

Framework for Translation of C/C++ Applications on

Reconfigurable Computing Systems

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

 ASHISH MISHRA

 ID No. 2009PHXF038P

Under the Supervision of

 Dr. Kota Solomon Raju

 Dr. Abhijit Rameshwar Asati

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

PILANI - 333031 (RAJASTHAN) INDIA

2016

Framework for Translation of C/C++ Applications on

Reconfigurable Computing Systems

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

 ASHISH MISHRA

 ID No. 2009PHXF038P

Under the Supervision of

 Dr. Kota Solomon Raju

 Dr. Abhijit Rameshwar Asati

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

PILANI - 333031 (RAJASTHAN) INDIA

2016

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor, Dr. Kota Solomon Raju, for giving me

a valuable problem definition and laying the basic foundation for my research work. He has

inspired me throughout these years and pooled in valuable ideas whenever I was struck. His

immense knowledge, insights and indispensible suggestions always inspired me to reach a

new level. Without his support and guidance, my thesis work would not have been possible. I

am very grateful for his guidance and for being a phenomenal advisor.

Secondly, I would like to express my gratitude to my co-supervisor Dr. Abhijit R. Asati for his

valuable discussions in the domain of EDA VLSI design algorithms. His patience to understand

the problem crux makes him special. His continued support and mentoring led me to re-

structure my writing and presentation ability.

I take this opportunity to thank Prof. Souvik Bhattacharyya, Vice-Chancellor BITS, Pilani and

Prof A. K. Sarkar, Director, BITS, Pilani (Pilani Campus) for providing me the necessary

infrastructure, facilities and constant inspiration. I also acknowledge the kind support from R.

N. Saha (Director, Dubai campus), Prof. G. Sundar (Director, Hyderabad Campus), Prof. G

Raghurama (Director, Goa Campus), and Prof. S. K. Verma Dean (Academic Research and

Development). I would also like to extend my sincere thanks to my doctoral advisory

committee (DAC) members, Prof. S. Gurunarayanan and Prof. Sudeept Mohan for carefully

going through my thesis drafts and helping me learn the various skills of academic research. I

also thank DRC convener Dr. Abhijeet Asati and other DRC committee members for their

time and insightful comments. I am also thankful to Dr. Navneet Gupta (HOD, Department of

Electrical and Electronics Engineering), Prof. V. K. Chaubey, Prof. Anu Gupta, Prof. Sundar

Balasubramaniam, Dr. Hari Om Bansal, Dr. Hitesh Datt Mathur, Dr. Dheerendra Singh, Dr.

Anantha K Chintanpalli and Prof. Surekha Bhanot. A big thanks to the rest of the people that

are or have been with BITS-Pilani during my time here so far, you all make this a great place

to work at.

I am also fortunate to have the blessings of my Guru Babuji Maharaj and My father Shri. Hari

Mohan Mishra, which I gratefully acknowledge. My deepest gratitude goes to my extended

family: my sisters Roli di and Jaya di, my brother Anurag da, my brother-in-laws Mr.

iii

Ameetabh Tyagi and Mr. Vinay Kumar Pandey. I have no words to thank my wife, Mrs. Lucky

Mishra, who has always stood beside me like a rock whenever I had a difficult time. She has

been a constant source of motivation and at times even sacrificed her professional time to

help me grow further. My son Adyut never complained about not being able to spend

enough time with him. Lastly, I express my thanks to all those who directly or indirectly

contributed to the completion of this work.

Date: Signature:

Place: Name: Ashish Mishra

iv

ABSTRACT

Embedded Systems are an integral part of the stupendous technological advances as they meet

the automation, monitoring and computational demands of the electronic industry. Most of the

times, these systems are transparent to the user and do their defined work eternally such as

telecommunication systems. Further advancements in these systems have led to the migration

of the applications from manual operation to fully automated behavior; major examples of

such domains include automotive industries, artificial intelligence applications, remote

seasoning, surveillance etc. The stringent system requirements of such systems have pushed

the designers to explore innovative design methodologies that deliver higher performance,

occupy lesser area and consume minimum power. Modern embedded systems are expected to

perform extensive computations on a streaming data set with various degrees of constraint.

The design exploration space for such systems is huge; starting from a complete software

(SW) implementation on various platforms (general purpose processor/digital signaling

processor (DSP) processor/superscalar processor/very long instruction word (VLIW)

processor/multiprocessor systems) and culminating as a complete hardware (HW).

The HW implementation includes application specific integrated circuits (ASIC) or field

programmable gate arrays (FPGA) based design flow that delivers better performance as

compared to the SW implementation due to a dedicated datapath and is thus used in many

critical applications. In exploration of design space, the system specifications may further be

optimized by partitioning a design into HW and SW. To exploit the potential of FPGA based

design, the research community is also targeting different methodologies such as HW-HW

partitioning and usage of partial reconfiguration concept.

FPGAs are HW programmable chips on which any digital function can be synthesized, tested

and prototyped. They are an attractive choice for the designer due to less non-recurring cost

and less time-to-market as compared to the ASIC. These chips contain configurable resources

that are used to implement any application in HW. But as they contain a limited amount of

resources on the chip, hence the amount of resources consumed when implementing any

digital function on a chip, should not exceed the area constraint.

The concept of system design using partial reconfiguration design poses a number of

challenges including optimization of partial reconfiguration method, reducing reconfiguration

latency, scheduling of HW, SW and reconfigurable HW. To solve these problems, design

space automation is one of the key challenges. A general objective of this thesis is efficient

v

deployment of embedded applications on reconfigurable computing systems. This thesis work

targets one of the design space automation requirement which is to map C/C++/HDL/DFG

application code onto general purpose hardware such as FPGA using static and partial

reconfiguration approach. The thesis proposes a novel design methodology to automate the

mapping of C/C++/HDL/Dataflow graphs application code by converting it into system level

blocks. This includes design and development of an algorithm that generates coarse-grain

functional blocks from the fine grain instruction level i.e. the proposed algorithm clusters an

instruction level specification to high-level abstraction, while optimizing the latency and data

communication among the combined functional blocks. To achieve an optimized algorithm

for the above purpose, various design flows exist and improving them to suit our proposed

algorithm is another important contribution of this thesis work.

To map the application on the system level architecture, (assuming general purpose hardware

in FPGA with built-in processor within it), there are traditionally two methods: HW-SW co-

design (method-1) and intellectual property (IP) core as HW implementation (method-2).

Both the methods have been extensively investigated, enhanced and compared throughout the

dissertation. The co-design method achieves the required system parameters by implementing

the system partly in HW and partly in SW. Though the first method is well established,

automation of HW-SW co-design of an application is limited to manual design flow. This

work proposes an automated co-design methodology of an application using genetic

algorithm. The proposed design flow supports HW as functional sub-blocks, where ready-

made IP blocks of critical part of the application are used. The proposed design flow uses time

profiling and synthesis data to guide a genetic algorithm to generate good solutions.

In the co-design flow, a commercial high level synthesis tool has been used in this work for

estimating the amount of resources consumed by the program. In addition, in this research a

new approach has been proposed to estimate the amount of resources without synthesizing the

program. For this purpose, the SW specification in C/C++ and a compiler has been used to

generate control flow graph (CFG) which is a commonly used format for hardware generation.

This process of mapping the logic from high level languages (HLL) to HW requires resource

estimation at the granularity level of instruction. A resource table depicting the resource

consumed by each operator found in the low level virtual machine (LLVM) compiler has been

computed by coding in Verilog for Virtex-5 series. Using this library, a resource estimation

algorithm based on CFG operator has been proposed and verified. In many cases if the entire

specification is migrated to HW in the form of accelerator, it may consume significant

vi

resources. Hence, optimization techniques applied at the HW specification are required to

satisfy system design parameters (area-delay product). Various optimization techniques have

applied and compared for area and latency trade-offs.

The second method for system design is to partition the specification in HW sub-modules and

execute them as intellectual property (IP) core. Another major contribution of this work is

proposing and testing the second methodology extensively. A dataflow graph specification has

been used for verification and development of algorithms in this methodology.

The second method can further be divided into sub-methods: static (sub-method-1) and

dynamic (sub-method-2) scheduling of HW blocks on FPGA. In sub-method-1, a

partitioning algorithm based on graph isomorphism has been proposed, which takes dataflow

graph as the input and returns partitions based on constraints. These clusters are interfaced as

static IP cores for reusability. Multiple clusters are possible which are similar in nature and

must be interfaced as separate HW blocks in a system-on-chip (SOC) design flow and hence

we have named this flow as HW-HW design flow.

In sub-method-2, dynamic scheduling of HW blocks based on partial reconfiguration flow

has been investigated. A genetic algorithm based approach for optimizing the partitioning

process and generating the best partitions based on defined objective function has been

proposed. Using partial reconfiguration design flow the partitions are bound to a specific area

on the chip known as partial reconfiguration (PR) region using floor planning software Xilinx

PlanAhead. The results highlight the pros and cons of this technique by comparing the time

required in SW and PR flow. The flow re-uses the same Silicon area at different execution

times so that the application fits into the minimum area possible. This method provides a

robust technique for implementing any application on FPGA irrespective of the quantity of

resources it consumes. This opens new channels for exploiting PR design in future products

where the reusability of HW would be possible. This will allow the development of new

algorithms at run time at the user level. The design flow will further boost the automation of

development and facility offered by electronic design automation (EDA) tools.

In order to assess both the methodologies, discrete cosine transform which is a

computationally intensive algorithm has been used for comparing both the approaches on

ML507 board. The results clearly show the design flow of isomorphic clustering is much

better than any other flow.

The thesis proposes novel methodologies for system level integration in simulation as well as

in experimentation. This research gives us an insight to HW-SW design space exploration of

vii

an application and provides a foundation for future research in this domain. It emphasizes on

the anticipated constraints and challenges in system design methodologies by presenting

various optimal solutions. The results of this work offer a wide spectrum of design space

implementations to the designer with area-delay parameter as the criteria to choose among

them.

viii

TABLE OF CONTENTS

 Page

No.

ACKNOWLEDGEMENT………………….…………………….……………….. ii

ABSTRACT……………………………………………………………………….. iv

TABLE OF CONTENTS………………………………………………………….. viii

LIST OF ABBREVIATIONS……………………………………………………... xii

LIST OF UNITS……………………………………….…………………………... xiii

LIST OF FIGURES………………………………….…………………………….. xiv

LIST OF TABLES……………………………………………………….………... xviii

Chapter 1. Introduction

1.1. Embedded System Design……………………………………………………. 1

1.2. FPGA Based System Design…………………………………………………. 3

1.2.1. Introduction to FPGAs……………………………………...………….. 4

1.2.2. FPGA Architecture…………………………………………………….. 6

1.2.3. System-On-Chip Design……………………………………………….. 6

1.2.4. FPGA Based System-On-Chip Design………………………………… 7

1.3. Introduction to RCS ………………………………………………………….. 8

 1.3.1. Dynamic Partial Reconfigurable Systems (DPRS)…………………….. 8

 1.3.2. Advantages of Partial Reconfiguration………………………………… 9

1.4. Motivation for Current Research………………………………………...……. 10

1.5. Problem Definition……………………………………………………………. 11

1.6. Thesis Organization…………………………………………………………… 12

1.7. Conclusions…………………………………………………………….……... 13

References for Chapter 1 14

Chapter 2. Literature Survey

2.1. Frameworks and Design Methodology ………………………………………. 16

2.2. Partitioning and Scheduling……………………………………………..……. 21

2.3. Resource Estimation and High Level Synthesis……………...………………. 31

2.4. Reconfigurable Computing Systems 33

2.4.1. Reconfiguration Controller………………………...…………………... 33

2.4.2. External Reconfiguration ………………………………………..…….. 34

2.4.3. Internal Reconfiguration or Self Reconfiguration………………….….. 34

ix

2.4.4. Partial Reconfigurable System Design in Xilinx……………………..... 35

2.5. Challenges of RCS Frameworks and Design Methodology ………….………. 35

2.5.1. The Complex Design Flow ……………………………………………. 36

2.5.2. Restrictions in Design Flow……………………………………………. 36

2.5.3. The Reconfiguration Overhead…………………………………...……. 37

2.6. Conclusion…………………………….…………………………………...….. 40

References for Chapter 2 41

Chapter 3. Automated Migration of Applications in Hardware Software Co-

design Paradigm

3.1. Hardware and Software Systems…………………………………...…………. 49

3.2. Automated Approach to HW-SW Co-design ………………………...……... 50

3.3. Estimation of SW Resources Using Time profiling…………………………... 53

3.3.1 Time Profiling on Target…………………………………...…………… 57

3.4. Estimation of HW Resources Using LLVM Compiler……………………….. 59

3.4.1. Generating CFG and DFG from LLVM Compiler…………………….. 60

3.4.2. Library of Operators in LLVM Compiler……………………………… 65

3.4.3. Converting C program to HDL…………………………………............ 66

3.4.4. Comparative Results of Theoretical and Synthesized Programs………. 76

3.4.5. Creating Extended Basic Block for Task graph generation from CFG... 79

3.5. Resource Estimation using Vivado High Level Synthesis Tool……………… 82

3.5.1. Optimizations in Vivado-HLS…………………………………...…….. 83

3.6. HW IP Design Integration of IP as a part of SOC……………………………. 88

3.6.1. Case Study for Hardware, Software IP Core Integration Using Vivado-

HLS and EDK

88

3.7. Hardware Timer …………………………………...…………………………. 92

3.8. Results of Manual Interface of DfDiv Program as IP Core…………………... 94

3.8.1. Comparison with LegUp…………………………………...………….. 95

3.9. Conclusions…………………………………...………………………………. 96

References for Chapter 3 97

Chapter 4 Design and Development of Efficient Hardware and Software

Partitioning Algorithm

4.1. Frameworks for Reconfigurable Computing Systems……………………...… 99

4.2. Hardware Software Co-design Partitioning Design Flow……………………. 100

4.3. Partitioning Process Using Genetic Algorithm for HW-SW Co-design……… 102

4.3.1. Hardware and Software Partitioning Issues……………………………. 104

x

4.4. Genetic Algorithm for Co-design…………………………………...………… 105

4.4.1. Sample Case Study using GA for Co-design Using Callgraph Model… 107

4.4.2. Experimental Results………………………………………………… 111

4.5. Sample Case Study using GA for Co-design Using Task Graph Model…….. 117

4.5.1. Results of Sample Case Study …………………………………...……. 120

4.6. Conclusions …………………………………...……………………………… 123

References for Chapter 4…………………………………...…………………….. 124

Chapter 5 Static and Dynamic Hardware Partitioning for Reconfigurable

Computing Systems

5.1. Partitioning and Scheduling of Dataflow Graphs for Reconfigurable

Computing Systems………………………………………………………………..

125

5.2 Hardware and Software Synthesis of DFGs …………………………………. 127

5.3. Algorithmic Approach for Creating Isomorphic Graph ……………………… 133

5.3.1. Weight algorithm…………………………………...…………………. 133

5.3.2. Subgraph Algorithm:…………………………………...……………… 135

5.3.3. Iso Algorithm:…………………………………...…………………….. 137

5.3.4. Performance Algorithm:…………………………………...…………... 139

5.4. Scheduler Design…………………………………...…………………………. 140

5.5. Results and Discussion for Isomorphic Design Flow…...…………...……...... 143

5.6 Partitioning and Scheduling Problem for Partial Reconfiguration…………… 150

5.6.1 Coarse Level Graph Creation…………………………………...……… 154

5.7. Genetic Algorithm for RCS…………………………………...……………… 155

5.8. Wrapper Design and Scheduler Design………………………………………. 160

5.9. Reconfiguration Time Analysis…………………………………...………….. 162

5.10. Parameters and Results for Genetic Algorithm ………………….................. 164

5.11. Random Task Graph Generation…………………………………...……….. 167

5.11.1. Random Graph Generators …………………………………...………. 167

5.11.2. Algorithmic Design of MRTG ……………………………………….. 170

5.11.2.1 Module 1: assignLevels………………………………………. 171

5.11.2.3 Module 2: connectNodes …………………………………...… 173

5.11. 2.4 Module 3: isomorphize…………………………………...….. 175

5.11.2.5 Module 4: plotGraph…………………………………...…….. 176

5.12. Results and Discussion: Comparing ISO and GA Approaches……………... 178

5.13. DCT Case Study for HW Isomorphic Design flow Based on Experimental

Work…..

180

5.13.1. Implementations of Discrete Cosine Transform.…………………….. 181

xi

5.13.2 Pipelining Approach and Implementation of DCT based on AAN

Algorithm……………………………………………………………………

…

183

5.13.3. HW SW Co-design of DCT…………………………………...……… 186

5.13.4. Synthesis and Simulation results……………………………………… 188

5.13.5. Synthesis and Simulation Results of PPR Design Flow …………….. 192

5.14. Conclusions…………………………………...…………………………….. 193

References for chapter 5…………………………………………………………… 195

Chapter 6 Conclusions

6.1. Contributions of the Thesis…………………………………...………………. 197

6.2. Limitations of the Work Done…………………………………...…………… 199

6.3. Future Scope…………………………………...……………………………… 201

List of Publications…………………………………...…………………………… 203

Appendix-1…………………………………...……………………………………. 205

Appendix-2…………………………………...……………………………………. 209

Appendix-3…………………………………...……………………………………. 213

BRIEF BIOGRAPHY OF THE CANDIDATE…………………………………… 216

BRIEF BIOGRAPHY OF THE SUPERVISOR………………………………….. 216

BRIEF BIOGRAPHY OF THE CO-SUPERVISOR …………………………….. 217

xii

ABBREVIATIONS

ASIC Application specific integrated circuits

AXI Advanced Microcontroller Bus Architecture

BRAM Random access block memory

CDFG Control dataflow graphs

CFG Control flow graph

CLB Configurable logic block

DAG Directed acyclic graph

DCT Discrete cosine transform

DFG Dataflow graph

DDR Double data rate

DFG Dataflow graphs

DMA Direct memory access

DSP Digital signal processing

EBB Extended basic block

EDA Electronic design automation

FIFO First-in-first-out

FM Fiduccia-Mattheyses

FPGA Field Programmable Gate Arrays

GA Generic algorithm

HAL Hardware abstraction layer

HDL Hardware description language

HLL High level languages

HLS High Level Synthesis

HW Hardware

I/O Input Output

ICAP Internal configuration access port

IP Intellectual Property

IR Intermediate representations

KHz Kilo Hertz

LLVM Low level virtual machine

LUT Look-up-table

MRTG Modular random task graph generator

xiii

OS Operating Systems

Pc Crossover probability

PLB processor local bus (PLB)

Pm Mutation probability

PR Partial reconfiguration

PRM Partially reconfigurable modules

PRR Partial reconfigurable region

RCS Reconfigurable computing systems

RTL Register transfer level

SA Simulated annealing

SDK Software Development Kit

SOC System-On-Chip

SRAM Static random access memory

SUIF Stanford universal intermediate format

SW Software

UART Universal asynchronous receiver transceiver

UCF user constraints file

VLSI Very large scale integration

XPS Xilinx Platform Studio

XPS Xilinx platform studio

LIST OF UNITS

MHz Mega Hertz

ns Nano seconds

μsec Microseconds

KB Kilobyte

MB Megabyte

xiv

LIST OF FIGURES

Figure No. Title Page

No.

1.1 Embedded development cycle………………………………………….. 1

1.2 Logic element…………………………………………………………... 5

1.3 Look-Up-Table…………………………………………………………. 5

1.4 FPGA architecture……………………………………………………… 6

1.5 Various IP interfacing techniques………………………………………. 7

1.6 FPGA based system with one PR region with two PRM mapped……… 9

1.7 Organization of thesis work…………………………………………….. 12

2.1 Co-simulation of digital camera case study in Xilinx ISIM……………. 17

2.2 HW accelerators in Leon3 platform on Altera StratixII …………….…. 19

2.3 ASSET co-design methodology……………..…………………………. 19

2.4 LegUp Co-design methodology……………..…………………………. 20

2.5 Control flow graph for the code snippet………………………………... 22

2.6 Partitioning of graph……………………………………………………. 23

2.7 Comparative results among FM, GA, SA and MFM for cost vs. time

constraint ……………...…………………………………………...........

25

2.8 ASAP schedule…………………………………………………………. 27

2.9 ALAP schedule…………………………………………………………. 27

2.10 Constraint scheduling…………………………………………………... 29

2.11 Express benchmark of Cosine-2 program………………………………. 30

2.12 Node matching based isomorphic graphs………………………………. 30

2.13 External vs. internal reconfiguration…………………………………… 33

2.14 ICAP controller…………………………………………………………. 34

2.15 FPGA systems with one reconfigurable region………………………… 35

3.1 SOC platform on FPGA with a design in HW and SW………………… 51

3.2 Design in HW-SW with bus interface………………………………….. 52

3.3 Co-design tool………………………………………………………….. 53

3.4 Callgraph of digital camera case study…………………………………. 57

3.5 Profiling and bin options in SDK………………………………………. 58

3.6 Software profiling results of DFDIV on ML507 board on

PowerPC@400MHz...

59

xv

3.7 Control flow graph of GCD program…………………………………... 62

3.8 Instruction level CFG of GCD program………………………………... 63

3.9 CFG of GCD program………………………………………………… 64

3.10 DFG of GCD Program………………………………………………… 65

3.11 Fibonacci series C program and its CFG ………………………………. 68

3.12 Datapath for Fibonacci program……………………………………….. 69

3.13 FSM of Fibonacci program…………………………………………….. 70

3.14 Top module for Fibonacci program……………………………………. 71

3.15 Sharing operators program for Fibonacci……………………………… 72

3.16(a) SHL operator sharing…………………………………………………… 73

3.16(b) AND operator sharing………………………………………………….. 73

3.16(c) ADD operator sharing………………………………………………….. 74

3.16(d) SUB operator sharing…………………………………………………… 74

3.17 Verification of the GCD program………………………………………. 76

3.18 Comparison of LUT after optimizations on three programs……………. 78

3.19 Callgraph for DfDiv…………………………………………………….. 79

3.20 Identification of extended basic block………………………………….. 80

3.21 CFG for Dijkstra………………………………………………………... 82

3.22 Extended basic block for the CFG……………………………………… 82

3.23 Sequential access of array………………………………………………. 85

3.24 Parallel access of array…………………………………………………. 85

3.25 XPS timer interface with PLB bus……………………………………… 93

4.1 HW and SW Co-design flow…………………………………………… 101

4.2 (a) Sample graph…………………………………………………………… 103

4.2 (b) Parameters for sample graph…………………………………………… 103

4.3 (a) Sample graph…………………………………………………………… 104

4.3 (b) Adjacency matrix………………………………………………………. 104

4.4 Callgraph of a random C program……………………………………… 107

4.5 A SOC testing architecture…………………………………………….. 111

4.6 Fitness value optimized with iterations in GA for

implementation………………………………………………………….

113

4.7 Callgraph for DfDiv…………………………………………………….. 115

4.8 Flowchart for the algorithm execution…………………………………. 116

4.9 Deadline vs. Area/delay product for various genes…………………….. 117

4.10 Snapshot of GA running in Matlab…………………………………….. 117

4.11 Sample task graph………………………………………………………. 118

xvi

4.12 Multiple CPU and ASIC sample testing architecture…………………... 118

4.13 Fitness value optimized with iterations in GA for CPU2 - ASIC1……... 121

5.1 Framework 2 design flow………………………………………………. 126

5.2 Node model…………………………………………………………….. 127

5.3 Node matching based isomorphic graphs………………………………. 129

5.4 Creation of isomorphic clusters at different levels……………………... 131

5.5 Comparison of various implementations……………………………….. 132

5.6 Sample graph…………………………………………………………… 134

5.7 Weight algorithm……………………………………………………….. 135

5.8 All subgraphs algorithm………………………………………………… 136

5.9 Iso algorithm……………………………………………………………. 137

5.10 Performance algorithm…………………………………………………. 139

5.11 Sample graph…………………………………………………………… 139

5.12 Various clusters in sample graphs……………………………………… 141

5.13 Sample graph with isomorphic clusters………………………………… 142

5.14 Resources consumed by a basic design in ML507 Board……………... 145

5.15 DFG of Cosine series…………………………………………………… 145

5.16 Cosine Series with Isomorphic Graphs…………………………………. 146

5.17 DFG of Exponent series………………………………………………… 147

5.18 Exponent series with isomorphic graphs……………………………….. 147

5.19 Matrix Multiplication for 3x3 elements………………………………... 148

5.20 Matrix Multiplication for nine isomorphic graphs……………………... 148

5.21 Sine Series with five elements………………………………………….. 149

5.22 Sine Series with three isomorphic graphs………………………………. 149

5.23 Comparison of four benchmark programs……………………………… 150

5.24 Partitioned design running on PRR…………………………………….. 151

5.25 Two PR regions with three PRM……………………………………….. 151

5.26 Two PR regions Schedule………………………………………………. 152

5.27 PR schedule……………………………………………………………... 153

5.28 Level based clusters…………………………………………………….. 158

5.29 Scheduler design in SDK……………………………………………….. 161

5.30 DFG of Cosine1………………………………………………………… 165

5.31 DFG of Cosine 2………………………………………………………... 165

5.32 Fitness vs. generations………………………………………………….. 165

5.33 Fitness value vs. generation for mutation value as 0.2(Blue) and

0.4(Pink)………………………………………………………………...

166

xvii

5.34 A graph generated using TGFF………………………………………… 168

5.35 A rooted graph generated using MRTG……………………………….. 173

5.36 Two isomorphic graphs generated using MRTG………………………. 176

5.37 Nodes with operators generated using MRTG…………………………. 177

5.38 Number of Nodes vs. time taken……………………………………….. 178

5.39 Flowchart for comparing the ISO and GA approach…………………… 180

5.40 Pipeline architecture……………………………………………………. 184

5.41 DCT netlist in Xilinx ISE………………………………………………. 185

5.42 F block netlist in Xilinx ISE……………………………………………. 186

5.43 Netlist diagram for dataflow model…………………………………….. 187

5.44 Redrawn DCT netlist showing isomorphic modules…………………… 188

5.45 EDK components used in implementation……………………………... 189

5.46 Comparison of area and delay product…………………………………. 191

5.47 Floorplan for DCT having one PRR……………………………………. 192

xviii

LIST OF TABLES

Table No. Title Page

No.

1.1. HW and SW comparison ………………………………………………. 3

2.1. Three parameters for digital camera case study on 8051 ………………. 17

2.2. Performance results of LegUp …………………………………………. 21

2.3. Configuration bandwidth Using ICAP primitive ………………………. 35

2.4. Comparison of reconfiguration throughput from 2003 to 2009 ……….. 37

2.5. Reconfiguration speed measurement of ICAP design for various sizes

of partial bitstream………………………………………………………

39

3.1. Digital system hardware and software layered architecture……………. 49

3.2 Flat profile ……………………………………………………………… 55

3.3. Callgraph profile ……………………………………………………….. 56

3.4. Library of operators…………………………………………………….. 65

3.5 LUT/DSP resource estimation for each of the optimizations …..……… 77

3.6 Comparison of resources ……………………………….……………… 78

3.7 Resource consumption of Dfdiv functions ...…………………………... 79

3.8 Synthesized results of ChStone benchmarks.....………………….......... 83

3.9 Performance comparison of original and optimized adpcm synthesis

and Resource usage comparison of original and optimized adpcm

synthesis…………………………………………………………………

84

3.10 Performance comparison of original and optimized blowfish synthesis

and Resource usage comparison of original and optimized blowfish

synthesis…………………………………………………………………

86

3.11 Performance comparison of original and optimized dfmul synthesis and

Resource usage comparison of original and optimized dfmul synthesis..

86

3.12 Performance comparison of original and optimized mips synthesis and

Resource usage comparison of original and optimized mips synthesis…

86

3.13 Performance comparison of original and optimized sha synthesis and

Resource usage comparison of original and optimized sha synthesis…..

87

3.14 Comparison with LegUP compiler synthesis results …………………... 87

3.15 ChStone benchmarks timing results on ML506 Board ………………… 94

3.16 Performance comparison of DfDiv in LegUp…………………………... 95

xix

3.17 Area delay product comparison of DfDiv in LegUp................................ 96

4.1 SW and HW parameters ……………………………………………….. 108

4.2 Partitioning results for different deadlines ……………………………... 112

4.3 Parameter values used in GA …………………………………………... 113

4.4 Resource usage from Vivado HLS for DfDiv program ………………... 115

4.5 Parameters for DfDiv ... 115

4.6 Results of DfDiv program ……………………………………………… 116

4.7 Implementation parameters for different tasks ………………………… 119

4.8 Optimization results for deadline = 275………………………………... 120

4.9 Optimization results for deadline = 200………………………………... 121

4.10 Partitioning results for different deadlines …………………………….. 122

4.11 Partitioning results for different area …………………………………... 122

5.1 Description of different implementations ……………………………… 128

5.2 Comparison of time taken by the DFG in different implementations …. 132

5.3 Weight of the nodes ……………………………………………………. 134

5.4 Parameters for sample graphs ………………………………………….. 140

5.5 Sample graph results …………………………………………………… 140

5.6 Programs used for testing ……………………………………………… 143

5.7 Library of hardware blocks and their values on Xilinx ML507 board … 144

5.8 Comparison of area delay product for Cosine function ………………... 146

5.9 Comparison of area delay product for Exponent function ……………... 148

5.10 Comparison of area delay product for Matrix function ………………... 149

5.11 Comparison of area delay product for Sine function …………………... 150

5.12 Constants used in genetic algorithm …………………………………… 159

5.13 Order of complexity of functions in GA ……………………………….. 160

5.14 PR and GA parameters ………………….. 164

5.15 Express benchmark programs used for testing GA ……………………. 164

5.16 Number of nodes vs. time taken………………………………………... 178

5.17 GA applied to four benchmarks ……………….……………………….. 179

5.18 Comparison of Area delay product …………………………………….. 180

5.19 Computational steps in AAN algorithm ……………………………….. 184

5.20 Matrix as Coefficient …………………………………………………... 187

5.21 Resources consumed by floating point dataflow model of DCT ………. 188

5.22 Area and delay of each node …………………………………………… 189

5.23 Showing the resources for the AAN and DFG design flow as highlights 190

xx

5.24 Comparison of various implementations done ………………………… 191

5.25 Comparison of reconfiguration time……………………………………. 193

1

 Chapter 1

Introduction

This chapter presents an introduction to embedded system design, FPGA based System-On-

Chip design, reconfigurable systems, and partial reconfigurable systems. After presenting the

design flow for such systems, the research gaps are identified and the objectives are outlined.

The chapter ends with the discussion on the thesis organization in the form of a flow graph.

1.1. Embedded System Design

Electronic systems have become ubiquitous and pervasive because of the possibilities of smart

system designs which encompasses computation, communication and sensing. Such systems

are built with high speed processing components, complex interfaces such as a camera and

wired/non-wired communication. Embedded systems, which are designed to achieve

application specific requirements, have further boosted the lifespan of such systems. These

systems are designed with miscellanea of components such as Microcontrollers

/Microprocessors/System-on-chip (SOC), sensors/actuators, input/output devices, storage

elements and accelerators. In designing such systems, the characteristics which are of prime

concern are good real-time performance, low monetary cost, low power design and less time-

to-market. These systems are programmed with applications written in software (SW) for a

chosen hardware (HW), making the design cycle rigid in terms of hardware parameter

variations. Fig. 1.1 shows that a conventional design cycle of embedded systems, in which

selection of HW and then writing the required SW [1.1] is sequential in nature.

Hardware selection and development Software development

Time line of development

Figure 1.1: Embedded development cycle

The modern embedded systems [1.2, 1.3] which are used to design complex systems such as

surveillance, object tracking, machine learning, etc. require more processing demand for

intensive computational part of the application. The conventional embedded design flow starts

by selecting the processing element, writing the SW for application, cross-compiling and

burning the image created. Such a SW implementation for intensive applications offers a high

degree of flexibility, but exhibits poor performance due to sequential execution on embedded

2

platforms like microcontroller. High-performance computing and parallel computing

paradigms of computer science aim at achieving the performance by exploiting parallelism as

multithreaded application which is bound to run on multi-core systems. Such computing is

more applicable to general purpose machines where operating system support, OpenGL like

library compilation and costly platforms are the backbone.

Signal processing in SW has been further strengthened by usage of digital signaling

processors (DSP) which have a tailored data path for better computation. Traditionally, digital

signal processors have been used in many Digital Signal Processing applications [1.4], mainly

due to the short development time, lower power consumption, and lower cost. Such processors

are still the choice for applications requiring computation. However, over the decade, many

algorithms which were implemented in SW were migrated to HW because of the higher

performance gain as compared to DSP processors.

The HW implementation, which requires the development in a hardware description language

(HDL) and code verification, has the lowest degree of flexibility, but shows the best

performance due to the possibility of extraction of parallelism. All those operations which are

independent in SW can be executed at the same time in HW, allowing the design of a

concurrent structure. Such applications which have been migrated from SW to HW for

achieving performance are known as accelerators [1.5, 1.6]. Such accelerators are

conventionally designed by two different approaches. The first approach is to design the HW

as chip using ASIC methodology. The common examples of such chips are graphics cards,

network cards, router, gaming gazettes etc. The performance gain in this process is enormous,

but the high non-recurring engineering cost and long development cycle makes it attractive

only for voluminous production.

The second design approach is based on designing the system using Field Programmable Gate

Arrays (FPGA) which allows the accelerator to be designed, tested and interfaced to the

processor at the user level. The FPGAs do not deliver as much performance gain as compared

to the ASIC based design flow [1.7], but chip fabrication is bypassed which saves

considerable design cycle time and thus are a favored choice [1.8]. The FPGAs chips are

designed with configurable cells and can be used to implement any digital function. The user

level HW programmability makes these chips an attractive choice for a large class of

applications. The FPGA based design offers an embedded development environment platform,

which has a processor around which the systems is designed and any HW intellectual property

(IP) core can be interfaced to an underlying bus.

3

This platform allows the design to be implemented in SW, HW, HW-SW (HW-SW co-design)

or HW-HW [1.9] thus providing a designer to discover various HW/SW trade-off. The

comparison of HW and SW on various parameters such as execution, resources, etc. is shown

in Table 1.1. Both HW and SW consume space on the FPGA chipset as configurable cells and

memory.

Table 1.1: HW and SW comparison

Parameter HW SW

Execution Concurrent Sequential

Development Flexible/Rigid Very Flexible

Resources Uses spaces Uses Memory

Performance Fast Slow

Time to Market More Less

HW-SW co-design [1.10] flow requires the identification of candidate functions suitable for

HW implementation and its interface to the remaining part of the application. Whereas, HW-

HW design flow requires the design to be partitioned into sub-designs and executed in the

predefined areas. The HW partitions can be interfaced and executed statically or dynamically,

giving rise to two different approaches. When a part of the chip can only be used by an

application at any point of time, we call it static approach. In the case of dynamic, the same

area can be used by multiple applications at different point of times. This feature has now

become feasible with the advent of partial reconfiguration, which allows a part of the chip to

be reconfigured even when the system is running. HW-HW design flow implemented with

partial reconfiguration support is thus a new emerging trend and has not been extensively

tested on HW [1.7]. The increasing trends towards high performance, reusability and low

power design have encouraged the researchers to add new dimensions to system design under

various degrees of constraint. The topic of this research work is thus inspired from comparing

the SW and HW design flows.

1.2. FPGA Based System Design

1.2.1. Introduction to FPGAs

The programmable chips came into existence due to the advent of general purpose processing

[1.7] in which a HW code is burned into a programmable ROM chip referred as basic input

output systems (BIOS). Programmable logic devices which include programmable logic array,

programmable array logic and generic array logic [1.11] are used for developing glue logic in

prototyping designs such as address decoder, error detection and correction, etc. With the

4

advancement in very large scale integration (VLSI) design flow, the density of logic gates

increased, making it possible to bring more complex design into HW, giving rise to the

generation of FPGAs.

The FPGAs are programmable VLSI chips that can be used to implement any digital function

without changing the on chip HW resources. FPGA chips contain configurable memory cells,

which are either anti-fuse or memory based. An anti-fuse based bit cell uses irreversible thin

(gate) oxide breakdown mechanism to program a bit and it is one time programmable in

nature. The examples of such FPGA are Actel based chips memory based FPGAs use SRAM,

FLASH, EEPROM based technology [1.7]. Memory based technology offers re-

programmable dimension of these systems by allowing them to be programmed almost

unlimited times. The SRAM based technology holds the configuration in the memory only

when the power is up; however, in the case of FLASH based technology the configuration is

permanently stored in the memory. The major market players in the FPGA domain are Xilinx

[1.12], Altera [1.13], Lattice [1.14], Actel [1.15], with Xilinx capturing 45-50% of the market

share and supporting various embedded platforms based on the processor like PowerPC, ARM

etc. The remaining discussions in this thesis are with respect to FPGAs manufactured by

Xilinx. Xilinx offers a plethora of electronic design automation (EDA) tools for complete

systems design such as Xilinx-ISE, Xilinx Platform Studio (XPS) [1.16], Software

Development Kit (SDK) [1.17], System Generator [1.18], PlanAhead Software [1.19],

Chipscope Debugging tools [1.20] and Vivado-HLS [1.21].

1.2.2. FPGA Architecture

A generic FPGA architecture [1.22] can be classified into three parts: a programmable logic

element, a programmable interconnection network and set of inputs/outputs. A logic element

contains a combination of SRAM based Look-up-table (LUTs), multiplexers and flip-flops as

shown in Fig. 1.2 [1.23, 1.24]. The functionality is implemented by writing the output in the

LUT. Suppose we need to implement the function f (i, j, k) = ∑ (0,1,2,5,7). The table stored in

the LUT will be 0,1,1,0,0,1,0,1. The logic element can give a combinational or registered

logic by using a flip flop. The output y is a combinational logic, while q is a registered output.

The d input can be a direct output to y or q.

5

3-input

LUT

i

j

k
flip-flop

clock

mux

y

q
d

Figure 1.2: Logic element

The digital functions in FPGAs are realized using LUTs, which are a series of flip-flops and

multiplexers that store the output function. These elements are put together to form a

configurable logic block (CLB) that contains a hierarchical structure of LUTs. Fig. 1.3 shows

the internal organization of 2-input LUT which has four flip-flops and three two input

multiplexers.

Figure 1.3: Look-Up-Table

The synthesized design in FPGA is mapped onto different logic blocks and connection is

made by the interconnection network, which contains an array of switch matrix and wires. The

wires are typically organized in wiring and routing channels. The channels provide wires of

varying length such as short wire, medium length wire and global wires. Modern FPGAs

contain a heterogeneous architecture consisting of fine grain and coarse grain components.

The heterogeneous coarse grain components can be soft, firm or hard IP cores [1.25]. The

soft-core IP is synthesizable RTL level designs which include embedded soft-core processors,

bus controllers, memory controllers etc. that can be configured as per the requirement. Hard

IPs are pre-placed components that can be used as black boxes and have an optimized layout.

These include embedded hard core processors, hard macros such as ethernet, analog to digital

converter, digital to analog converters, RF modules, digital clock manager, phase locked loop,

high-speed transceivers etc. Firm IP cores are provided as parameterized RTL description, so

that designers can optimize the cores for their specific design needs. Fig. 1.4 shows the

organization of the Virtex-5 Xilinx FPGAs depicting LUT slices, processor, Block RAM,

6

FIFOs, Digital clock manager, etc. PowerPC processor is preplaced and is an example of hard

IP whereas BRAMs are firm IP cores.

Figure 1.4: FPGA architecture

1.2.3. System-On-Chip Design

The integrated circuits had become increasingly complex and expensive, which has led to the

emergence of new designs and reuse methodologies and it is collectively referred to as SOC.

The SOC platforms [1.25] are not only a chip, but a combination of IP cores, software support

and integrated platform. These platforms usually include embedded processor, ASIC logics,

analog circuitry, embedded memory etc. Their SW includes: operating system, compiler,

simulator, firmware, driver, protocol stack, integrated development environment (debugger,

linker) and application interface (C/C++, assembly). There are several benefits of integrating a

large digital system into a single integrated circuit. These include lower cost per gate, lower

power consumption, faster circuit operation, more reliable implementation, smaller physical

size, and greater design security. The principal drawbacks of SOC design are associated with

the design pressures imposed on today‘s engineers, such as time-to-market demands,

PLL/DCM

DSP Slices

FIFORAM

PCIe

Input/output

Pins

Slices

Processor

BRAM

7

exponential fabrication cost, increased system complexity and increased verification

requirements.

1.2.4. FPGA Based System-On-Chip Design

Common architectures and supporting technologies are called platform based design. These

platforms offer the designer IP libraries and tools support, bus support, mixed signal blocks,

software component (e.g. Driver, OS). Examples of such platforms are Xilinx EDK, Altera

SOPC builder, programmable system on chip (PSoC) [1.26] etc. The FPGA based system

SOC design offers the designer a HW and SW development platform. Each of these platforms

are tightly integrated, allowing the designer to create the HW and develop its SW, hence

facilitating rapid system prototyping. An HW definition of an application developed by the

designer is usually known as user defined intellectual property (IP), which FPGA based SOC

usually supports.

In configurable SOC based design, different techniques are used for interfacing the IP

depending on the speed requirement [1.27]. Examples of interfaces are buses, peer-to peer link

to the processor and modified processor data-path. Fig.1.5 shows the IP interfaced in three

ways: loosely coupled, medium-coupled and tightly coupled. In case of loosely coupled

system, IP can be interfaced with a low speed bus. Medium coupled IP are interfaced with

high speed bus. It is also possible to change the datapath of the processor and define a new

operation as an instruction in tightly coupled systems. Such tightly bound systems come in the

class of application specific integrated processor (ASIP) and is a popular way of

implementation of accelerators. Designing such ASIP, requires the complete new definition of

software toolchains requiring a dedicated team for designing, coding and verification of the

application.

Processor
Memory

IP

Core

Processor
Memory

IP

Core

Processor

Memory

IP

Core

 a) Loosely coupled IP (b) Medium coupled IP (c) Tightly coupled IP

Figure 1.5: Various IP interfacing techniques

Xilinx EDK design flow allows the development of user defined IP and generates its driver for

usage in SW development in the SDK. The developed IP is wrapped around the bus wrapper

8

automatically which can communicate with the processor through slave registers, first-in-first-

out (FIFO) memory or local memory. Medium coupling is allowed through the fast simplex

link [1.28].

1.3. Introduction to Reconfigurable Computing Systems (RCS)

A common alias for FPGA based systems is reconfigurable computing systems. They can be

defined as the study of computations involving reconfigurable devices, which includes

architecture, algorithms and applications. They involve computation in space and time, using

hardware that can adapt at the logic level to solve specific problems. Reconfiguration is the

process of changing the behavior of the systems to execute various configurations. With the

reprogrammable feature offered by FPGAs, it became possible to change the HW, giving rise

to the emergence of the RC systems. This reconfiguration in FPGAs can be temporal or spatial

which means the functionality can be changed by reconfiguring structure area with more than

one functional block and scheduling in time. The reconfiguration of the device can be done

statically or dynamically, allowing the design flow to be adaptable as per the requirement of

the applications.

1.3.1. Dynamic Partial Reconfigurable Systems (DPRS)

A static random access memory (SRAM) based FPGA as discussed in section 1.2.2 is a two

layer device consisting of configuration memory layer and logic layer. The lower layer is the

configuration memory layer in which the configuration data is stored. The upper layer called

the logic layer consists of the logic blocks and interconnection that forms the system

architecture.

After choosing the required HW along with specific processor (either hardcore or soft core

processor) system configuration file is prepared that is used to program the SRAM cells. The

loading of configuration can be done either statically or dynamically [1.7] and hence are

known as reconfigurable computing systems (RCS). The static approach known as compile

time reconfiguration works by inactivating the running systems and loading a new

configuration file. In the dynamic case which is also known as run-time reconfiguration, the

configuration is loaded while the rest of the system blocks are running. This allows

configuring a selected part of the chip by using specialized hardware. Hence, dynamic RCS

systems are also referred as partial dynamically reconfigurable systems and are created by

defining partial reconfigurable region (PRR) using a floor-planning software such as Xilinx

PlanAhead. The concept of partial reconfiguration allows multiple configurations to be

swapped in and out of the hardware independently. The applications to be reconfigured at run-

9

time are known as partially reconfigurable modules and are statically bound to the PR region,

allowing them to run only in the defined partially reconfigurable modules region. Fig. 1.6

shows one such PRR region and two partial reconfigurable module (PRM) named as add and

mult bound to this region.

FPGA

Mult.bit

Add.bit

PRR

Figure 1.6: FPGA based system with one PR region with two PRM mapped

The PRM modules are compiled and partial bit files for each functional block configuration

are moved to the memory available on the respective board such as compact flash, double data

rate (DDR) or platform flash providing a database center for partial bit files. At run time, these

files are loaded and executed by static scheduler, which calls the configuration in dependency

order, stores the intermediate results and executes the complete application. The primary

concern here is the total time taken starting from loading to executing the given configuration.

Thus the idea of partial reconfiguration enables system flexibility in terms of providing more

functionality to be performed in the same area by reducing the area and power requirement of

the system. Runtime reconfiguration of programmable devices is the state of the art

technology available, but is still not applied in the industrial applications due to lack of

sophisticated and automated tools. To exploit the potentiality of RC systems, development of

user friendly tools is required.

1.3.2. Advantages of Partial Reconfiguration

The advantages of dynamic partial reconfiguration are as follows:

i. Partial reconfiguration allows designing a self-adaptive and flexible system, where

hardware changes can be rapidly migrated, depending on the applications.

ii. Partial reconfiguration allows designing an intelligent system that manages

reconfiguration in order to save power.

iii. Partial reconfiguration enables hardware reuse that allows using more silicon than we

pay for.

10

1.4. Motivation for Current Research

As described in the previous section, FPGAs can be used for both software and hardware

design thereby offering a wide spectrum of choice of tradeoffs to the designer. The decision

from a pure SW implementation to HW requires certain design parameters comparison based

on performance, HW area, power consumption and suitable design flows for FPGAs. Further

each layer from SW to HW, spans many optimization techniques, resulting in new dimensions

of acceptable functional parameters. This research work has been inspired from such demand

and comparative data interrogations from the designers.

The application which requires better performance can be partitioned into HW-SW or HW-

HW parts [1.9]. For mapping such a candidate, two solutions are possible: 1) Migrating part of

the design to HW and the remaining part to the SW, 2) Dividing the design into HW partitions

by implementing and executing them sequentially as well as concurrently. HW-HW

partitioning using partial reconfiguration has not been extensively tested on real hardware.

Hence the objective of this thesis work is to achieve efficient HW-HW partitioning using

static approach and partial reconfiguration flow and bring out the pros and cons of the

proposed design flow.

Some of the high level synthesis tools such as Vivado-HLS convert a high level languages

(HLL) specification like C/C++/SystemC etc. into HW automatically. But due to this, many of

the functions normally consume more HW resources as compared to RTL design. In this

scenario, the advantage of automation is nullified as most of the chip area is used. Using

partial reconfiguration, more HW reusable functions may be divided into further small design.

These functions can be executed temporally using partial reconfiguration concept.

In concise, we identify the following motivational gaps for the current work:

 Though HW-SW co-design flow is established, some of the practical design flows are not

offered by the present tools. These practical flows are achieved by design methodology

that can assist the designer.

 With the advent of high level synthesis tools like Vivado-HLS, the migration of SW to

HW is now accelerated. These automated approaches have not been extensively explored

for effectiveness in performance.

 The partial reconfiguration flow, has not been used for HW, HW partitioning problem,

hence needs to be compared for its pros and cons.

11

1.5. Problem Definition and Objectives

Many applications fail to achieve the required performance on the processor as pure SW

execution. This problem is solved by migrating a certain part of the code to HW. During this

migration the decision making task is: which part of the code to migrate. This answer can only

be addressed after an initial implementation of the design has been done on the target device,

through which execution profile of the application can be accumulated. This makes the life of

the design cycle longer and complex. Hence, what we need is the exact design method that

can guide the designer prior to implementation. Such methods requires a proposal of an

algorithmic approach to generate design place solutions and guide the designer for area/delay

trade-offs.

The specification of an application can be done in various ways such as C language, Matlab,

finite state machines, dataflow graphs etc. A dataflow model of computation aims at capturing

the data flow and its computations among the various operations. The computation part of any

design can easily be defined in such a model. They can be used as input specification and can

be easily generated, verified and comprehended. Hence these models are a good choice for

examining the proposed algorithms in terms of their correctness and effectiveness. These

algorithms demand proposal of efficient partitioning and scheduling of operations in correct

order. Such algorithms aim at creation of coarse grain clusters that can be mapped as static or

dynamic modules. These clusters should be created in such a way that overall the area-delay

product improves.

For estimating the area required for a DFG or a C program, we need to generate its control

flow graph. Without the HW generation, making this possible will allow the SW programmer

to bypass the HW learning and quickly generate functional parameters.

Hence the objective set for this work is defined as:

1. Design and implementation of automated system design flow for applications defined

in high level language with HW-SW co-design concept to design optimal systems.

2. Design and development of an algorithm for estimation of resources consumed by

functions described as control flow graphs generated from compiler.

3. Given a dataflow and control flow graph specification, design and implement efficient

algorithms to convert fine grain graphs to coarse grain graphs. Create such coarse level

graph by finding reusable patterns in the specification.

12

4. Identification of functional blocks for efficient mapping using a partial reconfiguration

approach and schedule the application to exploit the strength of a RC system.

1.6. Thesis Organization

This thesis is organized into six chapters. Chapter 1 presents the introduction to reconfigurable

systems and motivation for the thesis work. Chapter 2 discusses the literature survey of

system design methodology, partitioning of DFGs, high level synthesis and partial

reconfiguration.

Figure 1.7: Organization of thesis work

Chapter 3 focuses on resource estimation of C/C++ programs and cluster creation. The work

further demonstrates how clusters known as extended basic block can be created using an

algorithmic approach. A framework for HW-SW co-design using genetic algorithm has been

Frameworks

Framework-1 Co-
design(hw-sw)

Profiling of C
Code/Task graphs

Partitioning and
Scheduling

Results

Resource
Estimation Using
LLVM compiler

Clustering of
Basic Blocks

Results

Framework-2 RCS
Design(hw-hw)

Data flow graph
Specification

Using Isomorphic
Graphs for
Clustering

Scheduler Design

Results

Using GA for
Partitionig and

Scheduling

Results

13

proposed in chapter 4. Chapter 5 explains the partitioning problem and applies it for creating

clusters to HW-HW design flow. Genetic Algorithm (GA) has been used for partitioning and

scheduling of RC systems and is extensively covered in this thesis. It also highlights the

process of dynamic partial reconfiguration and compares the results of the previous chapters.

Chapter 6 gives a summary and draws conclusions on the basis of results obtained. It also

presents the future work to be carried out with the existing platform. Fig. 1.7 shows the

summary of work done and organization of thesis.

1.7. Conclusion

In this chapter we have discussed the principles of FPGAs, system-on-chip, reconfigurable

systems and partial reconfigurable systems. These emerging systems are allowing searching

for various HW and SW implementations to maximize the performance while meeting the

constraints. This has motivated out research work and inspired us to define the research

objectives.

14

REFERENCES

1.1 Peter Marwedel, Embedded system Design, Springer, Kluwer Academic Publishers,

2003. (chapter-1)

1.2 Peter Barry and Patrick Crowley, Modern Embedded System, Springer Publisher, 2012.

(chapter-1)

1.3 Software Design Methods for Concurrent and Real-Time Systems. Hassan Gomaa,

Addison-Wesley, 1993. (chapter-1)

1.4 Digital Signal Processors: Architecture, Programming and Applications, B.

Venkataramani, M. Bhaskar, Tata McGraw-Hill Education, 2002.(chapter-6)

1.5 SOC W. Wolf, A Decade of Hardware/Software Co-Design, in Proc. of the 5th

International Symposium on Multimedia Software Engineering (MSE), pp. 38–43,

December, 2003.

1.6 R. A. Klein, A. Moona, Migrating software to hardware on fpgas, International

conference on field programmable technology, pp. 217-224, December, 2004.

1.7 Cristophe Bobda, Introduction to Reconfigurable Computing: Architectures, Algorithms

and Applications, Springer, 2007. (chapter-2)

1.8 Kuon, J. Rose, Measuring the gap between FPGAs and ASICs, IEEE transactions on

computer-aided design of integrated circuits and systems, vol. 26, no. 2, February, 2007.

1.9 J. Straunstrup, W. Wolf, Hardware/Software Co-design Principles and Practices,

Springer, Kluwer Academic Publishers, 1993. (chapter-4)

1.10 Patrick R. Schaumont, A practical introduction to hardware/software codesign, Springer

international edition, 2011. (chapter-2)

1.11 Robert K. Dueck, Digital Design with CPLD Applications and VHDL, Delmar Cengage

Learning, 2nd revised edition, July, 2004.

1.12 http://www.xilinx.com/,last accessed on 15 July 2016.

1.13 https://www.altera.com/, last accessed on 15 July 2016.

1.14 http://www.latticesemi.com/, last accessed on 15 July 2016.

1.15 http://www.microsemi.com/products/fpga-soc/fpga-and-soc, last accessed on 15 July

2016.

1.16 http://www.xilinx.com/products/design-tools/xps.html, last accessed on 15 July 2016.

15

1.17 http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/ind

ex.html, last accessed on 15 July 2016.

1.18 http://www.xilinx.com/products/design-tools/vivado/integration/sysgen.html,

last accessed on 15 July 2016.

1.19 http://www.xilinx.com/products/design-tools/planahead.html, last accessed on 15 July

2016.

1.20 http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_process_analyze_design_using_chipsc

ope.htm, last accessed on 15 July 2016.

1.21 http://www.xilinx.com/products/design-tools/vivado.html, last accessed on 15 July

2016.

1.22 Wayne Wolf, FPGA based System Design, Prentice hall India, 2004. (chapter-3)

1.23 http://www.xilinx.com/support/documentation/data_sheets/3000.pdf, last accessed on 15

July 2016.

1.24 Clark N. Taylor , FPGA Implementation Details, 2008.

(http://ece320web.groups.et.byu.net/CourseNotes/FPGA.pdf), last accessed on 15 July

2016.

1.25 Dimitris Gizopoulos, A. Paschalis, Yervant Zorian, Embedded Processor-Based Self-

Test, Springer, Kluwer, 2004. (chapter-4)

1.26 http://www.cypress.com/products/32-bit-arm-cortex-m-psoc. , last accessed on 15 July

2016.

1.27 System-on-a-Programmable-Chip Development Platforms in the Classroom,

users.ece.gatech.edu/~hamblen/papers/SOC_top.pdf. , last accessed on 15 July 2016.

1.28 http://www.xilinx.com/products/intellectual-property/fsl.html.

16

Chapter 2

Literature Survey

Reconfigurable systems are versatile platforms which allow the designer to conceive any kind

of SW or HW optimizations and methodologies. It allows achieving the desired system

performance by different approaches. These systems contain a processor, on which the SW

can be executed and HW fabric on which any accelerator can be designed. Techniques like

fixed point vs. floating point arithmetic, usage of simple vs. complex algorithm, language

selection etc. allow bringing out the tradeoff in SW implementation. Similarly optimization in

HW implementation can be achieved by various techniques like pipelining vs. parallelism,

static vs. dynamic scheduling etc. The design of HW accelerators on RCS requires that the

resources available on the chip are effectively used to deliver the best performance.

To gain an elaborate insight in the research progress made in the field of chosen problem

statement and identify the existing gaps we undertook an extensive literature survey. This

enabled us to highlight the problems to be focused on, formalize the solutions and explore the

strategy to be adopted to achieve the objectives of the proposed work. This chapter is divided

into four sections which cover the literature survey for HW-SW frameworks, high level

synthesis, partitioning/scheduling, and partial reconfiguration process.

2.1. Frameworks and Design Methodology

The initial framework for HW-SW partitioning and mapping using manual time estimation

and manual synthesis was proposed in [2.1], which demonstrates a complete working example

of digital camera using a C specification. This design shows an image compression

implementation on a soft core based 8051 complied on FPGAs. A co-simulation testing setup

having a cross-compiler and HDL simulator was used for verification. This benchmark was

downloaded and simulated in Xilinx ISIM simulator as shown in Fig. 2.1 for verifying the

way in which co-simulation is performed. The 8051 VHDL model files and the C code stored

in ROM VHDL model is shown in Fig. 2.1. The simulation setup includes the cross compiler

and its conversion to a ROM image. The execution in the simulator was possible without a

HW implementation allowing the co-simulation to accumulate the performance results.

17

Figure 2.1: Co-simulation of digital camera case study in Xilinx ISIM

The timing constraint kept for the design was given as 1 second, since holding a camera for a

prolonged time is frustrating to the user. Hence to achieve the required performance a co-

design methodology was adopted and four implementations were written for achieving the

target of 1 second. Implementation 1 is pure SW execution and fails to achieve the required

time. In implementation 2, one of the modules is randomly chosen and is migrated to HW. In

implementation 3 discrete cosine transform (DCT) is implemented in HW and 4 is an

implementation of using fixed point arithmetic in DCT block. The Table 2.1 shows the time

comparison, which is coming down from 9.1 seconds to 0.099 seconds.

Table 2.1: Three parameters for Digital Camera Case Study on 8051 [Source: 2.1]

The shortcomings of this design flow were manual partitioning, manual estimation of time and

manual conversion of C to HDL, making it time consuming and resulting in a longer design

cycle. These guidelines can be adopted only by an experienced designer who knows an in-

depth understanding of the platform.

Similar work was done in Google summer of code 2006 [2.2] (a contest organized by Google)

on the Leon3 platform, which is from Aeroflex Gaislor company [2.3]. The design flow uses

Implementation 2 Implementation 3 Implementation 4

 Performance (second) 9.1 1.5 0.099

 Power (watt) 0.033 0.033 0.040

 Size (gate) 98,000 90,000 128,000

 Energy (joule) 0.30 0.050 0.0040

18

operating system based design and device driver for migrated IP to HW. This work shows the

time profiling on general purpose computer for media application and uses the results for

profiling process. The conclusion was that the function reconrefframes waste approximately

60% of CPU-time and should be migrated to HW. The flow does not use algorithmic approach

and a C to HDL compiler to compute the resources consumed. Most of the work in this

domain lacks the demonstration of time estimation on an embedded target, which can give

better estimation results. The structural design is shown in Fig. 2.2 with Theora codec

interfaced to APB bus. This work gave an idea of the time profiling on the host and

demonstrated the difference in results.

The popularly available tools for co-design are COSYMA, Lycos, Polis, Chinook, Akka,

CASTLE/SIR, CodeSign, CoWare and Symphony, The Ode System, COOL, PeaCE [2.4].

Most of these tools are either proposed or not available on-line. The only commercial tool

among them is CoWare and its results have not been reported in literature. The common

problems encountered in these tools are:

i. ANSI C language is not a standard input in most of them.

ii. The design space exploration for a given design requires manual intervention.

iii. An efficient conversion of SW to HW automatically is missing.

The generic steps required to convert a SW specification into HW [1.10] are:

Step-1: Convert the SW specification into control flow graph using a compiler

Step-2: Generate a data dependence graph from the control flow graph

Step-3: Convert each node in the a combinational circuit

Step-4: Use multiplexer and registers for the combinational circuit design

Step-5: Content the circuit node using the edges in the data dependence graph.

Step-6: Generate a finite state machine for each node in control flow graph.

These steps are applicable to sub-set of a SW language and may fail in cases such as dynamic

pointers, file operations, recursion etc. The problems were addressed in [2.5] which present a

framework called ASSET where profiling was used to find the critical parts in a C program

and a C to HDL compiler was written to automate HW generation. The ASSET framework is

based on Stanford universal intermediate format (SUIF) compiler for basic block profiling and

HW generation. A HW generation from a C specification is only possible by converting it into

a control flow graph. This CFG is parsed and control edges are converted into a finite state

19

machine and data edges are converted into datapath. SUIF compiler has many drawbacks such

as: the development was stopped in early 2000, recursion is not available, lack of built-in pass

for optimizations, no community support etc. The work was a first effort to perform the

profiling of basic blocks in complier and find the critical part of the program. Though it has

not shown the proposed area estimation technique, but it focuses on HDL generation and

interfacing, thus lacking to show the framework on a benchmark for generality.

LEON3

Serial Dbg Link JTAG Dbg link

AHB

Controller
AMBA AHB Bus

Memory

controller

AHP/APB

Bridge
AMBA APB Bus

Theora _amba_interface
SDRAM1

Memory Multiplex

LIBTHEOR

A DRIVER

ReconRefFrames 2

Figure 2.2: HW accelerators in Leon3 platform on Altera StratixII [Source: 2.2]

Verification and Prototyping

System Integration

Hardware Synthesis Software SynthesisHardware

Library

Interface Synthesis

Processor

Library

Partitioning

Hardware Estimation Software estimation

Application

Specification

Figure 2.3: ASSET co-design methodology [Source: 2.5]

Fig. 2.3 shows the design flow of work in [2.6] with HW estimation and SW estimation being

the building block for partitioning process, followed by system integration on a SOC platform.

20

The framework fails to show the results of a benchmark, hence cannot be used for comparison

purposes.

From the literature survey done, it was identified that presently LegUp tool [2.6] is the only

open source platform that allows co-design methodology to be implemented. It is an open

source hardware software co-design tool which starts from a C specification and allows the

designer to map applications as SW on a MIPS processor or as HW accelerator on FPGA

fabric. The design flow is shown in Fig. 2.4, with a C program as input and implementation as

HW or SW. It uses a profiling technique [2.7] by proposing a HW architecture which can

count the real-time cycles and energy profiles of an FPGA-based soft processor. The tool uses

low level virtual machine (LLVM) compiler for preprocessing of C programs and HW

migration.

LegUp

Self-profiling

MIPS

processor

Profiling Data

ANSI C

Program

FPGA Fabric and

Microprocessor

C compiler

High level

synthesis

Figure 2.4: LegUp Co-design methodology [Source: 2.6]

The comparative analysis of various benchmarks problems is listed in Table 2.2 [2.7]. For the

MIPS processor-SW flow, the processor runs at 74 MHz on the Cyclone II and the

benchmarks take between 6.7K-29M cycles to complete their execution. LegUp-Hybrid2

provides a 47% (1.9×) speedup in program execution time vs. SW (MIPS-SW). In the LegUp-

Hybrid1 flow, there is 73% reduction in program execution time vs. software (a 3.7×speed-up

over software). Looking broadly at the data for MIPS-SW, LegUp-Hybrid1and LegUp-

Hybrid2, it is observed that: execution time decreases substantially as more computations are

mapped to hardware. LegUp produces heavily pipelined hardware implementations, whereas,

we believe eXCite does more operation chaining, resulting in few computation cycles yet

longer critical path delays. Considering total execution time of a benchmark, LegUp and

eXCite offer similar results. Both of the pure hardware implementations are a significant win

over software.

21

Table 2.2: Performance results of LegUp [Source: 2.7]

The framework does not seem to be very promising from the results as the speedup achieved

is very low. Hence is the need is to explore the reasons behind it. The design flows discussed

above are manual in nature and are applicable to a very experienced designer. From this, it is

concluded that for complete automation there are primarily two requirements.

 The amount of resources consumed by an IP which is migrated to HW should be

known.

 A framework which can show the critical part of the design and optimize the code

should be used.

2.2. Partitioning and Scheduling

The first phase of the design cycle is the specification of the design which includes its

functional and non-functional requirement. The functional requirement describes the behavior

of the design and non-functional requirement describe the constraints on the design metrics.

The functional behavior of a design is captured in a model such as finite state machine/Task

graph or in a language such C/C++ etc. These models/programs are usually converted to

abstract data structures such as link list for syntax checking and executable generation. Such

linked structures can be depicted as graphs in which each node corresponds to an operation

and edge as data communication. Control flow and data flow are the two structures that are

available in all languages. Control flow corresponds to the syntax such as loops, goto etc. and

data flow corresponds to computation like addition in y = ax + b. For example for the code

snippet given below, the CFG is shown in Fig. 2.5.

{

22

temp = 0;

for (i=0; i < 5; i++)

 temp = temp + i ;

}

temp=0,

i=0;

temp=tem

p+i

i++

Return

If(i<5)

Figure 2.5: Control flow graph for the code snippet

Similarly a task/data flow graphs is modeled as non acyclic graph. For example for the

equation ax
2

+bx+ c, the DFG is shown in Fig. 2.6. It shows the various ways in which the

nodes can be clubbed together to create a partition. Now for a given architecture which has

multiple processing elements, where these clusters can be executed, finding the best possible

solution is the task of partitioning and scheduling stage. The problem of partitioning and

scheduling can be as applicable to CFG and task graphs and can be discussed separately.

23

* *

*

+

a x b

+

c
* *

*

+

a x b

+

c

(A) (B)

* *

*

+

a x b

+

c

(C)

* *

*

+

a x b

+

c

(D)

Figure 2.6: Partitioning of graph

The initial work in the development of frameworks for HW-SW partitioning and scheduling of

the applications described in C was seen in [2.8]. The work shows the design process with a

new language for describing the control flow structure of the program and used LCC compiler

for generating the compiler intermediate representation (IR). The framework was applied to

customized multi-FPGA systems and hence was not extensively used.

Similar research was done in [2.9], which shows temporal partitioning and scheduling for

multi-FPGA systems and clearly demonstrates the mapping of the DFG to FPGAs and reports

the reconfiguration time of the executable model. In this approach, partial reconfiguration

design flow was not used, but the work was dedicated more to scheduling at the instruction

level and a multi-FPGA dedicated architecture was used for experimentation. The work

compares the level based vs. non level based scheduling. The algorithms were described to

work on DFG model only and are not applicable to complete ANSI-C set. This problem of

ANSI-C is addressed in [2.10] which follows a basic block generation using a compiler and

proposes an algorithm for area based cluster creation, focusing on overlapping basic blocks

for improving performance. The work proposes its own intermediate representation format for

the generation of basic blocks and their scheduling. In [2.11] a compiler framework has been

proposed to partition and schedule the instructions, but the performance has been shown for

defined architectures, which is not general. For making the partitioning process efficient for

co-design, a compiler intermediate format has been extended in [2.12] and called as

24

hierarchical control dataflow graphs (CDFG) which can be seen as clusters for performing

parallelism and high level synthesis.

The initial work involving the creation of a library of operators and sharing them in the

scheduling process is reported in [2.13], which shows the effect of sharing of operators with

respect to time and area but lack the design flow starting from ANSI-C set. The work in [2.14]

extends the CDFG model to accommodate control flow mapping to HW easily and shows that

a library of operators has been created for mapping. The CDFGs have been converted to

hierarchical control flow graphs to exploit the inherent parallelism. The results have not been

shown for a benchmark program, hence cannot be used for comparison purposes. Chapter 4 of

[1.7] discusses the partitioning and scheduling problem in detail. The LIST scheduling

algorithm for RC systems where each node is assigned a priority and partitions are created

based on a given area is discoursed. The work lacks to demonstrate a design running on PR

region and the consequences of partitioning a design. This gap between the algorithm proposal

and its verification inspires this research work to set up the experimental analysis.

The work in [2.15] uses integer level programming with scheduling to find similar patterns as

a candidate for partial reconfiguration. The primary purpose of finding the isomorphic graphs

is to reduce reconfiguration overhead. This work highlights only the software simulation result

and does not compare the real time performance by interfacing an application to the processor

bus. The design flow presented hence is not realistic. In [2.16] a design flow for mapping

applications on Xilinx FPGA partial dynamic reconfiguration flow using PlanAhead has been

extensively shown. The work compares the resource usage for encryption algorithm but lacks

to show the timing analysis. The most recent work [2.17] proposes an algorithm for finding a

pattern of the configuration to be placed in multiple PR regions. It also shows the theoretical

time equation that can used to calculate the reconfiguration time.

Partitioning is a process by which we divide the input specification into sub-sets depending on

the constraints like: the number of subsets, maximum vertices in a sub-set and maximum

number of edges between the sub-sets. The partitioning technique can be broadly classified

into constructive and iterative approaches. Constructive partitioning aims at identifying an

initial partition and are greedy in nature. This means such algorithms fail to find the global

minima and may stop at local minima. Examples are random selection, cluster growth,

hierarchical clustering, Fiduccia-Mattheyses (FM) and min-cut [2.18, 2.19].

The literature in [2.20] discusses the various optimization problems in system level synthesis

theoretically which are partitioning and scheduling. To achieve hardware and software

performance trade-off, many optimization algorithms have been already proposed, such as

25

Tabu search and simulated annealing [2.21, 2,22] which applies partitioning to loops, blocks,

subprograms and processes, Ant colony optimization [2.23], swarm optimization [2.24] and

Genetic Algorithm (GA) [2.25, 2.26, 2.27] which is a stochastic optimization algorithm

modelled on the theory of natural evolution. Since its first successful implementation, GA has

been used to solve a wide range of problems, such as travelling salesman problem [2.28], real-

time problems such as reconfiguration of evolvable hardware (EHW) [2.29], and other

optimization problems that have complex constraints [2.30]. Hardware and software co-design

using genetic algorithm has been implemented previously [2.31, 2.32, 2.33] on simulated data

set which contains various area and delay parameters.

Figure 2.7: Comparative results among FM, GA, SA and MFM for cost vs. time

constraint [source: 2.34]

A simulation of a theoretical task graph on HW and SW using GA is compared with

approaches like FM and simulated annealing (SA) in [2.34]. The objective function (Objfct) is

used to guide the GA and it includes time/cost along with predetermined deadline. Mapping is

a process which determines which node will run on what component. The work fails to show

the mapping on concurrent architecture (multiple CPU/ASIC). It misses to propose an

algorithm which can find the execution time if nodes are concurrently executed on multiple

CPUs and ASICs. Fig. 2.7 clearly shows the comparison of four partitioning algorithms which

are Fiduccia Mathesys (FM), GA, simulated annealing (SA) and modified Fiduccia Mattheyes

(MFM). In FM, the elements that improve the OF are selected and locked. This process is

repeated until all the blocks are locked and there are no improvement of the objective

function. This method only allows the movement of a block in each step. GA converges

quickly as compared to other algorithms and hence is better algorithm as compared to others.

MFM algorithm is a particular version of the FM that includes a special attention to

26

communication costs. Besides it permits the migration of more than an only block. SA works

with one solution and moves towards a better solution, while GA starts from a set of solutions.

The running time and the optimal solution generated by GA in dependent on many parameters

such as number of iterations, population size, mutation probability (pm) and crossover

probability (pc). Adaptive probability [2.35] is a technique which is used to guide GA for

values of mutation probability and crossover probability depending on the fitness value of the

genes for better convergence of the GA. The crossover probability controls the rate at which

solutions are subjected to crossover. The higher the value of crossover probability, the quicker

are the new solutions introduced into the population. As crossover probability, increases,

however, solutions can be disrupted faster than selection can exploit them. Typical values of

pc, are in the range 0.5-1.0. Mutation is only a secondary operator to restore genetic material.

Nevertheless the choice of pm, is critical to GA performance. Large values of pm, transform

the GA into a purely random search algorithm, while some mutation is required to prevent the

premature convergence of the GA to suboptimal solutions. Typically pm, is chosen in the

range 0.005-0.05.

The next problem of system level synthesis is scheduling, which gives an exact order of the

execution time of the nodes. Scheduling of the DFG starts from the assumption that unlimited

resources are available, allowing any implementation to be feasible. Let us take a C code as

shown in sample 2.1 and show its DFG for clarification (Fig. 2.8).

 Sample 2.1: C Code

main()

{

float t, I1, o1, x1=0.0, x2=0.0;

while (1) {

in(I1);

t = I1 + a3*x2 + a1*x1; // line 6

o1=t+a4*x2 + a2*x1; // line 7

x1 = t; // line 8

}}

27

Figure 2.8: ASAP schedule

Figure 2.9: ALAP schedule

The commonly used algorithms for scheduling are:

A. As soon as possible (ASAP)

B. As late as possible (ALAP)

C. Constraint Scheduling

The ASAP/ALAP schedule is shown in Fig. 2.8 and Fig. 2.9 and is used as starting point to

provide constraint parameters to scheduling algorithms. Assuming that unlimited resources are

available, the DFG graphs are shown for line 6, 7, 8, 9 of the sample code. These algorithms

assume that unlimited resources are available and allow maximum parallelism in the

generated schedule. Maximum parallelism means that all the operators in the same level can

28

execute at the same time. For e.g. in Fig. 2.8, all the first four multipliers can run at the same

time in t0. The pseudo code for the delay calculation is given below [1.7]. Each node is

traversed and the delay of the parent is added to find the critical time of the DFG. We start

from the nodes which have no predecessor and add the delay successively.

ASAP(G(V,E),d) {

 FOREACH (vi without predecessor)

 s(vi) := 0; // starting node

 REPEAT {

 choose a node vi , whose predecessors are all planned;

 s(vi) := maxj:(vj)E {s(vj)+ di};

 //predecessor delay = s(vj), current node delay = di

 }

 UNTIL (all nodes vi are planned);

 RETURN s;

}

Assume that an adder takes 10 clock cycles and multiplier takes 50 clock cycles. From the

above algorithm, the output (o1 in the graph) will be available after 80 cycles (one multiplier

and three adders). In case of ALAP scheduling, we start from the nodes without successors

and traverse back as shown below:

ALAP(G(V,E),d, L) {

 FOREACH(vi without successor)

 s(vi) := L - di; // L is the given latency

 REPEAT {

 Choose a node vi , which successors are all planned;

 s(vi) := minj:(vj)E {s(vj)} - di;

 }

 UNTIL (all nodes vi are planned);

 RETURN s

}

One of the parameter that is computed from ASAP and ALAP schedules is mobility. Mobility

is the difference in the level of a node in the two schedules. For e.g. in Fig. 2.8 node 1(a2 and

x1) has a mobility of 1. If the resources are restricted (i.e. lesser number of HW units for a

given level), then the schedule changes accordingly. Practically limited amount of resources

are available, hence we impose resource constraints to ASAP and ALAP schedules which is

known as constraints scheduling [1.7]. Suppose that one adder and one multiplier are available

29

for allocation, and then the generated schedule is shown in Fig. 2.10. The output is this case

will be available after 220 cycles since four multipliers and two adders are there for worst case

path.

Figure 2.10: Constraint scheduling

The lecture notes in [2.36] show some scheduling examples on the dataflow model such. Task

graph scheduling for parallel systems has been discussed in [2.37]. Since we requires a

dataflow model of a specification, the Express benchmarks [2.38] describe the application

written in C in the data flow format described as data flow in a dot model in Graphviz tool

[2.39] from IBM. The sample of the cosine benchmark is given in Fig. 2.11 and can be used as

an input for partitioning and scheduling phase.

30

Figure 2.11: Express benchmark of Cosine-2 program [source: 2.59]

Integer linear programming [2.40, 2.41, 2.42] for scheduling has been used as a mathematical

model and is based on equation used to solve the problem. Instruction/operator level which is

very low level of abstraction may not produce desired optimized area and performance

parameters, since such operator consume very less area as compared to the area available in

RCS. Smaller nodes can be combined together to create coarse level nodes to reduce the

overhead. This advantage also introduces interface design and intermediate data transmission

design complexity. To create coarse level nodes one of the possibilities is finding the similar

patterns in the application and uses them as reusable patterns. The scheduling of nodes

clusters which are similar in nature extends the possibility of better implementation. The

repetitive node patterns are known as isomorphic graphs as shown in Fig. 2.12.

ADD SUB ADD SUB

SUB SUB

ADD

31

Figure 2.12: Node matching based isomorphic graphs

The problem of finding an isomorphic graph is a central position in complexity theory as a

proposed occupant of the region that must exist between the polynomial-time and NP-

complete problems. The easiest and the lengthiest way of finding such subgraphs can be a

brute force method, which is not efficient since the order of complexity is O(n! x n
2
). The time

complexity for enumerate all bijective mapping will be O(n!) and O(n
2
) will be complexity for

checking whether each mapping is isomorphic. The problem of finding such graphs has been

discussed extensively [2.43]. A weighted method has been used to guide the generation of

isomorphic graphs [2.44]. We have used the method and applied it RCS systems after

applying the area constraints and node matching as well.

2.3. Resource Estimation and High Level Synthesis

A FPGA chip has restricted resources in terms of LUTs, BRAMs, DSP slices etc. When an

application written in high level language is migrated to HW, the primary concern is: The

amount of resources consumed by the HW. Two methods can be discoursed for estimation of

amount of resources. First is the analysis method which is based on a mathematical

background and has an initial look-up-table for the resources consumed by each operator.

Second method is the synthesis method which converts the specification into a HW using a

HLL to HDL compiler.

Research works published in the first method domain can be cited firstly in [2.45] and have

shown the estimation of input output pins and time required for the benchmarks. The work is

outdated now, as the density of logic elements has increased many folds. The work done in the

area estimation was first seen in [2.46]. The authors show the number of configurable logic

blocks (CLB) consumed for a design based on number of operators, their bit-width and

number of registers. The estimation is applicable to a dataflow model, where semantics is

similar to the netlist. The work in [2.47] shows the estimation model for Matlab based system

generator designs. The model is well developed for simulink based design and is not

applicable to HLL. The work in [2.48] shows the compiler framework required for resource

estimation of ANSI-C programs.

The resource estimation requires a mathematical model which gives results taking inputs as

operators, bit-width, types of operators and return the number of LUTs/registers used. This

model has been thoroughly proposed in [2.49]. The results have only been shown for one

32

benchmark which is not generic and estimation is not for ANSI-C programs. This work does

not show the usage of resource estimation for ANSI-C program with a complete design flow.

The second method is based on high level synthesis (HLS) which is the process of converting

a C/C++/SystemC based specification into synthesizable HW. Many tools have been

developed over the last decade for this process to automate along with numerous

optimizations applied is the respective tools. The SPARK [2.50] was the first open source tool

produced and its primary objective was to apply scheduling of instructions for better

synthesis. The following features were not supported in SPARK:

 Dynamic memory allocation

 Continue, break and goto

 Multidimensional arrays

 Function calls with parameter passing

 File operation

ROCCC [2.51] was another tool which was developed to remove some of the above

restrictions, but required the changes in the syntax of the program. LegUp [2.52] from

University of Toronto is still a active group in research in HLS and has developed a

benchmark ChStone [2.53] written in HLS for comparison of different tools, Commercial

tools include BlueSpec Compiler from Bluespec, Catapult C from Calypto Design Systems,

eXCite from Y Explorations, Xilinx Vivado-HLS (formerly AutoPilot from AutoESL).

Control flow graphs have been frequently used for the automatic generation of HDL [2.54].

Compilers usually decompose programs into their basic blocks as a first step in the analysis

process. Basic blocks from the vertices or nodes in a control flow graph. LLVM [2.55] is a

good candidate for the generation of CFGs. various kinds of optimization can be done on the

C code for better conversion to HLS. The results in [2.56] show a comparative table of the low

level optimizations and their effect on HLS. The work in [2.57] explores all the optimizations

that can be done on the C code at various levels for HLSs. The work in [2.58] shows the

generation of HW in a simplified manner. Most computational design implemented these days

is image processing applications. The design flow in [2.59] explains the usage of FPGA for

accelerator HW design. The lecture notes in [2.60] explain the generation of high level

synthesis (HLS) from LLVM IR in a simple way with the use of datapath and finite state

machine (FSM) design. The Xilinx Vivado HLS [2.61] tool provides options for carrying out

33

different types of optimizations on the behavioral description before synthesizing it which

enables the user to bring the design closer to the given throughput or area specification.

2.4. Reconfigurable Computing Systems

From the discussion of the architecture of RC systems in chapter 1, various issues and

challenges in the research work in this domain are identified. An RC system is developed

around a specific HW and a defined architecture which can control reconfiguration. These

systems have intrigued and inspired the designer to address the following questions:

1. Who controls the reconfiguration? Processor (may be inside the FPGA)

2. Where the configurator is located? Dedicated physical component in the FPGA

3. When the configurations are generated? Synthesizing the best static possible configuration

4. Which is the granularity of the reconfiguration? Smallbit based (CLB) or module based

In order to further highlight this aspect, a 3 axis classification scheme described by John

Williams [2.62], characterizes the diversity of the reconfigurable systems depending on

1. Reconfiguration Controller

2. Configuration generation

3. Level of reconfiguration granularity

These parameters are discussed as below:

2.4.1. Reconfiguration Controller

The systems in which reconfiguration is managed and controlled by some external device are

called as externally reconfigurable and but those initiate and control their own reconfiguration

are called as self-reconfigurable. So such a system can perform self read-back and reconfigure

themselves by loading a new configuration stored in a external memory. Some systems can be

a combination of both these which requests modules from a remote bitstream server

controller.

Full bistream
Partial

bitstream 1

Partial

bitstream 2

Partial

bitstream 3

Partial

bitstream 4

FPGA FPGA

Processor
Processor

ICAP
Reconfigu

rable

region

Reconfig

urable

region

Configuration

port

Memory

Self Reconfiguration External Reconfiguration

34

Figure 2.13: External vs. internal reconfiguration

2.4.2. External Reconfiguration

External reconfiguration implies that the FPGA resources can be reconfigured by an external

device such as a personal computer or a microprocessor. In this case the external processor

reads the partial bitstreams from external memory and sends the data through the standard

reconfiguration part of the FPGA as shown in Fig. 2.13. A single FPGA configuration engine

handles both full configuration and partial reconfiguration using the same programming

mechanism. The external reconfiguration can be achieved using SelectMAP, JTAG, Serial

ports [2.63].

 2.4.3. Internal Reconfiguration or Self Reconfiguration

Internal reconfiguration or self-reconfiguration system uses an application running on a

configuration controller, generally a processor inbuilt in the system to read partial bitstream

from external memory and send the data to the ICAP (Internal configuration access port)

which then reconfigures the portion of the FPGA indicated by the configuration frame address

included in the partial bitstream. Partial bitstream contain all the necessary commands and the

data necessary for partial reconfiguration [2.64]. The ICAP peripheral enables an embedded

microprocessor to read and write the FPGA configuration memory at runtime. The ICAP

peripheral provides control over FPGA resources with the granularity of a single configuration

frame consisting of 41 32-bit words in Virtex-4 and Virtex-5 family, 81 32-bit words in

Virtex-6 family and 65 16-bit words for Spartan-6 FPGA.

ICAP_VIRTEX 4/5/6

O[31:0], BUSY

I[31:0]

To configuration memory

CLK, CE,WRITE

Figure 2.14: ICAP controller

The ICAP primitive for Vitex-4, Virtex-5, and Virtex-6 families is shown in Fig 2.14. The

ICAP primitive [2.65, 2.66] has four input ports (CLK, CE/CSB, WRITE/RDWRB, I [31:0])

and two output ports (BUSY, O[31:0]). The partial reconfiguration time depends on the ICAP

CLK frequency, configuration data size i.e. bitstream size and the data width of the ICAP port.

35

The configuration bandwidth for various families is shown in Table 2.3. The configuration

time for the FPGA families for a single frame are also shown. Thus the data width and

maximum clock frequency are limiting factors that impacts reconfiguration time.

Table 2.3: Configuration bandwidth Using ICAP primitive [Source: 2.65]

The reconfigurable systems can be characterized by the degree to which they manipulate the

FPGA resources. A minimum of 1 frame can be reconfigured in a Xilinx FPGA. The Virtex-5

frame has a reconfiguration time of 0.41 microseconds. One frame of Virtex-5 contains 8

CLBs, one CLB has 2 slices and one slice has 4 LUTs.

2.4.4. Partial Reconfigurable System Design in Xilinx

PLB BUS

Xps_timer
Xps_bram

controller

Xps_intc

controller

PowerPC 440@400

MHz
Xps_mch_

emu

Xps_IIC

controller

Xps_ether

net

Xps_Syste

mAce

Xps_GPIO Xps_UART User Defined IP core

FPGA Fabric

Memory

Controller

Bus_contr

oller

PR Based region

XPS_HWIC

AP

ICAP

Figure 2.15: FPGA systems with one reconfigurable region

Fig. 2.15 shows a conventional partial reconfiguration (PR) design components using Xilinx

EDK and PlanAhead tools depicting the one PR region in blue color. For example PRR can

36

execute integer operations or execute floating operations. The user defined IP core shown in

purple color is a static logic defined by the user. The essential components used in PR design

flow are memory where the partial bit files are stored and ICAP which loads the partial bit

files on the configuration memory from external memory. The processor instructs the ICAP to

load the bitstream from external memory to the buffer. ICAP then reconfigures the portion of

FPGA indicated by the configuration frame address which is included in the partial bitstream

through the configuration port.

2.5. Challenges of RCS

RCS design flow presents many degrees of concern in creating a successful design.

2.5.1. The Complex Design Flow

The biggest disadvantage in creating the partial reconfiguration flow is the complex steps the

designer has to follow. The steps are given below

 Create an IP and verify the functionality.

 Interface the port of the IP to the bus wrapper as a black box.

 Write the scheduler in SW.

The problem found during PR design flow can sometimes be undesirable and can be resolved,

leading to multiple time project creation.

PR can be explained with a analogy: consider a class room (black box) in a building which has

fixed doors/windows (ports) in which various classes and masses (different designs) are

involved and scheduled at different time (scheduler).

2.5.2. Restrictions in Design Flow

In-spite of the enormous advantages of partial reconfiguration technology, there are some

limitations such as lack of complex applications that substantially benefit from a run-time

reconfiguration, the design tools that permit quick development of PR systems and the cost of

the programmable devices having PR feature which prevents its use in the commercial

products. Some resources on the FPGA can be reconfigured and some cannot which poses

substantial challenges in the system design. In the tools there are limitations in selection of

resources during partial reconfiguration design that are [2.66] as follows.

1. Clocking logic such as global buffers, memory controller and digital clock manager should

reside in the static region of the design. This means that if the synthesized IP uses any of

these resources then it should in static region.

37

2. Multi-gigabit Transceiver, boundary scan, startup should not exist in the static region of the

design.

3. No bidirectional interfaces are permitted between static and reconfigurable regions, except

in case where there is a dedicated route. For example a bidirectional I/O buffer in the

reconfigurable region routed to a top level I/O pad in the static logic can cross between the

reconfigurable region and static logic via a bidirectional interface.

4. The number of global clocks that can be pre-routed to any clock region, and therefore to

any reconfigurable partition, depends on the device family used. The number of clocks in

reconfigurable region cannot exceed the defined limit such as 8 for Virtex-4, 10 for Virtex-5

and 12 for Virtex-6 & Virtex-7 respectively. These limits must account for both static &

reconfigurable logic.

5. Active low resets & clock enables should be used in the design flow to allow the SW to

reset and enable the configuration.

2.5.3. The Reconfiguration Overhead

Table 2.4: Comparison of Reconfiguration Throughput from 2003 to 2009 [source: 2.66]

38

The time required to place the bit file of an application which is stored in a memory on a

partial reconfigurable region is known as reconfiguration time. When the reconfiguration is

performed, the bit file has to move through various stages, which adds time and is referred as

reconfiguration overhead. The characteristics that affect the reconfiguration overhead also

depends on the system setup such as external memory, memory controller, reconfiguration

controller and its interface with ICAP, and the user space to kernel space copy penalty when

an operating system is running on the processor controlling the reconfiguration. The size of

the local memory of the processor (cache) can significantly affect the reconfiguration time.

The primary concern for partitioning and executing an application on one PR region is time

overhead. Author in [2.67] gives exhaustive time model that can be used to calculate

theoretical results.

For Table 2.4: BS: Bitstream size in bits, RT: Reconfiguration time in ms, ARTP: Actual

Reconfiguration throughput. The last column shows that the maximum throughput is obtained

is 353.20 Mbps using DD2/ZBT based memory. They have described the total reconfiguration

time as the sum of times spent in transferring the data from the storage memory to processors

local memory (phase 1), then to the ICAP configuration cache (phase 2) and then finally to the

configuration memory of FPGA (phase 3). Thus, total reconfiguration time can be expressed

as

Reconfiguration Time= RTSM PPC + RTPPC ICAP + RTICAP CM ... (2.1)

Where,

 RTSM PPC- time spent in transferring bitstream data from storage memory to

processor local memory

 RTPPC ICAP - time spent in transferring bitstream data from PPC local memory to

ICAP cache

 RTICAP CM - time spent in transferring bitstream data from ICAP cache to

configuration memory.

An online calculator [2.67] for estimating time overhead given the bitstream size is also

available. This calculator requires the bitstream size, which means that after the entire design

flow is complete and project is created in PlanAhead.

The earliest work in this domain reports a throughput of 94.85 MB/s by using DMA and a

new ICAP design [2.68]. Since this value was too low it required further improvement. Three

designs as Master ICAP, BRAM ICAP and DMA ICAP [2.69] show a performance of 253.2

MB/s, 371.4 MB/s , 82.6 MB/s. Table 2.5 show the comparison of various methods. Although

39

the results have been promising, but the resource usage for BRAM is very high and scarcity of

memory makes it unrealistic design. Very good results are cited in [2.70], where 1.2 GB/s is

reported with the combination of full streaming direct memory access (DMA) and bitstream

compression. Such a drastic improvement requires inspection as the factor is 1000 times. The

answer for this is, simply instruction simulator (ISE) based project (non processor based) has

much greater performance as compared to an EDK based project (processor based). Further

improvement up to 2.2 GB/s is reported [2.71] by over clocking ICAP. The usage of partial

reconfiguration for real systems by scheduling was first reported in [2.72]. The comparative

summary is shown in Fig. 2.5.

Table 2.5: Reconfiguration speed measurement of ICAP design for various sizes of

partial bitstream [Source: 2.69]

Most of the work has been concentrated on reducing reconfiguration time by designing an

efficient ICAP controller, using DMA, placing bistream in BRAM and compressing the

bitstream file. The theoretical speed of the ICAP is 100MHz, and its width can be

programmed as an 8-bit or a 32 bit port allowing a bandwidth of 0.75 or 2.98GB/s.

Authors have shown one PR region that implements different protocol to read data from

sensors. The paper also proposes a simple equation to calculate reconfiguration. The

reconfiguration time mainly depends upon the following features [2.73]:

1. Configuration clock speed (CCLK)

2. Bus width

40

3. Bitstream size

The reconfiguration time of FPGA is estimated as

Reconfiguration time(s) = Bitstream size /(Cclk * Buswidth) …(2.2)

But Eq. 2.2 does not take system setup parameters into consideration. The only work with

multiprocessor design for PR design is seen in [2.74]. From this we conclude that the

conventional ICAP controller available in EDK flow has low throughput of 10 Mbps.

This leads us to summarize the research horizons as:

 Propose an automated HW-SW co-design approach and compare the performance.

 Propose partitioning approaches for converting dataflow graphs into clusters that

accelerate the performance further.

 Design clusters as IP cores and map them to partial reconfigurable region. Compare the

performance the design flow.

 Use resource estimation technique for making these clusters based on a given area.

 Perform the resource estimation using a compiler based flow.

2.6. Conclusions

 LegUp tool is the only open source tool available for co-design and results shown are not

very promising in a SOC based design. Low speedups were reported in the survey which

of the order of 2x in HW.

 The designer should be guided easily for adopting a particular design flow. Such a flow

should generate various HW-SW solution of an application.

 Time profiling and HLS tools can be used for generating time and area parameters

consumed by an application.

 Control and dataflow are commonly used graphically representations as input to

partitioning and scheduling algorithms. These intermediate structures are also used by the

HLS tools to convert the SW into HW.

 Graph isomorphic concept can be used to find the similar patterns in the dataflow model.

 Resource estimation can be done using a mathematical approach.

 Genetic algorithm performs better as compared to SA, FM and MFM.

41

 Using a partial reconfiguration for a partitioning and running a single application on HW

has not been reported.

 We conclude that maximum throughput of 2 Gbps is possible with reconfiguration process

with specialized architecture.

42

REFERENCES

2.1 Frank Vahid and Tony Givargis, Embedded System Design: A Unified

Hardware/Software Introduction, John Wiley & Sons; ISBN: 0471386782. Copyright

(c), 2002. (chapter-7)

2.2 Hardware Implementation of Theora Decoding Integration with LEON3,

http://people.xiph.org/~j/bzr/theora-fpga/doc/leon3_integration. , last accessed on 15

July 2016.

2.3 www.gaisler.com/products/grlib/grlib.pdf, last accessed on 15 July 2016.

2.4 https://www.cs.ccu.edu.tw/~pahsiung/courses/codesign/resources/codesign-tools.html

2.5 ASSET: Anshul Kumar & M Balakrishnan. Automated Synthesis of embedded systems.

Technical report, Dept. of computer science and engineering, IIT-Delhi, June 2002.

2.6 A. Canis, J. Choi, M. A. V. Zhang, A. Kammoona, T. Czajkowski, S. D. Brown, Jason

H. Anderson, LegUp: An Open Source High-Level Synthesis Tool for FPGA-Based

Processor/Accelerator Systems, ACM Transactions on Embedded Computing Systems

(TECS) - Special issue on application-specific processors, vol. 13 Issue 2, article No.

24, September, 2013.

2.7 M. Aldham, J. Anderson, S. Brown, A. Canis, Legup: Low-Cost Hardware Profiling of

Run-Time and Energy in FPGA Embedded Processors, ASAP '11 Proceedings of the

ASAP 2011 - 22nd IEEE International Conference on Application-specific Systems,

Architectures and Processors, pp. 61-68, 2011.

2.8 J. B. Peterson, O'Connor R.B and Athanas, P.M. Scheduling and partitioning ANSI-C

programs onto multi-FPGA CCM architectures, in IEEE Symposium on FPGAs for

Custom Computing Machines, pp. 178-187, April 17-19, 1996.

2.9 M. Karthikeya, G. Purna, and D. Bhatia, Member, Temporal partitioning and scheduling

data flow graphs for reconfigurable computers, IEEE transactions on computers, vol. 48,

no. 6, June 1999.

2.10 S. Ganesan and R. Vemuri, An integrated temporal partitioning and partial

reconfiguration technique for design latency improvement. In DATE ‘00: Proceedings

of the Conference on Design, Automation and Test in Europe, pp. 320–325, New York,

NY, USA, 2000, ACM Press.

43

2.11 R. Maestre, F. J. Kurdahi, M. Fernandez, R. Hermida, A Framework for Reconfigurable

Computing task scheduling and context management-a summary, Circuits and Systems

Magazine, IEEE, pp. 48-51, December, 2001.

2.12 Qiang Wu,Yunfeng Wang, Jinian Bian,Weimin Wu, A hierarchical CDFG as

Intermediate Representation for Hardware Software Codesign, IEEE 2002 International

Conference on Communications, Circuits and Systems and West Sino Expositions, pp.

1429-1432, July, 2002.

2.13 J. M. P. Cardoso, On combining temporal partitioning and sharing of functional units in

compilation for reconfigurable architectures, IEEE Transactions on Computers, pp.

1362-1375, October, 2003.

2.14 T. Kato, T. Miyauchi, Y, Osumi, H. Yamauchi, A CDFG Generating Method from C

Program, IEEE Asia Pacific Conference on Circuits and Systems, pp. 936-939,

December , 2008.

2.15 R. Cordone, F. Redaelli, M. A. Redaelli, M. D. Santambrogio, Partitioning and

Scheduling of Task Graphs on Partially Dynamically Reconfigurable computers, IEEE

transactions on computer-aided design of integrated circuits and systems, vol. 28, no. 5,

May 2009.

2.16 Xie Di , Shi Fazhuang , Deng Zhantao, He Wei Design Flow for FPGA Partial Dynamic

Reconfiguration, Published in: Instrumentation, Measurement, Computer,

Communication and Control (IMCCC), 2012 Second International Conference on Date

of Conference, pp. 119-123, December, 2012.

2.17 K. Vipin, S. A. Fahmy, Automated Partitioning for Partial Reconfiguration design of

adaptive systems Parallel and Distributed Processing Symposium Workshops & PhD

Forum (IPDPSW), 2013 IEEE 27th International Date of Conference, pp. 172-181,

May, 2013.

2.18 Giovanni De Micheli, Synthesis and optimization of Digital Circuits, Tata McGraw-Hill

Edition, 2003.(Chapter-7)

2.19 D. D. Gajski, F. Vahid, S. Narayau, J. Gong. Specification and Design of Embedded

Systems, Prentice-Hall 1994. (Chapte-4)

2.20 Z. A. Mann and A. Orban, Optimization problems in system-level synthesis, in

Proceedings of the 3rd Hungarian-Japanese Symposium on Discrete Mathematics and

Its Applications, 2003.

44

2.21 P. Elis, Z. Peng, K. Kuchcinski, and A Doboli, System Level Hardware/Software

Partitioning Based on Simulated Annealing and Tabu Search, Design Automation for

Embedded Systems, vol. 2, No. 1, pp. 5-32, January, 1997.

2.22 P. Elis, Z. Peng, K. Kuchcinski, and A Doboli, Hardware/software partitioning with

iterative improvement heuristics, Proc. of 9th International Symposium on System

Synthesis, pp. 71-76, November, 1996.

2.23 M. Koudil, K. Benatchba, S. Gharout, and N. Hamani, Solving Partitioning Problem in

Codesign with Ant Colonies, Artificial Intelligence and Knowledge Engineering

Applications: A Bio inspired Approach, Lecture Notes in Computer Science, Springer,

vol. 3562/2005, pp. 324-337, June, 2005.

2.24 S. Zheng, Y. Zhang and T. He, The Application of Genetic Algorithm in Embedded

System Hardware-Software Partitioning, Proc. of the 2009 International Conference on

Electronic Computer Technology, pp. 219-222, February, 2009.

2.25 L. Li, and M. Shi, Software-Hardware Partitioning Strategy Using Hybrid Genetic and

Tabu Search, Proc. of 2008 International Conference on Computer Science and

Software Engineering, pp. 83-86, December, 2008.

2.26 J. H. Holland, Adaptation in Natural and Artificial Systems, Cambridge, MA: MIT

Press, 1992. (chapter-4)

2.27 D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Boston, MA: Addison-Wesley, 1989.(Chapter 3)

2.28 J. J. Grefenstette, R. Gopal, B. J. Rosmaita, and D. Van Gucht, Genetic algorithms for

the travelling salesman problem, in Proc. 1st Int. Conference on Genetic Algorithms,

pp. 160–168, 1985.

2.29 M. Vellasco, R. Zebulum, and M. Pacheco, Evolutionary Electronics: Automatic Design

of Electronic Circuits and Systems by Genetic Algorithms, CRC Press, 2001.(chapter-4)

2.30 G. De Micheli. ―Computer Aided Hardware Software Codesign‖, IEEE Micro., IEEE

Computer Society Press, pp. 10-16, August 1994.

2.31 S. D. Scott, A. Samal, and S. Seth, HGA: A hardware-based genetic algorithm, in Proc.

ACM/SIGDA 3rd Int. Symp. Field Programmable Gate Array, pp. 53–59, 1995.

2.32 M. Tommiska and J. Vuori, Implementation of genetic algorithms with programmable

logic devices, in Proc. 2nd Nordic Workshop Genetic Algorithm, pp. 71–78, 1996.

45

2.33 B. Shackleford, G. Snider, R. Carter, E. Okushi, M. Yasuda, K. Seo, and H. Yasuura, A

high-performance, pipelined, FPGA-based genetic algorithm machine, Genetic

Algorithms Evolvable Mach., vol. 2, no. 1, pp. 33–60, March, 2001.

2.34 J.I. Hidalgo, J. Lanchares, Functional Partitioning for Hardware - Software Codesign

Using Genetic Algorithms, IEEE 1997.

2.35 M. Srinivas and L. M. Patnak , Adaptive Probabilities of Crossover and Mutation in

Genetic Algorithm, IEEE Trans. on SMC., Vol. 24, pp. 656 – 666, No.-4, April, 1994.

2.36 Jaap Hofstede, Example of Scheduling and Allocation, Lecture Notes, Version 2,

September, 2000. web.cecs.pdx.edu/~mperkows/temp/0113.Scheduling-and-Allocation-

example.pdf

2.37 Oliver Sinnen, Task scheduling for parallel systems, Wiley , September, 2006.(chapter-

4)

2.38 Express benchmark, http://www2.imm.dtu.dk/SoC-

Mobinet/modules/HLS/benchmarks/index.html, last accessed on May, 2013.

2.39 Graphviz tool IBM, http://www.graphviz.org/

2.40 C. A. Floudas, X. Lin, Mixed Integer Linear Programming in Process Scheduling:

Modeling, Algorithms, and Applications, Annals of Operations Research, Springer,

Volume 139, Issue 1, pp 131–162, October 2005,.

2.41 Ralf Niemann and Peter Marwedel, Hardware/Software Partitioning using Integer

Programming, EDTC '96 Proceedings of the European conference on Design and Test,

pp. 473, 1996.

2.42 Fakhreddine Ghaffar, Benoit Miramond and François Verdier, Run-Time HW/SW

Scheduling of Data Flow Applications on Reconfigurable Architectures, EURASIP

Journal on Embedded Systems, December, 2009.

2.43 S. Bachl and F. J. Brandenburg, Computing and drawing isomorphic subgraphs, in

Graph Drawing, vol. 2528, S. G. Kobourov and M. T. Goodrich, Eds. Berlin, Germany:

Springer-Verlag, pp. 74–85, November, 2002.

2.44 Gross, Jonathan L., and Jay Yellen, eds. Handbook of graph theory, CRC press, 2003.

2.45 Min Xu,. F. J Kurdahi, A Tool for Chip Level Area and Timing Estimation of Lookup

Table Based FPGAs for High Level Applications , Design Automation Conference, pp.

435-440, January, 1997.

46

2.46 A. Nayak, M. Haldar, A. Choudhary, P. Banerjee, Accurate Area and Delay Estimators

for FPGA, Design, Automation and Test in Europe Conference and Exhibition, pp. 862-

869, March, 2002.

2.47 Changchun Shi S., J. Hwang , S. McMillan, A. Root, V. Singh, A System Level

Resource Estimation Tool for FPGA , Field Programmable Logic and Application,

Lecture Notes in Computer Science Volume 3203, pp .424-433, September, 2004.

2.48 Z. Kulkarni, W. Najjar, R. Rinker, F.J., Kurdahi, Compile-Time Area Estimation for

LUT-Based FPGAs, ACM Transactions on Design Automation of Electronic Systems,

Volume 11, Issue 1, January, 2006.

2.49 Arce-Nazario R. A., Juan S., Jimenez M., Rodreguez D., Architectural Model and

Resource Estimation, Reconfigurable Computing and FPGAs International Conference,

pp. 103-108, December, 2008.

2.50 S. Gupta, N. Dutt N., R. Gupta, and A. Nicolau, Spark: A high-level synthesis

framework for applying parallelizing compiler transformation, Proceedings of the 16th

international conference on VLSI design, pp. 461-466, January, 2003.

2.51 University of California, Riverside. River side optimizing compiler for configurable

computing (ROCCC). http://www.cs.ucr.edu/~roccc/. Last accessed on March, 2012.

2.52 A. Canis, J. Choi, B. Fort, R. Lian , From Software to Accelerators with LegUp High-

Level Synthesis, 2013 International Conference on Compilers, Architecture and

Synthesis for Embedded Systems (CASES), pp. 1-9, September, 2013.

2.53 Y. Hara, H. Tomiyama, S. Honda, H. Takada, K. Ishii, CHStone: A benchmark program

suite for practical C-based high-level synthesis, IEEE International Symposium on

Circuits and Systems, ISCAS, pp. 1192-1195, May, 2008.

2.54 R. Rinker, J. Hammes, W. A. Najjar, W. Bohm, Compiling Image Pro cessing

Applications to Reconfigurable Hardware, IEEE International Conference on

Application-Specific Systems, Architectures, and Processors, 2000. Proceedings, pp. 56-

65, July, 2000.

2.55 Low level vitrual machine, http://llvm.org/ , last accessed on June, 2015.

2.56 Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi, Stephen Brown,

Jason Anderson, The Effect of Compiler Optimizations on High-Level Synthesis for

FPGAs, IEEE Int'l Symposium on Field-Programmable Custom Computing Machines

(FCCM), Seattle, WA, May, 2013.

47

2.57 Sameer Mohamed Thahir, Compiling for Reconfigurable Computing Seminar Report,

Cochin University of Science and Technology, May, 2011.

2.58 J. Cong, B. Liu, S. Neuendorffer, N. Juanjo, V. Kees, Z. Zhang, High-level synthesis for

fpgas: from protopying to deployment, IEEE transactions on computer-aided design of

integrated circuits and systems, vol. 30, no. 4, April, 2011.

2.59 C. Pal, A. Kotal, A. Samanta, A. Chakrabarti, R. Ghosh, Design space exploration for

image processing architectures on FPGA targets, Proc. International Doctoral

Symposium on Applied Computation and Security Systems(ACSS) , pp. 1-19, April,

2014.

2.60 Prof. Dr. Christian Plessl, Architecture Synthesis, Lecture notes, 2012. homepages.uni-

paderborn.de/plessl/lectures/2012-Codesign/

2.61 Vivado Design Suite User Guide, UG902 (v2013.2) July 19, 2013..

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-

vivado-high-level-synthesis.pdf

2.62 Williams, John A., Neil W. Bergmann, Embedded Linux as a Platform for Self

Reconfiguring systems-on-chip, Ersa‘04: the 2004 International Conference On

Engineering of Reconfigurable Systems and Algorithms. CSREA Press, 2004.

2.63 David Dye. Partial Reconfiguration of Xilinx FPGAs using ISE design suite. White

paper: virtex-4, virtex-5, virtex-6 and 7 series FPGA, Xilinx Inc., 2012.

2.64 Introduction to Partial reconfiguration, Xilinx,

www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf

2.65 Logicore IP XPS HWICAP, v-5.0,

www.xilinx.com/support/documentation/ip.../xps_hwicap/v5_01_a/xps_hwicap.pdf

2.66 Partial Reconfiguration Design Considerations Objectives,

mit.bme.hu/~feher/Heterogen_szam_rendsz/Old/04_PR_Design_Considerations.pdf

2.67 K. Papadimitriou, A. Dollas, S. Hauck, Performance of Partial Reconfiguration in

FPGA Systems: A Survey and a Cost Model, ACM transaction on reconfigurable

technology and Systems, Volume 4, Issue 4, December, 2011.

2.68 C. Claus, F. H. Muller, J. Zeppenfeld, W. Stechele, A new framework to accelerate

Virtex-II Pro dynamic partial, 2007 IEEE International Parallel and Distributed

Processing Symposium, pp. 1-7, March, 2007.

48

2.69 M. Liu, W. Kuehn, Z. Lu, A. Jantsch, Run-time partial reconfiguration speed

investigation and architectural design space exploration, International Conference on

Field Programmable Logic and Applications, pp. 498-502, September, 2009.

2.70 A. S. Liu, R. N. Pittman, A. Forin, Minimizing Partial Reconfiguration Overhead with

Fully Streaming DMA Engines and Intelligent ICAP Controller, Proceeding FPGA '10

Proceedings of the 18th annual ACM/SIGDA international symposium on Field

programmable gate arrays, pp. 292-292, 2010.

2.71 S. G. Hansen, D. Koch, J. Torresen, High Speed Partial Run-Time Reconfiguration

Using Enhanced ICAP Hard Macro, 2011 IEEE International Symposium on Parallel

and Distributed Processing Workshops and Phd Forum (IPDPSW), pp. 174-180, May,

2011.

2.72 K. Vipin, and S.A. Fahmy. A high speed open source controller for FPGA Partial

Reconfiguration. International Conference on Field-Programmable Technology (FPT),

pp. 61-66, December, 2012.

2.73 C. S. Ibala and K. Arshak, Using Dynamic Partial Reconfiguration approach to read,

Sensor with different bus protocol, SAS 2009 IEEE Sensors Applications Symposium,

2009.

2.74 S. Di Carlo, P. di Torino, G. Gambardella, M. Indaco , P. Prinetto, Dependable dynamic

partial reconfiguration with minimal area, 23rd International Conference on Field

programmable Logic and Applications, pp. 1-4,September, 2013.

49

Chapter 3

Automated Migration of Applications in Hardware

Software Co-design Paradigm

This chapter presents an elaborate introduction to hardware software co-design process and

challenges involved. The methodology required for co-design needs the identification of the

time consuming part of the application and its automated hardware generation. Time profiling

using gprof has been demonstrated for finding the critical parts of the program. A basic

introduction on how C to HDL converter is designed using a compiler (LLVM compiler) and

how it can be used for estimating the resources consumed by a program have been discussed.

A commercial C to HDL converter (Vivado-HLS) has been explored in the chapter for

accurate resource estimation and it also allows to apply various optimizations and explores the

latency-area trade-offs.

The chapter is organized as follows: In section 3.1 an introduction to HW and SW systems is

presented. A co-design framework has been proposed in section 3.2. The two important

aspects: time and area estimation are demonstrated in section 3.3 and 3.4. The area estimation

using a commercial high level synthesis tool is showcased in section 3.5. Section 3.6 presents

the IP core interfacing techniques and its challenges generated from the tool. For measuring

the performance, a HW timer is required which is discussed in section 3.7. In section 3.8, the

co-design flow has been applied on a Dfdiv program and results are presented. Section 3.9

shows the results obtained for Dfdiv program from LegUp tool which was discussed in the

literature survey.

3.1. Hardware and Software Systems

A digital system can be visualized as a HW-SW layered architecture as shown in Table 3.1

with various components used in each layer [3.1].

Table 3.1: Digital system hardware and software layered architecture

Applications (e.g. Brower, jpeg)

Compilers(e.g. gcc, LLVM)

Operating Systems(e.g. Windows, RTOS)

Firmware(e.g. HAL, BSP)

Interfaces(e.g. ISA, AMBA)

Hardware(e.g. processor, memory, accelerators)

50

The bottom most layers comprise of HW components followed by firmware, OS and

applications layers. At the top of the layer, any application can be described as pure SW in a

programming language. The same application can also be described as pure HW in a HDL and

interfaced to the processor as accelerators.

A system-on-chip based design allows the system to be implemented in SW, HW or a

combination of both as discussed in chapter 1. This gives rise to various permutations for

design space exploration and the trade-off of system parameters. The parameters which are of

prime concern in the design flow are time, area and power. These parameters are orthogonal in

nature and affect each other. For example parallel HW unit consumes more area but it can do

more computation in parallel.

The SW designer works at the application development layer and achieves the functionality in

SW using a high level language [3.1]. The popular languages used for embedded system

design are C, C++ and Java. Here, the developer requires minimal insight into the HW

characteristics and focuses on achieving the desired functionality. Depending on the

complexity of the design and performance requirements, these designs can either be operating

system (OS) [3.2, 3.3] or non-OS [3.4] based. In OS based approach, a device driver is

required for communicating with the accelerators, where as in non-OS based simple read

/write protocol driver can be used. Multi-threaded applications can be easily be developed in

OS based approach, hence is a preferred choice. The popularly used processor based software

platforms in this domain are Beagle board, Beagle-bone, Raspberry-pi, Panda board, ARM

LPC series and FPGA based platform design.

When the SW implementation does not meets the required performance gain primarily due to

application demanding intensive computation, the designer looks for a total HW

implementation. For e.g. SW implementation of a JPEG compression roughly takes xyz

seconds on an ARM based platform, but it may take xyz/100 seconds on an ASIC IC based

design or xyz/10 second based on FPGA based design flow [2.1]. As a result of this gain,

frequently used applications such as multimedia, compression are being migrated to HW to

improve performance. The migration of a SW implementation to HW implementation is a

time consuming process as it requires the description of the application in the form of control

and datapath structures in a HDL language. An HDL programmer aims at optimizing the

resource usage, achieving the maximum clock frequency and limiting the power dissipation

during this conversion. The popular languages used to describe the HW specification are

Verilog, SystemVerilog, VHDL and SystemC.

51

3.2. Automated Approach to HW-SW Co-design

Now suppose we are given an application in high level language, which has certain functions

like preprocessing, discrete cosine transform (DCT) and encoding as shown below.

main (){

Preprocessing ();

DCT ();

encoding (); }

A SW implementation of the above program may take xyz seconds and a HW implementation

may take xyz/100 second, but more area will be consumed on the FPGA [2.1]. From an upper

limit of xyz seconds to lower limit of xyz/100 seconds, many possible implementations may

exist between the two boundaries. Such implementations are possible by migrating one or

more SW functions to HW. The remaining functions are executed in SW depending on the

resource constraints. For e.g. the DCT functions can be implemented in HW, while the

remaining two functions can be in SW. Such an exploration in the design process gives rise to

HW-SW co-design.

The aim of co-design approach is to meet the system-level objectives by exploiting the trade-

offs between HW and SW in a system through their concurrent design.

C/C++/HLL/DFG Partitioning stage

BUS

CPU
DSP Prcocessor

HW

SW

SOC platform

Figure 3.1: SOC platform on FPGA with a design in HW and SW

Fig. 3.1 shows that a single application is divided into two parts (HW and SW) using a

partitioning approach. Co-design flow requires a SOC platform and a partitioning approach as

shown in Fig. 3.2.

52

BUS

CPU
DSP Prcocessor

HWSW

SOC platform

SW running on processor and HW interfaced to bus

Figure 3.2: Design in HW-SW with bus interface

The HW part is mapped to programmable fabric and SW part is compiled on the processor.

HW-SW co-design is a paradigm which aims at achieving system design requirements by

migrating design components from top to bottom or bottom to top in a digital system design

environment.

It encompasses several problems [3.5]:

 Co-specification: Creating specifications that describe both hardware and software

elements (and the relationships between them).

 Co-synthesis: Automatic or semi-automatic design of hardware and software to meet a

specification. The co-synthesis problem can be broken up into four principal phases:

o Scheduling: choosing times at which computations occur;

o Allocation: determining the processing elements (PEs) on which computations

occur.

o Partitioning: dividing up the functionality into units of computation.

o Mapping: choosing particular component types for the allocated units. These

phases are, of course, related. However, as in many design problems, it is often

desirable to separate these problems to some extent to make the problem more

tractable.

 Co-simulation: Simultaneous simulation of hardware and software elements, often at

different levels of abstraction.

Hardware/software partitioning introduces a design methodology that makes use of several

techniques that will become important in other styles of co-synthesis as well.

 The functional specification must be partitioned into processes, each of which denotes a

53

thread of execution. The best way to partition a specification depends in part on the

characteristics of the underlying hardware platform, so it may make sense to try different

functional partitioning.

 The performance of the function executing on the platform must be determined.

Since exact performance depends on a great number of hardware and software details, we

usually rely on approximations.

 The processes must be allocated onto various processing elements of the platform.

The design flow as shown in Fig. 3.3 describes the synthesis of a specification into HW and

SW components, interface generation and output verification. It shows that an ideal co-design

tool that takes a high level specification and outputs the HW part on ASIC/FPGA and the SW

part which can be compiled on the processor. The tool can take specification at a high level of

abstraction and should be able to decide the part which should be migrated to HW. It should

then produce the required HW and SW drivers for easy interfacing. Such a fully automated

approach is still missing in the current existing tools.

High Level Specification

C/C++/Matlab/DFG

Co-design Partitioning and

Scheduling

HW part

VHDL/Verilog
SW part

Synthesis

FPGA chip

FPGA fabric and HW/SW processor

Interface generation

Drivers

Compilation

Gcc/cross tool chain

Esitmate HW and SW

parameters

Figure 3.3: Co-design tool

The co-design aims at performance exploration without a real HW implementation by

performing co-simulation and co-synthesis. This requires that both HW and SW are executed

on a simulation tool and the system parameters are extracted for performance comparison. The

two crucial parameters for system design are execution time and area consumed by the various

parts of an application. The various parts of the application are defined by the level of

abstraction chosen to describe the application such as functions, modules etc. A partitioning

54

stage requires execution time and area of each function declared in the specification. Based on

the given constraint and these parameters, it generates the best HW-SW solution. Hence

robust techniques are required to estimate these parameters.

The co-design flow is advantageous, but comes with following challenges [1.10]:

 Following a well defined design flow which can assist the designer in partitioning process.

 The HW development can be done manually in hardware description language for an

efficient design and requires comprehensive knowledge of FPGA resource usage.

 Interface knowledge is required to interface the IP core to the communication architecture.

 Setting up the performance measuring and debugging tools to the test the performance of

the overall design is required.

3.3. Estimation of SW Performance Using Time profiling

Profiling is a technique by which we can determine the behavior of a program in terms of the

amount of time a function takes, the number of call invocations and memory references made.

The co-design flow requires an appropriate profiler to detect the functions that contribute to a

large percentage of program execution. There are different types of profilers which aim at one

or a combination of these features. The examples of time profiler include UNIX prof, GNU

gprof, callgrind, Intel VTune, IBM Quantify, Visual C++ profiler, Matlab profiler etc. [3.7].

Among them, gprof is available in most of the toolchains, hence it is popularly used.

The profiling can be classified into intrusive or non-intrusive nature. The intrusive profiling

instruments the code during compilation, hence incurs some amount of overhead. Gprof [3.8,

3.9], an intrusive profiler, is widely accepted open source profiler and Xilinx EDK tool chain

also renders same profiler in its tool chain, hence it has been chosen in this flow. Two kinds of

profile are generated by gprof, one is known as flat profile and other one is known as

callgraph profile. Table 3.2 and 3.3 show the two profiles for the sample program which has 7

functions which are named as f1 to f7. The commands used in Linux operating system to

generate the profile are given below:

$ cc -g -c myprog.c utils.c -pg // compile with pg option to create object file

$ cc -o myprog myprog.o utils.o -pg // create executable

$./myprog //execute the program // execute the program to generate the gmon data file

$ gprof myprog // generate the statistics

Table 3.2: Flat profile

55

%

time

Cumulative

seconds

Self

seconds

Calls Self

 s/call

Total

 s/call

name

25.04 8.15 8.15 1 8.15 8.15 F7

21.41 15.12 6.97 1 6.97 6.97 F6

17.85 20.93 5.81 1 5.81 5.81 F5

14.29 25.58 4.65 1 4.65 4.65 F4

10.72 29.07 3.49 1 3.49 3.49 F3

7.13 31.39 2.32 1 2.32 2.32 F2

3.56 32.55 1.16 1 1.16 1.16 F1

The interpretation for flat profile as shown in Table 3.2 can be described as follows:

 Column 1: It shows the percentage of the total execution time program spent in this

function. These should all add up to 100%.

 Column 2: It shows the cumulative total number of seconds spent in these functions,

plus the time spent in all the functions above this one.

 Column 3: It shows number of seconds accounted for this function alone.

 Column 4: It shows number of times the function was invoked.

 Column 5: It shows average number of seconds per call spent in this function alone.

 Column 6: It shows average number of seconds spent in this function and its

descendents per call.

 Column 7: It shows name of the functions.

The interpretation of call profile as shown in Table 3.3 can be described as follows: Each row

describes the function's descendents and child.

 Column 1: It shows unique index of the function.

 Column 2: It shows percentage of the total time spent in this function and its children.

 Column 3: It shows total amount of time spent in this function

 Column 4: It shows total time propagated into this function by its children.

 Column 5: It shows number of times this parent called the function and total number of

times the function was called.

 Column 6: It shows current function.

56

Table 3.3: Callgraph profile

index %time self children called names

[1] 100.0 0.00

8.15

6.97

5.81

4.65

3.49

2.32

1.16

32.55

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

main [1]

 f7 [2]

 f6 [3]

 f5 [4]

 f4 [5]

 f3 [6]

 f2 [7]

 f1 [8]

[2] 25.0 8.15

8.15

0.00

0.00

1/1 main [1]

 f7 [2]

[3] 21.0 6.97

6.97

0.00

0.00

1/1 main [1]

 f6 [3]

[4] 17.8 5.81

5.81

0.00

0.00

1/1 main [1]

 f5 [4]

[5] 14.3 4.65

4.65

0.00

0.00

1/1 main [1]

 f4 [5]

[6] 10.7 8.15

8.15

0.00

0.00

1/1 main [1]

 f3 [6]

[7] 7.1 2.32

2.32

0.00

0.00

1/1 main [1]

 f2 [7]

[8] 3.6 1.16

1.16

0.00

0.00

1/1 main [1]

 f1 [8]

Gprof instruments program to count calls and samples the program counter every 0.01

seconds in general purpose operating systems such as Linux. For example, if the total samples

are 10 then execution time is equal to 100 milliseconds. It creates a histogram of each function

and if the program counter value corresponds to that function, an entry is made. Any function

which runs faster than 10 ms may shows zero time. This is because samples of the program

counter are taken at fixed intervals of run time. This attributes to the statistical inaccurate

nature of gprof [3.10] so the run-length of the function should be long enough as compared to

sampling period for better results. Secondly the output from gprof gives no indication of parts

of program that are limited by inputs/outputs (I/O). The other information given by gprof is

number-of-calls made to each functions. This is derived by counting, and not by sampling,

hence this is completely accurate and does not varies from run to run.

Although gprof tool is commonly available, but there were certain problems encounters when

we executed it on our desktop. During heavy load the accumulated time varied and many

57

functions showed zero time as no time accumulation was done. The execution time of many

functions on general purpose machines is less than 10 ms, since these machines are running at

few GHz.

main

UartInitialize
CcdppInitial

ize
CcdInitialize

CntrlCapture

Image

CodecIniti

alize

CntrlCompres

sImage

CntrlSendIma

ge

CcdppCapture

CcdppPopPixel

CodecPushPix

el
CodecDoFDct UartSend

1
1 1

1 1

8192 8192

1 1

8192

163841281
8192

CntrlIniti

alize

CodecPoppixel

CcdCapture CcdPopPixel

F

Y C
589824 16384

1

Figure 3.4: Callgraph of digital camera case study

The gprof does not display the call tree structure; hence we have used the pvtarce utility [2.18]

for generating the visual diagram of callgraph. Fig. 3.4 shows the callgraph for the C language

for digital camera case study [2.1] discussed in previous chapter. The Fig. 3.4 clearly shows

the total number of functions present in the application, along with the number of calls at the

edge. It also shows the hierarchical structure of the calls and is a good abstraction level for co-

design implementation. The gprof cannot accurately show the time taken by each function,

hence cannot be used for time estimation of each function on a general purpose machine. In

order to capture the exact time, hardware timer has been proposed [3.11, 3.12] to do real time

profiling which uses HW counter to trace the running address and store the values. There are

other methods that be used for finding the time of each function on the general purpose

desktop machine such as Time stamp counter TSC [3.13] which is a good choice for Intel

based processors. The time.h C library [3.14] has functions that can be used for measuring the

time of a piece of code. The drawback of using these functions is that the resolution is poor.

For obtaining better results from gprof utility, we next migrate to time profiling on the target

and explore more possibilities.

58

3.3.1 Time Profiling on Target

Time profiling on the target which usually run at low frequency, can give the better results as

compared to profiling on general purpose machines. The Xilinx software development kit

allows to parameterize the real time profiling [3.15] by changing the sampling frequency and

bin size as shown in Fig. 3.5.

Figure 3.5: Profiling and bin options in SDK

A HW timer is used in the real time profiling to provide the time base and it is interrupt

enabled. The sampling frequency determines the rate at which timer interrupt are given to the

processor. Setting a higher value of frequency means more interrupts are generated and more

samples are taken. This gives better results, but degrades the precision due to more calls being

used in interrupt. The bin refers to program text segments and setting a smaller value of the

bin allows the results to be better. For example, if we set the bin size to 10 bytes, we can only

determine that the program was executing instructions between y and y+10 on each profile

interrupt. The DfDiv program from ChStone benchmark [2.50] was profiled on the ML507 kit

and results are shown in Fig. 3.6 with sampling rate of 100000 and bin size of 4. This means

that the sampling time is 10 microseconds, which is good value for a program that takes

milliseconds to run.

59

Figure 3.6: Software profiling results of DFDIV on ML507 board on PowerPC@400MHz

All the functions used during the real time execution are shown in the profiling results. This

includes all the functions running with elf file (BSP functions) which are shown as 55.4%.

Float64_div is the top level function and calls all other functions. The best candidate for HW

migration is estimateDiv128To64 function which calls mul64to128 and sub128 and as it

consume 17% out of 44.6% of time. The total time taken by DfDiv using profiling is

calculated using top function which is float64_div will be equal to 80 samples x 10

microseconds = 800 microseconds. Similarly 120 us is taken by roundAndpackFloat64, 60 us

will be taken by propogateFloat64Nan, 60 us will be taken by estractflaot64Exp, 80 us will be

taken by estractflaot64Frac, 70 us will be taken by estractflaot64Sig. Adding these values we

get 390. Since float64_div calls estimateDic128To64, 800 - 390 = 410 is taken by

estimateDic128To64. Hence we now know the time parameter for each function and these

values will be used in partitioning algorithm in next chapter.

3.4. Estimation of HW Resources Using LLVM Compiler

This section presents a method to use LLVM compiler [2.52] to perform high level synthesis

and estimate the resources required. High level synthesis is the process in which the sequential

codes written in languages such as C/C++ is converted to hardware description design as

discussed in chapter 2. Using C/C++ to develop and validate the algorithm prior to synthesis

is more productive than developing the design at RTL level. Such a migration from a

sequential to concurrent behavior descends with many challenges. A high level specification is

Estimatediv

function

Top level

function

Main contains

the test data

60

written for meeting the functional behavior of the application without concerning to the

resources or performance constraints.

C/C++ constructs to RTL mapping is usually done by converting functions to modules,

arguments to input/output port, operators to functional units, scalar to wire/reg., arrays to

memory and control flow to finite state control logic. Many features of the high level

specification such as dynamic memory allocation, continue, break/goto, multi-dimensional

arrays, file operation are not the candidate for HW description, hence cannot be synthesized.

System calls such as printf() or fprintf() cannot feature in the hardware design and so cannot

be synthesized. Pointer casting or using the recursive functions is not supported. Any system

calls which manage memory allocation within the system, for example malloc(), alloc() and

free(), must be removed from the design code prior to synthesis. The reason for this is that

they are implying resources which are created and released during runtime. To be able to

synthesize a hardware implementation the design must be fully self-contained, specifying all

required resources. In this section, we address the following issues:

1. Generation of DFGs and CFGs in LLVM Compiler

2. Optimization of C code using LLVM compiler

3. Resource estimation using LLVM compiler

4. Generating extended basic blocks using LLVM compiler

 3.4.1. Generating CFG and DFG from LLVM Compiler

Control flow graphs have been frequently used for the automatic generation of HDL from

C/C++ specifications. Compilers usually decompose programs into their basic blocks as a first

step in the analysis process. Basic blocks form the vertices or nodes in such a graph. A control

flow graph (CFG) in literature is a graphical representation, of all paths that might be

traversed through a program during its execution. In a compiler, a control flow

graph node represents a basic block, i.e. a straight-line piece of code without any jumps or

jump targets. The representation of a piece of code in CFG is essential to many compiler

optimizations and static analysis tools. CFG is an intermediate representation which carries

the control and data flow information. Any compiler can be used to generate CFG like SUIF,

LLVM, GCC, and TRIMARAN. The one having the inbuilt pass for CFG generation would

be the most optimum one. This pass is available in LLVM [2.52], hence it is a good candidate

for the generation of CFGs. Using LLVM, we can generate the machine independent

intermediate representation (IR) code and from that the CFG of basic blocks are generated.

LLVM is a compiler infrastructure written in C++. It is designed for compile-time, link-time,

61

run-time, and idle-time optimization of programs written in arbitrary programming languages.

Many HLS compilers have used LLVM such as Ctoverilog, PandA, LegUp etc. Clang [3.16]

is the frontend of the LLVM complier that converts the C program into an IR [3.17] that is

similar to assembly language and useful for performing processing in subsequent compiler

stages. Opt utility in the LLVM compiler allows various passes to run on the code for doing

optimizations such as dead code elimination etc.

For example, a program to find the gcd of two numbers is given below:

 int gcd(int a , int b){

 while(a!=b){

 if(a>b) a=a-b;

 else b=b-a; }

 return a; }

The commands used to generate CFG in LLVM are:

 Line 1: $ sudo apt-get install perl clang llvm

 Line 2: $ clang -S -emit-llvm filename.c -o filename.ll

 Line 3: $ opt –mem2reg –instsimplify –S filename.ll –o filename.opt.ll

 Line 4: $ opt -disable-opt -dot-callgraph -dot-cfg -S p11.ll I-o filename.opt.ll

 Line 5: $dot -Tjpg -o callgraph.jpg callgraph.dot

The command shown in line 1 is used to install Perl, Clang and LLVM. Commands in line 2

emit the human readable IR representation of the C code. Line 3 commands does required

optimizations like memory references that are converted to local registers. Line 4 produces

callgraph and CFG of each function. Line 5 converts the graphs to jpg format. The generated

CFG is given in Fig. 3.7. This graph can be used for scheduling and estimating the resources

required for the program.

62

Figure 3.7: Control flow graph of GCD program

The generated graph shows the IR language [3.18], and defines the semantics of ANSI C in

LLVM compiler. The control flow graph encapsulates the data edges as it defines the order of

execution of the program. To generate instruction level CFG which shows the control edge

and data edge, following commands are executed. We have used llvmpy [3.19] a python

plugin.

 $clang -emit-llvm filename.c -S -o filename.bc

 $opt -mem2reg filename.bc -o filename1.bc

 $llvm-dis -o filenameDFG.ll filename1.bc

 $./graph-llvm-ir ./filenameDFG.ll

Graph-llvm-ir [6.3] is the python script used to generate DFG as shown in Fig. 3.8. The black

arrow denotes data dependency and red once show the control dependency.

63

Figure 3.8: Instruction level CFG of GCD program

The above diagram can be divided into two parts to show the control flow and data flow

separately:

64

Figure 3.9: CFG of GCD program

For separating the control flow and data flow information the dot file was parsed and resultant

is shown in Fig. 3.9 and 3.10. Figure 3.10 is automatically generated using the script and not

meant for manual interpretation. For this a perl script was coded to read the edge information

and command is given below:

$ perl Sep_CF and DF.pl main.dot

65

Figure 3.10: DFG of GCD Progrm

3.4.2 Library of Operators in LLVM Compiler

Now the generated control flow graph (Fig. 3.7) is used for generating the Verilog and

estimate the resources consumed. An input specification written in simple C is taken, but the

entire C specification which includes arrays, pointers is excluded here since our motive is to

propose a estimation method and test its effectiveness. This research in not focused on high

level synthesis but aims at providing an innovation that can be integrated to an existed tool.

Table 3.4: Library of operators

llvm instruction set: i32 Equivalent hardware unit LUT

Phinode Multiplexer

+register

32

Phinode

Up/down counter

Or acculumator

33

add Adder 32

fadd FP Adder 721

sub Subtractor 32

fsub FP Sub 874

mul Multiplier 3/128 DSP

fmul FP Multiplier 49

Udiv/urem Unsigned Div 1098

Sdiv/srem Signed Div 991

Fdiv/frem FP divider 1941

shl Shift left 93

ashr Arithmetic 94

lshr Logical Shift right 94

and AND 32

or OR 32

xor XOR 32

66

The Table 3.4 shows the LLVM instructions and their corresponding area. The Xilinx FPGA

Virter-5 series having xc5vfx70t-1ff1136 chip on ML507 was used to compile the operators.

The Table 3.4 shows the operators that are commonly used in the HDL design. Since the

datapath contains arithmetic operators and consumes most of the area, its estimation is a prime

concern. In this work we have focused on area hence we have not shown the delay values in

the table. In the Table 3.4, column 1 is the LLVM instruction, column 2 is the equivalent

hardware unit and column 3 is the area in terms of Look-up tables (LUTs). In order to

estimate resources correctly we need so see the types and quantity of resources available in

Xilinx Virtex-5. The various kinds of resources available in Virtex-5 are slice registers with

LUTs and flip-plops, DSP slices and BRAMs. We need to create formula for slices registers

and LUT which are the primary resources under the assumption that no operator sharing

occurs i.e. one to one mapping for each instruction in CFG to its corresponding hardware

block.

3.4.3. Converting C program to HDL

High-level synthesis [1.7], is the design flow to obtain hardware automatically from high level

specification. These specifications are sequential in behavior hence the design flow is

converted to concurrent execution in hardware. Parallelism is extracted and clock is added to

the generated hardware. The generated hardware is in RTL form and described in Verilog or

VHDL. The goal of HLS is to let hardware designers efficiently build and verify hardware, by

giving them better control over optimization of their design architecture, and through the

nature of allowing the designer to describe the design at a higher level of tools while the tool

does the RTL implementation. Verification of the RTL is an important part of the process. A

Perl script was coded to parse the LLVM IR and convert to Verilog.

The Perl parsing gives three files as outputs FSM, datapath and the top module. The FSM

module preserves the control dependency and datapath preserves the dataflow. The top

module instantiates the two modules and binds them together. The LLVM IR instructions can

be divided into four categories [2.57].

icmp_eq equal 11

icmp_ne Not equal 11

icmp_sge Signed GE 32

icmp_sgt Signed GT 33

icmp_sle Signed LE 32

icmp_slt Signed LT 33

icmp_uge Unsigned UGE 32

icmp_ule Unsigned ULE 32

icmp_ult Unsigned ULT 33

67

1. Datapath instructions e.g. add, sub, mul,

2. Conditional jumps e.g. whilecond, ifcond.

3. Control flow e.g. br, ret

4. PHI nodes define the incoming branch.

By this classification, the instruction are handled differently during synthesis .

The above synthesis is discussed with respect to Fibonacci the C code as given below:

int fibo(int n)

{

 int prev = -1;

 int result = 1;

 int sum;int i;

 for(i = 0;i <= n;++ i)

 {

 sum = result + prev;

 prev = result;

 result = sum;

 }

return result;}

The CFG for the above program is shown in Fig. 3.12.

68

Figure 3.11: Fibonacci series C program and its CFG

The synthesis process starts by modeling each basic block as one FSM state. Each phi node

defines the incoming branch which infers a MUX operation. The first line in %1 state means

assign the variable %result.0 takes a value of 1 from %0 state or a value of %4 from %5 state.

The select line of the MUX comes from FSM when in state %1. The output of the MUX goes

to a register which has an enable line from FSM. The phi node with loop variable infers a

counter in synthesis, so in Fig. 3.12 for control variable with constant adder is shown. The

operators like icmp and add are synthesized as separate blocks. The output of the comparator

is send to FSM to update the state. In state %7 the program ends and result is the output.

Signals generated in FSM are mapped to the datapath in the top level module. As shown in

Fig. 3.11 the CFG has five states and so are in FSM diagram as shown Fig. 3.13. The various

enable signals are generated when the state changes. Since this is first step for resource

estimation, simple programs with no high level constructs have been used like no function

calls, memory access.

69

Figure 3.12: Datapath for Fibonacci program

From the CFG we can see that three phi nodes are in state %1, hence Fig. 3.12 shows two

multiplexer and one counter. The output of MUX goes to a register, which has an enable

signal. Four variable %result, %previous, %i.0 and %n are assigned values in different states.

Other variables are temporary variable and are not generated. The datapath contains operators

like adder shown in state %3 and is used to do computation. A data bit is also generated by

comparator operator like icmp and is used as input in FSM machine.

70

Figure 3.13: FSM of Fibonacci program

The aim of the FSM machine is to execute the code in correct order by generating control

enable and select signal based on input coming from operators. Each node of basic block is

taken as one state. The default entry for the FSM is state %0 which makes a state transition

and goes to %1. In %1 state all the control signals are at the enabled as assignment to phi node

happens. This state goes to %3 or %7 based on the condition flag generated from branch

instruction which is an input to FSM machine.

71

Figure 3.14: Top module for Fibonacci program

The top control flow and dataflow are combined and are shown in Fig. 3.14. This shows that

resource consumed by the synthesis can be for the FSM, datapath and top entity combining

them.

Many optimizations are can be carried out on the generated HDL. We next show the operator

sharing optimization in this section. Operator sharing is used for using single hardware block

and implementing multiple operations on it. So, a MUX is placed at each of the inputs of the

operator block. The FSM controls the select pin of the MUX. If the next state uses the

72

operator, then corresponding lines are selected by FSM. Other than icmp instruction, all other

operations are generally stored in a register through a phinode. If the next state to the current

state where operation is used contains a phinode, then we need place a register after the

operator. When this is not the case, then we have to place a register to temporarily store the

value, which consumes Flip Flops.

Figure 3.15: Sharing operators program for Fibonacci

The actual resource consumption is measured by number of LUT flip-flop pair used.

Generally, number of LUT slices used is larger in number than FF used. So, to save resource

usage on FPGA slice LUT utilization must be minimized. Worst case in operator sharing for a

particular number of operations is when no inputs are shared between two operations. The

implementation of gcd program with operator sharing is shown in Fig. 3.15. The operator

73

sharing has been compared for three operators and, add, sub, shl. From the Fig. 3.16 we

conclude that with operator sharing, the slice usage is much less as compared to without

sharing. The consumption of resources comes down and can be seen in Fig. 3.16 (a), (b), (c)

and (d) as best case. This happens because of reusability of area, but this should only be used

in case the tolerance in performance is acceptable.

Figure 3.16(a): SHL operator sharing

Figure 3.16(b): AND operator sharing

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5

LUT slices

Number of shl operations

without operator sharing

best case-operator

sharing

worst case-operator

sharing

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5

LUT slices

Number of and operations

without operator sharing

best case-operator
sharing

worst case-operator
sharing

74

Figure 3.16(c): ADD operator sharing

Figure 3.16(d): SUB operator sharing

The total estimated area depends on the area consumed by three entities FSM, datapath and

top level, which corresponds to CFG, DFG and their connection. The area consumed by FSM

and top level is insignificant and is ignored. The analysis is given below:

EstimatedTotal = FSMarea + Datapatharea + Toplevelarea …(3.1)

We now propose equation that can estimate the resource consumption without doing the

synthesis discussed above.

Proposed theoretical formula for resource estimation:

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5

LUT slices

Number of add operations

without operator
sharing

best case-operator
sharing

worst case-operator
sharing

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5

LUT slices

Number of sub operations

without operator
sharing

best case-operator
sharing

worst case-operator
sharing

75

No. of Registers = (number of phinodes) * (width of variable) + [log(number of

nodes)/ log2]

…(3.2)

No. of LUT slices = (LUT slices of hardware) * (occurrences) + LUT slices used in

FSM

…(3.3)

Since datapath is 32 bit and the FSM signals are 1 bit wide, LUT slices used by FSM can be

ignored without losing much in accuracy. Based on the Table 3.4, we have taken three simple

programs: Fibonacci, GCD and factorial using Eq. 3.2 and 3.3:

Case a : Fibonacci series program

Expected slice register = 3*32 + 3 = 99

Expected LUTs = 2*(phi node) + 1*(constant increment phinode) + 1*(32-bit adder) +

1*(icmp_sle) = 161

Case b: GCD program,

Expected slice register = 4*32+3 = 131

Expected LUT = 4*(phi node) + 2*(32-bit subtractor) + 1*(icmp_eq) + (icmp_sgt) = 236

Case c: factorial program

Expected slice register=4*(phinode)+4=132

Expected slice LUT=1*(phi node) + 2*(constant increment phinode) + 2*(icmp_sle) = 194

Based on Eq. 3.3, the algorithm to calculate the LUT usage is shown in algorithm 3.1. We

iterate through the CFG and make a entry for DSP slices and LUT usage by each basic block

and finally add all the LUT slices used.

Algorithm 3.1: Resource Estimation Algorithm

Create library of resources

No.of LUTs = 0

No.of DSP slices = 0

For each line in LLVM IR

 {

 If (line==BasicBlock name)

 {Make a new entry in the Resource requirement table

 LUTs required for the previous block = no. of LUTs

76

 DSP slices required for the previous block = no. of DSP slices

 No.of LUTs=0

 No.of DSP slices=0}

 Else {

 Search for matches with library

 If a match is found {

 No.of LUTs += Matched entry’s resource requirement in the library

 No.of DSP slices += Matched entry’s resource requirement in the library}

}

}

Total LUTs required = Sum of LUTs required for each block

Total DSP slices required = Sum of DSP slices required for each block

End

3.4.4. Comparative Results of Theoretical and Synthesized Programs

In the previous section, we have proposed a formula which can estimate the resources used for

implementing a CFG in HW. It is necessary to verify the formula with the real synthesis and

compare the results for checking the correctness. The Verilog codes are generated and

synthesized using Xilinx ISE. The output waveforms generated for the GCD program is in

Fig. 3.17(result = 6).

Figure 3.17: Verification of the GCD program

The LLVM IR can be extracted with different optimizations for the convenience of the

programmer. It is found that different optimizations give different area.

77

We have applied various optimizations which are given below:

Optim1:

 -mem2reg, -instsimplify

 mem2reg pass considers memory as register

 instsimplify simplifies instruction and inserts phi nodes

Optim2:

 -mem2reg –lcssa -licm

 lcssa is loop closed single static asiignment form pass. It places phi nodes at the end of

loops

 licm is loop invariant code motion. This pass identifies the statements which are inside the

loop and whose values are not changing and keeps them outside the loop

Optim3:

 -mem2reg -loop-rotate -loop-reduce

 loop-rotate rotates loop and –loop-reduce reduces the strength of array references inside

loops

Optim4:

 -mem2reg -loop-unswitch

 loop-unswitch creates multiple loops wherever it is necessary

Optim5:

 -mem2reg -loop-rotate -loop-unroll

 loop-unroll unrolls the loop. Here the unroll count used is 10. Table 3.5 shows the effect

of these optimizations on the resources usage.

Table 3.5: Shows the LUT/DSP resource estimation for each of the optimizations

Function

LUT/DSP

Optim1 Optim2 Optim3 Optim4 Optim5

Gcd 236/0 268/0 311/0 268/0 1859/0

Factorial 320/6 384/6 512/6 384/6 1376/60

Sum of Fibonacci series 192/0 224/0 288/0 224/0 1152/0

Fig. 3.18 shows the graphical representation of LUTs used for different optimizations. It is

clear that loop unrolling increases the resource requirement. But with loop unrolling,

concurrency can be achieved.

78

Figure 3.18: Comparison of LUT after optimizations on three programs

Table 3.6: Comparison of resources

Table 3.6 shows the comparison of three works, estimate 2 refers to the amount of resources

calculated based on formula proposed in Eq. 3.1, 3.2 and 3.3. Column 3 shows the result after

the Verilog code generated from the synthesis proposed in section 3.4.3. Column 4 shows the

resources used shows by Vivado HLS tool. The Vivado shows much lower values of

resources results as compared to other. Hence we conclude that resources for a program can

be estimated in different ways and using Vivado-HLS is a good option.

The resource estimation for dfiv program which was used in the previous section (time

profiling) was carried out and the estimated results showed in Table 3.7. The callgraph

depicting all the functions available in Dfdiv program is shown in Fig. 3.19. The main

function contains the test data, hence the floa64_div has been taken as top level synthesizable

functions.

0

500

1000

1500

2000

optim1 optim2 optim13 optim4 optim5

Number of
LUTS

gcd

fact

fibo

Module(1) Estimate(2) Actual after synthesis(3) Vivado-HLS Results

 Slice

Lut

Slice

register

Slice

Lut

Slice

register

Slice

Lut, registers

Nth Fibonacci

number

161 99 164 99 168,96

Gcd function 236 131 240 134 212, 65

Sum of all

factorials

upto ns

194

+

3/128 DSP

132 199

+

3/128 DSP

136 163

+

4/128 DSP

79

Float64

_div
Main

extractFloat

64Frac

extractFloat

64Sig

extractFloat

64Exp propogateFlo

at64NaN

Float_rais

e

rounfandPack

Float64

estimatediv12

8to64

Float64_is_

nan

Float64_is_s

ignaling_nan
packFloat64 mul64to128 sub128

ulong_to_d

ouble 44
44 44

22

22

3 3

5

8

8

12 12

12 12
126 6

Figure 3.19: Callgraph for DfDiv

Table 3.7: Resource consumption of Dfdiv functions

Name (location) Calls DSP48(%) FF(%) LUT(%)

main 1

estimateDiv128To64 12 8 14268 15464

mul64To128 20 The resources added to estimateDiv128To64

as they are sub functions sub128 20

float64_is_nan 6 propogateFloat64NaN as they are sub

functions float64_is_signaling_nan 6

propagateFloat64NaN 3 0 0 329

extractFloat64Exp 44 0 168 428

extractFloat64Frac 44 0 296 642

extractFloat64Sign 44 0 258 546

float_raise 3 0 198 486

float64_div 22 24 17196 19824

packFloat64 17 The resources added to roundand

PackFloat64 as it is sub function

roundandPackFloat64 12 0 214 1180

Table 3.7 shows the resource consumed by functions in the dfdiv program(19824) using the

estimation method presented in algorithm 3.1. The function estimateDiv128To64 consumes

significant resources as compared to all other functions. In the time profiling results, it was

shown that this function consumed most of the time in the code.

 3.4.5. Creating Extended Basic Block for Task graph generation from CFG

CFG can also be combined together to form clusters known as extended basic blocks for

increasing the granularity of a node. A basic block is a sequence of straight line code that can

be entered only at the beginning and exited only at the end. To build basic blocks we first

identify the leaders (the first instruction in a procedure, or the target of any branch, or an

80

instruction immediately following a branch (implicit target). Starting from a leader, the set of

all following instructions until and not including the next leader is the basic block

corresponding to the starting leader. We formally define an Extended Basic Block [3.20] as

follows: A maximal sequence of instructions that has no merge points in it (except perhaps in

the leader). Extended basic blocks increase the scope for optimization and parallelization.

Following is an algorithm that can be used to form extended basic block from a Control Flow

Graph containing basic blocks. The comments are given at different places in the algorithm.

Algorithm 3.2: Extended Basic Block

all_nodes: set of all nodes

 EBB_roots=root //set of root nodes for EBB initially only root

 for every node ‘n’

if |Predecessor(n)| >1

set EBB_roots += n

 for every ‘x’ in EBB_roots

 successor(x) = ‘x’;

 for every ‘y’ in successor(x)

 ‘s’=pop successor(x)

 EBB(x)=s;

 for every child ‘c’ of ‘s’

 if ‘c’ is not in EBB_roots // add the nodes till the roots are found

 successor(x) = successor(x) +{c}

finally EBB(x) contains group of nodes making an EBB with entry node ‘x’;

Figure 3.20: Identification of extended basic block [Source: 3.20]

For e.g. B1, B5 and B4 are the roots in Fig. 3.20. The algorithm starts from B1 and clusters

B2 and B3 and stops at a root which is B4. To implement the algorithm we first create an

81

adjacency matrix of CFG of Basic blocks which is input to the algorithm. The result is an

output file containing labels of Basic blocks that form Extended Basic Blocks. For the CFG

given in Fig. 3.20, we used the dependence matrix given below:

0, 1, 1, 0, 0, 0, 0, 0

0, 0, 0, 1, 0, 0, 0, 0

0, 0, 0, 1, 0, 0, 0, 0

0, 0, 0, 0, 0, 1, 1, 0

0, 0, 0, 0, 0, 0, 0, 1

1, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 1, 0, 0

This gives the EBB = {(B1, B2, B3), (B4, B6), (B5, B7)}. Fig. 3.20 shows the CFG created

after extended basic blocks are identified. We applied this algorithm in LLVM IR and

following commnds and files wre used to generate the ouput graph:

 llvm-gcc -emit-llvm -S -o program.ll dijkstra.c

 opt -disable-opt -dot-callgraph -dot-cfg -S -o p11.ll program.ll

 dot -Tjpg -o main.jpg cfg.main.dot

 gcc -o dotToMat.out dotToMat.c

 ./dotToMat.out

 gcc -o ebb_final.out ebb_final.c

 ./ebb_final.out

 gcc -o bbtoebb.out bbtoebb.c

 ./bbtoebb.out

 gcc -o adjtodot.out adjtodot.c

 ./adjtodot.out

 dot -Tps AMatrix.dot -o outfile.ps

82

Figure 3.21: CFG for Dijkstra

The CFG for the Dijkstra algorithm is shown in Fig. 3.21 (It has many operations hence

visibility is low and is parsed by program). Its EBB is shown in Fig. 3.22 and can be used to

create coarse level graphs from C programs. These EBBs provide a higher level of abstraction

for the algorithm design.

Figure 3.22: Extended basic block for the CFG

We continue the discussion on Vivado-HLS as it was released in 2012 and it need

comparative analysis.

3.5. Resource Estimation using Vivado High Level Synthesis Tool

The Xilinx Vivado HLS [1.21] compiler interface is built very similar to eclipse interface

which can convert a C/C++ program into HDL and SystemC. It has been developed over a

decade of research work. It gives the idea of the amount of resources, latency, frequency of

83

operation of the application and exploitation of parallelism in HW. We have used Xilinx

Vivado HLS version 2013.2 and chose the target product family as Virtex-5 and target device

as xc5vfx70t-1ff1136. Many kinds of optimization can be applied during HLS which result in

the area/delay trade-off. We discuss these optimizations in brief in the next section.

The synthesis of all the ten ChStone benchmarks [2.50], written in C, was done using the

Vivado-HLS tool [2.60]. The results of synthesis are shown in Table 3.8 with respect to four

resource components: BRAM, DSP slices(it contains MAC units), slice registers and slice

LUT obtained from Xilinx ISE. It can be concluded from the Table 3.8, that AES, Dfsin,

JPEG and DfDiv consume more than 40% of the slice LUTs.

Table 3.8: Synthesized results of ChStone benchmarks

Benchmark
Class Lines of

Code

BRAM

(%)

DSP48

(%)

FF

(%)

LUT

(%)

adpcm Media 550 9 48 5 17

aes Encryption 289 4 2 12 41

blowfish Arithmetic 1255 1 ~0 1 5

dfadd Arithmetic 441 ~0 ~0 2 26

dfdiv Arithmetic 292 ~0 10 18 50

dfmul Arithmetic 270 ~0 6 1 12

dfsin Arithmetic 580 1 18 23 93

jpeg Media 1073 24 38 12 57

mips Processor 271 1 3 ~0 4

sha Encryption 1969 3 ~0 1 6

We can infer from the Table 3.8 that many programs consume high resources using automatic

synthesis. If area is the constraint for an application then designer may look for HW-SW

partitioning of such benchmarks. We chose dfdiv for partitioning process described in chapter

4.

3.5.1. Optimizations in Vivado-HLS

Area and latency are two important parameters that the designer has to keep in mind while

developing any digital hardware which are. In most cases the aim of the designer is to

minimize area utilization and increase the throughput thus making it an efficient design. These

two parameters are inversely proportional to each other and hence both the parameters cannot

be optimized simultaneously. The area parameter is usually an optimization metrics, while

performance is defined as a constraint metrics. Different kinds of optimizations [1.21] can be

applied by the designer to achieve the area/delay trade-offs in a HLS methodology. Some of

them are explained below:

 Function Inlining: This basically removes the functional hierarchy which saves the time

spent in executing the call and return statements from the function every time it is called.

This can be used at places where the function is called just once or twice or if there is

some kind of dependency which is preventing the top function to be pipelined.

84

 Function Dataflow Pipelining: This is a very powerful technique used to increase the

throughput by a huge margin. This basically breaks the sequential nature of the algorithm

and performs tasks in parallel as much as possible, so that one function doesn‘t have to

wait for the previous one to be executed completely before it can start. It checks for

dependencies and overlaps the operations as much as possible.

 Loop Unrolling: This technique tries to carry out a certain number of iterations of the

loop in one go unlike the unrolled case where it executes iteration in each clock. This

increases the resources on the chip but can prove to be beneficial if the number of

iterations is low.

 Loop Dataflow Pipelining: It is operated in a similar manner as the functions pipelining,

by allowing the parts of the loop that is sequential in nature to occur concurrently at

register transfer level (RTL) .

 Array Partitioning: Arrays can also be partitioned into smaller arrays. Memories only

have a limited amount of read ports and write ports that can limit the throughput of a

load/store intensive algorithm. The bandwidth can sometimes be improved by splitting up

the original array (a single memory resource) into multiple smaller arrays (multiple

memories), which effectively increases the number of ports.

These optimizations were applied to ChStone benchmark and results are discussed next:

In the adpcm benchmark, functions dataflow pipelining was applied on the encode function

because it contributed to minimum latency. This led to a drop in the latency and interval of the

design by almost 80% (((35654-7154)/35654)x100) as shown in Table 3.9(part-a). The

resource used goes from 4577 FFs to 7293 FFs.

 Interval defines the number of cycles after which the IP can accept new values.

 Solution-1 is original version and solution 2 is optimized version.

 The clock has been kept at 100 MHz.

Table 3.9 (a): Performance comparison of original and optimized adpcm synthesis and

 3.9 (b): Resource usage comparison of original and optimized adpcm synthesis.

 Latency

(part-a)

cycles

Interval

cycles

Resources

(part-b)

 min max min max BRAM_18K DSP48E FF LUT

Solution1 28254 35654 28255 35655 26 116 4577 11483

Solution2 7154 7154 7155 7155 24 242 7293 11483

85

In the blowfish benchmark, the array partitioning was applied on the array because it got

synthesized into a dual port BRAM, which was constraining the number of reads and writes

per cycle to two. Hence, complete partitioning of the array led to more number of reads and

writes per cycle thus decreasing the overall latency and interval of the design as shown in Fig.

3.23 and Fig. 3.24. The iv_load variable which was sequentially accessed is converted into a

parallel accessible array mapped to dual port RAM. Fig. 3.10 shows the comparison of

resource (1090 to 2173) and latency (44002 to 1442) for blowfish.

Figure 3.23: Sequential access of array

Figure 3.24: Parallel access of array

86

Table-3.10 (a): Performance comparison of original and optimized blowfish synthesis and

 (b): Resource usage comparison of original and optimized blowfish synthesis

 Latency(part-a)

cycles

Interval

cycles

Resources(part-b)

 min max min max BRAM_18K DSP48E FF LUT

Solution1 2 44002 3 44003 3 0 1090 2173

Solution2 2 1442 3 1443 3 0 2173 1954

In the dfmul benchmark, the loop dataflow pipelining directive was applied to the

float64_mul function and it led to a decrease in interval from 14 to 2 as shown in Table 3.11

(a) and resource went from 1338 to 1879.

Table 3.11 (a): Performance comparison of original and optimized dfmul synthesis

 (b): Resource usage comparison of original and optimized dfmul synthesis

 Latency(part-a)

cycles

Interval

cycles

Resources(part-b)

 min max min max BRAM_18K DSP48E FF LUT

Solution1 1 14 2 14 1 16 1338 5213

Solution2 14 14 2 2 1 16 1879 5393

In mips benchmark, the loop unroll was applied to the three inner loops with constant bounds

inside the infinite while loop. This led to a decrease of about 5% in latency. Further the reg

array was completely partitioned leading to a further decrease of 8% in the overall latency.

This also decreased the time period of each clock cycle increasing the frequency as shown in

Table. 3.12.

Table 3.12 (a): Performance comparison of original and optimized mips synthesis and

 (b) Resource usage comparison of original and optimized mips synthesis

 Latency(part-a)

cycles

Interval

cycles

Resources(part-b)

 min max min max BRAM_18K DSP48E FF LUT

Solution1 75 867 76 868 4 8 437 1900

Solution2 27 819 28 801 2 8 386 2120

In the sha benchmark, the dataflow pipelining directive was applied on sha_transform

function since it majorly contributed to the latency. It led to a drastic decrease of 60% in the

latency and interval of the design as shown in Table. 3.13.

Table 3.13 (a): Performance comparison of original and optimized sha synthesis

 (b): Resource usage comparison of original and optimized sha synthesis

87

Latency

Cycles(part-a)

Interval

cycles
Resources(part-b)

 min max min max BRAM_18K DSP48E FF LUT

Solution1 103587 151605 103588 151606 10 0 1315 2619

Solution2 11067 59085 11068 59086 9 0 10543 26709

In most of the optimized solutions as shown in tables above, more resources were consumed,

but performance improved, hence it is the choice of the designer to select solution 1 or 2 based

on constraints.

Table 3.14: Comparison with LegUP compiler synthesis results:

Benchmark
Latency (cycles) Frequency(Mhz)

Vivado LegUp Vivado LegUp

 Virtex-5, PowerPC Cyclone IV, MIPS

Adpcm 7154 10585 115.74 53

Blowfish 1442 196774 117.51 60

DfAdd 8 788 115.61 102

DfDiv 10 2231 115.74 71

DfMul 14 266 115.74 93

DfSin NA 63560 114.68 46

JPEG NA 1362751 115.21 37

MIPS 800 5184 124.84 78

SHA 59085 201746 139.08 58

Since the ChStone benchmark has been developed by LegUp group, it is necessary to compare

the optimality of generated HDL from Vivado-HLS vs. LegUp. LegUp is an open source high

level synthesis tool developed at the University of Toronto. The LegUp framework allows

researchers to improve C to Verilog synthesis without building the infrastructure from scratch.

It accepts a vanilla ANSI C program as input, i.e. no pragmas or special keywords are

required, and produce a Verilog hardware description as output that can be synthesized onto

an Altera FPGA. C printf statements are converted to Verilog $display statements that are

printed during a Modelsim simulation, making it possible to compile the same C file with gcc

and check its output in the simulation.

In LegUp, we can compile the entire C program to hardware, or we can also select one or

more functions in the program to be compiled to hardware accelerators, with the remaining

program segments runs in software on the MIPS soft core processor. Compiling the entire

program to hardware can give us the most benefits in terms of performance and energy

efficiency. However, there may be parts of the program which are not suitable for hardware,

such as linked list traversal, recursion, or dynamic memory operations. Table 3.14 shows the

88

comparison with respect to latency and frequency of operation. It can be seen from the table

that on Virtex-5 series of Xilinx, the Vivado performs much better as compared to LegUp.

The loop bounds in the C code to be synthesized can either be constants or variable. For

certain types of variable loop bounds Vivado can calculate the upper loop bound and give the

latency of the design but for some it is unable to do so and hence the results are undefined.

Such cases have been mentioned as NA in the Table 3.14.

From the above analysis, we obtained the resource consumption of functions and will be used

in partitioning phase. The next section shows how an IP generated from Vivado-HLS can be

directly be added to the EDK flow and minimizes the designer‘s effort in interfacing.

3.6. HW IP Design Integration of IP as a part of SOC

FPGAs are platforms that allow the implementation of the HW synthesized from HDL

languages. The application is synthesized and interfaced to the bus in FPGA based SOC

design as discussed in chapter 1. The SOC flow encompasses the computation and

communication infrastructure for the generated HW. There can be various communication

substructures that can be used such as peer to peer connection, network on a chip or a bus

design. Bus design has been the most used commonly interface in FPGA IP interfacing

technique. This is because it is simpler as compared to others and available in all the SOC

platforms.

3.6.1. Case Study for Hardware, Software IP Core Integration Using Vivado-HLS and

EDK

This sections aims to clarify the wrapper generation and bus bundling required for IP

integration. The same method can be applied to any co-design process. A simple code for

adding two numbers was written and its RTL description was generated using Vivado-HLS.

Then, the generated RTL IP core was migrated to Xilinx EDK and interfaced [3.21, 3.22] with

the Microblaze soft core processor. The hardware design was exported to SDK to create its

board support package and user interface. The driver generated from Vivado-HLS where used

as application programming interface and were used to write an application code for the

generated hardware. The software computation was then complied on the hardware thus

demonstrating the concept of usage of automatically generated IP core using Vivado-HLS.

Source Code: Input to Vivado

#include<stdio.h>

#include "adder.h"

void adder(int *c,int a,int b)

89

{

#pragma HLS RESOURCE variable=return core=AXI4LiteS metadata="-bus_bundle slv0"

#pragma HLS RESOURCE variable=a core=AXI4LiteS metadata="-bus_bundle slv0"

#pragma HLS RESOURCE variable=b core=AXI4LiteS metadata="-bus_bundle slv0"

#pragma HLS RESOURCE variable=c core=AXI4LiteS metadata="-bus_bundle slv0"// AXI

bundle for slave interface

*c=a+b;

}

A simple adder written in C is defined in the code above and is used input to Vivado-HLS.

The pragma compiler directive tells the compiler to bundle the input signals in the AXI bus as

slave inputs.

Testbench:

#include<stdio.h>

#include "adder.h"

int main()

{

int a,b,*c,result;

a=2;

b=3;

c=&result;

adder(c,a,b);

if(result==5)

 return 0;

else

 return 1;

}

The tool requires a test case in which the function to be synthesized is called and inputs are

given. Such test case in shown above with a = 2 and b = 3. The generated IP core and its

driver are migrated in EDK/SDK flow for achieving the SOC flow. The core generated by the

Vivado-HLS tool was copied in the pcore directory of the EDK and interfaced with the

Microblaze processor. Similarly the drivers were included in the SDK environments.

SDK Application Code:

#include <stdio.h>

#include "xadder_slv0.h" //generated from Vivado as header files

#include "xadder.h" //generated from Vivado as header files

#include "xparameters.h"

XAdder XA;

XAdder_Config XA_config={0,XPAR_ADDER_S_AXI_SLV0_BASEADDR};

void XAdderStart(void *InstancePtr){

90

XAdder *pAd = (XAdder *)InstancePtr;

//Enable ap_done as an interrupt source

XAdder_InterruptEnable(pAd,1);

//Enable the Global IP Interrupt

XAdder_InterruptGlobalEnable(pAd);

//Start the IP

XAdder_Start(pAd);

}

int main()

{

int result,resultm;

XAdder_Initialize(&XA,&XA_config);

XAdder_SetA(&XA,2); //pass value of 2 to adder

XAdder_SetB(&XA,3); // pass value of 3 to adder

XAdderStart(&XA); //execute

result=XAdder_GetC(&XA); // get the sum

resultm=result*result; //square the value

xil_printf("%c2J",27);

xil_printf("Final result:%d",resultm);

return 0;

}

The above SDK code which uses the driver functions in given input 2 and 3. When the above

code is run on the FPGA, the result = 25 is shown on the console screen. Here the addition is

carried out by the hardware, whereas the squaring is done by the software as shown by two

bold lines in the code.

The above example shows the generation of IP core for AXI bus. The same procedure can be

adopted for PLB bus, but the PLB drivers are not generated automatically in the Vivado-HLS.

The user has to write the API functions to read and write from the IP core. Clock and reset are

manually connected for the core by the designer. The example given below shows the PLB

bundle that is used for IP [3.23].

#pragma HLS RESOURCE core=PLB46S variable=a metadata="-bus_bundle CONTROL"

#pragma HLS RESOURCE core=PLB46S variable=b metadata="-bus_bundle CONTROL"

#pragma HLS RESOURCE core=PLB46S variable=return metadata="-bus_bundle

CONTROL"

The PLB on-chip [3.24] bus is used in SOC integrated systems and it supports read/write data

transfers between master and slave devices equipped with a PLB interface and connected

through PLB signals. It is a 64-bit bus format that supports multiple master and slave devices.

Listed below are some of its characteristics:

91

• It can support 32-bit devices.

• Each master device is assigned a priority so that the bus can arbitrate when multiple

masters want to use the bus.

• Slave devices are assigned one or more regions of addresses that are responsible for

handling read/ write requests.

• The read or write operation takes five bus clock cycles and the maximum clock frequency

is 125 MHz.

• PowerPC 405(ML507 Board used in this work has 405) supports two PLB interfaces:

i. Instruction-side PLB for loading instructions into cache.

ii. Data-side PLB (read-write) for data cache.

The IP cores interfaced to the bus runs at a high frequency which is usually in MHz and hence

the latency of computation is in the order of nanoseconds. This gives the designer a hope of

very high throughput in HW. The data transfer takes place from memory to memory through

the bus. This means that the processor takes data from cache, sends it to core, the core

processes it and results are saved back to cache. This sending/receiving of data incurs a

communication overhead. If such a overhead is large, then the advantage of using the HW-SW

co-design approach may be lost. Hence it is necessary to understand the underlying bus and its

overhead. When an IP core is designed for acceleration, many kinds of optimization and

design strategies at different levels of the design flow can be applied to increase performance.

Some of the strategies are discussed below:

 Using burst mode of transfer in which packets of data are transferred after the initial

address setup.

 Using pipelined mode of transfer if the bus supports. In this mode address and data are

overlapped.

 Using data pipelining in the design and pre-fetching the data.

 Allowing the core, bus and processor to run at their maximum allowable frequency.

 Using a direct memory transfer technique to release the processor during

communication.

We conclude that migration of C/C++ based application to HW is now accelerated, but there

is a need to recognize the performance gain. Next section elaborates the usage of HW timer

for calculating the time taken by core for processing the data.

92

3.7. Hardware Timer

This section describes Xilinx XPS HW Timer [3.25] which has been used in this thesis for

time measurement and has been used to find the running time of the applications. The XPS

Timer connects as a 32-bit slave on processor local bus (PLB). It is organized as two identical

timer modules. Each timer module has an associated load register that is used to hold either

the initial value for the counter for event generation, or a capture value, depending on the

mode of the timer. The top level block diagram of the XPS Timer/Counter is shown in Fig.

3.25. There are 3 modes in which the timer can operate:

Generate mode: The value of the load register is loaded into the counter. The counter begins

the count and on reaching the value, it stops or automatically reloads the generate value. This

generates an interrupt if enabled. This mode is useful for generating repetitive interrupts or

external signals with a specified interval.

Capture mode: The value of the counter is stored in the load register when the external

capture signal is asserted. This mode is useful for time tagging external events while

simultaneously generating interrupts. This mode of the timer is used for capturing the number

of cycles elapsed.

Pulse Width Modulation Mode: In this mode, the two timers are used as a pair to produce an

output signal with a specified frequency and duty factor.

Figure 3.25: XPS timer interface with PLB bus [3.25]

93

There are three functions we need to use to capture the time. These are as follows:

 XTmrCtr_Start() :– Starts the timer specified in the arguments;

 XTmrCtr_Stop() :– Stops the timer specified in the arguments;

 XTmrCtr_GetValue() :– Returns the value of the timer at that moment;

We declare the following required global variables in the code for creating a timer object –

 XTmrCtr TimerCounterInst;

 Unsigned long cycles;

The first variable is required to be passed as an argument to the above functions. The second

variable is used to capture the value returned by the get value function. After the above

initialization, the functions must be called in the following order:

 XTmrCrt_Reset() – To reset the timer before starting it to any other value;

 XTmrCtr_Start() – To start the timer;

 XTmrCtr_Stop() – To stop the timer;

 XTmrCtr_GetValue() – To get the number of cycles as captured by the timer;

The events for which the time is required must be between the start and stop functions. It must

be noted that the value captured is accurate to few clock ticks and hence, time captured at

different runs can be different up to few nanoseconds. This inaccuracy is tolerable as order of

execution time is more than milliseconds for critical and time consuming applications. The

timer runs at 125 MHz and for all practical purposes, it is sufficient. Also, the operations of

starting and stopping the timer take a few clock cycles. This overhead must be subtracted from

the total time computation. So, for complete accuracy, the two functions (start and stop) must

be written one below the other and the time must be captured. This gives the time taken to

initialize the functions themselves. This value can be subsequently subtracted from total time

values to get accurate results. For e.g. if the number of cycles = 000012FC and timer is

running at 125MHz then the time would be 38880 ns. We found that timer takes 80 cycles for

these start/stop functions, hence 80 x 8 ns = 640 ns. So the actual time comes out to be 38880

- 640 = 38240 ns. A demo function showing the timer code is presented in Appendix 1.

3.8. Results of Manual Interface of DfDiv Program as IP Core

In the last three sections we have discussed time profiling, Vivado-HLS and HW timer. We

now choose a program from ChStone benchmark to compare its SW, HW and HW-SW

94

performance in Virtex-5 series on ML507 board. This board has been chosen since,

 It has a hard core PowerPC processor which can run at maximum frequency of 400

MHz

 It supports partial reconfiguration which will be used in chapter five for comparison.

DfDiv program was selected since it consumed 50% of resources of the chip and profiling

results showed that it takes around 0.8 ms to execute in SW, which is large value for a double

precision floating point operation and its callgraph is shown in Fig. 3.19.

From the Fig. 3.11, it is concluded that the best candidates for HW migration is

estimateDiv128To64 as it consume more time (>400 us) thus being computationally intensive

as compared to other functions. This function was synthesized manually in Vivado-HLS and

its IP core was generated for achieving the co-design process. The IP core generated from

Vivado-HLS was interfaced in the EDK flow and its execution time was measured using HW-

timer as shown in Table 3.15.

Table 3.15: ChStone benchmarks timing results on ML506 Board

Benchmark

(1)

LUT(%)

(2)

SW time Using

Profiling (gprof)

(3)

SW Time

Using XPS

timer (4)

HW Time

(5)

HW-SW

Time (6)

DfDiv 50 0.800 ms 0.728 ms 0.0294 ms 0.406 ms

The above process was done manually and following are the results as given in Table 3.8:

 SW time using the gprof profiling = 800 μsec

 SW time using XPS timer time = 728 μsec

 HW time as DfDiv generated using Vivado-HLS and interfaced with the PLB bus = 29.4

μsec

 HW-SW co-design time using XPS timer = 406 μsec

From these values we have proved that SW/ HW acceleration = 728/29.4 = 24.76 times. But

the co-design flow shows only a 1.79 speed-up due to bus interface overhead.

3.8.1. Comparison with LegUp

LegUp tool also supports co-design process and computationally intensive functions can be

accelerated by hardware, while the remainder of the program runs in software. This allows

supporting a wider range of applications and enables a broad exploration of the

hardware/software co-design space. With the MIPS soft processor, we can also execute the

entire program in software. First we compile the benchmark with gcc to verify the output.

95

Hybrid flow is a combination of SW and HW. All the three flows hardware, hybrid and

software were performed on the DfDiv benchmark program and it has been found that the

execution time was least in pure hardware flow but hybrid flow is far better compared to pure

software flow. The same DfDiv benchmark was compiled in LegUp and the result of the

simulation is shown in Table 3.16 for the MIPS (150 MHz) processor. For hybrid case the

estimate64div function was migrated for co-design flow.

Table 3.16: Performance comparison of DfDiv in LegUp

Category Pure

SW

Hybrid Pure

HW

Clocks 94188 9980 1928

Fmax

(MHz)

71.88 65.19 100.123

Execution

Time (µs)

1310.35 153.09 19.123

Table 3.16 shows that DfDiv program takes 1310 microseconds in SW and 19.123

microseconds in HW. These results are simulation based and do not consider the bus overhead

incurred during the real time execution.

Table 3.17: Area delay product comparison of DfDiv in LegUp

Category Pure SW Hybrid Pure HW

Area(Logic

elements)

4735 10884 4384

Execution

time(us)

1310.35 153.09 19.123

Area delay

product

62040507 1666231 83835

Table 3.17 shows that the area delay product is maximum for pure SW and best for HW. The

drawback of the HW results is that it only shows the area taken by the IP, but does not

includes the system area, which includes controllers and processor. Since there is big

difference in the clock frequencies in the two platforms (Xilinx and Altera) a significant

comparison cannot be made. The LegUp area and delay are for Altera FPGAs, the comparison

with ML507 which has PowerPC (400 MHZ) processor is not justified. The hybrid

implementation lies in between the HW and SW implementation in Table 3.17.

This section described the manual process of co-design and is static in nature. In such a design

flow a function selected by the designer is used in SW migration and design space exploration

cannot be explored. The next chapter uses genetic algorithm for answering such a crucial

question.

96

3.9. Conclusions

In this chapter we have shown how real time profiling can be used to find the time consumed

by each function. The principle behind the generation of HW from a high level specification

has been discussed. An algorithm has been proposed that can find the amount of resources

consumed by the program by iterating through the control flow graph. A standard program

(Dfdiv) selected from ChStone benchmark has been used testing and verification. For the

same program its HW, SW and co-design time has been compared on Xilinx ML507 board.

Thus it can be ssummarized as:

a) Vivado-HLS tool was able to compile most of the programs present in ChStone

benchmark and is user friendly.

b) The Vivado-HLS generated core when interfaced in the EDK design flow gave 25

times better performance to SW.

c) The real time profiling gave accurate results, when the sampling time was order of

microseconds.

97

REFERENCES

3.1 Raj Kamal, Embedded systems: architecture, programming and design, Tata McGraw-

Hill Education, June, 2008. (Chapter-3).

3.2 Raghavan, Amol Lad, Sriram Neelakandan, Embedded Linux System Design and

Development, Auerbach Publications, December, 2005.(chapter-2,3,4)

3.3 V. G. Lesau, E. Chen, W. A. Gruver, D. Sabaz, Embedded Linux for Concurrent

Dynamic Partially Reconfigurable FPGA Systems, 2012 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), pp. 99-106, June, 2012.

3.4 Muhammad Ali Mazidi, The 8051 Microcontroller and Embedded Systems, Pearson

Education India, 2007. (chapter-2,3)

3.5 EDK User Peripheral Tutorial - Xilinx,

japan.xilinx.com/direct/ise7_tutorials/import_peripheral_tutorial.pdf

3.6 De Micheli & Ernst & Wolf, Reading in Hardware software co-design, Morgan

Kaufmann, 2001.

3.7 Profiling tools, vast.uccs.edu/~tboult/CS330/NOTES/profilers.ppt, J. Fenlason and

R.Stallman.

3.8 GNU gprof, https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html

3.9 Susan L. Graham Peter B. Kessler Marshall K. McKusick, gprof: a Call Graph

Execution Profiler, SIGPLAN '82 Proceedings of the 1982 SIGPLAN symposium on

Compiler construction, Volume 39, Issue 4, April, 2004.

3.10 https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_chapter/gprof_6.html.

3.11 El- Sayed M. Saad, Medhat H. A. Awadalla, Kareem Ezz El-Deen, FPGA-based

software profiler for Hardware/Software co-design, National Radio Science Conference

(NRSC), pp. 1-8, March, 2009.

3.12 M. Aldham, J. Anderson, S. Brown, A. Canis, Low-Cost Hardware Profiling of Run-

Time and Energy in FPGA Embedded Processors, ASAP 2011 - 22nd IEEE

International Conference on Application-specific Systems, Architectures and

Processors, pp. 61-68, September, 2011

3.13 Using the RDTSC Instruction for Performance Monitoring,

https://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf , 1997

98

3.14 C Library - <time.h> - TutorialsPoint,

http://www.tutorialspoint.com/c_standard_library/time_h.html

3.15 EDK Profiling User Guide Xilinx,

www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/edk_prof.pdf

3.16 Clang "clang" C Language Family Frontend for LLVM, clang.llvm.org/

3.17 LLVM IR, LLVM Language Reference Manual — LLVM 3.9 documentation,

llvm.org/docs/LangRef.htm

3.18 Visualizing code structure in LLVM - Institute of Computational Science,

https://www.ics.usi.ch/images/stories/ICS/slides/llvm-graphs.pdf

3.19 http://www.llvmpy.org

3.20 S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann, San

Francisco, CA, 1997.

3.21 Vivado Design Suite Tutorial: High-Level Synthesis (UG871) - Xilinx,

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug871-

vivado-high-level-synthesis-tutorial.pdf

3.22 Xilinx Vivado tutorial,

ese.wustl.edu/~xuan.zhang/ese566_files/tutorials/vivado_tutorial.pdf

3.23 AR# 59444: Vivado HLS 2013.4 - Example to generate PLB IP

3.24 Processor Local Bus (PLB) 4.6 - Xilinx,

www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf

3.25 XPS Timer/Counter, http://www.xilinx.com/products/intellectual-

property/xps_timer.htm last accessed on May, 2015.

99

Chapter 4

Design and Development of Efficient Hardware and

Software Partitioning Algorithm

This chapter describes a framework which aims at design space exploration using HW-SW co-

design approach. The framework presents an automated flow to generate design parameters

using partitioning algorithm. Data generated from Vivado-HLS and time profiling has been

further used as an input to genetic algorithm for partitioning the application and generates

various implementations. This chapter proposes various solutions to overcome the co-design

challenges, making the design flow feasible.

4.1. Frameworks for Reconfigurable Computing Systems

For migrating any design to FPGA, the amalgamation of both SW-HW and HW-HW can be

applied to a design to explore the design space. We have broadly classified the framework into

two classes:

Framework-1: Efficient automatic conversion method for C to HW-SW-co-design:

A complete HW solution of an application gives best performance, but in many cases, it may

consume a large amount of chip resources. We may then, look for implementing only a part of

the application into HW. In such a case, the option is to use a combination of HW and SW.

Such a design flow requires to identity the part of the application that takes more time in a

systematic way rather than estimating the parameters manually. The extra effort required in

this case is of interface design development for the application to work correctly. The

interface can be simple for bare metal design (no OS) and complex for OS based design as it

requires device driver development for. Many parts of such design flow are manually done

and require broad knowledge of the application, interface and FPGA. This research work

proposes an automated co-design approach way by using profiling, partitioning and high level

synthesis process. This chapter extensively covers this framework in detail.

Framework-2: Multiple IP cores can be designed for an application and interfaced to the bus.

Usage of such core has been referred as HW-HW design flow in this thesis. This research

work explores this framework which is HW-HW implementation of an application and is

researched as two different approaches. In approach 1, reusable patterns in application are

identified, and interfaced as static IP cores to the bus. Such reusable cores will allow the total

100

consumed resources to diminish and improve overall metrics of the design. Such similar

patterns are created as clusters using isomorphism concept.

The second approach aims at partitioning an application into clusters using genetic algorithm.

These clusters are then dynamically scheduled on a given area using partial reconfiguration

design flow. This framework is discussed in detail in chapter 5. The next section presents

framework 1 and the profiling, high level synthesis, partitioning and results are put together in

the subsequent sections.

4.2. Hardware Software Co-design Partitioning Design Flow

The proposed framework that implements co-design and guides the designer with well defined

steps is presented in this section. An efficient partitioning technique being the sole objective in

design flow requires the HW-SW time and the area of each function on a real HW, for

identifying the best solutions. Since the time and area parameters are not directly available

from a single tool-chain, certain assistance from different tools is required. Here Vivado-HLS,

gprof and time profiler were used to accumulate these values.

The framework starts from the specification written in C language. The code is synthesized

using Vivado-HLS and resources are tabulated for each function in the program. For timing

estimation, a callgraph is generated using gprof, which is a time profiler utility in gcc compiler

and it returns the time taken by each function. The generated data from Vivado-HLS and

gprof are given as input to the partitioning stage.

The partitioning step generates the various implementations of an application for a different

deadline. The objective of this phase is to guide the designer about which functions should be

in HW and which once should be in SW. When the C program is populated with too many

functions and the value of time/area is close, answering this question is very tricky. Unless an

initial implementation on real HW is available, this cannot be answered easily. An initial

implementation which gives performance parameters requires extensive efforts in system-on-

chip design flow. If this initial implementation can be bypassed, the job of the designer can be

simplified.

The HW is then interfaced with the bus and bus wrapper is created. The SW part is compiled

with Xilinx SDK and finally the entire design is tested for performance gain using HW timer.

We propose a design flow as shown in Fig. 3.7, which is an extension of design flow

discussed in [2.1] and aims at answering the issues discussed above.

101

Figure 4.1: HW and SW Co-design flow

The flowchart in Fig. 4.1 describes the steps followed in detail:

 We start from a program written in C subset. Recursion and dynamic data structures are

not supported in Vivado-HLS, hence should be avoided. LegUp group [2.5] has developed

a standard benchmark known as ChStone which is written in C language and has been

used in this work.

 The C code is profiled in gprof to generate callgraph and tabulate the call values and time

consumed by each function. The call graph and the flat profile format are extracted for

finding the number of calls. The child and parent relation is generated using pvtrace utility

[2.18].

 Vivado-HLS is used to generate Verilog code of the benchmark. It can bundle the entire C

code into an IP core that can be directly interfaced with the bus. However, it does not

allow generating Verilog code of selected functions automatically. Though, we can choose

the individual functions and migrate them to HW manually. This option is also possible in

LegUp by defining a function in a Tcl script manually. This step identifies the resource

taken by each C function and latency in terms of number of cycles consumed.

 The proposed partitioning algorithm is now applied to find the best solution. The

functions, their dependency, resource table from Vivado and time of each function are

given as input to the algorithm. The algorithm then generates the best HW-SW

implementation for a given deadline.

 The previous stage identifies the functions that are supposed to be migrated to HW. These

functions are taken from Vivado and a wrapper is created for interface design. The

Specification
in C

Profiling C to VHDL

Partitioning

Algo.

HW Wrapper
Design

SW Part

Interface
Design

Verification

102

required FIFO or slave registers are used for input/output data transfer as discussed in

section 3.1.

 An upper level SW is now written in SDK, which can bind the functions together and the

entire design is now built to test the performance gain and verify the functionality. Pure

SW execution of the program on SDK gives the lower bound and pure HW as core

interfaced to the bus gives the upper bound for comparison of HW, SW and hybrid

partitioning approach. The above two steps have been discussed in previous chapter.

4.3. Partitioning Process Using Genetic Algorithm for HW-SW Co-design

In the previous section we have proposed the design flow and presented the manual approach

of interfacing a predetermined function in a SOC flow. We have shown how time and area can

be estimated using profiling and synthesis in Vivado-HLS for a program written in C. If any

other function other than estimate64div is migrated to HW, what will be the performance can

only be estimated after following the SOC flow. Such a flow is time consuming and error

prone. What we need is a algorithm that will define which functions should be in HW and

which once should be in SW, so that a given deadline is met. Hence we explore the process of

partitioning and apply it to the domain of co-design. In subsequent sections we will show the

process of partitioning on two different kinds of specification:

a) A C program: Partitioning at this level means deciding which functions should be

migrated to HW. Since there can be data structures shared across these functions, they

cannot be assumed to be independent of each other. Hence in this case serial execution of

functions will be considered in proposing the time equation. For this we will assume one

CPU and one HW area available for mapping.

b) A task graph: It is an acyclic graph in which data flows from one node to another and the

assignment is continuous. Since there in no data structure sharing and continuous

assignment, it is possible to run the operations in parallel, hence a different time equation

will be proposed. Here we will extent the architecture to have multiple CPU and multiple

HW area available for mapping.

Partitioning is a process by which we divide the input specification into disjoint subsets

depending on the constraints which defines the number of subsets, maximum vertices running

between the subsets and the number of functions or nodes in a subset. It has been extensively

used in Electronics design automation in placement and routing algorithms for netlist

processing. It has extended its span to domain of embedded systems where HW-SW co-design

exploration can be done. Most of the applications can be described as dataflow and control

103

flow graphs which are inputs to the partitioning phase hence the roots of partitioning phase are

in graph theory. We next introduce basic terms and jargons used in graph theory.

A graph G = (V, E) portrays nodes V as operators and edges E as connections. The graph size

parameters: are defined as n (nodes) = |V|, m (edges) = |E|. Fig. 4.2 (a) shows the sample

graph with its parameters in Fig. 4.2 (b).

1

32

4

5

V = {1,2,3,4,5}

E={{1,2},{1,3},{2,4},{3,4},{4,

5}}

N=5

M=5

 Fig. 4.2: (a) Sample graph Fig. 4.2: (b) Parameters for sample graph

The graphs can be classified as undirected, directed, mixed and weighted. An undirected

graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has

one red and one blue end. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the

first k-1 nodes are all distinct. An undirected graph is a tree if it is connected and does not

contains a cycle. Forest is s a union of trees. Given a tree (T), choose a root node (r) and

orient each edge away from r defines a rooted tree. A shortest path between two vertices is a

path of minimal length. Given below are parameters and traversals [4.1] that are utilized in

algorithms applied to graph.

a. Length – number of edges in the graph.

b. Distance between u and v – the length of a shortest path between them (or ∞ if a path does

not exist)

c. Subgraphs: G’(V’, E’) is subgraph of G(V, E): V’ ⊆ V, E’ ⊆ E

d. Degree of a vertex: the number of edges incident on the vertex (in undirected graphs)

e. In-degree and out-degree in directed graphs: the number of edges coming into/going out

of the vertex.

f. Adjacency matrix: n-by-n matrix with Auv = 1 if (u, v) is an edge. Fig. 4.3 (a) shows a

sample graph with its adjacency matrix in Fig. 4.3 (b).

104

Figure 4.3: (a) Sample graph

 Figure 4.3: (b) Adjacency matrix

g. Adjacency list: Node indexed array of lists.

h. Graph traversing and shortest path problems: Given a graph G (V, E), explore every

vertex and every edge using the adjacency using depth first search or breadth first search

approach.

In the next section we present some vernaculars used in HW-SW partitioning that are used

in the algorithm selection and design.

4.3.1. Hardware and Software Partitioning Issues

 HW-SW partitioning is the process of mapping of application defined as graph nodes to either

hardware or software components. The objective here is to minimize the execution time, while

keeping the physical area within constraints. Before the designer can apply partitioning, the

various issues have to be kept in consideration. These issues are briefly described below

[2.19]:

I. Abstraction Level: The partitioning process can consider the input at various levels of

abstraction. As the level increases the amount of logic amounting in the node also increases.

The HW abstraction level can be:

a. Netlist or DFG: This is the lowest level and nodes are digital components with their

interconnection.

 1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0 0

3 1 1 0 0 1 0 1 1

4 0 1 0 1 1 0 0 0

5 0 1 1 1 1 0 0 0

6 0 0 0 0 1 0 0 0

7 0 0 1 0 0 0 0 1

8 0 0 1 0 0 0 1 0

105

b. FSMD: These are used for behavioural specification of the systems along with control

structure.

c. Modules: These are entities that define functionality and can be treated as black boxes.

d. Subsystems: A complete system is a collection of sub-systems.

The SW abstraction level can be:

a. CFG: Control flow graph is used to describe the flow structure of any language and can be

used as graphical notations for specification.

b. Basic block: Most compilers generate CFG at the basic block level. A basic block level is a

piece of code which is entered at the top and exited at the bottom.

c. Functions: These are entities that define functionality and can be called as per requirement.

d. Subsystems: A complete SW is a collection of functions put together.

The partitioning process can be applied to any of these abstraction levels. In this chapter we

are showing the process on function level and DFG level, although the proposed algorithm can

be applied to any level.

II. Objective Function: The partitioning process is guided by a function which tells whether

the algorithm movement is beneficial or not and it is known as objective function. This

function can be modified as per the requirement and constraints in the design. For e.g. very

simple objective function can be cost, which means for a given solution the one with

minimum area cost will be chosen.

4.4. Genetic Algorithm for Co-design

Partitioning has been a matter of extensive research in the ASIC synthesis tools and aim at

creating clusters, such that minimum wires are running between them. It can be divided into

two categories: constructive and iterative based approach. Constructive partitioning aims at

identifying an initial partition and iterative perform a certain number of iterations. Examples

of constructive algorithm are cluster growth, hierarchical clustering, etc. Iterative algorithms

are heuristic in nature that find solutions among all possible ones, but they do not guarantee

that the best will be found, therefore they may be considered as approximately good but not

optimal algorithms. Examples of iterative algorithm are Fiduccia Mattheyses (FM), simulated

annealing (SA) and genetic algorithm (GA). The application of GA has been shown efficiently

in VLSI domain [4.2-4.3] and further extended to co-design [4.4]. The current work uses GA

[4.5] as the underlying partitioning algorithms since the literature survey shows the efficacy of

the algorithm. Another approach known as Integer linear programming is a mathematical

106

approach that has been used for partitioning and scheduling solutions for smaller set of

problems.

Genetic algorithm is a robust stochastic optimization technique that is inspired by the principle

of survival of the fittest in nature [2.27]. GA gives good result because at a time it maintains a

set of solutions, whereas algorithm like simulated annealing works with one solution. An

initial population is randomly created at the starting phase of GA. This population is actually a

set of solution for the problem under consideration. The fitness value of the objective function

[4.6] for each individual in the set is the index of the goodness of that individual. GA evolves

the population over generations with the use of operators such as selection, crossover, and

mutation. In selection, individual with higher fitness value are selected and repeated in the

next population. The newly selected population is subjected to a crossover operation where

genetic information of the individuals, with better fitness value is exchanged. This enriches

the population with better offspring. The final step is mutation where some bit of genetic

information is complemented in the selected individuals. Finally the fitness value is compared

and a new iteration is started until there is no change in the fitness value of the new

generation. The pseudo code for GA is shown in algorithm 4.1 with explanation given in each

line as comments.

Algorithm 4.1: Pseudo Code for Time and Cost Calculation

/* Create first generation with gen_size random partitions*/

G = NULL

for I in 1 to gen_size loop //select a generation size and for each generation do

G = G U CreateRandomPart(O) // create a random solution and add it to G

end loop

P_best = BestPart(G); // Assign a solution to a variable.

/*Evolve generation */

While not Terminate loop // do some fixed number of iterations

G = Select(G, num_sel) U Cross(G, num_cross) // Apply selection and crossover

Mutate(G,num_mutate) // Apply mutation

If objfct(BestPart(G)) < Objfct(P_best) then

 //find the value of objective function, reject it if more

P_best = BestPart(G)

end if

end loop

return P_best // return the solution

107

4.4.1. Sample Case Study using GA for Co-design Using Callgraph Model

We now present the partitioning phase of framework 1 using genetic algorithm. In this

example, we extent the applications of partitioning to callgraph model generated from a C

program. In order to prove the effectiveness of the partitioning process, a benchmark is

required, which tabulates the SW execution time, SW area, HW execution time and HW area

on a given CPU and FPGA. The availability of such benchmarks has not been reported, hence

we start from a random specification and values as shown in Table 4.1. The C application

consists of callgraph as shown in Fig. 4.4 and has seven functions. This was created for

examining the proposed design flow and values were designed in such a way that algorithm

has to search for a good solution. The main function is always implemented in SW because it

is the function which calls all other functions. Only one level hierarchy has been taken since

all the sub-callee will be the component of the callers. This assumption has been made since

the HLS HW generation is usually done of the functions present at level 1. This means for Fig.

4.4, there will be six SW functions in SW or six modules as HW in HLS.

Since the C program executes serially, in the total time calculation, serial execution of

functions has been considered. The function main has been given 0 time so that the algorithm

takes it as SW. In a situation in which the functions have similar parameters we need a well

defined partitioning algorithm that can give concrete answers about the co-design paradigm.

Figure 4.4: Callgraph of a random C program

Table 4.1 shows the dummy values taken for seven functions. From previous discussions, we

can get the values from the Vivado-HLS, but this feature has to be inbuilt in compiler of

Vivado, i.e. the tool itself should return the values in a tabulated form.

main

CodingHuffmanFixedpDCTZeroaddPre

144
144144144

144144

108

Table 4.1: SW and HW parameters

Node-

Name(1)

CPU

Time(2)

FPGA

Time(3)
Calls(4)

FPGA

Resources(5)

CPU

Area(6)

Main 0 100 1 0 5000

Pre 90 1 144 10000 0

Zeroadd 20 2 144 2000 0

Fixedp 40 4 144 4000 0

DCT 100 10 144 5000 0

Huffman 50 5 144 6000 0

Coding 70 7 144 10000 0

Table 4.1 has following columns:

 Column 1: The name of the function.

 Column 2: The time taken by each function in SW. Main has been given zero value so that

it is always admitted in SW by algorithm.

 Column 3: The time taken by each function in HW. These values are kept 10% faster as

compared to SW values as we have shown in DfDiv example (section 3.8) that HW is 25

times faster to SW.

 Column 4: Number of times the main calls the other functions.

 Column 5: Area consumed by each functions on FPGA. For e.g. FPGA may have 44800

LUTs.

 Column 6: Area consumed by each functions in CPU. The main's function area is fixed to

5000 accounting to area taken by CPU on the chip and all other are kept as zero since

functions will be stored in memory and will not consume area.

As shown in the algorithm 3.1 that the GA is guided by the objective function which defines

the goodness of the solution. We have used the objective function (objfct) as shown in Eq. 4.1.

It includes time and implementation cost along with a predetermined deadline [2.33].

𝑂𝑏𝑗𝑓𝑐𝑡 =
𝑘1 ∗ 𝑡 − 𝑡𝑟 + 𝑘2 ∗ 𝑐 𝑖𝑓 𝑡 > 𝑡𝑟
 𝑐 𝑖𝑓 𝑡 < 𝑡𝑟

…(4.1)

In Eq. 4.1, t is total execution time of solution, c is total cost (area), tr is deadline constraint

and k1, k2 are constants. The objective is to find the minimum value of cost for a given time

constraint. So, satisfying solutions are obtained under the condition k1>>k2 because objective

function value becomes large under the condition when execution time exceeds deadline. This

will guide the GA and it will remove this solution in next iteration. For e.g. suppose, if k1

=1000, k2=1, tr = 200, c = 500 then if t > tr objfct = 1000(300 - 200) + 1*500 = 100500. But if

109

t < tr, objfct = 500. Hence if the deadline is missed objfct takes a high value because of k1 and

k2 and this solution will be avoided.

Similar Objective Function can be used when area is the constraint and it is shown in Eq. 4.2.

 𝑜𝑏𝑗𝑓𝑐𝑡 =
𝑘1 ∗ 𝑎 − 𝑎𝑟 + 𝑘2 ∗ 𝑡 𝑖𝑓 𝑎 > 𝑎𝑟
 𝑡 𝑖𝑓 𝑎 < 𝑎𝑟

…(4.2)

 F = ObjfctF(Vi)
𝑝

𝑖=1
 …(4.3)

pi = objfct (Vi)/F …(4.4)

We have used Roulette wheel [2.27-Appendix-2] implementation in GA and it requires that

the objective function should be normalized and converted to numbers between 0-1. For this

the Fitness of the population is calculated and is given by Eq. 4.3. For converting the number

between 0-1, Eq. 4.4 is used. The detail GA algorithm is shown below with comments added

in each line.

Algorithm 4.2: GA FOR HW SW Partitioning

BEGIN

 p = population size; // decide the size of the initial population

 n = no. of nodes; // number of nodes in the graph

 G = Generate random population (0-1) of size = p x n; // for roulette wheel generate

random no.

 REPEAT

1. FITNESS evaluation of each chromosome G

 Calculate time; // find the time of each chromosome

 Calculate cost; //use HW-SW time and area to find the cost.

 Calculate Objfct; // use Eq. 4.1 to find the objective function

2. PROBABILITY evaluation of each chromosome

 Give max probability to min. OF;// using Eq. 4.4 find the probability of each chromosome.

3. CUMULATIVE PROBABILTY (CP); //convert the above numbers to cumulative

distribution.

4. SELECTION (Roulette Wheel) of better chromosomes

 g1= generate random no (0 to 1) for size= p;

 Find nearest larger CP value for each g1;

 G = Generate new population;

 (max. chance of larger probability value)

110

5. CROSSOVER between the pairs of parents

 c = define crossover probability;

 g2= generate random no (0 to 1) for size= p;

 Select chromosome for g2 ≤ c;

 Generate random position (0 to n) for each p pair of selected chromosome;

 Interchange bit patterns between pairs after their generated position;

 G = Generate new population;

6. MUTATION of the resulting offspring;

 m = define mutation probability;

 g3= generate random no (0 to 1), size= p x n;

 Select position for g3 ≤ m;

 Toggle bit pattern;

 G = Generate new population;

 UNTIL TERMINATION CONDITION SATISFIED

Schedule optimum OF value pattern;

END

The algorithm proposed for cost calculation is shown in algorithm 3.3 with NC being the

number of time the function is executed. The algorithm finds the total time taken for the

chromosome.

Algorithm 4.3: Pseudo Code for Time and Cost Calculation

BEGIN

Take one chromosome

Cost = 0; dummy = 0;

for i=1:n

 If (pattern [I] == 1)

 execution_time[i] = hw_time[i] *NC[i]; //multiply the number of calls with the hw time.

 Cost = Cost + hw_cost[i];

 else

 execution_time[i] = sw_time[i] *NC[i];

 if (dummy == 0)

 {Cost = Cost + sw_cost[i];

 dummy = 1;}

Start_time[1] = execution_time[0];

End_time[1] = 0;

for i=2:n

111

 End_time[i] = Start_time[i] + execution_time[i];// addition of total time of each node

end

Time = End_time[n];

Cost;

END

Following functions were written in Matlab to accomplish the GA execution,

random_population(), mutatiton(), crossover(), fitness_value(), tot_time(), tot_cost(),

roulette_wheel(), pattern(), randpop(), cum_probability_value() and schedule().

4.4.2. Experimental Results

The architecture used for verification is shown in Fig. 4.5 with one CPU and one FPGA. The

values of each node are shown in Table 4.1 for CPU/FPGA time and CPU/FPGA area.

Figure 4.5: A SOC testing architecture

The process by which the values are given as input and the manner in which the outputs are

obtained from one run of GA is shown below:

A 0 in the pattern means SW node and 1 means HW node shown at line number 6. A manual

analysis gives that the pure HW time is 4176 and pure SW time is 53280. A hybrid

implementation should fall in between these values.

1. For e.g. consider the deadline as 200:

2. enter deadline: 200 ; User defined time for application to complete

3. enter population size: 20 ; The size of initial population for GA

4. enter no of iteration: 50 ; The number of times the GA does the iterations

5. Do you want serial execution or parallel (s/p): s ; The execution is serial or parallel

6. PATTERN = 0 1 1 1 1 1 1 ; main in SW and all in HW

7. COST = 4018000 TIME = 4176

8. node 1 start = 0 end = 0

9. node 2 start = 0 end = 144

10. node 3 start = 144 end = 432

11. node 4 start = 432 end = 1008

12. node 5 start = 1008 end = 2448

13. node 6 start = 2448 end = 3168

14. node 7 start = 3168 end = 4176

112

Table 4.2: Partitioning results for different deadlines

Deadline Opt. Cost Pattern Time Area Product

00200 4018000 0111111 04176 37000 154512000

01000 3218000 0111111 04176 37000 154512000

05000 0042000 0111111 04176 37000 154512000

10000 0038000 0110111 09360 33000 309870000

20000 0028000 0101110 18432 25000 460800000

30000 0020000 0100100 27504 15000 412456000

40000 0020000 0000101 31248 15000 468720000

50000 0009000 0001100 49536 09000 445824000

53280 0005000 0000000 53280 05000 266400000

The results for different deadlines are given in Table 4.2

• Column 1: The user defined deadline

• Column 2: Cost value returned by the GA

• Column 3: SW and HW pattern for the chromosome selected.

• Column 4: The time taken by the chromosome to complete.

• Column 5: Area consumed by the chromosome.

• Column 6: Area delay product for the chromosome.

For lower value of deadline upto 5000, all the functions are implemented in SW except the

main. This is because the lowest possible time is 4176 with HW. As the deadline increases,

the functions migrate to the SW and the cost comes down. For e.g., If the deadline is t = 200,

k1 = 1000 and k2 =1, then from Eq. 4.1, objfct is given as:

objfct = 1000(4176-200) + (10000 + 2000 + 4000 + 5000 + 6000 + 10000) = 4018000;

Suppose the deadline given is 10000, then 0110111 chromosomes can be taken as the solution.

Hence the choice of the solution is dependent on the designer. Many parameters like number

of iterations, the size of the initial population, mutation and crossover probability, size of the

input can impact the results and running time of GA. More iteration gives a better

optimization results, but computations increases. Higher probability value gives faster

convergence, but the possibility of missing out optimum value is possible. So, for a particular

problem these parameters experimentally determined and are fixed. Table 4.3 represents

different parameter values have been used in GA algorithm.

113

These values have been taken from [2.34], but population size and iterations are defined for

our problem set. The constant terms allows to create a weight factor in the function, crossover

probability and mutation probability are kept low.

Table 4.3: Parameter values used in GA

Parameter Value

k2 (constant in OF) 1

k1 (constant in OF) 1000

c (Crossover probability) 0.5

m (Mutation probability) 0.02

p (Population size) 20

Iterations 50

Figure 4.6: Fitness value optimized with iterations in GA for implementation

Fig. 4.6 shows how fitness value moves towards the optimum solution with increasing number

of iterations in GA for CPU – ASIC implementation for deadline = 30000. Here for particular

results, no. of iterations is set to 50. Once the algorithm finds a minimum cost solution, it will

hold this solution till it finds a solution optimum to the current one. After certain no. of

iterations, the fitness value reaches to its optimum value and GA will hold this value in next

remaining iterations. Given graph is indicative only, for every run of algorithm curve will

change, but the final optimization result will remain same after reasonable no. of iterations.

This happens because every time GA starts with random populations, so in every run different

initial starting and with a selection, crossover and mutation stages as algorithm achieves

solutions from random numbers only.

After applying the GA to case study, we now take the same program Dfdiv which we chose in

section 3.8, to show the HW and SW solutions generated using GA. In order to apply the GA

26500

27000

27500

28000

28500

29000

10 20 30 40 50 60 70 80 90 100

O
b

je
c
ti

v
e

fu
n

ct
io

n

Interations

114

what we need is the callgraph, HW time, SW time and HW area of each function. The call

graph generated is shown in Fig. 4.7 for DfDiv application using pvtrace utility in Linux.

The exact same functions shown in a C program callgraph are not synthesized as modules in

Vivado-HLS. The sub-functions are synthesized as sub-modules. There are total 15 functions

in the Dfdiv application. Floatdiv64_div is the function which calls all other functions and

main has the testing data for verification. Now Vivado-HLS returned four

modules(Float64_div, EstimateDiv128to64, propagateFloat64NaN and roundAndPackFloat64)

as shown by circles in Fig. 4.7. Table 4.4 shows the resources returned by Vivado-HLS of

these modules.

The time for each function can be accumulated from the profiling results. The FPGA time can

be tabulated from the Vivado synthesis results, number of calls from the pvtrace utility (this

needs modification similar to Vivado synthesized modules), FPGA resources as LUT slices

from Vivado-HLS and CPU area from data sheet of Virtex-5. These values are shown in Table

4.4.

115

Float64

_div
Main

extractFloat

64Frac

extractFloat

64Sig

extractFloat

64Exp propogateFlo

at64NaN

Float_rais

e

rounfandPack

Float64

estimatediv12

8to64

Float64_is_

nan

Float64_is_s

ignaling_nan
packFloat64 mul64to128 sub128

ulong_to_d

ouble 44
44 44

22

22

3 3

5

8

8

12 12

12 12
126 6

 Figure 4.7: Callgraph for DfDiv

Table 4.4: Resource usage from Vivado HLS for DfDiv program

Function BRAM_18K DSP48E FF LUT

Available on Virtex-5 296 128 44800 44800

Float64_div 1 16 2812 4184

EstimateDiv128to64 0 8 16988 16928

propagateFloat64NaN 0 0 0 329

roundAndPackFloat64 0 0 367 1385

Total Used 1 24 20167 22826

For Float64_div the CPU time is taken to be less so that this function is always in SW, this is

due to the fact that this function calls all other functions. We have proved that HW time is at

least 25 better to SW time in Dfdiv example hence the SW time has been divided by 25 times

in the Table 4.5.

Table 4.5: Parameters for DfDiv

Node

Name

(1)

CPU (Total time)

Time

(2)

(usec)

(profiling)

FPGA

Time

(3)

(usec)

Calls

(4)

FPGA

Resources

(5)

CPU

Area

(6)

Float64_div Base as 210/0 0 1 4184 5000

EstimateDiv128to64 10.25 0.41 40 16928 0

propagateFloat64NaN 5 0.2 12 329 0

roundAndPackFloat64 40 1.6 3 1385 0

The execution of GA for generating the design space is shown as a flowchart in Fig.4.8.

116

Create a resource consumption and execution time, calls table

Start the Genetic algorithm and define the number of iterations and

population size

Enter the deadline

Execute Genetic algorithm and find the area delay product

Index the chromosome in the dictionary

Has the deadline threshold

reached

Yes

No

Choose the Chromosome

Figure 4.8: Flowchart for the algorithm execution

The execution steps of GA are shown in Fig. 4.8. After the inital parameters are set , different

deadlines are entered until a upper threshold of deadline is reached. Table 4.6 shows the area

and delay product for various solutions generated by GA for various deadlines.

Table 4.6: Results of DfDiv program

Deadline Pattern Time

Area

Product

(Time x

Area)

300 0101 291.2 23313 06788745.6

350 0110 348.8 22257 07763241.6

400 0100 406.4 21928 08911539.2

430 0111 233.6 23642 10251171.2

650 0011 627.2 06714 04211020.8

700 0001 648.8 06385 04142588.0

800 0000 800.0 05000 00400000.0

800 0010 794.4 05329 04233357.6

Designer can select the chromosome according to deadline. These values are plotted as a

graph in Fig. 4.9. For e.g. if the deadline is 430, all the functions are in HW except

float64_div.

117

Figure 4.9: Deadline vs. Area/delay product for various genes

Figure 4.10: Snapshot of GA running in Matlab

Fig. 4.10 shows the snapshot of the GA program execution in Matlab.

4.5. Sample Case Study using GA for Co-design Using Task Graph Model

In the previous example call graph was taken as input to the genetic algorithm. In this section,

a input specification and a architecture have been created for proving the effectiveness of the

algorithm for acyclic graph specification. Task graph [4.7] with eight nodes has been

presumed for demonstrating the GA partitioning approach as shown in Fig. 4.11. Task graph

is an acyclic graph which represents an application as nodes and edges. There is no data

0

2000000

4000000

6000000

8000000

10000000

12000000

300 350 400 430 650 700 800 800

A
re

a
an

d
 d

el
ay

 p
ro

d
u

ct

Deadline

118

structure sharing among the nodes, i.e. there is continuous assignment of the output of one

node to another. This means that the nodes can be executed in parallel, which was not the case

with callgraphs.

1

2 3

4 5

6 6

8

Figure 4.11: Sample task graph

Figure 4.12: Multiple CPU and ASIC sample testing architecture

Fig. 4.12 shows the architecture assumed for implementing the task graph and contains two

CPU and two accelerator area named as ASIC1 and ASIC2. This architecture is different from

the call graph presumed architecture; hence this sample case study using GA is different from

call graph approach. Table 4.7 represents time and cost for 8 tasks on 2 CPU and 2 ASIC. The

various possible architectures can be CPU1, CPU2, CPU1-CPU2, CPU1-ASIC1, CPU1-

ASIC2, CPU2-ASIC1, CPU2-ASIC2. We have imposed the restriction that at least one CPU

and one ASIC should be present in the solution. This can be changed as per the requirements.

Now the task of GA is to generate the best performance solution on any one of them: CPU1-

ASIC1, CPU1-ASIC2, CPU2-ASIC1, CPU2-ASIC2 and show the node mapping and schedule

on the component.

119

Table 4.7: Implementation parameters for different Tasks

Node
CPU1

Time

CPU2

Time

ASIC1

Time

ASIC2

Time

CPU1

Cost

CPU2

Cost

ASIC1

Cost

ASIC2

Cost

1 60 30 20 10 40 60 25 45

2 90 50 30 15 40 60 30 35

3 81 54 27 15 40 60 15 20

4 60 40 20 10 40 60 10 15

5 90 44 30 15 40 60 10 10

6 87 30 27 20 40 60 10 25

7 90 50 40 15 40 60 15 35

8 99 56 33 20 40 60 15 15

The GA will be using the execution to determine the objfct of a chromosome. Algorithm 4.4

shows the pseudo code used in finding the execution time of each task.

Algorithm 4.4: Pseudo Code of Time and Cost Calculation

BEGIN

Take one chromosome

Cost = 0; dummy = 0;

for i=1:n // for each node

 if (pattern[i] == 1) // if the pattern is 1 then the node is in HW

 execution_time[i] = hw_time[i];

 Cost = Cost + hw_cost[i];

 else // else it in SW

 execution_time[i] = sw_time[i];

 if (dummy == 0)

 {Cost = Cost + sw_cost[i]; // add area

 dummy = 1;}

Start_time[1] = 0;

End_time[1] = execution_time[1];

for i=2:n // schedule the task

 Start1 = max{End_time[predecessor_task]}; // calculate the predecessor which has max

time

 for j=1:i-1

 if(pattern[i] == pattern[j]) // if both are in on same component

 z=j; // use a temporary value to store

 end

 Start2 = End_time[z]; // find the end time of z

 Start_time[i] = max(Start1 + Start2) // add thhe

120

 End_time[i] = Start_time[i] + execution_time[i]; // calculate the end time of node i

end

Time = End_time[n];

Cost;

END

Algorithm 4.4 shows pseudo code for parallel execution time and total cost calculation of one

chromosome which is useful for finding Fitness Value of chromosome. In a particular

algorithm, each chromosome is represented by a pattern of 0 and 1 with length equals to total

no. of tasks (nodes) in task graph. Here task is represented by 0 if it is implemented in

software and 1 if it is implemented in hardware. In total cost calculation all ASIC

implementation costs are added, but only one time CPU cost is added because the CPU area

remains same. Here communication cost between tasks while migrating from hardware to

software or from software to hardware is not taken into consideration.

4.5.1 Results of Sample Case Study

For particular input values of the task graph various iterations have been made. For the given

parameters and deadline= 275 time units optimum hardware-software partition for each

possible combination is shown in Table 4.8 along with scheduling of each task in particular

partition. For deadline = 275 optimum cost value is 80 and it is found in CPU2 and ASIC1

combination. Now for same task graph parameters if deadline = 200 optimum cost value of

115 is obtained in CPU2 and ASIC1 combination. The cost results and scheduling of tasks are

shown in Table 4.9. For correctness of solutions manual crosscheck has been made with all

possible combinations of partition (all possibilities) and it is found that given solutions are

optimum, hence given algorithm gives optimal solution.

Table 4.8: Optimization results for deadline = 275

 CPU1 & ASIC1 CPU1 & ASIC2 CPU2 & ASIC1 CPU2 & ASIC2

 Opt. Cost Time Opt. Cost Time Opt. Cost Time Opt. Cost Time

 115 264 135 267 80 270 85 270

Node Map Start End Map Start End Map Start End Map Start End

1 CPU1 0 60 CPU1 0 60 CPU2 0 30 CPU2 0 30

2 ASIC1 60 90 CPU1 60 150 CPU2 30 80 CPU2 30 80

3 CPU1 60 141 ASIC2 60 75 CPU2 80 134 CPU2 80 134

4 ASIC1 90 110 ASIC2 150 160 ASIC1 80 100 ASIC2 80 90

5 ASIC1 110 140 ASIC2 160 175 ASIC1 100 130 ASIC2 90 105

6 ASIC1 140 167 CPU1 160 247 CPU2 134 164 CPU2 134 164

7 CPU1 141 231 ASIC2 175 190 CPU2 164 214 CPU2 164 214

8 ASIC1 231 264 ASIC2 247 267 CPU2 214 270 CPU2 214 270

121

Table 4.9: Optimization results for deadline = 200

Fig. 4.13 shows how fitness value moves towards the optimum solution with increasing

number of iterations in GA for CPU2 – ASIC1 implementation for deadline = 275. Once the

algorithm finds minimum cost solution, it will hold this solution till it finds a solution

optimum to the current one. After certain no. of iterations fitness value reaches to its optimum

value with deadline constraint algorithm will hold this value in next remaining iterations.

Figure 4.13: Fitness value optimized with iterations in GA for CPU2 - ASIC1

 CPU1 & ASIC1 CPU1 & ASIC2 CPU2 & ASIC1 CPU2 & ASIC2

 Opt. Cost Time Opt. Cost Time Opt. Cost Time Opt. Cost Time

 155 200 175 176 115 197 120 190

Nod

e

Map Star

t

End Map Star

t

End Map Star

t

End Map Star

t

End

1 ASIC1 0 20 CPU1 0 60 CPU2 0 30 CPU2 0 30

2 ASIC1 20 50 ASIC2 60 75 CPU2 30 80 CPU2 30 80

3 CPU1 20 101 CPU1 60 141 ASIC1 30 57 ASIC2 30 45

4 ASIC1 50 70 ASIC2 75 85 ASIC1 80 100 ASIC2 80 90

5 ASIC1 70 100 ASIC2 85 100 CPU2 80 124 ASIC2 90 105

6 ASIC1 100 127 ASIC2 100 120 CPU2 124 154 CPU2 90 120

7 ASIC1 127 167 ASIC2 141 156 ASIC1 124 164 CPU2 120 170

8 ASIC1 167 200 ASIC2 156 176 ASIC1 164 197 ASIC2 170 190

122

Table 4.10: Partitioning results for different deadlines

Deadline Opt. Cost CPU-ASIC Pattern Time

120 190 CPU2-ASIC2 01111011 120

140 155 CPU2-ASIC2 00111011 140

160 155 CPU2-ASIC2 00111011 140

180 140 CPU2-ASIC2 00111010 176

190 120 CPU2-ASIC2 00111001 190

200 115 CPU2-ASIC1 00110011 197

210 110 CPU2-ASIC1 00110101 207

220 105
CPU2-ASIC1

CPU2-ASIC2

00011101

00101001

217

220

230 95 CPU2-ASIC1 00011010 230

240 90 CPU2-ASIC1 00011100 240

260 85 CPU2-ASIC1 00110000 260

270 80 CPU2-ASIC1 00011000 270

320 70
CPU2-ASIC1

CPU2-ASIC2
00001000

314

310

360 60 CPU2 00000000 354

580 50 CPU1-ASIC1 00000100 570

660 40 CPU1 00000000 657

Table 4.10 represents optimum cost value and corresponding hardware, software partition for

different deadlines. For lower value of a deadline (up to 200) CPU2 – ASIC2 implementation

gives best choice because comparatively lower execution time in this implementation, but

optimum cost value remains high because more no. of tasks scheduled are in hardware. After

deadline of 200 CPU2 – ASIC1 implementation gives best choice and for a considerably

larger amount of deadline only one CPU implementation gives optimum cost.

Table 4.11: Partitioning results for different area

Area

constraint
Opt. Time CPU-ASIC Pattern Area

40 657 CPU1 00000000 40

50
567

570

CPU1-ASIC2

CPU1-ASIC1

00001000

00000100

50

50

60 354 CPU2 00000000 60

70 310
CPU2-ASIC1

CPU2-ASIC2
00001000 70

80 270 CPU2-ASIC1 00011000 80

85 256 CPU2-ASIC1 00101000 85

90 256
CPU2-ASIC1

CPU2-ASIC2
00101000

85

90

95 230 CPU2-ASIC1 00011010 95

100 206 CPU2-ASIC1 00101010 100

105 220
CPU2-ASIC1

CPU2-ASIC2

00110010

00101001

100

105

110 207 CPU2-ASIC1 00011011 110

115 183 CPU2-ASIC1 00101011 115

135 184 CPU2-ASIC2 01011001 135

140 173 CPU2-ASIC1 10101011 140

155 140 CPU2-ASIC2 00111011 155

180 134 CPU2-ASIC2 01011011 170

190 120 CPU2-ASIC2 01111011 190

200 120 CPU2-ASIC2 01111011 190

123

CPU1-ASIC2 11111111 200

210 120 ASIC2 11111111 200

Table 4.11 represents optimum cost value and corresponding hardware, software partition for

different area constraints. For lower value of area CPU1 is the best choice because and for

high area ASIC2 implementation gives best choice. Optimization of cost depends on no. of

tasks, initial population, crossover, mutation probabilities and no. of iterations. Here for

particular results no. of iterations are set to 40. More iteration gives a better optimization

results, but computations increases. The data of running GA is given in Appendix 2.

4.6. Conclusion

This chapter shows the hardware-software co-design framework for C specification and task

graph specification. The partitioning at functional level has been proposed and shown in the

co-design flow. ChStone benchmark and a presumed architecture model were used as input

for showing the effectiveness of the algorithms. The work starts from basic interfacing of an

IP generated using Vivado-HLS. The profiling and genetic algorithm has been successfully

shown to give good results. The genetic algorithm deciding parameters like number of

iterations and population size were explored. This lays the basic foundation of comparison of

the work with any new proposed model of analysis.

Summary:

a) A genetic algorithm was shown to be implemented in co-design flow and actual values

obtained from Vivado-HLS and profiling were used.

b) It allowed to show various design chromosomes and guided the designer to chose the

one with a given deadline.

124

REFERENCES

4.1 Narsingh Deo, Graph Theory With Applications To Engineering And Computer

Science, Phi Learning, 2014

4.2 L. Jin and S. Chan, A New and efficient partitioning algorithm: genetic partitioning,

Circuits and Systems, Proceedings of the 34th Midwest Symposium on, May, 1992.

4.3 R. Chandrasekharam, S. Subhramanian, S. Chaudhury, Genetic algorithm for node

partitioning problem and applications in VLSI design, IEE Proceedings E - Computers

and Digital Techniques, IEEE, proceedings. Vol. 140, No.5, September, 1993.

4.4 Pierre-Andre Mudry, Guillaume Zufferey, Gianluca Tempesti, A Dynamically

Constrained Genetic Algorithm For Hardware-software Partitioning, Proceedings of the

8th annual conference on Genetic and evolutionary computation, pp. 769-776, ACM

2006.

4.5 M. Jagadeeswari, M. C. Bhuveneswari, A Fast Multi-Objective Genetic Algorithm for

Hardware-Software Partitioning in Embedded System Design, ICGST-AIML, ICGST-

AIML Journal, ISSN: 1687-4846, Volume 8, Issue II, September, 2008.

4.6 A. Bhattacharya, A. Konar, S. Das , Hardware Software Partitioning Problem in

Embedded System Design Using Particle Swarm Optimization Algorithm, International

Conference on Complex, Intelligent and Software Intensive Systems, March, 2008.

4.7 S. Tosun, Syracuse, N. Mansouri , E. Arvas, M. Kandemir, Reliability-centric

hardware/software co-design, Sixth international symposium on quality electronic

design (isqed'05), pp. 375-380, March, 2005.

125

Chapter 5

Static and Dynamic Hardware partitioning for

Reconfigurable Computing Systems

In this chapter we present an elaborate approach used to develop framework 2. In this

framework we focus on partitioning and scheduling of application which starts from a

dataflow specification of a design. The dataflow specification represents the computational

part of the design, where nodes are operators like adder etc. and edges represents the

communication between them. For partitioning, graph isomorphism has been used to identify

similar patterns in the design and partitioned graphs are scheduled based on dependence

analysis. A new approach based on partial reconfiguration has been proposed for running a

standalone application by creating it as clusters. We explore the effectiveness of genetic

algorithm for partitioning and scheduling of such standalone application in partial

reconfiguration flow. A modular random task graph generator has been design to generate

random load and verify the running time of genetic algorithm. Both the isomorphic and

genetic algorithm have been compared on a simulation benchmark. A DCT program has been

used to show the design flow and results on Xilinx ML507 board.

5.1. Partitioning and Scheduling of Dataflow Graphs for Reconfigurable Computing

Systems

In framework 1, we were working at high level of abstractions in the form of functions in an

application. We now move to a lower level of abstraction and explore the design

methodologies for RCS. In this chapter we have proposed a new design flow, which starts

from the specification in the DFG format and implements a design by partitioning it into SW,

HW or a combination of both. These partitions are interfaced and executed on the FPGA

based SOC platform. The proposed design flow follows two different paths based on the

condition whether static or dynamic scheduling of clusters is required.

The two proposed design flows for framework 2 are presented in this chapter and shown in

Fig. 5.1. In this work, an input specification in the form of dataflow model is created

manually. The objective of the design flow is to find the best methods for performance and

area trade-offs. This is similar to the work done in the chapter 3, but the input specification is

in the form of DFG. In approach one, isomorphic graphs are used to find the similar patterns

126

and these patterns are interfaced and executed statically as IP cores in HW for reusability. The

second approach addresses partitioning a standalone design using GA and then these clusters

are executed on partial reconfigurable region dynamically.

Figure 5.1: Framework 2 design flow

First we present the approach 1 and the step by step method used for partitioning and it is

discussed in detailed in subsequent sections. In the Fig. 5.1, we can see the following listed

steps:

 The design is specified in a data flow model of computation, which aims at the definition

of data communicated between nodes. Dot language [2.39] has been used to describe the

specification and capture the graph properties as it is a standard format in many compilers

for graph representations.

 The data flow model is specified by arithmetic operators and the edges that represent

communication between nodes. The partitioning stage should have information about each

operator with it's area and delay on a given platform. For this a library is created and each

operator has been written in VHDL language. Similarly the equivalent assembly language

instruction for a given processor is considered such as ADD/SUB/FADD/FSUB and their

time has been calculated on PowerPC processor. These operators have been taken as

integer and float type in our design flow.

 The partitioning phase has to decide which nodes to club in a cluster so that minimum

time is taken for the execution and various constraints are satisfied. For achieving

Specification in
DFG and

Libarary Creation

Finding
Isomorphic

Graphs

Scheduler Design

Wrapper design

Using GA for
Clustering

Scheduler Design

Wrapper Design

Comparison

127

partitioning, two different methods have been adopted, one is based on graph isomorphism

and the other one is based on genetic algorithm as shown in Fig. 5.1.

 The order of execution is controlled by a scheduler, which is designed to load the

partitions in order.

 The generated clusters are then wrapped around the bus signals and interfaced with the

bus.

 The design is tested for performance gain using a timer and area/delay product is

compared for each solution.

The objective of proposing the design flow is to compare static and dynamic scheduling of an

application by comparing the area delay product. The dynamic scheduling highlights the pros

and cons of the partial reconfiguration feature available these days in FPGAs and compare it

with other possible implementations. The remainder of the chapter is organized as follows:

Section 5.3, 5.4 and 5.5 we discuss the design flow based on isomorphic identification.

Section 5.6 to 5.10 discusses the use of GA for cluster creation. Section 5.11 proposes a

random graph generation method that can be used for generating random loads. Section 5.12

the two approaches are compared. The DCT comparative results are discussed in section 5.13.

Section 5.14 draws the conclusion made for framework 2.

5.2. Hardware and Software Synthesis of DFGs

Many C/DSP applications can be described in the form of DFG models for the computational

part of the design. The DFG is a directed acyclic graph G (V, E) which contains vertices (V)

that are operators and edges (E) that are data dependency. The DFGs have been used as a

model of computation for computational intensive part of the application for verification of

scheduling and partitioning algorithms [1.7]. DFG is a model which is independent of

implementation which means a node can either in the SW or in HW. Fig. 5.2 shows how the

nodes can be modeled, wherein each node is characterized by HW: area, delay, power and

SW: area, delay and power.

V

HW SW

area delay power area delay power

Figure 5.2: Node model

These properties such as area, delay, bit-width, memory usage etc., are obtained from HW or

128

SW target implementation. For e.g. if the node is an adder, the corresponding HDL synthesis

on a tool can give the area, delay and power. Similarly the SW instruction for a processor can

give its time, power and code memory occupied. These properties can be used as metrics in

algorithmic approaches that define the goodness of a set of nodes. The most common property

that is used for goodness is area-delay product; hence throughout the work we have used the

same. The implementation of DFGs requires synthesis, which means a description in HW or

SW. The synthesis of DFGs can be split into three major steps which are: allocation, binding

and scheduling. Allocation refers to the process of selecting the components such as

processors, ASIC, memory, accelerators, adders, RTL blocks, etc. Binding refers to the

process of mapping the functional objects to the library of components. Scheduling step

decides the order in which the operator will run. This work uses adder, multiplier, subtractor

and divider through for allocation step. These units are designed as integer or floating point

units. Hence for the binding phase the operator can be any of the two. Most of the work in this

thesis uses floating point units for mapping.

A DFG can be implemented in various combinations of HW and SW. Synthesis of DFGs at

very low level of granularity (operator level) may not be advantageous due to ineffective

usage of resources. Hence it is required that these nodes are grouped together and form a

cluster based on some nearness function. Such clusters should be created in such a manner

that the system functional parameters are improved. One such parameter commonly used is

area delay product. For comparison of each implementation (SW or HW or hybrid), the

performance parameter is required, which can be obtained by timing analysis. To find the total

SW time and HW time the following set of equations are proposed for five different

implementations as shown in Table 5.1.

Table 5.1: Description of different implementations

Serial Number Name Description

1 Critical_time Complete HW implementation of the graph

2 Serial_time Complete SW implementation of the graph

3 Hybird_time HW and SW implementation of the graph having similar patterns

4 Par_time HW and HW implementation of the graph having similar patterns

5 HW_time HW and HW implementation of the graph having no similar patterns

a) HW time referred as Critical_time is defined as the maximum time taken to evaluate all

the output. Firstly, the end time of each node is required for calculation of critical time,

this is given by Eq. 5.1 and is recursively used to calculate the time for each node given by

Eq. 5.2. The process starts from the predecessor node and adds up the maximum time

taken by each node similar to ASAP schedule. Then the maximum value among those

129

times is taken to be the critical time of the given output nodes.

Node end time, 𝑇𝑖 = 𝑚𝑎𝑥 𝑇𝑗 ,𝑇𝑘 + 𝑑𝑖…(5.1)

…(5.1)

Tj and Tk are the end time of the predecessor nodes, di is the delay of the Ti node

Critical_time, 𝑇𝑐𝑟 = max(𝑡(𝑣0)) …(5.2)

 Where, vo= set of output nodes

b) SW time referred as Serial_time which is the time taken to evaluate a given output, when

the nodes are running sequentially, such as add (time stamp = add (t1), sub (t2), add (t3),

add (t4), sub (t5), sub (t6), add (t7)) for Fig. 5.5.

Serial_time, 𝑇𝑠𝑟 = (𝑡𝑖)
𝑚

𝑖=1
 …(5.3)

Where m = total number of nodes, ti = time of each node

ADD SUB ADD SUB

SUB SUB

ADD

Figure 5.3: Node matching based isomorphic graphs

c) As stated previously, many applications show similar patterns in DFG models. Fig. 5.3

gives an idea of finding the similar patterns that can be used as an optimization of area in

the design. For such patterns, HW-SW time is referred as hybrid_time, as proposed in Eq.

5.4. It is the time taken to evaluate a given output with similar part in HW and remaining

part in SW. The time in this case is the sum of serial nodes in SW, sum of nodes of similar

clusters in HW and communication overhead (bus overhead), which account to certain

cycles taken by bus to put/get data. Communication overhead occurs because of the HW

clusters are wrapped around the bus interface signals.

Hybird_time, 𝑇ℎ𝑟 = (𝑡𝑖)
𝑛−𝑚

𝑖=1
+ 𝑙

𝑖=1 (𝑡𝑠𝑖)
𝑐

𝑖=1
+ (𝑡𝑐𝑜𝑚𝑚)

𝑝

𝑖=1
 …(5.4)

Where n = total number of nodes, m = number of similar nodes, p = number of cluster

edges, c = number of clusters, l is the number of levels, ti = SW time of each node and tsi =

HW critical time of the similar patterns given by Eq. 5.2.

130

In Eq. 5.4 the first factor gives the SW time, the second one gives the similar pattern time

and last factor contributes to the communication delay. These patterns can occur at any

level of the design (many different similar patterns), hence the second summation is

required.

d) If the entire implementation is done as HW with various clusters interfaced as IP core,

then the HW-HW time referred as Par_time is the time taken to execute each cluster plus

the communication overhead as proposed in Eq. 5.5.

Par_time, 𝑇𝑝𝑟 = 𝑚𝑎𝑥(𝑡𝑖)
𝑛−𝑚

𝑖=1
+ 𝑙

𝑖=1 (𝑡𝑠𝑖)
𝑐

𝑖=1
+ (𝑡𝑐𝑜𝑚𝑚)

𝑝

𝑖=1
 …(5.5)

where n = total number of nodes, m = nodes of nodes similar tsi= time of each node, c =

number of clusters, ti = SW time of each node and tsi = HW critical time of the patterns.

e) If no similar pattern exists in the design and clusters are created with certain objectives

like an area constraint, then the HW_time is used to calculate the total time taken as

proposed in Eq. 5.6.

HW_time, Thr = (tsi)
𝑐

𝑖=1
+ (tcomm)

p

𝑖=1
 …(5.6)

where tsi= critical time of each node, c = number of clusters and p = number of cluster

edges.

Assuming a sample DFG is given as shown in Fig. 5.4 for the verification of equations

proposed above. This sample shows the various sizes of patterns found in the graph. The Fig.

5.4(a), 5.4 (b) and 5.4(c) take into consideration the different sizes of the similar clusters.

131

Add Sub Add Sub Add Sub Add Sub

Add Add Add Sub

Add Add

Add

(a) Four isomorphic graphs with one adder and one subtractor

Add Sub Add Sub Add Sub Add Sub

Add Add Add Sub

Add Add

Add

(b) Four isomorphic graphs with two adder and two subtractor

Add Sub Add Sub Add Sub Add Sub

Add Add Add Sub

Add Add

Add

(c) Four isomorphic graphs with five adder and two subtractor

1 2 3 4

5 6 7 8

9 10

Figure 5.4: Creation of isomorphic clusters at different levels

Let us assume that an floating point adder/sub takes 10 ms in SW, 1 ms in HW (HW is at

least 10 times faster than SW), 20 units of area, a basic area of 100 units for a processor for

SW implementation, a communication overhead of 2 ms for each edge between SW-HW and

4 ms for HW-HW edge. We are taking these parameters based on the interfacing done in

chapter 3. The communication overhead of HW-HW interface has been kept more due to

penalty incurred by the bus. Using the data and equations discussed above, the various results

of Fig. 5.4 specifications are summarized in Table 5.2.

132

Table 5.2: Comparison of time taken by the DFG in different implementations

Implementation Time(ms) Area Product

SW 150 100 15000

HW 4 100 + 300 = 400 1600

SW-HW 5.4(a) -

hybrid

7x10 + 2x4 + 10(edge)x2 = 98 100 + 40 = 140 13720

explanation Seven adders are executed serially in SW(7x10), four isomorphic graphs

having delay of four are executed in HW(4x2) and there are 10 edges

between HW-SW(10x2).

SW-HW 5.4(b) -

hybrid

3x10 + 2x4 + 6x2 = 50 160 8000

 Cluster size increases

SW-HW 5.4(c) -

hybrid

10 + 3x2 + 2x2 =20 240 4800

HW-HW 5.4(a) -

Par

1 + 2 + 2 10(edge)x4= 45 80 + 40 + 60 = 180 8100

 In this case three clusters will of HW will be created, C1= four adders(delay

=1, area = 80), C2 = iso graphs(delay = 2, area = 40); C3 = three

adders(delay = 2, area = 60);

HW-HW 5.4(b) -

Par

2 + 2 + 6x4 = 28 120 3360

 Cluster size increases

HW-HW 5.4(c) -

Par

3 + 1+ 2x4= 12 160 1920

Figure 5.5: Comparison of various implementations

As we move towards the HW migration, the area delay product improves except in the case of

HW-HW (a). This is because of delay caused by various HW-HW edges when clusters are

small. Hence we can say that the size of the cluster should be adequate to exploit the

usefulness of isomorphic graphs. These implementations show different design space for the

designer. The Table 5.2 shows the best product for the HW solution and the worst solution in

SW with various comparisons shown in Fig. 5.5. In between the two extremes, various other

0

2000

4000

6000

8000

10000

12000

14000

16000

Area Delay
Product

Series1

133

implementations exist. HW-HW solution is implemented by creating IP cores of the clusters

created. Hence we conclude that the idea of reusing the patterns as IP cores can result in a

good area and time product. The HW-HW implementation case when no patterns are

matching is discussed in genetic algorithm section.

5.3. Algorithmic Approach for Creating Isomorphic Graph

Many applications such as protein structures, image processing etc. show symmetrical

structures in their composition or execution model. These structures can be exploited in

different ways for improving the execution nature of the application. These repetitive node

patterns are known as isomorphic graphs. This section focuses on the efficient development of

algorithms for finding such graphs. The graph isomorphism allows finding the similar patterns

and creating clusters of the required sizes. The following conditions define an isomorphic

graph: Two graph G and H are isomorphic if H can be obtained from G by relabeling the

vertices - that is, if there is a one-to-one correspondence between the vertices of G and those

of H, such that the number of edges joining any pair of vertices in G is equal to the number of

edges joining the corresponding pair of vertices in H. Additionally, for reconfigurable

computing systems it is necessary that the node type should also match, which means that the

adder should match with adder. Hence, next we propose a weighted method to find the

subgraphs. Entire algorithm is divided into four parts and the input parameters of the

algorithm are: matrix of graph G (V, E), type of the node, area/delay of the node and number

of nodes. In part 1 (Weight algorithm), for each individual node in the graph, its level, type,

degree, area, time and weight is calculated. In part 2 (Subgraphs algorithm) level based

subgraphs are constructed using edge information. In part 3 (Iso algorithm), the weight of

various subgraphs is compared and isomorphic subgraphs are found. In part 4 (Performance

algorithm), the critical time for executing the graph is calculated. The algorithms are shown in

Fig. 5.7 to Fig. 5.10.

5.3.1. Weight algorithm

The first step toward comparing the subgraph matching is by finding a unique method that

simplifies the process. A weighted method [2.43] has been used to assign a unique number to

each node, which is further used in the comparison process. What we have added is a type

number to the weight function which differentiates between the nodes as adder, subtractor etc.

The objective of the algorithm to find the various parameters such as the weight of a node

which includes its level, type & total degree as defined by proposed in Eq. 5.7, Eq. 5.8, Eq.

5.9 and Eq. 5.10:

134

Weight[node] = k1 * Level[node] + k2 * type[node] +

len(connectionsOfNodes[node]) * type[node];

…(5.7)

Weight of subgraph = ∑ weight of its nodes …(5.8)

Area of subgraph = ∑ Area of its nodes …(5.9)

Time of subgraph = Time for its critical path …(5.10)

k1 and k2 are the constants and have been assigned a value of k1 =1000, k2 =100. The weight

equation has been proposed in such a way that at any point of time the weight of any node will

be same only if they match in all ways. If more number of nodes are there, we can increase the

value of constant but always keep k1 : k2 >>1. We have used that ratio to be greater than one,

so that the weight of a node is always unique. For a random sample shown in Fig. 5.6, the

value for node 1 are level = 1, length =1, type =1 which gives weight as 1101.

Fig. 5.6: Sample graph

The above graph contains 15 nodes and their weight values are specified in Table 5.3.

Table 5.3: Weight of the nodes

Node Number Level Length Type Weight Calculation Weight

1 1 1 1 1000x1+100x1+1x1 1101

2 1 1 4 1000x1+100x4+1x4 1404

3 1 1 1 1000x1+100x1+1x1 1101

4 1 1 4 1000x1+100x4+1x4 1404

5 1 1 1 1000x1+100x1+1x1 1102

6 1 1 4 1000x1+100x4+1x4 1404

7 1 1 1 1000x1+100x1+1x1 1101

8 1 1 4 1000x1+100x4+1x4 1404

9 2 3 1 1000x2+100x1+3x1 2103

10 2 3 1 1000x2+100x1+3x1 2103

11 2 3 1 1000x2+100x1+3x1 2103

12 2 3 1 1000x2+100x1+3x1 2103

13 3 3 1 1000x3+100x1+3x1 3103

14 3 3 1 1000x3+100x1+3x1 3103

15 4 2 1 1000x4+100x1+2x1 4102

The specification of the input has been done in the dot language using the IBM Graphviz

software. While traversing the dot file, nodes and their connections are identified. To

determine the level of each node, traversing has been made to list the connection that contains

135

the source and destination node of an edge. If a node is encountered for the first time, then its

level is set to 1. For the connection between two nodes, we set the level of the successor node

as one more than the level of predecessor node. In case, if a successor has multiple source

nodes, then the maximum value of the level of source node is considered. After determining

the level of every node, the weight for each node is to be calculated based on the weight Eq.

5.7. The time complexity of this algorithm if O(n), since iteration is done for level and weight

for each node. The step by step details of the algorithm is shown as a flow chart in Fig. 5.7.

Start

Identify all Edges

and Nodes

Identify connection

between Nodes

For each Node:

Set Level=1

Level of Destination

Node = Max.(Level of

Source Node) + 1

All Nodes

Traversed

No

Yes

For Each

Node

Calculate Weight

Based on Weight

Equation

End

No More Nodes

Figure 5.7: Weight algorithm

5.3.2. Subgraph Algorithm

Next stage of the algorithm proceeds by finding the subgraphs as shown in Fig. 5.8. We have

taken two variables as i and j where range of i is 1 to the number of levels in the graph, let‘s

say L, and range of j is i+1 to L. We traverse the graph level wise, and for each node in a

136

level, search for subgraphs. We add the current node to temporary subgraphs and to the list of

added nodes. For all the other nodes that are connected to the nodes in the list ‗added nodes‘

and the current node, we then check if they fulfil the criteria of the current value of i and j and

add these nodes to the temporary subgraphs. If at any stage, any condition goes false, then add

the temporary subgraphs to the list of all subgraphs. The above process is repeated for all the

nodes traversing level wise in the graph recursively. The time complexity of this algorithm if

O(n(logn)
2
), since iteration is done for level and subgraphs, n is the number of nodes.

Start

For i in 1 to

Max.(Levels)

For j in i+1 to

Max.(Levels)

addedNodes=[]

Subgraphs=[]

For

each node in

level i

Add Node to Subgraph

If Node

Level=i

Add Node to addedNodes

 For Nodes

connected to current

node

If

 level in i to

 j+1

Call Recursively

Increment j

Increment i

End

False

False

False

False

False

False

Add Subgraph to

List of Subgraphs

Figure 5.8: All subgraphs algorithm

137

5.3.3. Iso Algorithm

Start

For Each

Graph in Subgraphs

List

For each

 Node in Graph

Add Weight, Area, Delay

of each node of selected

Graph

Append to the List of

Weight, Area, Delay of

the Subgraphs

For Each

Subgraph i

For Each

Subgraph j in i+1 to

Total(Subgraphs)

Store Graph i to

Isomorphic Graph List

If

Weight(i)=Weight(j)

 and Area(i) fulfill

 Area Consraint

False

No More

Graphs

All Graphs Traversed

Display Isomorphic

Graphs

Form Cluster of Nodes in

Isomorphic Graphs

Write Modified .dot file for the

New Isomorphic Node

End

No More Nodes

All Graphs Traversed

Figure 5.9: Iso algorithm

For each graph in the list of all subgraphs, we calculate the weight, area, delay of every graph

from the node parameters as defined by Eq. 5.8. We make a record for every graph with its

138

weight, area and delay in a dictionary. Next we select any graph from the list of subgraphs and

match its weight parameter with all the remaining graphs from the list. If the weight of two

subgraphs matches, then both of them are added to the isomorphic graphs list. This is done for

all the graphs present in the subgraphs list. The duplicate isomorphic graphs are sorted and

removed. Then we create clusters of nodes that form an isomorphic graph with any other, and

rename the cluster. At the end, we create a new dot file that contains all possible isomorphic

graph nodes and other individual node connected to each other. The algorithm is shown in Fig.

5.9. The time complexity of this algorithm if O(n
2
), since iteration is done for subgraphs

matching for each item in the list. The combined complexity of the previous three algorithm is

O(n) + O(n(logn)
2
)+O(n

2
), which is much better as compared to brute force method.

5.3.4. Performance Algorithm

This algorithm finds the performance in terms of time after the isomorphic graphs are

identified and condensed along with other nodes. For finding the critical time, source node

should always be at level 1. For all such nodes that are at level 1, we find the outgoing edges

and the corresponding destination node. Next we add the time of the source node at the initial

level to a temporary variable which was initialized as 0 at the beginning. Then we add the

time of the first destination node. Next step is to modify the destination node as the node

connected to present destination node and adds its time to the temporary time variable. This

process is repeated until the destination node reaches the maximum level of the graph. After

this, we add the value of temporary time variable to a list of possible critical time.

This is done for all the destination nodes that were encountered at the beginning of the source

node. If no more destination node is left, then change the source node if any, and repeat the

above algorithm. The maximum value from the list of possible critical time will be the critical

time of the graph. The detailed algorithm is shown in Fig. 5.10.

139

Start

For

node i in Node

List

If Level(i)==1

For

nodes j

connected to

Node i

tempTime += nodeTime(i)

If

Level(j) !=

Max.(Level)

tempTime += nodeTime(j)

j = Next Node connected to j

Store tempTime in Critical

Time List

False

False

No such Node

All Nodes Traversed

Find Max.(List of Critical Time)

Display Critical Time

End

 Fig. 5.10: Performance algorithm

1,+ 2,- 3,+ 4,- 5,+ 6,- 7,+ 8,-

9,+ 10,+ 11,+ 12,+

13,+ 14,+

15,+

Figure 5.11: Sample graph

140

In order to verify the results of the above algorithms a sample graph as shown in Fig. 5.11 was

taken for explanation. Each node shows the number and an operator in it such as node 1 is

adder. There are 15 nodes in the graph with four kinds of operators (+, -, *, /). These four

operators were written in VHDL language and complied in Virtex-5. The critical time and

area of each operator is shown in Table 5.4.

Table 5.4: Parameters for sample graphs

Table 5.5: Sample graph results

Subgraph1 Subgraph2 Time (ns) Area (Slice LUTs)

1 9 2 3 10 4 13.706 96

1 9 2 5 11 6 13.706 96

1 9 2 7 12 8 13.706 96

3 10 4 5 11 6 13.706 96

3 10 4 7 12 8 13.706 96

5 11 6 7 12 8 13.706 96

11 14 12 10 13 9 13.706 96

1 9 2 13 10 3 4 5 11 6 14 12 7 8 20.559 224

Table 5.5 shows the results of the algorithm discussed. Node 1, 9, 2 is isomorphic with node

3, 10, 4 having a critical delay of 13.7 ns. Similarly, node 1, 9, 2, 13, 10, 3, 4 is isomorphic

with 5, 11, 6, 14, 12, 7, 8, with an area of 224.

5.4. Scheduler Design

The previous stage gave information about which of the nodes are similar and form a cluster.

It then gave the critical time of the cluster. The next step is to introspect two factors :

a) Whether a given node is isomorphic if yes make an entry in scheduling queue if not.

b) Create a cluster of a given size.

Symbol Type Time (ns) Area (Slice LUTs)

+ 1 6.853 32

- 4 6.853 32

* 8 13.788 3 DSP slices

/ 16 67.271 882

141

1,+ 2,- 3,+ 4,- 5,+ 6,- 7,+ 8,-

9,+ 10,+ 11,+ 12,+

13,+ 14,+

15,+

Figure 5.12: Various clusters in sample graphs

Fig. 5.12 shows the concept applied in this phase. We can run (1,2,9; 3,4,10; 5,6,11; 7,8,12) or

(1,2,9,3,4,10; 5,6,7,8,11,12) based on the area constraint given. After making this decision,

we need to put clusters in order of execution.

In the scheduling phase, we need to construct clusters of a given size. Our algorithm is an

extension of list scheduling algorithm [1.7] for reconfigurable computing. Since list

scheduling does not consider the hierarchical structure of the program in terms of functions

and instructions, it needs certain modifications. A better way to schedule this is using LIST

scheduling [1.7], which takes the priority and then schedules accordingly. LIST scheduling

still works at operator level and needs to be refined for partial reconfigurable systems. The

next section aims at developing the mathematical background for DFGs as HW or SW

implementation.

The first step towards applying partitioning is the creation of hierarchical clusters as the

previous stage gives nodes which are isomorphic. The algorithm is described in algorithm 5.1

along with comments shown in each line.

Algorithm 5.1: Clustering Algorithm

 Input : Graph as Dot files of the application

Given: The total area(TA) of the partition in terms of LUTs and ISO graphs. Select ISO

clusters nearest to given area.

Output: partitions of blocks.

create a partition PA[j] := Ø // create a NULL cluster

for i =1 to n // loop till all the nodes are covered

if(Node[i] == ISO) //check if the node is a isomorphic graph

Add node to scheduling queue. // update the scheduler queue

else if ((area(PA[j])+ area(Node[i]) ≤ TA) //check if the cluster size has reached

142

PA[j] = PA[j] Node[i] // if the node is not iso. and cluster area is there

add node

else

Add PA[j] to scheduling queue. //Add the node to the scheduling queue

Create a new partition j = j+1 //create a new cluster

Add Node[i] to PA[j].

end if

end for

Suppose according to the size given (in which two adder and one subtractor can be placed)

four isomorphic graphs are identified that are (1,2,9), (3,4,10), (5,6,11), (7,8,12) and the

remaining 13, 14 ,15 form one cluster. Then the scheduler will create a scheduling queue with

order: (1,2,9), (3,4,10), (5,6,11), (7,8,12), (13, 14 ,15) as shown in Fig. 5.13.

1,+ 2,- 3,+ 4,- 5,+ 6,- 7,+ 8,-

9,+ 10,+ 11,+ 12,+

13,+ 14,+

15,+

Figure 5.13: Sample graph with isomorphic clusters

After the creation of the clusters, the scheduling queue maintains the order in which the nodes

will execute. The pseudo code for the calculation of execution time as proposed in Eq. 5.1, Eq.

5.2, Eq. 5.3 and Eq. 5.4 is shown in algorithm 5.2.

Algorithm 5.2: Scheduling Algorithm

Input: Scheduling queue, ISO nodes level (K)

Given: the performance algorithm proposed in 6(d)

Output: execution time, area and product.

j =0;tcomm =0;area = 0,product=0;

for i =1 to n

If(Node[i]= ISO or HW)

tc = Call critical time algorithm(Node[i])

area = area + area[i];

else

tc= Call serial time algorithm(Node[i])

143

end if

execution time T= tcomm + tc;

product = area * T;

end for

Let us consider an example to understand the algorithms presented above. Assume that an

adder/sub takes 10 ms to run SW, 1 ms to run in HW, then for the sequence: (1,2,9), (3,4,10),

(5,6,11), (7,8,12), (13, 14 ,15), the time will be : 30, 30, 30, 30, 3 resulting in the total time to

be 123 ms. The above scheduling algorithm gives the clusters that are to be executed in a

given order in a queue. This queue tags each cluster with either an ISO cluster, SW or HW

cluster. It also indexes the ISO variation at each level. The algorithm picks each cluster at a

time and finds whether it is an ISO, SW or HW cluster and respectively calls the algorithm to

calculate the time taken by the cluster node. This provides the time taken for the execution of

the application. This algorithms implements the Eq. given by 5.4, 5.5. The communication

delay is then added to the total time. In the next section we will discuss the result on two

grounds:

a) Simulation of the above algorithm on four self written programs

b) Using DCT program as case study on ML507 Board.

5.5. Results and Discussion for Isomorphic Design flow

In order to verify the effectiveness of the algorithm, four programs were created. These are

listed in Table 5.6, which also highlights the total resource usage of the program. All the

algorithms were written in python and test cases were written in dot language.

Table 5.6: Programs used for testing

Design Kind Nodes Edges Inputs Outputs Resources Used

LUTs DSP

Cosine series(float) Self written 15 31 5 1 7280 33

Exponent (float) Self written 34 69 8 1 15300 75

Matrix Multi(3x3-Integer) Self written 45 99 18 9 576 81

Sine series(float) Self written 18 37 4 1 7427 42

These manually created benchmarks programs have four operators, which are adder,

subtractor, divider and multiplier.

Table 5.7: Library of hardware blocks and their values on Xilinx ML507 board

144

Node Type(1)

Resource(2)
Delay(ns)-

HW(3)

Delay(ns)-

SW(PowerP

C)(4)

Slice

Registers

Slice

LUTs

LUT FF

pair
IOBs` DSP48E

Integer adder 0 32 32 98 0 6.8 50.0 -add

Integer subtractor 0 32 32 98 0 6.8 50.0

Integer multiplier - - - 98 3 13.7 65.0

Integer divider 0 882 822 115 0 67.2 90.7

FP adder(FPU

unit)
224 621 705 99 0 7.7

60.0-fadd

FP

subtractor(FPU

unit)

223 628 714 99 0 7.8

60.0

FP

multiplier(FPU

unit)

0 49 49 97 3 15.8

70.0

FP divider(FPU

unit)
24 1654 1654 99 2 110.8

270.0

A library of these operators was created by writing VHDL code and tabulating their

parameters on Virtex-5 [5.1] series. These actual values were used by the algorithms for

generating partitions. Appendix 3 shows how the time for SW instructions was obtained. The

Table 5.7 is divided into four major columns: name of the unit (integer or floating), resources,

HW synthesis time and SW instruction time. The floating point unit was enabled in PowerPC

for floating point instructions (fadd). The last column shows the SW execution time for

PowerPC available on ML507 board. The SW execution time is tabulated by executing a

floating point instruction in loop for 100 times and taking the average. The Table 5.7

highlights the two major resources that used by an application: which are LUT slices and DSP

slices. In algorithmic design we need a unified value corresponding to the area consumed.

These different resources are combined together in a single equation as proposed in Eq. 5.11.

 Area = k1 x LUT + k2 x DSP …(5.11)

Where k1=1, k2 = 50, since DSP slices are much less as compared to LUTs k2 has been kept

high since DSP slices are at least 50 times lesser to LUTs.

145

Figure 5.14: Resource consumed by a basic design in ML507 Board

Figure 5.14 shows that a basic processor based design flow will take 7185 LUTs. Hence for

pure SW implementation, we have taken a value of 8000 in area calculation. The SW to HW

communication and HW to HW communication is taken to be negligible. These values have

been used in calculating the performance of the design for simulation purpose.

Figure 5.15: DFG of Cosine series (1 - x
2
/2! + x

4
/4! - x

6
/6!)

Fig. 5.15 presents the dataflow graph for the cosine series upto four terms. The empty circles

are representation of constant factorial terms which are pre-computed and stored in SW. Fig.

5.16 shows the isomorphs in the cosine series.

146

Figure 5.16: Cosine Series with Isomorphic Graphs

Table 5.8: Comparison of area delay product for Cosine function

Design COSINE

operators 1-Adder,1-Sub,9-Mul,3-Div

 Time(ns) Area Product(LUT-

sec) (x10
6
)

SW

Implementation

1560 8000 12.48

HW

Implementation

173.7 16320 2.834

SW-HW

Implementation

1155.8 8597 9.936

HW-HW

Implementation

188.8 15705 2.965

Table 5.8 shows the time, area and product for four different implementations of cosine

function. We can see that SW Implementation has the maximum product and HW

Implementation has the minimum value. For all the benchmarks the SW time is the upper

limit and HW is the lower limit. Cosine benchmarks show good results in HW-HW

implementation where two isomorphic subgraphs are identified.

147

Figure 5.17: DFG of Exponent series (1 + x + x
2
/2! + x

3
/3! + x

4
/4! + x

5
/5! + x

6
/6!)

Fig. 5.17 shows the dataflow graph for the exponent series upto seven terms. The empty

circles are representation of constant factorial terms are pre-computed and stored.

Figure 5.18: Exponent series with isomorphic graphs

From Fig. 5.18 we can see that four isomorphic graphs are there at level 1(iso2_2) and two at

level 2(iso1_1).

148

Table 5.9: Comparison of area delay product for Exponent function

Design EXPOENET

Operators 7-Adder,21-Mul,6-Div

 Time(ns) Area Product(LUT-

sec) (x10
6
)

SW

Implementation

3510 8000 28.08

HW

Implementation

181.3 27050 4.904

SW-HW

Implementation

1871.4 12503 23.398

HW-HW

Implementation

608.5(critical

delay is

long)

22908 13.939

Table 5.9 shows the time, area and product for four different implementations of exponent

function. We can see that SW Implementation has the maximum product and HW

Implementation has the minimum value. Exponent benchmarks show the good results in HW-

HW implementation compared to software. When the density of isomorphic graphs is high,

HW-HW implementation will give better results. Fig. 5.19 shows the dataflow graph for the

matrix multiplication for 3x3 terms. Nine isomorphs for matrix multiplication series are

shown in Fig. 5.20.

Figure 5.19: Matrix Multiplication for 3x3 elements

Figure 5.20: Matrix Multiplication for nine isomorphic graphs

Table 5.10: Comparison of area delay product for Matrix function

Design MATRIX

Operators 18-Adder, 27-Mul

 Time Area Product(x10
6
)

SW

Implementation

52655 8000 21.24

HW

Implementation

27.3 12626 0.344

SW-HW 245.7 8514 2.091

149

Implementation

HW-HW

Implementation

245.7 8514 2.091

Table 5.10 shows the time, area and product for four different implementations of matrix

multiplication function. We can see that SW Implementation has the maximum product and

HW Implementation has the minimum value In the matrix multiplication density of

isomorphic graphs is even higher, hence it is much better to pure SW implementation. In this

case since one isomorphic graph can be used for entire execution, the SW-HW

implementation is also giving same results.

Figure 5.21: Sine Series with five elements(x - x
3
/3! + x

5
/5! - x

7
/7!)

Fig. 5.21 shows the dataflow graph for the sine series upto four terms. The empty circles are

representation of constant factorial terms are pre-computed and stored.

Fig. 5.22: Sine Series with three isomorphic graphs

From Fig. 5.22 we see that four isomorphic graphs are there at level 1 and two at level 2.

150

Table 5.11: Comparison of area delay product for Sine function

Design SINE

Operators 1-Adder, 2-Sub, 12-Mul,3-Div

 Time Area Product(x10
6
)

SW

Implementation

1830 8000 14.65

HW

Implementation

173.7 17527 3.05

SW-HW

Implementation

814.8 12901 10.511

HW-HW

Implementation

411.1 14579 5.991

Table 5.11 shows the time, area and product for four different implementations of sine

function. We can see that SW Implementation has the maximum product and HW

Implementation has the minimum value

Figure 5.23: Comparison of four benchmark programs

Fig. 5.23 shows the comparison of four benchmarks programs. The HW-HW implementation

the product is better than SW-HW but inferior to HW implementation. In order to create a

clear practical approach of our implementation in real HW, we have taken a Discrete Cosine

Transform (DCT) as a case study in result section.

5.6. Partitioning and Scheduling Problem for Partial Reconfiguration

The design flow of partial reconfiguration has been discussed in chapter 1. This section

extends the implementation of DFG nodes on partial reconfiguration region. The partial

reconfiguration technique allows running different modules on the same defined area, hence

resulting in area reusability. This feature of reusability gives a new dimension to the

allocation, binding and scheduling problem. The usage of the partial reconfiguration technique

requires the modification to existing partitioning and scheduling solving approach. The

0

5

10

15

20

25

30

cosine sine exponent matrix
multiplication

Area Delay
Product

SW

HW

HW-SW

HW-HW

151

primary purpose of this design flow is to test the usefulness of partial reconfiguration in HW-

HW implementation.

In this design flow the same application is partitioned and mapped to a fixed area for

execution. This is explained with the help of the Fig. 5.24, which shows how a standalone

design is partitioned into two clusters (C1 and C2) and bound to one PR region:

Describe the design in HDL

Execute clusters on the time basis on

the PRR

Use a partitioning algorithm to divide it

into clusters of required size

Bind the clusters to partial

reconfigurable regions defined a

floorplanning software

V1 V2

V3

V1 V2

V3

C1

C
2

FPGA farbic

PRR

FPGA farbic

C1

FPGA farbic

C2

Figure 5.24: Partitioned design running on PRR

In the case of partial reconfiguration flow it is also possible to define many PR regions on

which different modules can run concurrently making it an active area of research. The PR

tutorial [2.64] gives a design flow of an adder/multiplier mapped to one PR region. Now let us

assume that two PR regions (Mult/Mult or one Mult/Add or Add/Add) are available for

mapping. The floorplan is visualized in Fig. 5.25 and the schedule is shown is Fig. 5.26 for the

same graph discussed in the section 5.1.

FPGA Fabric

PRR1

PRR1

Mult & Mult

Mult & Add

Add & Add

Figure 5.25: Two PR regions with three PRM

152

Figure 5.26: Two PR regions Schedule

From Fig. 5.26 we see that at each level two operators are scheduled. This becomes feasible

by mapping two operators on PRR1 or PRR2. In the current work we have assumed only one

PRR is available for a single standalone application. This requires partitioning the DFG and

then effectively scheduling it on one PR region is required. An algorithm which can schedule

DFG on this PR region with minimum reconfiguration overhead and minimum execution time

is the call for of the design flow. The PR design flow requires swapping in and swapping out

of the bit file of the operator. It incurs certain delay in the design flow as overhead, so for such

an implementation, we need to find the overhead of the reconfiguration process. For this, we

consider four time parameters to calculate the total time required for executing the DFG as

defined in Eq. 5.12:

...(5.12

)

Configuration time (tconf), is the time it takes to place the bit file of the PR module on the chip.

The bit files are usually placed outside the FPGA chip on non-volatile memory such as

compact flash card, SD card etc. During the boot operation, these files can be brought to DDR

or BRAM memory on the chip.

Execution time (texe) is defined as the time required to execute the operation on the HW. Input

time ti is defined as time to place input data. There is certain time elapsed when sending the

inputs from I-cache/D-cache to the IP core interface to the bus. Similarly Output time to is

defined as time to place output data. N is the number of times the reconfiguration is done.

The penalty of tconf is very high, as the bit files are located outside the chip on a memory like

CF card, DDR or Flash. Hence there is a need to minimize the number of times the

reconfiguration is loaded.

Brining down the penalty has been analyzed extensively over the last decade and many works

tconf = Loading time + input/output transfer time + execution time

153

exist in this respect as discussed in literaure survey [2.61-2-67]. For such a scenario where we

want to minimize the number of times the reconfiguration is done, an algorithm can be

proposed:

Starting with an area which implements an operation like adder and multiplier, we propose an

algorithm to check if the next operator which is loaded is same as the current then we can save

on loading a new configuration.

Algorithm 5.3: Minimum Time Reconfiguration List Scheduling (MTR)

Inputs : DFG and FPGA area constraints

Outputs : set of functions to be migrated

Begin :

 Sort nodes in topological order;

 Assign priority to nodes based on mobility;

label x: Place maximum priorty node // priority using levels

 If next module can be same as present

 t = t + texe + ti + to

else

 t = t + tconf + texe + ti + to

If DFG in not NULL go to x

The algorithm to schedule the operators on one PR with minimum latency is shown in

algorithm 5.3 and is referred a MTR. The schedule is shown is Fig. 5.27. In this algorithm, it

is checked whether the next node to be placed can be same as present if yes we can save on

tconf.

Figure 5.27: PR schedule

In the above DFG, reconfiguration will be done only once since the multiplier is replaced with

154

an adder only once. For e.g. if the multiplier HW time is 40 ns and adder HW time is 10 ns,

the reconfiguration time is 100 ns and one PRR is given, the execution time of the graph will

be equal to 40 + 40 + 40 + 40 + 100 + 10 + 10 +10 +10 = 300 ns.

The reconfiguration time depends on the size of partial bitstream, which depends on the area

selected on the chip. In the above example, the size of the PRR is decided by the maximum of

(Mult, Add) area. The detailed discussion of the reconfiguration time is discussed in

subsequent sections.

5.6.1. Coarse Level Graph Creation

Performing the reconfiguration at very low level of granularity i.e. at operator level, may lead

to huge reconfiguration penalty may be very high as applications can have many such

operations and FPGA resources cannot be exploited to its best. Hence, it is required that we

mobilize from fine grain DFG to coarse grain granularity, where clusters of a size given can

be created. Given the size of the PR region as number of LUTs of the total device, we need to

create partitions of the design accordingly. For e.g., the Xilinx FPGA series Virter-5

xc5vfx70t-1ff1136 present in ML507 [5.1] board has 44800 slices LUTs, 48 DSP slices, 128

BRAM memories. Since any logic can be implemented on LUTs, other resources can be

ignored. When as embedded system is developed around the FPGA based design, the space is

returned as a percentage of the total area available. The complete system design encompasses

processor, memory controller, bus controller and IP cores etc. After creating a complete

system around the ML507 board we found that the PR region can be allocated as large as 40%

of the space. This was concluded by creating 10 sample projects in which device was not able

to place and route the design which consumed more than 40% of the chip.

Once the size of PRR is given, we need two more parameters for creating clusters of nodes

called as coarse level clusters. We again focus on four operators ADD, SUB, MUL and DIV

modules for the DFG clustering similar to operators used in isomorphic design flow. In order

to estimate the size of the cluster we should first know the area consumed by each operator on

real device and library created in Table 5.7 will be used again. The coarse level graph can be

created in different ways depending on the design of the cost function. The easiest method is

to assign levels using ASAP. Fig. 5.28 shows level wise clustering with area constraints.

155

Figure 5.28: Level based clusters

The process of creating and executing partitions on time basis is known as temporal

partitioning. In the next section we have used GA for the creation of clusters based on the

partial reconfiguration design constraints. The effectiveness of GA was demonstrated in the

chapter 4 and hence has been used.

5.7. Genetic Algorithm for RCS

In the chapter 3 we have used the GA for co-design process. The next requirement of our

design flow requires the application of GA to RCS. Given a PRR region, we have to find the

best partitions and schedule them for a minimum execution time. Given a partial

reconfigurable region (PRR) with the resources (R) and a dataflow graph G with nodes N =

{n1,n2,...nn}, which are operators with a given area A = { a1,a2,...an } and delay D = { t1,t2,...tn

}, partitioning is defined as the creation of disjoint clusters set C = {c1,c2,...cn} , where ci ⊆ N

satisfying the condition area(ci) ≤ R. R is the maximum size of the defined area [1.7].

The above equation also imposes an ordering constraint on the execution model of the device

which is defined as: a cluster ci can only execute if all its predecessor nodes have executed.

This condition defines the scheduling order of GA. The objective of the clustering algorithms

is to find clusters which can fit into a given PR region. GA is the popular algorithm used in

recent times and has been discussed in chapter 3. The objfct used in our algorithm is shown

below; it includes time, max_inputs, max_outputs, size and quality [1.7]. In order to calculate

the quality of the partitions we define connectivity of the graph,

a. Connectivity of a graph G = (V, E) is given is defined in Eq. 5.15 as:

con (G) = 2*|E|/(|V|
2
 - |V|), …(5.13)

Where V is the number of nodes and E is the number of edges.

156

b. Quality of partitioning P = {P1,…, Pn} is given by Eq. 5.14 as:

 Average connectivity over P: Q(P) = 1/n i=1,…,n con(Pi) …(5.14)

The objective function is given below (Eq. 5.15) and combines all the constraints imposed by

the algorithm. The partial reconfiguration design flow imposes many constraints

(inputs/outputs pins are fixed, area are constant) on the design flow and was presented in

literature survey [2.66]:

𝑓_𝑣𝑎𝑙𝑢𝑒

=

(𝑘1 ∗ max_𝑡𝑖𝑚𝑒) + (𝑘2 ∗ (1/(max_𝑖𝑛𝑝 − 𝑖𝑛𝑝_𝑛𝑢𝑚)))

+ (𝑘3 ∗ (1/(max_𝑜𝑝 − 𝑜𝑝_𝑛𝑢𝑚))) +

 𝑘4 ∗ (1/𝑞𝑢𝑎𝑙𝑖𝑡𝑦)) + 𝑘5 ∗ 𝑚𝑎𝑥𝑠𝑖𝑧𝑒 − 𝑠𝑖𝑧𝑒𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑖𝑓 𝑡 > 𝑡𝑟

 𝑐 𝑖𝑓 𝑡 < 𝑡𝑟

 ...(5.15)

Five parameters decide the value of the function and each is weighted by multiplying with a

constant. The higher the value of a constant, higher will be the effect of the parameter. The

detailed algorithm with modification of our requirement is given below:

Algorithm 4.4: Genetic Algorithm for Reconfigurable Systems

BEGIN

 p = population size;

 tn = no. of nodes;

 bn = number of bits to represent a partition; // define a variable to define the partitions

 n= total number of bits in a chromosome;

 G = generate random population (0 or 1) of size = p x n;

 REPEAT

1. Evaluate FITNESS of each chromosome G by finding the following

 Calculate time; Calculate cost; Calculate quality; Calculate objective function (OF);

2. Evaluate PROBABILITY of each chromosome by,

 Give max probability to min. OF;

3. Calculate CUMULATIVE PROBABILTY (CP);

4. Evaluate Roulette Wheel for SELECTION of better chromosomes by,

 g1= generate random no. (0 to 1) for size = p;

 Find nearest larger CP values for each g1;

 Generate new population;

5. Do CROSSOVER between the pairs of parents

 c = define crossover probability;

157

 g2= generate random no (0 to 1) for size = p;

 Select chromosome for g2 ≤ c;

 Generate random position (0 to n) for each pair of selected chromosome;

 Interchange bit patterns between pairs after their generated position;

 Generate new population;

6. Do MUTATION of the resulting offspring;

 m = define mutation probability;

 g3 = generate random no. (0 to 1) for size= p;

 generate g4(1 to n)

 Select chromosome for g4 ≤ m;

 Toggle bit pattern;

 G = Generate new population;

 UNTIL TERMINATION CONDITION SATISFIED

Schedule optimum OF value pattern;

END

The GA starts with a population which contains chromosome. The chromosome can be

visualized containing n bits given by Eq. 5.16 as:

 n = tn * bn …(5.16)

Where tn is the total number of nodes present in a chromosome and bn is the number of bits

taken to represent the partition to which a node belongs. The value of bn is computed by

calculating the number of partitions required and the number of bits to represent this number.

Number of partitions required is the maximum of: minimum PRR size (min_PR_size),

minimum PRR inputs (min_PR_inp) and minimum PRR outputs (min_PR_op). These three

parameters are required since the created partition should not violate any of these values as

given by Eq. 5.17, Eq. 5.18 and Eq. 5.19.

 n_PR_size = ceil (req_size/max_size) ...(5.17)

 min_PR_inp = ceil(inp_num/max_inp) ...(5.18)

 min_PR_op = ceil(op_num/max_op) ...(5.19)

Where req_size is the amount of partition space required for implementing given function and

max_size is the amount of space available on the FPGA. Similar is the case with min_PR_inp

and min_PR_op. The maximum of these values is taken to be min_PR which represents the

number of partitions to be made as given by Eq. 5.20.

min_PR = mini(min_PR_size, min_PR_inp, min_PR_op) ...(5.20)

158

Let us assume that an PRR has 10 inputs, 5 outputs and 200 units of area. Now as application

has 100 inputs, 20 outputs and 600 units of area required. This gives min_PR_size = 3,

min_PR_inp = 10, min_PR_op = 4, hence number of partitions required will be 3. The

parameter bn can be calculated from mini_PR with a ceiling function as given by Eq. 5.21.

 bn = ceil(log($min_PR)/log(2)) ...(5.21)

For generating the initial population, initialize_population () function has been written that

creates an initial random population for the next stages of the algorithms. After the population

has been generated, the task of next stage (Fitness) is to find, the better chromosome for which

an objective function is used. An objective function (Objfct) is defined to guide genetic

algorithm to optimize a partition for minimizing some attributes for given constraints

parameters. As a result, some form of metrics needs to be created. Some possible

minimization attributes are power, delay, hardware, cost, silicon area etc.

Calculate_chromosome_f() function calculates the f_value that accumulates the effects of all

the parameters like num_inputs, num_outputs, max_time, size, quality and validity of the

order. The aim of the genetic algorithm would be to keep the chromosomes with minimum

f_value. So, by increasing the f_value of a particular chromosome, the probability of it making

to the next generation decreases. Since we need to minimize the max_time parameter, a value

proportional to max_time is added to f_value. The proportionality constant is k1.

The num_inputs are taken to be the difference between maximum inputs available in the

partition space of the FPGA and the number of inputs present in a given partition. Similar is

the case with num_outputs. Since this num_inputs should be minimized, a value proportional

to num_inputs and num_outputs is added to f_value in case these are positive. Proportionality

constants are taken to be k2_p and k3_p respectively. In cases where the num_inputs or

num_outputs are negative, those particular chromosomes should be neglected as those are not

possible to be placed on the partition space of the FPGA. So, the k2_n and k3_n which are

the proportionality constants in cases when num_inputs and num_outputs are negative are

taken to be very high.

Since the difference between the maximum partition space available on the FPGA and space

that will be occupied a given partition should also be minimized, we add to f_value a value

proportional to the difference. Proportionality constants are k5_p and k5_n for the positive and

negative cases similar to num_inputs and num_outputs.

The quality of a chromosome indicates how many edges are being cut between the partitions

of a chromosome. Lesser the number of edges cut, higher will be the quality. Since the

159

quality is to be maximized, a value inversely proportional to the quality is to be added to

f_value. But since the change in the quality is so less, a value that is normally observed to be

the average of the qualities of chromosomes of few iterations of best populations subtracts

from the quality and then the inverse is taken. The proportionality constant here is taken to be

k4_p and k4_n in the positive and negative cases respectively.

As shown by Eq. 4.21, the objective function calculation requires many constants. Table 5.12

shows the value of constants used in our objective function calculation. Higher the value of

the constant, less will be the effect of it in the function, hence the values have been set in such

a way that time gets the highest contribution.

Table 5.12: Constants used in genetic algorithm

Type Name Value

Time $k1 10

Input $k2_p 1

Input $k2_n 100

Output $k3_p 1

Output $k3_n 100

Quality $k4_p 0.001

Quality $k4_n 10000

Size $k5_p 0

Size k5_n 100

Following functions were written for calculating the parameters for GA and are called by

Calculate_chromosome_f() :

• Critical_time() function calculates the maximum time taken to evaluate a given output in

the specified partition. This recursive function starts from the input node and adds up the

time taken by each node till an ouput to the partition is encountered. Then, maximum

value among those times is taken to be the critical time of the given output node.

• Calculate_partition_time() function calculates the critical time for all the available

outputs and temp_outputs in the given partition by calling critical_time function.

• Calculate_chromosome_time() function calculates the maximum time taken by a

chromosome by adding the times taken by partitions in that chromosomes which are

calculated by calling calculate_partition_time function.

• Calculate_partition_connectivity () function calculates the connectivity of a partition.

• Calculate_chromosome_quality () function calculates the quality of partitioning of the

chromosome.

The process of selection, crossover and mutation given in algorithm are implemented using

Roulette wheel [2.27]. A function name GA_generation () does this. The function

160

GA_generation calls the function partition() takes the initial population and creates the

partitions. After the partitioning process, the order in which the partitions should run must be

decided, a function named depict_partitions() checks the dependency order and outputs the

partitions with a specific naming convention. Each partition is then converted to HDL by a

function named write_to_verilog() in dataflow semantics. The order of complexity of all the

functions is known in Table 5.13 where N is the number of nodes, G is the number of

generations and P is the number of population.

Table 5.13: Order of complexity of functions in GA

Calculate_chromosome_f O(N
2
) Partition O(N

2
)

Calculate_chromosome_quality O(N) Permute O(N
2
)

Calculate_chromosome_time O(N
2
) Validate_order O(N)

Calculate_partition_connectivity O(1) Write_to_dot O(N
2
)

Calculate_partition_time O(N) Write_to_verilog O(N
2
)

Critical_time O(N) Depict_partitions O(N
2
)

Find_valid_order O(N
2
) Main_control O(N

2
G)

GA_generation O(N
2
) Partition O(N

2
)

Initialize_population O(N
2
) Permute O(N

2
)

Explanation for Overall time complexity:

N -> No. of nodes (Only input of algorithm)

G -> No. of generations (May need to be increased as the number of nodes is increased)

The critical operation leading to the mentioned overall time complexity is the partitioning of

nodes. Since this is done for each generation, O(G) is the complexity. And for each

generation, partition function needs to loop through number of partitions and through all the

number of nodes for each partition, the complexity O(N
2
)is used. Hence overall time

complexity is: O(N
2
G).

5.8. Wrapper Design and Scheduler Design

The next step in design flow requires the partitions to be scheduled in precedence order in

SW. The GA discussed in previous section returns the order of execution of partitions which

can be used in designing a static scheduler. The function Find_valid_order checks the

dependency of the nodes and returns the cluster as C1, C2 and so on. These clusters are

wrapped around in a common interface. The obtained partitions are supposed to run in one

PRR, which requires the interface should be the same, since this a constraint in the PR design

flow as discussed in chapter 1. This is a restriction on the design in terms of inputs and

outputs channels cannot vary. The wrapper design requires that all the partitions and their

ports be scanned order and type.

161

Suppose that two clusters given below are supposed to be designed for one partition.

module prr1(a,b,c) ; module prr1(x, y, z);

input [3:0] a, [3:0] b; input [7:0] x, [7:0] y;

output [7:0] c; output [15:0] z;

The created wrapper is

module prr(a,b,c,x,y,z);

This wrapper is then instantiated as a component in the bus wrapper file and can be tested.

Although this technique uses extra ports for each partition, but is necessary, since the PR tools

searches the nets and if the same name net is not found it gives an error. When creating a

partition of size around 20%, the region selection becomes crucial. In many cases the design is

not routable and gives an error. The constraints discussed in section 2.5.2 (Restrictions in

design flow) about the number of clock regions may fail as number of clocks available are

restricted. In this situation the resulting partitions may be of no use and require modification

in the HDL code of the design. It was found that left side upper region of the Virtex-5 gave

better results in terms of PR region. This may be due to other regions are better supported for

specific controllers like DDR memory.

Load Next

Configuration

Apply Inputs

Store the

Intermediate

Results

More inputs
More

Configurations
Stop

Figure 5.29: Scheduler design in SDK

After the clusters are wrapped, we need to run them in correct order. This step demands a

robust scheduler, which configures the memory by picking up partial bit files from external

memory. The Fig. 5.29 shows the flow chart for the scheduler designs.

The scheduler designed has following steps:

• A new configuration is loaded into the FPGA

• For this configuration inputs are applied

162

• The results of the configuration are saved in temporary registers.

• If the same existing configuration can be used, then new inputs are applied

• If more configurations exist then the process is repeated.

The code given below shows the snippet of the scheduler used in Xilinx SDK:

xil_printf("\r\n Performing Reconfiguration for b1\r\n ");

 XHwIcap_FLASH2Icap (XPAR_FLASH_MEM0_BASEADDR+0x01f20000);

 xil_printf("\r\n done b1\r\n ");

TEST_mWriteReg (baseaddr, TEST_SLV_REG24_OFFSET, input [16]);

xil_printf("\r\n--------------\r\n Writing Data Set: %d\r\n",i);

...

xil_printf("\r\n b1_output[1] = %X",b1_output[1]);

TEST_mWriteReg (baseaddr, TEST_SLV_REG8_OFFSET, input[8]);

...

b1_output [2] = TEST_mReadReg (baseaddr, TEST_SLV_REG25_OFFSET);

xil_printf("\r\n b1_output[2] = %X",b1_output[2]);

xil_printf("\r\n Performing Reconfiguration for b2\r\n ");

XHwIcap_FLASH2Icap(XPAR_FLASH_MEM0_BASEADDR+0x01e00000);

...

In the above code, XHwICAP_FLASH function is used to load partial bits files from flash

memory using the ICAP controller.

5.9. Reconfiguration Time Analysis

The design space exploration starts from SW implementation and can also look for HW, SW-

HW and HW-HW variations depending on the performance and area constraints. Our

proposed HW-HW approach should be compared in terms of design flow complexity,

performance gain and running time. The design flow complexity involved in this process is

the creation of PlanAhead project, which takes specialized knowledge and understanding. For

performance comparison, the design flow adopted here should be compared in terms of timing

with respect to

i. Total SW implementation of design on PowerPC processor in Xilinx SDK.

ii. Total HW implementation of the design as IP core interfaced to the PowerPC

processor in Xilinx XPS.

iii. Proposed PR design flow (HW-HW): using compact flash (CF) card, double data rate

(DDR) and Flash memory, PowerPC processor and PlanAhead SW.

163

Since the proposed design flow is new hence arises the need for a time estimation model,

which can compare the obtained results and theoretical results. Estimated time for

reconfiguration of the FPGA is resolved using the equation [2.73]:

 Config_time[s] = Bitsize /(Cclk* Buswidth) ...(5.22)

Eq. 5.22 takes Bitsize, input clock and bus width to calculate the configuration time, but does

not includes inputs, outputs and execution time required to run the IP core. The Eq. 5.23

which is below, includes execution time, input, output and reconfiguration time can be

formulated as

 …(5.23)

Where n is the number of time the configuration is done, tconf as the time required to

configure the FPGA, ti as the time to apply the input to the configuration, texe as the time

required to execute the inputs and to as the time required to get the output in registers. Eq. 5.23

describes the total execution time of an application to run using clustering approach. For our

HW-HW model, it is used for calculating the total time required for execution. Since we are

using only one PR region, the tconf will remain constant as it is dependent only on PR region

size not on the bitstream size. The smaller the value of n, lower will be the reconfiguration

overhead. This equation can be applied when the reconfiguration time for benchmark

programs are measured on HW using a timer. The values used in the equation were measured

using the hardware xps timer, which is a core available in repository and has been described in

chapter 3.

After creating the a sample design in PR flow, it was found that partial bitstream for 40% area

consumption is of 358 KB for and a simple adder file was 128 KB. Hence it was concluded

that the size of the partial bit files is of the order of KBs. The maximum throughput of the PR

design flow reported as discussed in literature survey [2.67] is 400 Mbps using DMA

controller and double clocking. This concludes that a file of 100 KB will take 250

microseconds for reconfiguration. This overhead in writing a new bitstream is of the order of

microseconds, which is large as compared to applications which are completely their

execution in microseconds. Hence this technique can only be useful if either this time is

diminished or application can tolerate this much overhead for saving significant area. Hence

as a thumb rule we have assumed a throughput of 400 Mbps for reconfiguration time

calculations in subsequent sections.

n

i

oexeiconftot ititittnt
1

)()()(

164

5.10. Parameters and Results for Genetic Algorithm

The constants required for the algorithm to run are the maximum size of the PRR in terms of

LUTs, maximum inputs, maximum outputs, population size and number of generations. The

parameters used for the GA execution are shown in Table 5.14 for cosine1 and cosine2.

Table 5.14: PR and GA parameters

PR Parameters GA Parameters

Max_size 2200 LUTs Population size 30

Max_inputs 30 Num of generations 300

Max_output 25 Mutation

probability

0.1

 Crossover

probability

0.7

GA has been applied to Express benchmark [2.38] available as dataflow graph for cosine1 and

cosine2 functions. The dataflow graphs of the two programs are shown in Fig. 5.30 and Fig.

5.31. Table 5.15 shows the number of nodes, number of edges, inputs, outputs and resource

consumed by the two benchmarks programs. The two differ in the number of inputs.

Table 5.15: Express benchmark programs used for testing GA

Design Kind Nod

es

Edges Inputs Outputs Resources Used

LUTs DSP

Cosine1 Express

Benchmarks

66 76 16 8 17021 48

Cosine2 Express

Benchmarks

82 91 32 8 17021 48

Figure 5.30: DFG of Cosine 1

165

Figure 5.31: DFG of Cosine 2

The number of times the iterations of the algorithm is executed decides the running time of

the GA.

Figure 5.32: Fitness vs. generations

Fig. 5.32 shows the plot of fitness value against its generation for cosine 1. Algorithm has the

initial fitness value to be around 700 which then reached the global optimum solution (having

fitness value as 580 in this case) by traversing through one local optimum solution (fitness

value as 680). This being a simpler graph, could be seen to have converged to final optimal

solution in around 70 generations.

166

Figure 5.33: Fitness value vs. generation for mutation value as 0.2(Blue) and 0.4(Pink)

Fig. 5.33 shows plots of fitness value against its generation for mutation value as 0.2(Blue)

and 0.4(Pink). Rate of convergence could be seen to be different for both the plots as

expected. With mutation rate as 0.4, optimal solution is reached in around 225 generations

while it took around 350 generations for the case using 0.2 as mutation rate. The algorithm

with higher mutation value explores more of new solutions and hence reaches the optimal

solution (which is approximately at fitness value of 510 in this case) faster than the algorithm

with lower mutation value. On the other hand, too high mutation value leads to losing of the

essence of genetic algorithm making it a random search algorithm. Spikes on the graph are

closely proportional to exploration rate and hence to the mutation rate. Algorithm has the

initial fitness value to be around 730 which then reached the global optimum value of 510 by

traversing through the local optimal values – 680, 630, 560.

In the next section we have developed a task graph generator for examining the strength and

running time of GA.

167

5.11. Random Task Graph Generation

Validation of the robustness, efficiency of allocation and scheduling heuristics in large scale

parallel and distributed systems is usually done using synthetic randomly generated

workloads, represented by task graphs. We present a modular approach to the problem of

generating random directed acyclic graphs (DAGs), called as modular random task graph

generator (MRTG), making it very flexible for the researchers to use it. Modular based

approach provides a great advantage for future development as more modules can be added

without disturbing the existing stable software. The task nodes are placed randomly using a

layer-by-layer approach and then connected randomly. Paramount importance has been given

to user-controlled randomness in developing this algorithm. The MRTG can generate task sets

containing several different types of task graphs like rooted trees, isomorphic graphs and

random graphs with same node placement but different connections, with the flexibility to

dictate the type of graph generated. We also present a comparison of MRTG with existing

solutions to the random task graph generation problem.

5.11.1. Random Graph Generators

Research in real-time embedded systems, operating systems and hardware software co-design,

as well as in more general allocation and scheduling fields, is hampered by the lack of a

common base of benchmarks. In general, any example used in allocation and scheduling

research consists of a task set and a database of processors plus several communication

resources. A task set is a collection of task graphs, each of which is a directed acyclic graph

(DAG) of communicating nodes. Generation of sample task sets is often a requirement when

comparing allocation or scheduling methods with each other. The existing solutions are of

limited relevance in today's scheduling problems in parallel, distributed systems and fields

like hardware software co-design, which require a clear definition of the size of the critical

path and also cater to the possibility of defining different types of task nodes with independent

parameters. MRTG accomplishes these and also gives researchers an opportunity to clearly

define the number of inputs to each type of task node, which is necessary in today's computer

science scheduling problems which require that all inputs arrive for the task node to give an

output.

MRTG is highly valuable for simulation of scheduling problem on many core processors in

order to choose how to divide the work that must be done among such large number of

processing cores. It is of particular importance to researchers working in areas like

reconfigurable computing and System-on-Chip. Because of its layer-by-layer [5.2] approach

168

as researchers can define graphs according to the requirements. As MRTG has been created

with computer hardware scheduling problems in mind, the constraints are defined in terms of

the silicon area consumed in executing each task and the delay across that task node. But,

these definitions are flexible and we can interpret these constraints in the way that they are

relevant to any research. For easy analysis, MRTG currently give output graphs in two

formats a text file with the list of node placement, an array of ordered pairs describing the

connections and in GraphViz‘s dot format.

We now present a thorough comparison of MRTG with popular existing random task graph

generators. Task Graphs for Free (TGFF) [5.3] is one of the oldest and most popular

algorithms for generating user-controllable, general-purpose, pseudorandom task graphs. The

original TGFF algorithm iteratively adds nodes to construct a graph using limits on the

maximum in and out degrees of each node, this reduces the randomness of the task graph

generated, making it a pseudo-random task graph generator [5.4]. Fig. 5.34 shows the sample

graph generated using TGFF.

Figure 5.34: A graph generated using TGFF

A more recent version provides an option to generate also series-parallel DAGs. MRTG on the

other hand, keeps the node placement, connection steps separate and adds randomness at

every level making it a truly random task graph generator. This method of iteratively adding

nodes, leads to generation of only rooted task graphs by TGFF, while MRTG can produce

graphs with any number of input nodes, including rooted trees if the number of input nodes

specified by the user is one.

169

MRTG creates a graph with the exact number of nodes as specified by the user, while TGFF

takes the average and multiplier from the user, for the lower bound on the number of nodes in

a graph and creates a graph with number of nodes that are randomly greater than this lower

bound. Another major difference between TGFF and MRTG is that, TGFF uses a concept of

depth to decide the communication delay of the graph generated. In MRTG we have a concept

of levels, where we assume that any task in the next level does not start unless all the tasks in

the previous level are completed. This is of particular importance to researchers in fields like

reconfigurable computing, as now they can define different levels in random task scheduling

to take into account reconfiguration of the hardware between levels.

TGFF is flexible with the number of inputs of each node and the user specifies the degree of

inputs. The TGFF algorithm results in a graph that has nodes in which the number of inputs

connected is any number less than the degree specified, while MRTG takes the exact number

of inputs required by each task from the user and ensures that they are connected.

Even so, MRTG and TGFF are similar with respect to the flexibility of the outputs of a node

as both take the maximum number of outputs and connect any number below this. Also, in

TGFF only one type of node is specified, while in MRTG, multiple types of nodes can be

specified with their own individual constraints. The two other generators commonly available

are Graph Generation for Scheduling Simulations (GGEN) [5.5] and Random Task Resource

Graphs (RTRG). GGEN provides a very thorough coverage of the different task scheduling

algorithms developed over the years. It uses the libraries of the existing solutions and provides

the developer with a single tool to exploit them. But, in doing so it gets limited by the

shortcomings of those algorithms. It becomes a one stop tool for developers, but has limited

additions of its own. Different types of nodes with their own individual parameters and

constraints can be specified in MRTG, while this is not an option in GGEN. One aspect where

GGEN and MRTG are similar is that both generate an output in Graphviz‘s dot language.

RTRG is a simple and effective tool, but provides very limited flexibility to the developer. It

defines resources used by a task node, which is similar to the concept of area used in MRTG.

It offers different types of nodes but the constraints of each node have to be defined

individually, which presents a problem when the number of nodes increases, while the node

type definitions in MRTG are grouped making it easier for the user. The output file generated

by RTRG is in .rtg format, which is difficult to analyze, while MRTG generates a dot file as

output along with a text file showing the connections and node placement in matrix form.

MRTG differs from all existing solutions in the respect that it is divided into self-contained

modules and changes made in one module don't affect the functioning of another. This

170

modular nature makes the code far more reusable than a conventional monolithic design.

Future improvements are easier to make, as additional modules can be added without

disturbing the functionality of the original stable software. It also makes the program very

flexible to use, as now researchers can choose to run only those modules that they require and

also change the order of execution of modules to suit their needs. We now describe the

working of MRTG, which is currently divided into four modules assignLevels, connectNodes,

isomorphize and plotGraph.

5.11.2. Algorithmic Design of MRTG

MRTG primarily generates a specified number of random task graphs, where the graph nodes

are tasks and the graph edges depict the communication between tasks. In the algorithm, we

first decide the total number of task nodes needed, the number of levels in which to place

them, number of input nodes, the maximum area that each level can accommodate and the

total delay constraint. Along with this, we can specify different types of task nodes here, by

giving the number of inputs, the fan-out, i.e. degree of the output, area consumed, delay and

the total number of nodes of that type. Here, we can also give the number of isomorphic

graphs required. Rooted graphs can also be generated by specifying the number of input nodes

as one. Given below is the sample input specification file:

isomorphicCount

numberOflevel areaPerLevel MaxDelay

TypesOfInputNodes CountOfTotalInputNodes

CountOfType1 AreaofType1 DelayOfType1 OutputsOfType1 SymbolOfType1

CountOfType2 AreaofType2 DelayOfType2 OutputsOfType2 SymbolOfType2

CountOfType3 AreaofType3 DelayOfType3 OutputsOfType3 SymbolOfType3

....

TypesOfTaskNodes CountOfTotalTaskNodes

CountOfType1 AreaofType1 DelayOfType1 InputsofType1 OutputsOfType1 SymbolOfType1

CountOfType2 AreaofType2 DelayOfType2 InputsofType2 OutputsOfType2 SymbolOfType2

CountOfType3 AreaofType3 DelayOfType3 InputsofType3 OutputsOfType3 SymbolOfType3

....

The seed for randomness in MRTG, which decides the structure and other aspects of the

generated task graphs, is the current system time making it highly unlikely for any two graphs

generated at different times to be similar. But if similar task graphs are required, we can

specify a user-defined seed and share it with another researcher. We have defined four rules in

this algorithm:

171

a. Every type of node has only specified number of inputs, but the output can go to any

number of nodes less than the fan-out as input.

b. The output of every node, except the ones the bottom level, is connected to at least one

input.

c. All connections are downward directional, so the output of a lower node cannot

connect to an input of an upper node and any node‘s output can go into the input of a

node from any level below its own.

d. Tasks in a level start only after all the tasks in the previous level are completed.

5.11.2.1 Module 1: assignLevels

This module develops on the layer by layer method proposed by Tobita and Kasahara [5.6].

Here, we randomly place node in different levels, without violating the maximum area that

each level can accommodate and the total delay constraint. This module only decides the node

placement and makes no connections between the nodes. We first create a list, which stores

the node placement information. Then, we repeatedly select a random level and put a

randomly selected node in it, while ensuring the maximum area in that level is not exceeded.

This process continues till all nodes are placed. Lastly, we calculate the total delay of this

particular node placement by adding the maximum delay at each level and check against the

delay constraint. If violated, the process repeats from the start. Although very simple, this

method is very useful in practice because by limiting the number of levels we can limit the

size of the critical path.

Algorithm 5.5: Module 1 - assignlevels

1. Name:assignLevels

2. Function: Randomly place node in different levels, without violating constraints

3. Input: numberOfLevels = The total number of levels in the graph

4. areaPerLevel = The maximum area that each level can accommodate

5. delayLimit = The delay constraint

6. inputNodes = Array containing all the input nodes

7. taskNodes = Array containing all the task nodes

8. nodeList = List defining node placement, with the first index holding the level number

9. Output: Passed by reference

10. Boolean value returned

11. Algorithm:

12. /* assume nodes sorted already by type */

13. Define an array freeArea[] and put the value of areaPerLevel for each level.

14. Insert all input nodes at level 0 of nodeList and subtract area of each from freeArea[0].

15. iffreeArea[0] is less than 0

172

16. then say "Input nodes occupy too much area" and assert false

17. endif

18.19. /* fulfill area constraints */

20. for i=0 to taskNodes.size()

21. Initialize chosenLevel to -1

22. Initialize numIterations to 0

23. do

24. set chosenLevel as 1 + modulus of random number with numberOfLevels

25. ifnumIterations is 1e6

26. then say "Unable to find suitable level in time" and return false

27. endif

28. whilefreeArea[chosenLevel] is less than area at taskNodes[i]

29. enddowhile

30. assert false if chosenLevel is equal to -1

31. Push back the node at taskNodes[i] into nodeList[chosenLevel].

32. Subtract the area of taskNodes[i] from freeArea[chosenLevel].

33. endfor

34.35. /* fulfill delay constraints */

36. Initialize totalDelay to 0

37. for i=0 to numberOfLevels

38. Initialize maxDelay to 0

39. for j=0 to size of nodeList[numberOfLevels]

40. setmaxDelay to maximum of maxDelay and delay at nodeList[numberOfLevels][j]

41. endfor

42. Add maxDelay to totalDelay

43. endfor

44. iftotalDelay is greater than delayLimit

45. then return false

46. else

47. return true

48. endif

173

5.11.2.2. Module 2: connectNodes

Here, we take the node placement information from the previous level and randomly make

downward directional connections and store them in an array of ordered pairs, while satisfying

the rules of the algorithm. We start moving up from the second level from the bottom and

randomly connect each output only once to an input below. After all the outputs have been

connected once, we start moving down from the level below the input level and randomly

connect all unconnected inputs to an output above, while ensuring that the fan-out is not

violated. A totally random task graph, subject to input constraints, is generated at the end of

this module. As a fail-safe, if the algorithm gets stuck at any point and is not able to place the

nodes or make connections, it will automatically show an error after trying for a hundred

thousand times. A sample of rooted graph generated from MRTG is shownin Fig. 5.35.

Figure 5.35: A rooted graph generated using MRTG

Algorithm 5.6: Module 2- connectnodes

1. Name: connectNodes

2. Function: Make random downward directed connections subject to number of inputs and fanOut of outputs of

each node

3. Input: nodeList = List defining node placement, with the first index holding the level number

4. connections = Array of ordered pairs defining connections between nodes

5. Output: Passed by reference

6. Boolean value returned

7. Algorithm:

8. Clear any previous connections.

9./* ensure every input node is utilized atleast once:: bottom to top*/

10. Initialize array of ordered pairsfreeInput

11.for i=0 to size of nodeList[numberOfLevels]

174

12. for j=0 to number of inputPins of nodeList[numberOfLevels][i]

13. Push back (numberOfLevels,i) into freeInput

14. endfor

15.endfor

16.for level=numberOfLevels-1 to 0

17. Randomly shuffle the array freeInput

18. for i=0 to size of nodeList[level]

19. Initialize a node id to nodeList[level][i]

20. if size of freeInput is 0

21. then return false

22. endif

23. Initialize choice to freeInput.size()-1.

24. Initialize newLevel to the first value in the pair freeInput[choice]

25. Initialize indexInNewLevel to the second value in the pair freeInput[cho.ice]26

26. Initialize node newId to nodeList[newLevel][indexInNewLevel]

27. Push back (id,newId) into connections

28. Increment the value of connectedOutputs of nodeList[level][i]

29. Increment the value of usedInputPins of nodeList[newlevel][indexInNewLevel]

30. Pop back freeInput

31. endfor

32. for i=0 to size of nodeList[level]

33. for j=0 to number of inputPins of nodeList[level][i]

34. Push back (level,i) into freeInput

35. endfor

36. endfor

37.endfor

38.Initialize array of ordered pairsfreeOutput

39.for i=0 to size of nodeList[0]

40. for j = connectedOutputs of nodeList[0][i] to fanOut of nodeList[0][i]

41. Push back (0,i) into freeOutput

42. endfor

43.endfor

44.Initialize highestLevelInFreeOutput to 0

45.Sort the elements in freeInput

46.

47./* now process all the free inputs top to bottom*/

48.for i=0 to size of freeInput

49. Initialize level to the first value of the pair freeInput[i]

50. Initialize indexInLevel to second value of the pair freeInput[i]

51. Initialize node id to nodeList[level][indexInLevel]

52. while level - highestLevelInFreeOutput is greater than 1

53. Increment highestLevelInFreeOutput

175

54. if level is equal to highestLevelInFreeOutput

55. then return false

56. endif

57. for ii=0 to size of nodeList[highestLevelInFreeOutput]

58. for j= number of connectedOutputs of nodeList[highestLevelInFreeOutput][ii] to fanOut of

nodeList[highestLevelInFreeOutput][ii]

59. Push back (highestLevelInFreeOutput,ii) into freeOutput

60. endfor

61. endfor

62. Randomly shuffle the array freeOutput

63. endwhile

64. if size of freeOutput is 0

65. then say "Insufficient outout pins" and return false

66. endif

67. Initialize choice to size of freeOutput -1

68. Initialize newlevel to the first value in the pair freeOutput[choice]

69. Initialize indexInNewLevel to the second value in the pair freeOutput[choice]

70. Pop back freeOutput

71. Initialize node newId to nodeList[newlevel][indexInNewLevel]

72. Push back (newId,id) into connections

73. Increment the usedInputPins of nodeList[level][indexInLevel]

74. Increment the connectedOutputs of nodeList[newLevel][indexInNewLevel]

75.endfor

76.Return true

5.11.2.3. Module 3: isomorphize

A graph G is isomorphic to a graph H if there exists a one-to-one function, called an

isomorphism, from V(G) (the vertex set of G) onto V(H) such that (u1,v1) is an element of

E(G) (the edge set of G) if and only if (u2,v2) is an element of H [2.43]. In simpler terms, two

graphs are isomorphic when the vertices of one can be re labeled to match the vertices of the

other in a way that preserves adjacency. This module is used to generate graphs that are

isomorphic to the one generated above. We randomly select a type of node and swap the

identification numbers of any two nodes of that type. The number of times this process is

repeated for each isomorphic graph is also random.

Algorithm 5.7: module : assignlevels

1. Name: isomorphize

176

2. Function: Generate isomorphic graphs

3. Input:typeList = List defining the type of node, with the first index holding type and the second one holding

the node information.

4. Output: Passed by reference.

5. Algorithm:

6. for i=0 to size of typeList

7. while generated random number %10 is not 0

8. int u = modulus of randomly generated number with size of typeList[i];

9. int v = modulus of another randomly generated number with size of typeList[i];

10. define Node n1 as typeList[i][u] and Node n2 as typeList[i][v];

11. swap the ID of n1 and n2 by reference;

12. endwhile

13. endfor

Figure 5.36: Two isomorphic graphs generated using MRTG

A sample of two isomorphic graphs generated using MRTG is shown in Fig. 5.36.

5.11.2.4. Module 4: plotGraph

The DOT language provides syntax for describing graphs, edges, nodes and the properties

associated with the graph components in simple text format. We have chosen Graphviz‘s DOT

language as the default format for graph representation for MRTG, to make it compatible with

most of the available tools for graph analysis. In this module, we create graphs in DOT file

format from the list of nodes and array of connections created above. MRTG being modular

gives a lot of flexibility and control to the researcher. We can run assignLevels module once

and connectNodesmodule multiple times to generate similar graphs that have the same node

177

place but different connections between the nodes. Rooted trees can be generated by

specifying only one input node.

Being modular, MRTG can have future additions in the form of modules, which can be added

without disturbing the original stable software. We plan to make it open source so that

researchers who really need it, can develop modules they need and add them to the project so

the whole community can use them. We plan to develop a module to add weights to the

connections too. This will be very useful for researchers who need to do scheduling while

taking into account the communication delay and resource expenditure. After that we also

plan to add a concept of depth, as proposed in TGFF. MRTG provides a modular approach for

generating user-controlled, truly random task graphs that find relevance in simulating today's

scheduling problems in parallel, distributed systems and fields like hardware software co-

design. This modular nature makes the program code far more reusable than a conventional

monolithic design. It also makes the program very flexible to use, as now researchers can

choose to run only those modules that they require and also change the order of execution of

modules to suit their needs. The layer-by-layer approach followed in MRTG, with the ability

to define different types of nodes with their individual parameters separates it from existing

available solutions and makes it highly valuable for researchers working in areas like

reconfigurable computing, System on Chip and for scheduling simulation in the problem of

many core processors, to choose how to spread the work among such large number of

processing cores. A sample of two operator based graph generated using MRTG is shown in

Fig. 5.37.

Figure 5.37: Nodes with operators generated using MRTG

The sample program used in the analysis of the GA algorithm contains nodes up to 100. In

real practical applications such nodes can go up to thousands hence arises the need for

handling large number of nodes. Results of GA applied to MRTG graphs, for number of

178

iterations = 10, Population size = 30 on a desktop machine having i5-2400 CPU @ 3.10GHz

3.10 GHz are shown in Table 5.16.

Table 5.16: Number of nodes vs. time taken

Number of nodes Time Taken(minutes)

100 4.32

250 22.70

500 98.43

Figure 5.38: Number of Nodes vs. time taken

Figure 5.38 shows a nearly linear behavior of the genetic algorithm for nodes ranging from

100 to 500.

5.12. Results and Discussion: Comparing ISO and GA Approaches

This section focuses on a results based on simulation and experiments done to justify the

frameworks proposed in chapter 3 and 4. Firstly the results of the GA are discussed and then a

DCT design has been taken for experimental verification and comparison.

The results of GA were further applied to the four programs and are tabulated in Table 5.17.

The partial reconfiguration overhead is neglected in the simulation since the order of time was

reconfiguration is microseconds as discussed in literature survey [2.61]. The table shows the

PRR defined and the corresponding partitions and execution time obtained from GA

execution.

0

20

40

60

80

100

120

0 100 200 300 400 500 600

Running Time

Number of Nodes

179

Table 5.17: GA applied to four benchmarks

Design

(1)

Nodes

/edges

(2)

Inputs

/outputs

(3)

Resources

 Used

(4)

GA

Running time

Seconds

(5)

PRR

Area

Given

(6)

No.

of

Partitons

(7)

Execution

Time

(8)

Cosine series(float) 15/31 5/1 8302 8 5000 2 276.5

Exponent (float) 34/69 8/1 19050 8 5000 4 497.9

Matrix Multi(3x3-Integer) 45/99 18/9 4626 4 2500 2 75.3

Sine series(float) 18/37 4/1 9527 2 5000 2 284.5

The results in Table 5.17 are calculated in a python script and hence are simulation based

only.

 Column 1 : name of the program

 Column 2 : number of nodes and edges

 Column 3 : number of inputs and outputs

 Column 4 : the resource consumed by the program

 Column 5 : runing time of GA

 Column 6 : partial area constraints given

 Columns 7 : Number of partitions returnedby GA

 Columns 8 : Execution time of program

Now that two different approaches have been discussed (GA and ISO), the Fig. 5.39 shows an

algorithm to decide which one to chose, given a dataflow specification. This method helps the

designer to follow a path based on requirement.

180

Define the specification in dataflow graph

Does Isomorphs of ample size exist
YesNo

Run the isomorphic algorithm

Migrate to Genetic algorithm for

clustering and scheduling

Create clusters of HW, SW or

isomorphs

Create clusters Schedule the clusters

Calculate the area delay

product

Calculate the area delay

product

Choose a solution

Figure 5.39: Flowchart for comparing the ISO and GA approach

Table 5.18: Comparison of simulations time

 Design Area Delay

Product

GAx(1000)

Area Delay

Product

ISOx(1000)

1 Cosine

series

1382.5 1442.05

2 Exponent

Series

2489.5 3453.76

3 Sine

series

1422.5 1654.83

4 Matrix 183.75 126.28

The comparison of GA and ISO is shown in Table 5.18. In case 1, 2 and 3 the performance of

GA is better as compared to ISO approach. This is because of the same area used in the GA

design. If we add the reconfiguration overhead in the GA design flow, the performance of ISO

flow will be much better. Hence we can say that ISO is a more feasible flow for efficient

implementation. If the reconfiguration overhead can be neglected (like concurrently loading of

bitstream) then GA is much better.

5.13. DCT Case Study for HW Isomorphic Design flow Based on Experimental Work

Discrete cosine transform is one of the common applications that has been migrated to HW

over the last two decades. This is due to the fact that it involves computation and processing.

We now present a basic introduction to DCT:

181

5.13.1. Implementations of Discrete Cosine Transforms

DCT is a basic coding method to transform the image from the spatial domain to the

frequency domain and works by separating the images into regions of differing frequencies.

The 1-D DCT of N real numbers x(n), n = 0, ..., N-1, is the list of length N given by [5.7] as

given by Eq. 5.24:

 𝑋 𝑘 =
2

𝑁
𝐶 𝑘 𝑥 𝑛 cos

 2𝑛+1 𝑘𝜋

2𝑁
 𝑁−1

𝑛=0 𝑘 = 0,…𝑁 − 1

…(5.24)

The list x(n) can be recovered from its transform by applying the inverse cosine transform

(IDCT) as defined Eq. 5.25:

 𝑥 𝑛 =
2

𝑁
𝐶 𝑘 𝑋 𝑘 cos

 2𝑛+1 𝑘𝜋

2𝑁
 𝑁−1

𝑘=0 𝑛 = 0,…𝑁 − 1

…(5.25)

 𝐶 𝑘 =
1

 2
 𝑘 = 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

…(5.26)

 The constant C(k) is defined by Eq. 5.26. If the input sequence has more than N sample

points, then it can be divided into sub-sequences of length N and DCT can be applied to these

chunks independently. In each such computation, the values of the basic function points does

not change, but the values of x(n) changes in each sub-sequence, enabling the basic functions

to be pre-computed offline and then multiplied with the sub-sequences. This reduces the

number of mathematical operations (i.e., multiplications and additions) thereby rendering

computation efficiency. The sample C code used for testing the 1D DCT is shown in

Optimization 1.

Optimization 1: 1D DCT

void dct(float **DCTMatrix, float **Matrix, int N){

 DCTMatrix[u] = 0;

 for (i = 0; i < N; i++) {

 { DCTMatrix[u] + = Matrix[i] * cos(M_PI/((float)N) * (i+1./2.)*u) ; } } } } }

182

We can look at the DCT as a matrix multiplication [5.8] Where the inputs and outputs are

row-vectors: X=x×M, where M is the cosine coefficient matrix. Optimization 2 shows the

representation as matrix form.

Optimization 2: 1D DCT [4.4]

static const double c0 = 1. / sqrt(2.) * sqrt(2. / 8.);

static const double c1 = cos(M_PI * 1. / 16.) * sqrt(2. / 8.);

static const double c2 = cos(M_PI * 2. / 16.) * sqrt(2. / 8.);

static const double c3 = cos(M_PI * 3. / 16.) * sqrt(2. / 8.);

static const double c4 = cos(M_PI * 4. / 16.) * sqrt(2. / 8.);

static const double c5 = cos(M_PI * 5. / 16.) * sqrt(2. / 8.);

static const double c6 = cos(M_PI * 6. / 16.) * sqrt(2. / 8.);

static const double c7 = cos(M_PI * 7. / 16.) * sqrt(2. / 8.);

#define a x[0]

// etc

void dct_ii_8a(const double x[8], double X[8]) {

 X[0] = a*c0 + b*c0 + c*c0 + d*c0 + e*c0 + f*c0 + g*c0 + h*c0;

 X[1] = a*c1 + b*c3 + c*c5 + d*c7 - e*c7 - f*c5 - g*c3 - h*c1;

 X[2] = a*c2 + b*c6 - c*c6 - d*c2 - e*c2 - f*c6 + g*c6 + h*c2;

 X[3] = a*c3 - b*c7 - c*c1 - d*c5 + e*c5 + f*c1 + g*c7 - h*c3;

 X[4] = a*c4 - b*c4 - c*c4 + d*c4 + e*c4 - f*c4 - g*c4 + h*c4;

 X[5] = a*c5 - b*c1 + c*c7 + d*c3 - e*c3 - f*c7 + g*c1 - h*c5;

 X[6] = a*c6 - b*c2 + c*c2 - d*c6 - e*c6 + f*c2 - g*c2 + h*c6;

 X[7] = a*c7 - b*c5 + c*c3 - d*c1 + e*c1 - f*c3 + g*c5 - h*c7;

}

Optimization 2 can be further optimized after factoring leading to Optimization 3.

Optimization 3: 1D DCT

void dct_ii_8b(const double x[8], double X[8]) {

 double c0 = 1. / sqrt(2.) * sqrt(2. / 8.);

 double c1 = cos(M_PI * 1. / 16.) * sqrt(2. / 8.);

 double c2 = cos(M_PI * 2. / 16.) * sqrt(2. / 8.);

 double c3 = cos(M_PI * 3. / 16.) * sqrt(2. / 8.);

183

 double c4 = cos(M_PI * 4. / 16.) * sqrt(2. / 8.);

 double c5 = cos(M_PI * 5. / 16.) * sqrt(2. / 8.);

 double c6 = cos(M_PI * 6. / 16.) * sqrt(2. / 8.);

 double c7 = cos(M_PI * 7. / 16.) * sqrt(2. / 8.);

 double ah = a - h;

 double bg = b - g;

 double cf = c - f;

 double de = d - e;

 double adeh = a - d - e + h;

 double bcfg = b - c - f + g;

 X[0] = (a + b + c + d + e + f + g + h)*c0;

 X[1] = ah*c1 + bg*c3 + cf*c5 + de*c7;

 X[2] = adeh*c2 + bcfg*c6;

 X[3] = ah*c3 - bg*c7 - cf*c1 - de*c5;

 X[4] = (a - b - c + d + e - f - g + h)*c4;

 X[5] = ah*c5 - bg*c1 + cf*c7 + de*c3;

 X[6] = adeh*c6 - bcfg*c2;

 X[7] = ah*c7 - bg*c5 + cf*c3 - de*c1;

}

Chen et al. algorithm [5.9] represents the 8-point DCT with matrix transforms. Loffler [5.10]

proposed a new class of a fast 1D-DCT algorithm using 11 multiplications and 29 additions.

Lee algorithm is also based on the matrix representation [5.11] using butterfly decomposition

yielding to an even and an odd part. AAN algorithm [5.12] being the most efficient technique

is discussed next.

5.13.2. Pipelining Approach and Implementation of DCT based on AAN algorithm

A fast DCT algorithm commonly known as AAN, named after its authors: Arai, Agui and

Nakajima is a optimum algorithm. Their algorithm uses five multiplies and eight post-

multipliers.

184

Table 5.19: Computational steps in AAN algorithm

Constants:

m1=cos(4*pi/16); m2=cos(2*pi/16)-cos(6*pi/16); m3=cos(6*pi/16);

m4=cos(2*pi/16)+cos(6*pi/16);

8
adders

a0

a1

a3

a2

a7

a6

a5

a4

7

adders

b0

b1

b3

b2

b7

b6

b5

b4

c0

c1

c3

c2

c7

c6

c5

c4

4

adders

d0

d1

d3

d2

d7

d6

d5

d4

5
multiplier

s

e0

e1

e3

e2

e7

e6

e5

e4

6

adders

f0

f2

f3

f1

f7

f6

f5

f4

4

adders

s0

s2

s4

s6

s1

s3

s5

s7

d8 e8

Figure 5.40: Pipeline architecture

The 1D-DCT architecture described in Fig. 5.40 is based on the AAN algorithm. The

algorithm described above has six steps, so the pipeline will have six stages. The first stage

has eight adders, second stage has seven adders, third stage has four adders, fourth stage five

multipliers, fifth stage has six adders, and sixth stage has four adders
.
Here twenty nine adders,

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

b0=a0+a7 c0=b0+b5 d0=c0+c3 e0=d0 f0=e0 s0=f0

b1=a1+a6 c1=b1-b4 d1=c0-c3 e1=d1 f1=e1 s1=f4+f7

b2=a3-a4 c2=b2+b6 d2=c2 e2=m3*d2 f2=e5+e6 s2=f2

b3=a1-a6 c3=b1+b4 d3=c1+c4 e3=m1*d7 f3=e5-e6 s3=f5-f6

b4=a2+a5 c4=b0-b5 d4=c2-c5 e4=m4*d6 f4=e3+e8 s4=f1

b5=a3+a4 c5=b3+b7 d5=c4 e5=d5 f5=e8-e3 s5=f5+f6

b6=a2-a5 c6=b3+b6 d6=c5 e6=m1*d3 f6=e2+e7 s6=f3

b7=a0-a7 c7=b7 d7=c6 e7=m2*d4 f7=e4+e7 s7=f4-f7

185

five multipliers, in each stage eight pipeline registers except stage D and stage E which is

having nine registers. AAN architectures were written in VHDL and floating point arithmetic

was used to get precise results.

Figure 5.41: DCT netlist in Xilinx ISE

A C program and VHDL for 1-D floating point DCT was written for implementation. Fig.

5.41 shows the netlist obtained from Xilinx ISE of the Discrete Cosine Transform (DCT)

architecture taken as a sample. It has four fblocks (F), four multiply_fpt (FPM) and three

floating_point_adder (FPA) as shown in Fig. 5.42.

186

Figure 5.42: F block netlist in Xilinx ISE

5.13.3. HW SW Co-design of DCT

In the previous section we have selected and implemented DCT architecture in HW. Now our

goal is to implement DCT as a co-design flow as presented in chapter 3. For the co-design

flow, the application should partly run in HW and partly in SW. The optimization 2 discussed

above shows that for each X, we need eight multipliers and seven adder/sub. Hence the co-

design flow implements them in HW and for eight vectors(X) a SW loop is used. The co-

efficient used in the sample 3 are computed in SW and shown in Table. 5.20.

187

Table 5.20: Matrix as Coefficient

For creating a dataflow model, we wrote codes for floating point multiplier and floating

point adder in Verilog.

Figure 5.43: Netlist diagram for dataflow model

188

The dataflow graph for DCT design with floating point adder and multiplier is shown in

Fig. 5.43.

Table 5.21 Resources consumed by floating point dataflow model of DCT

Number of Slice Registers 175 44800 0%

Number of Slice LUTs 4677 44800 10%

Number of fully used LUT-FF pairs 175 4677 3%

Number of bonded IOBs 544 640 85%

Number of BUFG/BUFGCTRLs 7 32 21%

Number of DSP48Es 16 128 12%

For calculating the area and delay product, we need the resources consumed. After

compiling the DFG DCT design in Xilinx ISE, the resources were tabulated and are shown

in Table 5.21 an are compared in next section.

5.13.4. Synthesis and Simulation results:

In this section we compare all the implementations discussed, which include, AAN design

as HW, isomorphic design, Co-design and partial reconfiguration design.

Figure 5.44: Redrawn DCT netlist showing isomorphic modules

During the synthesis we found that some isomorphic sets in DCT design (as shown in Fig.

5.44). The algorithm discussed for identification of isomorphic graphs gives us many sets:

a) {(F1, F2, FPM5, FPM6, FPA4) (F3, F4, FPM7, FPM8, FPA5)},

b) {(F1, F2, FPM5, FPM6,) (F3, F4, FPM7, FPM8)},

c) {(FPM5, FPM6,) (FPM7, FPM8)}, {(F1, F2, F3, F4)},

d) {(FPM5, FPM6, FP7)}, {(FPA4, FPA5, FPA6)}.

189

The time obtained from the proposed design flow using xps_timer is given in Table 5.22.

Table 5.22: Area and delay of each node

name Time Area

F Block 4.998 ns 3087 (6%) + 8 DSP(6%)

FPA 4.921 ns 868(1%) + 0

FPM 6.539 ns 91(0%) + 1 DSP

From Table 5.22 we see that F block takes 6% of the resource, which means it is a bigger

block as compared to FPA and FPM. Hence we choose ((FPM5, FPM6,) (FPM7, FPM8)},

{(F1, F2, F3, F4)} as implementation, which means one IP core of F black and remaining as

another IP core. The Fig. 5.45 shows a sample design in ML507 board (With PPC@200 MHz

and PLB@125 MHz and Timer@125 MHz)

Figure 5.45: EDK components used in implementation

The AAN architecture was interfaced with the bus and is shown in Fig. 5.33 with test as the

name of the block.

Table 5.23: Showing the resources for the AAN and DFG design flow as highlights

190

Report
Flip Flops

Used

LUTs

Used

BRAMS

Used

E

r

r

o

r

s

system 11376 26396 6 0

dfgdct_0_wrapper 965 7426 0

clock_generator_0_wrapper 4 3 0

plb_v46_0_wrapper 144 364 0

xps_bram_if_cntlr_1_bram_wrapper 4 0

xps_bram_if_cntlr_1_wrapper 255 202 0

test_0_wrapper 6101 15622 0

proc_sys_reset_0_wrapper 69 53 0

jtagppc_cntlr_inst_wrapper 2 0

dip_switches_8bit_wrapper 124 64 0

xps_timer_0_wrapper 357 290 0

sysace_compactflash_wrapper 209 99 0

ddr2_sdram_wrapper 2355 1770 2 0

sram_wrapper 544 316 0

push_buttons_5bit_wrapper 103 55 0

rs232_uart_1_wrapper 144 127 0

ppc440_0_wrapper 2 3 0

Table 5.23 shows the resources used by DCT as HW IP and DFG as HW IP. These values

are used in Table 5.24.

191

Table 5.24: Comparison of various implementations done

 Design DCT

 Cycles(8 ns) Area Product

a SW

Implementation

simulation 7840(8M+7A) 8000 12.48 x10
6

b HW

Implementation

simulation 173.894 12736 2.622x10
6

c SW-HW

Implementation

simulation 2000(250x8) 13939 10.15x10
6

1 SW

Implementation-1

Sample -2 747070 26396 19719659720(11

digits)

2 SW

Implementation-2

Sample -3 78574 26396 2074039304(10

digits)

3 SW

Implementation-3

Sample -4 54260 26396 1432246960(10

digits)

4 SW

Implementation-4

AAN Algo. 12578 26396 332008888(9 digits)

5 HW

Implementation

AAN

Complete

IP

835 26396 +

15622 =

42018

35085030 (8 digits)

6 SW-HW

Implementation

Data flow

model

2720 26396 +

7426 =

33822

91995840(8 digits)

7 HW-HW

Implementation

One Fblock

+ one core

of(3 FPA +

4 FPM)

1459 26396 +

4096 =

30492

44487828(8 digits)

Figure 5.46: Comparison of area and delay product

The area delay product has been shown for seven different implementations. Fig. 5.46 shows

as we move toward the HW implementations the product improves. The HW implementation

gives the best results. Any kind of HW communication improvement was not applied like

direct memory transfer or block RAM for local data. This leads to higher communication

overhead and lower performance. In order to further improve the time such improvement

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

1 2 3 4 5 6 7

Series1

192

schemes should be used. The next section explores a new HW-HW design flow based on

partial reconfiguration.

5.13.5. Synthesis and Simulation Results of PPR Design Flow

The proposed design flow has been successfully tested with the help of DCT design. The work

highlights the use of reconfiguration for implementing any design on FPGA without bothering

about resources. When creating a partition of size around 20%, the region selection becomes

crucial. In many case the design is not routable and gives error. The constraints discussed

previously about the number of clock regions may fail as number of clocks available are

restricted. In this situation the resultant partitions may be of no use and require modification in

the HDL code of the design. It was found that left side upper region of the Virtex-5 as shown

in Fig. 5.47 available in ML507 board gave better results in terms of PR region. This may be

due to fact tht other regions are better supported for specific controllers like DDR memory.

Figure 5.47: Floorplan for DCT having one PRR

During the synthesis we found that (F1, F2, F3, F4), (FPM5, FPM6, FPM7),(FPA4, FPA5,

FPA6) were similar. From the synthesis report, we found the resource requirement of the F

modules was equivalent to (FPM5, FPM6, FPM7),(FPA4, FPA5, FPA6). Hence two partitions

were created one of F and second of (FPM5, FPM6, FPM7),(FPA4, FPA5, FPA6). The

scheduler design discussed in the previous section was used to execute the design. For one set

of input PR1 should execute four times and PR2 should be called one time. For each iteration

of PR loading the intermediate results are stored and passed to the next stage. The time

obtained from the proposed design flow using xps_timer is given in Table 5.25.

193

Table 5.25: Comparison of reconfiguration time

 CF (msec) Flash (msec) DDR (msec) HW-time (usec) SW-time (msec)

Measured 41.32 32.44 22.68 6.68 5.97656

This time turns out to be very large since we are loading the bitstream from the CF card. This

time was further improved by loading the bitstream from DDR memory. There was a drastic

improvement in time since the DDR memory is much faster. Many research works have

shown the reconfiguration throughput to around 400 Mbps by using direct memory based

bitstream access. If the throughput is assumed to be 400 Mbps then the DCT of 258 Kb will

transfer in 647.5 microseconds. This will be a significant improvement in the total time which

will be 647.5 + 6.68 = 654.18 microseconds.

5.14. Conclusions

 The software implementation takes the maximum time for execution and defines the upper

bound for the performance, but it takes less silicon are and less expertise, hence a

preferred choice.

 The software implementation can be manually optimized to give better results by

converting the computations values to minimum by defining them as constants.

 The hardware implementation gives the best performance and defines the lower bound of

the performance, but takes more silicon area and expertise in the implementation.

 An implementation between these two, which is hybrid approach aims at identifies the

modules which are similar in the HW description for reusability can be a better approach.

 PR design is not very user friendly and consumes significant time in design cycle.

 A new implementation based on partial reconfiguration can only be useful if the

reconfiguration throughput is very high, order of 400 Mbps. The conventional ICAP

controller cannot be useful with its current implementation.

 A generable clustering approach based on genetic algorithm can be very effective for large

graphs.

 MRTG provides a modular approach for generating user-controlled, truly random task

graphs that find relevance in simulating today's scheduling problems in parallel,

distributed systems and fields like hardware software co-design. This modular nature

makes the program code far more reusable than a conventional monolithic design. Future

improvements are easier to make, as additional modules can be added without disturbing

the functionality of the original stable software. It also makes the program very flexible to

use, as now researchers can choose to run only those modules that they require and also

194

change the order of execution of modules to suit their needs. The layer-by-layer approach

followed in MRTG, with the ability to define different types of nodes with their individual

parameters separates it from existing available solutions and makes it highly valuable for

researchers working in areas like reconfigurable computing, System on Chip and for

scheduling simulation in the problem of many core processors, to choose how to spread

the work among such large number of processing cores. In this chapter the partitioning and

scheduling was applied to RC systems.

195

REFERENCES

5.1 ML507 Reference Designs : ML507 Memory Interface Generator Design,

http://www.xilinx.com/products/boards/ml507/reference_designs.htm

5.2 E. R. Gansner and S. C. North, An open graph visualization system and its applications

to software engineering, Software: Practice and Experience, 30(11):1203–1233, 2000.

5.3 Robert P. Dick, David L. Rhodes, and Wayne Wolf, TGFF: Task Graphs for Free,

(CODES/CASHE'98), Proceedings of the Sixth International Workshop on

Hardware/Software Co-design, 1998.

5.4 Random Task and Resource Graph Tool, users.ecs.soton.ac.uk/ras1n09/rtrg/index.html.

5.5 Cordeiro, D., Mounié, G., Perarnau, S., Trystram, D., Vincent, J. M., & Wagner, F.

(2010, March), Random graph generation for scheduling simulations, In Proceedings of

the 3rd International ICST Conference on Simulation Tools and Techniques (p. 60),

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering).

5.6 T. Tobita and H. Kasahara, A standard task graph set for fair evaluation of

multiprocessor scheduling algorithms, Journal of Scheduling, 5(5):379–394, 2002.

5.7 Discrete Cosine Transform , https://unix4lyfe.org/dct-1d/

5.8 Hassan EL-Banna, Alaa A. EL- Fattah, An efficient implementation of 1 DCT using

FPGA Technology, Proceedings of the 15th International Conference on

Microelectronics, 2003. ICM 2003, pp. 278-281.

5.9 W. Chen, C. H. Smith, And S. C. Fralick, Fast Computational Algorithm for the

Discrete Cosine Transform, IEEE Transactions On Communications, Vol. Com-25, No.

9, September 1977.

5.10 C. Loeffler, A. Ligtenberg and G. S. Moschytz, Practical Fast 1-D DCT algorithm with

11 multiplications, Proceedings of ICASSP, vol.2, pp. 988-991, 1989.

5.11 Y.P Lee, A cost effective architecture for 8x8 two-dimensional DCT/IDCT using direct

method, IEEE Transactions on circuit and system for video technology Vol. 7, No.3,

June, 1997.

5.12 Y. Arai, T. Agui and M. Nakajima, A fast DCT-SQ scheme for images, IEICE

transaction, Vol. E71, No. 11, pp 1095-1097, 1998.

196

Chapter 6

Conclusions

This thesis addresses the various issues involved and parameters to be considered in the

development and verification of a framework for reconfigurable computing systems designed

for FPGAs to improve the area delay characteristics of various applications. The knowledge of

system parameters allows the designer to explore the design space and select a solution

satisfying the given constraints. This chapter summarizes the various contributions made and

also points out the some of the possible extensions of the proposed methodology as future

work.

We have proposed two design flows, each of which takes the input in different formats. The

first approach exploits profiling, high level synthesis and genetic algorithm for partitioning a

C specification into HW and SW. ChStone benchmark written in C language (developed by

University of Toronto) has been selected and compiled using gcc-powerpc tool chain and

Vivado-HLS tool. Various optimizations were applied in HLS flow for latency and area trade-

offs. One of the program (DfDiv), which is computationally intensive was selected from

ChStone benchmark and its processor local bus (PLB) based IP core was migrated in HW, SW

and hybrid approaches. The results of real time performance were tested on ML507 board.

After real time performance comparison in both SW and HW, various hybrid implementations

of Dfdiv program were also generated using genetic algorithm and compared with area-delay

product for various solutions.

The second flow of the work is again divided into two approaches. The first one uses dataflow

models for mapping applications as HW clusters. For this graph isomorphism was explored to

find the clusters and a scheduler was designed to place them in correct order. The results show

that this framework is useful for applications where similar patterns exist. In many

applications it is also possible that the patterns are dissimilar, so we considered a second

approach which is built on genetic algorithm to guide the creation of clusters as IP cores on

partial reconfigurable regions. For this the Express benchmark from University of California

Santa Barbara was used. This benchmark describes the application as dataflow model and

contains nodes ranging from 50 to 100. To simulate the performance easily four programs

(sine, cosine, matrix multiplication and exponent) were written which have nodes ranging

197

from 20 to 120. The performance of the above two approaches (ISO and GA) were compared

for the four programs and it was proved that ISO gave better results as compared to GA. After

the simulation of GA and ISO, HW experimentation was required to test the feasibility. To

check the effectiveness of the above proposed approaches (Co-design, ISO and GA) on real

applications, DCT was chosen and tested on ML507 board. The results offer a wide spectrum

of design space implementations to the designer with area-delay parameter as the criteria to

choose among them.

6.1. Contributions of the Thesis

The System-on-chip flow based on FPGAs was introduced in Chapter 1. The partial

reconfiguration feature available in Xilinx FPGA was explained in brief. Chapter 1 described

the overall frameworks presented in this thesis, and hence a basic foundation was laid.

In chapter 2 an elaborate literature survey presented which focused on various domains which

include:

a. Various frameworks available for HW, SW co-design such as LegUp, ASSET etc.

b. The concept of isomorphic graphs for identifying the similar clusters.

c. Usage of Genetic algorithm for scheduling of dataflow graphs.

d. The partial reconfiguration time overhead.

Resource estimation technique using LLVM compiler was presented in chapter 3. It was

successfully demonstrated how resources can be estimated without synthesis for a given C

specification. In this thesis work we have efficiently shown the process of resource estimation

by creating a library. We have verified the proposed formula by generating HDL code and

synthesizing it on Xilinx.

Chapter 4 presented the ChStone benchmark analysis and one of its programs named DfDiv

was used as a case study for HW SW co-design. Further GA was applied to a dummy case

study and its usefulness in co-design was proved. In this work, we have presented a design

flow to partition an application described in the high level specification into HW and SW. The

design flow is based on a practical approach, starting from a Vivado compiler. We have

successfully demonstrated the partitioning of a program and tabulated the time results of a

benchmark program. The approach discussed opens up new horizon for electronic design

automation in the field of FPGAs.

A new framework was proposed in chapter 5 based on similar patterns found in data flow

graphs. A detailed design flow was presented describing each stage like specification,

198

clustering and scheduling. Four programs were written to find the effectiveness of the

algorithm. The entire algorithm was explained with examples. The HW implementation

showed the best result and SW showed the worst. The results of SW-HW were somewhat

intermediate. HW-SW implementation should have shown better results, but since any kind of

optimization like DMA was not used hence communication overhead was very high leading to

intermediate results. The DCT design was used as a case study for proving the effectiveness of

the flow. It was tested on ML507 board, which also showed the same results as simulation and

was best implemented in HW.

Further GA was also used for clustering of dataflow graphs for partial reconfiguration feature.

For this Express benchmark and four programs were written. The proposed design flow has

been successfully tested with the help of DCT design. After extensive literature survey AAN

algorithm for DCT was selected and coded in VHDL. The design was extended with floating

point adder and multiplier units. An efficient pipelined AAN architecture was chosen for

partitioning process. DCT was partitioned using the proposed algorithm and implemented in

Xilinx PlanAhead software which was very challenging. The design flow was compared in

SW and HW with different memory (CF, DDR) implementations. The results clearly show the

design flow can be very useful for complex design and open up a new horizon for more

automation opportunity in future IP designing. So this thesis highlights the use of

reconfiguration for implementing any design on FPGA without bothering about resources.

A modular dataflow graph generator is designed for generating large graphs. MRTG provides

a modular approach for generating user-controlled, truly random task graphs that find

relevance in simulating today‘s scheduling problems in parallel, distributed systems and fields

like hardware software co-design. This modular nature makes the program code far more

reusable than a conventional monolithic design. Future improvements are easier to make, as

additional modules can be added without disturbing the functionality of the original stable

software. It also makes the program very flexible to use, as now researchers can choose to run

only those modules which they require and also change the order of execution of modules to

suit their needs. The layer-by-layer approach followed in MRTG, with the ability to define

different types of nodes with their individual parameters separates it from existing available

solutions and makes it highly valuable for researchers working in areas like reconfigurable

computing, System-on-chip and for scheduling simulation in the problem of many core

processors, by enabling them to choose how to divide the work among such large number of

processing cores.

199

The results show that the proposed design flow is a very useful extension to currently existing

tools that will allow any program to migrate on FPGA irrespective of amount of resources it

can use. So it gives the designer a broader overview of how to proceed, plan the resources and

chose between HW, SW or hybrid approach to suit his requirements.

The key contributions of this thesis are:

 An efficient HW-SW co-design flow is proposed for analysis, comparison and

effectiveness of an application. The proposed flows have been tested using time analysis

and resource usage of the function. Using execution time and resource consumption data,

how an algorithm like GA can partition the system into HW and SW is vividly

demonstrated.

 The amount of resources consumed by a C program can be estimated even without

synthesis and compilation. Such a process has been evidenced by using LLVM compiler

and generating a library of operators.

 A new framework for HW-HW implementation of an application described in DFG has

been proposed. For area reusability, graph isomorphism has been used to identify the

similarity in the design and interfaced them as static modules on the bus.

 We have proposed a new framework that partitions the dataflow graphs (DFG) models and

executes them as partial modules. The advantage of this flow is that it allows the design to

be mapped onto FPGA irrespective of amount of resources it consumes. The constraints

imposed by partial reconfiguration flow have been used to design as efficient GA that can

produce clusters of required size.

 A modular random task graph generator has been designed for generating heavy loads,

giving dot format files as input to partitioning process. This is a versatile generator

through which different graphs can be generated by modifying an input specification

required.

 The developed frameworks have been tested on ML507 with the DCT design.

 The comparison of the proposed design flow with HW-SW implementation is presented

and we have highlighted the pros-cons of the two approaches.

6.2. Limitations of the Work Done

Here we outline the problems and challenges that are encountered while adopting a partial

reconfiguration design flow. Since all the experiential work has been tested with Xilinx PR

flow, the same will be used as reference in the problems given below.

200

A. Complex Design Process

The PR design flow starts from a writing module and testing it in Xilinx ISE. The module is

then interfaced with the bus as an empty box with only entry and exit ports. After compiling it

in XPS and generating the netlist, the design is exported to SDK where the scheduler is

written in C language. In the same flow, the PlanAhead floor planning SW is used for creating

the PRR and various modules are bound to these regions. Since the PRR is manually selected

it was found that certain regions are more favorable than others. Hence the design flow

becomes a five step process which takes several hours to complie. If any point is missed out

like incorrect region, time closure failure or incorrect output, then the process has to be

repeated. This concludes the complexity of the design flow and it was seen that out of 20

projects only 5 were a success. The design flow should be optimized by creating a PR region

automatically by the tools in the ISE design flow and when the design is synthesized, the tool

should guide the design which regions are better for PR flow.

B. Reconfiguration Overhead

The partial bitstreams are stored in memory like SD card, CF card or Flash for permanent

storage. Loading the bit file from these memories takes significant time. ICAP controller loads

the bitstream and has a maximum throughput of about 400 Mbps. But in reality the throughput

comes out to be around 4-10 Mbps. This problem can be solved by creating a specialized HW

for Reconfigurable architectures in the future.

From the above discussion the following limitations were identified while working on the

proposed flows:

1. The entire work uses Virtex-5 available on ML507 board. The library tables are

corresponding to this series. Hence for the migration of the framework to the other platforms

requires that all the HDL library operates should be compiled again. Though this process is

not time consuming and can easily be done but it needs manual intervention.

2. The work has been shown with PLB bus IP cores, which is becoming obsolete and is

replaced by AXI bus. However, this does not affect the presented framework.

3. Comparison of work with other work in the case of partial reconfiguration has not been

done. This is due to the fact the design flow is novel and a standard design for comparison is

missing.

4. DCT was used to show the results, which is a sub module in most of the signal processing

applications. The framework can be extended to large end to end solutions for better results.

201

 6.3. Future Scope

The process of partitioning has been shown on a dummy specification since a benchmark

program was not available with tabulated HW-SW area and delay. So as a future work the

benchmark presented in this thesis can be converted to a standard for this purpose. Moreover,

currently the entire process has been shown outside the EDA tool. But if the same is tested

within the tool then automation can be inbuilt in the commercial tool. The parameters of GA

are decided based on the domain of design. So, automatically defining the optimum iterations

based on a given a task graph is also challenging. During timing analysis we have assumed the

bus latency of the order of milliseconds for simulating results. A mathematical model can be

developed to compute the execution overheads incurred during bus transaction for hybrid

design.

The presented thesis work uses dataflow models for experimentation and algorithm

verification. The same work can be extended with netlist partitioning that can be directly be

used in ASIC design flow. The isomorphic graphs computation has been applied to operator

based clustering and the effectiveness of the proposed isomorphic algorithm can be tested with

other domains also. A sample design of DCT was created for verification of the algorithm.

Many other high level synthesis tools which generate HW can be used for the verification of

the algorithm. As mentioned previously, the use of DMA controller and BRAM for data

transfer in IP core can considerably improve the performance. Hence they can also be tested

and compared for performance.

In this work, we have designed the DCT application and shown the software, hardware and

partitioning time on one PR region. Such partitioning of a standalone design has not been

reported on real HW. Among the various steps for the design, the most crucial step is

partitioning the design so that overall performance is good. In future, we plan to propose a

partitioning model so this design flow becomes easy for the designer. In addition, the

scheduler design is complicated and depends on the partitioning of ports, number of partitions

and a sequence of partitions. It is possible to generate this scheduler automatically which will

bring down the time taken for the design flow. Many steps done in the design flow can be can

be automated to bring reconfiguration to real world devices.

Being modular, MRTG can have future additions in the form of modules, which can be added

without disturbing the original stable software. We plan to make it open source so that

researchers who really need it, can develop modules they need and add them to the project so

the whole community can use them. We also plan to develop a module to add weights to the

connections too. This will be very useful for researchers who need to do scheduling while

202

taking into account the communication delay and resource expenditure. As an extension we

also plan to add a concept of depth.

In this work we were able to estimate the resource requirement of the program on the

reconfigurable hardware. Depending on the estimated values, the program can be now

partitioned into clusters and executed on partial reconfigurable HW. By estimation technique

it is possible to create clusters of the required size. For mapping the partitioned design to one

PR region a wrapper generation is required which will interface to the bus. This wrapper

should be automatically generated for each partition created. A significant research work is

required to generate the scheduler automatically depending on the control flow of the

program. The process can be applied to EDA tools on the netlist specifications giving better

options for the designer. Further DFG can be created for equations directly giving a new

automated flow. The current work will continue in this direction and we propose to bring up a

robust scheduler.

206

APPENDIX-1

The code given below is used to find the time consumed by the program using XPS_timer

Timer Code

float time = 0;

float roll_back_time = 0;

int main()

{

 XCACHE_ENABLE_ICACHE();

 XCACHE_ENABLE_DCACHE();

 print("---Entering main---\n\r");

int i,j,k,r;

int data_to_local_link[] = {

 23170, 23170, 23170, 23170, 23170, 23170, 23170, 23170,

 32138, 27246, 18205, 6393, -6393,-18205,-27246,-32138,

 30274, 12540,-12540,-30274,-30274,-12540, 12540, 30274,

 27246, -6593,-32138,-18205, 18205, 32138, 6393,-27246,

 23170,-23170,-23170, 23170, 23170,-23170,-23170, 23170,

 18205,-32138, 6393, 27246,-27246, -6393, 32138,-18205,

 12540,-30274, 30274,-12540,-12540, 30274,-30274, 12540,

 6393,-18205, 27246,-32138, 32138,-27246, 18205, -6393

 };

int data_back_local_link[64];

static XTmrCtr xps_timer_0_Timer;

 u32 CounterControlReg;

 u32 cyclestart;

 u32 cycleend;

 u32 roll_back_count;

 u32 roll_back_cycle_end;

 {

 int status;

 status = XTmrCtr_Initialize(&xps_timer_0_Timer, TIMER_CNTR_0);

 if (status != XST_SUCCESS) {

 return XST_FAILURE;}

 XTmrCtr_SetOptions(&xps_timer_0_Timer, TIMER_CNTR_0,XTC_INT_MODE_OPTION |

XTC_AUTO_RELOAD_OPTION);

 XTmrCtr_SetResetValue(&xps_timer_0_Timer, TIMER_CNTR_0, RESET_VALUE);

 XTmrCtr_Reset(&xps_timer_0_Timer, TIMER_CNTR_0);

 cyclestart=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);

 XTmrCtr_Start(&xps_timer_0_Timer, TIMER_CNTR_0);

 k = 0; r = 0;

for (j=0;j<8;j++)

 {

if (j==0)

 xil_printf("Perform %dst Datablock out of 8\n\r",j+1);

elseif (j==1)

207

 xil_printf("Perform %dnd Datablock out of 8\n\r",j+1);

elseif (j==2)

 xil_printf("Perform %drd Datablock out of 8\n\r",j+1);

else
 xil_printf("Perform %dth Datablock out of 8\n\r",j+1);

 print("\n\r");

 print("Write input values to FSL Channel\n\r");

for (i=0;i<8;i++){

 nputfsl(data_to_local_link[k],0);

 xil_printf("%d; ",data_to_local_link[k]);

 k++;

 };

 print("\n\r\n\r");

 print("Read transformed values back from FSL Channel bus\n\r");

for (i=0;i<8;i++){

 ngetfsl(data_back_local_link[r],0);

 xil_printf("%d; ",data_back_local_link[r]);

 r++;

 };

 print("\n\r\n\r");

 print("---");

 print("\n\r\n\r");

 CounterControlReg = XTmrCtr_GetControlStatusReg(&xps_timer_0_Timer,TIMER_CNTR_0);

if ((CounterControlReg) == XTC_CSR_INT_OCCURED_MASK)

 { print("\n\r\n\r Timer rolled under!");

 roll_back_count = roll_back_count + 1;

 if (roll_back_count == 1)

 {

 roll_back_cycle_end=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);

 roll_back_time = (cycle_start - roll_back_cycle_end)*0.000000008;

 xil_printf("\r\n roll back time= %ld",roll_back_time);

 }

 };

 XTmrCtr_Stop(&xps_timer_0_Timer, TIMER_CNTR_0);

 }

 xil_printf("\r\n %ld",cyclestart);

 cycleend=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);

 xil_printf("\r\n %ld",cycleend)

 if (roll_back_count>0)

 {

 time = (roll_back_count*roll_back_time) + (cyclestart-cycleend)*0.000000008;

 xil_printf("\r\n time= %ld",time);

 }

 else
 {

 time = (cyclestart-cycleend)*0.000000008;

 xil_printf("\r\n time= %ld",time);

 }

 if (roll_back_count == 0)

 {

 XTmrCtr_Reset(&xps_timer_0_Timer, TIMER_CNTR_0);

 cyclestart=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);

 XTmrCtr_Start(&xps_timer_0_Timer, TIMER_CNTR_0);

 CounterControlReg =

XTmrCtr_GetControlStatusReg(&xps_timer_0_Timer,TIMER_CNTR_0);

 while ((CounterControlReg) != XTC_CSR_INT_OCCURED_MASK)

 {

 CounterControlReg =

XTmrCtr_GetControlStatusReg(&xps_timer_0_Timer,TIMER_CNTR_0);

208

 }

 }

 XTmrCtr_Stop(&xps_timer_0_Timer, TIMER_CNTR_0);

 cycleend=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);

 roll_back_time = (cycle_start - cycleend)*0.000000008;

 xil_printf("\r\n roll back time = %ld\n",roll_back_time);

 }

 print("---Exiting main---\n\r");

 XCACHE_DISABLE_ICACHE();

 XCACHE_DISABLE_DCACHE();

return 0;

}

209

APPENDIX-2

The data values given below show the way the GA produces the iterations.

enter deadline: 250

enter population size: 10

enter no of iteration: 4

random_population1 =

 1 1 0 1 1 0 1 0

 1 0 1 0 1 0 1 0

 1 1 1 1 1 1 0 1

 1 1 0 1 0 0 1 0

 0 0 0 1 0 1 1 1

 0 0 0 1 0 0 1 1

 1 1 0 0 0 0 1 1

 0 0 0 0 1 1 1 1

 1 1 0 0 1 0 1 0

 1 0 1 0 0 1 0 1

random_population2 =

 1 1 0 1 1 0 1 0

 1 0 1 0 1 0 1 0

 1 1 1 1 1 1 0 1

 1 1 0 1 0 0 1 0

 0 0 0 1 0 1 1 1

 0 0 0 1 0 0 1 1

 1 1 0 0 0 0 1 1

 0 0 0 0 1 1 1 1

 1 1 0 0 1 0 1 0

 1 0 1 0 0 1 0 1

random_population3 =

 1 1 0 1 1 0 1 0

 1 0 1 0 1 0 1 0

 1 1 1 1 1 1 0 1

 1 1 0 1 0 0 1 0

 0 0 0 1 0 1 1 1

 0 0 0 1 0 0 1 1

 1 1 0 0 0 0 1 1

 0 0 0 0 1 1 1 1

 1 1 0 0 1 0 1 0

 1 0 1 0 0 1 0 1

random_population4 =

 1 1 0 1 1 0 1 0

 1 0 1 0 1 0 1 0

 1 1 1 1 1 1 0 1

210

 1 1 0 1 0 0 1 0

 0 0 0 1 0 1 1 1

 0 0 0 1 0 0 1 1

 1 1 0 0 0 0 1 1

 0 0 0 0 1 1 1 1

 1 1 0 0 1 0 1 0

 1 0 1 0 0 1 0 1

fitness_value =

Columns 1 through 8

67130 106105 155 157120 171090 191080 151125 141090 127120 133105

42180 96150 205 132170 126130 178105 113170 96125 102165 110145

 150 125 175 140 28110 100 1145 24110 140 125

200 170 225 190 150 125 190 145 185 165

tot_time =

 317 356 200 407 421 441 401 391 377 383

 292 346 150 382 376 428 363 346 352 360

200 223 187 234 278 241 251 274 230 237

165 186 110 209 233 228 213 229 205 214

probability_value =

Columns 1 through 5

 0.176738929286603 0.155299083818076 0.197560360087906 0.045259115745567

0.022788156046132

0.176591324708580 0.133358747577602 0.197140185340663 0.023237851213118

0.045566961851729

0.089963068055363 0.162325164546130 0.071860502351513 0.126148268570111

0.000000332181549

0.022118533805913 0.109033604019920 0.000011216295033 0.065660191125667

0.151958365112836

Columns 6 through 10 =

0.000000015866957 0.067508414049207 0.089662589942840 0.133525794238406

0.111657540918305

0.000000019782754 0.067776584657921 0.154975283427512 0.111623218464114

0.089729822976007

0.180411121172521 0.053435720544964 0.027382389461607 0.126148268570111

0.162325164546130

0.194434474404415 0.065660191125667 0.173224460496209 0.087374938310377

0.130524025303962

cum_probability_value =

Columns 1 through 5

211

0.176738929286603 0.332038013104679 0.529598373192585 0.574857488938152

0.597645644984284

0.176591324708580 0.309950072286182 0.507090257626845 0.530328108839963

0.575895070691692

0.089963068055363 0.252288232601493 0.324148734953006 0.450297003523118

0.450297335704667

0.022118533805913 0.131152137825833 0.131163354120867 0.196823545246534

0.348781910359370

Columns 6 through 10

0.597645660851242 0.665154074900449 0.754816664843289 0.888342459081695

1.000000000000000

0.575895090474446 0.643671675132366 0.798646958559879 0.910270177023993

1.000000000000000

0.630708456877188 0.684144177422152 0.711526566883758 0.837674835453869

1.000000000000000

0.543216384763785 0.608876575889452 0.782101036385661 0.869475974696038

1.000000000000000

roulette_wheel =

Columns 1 through 5

0.660393951257713 0.127848763367490 0.332527054109658 0.394632113574479

0.264216402533851

0.088531581788494 0.490531413270812 0.412561610870134 0.335599558553777

0.045696180184506

0.723845934535098 0.579134452532590 0.441270757276153 0.978874376391397

0.851882048321298

0.962940347350769 0.052232229893487 0.436149459040004 0.292011418871669

0.694746803353756

Columns 6 through 10 =

0.763810931237840 0.841540169840319 0.469050001539782 0.538066460330539

0.237809971328859

0.688557909510549 0.285173447520110 0.180361835941481 0.450591840233820

0.108927749991106

0.774427087251813 0.059198299574430 0.569443789123108 0.393090112338098

0.548257380847610

0.961182516696144 0.181149785587021 0.517754273201131 0.059416332311161

0.779767512749519

CPU1 AND ASIC1

PATTERN = 1 1 1 1 0 1 0 1

212

COST = 145 TIME = 233

node 1 start = 0 end = 20

node 2 start = 20 end = 50

node 3 start = 50 end = 77

node 4 start = 77 end = 97

node 5 start = 20 end = 110

node 6 start = 110 end = 137

node 7 start = 110 end = 200

node 8 start = 200 end = 233

########

CPU1 AND ASIC2

PATTERN = 0 1 1 0 1 1 0 1

COST = 145 TIME = 245

node 1 start = 0 end = 60

node 2 start = 60 end = 75

node 3 start = 75 end = 90

node 4 start = 75 end = 135

node 5 start = 90 end = 105

node 6 start = 135 end = 155

node 7 start = 135 end = 225

node 8 start = 225 end = 245

#######

CPU2 AND ASIC1

PATTERN = 0 0 0 1 0 0 1 1

COST = 100 TIME = 241

node 1 start = 0 end = 30

node 2 start = 30 end = 80

node 3 start = 80 end = 134

node 4 start = 80 end = 100

node 5 start = 134 end = 178

node 6 start = 178 end = 208

node 7 start = 134 end = 174

node 8 start = 208 end = 241

#######

CPU2 AND ASIC2

PATTERN = 0 0 0 1 0 0 1 1

COST = 125 TIME = 228

node 1 start = 0 end = 30

node 2 start = 30 end = 80

node 3 start = 80 end = 134

node 4 start = 80 end = 90

node 5 start = 134 end = 178

node 6 start = 178 end = 208

node 7 start = 134 end = 149

node 8 start = 208 end = 228

>>

213

APPENDIX-3

The code given below shows how the time for SW instruction was calculated to create the

library

#include <stdio.h>

#include "xparameters.h"

#include "xenv_standalone.h"

#include "xbasic_types.h"

#include "xgpio.h"

#include "gpio_header.h"

#include "xbasic_types.h"

#include "xgpio.h"

#include "gpio_header.h"

#include "xbasic_types.h"

#include "xgpio.h"

#include "gpio_header.h"

#include "xtmrctr.h"

#include "tmrctr_header.h"

#define TIMER_CNTR_0 0

#define TMRCTR_DEVICE_ID XPAR_TMRCTR_0_DEVICE_ID

#define RESET_VALUE 0xF0000000

int main()

{

 XCACHE_ENABLE_ICACHE();

 XCACHE_ENABLE_DCACHE();

 print("---Entering main---\n\r");

 static XTmrCtr xps_timer_0_Timer;

 u32 cyclestartadd,cyclebitloadcompadd,cycleresultadd;

 u32 cycleendadd;

 u32 cyclestartmult,cyclebitloadcompmult,cycleresultmult;

 u32 cycleendmult;

 int status;

 status = XTmrCtr_Initialize(&xps_timer_0_Timer, TIMER_CNTR_0);

 if (status != XST_SUCCESS) {

 return XST_FAILURE;}

 xil_printf("start program\r\n");

 XTmrCtr_SetOptions(&xps_timer_0_Timer, TIMER_CNTR_0,XTC_INT_MODE_OPTION |

XTC_AUTO_RELOAD_OPTION);

 XTmrCtr_SetResetValue(&xps_timer_0_Timer, TIMER_CNTR_0, RESET_VALUE);

 XTmrCtr_Reset(&xps_timer_0_Timer, TIMER_CNTR_0);

 float a = 0.0 , b= 5.0 ,c = 6.0 ;

 xil_printf("\Multiplication\n\r");

 XTmrCtr_Reset(&xps_timer_0_Timer, TIMER_CNTR_0);

 cyclestartmult=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);

 XTmrCtr_Start(&xps_timer_0_Timer, TIMER_CNTR_0);

 // __asm__ __volatile__ ("lwarx %0, 0, %1 \n\t" : "=&r"(ret) : "r"(p));

 // asm("lwi r3, r0, 292"); // load word immediate

 // asm("addik r3, r3, 1"); // immediate add w/ keep carry

214

 // asm("swi r3, r0, 292"); // store word immediate

 // asm (" addc. %0,%1,%2 \n" : "=r"(res): "b"(op1), "r"(op2):

"r0");

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 //asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

//asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

//asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("fadd %1,%2,%0": "=f" (a): "f" (b), "f" (c)) ;

// asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

 //asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

 //asm ("fmul %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

asm ("fdiv %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ;

 // asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

215

 // asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("divw %0,%1,%2": "=fr" (a): "r" (b), "r" (c)) ;

 // asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 // asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ;

 cyclebitloadcompmult=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);

 //cycleresultmult=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);

 //cycleendmult=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);

 XTmrCtr_Stop(&xps_timer_0_Timer, TIMER_CNTR_0);

 print("-- Exiting main() --\r\n");

 print("-- ---------------for mult ----------------------\r\n");

 xil_printf("\r\n cyclestart= %x\r\n",cyclestartmult);

 xil_printf("\r\n cyclebitloadcomp=

%x\r\n",cyclebitloadcompmult);

 //xil_printf("\r\n cycleresult= %x\r\n",cycleresultmult);

 // xil_printf("\r\n cycleend= %x\r\n",cycleendmult);

 //print("-------------------- for adder --------------------\r\n");

 //xil_printf("\r\n cyclestart= %x\r\n",cyclestartadd);

 //xil_printf("\r\n cyclebitloadcomp=

%x\r\n",cyclebitloadcompadd);

 //xil_printf("\r\n cycleresult= %x\r\n",cycleresultadd);

 //xil_printf("\r\n cycleend= %x\r\n",cycleendadd);

 XCACHE_DISABLE_ICACHE();

 XCACHE_DISABLE_DCACHE();

 return 0;

}

216

Brief Biography of the Candidate

Ashish Mishra received his M.E. (Embedded Systems) degree from the Birla Institute of

Technology and Science, Pilani, India, in 2008 and is pursuing his Ph.D. degree from BITS-

Pilani in the area of Reconfigurable computing. Currently he is working as lecturer in the

Department of Electrical and Electronics Engineering, BITS-Pilani. His main area of interest

includes high level synthesis and reconfigurable computing systems. He has published ten

journals and eight conference papers in the area of embedded systems. He has taught courses

like reconfigurable computing, microprocessor and embedded systems and has a total of 14

years of teaching experience.

Brief Biography of the Supervisor

Dr. Kota Solomon Raju is Principal Scientist in Digital Systems Group, CSIR -Central

Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan, India. Apart

from R&D he teaches at CSIR-CEERI, Pilani (part of AcSIR, Chennai) and is also a visiting

professor at BITS-Pilani. He received the B.E. from Andhra University, M.E. from BITS-

Pilani and Ph.D. from IIT-Roorkee. His research focus includes Advanced Embedded Systems

and Architectural Design for various applications, particularly for Software defined radios

(SDR), Wireless Sensor Networks, Internet of Things, Network routing protocols, Protocol

stack design for hybrid communication and Multimedia data acquisition / compression

techniques. He has published more than 100 scientific papers in peer-reviewed international

journals and conferences. He has completed 6 R& D projects and currently leading 3 projects

as Principal Investigator. He has played the key role in materializing the MOU between

CSIR-CEERI, Pilani and Hiroshima University, Japan.

Framework for Translation of C/C++ Applications on

Reconfigurable Computing Systems

THESIS

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

 ASHISH MISHRA

 ID No. 2009PHXF038P

Under the Supervision of

 Dr. Kota Solomon Raju

 Dr. Abhijit Rameshwar Asati

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

PILANI - 333031 (RAJASTHAN) INDIA

2016

196

Chapter 6

Conclusions

This thesis addresses the various issues involved and parameters to be considered in the

development and verification of a framework for reconfigurable computing systems designed

for FPGAs to improve the area delay characteristics of various applications. The knowledge of

system parameters allows the designer to explore the design space and select a solution

satisfying the given constraints. This chapter summarizes the various contributions made and

also points out the some of the possible extensions of the proposed methodology as future

work.

We have proposed two design flows, each of which takes the input in different formats. The

first approach exploits profiling, high level synthesis and genetic algorithm for partitioning a

C specification into HW and SW. ChStone benchmark written in C language (developed by

University of Toronto) has been selected and compiled using gcc-powerpc tool chain and

Vivado-HLS tool. Various optimizations were applied in HLS flow for latency and area trade-

offs. One of the program (DfDiv), which is computationally intensive was selected from

ChStone benchmark and its processor local bus (PLB) based IP core was migrated in HW, SW

and hybrid approaches. The results of real time performance were tested on ML507 board.

After real time performance comparison in both SW and HW, various hybrid implementations

of Dfdiv program were also generated using genetic algorithm and compared with area-delay

product for various solutions.

The second flow of the work is again divided into two approaches. The first one uses dataflow

models for mapping applications as HW clusters. For this graph isomorphism was explored to

find the clusters and a scheduler was designed to place them in correct order. The results show

that this framework is useful for applications where similar patterns exist. In many

applications it is also possible that the patterns are dissimilar, so we considered a second

approach which is built on genetic algorithm to guide the creation of clusters as IP cores on

partial reconfigurable regions. For this the Express benchmark from University of California

Santa Barbara was used. This benchmark describes the application as dataflow model and

contains nodes ranging from 50 to 100. To simulate the performance easily four programs

(sine, cosine, matrix multiplication and exponent) were written which have nodes ranging

197

from 20 to 120. The performance of the above two approaches (ISO and GA) were compared

for the four programs and it was proved that ISO gave better results as compared to GA. After

the simulation of GA and ISO, HW experimentation was required to test the feasibility. To

check the effectiveness of the above proposed approaches (Co-design, ISO and GA) on real

applications, DCT was chosen and tested on ML507 board. The results offer a wide spectrum

of design space implementations to the designer with area-delay parameter as the criteria to

choose among them.

6.1. Contributions of the Thesis

The System-on-chip flow based on FPGAs was introduced in Chapter 1. The partial

reconfiguration feature available in Xilinx FPGA was explained in brief. Chapter 1 described

the overall frameworks presented in this thesis, and hence a basic foundation was laid.

In chapter 2 an elaborate literature survey presented which focused on various domains which

include:

a. Various frameworks available for HW, SW co-design such as LegUp, ASSET etc.

b. The concept of isomorphic graphs for identifying the similar clusters.

c. Usage of Genetic algorithm for scheduling of dataflow graphs.

d. The partial reconfiguration time overhead.

Resource estimation technique using LLVM compiler was presented in chapter 3. It was

successfully demonstrated how resources can be estimated without synthesis for a given C

specification. In this thesis work we have efficiently shown the process of resource estimation

by creating a library. We have verified the proposed formula by generating HDL code and

synthesizing it on Xilinx.

Chapter 4 presented the ChStone benchmark analysis and one of its programs named DfDiv

was used as a case study for HW SW co-design. Further GA was applied to a dummy case

study and its usefulness in co-design was proved. In this work, we have presented a design

flow to partition an application described in the high level specification into HW and SW. The

design flow is based on a practical approach, starting from a Vivado compiler. We have

successfully demonstrated the partitioning of a program and tabulated the time results of a

benchmark program. The approach discussed opens up new horizon for electronic design

automation in the field of FPGAs.

A new framework was proposed in chapter 5 based on similar patterns found in data flow

graphs. A detailed design flow was presented describing each stage like specification,

198

clustering and scheduling. Four programs were written to find the effectiveness of the

algorithm. The entire algorithm was explained with examples. The HW implementation

showed the best result and SW showed the worst. The results of SW-HW were somewhat

intermediate. HW-SW implementation should have shown better results, but since any kind of

optimization like DMA was not used hence communication overhead was very high leading to

intermediate results. The DCT design was used as a case study for proving the effectiveness of

the flow. It was tested on ML507 board, which also showed the same results as simulation and

was best implemented in HW.

Further GA was also used for clustering of dataflow graphs for partial reconfiguration feature.

For this Express benchmark and four programs were written. The proposed design flow has

been successfully tested with the help of DCT design. After extensive literature survey AAN

algorithm for DCT was selected and coded in VHDL. The design was extended with floating

point adder and multiplier units. An efficient pipelined AAN architecture was chosen for

partitioning process. DCT was partitioned using the proposed algorithm and implemented in

Xilinx PlanAhead software which was very challenging. The design flow was compared in

SW and HW with different memory (CF, DDR) implementations. The results clearly show the

design flow can be very useful for complex design and open up a new horizon for more

automation opportunity in future IP designing. So this thesis highlights the use of

reconfiguration for implementing any design on FPGA without bothering about resources.

A modular dataflow graph generator is designed for generating large graphs. MRTG provides

a modular approach for generating user-controlled, truly random task graphs that find

relevance in simulating today‘s scheduling problems in parallel, distributed systems and fields

like hardware software co-design. This modular nature makes the program code far more

reusable than a conventional monolithic design. Future improvements are easier to make, as

additional modules can be added without disturbing the functionality of the original stable

software. It also makes the program very flexible to use, as now researchers can choose to run

only those modules which they require and also change the order of execution of modules to

suit their needs. The layer-by-layer approach followed in MRTG, with the ability to define

different types of nodes with their individual parameters separates it from existing available

solutions and makes it highly valuable for researchers working in areas like reconfigurable

computing, System-on-chip and for scheduling simulation in the problem of many core

processors, by enabling them to choose how to divide the work among such large number of

processing cores.

199

The results show that the proposed design flow is a very useful extension to currently existing

tools that will allow any program to migrate on FPGA irrespective of amount of resources it

can use. So it gives the designer a broader overview of how to proceed, plan the resources and

chose between HW, SW or hybrid approach to suit his requirements.

The key contributions of this thesis are:

 An efficient HW-SW co-design flow is proposed for analysis, comparison and

effectiveness of an application. The proposed flows have been tested using time analysis

and resource usage of the function. Using execution time and resource consumption data,

how an algorithm like GA can partition the system into HW and SW is vividly

demonstrated.

 The amount of resources consumed by a C program can be estimated even without

synthesis and compilation. Such a process has been evidenced by using LLVM compiler

and generating a library of operators.

 A new framework for HW-HW implementation of an application described in DFG has

been proposed. For area reusability, graph isomorphism has been used to identify the

similarity in the design and interfaced them as static modules on the bus.

 We have proposed a new framework that partitions the dataflow graphs (DFG) models and

executes them as partial modules. The advantage of this flow is that it allows the design to

be mapped onto FPGA irrespective of amount of resources it consumes. The constraints

imposed by partial reconfiguration flow have been used to design as efficient GA that can

produce clusters of required size.

 A modular random task graph generator has been designed for generating heavy loads,

giving dot format files as input to partitioning process. This is a versatile generator

through which different graphs can be generated by modifying an input specification

required.

 The developed frameworks have been tested on ML507 with the DCT design.

 The comparison of the proposed design flow with HW-SW implementation is presented

and we have highlighted the pros-cons of the two approaches.

6.2. Limitations of the Work Done

Here we outline the problems and challenges that are encountered while adopting a partial

reconfiguration design flow. Since all the experiential work has been tested with Xilinx PR

flow, the same will be used as reference in the problems given below.

200

A. Complex Design Process

The PR design flow starts from a writing module and testing it in Xilinx ISE. The module is

then interfaced with the bus as an empty box with only entry and exit ports. After compiling it

in XPS and generating the netlist, the design is exported to SDK where the scheduler is

written in C language. In the same flow, the PlanAhead floor planning SW is used for creating

the PRR and various modules are bound to these regions. Since the PRR is manually selected

it was found that certain regions are more favorable than others. Hence the design flow

becomes a five step process which takes several hours to complie. If any point is missed out

like incorrect region, time closure failure or incorrect output, then the process has to be

repeated. This concludes the complexity of the design flow and it was seen that out of 20

projects only 5 were a success. The design flow should be optimized by creating a PR region

automatically by the tools in the ISE design flow and when the design is synthesized, the tool

should guide the design which regions are better for PR flow.

B. Reconfiguration Overhead

The partial bitstreams are stored in memory like SD card, CF card or Flash for permanent

storage. Loading the bit file from these memories takes significant time. ICAP controller loads

the bitstream and has a maximum throughput of about 400 Mbps. But in reality the throughput

comes out to be around 4-10 Mbps. This problem can be solved by creating a specialized HW

for Reconfigurable architectures in the future.

From the above discussion the following limitations were identified while working on the

proposed flows:

1. The entire work uses Virtex-5 available on ML507 board. The library tables are

corresponding to this series. Hence for the migration of the framework to the other platforms

requires that all the HDL library operates should be compiled again. Though this process is

not time consuming and can easily be done but it needs manual intervention.

2. The work has been shown with PLB bus IP cores, which is becoming obsolete and is

replaced by AXI bus. However, this does not affect the presented framework.

3. Comparison of work with other work in the case of partial reconfiguration has not been

done. This is due to the fact the design flow is novel and a standard design for comparison is

missing.

4. DCT was used to show the results, which is a sub module in most of the signal processing

applications. The framework can be extended to large end to end solutions for better results.

201

 6.3. Future Scope

The process of partitioning has been shown on a dummy specification since a benchmark

program was not available with tabulated HW-SW area and delay. So as a future work the

benchmark presented in this thesis can be converted to a standard for this purpose. Moreover,

currently the entire process has been shown outside the EDA tool. But if the same is tested

within the tool then automation can be inbuilt in the commercial tool. The parameters of GA

are decided based on the domain of design. So, automatically defining the optimum iterations

based on a given a task graph is also challenging. During timing analysis we have assumed the

bus latency of the order of milliseconds for simulating results. A mathematical model can be

developed to compute the execution overheads incurred during bus transaction for hybrid

design.

The presented thesis work uses dataflow models for experimentation and algorithm

verification. The same work can be extended with netlist partitioning that can be directly be

used in ASIC design flow. The isomorphic graphs computation has been applied to operator

based clustering and the effectiveness of the proposed isomorphic algorithm can be tested with

other domains also. A sample design of DCT was created for verification of the algorithm.

Many other high level synthesis tools which generate HW can be used for the verification of

the algorithm. As mentioned previously, the use of DMA controller and BRAM for data

transfer in IP core can considerably improve the performance. Hence they can also be tested

and compared for performance.

In this work, we have designed the DCT application and shown the software, hardware and

partitioning time on one PR region. Such partitioning of a standalone design has not been

reported on real HW. Among the various steps for the design, the most crucial step is

partitioning the design so that overall performance is good. In future, we plan to propose a

partitioning model so this design flow becomes easy for the designer. In addition, the

scheduler design is complicated and depends on the partitioning of ports, number of partitions

and a sequence of partitions. It is possible to generate this scheduler automatically which will

bring down the time taken for the design flow. Many steps done in the design flow can be can

be automated to bring reconfiguration to real world devices.

Being modular, MRTG can have future additions in the form of modules, which can be added

without disturbing the original stable software. We plan to make it open source so that

researchers who really need it, can develop modules they need and add them to the project so

the whole community can use them. We also plan to develop a module to add weights to the

connections too. This will be very useful for researchers who need to do scheduling while

202

taking into account the communication delay and resource expenditure. As an extension we

also plan to add a concept of depth.

In this work we were able to estimate the resource requirement of the program on the

reconfigurable hardware. Depending on the estimated values, the program can be now

partitioned into clusters and executed on partial reconfigurable HW. By estimation technique

it is possible to create clusters of the required size. For mapping the partitioned design to one

PR region a wrapper generation is required which will interface to the bus. This wrapper

should be automatically generated for each partition created. A significant research work is

required to generate the scheduler automatically depending on the control flow of the

program. The process can be applied to EDA tools on the netlist specifications giving better

options for the designer. Further DFG can be created for equations directly giving a new

automated flow. The current work will continue in this direction and we propose to bring up a

robust scheduler.

