular level, the

complexity is O(mn). In the worst case, there will be a split corresponding to each of the n

attributes. So altogether it becomes like O (mn
2
) in the worst case. But here as the numeric

data are split based on statistical mean the number of levels in the worst case is log2m. So the

time complexity becomes O (mnlog2m).

The QoS information is stored in the UDDI registry and is updated by service providers in

case of amendments. The service discovery agent obtains the QoS information from the

UDDI registry, stores them in its database and classifies the Web Services based on its QoS

information.

Therefore, a service requestor who is looking for a service can send a Web Service discovery

request to the agent with his QoS requirements and specification. The agent will mine the

QoS attribute of all available Web Services belonging to that particular functional domain by

applying modified ID3 algorithm and suggest the available services which meet the

requestor‟s requirements as shown in figure 5.1.

67

Fig 5.1 Agent based architecture for Web Services selection[49].

The same dataset which is used in the previous chapter is taken for consideration in this case

also. The main functions that are used for this coding and partial code is given in

APPENDIX – B-1 and the database is given in APPENDIX – C.

5.1.1 Decision tree rule induction algorithm using entropy based discretization.

Design:

The design uses a variation of ID3 algorithm to induce the decision tree which enable

decision tree classification for continuous datasets. ID3 algorithm has been used because of

its quick build time and accuracy comparable to that of other algorithms like C4.5 for

numeric datasets. ID3 inherently uses entropy based discretization for creating pure bins out

of the training dataset.

Implementation:

The Java based implementation of this algorithm has been carried out and results of the same

have been recorded. The result consists of a decision tree which is represented in the form of

rules. This java program is also capable of accepting inputs of QoS parameter test values

68

from the user, traversing the decision tree and giving out the classification of the test Web

Services. The resultant tree will be used as input for classification Web Service whose design

is discussed in the next paragraph. Output of the Decision tree rule induction algorithm is

shown in figure 5.2 and Decision tree traversal and classification using Decision tree rule

induction algorithm is shown in figure 5.3

 Fig 5.2 Screenshot showing output of the Decision tree rule induction algorithm

69

Fig 5.3 Decision tree traversal and classification using Decision tree rule induction

algorithm.

5.1.2 QoS Classification Web Services

Design:

The rules generated using the Decision tree rule induction algorithm are consolidated and

made into SOAP based Web Services, so that any web client can choose a Web Service with

particular QoS.

Implementation:

The Web Services use Java API for XML Web Services (JAX-WS) which is a significant

part of the Java EE 5 and EE 6 platforms. The Web Services is deployed on the glassfish

server. On successful deployment, the Web Services is then tested using the IDE‟s tester

page which runs on the local browser. As values for these attributes are entered, as in figure

70

5.4, the tracing for QoS classification is done, and final class of the Web Service is displayed

as in figure 5.5

Fig 5.4 IDE‟s tester page for the QoS classification Web Services.

Fig 5.5 IDE’s Method invocation trace for the QoS classification Web Services.

71

Clippings of the SOAP request, and SOAP response for the QoS classification Web Services

is given below,

The WSDL file for this Web Service is given in APPENDIX B-2.

72

5.2 Summary

Web Services are becoming increasingly used and a large number of consumers are building

their business solutions using Web Services technology[50,51,52]. The need for QoS

specifications for Web Services have arisen due to

1. Consumer‟s prospect for superior Web Services performance.

2. Services provider‟s obligation to provide high quality service so as to improve the

usability and utility of their services which in turn decides their standing in the

market.

This chapter dealt with the design and implementation of a QoS classifier Web Service. This

classifier Web Service takes QoS parameters as input and applies a entropy based

discretization algorithm and yields the classification of Web Services into different classes

based on QoS attributes to the web based client.

The resultant output is a decision tree rules. In the next chapter, the output of the data mining

classification algorithm is composed with visualization Web Service get more relevant

information in the form of visual tree. In the tree structure, the web service client will get to

know, how different attributes play role in deciding the class of the web service.

.

73

CHAPTER 6

Implementation of Agent for WSS through Web Services

Composition

Data mining helps to extract the useful information from the data, which can be useful to

make practical interpretations for the decision making. In the previous chapter the agent web

service could classify the web services into different groups based on their QoS values. The

results of the classification web service can be better understood in the form of trees, so the

visualization software is exported as Web Services. The SOAP response of the classification

web service will be given as SOAP request to the visualization web service to generate final

output in forms of trees. In this chapter, the processes of data mining namely classification

and visualization are made into Web Services and composed. The composition of Web

Services is done through BPEL engine is discussed in detail.

6.1 Composition of Web Services

A novel way of mining QoS attribute of Web Services have been done using the principles of

composition of Web Services. A Web Service is used to implement J48 classification

algorithm and will output a decision tree rules[55,56,57]. Another Web Service is used which

will generate the decision tree output from the decision tree rules. The decision tree output

will enable a client to understand the effect of various QoS parameter visually on deciding

the class of the Web Service. Since both the Web Services are to be invoked one after the

other, BPEL Engine will be the natural choice for hosting the Web Services that are to be

composed.

Web Services and SOA (Service Oriented Architecture), viewed in a process-oriented

perspective, need a language in order to define how services can be composed into business

74

processes [68]. Such definitions would allow describing abstract process definitions as well

as executable processes.

Recently many languages have emerged and proposed in the literature for composition and

execution of Web Services, including: WSCL, XLALNG, WSFL, BPMN, WSCI, BPML and

BPEL4WS[72].

6.1.1 BPEL4WS

The Business Process Execution Language for Web Services (BPEL4WS), which is also

referred to as BPEL, is currently a de facto standard for building, specifying and executing

business processes for Web Services composition and orchestration.

BPEL composes Web Services to get a specific result. “The composition result is named a

process, involved services are called partners, and message exchange is referred to as an

activity. In other words, a process contains a set of activities and it invokes external partner

services using a WSDL interface [61,66]. “

“A BPEL process defines the order in which involved Web Services are composed, either in

sequence or in parallel. BPEL allows describing conditional activities. An invocation of a

Web Services can for example rely on the result of another Web Service's invocation. With

BPEL, it is possible to create loops, declare variables, copy and assign values as well as to

use fault handlers. Complex business processes can be built algorithmically by using all these

constructs. It can be helpful to describe business processes graphically through UML

(Unified Modeling Language) activity diagrams [74]. “

BPEL supports two different ways of describing business processes that support

orchestration and choreography [64]:

 Orchestration: “Executable processes allow for specifying the details of business

processes. They follow the orchestration paradigm and can be executed by an

orchestration engine.”

75

 Choreography: “Abstract business protocols allow specification of the public

message exchange between parties only. They do not include the internal details of

process flows and are not executable. They follow the choreography paradigm [69].”

The role of BPEL is to define a new Web Services by composing a set of existing services

through a process-integration type mechanism with control language constructs[70].

A process consists of a set of activities. It interacts with external partner services through a

WSDL interface [61]. To define a BPEL process,

1. “A BPEL source file (.bpel) which describes the execution order, activities and

conditional behaviors are needed.“

2. “A process interface (.WSDL) that defines the ports, the namespace, partner link

types, operations, and messages which are required to determine process activities,

and WSDL files[80] are needed in order to create a valid, executable BPEL

definition.”

The BPEL process element is the root element of BPEL process definition. It has a name

attribute and it is used to specify the definition related namespaces and using BPEL offers

many interesting benefits[74].

6.2 WEKA

WEKA comes with an API. Using this API, most of WEKA‟s tasks can be exported to be

used in other programs and software[63,73]. The classes for the data mining task can be

added to the library. These classes are then used to train the dataset and give the results

accordingly.

WEKA uses flat file format for reading the database. ARFF (Attribute-Relation File Format)

is an ASCII format that stores the set of attributes of data.

A simple ARFF file is shown here

@RELATION car

76

@ATTRIBUTE engine-capacity NUMERIC

@ATTRIBUTE horse-power NUMERIC

@ATTRIBUTE millage NUMERIC

@ATTRIBUTE top-speed NUMERIC

@ATTRIBUTE class {car-small, car-medium, car-high-end}

@DATA

4000,1100,4,364, car-high

2000,700,10,220,car-medium

1100,300,16,180, car-small

First the attributes, engine-capacity, horse-power, millage and top-speed are declared and

then the classes are specified. Then add the data in the order attributes are dclared. The

attributes can be of various type:

 Numeric

 String

 <nominal-specs>

 date [<date-format>]

WEKA loads the data from the ARFF file as instances; the class for WEKA instances is

present in:

WEKA.core.instances

The input data file is first read using the java‟s FileReader and then the a new class for the

instances is declared and the read content from the filereader is added to it.

“data = new FileReader(file);
instances = new Instances(data);

// the last attribute is made the index

instances.setClassIndex(instances.numAttributes()-1);“

Now these instances can be used to train classifiers or create clusters or some other data

mining.

Since out notion is to develop agent Web Services for Web Services selection through

distributed data mining, apply the classification algorithm of WEKA software on the data set

that is already used. the QoS dataset is available as CSV (Comma Separated File) file, after

this classification process of data mining is done through the Web Services another Web

77

Services for visualization purpose is called known as Graphviz software, where the results of

the classification Web Services is given in tree form.

WEKA API has classes for J48 tree. First a classifier using the J48 class is created and the

instance data. Then the training sets and training results are shown. A small snippet for

creating a classifier and showing the result of the J48 tree classification using the WEKA api

is shown below:

“import WEKA.classsifiers.trees.J48;

import WEKA.core.instances;

//get the data from the file

file_content = new FileReader(file);

data_instance = new Instances(data_content);

//the last attribute is make the index

data_instance.setClassIndex(data_instance.numAttributes()-1);

//create a new classisfier using the J48 class

J48 classifier = new J48();

//build the classifier from data_intances

classifier.buildClassifier(data_instances);

//print the classifier results

System.out.println(“classifier.toString());”

78

The output of the above code for a file containing QoS attributes is as follows

“------------------

Response Time <= 306.8

| Throughput <= 9

| | Documentation <= 32

| | | Response Time <= 125

| | | | Availability <= 88: AVERAGE (5.0)

| | | | Availability > 88: GOOD (3.0)

| | | Response Time > 125: AVERAGE (46.0/1.0)

| | Documentation > 32

| | | Throughput <= 3.8

| | | | Successability <= 98

| | | | | Compliance <= 89

| | | | | | Documentation <= 87: AVERAGE (10.0)

| | | | | | Documentation > 87

| | | | | | | Compliance <= 78: GOOD (2.0)

| | | | | | | Compliance > 78: AVERAGE (4.0/1.0)

| | | | | Compliance > 89

| | | | | | Successability <= 96

| | | | | | | Latency <= 7.6: GOOD (7.0)

| | | | | | | Latency > 7.6

| | | | | | | | Throughput <= 1.2: AVERAGE (2.0)

| | | | | | | | Throughput > 1.2: GOOD (4.0/1.0)

| | | | | | Successability > 96: AVERAGE (3.0)

| | | | Successability > 98: GOOD (6.0)

| | | Throughput > 3.8: GOOD (15.0/1.0)

| Throughput > 9

| | Latency <= 63.33

| | | Documentation <= 11

| | | | Throughput <= 15.3

| | | | | Compliance <= 89

79

| | | | | | Throughput <= 13.3: AVERAGE (10.0/1.0)

| | | | | | Throughput > 13.3: GOOD (4.0/1.0)

| | | | | Compliance > 89: GOOD (3.0)

| | | | Throughput > 15.3

| | | | | Throughput <= 25.6: GOOD (23.0)

| | | | | Throughput > 25.6

| | | | | | Response Time <= 136.94: GOOD (3.0)

| | | | | | Response Time > 136.94: EXCELLENT (3.0)

| | | Documentation > 11

| | | | Reliability <= 73

| | | | | Latency <= 3.63

| | | | | | Reliability <= 67

| | | | | | | Best Practices <= 79: EXCELLENT (2.0)

| | | | | | | Best Practices > 79: GOOD (2.0)

| | | | | | Reliability > 67: EXCELLENT (8.0/3.0)

| | | | | Latency > 3.63: GOOD (27.0/2.0)

| | | | Reliability > 73: EXCELLENT (2.0)

| | Latency > 63.33: AVERAGE (7.0/1.0)

Response Time > 306.8

| Response Time <= 1041

| | Latency <= 50

| | | Documentation <= 33

| | | | Throughput <= 18.6: AVERAGE (27.0/2.0)

| | | | Throughput > 18.6: GOOD (3.0/1.0)

| | | Documentation > 33

| | | | Successability <= 68: AVERAGE (3.0)

| | | | Successability > 68

| | | | | Documentation <= 42

| | | | | | Throughput <= 9.6: AVERAGE (4.0)

| | | | | | Throughput > 9.6: GOOD (3.0)

| | | | | Documentation > 42: GOOD (7.0)

80

| | Latency > 50

| | | Throughput <= 1.9: POOR (8.0/1.0)

| | | Throughput > 1.9

| | | | Response Time <= 411.83: AVERAGE (8.0)

| | | | Response Time > 411.83

| | | | | Documentation <= 40: POOR (9.0/1.0)

| | | | | Documentation > 40: AVERAGE (5.0/1.0)

| Response Time > 1041: POOR (22.0/1.0)

Number of Leaves: 35

Size of the tree: 69

This API is going to be used to export these classes as Web Services. The data file will be

uploaded to the server which contains the mining code. The SOAP response will have the

data mining result.

The output of this SOAP web service which gives the result of classification process is given

as input to another web service to view the result of classification in the tree format with the

help of BPEL execution engine. Graphviz the web service used for visualization process is

explained in the following paragraph.

6.3 Graphviz

Graphviz or Graphic Visualization Software is an open source tool for drawing graphs

specified in dot language. “This free software was initiated by AT&T Labs Research. It is

released under the Eclipse Public License.”

“DOT is a plain text graph description language used by graphviz to plot directed or

undirected graphs. It has a very simple syntax and easy to parse. The graphviz DOT files can

81

easily be generated using computer programs because of the simplicity of the syntax. The file

extensions of dot files is .dot.”

A sample of a dot file can be seen here.

digraph example {

 // The label attribute can be used to change the label of a node

 N0 [label="Foo"];

 // Here, the node shape is changed.

 N1 [shape=box color=blue];

 // These edges both have different line properties

 N0 -> N1 -> N2 [color=blue];

 N1 -> N3 [style=dotted];

 }

Here the nodes and the connections between the nodes are explained. Each node can have

various attributes like labels, shape, color etc. Each connection can also have attributes, like

style, color, label etc.

The output of the above code is:

Fig 6.1 Graphviz Output

82

The output of the J48 tree will be available in dot format and is passed to theinput of the

visualization service and get the image of the tree as a png and save it. This JFrame image is

shown in figure 6.1.

6.4 Implementation of J48 Classifier Web Service

In data mining classification is the problem of identifying the sub-population to which new

observation belong. Thus the requirement is that new individual items are placed into groups

based on quantitative information on one or more measurements based on the training set in

which previously decided groupings are already established.J48 classifier is used to generate

a decision tree for classification.[65] This service gives the J48 classification decision rules

for the given QoS data. The SOAP request and SOAP response messages are as follows.[62]

Output

SOAP Request

“<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlSOAP.org/SOAP/envelope/">

<S:Header/>

<S:Body>

<ns2:execute xmlns:ns2="http://source/">

<file>/Users/susila/Work/WEKA/data/QoS.arff</file>

</ns2:execute>

</S:Body>

</S:Envelope> “

83

SOAP Response

“<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlSOAP.org/SOAP/envelope/">

<S:Body>

<ns2:executeResponse xmlns:ns2="http://source/">

<return>------------------

Response Time <= 306.8

| Throughput <= 9

| | Documentation <= 32

| | | Response Time <= 125

| | | | Availability <= 88: AVERAGE (5.0)

| | | | Availability > 88: GOOD (3.0)

| | | Response Time > 125: AVERAGE (46.0/1.0)

| | Documentation > 32

| | | Throughput <= 3.8

| | | | Successability <= 98

| | | | | Compliance <= 89

| | | | | | Documentation <= 87: AVERAGE (10.0)

| | | | | | Documentation > 87

| | | | | | | Compliance <= 78: GOOD (2.0)

| | | | | | | Compliance > 78: AVERAGE (4.0/1.0)

| | | | | Compliance > 89

| | | | | | Successability <= 96

| | | | | | | Latency <= 7.6: GOOD (7.0)

| | | | | | | Latency > 7.6

| | | | | | | | Throughput <= 1.2: AVERAGE (2.0)

| | | | | | | | Throughput > 1.2: GOOD (4.0/1.0)

| | | | | | Successability > 96: AVERAGE (3.0)

| | | | Successability > 98: GOOD (6.0)

84

| | | Throughput > 3.8: GOOD (15.0/1.0)

| Throughput > 9

| | Latency <= 63.33

| | | Documentation <= 11

| | | | Throughput <= 15.3

| | | | | Compliance <= 89

| | | | | | Throughput <= 13.3: AVERAGE (10.0/1.0)

| | | | | | Throughput > 13.3: GOOD (4.0/1.0)

| | | | | Compliance > 89: GOOD (3.0)

| | | | Throughput > 15.3

| | | | | Throughput <= 25.6: GOOD (23.0)

| | | | | Throughput > 25.6

| | | | | | Response Time <= 136.94: GOOD (3.0)

| | | | | | Response Time > 136.94: EXCELLENT (3.0)

| | | Documentation > 11

| | | | Reliability <= 73

| | | | | Latency <= 3.63

| | | | | | Reliability <= 67

| | | | | | | Best Practices <= 79: EXCELLENT (2.0)

| | | | | | | Best Practices > 79: GOOD (2.0)

| | | | | | Reliability > 67: EXCELLENT (8.0/3.0)

| | | | | Latency > 3.63: GOOD (27.0/2.0)

| | | | Reliability > 73: EXCELLENT (2.0)

| | Latency > 63.33: AVERAGE (7.0/1.0)

Response Time > 306.8

| Response Time <= 1041

| | Latency <= 50

| | | Documentation <= 33

| | | | Throughput <= 18.6: AVERAGE (27.0/2.0)

| | | | Throughput > 18.6: GOOD (3.0/1.0)

| | | Documentation > 33

85

| | | | Successability <= 68: AVERAGE (3.0)

| | | | Successability > 68

| | | | | Documentation <= 42

| | | | | | Throughput <= 9.6: AVERAGE (4.0)

| | | | | | Throughput > 9.6: GOOD (3.0)

| | | | | Documentation > 42: GOOD (7.0)

| | Latency > 50

| | | Throughput <= 1.9: POOR (8.0/1.0)

| | | Throughput > 1.9

| | | | Response Time <= 411.83: AVERAGE (8.0)

| | | | Response Time > 411.83

| | | | | Documentation <= 40: POOR (9.0/1.0)

| | | | | Documentation > 40: AVERAGE (5.0/1.0)

| Response Time > 1041: POOR (22.0/1.0)

Number of Leaves: 35

Size of the tree: 69

</return>

</ns2:executeResponse>

</S:Body>

</S:Envelope> “

6.5 Implementation of Visualization Web Service

Visualization Web Service is designed, which will take dot string input file and will produce

tree image as output using grapviz. Since the client can have tree view, it enables the client to

see the impact of QoS parameter in deciding the class of the Web Service in the form of tree.

The Web Service code is as:

86

<code>

package source;

import java.awt.BorderLayout;

import java.awt.Color;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.swing.JFrame;

import WEKA.gui.treevisualizer.PlaceNode2;

import WEKA.gui.treevisualizer.TreeVisualizer;

@WebService()

public class J48Visualize {

 @WebMethod(operationName = "operation")

 public String operation(@WebParam(name = "cls_data")

 String cls_data) {

 TreeVisualizer tv = new TreeVisualizer(null, cls_data, new PlaceNode2());

 JFrame jf= new JFrame("WEKA Classifier Tree");

 jf.setAlwaysOnTop(true);

 jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 jf.setSize(800,600);

 jf.getContentPane().setLayout(new BorderLayout());

87

 jf.getContentPane().add(tv, BorderLayout.CENTER);

 jf.setVisible(true);

 tv.setBackground(Color.white);

 tv.fitToScreen();

 return cls_data;

 }

}

</code>

The J48 classifier is going to classify the data and give us an output in a string format. This

Web Services will call another method on the classify class which will convert the output of

the J48 tree into a dot file. This output can then be used in graphviz to generate a graph.

The Web Service is described here:

<code>

package source;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import WEKA.classifiers.trees.J48;

import WEKA.core.Instances;

@WebService()

88

public class J48data {

 @WebMethod(operationName = "mine")

 public String mine(@WebParam(name = "file")

 String file) throws IOException, Exception {

 Instances data;

 data = new Instances(new BufferedReader(new FileReader(file)));

 data.setClassIndex(data.numAttributes() - 1);

 J48 cls = new J48();

 cls.buildClassifier(data);

 return cls.graph();

 }

}

</code>

This webservice works as the earlier described earlier classification webservice. It just

returns the J48 tree in a dot format.

Invocation of this webservice

SOAP Request

<?xml version="1.0" encoding="UTF-8"?>

 <S:Envelopexmlns:S="http://schemas.xmlSOAP.org/SOAP/envelop"><S:

Header/>

 <S:Body>

 <ns2:mine xmlns:ns2="http://source/"><file>/Users/susila/Work/WEKA-

3-6-4/data/QoS.arff</file></ns2:mine>

</S:Body>

</S:Envelope>

89

SOAP Response

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlSOAP.org/SOAP/envelope/"><S:Body>

<ns2:mineResponse xmlns:ns2="http://source/"><return>digraph J48Tree

 {

N0 [label="Response Time"]

N0->N1 [label="<= 388.5"]

N1 [label="Throughput "]

N0->N2 [label="> 388"]

N2 [label="Response Time"]

N2->N3 [label="<= 104.1"]

N3 [label="Latency”]

N2->N4 [label="> 104.1"]

N4 [label="POOR” shape=box style=filled]

N3->N5 [label="<=67"]

N5 [label="Documentation”]

N3->N6 [label="> 67"]

N6 [label="Documentation”]

N5->N7 [label="<=33"]

N7 [label="AVERAGE " shape=box style=filled]

N5->N8 [label="<33"]

N8 [label="Successability”]

N8->N9 [label="<=98"]

N8 [label="Successability”]

N8->N10 [label=">98"]

N10 [label="GOOD " shape=box style=filled]

N1->N11 [label="<= 31"]

N8 [label="Documentation”]

N1->N12 [label=">31"]

N12 [label="Latency”]

90

N12->N13 [label="<= 63.3"]

N13 [label="Documentation”]

N13->N15 [label=">11"]

N15 [label="Realiability”]

N15->N16 [label=">73"]

N16 [label="EXCELLENT " shape=box style=filled] }

</return>

</ns2:mineResponse>

</S:Body>

</S:Envelope>

The SOAP response is as desired , the dot format of the tree.

This response now is input to the visualization service, The desired Tree is got in an image

format.

Calling the visualization service:

SOAP Request

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlSOAP.org/SOAP/envelope/"><S:Header/>

<S:Body>

<ns2:operation xmlns:ns2="http://source/"><cls_data>digraph J48Tree {

N0 [label="Response Time"] N0->N1 [label="<= 388.5"]

N1 [label="Throughput "]

N0->N2 [label="> 388"]

N2 [label="Response Time"]

N2->N3 [label="<= 104.1"]

N3 [label="Latency”]

N2->N4 [label="> 104.1"]

91

N4 [label="POOR” shape=box style=filled]

N3->N5 [label="<=67"]

N5 [label="Documentation”]

N3->N6 [label="> 67"]

N6 [label="Documentation”]

N5->N7 [label="<=33"]

N7 [label="AVERAGE " shape=box style=filled]

N5->N8 [label="<33"]

N8 [label="Successability”]

N8->N9 [label="<=98"]

N8 [label="Successability”]

N8->N10 [label=">98"]

N10 [label="GOOD " shape=box style=filled]

N1->N11 [label="<= 31"]

N8 [label="Documentation”]

N1->N12 [label=">31"]

N12 [label="Latency”]

N12->N13 [label="<= 63.3"]

N13 [label="Documentation”]

N13->N15 [label=">11"]

N15 [label="Realiability”]

N15->N16 [label=">73"]

N16 [label="EXCELLENT " shape=box style=filled] }

</cls_data></ns2:operation>

</S:Body>

</S:Envelope>

The output is the desired tree which is shown in figure 6.2

92

Fig 6.2 J48 Visualization service output

6.6 Composition Of J48 Classifier Web Service and Visualization Web

Service

The output of J48 classification Web Service should be the input of the visualization service.

BPEL visual editor available in Netbeans 6.7.1 is used to make the Web Services talk to each

other. The process flow is shown in figure 6.3.

93

Fig 6.3 BPEL process

The “J48Data” is the data mining service and the “J48Visualize” is the visualization service.

The partner links are described using the WSDL file of both of these services.

First, the data mining service is discovered and called by uploading a file to it.

The ouput of the “reply” is then “assigned” to the input of the J48Visualization service.

94

The J48Visualization service is then invoked using the output of the mining service.

The Variable used:

 mineIn: the input to the mining Web Services

 mineOut: the return of the mining Web Services

 operationIn: the input to the visualization service

The BPEL file of the process is shown in figure 6.4.

The composite application of the BPEL module will look like this.

Fig 6.4 Composite application of the BPEL module

The SOAP request is sent from the J48data port which invokes the J48Data service. The

output of that service then invokes the J48Visualize service. The code details of this

composition Web Service is given in APPENDIX B-3

6.6 Summary

In this chapter a novel way of WSS using QoS attributes based on composition of Web

Services have been illustrated. J48 classification algorithm is exported as Web Service whose

request contain QoS attribute in ARFF. The resultant output is a decision tree rules. The

95

output of the data mining algorithm is available to us in both machine readable xml format

and normal formatted String. The machine readable format of the output can be further

processed to mine more data or get more relevant information in the form of visual tree by

passing it to another Web Services. The output of the J48 tree data mining service is refined

to give the output in dot format. Then pass the output of this service to the visualization

service, which in turn will give us the visualized, graphed output of the tree.

A BPEL process is defined to compose above Web Services. First the QoS ARFF file is sent

to the data mining service, which then gives the output in the dot format. Then the

visualization service is invoked and in the output of the data mining service is assigned as the

input for the visualization service. The visualization service then draws the graph and gives

tree output.

So far this thesis discussed about selection of Web Service using QoS attribute of SOAP

enabled Web Services. there is yet another Web Service known as REST Web Service which

is also getting wide popularity in distributed enterprise applications nowadays[75]. If a

technique is available to measure the performance metrics of REST and SOAP Web Services

under identical operational environment, then that will be of immense help to the clients for

choosing the appropriate service for his application in SOA. In the next chapter, an attempt is

made to measure the QoS value of both REST and SOAP Web Service for a database driven

application.

96

CHAPTER 7

Implementation of Agent for Measurement of QoS parameter

using SOAPUI

Web Services are the most emerging distributed applications which can be published and

invoked using standardized protocols over the public or private registries. Due to rapid

development of the Web, there are numerous functionally similar Web Services available. To

select one among the so many functionally similar Web Services, the non-functional criteria

such as Quality of Service (QoS) will be considered [65,66]. However, most of the clients are

not experienced enough to acquire the best selection of Web Services based on its described

QoS properties.

One of the QoS attributes of Web Services which is considered to be most crucial for

Web Services consumers is throughput of the Web Services. In order to create a new

repository of quality metric for all the Web Services available in particular functional

domain, an agent web service is designed. This will aid the Web Service users to choose the

Web Service with high quality of parameter. Contacting this agent web service will assist

with analyzed throughput of all Web Services in that functional domain [67]. This agent web

service makes use of SOAPUI [95] software for checking the throughput attribute of the Web

Services. Throughput is defined as the measure of maximum requests that can be handled in

a given unit of time. To analyse the throughput of Web Services, SOAPUI software is used

which is explained in the following paragraphs. In order to enable to create a new repository

for all the Web Services hosted in any particular functional domain, a novel approach for the

measurement of throughput is suggested in this chapter.

97

7.1 SOAPUI

SOAPUI is a free tool for SOAP testing. It has a Graphical User Interface that is very easy

and simple to use and it includes advanced features like creation and immediate execution of

practical mechanization, security, regressions and load testing. It provides all the following

features.

 All inclusive performance testing.

 Easy to use GUI.

 Efficient service simulation.

 Comprehensive reporting features.

 Advanced functionality.

7.2 Features of SOAPUl

Service Simulation: Mock Services enable us to generate and reproduce strong and

multilayered tests of Web Services before they are implemented. The users can now test and

use the services without constructing them.

Functional Testing: It provides automated functional, security regression and performance

testing and enables the creator to certify their applications.

Analytics: Helps in making extensive testing reports that can be transferred to any system

and made to order.

Load Testing: Provides the most sophisticated testing mechanisms for efficient and

extensive testing of Web Services.

 Performance Testing: Performance testing involves an extensive array of tasks in Web

Services testing and is an area of great perplexity.

98

Load testing (or Performance Testing) is an essential part of the creating cycle of any service

and ensure that the applications are capable enough of handling extensive loads in agreed

environment resources. Performance Testing measures the number of requests that can be

handled by a service. Performance testing is usually done by two methods- load testing and

stress testing. Load testing involves confirming the agreed response within average limits and

Stress testing involves pushing the application beyond the limit to confirm its behavior.

7.3 Agent Implementation using SOAPUI

Client wants to use Weather Forecast Web Service with the best available throughput. Now

Agent checks the UDDI registry to collect all the Weather Forecast Web Services.

Performance testing on these Web Services is done using SOAPUI tool, the log file

generated by the software is converted to mysql database and information is presented to the

client via his interface which aids the client to select the best Web Service in terms of

throughput in the Weather Forecast domain.

SOAPUI runs the load test with as many threads as the system can handle. Numerous loads

can be easily run side by side to verify more advanced situations which may arise in real time

scenario Weather Forecasting Agent Implementation using SOAPUI is shown in figure 7.1.

99

Fig 7.1 Weather Forecasting Agent Implementation using SOAPUI

7.3.1 Weather Forecast Service- Example Service

The Weather API's mentioned below takes the City name or the Zip code as the constraints

and then sends the weather forecast as the response

Weather Forecast API : http://www.webservicex.net/gIobaIweather.asmx?WSDL

7.3.2 Creating Project For Sample API

Step 1: Start SOAPUI

Step 2: Create a new project by selecting File  New Project. The window for new Project

Dialogue box looks as shown in figure 7.2.

Step 3: API name and WSDL / Service name has to be entered in the window that opens.

http://www.webservicex.net/globalweather.asmx?WSDL

100

API Name: Weather API-1

WSDL Link:http://www.webservicex.net/gIobaIweather.asmx?WSDL

Fig 7.2 Snapshot of New Project Dialogue box

The API is authenticated to check if the path is valid. The Snapshot of Load Test

Suite is shown in figure 7.3

Fig 7.3 Snapshot of Load Test Suite

http://www.webservicex.net/globalweather.asmx?WSDL

101

7.3.3 Generating Load TestSuite

Right click on GlobalWeatherSOAP and then Generate TestSuite. Then select GetWeather

API and then check the Generate LoadTest, check box as shown in figure 7.4.

Fig 7.4 Snapshot of Generate Test Suite

7.3.4 Creating an Average Load Test Case for API

Now let us generate a load test under average load

Enter the Virtual Users / Threads- 15

Configure the test to run for 300 Seconds

Hence, Request per second= 15/300 = 0.05 requests/second

102

Fig 7.5 Snapshot of Run Test results

Similarly SOAPUI is used to conduct load test for other two weather API.Snapshot of Run

Test results is shown in figure 7.5

Weather API - 2:http://www.webservicex.net/usweather.asmx?WSDL

Weather API-3: http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL

The Load test statistics can be exported to a CSV or Text file format. The CSV format is

preferred since the PHP code can easily identify the individual records in a .CSV file and

copy them in a MySQL database.

http://www.webservicex.net/usweather.asmx?WSDL
http://wsf.cdyne.com/WeatherWS/Weather.asmx?wsdl

103

7.4 Functioning Model of Agent Architecture

7.4.1 DATABASE CREATION IN MYSQL USING PHPScript

SOAPUI creates a .csv(Comma separated values) file which contains the performance

statistics for the load test conducted on a Web Services. The file is in the format shown

below in the figure 7.6.

Fig 7.6 Load test Statistics Log File

A way needed to be found to enable the data in the log file to be stored in a database so that

performance statistics of many Web Services could be logged and then presented to the user

on request. A MySQL database is easy to generate and gives the flexibility of writing

complicated queries to manipulate the data.

A php script was written to extract the data in the log file and put in a MySQL database

created using phpMyAdmin and WAMP server.

PHP script offers easy extraction from .CSV files. First the contents of the statistics.csv file

are copied the array $rows. PHP automatically recognises that the first line of the csv file is

the column heading and the subsequent rows are the record values.

104

The array is then traversed row by row and an sql query is generated by appending the $q

string with these QoS values. Every time the php code is run, the following SQL commands

are generated automatically as shown in figure 7.7

Fig 7.7 Automatically generated SQL query

The following table is generated in the PHPMyAdmin after the execution of the sql queries.

The table can be edited in PHPMyAdmin itself.SQL table generated in PHPMyAdmin is

shown in figure 7.8

Fig 7.8 SQL table generated in PHPMyAdmin

7.4.2 EXTRACTING QoS ATTRIBUTES FROM MySQL DATABASE

In this implementation of the Agent architecture, the user would be given a detailed

description of the QoS parameters of the various Web Services in the functional domain of

his interest. The user choose the appropriate Web Service based on his QoS requirement

The values of the parameters would be extracted from the database that was created above

and would be displayed to the user. The frontend of the application for this purpose used

105

PHP and HTML for this purpose. The final view of the frontend of the application is shown

below in figure 7.9.

Fig 7.9 Snap shot of database obtained.

The frontend has been developed using PHP and HTML.The table is then populated and

displayed in the HTML body by traversing the array.When client contacts the agent to know

about which is the best Web Services in terms of throughput, then it could see the output

generated by the agent using SOAPUI as in the figure 7.10 below, based on which client

could get to know about which is the best Web Services in terms load test.

Best API

API Name Threads Seconds Request/Sec

Weather API – 1 236 60 4.38

Weather API – 2 164 60 2.73

Weather API – 3 184 60 3.06

Fig 7.10 Snapshot of application front end

7.5 Summary

Due to the recent boost in the popularity of web based services, there has been a sudden

increase in the number of services that provide similar functionalities. These services can

only be distinguished on the basis of their QoS properties. These properties are not

considered by many service selection mechanisms.

106

In this chapter an attempt is made to measure important QoS parameter in real time and to

create a repository of the same using an agent approach. The agent in turn uses SOAPUI to

perform performance testing, results from SOAPUI are stored in the agent, when the user

look for a Web Service in a functional domain the agent present the client with the available

QoS parameters using which the client can make selection.

107

CHAPTER 8

Analysis of QoS attributes for REST and SOAP Web Services

Web Services are internet enabled software components. By composing Web Services

integration of Enterprise applications can be achieved. Web Services are being used

extensively by many enterprises like IBM, Microsoft and oracle every day. SOAP and REST

are very popular types of Web Services. A Hospital Management Application is built using

Web Services that can implement functions like online appointment booking, preparing a

prescription online, online room reservation, storing patient‟s medical history etc. The

application is designed and developed using MySQL workbench, Netbeans, Eclipse, Google

SQL cloud and Google App Engine.

Two different methods are considered for developing a hospital management application.

One method implements this application as REST Web Service and the same is hosted as

SOAP Web Services within the server running on local host. The application designed and

developed using the second method is deployed to the Google App Engine to make it

available online and to facilitate online transactions via the internet. The scalability testing of

the cloud enabled hospital management system has also been done using a custom developed

software tool.

8.1 REST Web Services

REST, Representational State Transfer, is an architectural style of network design. The

resources in a RESTful Web Services are invoked using an URI[85](Unique Resource

Identifier) commonly an URL [86] (Uniform Resource Locator). A representation of the

requested resource is returned and the client is said to be in one state.

When the client accesses other resources present in one resource, through hyperlinks, it is

said to change state. The client changes its state by progressing through the network of web

pages. Hence this system is known as Representational State Transfer.

108

8.1.1 Characteristics of REST

Characteristics of REST

 Platform Independent

 Language Independent

 Simpler when compared to SOAP

 Implements HTTP methods

 Representation of resources is generated by a URL i.e. every resource in the Web

Services is named

 Representations of resources are interconnected thereby enabling state transfer i.e.

client progresses through the network of web pages and transfers from one state to the

other

 Stateless – When a client sends a request it should provide all the details required to

understand and process the request and should not depend on the server‟s memory for

successful completion of the request

 REST uses the HTTP methods GET,POST,PUT,DELETE to perform the

CRUD(Create, Read, Update and Delete) operations

1. GET method is similar to READ

2. POST method is similar to Update

3. PUT is similar to Create

4. DELETE is similar to DELETE

8.1.2 Example of REST Web Services

Consider a project CustomerDB which contains a Customer Database with customers and

discountCodes tables. Every customer can be identified by a unique ID number. The details

of the customers are stored in the customers table. Now to access a resource in the customer

table an URI should be specified.

URI is: http://localhost:8080/CustomerDB/resources/customers/{customerID}

http://localhost:8080/CustomerDB/resources/customers/%7bcustomerID%7d

109

To access any resource in the discountCodes table an appropriate URL should be specified.

URI: http://localhost:8080/CustomerDB/resources/customers/{customerID}/discountCodes/

The URI http://localhost:8080/CustomerDB/resources/customers/ gives the details of all the

customers in the customers table. The client is in one state now. When the client accesses a

particular resource in the customers table through the URI

http://localhost:8080/CustomerDB/resources/customers/{customerID} the client transfers its

state. This is called State Transfer.

8.2 Design and Implementation Of Database driven Hospital Management

System using Web Services

The performance analysis on REST and SOAP Web Services is carried out with the help of

Hospital Management application can be used for better functioning of the Hospital. This

application can be developed to enable online booking of appointments, enable doctors to

view his/her patient‟s list, prepare an online prescription and view the patient‟s medical

history. It can also be developed to allow patients to login to their account and view their

appointment time, medical history, prescriptions and other details. Hospital Management

applications are very useful and are also used widely in hospitals.

In the following sections database driven hospital management Web Services have been

developed using different methods. The developed Web Services can implement all/some of

the following functions

 Display the details of doctors

 Display the details of patients

 Display the details of rooms

 Staff login

 Patient login

 Online appointment booking

http://localhost:8080/CustomerDB/resources/customers/%7bcustomerID%7d/discountCodes/
http://localhost:8080/CustomerDB/resources/customers/
http://localhost:8080/CustomerDB/resources/customers/%7bcustomerID%7d

110

 Preparing online prescription

 Viewing patient‟s history

8.2.1 Tools used

The following tools were used to create the Hospital Management Web Services

 Netbeans 6.9.1- This has been used for creating the SOAP and REST Web Services

 MySQL Workbench- This has been used to create a relational database for the

Hospital Management Web Services

 Eclipse Indigo- This has been used to create a REST Web Services using Entity

classes and objects. This has been used to develop a database driven Web Services

 Google SQL Cloud- This has been used to create a traditional relational database for

the Hospital Management Web Services

 Google App Engine- The applications developed were deployed to the Google App

Engine

8.2.2 Methods

Two methods have been used to develop a Hospital Management Web Services.

METHOD 1: Used to create a database driven Web Services

1. Creating a database in MySQL Workbench

2. Using that database in Netbeans to create SOAP and RESTWeb Services

METHOD 2: Used to create a database driven Web Services

1. Creating a database in Google SQL cloud

2. Authorizing an application in the Google App Engine to access the database created

in the Google SQL cloud

3. Establishing a connection to the database in the code written to implement the Web

Services

4. Hosting the application on Google cloud

111

8.2.3 Simple Hospital Management Database in MySQL

In this chapter database driven Web Services have been created using MySQL Workbench

and Netbeans. A simple Hospital Management Database was created in MySQL Workbench.

Simple SOAP and REST Web Services have been created to display the details of every table

in the database created in MySQL Workbench.

The Database created in MySQL has been named mgmt. The tables in the database mgmt are

1. Staff

2. Patients

3. addresses

4. staff_addresses

5. patient_addresses

6. patient_rooms

Details of the tables created

1. Staff table

This table contains details of all staff members working in the hospital. The table

contains columns staff_id, gender, staff_job_title, staff_first_name,

staff_middle_name, staff_last_name, staff_qualifications, staff_birth_date and

other_staff_details

2. Patients table

This table contains details of all patients. The table has columns patient_id, gender,

date_of_birth, patient_first_name, patient_middle_name, patient_last_name, height,

weight, home_phone, work_phone, cell_monile_phone and other_detail

3. Table addresses

Columns:

address_id, line_1_number_building, line_2_number_street, line_3_area_locality,

city, zip_postcode, state_province_county, country and other_address_details

112

4. Table staff_addresses

Contains details of staff members. Columns: staff_id, address_id, date_address_from,

date_address_to, Staff_staff_id, addressed_address_id

5. Table patient_addresses

Columns:

patient_id, address_id, join_date, exit_date, Patients_patient_id, addresses_address_id

6. Table patient_rooms

Columns: patient_id, room_id, date_stay_from, date_stay_to, Patients_patient_id [8]

8.2.4 ER Diagram of the database model

ER Diagram shows the relation between the tables of a database. The primary key of each

table is also indicated in the ER diagram. Figure 8.5 shows the ER diagram of the database

which has been created in MySQL workbench.

113

Fig8.5ER Diagram of the database model created in MySQL Workbench

8.2.5 Implementation Of Hospital Management Syatem Using REST Web Service

The database created in MySQL workbench is imported to Netbeans[92] and is used to create

a REST Web Services. In a REST Web Services all resources are accessed by specifying

URI‟s. Hence every resource has a path defined [93].

For example, the table addresses has the path “/addressess/”.

In order to access the contents of the table addresses the

URL:http://localhost:8080/WebApplication/resources/addressess should be used. This URI

http://localhost:8080/WebApplication/resources/addressess

114

reads the contents of the table addresses and returns the details in XML format. Figure 8-6

shows a part of the code which defines the path of the resource.

Fig 8.6 Part of code showing the path definition and the GET method

Similarly every other table has an URI and every resource in that table also has an URI.

8.2.6 OUTPUT of the REST Web Services

index.jsp

This page displays the list of links which can be used to view the details of patients, staff,

addresses and rooms which is shown in figure 8.7.

Path for this resource is

defined as “/addresses/”

GET method of the

REST Web Services

115

Fig 8.7 Output of the REST Web Services- index.jsp file

WADL document

The first link in the index.jsp page gives access to WADL document. The WADL for the

current Web Services is shown in figure 8.8.

116

Fig8.8WADL of the Web Services

117

Staff details

The Staff table in the database can be accessed by specifying its path as /staff. When the URI

is invoked the data present in the Staff table appears in XML format. Style sheet can be used

to represent the data in tabular form. Refer to Figure 8.9.

Fig 8.9 Page displayed when URL http:// localhost:8080/WebApplication19/resources/staffs

is accessed

URI to access the resource

staffs

One staff record

showing all the

details of staff

with id=1001

URI which shows

the details of staff

with id=1001

118

Patient details

The Patients table in the database can be accessed by specifying its path as /patientss. When

the URI is invoked the data present in the Patients table appears in XML format.

Patient Room details

The patient_rooms table in the database can be accessed by specifying its path as

/patientRoomss. When the URI is invoked the data present in the patient_rooms table

appears in XML format.

Address details

The addresses table in the database can be accessed by specifying its path as /addressess.

When the URI is invoked the data present in the addresses table appears in XML format.

Staff Address details

The staff_addresses table in the database can be accessed by specifying its path as

/staffAddressess.

Patient Address details

The patient_addresses table in the database can be accessed by specifying its path as

/patientAddressess. When the URI is invoked the data present in the patient_addresses table

appears in XML format.

8.2.7 LOAD test for the REST Web Services

LOAD test is done to measure the performance of a Web Services when multiple users are

accessing it. SOAPUI is the testing tool used for this purpose. The Web Services was tested

for 5, 25, 50 & 100 threads and the observations were noted. The observations can be seen in

Tables 8.1&8.2.

119

Observation tables

Resource Method: /addresses/ GET-> get

Table 8.1 Observation Table for LOAD test-1

Load

Test

Thread

Count

Min Max Avg Last cnt tps Bytes bps

1 5 5 3815 200.01 5 311 5.01 2769455 44662

2 25 5 1292 75.06 17 1623 26.66 14452815 237476

3 50 5 1522 93.02 47 3084 51.03 27463020 454452

4 100 5 1589 91.05 7 5961 97.38 53082705 867251

where,

Min: Shortest time the step has taken

Max: Longest time the step has taken

Avg: Average time the step has taken

Last: last time the step has taken

cnt: number of times the step has been executed

tps: transactions per second

bytes: number of bytes processed

bps: bytes processed per second [4]

The Graph for LOAD Test is shown in figure 8.4

120

Resource Method: /staff/ GET-> get

Table 8.2 Observation table for LOAD test-2

Load

Test

Thread

Count

Min Max Avg Last cnt tps Bytes bps

1 5 1 919 13.39 2 311 5.01 320330 5165

2 25 1 1333 53.08 13 1623 26.66 1671690 27467

3 50 1 1427 61.76 30 3084 51.03 3176520 52564

4 100 1 1481 64.16 2 5961 97.38 6139830 100310

Graphs

Graphs for the LOAD test observations tabulated in the previous section are

generated by SOAPUI. These screen shots of graphs are shown in Figures 8.10, 8.11,

8.12, and 8.13.. The graphs are drawn for the thread counts 5,25,50 and 100

respectively, from the graph it is inferred that the transactions per second (tps) which

is shown in black color is increasing according to the thread count. Similarly bytes

per second which is in yellow color is decreasing as the thread count increases. From

the statics graph with default options, it is very clear that how the average response

time, tps and bps values change as the thread count increases.

8.10 Graph for LOAD test 1

121

Fig8.11Graph for LOAD test 2

Fig 8.12 Graph for LOAD test 3

122

Fig 8.13 Graph for LOAD test 4

8.2.8 Implementation Of Database driven Hospital Management Using SOAP Web

Services

The database used for the REST Web Services is used to develop a SOAP Web Services[88].

Web operations are defined to display the data in the tables Staff, Patients, patient_rooms,

addresses, patient_addesses and staff_addresses. Refer to Figure 8.14

123

F

Fig8.14 Web Operations of a SOAP Web Services

Web Operation

name addressDetails

Web Operation name

patientDetails

Web Operation name

staffDetails

Web Operation

name

patientAddress

124

8.2.9 OUTPUT of database driven SOAP Web Services

Test page: When the SOAP Web Services is tested the following page opens in the browser

as shown in figure 8.15.

Fig8.15 Output of the SOAPWeb Services when it is tested

Address details

Fig 8.16 Output on entering the address id in the web operation

Web

Operations

125

Output on entering the address id in the web operation can be seen in Fig 8.16

Fig 8.17 Output of the addressDetails web operation when address id “2” is inputted

Response contains the address details of the address id provided as shown in figure 8.17.

Patient Details

Similarly, when patient id is enetered into the patientDetails web operation, the patient‟s first

name, middle name, last name and gender are returned.

Web operation

addressDetails

SOAP response to the SOAP request shown

above

126

8.2.10 LOAD test for the SOAP Web Services

Observation table

Resource: address Details web operation

Table 8.3 Observation Table for LOAD test

Load

Test

Thread

Count

Min Max Avg Last cnt tps Bytes bps

1 5 5 9477 445.07 7977 240 3.7 65760 1015

2 25 5 24247 360.55 24247 759 9.62 207966 2636

3 50 5 26316 504.57 26316 765 11.94 209610 3273

4 100 4 27185 3895.07 3227 563 8.95 154262 2453

The observation and inference for the graphs refered in Fig 8.18 and 8.19 given in table 8.3

 Graphs

Fig 8.18 Graph for LOAD test 2

127

Fig 8.19 Graph for LOAD test 3

8.2.11 Performance Comparison of SOAP and REST Web Services

REST and SOAP Web Services are being compared based on the data shown in Tables 8-1

&8-3.

 Transactions per second of REST and SOAPWeb Services (tps)

It can be observed from Table 8-4 that a REST Web Services has more transactions per

second when compared to a SOAP Web Services

128

Table 8.4 tps of REST and SOAP

Thread

Count

REST tps SOAP tps

5 5.01 3.7

25 26.66 9.62

50 51.03 11.94

100 97.38 8.95

Bytes per second of REST and SOAP Web Services (bps)

The number of bytes processed per second is greater for a REST Web Services when

compared to SOAP Web Services. Refer to Table 8.5

Table 8.5 bps of REST and SOAP

Thread

Count

REST bps SOAP bps Bytes Bytes

5 44662 1015 2769455 65760

25 237476 2636 14452815 207966

50 454452 3273 27463020 209610

100 867251 2453 53082705 154262

Minimum, Maximum and Average Time a step has taken

It is observed from Table 8.6 that the Maximum time a step has taken in a REST Web

Services is much lower when compared to the SOAP Web Services. The Average time taken

by a step is also lower for REST Web Services when compared to SOAP Web Services.

129

Table 8.6 bps of REST and SOAP

Thread

Count

REST

Min

SOAP

Min

REST

Max

SOAP

Max

REST

Avg

SOAP

Avg

5 5 5 3815 9477 200.01 445.07

25 5 5 1292 24247 75.06 360.55

50 5 5 1522 26316 93.02 504.57

100 5 4 1589 27185 91.05 3895.07

From the observations , it is understood that for this particular Database driven Hospital

Management Web Services the REST implementation has a better performance than the

SOAP implementation. The additional time taken by the SOAP Web Services to process a

step or a request might be because of the overhead caused due to XML headers and tags,

which are not present in a REST request.

8.2.12 Summary

A database driven hospital management application has been created using REST as well as

SOAP Web Services. These Web Services have been tested and the output has been verified.

LOAD test for these Web Services were done in SOAPUI. The observations of both SOAP

and REST Web Services were noted and compared and it was observed that for this

particular Web Services the REST implementation yielded better results. The SOAP and

REST Web Services created in this chapter are deployed to the local server. This problem

can be solved if these Web Services are hosted on a cloud. Am attempt is made to measure

the QoS of REST Web Service which is deployed in GAE. The performance measurement of

REST Web Service under cloud environment will enable the client to decide which cloud to

choose for hosting his service.

130

8.3 Performance measurement of Hospital Management Application using

REST Web Service Deployed On Google SQL Cloud

Google SQL cloud enables us to create a relational database in SQL. This database is stored

on the Google cloud and can be used by establishing an appropriate connection to the

instance created. In order to create a database an instance should be created. Applications

deployed to the Google app engine[99] can access this database by adding the name of the

application in the authorized applications list of the instance created.

8.3.1 Database created for the Hospital Management Web Services

The code detail for this application is given briefly in APPENDIX B-4.

The instance created for developing a hospital management database is named database.

The name of the database is mgmt.

A connection can be established to this database by importing the AppEngineDriver:

import com.google.appengine.api.rdbms.AppEngineDriver;

Connection to the database can be established by:

DriverManager.registerDriver(new AppEngineDriver());

C= DriverManager.getConnection(“jdbc:google:rdbms://RESTdatabase:database/mgmt”);

8.3.2 SQL

Structured Query Language is used to create, update and manage relational databases.

The database for the Hospital Management Web Services has been created using SQL in the

Google SQL cloud.

This Web Services performs the following functions

1. Displays the doctor‟s list

131

2. Displays the patient‟s list

3. Appointment booking

4. Appointment booking by patients

5. Staff login

6. Doctor can view his patients list, history and can prepare an online prescription for

his patient

7. Patient login

8. Patient can view his medical history

9. Display the available rooms and reserve a room

A relational database has been created to develop a Web Services that performs the above

functions.

 Tables created

1. doctors

2. patients

3. login_details

4. patient_login

5. patient_history

6. rooms

SQL statements used to create tables are given in APPENDIX B-4

8.3.3 Connecting to the database in Google SQL Cloud

After creating a database and its tables, a connection should be established to gain access to

the database tables.

This is achieved by the statement:

C= DriverManager.getConnection(“jdbc:google:rdbms://RESTdatabase:database/mgmt”);

132

where database is an instance of rest database and mgmt is the name of the database

created.

With this statement a connection is established and code can be written to either display or

update data in the database tables.

8.3.4 Home page for the Web Services

Homepage for the Database driven Web Services hosted on the Google Cloud is shown in

figure 8.20.

Fig 8.20 Homepage for the Database driven Web Services hosted on the Google Cloud

133

Google App Engine

Google App Engine enables application developers to host their applications in the Google

cloud.[96] The developer need not worry about the computing infrastructure of the cloud.

Users can deploy up to ten applications to the Google App Engine free of cost by logging

into their Gmail accounts. Deploying applications to the cloud enables the user to access the

application from anywhere and from any computer thereby removing the pain of building the

application again and again.[98]

The Database driven Hospital Management Web Services is designed to display the doctor‟s

list. This is achieved by the doctors.jsp file which connects to the database, named mgmt.

The patients.jsp file is coded to display the list of patients and also to add a new patient into

the database. Details of a new patient can be added by using the HTML form,once this form

is submitted control is directed to the patientServlet.java file which contains the doPost

method required to update the details to the database table patients.

Since this form is also used to book an appointment and reserve a slot, code to check if the

desired slot is available or not is written. This is achieved by considering the name of the

doctor entered and also the desired slot. These values are compared with the details of other

patients already existing. If a particular doctor is already reserved for a particular slot and the

same slot is requested by the new patient, then a message “Sorry this slot is already

Reserved!!” appears. If the requested slot is free for the doctor then the details of the new

patient are added to the patients table. The patient name and password entered in the form are

added to the patient login table and is used by patients for logging in.

The two files patients.jsp and patientServlet.java are used to display the details of the patients

already existing and also used to add a new patient to the patients table. Patient can reserve

the room if the room is not already occupied by the other patient.

These two files enable staff to login and view the details of his/her patients, prepare a

prescription and also view the patient‟s history. If a doctor‟s name matches with the

134

corresponding password in the table then login is successful and the doctor will be able to

view his patient‟s details. The name of the patient along with the patient‟s ID number and

appointment time are displayed. The doctor will be able to prepare a prescription for the

patient by clicking on the “Prepare Prescription” link. On clicking the link control is directed

to patient history page. The doctor will be able to view patient‟s history by clicking on the

View History link which redirects the doctor to the patient login. If the login details of the

doctor do not match with the details stored in the login details table a blank page appears and

the correct login details should be entered for successful login.

After successful login, the doctor, can view his patient and history and prepare online

prescription for his patient.

To implement the online appointment scheduling system, the application displays the

categories treated in the hospital. Categories can be like General Physician, Cardiologist, and

Dermatologist. The names of all doctors who belong to that category are displayed. The

name of the doctor, available time and the Reserved Slot is shown to enable a patient to see

what slots are reserved and if the slot is free for that doctor that can be reserved by the

patient. This Web Services has been deployed to the GAE and can be accessed from

anywhere with internet access. The link is resttrial1.appspot.com

8.3.5 Performance of the Web Services

A simple Java program has been written to measure the time taken to load a page of this Web

Services which is hosted on the Google cloud. This java tool can be used to measure the

scalability of any web application.

135

URL: RESTtrial1.appspot.comNumber of Threads: 10

Table 8.7 restrial1.appspot.com

Thread Time in ms

1 941

2 1018

3 1090

4 1160

5 1165

6 1166

7 1167

8 1170

9 1175

10 1176

URL: RESTtrial1.appspot.com/doctors.jspNumber of Threads: 10

Table 8.8 RESTtrial1.appspot.com/doctors.jsp

Thread Time in ms

1 471

2 474

3 474

4 524

5 528

6 532

7 545

8 551

9 551

10 637

136

URL: RESTtrial1.appspot.com/patients.jspNumber of Threads: 10

Table 8.9 RESTtrial1.appspot.com/patients.jsp

Thread Time in ms

1 401

2 428

3 430

4 478

5 482

6 497

7 516

8 531

9 547

10 553

URL: RESTtrial1.appspot.com/rooms.jspNumber of Threads: 10

Table 8.10 resttrial1.appspot.com/rooms.jsp

Thread Time in ms

1 456

2 484

3 612

4 735

5 736

6 751

7 754

8 754

9 754

10 970

137

URL: RESTtrial1.appspot.com/reserve.jspNumber of Threads: 10

Table 8.11 resttrial1.appspot.com/reserve.jsp

Thread Time in ms

1 427

2 436

3 450

4 460

5 492

6 496

7 511

8 540

9 533

10 841

URL: RESTtrial1.appspot.com/login.jspNumber of Threads: 10

Table 8.12 resttrial1.appspot.com/login.jsp

Thread Time in ms

1 348

2 356

3 368

4 381

5 395

6 402

7 416

8 431

9 440

10 450

138

URL: RESTtrial1.appspot.com/patient_history.jspNumber of Threads: 10

Table 8.13 resttrial1.appspot.com/patient_history.jsp

Thread Time in ms

1 344

2 351

3 359

4 369

5 381

6 392

7 397

8 405

9 413

10 422

From all the above table 8.7 to 8.13, it‟s very apparent that as the number of Web Services

thread count increases, the delay in response time is not that high. The analysis of the results

carried out for this study clearly show how in all cases in the light of the described scenario,

REST is the fastest. The conventional SOAP-based solutions here tend to cause 4-5 fold

delays compared with REST Web Services on the request-response processing cycle.

A relational database has been created in Google SQL cloud. An application deployed to the

Google App engine has been authorized to access the database instance created in the Google

SQL cloud. Database driven Hospital Management Web Services has been created. This

Web Services can display the details of all tables in the database, doctor can login and can

view his patients list, history and can prepare an online prescription, patient can login and

view his history, patient can also book an appointment online and room reservation can also

be done. The performance of this Web Services has been tested by writing a simple Java

program and the time taken to load a web page of this Web Services has been noted.

139

8.5 Summary

Web Services are internet enabled software components using which provide integration of

Enterprise applications. Web Services are being used extensively by many enterprises every

day. SOAP and REST are the popular types of Web Services.

A Hospital Management Application has been implemented in the form of SOAP and REST

Web Services [95]. The design and implementation of this application has been done in two

different methods using MySQL, Netbeans, Eclipse, Google App Engine and Google SQL

cloud.

In the first method, database for this application was created in MySQL workbench. The

application was implemented as SOAP and REST Web Services in Netbeans. These Web

Services were tested in SOAPUI and their performance was compared. The scalability test

showed that a REST Web Services performed better when compared to the SOAP Web

Services.

The second method implements the Hospital Management application as a database driven

Enterprise Application integration (EAI) Web Services by creating the database required in

Google SQL cloud. The application is designed and developed in Eclipse and is deployed to

the Google App Engine to make it available online [96]. The application designed using this

method can be accessed from any place with internet access and at any time. Patients can

book an appointment online from any part of the world at any time. A Java tool is developed

to measure the scalability of the web application. The Hospital Management application

developed using this method can be accessed by using the link

http://RESTtrial1.appspot.com

Nowadays service providers hosting the service in cloud rather than the web servers as the

cloud provides more significant advantages[96]. It will be of great interest to anybody, to

know how the REST Web Service performs under a cloud environment. so an attempt is

made for the same in this chapter of the thesis.

http://resttrial1.appspot.com/

140

CHAPTER 9

Conclusion, Contributions and Future work

9.1 Conclusion

Web Services are turning out to be progressively utilized and a large number of consumers

are building their business solutions using Web Services technology. With the development

of Web Services and applications, quality of service (QoS) has become a key issue in the

selection of Web Services. The requirement for QoS specifications for Web Services has

arisen due to consumer‟s prospect for superior Web Services performance and services

provider‟s obligation to provide high quality service so as to improve the usability and utility

of their services which in turn decides their standing in the market. Current discovery model

and standards such as UDDI, WSDL do not give much support to QoS description and

evaluation.

In the first chapter, The WSDL file of the provider is modified to accommodate QoS values

of the Web Services. The service mining of Web Services is done by agent Web Service

using the QoS data, that are provided by the service provider. The agent Web Service can

classify the Web Services into different classes based on their QoS data.

In the next few chapters, new algorithm is designed and implemented for classifying Web

Services into different classes using their QoS values. This classifier Web Service takes QoS

parameters as input and applies an entropy based discretization algorithm and yields the class

that the Web Services belong to as output to the client. In the process of selection of Web

Services, these are categorized as different groups like excellent, good, average and poor.

A novel way of WSS using QoS attributes based on composition of Web Services have been

illustrated. J48 classification algorithm is exported as Web Service whose request contain

QoS attribute in ARFF. The resultant output is decision tree rules. Then the output of this

service is passed to the visualization service, which in turn gives us the visualized, graphed

141

output of the tree. A BPEL process is defined to compose above Web Services. The tree view

of the classification of Web Services according to the class they correspond to will be the

final output of the above composition.

Out of all the QoS properties, the latency and throughput of the Web Services is always of

more concern to the Web Services users, hence the working model of the architecture is

created to demonstrate the processes involved in classifying the Web Services based on those

attributes. An attempt is made to measure throughput in real time and to create a repository

of the same using an agent approach. The agent in turn uses SOAPUI to perform a

performance testing and the results from SOAPUI are then stored in the agent. When the user

looks for a Web Service in a particular functional domain, the agent presents the client with

the available QoS parameters, which the client can use to make a selection.

With the advent of REST Web Services there is widespread interest in performing QOS

attributes for the same and compare the results with that of SOAP enabled one. In the last

chapter, an attempt is made to implement the same. A hospital management application has

been developed exclusively using SOAP, as well as exclusively using REST Web Services.

A technique is made available to measure the performance metrics of REST and SOAP Web

Services under identical operational environment which will be of immense help to the

clients for choosing the appropriate service for their application in SOA. Here, an attempt is

made to measure the QoS value of both REST and SOAP Web Service for a database driven

application. REST Web Service is deployed in GAE to make it available online. It will be of

great interest to someone who wants to know how the REST Web Service performs under a

cloud environment. The Hospital Management application developed using this method can

be accessed by using the link http://RESTtrial1.appspot.com. This application is also

investigated for the scalability testing of the cloud enabled hospital management system that

has also been done using a custom developed software tool.

http://resttrial1.appspot.com/

142

9.2 Contributions

The contribution of this thesis work can be given as follows.

 Proposed extended service oriented architecture for service mining, using Entropy

based discretization algorithm, using QoS attribute values of the Web Services in that

particular functional domain.

 Proposed architecture to evaluate Web Services for their QoS attribute values.

 The Hospital management system is deployed in the cloud in order to experimentally

evaluate and compare the QoS values for SOAP and REST web services.

9.3 Future work

There are several research directions in which further investigations could be made regarding

this work in the future. Even though the discussed approaches of Web Services classification

and services discovery are functional and useful to the end user, these methods do come with

some inherent limitations like broker based Web Services selection which introduces a single

failure point and service discovery broker might turn out to be a bottleneck. Inconsistencies

in the UDDI registry or the QoS parameters not being up to date might result in flawed

discoveries.

In this thesis for QoS classification of Web Services, the database which is used is a real time

database collected over thousands of Web Services. But at the same time, since the Web

Services are highly dynamic, their QoS values may change over time. More investigations

are required to study the temporal correlations and periodicity features of the Web Services

143

QoS values. For the Web Services QoS value prediction, more research on the correlation

and combination of different QoS properties has to be conducted.

Meanwhile, in this research the only focus is on QoS model and computation, without taking

user individual preferences into consideration. How to dynamically evaluate candidate Web

Services based on user preference of QoS attribute is an important problem to be solved.

Future work on the project can involve incorporating the load testing process in the

architecture instead of using a third party testing tool. Also, the architecture can be made to

advice the user on the selection of service by dynamically running performance tests in real

time.

As the applications are developed and deployed in cloud, securing cloud enabled Web

Services is very crucial, especially when confidential data is being transferred between the

client and the service. The impact of security over non secured Web Services can be carried

out as part of future work.

144

REFERENCES

[1]. Al-Masri, E.; Mahmoud, Qusay H., in the paper "Discovering the best Web Services: A

neural network-based solution," Systems, Man and Cybernetics, 2009. SMC 2009. IEEE

International Conference on vol., no.,pp.4250,4255,11-14Oct.2009 doi:

10.1109/ICSMC.2009.5346817

[2]. Xiaopeng Deng; Chunxiao Xing, "A QoS-oriented Optimization Model for Web

Services Group," Computer and Information Science, 2009. ICIS 2009. Eighth

IEEE/ACIS International Conference on , vol., no., pp.903,909, 1-3 June 2009

doi: 10.1109/ICIS.2009.91

[3]. Badr, Y.; Abraham, A.; Biennier, F.; Grosan, C., "Enhancing Web Services Selection by

User Preferences of Non-functional Features," Next Generation Web Services Practices,

2008. NWESP '08. 4th International Conference on , vol., no., pp.60,65, 20-22 Oct.

2008 doi: 10.1109/NWeSP.2008.39

[4]. Soon Ae Chun; Atluri, V.; Adam, N.R., "Policy-based Web Services composition,"

Research Issues on Data Engineering: Web Services for e-Commerce and e-Government

Applications, 2004. Proceedings. 14th International Workshop on , vol., no., pp.85,92,

28-29 March 2004 doi: 10.1109/RIDE.2004.1281707

[5]. Aihkisalo, T.; Paaso, T., "Latencies of Service Invocation and Processing of the REST

and SOAPWeb Services Interfaces," Services (SERVICES), 2012 IEEE Eighth World

Congress on, vol., no., pp.100,107, 24-29 June 2012 doi: 10.1109/SERVICES.2012.55

[6]. E. Al-Masri, and Q.H. Mahmoud, “Investigating Web Services on the World Wide

Web”. In Proceedings of the 17th International World Wide Web Conference

(WWW2008), pp. 795-804, 2008.

[7]. http://www.cs.toronto.edu/~shirin/sohrabi-2012-09-thesis.pdf

145

[8]. Efficient QoS-aware Service Composition Mohammad Alrifai, Thomas Risse

http://link.springer.com/chapter/10.1007%2F978-3-0346-0104-7_5

[9]. Web Services Directory (WSIndex), http://www.wsindex.org, Accessed February 2008.

[10]. Web Services List, http://www.webservicelist.com, Accessed February 2008.

[11]. XMethods, http://www.xmethods.net, Accessed February 2008.

[12]. E. Maximilien and M. Singh. “Conceptual model of Web Services reputation”, ACM

SIGMOD Record, 31(4), 2002.

[13]. K. Sivashanmugam, K. Verma, and A. Sheth, “Discovery of Web Services in a federated

registry environment,” ICWS, pp. 270-278, 2004.

[14]. Eyhab Al-Masri and Qusay H. Mahmoud, “A Broker for Universal Access to Web

Services”. 2009 Seventh Annual Communications Networks and Services Research

Conference, page 118-123.

[15]. Hartwig Gunzer, “Introduction to Web Services”. Borland Software Corporation, page

4-14. http://www.itmanage.info/technology/webservice/webservices.pdf

[16]. D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Architecture

Best Practices (The Coad Series). Prentice Hall PTR, Upper Saddle River, NJ, USA,

2004

[17]. Haiteng Zhang, Zhiqing Shao, Hong Zheng, and Jie Zhai, “Web Service Reputation

Evaluation Based on QoS Measurement,” The Scientific World Journal, vol. 2014,

Article ID 373902, 7 pages, 2014. doi:10.1155/2014/373902

http://link.springer.com/search?facet-creator=%22Mohammad+Alrifai%22
http://link.springer.com/search?facet-creator=%22Thomas+Risse%22

146

[18]. Tewari, V.; Dagdee, N.; Singh, I.; Garg, N.; Soni, P.; , "An Improved Discovery

Engine for Efficient and Intelligent Discovery of Web Services with Publication

Facility," Services - II, 2009. SERVICES-2 '09. World Conference on , vol., no., pp.63-

70, 21-25 Sept. 2009.

[19]. “Agent based discovery of Web Services to enhance the quality of Web Services

selection”, International Journal of Computer Science and Network Security (IJCSNS),

Dr.SangH.Lee.Vol.11,No.2,pp159-163.

(http://paper.ijcsns.org/07_book/201102/20110226.pdf Feb‟2011 paper id (2101109)

[20]. SungHeun Nam; YunHee Kang; , "XML Schema Design for Web Services Quality

Management," Future Generation Communication and Networking, 2008. FGCN '08.

Second International Conference on , vol.2, no., pp.99-102, 13-15 Dec. 2008

[21]. Badr, Y.; Abraham, A.; Biennier, F.; Grosan, C.; , "Enhancing Web Services Selection

by User Preferences of Non-functional Features," Next Generation Web Services

Practices, 2008. NWESP '08. 4th International Conference on , vol., no., pp.60-65, 20-

22 Oct. 2008

[22]. why data mining in CRM, 2011 https://alsysoncrm.wordpress.com/2011/02/21/why-

data-mining-in-crm

[23]. International Journal of Advanced Research in Computer and Communication

Engineering Vol. 2, Issue 4, April 2013 WEKA Approach for Comparative Study of

Classification Algorithm Trilok Chand Sharma1 , Manoj Jain2

http://paper.ijcsns.org/07_book/201102/20110226.pdf

147

http://www.ijarcce.com/upload/2013/april/60-trilok-

WEKA%20approach%20for%20comparative.pdf

[24]. V. Diamadopoulou, C. Makris, Y. Panagis and E. Sakkopoulos, “Techniques to support

Web Services selection and consumption with QoS characteristics”. Journal of Network

and Computer Applications, vol. 31, 2008, pp. 108-130.

[25]. SungHeun Nam; YunHee Kang; , "XML Schema Design for Web Services Quality

Management," Future Generation Communication and Networking, 2008. FGCN '08.

Second International Conference on, vol.2, no., pp.99-102, 13-15 Dec. 2008

[26]. Al-Masri, E., and Mahmoud, Q. H., "Discovering the best Web Services", (poster) 16th

International Conference on World Wide Web (WWW), 2007, pp. 1257-1258. (for

QWS Dataset Version 1.0 or QWS Dataset Version 2.0)

[27]. Al-Masri, E., and Mahmoud, Q. H., "QoS-based Discovery and Ranking of Web

Services", IEEE 16th International Conference on Computer Communications and

Networks (ICCCN), 2007, pp. 529-534. (for QWS Dataset Version 1.0 or QWS Dataset

Version 2.0)

[28]. Al-Masri, E., and Mahmoud, Q.H., "Investigating Web Services on the World Wide

Web", 17th International Conference on World Wide Web (WWW), Beijing, April

2008, pp. 795-804. (for QWS-WSDLs Dataset Version 1.0)

[29]. Pieter Adriaans and Dolf Zantinge, Introduction to Data Mining and Knowledge

Discovery, Third Edition (Potomac, MD: Two Crows Corporation, 1999); Data Mining

(New York: Addison Wesley, 1996).

[30]. Jensen, “Data Mining in Networks,” ppt; K.A. Taipale, “Data Mining and Domestic

Security: Connecting the Dots to Make Sense of Data,” Columbia Science and

148

Technology Law Review 5 (December 2003): 28, available at

http://stlr.org/cite.cgi?volume=5&article=2.

[31]. Marc M. Van Hulle, “Data Mining”. Luc Dehaspe, Oncolmethylome BVBA,

http://www.slideshare.net/Tommy96/data-mining-4035491

[32]. Osmar R. Zaïane, “Principles of Knowledge Discovery in Databases”. University of

Alberta, 1999. http://webdocs.cs.ualberta.ca/~zaiane/courses/cmput690/slides/ch1s.pdf

[33]. Liang – Jie – Zhang, Jia Zhang, “Services Computing” Springer Berlin Acidelberg,

Newyork. ISBN 978-3-540-38281-2 Springer Berlin Heidelberg New York

http://ir.nmu.org.ua/bitstream/handle/123456789/141883/70775b935870742058bfc4a42

026f77a.pdf?sequence=1

[34]. Thomas Erl, “Service Oriented Architecture: A Field Guide to Integrating XML and

Web Services”, Prentice Hall Publications, 2004. ISBN-13: 007-6092025443 ISBN-

10: 0131428985

[35]. “Web Services selection based on QoS attributes using entropy discretization method”,

International Journal of Computer Applications(IJCA) Published by Foundation of

computerScience,NewYork,

U.SA.http://www.ijcaonline.org/archives/volume30/number2/3611-4119

[36]. Raj, R.J.R.; Sasipraba, T., "Web service selection based on QoS Constraints," Trendz in

Information Sciences & Computing (TISC), 2010 , vol., no.,pp.156,162,17-19 Dec.2010

doi:

10.1109/TISC.2010.5714629URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnu

mber=5714629&isnumber=5714593

http://www.ijcaonline.org/archives/volume30/number2/3611-4119
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5714629&isnumber=5714593
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5714629&isnumber=5714593
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5714629&isnumber=5714593

149

[37]. Liu Sha Guo Shaozhong Chen Xin Lan Mingjing Zhengzhou, “ A QoS Based Web

Services Selection Model”, International Forum on Information Technology and

Applications, 2009.

[38]. Manish Godse, Umesh Bellur, Rajendra Sonar, “Automating QoS based Service

Selection”, 2010 IEEE International Conference on Web Services PP: 530-540.

[39]. Kyriakos Kritikos and Dimitris Plexousakis, “Requirements for QoS Based Web

Services Description and Discovery”, IEEE Transactions on Services Computing, Vol.

2, 2009.

[40]. Atin Aggarwal „Web Services Selection Based on QoS Attributes‟ Project report, BITS

Pilani, Dubai Campus

[41]. Sidney Rosario, Albert Benveniste, “Probabilistic QoS and Soft Contracts for

Transaction-Based Web Services Orchestrations”, IEEE Transactions on Services

Computing, 2008.

[42]. Qu Li-li, Chen Yan, “QoS Ontology Based Efficient Web Services Selection”,

International Conference on Management Science & Engineering, 2009.

[43]. Serhani M. A., Dssouli R., Hafid A., Sahraoui H., “A QoS broker based architecture for

efficient Web Services selection”, IEEE International Conference on Web Services,

2005.

[44]. Yu T., Lin K. J., “Service selection algorithms for Web Services with end-to-end QoS

constraints”, Proceeding of Information Systems and E-Business Management, 2005.

[45]. Tran Vuong Xuan, Tsuji Hidekazu, “QoS based ranking for Web Services: Fuzzy

Approach”, International Conference on Next Generation Web Services Practices, 2008.

150

[46]. Lin M., Xie J., Guo H., Wang H., “Solving QoS-Driven Web Services Dynamic

Composition as Fuzzy Constraint Satisfaction”, IEEE International Conference on E-

Technology, E-Commerce and E-Service, 2005.

[47]. Santhi T., Ananthanarayana V. S., D‟Mello Demian Antony, “A QoS broker based

architecture for Web Services selection”, International Conference on Modelling &

Simulation, 2008.

[48]. Menasce D. A., “QoS Issues in Web Services”, IEEE Internet Computing, 2002.

[49]. Fayyad U., Irani K., “Multi-interval Discretization of continuou-valued attributes for

classification learning, International Joint Conference on Artificial Intelligence, 1993.

[50]. Ellis J. Clarke, Bruce A. Barton, “Entropy and MDL Discretization of Continuous

Variables for Bayesian Belief Networks”, INTERNATIONAL JOURNAL OF

INTELLIGENT SYSTEMS, 2000.

[51]. Anbazhagan Mani and Arun Nagarajan, “Understanding quality of service for Web

Services”. IBM software lab, 2002.

[52]. QWS Dataset, http://www.uoguelph.ca/~qmahmoud/qws/index.html

[53]. Ian H. Witten; Eibe Frank (2005). "Data Mining: Practical machine learning tools and

techniques, 2nd Edition". Morgan Kaufmann, San Francisco.

[54]. Architecture of the World Wide Web, First Edition, W3C Working Draft, I. Jacobs, 9

December 2003 (See http://www.w3.org/TR/2003/WD-webarch-20031209/.)

[55]. Web Services Description Language (WSDL) 1.1, W3C Note, 15 March 2001

(http://www.w3.org/TR/WSDL#_service)

http://www.uoguelph.ca/~qmahmoud/qws/index.html
http://www.cs.waikato.ac.nz/~ml/weka/book.html
http://www.cs.waikato.ac.nz/~ml/weka/book.html
http://www.cs.waikato.ac.nz/~ml/weka/book.html
http://www.w3.org/TR/2003/WD-webarch-20031209/
http://www.w3.org/TR/wsdl#_service

151

[56]. Service Oriented Architecture (SOA) and Specialized Messaging Patterns, Adobe

Technical White Paper, Duane Nickull, Laurel Reitman, James Ward, Jack Wilber.

www.ijarcsse.com/docs/papers/Volume_4/7_July2014/V4I7-0451.pdf

[57]. Online:http://www.service-architecture.com/Web

Services/articles/web_services_explained.html

[58]. Online:http://www.ibm.com/developerworks/webservices/library/ws-quality/index.html

[59]. Online:http://www.w3c.or.kr/kr-office/TR/2003/ws-QoS/#QoS-2

[60]. Online:http://www.cise.ufl.edu/~ddd/cap6635/Fall-97/Short-papers/2.htm

[61]. Online:http://www.hiraeth.com/books/ai96/QBB/id3.html

[62]. Al-Masri, E., and Mahmoud, Q. H., "Discovering the best Web Services", (poster) 16th

International Conference on World Wide Web (WWW), 2007, pp. 1257-1258.

[63]. Rajesh Sumra and Arulazi. D.,Quality of Service for Web Services-Demystification,

Limitations,andBestPractices,March2003.

http://www.developer.com/java/web/article.php/10935_2248251_2/Quality-of-Service-

for-Web-ServicesmdashDemystification-Limitations-and-Best-Practices-for-

Performance.html.

[64]. http://www.developer.com/services/article.php/10928_2027911_2/Quality-of-Service-

for-Web-ServicesmdashDemystification-Limitations-and-Best-Practices.htm

[65]. Jia Zhang and Liang-Jie Zhang, Criteria Analysis and Validation of the Reliability of

Web Services-oriented Systems, IEEE International Conference on Web Services

(ICWS‟05)

http://www.service-architecture.com/web%20services/articles/web_services_explained.html
http://www.service-architecture.com/web%20services/articles/web_services_explained.html
http://www.ibm.com/developerworks/webservices/library/ws-quality/index.html
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/#qos-2
http://www.cise.ufl.edu/~ddd/cap6635/Fall-97/Short-papers/2.htm
http://www.hiraeth.com/books/ai96/QBB/id3.html
http://www.developer.com/services/article.php/10928_2027911_2/Quality-of-Service-for-Web-ServicesmdashDemystification-Limitations-and-Best-Practices.htm
http://www.developer.com/services/article.php/10928_2027911_2/Quality-of-Service-for-Web-ServicesmdashDemystification-Limitations-and-Best-Practices.htm

152

[66]. “Web Services selection through QoSWeb Services”, Published papers in the

International Journal of Software and Web Sciences (IJSWS), ISSN (Online): 2279-

0071, ISSN (Print): 2279-0063 (September-November, 2013, Issue 6, Volume 1). Pp 18-

23.http://iasir.net/IJSWSpapers/IJSWS13-325.pdf

[67]. Getting Started with JAX-WS Web Services, www.netbeans.org

[68]. Dr. Iiavarasan Egambaram, G. Vadivelou, S. Prasath Sivasubramanian., QoS based Web

Services selection.

[69]. Aditya Julka, „Non Functional Property Based Service Selection‟ Project report, BITS

Pilani, Dubai Campus

[70]. Bernhard Borges, Kerrie Holley and Ali Arsanjani, IBM, Service-oriented architecture,

http://searchsoa.techtarget.com/news/1006206/Service-oriented-architecture

[71]. “A QoS broker based architecture for efficient Web Services selection” by M.Adel

Serhani & Rachida Dssouli, IEEE Computer Society paper

[72]. Susila, S.; Vadivel, S.; Julka, A., "Broker architecture for Web Services selection using

SOAPUI," Cloud Computing Technologies, Applications and Management

(ICCCTAM), 2012 International Conference on , vol., no., pp.219,222, 8-10 Dec. 2012

doi:10.1109/ICCCTAM.2012.6488102

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6488102&isnumber=6

488050

[73]. “Non-functional property based service selection”by Hong Qing Yu and Stephan Reiff-

Marganiec, University of Leicester, Computer Science Department, Leicester, UK.

http://iasir.net/IJSWSpapers/IJSWS13-325.pdf
http://www.netbeans.org/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6488102&isnumber=6488050
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6488102&isnumber=6488050
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6488102&isnumber=6488050

153

[74]. “An Efficient WS-QoS Broker Based Architecture for WebServices Selection”by

T.Rajendran, Dr.P.Balasubramanie, Resmi Cherian, 2010 International Journal of

Computer Applications (0975 – 8887).

[75]. Clifton, Christopher (2010). "Encyclopedia Britannica: Definition of Data Mining".

[76]. Kantardzic, Mehmed (2003). Data Mining: Concepts, Models, Methods, and

Algorithms. John Wiley & Sons

[77]. Fayyad, Usama; Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996). "From Data

Mining to Knowledge Discovery in Databases"

[78]. Pang ning tan, Michael Steinbach, Vipin 'Cluster Analysis: Basic Concepts and

Algorithms' Addison Wesley 2006

[79]. Online: http://www.w3.org/TR/ws-gloss/, WebServices Glossary

[80]. Dushyant Rijhwani, „A novel approach to distributed data mining by composing Web

Services‟ Project report, BITS Pilani, Dubai Campus

[81]. Online: http://www.w3.org/TR/WSDL20/ , Web Services Description Language

(WSDL) Version 2.0 Part 1: Core Language

[82]. Online: http://www.w3.org/TR/SOAP12-part1/, SOAP Version 1.2 Part 1: Messaging

Framework (Second Edition)

[83]. Shetty S., S. Vadivel, Vaghella S., “WEKA based Data Mining as Web Services”,

World Academy of Science, Engineering and Technology 64 2010

http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf
http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf
http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/soap12-part1/

154

[84]. Ali Shaikh Ali, Omer F. Rana and Ian J. Taylor, “Web Services Composition for

Distributed Data Mining”, International Conference on Parallel Processing Workshops,

2005

[85]. Two Crows Corporation, Introduction to Data Mining and Knowledge Discovery, Third

Edition (Potomac, MD: Two Crows Corporation, 1999); Pieter Adriaans and Dolf

Zantinge, Data Mining (New York: Addison Wesley, 1996).

[86]. Online: http://www.w3schools.com/WSDL/WSDL_uddi.asp, WSDL and UDDI,

[accessed:19th May 2011]

[87]. Online: http://www.javabeat.net/tips/144-benefits-of-using-web-services.html, Benefits

of using Web Services, [accessed: 19th May 2011]

[88]. Online: http://www.w3.org/TR/wscl10/, W3C. Web Services Conversation Language

(WSCL) 1.0. 2002. [Accessed 21st May, 2011].

[89]. Milanvoic, Nikola et Malek, Miroslaw. Current Solutions for Web Services

composition. s.l. : IEEE Computer Society, 2009

[90]. Online:http://www.oracle.com/technology/pub/articles/matjaz_bpel1.htm, Matjaz and

B. A Hands-on Introduction to BPEL. [Accessed 21st May 2011]

[91]. Papazoglou, Michael. Web Services: Principles and Technology. s.l. : Prentice, Hall,

2008

[92]. Fuhrer Patric, et. al Web Services Orchestration and Composition, September 2009

[93]. Online:http://www.w3schools.com/uri/default.asp

[94]. Microsoft. 2011 Microsoft. http://msdn.microsoft.com/en-s/library/ms190796.aspx

http://www.w3schools.com/wsdl/wsdl_uddi.asp
http://www.javabeat.net/tips/144-benefits-of-using-web-services.html
http://www.oracle.com/technology/pub/articles/matjaz_bpel1.htm
http://www.w3schools.com/uri/default.asp
http://msdn.microsoft.com/en-s/library/ms190796.aspx

155

[95]. Upadhyaya, B.; Ying Zou; Hua Xiao; Ng, J.; Lau, A., "Migration of SOAP-based

services to RESTful services," Web Systems Evolution (WSE), 2011 13th IEEE

International Symposium on , vol., no., pp.105,114, 30-30 Sept. 2011,

[96]. Online: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081828&isnumber=

6081811

[97]. Smartbear Software. 2011. http://www.SOAPui.org/Load-Testing/load-test-

window.html

[98]. Online:CloudTutorial. http://thecloudtutorial.com/cloudtypes.html

[99]. Infoworld.1994-2011 Infoworld Inc. http://www.infoworld.com/d/security-

central/gartner-seven-cloud-computing-security-risks-853

[100]. Gigaom.2011 GigaOm http://gigaom.com/2010/01/14/who-exactly-owns-your-data-in-

the-cloud/

[101]. M Siva Manaswini, „Database driven Web Services and Cloud Computing‟ Project

report, BITS Pilani, Dubai Campus, 2012

[102]. Eric Newcomer. Understanding Web Services. Boston: Pearson Education,2002

[103]. Judith Hurwitz, Robin Bloor, Marica Kaufman, and Dr. Fern Halper. Cloud Computing

for Dummies. Indianapolis: Wiley Publishing 2010

[104]. Michael P. Papazoglou. Web Services: Principles and Technology, Pearson Education,

2008, ISBN 0321155556,. 9780321155559.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081828&isnumber=6081811
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081828&isnumber=6081811
http://www.soapui.org/Load-Testing/load-test-%20%20%20%20%20%20window.html
http://www.soapui.org/Load-Testing/load-test-%20%20%20%20%20%20window.html
http://thecloudtutorial.com/cloudtypes.html
http://www.infoworld.com/d/security-central/gartner-seven-cloud-computing-security-risks-853
http://www.infoworld.com/d/security-central/gartner-seven-cloud-computing-security-risks-853
http://gigaom.com/2010/01/14/who-exactly-owns-your-data-in-the-cloud/
http://gigaom.com/2010/01/14/who-exactly-owns-your-data-in-the-cloud/

156

[105]. Kyle Roche and Jeff Douglas. Beginning Java Google App Engine: Apress 2009

[106]. Web Services 2011 Oracle. http://docs.oracle.com/javaee/6/tutorial/doc/bnbxw.html

http://docs.oracle.com/javaee/6/tutorial/doc/bnbxw.html

157

APPENDICES

APPENDIX – A

System configurations.

The implementations of the work in the thesis are done in the programming lab of BITS Pilani

Dubai Campus. A detail of the system configuration is as follows.

System:

 Microsoft Windows XP

Professional

Version 2002

Service Pack 3, v.5938

Computer:

 Intel(R) Core (TM) 2 CPU

 4400 @ 2.00 GHz

 2.00 GHz, 0.99 GB of RAM.

158

Software used

WEKA 3.6 an open source data mining software

Graphviz open source tool for drawing graphs.

SOAPUI open source tool for load test of Web Services.

Java Version 1.6

Java Derby database and Java persistence API (JPA)

NetBeans IDE 6.9.1

MySQl Workbench

Eclipse Indigo

Google SQL Cloud

Google App Engine

159

APPENDIX – B-1

Functions and their actions for the Decision Tree Construction for

Continuous attributes.

main function 1. The default constructor is invoked.

2. Training data is read from the source file.

3. function createDecisionTree() is called.

function createDecisionTree() 4. Function decomposeNode is called with root as the

argument.

5. Root node is printed.

6. The values of availability, through put, response time,

Successability and reliability of the test set are read as

user input.

function decomposeNode 1. Entropies of all attributes and attribute values are

calculated.

2. The best attribute and value are located so as to give

maximum decrease in entropy.

3. Dataset is divided into two nodes using the selected

attribute and value.

4. The resulting two nodes are further decomposed

recursively using the same function until all leaf nodes.

160

APPENDIX – B-2

WSDL File

161

APPENDIX – B-3

Functions and their actions for the Web Service Composition.

Clusterring Web Service

“<code>

package models;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import weka.clusterers.ClusterEvaluation;

import weka.clusterers.DensityBasedClusterer;

import weka.clusterers.EM;

import weka.core.Instances;

/**

 *

 * @author susila

 */

@WebService()

public class clustering1 {

/**

162

 * Web Service operation

 */

 @WebMethod(operationName = "execute")

 public String execute(@WebParam(name = "input") String input) throws IOException,

Exception {

 //TODO write your implementation code here:

 ClusterEvaluation eval;

 Instances data;

 String[] options;

 DensityBasedClusterer cl;

 data = new Instances(new BufferedReader(new FileReader(input)));

 StringBuffer result;

 result = new StringBuffer();

 result.append("\nWEKA - DEMO\n============\n\n");

 options = new String[2];

 options[0] = "-t";

 options[1] = input;

 result.append(ClusterEvaluation.evaluateClusterer(new EM(), options));

 cl = new EM();

 cl.buildClusterer(data);

 eval = new ClusterEvaluation();

 eval.setClusterer(cl);

 eval.evaluateClusterer(new Instances(data));

 result.append("\n--> manual" + "\n\n No. of

clusters:").append(eval.getNumClusters()).append("\n");

 cl = new EM();

163

 eval = new ClusterEvaluation();

 eval.setClusterer(cl);

 eval.crossValidateModel(cl, data, 10, data.getRandomNumberGenerator(1));

 result.append("\n--> Density(CV)" + "\n\n No of

Clusters:").append(eval.getNumClusters()).append("\n\n\n");

 return result.toString();

 }

}

</code>”

Classification Web Service

“<code>

package source;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import weka.classifiers.trees.J48;

import weka.core.Instances;

/**

 *

 * @author susila

 */

164

@WebService()

public class J48data {

 /**

 * Web Service operation

 */

 @WebMethod(operationName = "mine")

 public String mine(@WebParam(name = "file") String file) throws IOException, Exception

{

 //TODO write your implementation code here:

 Instances data;

 data = new Instances(new BufferedReader(new FileReader(file)));

 data.setClassIndex(data.numAttributes() - 1);

 StringBuffer result;

 J48 cls = new J48();

 cls.buildClassifier(data);

 result = new StringBuffer();

 result.append(cls.graph());

 return result.toString();

 }

}

</code>”

Visualization Service

<code>

package source;

165

import java.awt.BorderLayout;

import java.awt.Color;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.swing.JFrame;

import weka.gui.treevisualizer.PlaceNode2;

import weka.gui.treevisualizer.TreeVisualizer;

@WebService()

public class J48Visualize {

 /**

 * Web Service operation

 */

 @WebMethod(operationName = "operation")

 public String operation(@WebParam(name = "cls_data")

 String cls_data) {

 TreeVisualizer tv = new TreeVisualizer(null, cls_data, new PlaceNode2());

 JFrame jf= new JFrame("Weka Classifier Tree");

 jf.setAlwaysOnTop(true);

 jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

166

 jf.setSize(800,600);

 jf.getContentPane().setLayout(new BorderLayout());

 jf.getContentPane().add(tv, BorderLayout.CENTER);

 jf.setVisible(true);

 tv.setBackground(Color.white);

 tv.fitToScreen();

 return cls_data;

 }

}

J48 Web Service with dot format output

<code>

package source;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import weka.classifiers.trees.J48;

import weka.core.Instances;

/**

 *

 * @author susila

 */

@WebService()

public class J48data {

 /**

167

 * Web Service operation

 */

 @WebMethod(operationName = "mine")

 public String mine(@WebParam(name = "file")

 String file) throws IOException, Exception {

 Instances data;

 data = new Instances(new BufferedReader(new FileReader(file)));

 data.setClassIndex(data.numAttributes() - 1);

 J48 cls = new J48();

 cls.buildClassifier(data);

 return cls.graph();

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<process

 name="data_mine"

 targetNamespace="http://enterprise.netbeans.org/bpel/BpelModule3/newProcess"

 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sxt="http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/Trace"

 xmlns:sxed="http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/Editor"

 xmlns:tns="http://enterprise.netbeans.org/bpel/BpelModule3/newProcess">

<import namespace="http://enterprise.netbeans.org/bpel/J48dataServiceWrapper"

location="Partners/J48data/J48dataServiceWrapper.wsdl"

importType="http://schemas.xmlsoap.org/wsdl/"/>

<import namespace="http://source/" location="Partners/J48data/J48dataService.wsdl"

importType="http://schemas.xmlsoap.org/wsdl/"/>

<import namespace="http://enterprise.netbeans.org/bpel/J48VisualizeServiceWrapper"

location="Partners/J48Visualize/J48VisualizeServiceWrapper.wsdl"

importType="http://schemas.xmlsoap.org/wsdl/"/>

<import namespace="http://source/"

location="Partners/J48Visualize/J48VisualizeService.wsdl"

importType="http://schemas.xmlsoap.org/wsdl/"/>

<partnerLinks>

<partnerLink name="J48Visualzie"

xmlns:tns="http://enterprise.netbeans.org/bpel/J48VisualizeServiceWrapper"

partnerLinkType="tns:J48VisualizeLinkType" partnerRole="J48VisualizeRole"/>

<partnerLink name="J48Data"

xmlns:tns="http://enterprise.netbeans.org/bpel/J48dataServiceWrapper"

partnerLinkType="tns:J48dataLinkType" myRole="J48dataRole"/>

168

</partnerLinks>

<variables>

<variable name="MineOut" xmlns:tns="http://source/" messageType="tns:mineResponse"/>

<variable name="OperationOut" xmlns:tns="http://source/"

messageType="tns:operationResponse"/>

<variable name="OperationIn" xmlns:tns="http://source/" messageType="tns:operation"/>

<variable name="MineIn" xmlns:tns="http://source/" messageType="tns:mine"/>

</variables>

<sequence>

<receive name="Receive1" createInstance="yes" partnerLink="J48Data" operation="mine"

xmlns:tns="http://source/" portType="tns:J48data" variable="MineIn"/>

<reply name="Reply1" partnerLink="J48Data" operation="mine" xmlns:tns="http://source/"

portType="tns:J48data" variable="MineOut"/>

<assign name="Assign1">

<copy>

<from>$MineOut.parameters/return</from>

<to>$OperationIn.parameters/cls_data</to>

</copy>

</assign>

<invoke name="Invoke1" partnerLink="J48Visualzie" operation="operation"

xmlns:tns="http://source/" portType="tns:J48Visualize" inputVariable="OperationIn"

outputVariable="OperationOut"/>

</sequence>

</process>

</code>

169

Appendix B-4

Code Details of Hospital Management Web Service

Database Details:

Table doctors

CREATE TABLE doctors (doctor_name VARCHAR(255), category VARCHAR(255), qual

VARCHAR(255), address_line_one VARCHAR(255), entryID INT NOT NULL

AUTO_INCREMENT, available_time VARCHAR(255), PRIMARY KEY(entryID));

Table patients

CREATE TABLE patients (patient_name VARCHAR(255), purpose VARCHAR(255), issue

VARCHAR(255),age INT, entryID INT NOT NULL AUTO_INCREMENT, time

VARCHAR(255), doctor_name VARCHAR(255),PRIMARY KEY(entryID));

Table login_details

CREATE TABLE login_details (doctor_name VARCHAR(255), password

VARCHAR(255));

Table patient_login

CREATE TABLE patient_login (p_n VARCHAR(255), password VARCHAR(255),

PRIMARY KEY(p_n));

170

Table patient_history

CREATE TABLE patient_history (patient_name VARCHAR(255), purpose VARCHAR(255),

problem_found VARCHAR(255), prescription_details1 VARCHAR(255),

prescription_details2 VARCHAR(255), prescription_details3 VARCHAR(255), tests

VARCHAR(255), test_result VARCHAR(255));

Table rooms

CREATE TABLE rooms (room_num INT, status VARCHAR(255), patient_id INT);

File doctors.jsp 1. A connection to the database, named mgmt, is

established

2. Then an SQL query to select all the data in the

doctors table is executed

The SQL query is:

SELECT doctor_name,

category,qual,address_line_one, entryID,

available_time FROM doctors

3. The result of the query is stored in rs and then data is

retrieved by using the getString() method

patients.jsp 1. A connection is established to the database mgmt

2. SQL query that selects all the data in the table name

called patients is executed and the result set is stored

in the variable rs.

3. Data is retrieved using getString() and getInt()

methods

4. Details of a new patient can be added by using the

HTML form

5. Once this form is submitted control is directed to the

patientServlet.java file which contains the doPost

method required to update the details to the database

table patients

6. This is achieved by specifying the path of the form

form action="/patients" method="post"

patientServlet.java 1. The details of the form submitted are retrieved by

using the getParameter() method

2. These details are stored in variables

3. Connection is established to the database mgmt and

the data in these variables is stored in the table

patients by using the INSERT SQL command

171

4. Since this form is also used to book an appointment

and reserve a slot, code to check if the desired slot is

available or not is written

5. This is achieved by considering the name of the

doctor entered and also the desired slot. These values

are compared with the details of other patients

already existing

6. If a particular doctor is already reserved for a

particular slot and the same slot is requested by the

new patient, then a message “Sorry this slot is

already Reserved!!” appears

7. If the requested slot is free for the doctor then the

details of the new patient are added to the patients

table. The SQL query used is:

"INSERT INTO patients (patient_name, purpose, issue, age,

doctor_name, time) VALUES(? , ? , ? , ? , ? , ?)";

8. The patient name and password entered in the form

are added to the patient_login table and is used by

patients for logging in

9. After this statement is executed the page is redirected

to patients.jsp page

Files rooms.jsp and

roomServlet.java

1. A connection is established to the database and the

SQL command SELECT is used to read all the data

in the table rooms

2. The entries of the rooms table are displayed along

with a form which enables the reservation of a room

3. Once the form is submitted control is redirected to

the roomServlet.java file

roomServelt.java 1. The details submitted in the form are updated to the

table rooms by the SQL command UPDATE

Files reserve.jsp and

reserveServelt.java

1. This page provides a form in which a patient is

supposed to enter his details

2. Once this form is submitted control is directed to the

reserveServlet.java file

reserveServlet.java 1. Connection is made to the database

2. The values submitted in the form are stored in

variables

3. The name of the doctor and the requested slot

variables are used to compare with the other

appointments in order to avoid appointment clashes

4. If the requested slot is reserved a message “Sorry this

172

slot is Reserved” appears

5. If there is no clash then details of the appointment

are displayed

6. Once the appointment is booked the details of the

new patient are updated to the patients table and the

patient name and password are stored in the

patient_login table

Files login.jsp and

loginServelt.java

1. This page provides a login page for the staff to login

2. Once this form is submitted the control is directed to

the loginServlet.java file

loginServlet.java 1. Connection to the database is made

2. The login details of every doctor is stored in the

login_details table

3. The entries in this table are selected by using the

SQL command SELECT

4. The doctor‟s name and password submitted in the

form are compared to every row in the login_details

table

5. If a doctor‟s name matches with the corresponding

password in the table then login is successful and the

doctor will be able to view his patient‟s details

6. The name of the patient along with the patient‟s ID

number and appointment time are displayed

7. The doctor will be able to prepare a prescription for

the patient by clicking on the “Prepare Prescription”

link. On clicking the link control is directed to

patient_history.jsp

8. The doctor will be able to view patient‟s history by

clicking on the View History link which redirects the

doctor to the patient login page: pat_details.jsp

9. If the login details of the doctor do not match with

the details stored in the login_details table a blank

page appears and the correct login details should be

entered for successful login

patient_history.jsp 1. This page provides a form for the doctor to fill in the

prescription details for a patient

2. Once this form is submitted the control is directed to

the patienthistoryServlet.java

patienthistoryServlet.java 1. Connection to the database is established

2. The details submitted in the form are inserted into

the patient_history table using the SQL command

INSERT

3. A success message appears and the page is redirected

173

to patient_history.jsp

pat_details.jsp 1. This page is the login page for patients

2. Once this form is submitted control is directed to

patdetailsServlet.java

patdetailsServelt.java 1. A connection to the database is established

2. Data from the patient_login table is selected by using

th SQL command SELECT

3. The details submitted by the login form are

compared with the details in the patient_login table

4. If the login is successful then the history of that

particular patient is retrieved from the

patient_history table

display.jsp 1. It displays the categories treated in the hospital.

Categories can be like General Physician,

Cardiologist, Dermatologist etc

2. Once the category is entered in the form and the

form is submitted control is redirected to the

displayServlet.java

displayServlet.java 1. Connection to the database is established

2. Data from the doctors table is selected using the SQL

command SELECT

3. The category of every doctor in the table is compared

with the entered category and details of the doctor

belonging to the entered category are displayed

4. The names of all doctors who belong to that category

are displayed

5. A table showing the name of the doctor, available

time and the Reserved Slot is shown to enable a

patient to see what slots are reserved

6. To reserve a particular slot a link “Click here to

Reserve” should be used

7. On clicking the link the user is redirected to the

reserve.jsp page

174

APPENDIX - C

Data set on QoS

Response

Time Availability Throughput Successability Reliability Classification

451 23 1.8 24 42 AVERAGE

255.08 12 8.1 13 53 POOR

64.96 18 4.3 18 60 POOR

68.91 19 4.4 20 60 POOR

451 23 1.8 24 42 AVERAGE

136.94 26 3.1 26 67 POOR

542.87 26 4.4 26 53 POOR

382.71 27 5.7 28 73 POOR

501.79 28 4.8 28 73 POOR

316.07 32 1 32 60 POOR

214.62 32 2.3 32 53 AVERAGE

689.42 34 1.1 34 67 POOR

266.83 36 0.9 37 60 POOR

261 36 0.9 37 60 POOR

667.11 38 2.1 38 73 POOR

83.33 39 1.7 40 80 POOR

142 39 6.3 40 73 POOR

430.5 40 3.3 40 73 POOR

464.62 40 3.6 40 78 POOR

49.43 42 10.6 43 73 AVERAGE

334.71 43 4.4 43 73 POOR

175

173 46 3.8 47 78 POOR

298.83 46 7.7 46 83 POOR

43 47 3.6 47 80 POOR

1423.5 47 2.2 47 78 POOR

1104.67 47 3.1 47 83 POOR

496.43 48 0.8 48 67 POOR

4480.8 52 1 53 50 POOR

408.21 56 5 58 73 AVERAGE

141.77 56 7.5 56 67 AVERAGE

311.25 56 7 56 83 POOR

1987 56 1.9 57 60 POOR

67.25 56 15.5 56 78 AVERAGE

669.1 56 1.3 57 60 AVERAGE

219 56 10.4 56 60 AVERAGE

460 56 2.6 57 60 AVERAGE

130.75 56 10.8 56 83 POOR

146.08 57 10.2 59 53 AVERAGE

203 57 1.2 59 67 AVERAGE

71.75 59 1.2 60 67 AVERAGE

47.27 61 20.3 62 67 AVERAGE

119 61 2.9 62 53 AVERAGE

235.9 61 4 61 73 AVERAGE

184.74 62 7.9 62 67 AVERAGE

130.33 63 7.8 63 73 AVERAGE

271 63 2.7 64 67 AVERAGE

236.67 63 6.4 63 53 AVERAGE

187.75 64 8.1 65 73 AVERAGE

1021.5 65 3.1 65 73 POOR

335.58 65 8.9 66 73 AVERAGE

372.25 66 4.7 66 80 AVERAGE

176

173 67 0.5 68 73 AVERAGE

193.6 67 3.4 67 73 AVERAGE

196 69 9.7 70 73 AVERAGE

131.25 70 4.8 70 73 AVERAGE

293.5 70 2.5 70 73 AVERAGE

109.75 70 11.4 70 73 AVERAGE

1069.5 71 3 72 83 POOR

1035 71 8.4 72 73 AVERAGE

307.75 71 2.1 71 73 AVERAGE

297.38 71 1.9 72 73 AVERAGE

2440.33 71 1.1 72 67 POOR

154 71 14.4 72 73 AVERAGE

50 72 13.3 72 73 AVERAGE

580.5 72 4.4 72 67 AVERAGE

115 72 12.9 72 83 AVERAGE

42.5 72 13.1 72 73 AVERAGE

198.5 72 15.1 72 83 AVERAGE

266.92 72 1.4 72 80 AVERAGE

42.5 72 13.2 72 73 AVERAGE

203 72 22.1 72 83 AVERAGE

540.5 72 3.7 72 67 AVERAGE

1529 72 5.3 72 83 POOR

1730 72 2 72 67 AVERAGE

205 73 1.4 74 58 AVERAGE

184.67 73 2.7 74 73 AVERAGE

388.5 73 2 73 58 AVERAGE

166.67 75 1.2 75 67 AVERAGE

1316.17 75 1.2 75 73 AVERAGE

136.71 76 2.8 76 60 AVERAGE

59.58 77 8.8 78 67 AVERAGE

177

511.25 77 4.7 78 73 AVERAGE

60.05 77 9.1 77 67 AVERAGE

241.5 78 7.7 79 67 AVERAGE

1314.75 78 3.5 79 73 AVERAGE

332.25 78 5.9 78 73 AVERAGE

532.75 78 5.5 78 67 AVERAGE

162.25 78 9.1 78 73 AVERAGE

335.5 78 3.6 79 73 AVERAGE

224 78 3.9 79 73 AVERAGE

2836.25 79 2.4 79 73 POOR

107.57 80 1.7 81 67 AVERAGE

131.57 80 2.3 80 53 GOOD

551.79 80 1.8 81 53 AVERAGE

55.5 81 19.1 82 73 GOOD

1360 83 10.4 84 83 AVERAGE

132 83 14.3 84 73 AVERAGE

408 83 15.2 84 83 AVERAGE

499 83 19.7 84 83 AVERAGE

115 83 22.3 84 83 AVERAGE

107 83 31.3 84 73 GOOD

333 83 14.9 84 83 AVERAGE

115 83 22.8 84 73 GOOD

1041 83 12.8 84 73 AVERAGE

171 83 18.6 84 80 AVERAGE

292 83 16.6 84 58 GOOD

136 83 21.4 84 83 AVERAGE

180 83 13.5 84 73 AVERAGE

283 83 20.3 84 73 GOOD

581 83 15.6 84 50 GOOD

664 83 11.4 84 53 GOOD

178

134.07 84 12.2 85 60 GOOD

389 84 1 84 67 AVERAGE

316.3 84 2 85 53 GOOD

482 85 16 95 73 AVERAGE

269.83 85 4.5 86 53 GOOD

269.09 85 3.9 85 53 GOOD

179 85 1.1 95 60 AVERAGE

431.33 85 9.4 95 67 AVERAGE

239.22 85 7.7 86 53 GOOD

411.83 85 0.4 86 53 AVERAGE

104.5 85 15.6 95 73 GOOD

724 85 13.1 95 50 GOOD

252.35 85 5.3 86 53 GOOD

219.2 85 0.9 95 58 AVERAGE

207.2 85 1.1 95 73 AVERAGE

170 85 3.1 95 60 AVERAGE

287.22 85 3.5 86 53 GOOD

272.43 85 1.9 86 53 GOOD

146.83 85 2.1 95 83 AVERAGE

599 85 10.3 95 73 AVERAGE

133 86 7.7 95 73 AVERAGE

114 86 16.1 86 73 GOOD

67.5 86 6 86 73 AVERAGE

108 86 0.7 95 73 AVERAGE

320.48 86 1.2 86 53 GOOD

229.75 86 10.1 95 73 AVERAGE

645 86 8 86 73 AVERAGE

515.2 86 9.2 95 73 AVERAGE

207 86 13.5 86 73 AVERAGE

119.33 86 1.2 95 73 AVERAGE

179

227.6 86 14.5 95 73 AVERAGE

283.74 86 3.3 87 53 GOOD

401.62 86 8.1 95 60 GOOD

114 86 17.9 86 73 GOOD

240.6 86 1.2 95 73 AVERAGE

290.3 86 4.4 86 53 GOOD

324 86 23.1 95 73 GOOD

284.65 86 3.1 86 53 GOOD

1296 86 6.9 86 73 AVERAGE

718 86 3.3 87 67 AVERAGE

149.67 86 11.2 95 73 AVERAGE

417 86 6.5 86 73 AVERAGE

274.52 86 4.3 86 53 GOOD

122 86 14.5 86 67 GOOD

167.5 86 16.1 86 73 AVERAGE

287.22 86 5.5 86 53 GOOD

244 86 26.7 95 83 GOOD

333.52 86 3 86 53 GOOD

409.5 86 1.7 87 58 AVERAGE

107 87 1.9 95 73 AVERAGE

294.5 87 14.5 95 73 AVERAGE

179.29 87 2.6 95 60 GOOD

2561.33 87 1.2 96 67 AVERAGE

120 87 24.2 95 67 GOOD

3484 87 5.8 96 73 POOR

339 87 11.7 95 67 GOOD

87.14 87 20.5 95 67 GOOD

158.8 87 5.8 96 73 AVERAGE

235.4 87 1.4 95 73 AVERAGE

213.2 88 1.6 96 73 AVERAGE

180

113.25 88 1.7 96 53 GOOD

227 88 21.2 96 73 GOOD

617.67 88 7.1 96 73 AVERAGE

239.33 88 9 96 83 AVERAGE

130.14 88 20.5 96 80 GOOD

305.8 88 13.5 96 58 GOOD

143.33 88 15.7 88 73 GOOD

196 88 9.8 96 73 AVERAGE

248.8 88 1.1 96 67 AVERAGE

276 88 1.6 96 67 AVERAGE

1138.33 88 4.7 88 73 AVERAGE

312 88 3 96 73 AVERAGE

302.75 89 7.1 90 73 AVERAGE

3321.4 89 1.4 96 73 POOR

149.67 89 1.1 96 73 AVERAGE

210 89 15.7 96 73 GOOD

320.4 89 12.3 96 73 AVERAGE

490.5 89 4.1 96 73 AVERAGE

116 89 12.9 89 67 GOOD

148.95 89 10.8 96 67 GOOD

229.79 89 7.4 89 67 AVERAGE

242.4 89 1.1 96 73 AVERAGE

262.5 89 5.3 96 73 AVERAGE

245.8 89 1.2 96 73 AVERAGE

221.48 90 10.9 97 53 GOOD

106.75 90 16.2 96 73 GOOD

300.12 90 7.9 97 67 AVERAGE

205.33 90 3.5 97 60 GOOD

122 90 3.9 97 73 AVERAGE

154 90 23.9 97 73 GOOD

181

136.71 90 3.8 97 60 GOOD

146.5 90 17.6 97 73 GOOD

127 90 23.1 96 67 EXCELLENT

306.8 90 12.7 97 73 AVERAGE

220.6 90 1.3 96 73 AVERAGE

825.8 90 5.9 91 60 AVERAGE

102 90 18.6 97 73 GOOD

102.62 91 15.3 97 67 GOOD

128.31 91 12.4 97 67 GOOD

672.2 91 7.9 97 73 AVERAGE

215.6 91 15.9 97 73 GOOD

498.5 91 4.8 91 60 GOOD

223 91 3.9 97 73 AVERAGE

163 91 33.2 97 73 EXCELLENT

1226 91 6.3 97 73 AVERAGE

121 91 7.9 97 73 AVERAGE

77.9 91 17.1 97 73 GOOD

463.6 91 2 91 73 AVERAGE

474.91 91 5.8 97 60 GOOD

262.5 92 6.9 97 60 GOOD

4207.5 92 1.1 92 80 POOR

500.71 92 2.2 93 67 AVERAGE

227 92 0.9 97 58 GOOD

175 92 4.3 97 73 AVERAGE

334 92 1.5 97 67 AVERAGE

65.4 92 6.8 92 67 GOOD

330.19 92 8.6 97 67 GOOD

142.5 93 4.4 98 73 AVERAGE

305.4 93 12.2 98 73 GOOD

250.4 93 2 98 50 GOOD

182

135.67 93 2.4 98 58 GOOD

265.09 94 10.2 94 73 AVERAGE

124.17 94 2.1 98 73 AVERAGE

100 94 36.3 98 73 EXCELLENT

126.67 94 9.5 98 73 AVERAGE

215.5 95 3.6 95 78 AVERAGE

197 95 0.8 98 58 GOOD

180 95 14.6 99 73 GOOD

270.5 95 19.1 98 78 GOOD

58 95 16 98 73 GOOD

114.5 95 14.2 99 67 GOOD

93.37 96 13.5 99 67 GOOD

3610.2 96 1.4 99 67 AVERAGE

123 96 14.6 99 83 AVERAGE

115 96 28 99 73 EXCELLENT

144.5 96 22.3 99 67 EXCELLENT

204.6 96 1.9 99 58 GOOD

854 96 14.7 99 73 AVERAGE

905 96 1.6 99 73 AVERAGE

259 97 1.2 99 58 GOOD

151.33 97 6.9 99 73 AVERAGE

91.8 97 24.7 99 73 EXCELLENT

233.2 97 2.1 99 73 AVERAGE

239.05 97 8.8 99 67 GOOD

585.5 97 1 99 60 GOOD

56 97 9 99 73 GOOD

324.67 97 4.1 98 80 AVERAGE

134.08 97 15.4 99 73 GOOD

123.92 97 15.6 99 73 GOOD

140.5 97 18 99 73 GOOD

183

126.17 98 12 100 67 GOOD

255 98 1.3 99 67 AVERAGE

301.8 98 1.2 100 73 AVERAGE

383.2 98 2.1 100 73 AVERAGE

352 98 21.5 100 58 EXCELLENT

789.8 98 2.2 95 73 AVERAGE

597.5 98 3.7 100 60 GOOD

243 98 25.6 100 73 EXCELLENT

63.25 98 25.6 100 67 EXCELLENT

154 98 14 99 73 GOOD

111 98 0.8 100 67 AVERAGE

202 98 9.7 99 80 AVERAGE

248.4 98 1.4 99 58 GOOD

443 98 10.1 100 58 GOOD

265.4 99 1.5 100 67 AVERAGE

109.6 99 19.3 100 73 GOOD

148.56 99 2.3 100 73 AVERAGE

724.82 99 4.7 100 60 GOOD

570.5 99 8.3 99 67 GOOD

63.8 99 18.1 100 73 GOOD

470 99 0.5 100 60 GOOD

100 99 19.8 100 73 GOOD

121.67 99 9.6 100 73 GOOD

166.63 99 9.6 100 67 GOOD

219 99 16.4 99 80 GOOD

95.25 99 16.3 100 73 GOOD

322.33 99 9 100 73 AVERAGE

293 99 27.8 100 73 EXCELLENT

1334 100 8.3 100 73 AVERAGE

184 100 12.1 100 80 AVERAGE

184

300.6 100 1.4 100 67 AVERAGE

2123 100 8.8 100 73 AVERAGE

510 100 13.9 100 73 GOOD

113.75 100 1 100 73 AVERAGE

125 100 17.4 100 67 GOOD

182.33 100 11.6 100 73 GOOD

51.5 100 1.8 100 73 AVERAGE

223.6 100 0.7 100 73 AVERAGE

257.5 100 3.4 100 73 AVERAGE

228.6 100 14.1 100 73 GOOD

185

LIST OF PUBLICATIONS

International Journals

1. Susila, S.; Vadivel “Agent based discovery of Web Services to enhance the quality of

Web Services selection”, International Journal of Computer Science and Network

Security (IJCSNS), Dr. Sang H. Lee. Vol.11, No.2, pp 159-163.

(http://paper.ijcsns.org/07_book/201102/20110226.pdf Feb‟2011 paper id (2101109)

2. Susila, S.; Vadivel “Web Services selection based on QoS attributes using entropy

discretization method”, International Journal of Computer Applications(IJCA)

Published by Foundation of Computer Science, New York, USA

http://www.ijcaonline.org/archives/volume30/number2/3611-4119

3. Susila, S.; Vadivel“Web Services selection through QoS Web Services”, Published

papers in the International Journal of Software and Web Sciences (IJSWS), ISSN

(Online): 2279-0071, ISSN (Print): 2279-0063 (September-November, 2013, Issue 6,

Volume 1). Pp 18-23 http://iasir.net/IJSWSpapers/IJSWS13-325.pdf

4. Susila, S.; Vadivel“Qos Measurement Tool For Web Service Selection” International

Journal of Web Engineering2014;3(1): 1-8doi:10.5923/j.web.20140301.01

http://article.sapub.org/10.5923.j.web.20140301.01.html

http://paper.ijcsns.org/07_book/201102/20110226.pdf
http://www.ijcaonline.org/archives/volume30/number2/3611-4119
http://iasir.net/IJSWSpapers/IJSWS13-325.pdf
http://article.sapub.org/10.5923.j.web.20140301.01.html

186

International Conferences

5. Susila, S.; Vadivel“A novel approach to add semantics to Web Services”,

International Conference on Recent Advances in Applied & Biomedical Informatics

and Computational Engineering in Systems Applications. Proceedings of the

International Conference on Recent Advances in Applied & Biomedical Informatics

and Computational Engineering in Systems Applications. Florence, Italy Pages 59-64.

Online at http://www.wseas.us/books/2011/Florence August 23-25,2011 paper

id(1111201)

6. Susila, S.; Vadivel, S.; Julka, A., "Broker architecture for Web Services selection

using SOAPUI," Cloud Computing Technologies, Applications and Management

(ICCCTAM), 2012 International Conference on , vol., no., pp.219,222, 8-10 Dec. 2012

doi:10.1109/ICCCTAM.2012.6488102

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6488102&isnumber=

6488050

http://www.wseas.us/books/2011/Florence
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6488102&isnumber=6488050
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6488102&isnumber=6488050
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6488102&isnumber=6488050

187

BRIEF BIOGRAPHY OF THE CANDIDATE

Ms. Susila received the ME degree in computer science from College of engineering, Guindy,

ANNA UNIVERSITY, Chennai in 2006. She worked as Application development Specialist in

Intellicon Pvt. Ltd, India. Then she worked as Lecturer in engineering colleges that are

affiliated to ANNA UINVERSITY in Coimbatore. She is currently working as Senior Lecturer

in the Computer Science Dept of BITS, Pilani-Dubai from 2006. She continues her service in

the same campus till date. Her current areas of interest are selection of Web Services based on

QoS attributes of Web Services and security.

188

BRIEF BIOGRAPHY OF THE SUPERVISOR

Dr.S.Vadivel received the PhD degree in Computer Science and Engineering from I.I.T

Madras, India by 1989. After that he worked in Crompton Greaves in Bombay as research

executive for 3 years. Then he worked as Assistant Professor in Engineering in Government

College at Tamil Nadu, India for 4 years. Then he joined as Research Lead in Think business

networks a multinational software company in Tamil Nadu. He has joined BITS, Pilani-Dubai

as faculty in CSE by Jan 2003 and currently working as professor in CSE in the same institute.

He has 25 publications in various international journal and conferences. His current research

interests are in Web Services and security, embedded controllers, data mining, and

Architecture of enterprise software applications.

