
Design and Investigation of Techniques to Improve Information
Retrieval on the Web

THESIS

submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

RAJENDRA KUMAR ROUL

2009PHXF0421G

under the supervision of

Dr. Sanjay Kumar Sahay

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

PILANI (RAJASTHAN), INDIA, 2016

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN)

CERTIFICATE

This is to certify that the thesis entitled Design and Investigation of

Techniques to Improve Information Retrieval on the Web submitted by

Rajendra Kumar Roul, ID No. 2009PHXF0421G for award of Ph.D. of the Institute,

embodies original work done by him under my supervision.

Signature of the Supervisor

Dr. SANJAY KUMAR SAHAY

Assistant Professor

Department of Computer Science &

Information Systems

Date: 23/11/2016

iii

ACKNOWLEDGEMENT

I would like to thank my Supervisor and Guide Dr. Sanjay Kumar Sahay who
encouraged and directed me towards doing research. He supported me throughout my thesis
with his patience and knowledge whilst allowing me the room to work in my own way. It is his
initiation and motivation that this work came into existence and I am greatly indebted to him.
One simply could not wish for a better or friendlier supervisor.

I also take this opportunity to thank Prof. G Raghurama, Director, Birla Institute
of Technology and Science Pilani (BITS Pilani) K K Birla Goa Campus, Prof. Ashwin Srini-
vasan, Deputy Director, BITS Pilani K K Birla Goa Campus for giving me the opportunity to
pursue my thesis.

My sincere thanks to Dr. Bharat M. Deshpande, Head, Department of Computer
Science and Information Systems, Dr. Neena Goveas, Department of Computer Science and
Information Systems, Prof. Santonu Sarkar, Department of Computer Science and Informa-
tion Systems and Dr. Prasanta Kumar Das, Associate Dean of Academic Research Division
(ARD), BITS Pilani K K Birla Goa Campus for their valuable suggestions.

My sincere thanks also goes to the Doctoral Advisory Committee (DAC) mem-
bers Dr. Biju K. Raveendran, Assistant Professor of the department of Computer Science and
Information Systems and Dr. Chandradew Sharma, Assistant Professor of the department of
Physics, BITS Pilani K K Birla Goa Campus for preliminary assessment of the thesis and help-
ful suggestions during my progress seminars. I also thank the faculty members and research
scholars of the department of Computer Science, BITS Pilani K K Birla Goa Campus for their
kind cooperation.

I heartily thank my friends for their prayers and constant encouragement to fin-
ish this work successfully. I am also thankful to my fellow colleagues whose challenges and
productive criticism, especially at the progress seminars, have provided improvement in the
presentation of the work.

I would also like to thank my parents Mr. Laxmidhar Roul and Mrs. Basanti
Roul, my wife Mrs. Malabika Roul and son Mr. Aarpit Kumar Roul for their constant love,
confidence, good wishes and for being with me against all odds in this journey of education.
This thesis is heartily dedicated to my wife Mrs. Malabika Roul who stood by me at all times.

RAJENDRA KUMAR ROUL

iv

ABSTRACT

The World Wide Web is the main storage for Information Retrieval (IR). Accord-

ing to the latest survey, the web has indexed at least 4.75 billion of documents. To make

searching of information much easier for the users, web search engines came into existence.

However, with the exponential increase in the number of internet users and the digital doc-

uments on the web, it is becoming difficult for the users to find the relevant documents that

fulfill their requirements. Aiming in this direction, the thesis presents a detailed design and

investigation of different techniques to improve IR on the web.

Different IR models, performance measurement, various challenges in IR and

techniques to overcome those challenges are discussed in Chapter 1. Thereafter in Chapter

2, the literature review of different IR techniques are discussed.

The architectures of the Extreme Learning Machine (ELM) and recently designed

Multilayer ELM (ML-ELM) which is based on deep learning network are analyzed in Chap-

ter 3. To handle multi-class classification problem, ELM One-Against-One and ELM One-

Against-All techniques are discussed in this chapter.

Two new feature selection techniques for text classification named k-means and

Wordnet based feature selection and Combined Cohesion, Separation and Silhouette coefficient

based feature selection are discussed in Chapter 4. In both these techniques, deep learning in

the form of ML-ELM classifier has been used extensively for experimental work.

Chapter 5 highlights the importance of ML-ELM feature space used for text clus-

tering. Semi-supervised and unsupervised clustering using seeded k-means and k-means, re-

spectively are done in the feature space of ML-ELM and the results are compared with cluster-

ing in the vector space model.

Chapter 6 proposes a new modified apriori approach by cutting down the repeated

database scans to improve the association analysis of traditional apriori algorithm for clustering

the web documents. Further, the performances of different traditional clustering techniques are

measured after combining them with the modified apriori approach. To label these clusters,

a cluster labeling mechanism is proposed in Chapter 7. For this purpose, Chi-Square feature

v

selection along with Wordnet are used to select the top keywords from a cluster. Instead of

labeling the clusters with ‘bag of words’, a concept-driven mechanism has been developed

which uses Wikipedia that takes these top keywords of a cluster as input to generate the possible

candidate labels. Mutual Information technique is used to rank the candidate labels extracted

from Wikipedia and then the topmost candidates are considered as the potential labels of a

cluster.

CONTENTS

ACKNOWLEDGEMENT . iii

ABSTRACT . iv

List of Tables xi

List of Figures xiv

1 Introduction 1

1.1 Information Retrieval Models . 2

1.2 Evaluation of Information Retrieval . 3

1.3 Techniques used in Informational Retrieval 5

1.3.1 Feature Selection . 5

1.3.2 Text Classification . 9

1.3.3 Text Clustering . 11

1.3.4 Cluster Labeling . 12

1.3.5 Other techniques used in IR . 13

1.4 Research Gap in Information Retrieval . 13

vi

vii

1.5 Objectives and Organization of the Thesis . 16

2 Literature Survey 18

2.1 Introduction . 18

2.2 Survey on Feature Selection . 18

2.3 Survey on Text Classification . 22

2.4 Survey on Text Clustering . 26

2.5 Survey on Cluster labeling . 29

3 Extreme Learning Machines in Text Classification 32

3.1 Introduction . 32

3.2 Methodology . 33

3.2.1 Document pre-processing and indexing 33

3.2.2 ELM One-Against-All . 33

3.2.3 ELM One-Against-One . 35

3.2.4 Multilayer ELM . 37

3.3 Experimental Analysis . 40

3.4 Summary . 44

4 Feature Selection Techniques for Text Classification 45

4.1 Introduction . 45

4.2 k-means and Wordnet based feature selection 46

4.2.1 Methodology . 47

viii

4.2.2 Experimental Analysis . 50

4.3 Combined Cohesion, Separation and Silhouette coefficient based feature Se-

lection . 53

4.3.1 Cohesion . 55

4.3.2 Separation . 55

4.3.3 Silhouette Coefficient . 55

4.3.4 Methodology . 56

4.3.5 Experimental Analysis . 59

4.4 Summary . 69

5 Clustering in ML-ELM Feature Space 71

5.1 Introduction . 71

5.1.1 Importance of extended feature space of ML-ELM 72

5.1.2 Seeded-kMeans/kMeans Algorithm 74

5.2 Methodology . 75

5.3 Experimental Analysis . 77

5.3.1 Performance evaluation of the clustering 77

5.4 Summary . 80

6 Modified Apriori approach for Text clustering 81

6.1 Introduction . 81

6.1.1 Modified Apriori Approach . 82

ix

6.1.2 Optimization open Traditional Apriori Algorithm for clustering 82

6.2 Methodology . 83

6.2.1 Document pre-processing . 83

6.2.2 Obtaining initial clusters and their centroids 83

6.2.3 Performing traditional clustering on the centroids of the initial clusters . 84

6.3 Experimental Analysis . 84

6.3.1 Performance measurement of traditional and modified apriori approach 84

6.3.2 Performance measurement of traditional clustering algorithms 89

6.4 Summary . 93

7 A hybrid approach for cluster labeling 94

7.1 Introduction . 94

7.2 Methodology . 94

7.2.1 Document Pre-processing . 94

7.2.2 Clusters Generation . 95

7.2.3 Top Documents selection . 95

7.2.4 Representative Keywords Selection 96

7.2.5 Generating Candidate Labels . 97

7.2.6 Evaluating Candidate Labels . 97

7.3 Experimental Analysis . 98

7.3.1 Using 20-Newsgroups dataset . 99

x

7.3.2 Using Reuters dataset . 106

7.4 Summary . 107

8 Conclusions and Future Directions 109

LIST OF PUBLICATIONS . 113

BRIEF BIOGRAPHY OF CANDIDATE . 115

BRIEF BIOGRAPHY OF SUPERVISOR . 116

.1 . 117

A Support Vector Machine 118

B Extreme Learning Machine 120

C Multilayer Extreme Learning Machine 125

D Traditional Feature Selection Techniques 130

E Fuzzy C-Means 132

F Cluster Evaluation 133

Bibliography 137

LIST OF TABLES

3.1 Term-document matrix . 33

3.2 Accuracy comparisons of different state-of-the-art classifiers 43

3.3 F-measure comparisons of different state-of-the-art classifiers 44

4.1 Synonym list of keywords . 46

4.2 ELM (20-Newsgroups) . 50

4.3 ML-ELM (20-Newsgroups) . 51

4.4 ELM (DMOZ) . 52

4.5 ML-ELM (DMOZ) . 53

4.6 Reduced term-document matrix . 57

4.7 20-NG: performance on top 1% features . 61

4.8 20-NG: performance on top 5% features . 62

4.9 20 NG: performance on top 10% features . 62

4.10 CLASSIC4: performance on top 1% features 62

4.11 CLASSIC4: performance on top 5% features 63

4.12 CLASSIC4: performance on top 10% features 63

xi

xii

4.13 REUTERS: performance on top 1% features 64

4.14 REUTERS: performance on top 5% features 64

4.15 REUTERS: performance on top 10% features 64

4.16 WebKB: performance on top 1% features . 65

4.17 WebKB: performance on top 5% features . 65

4.18 WebKB: performance on top 10% features . 65

4.19 F-measure comparisons using CCSS . 66

5.1 Purity of clusters on Classic4 dataset . 78

5.2 Entropy of clusters on Classic4 dataset . 78

5.3 Purity of clusters on Reuters dataset . 78

5.4 Entropy of clusters on Reuters dataset . 79

6.1 Performance comparison of different clustering techniques 92

7.1 Term-document matrix of each cluster . 95

7.2 Reduced term-document matrix of each cluster 96

7.3 Representative keywords of 20-Newsgroups 101

7.4 Chi-Square values of representative keywords on 20-Newsgroups 102

7.5 Suggested candidate labels of 20-Newsgroups 104

7.6 MI-score for suggested candidate labels on 20-Newsgroups 105

7.7 Representative keywords of Reuters . 106

7.8 Chi-square values of representative keywords on Reuters 107

xiii

7.9 Suggested candidate labels on Reuters . 107

7.10 MI-score for suggested candidate labels on Reuters 107

LIST OF FIGURES

1.1 Architecture of Information Retrieval . 2

1.2 Model of feature selection used for classification 6

3.1 ELM One-Against-All . 34

3.2 ELM One-Against-One . 35

3.3 Multilayer ELM . 38

3.4 dmoz-chi-square . 41

3.5 dmoz-ig . 41

3.6 dmoz-bns . 41

3.7 20ng-chi-square . 42

3.8 20ng-ig . 42

3.9 20ng-bns . 42

4.1 Average precision of different classifiers on 20-Newsgroups 51

4.2 Average recall of different classifiers on 20-Newsgroups 51

4.3 Average F-measure of different classifiers on 20-Newsgroups 52

xiv

xv

4.4 Average precision of different classifiers on DMOZ 53

4.5 Average recall of different classifiers on DMOZ 54

4.6 Average F-measure of different classifiers on DMOZ 54

4.7 Cohesion and Separation of two terms . 56

4.8 Average F-measure on top 1% features . 67

4.9 Average F-measure on top 5% features . 67

4.10 Average F-measure on top 10% features . 68

5.1 Semi supervised clustering (before) . 72

5.2 Semi supervised clustering (after) . 72

5.3 ML-ELM feature space . 73

5.4 TF-IDF and ML-ELM feature vector . 76

5.5 Execution time on Classic4 dataset . 79

5.6 Execution time on Reuters dataset . 79

6.1 Apriori vs. Modified Apriori on CASM . 87

6.2 Apriori vs. Modified Apriori on CISI . 87

6.3 Apriori vs. Modified Apriori on MED . 87

6.4 Apriori vs. Modified Apriori on CRAN . 88

6.5 Apriori vs. Modified Apriori on alt . 88

6.6 Apriori vs. Modified Apriori on soc . 88

6.7 Apriori vs. Modified Apriori on ship . 89

xvi

6.8 Apriori vs. Modified Apriori on crude . 90

6.9 Support count graph for Apriori vs. Modified Apriori 90

6.10 Performance comparison on Classic4 . 93

7.1 Top keywords of cluster 2 on 20-Newsgroups 101

7.2 Suggested candidate labels and their semantic distances from cluster 2 on 20-

Newsgroups . 103

7.3 Keyword ranking of top 3 representative keywords of each cluster on 20-Newsgroups103

7.4 MI-score of each cluster on 20-Newsgroups 104

7.5 Top 3 representative keywords on Reuters . 108

7.6 MI-score of each cluster runs on Reuters . 108

B.1 Architecture of ELM . 124

C.1 Multi-Layer ELM and ELM-Autoencoder . 127

F.1 Cohesion . 134

F.2 Separation between the centroid of two clusters 134

CHAPTER 1

INTRODUCTION

The process of retrieving unstructured materials (usually documents) that are rel-

evant to an information need from a large collection, is known as Information Retrieval (IR).

The term unstructured data refers to the information which does not have any clear structure or

is not ordered properly. The documents returned by the IR system may or may not match the

user query completely. Hence, based on their relevancy, the retrieved documents are generally

ranked. In information science/IR, relevance denotes how well a retrieved document or set of

documents meets the information required by the user and it may include concerns such as

timeliness, authority, i.e., from a trusted source or novelty of the document which satisfies the

goals of the user and his/her intended use of the information. For ranking, all the documents

and queries are indexed first and then the similarity score calculation (using standard similarity

mechanism such as cosine-similarity, Euclidean distance, dice coefficient etc.) is performed

between them. The general architecture of IR is illustrated in Figure 1.1.

One of the most important applications of the IR system is web-based search engines such

as Google, Yahoo, Bing, Ask etc. As every day, the amount of information on the internet

is increasing, the demand to retrieve different types of information has also increased which

given rise to the interest in other IR related areas that go beyond the document retrieval, like

question answering, image classification, audio and video retrievals, bioinformatics etc. Today,

IR system has become very important in document retrieval as well as image, audio and video

retrievals.

1

2

Figure 1.1: Architecture of Information Retrieval

1.1 Information Retrieval Models

To retrieve the relevant documents using IR strategies, documents are generally

transformed into a suitable representation. Each retrieval strategy incorporates a specific model

for the purpose of document representation and some of the common models are discussed

below:

1. Set-theoretic models represent the documents as sets of words or phrases. Set-theoretic

operations are used on these sets to get the similarity between document and query. Some

of the popular set-theoretic models are:

i.Standard boolean model [1], where a document is represented as a set of keywords

and queries are boolean expressions of keywords, connected by boolean operators. The

output is whether the document is relevant or not. No partial matching and ranking of

documents is possible in this model.

ii.Fuzzy model [2], in which queries and documents are represented by sets of index

terms. The idea is to introduce the notion of a degree of membership associated with the

documents in a fuzzy set.

2. Algebraic models represent documents and queries as vectors, matrices, or tuples. Some

of the common algebraic models are:

i. Vector space model (VSM) [3], in which the documents and terms are represented by

vectors. Documents are ranked based on the similarity score between the query and the

documents.

3

ii. Generalized vector space model (GVSM) [4], which is different from the VSM, where

the index term vectors are linearly independent but not pairwise orthogonal. It considers

correlations among the index terms.

iii. Topic-based vector space model [5] extends the VSM of IR by removing the con-

straint, i.e. ‘the term-vectors to be orthogonal’. In contrast to the GVSM, this model

does not depend on concurrence-based similarities between the terms.

iv. Extended boolean model [6], whose idea is to make use of term weight like VSM by

combining the boolean query with VSM.

v. Latent semantic indexing (LSI) [7], takes documents that are semantically similar (talk

about the same topics), but are not similar in the vector space (because they use different

words) and re-represents them in a reduced concept space in which they have higher

similarity.

3. Probabilistic models treat the process of document retrieval as a probabilistic inference.

Similarities are computed as the probability of document relevant for a given query.

Some of the common probabilistic models are:

i.Binary independence model [8] is a probabilistic IR technique that makes some simple

assumptions to estimate the probability of similarity between the document and query.

ii.Language model [9] is a probabilistic model based on the multinomial distribution over

sequences of words.

iii.Latent Dirichlet Allocation (LDA) [10] represents the documents as mixtures of topics

that split out words with certain probabilities.

1.2 Evaluation of Information Retrieval

The evaluation of an IR system is based on the assessment of how well a system

meets the information required by its users. A collection of documents to be searched along

with the search query is considered for performance measurement. All common measures

used for performance evaluation indicate whether a document is relevant or non-relevant to a

particular query. In practice, queries may be ill-posed and there may be different shades of

4

relevancy. The following standard measures are generally used for evaluating the performance

of IR system.

i. The performance of IR system is traditionally evaluated by computing the F-measure (F)

which is weighted harmonic mean of precision (P) and recall (R)

F = 2 ∗ (P × R)
(P + R)

where, P is the ability to retrieve top-ranked documents that are most relevant. In other

words, it is the fraction of retrieved documents that are relevant.

P =
(relevantdocuments) ∩ (retrieveddocuments)

retrieveddocuments

and R is the ability of the search to find all the relevant documents in the corpus. In other

way, it is the fraction of relevant documents that are retrieved.

R =
(relevantdocuments) ∩ (retrieveddocuments)

relevantdocuments

ii. Accuracy (A) refers to the closeness of a measured value to a standard or known value

which is different than precision that refers to the closeness of two or more measurements

to each other.

A =
a+ b

N

where a is the number of documents which are retrieved and are relevant, b is the number

of documents which are not retrieved as well as not relevant and N is the total number

of documents in the corpus. Some other performance evaluation mechanisms also exist

such as:

iii. R-Precision is precision at the Rth position in the ranking of results for a query that has

R relevant documents.

iv. Average Precision [9] is the average of the precision values of the points at which each

relevant document is retrieved.

v. Mean Average Precision (MAP) [9] is the average of the average precision value for a

set of queries.

5

vi. Precision-at-k [9] measures the precision of top k results.

vii. 11-point interpolated average precision [9] is the standard measure in the early Text

REtrieval Conference (TREC) competitions. The precision at 11 levels of recall varying

from 0 to 1 by tenths of the documents is taken using interpolation (the value for 0 is

always interpolated) and then the precisions are averaged.

1.3 Techniques used in Informational Retrieval

There are various techniques exist to handle the challenges of IR. Many researchers

are working in this field to improve the efficiency of IR process. The ultimate reason to enhance

this retrieval process is to increase the performance of the search engine which meets the user

requirements. Some of the state-of-the-art techniques are discussed below.

1.3.1 Feature Selection

In terms of information retrieval, there is no clear definition of a feature, but it is a distinctive

attribute or characteristic of the data. In general, there are some properties which a good

feature is likely to have such as meaningful perceptually (for humans), analytically special

e.g. maxima, identifiable on images, invariant to a transformation, insensitive to noise. The

process of transforming raw data into features which represent the model better, resulting in

improved accuracy of the classification technique is known as feature engineering. This process

is generally used in pattern classification techniques and can be categorized into three stages:

1. Feature generation stage: In this stage, candidate features are generated by pre-determined

kind of sensing techniques from the training set.

2. Feature refinement stage: Also known as dimensionality reduction stage, where refinement

of features is done via. feature extraction or feature selection.

3. Feature utilization stage: After feature refinement stage is over, the refined features are

used to represent the instances of the dataset. An appropriate classification model is selected

to make use of these features. Among the above three stages, feature refinement stage (or

dimensionality reduction stage) is most important and has become the main topic of discussion

6

due to the following reasons:

i. reduces the time and storage size.

ii. improves the performance of the model by removing multi-collinearity.

iii. data visualization is easier when the actual feature space is reduced to low dimensions such

as dimension of two or three.

In feature extraction, it is assumed that all features are not appropriate though they contain

sufficient information. To handle this problem, feature extraction generates new features from

the original set by combining or transforming the original one from an extended space to a

lower dimensional space, e.g. text clustering [7]. The data transformation may be linear as in

the case of principal component analysis (PCA) [11] and linear discriminant analysis (LDA)

[12], but many non-linear dimensionality reductions techniques are also in use.

In feature selection, the assumption is that the original feature set contains sufficient relevant

features which can discriminate clearly between categories and therefore some of the irrelevant

feature are eliminated for better efficiency and accuracy. It selects a subset of informative

features from the initial feature set and uses it for model construction. Feature selection is

important due to the following reasons:

i. simplifies the model for better understanding.

ii. makes generalization capacity of the classifier better by reducing overfitting.

iii. takes lesser time to train the classifier by eliminating irrelevant features.

A general architecture of feature selection used for classification is shown in Figure 1.2.

Figure 1.2: Model of feature selection used for classification

7

Generally, in text classification, feature selection techniques are used when the number of

features is very high compared to the number of documents in the corpus. Feature selection

increases the accuracy and efficiency of text classification when the original feature sets are of

poor quality. Lewis in his work has listed six situations which gives rise to the poor quality

of feature sets such as when the feature set does not have sufficiently distinguished instances,

concepts from the hypothesis space are excluded from the feature set, large feature set results

into ‘very big’ hypothesis space, explicit or implicit assumptions of the learning algorithms are

violated by the feature set, feature set contains noisy data and redundancy in the feature set.

Different methods used for feature selection follow four preliminary steps:

1. selection of the subset: based on certain strategy, a subset of the candidate features will be

selected.

2. evaluation of the subset: the subset generated in step 1 will be evaluated according to certain

criteria.

3. criteria to stop the process: among all the candidate features, the top ‘m%’ features are

selected based on the evaluation score, where ‘m’ is the stopping parameter and it is decided

empirically.

4. validation of the selected features: in the last step, selected ‘m%’ features are validated

using some domain knowledge.

Further, the algorithms used for feature selection are classified into the following three cate-

gories:

1. Filter methods do not use any classifiers for feature selection instead features are selected

on the basis of statistical properties [13]. Hence, these methods are fast to compute

and capture the usefulness of the feature set, that makes them more practical. Some

of the examples include mutual information and correlation coefficient. There can be

two categories of filter-based methods: global, where a unique score is assigned to each

feature which ranks them in the entire corpus and local, where for any feature, multiple

class-based scores are assigned. Finally, all local scores are converted to a unique global

score using some globalization policy. In general, filter methods use cross-validation

as the cut-off point for ranking the features. Based on the membership to a class, filter

based methods are either one or two-sided [14].

i. One-sided: In this metrics, if the features have membership belonging to classes then

8

their score is either greater than or equal to zero else score is smaller than zero, depending

on whether they have membership or non-membership to the classes. Hence, during

feature selection, even if there are no positive features, negative feature cannot be part of

top features e.g. odds ratio, correlation coefficient.

ii. Two sided: In two-sided metrics, all the features have their score greater than or equal

to zero where positive and negative features are implicitly combined. Positive features

get higher score compared to negative features which are rarely added to the feature set.

2. Wrapper methods generate different subsets of features based on some algorithms and

test each subset using a classifier [15]. To find the score of the feature subsets, wrapper

methods use a predicative model, whereas filter methods use a proxy measure. Hence,

wrapper methods are computationally intensive when the features are very large and

increase the overfitting risks, if the number of observations is not sufficient. But they

generate the best feature set for a particular type of model as these methods detect the

possible interactions between the features. Feature sets of filter methods are less tuned

than wrapper methods, hence they are more generalized but usually perform worse than

the wrapper methods [16]. As the feature set of filter methods do not use the assump-

tion of predicative model, hence the relationship between the features are not considered

which makes them to select the redundant features. Therefore, filter methods are mainly

used as a pre-processing step for wrapper methods. Large-scale problems like text cate-

gorization mostly do not use wrapper methods due to high computational cost and chance

of overfitting[17].

3. Embedded methods combine the advantages of both the previous two methods and thus

their computational complexity lies between those two methods. In these methods, fea-

ture selection is integrated into the training phase of the classifier and thus just like the

wrapper methods, these methods are specific to the learning mode. They use their own

feature selection algorithm hence, they need to know a good selection in advance which

causes degradation in their performance. In these methods, while building the model

based on the prediction errors, selected function is either added or deleted, e.g. Re-

cursive feature elimination algorithm, Least Absolute Shrinkage and Selection Operator

(LASSO), Elastic Net, Ridge regression etc. are some of the existing embedded methods.

Generally, the feature selection methods are either unsupervised or supervised. No class labels

are required to select the top features in the case of unsupervised feature selection. Super-

9

vised methods, on the other hand, do require class labels. Some of the unsupervised feature

selection methods are ‘Term Strength’[18], ‘Term Contribution’ [18], ‘Document Frequency’

[9], ‘TF-IDF Metric’ [9] etc. Supervised feature selection methods further categorize into two

sub-categories - Accuracy and Correlation based.

i. Accuracy Based Method: These methods choose the features which maximize the occurrence

of features in the positive class and minimize the occurrences of the features in the negative

class. Some of the existing methods like Odds Ratio’[19], ‘Probability Ratio’[20], ‘GU Met-

ric’ [16], ‘Bi-Normal Separation (BNS)’ [17], ‘Power Metric’ [16], ‘Fisher Criterion’[21] etc.

belong to this sub-category.

ii. Correlation Based Method: These methods evaluate the features by finding the correlation

of the features with the various classes and choose the features which have the highest correla-

tion score. For example, ‘Chi-square metric’ [9], ‘NGL coefficient’[22], ‘GSS coefficient’ [23],

‘MI-judge’ [9], ‘Information Gain’ etc. are some of the existing correlation based methods.

1.3.2 Text Classification

Documents on the web need to be organized in an effective manner so as to retrieve the data

when needed. The process of finding the correct class or category for each document from a

given collection of documents is known as text classification or text categorization. The set of

categories or classes are already given in the case of supervised classification while they are

determined from the collection of documents itself in case of unsupervised classification [9].

The text classification is either binary or multi-class depending on whether the test instance is

classified into one of the two pre-defined classes or more than two classes, respectively. The

following are two approaches used to handle the multi-class problem:

1. One Against All (OAA) which decomposes the multi-class problem into n binary prob-

lems. For each class ci ∈ C, a binary problem is created where all instances that belong

to ci are considered positive examples, while the remaining instances are considered as

negative examples. A binary classifier is then constructed to separate instances of ci from

rest of the classes. If an instance is classified as negative, then all the classes except the

positive class receive a vote. This approach may lead to ties among different classes.

2. One Against One (OAO) constructs n(n − 1)/2 binary classifiers, where each classifier

10

is used to distinguish between a pair of classes (ci, cj). Instances that do not belong to

either ci or cj are ignored while constructing the binary classifiers for ci and cj .

In the above two approaches, a test instance is classified by combining the predictions made

by the binary classifiers. A voting scheme generally takes place to combine the predictions and

the class which receives the highest votes is assigned to the test instance. Text classification is

improved by improving the performance of the classifier but doing it manually consumes a lot

of time which may lead to errors. Hence, text classification has become a very popular domain

of research amongst experts in machine learning and IR in the last decade.

Choice of an efficient classifier is the next important thing in text classification. Based on the

nature of the different classifiers, the classification is basically divided into two categories. The

first one is Eager learners, where given a set of training tuples, it will construct a classification

model before receiving new (i.e. test) tuples to classify. We can think of the learned model as

being ready and eager to classify previously unseen tuples. Different classification techniques

such as decision tree, Bayesian, rule-based, support vector machine artificial neural network

etc. fall into this category. The other one of classification is lazy learner, in which the learner

waits till the last minute before doing any model construction in order to classify a given tuple.

In other way, given a training tuple, a lazy learner simply stores it (or does only a little minor

processing) and waits until it gets a test tuple. Only when it sees the test tuples, it performs

generalization (i.e. classification) in order to classify the tuples based on its similarity to the

stored training tuples. Classification techniques such as k-nearest neighbor, cased-based rea-

soning etc. are belong to this category. Lazy learners can be computationally expensive when

making classification as they require extra storage space. It does less work when a training

tuple is presented and more work when making a classification. However, it naturally support

incremental learning. It is also known as instance-based learners as it stores the training tuples.

All the above discussed traditional classifiers have their own limitations. Most of the classifier

architectures are based on the approach of neural network, hence certain restrictions are im-

posed which stops them to solve many complex problems. Extreme Learning Machine [24] is

able to approximate any complex non-linear mappings directly from the training samples but

it has a shallow architecture similar to traditional SLFNs. Hence, it may need a large network

to perfectly fit the highly-variant input data which is difficult to implement. Deep learning,

the re-branding of neural network is a sub-branch of machine learning and is based on a set of

11

network algorithms. The architecture of deep learning is used in many fields such as natural

language processing, speech recognition, image processing etc. The common restrictions found

in conventional classifiers are not there in deep learning, hence it is able to solve any complex

problem [25]. Recently developed Multilayer ELM [26] classifier which relies on deep learn-

ing architecture can tackle such common problem generally found in traditional classifies and

is capable to handle a large volume of data.

1.3.3 Text Clustering

Clustering is a technique where a corpus is divided into groups of similar documents. Group-

ing is such that the documents in a group are more similar to each other as compared to doc-

uments in other groups. Clustering can be unsupervised (label of the cluster is unknown),

semi-supervised (partially label is known) and supervised (label is known, also known as clas-

sification) The unsupervised clustering can be categorized as follows:

1. Hierarchical Methods also known as connectivity based clustering where different ob-

jects are connected to form clusters. The basic idea behind this method is that at dif-

ferent distances, different clusters are formed. The results of hierarchical clustering are

usually presented in a dendrogram (tree structure), especially one showing taxonomic

relationships. There are various ways of computing the distance based on singly link,

completely link, average link etc. Various techniques are used under hierarchical clus-

tering and mostly come under two categories.

i. Agglomerative [27] also known as bottom-up method, in which each object is con-

sidered as a cluster at first and then pairs of clusters are merged as one moves up the

hierarchy.

ii. Divisive [27] also known as top-down method, in which all the objects are consid-

ered to be of one cluster at the beginning and it is recursively divided forming different

clusters till one gets each object separately.

2. Centroid based methods [27] A central vector represents clusters and it may not be an

actual object of the data set. When the number of clusters is known in advance, the algo-

rithm is known as k-means clustering algorithm where k represents number of clusters.

Variations of k-means clustering algorithm with different types of optimizations have led

to algorithms like k-medians, bisecting k-means, fuzzy k-means etc.

12

3. Distribution based methods [27] can be imagined as objects belonging to same type

of distribution. Though theoretically simpler, this model is more complex than the ones

mentioned above. Gaussian mixture model is the most prominent example of distribution

model.

4. Density-based methods [27], where the main idea is that the areas of high density form a

cluster and the sparse areas are classified as noise. Density-based scan (DBSCAN) and

OPTICS are the two most common examples of density-based clustering models.

1.3.4 Cluster Labeling

After clusters are made, it is important to label them in order to get brief information of each

cluster. The purpose of cluster labeling is basically to identify a label for each cluster which can

summarize the cluster accurately and distinguish it from other clusters. Strategies for cluster

labeling can be broadly classified into two categories:

1. Differential cluster labeling, which labels a cluster by comparing term distributions

across all clusters. Terms having very low frequency are not the best in representing

the whole cluster and can be omitted while labeling the cluster. Two common techniques

used for this cluster labeling are: Point-wise Mutual Information [28] and Chi-squared

selection.

2. Cluster internal labeling, in which the clusters under consideration (decided based on

some techniques) for labeling are just analyzed and its labeling is independent of labels

of other clusters. Common techniques used are:

i. Centroid labels: Centroid of the cluster is calculated by considering all the document

vectors. The terms having more weight in the centroid vector are considered for labeling.

ii. Contextualized centroid labels : Centroid labels may not be effective when cluster

contains useless terms of high frequency [29]. To overcome this challenge, cluster is

graphically plotted with vectors as roots. This gives a deeper level of interpretation with

some semantic knowledge of terms.

iii. Title labels: The title of the document which is very close to the centroid of the

cluster is used for cluster labeling. This technique can also be misleading in cases where

a document cannot represent the cluster accurately.

13

iv. External knowledge labels: Labeling process can take advantage of pre-categorized

knowledge such as Wikipedia [30] and the candidate label set is taken from Wikipedia

after sending the important terms from a cluster. Selection is done from this set using

various ranking methods.

1.3.5 Other techniques used in IR

1. Text Summarization

The task of generating summary from one or more texts, which contains important informa-

tion and is significantly smaller than the original texts (not more than half of the original size)

is known as text summarization. Extractive and Abstractive are generally two most common

methods extensively used for text summarization [31]. In extractive text summarization, var-

ious techniques are used to identify the important units of text from the document i.e. the

units can be key-phrases or sentences and those units are then extracted and presented in or-

der. Abstractive text summarization is a more ambitious approach where the system generates

summaries that are close to the summaries written by humans. This is achieved by the use of

various natural language generation techniques.

2. Duplicate and Near-duplicate page detection

Duplicate pages refer to multiple copies of same pages. Near-duplicate pages refer to the

pages which are similar but not exact copies of each other. Near-duplicate pages normally have

slight modification like insertion, deletion or updation of some data. Algorithms used in near-

duplicate page detection are Shingling [32], Spex [33], Simhash [34]).

3. Spam page detection

Web spamming refers to the manipulation of web pages to increase their ranking in the results

retrieved by a search engine. There are several algorithms which are used for web spamming

and can be broadly classified into three categories: Content-based [35, 36], Link-based [37],

Hiding (Clocking and Redirection) [38].

1.4 Research Gap in Information Retrieval

Searching has become the leading paradigm to find the information on WWW.

Some of the important challenges are considered as the research gap in IR and discussed below:

14

i. Global information access:

Information is available in a vast number of languages and it is important for a good IR

system to take queries in any language and retrieve relevant information regardless of

the language of the data. The amount of information on the internet in languages such as

mandarin and hindi is increasing rapidly.

ii. Contextual retrieval:

Combination of search technique and an understanding of the context of a given query

in order to give the most appropriate answer for the query is called contextual retrieval.

If all queries are treated equally, the burden is on the user to retrieve the most relevant

information from the retrieved results. Understanding context of the user query provides

a solution to this problem which helps to retrieve information related to a particular

context. In spite of good research, little progress has been made due to various difficulties

in understanding the query context.

iii. Formal representation of natural language:

A vast number of documents available are in the form of natural language. We need

an effective formal representation of such documents in order to retrieve information

from them. Often the systems use data extraction instead of translation to capture the

imported information from the data. Translation of queries is also important to properly

understand what the user is trying to find. Summarization techniques like extraction and

abstraction are used and research is being done to improve the techniques further.

iv. Query-based challenges:

• Synonymy: Different words having the same meaning are known as synonyms. IR

systems fail to retrieve results related to synonyms of query words which might be

relevant.

• Polysemy: If one word has many different meanings then it is known as polysemy.

IR systems should know which of the meanings are relevant to the query.

• Phrases: Sometimes the search requires us to look for phrases as a whole instead

of individual words, because the results of both approaches might not be the same.

IR systems should take care of such challenges.

15

• Object recognition: As dates and currencies can be expressed in different formats,

it is important for a good IR system to effectively identify the format and search

accordingly.

• Semantics: Sometimes the query can only be understood with semantics e.g. in

cases where query is a question and an answer is expected to that question.

• Computation: Some types of queries expect an IR system to compute the value and

print the result. IR systems require special functions for computation in such cases

e.g. if one types 2 + 3, he should get 5 as the answer.

v. Data and performance related challenges:

• Distributed data: Data to be indexed and retrieved may be distributed on millions

of servers worldwide and hence it creates challenges for search engine to retrieve

the data efficiently without loss of data.

• Huge data size: The size of the data on the web is increasing everyday . It requires

huge storage size to index, even for a small subset of this available data are there to

retrieve.

• Volatility of data: Data available is volatile and can be changed. Therefore, for

useful data, frequent indexing is required.

• Unstructured and redundant data: No conceptual model/ organization/constraints

over data and about 30% of the data available on the web is redundant. It is the job

of an IR system to identify such redundant information and retrieve only relevant

results.

• Poor quality of data: Anyone from anywhere can upload data on the web. Such

data is often outdated, not maintained and may be incorrect e.g. anyone can edit

Wikipedia, making it quite an unreliable source of information.

• Heterogeneous data: Multiple media types, formats, languages and alphabets of

data are available on the Web.

• Spam data: Spammers exploit the algorithms in IR systems to gain higher rankings

in the results. Spam web pages are often devoid of any relevant content and mostly

contain advertisements.

• Duplicate and near-duplicate data: These pages increase the computational com-

plexity of the search engine during indexing and crawling.

16

1.5 Objectives and Organization of the Thesis

The thesis primely focuses to improve the data and performance related challenges

such as volatility of data, unstructured and redundant data, poor quality of data by studying the

existing IR techniques such as text classification, feature selection, text clustering and cluster

labeling and then designing and investigating some novel techniques by exploring ML-ELM

(deep learning) in the domain of IR. The objectives of this thesis are to fulfill the above research

gap (i.e. data and performance related challenges) and are listed below:

1. To investigate whether ML-ELM (deep learning) applied to IR can improve the quality

of IR in the domain of text classification.

2. To design novel feature selection techniques which can enhance the efficiency of ML-

ELM without compromising the efficacy of IR.

3. To investigate how better is the feature space of ML-ELM compared to the TF-IDF vector

space for text clustering.

4. To design a novel modified apriori approach which can overcome the problem of tradi-

tional apriori approach for text clustering and then test the performance of existing clus-

tering algorithms on the vector space of modified apriori approach. Next, developing

an efficient cluster labeling technique to label these clusters generated by the modified

apriori approach.

Accordingly, Chapter 2 discusses the prior works done by the researchers on different IR tech-

niques.

ELM (ELM OAO and ELM OAA) and recently developed Multilayer ELM are

the two most state-of-the-art classifiers whose architectures design are discussed in Chapter 3.

Also, different traditional feature selection techniques are used for experimental work in order

to find which technique can improve the performance of ELM and ML-ELM better.

Chapter 4 introduces two novel feature selection techniques for text classifica-

tion named k-means and Wordnet based feature selection (KWFS) and Combined Cohesion,

17

Separation and Silhouette coefficient (CCSS) based feature selection. In KWFS, a corpus is

divided into different clusters using k-means clustering technique and then Bi-Normal Sep-

aration(BNS) along with Wordnet with cosine-similarity generate the reduced feature vector.

Whereas in CCSS, three important parameters cohesion, separation and silhouette coefficient

are combined together to measure the importance of a term in the entire corpus. The total score

for a term is computed by adding the score of the silhouette coefficient to the ratio between

the separation and cohesion score of that term and finally, based on the total score, important

features are selected.

Chapter 5 discusses how semi-supervised and unsupervised clustering using seeded

k-means and k-means techniques are done in ML-ELM feature space. The empirical results of

seeded k-means outperform the k-means clustering algorithm both in ML-ELM feature space

as well as in TF-IDF vector space.

Chapter 6 introduces the techniques to cluster the web documents using modified

apriori approach. The proposed approach considered documents as itemset and keywords as

transaction so that it ends up with clusters having a minimum frequency support threshold. By

making the keywords as transaction and document as itemset, the support threshold idea of

association rule mining algorithm is combined with the output like that of a clustering algo-

rithm. This modified apriori technique is run on a corpus of web documents to get some initial

clusters. Next, the Fuzzy C-means , k-means and Vector Space Model clustering techniques

are run on these initial clusters and their clustering results are compared.

Chapter 7 proposes an approach on cluster labeling which is the follow-up of

Chapter 6. To label the clusters, Chi-Square along with Wordnet have been used for selecting

top keywords of a cluster. Instead of labeling the cluster with ‘bag of words’, a concept-driven

mechanism has been developed which uses the online encyclopedia like Wikipedia that takes

the top keywords of a cluster as input to produce the possible candidate labels. Mutual Infor-

mation technique is used to rank the candidate labels and the topmost candidates are considered

as the potential labels of a cluster.

CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

The present search engine is facing many challenges due to unstructured nature

of the web. IR plays an important role in enhancing the performance of search engine by in-

troducing many techniques which can handle these challenges very efficiently. Much research

works is going on in this domain which introduces many new techniques to boost IR. In this

chapter, we discuss the prior works which are done on different techniques of IR.

2.2 Survey on Feature Selection

Feature selection is an important technique in IR and lot of research work has al-

ready been done in this field. It simplifies the model and decreases the training time. Depending

on the selection algorithm and model building, the feature selection methods can be classified

into 3 categories namely Filter methods, Wrapper methods and Embedded methods. Filter

based techniques evaluate general characteristics of data without the involvement of any learn-

ing algorithm. Filtering based techniques are commonly used for the feature selection task.

Pinheiro et al. [39] have proposed a filtering technique called ALOFT (at least one feature)

for the task of feature selection. This method is based on the knowledge of text categorization

domain’s specific characteristics. Experimental evaluations on Reuters-21578, 20-Newsgroups

and WebKB using k-NN and Naive Bayes classifiers show that ALOFT performs better than

18

19

classic variable Ranking method. In the similar lines, an improved version of traditional filter

based technique is proposed by Uysal et al.[40] known as Improved Global Feature Selection

Scheme (IGFSS). Evaluation done on common public datasets reveal that IGFSS improves the

classification in terms of two widely used metrics-Micro and Macro F1. A probabilistic filter

based technique for feature selection known as distinguishing feature selector (DFS) is also

proposed by Uysal et al.[41]. This technique offers competitive performance with most sophis-

ticated approaches like Chi-Square, information gain, Gini index etc. in terms of computational

complexity, accuracy and dimensionality reduction.

Wrapper method was first proposed in 1997 by Kohavi et al.[15]. A relation is

established between the relevance and the feature subset. The optimal subset is found out for

a particular algorithm and domain. Accuracy is significantly improved as compared to filter

methods but it requires more computation time. A new approach for unsupervised feature

selection is proposed by Wang et al.[42]. It uses the embedded method in which feature se-

lections is embedded into a clustering algorithm via sparse learning without transformation.

Experimental results on six different datasets gave positive results.

The training data can either be labeled, unlabeled or partially labeled which leads

to supervised, unsupervised and semi-supervised learning. In supervised learning, relevance of

the feature is measured by its correlation with the class (Robnik et al.[43], Weston et al.[44],

Song et al.[45] and Li et al.[46]) data variance or data distribution is used to measure the rele-

vance of feature in unsupervised learning (Dash et al.[47], Dy et al.[48] and He et al.[49]) while

semi-supervised learning uses small number of labeled data to improve unsupervised learning

(Zhao et al.[50]). Feature selection in unsupervised scenario is a much harder task than in su-

pervised learning due to absence of class label which gives relevant information. He et al.[49]

have proposed a filter technique for feature selection task which does not require any learning

algorithm. The relevance of a feature is determined by its Laplacian score and the top features

are selected based on this score. Experimental results show that this method is effective and

outperforms other methods like data variance and Fisher score. Feature selection for the task

of text clustering, unsupervised learning is commonly used. Liu et al.[51] have proposed tech-

niques namely ‘document frequency’, ‘term contribution’, ‘term variance quality’ and ‘term

variance’. Experimentally, it is found that these feature selection techniques not only decrease

the dimensionality of features but also increase the accuracy of text clustering.

20

Multi-label feature selection is a promising technique to increase the efficiency

and efficacy of multi-label classification and is harder to implement than single label feature

selection. Lee et al.[52] in their paper proposed multi-label feature selection technique based

on mutual information using interaction information. In this method, dependencies among

multiple variables are measured. Proposed approach effectively selects feature subsets for

multi-label classification problems. Similarly, Chen et al.[53] have suggested a framework

for multi-label feature selection in which multi-label documents are transformed to a single

label before applying feature selection algorithms. They have proposed an approach namely

Entropy-based label assignment (ELA) in which label weights are assigned to a multi-label

document based on label entropy. Evaluation is done using three standard feature selection

algorithms and the results are found to be promising. In another work, Chen et al.[54] have

proposed fuzzy ranking analysis paradigm for reduction in dimensionality along with a rele-

vance measure called as Discriminating Power Measure (DPM). DPM has low computational

cost and helps in discriminating positive and negative features, also classification is done in

parallel and not in serial order. Experimental results show the reduction in dimensionality from

thousands to few hundreds with zero rejection and little decline in accuracy (from 84.5% to

80.4%). Research of feature selection on Naive Bayesian classifier is of great importance as it

is simple to implement and also is highly sensitive to the features that are selected. In the same

direction, Chen et al.[55] also presents Class Discriminating Features (CDM) and Multi-class

Odds Ratio (MOR) feature selection metrics for Naive Bayesian classifier. Experiments carried

out on multi-class documents using this approach proved that it has better selection capability

compared to other common approaches.

Information theory based feature selection is very effective in terms of compu-

tation cost, dimensionality, scalability and classifier’s independence. Common drawbacks of

this method are selection of irrelevant features and lack of knowledge between features. This

problem is addressed by Bennasar et al.[56] with the use of two non-linear feature selection

techniques known as Joint Mutual Information Maximization (JMIM) and Normalized Joint

Mutual Information Maximization (NJMIM). These methods use Mutual Information and max-

imum/minimum criteria to address the problem of overestimation. Results have shown that

these techniques performed better than most of the others on common public datasets. Average

class error is reduced by 6% compared to the next best performing technique.

21

In the context of text categorization, Azam et al.[57] have done a comparison of

feature selection metrics based on term frequency and document frequency. The main focus of

their work is the relative importance of these frequencies and for this purpose metrics which

are based on document frequency like GINI index and discriminative power measure are tested

with term frequency. Experimental results on Reuters dataset reveal that the term frequency

based metrics are more useful for smaller feature sets. Major problem of text categorization

is high dimensionality of feature space. In this context Shang et al.[58] have done study on

Gini index theory and proposed a new Gini index based algorithm which helps in reducing

the dimensions of features. Construction of measure function of Gini index also helps in text

categorization. Meng et al. [59] have done a two step feature selection for the task of text

categorization. First, a novel feature selection technique is applied and secondly, a semantic

space is constructed between terms based on latent semantic indexing. This two stage process

is experimentally found to outperform standard feature selection techniques. Feature selection

based on the semantic relation of text documents is suggested by Thangamani et al.[60]. Iden-

tification of semantic relation is done using ontology. Relation between term and concept is

represented by ontology and evaluations show the effectiveness of the proposed approach. Pent

et al.[61] have implemented minimal redundancy maximal relevance (mRMR), an equivalent

form of maximal dependency condition for the task of feature selection. In the next stage,

mRMR and other common feature selectors are combined to generate the final feature set. Ex-

periments on naive Bayes, SVM and Linear discriminative analysis on four different datasets

show improvement in computational complexity and accuracy of the proposed approach. A

framework of feature selection based on two measurements namely frequency and ratio mea-

surement has been introduced by Li et al.[62]. A method known as WFO is proposed which

combined these two measurements and trained weights. Experimental results show the robust-

ness of this method across various classification tasks.

Ant colony algorithm is based on observation of ants finding their shortest path in

search of food. Aghdam et al.[63] have suggested a feature selection algorithm based on ant

colony optimization. This method is computationally less complex and outperforms standard

algorithms like information gain and Chi-Squared based on the results obtained by simulation

on Reuters dataset. A binomial hypothesis test for the estimation of the probability of a fea-

ture’s relevance based on a threshold value is proposed by Yang et al.[64]. This technique

is named as Bi-Test and compared with four most common algorithms such as information

22

gain, Chi-Squared, Gini index and Poisson distribution. Experimental results have shown that

Bi-test outperforms most of these algorithms with the use of common classifiers. A different

approach for feature selection task is proposed by Gabrilovich et al.[65]. Their technique is

based on domain-specific knowledge. From a given feature subset, features are generated by

contextual analysis and word sense disambiguation. Synonyms and polysemes are addressed

with the use of ontology to generalize terms to concepts. Experimental analysis have revealed

a large reduction in feature subset with this method.

2.3 Survey on Text Classification

Recently ELM and ML-ELM have attracted the attention of many researchers in

the field of text classification. Working in this direction, Huang et al. [66] in their approach

discussed three important things. First, ELM provides unified learning platform, second, com-

pared to PSVM and LS-SVM, ELM has fewer optimisation constraints and third in theory,

ELM can classify any disjoint regions and approximate any target continuous function. Their

simulation results show that ELM has good performance and scalability at much faster learn-

ing speed compared to SVM and LS-SVM. Zuo Bai et el. [67] worked on sparse ELM and has

shown that sparse ELM can reduce the training time and storage space compared to the unified

ELM. It has very good performance with faster learning speed compared to the state-of-the-art

SVM classifier. It also has the ability to handle large-scale binary classification compared to

the unified ELM. Balasundaram et al. [68] have worked on a new 1-norm ELM for regres-

sion and multi-class classification and proposed a linear programming work whose solution

is obtained by solving its dual exterior penalty problem as an unconstrained minimization us-

ing a fast Newton method. The main advantage of their approach is that it leads to a sparse

model representation where many components of the optimal solution vector will become zero

and hence, the decision function can be determined using much less number of hidden nodes

compared to ELM. The experimental results are compared with ELM using additive and radial

basis function (RBF) hidden nodes, optimally pruned ELM (OP-ELM) and SVM methods.

Similar or better generalization performance of the proposed method on the test data over

ELM, OP-ELM and SVM clearly illustrates its applicability and usefulness. Shifei Ding et al.

[69] introduced ELM, describing the principles and algorithm of ELM. In their studies, typical

variants of ELM like incremental ELM, two-stage ELM, pruning ELM, evolutionary ELM,

23

error-minimised ELM, online sequential ELM etc. have been described. They have summa-

rized the applications of ELM for classification, function approximation, regression, pattern

recognition etc.

Very less research work has been done where ML-ELM is used as a classifier

(Ding et al. [25] Mirza et al. [70] Yang et al. [71] Tang et al.[72]). Many other state-of-

the-art mechanisms also have been used for text classification. A new web page classification

based on SVM weighted voting scheme has been proposed by Rung-Ching et al. [73]. In

their work, latent semantic analysis has been used to find the hidden information from the

documents and it is also used to extract text features from each web page. This helps the SVM

to classify the web pages. Experimental results show that their approach is better than the

traditional approaches. Chin et al. [74] proposed a new text document classification which is

a combination of k-Nearest Neighbors (k-NN) and SVM techniques. They have tested their

approach on many benchmark datasets and the results show that the accuracy of SVM and

k-NN combined approach has less impact on the values of the parameters as compared to

the traditional k-NN technique. A rough set approach to SVM classification is proposed by

Lingras et al. [75] which is mostly useful when handling noisy data. Their work proposed two

new approaches, extension (1-v-r) and (1-v-1) to SVM multi-class classification by using the

boundary region in rough sets. They have justified that extended (1-v-r) can reduce the training

time of the traditional (1-v-r) approach. The experimental results support their theoretical

results.

Least squares support vector machines (LS-SVMs) are sensitive to noise or out-

liers in the training dataset. Working in this direction, Thamrongrat et al. [76] have proposed a

novel LS-SVM (RLS-SVM) approach which is based on the truncated least squares loss func-

tion for classification and regression with noisy data. In their work, the Newton and an iterative

algorithm based on the concave-convex procedure (CCCP) have been used to solve the pro-

posed RLS-SVM approach. They have tested their approach on fourteen benchmark regression

and ten benchmark classification datasets. Juan et al. [77] have suggested a method which

uses textual content of the documents in order to classify the web documents into a predefined

hierarchy. They have developed a Stratified Discriminant Analysis (SDA) technique to reduce

the feature vectors of web documents, and to identify the categories with few training examples

leading to more robust classification models for those categories. Bai et al. [78] have devel-

24

oped a model called SUMO (Suggested Upper Merged Ontology) based on text classification

which is integrated with Wordnet ontology to classify the web pages. Their method can re-

duce the dimensionality of the vector space and increase the performance of text classification.

Long Li et al. [79] proposed a hierarchical-vertical classification of framework that built a hi-

erarchical classifier after discovering the inherent hierarchical structure of relationships among

vertical web pages based on flat datasets. They have used SVM using odds ratio test to select

discriminative features which produced best results.

Junchang Xin et al.[80] have proposed a novel distributed ELM based on Map-

Reduce framework, named ELM*. The most expensive computation part of the matrix Moore-

Penrose generalized inverse operator in the output weight vector calculation is the matrix mul-

tiplication operator. As the matrix multiplication operator is decomposable, a distributed ELM

(ELM*) based on Map-Reduce framework is developed which handles the expensive compu-

tation very efficiently. Myungsook et al. [81] have developed a technique for web pages classi-

fication using keywords of documents and random forest learning method. In their work, they

identified that the random forest learning method is better than other state-of-the-art machine

learning mechanisms for classification. Wen Zhang et al [82] used semi-supervised cluster-

ing for text classification. Their approach is based on the assumption that documents of each

category have multiple text components which are identifiable by clustering. They have used

labeled documents to capture the silhouettes of text components and unlabeled documents are

used to adapt the centroids of text components. They categorized an unlabeled document into

the class of the text cluster using Euclidean distance. Their approach outperforms SVM, BPNN

and DKS methods. An unsupervised URL based web page classifier has been proposed by I.

Hernandez et al. [83]. The main aim of their approach is to analyze the URL of web pages in

the training set, building a set of patterns which are representative of collection of URLs that

refer to the web pages of the same class.

Temporal contexts present in the text document for effective text classification

have been used by L. Rocha et al. [84]. They have proposed an algorithm named Chronos

to identify such temporal contexts based on the stability of the terms in the training set. The

temporal characteristics that their approach explores are class distribution, which is classes

appearing, splitting or merging as a consequence of evolution of knowledge. The temporal

contexts selected by Chronos are passed onto standard automatic document classifiers such as

25

SVM, k-NN, Naive Bayes and they have reported that the performance of these classifiers are

improved by 10%. R. Johnson et al. [85] effectively used word order for text classification with

the help of convolution neural networks (CNN). Their approach relies on CNN that is applied

on high dimensional text data for learning embedding of small text regions. The notable feature

of their approach is that n-grams can contribute to predict accurately despite not being present

in the training data, as long as some of their constituent words appear in training set. They have

reported that their error rate to be lower than state-of-the-art classification techniques such as

SVM, Naive Bayes + SVM and Naive Bayes + Language model. An approach that relies on

the border instances found by routine strategies to construct centroid vectors for centroid-based

classifier is proposed by D. Wang et al. [86]. Their approach used a proper subset of docu-

ments which are the border instances, rather than all to construct centroid vectors and then

iteratively adjust initial centroid vectors after eliminating erroneous instances. The proposed

approach outperforms standard classification techniques as k-NN, centroid classification and

SVM. JuiHsi et al. [87] have proposed a method called Identifying Possibly Misclassification

Documents (IPMD) to classify the Chinese documents accurately. They have verified the doc-

uments class labels predicted by SVM. These verified documents are then fed to the IPMD

module to determine their distinguishability. The indistinguishable documents are utilized to

develop more precise SVM models using learning strategy modules. The used algorithm is

semi-supervised in nature and the experimental results show that to classify the Chinese doc-

uments the best approach is to feed both indistinguishable and misclassified documents to the

training set.

Kwanho et al. [88] have proposed a language-independent semantic kernel that

establishes similarity between short-text documents without the used of lexical databases and

grammatical tags. They have used semantic and syntactic features of documents in the same

kernel. Their approach is robust to the number of categories involved and the number of words

per document regardless of the language. A concept model to make the spatial feature more

effective was used by Huilin et al. [89]. In addition to using the inherent information from the

sentence itself, they also used semantic information connection between sentences. The addi-

tional features reveal the similarity between instances. Experiments show that this new feature

enhanced the precision and recall. They used ELM instead of SVM for relation extraction as

it is faster and better. To capture label dependencies, a supervised topic modeling algorithm,

Label set Topic Model (LsTM) was proposed by Ximing et al. [90]. The reason was that a word

26

can be assigned to a combination of labels rather than a single label. They used two observed

label set layers: the super-label set and the sub-label set. The super-label set groups several

related labels and the sub-label set assigns combination of these labels to each word. Their

results are at par with the existing approaches. Their approach is an extension of L-LDA. An

approach to classify short text from scientific documents suggested by Duc-Thuan et al. [91].

They have used topic models from various universal datasets to enhance text features. The

idea is to make short text more topic-oriented and less sparse. Machine learning algorithms

like SVM, k-NN and Naive Bayes are applied for classification and they asserted that their

approach outperforms the existing algorithms to classify short text scientific documents.

All of the above approaches have used traditional classifiers which have their own

limitations. Most of them use the shallow neural networks algorithms in which there are cer-

tain restrictions for the capabilities to approximate the complex function. Deep learning has

aroused interest in the past decade in many research domain such as computer vision, automatic

speech recognition, pattern recognition and recently has attracted much attention in the field

of machine learning. It is a multilayer perceptron artificial neural network algorithm. There

is no such restriction found in deep learning (capabilities to achieve approximating the com-

plex function) which removes the difficulty of optimization associated with the deep models

[25] and achieves an approximation of complex function. Extreme Learning Machine [24] is

able to approximate any complex non-linear mappings directly from the training samples but

it has shallow architecture similar to traditional SLFNs. Hence, it may need a large network

to perfectly fit the highly-variant input data which is difficult to implement. Recently designed

Multilayer ELM [26] is able to address this issue which combines deep learning (i.e. ELM

auto-encoder) with ELM, decomposes the original input data into multiple hidden layers and

performs unsupervised learning layer-wise.

2.4 Survey on Text Clustering

In this semantic web, cluster based on semantic meaning of the documents are

much needed for the user. The proliferation of web over the past few years has resulted in

various modifications and refinements in the methods of searching web documents. Working

in this direction, Song et al. [92] have developed a genetic algorithm based on latent semantic

27

indexing (LSI) for text clustering. LSI helps in dimensionality reduction and take cares of

synonyms and polysemes. They proposed a variable string length genetic algorithm which

generates the number of required clusters to be formed. Experimental results have shown the

efficiency of their approach. Li et al.[93] in their work have used user-related tag expansion

method to improve the web document clustering. They designed a new model called Folk-LDA

that mutually models expanded and original tags as independent observations. Experimentally

they have shown that their technique can be efficiently applied to more than 90% of tagged web

documents. Empirical results based on human-edited web directory justified that the tag-based

clustering method is better than the word-based methods.

An LSI based multilingual document clustering (MLDC) technique has been pro-

posed by Wei et al. [94]. MLDC organizes the documents in different languages into different

categories having similar documents on the basis of their content. Experimentally they have

shown that their approach can able to manage a good balance between cross-lingual and mono-

lingual clustering of documents. Cao et al. [95] designed a cluster-based vector space model

which used co-occurrence matrix based on text features to represent the documents. Their

work first identifies the proper noun from all the documents and then extracts different features

in the form of words, phrases, non-contiguous phrases of proper noun and cluster them. Fi-

nally, they clusters the text using co-occurrence matrix based on text feature clustering. Huang

et al. [96] used a hierarchical represent model with multi-granularity (HRMM) for clustering

the web documents. Their approach consists of two-phase clustering process and five-layer

representation of data. HRMM captures the structural knowledge hidden in the documents by

using granular computing which generates high quality clusters. Experimental results show

that HRMM significantly outperformed the vector space model (VSM) and non VSM-based

clustering algorithms. A statistical semantic method to enhance the document clustering has

been proposed by Farahat et al.[97]. In their work, they measure the term-term correlations

which exist in the documents that needs to be clustered in order to represent a corpus specific

semantic similarity. To capture this similarity, they compared their approach with Vector Space

Model (VSM) and other well known methods. The experimental works on thirteen benchmark

datasets show the effectiveness of their approach.

Clustering methods are unsupervised i.e. no labeled data are available [98] [99].

One of the most popular partitioning clustering algorithms is K-Means, which partitions ‘n’

28

observations into ‘k’ clusters in which each observation belongs to the cluster with the nearest

mean, serving as a prototype of the cluster. This algorithm can be performed on a large data

set with linear time complexity [100]. However, the problem of this algorithm is that an in-

appropriate choice of clusters ‘k’ may yield poor results. Improvement of K-Means clustering

algorithm based on user tag is done by Jun Tang [101]. It was first used in social annotation data

to expand the vector space model of K-Means. Then, it is applied to the links involved in social

tagging network to enhance the clustering performance. In case of an ambiguous query, word

sense discovery is one of the useful methods for IR in which documents are clustered in corpus.

Discovering word senses by clustering the words according to their distributional similarity is

done by Patrick et al. [102]. The main drawback of their approach is that they require large

training data to make proper cluster and its performance is based on cluster centroid, which

changes whenever a new web page is added to it. Hence, identifying relevant cluster will be a

tedious work. In 2008, Jiyang Chen et al. [103] have proposed an unsupervised approach to

cluster that results by word sense communities.

Clusters are made based on dependency based keywords which are extracted for

large corpus and manual label are assigned to each cluster. Chakrabarti [104] also discussed

various types of clustering methods and categorized them into partitioning, geometric em-

bedding and probabilistic. Phiradit et al. [105] proposed Suffix Tree Clustering (STC), a

phrase-based state-of-the-art algorithm for web clustering that automatically groups semanti-

cally related documents based on shared phrases. Their technique combines the hierarchical

agglomerative clustering method with phrase based STC to improve the cluster merging pro-

cess. It outperforms the original STC with 16% increase in F-measure. Peng Li et al. [93]

proposed a user-related tag expansion method to overcome this problem of limiting the usage

of tags. They have designed a novel generative model called Folk-LDA, which jointly mod-

els original and expanded tags as independent observations. Results show that Folk-LDA can

alleviate topic drift in expansion, especially for topic-specific documents and the proposed tag-

based clustering methods significantly outperform the word-based methods. Xiwu et al. [106]

have investigated and evaluated several extended vector space models which can combine so-

cial annotation and web page text. In particular, a novel vector space model is proposed by

computing the semantic correlations between social annotations and web page words. Using

semantic correlations between social tags and web page words that improves the clustering

accuracy with an increase of 4%-7% of RI score. Cindy et al. [107] have extracted a similarity

29

matrix among pages via. in-page and cross-page link structures, based on which a density-

based clustering algorithm is developed which hierarchically groups densely linked web pages

into semantic clusters. This method is efficient and effective, and sheds light on mining and

exploring web structures. Mari et al. [108] experimented three dimensionality reduction meth-

ods with a selection of distance measures and showed that after dimensionality reduction into

small target dimensionality, such as 10 or below, the superiority of cosine measure does not

hold anymore. Malik et al.[109] presented an efficient iterative partition clustering method

named CDIM that maximizes the sum of discrimination information provided by documents.

A key advantage of CDIM is that its clusters are identified by their highly discriminating terms

with high semantic relatedness to their clusters’ contexts.

2.5 Survey on Cluster labeling

Good features in a cluster play a vital role during cluster labeling. The features

can be found by many ways like extracting the most frequent terms occurring in a cluster, by

considering the top weighted terms in the cluster centroid etc. Working in this direction, Glover

et al. [110] showed that the extracted label from the extended anchor text of a web page per-

forms better than labels that are extracted from the content of the web page. Extended anchor

text refers to the words which appear near links to the target page. For experimental work,

DMOZ and Yahoo directory datasets are used. Clusters generated using extended anchor text

produce better features and these features are found to be more consistent with the summary of

the document. Heerden et al. [111] in their paper suggested an unsupervised labeling method

named as ‘unsupervised weight-based cluster labeling’ using self-organizing map. Their ap-

proach assigned significant weights for neurons cluster and then constructing sub-labels by

linking those weights. Finally, cluster labels are generated from those sub-labels. Ping at el.

[112] proposed a cluster labeling method based on convex decomposition which used the topo-

logical property of the dataset. Comparative experiments and time complexity suggests that

their approach greatly improves both the quality of the clusters as well as the efficiency. Em-

pirical results on various datasets used in their work like sunflower, wine, iris, ring etc. shows

the efficiency of their approach.

30

Turel et al. [113] introduced the cluster labeling method using cover coefficient-

based and sequential k-means algorithm. Cluster labeling is done based on term weighting.

A new metric called Simf−measure has been used to measure the effectiveness of the cluster

labeling which turns out to be good. For experimental work, AMBIENT and ODP-239 datasets

have been used. Comparative study is done on the proposed method to evaluate the relative

performance with respect to the Lingo and Suffix tree clustering. Similar to the community

mining in the social network, Li et al. [114] in their paper have generated a hierarchy of

document clusters which are typically coherent. Cluster labeling is done using the betweenness

centrality measure of the term which co-occurs in the network. For experimental work, they

constructed a dataset using Google. Padua et al. [115] proposed a labeling technique called

Genetic labeling technique (GLM) for association rule clustering. The optimization function

of the GLM method is balancing the values of the measures in order to evaluate the cluster

labeling. Their method is based on genetic algorithm and gives a very good performance

compared to some state-of-the-art methods.

Tholpadi et al. [116] in their research developed a variational approach to show

that cluster labeling problem can be handled effectively by multilingual topic models. They

designed a novel Scatter/Gather system called ShoBha for multilingual corpora. Empirical re-

sults on the entire overlapping Wikipedia of English, the Canadian Hansards corpus, Hindi and

Bengali articles, and a trilingual news corpus having 41,000 articles, signifies the effectiveness

of their system. Lee at el.[117] in their work used some invariant topological properties of a

trained kernel radius function for developing the cluster labeling. Their complexity analysis and

experimental results demonstrate the accuracy of their approach. An effective algorithm pro-

posed by D’Orangevilla et al.[118] for cluster labeling used Support Vector Clustering (SVC).

Their work understands the functionality describing the SVC cluster contours and found the

interconnection paths between critical points separating distinct cluster contours. Experimen-

tal results on synthetic dataset sampled from 15 uniform density functions signifies the quality

of their work. Lopes et al.[119] suggested a cluster labeling mechanism using artificial neural

network. They have used both supervised and unsupervised learning along with a discretiza-

tion model to label the clusters. Iris, Seeds, Glass, Scientia.Net databases are used for their

experimental work. Their results labeled clusters with an average of above 88.79% of elements

correctly. Li et al.[120] developed a combined approach of both linguistic and statistical per-

spectives to label the clusters. Performance of their approach is evaluated on 20-Newsgroups

31

and NewsMiner (Chinese) datasets. Experimental results demonstrate that their algorithm can

generate good quality clusters and significantly outperform other existing methods.

Wikipedia is so diverse that it can be considered as a small web in itself. Nayak

et al.[121] in their paper suggested an approach to label the Wikipedia clusters which con-

sumes limited resources and time. The obtained results contained thousands of clusters and are

evaluated against an external data which turns out to be good. Roitman et al.[122] used two

extended fusion methods named CombSUM (CLD) and CombMNZ (CLD) for labeling the

clusters. 20-Newsgroups and DMOZ datasets have been used for the experimental work. They

concluded that CLD method is a good method compared to all the methods used in their work

for labeling the clusters. Geraci et al. [123] have described the working of the meta search

engine Armil. External knowledge is not required for the of clustering and cluster labeling and

it is done on the fly by processing only the snippets provided by the search engine. Clustering

is done by using furthest point first algorithm and by combining intra and inter cluster labeling.

Evaluation is done against Vivisimo, a known industry standard and Armil outperforms it by

10%. Cluster labeling by using concepts in a machine-readable dictionary has been proposed

by Fukomoto et al. [124]. They have made the assumption that the terms in the cluster content

have the same hypernym. Experimentally this method is found to improve labeling accuracy.

Ji et al. [125] have suggested fuzzy set approach to improve the cluster labeling. A similarity

index based on fuzzy binary relation between fuzzy set of the cluster and class is used. This

method is proven to be faster than Bayesian maximum likelihood classifier. The idea of cre-

ation of the most significant word list to discriminate each document group from the others has

been proposed by Moura et al. [126]. This list is generated from the hierarchy of document

groups. This list can be used for the task of cluster labeling.

Structural property in documents like hierarchical structure has been utilized by

Muhr et al. [127]. Cluster labeling information like relations of sibling, parent, and child

have been used in cluster labeling task. Common approaches like maximum minimum term

frequency, information gain, Jensen Shannon Divergence and Chi-Square method have used

these relationships for labeling. Accuracy is improved with the use of relations as compared to

use of these conventional approaches directly. The resultant hierarchy is automatically labeled.

Nouns hierarchy of hypernym automatically from text are constructed as given in [128]. For

labeling, a set of hypernyms are extracted with the use of linguistic patterns from the text.

CHAPTER 3

EXTREME LEARNING MACHINES IN TEXT

CLASSIFICATION

3.1 Introduction

In this chapter, the effectiveness of Extreme Learning Machine (Appendix B) and

Multilayer ELM (Appendix C) in the domain of text classification are studied and compared

with the existing relevant techniques such as Support Vector Machine (SVM) (Appendix A),

which is one of the most popular and effective technique for classifying the text documents.

This chapter highlights the importance of ELM in the field of text classification by testing the

classifiers based on different interpretations of ELM, analyzing their performances, and study-

ing which existing feature selection techniques are most suited to improve their performances.

For multi-class classification problem using ELM, One-Against-All (OAA) and One-Against-

One (OAO) techniques are studied. A multilayer implementation of ELM called ML-ELM

which is inspired on deep learning network also has been studied extensively. To the best of

our knowledge, no previous research work has used deep learning in the form of ML-ELM for

text classification. Hence, the aim of this chapter is to introduce ELM and ML-ELM in the

field of text classification and test their performances in order to justify the significance of deep

learning.

32

33

3.2 Methodology

A detailed design on how ELM is used (ELM-OAA) and (ELM-OAO) to handle the

multi-class classification problem on text data is discussed here. The discussion also includes

the design issues of ML-ELM for classification of text data.

3.2.1 Document pre-processing and indexing

Consider a corpus P consisting of different classes C ={C1, C2, ..., Cm} of documents. Docu-

ments in each class are first parsed and tokenized, stop-words are removed, nouns are selected

as the keywords using natural language toolkit (nltk)1, ignoring other parts of speeches such as

verbs, adjectives, adverbs and pronouns and then each document is represented as term vectors

in the vector space over the system’s vocabulary. For each keyword, TF-IDF values are calcu-

lated and the inverted indexes are obtained. Table 3.1 represents the corpus P using term-doc

matrix (X) of dimension n×N , where each xij is the TF-IDF value of ith term (feature) with

respect to the jth document.

Table 3.1: Term-document matrix

d1 d2 d3 ... dN
x1 x11 x12 x13 ... x1N
x2 x21 x22 x23 ... x2N
x3 x31 x32 x33 ... x3N
.
.
.
xn xn1 xn2 xn3 ... xnN

3.2.2 ELM One-Against-All

ELM-OAA is a regular single ELM classifier that performs multi-class classification by train-

ing the hidden layer neurons using supervised learning based on N arbitrary distinct training

documents (xj , yj) of dimensionRn×Rm, where xj is the input and yj is the output feature

1http://www.nltk.org/

34

vector of jth document. The entire process is illustrated in Figure 3.1 and the following steps

discussed the training and testing of ELM-OAA mechanism.

Figure 3.1: ELM One-Against-All

1. Initialization of input layer, input weight, biases and output layer:

The number of nodes in the input layer is n, where n is the number of features. Next,

the input weight ‘a’ and hidden biases ‘b’ are selected randomly. In ELM-OAA, the

output layer consists of multiple nodes, equal to the number of distinct classes m. Ad-

ditionally, for each training document xj , the target output yj is represented by m bits

i.e. (yj1, ..., yjm), and for a pattern of class i, only yji is ‘1’ and rest of the bits are

‘0’. These are the basic characteristics of ELM-OAA and is the traditional way a simple

ELM classifier solves the multi-class classification problem.

2. Hidden layer matrix construction:

Next, for N training documents (xj, yj) of dimension Rn ×Rm and K hidden nodes,

the hidden node parameters (ai, bi, i =1,...,K) are randomly assigned. The hidden node

output matrixH is computed using the activation function g as mentioned below:

gK(xj) =
K∑
i=1

βigi(xj ,ai, bi) = yj (3.1)

where j = 1,...,N.

35

3. Computation of output weight (β):

The output weights β is computed using the following equation:

β = H+Y (3.2)

where,H+ represents the moore-penrose inverse.

4. Classification of a test document:

For an input text document x, the ELM-OAA classifier produces an output vector given

as:

gK(x) =
K∑
i=1

βigi(x, ai, bi) = y (3.3)

which contains m output nodes, (y = y1, y2, ..., ym), and the output node with max-

imum value indicates the class to which x belongs.

3.2.3 ELM One-Against-One

One of the common approaches for solving the multi-class classification problem is to break

up the problem into multiple two-class problems based on the inherent relationships between

the classes in training documents. The following steps discuss the techniques to implement the

ELM-OAO scheme on text data and the entire process is illustrated in Figure 3.2.

Figure 3.2: ELM One-Against-One

36

1. Initialization of input layer, input weight, biases and output layer:

Initialization of input layer, weight and biases are similar to ELM-OAA. But for output

layer, them classes are decomposed in a pairwise manner to givem(m-1)/2 combina-

tions of class pairs and each is trained by one ELM classifier [ELMq(j, s), q = 1, 2,...,r

(r = m(m-1)/2); j = 1, 2,...,(m-1); s = j+1,...,m].

2. Hidden layer matrix construction and computation of output weight (β):

Construction of hidden layer and computation of output weight (β) are same as described

in ELM-OAA.

3. Training the ELM classifier:

For each ELMq(j, s), the input and output document used for training are the only

documents that are related to both j and s, and all other documents are ignored. In order

to differentiate between two distinct classes, the single output node of the ELMq(j, s) is

labeled as ‘1’ for all the documents belonging to class j and ‘-1’ for all those belonging

to class s. Since for am-class problem, we have r=m(m-1)/2 binary ELM classifiers, in

order to simplify the implementation, the ELM-OAO is considered as a combination of

r SLFNs with a common set of shared hidden nodes, which helps to make the network

structure more compact. Each of the r ELM binary classifiers are trained independently

using their corresponding training document from the collection of r sets of independent

training documents (xq, yq, q = 1, 2,..., r). Since each of the r ELM classifiers is trained

independently, once the qth group training document (xq, yq) is fed to the classifier,

the weight βq connecting the qth binary classifier output neuron with the shared hidden

nodes is learned without any affect on the other binary classifier output weights β =

[β1, ..., βq−1, βq+1, ..., βL]
T . Hence,

βq = H†qyq (3.4)

4. Classification of a test document:

The r output nodes are assigned one for each of the r binary ELM classifiers. In order to

decide an input document x belongs to which of the m classes, the output values from

these r nodes are fed into a decision function. Here, the decision function that employs

a loss based approach for decoding the class label that is most consistent with the output

y is used, such that the input x is assigned the class label i, if for the document (x, i),

37

the loss is minimum among all the class labels (i = 1, 2, ...,m). The total loss for a

document (x, i) is calculated in the following way:

dL(M(i), y(x)) =
r∑

q=1

L(M(i, q), yq(x)) (3.5)

Here,M ism× rmatrix, such that a distinct class pair (j, s) is included in each column

which has ‘+1’ in row j, ‘-1’ in row s and the others are zero. The function L is the

exponential loss function, and yq(x) represents the output value of the qth binary ELM

classifier. Thus, the final class label that is assigned to the document x is the class i for

which the total loss based on the equation 3.5 is minimum.

3.2.4 Multilayer ELM

ML-ELM is an artificial neural network having multiple hidden layers. It combines ELM and

ELM-autoencoder (ELM-AE) and hence contains all the features of ELM. The design and

architecture of Multilayer ELM relies on the mechanism of deep learning and it is shown in

Figure 3.3. As already mentioned that in an ELM network for N training documents (xj, yj)

and K hidden nodes, we have :

gL(xj) =
K∑
i=1

βigi(xj ,ai, bi) = yj (3.6)

The following steps discuss how the text classification is done using ML-ELM.

1. Initialization of input layer, input weights, biases and output layer:

Initialization of input layer, weight and biases are similar to ELM except the weight and

biases are orthogonal which improves the performance of ELM-AE [129]. The output

layer consists of multiple nodes equal to the number of distinct classesm.

2. ELM-AE Hidden layer matrix construction :

For each hidden layer, the output feature vector is same as the input feature vector. The

random hidden node weights and biases are taken as orthogonal and the input feature

vector is mapped to the higher, lower or equal dimensional space of hidden nodes through

38

Figure 3.3: Multilayer ELM

the orthogonal hidden weights, a = [a1, a2, ..., aK] and the orthogonal hidden biases,

b = [b1, b2, ..., bK] using the following equation:

h = g(a · x+ b), aTa = I, bT b = 1 (3.7)

3. Computation of output weight β:

The value of β is computed as follows:

i. if n > K (Compress representation: mapping the features from a higher dimen-

sion of input signal space to a lower dimension of feature signal space)

then

β =

(
I

C
+HTH

)−1

HTX (3.8)

where, C is used as the scaling parameter to adjusts the experiential and structural

risk. I
C

is the regularization term which improves the generalization performance

and makes the solution more robust [66]

ii. if n = K (Dimension of equal length representation: representing the features of

training dataset in an equal dimensional space i.e. the dimensions of input signal

space and feature signal space are equal), then

β = H−1X (3.9)

39

iii. if n < K (Sparse representation: mapping the features from a lower dimension

of input signal space to a higher dimension of feature signal space), then

β = HT (
I

C
+HHT)

−1

X (3.10)

4. Training the classifier:

ML-ELM makes use of ELM-AE to train the parameters in each layer. In other words,

the hidden layer weights of ML-ELM are initialized by ELM-AE from layer to layer

using unsupervised learning, and ML-ELM hidden layer activation functions can be ei-

ther linear or non-linear piecewise. All output weights are determined analytically. The

output of the ith hidden layer of ML-ELM can be obtained from the output of (i-1)th

hidden layer and the output weight of βi of the ith hidden layer. The output weight of

βi of the ith hidden layer is obtained layer wise from the ELM-AE, and its transpose.

ML-ELM with ‘K′ hidden nodes can be represented as

Hn = g((βn)THn-1) (3.11)

For n = 0, the input layer X can be considered as the 0th hidden layer. The transforma-

tions of the data from the feature space of one layer to the next, and so on are carried out

as shown in equation 3.11, until it reaches the last hidden layer before the output layer

Y. The final output matrix Y can be obtained by computing the results between the last

hidden layer and the output layer using the regularized least squares technique [130].

5. Classification of a test document:

In a similar way like ELM, the feature vector of the test document x is fed to the ML-

ELM, and with the known value of β in each layer, it computes the next hidden layer

feature vector and the process is repeated till the last layer and finally, one of the output

layer node receives the maximum value to which the test document x is assigned.

40

3.3 Experimental Analysis

The performance of three different implementations of ELM against other tra-

ditional classifiers are tested experimentally. For this purpose, from all categories of 20-

Newsgroups (Table ??), 11,293 documents are considered and similarly from all categories

of DMOZ (Table ??), 24,410 documents are considered to generate the corpus. Three different

traditional feature selection techniques such as Chi-Square (Appendix D), Bi-normal separation

(BNS) (Appendix D) and Information gain (IG) (Appendix D) are used to select the important

features from the corpus of each dataset and those features are used as the input feature vector

(length lies between 500 to 2500). Accordingly, the hidden layer nodes are set which is higher

than the length of the input feature vector (n < K). The number of hidden layers on both

datasets are set to 3 (decided empirically)2 using ML-ELM.

One can observe how the accuracy of simple ELM, i.e. ELM (OAA), ML-ELM and SVM

varies based on the feature selection methods used, and for different number of features within

each method starting from 500 to 2500 incrementing 500 each time. It is also observed from

the experiment that the accuracy of ELM-OAO is lower than ELM-OAA.

Based on the experimental results on both DMOZ and 20-Newsgroups, it can be seen that

Chi-Square feature selection technique gives better results. In 20-Newsgroup dataset, the Chi-

Square technique outperformed the IG and BNS for all features ranges from 500-2500, however

in the DMOZ dataset, its superior performance is witnessed at the higher feature range of

2500. ML-ELM gives the overall best accuracy using 2500 features under Chi-Square for

both datasets, dominating over the other two ELM techniques and SVM. Thus, one can say

that the Chi-Square feature selection technique is one of the most suitable to boost the ELM’s

performance, especially when higher number of features are considered.

Performance Evaluation:

It is intended to show how suitable is ELM to accomplish the task of text classification with

high accuracy comparable to or better than the current state-of-the-art techniques. As can

be seen from the results, even ELM-OAA almost always outperforms the SVM or is neck to

neck with it in the worst case. ELM not only performs better than SVM when the feature
2the result for which the proposed approach obtained the better performance

41

Figure 3.4: dmoz-chi-square
Figure 3.5: dmoz-ig

Figure 3.6: dmoz-bns

42

Figure 3.7: 20ng-chi-square

Figure 3.8: 20ng-ig Figure 3.9: 20ng-bns

43

selection technique is a suitable one, but in fact performs significantly better in comparison

even when the feature selection technique is not suitable. Thus, it is less vulnerable to poor

feature selection than SVM. From the figures, it can be seen that ML-ELM in most cases is

better than the simple ELM, and its performance is more affected by the suitability of the

feature selection technique with the drop or rise in accuracy being somewhat compounded over

that found in simple ELM. Thus, ML-ELM performs better than ELM when feature selection

is favorable and vice-versa. Figures 3.4 - 3.6 demonstrate the accuracy of ELM and ML-

ELM over SVM for DMOZ with different selection techniques. Similarly, Figures 3.7 - 3.9

demonstrate the accuracy of ELM and ML-ELM over SVM for 20-Newsgroup with different

selection techniques. As can be seen from the figures that ELM outperforms SVM in almost

all cases, and the best performance for each dataset is achieved using ML-ELM having 82.55

on 20-Newsgroups, and 72.83 on the DMOZ datasets over ELM and SVM. Table 3.2 and

3.3 show the accuracy and F-measure (input feature vector length 2500) comparisons of ELM

and ML-ELM with other traditional classifiers. Here, one can observe that the accuracy and

F-measure of ML-ELM dominated almost all the classifiers for both datasets with different

feature selection techniques. What is important to note is that even the simple ELM almost

always outperforms the SVM (in accuracy) or is at worst comparable in performance (in F-

measure). The superior performance of the ML-ELM over the traditional state-of-the-art SVM

classifier and other existing relevant classifiers proves its importance as a highly successful and

suitable technique for text classification. The probable reasons of why ML-ELM performance

is better compared to other traditional classifiers are discussed in Chapter 4.

Table 3.2: Accuracy comparisons of different state-of-the-art classifiers

Classifier
20-Newsgroups (Accuracy-%) DMOZ (Accuracy-%)
Chi-

Square
BNS IG Chi-

Square
BNS IG

ELM-OAA 81.78 77.43 76.37 71.87 64.79 71.17
ML-ELM 82.55 78.84 76.58 72.83 61.91 70.17

ELM-OAO 73.88 70.03 62.04 69.11 54.08 63.29
SVM (Linear SVC) 81.87 76.52 69.48 69.20 57.47 70.78

SVM (Linear kernel) 75.57 75 46.61 66.19 55.91 66.05
KNN (K=5) 52.44 56.73 46.41 45.80 33.59 26.35
Gussian NB 68.97 58.51 58.30 40.05 30.48 48.87

Multinomial NB 79.50 77.89 60.54 53.53 58.95 63.40
Bernoulli NB 78.31 74.37 68.95 49.19 50.33 48.65

Decision Trees 59.57 61.74 56.94 41.80 32.33 49.69

44

Table 3.3: F-measure comparisons of different state-of-the-art classifiers

Classifier
20- Newsgroups (F-Measure-%) DMOZ (F-Measure-%)
Chi-

Square
BNS IG Chi-

Square
BNS IG

ELM-OAA 77.54 78.61 77.44 68.24 59.96 68.98
ML-ELM 81.39 81.53 81.34 68.32 60.68 71.47

SVM (LinearSVC) 80.20 79.45 80.33 68.20 59.00 69.19
SVM (Linear kernel) 72.57 72.00 63.48 62.39 54.11 64.35

KNN (K=5) 53.45 55.28 48.64 41.72 38.62 35.45
Multinomial Naive Bayes 69.50 72.89 67.76 54.34 54.67 53.40

Gaussian Naive Bayes 58.53 58.62 59.33 41.35 36.38 42.63
Bernoulli Naive Bayes 68.31 69.37 64.25 48.27 51.66 47.47

Decision Trees 58.23 60.40 57.89 42.67 42.45 48.85

3.4 Summary

This chapter analyzed and compared the performance of SVM, ELM and ML-

ELM classifiers to demonstrate the potential of the ELM (for accuracy) and ML-ELM (both

accuracy and F-measure) as a highly successful and suitable technique for text classification.

It is also observed from the experimental results that ML-ELM can outperform other exist-

ing classifiers. Additionally, our results can serve as complementary knowledge to further

strengthen the understanding of the essential relationship between SVM, ELM and ML-ELM.

Since the ELM and ML-ELM classifiers outperformed the traditional classifiers including state-

of-the-art SVM classifier in the majority of cases, and achieved the best performance overall

for both datasets, it shows the importance of the ML-ELM classifier in being able to achieve

high performance, which is comparable and most often greater than the most popular and cut-

ting edge methods in the domain of text classification. The state-of-the-art SVM classifiers

like LinearSVC, with which we have compared the ELM’s performance, have been tuned and

perfected using penalties like L1, L2 to further improve the accuracy by reducing the error

margin.

After experimenting ML-ELM on different benchmark text classification datasets by using dif-

ferent traditional feature selection techniques, next we took interest to develop two new feature

selection techniques on which the performance of ML-ELM is tested. Detailed discussions on

these two feature selection techniques and their performances are done in the next chapter.

CHAPTER 4

FEATURE SELECTION TECHNIQUES FOR TEXT

CLASSIFICATION

4.1 Introduction

The incredible increase of online documents in digital form on the web has re-

newed the interest in text classification. However, the poor quality of feature selection, ex-

tremely high dimensional feature space and complexity of natural languages became the road-

block for classification process. Hence, in order to work with the text data and to increase

the efficiency of the classifier, choice of quality features is of paramount importance. Feature

selection is used for three main reasons: simplification of models for making them easier to

interpret by researchers/users, shorter training times and enhanced generalization by reducing

overfitting. The central premise when using a feature selection technique is that the document

contains many features which may either be redundant or irrelevant, and can thus be minimized

without incurring much loss of information.

To address these issues, this chapter introduces two novel feature selection techniques for ef-

ficient text classification named k-means and Wordnet based feature selection and Combined

Cohesion, Separation and Silhouette coefficient based feature Selection. In both the proposed

techniques, the performance of ML-ELM has been tested on different benchmark datasets and

the results found are promising.

45

46

4.2 k-means and Wordnet based feature selection

k-means and Wordnet based feature selection (KWFS) finds the relationships be-

tween the terms so as to ensure that any redundant or irrelevant features are discarded and

only the important (top) features are selected from a given corpus consisting many documents

from different classes. The top features are selected using the traditional k-means clustering

technique [27], where a class (named as supervised cluster) is divided into a number of sub-

classes (or sub-clusters) so that it can further bring more similar documents into the same group

which in turn strengthen the relationship between the features (or keywords) in the sub-cluster.

From each sub-cluster, the top features are selected using cosine-similarity after forming the

synonym list (Wordnet1 is used for this purpose) of each feature (Table 4.1) selected based

on their Bi-normal separation (BNS) score (appendix D) (the best performing measures in the

probit classifier [131]). Finally, all the top features of each sub-cluster are combined to form a

reduced feature vector. To make the above discussion more formal, detailed steps are given in

Table 4.1: Synonym list of keywords

Keyword Synonym list
amazing astonishing, astounding, extraordinary, fabulous, fantastic, improbable,

incredible, unbelievable, wonderful,
begin ample, broad, gigantic, great, enormous, tall, huge, substantial, immense,

vast, gargantuan, tremendous, colossal, large, sizable, grand, mammoth,
astronomical, expansive, spacious, stout, titanic, mountainous

calm aloof, composed, quiet, peaceful, still, mild, serene, smooth, tranquil,
collected, unruffled, level-headed, unexcited, detached

describe portray, recount, report, characterize, represent, narrate, picture, relate, record
great powerful, worthy, distinguished, noteworthy, remarkable, considerable, grand,

much, mighty
important notable, significant, primary, necessary, vital, critical, indispensable,

distinguished, valuable, essential, principal, considerable, famous,
well-known

plan plot, contrivance, design, scheme, method, map, diagram, draw, procedure,
arrangement, intention, way, device, blueprint

think assume, believe, consider, deem, judge, contemplate, mediate, reflect

the next section and for implementation purpose, two algorithms (Algorithm 4.1 and 4.2) are

developed.
1https://wordnet.princeton.edu/wordnet

47

4.2.1 Methodology

Step 1 Document pre-processing:

Consider a corpus P consists of n number of classes i.e. supervised clusters C =

{C1, C2, ..., Cn} of documents. The documents are pre-processed (as discussed in

Chapter 3) and keywords are selected as nouns to creates a dictionary of the corpus.

Step 2 Term-document matrix generation:

The documents of each Ci are then converted to vectors using vector space model and

these vectors are aggregated to form the term-document matrix. BNS value of every

keywords are computed for each Ci of the corpus before generating the sub-clusters of

Ci.

Step 3 Sub-cluster generation:

k-means clustering algorithm is run on term-vectors of Ci and it returns k sub-clusters

(Ci = {c1, c2, ..., ck},∀Ci ∈ C) where each sub-cluster represents a concept of

related terms or keywords.

Step 4 Top keywords selection:

For each cj ∈ Ci, the centroid (C′) of cj is computed and then the cosine similarities2

of all the keywords of cj with the centroid C′ are calculated. Selection of top keywords

which can represent cj is done using the following steps:

(i) Select a keyword X having the highest BNS score from the keyword-list of cj and

using Wordnet prepare an initial synonym-list for X.

(ii) Next, check those keywords which are present both in the keyword-list of cj and

synonym-list of X. If any such keywords are found then create a new synonym-

list (new-synonym-list) of X and add all those keywords one by one to the new-

synonym-list of X, after discarding them from the keyword-list of cj . In this way,

the new-synonym-list of X is created. Now, discard the initial synonym-list of X.

(iii) Repeat step 4(i) and (ii) till the keyword-list of cj gets exhausted. At the end, the

new-synonym-list for those keywords which are selected based on their BNS values
2https://radimrehurek.com/gensim/tutorial.html

48

Algorithm 4.1 Generating sub-clusters

1: Input:Pre-processed text dataset of a cluster, Ci, i ∈ [1, n]
2: Output: Sub-clusters of Ci with cosine-similarity
3: content[]← contains all the keywords
4: cj ← sub-clusters return by k-means algorithm, j ∈ [1, k]
5: tf idf[][]← stores the tf-idf values of each keyword
6: cs← stores the cosine-similarity value of a keyword
7: S[][][]← stores the cosine-similarity values of keywords of each cj ∈ Ci

8: for all Ci do
9: for all d ∈ Ci do

10: content[]← read all keywords of d ∈ Ci

11: end for
12: tf idf[][]← TfidfVectorizer(content[]) // compute the tf-idf values of keywords
13: cj← k-means(no of sub-clusters, tf idf[][])
14: for all cj ∈ Ci do
15: for all Term-Vector ∈ cj do
16: cs← cosine similarity(Term-Vector, Centroid of cj)
17: S[cluster no][sub-cluster no][term-vector no]← cs
18: end for
19: end for
20: end for
21: return S

from the keyword-list of cj are generated. This gives a list of new-synonym-list of

cj .

(iv) Select topm% keywords (determined by experiment) from each new-synonym-list

of cj which have highest cosine-similarity (tightly bound to the centroid of cj) val-

ues. Collect all these top keywords of cj from each new-synonym-list and discard

the rest of the keywords to obtain the reduced feature vector for cj .

(v) Repeat step 4 (i-iv) for every cj ∈ Ci and at the end, merge all the top keywords

of each cj into a list to obtain the reduced feature vector of Ci.

Step 5 Final reduced feature vector generation:

Repeat steps 2 to 4 for each cluster Ci and combine the resulting features after removal

of duplicates to obtain the final reduced feature vector of the entire corpus.

Step 6 Training and performance evaluation of classifiers:

The final reduced feature vector can then be used to train ML-ELM and other traditional

classifiers for text classification. Using the output predictions and the known class labels

49

Algorithm 4.2 Selecting best features of a sub-cluster
1: Input:Sub-Cluster cj generated by Algorithm 4.1 with cosine-similarity values of each

keyword
2: Output:Reduce feature vector (FV) of cj
3: Keyword List(KL)← φ
4: Synonym Listw(SLx)← φ
5: New Synonym Listx(NSLx)← φ
6: List of List(LL)← φ //A two dimensional list
7: KL← keywords from all documentsD ∈ cj
8: for all keywordX ∈KL (selected based on their BNS score) do
9: SLx ← all the synonyms ofX found in Wordnet

10: for all keyword U ∈ KL do
11: if U ∈ SLx then
12: NSLx = NSLx ∪ {U} //add U to the synonym required list ofX
13: KL = KL− {U} //drop U fromKL
14: end if
15: end for
16: LL← LL ∪NSLx //appended the synonym required list ofX to LL
17: NSLx ← φ
18: KL← KL− {X} //drop keywordX fromKL
19: (SLx)← φ
20: end for
21: for all NSLx ∈ LL do
22: select the top m% keywords K(determined by experiment) having highest cosine-

similarity values fromNSLx

23: FV ← FV ∪K //append all the top features into a list
24: end for
25: return FV

of test document, precision, recall and F-measure are calculated to quantify the perfor-

mance of different classifiers as follows:

Averageprecision =

∑n
i=1 pi

n
(4.1)

Averagerecall =

∑n
i=1 ri

n
(4.2)

AverageF−measure =

∑n
i=1 fi

n
(4.3)

where, pi, ri and fi are the precision, recall and F-measure of the ith category and n is the

total number of categories in a dataset.

50

4.2.2 Experimental Analysis

The proposed method is tested on 20-Newsgroups and DMOZ datasets. The algorithm was

run on these two datasets separately. For k-means clustering, k was set as 10 (decided empir-

ically). Different classifiers including ensemble classifiers are used for comparison purposes

such as Support Vector Machine (LinearSVC), Bernoulli naive-bayes (B-NB), Multinomial

Naive-Bayes (M-NB), Gaussian Naive-Bayes (G-NB), Decision Tree (DT), Extra Trees (ET),

Gradient Boosting (GB), Random Forest (RF), ELM and ML-ELM. The algorithm also was

tested for various input feature vector lengths, with different number of hidden layer nodes

used in ELM and a number of hidden layers used in ML-ELM. But for performance purpose,

those values of the these parameters are considered for which the proposed approach obtained

the best results.

20-Newsgroups dataset:

All 7 categories of 20-Newsgroups dataset are considered for experimental work. Out of 18,846

documents of this dataset (includes 25 empty documents), 11,318 are used for training and the

remaining 7,528 are used for testing. The length of the input feature vector is set to 1852. The

number of internal (hidden) nodes is set to ‘2000’ for both ELM and ML-ELM with number

of hidden layers set as‘3’ for ML-ELM. For demonstration purpose, the category-wise perfor-

mance of ELM and ML-ELM are shown in the Tables 4.2 and 4.3, respectively. Figures 4.1 -

4.3 show the average precision, recall and F-measure of different classifiers on 20-Newsgroups

dataset respectively. From the Figure 4.3, it is observed that ML-ELM outperformed other es-

tablished classifiers.

Table 4.2: ELM (20-Newsgroups)

Category No. of Test Documents Precision Recall F-Measure
Alt 320 0.6201 0.6261 0.6231

Computers 1952 0.8137 0.8444 0.8288
Miscellaneous 390 0.7431 0.7083 0.7253

Recreation 1590 0.7980 0.8189 0.8083
Science 1580 0.7430 0.7059 0.7240
Social 399 0.7610 0.5459 0.6357
Talk 1297 0.7001 0.7499 0.7241

Average 1075 0.7398 0.7142 0.7242

51

Table 4.3: ML-ELM (20-Newsgroups)

Category Total Testing Documents Precision Recall F-Measure
Alt 320 0.6242 0.6224 0.6234

Computers 1952 0.8186 0.8429 0.8306
Miscellaneous 390 0.7769 0.7030 0.7381

Recreation 1590 0.9298 0.8140 0.8680
Science 1580 0.8010 0.7015 0.7480
Social 399 0.6299 0.7635 0.6903
Talk 1297 0.7058 0.7608 0.7323

Average 1075 0.7551 0.7440 0.7472

Figure 4.1: Average precision of different classifiers on 20-Newsgroups

Figure 4.2: Average recall of different classifiers on 20-Newsgroups

DMOZ dataset:

All 14 categories of DMOZ dataset are considered for experimental work. 38,834 documents

52

Figure 4.3: Average F-measure of different classifiers on 20-Newsgroups

are used for training and 31,068 documents are used for testing. The length of the input feature

vector is set to 2260. The number of internal nodes is set to ‘2500’ for both ELM and ML-ELM

with number of hidden layers set as‘5’ for ML-ELM. For demonstration purpose, category-

wise performance of ELM and ML-ELM are shown in the Tables 4.4 and 4.5 respectively. The

average precision, recall and F-measure of different classifiers are shown in Figures 4.4 - 4.6.

From the Figure 4.6, it is clear that ML-ELM has obtained the better results compared to other

classifiers which justifies its prominence in the field of text classification.

Table 4.4: ELM (DMOZ)

Category No. of Test
Documents

Precision Recall F-Measure

Arts 1396 0.7388 0.6815 0.7090
Business 3384 0.7556 0.7014 0.7275
Computers 1494 0.7434 0.6912 0.7164

Games 5757 0.6914 0.6845 0.6879
Health 1491 0.6958 0.7019 0.6988
Homes 1405 0.7314 0.6855 0.7077
News 1504 0.7411 0.6518 0.6936

Recreation 1410 0.6969 0.7015 0.6992
Reference 1301 0.7015 0.6716 0.6862
Regional 1307 0.7114 0.6515 0.6801
Science 1390 0.7275 0.6610 0.6927

Shopping 6209 0.7281 0.6525 0.6882
Society 1505 0.7445 0.6871 0.7146
Sports 1515 0.7215 0.6659 0.6926

Average 2219 0.7235 0.6778 0.6996

53

Table 4.5: ML-ELM (DMOZ)

Category Total Testing
Documents

Precision Recall F-measure

Arts 1396 0.7321 0.6819 0.7061
Business 3384 0.7645 0.6923 0.7266
Computers 1494 0.7115 0.7238 0.7176

Games 5757 0.7662 0.7149 0.7397
Health 1491 0.7550 0.6822 0.7168
Homes 1405 0.7139 0.7237 0.7188
News 1504 0.7425 0.6912 0.7159

Recreation 1410 0.7917 0.6823 0.7329
Reference 1301 0.7239 0.6779 0.7001
Regional 1307 0.7732 0.6645 0.7147
Science 1390 0.7882 0.7012 0.7422

Shopping 6209 0.7121 0.7249 0.7184
Society 1505 0.7312 0.6843 0.7070
Sports 1515 0.7442 0.6898 0.7160

Average 2219 0.7464 0.6954 0.7195

Figure 4.4: Average precision of different classifiers on DMOZ

4.3 Combined Cohesion, Separation and Silhouette coefficient based

feature Selection

Combined Cohesion, Separation and Silhouette coefficient based feature selection

(CCSS) is an innovative technique for selection of prominent features (or terms) from a given

corpus in order to prepare the reduced feature vector. Three important parameters, namely

cohesion, separation and silhouette coefficient are used to measure the weight of a term in

54

Figure 4.5: Average recall of different classifiers on DMOZ

Figure 4.6: Average F-measure of different classifiers on DMOZ

a corpus which is discussed in the next section. In this technique, first, the traditional k-

means clustering algorithm is run on a corpus P of terms collected from the documents of

all classes and it generates k term-document clusters. Next, in each term-document cluster,

the cohesion, separation and silhouette coefficient scores of every terms are calculated which

helps to compute the total-score of each term. Based on the total score, the terms are ranked

in each term-document cluster and the top m% terms are selected from each cluster which are

finally merged together to generate the reduced feature vector. To make the above discussion

more formal, detailed steps are given in the next section and for implementation purpose, an

algorithm (Algorithm 5.1) is developed.

55

4.3.1 Cohesion

Cohesion (Appendix F), determines the closeness of terms in a cluster c by computing the

distance of each term t from the centroid (mean of all the terms of c) of the cluster c. If the

term t is highly cohesive i.e. the distance between the term t and the centroid of the cluster c

is very small compared to other terms in c then t defines the cluster c very well. If the term t is

present at the border of the cluster c (far away from the centroid of c) then t is poorly cohesive

to the cluster i.e. assignment of t to the cluster c is not a good idea. Euclidean distance is

used to measure the distance of a term t from the centroid (c′) of the cluster c as follows: If
#»
t = (t1, t2) and

#»

c′ = (c′1, c
′
2) then ||

#»

c′ − #»
t || =

√
(c′1 − t1)2 + (c′2 − t2)2, where

#»
t

and
#»

c′ are term and centroid vectors, respectively.

4.3.2 Separation

Separation (Appendix F) determine how distinct or well separated the term t is from other

clusters. The separation score of t is the minimum among all the distances of the term t from

the centroid of other clusters in which t is not a member. If the distance of t from the centroid

of its neighboring cluster is high then t is well separated from that cluster. High separation

shows two clusters are well separated and hence, the clustering technique is good. Figure 4.7

shows the cohesion and separation of two terms t and x from its own and neighboring clusters,

respectively. As x is near to its centroid and far away from the centroid of its neighboring clus-

ter compared to the term t, hence x will obtain a high cohesion and separation score compared

to the term t.

4.3.3 Silhouette Coefficient

The Silhouette Coefficient (Appendix F) measures how much a term t is similar to its own

cluster (i.e. cohesion) compared to other clusters (i.e. separation).

silhouette(t) =
s(t)− c(t)

max
(
c(t), s(t)

)

56

Figure 4.7: Cohesion and Separation of two terms

where c(t) and s(t) are the cohesion and separation scores of the term t, respectively. Silhou-

ette coefficient needs to be positive i.e. c(t) < s(t), and c(t) to be close to 0 i.e. the term t

should be very close to its centroid as far as possible, since the coefficient obtains its maximum

value of 1, when c(t) is 0. Hence, a high separation score and a low cohesion score of a term

t shows the importance of t in a cluster.

4.3.4 Methodology

Step 1. Preprocessing the corpus:

Consider a corpus P having classes C = {C1, C2, ..., Cn}. The documents are

identified with an index i.e. doc-id and the corresponding target labels or class la-

bels are stored for future evaluation of the classification metrics. The documents d =

{d1, d2, ..., dm} of each class are pre-processed (discussed in chapter 3) and converted

into vector form. The documents from all n classes are collected which make the dimen-

sion of P as r × p, where r and p are the total number of terms and documents of the

corpus P .

Step 2. Term-Document Cluster formation:

Next, the traditional k-means clustering algorithm is run on P which generates k term-

document (term-doc) clusters, td = {td1, td2, ..., tdk}. The reason to form clusters is

not only to bring the related terms into the same group but also, it helps to compute the

total score of each term (discussed in the next step) for which we need clusters. The

dimension of each tdi, i = 1, ..., k is now reduced and shown in the table 4.6.

57

Table 4.6: Reduced term-document matrix

d1 d2 d3 ... dp
t1 t11 t12 t13 ... t1p
t2 t21 t22 t23 ... t2p
t3 t31 t32 t33 ... t3p
.
.
.
tq tq1 tq2 tq3 ... tqp

Step 3. Selection of important features from each cluster:

The aim is to select important features from each of the k clusters for maintaining uni-

formity without excluding any collection and is done as follows:

i. Computation of centroid for each term-doc cluster: From each term-doc cluster

tdi, the centroid of all the term vectors
#»
tj, j = 1, ..., q is computed by using the

following equation:
#»ci =

∑q
j=1

#»
tj

q
(4.4)

where, #»ci is the centroid vector (dimension of 1× p) of ith term-doc cluster, tdi.

Transpose of #»ci (i.e. #»ci
T) is shown below.

#»ci
T =



(t11 + t21 + t31 + ... + tq1)
q

(t12 + t22 + t32 + ... + tq2)
q

(t13 + t23 + t33 + ... + tq3)
q

.

.

.

(t1p + t2p + t3p + ... + tqp)
q


ii. Computation of cohesion score for each term:

To measure how cohesive is the term,
#»
tj ∈ tdi to the centroid, #»ci ∈ tdi, the

Euclidean distance is computed between
#»
tj and #»ci as follows:

58

cohesion(
#»
tj) = (|| #»ci −

#»
tj||) (4.5)

iii. Computation of separation score for each term:

The following equation is used to measure how well separated is a term,
#»
tj ∈ tdi

from the centroid of other clusters, #»cs, s = 1, ..., k and s 6= i:

separation(
#»
tj) = min

(
|| #»cs −

#»
tj||
)

(4.6)

where #»cs is the centroid of the sth cluster. In other words, it can be said that sepa-

ration (
#»
tj) finds the minimum separate distance among all the distances computed

between the term
#»
tj and centroid of other clusters in which

#»
tj is not a member.

iv. Computation of silhouette coefficient for each term :

The silhouette coefficient of the term
#»
tj ∈ tdi is calculated as follows:

silhouette(
#»
tj) =

(separation(
#»
tj)− cohesion(

#»
tj))

max
(
cohesion(

#»
tj), separation(

#»
tj)
) (4.7)

v. Computation of total-score for each term of a term-doc cluster:

Total score of the term
#»
tj ∈ tdi is calculated as follows:

total-score(
#»
tj) =

separation(
#»
tj)

cohesion(
#»
tj)

+ silhoutte(
#»
tj) (4.8)

The reason why we divided the separation score of a term with its cohesion score is

that for any important term, the minimum separation value should be high i.e. the

term should be well separated from its nearest neighboring cluster and the cohesion

value should be low i.e. the term should be tightly bound to the centroid which in

turn represents the cluster well, hence the total-score will be high. But if it is

considered in a reverse order (i.e. cohesion
separation) then the top (or important) terms

will lose their score (or importance) in the cluster as the ratio will generate very

low scores for them.

vi. Selection of top m% terms from each term-doc cluster and merging them to gener-

ate the final feature vector:

- By repeating steps 4 (ii-v), terms of all k clusters will obtain their respective

total-scores.

59

- Rank the terms in each term-doc cluster based on their total-scores.

- Select top m% terms from each term-doc cluster, tdi and merge them into a

list, which generates an efficient reduced feature vector.

Step 4. Performance measurement of different classifiers:

The reduced feature vector along with the class label of each document generate the

training feature vector.

The following equations are used to compute the average performance of the classifiers.

Averageprecision =

n∑
i=1

Xi

#documents
(4.9)

Averagerecall =

n∑
i=1

Yi

#documents
(4.10)

AverageF−measure =

n∑
i=1

Zi

#documents
(4.11)

where,Xi, Yi andZi represent (pi ∗di), (ri ∗di) and (fi ∗di), respectively. di, fi, pi

and ri are ‘the number of test documents’, ‘F-measure’, ‘precision’ and ‘recall’ of the

ith category, respectively. #documents represents the ‘Total number of test documents’.

4.3.5 Experimental Analysis

The experimental work of the proposed method is tested on four benchmark datasets (20-

Newsgroups, Classic4 (Table ??), Reuters (Table ??) and WebKB (Table ??)). For the k-means

clustering, k was set as 10 (decided empirically) for all the datasets. The percentage of terms

to be selected from each cluster was set as 1%, 5% and 10%. After the feature selection is

done, a new term-document matrix was constructed using the reduced features which was then

used for text classification. Different classifiers including many ensemble classifiers are used

for comparison purpose like LinearSVC, LinearSVM, Nearest Centroid (NC), Gaussian Naive

Bayes (GNB), Multinomial Naive-Bayes (M-NB), Adaboost, Decision Tree (DT), Random

Forest (RF), ELM and ML-ELM. The number of hidden layers is set as 5 for 20-Newsgroups

and 3 for the remaining three datasets (decided empirically). The algorithm was tested using

60

Algorithm 4.3 Important terms selection using CCSS

1: Input: k clusters and their corresponding term-doc matrix
2: Output: Top[]← important terms of a term-doc cluster, tdi
3: q ← number of terms in tdi
4: coh[]← φ // stores the cohesion score
5: sep[]← φ // stores the separation score
6: sil[]← φ // stores the silhouette coefficient score
7: total-score[]← φ // stores the total score
8: S ← φ // stores the ranked terms of tdi in descending order of their total-score
9: #»ci ← φ // centroid vector of tdi

10: Top[]← φ
11: // computing the centroid of cluster tdi
12: for all terms

#»
tj, j ∈ [1, q] do

13: #»ci ← #»ci +
#»
tj

14: end for
15: #»ci ←

#»ci
q

16: #»cs ← stores the centroids of all other (k-1) clusters after computing them in the same
manner like #»ci

17: //computing the cohesion score of all the terms of tdi
18: for all terms

#»
tj, j ∈ [1, q] do

19: coh[
#»
tj]← || #»ci −

#»
tj|| //Euclidean distance

20: end for
21: // computing the separation score of all the terms of tdi
22: for all terms

#»
tj, j ∈ [1, q] do

23: Aj[]← φ
24: for all centroids cs, s ∈ [1, k] and s 6= i do
25: Aj[]←

(
|| #»cs −

#»
tj||
)

//Euclidean distance
26: end for
27: sep[

#»
tj]← min(Aj[])

28: end for
29: // computing the silhouette coefficient of all the terms of tdi
30: for all terms

#»
tj, j ∈ [1, q] do

31: sil[
#»
tj]←

sep[
#»
tj]−coh(

#»
tj)

max
(
coh[

#»
tj],sep[

#»
tj]
)

32: end for
33: // computing the total score of all the terms of tdl
34: for all terms

#»
tj, j ∈ [1, q] do

35: total-score[
#»
tj]←

sep[
#»
tj]

coh[
#»
tj]

+ sil[
#»
tj]

36: end for
37: for all terms

#»
tj, j ∈ [1, q] do

38: S ← rank each
#»
tj based on their total-score

39: end for
40: Top[]← select top m% terms from S
41: return Top

61

different number of hidden layer nodes for ELM and ML-ELM and the best results are obtained

when the number of hidden layer nodes is more than the nodes in the input layer. In the Tables

4.7 - 4.18, the bold mark indicates the highest average F-measure obtained by CCSS using a

classifier in comparison with other traditional selection techniques.

20-Newsgroups dataset:

For experimental purpose, three classes of 20-Newsgroups dataset are considered (alt.atheism,

misc.forsale and soc.religion.christian) for experimental purpose, which comprises of total

1663 training and 1107 testing documents. The total vocabulary i.e. terms, contained in all

of these documents is 20422 and that in training documents is 16270. Tables 4.7 - 4.9 show the

average F-measure using different feature selection techniques on different classifiers for the

top 1%, 5% and 10% features, respectively. Classifier-wise CCSS obtained the highest average

F-measure using Multilayer ELM for all three selected feature formats.

Table 4.7: 20-NG: performance on top 1% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.89121 0.87163 0.87361 0.88949 0.87515
LinearSVM 0.90235 0.89968 0.90152 0.90445 0.89429

NC 0.85584 0.83785 0.84085 0.86064 0.83225
G-NB 0.88226 0.86308 0.86993 0.87515 0.81783
M-NB 0.86302 0.83861 0.83797 0.85795 0.88662

Adaboost 0.87320 0.88318 0.88383 0.88473 0.87334
DT 0.85992 0.85846 0.85906 0.84245 0.85589
RF 0.89673 0.87608 0.88646 0.88230 0.87761

ELM 0.89243 0.87042 0.87543 0.89576 0.88421
ML-ELM 0.90704 0.90236 0.89512 0.90667 0.90803

Classic4 dataset:

For experimental purpose, all the 4 categories of Classic4 dataset are considered in evaluation.

The total vocabulary contained in all documents is 21299 and that for training documents is

15971. Tables 4.10 - 4.12 show the average F-measure using different feature selection tech-

niques on different classifiers for the top 1%, 5% and 10% features, respectively. Classifier-

wise CCSS obtained the highest average F-measure using Multilayer ELM for top 1% and 10%

and using LinearSVC for top 5% features.

62

Table 4.8: 20-NG: performance on top 5% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.93460 0.92817 0.92815 0.94015 0.93454
LinearSVM 0.94377 0.93461 0.93729 0.94375 0.94509

NC 0.89954 0.88561 0.89489 0.89591 0.87908
G-NB 0.93517 0.88817 0.90253 0.92879 0.86015
M-NB 0.93121 0.90104 0.91608 0.92510 0.89190

Adaboost 0.89076 0.88367 0.86260 0.87113 0.87182
DT 0.85999 0.86257 0.85810 0.85762 0.85619
RF 0.90423 0.88002 0.90226 0.89424 0.88718

ELM 0.93550 0.92675 0.93012 0.93685 0.92334
ML-ELM 0.93874 0.93885 0.93667 0.94587 0.94743

Table 4.9: 20 NG: performance on top 10% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.94742 0.93732 0.94648 0.95377 0.94921
LinearSVM 0.95286 0.94559 0.94647 0.95654 0.94536

NC 0.90147 0.89582 0.89861 0.90510 0.89582
G-NB 0.93997 0.91011 0.93352 0.93993 0.87138
M-NB 0.93823 0.92347 0.93271 0.93733 0.91938

Adaboost 0.88267 0.86260 0.86342 0.87254 0.86688
DT 0.86373 0.84928 0.86608 0.85916 0.85643
RF 0.89299 0.89245 0.89470 0.89279 0.89571

ELM 0.93226 0.94053 0.93441 0.94674 0.92886
ML-ELM 0.95637 0.94880 0.93567 0.95814 0.95926

Table 4.10: CLASSIC4: performance on top 1% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.91492 0.88287 0.89941 0.91785 0.90146
LinearSVM 0.93632 0.90663 0.92185 0.93799 0.91670

NC 0.90966 0.83336 0.88875 0.88188 0.83345
G-NB 0.83280 0.79882 0.87912 0.86602 0.80022
M-NB 0.84198 0.76851 0.80706 0.85318 0.86169

Adaboost 0.89163 0.88096 0.88438 0.88987 0.85394
DT 0.86047 0.84002 0.85311 0.86367 0.82878
RF 0.91775 0.89213 0.91535 0.91803 0.88719

ELM 0.90289 0.88146 0.89946 0.92384 0.89185
ML-ELM 0.93650 0.91223 0.91886 0.94567 0.91707

Reuters dataset:

For experimental purpose, all class documents of Reuters dataset are considered for evaluation.

The total vocabulary comprising all of these documents is 17582 and training documents is

63

Table 4.11: CLASSIC4: performance on top 5% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.95597 0.94338 0.95106 0.96303 0.96659
LinearSVM 0.96512 0.95914 0.96053 0.96795 0.96020

NC 0.93413 0.92599 0.92953 0.93950 0.93279
G-NB 0.92631 0.90764 0.91491 0.90219 0.90986
M-NB 0.93815 0.92328 0.93096 0.94526 0.94668

Adaboost 0.87346 0.88183 0.84974 0.85481 0.84586
DT 0.84928 0.84844 0.84886 0.85555 0.84843
RF 0.91894 0.91892 0.91657 0.91920 0.89555

ELM 0.94534 0.92521 0.95678 0.95178 0.94576
ML-ELM 0.95277 0.94889 0.96254 0.96549 0.96540

Table 4.12: CLASSIC4: performance on top 10% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.96546 0.96124 0.96337 0.96868 0.96550
LinearSVM 0.95541 0.96653 0.96759 0.97286 0.96769

NC 0.94022 0.93595 0.93950 0.94239 0.93992
G-NB 0.92032 0.90687 0.91549 0.91055 0.89721
M-NB 0.95096 0.94560 0.94777 0.95353 0.95917

Adaboost 0.85481 0.85481 0.85481 0.84586 0.84586
DT 0.85070 0.84739 0.85209 0.84575 0.85084
RF 0.91527 0.92683 0.91858 0.91438 0.91673

ELM 0.92335 0.94675 0.95637 0.96943 0.95632
ML-ELM 0.97108 0.95875 0.96889 0.97940 0.97078

13531. Tables 4.13 - 4.15 show the average F-measure using different feature selection tech-

niques on different classifiers for the top 1%, 5% and 10% features, respectively. Classifier-

wise CCSS obtained the highest average F-measure using Multilayer ELM for top 5% and 10%

and using LinearSVM for top 1% features.

WebKB dataset:

For experimental purpose, all class documents of WebKB are considered in evaluation. The

total vocabulary comprising all these documents is 7606 and training documents is 7522. Ta-

bles 4.16 - 4.18 show the average F-measure using different feature selection techniques on

different classifiers for the top 1%, 5% and 10% features, respectively. Classifier-wise CCSS

obtained the highest average F-measure using Multilayer ELM for top 5% and 10% features

and using LinearSVM for top 1% features.

64

Table 4.13: REUTERS: performance on top 1% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.93365 0.92337 0.92968 0.93972 0.90524
LinearSVM 0.95241 0.94919 0.95147 0.95951 0.92926

NC 0.83338 0.83042 0.83156 0.83834 0.81451
G-NB 0.86442 0.85535 0.85345 0.85344 0.85148
M-NB 0.87203 0.84187 0.85836 0.86013 0.84526

Adaboost 0.64005 0.64005 0.64005 0.76295 0.77928
DT 0.89169 0.88853 0.89004 0.89518 0.86448
RF 0.92233 0.92945 0.92360 0.93204 0.90925

ELM 0.94567 0.95023 0.93143 0.93376 0.90327
ML-ELM 0.95414 0.95673 0.95678 0.96759 0.92601

Table 4.14: REUTERS: performance on top 5% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.95123 0.94782 0.95008 0.95425 0.94076
LinearSVM 0.96229 0.96386 0.96648 0.96555 0.95492

NC 0.84276 0.83726 0.84064 0.84359 0.83986
G-NB 0.82964 0.87128 0.85761 0.85329 0.84877
M-NB 0.90245 0.89553 0.90329 0.91179 0.88668

Adaboost 0.63823 0.65844 0.62867 0.67428 0.77314
DT 0.90289 0.90602 0.90376 0.90350 0.89668
RF 0.92824 0.92324 0.93328 0.91606 0.91753

ELM 0.94567 0.94897 0.95607 0.93452 0.93142
ML-ELM 0.96393 0.96314 0.95837 0.96876 0.96938

Table 4.15: REUTERS: performance on top 10% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.95733 0.95171 0.95453 0.95695 0.95477
LinearSVM 0.96486 0.96618 0.96685 0.96819 0.96781

NC 0.84553 0.84320 0.84261 0.84546 0.84519
G-NB 0.79522 0.84728 0.83480 0.81193 0.79145
M-NB 0.90079 0.90557 0.90810 0.90971 0.88693

Adaboost 0.63800 0.63800 0.63428 0.63428 0.63800
DT 0.90557 0.89854 0.90680 0.89942 0.90653
RF 0.91901 0.91690 0.91905 0.91982 0.91076

ELM 0.92336 0.95667 0.95542 0.95502 0.94556
ML-ELM 0.96721 0.95764 0.96778 0.96324 0.96958

Discussion:

Figures 4.8 - 4.10 show the performance comparison among different classifiers for top 1%,

5% and 10% features, respectively on different datasets using CCSS feature selection tech-

65

Table 4.16: WebKB: performance on top 1% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.84017 0.81562 0.83208 0.77056 0.78836
LinearSVM 0.86636 0.85418 0.87036 0.81684 0.87785

NC 0.76794 0.75209 0.76273 0.74439 0.73456
G-NB 0.65442 0.63748 0.67973 0.53566 0.55930
M-NB 0.68787 0.65050 0.66735 0.61533 0.60170

Adaboost 0.83838 0.81693 0.81550 0.79223 0.79302
DT 0.79120 0.77399 0.77503 0.74938 0.73599
RF 0.84676 0.82846 0.83196 0.81568 0.81502

ELM 0.81267 0.80382 0.84784 0.78940 0.80536
ML-ELM 0.87504 0.82365 0.85637 0.83657 0.82516

Table 4.17: WebKB: performance on top 5% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.87806 0.86861 0.87754 0.88150 0.86492
LinearSVM 0.87914 0.89136 0.89868 0.88725 0.85949

NC 0.79428 0.78230 0.78507 0.78554 0.77728
G-NB 0.70748 0.74339 0.73449 0.70752 0.71888
M-NB 0.77868 0.75186 0.76395 0.75465 0.74448

Adaboost 0.79831 0.81163 0.81849 0.80973 0.80282
DT 0.78483 0.78760 0.79159 0.78826 0.77702
RF 0.83868 0.82967 0.84827 0.84487 0.83076

ELM 0.86721 0.83251 0.84512 0.87523 0.83675
ML-ELM 0.89675 0.88568 0.89034 0.89675 0.89910

Table 4.18: WebKB: performance on top 10% features

Classifier Chi-
Square

BNS IG GINI CCSS

LinearSVC 0.88882 0.88007 0.88358 0.88188 0.87571
LinearSVM 0.87054 0.89838 0.89880 0.90048 0.85602

NC 0.80388 0.79180 0.79743 0.79185 0.78611
G-NB 0.70038 0.73236 0.71898 0.70539 0.70298
M-NB 0.78504 0.77862 0.78699 0.77905 0.77623

Adaboost 0.81144 0.79831 0.79831 0.80097 0.80883
DT 0.78083 0.79578 0.79057 0.78474 0.77786
RF 0.83460 0.83170 0.83144 0.82889 0.81987

ELM 0.86621 0.88765 0.89012 0.87564 0.84243
ML-ELM 0.90236 0.90432 0.86432 0.88987 0.91278

nique. Table 4.19 shows the average F-measure comparisons of different established classifiers

using CCSS technique. The bold result indicates the maximum F-measure obtained by a clas-

sifier using CCSS and it signifies that Multilayer ELM leaves behind other standard classifiers

66

Ta
bl

e
4.

19
:F

-m
ea

su
re

co
m

pa
ri

so
ns

us
in

g
C

C
SS

C
la

ss
ifi

er
20

-N
ew

sg
ro

up
s

(F
-M

ea
su

re
-%

)
C

la
ss

ic
4

(F
-M

ea
su

re
-%

)
R

eu
te

rs
(F

-M
ea

su
re

-%
)

W
eb

K
B

(F
-M

ea
su

re
-%

)
1%

5%
10

%
1%

5%
10

%
1%

5%
10

%
1%

5%
10

%

L
in

ea
rS

V
C

87
.5

15
93

.4
54

94
.9

21
90

.1
46

96
.6

59
96

.5
50

90
.5

24
94

.0
76

95
.4

77
78

.8
36

86
.4

92
87

.5
71

L
in

ea
r

SV
M

89
.4

29
94

.5
09

94
.5

36
91

.6
70

96
.0

20
96

.7
69

92
.9

26
95

.4
92

96
.7

81
87

.7
85

85
.9

49
85

.6
02

N
C

83
.2

25
87

.9
08

89
.5

82
83

.3
45

93
.2

79
93

.9
92

81
.4

51
83

.9
86

84
.5

19
73

.4
56

77
.7

28
78

.6
11

G
-N

B
81

.7
83

86
.0

15
87

.1
38

80
.0

22
90

.9
86

89
.7

21
85

.1
48

84
.8

77
79

.1
45

55
.9

30
71

.8
88

70
.2

98
M

-N
B

88
.6

62
89

.1
90

91
.9

38
86

.1
69

94
.6

68
95

.9
17

84
.5

26
88

.6
68

88
.6

93
60

.1
70

74
.4

48
77

.6
23

A
da

bo
os

t
87

.3
34

87
.1

82
86

.6
88

85
.3

94
84

.5
86

84
.5

86
77

.9
28

77
.3

14
63

.8
00

79
.3

02
80

.2
82

80
.8

83
D

T
85

.5
89

85
.6

19
85

.6
43

82
.8

78
84

.8
43

85
.0

84
86

.4
48

89
.6

68
90

.6
53

73
.5

99
77

.7
02

77
.7

86
R

F
87

.7
61

88
.7

18
89

.5
71

88
.7

19
89

.5
55

91
.6

73
90

.9
25

91
.7

53
91

.0
76

81
.5

02
83

.0
76

81
.9

87
E

L
M

88
.4

21
92

.3
34

92
.8

86
89

.1
85

94
.5

76
95

.6
32

90
.3

27
93

.1
42

94
.5

56
80

.5
36

83
.6

75
84

.2
43

M
L

-E
L

M
90

.8
03

94
.7

43
95

.9
26

91
.7

07
96

.5
40

97
.0

78
92

.6
01

96
.9

38
96

.9
58

82
.5

16
89

.9
10

91
.2

78

67

Figure 4.8: Average F-measure on top 1% features

Figure 4.9: Average F-measure on top 5% features

except for some cases like top 5% features of Classic4 (maximum F-measure obtained by Lin-

earSVC), top 1% features of Reuters (maximum F-measure obtained by Linear SVM) and top

1% features of WebKB (maximum F-measure obtained by Linear SVM) datasets where the re-

sults of Multilayer ELM are very near to the maximum result obtained by any other classifier.

In both the novel feature selection techniques (KWFS and CCSS), from the obtained results, it

has been noticed that ML-ELM outperformed the state-of-the-art classifiers. This justifies the

68

Figure 4.10: Average F-measure on top 10% features

prominence of deep learning for classifying the text documents. The following points discuss

some of the probable reasons of “why Multilayer ELM is outperforming other classifiers ?”:

i. Multilayer ELM uses the ELM feature mapping mechanism (discussed in Chapter 5) to

map the training feature vector into an extended feature space i.e. n < L and hence

makes the features much simpler and linearly separable in the high dimensional space

which enhances its performance [132]. Classifier like Extreme Learning Machine (ELM)

can approximate any complex non-linearly mappings directly from the training samples,

but to fit the highly-variant input data perfectly, it needs a large network that is difficult

to implement. This is because of its shallow architecture similar to other ancient SLFNs,

which can easily be overcome by Multilayer ELM.

ii. impressed with an underlying design of the deep network.

iii. multiple non-linear transformations of input data are possible using multiple layers.

iv. higher level abstraction of data is captured by Multilayer ELM using multiple layers,

whereas the networks having a single layer fail to achieve it.

v. by using representation learning, a different form of the input is learned at each layer

within the network.

69

4.4 Summary

This chapter proposed two novel feature selection technique (KWFS and CCSS)

for text classification. In KWFS, initially, each cluster is divided into k sub clusters by using

k-means algorithm. Then with the help of Wordnet and cosine-similarity a reduced feature

vector is generated for the entire corpus. For text classification, ELM and ML-ELM classifiers

have been used. This technique is tested on 20-Newsgroups and DMOZ dataset and the results

witness the suitability and importance of ELM and ML-ELM in the field of text classification.

It can be observed from the tables and figures of both datasets that ML-ELM

performs the best out of all the traditional classifiers. ML-ELM has an impressive average

F-measure of 0.7472 on the 20-Newsgroups dataset and 0.7195 on the DMOZ dataset, which

signifies the strength of deep learning in the domain of text classification. In the second feature

selection technique (CCSS), three important parameters (cohesion, separation and silhouette

coefficient) are combined to generate a reduced feature vector. Multilayer ELM as the classifier

has been used for classifying the text document and its importance also has been extensively

measured and discussed in this chapter. This technique can be summarized as follows:

1. term clustering and total-score calculation: k-means clustering algorithm is run on a

corpus to group the similar terms into k clusters. Cohesion, separation and silhouette

coefficient scores of every term in each cluster are computed and finally, with the help of

these three scores, the total-score is computed.

2. final reduced feature vector preparation: At the end, all the terms in each cluster are

ranked together based on their total-score and top m% terms are selected as the important

terms from a cluster. These important terms are merged into a list to finalize the reduced

feature set.

3. training Multilayer ELM and other standard classifiers: The reduced feature vector

along with the labels of classes is used to train all conventional classifiers.

4. performance measurement of the classifiers: F-measure of Multilayer ELM and other

classifiers are computed by comparing the prediction of the classifier about a test docu-

ment d with the actual class label of d.

70

It is evident from all the results that the performance of Multilayer ELM outperforms the other

well known classifiers. The encouraging results of two techniques show the stability and ef-

fectiveness of Multilayer ELM compared to different progressive classifiers in the domain of

text classification. This justifies the stability, efficiency and effectiveness of deep learning. Al-

though Multilayer ELM performs well, but still there are some shortcomings which need more

attention in order to improve them and can be added to the future work such as:

- Determining activation function and the number of nodes for each hidden layer.

- Similarly in ELM, the behavior and a correct number of hidden units is still debatable

and can be added to the future study.

- Also, if we want to understand deeply the functionality of ELM and Multilayer ELM by

considering them as an approximation of infinite network, then the variance of hidden

layer weights is still open for future study.

Combining the ELM and Multilayer ELM feature space with other traditional classifiers will

further reinforce the classification results. Similarly, the feature space of ELM and Multilayer

ELM can also be used for clustering process, as the features become more simple and linearly

separable by representing them in an extended space. This may outperform the clustering

process done in TF-IDF vector space and is the primary focus of the next chapter.

CHAPTER 5

CLUSTERING IN ML-ELM FEATURE SPACE

5.1 Introduction

Clustering is a technique which puts together the similar data items into individual

groups. Traditional clustering techniques are generally unsupervised which means that there

are no class labels available to guide the clustering process. Many researchers have found that

if one combines the unlabeled data with limited amount of label data then the performance of

the clustering process will be improved [133][134][135]. The clustering technique where some

knowledge of supervised data in the form of class labels are used along with the unlabeled

data is called semi-supervised clustering. Assuming that we have some labeled data which

can be used to obtain an initial model, we only have to know what data belongs to which

clusters and therefore the actual clusters are not needed. We can begin the clustering process

from this initial model which means that we decided the starting point of the search using the

supervised information. Having this little known information, the search process continues till

it finds the labels of all unlabeled data. Figure 5.1 demonstrates such example by marking the

labeled data as ‘×’ and unlabeled data as ‘•’. With this small information, the semi-supervised

clustering begins by using the labeled data to form the centroids and place the unlabeled data

into their respective clusters (Figure 5.2). It has been acknowledged that the data structure

becomes much simpler, or the data will become more linearly separable if it can be transformed

into an extended dimensional feature space using a nonlinear data transformation. Generally,

clustering approaches use kernel techniques [136] and obtain better results. However, ELM

71

72

Figure 5.1: Semi supervised cluster-
ing (before) Figure 5.2: Semi supervised clustering (after)

feature mapping is an explicit and simpler feature mapping technique that outperforms kernel-

based methods and gives better performance [137][138]. Hence, solving the clustering problem

using ML-ELM feature mapping carries significant weight.

This chapter discusses an approach where semi-supervised (seeded-kMeans) and unsupervised

clustering (traditional k-means) are done in ML-ELM feature space.

5.1.1 Importance of extended feature space of ML-ELM

According to the ELM classification capability (equation 5.1) and universal approximation

conditions, a very large number of nodes in the hidden layer ensures that the data become more

linearly separable. As it is well known that Multilayer ELM uses all the properties of ELM,

and hence takes the advantages of this ELM feature mapping, which makes the input feature

vector much simpler and linearly separable in the extended space. The feature space of ELM

is prepared by specifying two parameters: number of hidden layer nodes, and the activation

function. L can be set in accordance with the size of the input feature vector ‘n’ depending on

the following conditions:

i. n < L : Sparse feature vector

ii. n = L : Equal dimension feature vector

iii. n > L : Compressed feature vector

73

The activation function may be any non-linear continuous function such as Gaussian, Sigmoid

or Cosine. The process of mapping the input training data into the feature space of ML-ELM

is discussed below.

An input layer feature vector of n-dimension x = [x1, x2, ..., xn]
T , maps into

an ML-ELM feature space of L(> n) dimension.

h(x) = [h1(x), ..., hi(x), .., hL(x)]T =

[g(w1, b1, x), ..., g(wi, bi, x), ..., g(wL, bL, x)]T
(5.1)

Using equation 5.1, it is very easy to transform the features of training dataset from a low

dimensional input data space into an extended feature space. ELM can approximate any con-

Figure 5.3: ML-ELM feature space

tinuous target function using the following equation [139].

lim
L→+∞

||yL(x)− y(x)|| = lim
L→+∞

||
L∑

i=1

βihi(x)− y(x)|| = 0 (5.2)

If h(x)β can approximate any continuous function, then any decision regions regardless of

their shape can be separated by ELM [66]. This important feature mapping of ELM helps us

to solve the clustering problem in feature space of ML-ELM.

74

5.1.2 Seeded-kMeans/kMeans Algorithm

Seeded-kMeans proposed by Basu et al. [140] requires a labeled subset S of the dataset X

(which contains documents belonging to k different categories), while the identity of the unla-

beled parts of X remains unknown. It is assumed that at least one document from each category

will be there in the labeled subset, (S = S1, S2, ..., Sk). The documents of ith category are

represented by Si while the mean of Si provides the centroid µi. In this manner, all centroids

µ1 to µk are initialized which serve as the initial centroids for their respective clusters. It

is different from the traditional kMeans algorithm, where the initial centroids (wi) are cal-

culated based on randomly selected k documents (initially consider as k clusters) from the

dataset X . Once the initial centroids are decided for each clustering technique (i.e. Seeded-

kMeans/kMeans), then the other steps to compute the final clusters are similar for both tech-

niques. At every step of the iteration, each document is (re)assigned to a cluster, based on the

Euclidean distance of the document from the centroid of the cluster. Next, the new centroids

of each cluster are (re)computed and the process is repeated till convergence or the maximum

number of iterations is reached. Algorithm 5.1 and 5.2 illustrate the formal analysis of kMeans

and seeded-kMeans.

Algorithm 5.1 kMeans

1: Input: number of clusters k, datasetX = {x1, x2, ...xN}
2: Output: k clusters
3: Initially, select k cluster centers randomly.
4: Compute the initial centroidw1, ..., wk for each k cluster aswi ← (1

s
)
∑s

j=1Dj where
s is the number of documents in ith cluster andDj is the jth document of ith cluster

5: y ← 0
6: repeat:
7: Assign each document x1, ..., xN to one of the cluster x1, ..., xk based on
mini=1,...,k||x− wi||

8: Recalculate centroids w1, ..., wk as wi ← (1
s
)
∑s

j=1Dj

9: y ← y + 1
10: until convergence achieved or number of iterations exceed a threshold
11: return set of k clusters

75

Algorithm 5.2 Seeded-kMeans

1: Input: number of clusters k, dataset X = {x1, x2, ...xN}, set S ⊂ X // S contains
the labeled data

2: Output: k clusters

3: Initialize centroids µ1, ..., µk from labeled set S as µi ←
(
∑

y∈Si
y)

‖Si‖
4: t← 0
5: repeat:
6: Assign each document x1, ..., xN to one of the cluster x1, ..., xk based on
mini=1,...,k||x− µi||

7: Recalculate centroids µ1, ..., µk as µi ←
(
∑

y∈Xi
y)

|Si|
8: t← t+ 1
9: until convergence achieved or number of iterations exceed a threshold

10: return set of k clusters

5.2 Methodology

The following steps discuss the kMeans and seeded-kMeans using the feature

space of ML-ELM and TF-IDF vector space.

Step 1. Pre-processing the documents of the corpus:

Consider a corpus P having classes C = {C1, C2, ..., Cn}. The documents are iden-

tified with an index (i.e. doc-id) and the corresponding target labels or class labels are

stored for future evaluation of the classification metrics. All the documents are pre-

processed (as discussed in Chapter 3). The documents from all n classes are collected

and converted to term vectors which make P as dimension of p× r, where p and r are

total number of documents and terms respectively.

Step 2. Mapping P into ML-ELM feature space:

Using equation 5.1, the input feature vector will map into the ML-ELM feature space.

According to equation 5.2, by setting the hidden layer nodes more than the input layer

nodes (L > n), the input feature vector can be represented in an extended dimensional

space which will ensure that the features are linearly separable.

Step 3. Cluster formation:

After mapping the feature vector into the ML-ELM feature space, seeded-kMeans and

traditional kMeans are run separately in the ML-ELM feature space and on the corpus

76

P directly (using TF-IDF vector space) to generate required k clusters (Algorithm 5.3).

The steps to implement the complete approach are illustrated in Figure 5.4.

Algorithm 5.3 Seeded-kMeans/kMeans clustering in ML-ELM feature space

1: Input: number of clusters k, number of hidden layer nodes L, Corpus P
2: Output: k clusters
3: Map the documents of corpus P into the feature space of ML-ELM, H using h(x) =

[h1(x), ..., hi(x), .., hL(x)]T .
4: Call Algorithm 5.1 by passingH , number of clusters // for traditional kMeans
5: Retain n% of labels of the corpus and mark the labels of other documents as ‘0’. Build

a subset S using H and retain the labels. Call Algorithm 5.2 by passing H , number of
clusters k and labels S. // for seeded-kMeans

Step 4. Performance comparison:

Performance of each cluster is computed using different supervised clustering evaluation

techniques viz. purity and entropy (Appendix F).

Figure 5.4: TF-IDF and ML-ELM feature vector

77

5.3 Experimental Analysis

Experimental work of the proposed approach is carried out on two benchmark

datasets (Classic4 and Reuters). Dataset wise, results of the proposed approach are discussed

and compared with the traditional kMeans applied on TF-IDF vector space and feature space

of ML-ELM.

5.3.1 Performance evaluation of the clustering

For evaluating the performance of each cluster, different supervised techniques are used where

the class details are known in prior. Before evaluating the performance of each cluster, first

we identified each cluster belongs to which class of the corpus P . To do this, we considered

the number of clusters and classes to be same. A cluster i belongs to a class j, if i contains

most of the documents of j compared to other classes in the corpus. Two supervised clustering

evaluation techniques such as purity and entropy are used to measure the performance of the

clustering process in TF-IDF and ML-ELM feature space.

Classic4 dataset:

All four categories of Classic4 dataset are considered for experimental work. 250 documents

are taken from each category to form the corpus. The total vocabulary (terms) of all of these

documents is 7916. Tables 5.1 and 5.2 show the purity and entropy of kMeans and seeded-

kMeans using TF-IDF vector space and feature space of ML-ELM respectively. Figure 5.5

shows the execution time of kMeans and seeded-kMeans using TF-IDF vector space and fea-

ture space of ML-ELM.

Reuters dataset:

1459 documents are taken to form the corpus and the total vocabulary of all these documents

is 7539. Table 5.3 and 5.4 show the purity and entropy of kMeans and seeded-kMeans using

TF-IDF vector space and feature space of ML-ELM. Figure 5.6 shows the execution time of

kMeans and seeded-kMeans using TF-IDF vector space and feature space of ML-ELM.

78

Table 5.1: Purity of clusters on Classic4 dataset

Purity TF-IDF
vector space

(L =
0.6n)

(L =
0.8n)

(L = n) (L =
1.2n)

(L =
1.4n)

kMeans (3
iterations)

0.693 0.711 0.726 0.757 0.791 0.824

Seeded-kMeans (3
iterations)

0.857 0.948 0.948 0.952 0.962 0.973

kMeans (5
iterations)

0.695 0.732 0.747 0.768 0.821 0.837

Seeded-kMeans (5
iterations)

0.857 0.953 0.957 0.958 0.967 0.974

Table 5.2: Entropy of clusters on Classic4 dataset

Entropy TF-IDF
vector space

(L =
0.6n)

(L =
0.8n)

(L = n) (L =
1.2n)

(L =
1.4n)

kMeans (3
iterations)

0.734 0.723 0.719 0.688 0.62 0.587

Seeded-kMeans (3
iterations)

0.365 0.360 0.358 0.353 0.331 0.313

kMeans (5
iterations)

0.739 0.702 0.68 0.637 0.578 0.522

Seeded-kMeans (5
iterations)

0.361 0.353 0.323 0.321 0.311 0.302

Table 5.3: Purity of clusters on Reuters dataset

Purity TF-IDF
vector space

(L =
0.6n)

(L =
0.8n)

(L = n) (L =
1.2n)

(L =
1.4n)

kMeans (3
iterations)

0.451 0.537 0.541 0.569 0.618 0.660

Seeded-kMeans (3
iterations)

0.765 0.806 0.811 0.82 0.837 0.856

kMeans (5
iterations)

0.475 0.586 0.602 0.632 0.642 0.669

Seeded-kMeans (5
iterations)

0.799 0.867 0.868 0.872 0.885 0.896

79

Table 5.4: Entropy of clusters on Reuters dataset

Entropy TF-IDF
vector space

(L =
0.6n)

(L =
0.8n)

(L = n) (L =
1.2n)

(L =
1.4n)

kMeans (3
iterations)

1.355 1.354 1.32 1.271 1.071 0.981

Seeded-kMeans (3
iterations)

0.963 0.911 0.908 0.906 0.880 0.868

kMeans (5
iterations)

1.354 1.275 1.252 1.271 1.012 0.976

Seeded-kMeans (5
iterations)

0.944 0.861 0.840 0.832 0.812 0.804

Figure 5.5: Execution time on Classic4 dataset

Figure 5.6: Execution time on Reuters dataset

80

5.4 Summary

This chapter proposes an approach where the feature space of ML-ELM is used

for semi-supervised clustering using seeded-kMeans algorithm. The number of hidden layers

is set to 3 (decided empirical) for ML-ELM on both datasets. The complete work is carried out

in two phases as discussed below:

1. While testing the clustering process in the feature space of ML-ELM, the hidden layer

nodes L are varied with fixed number of input nodes n such as L = 1.4n (140 %),

L = 1.2n (120 %), L = n (100 %), L = 0.8n (80 %) and L = 0.6n (60 %). The

first two conditions represent a sparse vector representation where the data is expanded

into a linearly separable space which facilitates a more robust cluster formation. L = n

shows the importance of non-linearity for clustering where it performs better than the

TF-IDF vector space of the same dimensions.

2. Both the clustering techniques are run for many iterations and for the experimental pur-

pose, here we have shown the results after third and fifth iterations. The following points

can be observed from the purity (Tables 5.1 and 5.3) and entropy tables (Tables 5.2 and

5.4) on both the datasets:

- results using ELM feature space outperforms the results of without using ELM

feature space (i.e. TF-IDF vector space).

- Seeded-kMeans performs well compared to kMeans in all aspects regardless of the

parameters set (i.e. number of clusters to be formed, % of labels to be considered in

seeded-kMeans). This demonstrates the superiority of an seeded-kMeans cluster-

ing technique over the traditional one even very few labels (only 10 % of the labels

are considered) are provided.

- results of purity and entropy are close in ML-ELM compressed or equal dimension

space (L ≤ n) whereas it is better in ML-ELM extended feature space (L > n)

on both datasets.

- It is also observed that after a certain stage (i.e. threshold point) in extended space,

the performance of the clustering process remains unchanged (i.e. further increas-

ing L compared to n have no effect). This may be due to the excessive sparse

representation of the features which is not included in the results.

CHAPTER 6

MODIFIED APRIORI APPROACH FOR TEXT

CLUSTERING

6.1 Introduction

Association rules of data mining state that the knowledge of frequent itemset can

be used to find out how an itemset is influenced by the presence of another itemset in the

corpus [9]. An itemset is frequent, if it is present in at least x% of the total transactions z

in the database D, where x is the support threshold. When the number of items included in

the database transaction is high and we are finding itemset with small minimum support, the

number of frequent itemsets found are quite large, and it makes the problem very expensive to

solve, both in time and space. Hence, the minimum support count affects the computational

cost of the higher (say kth) iteration of apriori algorithm. Thus, one can say that the cardinality

ofCk and the size ofD affect the overall computational cost. The traditional apriori algorithm

generates and tests the candidate itemset in a level-wise manner using iterative database scan

which makes the computational cost high [141]. This chapter discusses the following:

1) develop a novel clustering technique called Modified Apriori Approach, which improves

the traditional apriori approach by removing some of its limitations that save time and

space.

2) measure the performance of different traditional clustering algorithms after combining

81

82

them with association based clustering. For this purpose, Fuzzy C-means (FCM) [142],

Vector space model (VSM) [3] and k-means [27] techniques are run on the initial clusters

generated by the proposed modified apriori approach.

6.1.1 Modified Apriori Approach

This approach considers documents as itemset and keywords as transaction so that we end

up with clusters having a minimum frequency support threshold. By making the keywords

as transaction and document as itemset, we combined the support threshold idea of association

rule mining algorithm with the output like that of a clustering algorithm. The salient features of

the proposed approach in comparison with traditional apriori algorithm can be listed as follows:

i. reduces the time for accessing the transactions.

ii. avoid repeated database scan.

iii. nullifies the transactions which are no longer in use.

iv. decreases the number of candidate itemset during the candidate generation step and

hence, save the space.

6.1.2 Optimization open Traditional Apriori Algorithm for clustering

1. Apriori algorithm generates frequent candidate set by generating all possible candidate

sets and then checking which sets cross the minimum support count. Whereas the pro-

posed approach uses the following rule:

If an itemset occurs (k-1) times in the set of (k-1) frequent itemset, only then it is con-

sidered for kth frequent candidate set (since only then it has a chance to come in a ‘k’

sized frequent itemset). So, the proposed algorithm rejects number of unwanted candi-

date sets than the traditional apriori (which are generally not going to be frequent in the

next iteration).

2. Apriori counts the occurrence of an itemset even if it does not appear in any of the

frequent candidates, but the proposed approach removes that itemset from the array (ini-

83

tially a 2D-array is considered to store all itemsets and their corresponding transactions)

by setting 0 across it so that less number of checks are made for the itemset.

3. Apriori does not take into account the unnecessary computations made if the size of the

transaction is less than the size of the candidate set being generated. So, to improve upon

this, the proposed approach ignores the corresponding transactions by putting a null (an

indicator used) in the 2D-array [143].

4. All of the above statements basically remove the information which is no longer required

from the 2D-array created initially and this reduces the unnecessary comparisons in the

subsequent steps.

6.2 Methodology

6.2.1 Document pre-processing

Given a corpus P having classes C ={C1, C2, ..., Cm} of documents. All the documents are

pre-processed (discussed in Chapter 3) and then each document is represented as term vector

in the vector space over the system’s vocabulary.

6.2.2 Obtaining initial clusters and their centroids

After converting each document to their vector form, traditional and modified apriori approach

are run on the corpus P by taking minimum support as the input. The frequent sets generated

are of frequency greater than the minimum support. Finally, the modified and traditional apri-

ori approaches stop where further frequent itemsets generation is not possible depending on the

minimum support. But the modified apriori will take less time and space compared to tradi-

tional apriori approach. Each maximum frequent itemset is treated as one cluster which gives

the initial clusters. In this way, the generated frequent sets are the ones which have particular

set of keywords in common and hence are closely related. This helps in deciding the number

of clusters and also the centroids of these clusters which is simply the centroid of the respective

frequent itemsets. The details are discussed in Algorithm 6.1.

84

6.2.3 Performing traditional clustering on the centroids of the initial clusters

After generating the initial clusters by the proposed approach, next is to see how the traditional

clustering algorithms perform on these initial clusters. It is known that most of the traditional

clustering algorithms need the number of clusters to be formed as the input before the clustering

process starts. This problem is handled by generating the initial clusters either at the end of the

execution of the proposed approach or based on the requirement, stopping the process at some

stage which satisfies the minimum support. This is similar to hierarchical clustering where we

stop the clustering process at some stage and the number of clusters generated are sent as the

input to a traditional clustering technique such as k-means. Next, FCM, VSM and k-means

techniques are run on these initial clusters to generate the final clusters (FCi) (Algorithms

6.2-6.4). For VSM, the cosine-similarity between each document and the centroid of each

cluster are calculated. A document d is assigned to a cluster c, if d’s cosine-similarity score

is maximum for c compared to other clusters. This process is repeated till the centroid of each

cluster is not changed.

6.3 Experimental Analysis

6.3.1 Performance measurement of traditional and modified apriori approach

For comparison purpose, Classic4 , 20-Newsgroups and Reuters datasets are used. All the four

categories (shown in Figures 6.1-6.4) of Classic4, two categories (shown in Figures 6.5 and

6.6) of 20-Newsgroups and two categories (shown in Figures 6.7 and 6.8) of Reuters datasets

are considered for experimental work. Each category of Classic4 dataset contains over 1000

documents, but for comparing the modified apriori approach with the conventional apriori ap-

proach, both algorithms are run over CASM, CISI, MED and CRAN document sets by using

200, 400, 600, 800 and 1000 documents from each set separately. Similarly, documents of dif-

ferent size have been considered for 20-Newsgroups and Reuters datasets. The support count

used is 12 % of the number of documents of any category of a dataset. Figures 6.1 - 6.8 justify

that the proposed algorithm has a better running time than the traditional apriori algorithm. It

is understood from Figure 6.9 that even on varying the support count for the dataset (600 docu-

85

Algorithm 6.1 Modified Apriori Approach
1: Input: Term-document matrix (database T with keywords as transaction and documents

as itemset) and minimum support (min sup)
2: Output: Maximum frequent itemset
3: read the database T into a 2D-array and store the information of T in binary form in the

array with transactions as rows and itemset as columns
4: k← 1.
5: find frequent itemset, Lk from Ck, the set of all candidate itemset
6: form Ck + 1 from Lk

7: prune the frequent candidates by removing itemset from Ck whose elements do not come
atleast k-1 times in Lk

8: modify the entry in the 2D-array in memory to be zero for the itemset which is not occur-
ring in any of the candidates in Lk

9: check the size of transaction (SOT) attribute and remove transaction from 2D-array where
SOT≤ k

10: k← k+1.
11: repeat step 7-10 until Ck is empty or transaction database T is empty
12: step 5 is called the frequent itemset generation step
13: step 6 is called as the candidate itemset generation step and step 7-10 are prune steps
14: details of first two steps are described below
15: Frequent itemset generation:
16: Scan database T and count each itemset in Ck, if the count is greater than min sup, then

add that itemset to Lk

17: Candidate itemset generation:
18: for k = 1 do
19: C1 = (all itemset of length = 1)
20: end for
21: for k > 1 do
22: generate Ck from Lk−1 as follows:
23: The join step:
24: Ck = (k-2) way join of Lk−1 with itself.
25: if both a1, .., ak−2, ak−1 and a1, .., ak−2, ak are in Lk−1, then add

a1, .., ak−2, ak−1, ak to Ck

26: end for

ments of MED), the modified algorithm still outperforms the traditional apriori algorithm. The

modified apriori algorithm focuses on the limitations of the traditional apriori algorithm and

it can be seen from all the figures of different datasets that modified apriori approach outruns

the traditional apriori approach. It can also be observed from the figures that when the number

of documents increases, the difference in running time between the traditional and modified

apriori algorithm becomes significant.

86

Algorithm 6.2 Performing FCM on initial clusters

1: Input: Initial clustersCi, value of fuzziness parameterm and the document vector dinew

2: Output: Final clusters, FCi

3: centroid calculation //find cluster centroids
4: for all frequent set fi ∈ Ci do
5: ci← φ // centroid
6: k← length(fi)
7: for all document dj ∈ fi do
8: // all documents belongs to a frequent set
9: ci← ci + dj

10: end for
11: ci← ci / k
12: end for
13: // assign the documents to their respective clusters:

Final clusters FCi are generated by applying FCM algorithm (Appendix E) on the set
of document vectors dinew , using initial clusters Ci, the centroid ci and the fuzziness
parameterm

14: return FCi

Algorithm 6.3 Performing VSM on initial clusters

1: Input: Initial clusters Ci and the document vector dinew

2: Output: Final clusters FCi

3: centroid calculation //find cluster centroids
4: for all frequent set fi ∈ Ci do
5: ci← φ // centroid
6: k← length(fi)
7: for all document dj ∈ fi do
8: ci← ci + dj
9: end for

10: ci← ci / k
11: end for
12: //assign the documents to their respective clusters
13: for all di ∈ dinew do
14: for all cj ∈ Cj (i.e. centroid of each cluster) do
15: Similarity[i][j]← cosineSimilarity(di, cj)
16: end for
17: // find the maximum similarity cluster Cj for the document di

// stores the similarity between ith document and jth cluster
18: // among the clusters from 0 to j − 1
19: k← max(Similarity[i][0]...Similarity[i][j − 1]) // ∀k ∈ j
20: Ck ← di //initial clusters now updated
21: end for
22: repeat step 5 till 21 until the cluster centroids are not changed and it gives the final clusters

FCi.
23: return FCi

87

Figure 6.1: Apriori vs. Modified Apriori on CASM

Figure 6.2: Apriori vs. Modified Apriori on CISI

Figure 6.3: Apriori vs. Modified Apriori on MED

88

Figure 6.4: Apriori vs. Modified Apriori on CRAN

Figure 6.5: Apriori vs. Modified Apriori on alt

Figure 6.6: Apriori vs. Modified Apriori on soc

89

Algorithm 6.4 Performing k-means on initial clusters

1: Input: Initial clusters Ci and the document vector dinew

2: Output: Final clusters FCi

3: centroid calculation //find cluster centroids
4: for all frequent set fi ∈ Ci do
5: ci← φ // centroid
6: k← length(fi)
7: for all document dj ∈ fi do
8: ci← ci + dj
9: end for

10: ci← ci / k
11: end for
12: //assign the documents to their respective clusters
13: for all di ∈ dinew do
14: for all cj ∈ Cj (i.e. centroid of each cluster) do
15: distance[i][j] ← euclideanDistance(di, cj) // stores the distance between

ith document and jth cluster
16: end for
17: // find the minimum distance cluster Cj for the document di
18: // among the clusters from 0 to j − 1
19: k← min(distance[i][0]...distance[i][j − 1]) // ∀k ∈ j
20: Ck ← di //initial clusters now updated
21: end for
22: repeat step 5 till 21 until the cluster centroids are not changed and it gives the final clusters

FCi.
23: return FCi

Figure 6.7: Apriori vs. Modified Apriori on ship

6.3.2 Performance measurement of traditional clustering algorithms

To measure the performance of the traditional clustering algorithms (FCM, VSM and k-means)

on the initial clusters generated by the modified apriori approach, we form two separate big cor-

90

Figure 6.8: Apriori vs. Modified Apriori on crude

Figure 6.9: Support count graph for Apriori vs. Modified Apriori

pus, one for each dataset by collecting approximately 18800 and 7600 documents from all 7

categories (20 classes) of 20-Newsgroups and 8 categories (8 classes) of Reuters datasets, re-

spectively. As classic4 dataset has only 4 categories (4 classes), hence, we prepare small corpus

of different sizes of 200, 400, 600, 800 and 1000 documents collected from all 4 categories.

Now, it means that the corpus is having documents from all categories mixed together in one

place. On each corpus, we first ran our modified apriori approach and obtained the initial clus-

ters. Then other state-of-the-art clustering algorithms i.e. FCM, VSM and k-means are run

separately on these initial clusters to form the final clusters. Our modified apriori approach

generates 22 clusters for 20-Newsgroups, 10 clusters for Reuters and 4 clusters for each set of

documents of Classic4 datasets depending on the value of minimum support. From 22 clusters

91

of 20-Newsgroups, we then checked to which class out of 20 classes each cluster belonged by

computing the cosine-similarity between each document of that cluster with all the documents

of each class. A cluster Ci belongs to a class CGj iff most of the documents of CGj fall

intoCi. This process is repeated for all the obtained clusters of 20-Newsgroups. Finally, all 22

clusters are distributed among 20 classes of 20-Newsgroups based on their cosine-similarities

score so that some of the classes received more than one clusters. The same process is also

repeated for Reuters dataset, where all 10 clusters are distributed among 8 classes. But for

Classic4, one-to-one mapping is done as 4 clusters are obtained from each set and there are 4

classes. Algorithm 6.5 illustrates the complete mechanism to assign different clusters to their

respective classes. After assigning the respective clusters to their corresponding class, if any

class received more than one cluster, then we merge them into a single cluster so that each

class should have only one cluster (Clusternew). This gives number of classes equal to the

number of new clusters i.e. Clusternew, which makes the performance measurement process

of different clustering technique more simple. Next step is to measure the performance of each

Clusternew. For this, the precision and recall are calculated as follows:

precision =
a

b
, recall =

a

d
(6.1)

where, ‘a’ is the number of documents of a particular class found in it’s correspond Clusternew,

‘b’ is the number of documents in Clusternew and ‘d’ is the number of documents in that

particular class. The average performances of both datasets are calculated using the following

equations:

Averageprecision =

n∑
i=1

(pi.di)

N
(6.2)

Averagerecall =

n∑
i=1

(ri.di)

N
(6.3)

AverageF−measure =

n∑
i=1

(fi.di)

N
(6.4)

where, n represents the number of classes, fi, pi, ri, di are the F-measure, precision, recall

and the total number of documents present in ith class, respectively. N is the total number of

documents considered for clustering. Figure 6.10 shows the performance of different clustering

techniques on CISI datasets. Similarly, in Table 6.1, the performance measurement of different

92

clustering techniques on 20-Newsgroups and Reuters are shown. Results shows that FCM

outperforms the other two clustering algorithms.

Algorithm 6.5 Assigning the respective cluster(s) to the corresponding class
1: Input: Cluster Ci generated by the proposed approach andm classes (CGj) of a dataset
2: Output: Categories with their respective clusters
3: for i in 1 to k do
4: // k clusters
5: for j in 1 tom do
6: //m classes
7: count← 0
8: for all d ∈ i do
9: for all d′ ∈ j do

10: cs← cosineSimilarity(d, d′)
11: if cs = 1 then
12: count← count + 1
13: end if
14: end for
15: end for
16: a[i][j]← count
17: end for
18: maximum ← a[i][1] // let class 1 received the maximum number of documents of

ith cluster
19: for l in 2 tom do
20: if a[i][l] > maximum then
21: maximum← a[i][l]
22: n← l
23: end if
24: end for
25: CGn ← Ci∀n ∈ m // assign the ith cluster to nth class because nth class received

the maximum number of documents of ith cluster
26: end for

Table 6.1: Performance comparison of different clustering techniques

Cluster
20- Newsgroups Reuters

Precision Recall F-measure Precision Recall F-measure

k-means 72.12 74.42 73.25 61.44 65.60 63.45
VSM 72.74 76.24 74.45 66.72 64.25 65.46
FCM 79.42 77.52 78.46 66.39 69.88 68.09

93

Figure 6.10: Performance comparison on Classic4

6.4 Summary

This chapter proposes a novel clustering technique based on aprior approach to

cluster the text documents. In this technique, new modified apriori approach has been proposed

and it is compared with traditional apriori algorithm. The proposed modified apriori approach

when run to a corpus of web documents produced the same clusters that a traditional apriori

approach can. However, experimentally it has been proved that modified apriori approach is

more efficient and faster than traditional apriori approach. This is so because at each step, the

information, i.e. documents from the corpus have been removed, which is no longer required

and in turn it reduces the unnecessary comparisons. Hence, it saves a lot of time. First the

initial clusters are formed, then FCM, VSM and k-means techniques are run on it separately.

Classic4, 20-Newsgroups and Reuters datasets are used for experimental purpose. We found

that FCM gives better clusters compared to VSM and k-means. This work is further extended

where each cluster is labeled based on their content and is discussed in the next chapter.

CHAPTER 7

A HYBRID APPROACH FOR CLUSTER LABELING

7.1 Introduction

The objective of this chapter is to label the clusters (clusters generated by the

modified apriori approach as discussed in Chapter 6) of a corpus. To obtain the labels, first

the important keywords are selected from each cluster. Next, these keywords of each cluster

are sent to Wikipedia for generating the potential (candidate) labels. Using Mutual Informa-

tion (MI)-score technique, the candidate labels are ranked and the top ranked candidates are

recommended as the actual labels of a cluster. Neither do any standard benchmarks exist for

comparing different cluster labeling techniques nor do any standard evaluation mechanism ex-

ist for labeling the clusters. The uniqueness of this approach is that it is able to find out the

actual labels of a cluster within the least possible number (just top three) of suggested labels

generated by Wikipedia.

7.2 Methodology

7.2.1 Document Pre-processing

Let P be a corpus consisting of different classes C ={C1, C2, ..., Cm} of documents. Docu-

ments of different classes are pre-processed (discussed in Chapter 3) and then each document

94

95

is represented in vector form using vector space model. Then, documents of all m classes are

collected together into one place which makes the dimension of P as r × l, where r and l are

number of terms and documents, respectively.

7.2.2 Clusters Generation

After generating the term-document matrix of P , the modified apriori algorithm (discussed

in Chapter 6) is used to cluster the documents based on the minimum support count. This

generates n initial clusters. Then, FCM clustering technique (one of the techniques which

gives good performance compared to VSM and k-means as discussed in Chapter 6) is run on

these n initial clusters to obtain the n final clusters, FC = {c1, c2, ..., cn}. The dimension of

each cj(j = 1, ..., n) is r × p as shown in Table 7.1.

Table 7.1: Term-document matrix of each cluster

d1 d2 d3 ... dp
t1 t11 t12 t13 ... t1p
t2 t21 t22 t23 ... t2p
t3 t31 t32 t33 ... t3p
.
.
.
tr tr1 tr2 tr3 ... trp

7.2.3 Top Documents selection

For selecting the top documents from each cj , first the centroid (
#»

c′j) of each cj is computed as

follows:
#»

c′j =

∑p
i=1

#»

di

p
(7.1)

Then the cosine-similarity between each document
#»

di ∈ cj with
#»

c′j is calculated. Next, the

topm% (decided empirically) of documents which have highest cosine-similarity values from

each cj are selected and other documents are discarded. The purpose of selecting top docu-

ments from each cluster is to check how well these documents represent their corresponding

cluster because it has been acknowledged that the closer (having maximum similarity) the

document to the centroid of a cluster, the better it represents that cluster [9]. By discarding

96

unimportant documents, the dimension of each cj is reduced to r × s, where s < p (Table

7.2).

Table 7.2: Reduced term-document matrix of each cluster

d1 d2 d3 ... ds
t1 t11 t12 t13 ... t1s
t2 t21 t22 t23 ... t2s
t3 t31 t32 t33 ... t3s
.
.
.
tr tr1 tr2 tr3 ... trs

7.2.4 Representative Keywords Selection

After generating the reduced term-document matrix for each cluster cj , top keywords from

each cj are selected. For this, first the normalized chi-square score of all keywords of each

cluster are computed by applying Chi-Square feature selection technique on each cluster cj .

To find out the top ranked keywords of each cj , the following steps are followed :

1) Randomly select a keyword W from cj’s keyword list and then using Wordnet, prepare

a synonym-list of W.

2) Search for those keywords which are common both to the synonym-list of W and keyword-

list of cj .

3) Remove those common keywords from the keyword-list of cj and at the same time add

them to a new list called synonym-required-list of W.

4) Repeat steps 1 - 3, till the keyword-list of cj gets exhausted. At the end, synonym-

required-lists are generated, one for each of those keywords selected randomly from cj’s

keyword list.

5) Now, consider one keyword from each synonym-required-list of cj which has the highest

chi-square value in that list, and merge these keywords to a new list called important

keyword-list of cj . Finally, select top ‘k’ keywords (based on their chi-square values)

from the important keyword-list called the representative keywordsR(cj) of cj .

97

7.2.5 Generating Candidate Labels

After obtaining the top k keywords of cj , the next step is to generate the candidate labels and

for this, Wikipedia is used. First, the queries for Wikipedia are generated by using the top k

keywords of cj . The reason behind selecting Wikipedia as the external source is that it is a

better media through which one can get quality information. The following steps brief how the

candidate labels are generated using Wikipedia:

1) Given a set of top k keywords as queries q, the Wikipedia database is searched for the re-

sults. A Python module called Python Wikipediabot Framework1 (a set of tools provided

to automate the work on MediaWiki sites like Wikipedia, etc.) is used for this purpose.

2) Further, to strengthen the relative importance of keywords of the query q, q is executed

against the index of Wikipedia which is a collection of disjunctions of the top k keywords.

As a result, a collection of sorted documents Dj(q) based on their similarity score with

q is returned.

3) For each document dj ∈ Dj(q), a set of categories associated with dj and the title of

dj have been considered as the potential candidate labels for cj (represented as L(cj)).

7.2.6 Evaluating Candidate Labels

Further, to evaluate which candidate labels are better among all the candidate labels generated

by Wikipedia for a cluster cj , the following steps are used:

1) To evaluate the candidate labels generated by Wikipedia, Mutual Information (MI-Score)2

is used, which judges the candidate labels L(cj) based on their semantic relationship with

the associated documents in the cluster cj . MI-score is used because it is considered as

a good indicator of relevance between two random variables3.

2) The average point-wise mutual information (PWMI)[144] of a label l ∈ L(cj) with the

set of top keywords of cj generates the MI-scores for l ∈ L(cj). The average PWMI of l

1https://www.mediawiki.org/wiki/Manual:Pywikibot/Scripts
2http://nlp.stanford.edu/IR-book/html/htmledition/mutual-information-1.html
3T.M Cover and J.A Tomas Elements of Information Theory John Wiley & Sons, 1991

98

with the set of top keywords of cj gives the semantic distance between l and the content

of cj . Minimum distance indicates that label l is very close to cj .

3) The collections of Wikipedia are used as a data source (i.e. the proposed approach used

the text of the first ‘n’ result received after passing the query q to the Wikipedia index) for

MI-score as they are large enough to give the correct results as well as relevant enough

to the content of the cluster cj . The following equation determines the MI-score for a

label l ∈ L(cj).

MI(l,R(cj)) =
∑

i∈R(cj)

PWMI(l, i|X) * w(i) (7.2)

where R(cj) are the representative keywords (a set of top k keywords) of cj , w(i) is the

strength or weight of the top keyword, i ∈ R(cj). PWMI will be measured in an external

textual source X i.e. corpus. Measurement of PWMI between a pair of keywords is done

as follows:

PWMI(l, i|X) = log

(
prob(l,i|X)

prob(l|X)*prob(i|X)

)
(7.3)

Maximum likelihood estimation4 approximates the probability of ‘y′ (denotes a pair of

terms or a single term) in the given corpus as follows:

prob(y|X) =
No. of occurance of y in X

Total number of keywords in X
(7.4)

7.3 Experimental Analysis

The proposed algorithm is tested on 20-Newsgroups and Reuters datasets. The

accuracy of the proposed approach is measured on both datasets by using the following equa-

tion:

Accuracy =
a

b
(7.5)

where, ‘a’ represents the number of clusters whose labels are found within the top suggested

labels returned by Wikipedia and ‘b’ represents the total number of clusters considered for

labeling. The top 3 suggested labels returned by Wikipedia are considered for measuring the

accuracy on each dataset. The reason to choose only the top 3 suggested labels of Wikipedia
4https://onlinecourses.science.psu.edu/stat414/node/191

99

as the candidate labels is that we try to find out the original labels within the least possible

number of suggested labels in order to show the efficiency of the proposed approach. The MI-

score of each of the suggested labels generated by Wikipedia on both datasets are shown in an

increasing order of the label, i.e. candidate ‘Label 1’ has less MI-score than candidate ‘Label

2’ and finally candidate ‘Label 3’ has the maximum MI-score. This measures the semantic

distance between the candidate labels and the associated documents of the cluster Ci. Hence,

candidate ‘Label 1’ has minimum semantic distance and candidate ‘Label 3’ has maximum

semantic distance from the cluster Ci which indicates candidate ‘Label 1’ is very close to Ci

compared to candidate ‘Label 2’ and candidate ‘Label 3’.

7.3.1 Using 20-Newsgroups dataset

20-Newsgroups contains a certain number of documents belonging to every cluster along with

a name given to that cluster. The name of the clusters is hierarchical with ‘.’ as the level

discriminator, e.g. the name comp.graphics represents the newsgroup graphics under section

computers. The pre-processed newsgroups documents of different classes (clusters consider

here) are grouped together to form a corpus and then divided into different clusters by first

applying our earlier modified apriori approach on each cluster to generate n (here n = 22, de-

cided empirically) initial clusters, and then applying FCM technique on these n initial clusters

to obtain n final clusters. Next, the assignment of each cluster to their corresponding class is

done (same way as discussed in section 6.2.3). Then, top k (here k is set as 3) keywords based

on their chi-square values from the important keyword list are extracted from each cluster of

20-Newsgroups. The generated representative keywords are shown in Table 7.3. while Table

7.4 shows their chi-square values. For in-depth discussion, we have just explained about one

cluster (cluster 2) explicitly as follows:

As one can see that the proposed algorithm returned keywords corresponding to the leaf of the

title (i.e. leaf of ‘comp.graphics’ is ‘graphics’). The algorithm also tried to return the interme-

diate titles as can be seen in cluster 2 where both ‘comp’ and ‘graphics’ are returned for the title

‘comp.graphics’. The result of cluster 2 shows that the combination of representative keywords

gives us a more appropriate label. Figure 7.1 demonstrates some top keywords of cluster 2 and

their corresponding chi-square values, out of which, top 3 keywords known as representative

keywords of cluster 2 are selected. All the combinations of these top 3 representative keywords

100

are passed to Wikipedia and the resulting suggested labels are evaluated with MI-score. Top

3 suggested labels are recommended as the candidate labels based on their MI-score which is

good enough to label the cluster. Figure 7.2 demonstrates the semantic distance between can-

didate labels generated by Wikipedia from cluster 2. The less the semantic distance, the more

the chances of considering that candidate label as the appropriate label of the corresponding

cluster.

Table 7.5 shows the suggested labels for all the clusters of 20-Newsgroups by the proposed

approach. Table 7.6 shows the MI-Score of candidate labels respectively. Figures 7.3 and 7.4

demonstrate the chi-square values of top 3 keywords and the MI-score of top 3 suggested la-

bels of each cluster respectively. In Figure 7.3, one can see that the keyword (‘politics’) of

cluster 17 received the highest chi-square value of 0.42 followed by ‘sci’ of cluster 15 having

chi-square value of 0.406 compared to all the 20 clusters. Similarly, in Figure 7.4, ‘Label 1’

(‘Christian’) of cluster 1 received the lowest MI-value of 3.34 compared to all the 20 clusters.

Cluster by cluster analysis shows the advantages of the proposed approach. In cluster 1, due to

the closeness of words ‘christian’ and ‘religion’ in the external corpus, the corresponding la-

bels have both almost equal MI-values while label ‘atheism’ is valued above both of them as it

contains both of these words with high frequency. Results of cluster 2 suggest label ‘Computer

Graphics’ which is a semantically better label than both ‘computer’ and ‘graphics’. Results of

all the clusters except clusters 3, 4 and 5 are good. As one can see from the original labels,

clusters 3, 4 and 5 are semantically very close to each other. On top of that, they all use word

‘comp’ in high frequency rather than the full form, ‘computer’. This disambiguation produces

confusion which rates unrelated titles above the actual titles. For cluster 3, the suggested ti-

tle ‘Window’, disambiguation for Window (structure) and Window (computing) validates our

claim. This pattern is also observed when word ‘sci’ and ‘misc’ are used in place of ‘science’

and ‘miscellaneous’. These short forms are not part of the language and hence are needed to

be taken care of by some external corpus.

The representative keywords generation of our approach is both efficient and accurate as can

be seen from Table 7.3. The accuracy of our proposed approach is more than 85%, as out of 20

clusters, labels of 17 clusters are good and the remaining 3 clusters’ (cluster 3, 4 and 5) labels

are satisfactory.

101

Table 7.3: Representative keywords of 20-Newsgroups

Cluster No. Cluster Name Representative Keywords
1 alt.atheism atheism, religion, christian
2 comp.graphics comp, graphic, computer
3 comp.os.ms-windows.misc comp.os.ms-windows.misc
4 comp.sys.ibm.pc.hardware ibm, sys, comp
5 comp.sys.mac.hardware comp, sys, hardware
6 comp.windows.x comp, window, computer
7 misc.forsale forsale, misc, computer
8 rec.auto auto, car, sport
9 rec.motorcycles motorcycle, bike, car

10 rec.sport.baseball sport, baseball, comp
11 rec.sport.hockey sport, hockey, med
12 sci.crypt crypt, sci, comp
13 sci.electronics sci, electronics, computer
14 sci.med med, sci, misc
15 sci.space sci, space, computer
16 soc.religion.christian hedrick, religion, christian
17 talk.politics.guns politics, gun, auto
18 talk.politics.mideast mideast, politics, religion
19 talk.politics.misc politics, misc, religion
20 talk.religion.misc misc, religion, atheism

Figure 7.1: Top keywords of cluster 2 on 20-Newsgroups

102

Ta
bl

e
7.

4:
C

hi
-S

qu
ar

e
va

lu
es

of
re

pr
es

en
ta

tiv
e

ke
yw

or
ds

on
20

-N
ew

sg
ro

up
s

C
lu

st
er

N
o.

C
lu

st
er

N
am

e
K

ey
w

or
d

1
C

hi
-2

va
lu

e
K

ey
w

or
d

2
C

hi
-2

va
lu

e
K

ey
w

or
d

3
C

hi
-2

va
lu

e
1

al
t.

at
he

is
m

at
he

is
m

0.
05

42
re

lig
io

n
0.

00
94

ch
ri

st
ia

n
0.

00
65

2
co

m
p.

gr
ap

hi
cs

co
m

p
0.

23
92

gr
ap

hi
c

0.
22

86
co

m
pu

te
r

0.
09

17
3

co
m

p.
os

.m
s-

w
in

do
w

s.
m

is
c

w
in

do
w

0.
11

50
co

m
p

0.
11

33
m

is
c

0.
11

33
4

co
m

p.
sy

s.
ib

m
.p

c.
ha

rd
w

ar
e

ib
m

0.
23

00
sy

s
0.

23
00

co
m

p
0.

23
00

5
co

m
p.

sy
s.

m
ac

.h
ar

dw
ar

e
co

m
p

0.
21

29
sy

s
0.

21
29

ha
rd

w
ar

e
0.

21
29

6
co

m
p.

w
in

do
w

s.
x

co
m

p
0.

33
09

w
in

do
w

0.
26

81
co

m
pu

te
r

0.
09

94
7

m
is

c.
fo

rs
al

e
fo

rs
al

e
0.

26
80

m
is

c
0.

11
21

co
m

pu
te

r
0.

07
41

8
re

c.
au

to
au

to
0.

06
03

ca
r

0.
01

58
sp

or
t

0.
00

29
9

re
c.

m
ot

or
cy

cl
es

m
ot

or
cy

cl
e

0.
03

63
bi

ke
0.

00
76

ca
r

0.
00

32
10

re
c.

sp
or

t.
ba

se
ba

ll
sp

or
t

0.
04

48
ba

se
ba

ll
0.

00
54

co
m

p
0.

00
07

11
re

c.
sp

or
t.

ho
ck

ey
sp

or
t

0.
07

01
ho

ck
ey

0.
00

12
m

ed
0.

00
03

12
sc

i.
cr

yp
t

cr
yp

t
0.

27
41

sc
i

0.
27

41
co

m
p

0.
11

82
13

sc
i.

el
ec

tr
on

ic
s

sc
i

0.
29

28
el

ec
tr

on
ic

s
0.

29
28

co
m

pu
te

r
0.

04
92

14
sc

i.
m

ed
m

ed
0.

35
96

sc
i

0.
35

96
m

is
c

0.
08

83
15

sc
is

pa
ce

sc
i

0.
40

16
sp

ac
e

0.
25

90
co

m
pu

te
r

0.
06

63
16

so
c.

re
lig

io
n.

ch
ri

st
ia

n
he

dr
ic

k
0.

27
40

re
lig

io
n

0.
18

85
ch

ri
st

ia
n

0.
14

14
17

ta
lk

.p
ol

iti
cs

.g
un

s
po

lit
ic

s
0.

42
01

gu
n

0.
31

54
au

to
0.

00
43

18
ta

lk
.p

ol
iti

cs
.m

id
ea

st
m

id
ea

st
0.

20
71

po
lit

ic
s

0.
20

71
re

lig
io

n
0.

00
15

19
ta

lk
.p

ol
iti

cs
.m

is
c

po
lit

ic
s

0.
22

07
m

is
c

0.
22

07
re

lig
io

n
0.

04
13

20
ta

lk
.r

el
ig

io
n.

m
is

c
m

is
c

0.
25

51
re

lig
io

n
0.

25
15

at
he

is
m

0.
13

17

103

Figure 7.2: Suggested candidate labels and their semantic distances from cluster 2 on 20-
Newsgroups

Figure 7.3: Keyword ranking of top 3 representative keywords of each cluster on 20-
Newsgroups

104

Table 7.5: Suggested candidate labels of 20-Newsgroups

Cluster Name Suggested Label 1 Suggested Label 2 Suggested Label 3
alt. atheism Christian Religion Atheism

comp. graphics Computer Graphics Computer Graphics
comp. os. ms-windows. misc Window OpenBSD DOS
comp. sys. ibm. pc. hardware IBM DOS Comp

comp. sys. mac. hardware DOS Comp Unix
comp. windows. x Computer DOS Window

misc. forsale Computer Usenet Misc
rec. autos Auto C.a.R. Car

rec. motorcycles C.a.R. Car MotorCycle
rec. sport. baseball Baseball Sport Comp
rec. sport. hockey Sport Hockey Injury

sci. crypt Comp SCI Crypt
sci. electronics Computer Computing Electronics

sci. med SCI Misc FAQ
sci space Computer SPACE Space

soc. religion. christian Christian Religion Christianity
talk. politics. guns Auto Gun Politics

talk. politics. mideast Religion Politics Islam
talk. politics. misc Religion Politics Misc
talk. religion. misc Religion Atheism Usenet

Figure 7.4: MI-score of each cluster on 20-Newsgroups

105

Ta
bl

e
7.

6:
M

I-
sc

or
e

fo
rs

ug
ge

st
ed

ca
nd

id
at

e
la

be
ls

on
20

-N
ew

sg
ro

up
s

C
lu

st
er

N
o.

C
lu

st
er

N
am

e
L

ab
el

1
M

I-
V

al
ue

L
ab

el
2

M
I-

V
al

ue
L

ab
el

3
M

I-
V

al
ue

1
al

t.
at

he
is

m
C

hr
is

tia
n

3.
34

3
R

el
ig

io
n

3.
38

1
A

th
ei

sm
3.

54
5

2
co

m
p.

gr
ap

hi
cs

C
om

pu
te

r
6.

58
6

G
ra

ph
ic

s
6.

90
8

C
om

p
7.

38
6

3
co

m
p.

os
.m

s-
w

in
do

w
s.

m
is

c
W

in
do

w
6.

75
2

O
pe

nB
SD

6.
86

4
D

O
S

6.
93

3
4

co
m

p.
sy

s.
ib

m
.p

c.
ha

rd
w

ar
e

IB
M

6.
51

9
D

O
S

6.
86

9
C

om
p

7.
18

8
5

co
m

p.
sy

s.
m

ac
.h

ar
dw

ar
e

D
O

S
6.

78
3

C
om

p
7.

10
2

U
ni

x
7.

12
1

6
co

m
p.

w
in

do
w

s.
x

C
om

pu
te

r
6.

38
5

D
O

S
6.

61
1

W
in

do
w

6.
71

9
7

m
is

c.
fo

rs
al

e
C

om
pu

te
r

9.
45

9
U

se
ne

t
9.

51
3

M
is

c
9.

54
7

8
re

c.
au

to
A

ut
o

5.
00

6
C

ar
5.

08
4

Sp
or

t
5.

18
0

9
re

c.
m

ot
or

cy
cl

es
C

ar
4.

89
5

M
ot

or
C

yc
le

5.
16

7
M

ot
or

cy
cl

e
5.

16
7

10
re

c.
sp

or
t.

ba
se

ba
ll

Sp
or

t
4.

56
5

B
as

eb
al

l
4.

58
4

C
om

p
4.

72
0

11
re

c.
sp

or
t.

ho
ck

ey
Sp

or
t

4.
70

8
H

oc
ke

y
4.

85
2

In
ju

ry
6.

31
5

12
sc

i.
cr

yp
t

C
om

p
8.

46
6

SC
I

8.
99

2
C

ry
pt

9.
08

9
13

sc
i.

el
ec

tr
on

ic
s

C
om

pu
te

r
7.

73
1

C
om

pu
tin

g
7.

92
4

E
le

ct
ro

ni
cs

8.
22

1
14

sc
i.

m
ed

SC
I

9.
01

2
M

is
c

9.
03

2
FA

Q
9.

46
8

15
sc

is
pa

ce
C

om
pu

te
r

7.
39

4
SP

A
C

E
7.

66
1

Sp
ac

e
7.

66
1

16
so

c.
re

lig
io

n.
ch

ri
st

ia
n

C
hr

is
tia

n
8.

84
5

R
el

ig
io

n
8.

86
6

C
hr

is
tia

ni
ty

8.
90

2
17

ta
lk

.p
ol

iti
cs

.g
un

s
A

ut
o

7.
78

5
G

un
8.

10
1

Po
lit

ic
s

8.
25

4
18

ta
lk

.p
ol

iti
cs

.m
id

ea
st

R
el

ig
io

n
8.

55
7

Po
lit

ic
s

8.
61

6
Is

la
m

8.
74

8
19

ta
lk

.p
ol

iti
cs

.m
is

c
R

el
ig

io
n

7.
42

4
Po

lit
ic

s
7.

55
8

M
is

c
8.

08
9

20
ta

lk
.r

el
ig

io
n.

m
is

c
R

el
ig

io
n

7.
53

3
A

th
ei

sm
7.

86
3

U
se

ne
t

8.
04

6

106

7.3.2 Using Reuters dataset

The pre-processed documents of different classes of Reuters dataset are divided into different

clusters by first applying the earlier modified apriori approach on each cluster to generate n

(here n = 10, decided empirically) initial clusters and then applying FCM technique on these n

initial clusters to obtain the n final clusters. Next, assignments of all 8 clusters to their corre-

sponding classes are done (discussed in Chapter 6). The top 3 representative keywords of each

cluster of Reuters dataset which are generated by using the proposed feature selection technique

are shown in the Table 7.7. Table 7.8 shows the chi-square values of these 3 keywords based

on which they have been selected from a cluster (also known as the representative keywords).

After sending these top keywords of each cluster to Wikipedia, the suggested labels generated

by Wikipedia and their MI-score are shown in Tables 7.9 and 7.10 respectively. Figures 7.5 and

7.6 demonstrate the chi-square values of top 3 top keywords and MI-Score of 3 candidate labels

respectively. One can see that in Figure 7.5, the keyword (‘pct’) of cluster 5 has the highest

chi-square value of 0.294 compared to all 8 clusters. Similarly, ‘Label 1’ (‘bank’) of cluster 6

in Figure 7.6 received the lowest MI-value of 6.36 among all the 8 clusters. From Table 7.10, it

has also been observed that except clusters 1 and 3, the remaining clusters’ label either directly

match with the suggested labels or are semantically similar to them. Out of eight clusters, six

clusters’ labels are matching with the original labels and another two clusters’ (clusters 1 and

3) labels are satisfactory. If we go deeper in accepting the suggested labels from Wikipedia,

that is probably ‘Label 4’ or beyond some labels of it, then it may give the exact original label

for clusters 1 and 3. This shows that the proposed approach’s accuracy is more than 75%.

Table 7.7: Representative keywords of Reuters

Cluster No. Cluster Name Representative Keywords
1 acq dlrs, company, mln
2 crude barrel, oil, dlrs
3 earn sh, rct, mln
4 grain grain, pct, trade
5 interest pct, bank, rate
6 money-fx bank, pct, rate
7 ship port, ship, pct
8 trade reuter, trade, lrs

107

Table 7.8: Chi-square values of representative keywords on Reuters

Cluster No. Cluster Keyword 1 Chi-2 value Keyword 2 Chi-2 value Keyword 3 Chi-2 value
1 acq dlrs 0.2027 company 0.1837 mln 0.1764
2 crude barrel 0.1727 oil 0.1521 dlrs 0.1413
3 earn sh 0.2065 rct 0.1826 mln 0.1737
4 Grain grain 0.2284 pct 0.0670 trade 0.0352
5 interest pct 0.2940 bank 0.2734 rate 0.2664
6 money-fx bank 0.2484 pct 0.1154 rate 0.0868
7 ship port 0.1371 ship 0.1037 pct 0.0947
8 trade reuter 0.1810 trade 0.1162 lrs 0.0967

Table 7.9: Suggested candidate labels on Reuters

Cluster Name Suggested Label 1 Suggested Label 2 Suggested Label 3
acq company dlrs railway company

crude iron oil barrel
earn cts hr botany
grain trade grain glencore

interest bank rate hsbc
money-fx bank rate hsbc

ships ship port pct
trade iron trade germany

Table 7.10: MI-score for suggested candidate labels on Reuters

Cluster No. Cluster Name Label 1 MI-Value Label 2 MI-Value Label 3 MI-Value
1 acq company dlrs 8.448 railway 8.520 company 15.249
2 crude iron 8.233 oil 8.241 barrel 8.297
3 earn cts 7.591 hr 8.307 botany 8.415
4 grain trade 6.925 grain 6.964 glencore 7.517
5 interest bank 7.478 rate 7.686 hsbc 7.860
6 money-fx bank 6.369 rate 6.607 hsbc 6.723
7 ship ship 6.785 port 6.893 pct 6.912
8 trade iron 8.991 trade 9.029 germany 9.043

7.4 Summary

This chapter proposed a cluster labeling technique which is the extension of the

work discussed in Chapter 6. Using a feature selection technique, first top k keywords known

as representative keywords are selected from each cluster which are later sent to Wikipedia for

getting candidate labels. The candidate labels generated from Wikipedia are evaluated using

MI-score. The approach generates the actual labels by just considering the top-3 candidate

labels of Wikipedia. For experimental work, 20-Newsgroups and Reuters datasets are consid-

ered. The experimental results illustrate the accuracy of the proposed approach which is more

108

Figure 7.5: Top 3 representative keywords on Reuters

Figure 7.6: MI-score of each cluster runs on Reuters

than 85% and 75% by generating good labels (that match with the actual labels) for most of

the clusters of 20-Newsgroups and Reuters datasets, respectively. This justifies the efficiency

of the proposed approach.

CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

Information retrieval is the activity of obtaining information resources relevant

to an information need from a collection of information resources. Deep learning approaches

which have taken the machine learning community by storm have a high impact on IR. It

has been successfully applied for image processing, speech recognition and NLP. The main

advantage of deep learning over conventional approaches is that it is completely data driven

with stacked layers of neural networks progressively “learning” the data with increasing levels

of abstraction, without the necessity of manually hand-coded features. In the context of NLP,

word embedding is the starting point of transforming a categorical feature, e.g. a word from a

vocabulary, into a continuous representation of a real-valued vector in the Cartesian space of

‘p’ dimensions.

This thesis primarily focused on how deep learning can be useful for text data and

some other aspects of IR. For this purpose, ML-ELM is used for text classification and the

feature space of ML-ELM has been tested extensively for clustering the text data. The work is

carried out by initially analyzing and comparing the performance of SVM, ELM and ML-ELM

classifiers to demonstrate the potential of the ELM (for accuracy) and ML-ELM (both accu-

racy and F-measure) as a highly successful and suitable technique for text classification. It is

also observed from the experimental results that ML-ELM can outperform other existing clas-

sifiers. Additionally, the results can serve as complementary knowledge to further strengthen

the understanding of the essential relationship between SVM, ELM and ML-ELM. Empirical

results show that ML-ELM outperformed the traditional classifiers in the majority of cases, and

109

110

achieved the best performance overall for both datasets. The experimental results also indicate

the high suitability and effectiveness of ELMs in this field as well.

After testing ML-ELM on different benchmark datasets using different traditional

feature selection techniques, the interest has been taken to develop two novel feature selection

techniques (KWFS and CCSS) on which the performance of ML-ELM is tested. In KWFS,

initially, each cluster is divided into k sub-clusters using k-means algorithm. Then, with the

help of Wordnet and cosine-similarity, a reduced feature vector is generated for the entire cor-

pus. For text classification, ELM and ML-ELM classifiers are used. This technique is tested

on 20-Newsgroups and DMOZ datasets and the results show the importance of ML-ELM in

the field of text classification. In the second feature selection technique (CCSS), three im-

portant parameters (cohesion, separation and silhouette coefficient) are combined to generate

a reduced feature vector. Multilayer ELM as the classifier has been used for classifying the

text document and its importance also has been extensively measured. It is evident from all

the experimental results that the performance of Multilayer ELM outperforms the other well

known classifiers. The encouraging results of two proposed techniques show the stability and

effectiveness of Multilayer ELM compared to different progressive classifiers in the domain of

text classification. This justifies the stability, efficiency and effectiveness of deep learning.

Combining the ELM and Multilayer ELM feature space with other traditional

classifiers will further reinforce the classification results. Similarly, the feature space of ELM

and Multilayer ELM can also be used for the clustering process, as the features became more

simple and linearly separable by representing them in an extended space. This may outperform

the clustering process done in TF-IDF vector space. For this propose, the feature space of

ML-ELM is used for semi-supervised clustering using seeded-kMeans algorithm. From the

experimental results on Classic3 and Reuters datasets, following points are observed:

• results using ELM feature space always outperform the results of without using ELM

feature space (i.e. TF-IDF vector space).

• Seeded-kMeans performs very well compared to kMeans in all aspects regardless of

the parameters set (i.e. number of clusters to be formed, % of labels to be considered

in seeded-kMeans). This demonstrates the superiority of the seeded-kMeans clustering

technique over the traditional one even if very few labels (only 10 % of the labels are

considered) are provided.

111

• results of purity and entropy are close in ML-ELM compressed or equal dimension space

(L ≤ n) whereas it is better in extended feature space (L > n) on both datasets.

• It is also observed that after a certain stage (i.e. threshold point) in extended space, the

performance of the clustering process remains unchanged (i.e. further increasing L

compared to n has no effect). This may be due to the excessive sparse representation of

the features which is not included in the results.

Next, some other important aspects of IR has been discussed by proposing a novel

clustering technique based on aprior approach to cluster the text documents. In this technique, a

new modified apriori approach has been proposed and it is compared with the traditional apriori

algorithm. The proposed modified apriori approach when run on a corpus of web documents

produced the same clusters that a traditional apriori approach could. However, experimentally

it has been proved that modified apriori approach is more efficient and faster than the traditional

apriori approach. This is so because at each step the documents from the corpus are removed,

which is no longer required and in turn it reduces the unnecessary comparisons. Hence, it

saves a lot of time. Classic4, 20-Newsgroups and Reuters datasets are used for experimental

purposes. It is found that FCM gives better clusters compared to VSM and k-means.

In order to label the clusters, a novel cluster labeling technique is developed. Us-

ing a feature selection technique, first top-k keywords known as representative keywords are

selected from each cluster which are later sent to Wikipedia for getting candidate labels. The

candidate labels generated from Wikipedia are evaluated using MI-score. The approach gen-

erates the actual labels by just considering the top-3 candidate labels of Wikipedia. For exper-

imental work, 20-Newsgroups and Reuters datasets are considered. The experimental results

illustrate the accuracy of the proposed approach which is more than 85% and 75% by generat-

ing good labels (that match with the actual labels) for most of the clusters of 20-Newsgroups

and Reuters datasets, respectively. This justifies the efficiency of the proposed approach.

Although Multilayer ELM performs well, but still there are some shortcomings

which need more attention and can be added to the future work are:

• Determining activation function and the number of nodes for each hidden layer.

• Similarly in ELM, the behavior and a correct number of hidden units is still debatable.

• Also, if one wants to deeply understand the functionality of ELM and Multilayer ELM

112

by considering them as an approximation of infinite network, then the variance of hidden

layer weights is still an open question.

Also, the feature space of ELM and ML-ELM can be used for text classification.

Similarly, in cluster labeling, separation of terms into categories of discriminative, short and

common terms are explicitly required. Other enhancements like metadata associated with each

document apart from the title of the documents can also be used as potential labels. As our

approach successfully encompasses all the important milestones needed for automatically pro-

viding a label to each cluster of documents, all the steps can be coupled in a single script, which

can serve as an important software tool to generate the label for any cluster.

APPENDIX A

DATASETS

1. 20-Newsgroups Dataset is a standard machine learning dataset and it has 11293

training documents and 7528 test documents classified into 20 classes. All these

20 classes are divided into group of 7 categories such as ’Alt’, ’Computer’,

’misc’, ’rec’, ’sci’, ’soc’ and ’talk’. Table ?? shows the specification details of

20-Newsgroups dataset.

2. Classic4 Dataset is a well known benchmark dataset in text mining. It has 4285

training documents and 2839 test documents classified into 4 categories such as

cacm, cisi, cran, med, having 3204, 1460, 1400 and 1033 documents, respec-

tively. Table ?? shows the specification details of Classic4 dataset.

3. Reuters-21578 R8 Dataset is a widely used text mining dataset. It has 5485

training documents and 2189 testing documents classified into 8 classes. Table

?? shows the specification details of Reuters dataset.

4. WebKB Dataset is a widespread text mining dataset in which the web pages are

collected from four different college websites. It has 2803 training documents

and 1396 test documents classified into four classes. Table ?? shows the specifi-

cation details of WebKB dataset.

5. DMOZ Dataset is an open directory project consisting of 14 categories of web

pages. The categories are namely “Arts”, “Business”, “Computers”, “Games”,

“Health”, “Home”, “News”, “Recreation”, “Reference”, “Regional”, , “Science”,

117

118

Table A.1: Specification of 20-Newsgroups Dataset

Class Train
documents

Test
documents

Total
number of
documents

alt.atheism 480 319 799
comp.graphics 584 389 973
comp.os.ms-

windows.misc
572 394 966

comp.sys.ibm.pc.hardware 590 392 982
comp.sys.mac.hardware 578 385 963

comp.windows.x 593 392 985
misc.forsale 585 390 975

rec.autos 594 395 989
rec.motorcycles 598 398 996

rec.sport.baseball 597 397 994
rec.sport.hockey 600 399 999

sci.crypt 595 396 991
sci.electronics 591 393 984

sci.med 594 396 990
sci.space 593 394 987

soc.religion.christian 598 398 996
talk.politics.guns 545 364 909

talk.politics.mideast 564 376 940
talk.politics.misc 465 310 775
talk.religion.misc 377 251 628

Total 11293 7528 18821

Table A.2: Specification of Classic4 Dataset

Class Train
documents

Test
documents

Total
number of
documents

casm 1922 1282 3204
cisi 876 584 1460
cran 840 560 1400
med 620 413 1033
Total 4285 2839 7097

“Shopping”, “Society”, “Sports”. Table ?? shows the specification details of

DMOZ dataset.

119

Table A.3: Specification of Reuters R8 Dataset

Class Train
documents

Test
documents

Total
number of
documents

acq 1596 696 2292
crude 253 121 374
earn 2840 1083 3923
grain 41 10 51

interest 190 81 271
money-fx 206 87 293

ship 108 36 144
trade 251 75 326
Total 5485 2189 7674

Table A.4: Specification of WebKB Dataset

Class Train
documents

Test
documents

Total
number of
documents

project 336 168 504
course 620 310 930
faculty 750 374 1124
student 1097 544 1641
Total 2803 1396 4199

Table A.5: Specification of DMOZ Dataset

Class Train
documents

Test
documents

Total
number of
documents

Arts 1745 1396 3141
Business 4230 3384 7614

Computers 1868 1494 3362
Games 7196 5757 12953
Health 1864 1491 3355
Homes 1756 1405 3161
News 1880 1504 3384

Recreation 1762 1410 3172
Reference 1626 1301 2927
Regional 1634 1307 2941
Science 1737 1390 3127

Shopping 7761 6209 13970
Society 1881 1505 3386
Sports 1894 1515 3409
Total 38834 31068 69902

APPENDIX B

SUPPORT VECTOR MACHINE

In machine learning, support vector machines (SVMs, also support vector networks)

are supervised learning models with associated learning algorithms that analyze data

and recognize patterns, used for classification analysis. Given a set of training exam-

ples, each marked as belonging to one of the two categories, an SVM training algo-

rithm builds a model that assigns new examples into one category or the other, making

it a non-probabilistic binary linear classifier. In addition to performing linear classifi-

cation, SVMs can efficiently perform a non-linear classification using what is called

the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces.

Formally, given a set of training data (xi, ti), i = 1, ..., N , where xi ∈ Rd and

ti ∈ {1, 1}, due to the nonlinear separability of these training data in the input space,

in most cases, one can map the training data xi from the input space to a feature space

Z through a nonlinear mapping φ : xi → φ(xi). The distance between two different

classes in the feature space Z is (2/‖ w ‖). To maximize the separating margin and to

minimize the training errors, ξi, is equivalent to

Minimize : LPSV M
=

1

2
‖ w ‖2 +C

N∑
i=1

ξi (B.1)

subject to : ti(w.φ(xi) + b) ≥ (1− ξi), ξi ≥ 0, i = 1, ..., N (B.2)

where, C is a user-specified parameter and provides a trade off between the distance

of the separating margin and the training error. Based on the Karush-Kuhn-Tucker

120

121

(KKT) theorem [145], to train such SVM is equivalent to solving the following dual

optimization problem:

LDSV M
=

1

2

N∑
i=1

N∑
j=1

titjαiαjφ(xi).φ(xj)−
N∑
i=1

αi (B.3)

subject to :
N∑
i=1

tiαi = 0, 0 ≤ αi ≤ C (B.4)

where each Lagrange multiplier αi corresponds to a training sample (xi, ti). Vectors

x′is for which ti(w.φ(xi) + b) = 1 are termed support vectors [146]. Kernel func-

tionsK(u, v) = φ(u).φ(v) are usually used in the implementation of SVM learning

algorithm. In this case, we have

Minimize : LDSV M
= 1/2

N∑
i=1

N∑
j=1

titjαiαjk(xi, xj)−
N∑
i=1

αi (B.5)

subject to :
N∑
i=1

tiαi = 0, 0 ≤ αi ≤ C (B.6)

The SVM kernel function K(u, v) needs to satisfy Mercer’s condition [146]. The

decision function of SVM is

f(x) = sign

(
Ns∑
s=1

αstsK(x, xs) + b

)
(B.7)

where Ns is the number of support vectors x′ss. Although above we have focused on

SVMs for two-class classification, however this can easily be extended to a k-class

classification by constructing ‘k’ two-class classifiers. In simple words, the geometri-

cal interpretation of support vector classification (SVC) is that the algorithm searches

for the optimal separating surface, i.e. the hyperplane that is, in a sense, equidistant

from the two classes.

APPENDIX C

EXTREME LEARNING MACHINE

Extreme Learning Machine(ELM), a classification technique proposed by Huang et

al. [24] is a combination of Single Layer feed-forward neural networks(SLFNs) and

Support Vector Machine [147]. Neural networks and SVM are two state-of-the-art

machine learning techniques. Despite of their superiority, they have the following lim-

itations.

Limitations of Neural Networks:

• rate of learning is very slow compared to their expected rate

• high level training is required

• computationally expensive as it needs more resources

• several training cycles are required to obtain an optimal structure of the network

• the results of training complexity depend on the initialization as the error function

is not convex

• they are merely the approximation of a required solution as errors in them are

much expected

• black-box in nature

• proneness to over fitting

122

123

Limitations of SVM:

• algorithmic complexity is very high

• training time for standard SVM is O(n3) and space complexity is O(n2), where

n is the training set size

• running time both in training and testing phase is slow

• unstandardized probabilities of class membership

• handling multi-class classification is computationally expensive

• difficult to interpret the parameters for a solved model

• unable to handle non linear separable input data

• sensitive to noisy data

• lack of transparency of results

Initially ELM was SLFNs and later it extended to the generalized SLFNs, [66] where

the hidden layer does not require tuning, nor has the need to be neuron alike, [137].

ELM has potential to become a good classifier over the other traditional classifiers is

due to the following reasons:

� adjustment of input weights and hidden layer biases which consumes more time

are not required here as they are assigned randomly

� neither hidden layer require to be tuning nor to be neuron alike

� easy to implement and very fast learning speed

� can be able to handle a large volume of data

� no back propagation and no over fitting

� gives very good performance with less human intervention

� avoids local minimization

124

� parallelization of computation

� produces one optimal solution with almost no errors

ELM as a Model:

For N arbitrary distinct samples (xi, yi), where xi = [xi1, ..., xin]
T ∈ Rn and

yi = [yi1, ..., yim]T ∈ Rm, such that (xi, yi) ∈ Rn×Rm where (i = 1, 2, ..., N),

along with L hidden nodes, and an activation function g(x). The output function of

ELM for a given input x is:

gL(xj) =
L∑

i=1

βig(wi · xj + bi) = yj, j = 1, ..., N (C.1)

where,

• (wi, bi), i = 1, ..., L are the randomly generated hidden node parameters such

thatwi = [wi1, wi2...win]
T is the weight vector connecting the ith hidden node

to n input nodes and bi is the ith hidden node bias.

• β = [β1, ..., βL]
T is the weight vector between the ith hidden node and the out-

put nodes.

• g(x) = [g1(x), ..., gL(x)] is the output (row) vector of the hidden layer with

respect to the input x which maps the n-dimensional input space to L-dimensional

feature space, H (called ELM feature space, also known as hidden layer output

matrix).

Compact format of equation B.1 can be written as follows:

Hβ = Y (C.2)

where

125

H =



g(w1 · x1 + b1) ... g(wL · x1 + bL)

g(w1 · x2 + b1) ... g(wL · x2 + bL)

.

.

.

g(w1 · xN + b1) ... g(wL · xN + bL)


N×L

(C.3)

β =



β11 ... β1m

β21 ... β2m

.

.

.

βL1 ... βLm


L×m

Y =



y11 ... y1m

y21 ... y2m

.

.

.

yN1 ... yNm


N×m

(C.4)

The ith column of H is the ith hidden node output w.r.t inputs x1, x2, ..., xN . Ac-

cording to Huang [148], as long as the number of hidden nodes is large enough, the

parameters of the network do not all need to adjust. ELM tends to reach not only the

smallest norm of output weights but also the smallest training error(similar concept in

SVM) and can be represented as follows:

minimize : ‖ Hβ − Y ‖2 and ‖ β ‖ (C.5)

The minimal norm least square solution of the above linear system is given by:

β = H+Y (C.6)

whereH+ is the Moore-Penrose [149] generalized inverse of matrix H.

Figure B.1 shows the system diagram of ELM.

Conclusion of ELM Algorithm:

In conclusion, using ELM to obtain the output weights β can be divided into the three

following steps:

126

Figure C.1: Architecture of ELM

1. Randomly select numerical values between 0 and 1 to set input weights wi and

biases of the hidden layer bi, (i = 1, ..., L)

2. Calculate the hidden layer output matrixH

3. Calculate the output weight vector β as follows:

β = H+Y

APPENDIX D

MULTILAYER EXTREME LEARNING MACHINE

Multi-layer ELM (ML-ELM) is a machine learning technique of artificial neural net-

works which uses deep learning(a multi-layer perceptron) and ELM extensively. Deep

learning was first proposed by Hinton et el. [150] who in their work used deep structure

of multi-layer auto encoder and establish a multilayer neural network on the unsuper-

vised data. In their proposed method, they first used an unsupervised training to obtain

the parameters in each layer. Next, the network is fine tuned by supervised learning.

Hinton [151] who proposed the deep belief network can outperforms the traditional

multi-layer neural network, SVMs, SLFNs but has slow learning speed. Kasun et

al. [152] first proposed the multi-layer form of ELM known as ML-ELM in which

unsupervised learning is performed from layer to layer and it does not require any

fine tuning and hence does not need to spend a long time on the network training. It

has a better or comparable performance in comparison with any state-of-the-art deep

networks. Cambria et al. [129] proposed a multi-layer implementation of ELM that

performs layer by layer unsupervised learning in a manner that resembles deep net-

works and has a better or comparable performance to deep networks for the task of

image recognition. We have applied a similar technique to ELM for the purpose of

text classification and have found improved performance over conventional classifiers.

Figure C.1 shows how ML-ELM combines both ELM-AE and ELM together.

127

128

ELM-AE

Autoencoder is an unsupervised neural network. The outputs and inputs of the autoen-

coder are same. Like ELM, ELM-AE has ‘n′ input layer nodes, single hidden layer of

‘L′ nodes and ‘n′ output layer nodes. In spite of many resemblances between these

two, there are two major differences exist between them which are as follows:

i. ELM is a supervised neural network and the output of ELM is a class label while

ELM-AE is a unsupervised one and it’s output is same as input.

ii. Input weights and biases of the hidden layer are random in case of ELM, but they

are orthogonal in ELM-AE.

Depending on the number of hidden layer nodes, the ELM-AE can be divided into the

following three categories.

i) Compressed representation(n > L):

In compressed representation, features of training dataset needs to be repre-

sented from a higher(or sparse) dimensional input signal space to a lower(or

compressed) dimensional feature space.

ii) Equal dimension representation(n = L):

In this representation of features, the dimension of input signal space and feature

space need to be equal.

iii) Sparse representation(n < L):

It is just the reverse of compressed representation where features of training

dataset needs to be represented from a lower dimensional input signal space to a

higher(or sparse) dimensional feature space.

The performance of machine learning algorithms very much depend on

how well a dataset features are engineered, since it determines how well the most

important aspects of the data are captured and represented. Similar to the way deep

129

Figure D.1: Multi-Layer ELM and ELM-Autoencoder

networks which are based on restricted Boltzmann machines and auto encoders, use

the features engineered by them to train the multi-layer network, the ELM multi-layer

implementation also stacks on top of ELM auto encoders which represent the features

as singular values, based on which the layer by layer unsupervised learning is carried

out. The ML-ELM algorithm achieves similar performance as compared to deep net-

works but is significantly faster as it does not have to undergo iterative tuning. The

ELM-AE, just like regular ELMs is a good universal approximator, and its main aim

is to represent the input features in a meaningful way by transforming the input data to

a N dimensional feature space of the hidden nodes. Thus the resulting representation

is either a compressed, equal or sparse representation, depending on whether the input

features are mapped to a lower, equal or higher dimensional feature space than their

own. As we are aware that in an ELM network for N training examples (xj, yj) and

L hidden nodes we have :

gL(xj) =
L∑

i=1

βigi(xj ,wi, bi) = yj , j = 1, ..., N (D.1)

where (wi, bi), i = 1, ..., L are the randomly generated hidden node parameters and

130

H is the hidden layer output matrix. The output weights β which map the hidden node

feature space to the that of the output nodes, can be computed using Equation C.4,C.5

or E.1 depending on the number of training samples greater than, equal to, or less than

the hidden layer nodes and this is different than the computation of β in case of ELM.

The ELM-AE works in a similar manner like a regular ELM as shown above, except

for a few modifications in order to perform unsupervised learning:

1) For each of the hidden layers, the output data is taken to be the input data itself.

Thus, for each input data x:

y = x (D.2)

2) The random hidden node weights and biases are taken to be orthogonal, which

tends to improve the ELMs generalization performance. Thus the input data is

mapped to the higher, lower or equal dimensional space of hidden nodes through

the orthogonal hidden weightsw = [w1, w2, ..., wL] and the orthogonal hidden

biases b = [b1, b2, ..., bL] using the following equations:

h = g(w · x+ b)

wTw = I, bTb = 1
(D.3)

3) While calculating the output weights β, since in the case of ELM-AE, the output

data is equal to the input data (y = x), the output weight β is responsible for

learning the transformation from the hidden layer feature space to input data, and

is given by:

i. if n > L(i.e number of input layer nodes is more than the hidden layer

nodes) then

β =

(
I

λ
+HTH

)−1

HTX (D.4)

ii. ifn = L(i.e number of input layer nodes is equal to the hidden layer nodes)

then

β = H−1X (D.5)

iii. if n < L(i.e number of input layer nodes is less than the hidden layer

131

nodes) then

β = HT (
I

C
+HHT)

−1

X (D.6)

ML-ELM makes use of ELM-AE to train the parameters in each layer. In other words,

the hidden layer weights of ML-ELM are initialized by ELM-AE from layer to layer

using unsupervised learning, and ML-ELM hidden layer activation functions can be

either linear or non-linear piecewise. All output weights are determined analytically.

The output of the ith hidden layer of ML-ELM can be obtained from the output of

(i-1)th hidden layer and the output weight of βi of the ith hidden layer. The output

weight of βi of the ith hidden layer is obtained layer wise from the ELM-AE, and its

transpose. ML-ELM with ‘L′ hidden nodes can be represented as

Hn = g((βn)THn-1) (D.7)

For n = 0, the input layer X can be considered as the 0th hidden layer. The trans-

formations of the data from the feature space of one layer to the next, and so on are

carried out as shown in Equation E.2, until reach the last layer before the output layer

y. The final output matrix y can be obtained by computing the results between the last

hidden layer and the output layer using the regularized least squares technique [130].

APPENDIX E

TRADITIONAL FEATURE SELECTION

TECHNIQUES

i. Chi-Square

Chi-Square (χ) [9] with T number of training samples which compares the ex-

pected data with the observed data based on a specific hypothesis and can be

defined as follows:

χ2(t, c) =
T × (ps− qr)

(p+ r)× (q + s)× (p+ q)× (r + s)
(E.1)

where, t is a term, c is a class, p is the no. of true positive cases , q is the no. of

false negative cases, r is the no. of false positive and s is the no. of true negative

cases, respectively.

ii. Bi-normal separation

Bi-normal separation (BNS) can be considered a statistical modification of the

accuracy selection method. According to Forman [17], BNS of a term t in a

class ci can be defined as:

BNS(t, ci) =
∣∣∣φ−1

(nit

ni

)
− φ−1

(nit

ni

)∣∣∣ (E.2)

where, φ and φ−1 are the standard normal distribution and its corresponding

inverse, respectively,

132

133

ni: no. of documents ∈ ci,

ni: no. of documents /∈ ci,

nit: no. of documents ∈ ci having the term t and

nit: no. of documents /∈ ci having the term t.

iii. Information Gain

Introduced by Yang and Pedersen [153], Information Gain (IG) is one of the

most popular feature selection technique very frequently used in the domain of

machine learning. IG of a term t measures how much entropy decreases when

the term is given (i.e. present in the class c) rather than not given (i.e. not present

in the class c). It can be defined by the following equation:

IG(t) =
∑

c∈ci,!ci

∑
t∈ti,!ti

P (t, c)log
P (t, c)

P (t)P (c)
(E.3)

iv. Gini Index

Gini index (GI) which is as an improved version of an attribute selection algo-

rithm, is a global feature selection technique used to classify the text data [58].

The following equation describes to find the GI of a term t in the class Ci.

GI (t) =
m∑
i=1

p(t|Ci)
2p(Ci|t)2 (E.4)

where m is the number of classes.

APPENDIX F

FUZZY C-MEANS

Fuzzy C-Means (FCM) algorithm [142] tries to distribute a finite collection of n ob-

jects into c clusters. It returns a list of c cluster centroids along with a matrix which

shows the degree of membership of each object to different clusters. It aims to mini-

mizes the following function:

Tm =
n∑

i=1

c∑
j=1

vmij ||dij||2

where, distance dij = xi − cj , m (generally set to 2) is the fuzzy coefficient, cj is

the centroid(vector) of cluster j, xi is the ith object and vij ∈ range [0, 1] is the degree

of membership of xi with respect to cj subject to the following conditions:

c∑
j=1

vji = 1, i = 1, 2, ..., n and 0 <
n∑

i=1

vij < n, j = 1, 2, ..., c

One can iteratively find the values of cj and vij updated with each iteration by using

the following equations.

cj =

∑n
i=1 v

m
ij − xi∑n

i=1 v
m
ij

(F.1)

vij =
1∑c

k=1(
||dij ||
||xi−ck||

)
2

m−1

(F.2)

134

APPENDIX G

CLUSTER EVALUATION

From the above discussion, it is understood that since there is a number of different

types of clusters and each clustering algorithm defines its own type of cluster, hence

each clustering might require a different evaluation measure. For instance, centroid-

based clustering like k-means can be evaluated using sum square error (SSE) whereas

for density-based clustering, which need not be globular, SSE won’t work to measure

the tendency. A list of some important issues for cluster evaluation is given below:

• Determining the clustering tendency of a set of data and deciding the correct

number of clusters.

• Without referring to external information, compute how well the results of a

cluster analysis fit the data.

• Comparing the cluster evaluation results with some external information such as

class labels and comparing two sets of clusters to determine which is better.

Based on the above issues, cluster evaluation technique are classified into the following

two categories:

1) Unsupervised techniques measure the cluster tendency without the help of any

external information. It means they use only the information available in the

dataset. They are divided into two classes:

135

136

Figure G.1: Cohesion

• Cluster Cohesion determines how closely or tightly the objects are inside

a cluster. It checks the compactness or tightness of a cluster. Figure F.1

shows the cluster cohesion. SSE method is used to measure the cohesion of

a cluster Ci. It is computed as the sum of the Euclidean distance of all the

objects from the centroid of Ci.

Total SSE =
k∑

i=1

∑
y∈Ci

distance(ci, y)
2 (G.1)

where Ci is the ith cluster and ci is the centroid of Ci and k is the number

of clusters.

• Cluster Separation determine how distinct or well separated a cluster is

from another cluster. It checks the isolation of a cluster. Figure F.2 shows

the separation between two clusters. Between groups sum of squares (SSB)

Figure G.2: Separation between the centroid of two clusters

method is used to measure the separation of a cluster. It is computed as sum

of the squared distance of a cluster centroid, ci, to overall mean, c, of all

137

the data points, ni.

Total SSB =
k∑

i=1

ni ∗ distance(ci, c)2 (G.2)

• Silhouette Coefficient [154] is the most popular method generally used to

evaluate individual clusters and objects by combining both cohesion and

separation. It measures how much an object t is similar to its own cluster

(i.e. cohesion) compared to other clusters (separation) and it can vary be-

tween -1 and 1. If the silhouette coefficient of the object t is high then it

highly matches to its own cluster and poorly matches to other clusters. If

most of the objects in a cluster have high coefficient values then the cluster

is well configured. It can be represented as follows:

silhouette(t) =
s(t)− c(t)

max
(
c(t), s(t)

) (G.3)

where c(t) and s(t) are the cohesion and separation score of the object t,

respectively. Silhouette coefficient needs to be positive (i.e. c(t) < s(t)),

and c(t) to be close to 0 (i.e. the object t should be very close to its centroid)

as far as possible, since the coefficient receives its maximum value of 1

when c(t) is 0.

2) Supervised techniques measure the clustering tendency by comparing the results

of the clustering with the supplied external information. For instance, measur-

ing the degree of correspondence between the generated cluster labels and the

supplied class labels. There are two types of measures used for supervised tech-

niques:

• classification-oriented measures evaluate the extent to which a cluster con-

tains objects of a single class. Below are the examples which are based on

classification-oriented measures.

Purity is a simple technique which measures the extent to which a cluster

138

contains documents of a single class.

purity =
1

N

k∑
i=1

max
j

pij (G.4)

where, pij =
nij

ni
. Here, N is the total documents to be clustered and k is

the number of clusters. nij is the number of documents of class j in cluster

i and ni is the number of documents of cluster i.

Entropy is another supervised measures shows the degree to which each

cluster of documents belongs to a single class.

entropy =
k∑

i=1

ni

n
ei (G.5)

where ei = −
∑C

j=1 pijlog2pij . C is the number of classes in the corpus.

Precision is the fraction of a cluster i that consists of objects of a specified

class j.

precision(i, j) = pij (G.6)

Recall is the extent to which a cluster i contains all objects of a specified

class j.

recall(i, j) =
nij

nj

(G.7)

• Similarity-oriented measures the extent to which two objects that are in the

same class are in the same cluster and vice versa. Below are two such

examples.

Rand statistic =
f00 + f11

f00 + f11 + f10 + f01
(G.8)

Jaccard coefficient =
f11

f11 + f10 + f01
(G.9)

where, f00: number of pair of points having a different class and different

cluster, f01: number of pair of points having a different class and same

cluster, f10: number of pair of points having a same class and different

cluster, f11: number of pair of points having a same class and same cluster

BIBLIOGRAPHY

[1] “Information retrieval on-line. f. w. lancaster and e. g. fayen,” Journal of the

American Society for Information Science, vol. 25, no. 5, pp. 336–337, 1974.

[2] Y. Ogawa, T. Morita, and K. Kobayashi, “A fuzzy document retrieval system

using the keyword connection matrix and a learning method,” Fuzzy sets and

systems, vol. 39, no. 2, pp. 163–179, 1991.

[3] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for automatic in-

dexing,” Communications of the ACM, vol. 18, no. 11, pp. 613–620, 1975.

[4] S. M. Wong, W. Ziarko, and P. C. Wong, “Generalized vector spaces model in in-

formation retrieval,” in Proceedings of the 8th annual international ACM SIGIR

conference on Research and development in information retrieval, pp. 18–25,

ACM, 1985.

[5] J. Becker and D. Kuropka, “Topic-based vector space model,” in Proceedings

of the 6th international conference on business information systems, pp. 7–12,

2003.

[6] G. Salton, E. A. Fox, and H. Wu, “Extended boolean information retrieval,”

Communications of the ACM, vol. 26, no. 11, pp. 1022–1036, 1983.

[7] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,

“Indexing by latent semantic analysis,” Journal of the American society for in-

formation science, vol. 41, no. 6, pp. 391–407, 1990.

[8] C. T. Yu and G. Salton, “Precision weightingan effective automatic indexing

method,” Journal of the ACM (JACM), vol. 23, no. 1, pp. 76–88, 1976.

139

140

[9] C. Manning and P. Raghavan, “Introduction to information retrieval,” vol. 1,

no. 1, 2008.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of

machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[11] I. S. Bajwa, M. Naweed, M. N. Asif, and S. I. Hyder, “Feature based image

classification by using principal component analysis,” ICGST Int. J. Graph. Vis.

Image Process. GVIP, vol. 9, pp. 11–17, 2009.

[12] E. K. Tang, P. N. Suganthan, X. Yao, and A. K. Qin, “Linear dimensionality

reduction using relevance weighted lda,” Pattern recognition, vol. 38, no. 4,

pp. 485–493, 2005.

[13] K. Kira and L. A. Rendell, “The feature selection problem: Traditional methods

and a new algorithm,” in AAAI, vol. 2, pp. 129–134, 1992.

[14] H. Ogura, H. Amano, and M. Kondo, “Distinctive characteristics of a metric

using deviations from poisson for feature selection,” Expert Systems with Appli-

cations, vol. 37, no. 3, pp. 2273–2281, 2010.

[15] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial

intelligence, vol. 97, no. 1, pp. 273–324, 1997.

[16] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”

The Journal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

[17] G. Forman, “An extensive empirical study of feature selection metrics for text

classification,” The Journal of machine learning research, vol. 3, pp. 1289–

1305, 2003.

[18] W. J. Wilbur and K. Sirotkin, “The automatic identification of stop words,” Jour-

nal of information science, vol. 18, no. 1, pp. 45–55, 1992.

[19] C. Van Rijsbergen, D. J. Harper, and M. F. Porter, “The selection of good search

terms,” Information Processing & Management, vol. 17, no. 2, pp. 77–91, 1981.

[20] D. Mladenic and M. Grobelnik, “Feature selection for unbalanced class distri-

bution and naive bayes,” in ICML, vol. 99, pp. 258–267, 1999.

141

[21] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisher-

faces: Recognition using class specific linear projection,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 19, no. 7, pp. 711–720, 1997.

[22] H. T. Ng, W. B. Goh, and K. L. Low, “Feature selection, perceptron learning,

and a usability case study for text categorization,” in ACM SIGIR Forum, vol. 31,

pp. 67–73, ACM, 1997.

[23] L. Galavotti, F. Sebastiani, and M. Simi, “Experiments on the use of feature se-

lection and negative evidence in automated text categorization,” in International

Conference on Theory and Practice of Digital Libraries, pp. 59–68, Springer,

2000.

[24] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory

and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.

[25] S. Ding, N. Zhang, X. Xu, L. Guo, and J. Zhang, “Deep extreme learning ma-

chine and its application in eeg classification,” Mathematical Problems in Engi-

neering, vol. 2015, pp. 1–11, 2015.

[26] L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, “Representational

learning with extreme learning machine for big data,” IEEE Intelligent Systems,

vol. 28, no. 6, pp. 31–34, 2013.

[27] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM

computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[28] K. W. Church and P. Hanks, “Word association norms, mutual information, and

lexicography,” Computational linguistics, vol. 16, no. 1, pp. 22–29, 1990.

[29] F. Role and M. Nadif, “Beyond cluster labeling: Semantic interpretation of clus-

ters contents using a graph representation,” Knowledge-Based Systems, vol. 56,

pp. 141–155, 2014.

[30] D. Carmel, H. Roitman, and N. Zwerdling, “Enhancing cluster labeling using

wikipedia,” in Proceedings of the 32Nd International ACM SIGIR Conference

142

on Research and Development in Information Retrieval, SIGIR ’09, (New York,

NY, USA), pp. 139–146, ACM, 2009.

[31] K. Ganesan, C. Zhai, and J. Han, “Opinosis: a graph-based approach to abstrac-

tive summarization of highly redundant opinions,” in Proceedings of the 23rd

international conference on computational linguistics, pp. 340–348, Associa-

tion for Computational Linguistics, 2010.

[32] A. Z. Broder, “Identifying and filtering near-duplicate documents,” in Combina-

torial pattern matching, pp. 1–10, Springer, 2000.

[33] Y. Bernstein and J. Zobel, “Accurate discovery of co-derivative documents via

duplicate text detection,” Information Systems, vol. 31, no. 7, pp. 595–609,

2006.

[34] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in

Proceedings of the thiry-fourth annual ACM symposium on Theory of comput-

ing, pp. 380–388, ACM, 2002.

[35] G.-G. Geng, C.-H. Wang, Q.-D. Li, L. Xu, and X.-B. Jin, “Boosting the perfor-

mance of web spam detection with ensemble under-sampling classification,” in

Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth Interna-

tional Conference on, vol. 4, pp. 583–587, IEEE, 2007.

[36] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detecting spam web

pages through content analysis,” in Proceedings of the 15th international con-

ference on World Wide Web, pp. 83–92, ACM, 2006.

[37] B. Wu and B. D. Davison, “Identifying link farm spam pages,” in Special interest

tracks and posters of the 14th international conference on World Wide Web,

pp. 820–829, ACM, 2005.

[38] J.-L. Lin, “Detection of cloaked web spam by using tag-based methods,” Expert

Systems with Applications, vol. 36, no. 4, pp. 7493–7499, 2009.

143

[39] R. H. Pinheiro, G. D. Cavalcanti, R. F. Correa, and T. I. Ren, “A global-ranking

local feature selection method for text categorization,” Expert Systems with Ap-

plications, vol. 39, no. 17, pp. 12851–12857, 2012.

[40] A. K. Uysal, “An improved global feature selection scheme for text classifica-

tion,” Expert Systems with Applications, vol. 43, pp. 82–92, 2016.

[41] A. K. Uysal and S. Gunal, “A novel probabilistic feature selection method for

text classification,” Knowledge-Based Systems, vol. 36, pp. 226–235, 2012.

[42] S. Wang, J. Tang, and H. Liu, “Embedded unsupervised feature selection.,” in

AAAI, pp. 470–476, 2015.

[43] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical analysis of

relieff and rrelieff,” Machine learning, vol. 53, no. 1-2, pp. 23–69, 2003.

[44] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the zero norm

with linear models and kernel methods,” The Journal of Machine Learning Re-

search, vol. 3, pp. 1439–1461, 2003.

[45] L. Song, A. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo, “Supervised

feature selection via dependence estimation,” in Proceedings of the 24th inter-

national conference on Machine learning, pp. 823–830, ACM, 2007.

[46] T. Li, C. Zhang, and M. Ogihara, “A comparative study of feature selection and

multiclass classification methods for tissue classification based on gene expres-

sion,” Bioinformatics, vol. 20, no. 15, pp. 2429–2437, 2004.

[47] M. Dash and H. Liu, “Feature selection for clustering,” in Knowledge Discovery

and Data Mining. Current Issues and New Applications, pp. 110–121, Springer,

2000.

[48] J. G. Dy and C. E. Brodley, “Feature selection for unsupervised learning,” The

Journal of Machine Learning Research, vol. 5, pp. 845–889, 2004.

[49] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in Ad-

vances in neural information processing systems, pp. 507–514, 2005.

144

[50] Z. Zhao and H. Liu, “Spectral feature selection for supervised and unsuper-

vised learning,” in Proceedings of the 24th international conference on Machine

learning, pp. 1151–1157, ACM, 2007.

[51] L. Liu, J. Kang, J. Yu, and Z. Wang, “A comparative study on unsupervised fea-

ture selection methods for text clustering,” in Natural Language Processing and

Knowledge Engineering, 2005. IEEE NLP-KE’05. Proceedings of 2005 IEEE

International Conference on, pp. 597–601, IEEE, 2005.

[52] J. Lee and D.-W. Kim, “Mutual information-based multi-label feature selection

using interaction information,” Expert Systems with Applications, vol. 42, no. 4,

pp. 2013–2025, 2015.

[53] W. Chen, J. Yan, B. Zhang, Z. Chen, and Q. Yang, “Document transformation

for multi-label feature selection in text categorization,” in Data Mining, 2007.

ICDM 2007. Seventh IEEE International Conference on, pp. 451–456, IEEE,

2007.

[54] C.-M. Chen, H.-M. Lee, and Y.-J. Chang, “Two novel feature selection ap-

proaches for web page classification,” Expert systems with Applications, vol. 36,

no. 1, pp. 260–272, 2009.

[55] J. Chen, H. Huang, S. Tian, and Y. Qu, “Feature selection for text classification

with naı̈ve bayes,” Expert Systems with Applications, vol. 36, no. 3, pp. 5432–

5435, 2009.

[56] M. Bennasar, Y. Hicks, and R. Setchi, “Feature selection using joint mutual

information maximisation,” Expert Systems with Applications, vol. 42, no. 22,

pp. 8520–8532, 2015.

[57] N. Azam and J. Yao, “Comparison of term frequency and document frequency

based feature selection metrics in text categorization,” Expert Systems with Ap-

plications, vol. 39, no. 5, pp. 4760–4768, 2012.

[58] W. Shang, H. Huang, H. Zhu, Y. Lin, Y. Qu, and Z. Wang, “A novel feature

selection algorithm for text categorization,” Expert Systems with Applications,

vol. 33, no. 1, pp. 1–5, 2007.

145

[59] J. Meng, H. Lin, and Y. Yu, “A two-stage feature selection method for text

categorization,” Computers & Mathematics with Applications, vol. 62, no. 7,

pp. 2793–2800, 2011.

[60] M. Thangamani and P. Thangaraj, “Integrated clustering and feature selection

scheme for text documents,” vol. 6, no. 5, pp. 536–541, 2010.

[61] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual informa-

tion criteria of max-dependency, max-relevance, and min-redundancy,” Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no. 8,

pp. 1226–1238, 2005.

[62] S. Li, R. Xia, C. Zong, and C.-R. Huang, “A framework of feature selection

methods for text categorization,” in Proceedings of the Joint Conference of the

47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume 2-Volume 2, pp. 692–700,

Association for Computational Linguistics, 2009.

[63] M. H. Aghdam, N. Ghasem-Aghaee, and M. E. Basiri, “Text feature selection

using ant colony optimization,” Expert systems with applications, vol. 36, no. 3,

pp. 6843–6853, 2009.

[64] J. Yang, Y. Liu, Z. Liu, X. Zhu, and X. Zhang, “A new feature selection al-

gorithm based on binomial hypothesis testing for spam filtering,” Knowledge-

Based Systems, vol. 24, no. 6, pp. 904–914, 2011.

[65] E. Gabrilovich and S. Markovitch, “Feature generation for text categorization

using world knowledge,” in IJCAI, vol. 5, pp. 1048–1053, 2005.

[66] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for

regression and multiclass classification,” Systems, Man, and Cybernetics, Part

B: Cybernetics, IEEE Transactions on, vol. 42, no. 2, pp. 513–529, 2012.

[67] Z. Bai, G.-B. Huang, D. Wang, H. Wang, and M. B. Westover, “Sparse ex-

treme learning machine for classification,” Cybernetics, IEEE Transactions on,

vol. 44, no. 10, pp. 1858–1870, 2014.

146

[68] S. Balasundaram, D. Gupta, et al., “1-norm extreme learning machine for re-

gression and multiclass classification using newton method,” Neurocomputing,

vol. 128, pp. 4–14, 2014.

[69] S. Ding, X. Xu, and R. Nie, “Extreme learning machine and its applications,”

Neural Computing and Applications, vol. 25, no. 3-4, pp. 549–556, 2014.

[70] B. Mirza, S. Kok, and F. Dong, “Multi-layer online sequential extreme learn-

ing machine for image classification,” in Proceedings of ELM-2015 Volume 1,

pp. 39–49, Springer, 2016.

[71] Y. Yang and Q. J. Wu, “Multilayer extreme learning machine with subnetwork

nodes for representation learning,” IEEE transactions on cybernetics, vol. 46,

no. 11, pp. 2570–2583, 2016.

[72] J. Tang, C. Deng, G.-B. Huang, and J. Hou, “A fast learning algorithm for multi-

layer extreme learning machine,” in Image Processing (ICIP), 2014 IEEE Inter-

national Conference on, pp. 175–178, IEEE, 2014.

[73] R.-C. Chen and C.-H. Hsieh, “Web page classification based on a support vec-

tor machine using a weighted vote schema,” Expert Systems with Applications,

vol. 31, no. 2, pp. 427–435, 2006.

[74] C. H. Wan, L. H. Lee, R. Rajkumar, and D. Isa, “A hybrid text classification

approach with low dependency on parameter by integrating k-nearest neighbor

and support vector machine,” Expert Systems with Applications, vol. 39, no. 15,

pp. 11880–11888, 2012.

[75] P. Lingras and C. Butz, “Rough set based 1-v-1 and 1-vr approaches to sup-

port vector machine multi-classification,” Information Sciences, vol. 177, no. 18,

pp. 3782–3798, 2007.

[76] P. Thamrongrat, L. Preechaveerakul, and W. Wettayaprasit, “A novel voting al-

gorithm of multi-class svm for web page classification,” in Computer Science

and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Con-

ference on, pp. 327–331, IEEE, 2009.

147

[77] J. C. Gomez and M.-F. Moens, “Hierarchical classification of web documents

by stratified discriminant analysis,” in Multidisciplinary Information Retrieval,

pp. 94–108, Springer, 2012.

[78] B. Rujiang, W. Xiaoyue, and H. Zewen, “A novel web pages classification model

based on integrated ontology,” in Software Engineering, Business Continuity,

and Education, pp. 1–10, Springer, 2011.

[79] L. Li, D. Song, and L. Liao, “Vertical classification of web pages for structured

data extraction,” in Information Retrieval Technology, pp. 486–495, Springer,

2012.

[80] J. Xin, Z. Wang, C. Chen, L. Ding, G. Wang, and Y. Zhao, “Elm: distributed

extreme learning machine with mapreduce,” World Wide Web, pp. 1–16, 2013.

[81] M. Klassen and N. Paturi, “Web document classification by keywords using ran-

dom forests,” in Networked Digital Technologies, pp. 256–261, Springer, 2010.

[82] W. Zhang, X. Tang, and T. Yoshida, “Tesc: An approach to text classification

using semi-supervised clustering,” Knowledge-Based Systems, vol. 75, pp. 152–

160, 2015.

[83] I. Hernández, C. R. Rivero, D. Ruiz, and R. Corchuelo, “Cala: an unsupervised

url-based web page classification system,” Knowledge-Based Systems, vol. 57,

pp. 168–180, 2014.

[84] L. Rocha, F. Mourão, H. Mota, T. Salles, M. A. Gonçalves, and W. Meira Jr,

“Temporal contexts: Effective text classification in evolving document collec-

tions,” Information Systems, vol. 38, no. 3, pp. 388–409, 2013.

[85] R. Johnson and T. Zhang, “Effective use of word order for text categorization

with convolutional neural networks,” The 2015 Annual Conference of the North

American Chapter of the ACL, pp. 103–112, 2015.

[86] D. Wang, J. Wu, H. Zhang, K. Xu, and M. Lin, “Towards enhancing centroid

classifier for text classificationa border-instance approach,” Neurocomputing,

vol. 101, pp. 299–308, 2013.

148

[87] J. Fu and S. Lee, “A multi-class svm classification system based on learning

methods from indistinguishable chinese official documents,” Expert Systems

with Applications, vol. 39, no. 3, pp. 3127–3134, 2012.

[88] K. Kim, B.-s. Chung, Y. Choi, S. Lee, J.-Y. Jung, and J. Park, “Language in-

dependent semantic kernels for short-text classification,” Expert Systems with

Applications, vol. 41, no. 2, pp. 735–743, 2014.

[89] H. Liu, C. Jiang, C. Hu, and L. Zhang, “Efficient relation extraction method

based on spatial feature using elm,” Neural Computing and Applications,

vol. 27, no. 2, pp. 271–281, 2016.

[90] X. Li, J. Ouyang, and X. Zhou, “Labelset topic model for multi-label document

classification,” Journal of Intelligent Information Systems, vol. 46, no. 1, pp. 83–

97, 2016.

[91] D.-T. Vo and C.-Y. Ock, “Learning to classify short text from scientific doc-

uments using topic models with various types of knowledge,” Expert Systems

with Applications, vol. 42, no. 3, pp. 1684–1698, 2015.

[92] W. Song and S. C. Park, “Genetic algorithm for text clustering based on la-

tent semantic indexing,” Computers & Mathematics with Applications, vol. 57,

no. 11, pp. 1901–1907, 2009.

[93] P. Li, B. Wang, and W. Jin, “Improving web document clustering through em-

ploying user-related tag expansion techniques,” Journal of Computer Science

and Technology, vol. 27, no. 3, pp. 554–566, 2012.

[94] C.-P. Wei, C. C. Yang, and C.-M. Lin, “A latent semantic indexing-based ap-

proach to multilingual document clustering,” Decision Support Systems, vol. 45,

no. 3, pp. 606–620, 2008.

[95] C. Qimin, G. Qiao, W. Yongliang, and W. Xianghua, “Text clustering using

vsm with feature clusters,” Neural Computing and Applications, vol. 26, no. 4,

pp. 995–1003, 2015.

149

[96] F. Huang, S. Zhang, M. He, and X. Wu, “Clustering web documents using hier-

archical representation with multi-granularity,” World Wide Web, vol. 17, no. 1,

pp. 105–126, 2014.

[97] A. K. Farahat and M. S. Kamel, “Statistical semantics for enhancing document

clustering,” Knowledge and information systems, vol. 28, no. 2, pp. 365–393,

2011.

[98] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, “Hierarchical clustering,” Clus-

ter Analysis, 5th Edition, pp. 71–110, 2001.

[99] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: A review,”

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 1,

pp. 4–37, 2000.

[100] R. Xu, D. Wunsch, et al., “Survey of clustering algorithms,” Neural Networks,

IEEE Transactions on, vol. 16, no. 3, pp. 645–678, 2005.

[101] J. Tang, “Improved k-means clustering algorithm based on user tag,” Journal of

Convergence Information Technology, vol. 5, no. 10, pp. 124–130, 2010.

[102] P. Pantel and D. Lin, “Discovering word senses from text,” in Proceedings of

the eighth ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 613–619, ACM, 2002.

[103] J. Chen, O. R. Zaı̈ane, and R. Goebel, “An unsupervised approach to cluster web

search results based on word sense communities,” in Proceedings of the 2008

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology-Volume 01, pp. 725–729, IEEE Computer Society, 2008.

[104] S. Chakrabarti, Mining the Web: Discovering knowledge from hypertext data,

vol. 1. Elsevier, 2002.

[105] P. Worawitphinyo, X. Gao, and S. Jabeen, “Improving suffix tree clustering with

new ranking and similarity measures,” in Advanced Data Mining and Applica-

tions, pp. 55–68, Springer, 2011.

150

[106] X. Gu, X. Wang, R. Li, K. Wen, Y. Yang, and W. Xiao, “A new vector space

model exploiting semantic correlations of social annotations for web page clus-

tering,” in Web-Age Information Management, pp. 106–117, Springer, 2011.

[107] C. X. Lin, Y. Yu, J. Han, and B. Liu, “Hierarchical web-page clustering via in-

page and cross-page link structures,” in Advances in Knowledge Discovery and

Data Mining, pp. 222–229, Springer, 2010.

[108] M.-S. Paukkeri, I. Kivimäki, S. Tirunagari, E. Oja, and T. Honkela, “Effect of di-

mensionality reduction on different distance measures in document clustering,”

in Neural Information Processing, pp. 167–176, Springer, 2011.

[109] M. T. Hassan and A. Karim, “Clustering and understanding documents via dis-

crimination information maximization,” in Advances in Knowledge Discovery

and Data Mining, pp. 566–577, Springer, 2012.

[110] E. Glover, D. M. Pennock, S. Lawrence, and R. Krovetz, “Inferring hierarchical

descriptions,” in Proceedings of the eleventh international conference on Infor-

mation and knowledge management, pp. 507–514, ACM, 2002.

[111] W. S. van Heerden and A. P. Engelbrecht, “Unsupervised weight-based clus-

ter labeling for self-organizing maps,” in Advances in Self-Organizing Maps,

vol. 198, pp. 45–54, Springer, 2013.

[112] Y. Ping, Y.-J. Tian, Y.-J. Zhou, and Y.-X. Yang, “Convex decomposition based

cluster labeling method for support vector clustering,” Journal of Computer Sci-

ence and Technology, vol. 27, no. 2, pp. 428–442, 2012.

[113] A. Turel and F. Can, “A new approach to search result clustering and labeling,”

in Information Retrieval Technology, vol. 7097, pp. 283–292, Springer, 2011.

[114] X. Li, J. Chen, and O. Zaiane, Text document topical recursive clustering and

automatic labeling of a hierarchy of document clusters. 2013.

[115] R. de Padua, V. O. de Carvalho, and A. B. de Souza Serapião, “Labeling asso-

ciation rule clustering through a genetic algorithm approach,” in New Trends in

Databases and Information Systems, pp. 45–52, Springer, 2014.

151

[116] G. Tholpadi, M. K. Das, C. Bhattacharyya, and S. Shevade, “Cluster labeling

for multilingual scatter/gather using comparable corpora,” in Advances in Infor-

mation Retrieval, vol. 7224, pp. 388–400, Springer, 2012.

[117] J. Lee and D. Lee, “An improved cluster labeling method for support vector

clustering,” IEEE Transactions on pattern analysis and machine intelligence,

vol. 27, no. 3, pp. 461–464, 2005.

[118] V. D’Orangeville, M. A. Mayers, M. E. Monga, and M. S. Wang, “Efficient

cluster labeling for support vector clustering,” Knowledge and Data Engineer-

ing, IEEE Transactions on, vol. 25, no. 11, pp. 2494–2506, 2013.

[119] L. A. Lopes, V. P. Machado, and R. d. A. Rabelo, “Automatic cluster labeling

through artificial neural networks,” in Neural Networks (IJCNN), 2014 Interna-

tional Joint Conference on, pp. 762–769, IEEE, 2014.

[120] Z. Li, J. Li, Y. Liao, S. Wen, and J. Tang, “Labeling clusters from both linguis-

tic and statistical perspectives: A hybrid approach,” Knowledge-Based Systems,

vol. 76, pp. 219–227, 2015.

[121] R. Nayak, R. Mills, C. De-Vries, and S. Geva, “Clustering and labeling a web

scale document collection using wikipedia clusters,” in Proceedings of the 5th

International Workshop on Web-scale Knowledge Representation Retrieval &

Reasoning, pp. 23–30, ACM, 2014.

[122] H. Roitman, S. Hummel, and M. Shmueli-Scheuer, “A fusion approach to cluster

labeling,” in Proceedings of the 37th international ACM SIGIR conference on

Research & development in information retrieval, pp. 883–886, ACM, 2014.

[123] F. Geraci, M. Pellegrini, M. Maggini, and F. Sebastiani, “Cluster generation and

cluster labelling for web snippets: A fast and accurate hierarchical solution,” in

String Processing and Information Retrieval, pp. 25–36, Springer, 2006.

[124] F. Fukumoto and Y. Suzuki, “Cluster labelling based on concepts in a machine-

readable dictionary.,” in IJCNLP, pp. 1371–1375, 2011.

152

[125] M. Ji, “Using fuzzy sets to improve cluster labelling in unsupervised classifi-

cation,” International Journal of Remote Sensing, vol. 24, no. 4, pp. 657–671,

2003.

[126] M. F. Moura and S. O. Rezende, “Choosing a hierarchical cluster labelling

method for a specific domain document collection,” New Trends in Artificial

Intelligence, pp. 812–823, 2007.

[127] M. Muhr, R. Kern, and M. Granitzer, “Analysis of structural relationships for

hierarchical cluster labeling,” in Proceedings of the 33rd International ACM SI-

GIR Conference on Research and Development in Information Retrieval, SIGIR

’10, (New York, NY, USA), pp. 178–185, ACM, 2010.

[128] S. A. Caraballo, “Automatic construction of a hypernym-labeled noun hierarchy

from text,” in Proceedings of the 37th Annual Meeting of the Association for

Computational Linguistics on Computational Linguistics, ACL ’99, (Strouds-

burg, PA, USA), pp. 120–126, Association for Computational Linguistics, 1999.

[129] E. Cambria and G.-B. Huang, “Extreme learning machines,” IEEE intelligent

systems, vol. 28, no. 6, pp. 30 – 31, 2013.

[130] R. Rifkin, G. Yeo, and T. Poggio, “Regularized least-squares classification,”

Nato Science Series Sub Series III Computer and Systems Sciences, vol. 190,

pp. 131–154, 2003.

[131] S. Eyheramendy and D. Madigan, “A novel feature selection score for text cate-

gorization,” in Proceedings of the Workshop on Feature Selection for Data Min-

ing, in conjunction with the 2005 SIAM International Conference on Data Min-

ing, pp. 1–8, 2005.

[132] G.-B. Huang, X. Ding, and H. Zhou, “Optimization method based extreme

learning machine for classification,” Neurocomputing, vol. 74, no. 1, pp. 155–

163, 2010.

[133] S. Basu, M. Bilenko, A. Banerjee, and R. J. Mooney, “Probabilistic semi-

supervised clustering with constraints,” Semi-supervised learning, pp. 71–98,

2006.

153

[134] S. Basu, M. Bilenko, and R. J. Mooney, “Comparing and unifying search-based

and similarity-based approaches to semi-supervised clustering,” in Proceedings

of the ICML-2003 workshop on the continuum from labeled to unlabeled data

in machine learning and data mining, pp. 42–49, 2003.

[135] A. Demiriz, K. P. Bennett, and M. J. Embrechts, “Semi-supervised clustering

using genetic algorithms,” Artificial neural networks in engineering (ANNIE-

99), pp. 809–814, 1999.

[136] L. Zhang, W.-D. Zhou, and L. Jiao, “Kernel clustering algorithm,” CHINESE

JOURNAL OF COMPUTERS-CHINESE EDITION-, vol. 25, no. 6, pp. 587–

590, 2002.

[137] G.-B. Huang and L. Chen, “Convex incremental extreme learning machine,”

Neurocomputing, vol. 70, no. 16, pp. 3056–3062, 2007.

[138] G.-B. Huang and L. Chen, “Enhanced random search based incremental extreme

learning machine,” Neurocomputing, vol. 71, no. 16, pp. 3460–3468, 2008.

[139] G.-B. Huang, L. Chen, C. K. Siew, et al., “Universal approximation using in-

cremental constructive feedforward networks with random hidden nodes,” IEEE

Transactions on Neural Networks, vol. 17, no. 4, pp. 879–892, 2006.

[140] S. Basu, A. Banerjee, and R. Mooney, “Semi-supervised clustering by seed-

ing,” in In Proceedings of 19th International Conference on Machine Learning

(ICML-2002, pp. 19–26, Citeseer, 2002.

[141] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo, “Fast dis-

covery of association rules,” Advances in Knowledge Discovery and Data Min-

ing, pp. 307–328, 1996.

[142] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means clustering

algorithm,” Computers & Geosciences, vol. 10, no. 2, pp. 191–203, 1984.

[143] J. Singh, H. Ram, and D. J. Sodhi, “Improving efficiency of apriori algorithm

using transaction reduction,” International Journal of Scientific and Research

Publications, vol. 3, no. 1, pp. 1–4, 2013.

154

[144] A. J. Butte and I. S. Kohane, “Mutual information relevance networks: func-

tional genomic clustering using pairwise entropy measurements,” in Pac Symp

Biocomput, vol. 5, pp. 418–429, 2000.

[145] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.

[146] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,

pp. 273–297, Sept. 1995.

[147] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,

no. 3, pp. 273–297, 1995.

[148] G.-B. Huang, “Learning capability and storage capacity of two-hidden-layer

feedforward networks,” Neural Networks, IEEE Transactions on, vol. 14, no. 2,

pp. 274–281, 2003.

[149] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A fast and

accurate online sequential learning algorithm for feedforward networks,” Neural

Networks, IEEE Transactions on, vol. 17, no. 6, pp. 1411–1423, 2006.

[150] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[151] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[152] H. G. V. Kasun, Zhou H, “representational learning with elms for big data schol-

arly article,” IEEE Inteligent System(In Press), 2013.

[153] Y. Yang and J. O. Pedersen, “A comparative study on feature selection in text

categorization,” in ICML, vol. 97, pp. 412–420, 1997.

[154] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis,” Journal of computational and applied mathematics, vol. 20,

pp. 53–65, 1987.

Design and Investigation of Techniques to Improve Information
Retrieval on the Web

THESIS

submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

RAJENDRA KUMAR ROUL

2009PHXF0421G

under the supervision of

Dr. Sanjay Kumar Sahay

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

PILANI (RAJASTHAN), INDIA, 2016

CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

Information retrieval is the activity of obtaining information resources relevant

to an information need from a collection of information resources. Deep learning approaches

which have taken the machine learning community by storm have a high impact on IR. It

has been successfully applied for image processing, speech recognition and NLP. The main

advantage of deep learning over conventional approaches is that it is completely data driven

with stacked layers of neural networks progressively “learning” the data with increasing levels

of abstraction, without the necessity of manually hand-coded features. In the context of NLP,

word embedding is the starting point of transforming a categorical feature, e.g. a word from a

vocabulary, into a continuous representation of a real-valued vector in the Cartesian space of

‘p’ dimensions.

This thesis primarily focused on how deep learning can be useful for text data and

some other aspects of IR. For this purpose, ML-ELM is used for text classification and the

feature space of ML-ELM has been tested extensively for clustering the text data. The work is

carried out by initially analyzing and comparing the performance of SVM, ELM and ML-ELM

classifiers to demonstrate the potential of the ELM (for accuracy) and ML-ELM (both accu-

racy and F-measure) as a highly successful and suitable technique for text classification. It is

also observed from the experimental results that ML-ELM can outperform other existing clas-

sifiers. Additionally, the results can serve as complementary knowledge to further strengthen

the understanding of the essential relationship between SVM, ELM and ML-ELM. Empirical

results show that ML-ELM outperformed the traditional classifiers in the majority of cases, and

109

110

achieved the best performance overall for both datasets. The experimental results also indicate

the high suitability and effectiveness of ELMs in this field as well.

After testing ML-ELM on different benchmark datasets using different traditional

feature selection techniques, the interest has been taken to develop two novel feature selection

techniques (KWFS and CCSS) on which the performance of ML-ELM is tested. In KWFS,

initially, each cluster is divided into k sub-clusters using k-means algorithm. Then, with the

help of Wordnet and cosine-similarity, a reduced feature vector is generated for the entire cor-

pus. For text classification, ELM and ML-ELM classifiers are used. This technique is tested

on 20-Newsgroups and DMOZ datasets and the results show the importance of ML-ELM in

the field of text classification. In the second feature selection technique (CCSS), three im-

portant parameters (cohesion, separation and silhouette coefficient) are combined to generate

a reduced feature vector. Multilayer ELM as the classifier has been used for classifying the

text document and its importance also has been extensively measured. It is evident from all

the experimental results that the performance of Multilayer ELM outperforms the other well

known classifiers. The encouraging results of two proposed techniques show the stability and

effectiveness of Multilayer ELM compared to different progressive classifiers in the domain of

text classification. This justifies the stability, efficiency and effectiveness of deep learning.

Combining the ELM and Multilayer ELM feature space with other traditional

classifiers will further reinforce the classification results. Similarly, the feature space of ELM

and Multilayer ELM can also be used for the clustering process, as the features became more

simple and linearly separable by representing them in an extended space. This may outperform

the clustering process done in TF-IDF vector space. For this propose, the feature space of

ML-ELM is used for semi-supervised clustering using seeded-kMeans algorithm. From the

experimental results on Classic3 and Reuters datasets, following points are observed:

• results using ELM feature space always outperform the results of without using ELM

feature space (i.e. TF-IDF vector space).

• Seeded-kMeans performs very well compared to kMeans in all aspects regardless of

the parameters set (i.e. number of clusters to be formed, % of labels to be considered

in seeded-kMeans). This demonstrates the superiority of the seeded-kMeans clustering

technique over the traditional one even if very few labels (only 10 % of the labels are

considered) are provided.

111

• results of purity and entropy are close in ML-ELM compressed or equal dimension space

(L ≤ n) whereas it is better in extended feature space (L > n) on both datasets.

• It is also observed that after a certain stage (i.e. threshold point) in extended space, the

performance of the clustering process remains unchanged (i.e. further increasing L

compared to n has no effect). This may be due to the excessive sparse representation of

the features which is not included in the results.

Next, some other important aspects of IR has been discussed by proposing a novel

clustering technique based on aprior approach to cluster the text documents. In this technique, a

new modified apriori approach has been proposed and it is compared with the traditional apriori

algorithm. The proposed modified apriori approach when run on a corpus of web documents

produced the same clusters that a traditional apriori approach could. However, experimentally

it has been proved that modified apriori approach is more efficient and faster than the traditional

apriori approach. This is so because at each step the documents from the corpus are removed,

which is no longer required and in turn it reduces the unnecessary comparisons. Hence, it

saves a lot of time. Classic4, 20-Newsgroups and Reuters datasets are used for experimental

purposes. It is found that FCM gives better clusters compared to VSM and k-means.

In order to label the clusters, a novel cluster labeling technique is developed. Us-

ing a feature selection technique, first top-k keywords known as representative keywords are

selected from each cluster which are later sent to Wikipedia for getting candidate labels. The

candidate labels generated from Wikipedia are evaluated using MI-score. The approach gen-

erates the actual labels by just considering the top-3 candidate labels of Wikipedia. For exper-

imental work, 20-Newsgroups and Reuters datasets are considered. The experimental results

illustrate the accuracy of the proposed approach which is more than 85% and 75% by generat-

ing good labels (that match with the actual labels) for most of the clusters of 20-Newsgroups

and Reuters datasets, respectively. This justifies the efficiency of the proposed approach.

Although Multilayer ELM performs well, but still there are some shortcomings

which need more attention and can be added to the future work are:

• Determining activation function and the number of nodes for each hidden layer.

• Similarly in ELM, the behavior and a correct number of hidden units is still debatable.

• Also, if one wants to deeply understand the functionality of ELM and Multilayer ELM

112

by considering them as an approximation of infinite network, then the variance of hidden

layer weights is still an open question.

Also, the feature space of ELM and ML-ELM can be used for text classification.

Similarly, in cluster labeling, separation of terms into categories of discriminative, short and

common terms are explicitly required. Other enhancements like metadata associated with each

document apart from the title of the documents can also be used as potential labels. As our

approach successfully encompasses all the important milestones needed for automatically pro-

viding a label to each cluster of documents, all the steps can be coupled in a single script, which

can serve as an important software tool to generate the label for any cluster.

