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ABSTRACT 

 

Embedded Systems are an integral part of the stupendous technological advances as they meet 

the automation, monitoring and computational demands of the electronic industry. Most of the 

times, these systems are transparent to the user and do their defined work eternally such as 

telecommunication systems. Further advancements in these systems have led to the migration 

of the applications from manual operation to fully automated behavior; major examples of 

such domains include automotive industries, artificial intelligence applications, remote 

seasoning, surveillance etc. The stringent system requirements of such systems have pushed 

the designers to explore innovative design methodologies that deliver higher performance, 

occupy lesser area and consume minimum power. Modern embedded systems are expected to 

perform extensive computations on a streaming data set with various degrees of constraint. 

The design exploration space for such systems is huge; starting from a complete software 

(SW) implementation on various platforms (general purpose processor/digital signaling 

processor (DSP) processor/superscalar processor/very long instruction word (VLIW) 

processor/multiprocessor systems) and culminating as a complete hardware (HW). 

The HW implementation includes application specific integrated circuits (ASIC) or field 

programmable gate arrays (FPGA) based design flow that delivers better performance as 

compared to the SW implementation due to a dedicated datapath and is thus used in many 

critical applications. In exploration of design space, the system specifications may further be 

optimized by partitioning a design into HW and SW. To exploit the potential of FPGA based 

design, the research community is also targeting different methodologies such as HW-HW 

partitioning and usage of partial reconfiguration concept. 

FPGAs are HW programmable chips on which any digital function can be synthesized, tested 

and prototyped. They are an attractive choice for the designer due to less non-recurring cost 

and less time-to-market as compared to the ASIC. These chips contain configurable resources 

that are used to implement any application in HW. But as they contain a limited amount of 

resources on the chip, hence the amount of resources consumed when implementing any 

digital function on a chip, should not exceed the area constraint. 

The concept of system design using partial reconfiguration design poses a number of 

challenges including optimization of partial reconfiguration method, reducing reconfiguration 

latency, scheduling of HW, SW and reconfigurable HW. To solve these problems, design 

space automation is one of the key challenges.  A general objective of this thesis is efficient 
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deployment of embedded applications on reconfigurable computing systems. This thesis work 

targets one of the design space automation requirement which is to map C/C++/HDL/DFG 

application code onto general purpose hardware such as FPGA using static and partial 

reconfiguration approach. The thesis proposes a novel design methodology to automate the 

mapping of C/C++/HDL/Dataflow graphs application code by converting it into system level 

blocks. This includes design and development of an algorithm that generates coarse-grain 

functional blocks from the fine grain instruction level i.e. the proposed algorithm clusters an 

instruction level specification to high-level abstraction, while optimizing the latency and data 

communication among the combined functional blocks. To achieve an optimized algorithm 

for the above purpose, various design flows exist and improving them to suit our proposed 

algorithm is another important contribution of this thesis work. 

To map the application on the system level architecture, (assuming general purpose hardware 

in FPGA with built-in processor within it), there are traditionally two methods: HW-SW co-

design (method-1) and intellectual property (IP) core as HW implementation (method-2). 

Both the methods have been extensively investigated, enhanced and compared throughout the 

dissertation. The co-design method achieves the required system parameters by implementing 

the system partly in HW and partly in SW. Though the first method is well established, 

automation of HW-SW co-design of an application is limited to manual design flow. This 

work proposes an automated co-design methodology of an application using genetic 

algorithm. The proposed design flow supports HW as functional sub-blocks, where ready-

made IP blocks of critical part of the application are used. The proposed design flow uses time 

profiling and synthesis data to guide a genetic algorithm to generate good solutions.  

In the co-design flow, a commercial high level synthesis tool has been used in this work for 

estimating the amount of resources consumed by the program. In addition, in this research a 

new approach has been proposed to estimate the amount of resources without synthesizing the 

program. For this purpose, the SW specification in C/C++ and a compiler has been used to 

generate control flow graph (CFG) which is a commonly used format for hardware generation. 

This process of mapping the logic from high level languages (HLL) to HW requires resource 

estimation at the granularity level of instruction.  A resource table depicting the resource 

consumed by each operator found in the low level virtual machine (LLVM) compiler has been 

computed by coding in Verilog for Virtex-5 series. Using this library, a resource estimation 

algorithm based on CFG operator has been proposed and verified. In many cases if the entire 

specification is migrated to HW in the form of accelerator, it may consume significant 
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resources. Hence, optimization techniques applied at the HW specification are required to 

satisfy system design parameters (area-delay product).  Various optimization techniques have 

applied and compared for area and latency trade-offs. 

The second method for system design is to partition the specification in HW sub-modules and 

execute them as intellectual property (IP) core. Another major contribution of this work is 

proposing and testing the second methodology extensively. A dataflow graph specification has 

been used for verification and development of algorithms in this methodology. 

The second method can further be divided into sub-methods: static (sub-method-1) and 

dynamic (sub-method-2) scheduling of HW blocks on FPGA. In sub-method-1, a 

partitioning algorithm based on graph isomorphism has been proposed, which takes dataflow 

graph as the input and returns partitions based on constraints. These clusters are interfaced as 

static IP cores for reusability. Multiple clusters are possible which are similar in nature and 

must be interfaced as separate HW blocks in a system-on-chip (SOC) design flow and hence 

we have named this flow as HW-HW design flow. 

In sub-method-2, dynamic scheduling of HW blocks based on partial reconfiguration flow 

has been investigated. A genetic algorithm based approach for optimizing the partitioning 

process and generating the best partitions based on defined objective function has been 

proposed. Using partial reconfiguration design flow the partitions are bound to a specific area 

on the chip known as partial reconfiguration (PR) region using floor planning software Xilinx 

PlanAhead. The results highlight the pros and cons of this technique by comparing the time 

required in SW and PR flow. The flow re-uses the same Silicon area at different execution 

times so that the application fits into the minimum area possible. This method provides a 

robust technique for implementing any application on FPGA irrespective of the quantity of 

resources it consumes. This opens new channels for exploiting PR design in future products 

where the reusability of HW would be possible. This will allow the development of new 

algorithms at run time at the user level. The design flow will further boost the automation of 

development and facility offered by electronic design automation (EDA) tools. 

In order to assess both the methodologies, discrete cosine transform which is a 

computationally intensive algorithm has been used for comparing both the approaches on 

ML507 board. The results clearly show the design flow of isomorphic clustering is much 

better than any other flow.     

The thesis proposes novel methodologies for system level integration in simulation as well as 

in experimentation. This research gives us an insight to HW-SW design space exploration of 
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an application and provides a foundation for future research in this domain. It emphasizes on 

the anticipated constraints and challenges in system design methodologies by presenting 

various optimal solutions. The results of this work offer a wide spectrum of design space 

implementations to the designer with area-delay parameter as the criteria to choose among 

them. 

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

TABLE OF CONTENTS 

 

 Page 

No. 

ACKNOWLEDGEMENT………………….…………………….……………….. ii 

ABSTRACT……………………………………………………………………….. iv 

TABLE OF CONTENTS………………………………………………………….. viii 

LIST OF ABBREVIATIONS……………………………………………………... xii 

LIST OF UNITS……………………………………….…………………………... xiii 

LIST OF FIGURES………………………………….…………………………….. xiv 

LIST OF TABLES……………………………………………………….………... xviii 

Chapter 1.  Introduction  

1.1. Embedded System Design……………………………………………………. 1 

1.2. FPGA Based System Design…………………………………………………. 3 

1.2.1. Introduction to FPGAs……………………………………...………….. 4 

1.2.2. FPGA Architecture…………………………………………………….. 6 

1.2.3. System-On-Chip Design……………………………………………….. 6 

1.2.4. FPGA Based System-On-Chip Design………………………………… 7 

1.3. Introduction to RCS ………………………………………………………….. 8 

 1.3.1. Dynamic Partial Reconfigurable Systems (DPRS)…………………….. 8 

 1.3.2. Advantages of Partial Reconfiguration………………………………… 9 

1.4. Motivation for Current Research………………………………………...……. 10 

1.5. Problem Definition……………………………………………………………. 11 

1.6. Thesis Organization…………………………………………………………… 12 

1.7. Conclusions…………………………………………………………….……... 13 

References for Chapter 1 14 

Chapter 2.  Literature Survey  

2.1. Frameworks and Design Methodology ………………………………………. 16 

2.2. Partitioning and Scheduling……………………………………………..……. 21 

2.3. Resource Estimation and High Level Synthesis……………...………………. 31 

2.4. Reconfigurable Computing Systems  33 

2.4.1. Reconfiguration Controller………………………...…………………... 33 

2.4.2. External Reconfiguration ………………………………………..…….. 34 

2.4.3. Internal Reconfiguration or Self Reconfiguration………………….….. 34 



ix 
 

2.4.4. Partial Reconfigurable System Design in Xilinx……………………..... 35 

2.5. Challenges of RCS Frameworks and Design Methodology ………….………. 35 

2.5.1. The Complex Design Flow ……………………………………………. 36 

2.5.2. Restrictions in Design Flow……………………………………………. 36 

2.5.3. The Reconfiguration Overhead…………………………………...……. 37 

2.6. Conclusion…………………………….…………………………………...….. 40 

References for Chapter 2 41 

Chapter 3.  Automated Migration of Applications in Hardware Software Co-

design Paradigm 

 

3.1. Hardware and Software Systems…………………………………...…………. 49 

3.2.  Automated Approach to HW-SW Co-design ………………………...……... 50 

3.3. Estimation of SW Resources Using Time profiling…………………………... 53 

3.3.1 Time Profiling on Target…………………………………...…………… 57 

3.4. Estimation of HW Resources Using LLVM Compiler……………………….. 59 

3.4.1. Generating CFG and DFG from LLVM Compiler…………………….. 60 

3.4.2. Library of Operators in LLVM Compiler……………………………… 65 

3.4.3. Converting C program to HDL…………………………………............ 66 

3.4.4. Comparative Results of Theoretical and Synthesized Programs………. 76 

3.4.5. Creating Extended Basic Block for Task graph generation from CFG... 79 

3.5. Resource Estimation using Vivado High Level Synthesis Tool……………… 82 

3.5.1. Optimizations in Vivado-HLS…………………………………...…….. 83 

3.6. HW IP Design Integration of IP as a part of SOC……………………………. 88 

3.6.1. Case Study for Hardware, Software IP Core Integration Using Vivado-

HLS and EDK 

88 

3.7. Hardware Timer …………………………………...…………………………. 92 

3.8. Results of Manual Interface of DfDiv Program as IP Core…………………... 94 

3.8.1. Comparison with LegUp…………………………………...………….. 95 

3.9. Conclusions…………………………………...………………………………. 96 

References for Chapter 3 97 

Chapter 4  Design and Development of Efficient Hardware and Software 

Partitioning Algorithm 

 

4.1. Frameworks for Reconfigurable Computing Systems……………………...… 99 

4.2. Hardware Software Co-design Partitioning Design Flow……………………. 100 

4.3. Partitioning Process Using Genetic Algorithm for HW-SW Co-design……… 102 

4.3.1. Hardware and Software Partitioning Issues……………………………. 104 



x 
 

4.4. Genetic Algorithm for Co-design…………………………………...………… 105 

4.4.1. Sample Case Study using GA for Co-design Using Callgraph Model… 107 

4.4.2. Experimental Results………………………………………………… 111 

4.5. Sample Case Study using GA for Co-design Using Task Graph Model…….. 117 

4.5.1. Results of Sample Case Study …………………………………...……. 120 

4.6. Conclusions …………………………………...……………………………… 123 

References for Chapter 4…………………………………...…………………….. 124 

Chapter 5  Static and Dynamic Hardware Partitioning for Reconfigurable 

Computing Systems 

 

5.1. Partitioning and Scheduling of Dataflow Graphs for Reconfigurable 

Computing Systems……………………………………………………………….. 

125 

5.2 Hardware and Software Synthesis of DFGs …………………………………. 127 

5.3. Algorithmic Approach for Creating Isomorphic Graph ……………………… 133 

5.3.1. Weight algorithm…………………………………...…………………. 133 

5.3.2. Subgraph Algorithm:…………………………………...……………… 135 

5.3.3. Iso Algorithm:…………………………………...…………………….. 137 

5.3.4. Performance Algorithm:…………………………………...…………... 139 

5.4. Scheduler Design…………………………………...…………………………. 140 

5.5. Results and Discussion for Isomorphic Design Flow…...…………...……...... 143 

5.6 Partitioning and Scheduling Problem for Partial Reconfiguration…………… 150 

5.6.1 Coarse Level Graph Creation…………………………………...……… 154 

5.7. Genetic Algorithm for RCS…………………………………...……………… 155 

5.8. Wrapper Design and Scheduler Design………………………………………. 160 

5.9. Reconfiguration Time Analysis…………………………………...………….. 162 

5.10. Parameters and Results for Genetic Algorithm ………………….................. 164 

5.11. Random Task Graph Generation…………………………………...……….. 167 

5.11.1. Random Graph Generators …………………………………...………. 167 

5.11.2. Algorithmic Design of MRTG ……………………………………….. 170 

5.11.2.1 Module 1: assignLevels………………………………………. 171 

5.11.2.3 Module 2: connectNodes …………………………………...… 173 

5.11. 2.4 Module 3: isomorphize…………………………………...….. 175 

5.11.2.5 Module 4: plotGraph…………………………………...…….. 176 

5.12. Results and Discussion: Comparing ISO and GA Approaches……………... 178 

5.13. DCT Case Study for HW Isomorphic Design flow Based on Experimental 

Work…...................................................................................................................... 

180 

5.13.1. Implementations of Discrete Cosine Transform.…………………….. 181 



xi 
 

5.13.2 Pipelining Approach and Implementation of DCT based on AAN 

Algorithm……………………………………………………………………

… 

183 

5.13.3. HW SW Co-design of DCT…………………………………...……… 186 

5.13.4. Synthesis and Simulation results……………………………………… 188 

5.13.5. Synthesis and Simulation Results of PPR Design Flow …………….. 192 

5.14. Conclusions…………………………………...…………………………….. 193 

References for chapter 5…………………………………………………………… 195 

Chapter 6  Conclusions  

6.1. Contributions of the Thesis…………………………………...………………. 197 

6.2. Limitations of the Work Done…………………………………...…………… 199 

6.3. Future Scope…………………………………...……………………………… 201 

 

List of Publications…………………………………...…………………………… 203 

Appendix-1…………………………………...……………………………………. 205 

Appendix-2…………………………………...……………………………………. 209 

Appendix-3…………………………………...……………………………………. 213 

BRIEF BIOGRAPHY OF THE CANDIDATE…………………………………… 216 

BRIEF BIOGRAPHY OF THE SUPERVISOR………………………………….. 216 

BRIEF BIOGRAPHY OF THE CO-SUPERVISOR …………………………….. 217 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

ABBREVIATIONS 

 

ASIC  Application specific integrated circuits 

AXI  Advanced Microcontroller Bus Architecture  

BRAM  Random access block memory 

CDFG  Control dataflow graphs 

CFG  Control flow graph 

CLB  Configurable logic block  

DAG  Directed acyclic graph  

DCT  Discrete cosine transform 

DFG                      Dataflow graph 

DDR  Double data rate  

DFG  Dataflow graphs 

DMA  Direct memory access  

DSP  Digital signal processing 

EBB  Extended basic block 

EDA  Electronic design automation 

FIFO  First-in-first-out 

FM              Fiduccia-Mattheyses 

FPGA  Field Programmable Gate Arrays  

GA   Generic algorithm 

HAL                      Hardware abstraction layer 

HDL  Hardware description language  

HLL  High level languages 

HLS  High Level Synthesis 

HW  Hardware 

I/O              Input Output 

ICAP   Internal configuration access port 

IP              Intellectual Property  

IR              Intermediate representations 

KHz                       Kilo Hertz 

LLVM  Low level virtual machine 

LUT   Look-up-table 

MRTG  Modular random task graph generator 



xiii 
 

OS              Operating Systems 

Pc              Crossover probability  

PLB  processor local bus (PLB) 

Pm              Mutation probability  

PR                         Partial reconfiguration 

PRM  Partially reconfigurable modules  

PRR  Partial reconfigurable region 

RCS  Reconfigurable computing systems 

RTL  Register transfer level 

SA              Simulated annealing 

SDK  Software Development Kit 

SOC   System-On-Chip 

SRAM  Static random access memory 

SUIF  Stanford universal intermediate format 

SW  Software 

UART  Universal asynchronous receiver transceiver 

UCF  user constraints file  

VLSI  Very large scale integration 

XPS  Xilinx Platform Studio 

XPS  Xilinx platform studio 

 

LIST OF UNITS 

 

MHz                       Mega Hertz 

ns                            Nano seconds 

μsec                        Microseconds 

KB                          Kilobyte 

MB                         Megabyte 

 

 

 

 

 



xiv 
 

LIST OF FIGURES 

 

 

Figure No.                                             Title Page 

No. 

 

1.1 Embedded development cycle………………………………………….. 1 

1.2 Logic element…………………………………………………………... 5 

1.3 Look-Up-Table…………………………………………………………. 5 

1.4 FPGA architecture……………………………………………………… 6 

1.5 Various IP interfacing techniques………………………………………. 7 

1.6 FPGA based system with one PR region with two PRM mapped……… 9 

1.7 Organization of thesis work…………………………………………….. 12 

2.1 Co-simulation of digital camera case study in Xilinx ISIM……………. 17 

2.2 HW accelerators in Leon3 platform on Altera StratixII …………….…. 19 

2.3 ASSET co-design methodology……………..…………………………. 19 

2.4 LegUp Co-design methodology……………..…………………………. 20 

2.5 Control flow graph for the code snippet………………………………... 22 

2.6 Partitioning of graph……………………………………………………. 23 

2.7 Comparative results among FM, GA, SA and MFM for cost vs. time 

constraint ……………...…………………………………………........... 

25 

2.8 ASAP schedule…………………………………………………………. 27 

2.9 ALAP schedule…………………………………………………………. 27 

2.10 Constraint scheduling…………………………………………………... 29 

2.11 Express benchmark of Cosine-2 program………………………………. 30 

2.12 Node matching based isomorphic graphs………………………………. 30 

2.13 External vs. internal reconfiguration…………………………………… 33 

2.14 ICAP controller…………………………………………………………. 34 

2.15 FPGA systems with one reconfigurable region………………………… 35 

3.1 SOC platform on FPGA with a design in HW and SW………………… 51 

3.2 Design in HW-SW with bus interface………………………………….. 52 

3.3 Co-design tool………………………………………………………….. 53 

3.4 Callgraph of digital camera case study…………………………………. 57 

3.5 Profiling and bin options in SDK………………………………………. 58 

3.6 Software profiling results of DFDIV on ML507 board on 

PowerPC@400MHz................................................................................. 

59 



xv 
 

3.7 Control flow graph of GCD program…………………………………... 62 

3.8 Instruction level CFG of GCD program………………………………... 63 

3.9 CFG  of  GCD program………………………………………………… 64 

3.10 DFG  of  GCD Program………………………………………………… 65 

3.11 Fibonacci series C program and its CFG ………………………………. 68 

3.12 Datapath for Fibonacci program……………………………………….. 69 

3.13 FSM of Fibonacci program…………………………………………….. 70 

3.14 Top module for Fibonacci program……………………………………. 71 

3.15 Sharing operators program for Fibonacci……………………………… 72 

3.16(a) SHL operator sharing…………………………………………………… 73 

3.16(b) AND operator sharing………………………………………………….. 73 

3.16(c) ADD operator sharing………………………………………………….. 74 

3.16(d) SUB operator sharing……………………………………………………                               74 

3.17 Verification of the GCD program………………………………………. 76 

3.18 Comparison of LUT after optimizations on three programs……………. 78 

3.19 Callgraph for DfDiv…………………………………………………….. 79 

3.20 Identification of extended basic block………………………………….. 80 

3.21 CFG for Dijkstra………………………………………………………... 82 

3.22 Extended basic block for the CFG……………………………………… 82 

3.23 Sequential access of array………………………………………………. 85 

3.24 Parallel access of array…………………………………………………. 85 

3.25 XPS timer interface with PLB bus……………………………………… 93 

4.1 HW and SW Co-design flow…………………………………………… 101 

4.2 (a) Sample graph…………………………………………………………… 103 

4.2 (b) Parameters for sample graph…………………………………………… 103 

4.3 (a) Sample graph…………………………………………………………… 104 

4.3 (b) Adjacency matrix………………………………………………………. 104 

4.4 Callgraph of a random C program……………………………………… 107 

4.5 A SOC testing architecture…………………………………………….. 111 

4.6 Fitness value optimized with iterations in GA for 

implementation…………………………………………………………. 

113 

4.7 Callgraph for DfDiv…………………………………………………….. 115 

4.8 Flowchart for the algorithm execution…………………………………. 116 

4.9 Deadline vs. Area/delay product for various genes…………………….. 117 

4.10 Snapshot of GA running in Matlab…………………………………….. 117 

4.11 Sample task graph………………………………………………………. 118 



xvi 
 

4.12 Multiple CPU and ASIC sample testing architecture…………………... 118 

4.13 Fitness value optimized with iterations in GA for CPU2 - ASIC1……... 121 

5.1 Framework 2 design flow………………………………………………. 126 

5.2 Node model…………………………………………………………….. 127 

5.3 Node matching based isomorphic graphs………………………………. 129 

5.4 Creation of isomorphic clusters at different levels……………………... 131 

5.5 Comparison of various implementations……………………………….. 132 

5.6 Sample graph…………………………………………………………… 134 

5.7 Weight algorithm……………………………………………………….. 135 

5.8 All subgraphs algorithm………………………………………………… 136 

5.9 Iso algorithm……………………………………………………………. 137 

5.10 Performance algorithm…………………………………………………. 139 

5.11 Sample graph…………………………………………………………… 139 

5.12 Various clusters in sample graphs……………………………………… 141 

5.13 Sample graph with isomorphic clusters………………………………… 142 

5.14  Resources consumed by a basic design in ML507 Board……………... 145 

5.15 DFG of Cosine series…………………………………………………… 145 

5.16 Cosine Series with Isomorphic Graphs…………………………………. 146 

5.17 DFG of Exponent series………………………………………………… 147 

5.18 Exponent series with isomorphic graphs……………………………….. 147 

5.19 Matrix Multiplication for 3x3 elements………………………………... 148 

5.20 Matrix Multiplication for nine isomorphic graphs……………………... 148 

5.21 Sine Series with five elements………………………………………….. 149 

5.22 Sine Series with three isomorphic graphs………………………………. 149 

5.23 Comparison of four benchmark programs……………………………… 150 

5.24 Partitioned design running on PRR…………………………………….. 151 

5.25 Two PR regions with three PRM……………………………………….. 151 

5.26 Two PR regions Schedule………………………………………………. 152 

5.27 PR schedule……………………………………………………………... 153 

5.28 Level based clusters…………………………………………………….. 158 

5.29 Scheduler design in SDK……………………………………………….. 161 

5.30 DFG of Cosine1………………………………………………………… 165 

5.31 DFG of Cosine 2………………………………………………………... 165 

5.32 Fitness vs. generations………………………………………………….. 165 

5.33 Fitness value vs. generation for mutation value as 0.2(Blue) and 

0.4(Pink)………………………………………………………………... 

166 



xvii 
 

5.34 A graph generated using TGFF………………………………………… 168 

5.35  A rooted graph generated using MRTG……………………………….. 173 

5.36 Two isomorphic graphs generated using MRTG………………………. 176 

5.37 Nodes with operators generated using MRTG…………………………. 177 

5.38 Number of Nodes vs. time taken……………………………………….. 178 

5.39 Flowchart for comparing the ISO and GA approach…………………… 180 

5.40 Pipeline architecture……………………………………………………. 184 

5.41 DCT netlist in Xilinx ISE………………………………………………. 185 

5.42 F block netlist in Xilinx ISE……………………………………………. 186 

5.43 Netlist diagram for dataflow model…………………………………….. 187 

5.44 Redrawn DCT netlist showing isomorphic modules…………………… 188 

5.45 EDK components used in implementation……………………………... 189 

5.46 Comparison of area and delay product…………………………………. 191 

5.47 Floorplan for DCT having one PRR……………………………………. 192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xviii 
 

LIST OF TABLES 

 

 

 

Table No.                                             Title Page 

No. 

 

1.1. HW and SW comparison ………………………………………………. 3 

2.1. Three parameters for digital camera case study on 8051 ………………. 17 

2.2. Performance results of LegUp …………………………………………. 21 

2.3. Configuration bandwidth Using ICAP primitive ………………………. 35 

2.4. Comparison of reconfiguration throughput from 2003 to 2009 ……….. 37 

2.5. Reconfiguration speed measurement of ICAP design for various sizes 

of partial bitstream……………………………………………………… 

39 

3.1. Digital system hardware and software layered architecture……………. 49 

3.2 Flat profile ……………………………………………………………… 55 

3.3. Callgraph profile ……………………………………………………….. 56 

3.4. Library of operators…………………………………………………….. 65 

3.5 LUT/DSP resource estimation for each of the optimizations …..……… 77 

3.6 Comparison of resources ……………………………….……………… 78 

3.7 Resource consumption of Dfdiv functions ...…………………………... 79 

3.8 Synthesized results of ChStone benchmarks.....………………….......... 83 

3.9 Performance comparison of original and optimized adpcm synthesis 

and Resource usage comparison of original and optimized adpcm 

synthesis………………………………………………………………… 

84 

3.10 Performance comparison of original and optimized blowfish synthesis 

and Resource usage comparison of original and optimized blowfish 

synthesis………………………………………………………………… 

86 

3.11 Performance comparison of original and optimized dfmul synthesis and 

Resource usage comparison of original and optimized dfmul synthesis.. 

86 

3.12 Performance comparison of original and optimized mips synthesis and  

Resource usage comparison of original and optimized mips synthesis… 

86 

3.13 Performance comparison of original and optimized sha synthesis and 

Resource usage comparison of original and optimized sha synthesis….. 

87 

3.14 Comparison with LegUP compiler synthesis results …………………... 87 

3.15 ChStone benchmarks timing results on ML506 Board ………………… 94 

3.16 Performance comparison of DfDiv in LegUp…………………………... 95 



xix 
 

3.17 Area delay product comparison of DfDiv in LegUp................................ 96 

4.1 SW and HW parameters ……………………………………………….. 108 

4.2 Partitioning results for different deadlines ……………………………... 112 

4.3 Parameter values used in GA …………………………………………... 113 

4.4 Resource usage from Vivado HLS for DfDiv program ………………... 115 

4.5 Parameters for DfDiv ............................................................................... 115 

4.6 Results of DfDiv program ……………………………………………… 116 

4.7 Implementation parameters for different tasks ………………………… 119 

4.8 Optimization results for deadline = 275………………………………... 120 

4.9 Optimization results for deadline = 200………………………………... 121 

4.10 Partitioning results for different deadlines …………………………….. 122 

4.11 Partitioning results for different area …………………………………... 122 

5.1 Description of different implementations ……………………………… 128 

5.2 Comparison of time taken by the DFG in different implementations …. 132 

5.3 Weight of the nodes ……………………………………………………. 134 

5.4 Parameters for sample graphs ………………………………………….. 140 

5.5 Sample graph results …………………………………………………… 140 

5.6 Programs used for testing ……………………………………………… 143 

5.7 Library of hardware blocks and their values on Xilinx ML507 board … 144 

5.8 Comparison of area delay product for Cosine function ………………... 146 

5.9 Comparison of area delay product for Exponent function ……………... 148 

5.10 Comparison of area delay product for Matrix function ………………... 149 

5.11 Comparison of area delay product for Sine function …………………... 150 

5.12 Constants used in genetic algorithm …………………………………… 159 

5.13 Order of complexity of functions in GA ……………………………….. 160 

5.14 PR and GA parameters …………………................................................ 164 

5.15 Express benchmark programs used for testing GA ……………………. 164 

5.16 Number of nodes vs. time taken………………………………………... 178 

5.17 GA applied to four benchmarks ……………….……………………….. 179 

5.18 Comparison of Area delay product …………………………………….. 180 

5.19 Computational steps in AAN algorithm ……………………………….. 184 

5.20 Matrix as Coefficient …………………………………………………... 187 

5.21 Resources consumed by floating point dataflow model of DCT ………. 188 

5.22 Area and delay of each node …………………………………………… 189 

5.23 Showing the resources for the AAN and DFG design flow as highlights 190 



xx 
 

 

 

5.24 Comparison of various implementations done ………………………… 191 

5.25 Comparison of reconfiguration time……………………………………. 193 

 

 

 

 

 

 

 

 

 

  

  



1 
 

         Chapter 1 
 

Introduction 

 
 

This chapter presents an introduction to embedded system design, FPGA based System-On-

Chip design, reconfigurable systems, and partial reconfigurable systems. After presenting the 

design flow for such systems, the research gaps are identified and the objectives are outlined. 

The chapter ends with the discussion on the thesis organization in the form of a flow graph.   

1.1. Embedded System Design 

Electronic systems have become ubiquitous and pervasive because of the possibilities of smart 

system designs which encompasses computation, communication and sensing. Such systems 

are built with high speed processing components, complex interfaces such as a camera and 

wired/non-wired communication. Embedded systems, which are designed to achieve 

application specific requirements, have further boosted the lifespan of such systems. These 

systems are designed with miscellanea of components such as Microcontrollers 

/Microprocessors/System-on-chip (SOC), sensors/actuators, input/output devices, storage 

elements and accelerators. In designing such systems, the characteristics which are of prime 

concern are good real-time performance, low monetary cost, low power design and less time-

to-market. These systems are programmed with applications written in software (SW) for a 

chosen hardware (HW), making the design cycle rigid in terms of hardware parameter 

variations. Fig. 1.1 shows that a conventional design cycle of embedded systems, in which 

selection of HW and then writing the required SW [1.1] is sequential in nature. 

Hardware selection and development Software development

Time line of development
 

Figure 1.1: Embedded development cycle 

The modern embedded systems [1.2, 1.3] which are used to design complex systems such as 

surveillance, object tracking, machine learning, etc. require more processing demand for 

intensive computational part of the application. The conventional embedded design flow starts 

by selecting the processing element, writing the SW for application, cross-compiling and 

burning the image created. Such a SW implementation for intensive applications offers a high 

degree of flexibility, but exhibits poor performance due to sequential execution on embedded 
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platforms like microcontroller. High-performance computing and parallel computing 

paradigms of computer science aim at achieving the performance by exploiting parallelism as 

multithreaded application which is bound to run on multi-core systems. Such computing is 

more applicable to general purpose machines where operating system support, OpenGL like 

library compilation and costly platforms are the backbone.  

Signal processing in SW has been further strengthened by usage of digital signaling 

processors (DSP) which have a tailored data path for better computation. Traditionally, digital 

signal processors have been used in many Digital Signal Processing applications [1.4], mainly 

due to the short development time, lower power consumption, and lower cost. Such processors 

are still the choice for applications requiring computation. However, over the decade, many 

algorithms which were implemented in SW were migrated to HW because of the higher 

performance gain as compared to DSP processors. 

The HW implementation, which requires the development in a hardware description language 

(HDL) and code verification, has the lowest degree of flexibility, but shows the best 

performance due to the possibility of extraction of parallelism. All those operations which are 

independent in SW can be executed at the same time in HW, allowing the design of a 

concurrent structure. Such applications which have been migrated from SW to HW for 

achieving performance are known as accelerators [1.5, 1.6]. Such accelerators are 

conventionally designed by two different approaches. The first approach is to design the HW 

as chip using ASIC methodology. The common examples of such chips are graphics cards, 

network cards, router, gaming gazettes etc. The performance gain in this process is enormous, 

but the high non-recurring engineering cost and long development cycle makes it attractive 

only for voluminous production.  

The second design approach is based on designing the system using Field Programmable Gate 

Arrays (FPGA) which allows the accelerator to be designed, tested and interfaced to the 

processor at the user level. The FPGAs do not deliver as much performance gain as compared 

to the ASIC based design flow [1.7], but chip fabrication is bypassed which saves 

considerable design cycle time and thus are a favored choice [1.8]. The FPGAs chips are 

designed with configurable cells and can be used to implement any digital function. The user 

level HW programmability makes these chips an attractive choice for a large class of 

applications. The FPGA based design offers an embedded development environment platform, 

which has a processor around which the systems is designed and any HW intellectual property 

(IP) core can be interfaced to an underlying bus.  
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This platform allows the design to be implemented in SW, HW, HW-SW (HW-SW co-design) 

or HW-HW [1.9] thus providing a designer to discover various HW/SW trade-off.  The 

comparison of HW and SW on various parameters such as execution, resources, etc. is shown 

in Table 1.1. Both HW and SW consume space on the FPGA chipset as configurable cells and 

memory. 

Table 1.1: HW and SW comparison 

Parameter HW SW 

Execution Concurrent Sequential 

Development Flexible/Rigid Very Flexible 

Resources Uses spaces Uses Memory 

Performance Fast Slow 

Time to Market More Less 

  

HW-SW co-design [1.10] flow requires the identification of candidate functions suitable for 

HW implementation and its interface to the remaining part of the application. Whereas, HW-

HW design flow requires the design to be partitioned into sub-designs and executed in the 

predefined areas. The HW partitions can be interfaced and executed statically or dynamically, 

giving rise to two different approaches. When a part of the chip can only be used by an 

application at any point of time, we call it static approach. In the case of dynamic, the same 

area can be used by multiple applications at different point of times. This feature has now 

become feasible with the advent of partial reconfiguration, which allows a part of the chip to 

be reconfigured even when the system is running. HW-HW design flow implemented with 

partial reconfiguration support is thus a new emerging trend and has not been extensively 

tested on HW [1.7]. The increasing trends towards high performance, reusability and low 

power design have encouraged the researchers to add new dimensions to system design under 

various degrees of constraint. The topic of this research work is thus inspired from comparing 

the SW and HW design flows.  

1.2. FPGA Based System Design 

1.2.1. Introduction to FPGAs 

The programmable chips came into existence due to the advent of general purpose processing 

[1.7] in which a HW code is burned into a programmable ROM chip referred as basic input 

output systems (BIOS). Programmable logic devices which include programmable logic array, 

programmable array logic and generic array logic [1.11] are used for developing glue logic in 

prototyping designs such as address decoder, error detection and correction, etc. With the 
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advancement in very large scale integration (VLSI) design flow, the density of logic gates 

increased, making it possible to bring more complex design into HW, giving rise to the 

generation of FPGAs. 

The FPGAs are programmable VLSI chips that can be used to implement any digital function 

without changing the on chip HW resources. FPGA chips contain configurable memory cells, 

which are either anti-fuse or memory based. An anti-fuse based bit cell uses irreversible thin 

(gate) oxide breakdown mechanism to program a bit and it is one time programmable in 

nature. The examples of such FPGA are Actel based chips memory based FPGAs use SRAM, 

FLASH, EEPROM based technology [1.7]. Memory based technology offers re-

programmable dimension of these systems by allowing them to be programmed almost 

unlimited times. The SRAM based technology holds the configuration in the memory only 

when the power is up; however, in the case of FLASH based technology the configuration is 

permanently stored in the memory. The major market players in the FPGA domain are Xilinx 

[1.12], Altera [1.13], Lattice [1.14], Actel [1.15], with Xilinx capturing 45-50% of the market 

share and supporting various embedded platforms based on the processor like PowerPC, ARM 

etc. The remaining discussions in this thesis are with respect to FPGAs manufactured by 

Xilinx. Xilinx offers a plethora of electronic design automation (EDA) tools for complete 

systems design such as Xilinx-ISE, Xilinx Platform Studio (XPS) [1.16], Software 

Development Kit (SDK) [1.17], System Generator [1.18], PlanAhead Software [1.19], 

Chipscope Debugging tools [1.20] and Vivado-HLS [1.21].  

1.2.2. FPGA Architecture 

A generic FPGA architecture [1.22] can be classified into three parts: a programmable logic 

element, a programmable interconnection network and set of inputs/outputs. A logic element 

contains a combination of SRAM based Look-up-table (LUTs), multiplexers and flip-flops as 

shown in Fig. 1.2 [1.23, 1.24]. The functionality is implemented by writing the output in the 

LUT. Suppose we need to implement the function f (i, j, k) = ∑ (0,1,2,5,7). The table stored in 

the LUT will be 0,1,1,0,0,1,0,1. The logic element can give a combinational or registered 

logic by using a flip flop. The output y is a combinational logic, while q is a registered output. 

The d input can be a direct output to y or q. 
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3-input
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Figure 1.2: Logic element 

The digital functions in FPGAs are realized using LUTs, which are a series of flip-flops and 

multiplexers that store the output function. These elements are put together to form a 

configurable logic block (CLB) that contains a hierarchical structure of LUTs. Fig. 1.3 shows 

the internal organization of 2-input LUT which has four flip-flops and three two input 

multiplexers. 

 

Figure 1.3: Look-Up-Table  

The synthesized design in FPGA is mapped onto different logic blocks and connection is 

made by the interconnection network, which contains an array of switch matrix and wires. The 

wires are typically organized in wiring and routing channels. The channels provide wires of 

varying length such as short wire, medium length wire and global wires. Modern FPGAs 

contain a heterogeneous architecture consisting of fine grain and coarse grain components. 

The heterogeneous coarse grain components can be soft, firm or hard IP cores [1.25]. The 

soft-core IP is synthesizable RTL level designs which include embedded soft-core processors, 

bus controllers, memory controllers etc. that can be configured as per the requirement. Hard 

IPs are pre-placed components that can be used as black boxes and have an optimized layout. 

These include embedded hard core processors, hard macros such as ethernet, analog to digital 

converter, digital to analog converters, RF modules, digital clock manager, phase locked loop, 

high-speed transceivers etc. Firm IP cores are provided as parameterized RTL description, so 

that designers can optimize the cores for their specific design needs. Fig. 1.4 shows the 

organization of the Virtex-5 Xilinx FPGAs depicting LUT slices, processor, Block RAM, 
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FIFOs, Digital clock manager, etc. PowerPC processor is preplaced and is an example of hard 

IP whereas BRAMs are firm IP cores. 

 

Figure 1.4:  FPGA architecture  

1.2.3. System-On-Chip Design 

The integrated circuits had become increasingly complex and expensive, which has led to the 

emergence of new designs and reuse methodologies and it is collectively referred to as SOC. 

The SOC platforms [1.25] are not only a chip, but a combination of IP cores, software support 

and integrated platform. These platforms usually include embedded processor, ASIC logics, 

analog circuitry, embedded memory etc. Their SW includes: operating system, compiler, 

simulator, firmware, driver, protocol stack, integrated development environment (debugger, 

linker) and application interface (C/C++, assembly). There are several benefits of integrating a 

large digital system into a single integrated circuit. These include lower cost per gate, lower 

power consumption, faster circuit operation, more reliable implementation, smaller physical 

size, and greater design security. The principal drawbacks of SOC design are associated with 

the design pressures imposed on today‘s engineers, such as time-to-market demands, 
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exponential fabrication cost, increased system complexity and increased verification 

requirements. 

1.2.4. FPGA Based System-On-Chip Design 

Common architectures and supporting technologies are called platform based design. These 

platforms offer the designer IP libraries and tools support, bus support, mixed signal blocks, 

software component (e.g. Driver, OS). Examples of such platforms are Xilinx EDK, Altera 

SOPC builder, programmable system on chip (PSoC) [1.26] etc. The FPGA based system 

SOC design offers the designer a HW and SW development platform. Each of these platforms 

are tightly integrated, allowing the designer to create the HW and develop its SW, hence 

facilitating rapid system prototyping. An HW definition of an application developed by the 

designer is usually known as user defined intellectual property (IP), which FPGA based SOC 

usually supports.  

In configurable SOC based design, different techniques are used for interfacing the IP 

depending on the speed requirement [1.27]. Examples of interfaces are buses, peer-to peer link 

to the processor and modified processor data-path. Fig.1.5 shows the IP interfaced in three 

ways: loosely coupled, medium-coupled and tightly coupled. In case of loosely coupled 

system, IP can be interfaced with a low speed bus. Medium coupled IP are interfaced with 

high speed bus. It is also possible to change the datapath of the processor and define a new 

operation as an instruction in tightly coupled systems. Such tightly bound systems come in the 

class of application specific integrated processor (ASIP) and is a popular way of 

implementation of accelerators. Designing such ASIP, requires the complete new definition of 

software toolchains requiring a dedicated team for designing, coding and verification of the 

application. 

Processor
Memory

IP 

Core

Processor
Memory

IP 

Core

Processor

Memory

IP 

Core

 

            a) Loosely coupled IP       (b) Medium coupled IP       (c) Tightly coupled IP 

Figure 1.5: Various IP interfacing techniques 

Xilinx EDK design flow allows the development of user defined IP and generates its driver for 

usage in SW development in the SDK. The developed IP is wrapped around the bus wrapper 
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automatically which can communicate with the processor through slave registers, first-in-first-

out (FIFO) memory or local memory. Medium coupling is allowed through the fast simplex 

link [1.28].  

1.3. Introduction to Reconfigurable Computing Systems (RCS) 

A common alias for FPGA based systems is reconfigurable computing systems. They can be 

defined as the study of computations involving reconfigurable devices, which includes 

architecture, algorithms and applications. They involve computation in space and time, using 

hardware that can adapt at the logic level to solve specific problems. Reconfiguration is the 

process of changing the behavior of the systems to execute various configurations. With the 

reprogrammable feature offered by FPGAs, it became possible to change the HW, giving rise 

to the emergence of the RC systems. This reconfiguration in FPGAs can be temporal or spatial 

which means the functionality can be changed by reconfiguring structure area with more than 

one functional block and scheduling in time. The reconfiguration of the device can be done 

statically or dynamically, allowing the design flow to be adaptable as per the requirement of 

the applications.  

1.3.1. Dynamic Partial Reconfigurable Systems (DPRS) 

A static random access memory (SRAM) based FPGA as discussed in section 1.2.2 is a two 

layer device consisting of configuration memory layer and logic layer. The lower layer is the 

configuration memory layer in which the configuration data is stored. The upper layer called 

the logic layer consists of the logic blocks and interconnection that forms the system 

architecture. 

After choosing the required HW along with specific processor (either hardcore or soft core 

processor) system configuration file is prepared that is used to program the SRAM cells. The 

loading of configuration can be done either statically or dynamically [1.7] and hence are 

known as reconfigurable computing systems (RCS). The static approach known as compile 

time reconfiguration works by inactivating the running systems and loading a new 

configuration file. In the dynamic case which is also known as run-time reconfiguration, the 

configuration is loaded while the rest of the system blocks are running. This allows 

configuring a selected part of the chip by using specialized hardware. Hence, dynamic RCS 

systems are also referred as partial dynamically reconfigurable systems and are created by 

defining partial reconfigurable region (PRR) using a floor-planning software such as Xilinx 

PlanAhead. The concept of partial reconfiguration allows multiple configurations to be 

swapped in and out of the hardware independently. The applications to be reconfigured at run-
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time are known as partially reconfigurable modules and are statically bound to the PR region, 

allowing them to run only in the defined partially reconfigurable modules region. Fig. 1.6 

shows one such PRR region and two partial reconfigurable module (PRM) named as add and 

mult bound to this region. 

FPGA

Mult.bit

Add.bit

PRR

 

Figure 1.6: FPGA based system with one PR region with two PRM mapped 

The PRM modules are compiled and partial bit files for each functional block configuration 

are moved to the memory available on the respective board such as compact flash, double data 

rate (DDR) or platform flash providing a database center for partial bit files. At run time, these 

files are loaded and executed by static scheduler, which calls the configuration in dependency 

order, stores the intermediate results and executes the complete application. The primary 

concern here is the total time taken starting from loading to executing the given configuration. 

Thus the idea of partial reconfiguration enables system flexibility in terms of providing more 

functionality to be performed in the same area by reducing the area and power requirement of 

the system. Runtime reconfiguration of programmable devices is the state of the art 

technology available, but is still not applied in the industrial applications due to lack of 

sophisticated and automated tools. To exploit the potentiality of RC systems, development of 

user friendly tools is required.   

1.3.2. Advantages of Partial Reconfiguration 

The advantages of dynamic partial reconfiguration are as follows: 

i. Partial reconfiguration allows designing a self-adaptive and flexible system, where 

hardware changes can be rapidly migrated, depending on the applications. 

ii. Partial reconfiguration allows designing an intelligent system that manages 

reconfiguration in order to save power. 

iii. Partial reconfiguration enables hardware reuse that allows using more silicon than we 

pay for. 
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1.4. Motivation for Current Research 

As described in the previous section, FPGAs can be used for both software and hardware 

design thereby offering a wide spectrum of choice of tradeoffs to the designer. The decision 

from a pure SW implementation to HW requires certain design parameters comparison based 

on performance, HW area, power consumption and suitable design flows for FPGAs. Further 

each layer from SW to HW, spans many optimization techniques, resulting in new dimensions 

of acceptable functional parameters. This research work has been inspired from such demand 

and comparative data interrogations from the designers.  

The application which requires better performance can be partitioned into HW-SW or HW-

HW parts [1.9]. For mapping such a candidate, two solutions are possible: 1) Migrating part of 

the design to HW and the remaining part to the SW, 2) Dividing the design into HW partitions 

by implementing and executing them sequentially as well as concurrently. HW-HW 

partitioning using partial reconfiguration has not been extensively tested on real hardware. 

Hence the objective of this thesis work is to achieve efficient HW-HW partitioning using 

static approach and partial reconfiguration flow and bring out the pros and cons of the 

proposed design flow.  

Some of the high level synthesis tools such as Vivado-HLS convert a high level languages 

(HLL) specification like C/C++/SystemC etc. into HW automatically. But due to this, many of 

the functions normally consume more HW resources as compared to RTL design. In this 

scenario, the advantage of automation is nullified as most of the chip area is used. Using 

partial reconfiguration, more HW reusable functions may be divided into further small design. 

These functions can be executed temporally using partial reconfiguration concept.   

In concise, we identify the following motivational gaps for the current work: 

 Though HW-SW co-design flow is established, some of the practical design flows are not 

offered by the present tools. These practical flows are achieved by design methodology 

that can assist the designer.  

 With the advent of high level synthesis tools like Vivado-HLS, the migration of SW to 

HW is now accelerated. These automated approaches have not been extensively explored 

for effectiveness in performance. 

 The partial reconfiguration flow, has not been used for HW, HW partitioning problem, 

hence needs to be compared for its pros and cons. 
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1.5. Problem Definition and Objectives 

Many applications fail to achieve the required performance on the processor as pure SW 

execution. This problem is solved by migrating a certain part of the code to HW. During this 

migration the decision making task is: which part of the code to migrate. This answer can only 

be addressed after an initial implementation of the design has been done on the target device, 

through which execution profile of the application can be accumulated. This makes the life of 

the design cycle longer and complex. Hence, what we need is the exact design method that 

can guide the designer prior to implementation. Such methods requires a proposal of an 

algorithmic approach to generate design place solutions and guide the designer for area/delay 

trade-offs.    

The specification of an application can be done in various ways such as C language, Matlab, 

finite state machines, dataflow graphs etc. A dataflow model of computation aims at capturing 

the data flow and its computations among the various operations. The computation part of any 

design can easily be defined in such a model. They can be used as input specification and can 

be easily generated, verified and comprehended. Hence these models are a good choice for 

examining the proposed algorithms in terms of their correctness and effectiveness. These 

algorithms demand proposal of efficient partitioning and scheduling of operations in correct 

order. Such algorithms aim at creation of coarse grain clusters that can be mapped as static or 

dynamic modules. These clusters should be created in such a way that overall the area-delay 

product improves. 

For estimating the area required for a DFG or a C program, we need to generate its control 

flow graph. Without the HW generation, making this possible will allow the SW programmer 

to bypass the HW learning and quickly generate functional parameters. 

Hence the objective set for this work is defined as: 

1. Design and implementation of automated system design flow for applications defined 

in high level language with HW-SW co-design concept to design optimal systems.  

2. Design and development of an algorithm for estimation of resources consumed by 

functions described as control flow graphs generated from compiler. 

3. Given a dataflow and control flow graph specification, design and implement efficient 

algorithms to convert fine grain graphs to coarse grain graphs. Create such coarse level 

graph by finding reusable patterns in the specification. 
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4. Identification of functional blocks for efficient mapping using a partial reconfiguration 

approach and schedule the application to exploit the strength of a RC system.  

1.6. Thesis Organization 

This thesis is organized into six chapters. Chapter 1 presents the introduction to reconfigurable 

systems and motivation for the thesis work. Chapter 2 discusses the literature survey of 

system design methodology, partitioning of DFGs, high level synthesis and partial 

reconfiguration.  

 

Figure 1.7: Organization of thesis work 

Chapter 3 focuses on resource estimation of C/C++ programs and cluster creation. The work 

further demonstrates how clusters known as extended basic block can be created using an 

algorithmic approach. A framework for HW-SW co-design using genetic algorithm has been 
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proposed in chapter 4. Chapter 5 explains the partitioning problem and applies it for creating 

clusters to HW-HW design flow. Genetic Algorithm (GA) has been used for partitioning and 

scheduling of RC systems and is extensively covered in this thesis. It also highlights the 

process of dynamic partial reconfiguration and compares the results of the previous chapters. 

Chapter 6 gives a summary and draws conclusions on the basis of results obtained. It also 

presents the future work to be carried out with the existing platform. Fig. 1.7 shows the 

summary of work done and organization of thesis. 

1.7. Conclusion 

In this chapter we have discussed the principles of FPGAs, system-on-chip, reconfigurable 

systems and partial reconfigurable systems. These emerging systems are allowing searching 

for various HW and SW implementations to maximize the performance while meeting the 

constraints. This has motivated out research work and inspired us to define the research 

objectives.  
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Chapter 2 
 

Literature Survey 

 
Reconfigurable systems are versatile platforms which allow the designer to conceive any kind 

of SW or HW optimizations and methodologies. It allows achieving the desired system 

performance by different approaches. These systems contain a processor, on which the SW 

can be executed and HW fabric on which any accelerator can be designed. Techniques like 

fixed point vs. floating point arithmetic, usage of simple vs. complex algorithm, language 

selection etc. allow bringing out the tradeoff in SW implementation. Similarly optimization in 

HW implementation can be achieved by various techniques like pipelining vs. parallelism, 

static vs. dynamic scheduling etc. The design of HW accelerators on RCS requires that the 

resources available on the chip are effectively used to deliver the best performance. 

To gain an elaborate insight in the research progress made in the field of chosen problem 

statement and identify the existing gaps we undertook an extensive literature survey. This 

enabled us to highlight the problems to be focused on, formalize the solutions and explore the 

strategy to be adopted to achieve the objectives of the proposed work. This chapter is divided 

into four sections which cover the literature survey for HW-SW frameworks, high level 

synthesis, partitioning/scheduling, and partial reconfiguration process. 

2.1. Frameworks and Design Methodology 

The initial framework for HW-SW partitioning and mapping using manual time estimation 

and manual synthesis was proposed in [2.1], which demonstrates a complete working example 

of digital camera using a C specification. This design shows an image compression 

implementation on a soft core based 8051 complied on FPGAs. A co-simulation testing setup 

having a cross-compiler and HDL simulator was used for verification. This benchmark was 

downloaded and simulated in Xilinx ISIM simulator as shown in Fig. 2.1 for verifying the 

way in which co-simulation is performed. The 8051 VHDL model files and the C code stored 

in ROM VHDL model is shown in Fig. 2.1. The simulation setup includes the cross compiler 

and its conversion to a ROM image. The execution in the simulator was possible without a 

HW implementation allowing the co-simulation to accumulate the performance results.  
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Figure 2.1: Co-simulation of digital camera case study in Xilinx ISIM 

The timing constraint kept for the design was given as 1 second, since holding a camera for a 

prolonged time is frustrating to the user. Hence to achieve the required performance a co-

design methodology was adopted and four implementations were written for achieving the 

target of 1 second. Implementation 1 is pure SW execution and fails to achieve the required 

time. In implementation 2, one of the modules is randomly chosen and is migrated to HW. In 

implementation 3 discrete cosine transform (DCT) is implemented in HW and 4 is an 

implementation of using fixed point arithmetic in DCT block. The Table 2.1 shows the time 

comparison, which is coming down from 9.1 seconds to 0.099 seconds. 

Table 2.1: Three parameters for Digital Camera Case Study on 8051 [Source: 2.1] 

 

 

 

The shortcomings of this design flow were manual partitioning, manual estimation of time and 

manual conversion of C to HDL, making it time consuming and resulting in a longer design 

cycle. These guidelines can be adopted only by an experienced designer who knows an in-

depth understanding of the platform.  

Similar work was done in Google summer of code 2006 [2.2] (a contest organized by Google) 

on the Leon3 platform, which is from Aeroflex Gaislor company [2.3]. The design flow uses 

Implementation 2 Implementation 3 Implementation 4

 Performance (second) 9.1 1.5 0.099

 Power (watt) 0.033 0.033 0.040

 Size (gate) 98,000 90,000 128,000

 Energy (joule) 0.30 0.050 0.0040
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operating system based design and device driver for migrated IP to HW. This work shows the 

time profiling on general purpose computer for media application and uses the results for 

profiling process. The conclusion was that the function reconrefframes waste approximately 

60% of CPU-time and should be migrated to HW. The flow does not use algorithmic approach 

and a C to HDL compiler to compute the resources consumed. Most of the work in this 

domain lacks the demonstration of time estimation on an embedded target, which can give 

better estimation results. The structural design is shown in Fig. 2.2 with Theora codec 

interfaced to APB bus. This work gave an idea of the time profiling on the host and 

demonstrated the difference in results.  

The popularly available tools for co-design are COSYMA, Lycos, Polis, Chinook, Akka, 

CASTLE/SIR, CodeSign, CoWare and Symphony, The Ode System, COOL, PeaCE [2.4]. 

Most of these tools are either proposed or not available on-line. The only commercial tool 

among them is CoWare and its results have not been reported in literature. The common 

problems encountered in these tools are: 

i. ANSI C language is not a standard input in most of them. 

ii. The design space exploration for a given design requires manual intervention. 

iii. An efficient conversion of SW to HW automatically is missing. 

The generic steps required to convert a SW specification into HW [1.10] are:  

Step-1: Convert the SW specification into control flow graph using a compiler 

Step-2: Generate a data dependence graph from the control flow graph 

Step-3: Convert each node in the a combinational circuit 

Step-4: Use multiplexer and registers for the combinational circuit design 

Step-5: Content the circuit node using the edges in the data dependence graph. 

Step-6: Generate a finite state machine for each node in control flow graph. 

These steps are applicable to sub-set of a SW language and may fail in cases such as dynamic 

pointers, file operations, recursion etc. The problems were addressed in [2.5] which present a 

framework called ASSET where profiling was used to find the critical parts in a C program 

and a C to HDL compiler was written to automate HW generation. The ASSET framework is 

based on Stanford universal intermediate format (SUIF) compiler for basic block profiling and 

HW generation. A HW generation from a C specification is only possible by converting it into 

a control flow graph. This CFG is parsed and control edges are converted into a finite state 
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machine and data edges are converted into datapath. SUIF compiler has many drawbacks such 

as: the development was stopped in early 2000, recursion is not available, lack of built-in pass 

for optimizations, no community support etc. The work was a first effort to perform the 

profiling of basic blocks in complier and find the critical part of the program. Though it has 

not shown the proposed area estimation technique, but it focuses on HDL generation and 

interfacing, thus lacking to show the framework on a benchmark for generality.   

LEON3
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Figure 2.2: HW accelerators in Leon3 platform on Altera StratixII [Source: 2.2] 
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Figure 2.3: ASSET co-design methodology [Source: 2.5] 

Fig. 2.3 shows the design flow of work in [2.6] with HW estimation and SW estimation being 

the building block for partitioning process, followed by system integration on a SOC platform. 
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The framework fails to show the results of a benchmark, hence cannot be used for comparison 

purposes. 

From the literature survey done, it was identified that presently LegUp tool [2.6] is the only 

open source platform that allows co-design methodology to be implemented. It is an open 

source hardware software co-design tool which starts from a C specification and allows the 

designer to map applications as SW on a MIPS processor or as HW accelerator on FPGA 

fabric. The design flow is shown in Fig. 2.4, with a C program as input and implementation as 

HW or SW. It uses a profiling technique [2.7] by proposing a HW architecture which can 

count the real-time cycles and energy profiles of an FPGA-based soft processor. The tool uses 

low level virtual machine (LLVM) compiler for preprocessing of C programs and HW 

migration.  

LegUp

Self-profiling 

MIPS 

processor

Profiling Data

ANSI C 

Program
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Figure 2.4: LegUp Co-design methodology [Source: 2.6] 

The comparative analysis of various benchmarks problems is listed in Table 2.2 [2.7]. For the 

MIPS processor-SW flow, the processor runs at 74 MHz on the Cyclone II and the 

benchmarks take between 6.7K-29M cycles to complete their execution. LegUp-Hybrid2 

provides a 47% (1.9×) speedup in program execution time vs. SW (MIPS-SW). In the LegUp-

Hybrid1 flow, there is 73% reduction in program execution time vs. software (a 3.7×speed-up 

over software). Looking broadly at the data for MIPS-SW, LegUp-Hybrid1and LegUp-

Hybrid2, it is observed that: execution time decreases substantially as more computations are 

mapped to hardware. LegUp produces heavily pipelined hardware implementations, whereas, 

we believe eXCite does more operation chaining, resulting in few computation cycles yet 

longer critical path delays. Considering total execution time of a benchmark, LegUp and 

eXCite offer similar results. Both of the pure hardware implementations are a significant win 

over software. 
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Table 2.2: Performance results of LegUp [Source: 2.7] 

 

The framework does not seem to be very promising from the results as the speedup achieved 

is very low. Hence is the need is to explore the reasons behind it. The design flows discussed 

above are manual in nature and are applicable to a very experienced designer. From this, it is 

concluded that for complete automation there are primarily two requirements. 

 The amount of resources consumed by an IP which is migrated to HW should be 

known. 

 A framework which can show the critical part of the design and optimize the code 

should be used. 

2.2. Partitioning and Scheduling 

The first phase of the design cycle is the specification of the design which includes its 

functional and non-functional requirement. The functional requirement describes the behavior 

of the design and non-functional requirement describe the constraints on the design metrics. 

The functional behavior of a design is captured in a model such as finite state machine/Task 

graph or in a language such C/C++ etc. These models/programs are usually converted to 

abstract data structures such as link list for syntax checking and executable generation. Such 

linked structures can be depicted as graphs in which each node corresponds to an operation 

and edge as data communication. Control flow and data flow are the two structures that are 

available in all languages. Control flow corresponds to the syntax such as loops, goto etc. and 

data flow corresponds to computation like addition in y = ax + b. For example for the code 

snippet given below, the CFG is shown in Fig. 2.5. 

 

{ 
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temp = 0; 

for (i=0; i < 5; i++)  

 temp = temp + i ; 

} 

temp=0, 

i=0;

temp=tem

p+i

i++

Return 

If(i<5)

 

Figure 2.5: Control flow graph for the code snippet 

Similarly a task/data flow graphs is modeled as non acyclic graph. For example for the 

equation ax
2 

+bx+ c, the DFG is shown in Fig. 2.6. It shows the various ways in which the 

nodes can be clubbed together to create a partition. Now for a given architecture which has 

multiple processing elements, where these clusters can be executed, finding the best possible 

solution is the task of partitioning and scheduling stage. The problem of partitioning and 

scheduling can be as applicable to CFG and task graphs and can be discussed separately.  
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Figure 2.6: Partitioning of graph 

The initial work in the development of frameworks for HW-SW partitioning and scheduling of 

the applications described in C was seen in [2.8]. The work shows the design process with a 

new language for describing the control flow structure of the program and used LCC compiler 

for generating the compiler intermediate representation (IR). The framework was applied to 

customized multi-FPGA systems and hence was not extensively used.  

Similar research was done in [2.9], which shows temporal partitioning and scheduling for 

multi-FPGA systems and clearly demonstrates the mapping of the DFG to FPGAs and reports 

the reconfiguration time of the executable model. In this approach, partial reconfiguration 

design flow was not used, but the work was dedicated more to scheduling at the instruction 

level and a multi-FPGA dedicated architecture was used for experimentation. The work 

compares the level based vs. non level based scheduling. The algorithms were described to 

work on DFG model only and are not applicable to complete ANSI-C set. This problem of 

ANSI-C is addressed in [2.10] which follows a basic block generation using a compiler and 

proposes an algorithm for area based cluster creation, focusing on overlapping basic blocks 

for improving performance. The work proposes its own intermediate representation format for 

the generation of basic blocks and their scheduling. In [2.11] a compiler framework has been 

proposed to partition and schedule the instructions, but the performance has been shown for 

defined architectures, which is not general.  For making the partitioning process efficient for 

co-design, a compiler intermediate format has been extended in [2.12] and called as 
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hierarchical control dataflow graphs (CDFG) which can be seen as clusters for performing 

parallelism and high level synthesis. 

The initial work involving the creation of a library of operators and sharing them in the 

scheduling process is reported in [2.13], which shows the effect of sharing of operators with 

respect to time and area but lack the design flow starting from ANSI-C set. The work in [2.14] 

extends the CDFG model to accommodate control flow mapping to HW easily and shows that 

a library of operators has been created for mapping. The CDFGs have been converted to 

hierarchical control flow graphs to exploit the inherent parallelism. The results have not been 

shown for a benchmark program, hence cannot be used for comparison purposes. Chapter 4 of 

[1.7] discusses the partitioning and scheduling problem in detail. The LIST scheduling 

algorithm for RC systems where each node is assigned a priority and partitions are created 

based on a given area is discoursed. The work lacks to demonstrate a design running on PR 

region and the consequences of partitioning a design. This gap between the algorithm proposal 

and its verification inspires this research work to set up the experimental analysis. 

The work in [2.15] uses integer level programming with scheduling to find similar patterns as 

a candidate for partial reconfiguration. The primary purpose of finding the isomorphic graphs 

is to reduce reconfiguration overhead. This work highlights only the software simulation result 

and does not compare the real time performance by interfacing an application to the processor 

bus. The design flow presented hence is not realistic. In [2.16] a design flow for mapping 

applications on Xilinx FPGA partial dynamic reconfiguration flow using PlanAhead has been 

extensively shown. The work compares the resource usage for encryption algorithm but lacks 

to show the timing analysis. The most recent work [2.17] proposes an algorithm for finding a 

pattern of the configuration to be placed in multiple PR regions. It also shows the theoretical 

time equation that can used to calculate the reconfiguration time.   

Partitioning is a process by which we divide the input specification into sub-sets depending on 

the constraints like: the number of subsets, maximum vertices in a sub-set and maximum 

number of edges between the sub-sets. The partitioning technique can be broadly classified 

into constructive and iterative approaches. Constructive partitioning aims at identifying an 

initial partition and are greedy in nature. This means such algorithms fail to find the global 

minima and may stop at local minima. Examples are random selection, cluster growth, 

hierarchical clustering, Fiduccia-Mattheyses (FM) and min-cut [2.18, 2.19].  

The literature in [2.20] discusses the various optimization problems in system level synthesis 

theoretically which are partitioning and scheduling. To achieve hardware and software 

performance trade-off, many optimization algorithms have been already proposed, such as 
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Tabu search and simulated annealing [2.21, 2,22] which applies partitioning to loops, blocks, 

subprograms and processes, Ant colony optimization [2.23], swarm optimization [2.24] and 

Genetic Algorithm (GA) [2.25, 2.26, 2.27] which is a stochastic optimization algorithm 

modelled on the theory of natural evolution. Since its first successful implementation, GA has 

been used to solve a wide range of problems, such as travelling salesman problem [2.28], real-

time problems such as reconfiguration of evolvable hardware (EHW) [2.29], and other 

optimization problems that have complex constraints [2.30]. Hardware and software co-design 

using genetic algorithm has been implemented previously [2.31, 2.32, 2.33] on simulated data 

set which contains various area and delay parameters. 

 

Figure 2.7: Comparative results among FM, GA, SA and MFM for cost vs. time 

constraint [source: 2.34] 

A simulation of a theoretical task graph on HW and SW using GA is compared with 

approaches like FM and simulated annealing (SA) in [2.34]. The objective function (Objfct) is 

used to guide the GA and it includes time/cost along with predetermined deadline. Mapping is 

a process which determines which node will run on what component. The work fails to show 

the mapping on concurrent architecture (multiple CPU/ASIC). It misses to propose an 

algorithm which can find the execution time if nodes are concurrently executed on multiple 

CPUs and ASICs. Fig. 2.7 clearly shows the comparison of four partitioning algorithms which 

are Fiduccia Mathesys (FM), GA, simulated annealing (SA) and modified Fiduccia Mattheyes 

(MFM). In FM, the elements that improve the OF are selected and locked. This process is 

repeated until all the blocks are locked and there are no improvement of the objective 

function. This method only allows the movement of a block in each step. GA converges 

quickly as compared to other algorithms and hence is better algorithm as compared to others. 

MFM algorithm is a particular version of the FM that includes a special attention to 
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communication costs. Besides it permits the migration of more than an only block. SA works 

with one solution and moves towards a better solution, while GA starts from a set of solutions.  

The running time and the optimal solution generated by GA in dependent on many parameters 

such as number of iterations, population size, mutation probability (pm) and crossover 

probability (pc). Adaptive probability [2.35] is a technique which is used to guide GA for 

values of mutation probability and crossover probability depending on the fitness value of the 

genes for better convergence of the GA. The crossover probability controls the rate at which 

solutions are subjected to crossover. The higher the value of crossover probability, the quicker 

are the new solutions introduced into the population. As crossover probability, increases, 

however, solutions can be disrupted faster than selection can exploit them. Typical values of 

pc, are in the range 0.5-1.0. Mutation is only a secondary operator to restore genetic material. 

Nevertheless the choice of pm, is critical to GA performance. Large values of pm, transform 

the GA into a purely random search algorithm, while some mutation is required to prevent the 

premature convergence of the GA to suboptimal solutions. Typically pm, is chosen in the 

range 0.005-0.05.  

The next problem of system level synthesis is scheduling, which gives an exact order of the 

execution time of the nodes. Scheduling of the DFG starts from the assumption that unlimited 

resources are available, allowing any implementation to be feasible.  Let us take a C code as 

shown in sample 2.1 and show its DFG for clarification (Fig. 2.8).  

  Sample 2.1: C Code 

main() 

{  

float t, I1, o1, x1=0.0, x2=0.0; 

while (1) { 

in(I1);   

t = I1 + a3*x2 + a1*x1; // line 6 

o1=t+a4*x2 + a2*x1; // line 7 

x1 = t;       // line 8 

}} 
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Figure 2.8: ASAP schedule 

 

Figure 2.9: ALAP schedule 

The commonly used algorithms for scheduling are: 

A. As soon as possible (ASAP)  

B. As late as possible (ALAP)   

C. Constraint Scheduling 

The ASAP/ALAP schedule is shown in Fig. 2.8 and Fig. 2.9 and is used as starting point to 

provide constraint parameters to scheduling algorithms. Assuming that unlimited resources are 

available, the DFG graphs are shown for line 6, 7, 8, 9 of the sample code. These algorithms 

assume that unlimited resources are available and allow maximum parallelism in the 

generated schedule. Maximum parallelism means that all the operators in the same level can 
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execute at the same time. For e.g. in Fig. 2.8, all the first four multipliers can run at the same 

time in t0. The pseudo code for the delay calculation is given below [1.7]. Each node is 

traversed and the delay of the parent is added to find the critical time of the DFG. We start 

from the nodes which have no predecessor and add the delay successively. 

ASAP(G(V,E),d) { 

         FOREACH ( vi without predecessor) 

  s(vi) := 0;     // starting node 

     REPEAT { 

  choose a node vi , whose predecessors are all planned; 

  s(vi) := maxj:(vj)E  {s(vj)+ di};   

   //predecessor delay =  s(vj), current node delay = di 

                } 

                UNTIL (all nodes vi are planned); 

               RETURN s; 

} 

Assume that an adder takes 10 clock cycles and multiplier takes 50 clock cycles. From the 

above algorithm, the output (o1 in the graph) will be available after 80 cycles (one multiplier 

and three adders). In case of ALAP scheduling, we start from the nodes without successors 

and traverse back as shown below: 

ALAP(G(V,E),d, L) { 

         FOREACH( vi without successor) 

  s(vi) := L - di;   // L is the given latency 

     REPEAT { 

  Choose a node vi , which successors are all planned; 

   s(vi) := minj:(vj)E  {s(vj)} - di; 

                } 

                UNTIL (all nodes vi are planned); 

               RETURN s 

} 

One of the parameter that is computed from ASAP and ALAP schedules is mobility. Mobility 

is the difference in the level of a node in the two schedules. For e.g. in Fig. 2.8 node 1(a2 and 

x1) has a mobility of 1. If the resources are restricted (i.e. lesser number of HW units for a 

given level), then the schedule changes accordingly. Practically limited amount of resources 

are available, hence we impose resource constraints to ASAP and ALAP schedules which is 

known as constraints scheduling [1.7]. Suppose that one adder and one multiplier are available 
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for allocation, and then the generated schedule is shown in Fig. 2.10. The output is this case 

will be available after 220 cycles since four multipliers and two adders are there for worst case 

path. 

 

Figure 2.10: Constraint scheduling 

The lecture notes in [2.36] show some scheduling examples on the dataflow model such. Task 

graph scheduling for parallel systems has been discussed in [2.37]. Since we requires a 

dataflow model of a specification, the Express benchmarks [2.38] describe the application 

written in C in the data flow format described as data flow in a dot model in Graphviz tool 

[2.39] from IBM. The sample of the cosine benchmark is given in Fig. 2.11 and can be used as 

an input for partitioning and scheduling phase. 
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Figure 2.11: Express benchmark of Cosine-2 program [source: 2.59]  

Integer linear programming [2.40, 2.41, 2.42] for scheduling has been used as a mathematical 

model and is based on equation used to solve the problem. Instruction/operator level which is 

very low level of abstraction may not produce desired optimized area and performance 

parameters, since such operator consume very less area as compared to the area available in 

RCS. Smaller nodes can be combined together to create coarse level nodes to reduce the 

overhead. This advantage also introduces interface design and intermediate data transmission 

design complexity. To create coarse level nodes one of the possibilities is finding the similar 

patterns in the application and uses them as reusable patterns. The scheduling of nodes 

clusters which are similar in nature extends the possibility of better implementation. The 

repetitive node patterns are known as isomorphic graphs as shown in Fig. 2.12.  

 

ADD SUB ADD SUB

SUB SUB

ADD
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Figure 2.12: Node matching based isomorphic graphs 

The problem of finding an isomorphic graph is a central position in complexity theory as a 

proposed occupant of the region that must exist between the polynomial-time and NP-

complete problems. The easiest and the lengthiest way of finding such subgraphs can be a 

brute force method, which is not efficient since the order of complexity is O(n! x n
2
). The time 

complexity for enumerate all bijective mapping will be O(n!) and O(n
2
) will be complexity for 

checking whether each mapping is isomorphic. The problem of finding such graphs has been 

discussed extensively [2.43]. A weighted method has been used to guide the generation of 

isomorphic graphs [2.44]. We have used the method and applied it RCS systems after 

applying the area constraints and node matching as well. 

2.3. Resource Estimation and High Level Synthesis 

A FPGA chip has restricted resources in terms of LUTs, BRAMs, DSP slices etc. When an 

application written in high level language is migrated to HW, the primary concern is: The 

amount of resources consumed by the HW. Two methods can be discoursed for estimation of 

amount of resources. First is the analysis method which is based on a mathematical 

background and has an initial look-up-table for the resources consumed by each operator. 

Second method is the synthesis method which converts the specification into a HW using a 

HLL to HDL compiler.  

Research works published in the first method domain can be cited firstly in [2.45] and have 

shown the estimation of input output pins and time required for the benchmarks. The work is 

outdated now, as the density of logic elements has increased many folds. The work done in the 

area estimation was first seen in [2.46]. The authors show the number of configurable logic 

blocks (CLB) consumed for a design based on number of operators, their bit-width and 

number of registers. The estimation is applicable to a dataflow model, where semantics is 

similar to the netlist. The work in [2.47] shows the estimation model for Matlab based system 

generator designs. The model is well developed for simulink based design and is not 

applicable to HLL. The work in [2.48] shows the compiler framework required for resource 

estimation of ANSI-C programs.  

The resource estimation requires a mathematical model which gives results taking inputs as 

operators, bit-width, types of operators and return the number of LUTs/registers used. This 

model has been thoroughly proposed in [2.49]. The results have only been shown for one 
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benchmark which is not generic and estimation is not for ANSI-C programs. This work does 

not show the usage of resource estimation for ANSI-C program with a complete design flow.  

The second method is based on high level synthesis (HLS) which is the process of converting 

a C/C++/SystemC based specification into synthesizable HW. Many tools have been 

developed over the last decade for this process to automate along with numerous 

optimizations applied is the respective tools. The SPARK [2.50] was the first open source tool 

produced and its primary objective was to apply scheduling of instructions for better 

synthesis. The following features were not supported in SPARK:  

 Dynamic memory allocation 

 Continue, break and goto 

 Multidimensional arrays  

 Function calls with parameter passing 

 File operation 

ROCCC [2.51] was another tool which was developed to remove some of the above 

restrictions, but required the changes in the syntax of the program. LegUp [2.52] from 

University of Toronto is still a active group in research in HLS and has developed a 

benchmark ChStone [2.53] written in HLS for comparison of different tools, Commercial  

tools include  BlueSpec Compiler from Bluespec, Catapult C from Calypto Design Systems,  

eXCite from Y Explorations,  Xilinx Vivado-HLS (formerly AutoPilot from AutoESL). 

Control flow graphs have been frequently used for the automatic generation of HDL [2.54]. 

Compilers usually decompose programs into their basic blocks as a first step in the analysis 

process. Basic blocks from the vertices or nodes in a control flow graph. LLVM [2.55] is a 

good candidate for the generation of CFGs. various kinds of optimization can be done on the 

C code for better conversion to HLS. The results in [2.56] show a comparative table of the low 

level optimizations and their effect on HLS. The work in [2.57] explores all the optimizations 

that can be done on the C code at various levels for HLSs. The work in [2.58] shows the 

generation of HW in a simplified manner. Most computational design implemented these days 

is image processing applications. The design flow in [2.59] explains the usage of FPGA for 

accelerator HW design. The lecture notes in [2.60] explain the generation of high level 

synthesis (HLS) from LLVM IR in a simple way with the use of datapath and finite state 

machine (FSM) design. The Xilinx Vivado HLS [2.61] tool provides options for carrying out 
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different types of optimizations on the behavioral description before synthesizing it which 

enables the user to bring the design closer to the given throughput or area specification.  

2.4. Reconfigurable Computing Systems 

From the discussion of the architecture of RC systems in chapter 1, various issues and 

challenges in the research work in this domain are identified. An RC system is developed 

around a specific HW and a defined architecture which can control reconfiguration. These 

systems have intrigued and inspired the designer to address the following questions:  

1. Who controls the reconfiguration? Processor (may be inside the FPGA) 

2. Where the configurator is located? Dedicated physical component in the FPGA 

3. When the configurations are generated? Synthesizing the best static possible configuration 

4. Which is the granularity of the reconfiguration? Smallbit based (CLB) or module based 

In order to further highlight this aspect, a 3 axis classification scheme described by John 

Williams [2.62], characterizes the diversity of the reconfigurable systems depending on 

1. Reconfiguration Controller 

2. Configuration generation 

3. Level of reconfiguration granularity 

These parameters are discussed as below: 

2.4.1. Reconfiguration Controller 

The systems in which reconfiguration is managed and controlled by some external device are 

called as externally reconfigurable and but those initiate and control their own reconfiguration 

are called as self-reconfigurable. So such a system can perform self read-back and reconfigure 

themselves by loading a new configuration stored in a external memory. Some systems can be 

a combination of both these which requests modules from a remote bitstream server 

controller. 
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Figure 2.13: External vs. internal reconfiguration 

2.4.2. External Reconfiguration 

External reconfiguration implies that the FPGA resources can be reconfigured by an external 

device such as a personal computer or a microprocessor. In this case the external processor 

reads the partial bitstreams from external memory and sends the data through the standard 

reconfiguration part of the FPGA as shown in Fig. 2.13. A single FPGA configuration engine 

handles both full configuration and partial reconfiguration using the same programming 

mechanism. The external reconfiguration can be achieved using SelectMAP, JTAG, Serial 

ports [2.63]. 

 2.4.3. Internal Reconfiguration or Self Reconfiguration 

Internal reconfiguration or self-reconfiguration system uses an application running on a 

configuration controller, generally a processor inbuilt in the system to read partial bitstream 

from external memory and send the data to the ICAP (Internal configuration access port) 

which then reconfigures the portion of the FPGA indicated by the configuration frame address 

included in the partial bitstream. Partial bitstream contain all the necessary commands and the 

data necessary for partial reconfiguration [2.64]. The ICAP peripheral enables an embedded 

microprocessor to read and write the FPGA configuration memory at runtime. The ICAP 

peripheral provides control over FPGA resources with the granularity of a single configuration 

frame consisting of 41 32-bit words in Virtex-4 and Virtex-5 family, 81 32-bit words in 

Virtex-6 family and 65 16-bit words for Spartan-6 FPGA.  

ICAP_VIRTEX 4/5/6

O[31:0], BUSY

I[31:0]

To configuration memory

CLK, CE,WRITE

 

Figure 2.14: ICAP controller 

The ICAP primitive for Vitex-4, Virtex-5, and Virtex-6 families is shown in Fig 2.14. The 

ICAP primitive [2.65, 2.66] has four input ports (CLK, CE/CSB, WRITE/RDWRB, I [31:0]) 

and two output ports (BUSY, O[31:0]). The partial reconfiguration time depends on the ICAP 

CLK frequency, configuration data size i.e. bitstream size and the data width of the ICAP port. 
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The configuration bandwidth for various families is shown in Table 2.3. The configuration 

time for the FPGA families for a single frame are also shown. Thus the data width and 

maximum clock frequency are limiting factors that impacts reconfiguration time. 

Table 2.3: Configuration bandwidth Using ICAP primitive [Source: 2.65] 

 

The reconfigurable systems can be characterized by the degree to which they manipulate the 

FPGA resources. A minimum of 1 frame can be reconfigured in a Xilinx FPGA. The Virtex-5 

frame has a reconfiguration time of 0.41 microseconds. One frame of Virtex-5 contains 8 

CLBs, one CLB has 2 slices and one slice has 4 LUTs.  

2.4.4. Partial Reconfigurable System Design in Xilinx 
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Figure 2.15: FPGA systems with one reconfigurable region 

Fig. 2.15 shows a conventional partial reconfiguration (PR) design components using Xilinx 

EDK and PlanAhead tools depicting the one PR region in blue color. For example PRR can 
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execute integer operations or execute floating operations. The user defined IP core shown in 

purple color is a static logic defined by the user. The essential components used in PR design 

flow are memory where the partial bit files are stored and ICAP which loads the partial bit 

files on the configuration memory from external memory. The processor instructs the ICAP to 

load the bitstream from external memory to the buffer. ICAP then reconfigures the portion of 

FPGA indicated by the configuration frame address which is included in the partial bitstream 

through the configuration port.  

2.5. Challenges of RCS 

RCS design flow presents many degrees of concern in creating a successful design.  

2.5.1. The Complex Design Flow 

The biggest disadvantage in creating the partial reconfiguration flow is the complex steps the 

designer has to follow. The steps are given below 

 Create an IP and verify the functionality. 

 Interface the port of the IP to the bus wrapper as a black box. 

 Write the scheduler in SW. 

The problem found during PR design flow can sometimes be undesirable and can be resolved, 

leading to multiple time project creation. 

PR can be explained with a analogy: consider a class room (black box) in a building which has 

fixed doors/windows (ports) in which various classes and masses (different designs) are 

involved and scheduled at different time (scheduler). 

2.5.2. Restrictions in Design Flow 

In-spite of the enormous advantages of partial reconfiguration technology, there are some 

limitations such as lack of complex applications that substantially benefit from a run-time 

reconfiguration, the design tools that permit quick development of PR systems and the cost of 

the programmable devices having PR feature which prevents its use in the commercial 

products. Some resources on the FPGA can be reconfigured and some cannot which poses 

substantial challenges in the system design. In the tools there are limitations in selection of 

resources during partial reconfiguration design that are [2.66] as follows. 

1. Clocking logic such as global buffers, memory controller and digital clock manager should 

reside in the static region of the design.  This means that if the synthesized IP uses any of 

these resources then it should in static region. 
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2. Multi-gigabit Transceiver, boundary scan, startup should not exist in the static region of the 

design. 

3. No bidirectional interfaces are permitted between static and reconfigurable regions, except 

in case where there is a dedicated route. For example a bidirectional I/O buffer in the 

reconfigurable region routed to a top level I/O pad in the static logic can cross between the 

reconfigurable region and static logic via a bidirectional interface. 

4. The number of global clocks that can be pre-routed to any clock region, and therefore to 

any reconfigurable partition, depends on the device family used. The number of clocks in 

reconfigurable region cannot exceed the defined limit such as 8 for Virtex-4, 10 for Virtex-5 

and 12 for Virtex-6 & Virtex-7 respectively. These limits must account for both static & 

reconfigurable logic. 

5. Active low resets & clock enables should be used in the design flow to allow the SW to 

reset and enable the configuration. 

2.5.3. The Reconfiguration Overhead 

Table 2.4: Comparison of Reconfiguration Throughput from 2003 to 2009 [source: 2.66] 
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The time required to place the bit file of an application which is stored in a memory on a 

partial reconfigurable region is known as reconfiguration time. When the reconfiguration is 

performed, the bit file has to move through various stages, which adds time and is referred as 

reconfiguration overhead.  The characteristics that affect the reconfiguration overhead also 

depends on the system setup such as external memory, memory controller, reconfiguration 

controller and its interface with ICAP, and the user space to kernel space copy penalty when 

an operating system is running on the processor controlling the reconfiguration. The size of 

the local memory of the processor (cache) can significantly affect the reconfiguration time. 

The primary concern for partitioning and executing an application on one PR region is time 

overhead. Author in [2.67] gives exhaustive time model that can be used to calculate 

theoretical results. 

For Table 2.4: BS: Bitstream size in bits, RT: Reconfiguration time in ms, ARTP: Actual 

Reconfiguration throughput. The last column shows that the maximum throughput is obtained 

is 353.20 Mbps using DD2/ZBT based memory. They have described the total reconfiguration 

time as the sum of times spent in transferring the data from the storage memory to processors 

local memory (phase 1), then to the ICAP configuration cache (phase 2) and then finally to the 

configuration memory of FPGA (phase 3). Thus, total reconfiguration time can be expressed 

as  

Reconfiguration Time= RTSM PPC + RTPPC ICAP + RTICAP CM                             ... (2.1) 

Where, 

 RTSM  PPC- time spent in transferring bitstream data from storage memory to 

processor local memory 

 RTPPC ICAP - time spent in transferring bitstream data from PPC local memory to 

ICAP cache 

 RTICAP CM - time spent in transferring bitstream data from ICAP cache to 

configuration memory. 

An online calculator [2.67] for estimating time overhead given the bitstream size is also 

available. This calculator requires the bitstream size, which means that after the entire design 

flow is complete and project is created in PlanAhead.  

The earliest work in this domain reports a throughput of 94.85 MB/s by using DMA and a 

new ICAP design [2.68]. Since this value was too low it required further improvement. Three 

designs as Master ICAP, BRAM ICAP and DMA ICAP [2.69] show a performance of 253.2 

MB/s, 371.4 MB/s , 82.6 MB/s. Table 2.5 show the comparison of various methods.  Although 
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the results have been promising, but the resource usage for BRAM is very high and scarcity of 

memory makes it unrealistic design. Very good results are cited in [2.70], where 1.2 GB/s is 

reported with the combination of full streaming direct memory access (DMA) and bitstream 

compression.  Such a drastic improvement requires inspection as the factor is 1000 times. The 

answer for this is, simply instruction simulator (ISE) based project (non processor based) has 

much greater performance as compared to an EDK based project (processor based).  Further 

improvement up to 2.2 GB/s is reported [2.71] by over clocking ICAP. The usage of partial 

reconfiguration for real systems by scheduling was first reported in [2.72]. The comparative 

summary is shown in Fig. 2.5. 

Table 2.5: Reconfiguration speed measurement of ICAP design for various sizes of 

partial bitstream [Source: 2.69] 

 

 

 

 

 

 

 

 

 

Most of the work has been concentrated on reducing reconfiguration time by designing an 

efficient ICAP controller, using DMA, placing bistream in BRAM and compressing the 

bitstream file. The theoretical speed of the ICAP is 100MHz, and its width can be 

programmed as an 8-bit or a 32 bit port allowing a bandwidth of 0.75 or 2.98GB/s. 

Authors have shown one PR region that implements different protocol to read data from 

sensors. The paper also proposes a simple equation to calculate reconfiguration. The 

reconfiguration time mainly depends upon the following features [2.73]: 

1. Configuration clock speed (CCLK) 

2. Bus width 
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3. Bitstream size 

The reconfiguration time of FPGA is estimated as 

Reconfiguration time(s) = Bitstream size /(Cclk * Buswidth) …(2.2) 

But Eq. 2.2 does not take system setup parameters into consideration. The only work with 

multiprocessor design for PR design is seen in [2.74].  From this we conclude that the 

conventional ICAP controller available in EDK flow has low throughput of 10 Mbps.  

This leads us to summarize the research horizons as: 

 Propose an automated HW-SW co-design approach and compare the performance. 

 Propose partitioning approaches for converting dataflow graphs into clusters that 

accelerate the performance further. 

 Design clusters as IP cores and map them to partial reconfigurable region. Compare the 

performance the design flow. 

 Use resource estimation technique for making these clusters based on a given area. 

 Perform the resource estimation using a compiler based flow. 

2.6. Conclusions 

 LegUp tool is the only open source tool available for co-design and results shown are not 

very promising in a SOC based design. Low speedups were reported in the survey which 

of the order of 2x in HW. 

 The designer should be guided easily for adopting a particular design flow. Such a flow 

should generate various HW-SW solution of an application. 

 Time profiling and HLS tools can be used for generating time and area parameters 

consumed by an application.  

 Control and dataflow are commonly used graphically representations as input to 

partitioning and scheduling algorithms. These intermediate structures are also used by the 

HLS tools to convert the SW into HW. 

 Graph isomorphic concept can be used to find the similar patterns in the dataflow model. 

 Resource estimation can be done using a mathematical approach. 

 Genetic algorithm performs better as compared to SA, FM and MFM. 
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 Using a partial reconfiguration for a partitioning and running a single application on HW 

has not been reported. 

 We conclude that maximum throughput of 2 Gbps is possible with reconfiguration process 

with specialized architecture. 
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Chapter 3 

Automated Migration of Applications in Hardware 

Software Co-design Paradigm 

 
 

This chapter presents an elaborate introduction to hardware software co-design process and 

challenges involved. The methodology required for co-design needs the identification of the 

time consuming part of the application and its automated hardware generation. Time profiling 

using gprof has been demonstrated for finding the critical parts of the program. A basic 

introduction on how C to HDL converter is designed using a compiler (LLVM compiler) and 

how it can be used for estimating the resources consumed by a program have been discussed. 

A commercial C to HDL converter (Vivado-HLS) has been explored in the chapter for 

accurate resource estimation and it also allows to apply various optimizations and explores the 

latency-area trade-offs.  

The chapter is organized as follows: In section 3.1 an introduction to HW and SW systems is 

presented. A co-design framework has been proposed in section 3.2. The two important 

aspects: time and area estimation are demonstrated in section 3.3 and 3.4. The area estimation 

using a commercial high level synthesis tool is showcased in section 3.5. Section 3.6 presents 

the IP core interfacing techniques and its challenges generated from the tool.  For measuring 

the performance, a HW timer is required which is discussed in section 3.7. In section 3.8, the 

co-design flow has been applied on a Dfdiv program and results are presented. Section 3.9 

shows the results obtained for Dfdiv program from LegUp tool which was discussed in the 

literature survey.  

3.1. Hardware and Software Systems 

A digital system can be visualized as a HW-SW layered architecture as shown in Table 3.1 

with various components used in each layer [3.1].  

Table 3.1: Digital system hardware and software layered architecture 

 

 

Applications (e.g. Brower, jpeg) 

Compilers( e.g. gcc, LLVM) 

Operating Systems( e.g. Windows, RTOS) 

Firmware( e.g. HAL, BSP) 

Interfaces( e.g. ISA, AMBA) 

Hardware( e.g. processor, memory, accelerators) 
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The bottom most layers comprise of HW components followed by firmware, OS and 

applications layers.  At the top of the layer, any application can be described as pure SW in a 

programming language. The same application can also be described as pure HW in a HDL and 

interfaced to the processor as accelerators.  

A system-on-chip based design allows the system to be implemented in SW, HW or a 

combination of both as discussed in chapter 1. This gives rise to various permutations for 

design space exploration and the trade-off of system parameters. The parameters which are of 

prime concern in the design flow are time, area and power. These parameters are orthogonal in 

nature and affect each other. For example parallel HW unit consumes more area but it can do 

more computation in parallel. 

The SW designer works at the application development layer and achieves the functionality in 

SW using a high level language [3.1]. The popular languages used for embedded system 

design are C, C++ and Java. Here, the developer requires minimal insight into the HW 

characteristics and focuses on achieving the desired functionality. Depending on the 

complexity of the design and performance requirements, these designs can either be operating 

system (OS) [3.2, 3.3] or non-OS [3.4] based.  In OS based approach, a device driver is 

required for communicating with the accelerators, where as in non-OS based simple read 

/write protocol driver  can be used. Multi-threaded applications can be easily be developed in 

OS based approach, hence is a preferred choice. The popularly used processor based software 

platforms in this domain are Beagle board, Beagle-bone, Raspberry-pi, Panda board, ARM 

LPC series and FPGA based platform design.   

When the SW implementation does not meets the required performance gain primarily due to 

application demanding intensive computation, the designer looks for a total HW 

implementation. For e.g. SW implementation of a JPEG compression roughly takes xyz 

seconds on an ARM based platform, but it may take xyz/100 seconds on an ASIC IC based 

design or xyz/10 second based on FPGA based design flow [2.1]. As a result of this gain, 

frequently used applications such as multimedia, compression are being migrated to HW to 

improve performance. The migration of a SW implementation to HW implementation is a 

time consuming process as it requires the description of the application in the form of control 

and datapath structures in a HDL language. An HDL programmer aims at optimizing the 

resource usage, achieving the maximum clock frequency and limiting the power dissipation 

during this conversion. The popular languages used to describe the HW specification are 

Verilog, SystemVerilog, VHDL and SystemC.   
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3.2. Automated Approach to HW-SW Co-design 

Now suppose we are given an application in high level language, which has certain functions 

like preprocessing, discrete cosine transform (DCT) and encoding as shown below. 

main (){  

Preprocessing ();  

DCT ();  

encoding (); } 

A SW implementation of the above program may take xyz seconds and a HW implementation 

may take xyz/100 second, but more area will be consumed on the FPGA [2.1]. From an upper 

limit of xyz seconds to lower limit of xyz/100 seconds, many possible implementations may 

exist between the two boundaries. Such implementations are possible by migrating one or 

more SW functions to HW. The remaining functions are executed in SW depending on the 

resource constraints. For e.g. the DCT functions can be implemented in HW, while the 

remaining two functions can be in SW. Such an exploration in the design process gives rise to 

HW-SW co-design. 

The aim of co-design approach is to meet the system-level objectives by exploiting the trade-

offs between HW and SW in a system through their concurrent design.  

C/C++/HLL/DFG Partitioning stage

BUS

CPU
DSP Prcocessor

HW

SW

SOC platform

 

Figure 3.1: SOC platform on FPGA with a design in HW and SW 

Fig. 3.1 shows that a single application is divided into two parts (HW and SW) using a 

partitioning approach. Co-design flow requires a SOC platform and a partitioning approach as 

shown in Fig. 3.2. 
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BUS

CPU
DSP Prcocessor

HWSW

SOC platform

SW running on processor and HW interfaced to bus

 

Figure 3.2: Design in HW-SW with bus interface 

The HW part is mapped to programmable fabric and SW part is compiled on the processor. 

HW-SW co-design is a paradigm which aims at achieving system design requirements by 

migrating design components from top to bottom or bottom to top in a digital system design 

environment. 

It encompasses several problems [3.5]:  

 Co-specification: Creating specifications that describe both hardware and software 

elements (and the relationships between them). 

 Co-synthesis: Automatic or semi-automatic design of hardware and software to meet a 

specification. The  co-synthesis  problem  can  be  broken  up  into four principal phases:  

o Scheduling: choosing times  at  which  computations  occur;   

o Allocation: determining the processing elements (PEs) on which computations 

occur. 

o Partitioning:  dividing up the functionality into units of computation. 

o Mapping: choosing particular component types for the allocated units. These 

phases are, of course, related. However, as in many design problems, it is often 

desirable to separate these problems to some extent to make the problem more 

tractable. 

 Co-simulation: Simultaneous simulation of hardware and software elements, often at 

different levels of abstraction. 

Hardware/software partitioning introduces a design methodology that makes use of several 

techniques that will become important in other styles of co-synthesis as well.  

 The functional specification must be partitioned into processes, each of which denotes a 
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thread of execution. The  best  way  to  partition  a  specification  depends  in part  on  the  

characteristics  of the  underlying  hardware platform, so it may make sense to try different 

functional partitioning.   

 The  performance  of  the  function executing  on  the  platform  must  be  determined.  

Since exact performance depends on a great number of hardware and software details, we 

usually rely on approximations.  

 The processes must be allocated onto various processing elements of the platform. 

The design flow as shown in Fig. 3.3 describes the synthesis of a specification into HW and 

SW components, interface generation and output verification. It shows that an ideal co-design 

tool that takes a high level specification and outputs the HW part on ASIC/FPGA and the SW 

part which can be compiled on the processor. The tool can take specification at a high level of 

abstraction and should be able to decide the part which should be migrated to HW. It should 

then produce the required HW and SW drivers for easy interfacing. Such a fully automated 

approach is still missing in the current existing tools. 

High Level Specification

C/C++/Matlab/DFG

Co-design Partitioning and 

Scheduling

HW part

VHDL/Verilog
SW part

Synthesis 

FPGA chip

FPGA fabric and HW/SW processor

Interface generation

Drivers

Compilation

Gcc/cross tool chain

Esitmate HW and SW 

parameters

 

Figure 3.3: Co-design tool 

The co-design aims at performance exploration without a real HW implementation by 

performing co-simulation and co-synthesis. This requires that both HW and SW are executed 

on a simulation tool and the system parameters are extracted for performance comparison. The 

two crucial parameters for system design are execution time and area consumed by the various 

parts of an application. The various parts of the application are defined by the level of 

abstraction chosen to describe the application such as functions, modules etc. A partitioning 
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stage requires execution time and area of each function declared in the specification. Based on 

the given constraint and these parameters, it generates the best HW-SW solution. Hence 

robust techniques are required to estimate these parameters. 

The co-design flow is advantageous, but comes with following challenges [1.10]: 

 Following a well defined design flow which can assist the designer in partitioning process. 

 The HW development can be done manually in hardware description language for an 

efficient design and requires comprehensive knowledge of FPGA resource usage.  

 Interface knowledge is required to interface the IP core to the communication architecture. 

 Setting up the performance measuring and debugging tools to the test the performance of 

the overall design is required. 

3.3. Estimation of SW Performance Using Time profiling  

Profiling is a technique by which we can determine the behavior of a program in terms of the 

amount of time a function takes, the number of call invocations and memory references made. 

The co-design flow requires an appropriate profiler to detect the functions that contribute to a 

large percentage of program execution. There are different types of profilers which aim at one 

or a combination of these features. The examples of time profiler include UNIX prof, GNU 

gprof, callgrind, Intel VTune, IBM Quantify, Visual C++ profiler, Matlab profiler etc. [3.7]. 

Among them, gprof is available in most of the toolchains, hence it is popularly used.  

The profiling can be classified into intrusive or non-intrusive nature. The intrusive profiling 

instruments the code during compilation, hence incurs some amount of overhead. Gprof [3.8, 

3.9], an intrusive profiler, is widely accepted open source profiler and Xilinx EDK tool chain 

also renders same profiler in its tool chain, hence it has been chosen in this flow. Two kinds of 

profile are generated by gprof, one is known as flat profile and other one is known as 

callgraph profile. Table 3.2 and 3.3 show the two profiles for the sample program which has 7 

functions which are named as f1 to f7. The commands used in Linux operating system to 

generate the profile are given below: 

$ cc -g -c myprog.c utils.c -pg   // compile with pg option to create object file 

$ cc -o myprog myprog.o utils.o -pg  // create executable 

$  ./myprog //execute the program // execute the program to generate the gmon data file 

$ gprof myprog     // generate the statistics 

Table 3.2: Flat profile 
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%   

time 

Cumulative  

seconds 

Self  

seconds 

Calls Self   

 s/call 

Total 

 s/call 

name 

25.04 8.15 8.15 1 8.15 8.15 F7 

21.41 15.12 6.97 1 6.97 6.97 F6 

17.85 20.93 5.81 1 5.81 5.81 F5 

14.29 25.58 4.65 1 4.65 4.65 F4 

10.72 29.07 3.49 1 3.49 3.49 F3 

7.13 31.39 2.32 1 2.32 2.32 F2 

3.56 32.55 1.16 1 1.16 1.16 F1 

 

The interpretation for flat profile as shown in Table 3.2 can be described as follows:  

 Column 1: It shows the percentage of the total execution time program spent in this 

function. These should all add up to 100%. 

 Column 2: It shows the cumulative total number of seconds spent in these functions, 

plus the time spent in all the functions above this one. 

 Column 3: It shows number of seconds accounted for this function alone. 

 Column 4: It shows number of times the function was invoked. 

 Column 5: It shows average number of seconds per call spent in this function alone. 

 Column 6: It shows average number of seconds spent in this function and its 

descendents per call. 

 Column 7: It shows name of the functions. 

The interpretation of call profile as shown in Table 3.3 can be described as follows: Each row 

describes the function's descendents and child. 

 Column 1: It shows unique index of the function. 

 Column 2: It shows percentage of the total time spent in this function and its children. 

 Column 3: It shows total amount of time spent in this function 

 Column 4: It shows total time propagated into this function by its children. 

 Column 5: It shows number of times this parent called the function and total number of 

times the function was called. 

 Column 6: It shows current function.  
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Table 3.3: Callgraph profile 

index %time self children called names 

[1] 100.0 0.00 

8.15 

6.97 

5.81 

4.65 

3.49 

2.32 

1.16 

32.55 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1/1 

1/1 

1/1 

1/1 

1/1 

1/1 

1/1 

1/1 

main [1] 

          f7 [2] 

          f6 [3] 

          f5 [4] 

          f4 [5] 

          f3 [6] 

          f2 [7] 

          f1 [8] 

[2] 25.0 8.15 

8.15 

0.00 

0.00 

1/1 main [1] 

          f7 [2] 

[3] 21.0 6.97 

6.97 

0.00 

0.00 

1/1 main [1] 

          f6 [3] 

[4] 17.8 5.81 

5.81 

0.00 

0.00 

1/1 main [1] 

          f5 [4] 

[5] 14.3 4.65 

4.65 

0.00 

0.00 

1/1 main [1] 

          f4 [5] 

[6] 10.7 8.15 

8.15 

0.00 

0.00 

1/1 main [1] 

          f3 [6] 

[7] 7.1 2.32 

2.32 

0.00 

0.00 

1/1 main [1] 

          f2 [7] 

[8] 3.6 1.16 

1.16 

0.00 

0.00 

1/1 main [1] 

          f1 [8] 

 

Gprof instruments program to count calls and samples the program counter every 0.01 

seconds in general purpose operating systems such as Linux. For example, if the total samples 

are 10 then execution time is equal to 100 milliseconds. It creates a histogram of each function 

and if the program counter value corresponds to that function, an entry is made. Any function 

which runs faster than 10 ms may shows zero time. This is because samples of the program 

counter are taken at fixed intervals of run time. This attributes to the statistical inaccurate 

nature of gprof [3.10] so the run-length of the function should be long enough as compared to 

sampling period for better results. Secondly the output from gprof gives no indication of parts 

of program that are limited by inputs/outputs (I/O). The other information given by gprof is 

number-of-calls made to each functions. This is derived by counting, and not by sampling, 

hence this is completely accurate and does not varies from run to run.  

Although gprof tool is commonly available, but there were certain problems encounters when 

we executed it on our desktop. During heavy load the accumulated time varied and many 
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functions showed zero time as no time accumulation was done. The execution time of many 

functions on general purpose machines is less than 10 ms, since these machines are running at 

few GHz.   
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Figure 3.4:   Callgraph of digital camera case study 

The gprof does not display the call tree structure; hence we have used the pvtarce utility [2.18] 

for generating the visual diagram of callgraph. Fig. 3.4 shows the callgraph for the C language 

for digital camera case study [2.1] discussed in previous chapter. The Fig. 3.4 clearly shows 

the total number of functions present in the application, along with the number of calls at the 

edge. It also shows the hierarchical structure of the calls and is a good abstraction level for co-

design implementation. The gprof cannot accurately show the time taken by each function, 

hence cannot be used for time estimation of each function on a general purpose machine. In 

order to capture the exact time, hardware timer has been proposed [3.11, 3.12]  to do real time 

profiling which uses HW counter to trace the running address and store the values. There are 

other methods that be used for finding the time of each function on the general purpose 

desktop machine such as Time stamp counter TSC [3.13] which is a good choice for Intel 

based processors. The time.h C library [3.14] has functions that can be used for measuring the 

time of a piece of code. The drawback of using these functions is that the resolution is poor. 

For obtaining better results from gprof utility, we next migrate to time profiling on the target 

and explore more possibilities. 
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3.3.1 Time Profiling on Target 

Time profiling on the target which usually run at low frequency, can give the better results as 

compared to profiling on general purpose machines. The Xilinx software development kit 

allows to parameterize the real time profiling [3.15] by changing the sampling frequency and 

bin size as shown in Fig. 3.5. 

 

Figure 3.5: Profiling and bin options in SDK 

A HW timer is used in the real time profiling to provide the time base and it is interrupt 

enabled. The sampling frequency determines the rate at which timer interrupt are given to the 

processor. Setting a higher value of frequency means more interrupts are generated and more 

samples are taken. This gives better results, but degrades the precision due to more calls being 

used in interrupt. The bin refers to program text segments and setting a smaller value of the 

bin allows the results to be better. For example, if we set the bin size to 10 bytes, we can only 

determine that the program was executing instructions between y and y+10 on each profile 

interrupt. The DfDiv program from ChStone benchmark [2.50] was profiled on the ML507 kit 

and results are shown in Fig. 3.6 with sampling rate of 100000 and bin size of 4.  This means 

that the sampling time is 10 microseconds, which is good value for a program that takes 

milliseconds to run. 
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Figure 3.6: Software profiling results of DFDIV on ML507 board on PowerPC@400MHz  

All the functions used during the real time execution are shown in the profiling results. This 

includes all the functions running with elf file (BSP functions) which are shown as 55.4%. 

Float64_div is the top level function and calls all other functions. The best candidate for HW 

migration is estimateDiv128To64 function which calls mul64to128 and sub128 and as it 

consume 17% out of 44.6% of time.  The total time taken by DfDiv using profiling is 

calculated using top function which is float64_div will be equal to 80 samples x 10 

microseconds  = 800 microseconds. Similarly 120 us is taken by roundAndpackFloat64, 60 us 

will be taken by propogateFloat64Nan, 60 us will be taken by estractflaot64Exp, 80 us will be 

taken by estractflaot64Frac, 70 us will be taken by estractflaot64Sig. Adding these values we 

get 390. Since float64_div calls estimateDic128To64, 800 - 390 = 410 is taken by 

estimateDic128To64. Hence we now know the time parameter for each function and these 

values will be used in partitioning algorithm in next chapter. 

3.4. Estimation of HW Resources Using LLVM Compiler 

This section presents a method to use LLVM compiler [2.52] to perform high level synthesis 

and estimate the resources required. High level synthesis is the process in which the sequential 

codes written in languages such as C/C++ is converted to hardware description design as 

discussed in chapter 2.  Using C/C++ to develop and validate the algorithm prior to synthesis 

is more productive than developing the design at RTL level. Such a migration from a 

sequential to concurrent behavior descends with many challenges. A high level specification is 

Estimatediv 

function 

Top level 

function 

Main contains 

the test data 
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written for meeting the functional behavior of the application without concerning to the 

resources or performance constraints.  

C/C++ constructs to RTL mapping is usually done by converting functions to modules, 

arguments to input/output port, operators to functional units, scalar to wire/reg., arrays to 

memory and control flow to finite state control logic. Many features of the high level 

specification such as dynamic memory allocation, continue, break/goto, multi-dimensional 

arrays, file operation are not the candidate for HW description, hence cannot be synthesized. 

System calls such as printf() or fprintf() cannot feature in the hardware design and so cannot 

be synthesized. Pointer casting or using the recursive functions is not supported. Any system 

calls which manage memory allocation within the system, for example malloc(), alloc() and 

free(), must be removed from the design code prior to synthesis. The reason for this is that 

they are implying resources which are created and released during runtime. To be able to 

synthesize a hardware implementation the design must be fully self-contained, specifying all 

required resources. In this section, we address the following issues: 

1. Generation of DFGs and CFGs in LLVM Compiler 

2. Optimization of C code using LLVM compiler 

3. Resource estimation using LLVM compiler 

4. Generating extended basic blocks using LLVM compiler 

 3.4.1. Generating CFG and DFG from LLVM Compiler 

Control flow graphs have been frequently used for the automatic generation of HDL from 

C/C++ specifications. Compilers usually decompose programs into their basic blocks as a first 

step in the analysis process. Basic blocks form the vertices or nodes in such a graph. A control 

flow graph (CFG) in literature is a graphical representation, of all paths that might be 

traversed through a program during its execution. In a compiler, a control flow 

graph node represents a basic block, i.e. a straight-line piece of code without any jumps or 

jump targets. The representation of a piece of code in CFG is essential to many compiler 

optimizations and static analysis tools. CFG is an intermediate representation which carries 

the control and data flow information. Any compiler can be used to generate CFG like SUIF, 

LLVM, GCC, and TRIMARAN. The one having the inbuilt pass for CFG generation would 

be the most optimum one. This pass is available in LLVM [2.52], hence it is a good candidate 

for the generation of CFGs. Using LLVM, we can generate the machine independent 

intermediate representation (IR) code and from that the CFG of basic blocks are generated. 

LLVM is a compiler infrastructure written in C++. It is designed for compile-time, link-time, 
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run-time, and idle-time optimization of programs written in arbitrary programming languages. 

Many HLS compilers have used LLVM such as Ctoverilog, PandA, LegUp etc. Clang [3.16] 

is the frontend of the LLVM complier that converts the C program into an IR [3.17] that is 

similar to assembly language and useful for performing processing in subsequent compiler 

stages. Opt utility in the LLVM compiler allows various passes to run on the code for doing 

optimizations such as dead code elimination etc. 

For example, a program to find the gcd of two numbers is given below: 

      int gcd(int a , int b){ 

 while(a!=b){ 

  if(a>b) a=a-b; 

  else  b=b-a;  } 

       return a;     } 

The commands used to generate CFG in LLVM are:                                             

 Line 1: $ sudo apt-get install perl clang llvm                 

 Line 2: $ clang -S -emit-llvm filename.c -o filename.ll 

 Line 3: $ opt –mem2reg –instsimplify –S filename.ll –o filename.opt.ll 

 Line 4: $ opt -disable-opt -dot-callgraph -dot-cfg -S p11.ll I-o filename.opt.ll 

 Line 5: $dot -Tjpg -o callgraph.jpg callgraph.dot 

The command shown in line 1 is used to install Perl, Clang and LLVM. Commands in line 2 

emit the human readable IR representation of the C code. Line 3 commands does required 

optimizations like memory references that are converted to local registers. Line 4 produces 

callgraph and CFG of each function. Line 5 converts the graphs to jpg format. The generated 

CFG is given in Fig. 3.7. This graph can be used for scheduling and estimating the resources 

required for the program. 
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Figure 3.7:  Control flow graph of GCD program 

The generated graph shows the IR language [3.18], and defines the semantics of ANSI C in 

LLVM compiler. The control flow graph encapsulates the data edges as it defines the order of 

execution of the program. To generate instruction level CFG which shows the control edge 

and data edge, following commands are executed. We have used llvmpy [3.19] a python 

plugin. 

 $clang -emit-llvm filename.c -S -o filename.bc 

 $opt -mem2reg filename.bc -o filename1.bc 

 $llvm-dis -o filenameDFG.ll filename1.bc 

 $./graph-llvm-ir ./filenameDFG.ll 

Graph-llvm-ir [6.3] is the python script used to generate DFG as shown in Fig. 3.8. The black 

arrow denotes data dependency and red once show the control dependency.  
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Figure 3.8:  Instruction level CFG of GCD program 

The above diagram can be divided into two parts to show the control flow and data flow 

separately: 
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Figure 3.9: CFG of GCD program 

For separating the control flow and data flow information the dot file was parsed and resultant 

is shown in Fig. 3.9 and 3.10. Figure 3.10 is automatically generated using the script and not 

meant for manual interpretation. For this a perl script was coded to read the edge information 

and command is given below: 

$ perl Sep_CF and DF.pl main.dot 
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Figure 3.10: DFG of GCD Progrm 

3.4.2 Library of Operators in LLVM Compiler 

Now the generated control flow graph (Fig. 3.7) is used for generating the Verilog and 

estimate the resources consumed. An input specification written in simple C is taken, but the 

entire C specification which includes arrays, pointers is excluded here since our motive is to 

propose a estimation method and test its effectiveness. This research in not focused on high 

level synthesis but aims at providing an innovation that can be integrated to an existed tool.   

Table 3.4: Library of operators 

llvm instruction set: i32 Equivalent hardware unit LUT 

Phinode Multiplexer 

+register 

32 

 

Phinode 

 

Up/down counter 

Or  acculumator 

33 

add Adder 32 

fadd FP Adder 721 

sub Subtractor 32 

fsub FP Sub 874 

mul Multiplier 3/128 DSP 

fmul FP Multiplier 49 

Udiv/urem Unsigned Div 1098 

Sdiv/srem Signed Div 991 

Fdiv/frem FP divider 1941 

shl Shift left 93 

ashr Arithmetic 94 

lshr Logical Shift right 94 

and AND 32 

or OR 32 

xor XOR 32 
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The Table 3.4 shows the LLVM instructions and their corresponding area. The Xilinx FPGA 

Virter-5 series having xc5vfx70t-1ff1136 chip on ML507 was used to compile the operators. 

The Table 3.4 shows the operators that are commonly used in the HDL design. Since the 

datapath contains arithmetic operators and consumes most of the area, its estimation is a prime 

concern. In this work we have focused on area hence we have not shown the delay values in 

the table. In the Table 3.4, column 1 is the LLVM instruction, column 2 is the equivalent 

hardware unit and column 3 is the area in terms of Look-up tables (LUTs). In order to 

estimate resources correctly we need so see the types and quantity of resources available in 

Xilinx Virtex-5. The various kinds of resources available in Virtex-5 are slice registers with 

LUTs and flip-plops, DSP slices and BRAMs. We need to create formula for slices registers 

and LUT which are the primary resources under the assumption that no operator sharing 

occurs i.e. one to one mapping for each instruction in CFG to its corresponding hardware 

block. 

3.4.3. Converting C program to HDL 

High-level synthesis [1.7], is the design flow to obtain hardware automatically from high level 

specification. These specifications are sequential in behavior hence the design flow is 

converted to concurrent execution in hardware. Parallelism is extracted and clock is added to 

the generated hardware. The generated hardware is in RTL form and described in Verilog or 

VHDL. The goal of HLS is to let hardware designers efficiently build and verify hardware, by 

giving them better control over optimization of their design architecture, and through the 

nature of allowing the designer to describe the design at a higher level of tools while the tool 

does the RTL implementation. Verification of the RTL is an important part of the process. A 

Perl script was coded to parse the LLVM IR and convert to Verilog.  

The Perl parsing gives three files as outputs FSM, datapath and the top module. The FSM 

module preserves the control dependency and datapath preserves the dataflow. The top 

module instantiates the two modules and binds them together.  The LLVM IR instructions can 

be divided into four categories [2.57].  

icmp_eq equal 11 

icmp_ne Not equal 11 

icmp_sge Signed GE 32 

icmp_sgt Signed GT 33 

icmp_sle Signed LE 32 

icmp_slt Signed LT 33 

icmp_uge Unsigned UGE 32 

icmp_ule Unsigned ULE 32 

icmp_ult Unsigned ULT 33 
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1. Datapath instructions e.g. add, sub, mul,     

2. Conditional jumps e.g. whilecond, ifcond.  

3. Control flow e.g. br, ret     

4. PHI nodes define the incoming branch.  

By this classification, the instruction are handled differently during synthesis . 

The above synthesis is discussed with respect to Fibonacci the C code as given below: 

int fibo(int n) 

{ 

 int prev = -1; 

 int result = 1; 

 int sum;int i;  

 for(i = 0;i <= n;++ i) 

 { 

 sum = result + prev; 

  prev = result; 

  result = sum; 

 } 

return result;} 

 

The CFG for the above program is shown in Fig. 3.12. 
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Figure 3.11: Fibonacci series C program and its CFG  

The synthesis process starts by modeling each basic block as one FSM state. Each phi node 

defines the incoming branch which infers a MUX operation. The first line in %1 state means 

assign the variable %result.0 takes a value of 1 from %0 state or a value of %4 from %5 state. 

The select line of the MUX comes from FSM when in state %1. The output of the MUX goes 

to a register which has an enable line from FSM. The phi node with loop variable infers a 

counter in synthesis, so in Fig. 3.12 for control variable with constant adder is shown. The 

operators like icmp and add are synthesized as separate blocks. The output of the comparator 

is send to FSM to update the state. In state %7 the program ends and result is the output. 

Signals generated in FSM are mapped to the datapath in the top level module.  As shown in 

Fig. 3.11 the CFG has five states and so are in FSM diagram as shown Fig. 3.13. The various 

enable signals are generated when the state changes. Since this is first step for resource 

estimation, simple programs with no high level constructs have been used like no function 

calls, memory access. 
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Figure 3.12:  Datapath for Fibonacci program 

From the CFG we can see that three phi nodes are in state %1, hence Fig. 3.12 shows two 

multiplexer and one counter. The output of MUX goes to a register, which has an enable 

signal. Four variable %result, %previous, %i.0 and %n are assigned values in different states. 

Other variables are temporary variable and are not generated. The datapath contains operators 

like adder shown in state %3 and is used to do computation. A data bit is also generated by 

comparator operator like icmp and is used as input in FSM machine.  
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Figure 3.13:  FSM of Fibonacci program 

The aim of the FSM machine is to execute the code in correct order by generating control 

enable and select signal based on input coming from operators. Each node of basic block is 

taken as one state. The default entry for the FSM is state %0 which makes a state transition 

and goes to %1. In %1 state all the control signals are at the enabled as assignment to phi node 

happens. This state goes to %3 or %7 based on the condition flag generated from branch 

instruction which is an input to FSM machine. 
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Figure 3.14: Top module for Fibonacci program 

The top control flow and dataflow are combined and are shown in Fig. 3.14. This shows that 

resource consumed by the synthesis can be for the FSM, datapath and top entity combining 

them. 

Many optimizations are can be carried out on the generated HDL. We next show the operator 

sharing optimization in this section. Operator sharing is used for using single hardware block 

and implementing multiple operations on it. So, a MUX is placed at each of the inputs of the 

operator block. The FSM controls the select pin of the MUX. If the next state uses the 
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operator, then corresponding lines are selected by FSM. Other than icmp instruction, all other 

operations are generally stored in a register through a phinode. If the next state to the current 

state where operation is used contains a phinode, then we need place a register after the 

operator. When this is not the case, then we have to place a register to temporarily store the 

value, which consumes Flip Flops.     

 

Figure 3.15:  Sharing operators program for Fibonacci 

The actual resource consumption is measured by number of LUT flip-flop pair used. 

Generally, number of LUT slices used is larger in number than FF used. So, to save resource 

usage on FPGA slice LUT utilization must be minimized. Worst case in operator sharing for a 

particular number of operations is when no inputs are shared between two operations. The 

implementation of gcd program with operator sharing is shown in Fig. 3.15. The operator 
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sharing has been compared for three operators and, add, sub, shl. From the Fig. 3.16 we 

conclude that with operator sharing, the slice usage is much less as compared to without 

sharing. The consumption of resources comes down and can be seen in Fig. 3.16 (a), (b), (c) 

and (d) as best case. This happens because of reusability of area, but this should only be used 

in case the tolerance in performance is acceptable. 

 

Figure 3.16(a): SHL operator sharing 

 

 

Figure 3.16(b): AND operator sharing 
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Figure 3.16(c): ADD operator sharing 

 

 

Figure 3.16(d): SUB operator sharing                                 

The total estimated area depends on the area consumed by three entities FSM, datapath and 

top level, which corresponds to CFG, DFG and their connection. The area consumed by FSM 

and top level is insignificant and is ignored. The analysis is given below: 

EstimatedTotal = FSMarea + Datapatharea + Toplevelarea                                                                  …(3.1) 

We now propose equation that can estimate the resource consumption without doing the 

synthesis discussed above.  

Proposed theoretical formula for resource estimation: 
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No. of Registers = (number of phinodes) * (width of variable)  + [log(number of 

nodes)/ log2]    

…(3.2) 

     

No. of LUT slices  = (LUT slices of hardware) * (occurrences) + LUT slices used in 

FSM 

…(3.3) 

Since datapath is 32 bit and the FSM signals are 1 bit wide, LUT slices used by FSM can be 

ignored without losing much in accuracy. Based on the Table 3.4, we have taken three simple 

programs: Fibonacci, GCD and factorial using Eq. 3.2 and 3.3:  

Case a :  Fibonacci series program  

Expected slice register = 3*32 + 3 = 99  

Expected LUTs = 2*(phi node) + 1*(constant increment phinode) + 1*(32-bit adder) + 

1*(icmp_sle) = 161 

Case b: GCD program, 

Expected slice register = 4*32+3 = 131 

Expected LUT = 4*(phi node) + 2*(32-bit subtractor) + 1*(icmp_eq) + (icmp_sgt) = 236 

Case c: factorial program 

Expected slice register=4*(phinode)+4=132 

Expected slice LUT=1*(phi node) + 2*(constant increment phinode) + 2*(icmp_sle) = 194 

Based on Eq. 3.3, the algorithm to calculate the LUT usage is shown in algorithm 3.1. We 

iterate through the CFG and make a entry for DSP slices and LUT usage by each basic block 

and finally add all the LUT slices used. 

Algorithm 3.1: Resource Estimation Algorithm 

Create library of resources 

No.of LUTs = 0 

No.of DSP slices = 0 

For each line in LLVM IR 

   { 

       If (line==BasicBlock name) 

                 {Make a new entry in the Resource requirement table 

    LUTs required for the previous block = no. of LUTs 
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                  DSP slices required for the previous block = no. of DSP slices 

    No.of LUTs=0   

    No.of DSP slices=0} 

       Else { 

               Search for matches with library 

 If a match is found { 

                    No.of LUTs += Matched entry’s resource requirement in the library  

        No.of DSP slices += Matched entry’s resource requirement in the library} 

} 

} 

Total LUTs required = Sum of LUTs required for each block 

Total DSP slices required = Sum of DSP slices required for each block 

End 

 

3.4.4. Comparative Results of Theoretical and Synthesized Programs 

In the previous section, we have proposed a formula which can estimate the resources used for 

implementing a CFG in HW. It is necessary to verify the formula with the real synthesis and 

compare the results for checking the correctness. The Verilog codes are generated and 

synthesized using Xilinx ISE. The output waveforms generated for the GCD program is in 

Fig. 3.17(result = 6). 

 

Figure 3.17: Verification of the GCD program 

The LLVM IR can be extracted with different optimizations for the convenience of the 

programmer. It is found that different optimizations give different area.  
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We have applied various optimizations which are given below: 

Optim1:  

 -mem2reg, -instsimplify 

 mem2reg pass considers memory as register 

 instsimplify simplifies instruction and inserts phi nodes 

Optim2:  

 -mem2reg –lcssa -licm  

 lcssa is loop closed single static asiignment form pass. It places phi nodes at the end of 

loops 

 licm is loop invariant code motion. This pass identifies the statements which are inside the 

loop and whose values are not changing and keeps them outside the loop 

Optim3:  

 -mem2reg -loop-rotate -loop-reduce 

 loop-rotate rotates loop and –loop-reduce reduces the strength of array references inside 

loops 

Optim4:   

 -mem2reg -loop-unswitch 

 loop-unswitch creates multiple loops wherever it is necessary 

Optim5:  

 -mem2reg -loop-rotate -loop-unroll  

 loop-unroll unrolls the loop. Here the unroll count used is 10. Table 3.5 shows the effect 

of these optimizations on the resources usage. 

Table 3.5: Shows the LUT/DSP resource estimation for each of the optimizations 

Function 

LUT/DSP 

Optim1 Optim2 Optim3 Optim4 Optim5 

Gcd 236/0 268/0 311/0 268/0 1859/0 

Factorial 320/6 384/6 512/6 384/6 1376/60 

Sum of Fibonacci series 192/0 224/0 288/0 224/0 1152/0 

 

Fig. 3.18 shows the graphical representation of LUTs used for different optimizations. It is 

clear that loop unrolling increases the resource requirement. But with loop unrolling, 

concurrency can be achieved. 
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Figure 3.18: Comparison of LUT after optimizations on three programs  

Table 3.6: Comparison of resources 

 

 

 

 

 

 

Table 3.6 shows the comparison of three works, estimate 2 refers to the amount of resources 

calculated based on formula proposed in Eq. 3.1, 3.2 and 3.3. Column 3 shows the result after 

the Verilog code generated from the synthesis proposed in section 3.4.3. Column 4 shows the 

resources used shows by Vivado HLS tool. The Vivado shows much lower values of 

resources results as compared to other. Hence we conclude that resources for a program can 

be estimated in different ways and using Vivado-HLS is a good option. 

The resource estimation for dfiv program which was used in the previous section (time 

profiling) was carried out and the estimated results showed in Table 3.7. The callgraph 

depicting all the functions available in Dfdiv program is shown in Fig. 3.19. The main 

function contains the test data, hence the floa64_div has been taken as top level synthesizable 

functions. 
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Figure 3.19: Callgraph for DfDiv 

Table 3.7: Resource consumption of Dfdiv functions  

Name (location) Calls DSP48(%) FF(%) LUT(%) 

main 1    

estimateDiv128To64 12        8 14268 15464 

mul64To128 20 The resources added to estimateDiv128To64 

as they are sub functions sub128 20 

float64_is_nan 6 propogateFloat64NaN as they are sub 

functions float64_is_signaling_nan 6 

propagateFloat64NaN 3   0   0 329 

extractFloat64Exp 44 0 168 428 

extractFloat64Frac 44 0 296 642 

extractFloat64Sign 44 0 258 546 

float_raise 3 0 198 486 

float64_div 22    24 17196   19824 

packFloat64 17 The resources added to roundand 

PackFloat64 as it is sub function 

roundandPackFloat64 12   0 214   1180 

 

Table 3.7 shows the resource consumed by functions in the dfdiv program(19824) using the 

estimation method presented in algorithm 3.1. The function estimateDiv128To64 consumes 

significant resources as compared to all other functions. In the time profiling results, it was 

shown that this function consumed most of the time in the code. 

 3.4.5. Creating Extended Basic Block for Task graph generation from CFG 

CFG can also be combined together to form clusters known as extended basic blocks for 

increasing the granularity of a node. A basic block is a sequence of straight line code that can 

be entered only at the beginning and exited only at the end. To build basic blocks we first 

identify the leaders (the first instruction in a procedure, or the target of any branch, or an 
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instruction immediately following a branch (implicit target). Starting from a leader, the set of 

all following instructions until and not including the next leader is the basic block 

corresponding to the starting leader. We formally define an Extended Basic Block [3.20] as 

follows: A maximal sequence of instructions that has no merge points in it (except perhaps in 

the leader). Extended basic blocks increase the scope for optimization and parallelization. 

Following is an algorithm that can be used to form extended basic block from a Control Flow 

Graph containing basic blocks. The comments are given at different places in the algorithm. 

Algorithm 3.2: Extended Basic Block  

all_nodes: set of all nodes 

 EBB_roots=root  //set of root nodes for EBB initially only root 

 for every node ‘n’ 

if |Predecessor(n)| >1 

set EBB_roots += n  

  

 for every ‘x’ in EBB_roots 

  successor(x) = ‘x’; 

  for every ‘y’ in successor(x) 

   ‘s’=pop successor(x)  

   EBB(x)=s; 

   for every child ‘c’ of ‘s’ 

    if ‘c’ is not in EBB_roots // add the nodes till the roots are found 

     successor(x) = successor(x) +{c} 

 

finally EBB(x) contains group of nodes making an EBB with entry node ‘x’; 

 

 

 

Figure 3.20: Identification of extended basic block [Source: 3.20] 

For e.g. B1, B5 and B4 are the roots in Fig. 3.20. The algorithm starts from B1 and clusters 

B2 and B3 and stops at a root which is B4. To implement the algorithm we first create an 
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adjacency matrix of CFG of Basic blocks which is input to the algorithm. The result is an 

output file containing labels of Basic blocks that form Extended Basic Blocks. For the CFG 

given in Fig. 3.20, we used the dependence matrix given below: 

0, 1, 1, 0, 0, 0, 0, 0 

0, 0, 0, 1, 0, 0, 0, 0 

0, 0, 0, 1, 0, 0, 0, 0 

0, 0, 0, 0, 0, 1, 1, 0 

0, 0, 0, 0, 0, 0, 0, 1 

1, 0, 0, 0, 0, 0, 0, 0 

0, 0, 0, 0, 0, 1, 0, 0 

 

This gives the EBB = {(B1, B2, B3), (B4, B6), (B5, B7)}. Fig. 3.20 shows the CFG created 

after extended basic blocks are identified. We applied this algorithm in LLVM IR and 

following commnds and files wre used to generate the ouput graph: 

 llvm-gcc -emit-llvm -S -o program.ll dijkstra.c 

 opt -disable-opt -dot-callgraph -dot-cfg -S -o p11.ll program.ll 

 dot -Tjpg -o main.jpg cfg.main.dot 

 gcc -o dotToMat.out dotToMat.c 

 ./dotToMat.out 

 gcc -o ebb_final.out ebb_final.c 

 ./ebb_final.out 

 gcc -o bbtoebb.out bbtoebb.c 

 ./bbtoebb.out 

 gcc -o adjtodot.out adjtodot.c 

 ./adjtodot.out 

 dot -Tps AMatrix.dot -o outfile.ps 
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Figure 3.21: CFG for Dijkstra 

The CFG for the Dijkstra algorithm is shown in Fig. 3.21 (It has many operations hence 

visibility is low and is parsed by program). Its EBB is shown in Fig. 3.22 and can be used to 

create coarse level graphs from C programs. These EBBs provide a higher level of abstraction 

for the algorithm design. 

 

Figure 3.22: Extended basic block for the CFG 

We continue the discussion on Vivado-HLS as it was released in 2012 and it need 

comparative analysis. 

3.5. Resource Estimation using Vivado High Level Synthesis Tool 

The Xilinx Vivado HLS [1.21] compiler interface is built very similar to eclipse interface 

which can convert a C/C++ program into HDL and SystemC. It has been developed over a 

decade of research work. It gives the idea of the amount of resources, latency, frequency of 
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operation of the application and exploitation of parallelism in HW. We have used Xilinx 

Vivado HLS version 2013.2 and chose the target product family as Virtex-5 and target device 

as xc5vfx70t-1ff1136. Many kinds of optimization can be applied during HLS which result in 

the area/delay trade-off. We discuss these optimizations in brief in the next section.  

The synthesis of all the ten ChStone benchmarks [2.50], written in C, was done using the 

Vivado-HLS tool [2.60]. The results of synthesis are shown in Table 3.8 with respect to four 

resource components: BRAM, DSP slices(it contains MAC units), slice registers and slice 

LUT obtained from Xilinx ISE. It can be concluded from the Table 3.8, that AES, Dfsin, 

JPEG and DfDiv consume more than 40% of the slice LUTs.  

Table 3.8: Synthesized results of ChStone benchmarks 

Benchmark 
Class Lines of 

Code 

BRAM 

(%) 

DSP48 

(%) 

FF 

(%) 

LUT 

(%) 

adpcm Media 550 9 48 5 17 

aes Encryption 289 4 2 12 41 

blowfish Arithmetic 1255 1 ~0 1 5 

dfadd Arithmetic 441 ~0 ~0 2 26 

dfdiv Arithmetic 292 ~0 10 18 50 

dfmul Arithmetic 270 ~0 6 1 12 

dfsin Arithmetic 580 1 18 23 93 

jpeg Media  1073 24 38 12 57 

mips Processor 271 1 3 ~0 4 

sha Encryption 1969 3 ~0 1 6 

 

We can infer from the Table 3.8 that many programs consume high resources using automatic 

synthesis. If area is the constraint for an application then designer may look for HW-SW 

partitioning of such benchmarks. We chose dfdiv for partitioning process described in chapter 

4. 

3.5.1. Optimizations in Vivado-HLS 

Area and latency are two important parameters that the designer has to keep in mind while 

developing any digital hardware which are. In most cases the aim of the designer is to 

minimize area utilization and increase the throughput thus making it an efficient design. These 

two parameters are inversely proportional to each other and hence both the parameters cannot 

be optimized simultaneously. The area parameter is usually an optimization metrics, while 

performance is defined as a constraint metrics. Different kinds of optimizations [1.21] can be 

applied by the designer to achieve the area/delay trade-offs in a HLS methodology. Some of 

them are explained below: 

 Function Inlining: This basically removes the functional hierarchy which saves the time 

spent in executing the call and return statements from the function every time it is called. 

This can be used at places where the function is called just once or twice or if there is 

some kind of dependency which is preventing the top function to be pipelined. 
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 Function Dataflow Pipelining: This is a very powerful technique used to increase the 

throughput by a huge margin. This basically breaks the sequential nature of the algorithm 

and performs tasks in parallel as much as possible, so that one function doesn‘t have to 

wait for the previous one to be executed completely before it can start. It checks for 

dependencies and overlaps the operations as much as possible. 

 Loop Unrolling: This technique tries to carry out a certain number of iterations of the 

loop in one go unlike the unrolled case where it executes iteration in each clock. This 

increases the resources on the chip but can prove to be beneficial if the number of 

iterations is low.  

 Loop Dataflow Pipelining: It is operated in a similar manner as the functions pipelining, 

by allowing the parts of the loop that is sequential in nature to occur concurrently at 

register transfer level (RTL) . 

 Array Partitioning: Arrays can also be partitioned into smaller arrays. Memories only 

have a limited amount of read ports and write ports that can limit the throughput of a 

load/store intensive algorithm. The bandwidth can sometimes be improved by splitting up 

the original array (a single memory resource) into multiple smaller arrays (multiple 

memories), which effectively increases the number of ports. 

These optimizations were applied to ChStone benchmark and results are discussed next: 

In the adpcm benchmark, functions dataflow pipelining was applied on the encode function 

because it contributed to minimum latency. This led to a drop in the latency and interval of the 

design by almost 80% (((35654-7154)/35654)x100) as shown in Table 3.9(part-a). The 

resource used goes from 4577 FFs to 7293 FFs. 

 Interval defines the number of cycles after which the IP can accept new values.  

 Solution-1 is original version and solution 2 is optimized version.  

 The clock has been kept at 100 MHz. 

Table 3.9 (a): Performance comparison of original and optimized adpcm synthesis and  

          3.9 (b): Resource usage comparison of original and optimized adpcm synthesis. 

 Latency 

(part-a) 

cycles 

Interval 

cycles 

Resources 

(part-b) 

 min max min max BRAM_18K DSP48E FF LUT 

Solution1 28254 35654 28255 35655 26 116 4577 11483 

Solution2 7154 7154 7155 7155 24 242 7293 11483 
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In the blowfish benchmark, the array partitioning was applied on the array because it got 

synthesized into a dual port BRAM, which was constraining the number of reads and writes 

per cycle to two. Hence, complete partitioning of the array led to more number of reads and 

writes per cycle thus decreasing the overall latency and interval of the design as shown in Fig. 

3.23 and Fig. 3.24. The iv_load variable which was sequentially accessed is converted into a 

parallel accessible array mapped to dual port RAM. Fig. 3.10 shows the comparison of 

resource (1090 to 2173) and latency (44002 to 1442) for blowfish. 

 

Figure 3.23: Sequential access of array 

 

Figure 3.24: Parallel access of array 



86 
 

Table-3.10 (a): Performance comparison of original and optimized blowfish synthesis and  

               (b): Resource usage comparison of original and optimized blowfish synthesis 

 

 Latency(part-a) 

cycles 

Interval 

cycles 

Resources(part-b) 

 min max min max BRAM_18K DSP48E FF LUT 

Solution1 2 44002 3 44003 3 0 1090 2173 

Solution2 2 1442 3 1443 3 0 2173 1954 

 

In the dfmul benchmark, the loop dataflow pipelining directive was applied to the 

float64_mul function and it led to a decrease in interval from 14 to 2 as shown in Table 3.11 

(a) and resource went from 1338 to 1879. 

Table 3.11 (a): Performance comparison of original and optimized dfmul synthesis  

                      (b): Resource usage comparison of original and optimized dfmul synthesis 

 Latency(part-a) 

cycles 

Interval 

cycles 

Resources(part-b) 

 min max min max BRAM_18K DSP48E FF LUT 

Solution1 1 14 2 14 1 16 1338 5213 

Solution2 14 14 2 2 1 16 1879 5393 

 

In mips benchmark, the loop unroll was applied to the three inner loops with constant bounds 

inside the infinite while loop. This led to a decrease of about 5% in latency. Further the reg 

array was completely partitioned leading to a further decrease of 8% in the overall latency. 

This also decreased the time period of each clock cycle increasing the frequency as shown in 

Table. 3.12. 

Table 3.12 (a): Performance comparison of original and optimized mips synthesis and  

              (b) Resource usage comparison of original and optimized mips synthesis 

 Latency(part-a) 

cycles 

Interval 

cycles 

Resources(part-b) 

 min max min max BRAM_18K DSP48E FF LUT 

Solution1 75 867 76 868 4 8 437 1900 

Solution2 27 819 28 801 2 8 386 2120 

 

In the sha benchmark, the dataflow pipelining directive was applied on sha_transform 

function since it majorly contributed to the latency. It led to a drastic decrease of 60% in the 

latency and interval of the design as shown in Table. 3.13. 

Table 3.13 (a): Performance comparison of original and optimized sha synthesis  

                       (b): Resource usage comparison of original and optimized sha synthesis 
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Latency 

Cycles(part-a) 

Interval 

cycles 
Resources(part-b) 

 min max min max BRAM_18K DSP48E FF LUT 

Solution1 103587 151605 103588 151606 10 0 1315 2619 

Solution2 11067 59085 11068 59086 9 0 10543 26709 

 

In most of the optimized solutions as shown in tables above, more resources were consumed, 

but performance improved, hence it is the choice of the designer to select solution 1 or 2 based 

on constraints. 

Table 3.14: Comparison with LegUP compiler synthesis results: 

Benchmark 
Latency (cycles) Frequency(Mhz) 

Vivado LegUp Vivado LegUp 

 Virtex-5, PowerPC Cyclone IV, MIPS  

Adpcm 7154 10585 115.74 53 

Blowfish 1442 196774 117.51 60 

DfAdd 8 788 115.61 102 

DfDiv 10 2231 115.74 71 

DfMul 14 266 115.74 93 

DfSin NA 63560 114.68 46 

JPEG NA 1362751 115.21 37 

MIPS 800 5184 124.84 78 

SHA 59085 201746 139.08 58 

 

Since the ChStone benchmark has been developed by LegUp group, it is necessary to compare 

the optimality of generated HDL from Vivado-HLS vs. LegUp. LegUp is an open source high 

level synthesis tool developed at the University of Toronto. The LegUp framework allows 

researchers to improve C to Verilog synthesis without building the infrastructure from scratch. 

It accepts a vanilla ANSI C program as input, i.e. no pragmas or special keywords are 

required, and produce a Verilog hardware description as output that can be synthesized onto 

an Altera FPGA. C printf statements are converted to Verilog $display statements that are 

printed during a Modelsim simulation, making it possible to compile the same C file with gcc 

and check its output in the simulation.  

In LegUp, we can compile the entire C program to hardware, or we can also select one or 

more functions in the program to be compiled to hardware accelerators, with the remaining 

program segments runs in software on the MIPS soft core processor. Compiling the entire 

program to hardware can give us the most benefits in terms of performance and energy 

efficiency. However, there may be parts of the program which are not suitable for hardware, 

such as linked list traversal, recursion, or dynamic memory operations. Table 3.14 shows the 



88 
 

comparison with respect to latency and frequency of operation. It can be seen from the table 

that on Virtex-5 series of Xilinx, the Vivado performs much better as compared to LegUp. 

The loop bounds in the C code to be synthesized can either be constants or variable. For 

certain types of variable loop bounds Vivado can calculate the upper loop bound and give the 

latency of the design but for some it is unable to do so and hence the results are undefined. 

Such cases have been mentioned as NA in the Table 3.14.  

From the above analysis, we obtained the resource consumption of functions and will be used 

in partitioning phase. The next section shows how an IP generated from Vivado-HLS can be 

directly be added to the EDK flow and minimizes the designer‘s effort in interfacing.  

3.6. HW IP Design Integration of IP as a part of SOC 

FPGAs are platforms that allow the implementation of the HW synthesized from HDL 

languages. The application is synthesized and interfaced to the bus in FPGA based SOC 

design as discussed in chapter 1. The SOC flow encompasses the computation and 

communication infrastructure for the generated HW. There can be various communication 

substructures that can be used such as peer to peer connection, network on a chip or a bus 

design.  Bus design has been the most used commonly interface in FPGA IP interfacing 

technique. This is because it is simpler as compared to others and available in all the SOC 

platforms.  

3.6.1. Case Study for Hardware, Software IP Core Integration Using Vivado-HLS and 

EDK 

This sections aims to clarify the wrapper generation and bus bundling required for IP 

integration. The same method can be applied to any co-design process. A simple code for 

adding two numbers was written and its RTL description was generated using Vivado-HLS. 

Then, the generated RTL IP core was migrated to Xilinx EDK and interfaced [3.21, 3.22] with 

the Microblaze soft core processor. The hardware design was exported to SDK to create its 

board support package and user interface. The driver generated from Vivado-HLS where used 

as application programming interface and were used to write an application code for the 

generated hardware. The software computation was then complied on the hardware thus 

demonstrating the concept of usage of automatically generated IP core using Vivado-HLS. 

 

Source Code: Input to Vivado 

#include<stdio.h> 

#include "adder.h" 

void adder(int *c,int a,int b) 
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{ 

#pragma HLS RESOURCE variable=return core=AXI4LiteS metadata="-bus_bundle slv0" 

#pragma HLS RESOURCE variable=a core=AXI4LiteS metadata="-bus_bundle slv0" 

#pragma HLS RESOURCE variable=b core=AXI4LiteS metadata="-bus_bundle slv0" 

#pragma HLS RESOURCE variable=c core=AXI4LiteS metadata="-bus_bundle slv0"// AXI 

bundle for slave interface 

*c=a+b; 

} 

 

A simple adder written in C is defined in the code above and is used input to Vivado-HLS. 

The pragma compiler directive tells the compiler to bundle the input signals in the AXI bus as 

slave inputs. 

 

Testbench: 

#include<stdio.h> 

#include "adder.h" 

int main() 

{ 

int a,b,*c,result; 

a=2; 

b=3; 

c=&result; 

adder(c,a,b); 

if(result==5) 

    return 0; 

else 

    return 1; 

} 

 

The tool requires a test case in which the function to be synthesized is called and inputs are 

given. Such test case in shown above with a = 2 and b = 3. The generated IP core and its 

driver are migrated in EDK/SDK flow for achieving the SOC flow. The core generated by the 

Vivado-HLS tool was copied in the pcore directory of the EDK and interfaced with the 

Microblaze processor. Similarly the drivers were included in the SDK environments. 

 

SDK Application Code: 

#include <stdio.h> 

#include "xadder_slv0.h"   //generated from Vivado as header files 

#include "xadder.h"   //generated from Vivado as header files 

#include "xparameters.h" 

XAdder XA; 

XAdder_Config XA_config={0,XPAR_ADDER_S_AXI_SLV0_BASEADDR}; 

 

void XAdderStart(void *InstancePtr){ 
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XAdder *pAd = (XAdder *)InstancePtr; 

//Enable ap_done as an interrupt source 

XAdder_InterruptEnable(pAd,1); 

//Enable the Global IP Interrupt 

XAdder_InterruptGlobalEnable(pAd); 

//Start the IP 

XAdder_Start(pAd); 

} 

 

int main() 

{ 

int result,resultm; 

XAdder_Initialize(&XA,&XA_config); 

XAdder_SetA(&XA,2);  //pass value of 2 to adder 

XAdder_SetB(&XA,3);  // pass value of 3 to adder 

XAdderStart(&XA);   //execute 

result=XAdder_GetC(&XA);  // get the sum 

resultm=result*result;  //square the value 

xil_printf("%c2J",27); 

xil_printf("Final result:%d",resultm); 

return 0; 

} 

 

The above SDK code which uses the driver functions in given input 2 and 3. When the above 

code is run on the FPGA, the result = 25 is shown on the console screen. Here the addition is 

carried out by the hardware, whereas the squaring is done by the software as shown by two 

bold lines in the code. 

The above example shows the generation of IP core for AXI bus. The same procedure can be 

adopted for PLB bus, but the PLB drivers are not generated automatically in the Vivado-HLS. 

The user has to write the API functions to read and write from the IP core. Clock and reset are 

manually connected for the core by the designer. The example given below shows the PLB 

bundle that is used for IP [3.23].  

#pragma HLS RESOURCE core=PLB46S variable=a metadata="-bus_bundle CONTROL" 

#pragma HLS RESOURCE core=PLB46S variable=b metadata="-bus_bundle CONTROL" 

#pragma HLS RESOURCE core=PLB46S variable=return metadata="-bus_bundle 

CONTROL" 

The PLB on-chip [3.24] bus is used in SOC integrated systems and it supports read/write data 

transfers between master and slave devices equipped with a PLB interface and connected 

through PLB signals. It is a 64-bit bus format that supports multiple master and slave devices. 

Listed below are some of its characteristics:  
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• It can support 32-bit devices. 

• Each master device is assigned a priority so that the bus can arbitrate when multiple 

masters want to use the bus. 

• Slave devices are assigned one or more regions of addresses that are responsible for 

handling read/ write requests. 

• The read or write operation takes five bus clock cycles and the maximum clock frequency 

is 125 MHz. 

• PowerPC 405(ML507 Board used in this work has 405) supports two PLB interfaces: 

i. Instruction-side PLB for loading instructions into cache. 

ii. Data-side PLB (read-write) for data cache. 

The IP cores interfaced to the bus runs at a high frequency which is usually in MHz and hence 

the latency of computation is in the order of nanoseconds. This gives the designer a hope of 

very high throughput in HW. The data transfer takes place from memory to memory through 

the bus. This means that the processor takes data from cache, sends it to core, the core 

processes it and results are saved back to cache. This sending/receiving of data incurs a 

communication overhead. If such a overhead is large, then the advantage of using the HW-SW 

co-design approach may be lost. Hence it is necessary to understand the underlying bus and its 

overhead.  When an IP core is designed for acceleration, many kinds of optimization and 

design strategies at different levels of the design flow can be applied to increase performance.  

Some of the strategies are discussed below: 

 Using burst mode of transfer in which packets of data are transferred after the initial 

address setup. 

 Using pipelined mode of transfer if the bus supports. In this mode address and data are 

overlapped. 

 Using data pipelining in the design and pre-fetching the data. 

 Allowing the core, bus and processor to run at their maximum allowable frequency. 

 Using a direct memory transfer technique to release the processor during 

communication. 

We conclude that migration of C/C++ based application to HW is now accelerated, but there 

is a need to recognize the performance gain. Next section elaborates the usage of HW timer 

for calculating the time taken by core for processing the data.    
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3.7. Hardware Timer  

This section describes Xilinx XPS HW Timer [3.25] which has been used in this thesis for 

time measurement and has been used to find the running time of the applications. The XPS 

Timer connects as a 32-bit slave on processor local bus (PLB). It is organized as two identical 

timer modules. Each timer module has an associated load register that is used to hold either 

the initial value for the counter for event generation, or a capture value, depending on the 

mode of the timer.  The top level block diagram of the XPS Timer/Counter is shown in Fig. 

3.25. There are 3 modes in which the timer can operate: 

Generate mode:  The value of the load register is loaded into the counter. The counter begins 

the count and on reaching the value, it stops or automatically reloads the generate value. This 

generates an interrupt if enabled. This mode is useful for generating repetitive interrupts or 

external signals with a specified interval.  

Capture mode: The value of the counter is stored in the load register when the external 

capture signal is asserted. This mode is useful for time tagging external events while 

simultaneously generating interrupts. This mode of the timer is used for capturing the number 

of cycles elapsed. 

Pulse Width Modulation Mode: In this mode, the two timers are used as a pair to produce an 

output signal with a specified frequency and duty factor. 

 

Figure 3.25:  XPS timer interface with PLB bus [3.25]  
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There are three functions we need to use to capture the time. These are as follows: 

 XTmrCtr_Start() :– Starts the timer specified in the arguments; 

 XTmrCtr_Stop() :– Stops the timer specified in the arguments; 

 XTmrCtr_GetValue() :– Returns the value of the timer at that moment; 

We declare the following required global variables in the code for creating a timer object –  

 XTmrCtr TimerCounterInst; 

 Unsigned long cycles; 

The first variable is required to be passed as an argument to the above functions. The second 

variable is used to capture the value returned by the get value function. After the above 

initialization, the functions must be called in the following order:  

 XTmrCrt_Reset() – To reset the timer before starting it to any other value; 

 XTmrCtr_Start() – To start the timer; 

 XTmrCtr_Stop() – To stop the timer; 

 XTmrCtr_GetValue() – To get the number of cycles as captured by the timer; 

The events for which the time is required must be between the start and stop functions. It must 

be noted that the value captured is accurate to few clock ticks and hence, time captured at 

different runs can be different up to few nanoseconds. This inaccuracy is tolerable as order of 

execution time is more than milliseconds for critical and time consuming applications. The 

timer runs at 125 MHz and for all practical purposes, it is sufficient. Also, the operations of 

starting and stopping the timer take a few clock cycles. This overhead must be subtracted from 

the total time computation. So, for complete accuracy, the two functions (start and stop) must 

be written one below the other and the time must be captured. This gives the time taken to 

initialize the functions themselves. This value can be subsequently subtracted from total time 

values to get accurate results. For e.g. if the number of cycles = 000012FC and timer is 

running at 125MHz then the time would be 38880 ns. We found that timer takes 80 cycles for 

these start/stop functions, hence 80 x 8 ns = 640 ns. So the actual time comes out to be 38880 

- 640 = 38240 ns. A demo function showing the timer code is presented in Appendix 1.   

3.8. Results of Manual Interface of DfDiv Program as IP Core 

In the last three sections we have discussed time profiling, Vivado-HLS and HW timer. We 

now choose a program from ChStone benchmark to compare its SW, HW and HW-SW 
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performance in Virtex-5 series on ML507 board. This board has been chosen since, 

 It has a hard core PowerPC processor which can run at maximum frequency of 400 

MHz 

 It supports partial reconfiguration which will be used in chapter five for comparison. 

DfDiv program was selected since it consumed 50% of resources of the chip and profiling 

results showed that it takes around 0.8 ms to execute in SW, which is large value for a double 

precision floating point operation and its callgraph is shown in Fig. 3.19.  

From the Fig. 3.11, it is concluded that the best candidates for HW migration is 

estimateDiv128To64 as it consume more time (>400 us) thus being computationally intensive 

as compared to other functions. This function was synthesized manually in Vivado-HLS and 

its IP core was generated for achieving the co-design process. The IP core generated from 

Vivado-HLS was interfaced in the EDK flow and its execution time was measured using HW-

timer as shown in Table 3.15. 

Table 3.15: ChStone benchmarks timing results on ML506 Board 

Benchmark 

(1) 

LUT(%) 

(2) 

SW time Using 

Profiling  (gprof) 

(3) 

SW Time 

Using XPS 

timer (4) 

HW Time 

(5) 

HW-SW 

Time (6) 

DfDiv 50 0.800 ms 0.728 ms 0.0294 ms 0.406 ms 

 

The above process was done manually and following are the results as given in Table 3.8: 

 SW time using the gprof profiling = 800 μsec 

 SW time using XPS timer time = 728 μsec 

 HW time as DfDiv generated using Vivado-HLS and interfaced with the PLB bus = 29.4 

μsec 

 HW-SW co-design time using XPS timer = 406 μsec 

From these values we have proved that SW/ HW acceleration = 728/29.4 = 24.76 times. But 

the co-design flow shows only a 1.79 speed-up due to bus interface overhead.  

3.8.1. Comparison with LegUp 

LegUp tool also supports co-design process and computationally intensive functions can be 

accelerated by hardware, while the remainder of the program runs in software. This allows 

supporting a wider range of applications and enables a broad exploration of the 

hardware/software co-design space. With the MIPS soft processor, we can also execute the 

entire program in software. First we compile the benchmark with gcc to verify the output.  
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Hybrid flow is a combination of SW and HW. All the three flows hardware, hybrid and 

software were performed on the DfDiv benchmark program and it has been found that the 

execution time was least in pure hardware flow but hybrid flow is far better compared to pure 

software flow. The same DfDiv benchmark was compiled in LegUp and the result of the 

simulation is shown in Table 3.16 for the MIPS (150 MHz) processor. For hybrid case the 

estimate64div function was migrated for co-design flow. 

Table 3.16: Performance comparison of DfDiv in LegUp 

Category Pure 

SW 

Hybrid Pure 

HW 

Clocks 94188 9980 1928 

Fmax 

(MHz) 

71.88 65.19 100.123 

Execution 

Time (µs) 

1310.35 153.09 19.123 

 

Table 3.16 shows that DfDiv program takes 1310 microseconds in SW and 19.123 

microseconds in HW. These results are simulation based and do not consider the bus overhead 

incurred during the real time execution. 

Table 3.17: Area delay product comparison of DfDiv in LegUp 

Category Pure SW Hybrid Pure HW 

Area(Logic 

elements) 

4735 10884 4384 

Execution 

time(us) 

1310.35 153.09 19.123 

Area delay 

product  

62040507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1666231 83835 

 

Table 3.17 shows that the area delay product is maximum for pure SW and best for HW. The 

drawback of the HW results is that it only shows the area taken by the IP, but does not 

includes the system area, which includes controllers and processor. Since there is big 

difference in the clock frequencies in the two platforms (Xilinx and Altera) a significant 

comparison cannot be made. The LegUp area and delay are for Altera FPGAs, the comparison 

with ML507 which has PowerPC (400 MHZ) processor is not justified. The hybrid 

implementation lies in between the HW and SW implementation in Table 3.17.  

This section described the manual process of co-design and is static in nature. In such a design 

flow a function selected by the designer is used in SW migration and design space exploration 

cannot be explored. The next chapter uses genetic algorithm for answering such a crucial 

question.  
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3.9. Conclusions 

In this chapter we have shown how real time profiling can be used to find the time consumed 

by each function. The principle behind the generation of HW from a high level specification 

has been discussed. An algorithm has been proposed that can find the amount of resources 

consumed by the program by iterating through the control flow graph. A standard program 

(Dfdiv) selected from ChStone benchmark has been used testing and verification. For the 

same program its HW, SW and co-design time has been compared on Xilinx ML507 board. 

Thus it can be ssummarized as: 

a) Vivado-HLS tool was able to compile most of the programs present in ChStone 

benchmark and is user friendly. 

b) The Vivado-HLS generated core when interfaced in the EDK design flow gave 25 

times better performance to SW. 

c) The real time profiling gave accurate results, when the sampling time was order of 

microseconds. 
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Chapter 4 

Design and Development of Efficient Hardware and 

Software Partitioning Algorithm 

 
  
This chapter describes a framework which aims at design space exploration using HW-SW co-

design approach. The framework presents an automated flow to generate design parameters 

using partitioning algorithm. Data generated from Vivado-HLS and time profiling has been 

further used as an input to genetic algorithm for partitioning the application and generates 

various implementations. This chapter proposes various solutions to overcome the co-design 

challenges, making the design flow feasible.  

4.1. Frameworks for Reconfigurable Computing Systems 

For migrating any design to FPGA, the amalgamation of both SW-HW and HW-HW can be 

applied to a design to explore the design space. We have broadly classified the framework into 

two classes: 

Framework-1: Efficient automatic conversion method for C to HW-SW-co-design: 

A complete HW solution of an application gives best performance, but in many cases, it may 

consume a large amount of chip resources. We may then, look for implementing only a part of 

the application into HW. In such a case, the option is to use a combination of HW and SW. 

Such a design flow requires to identity the part of the application that takes more time in a 

systematic way rather than estimating the parameters manually. The extra effort required in 

this case is of interface design development for the application to work correctly. The 

interface can be simple for bare metal design (no OS) and complex for OS based design as it 

requires device driver development for. Many parts of such design flow are manually done 

and require broad knowledge of the application, interface and FPGA. This research work 

proposes an automated co-design approach way by using profiling, partitioning and high level 

synthesis process. This chapter extensively covers this framework in detail.  

Framework-2: Multiple IP cores can be designed for an application and interfaced to the bus. 

Usage of such core has been referred as HW-HW design flow in this thesis. This research 

work explores this framework which is HW-HW implementation of an application and is 

researched as two different approaches. In approach 1, reusable patterns in application are 

identified, and interfaced as static IP cores to the bus. Such reusable cores will allow the total 
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consumed resources to diminish and improve overall metrics of the design. Such similar 

patterns are created as clusters using isomorphism concept.  

The second approach aims at partitioning an application into clusters using genetic algorithm. 

These clusters are then dynamically scheduled on a given area using partial reconfiguration 

design flow. This framework is discussed in detail in chapter 5. The next section presents 

framework 1 and the profiling, high level synthesis, partitioning and results are put together in 

the subsequent sections. 

4.2. Hardware Software Co-design Partitioning Design Flow 

The proposed framework that implements co-design and guides the designer with well defined 

steps is presented in this section. An efficient partitioning technique being the sole objective in 

design flow requires the HW-SW time and the area of each function on a real HW, for 

identifying the best solutions. Since the time and area parameters are not directly available 

from a single tool-chain, certain assistance from different tools is required. Here Vivado-HLS, 

gprof and time profiler were used to accumulate these values.  

The framework starts from the specification written in C language. The code is synthesized 

using Vivado-HLS and resources are tabulated for each function in the program. For timing 

estimation, a callgraph is generated using gprof, which is a time profiler utility in gcc compiler 

and it returns the time taken by each function. The generated data from Vivado-HLS and 

gprof are given as input to the partitioning stage. 

The partitioning step generates the various implementations of an application for a different 

deadline. The objective of this phase is to guide the designer about which functions should be 

in HW and which once should be in SW. When the C program is populated with too many 

functions and the value of time/area is close, answering this question is very tricky. Unless an 

initial implementation on real HW is available, this cannot be answered easily. An initial 

implementation which gives performance parameters requires extensive efforts in system-on-

chip design flow. If this initial implementation can be bypassed, the job of the designer can be 

simplified.  

The HW is then interfaced with the bus and bus wrapper is created. The SW part is compiled 

with Xilinx SDK and finally the entire design is tested for performance gain using HW timer. 

We propose a design flow as shown in Fig. 3.7, which is an extension of design flow 

discussed in [2.1] and aims at answering the issues discussed above.  
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Figure 4.1: HW and SW Co-design flow 

The flowchart in Fig. 4.1 describes the steps followed in detail: 

 We start from a program written in C subset. Recursion and dynamic data structures are 

not supported in Vivado-HLS, hence should be avoided. LegUp group [2.5] has developed 

a standard benchmark known as ChStone which is written in C language and has been 

used in this work. 

 The C code is profiled in gprof to generate callgraph and tabulate the call values and time 

consumed by each function. The call graph and the flat profile format are extracted for 

finding the number of calls. The child and parent relation is generated using pvtrace utility 

[2.18]. 

 Vivado-HLS is used to generate Verilog code of the benchmark. It can bundle the entire C 

code into an IP core that can be directly interfaced with the bus. However, it does not 

allow generating Verilog code of selected functions automatically. Though, we can choose 

the individual functions and migrate them to HW manually. This option is also possible in 

LegUp by defining a function in a Tcl script manually. This step identifies the resource 

taken by each C function and latency in terms of number of cycles consumed. 

 The proposed partitioning algorithm is now applied to find the best solution. The 

functions, their dependency, resource table from Vivado and time of each function are 

given as input to the algorithm. The algorithm then generates the best HW-SW 

implementation for a given deadline.   

 The previous stage identifies the functions that are supposed to be migrated to HW. These 

functions are taken from Vivado and a wrapper is created for interface design. The 
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required FIFO or slave registers are used for input/output data transfer as discussed in 

section 3.1.  

 An upper level SW is now written in SDK, which can bind the functions together and the 

entire design is now built to test the performance gain and verify the functionality.  Pure 

SW execution of the program on SDK gives the lower bound and pure HW as core 

interfaced to the bus gives the upper bound for comparison of HW, SW and hybrid 

partitioning approach.  The above two steps have been discussed in previous chapter. 

4.3. Partitioning Process Using Genetic Algorithm for HW-SW Co-design  

In the previous section we have proposed the design flow and presented the manual approach 

of interfacing a predetermined function in a SOC flow. We have shown how time and area can 

be estimated using profiling and synthesis in Vivado-HLS for a program written in C. If any 

other function other than estimate64div is migrated to HW, what will be the performance can 

only be estimated after following the SOC flow. Such a flow is time consuming and error 

prone. What we need is a algorithm that will define which functions should be in HW and 

which once should be in SW, so that a given deadline is met. Hence we explore the process of 

partitioning and apply it to the domain of co-design. In subsequent sections we will show the 

process of partitioning on two different kinds of specification: 

a) A C program: Partitioning at this level means deciding which functions should be 

migrated to HW. Since there can be data structures shared across these functions, they 

cannot be assumed to be independent of each other. Hence in this case serial execution of 

functions will be considered in proposing the time equation. For this we will assume one 

CPU and one HW area available for mapping.  

b) A task graph: It is an acyclic graph in which data flows from one node to another and the 

assignment is continuous. Since there in no data structure sharing and continuous 

assignment, it is possible to run the operations in parallel, hence a different time equation 

will be proposed. Here we will extent the architecture to have multiple CPU and multiple 

HW area available for mapping. 

Partitioning is a process by which we divide the input specification into disjoint subsets 

depending on the constraints which defines the number of subsets, maximum vertices running 

between the subsets and the number of functions or nodes in a subset. It has been extensively 

used in Electronics design automation in placement and routing algorithms for netlist 

processing. It has extended its span to domain of embedded systems where HW-SW co-design 

exploration can be done. Most of the applications can be described as dataflow and control 
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flow graphs which are inputs to the partitioning phase hence the roots of partitioning phase are 

in graph theory. We next introduce basic terms and jargons used in graph theory.  

A graph G = (V, E) portrays nodes V as operators and edges E as connections. The graph size 

parameters:  are defined as n (nodes) = |V|, m (edges) = |E|. Fig. 4.2 (a) shows the sample 

graph with its parameters in Fig. 4.2 (b). 

1

32

4

5

V = {1,2,3,4,5}

E={{1,2},{1,3},{2,4},{3,4},{4,

5}}

N=5

M=5

 

        Fig. 4.2: (a) Sample graph   Fig. 4.2: (b) Parameters for sample graph 

The graphs can be classified as undirected, directed, mixed and weighted. An undirected 

graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has 

one red and one blue end. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the 

first k-1 nodes are all distinct. An undirected graph is a tree if it is connected and does not 

contains a cycle. Forest is s a union of trees.  Given a tree (T), choose a root node (r) and 

orient each edge away from r defines a rooted tree. A shortest path between two vertices is a 

path of minimal length. Given below are parameters and traversals [4.1] that are utilized in 

algorithms applied to graph. 

a. Length – number of edges in the graph. 

b. Distance between u and v – the length of a shortest path between them (or ∞ if a path does 

not exist) 

c. Subgraphs: G’(V’, E’) is subgraph of G(V, E): V’ ⊆ V, E’ ⊆ E  

d. Degree of a vertex: the number of edges incident on the vertex (in undirected graphs) 

e. In-degree and out-degree in directed graphs: the number of edges coming into/going out 

of the vertex. 

f. Adjacency matrix:  n-by-n matrix with Auv = 1 if (u, v) is an edge. Fig. 4.3 (a) shows a 

sample graph with its adjacency matrix in Fig. 4.3 (b). 
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Figure 4.3: (a) Sample graph 

    

 

 

 

 

     Figure 4.3: (b) Adjacency matrix 

g. Adjacency list:  Node indexed array of lists. 

h. Graph traversing and shortest path problems: Given a graph G (V, E), explore every 

vertex and every edge using the adjacency using depth first search or breadth first search 

approach. 

In the next section we present some vernaculars used in HW-SW partitioning that are used 

in the algorithm selection and design. 

4.3.1. Hardware and Software Partitioning Issues 

 HW-SW partitioning is the process of mapping of application defined as graph nodes to either 

hardware or software components. The objective here is to minimize the execution time, while 

keeping the physical area within constraints. Before the designer can apply partitioning, the 

various issues have to be kept in consideration. These issues are briefly described below 

[2.19]: 

I. Abstraction Level: The partitioning process can consider the input at various levels of 

abstraction. As the level increases the amount of logic amounting in the node also increases.  

The HW abstraction level can be:  

a. Netlist or DFG: This is the lowest level and nodes are digital components with their 

interconnection. 

 1 2 3 4 5 6 7 8 

1 0 1 1 0 0 0 0 0 

2 1 0 1 1 1 0 0 0 

3 1 1 0 0 1 0 1 1 

4 0 1 0 1 1 0 0 0 

5 0 1 1 1 1 0 0 0 

6 0 0 0 0 1 0 0 0 

7 0 0 1 0 0 0 0 1 

8 0 0 1 0 0 0 1 0 
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b. FSMD: These are used for behavioural specification of the systems along with control 

structure. 

c. Modules: These are entities that define functionality and can be treated as black boxes. 

d. Subsystems: A complete system is a collection of sub-systems. 

The SW abstraction level can be: 

a. CFG: Control flow graph is used to describe the flow structure of any language and can be 

used as graphical notations for specification. 

b. Basic block: Most compilers generate CFG at the basic block level. A basic block level is a 

piece of code which is entered at the top and exited at the bottom. 

c. Functions: These are entities that define functionality and can be called as per requirement. 

d. Subsystems: A complete SW is a collection of functions put together. 

The partitioning process can be applied to any of these abstraction levels. In this chapter we 

are showing the process on function level and DFG level, although the proposed algorithm can 

be applied to any level. 

II. Objective Function: The partitioning process is guided by a function which tells whether 

the algorithm movement is beneficial or not and it is known as objective function. This 

function can be modified as per the requirement and constraints in the design. For e.g. very 

simple objective function can be cost, which means for a given solution the one with 

minimum area cost will be chosen. 

4.4. Genetic Algorithm for Co-design   

Partitioning has been a matter of extensive research in the ASIC synthesis tools and aim at 

creating clusters, such that minimum wires are running between them. It can be divided into 

two categories: constructive and iterative based approach. Constructive partitioning aims at 

identifying an initial partition and iterative perform a certain number of iterations. Examples 

of constructive algorithm are cluster growth, hierarchical clustering, etc. Iterative algorithms 

are heuristic in nature that find solutions among all possible ones, but they do not guarantee 

that the best will be found, therefore they may be considered as approximately good but not 

optimal algorithms. Examples of iterative algorithm are Fiduccia Mattheyses (FM), simulated 

annealing (SA) and genetic algorithm (GA). The application of GA has been shown efficiently 

in VLSI domain [4.2-4.3] and further extended to co-design [4.4]. The current work uses GA 

[4.5] as the underlying partitioning algorithms since the literature survey shows the efficacy of 

the algorithm. Another approach known as Integer linear programming is a mathematical 
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approach that has been used for partitioning and scheduling solutions for smaller set of 

problems.  

Genetic algorithm is a robust stochastic optimization technique that is inspired by the principle 

of survival of the fittest in nature [2.27]. GA gives good result because at a time it maintains a 

set of solutions, whereas algorithm like simulated annealing works with one solution. An 

initial population is randomly created at the starting phase of GA. This population is actually a 

set of solution for the problem under consideration. The fitness value of the objective function 

[4.6] for each individual in the set is the index of the goodness of that individual.  GA evolves 

the population over generations with the use of operators such as selection, crossover, and 

mutation. In selection, individual with higher fitness value are selected and repeated in the 

next population. The newly selected population is subjected to a crossover operation where 

genetic information of the individuals, with better fitness value is exchanged. This enriches 

the population with better offspring. The final step is mutation where some bit of genetic 

information is complemented in the selected individuals. Finally the fitness value is compared 

and a new iteration is started until there is no change in the fitness value of the new 

generation. The pseudo code for GA is shown in algorithm 4.1 with explanation given in each 

line as comments.  

Algorithm 4.1:  Pseudo Code for Time and Cost Calculation  

/* Create first generation with gen_size random partitions*/ 

G = NULL 

for I in 1 to gen_size loop  //select a generation size and for each generation do 

G = G U CreateRandomPart(O) // create a random solution and add it to G 

end loop 

P_best = BestPart(G);  // Assign a solution to a variable. 

/*Evolve generation */ 

While not Terminate loop // do some fixed number of iterations 

G = Select(G, num_sel) U Cross(G, num_cross) // Apply selection and crossover 

Mutate(G,num_mutate)            // Apply mutation 

If objfct(BestPart(G)) < Objfct(P_best ) then 

 //find the value of objective function, reject it if more 

P_best = BestPart(G) 

end if 

end loop 

return P_best     // return the solution 
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4.4.1. Sample Case Study using GA for Co-design Using Callgraph Model 

We now present the partitioning phase of framework 1 using genetic algorithm. In this 

example, we extent the applications of partitioning to callgraph model generated from a C 

program. In order to prove the effectiveness of the partitioning process, a benchmark is 

required, which tabulates the SW execution time, SW area, HW execution time and HW area 

on a given CPU and FPGA. The availability of such benchmarks has not been reported, hence 

we start from a random specification and values as shown in Table 4.1. The C application 

consists of callgraph as shown in Fig. 4.4 and has seven functions. This was created for 

examining the proposed design flow and values were designed in such a way that algorithm 

has to search for a good solution. The main function is always implemented in SW because it 

is the function which calls all other functions. Only one level hierarchy has been taken since 

all the sub-callee will be the component of the callers. This assumption has been made since 

the HLS HW generation is usually done of the functions present at level 1. This means for Fig. 

4.4, there will be six SW functions in SW or six modules as HW in HLS. 

Since the C program executes serially, in the total time calculation, serial execution of 

functions has been considered. The function main has been given 0 time so that the algorithm 

takes it as SW. In a situation in which the functions have similar parameters we need a well 

defined partitioning algorithm that can give concrete answers about the co-design paradigm.   

     

 

Figure 4.4:  Callgraph of a random C program 

Table 4.1 shows the dummy values taken for seven functions. From previous discussions, we 

can get the values from the Vivado-HLS, but this feature has to be inbuilt in compiler of 

Vivado, i.e. the tool itself should return the values in a tabulated form.  

 

 

 

main

CodingHuffmanFixedpDCTZeroaddPre

144
144144144

144144
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Table 4.1: SW and HW parameters 

Node-

Name(1) 

CPU 

Time(2) 

FPGA 

Time(3) 
Calls(4) 

FPGA 

Resources(5) 

CPU 

Area(6) 

Main 0 100 1 0 5000 

Pre 90 1 144 10000 0 

Zeroadd 20 2 144 2000 0 

Fixedp 40 4 144 4000 0 

DCT 100 10 144 5000 0 

Huffman 50 5 144 6000 0 

Coding 70 7 144 10000 0 

 

Table 4.1 has following columns: 

 Column 1: The name of the function. 

 Column 2: The time taken by each function in SW. Main has been given zero value so that 

it is always admitted in SW by algorithm. 

 Column 3: The time taken by each function in HW. These values are kept 10% faster as 

compared to SW values as we have shown in DfDiv example (section 3.8) that HW is 25 

times faster to SW. 

 Column 4: Number of times the main calls the other functions. 

 Column 5: Area consumed by each functions on FPGA. For e.g. FPGA may have 44800 

LUTs.  

 Column 6: Area consumed by each functions in CPU.  The main's function area is fixed to 

5000 accounting to area taken by CPU on the chip and all other are kept as zero since 

functions will be stored in memory and will not consume area. 

As shown in the algorithm 3.1 that the GA is guided by the objective function which defines 

the goodness of the solution. We have used the objective function (objfct) as shown in Eq. 4.1. 

It includes time and implementation cost along with a predetermined deadline [2.33].  

𝑂𝑏𝑗𝑓𝑐𝑡 =  
𝑘1 ∗  𝑡 − 𝑡𝑟 +  𝑘2 ∗ 𝑐      𝑖𝑓 𝑡 > 𝑡𝑟
                𝑐                             𝑖𝑓 𝑡 < 𝑡𝑟

  
…(4.1) 

In Eq. 4.1, t is total execution time of solution, c is total cost (area), tr is deadline constraint 

and k1, k2 are constants. The objective is to find the minimum value of cost for a given time 

constraint. So, satisfying solutions are obtained under the condition k1>>k2 because objective 

function value becomes large under the condition when execution time exceeds deadline. This 

will guide the GA and it will remove this solution in next iteration. For e.g. suppose, if k1 

=1000, k2=1, tr = 200, c = 500 then if t > tr objfct = 1000(300 - 200) + 1*500 = 100500. But if 
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t < tr, objfct = 500. Hence if the deadline is missed objfct takes a high value because of k1 and 

k2 and this solution will be avoided. 

Similar Objective Function can be used when area is the constraint and it is shown in Eq. 4.2.  

          𝑜𝑏𝑗𝑓𝑐𝑡 =  
𝑘1 ∗  𝑎 − 𝑎𝑟 +  𝑘2 ∗ 𝑡      𝑖𝑓 𝑎 > 𝑎𝑟
                𝑡                             𝑖𝑓 𝑎 < 𝑎𝑟

  
…(4.2) 

 

           F  =  ObjfctF(Vi)
𝑝

𝑖=1
 …(4.3) 

  

pi = objfct (Vi)/F …(4.4) 

                                                                  

We have used Roulette wheel [2.27-Appendix-2] implementation in GA and it requires that 

the objective function should be normalized and converted to numbers between 0-1. For this 

the Fitness of the population is calculated and is given by Eq. 4.3. For converting the number 

between 0-1, Eq. 4.4 is used. The detail GA algorithm is shown below with comments added 

in each line. 

Algorithm 4.2:  GA FOR HW SW Partitioning 

BEGIN 

 p = population size; // decide the size of the initial population 

     n = no. of nodes; // number of nodes in the graph 

     G = Generate random population (0-1) of size = p x n; // for roulette wheel generate 

random no. 

     REPEAT 

1. FITNESS evaluation of each chromosome G 

                       Calculate time; // find the time of each chromosome 

                       Calculate cost; //use HW-SW time and area to find the cost. 

                       Calculate Objfct; // use Eq. 4.1 to find the objective function 

2. PROBABILITY evaluation of each chromosome 

      Give max probability to min. OF;// using Eq. 4.4 find the probability of each chromosome. 

3. CUMULATIVE PROBABILTY (CP); //convert the above numbers to cumulative 

distribution. 

4. SELECTION (Roulette Wheel) of better chromosomes 

      g1= generate random no (0 to 1) for size= p; 

      Find nearest larger CP value for each g1; 

      G = Generate new population; 

      (max. chance of larger probability value)               
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5. CROSSOVER between the pairs of parents 

      c = define crossover probability; 

      g2= generate random no (0 to 1) for size= p; 

      Select chromosome for g2 ≤ c; 

      Generate random position (0 to n) for each p pair of selected chromosome; 

      Interchange bit patterns between pairs after their generated position; 

      G = Generate new population;                 

6. MUTATION of the resulting offspring; 

      m = define mutation probability; 

      g3= generate random no (0 to 1), size= p x n; 

      Select position for g3 ≤ m; 

      Toggle bit pattern; 

      G = Generate new population; 

       UNTIL TERMINATION CONDITION SATISFIED 

Schedule optimum OF value pattern; 

END 

The algorithm proposed for cost calculation is shown in algorithm 3.3 with NC being the 

number of time the function is executed. The algorithm finds the total time taken for the 

chromosome. 

Algorithm 4.3:  Pseudo Code for Time and Cost Calculation  

BEGIN 

Take one chromosome 

Cost = 0; dummy = 0; 

for i=1:n 

    If (pattern [I] == 1) 

 execution_time[i] = hw_time[i] *NC[i]; //multiply the number of calls with the hw time. 

             Cost = Cost + hw_cost[i]; 

    else  

 execution_time[i] = sw_time[i] *NC[i]; 

 if (dummy == 0) 

       {Cost = Cost + sw_cost[i]; 

                     dummy = 1;} 

Start_time[1] = execution_time[0]; 

End_time[1] = 0; 

for i=2:n 



111 
 

 End_time[i] = Start_time[i] + execution_time[i];// addition of total time of each node 

end 

Time = End_time[n]; 

Cost; 

END 

Following functions were written in Matlab to accomplish the GA execution, 

random_population(), mutatiton(), crossover(), fitness_value(), tot_time(), tot_cost(), 

roulette_wheel(), pattern(), randpop(), cum_probability_value() and schedule(). 

4.4.2. Experimental Results 

The architecture used for verification is shown in Fig. 4.5 with one CPU and one FPGA. The 

values of each node are shown in Table 4.1 for CPU/FPGA time and CPU/FPGA area.  

 

Figure 4.5: A SOC testing architecture 

The process  by which the values are given as input and the manner in which the outputs are 

obtained from one run of GA is shown below: 

 

 

 

 

 

 

 

 

 

A 0 in the pattern means SW node and 1 means HW node shown at line number 6. A manual 

analysis gives that the pure HW time is 4176 and pure SW time is 53280. A hybrid 

implementation should fall in between these values.  

 

1. For e.g. consider the deadline as 200: 

 

2. enter deadline: 200  ; User defined time for application to complete 

3. enter population size: 20  ; The size of initial population for GA 

4. enter no of iteration: 50  ; The number of times the GA does the iterations 

5. Do you want serial execution or parallel (s/p): s ; The execution is serial or parallel 

6. PATTERN = 0  1  1  1  1  1  1   ; main in SW and all in HW 

7. COST = 4018000   TIME = 4176 

8. node 1   start = 0   end = 0 

9. node 2   start = 0   end = 144 

10. node 3   start = 144   end = 432 

11. node 4   start = 432   end = 1008 

12. node 5   start = 1008   end = 2448  

13. node 6   start = 2448   end = 3168 

14. node 7   start = 3168   end = 4176 
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Table 4.2: Partitioning results for different deadlines 

Deadline Opt. Cost Pattern Time Area Product 

00200 4018000 0111111 04176 37000 154512000 

01000 3218000 0111111 04176 37000 154512000 

05000 0042000 0111111 04176 37000 154512000 

10000 0038000 0110111 09360 33000 309870000 

20000 0028000 0101110 18432 25000 460800000 

30000 0020000 0100100 27504 15000 412456000 

40000 0020000 0000101 31248 15000 468720000 

50000 0009000 0001100 49536 09000 445824000 

53280 0005000 0000000 53280 05000 266400000 

 

The results for different deadlines are given in Table 4.2 

• Column 1: The user defined deadline  

• Column 2: Cost value returned by the GA  

• Column 3: SW and HW pattern for the chromosome selected.  

• Column 4: The time taken by the chromosome to complete. 

• Column 5: Area consumed by the chromosome. 

• Column 6: Area delay product for the chromosome. 

For lower value of deadline upto 5000, all the functions are implemented in SW except the 

main. This is because the lowest possible time is 4176 with HW. As the deadline increases, 

the functions migrate to the SW and the cost comes down. For e.g., If the deadline is t = 200, 

k1 = 1000 and k2 =1, then from Eq. 4.1, objfct is given as: 

objfct = 1000(4176-200) + (10000 + 2000 + 4000 + 5000 + 6000 + 10000) = 4018000; 

Suppose the deadline given is 10000, then 0110111 chromosomes can be taken as the solution.  

Hence the choice of the solution is dependent on the designer. Many parameters like number 

of iterations, the size of the initial population, mutation and crossover probability, size of the 

input can impact the results and running time of GA. More iteration gives a better 

optimization results, but computations increases. Higher probability value gives faster 

convergence, but the possibility of missing out optimum value is possible. So, for a particular 

problem these parameters experimentally determined and are fixed. Table 4.3 represents 

different parameter values have been used in GA algorithm.  
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These values have been taken from [2.34], but population size and iterations are defined for 

our problem set. The constant terms allows to create a weight factor in the function, crossover 

probability and mutation probability are kept low.  

Table 4.3: Parameter values used in GA 

Parameter Value 

k2 (constant in OF) 1 

k1 (constant in OF) 1000 

c (Crossover probability) 0.5 

m (Mutation probability) 0.02 

p (Population size) 20 

Iterations 50 

 

 

Figure 4.6: Fitness value optimized with iterations in GA for implementation  

Fig. 4.6 shows how fitness value moves towards the optimum solution with increasing number 

of iterations in GA for CPU – ASIC implementation for deadline = 30000. Here for particular 

results, no. of iterations is set to 50. Once the algorithm finds a minimum cost solution, it will 

hold this solution till it finds a solution optimum to the current one. After certain no. of 

iterations, the fitness value reaches to its optimum value and GA will hold this value in next 

remaining iterations. Given graph is indicative only, for every run of algorithm curve will 

change, but the final optimization result will remain same after reasonable no. of iterations. 

This happens because every time GA starts with random populations, so in every run different 

initial starting and with a selection, crossover and mutation stages as algorithm achieves 

solutions from random numbers only.  

After applying the GA to case study, we now take the same program Dfdiv which we chose in 

section 3.8, to show the HW and SW solutions generated using GA. In order to apply the GA 
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what we need is the callgraph, HW time, SW time and HW area of each function. The call 

graph generated is shown in Fig. 4.7 for DfDiv application using pvtrace utility in Linux.  

The exact same functions shown in a C program callgraph are not synthesized as modules in 

Vivado-HLS. The sub-functions are synthesized as sub-modules. There are total 15 functions 

in the Dfdiv application. Floatdiv64_div is the function which calls all other functions and 

main has the testing data for verification. Now Vivado-HLS returned four 

modules(Float64_div, EstimateDiv128to64, propagateFloat64NaN and roundAndPackFloat64) 

as shown by circles in Fig. 4.7. Table 4.4 shows the resources returned by Vivado-HLS of 

these modules.  

The time for each function can be accumulated from the profiling results. The FPGA time can 

be tabulated from the Vivado synthesis results, number of calls from the pvtrace utility (this 

needs modification similar to Vivado synthesized modules), FPGA resources as LUT slices 

from Vivado-HLS and CPU area from data sheet of Virtex-5. These values are shown in Table 

4.4.  
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                                                           Figure 4.7: Callgraph for DfDiv 

Table 4.4: Resource usage from Vivado HLS for DfDiv program 

Function  BRAM_18K DSP48E FF LUT 

Available on Virtex-5 296 128 44800 44800 

Float64_div 1 16 2812 4184 

EstimateDiv128to64 0 8 16988 16928 

propagateFloat64NaN 0 0 0 329 

roundAndPackFloat64 0 0 367 1385 

Total Used 1 24 20167 22826 

 

For Float64_div the CPU time is taken to be less so that this function is always in SW, this is 

due to the fact that this function calls all other functions. We have proved that HW time is at 

least 25 better to SW time in Dfdiv example hence the SW time has been divided by 25 times 

in the Table 4.5.  

Table 4.5: Parameters for DfDiv 

Node 

Name 

(1) 

CPU (Total time) 

Time 

(2) 

(usec) 

(profiling) 

FPGA  

Time 

(3) 

(usec) 

Calls 

(4) 

FPGA  

Resources 

(5) 

CPU  

Area 

(6) 

Float64_div Base as 210/0 0 1  4184 5000  

EstimateDiv128to64 10.25  0.41  40  16928 0  

propagateFloat64NaN 5  0.2  12  329 0  

roundAndPackFloat64 40  1.6  3  1385 0  

 

The execution of GA for generating the design space is shown as a flowchart in Fig.4.8. 
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Create a resource consumption and execution time, calls table   

Start the Genetic algorithm and define the number of iterations and 

population size

Enter the deadline

Execute Genetic algorithm and find the area delay product

Index the chromosome in the dictionary

Has the deadline threshold 

reached

Yes

No

Choose the Chromosome

 

Figure 4.8: Flowchart for the algorithm execution 

The execution steps of GA are shown in Fig. 4.8. After the inital parameters are set , different 

deadlines are entered until a upper threshold of deadline is reached. Table 4.6 shows the area 

and delay product for various solutions generated by GA for various deadlines. 

Table 4.6: Results of DfDiv program 

Deadline  Pattern  Time  

 

Area  

Product 

(Time x 

Area) 

300 0101 291.2 23313 06788745.6 

350 0110 348.8 22257 07763241.6 

400 0100 406.4 21928 08911539.2 

430 0111 233.6 23642 10251171.2 

650 0011 627.2 06714 04211020.8 

700 0001 648.8 06385 04142588.0 

800 0000 800.0 05000 00400000.0 

800 0010 794.4 05329 04233357.6 

 

Designer can select the chromosome according to deadline. These values are plotted as a 

graph in Fig. 4.9. For e.g. if the deadline is 430, all the functions are in HW except 

float64_div. 
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Figure 4.9: Deadline vs. Area/delay product for various genes 

 

Figure 4.10: Snapshot of GA running in Matlab 

Fig. 4.10 shows the snapshot of the GA program execution in Matlab. 

4.5. Sample Case Study using GA for Co-design Using Task Graph Model 

In the previous example call graph was taken as input to the genetic algorithm. In this section, 

a input specification and a architecture have been created for proving the effectiveness of the 

algorithm for acyclic graph specification. Task graph [4.7] with eight nodes has been 

presumed for demonstrating the GA partitioning approach as shown in Fig. 4.11. Task graph 

is an acyclic graph which represents an application as nodes and edges. There is no data 
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structure sharing among the nodes, i.e. there is continuous assignment of the output of one 

node to another. This means that the nodes can be executed in parallel, which was not the case 

with callgraphs.  

1

2 3

4 5

6 6

8

 

Figure 4.11:  Sample task graph 

 

 

Figure 4.12: Multiple CPU and ASIC sample testing architecture 

Fig. 4.12 shows the architecture assumed for implementing the task graph and contains two 

CPU and two accelerator area named as ASIC1 and ASIC2. This architecture is different from 

the call graph presumed architecture; hence this sample case study using GA is different from 

call graph approach. Table 4.7 represents time and cost for 8 tasks on 2 CPU and 2 ASIC. The 

various possible architectures can be CPU1, CPU2, CPU1-CPU2, CPU1-ASIC1, CPU1-

ASIC2, CPU2-ASIC1, CPU2-ASIC2. We have imposed the restriction that at least one CPU 

and one ASIC should be present in the solution.  This can be changed as per the requirements. 

Now the task of GA is to generate the best performance solution on any one of them: CPU1-

ASIC1, CPU1-ASIC2, CPU2-ASIC1, CPU2-ASIC2 and show the node mapping and schedule 

on the component. 
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Table 4.7: Implementation parameters for different Tasks 

 

Node 
CPU1 

Time 

CPU2 

Time 

ASIC1 

Time 

ASIC2 

Time 

CPU1 

Cost 

CPU2 

Cost 

ASIC1 

Cost 

ASIC2 

Cost 

1 60 30 20 10 40 60 25 45 

2 90 50 30 15 40 60 30 35 

3 81 54 27 15 40 60 15 20 

4 60 40 20 10 40 60 10 15 

5 90 44 30 15 40 60 10 10 

6 87 30 27 20 40 60 10 25 

7 90 50 40 15 40 60 15 35 

8 99 56 33 20 40 60 15 15 

 

The GA will be using the execution to determine the objfct of a chromosome. Algorithm 4.4 

shows the pseudo code used in finding the execution time of each task.  

Algorithm 4.4:  Pseudo Code of Time and Cost Calculation  

BEGIN 

Take one chromosome 

Cost = 0; dummy = 0; 

for i=1:n    // for each node 

    if (pattern[i] == 1)   // if the pattern is 1 then the node is in HW 

 execution_time[i] = hw_time[i]; 

             Cost = Cost + hw_cost[i]; 

    else      // else it in SW 

 execution_time[i] = sw_time[i]; 

 if (dummy == 0) 

       {Cost = Cost + sw_cost[i]; // add area 

                     dummy = 1;} 

Start_time[1] = 0; 

End_time[1] = execution_time[1]; 

for i=2:n   // schedule the task 

    Start1 = max{End_time[predecessor_task]}; // calculate the predecessor which has max 

time  

    for j=1:i-1 

 if(pattern[i] == pattern[j])  // if both are in on same component 

     z=j;     // use a temporary value to store 

    end 

    Start2 = End_time[z];   // find the end time of z 

    Start_time[i] = max(Start1 + Start2)  // add thhe 
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    End_time[i] = Start_time[i] + execution_time[i]; // calculate the end time of node i 

end 

Time = End_time[n]; 

Cost; 

END 

Algorithm 4.4 shows pseudo code for parallel execution time and total cost calculation of one 

chromosome which is useful for finding Fitness Value of chromosome. In a particular 

algorithm, each chromosome is represented by a pattern of 0 and 1 with length equals to total 

no. of tasks (nodes) in task graph. Here task is represented by 0 if it is implemented in 

software and 1 if it is implemented in hardware. In total cost calculation all ASIC 

implementation costs are added, but only one time CPU cost is added because the CPU area 

remains same. Here communication cost between tasks while migrating from hardware to 

software or from software to hardware is not taken into consideration. 

4.5.1 Results of Sample Case Study  

For particular input values of the task graph various iterations have been made. For the given 

parameters and deadline= 275 time units optimum hardware-software partition for each 

possible combination is shown in Table 4.8 along with scheduling of each task in particular 

partition. For deadline = 275 optimum cost value is 80 and it is found in CPU2 and ASIC1 

combination. Now for same task graph parameters if deadline = 200 optimum cost value of 

115 is obtained in CPU2 and ASIC1 combination. The cost results and scheduling of tasks are 

shown in Table 4.9. For correctness of solutions manual crosscheck has been made with all 

possible combinations of partition (all possibilities) and it is found that given solutions are 

optimum, hence given algorithm gives optimal solution.  

Table 4.8: Optimization results for deadline = 275 

 CPU1 & ASIC1 CPU1 & ASIC2 CPU2 & ASIC1 CPU2 & ASIC2 

 Opt. Cost Time Opt. Cost Time Opt. Cost Time Opt. Cost Time 

 115 264 135 267 80 270 85 270 

Node Map Start End Map Start End Map Start End Map Start End 

1 CPU1 0 60 CPU1 0 60 CPU2 0 30 CPU2 0 30 

2 ASIC1 60  90 CPU1 60 150 CPU2 30 80 CPU2 30 80 

3 CPU1 60 141 ASIC2 60 75 CPU2 80 134 CPU2 80 134 

4 ASIC1 90 110 ASIC2 150 160 ASIC1 80 100 ASIC2 80 90 

5 ASIC1 110 140 ASIC2 160 175 ASIC1 100 130 ASIC2 90 105 

6 ASIC1 140 167 CPU1 160 247 CPU2 134 164 CPU2 134 164 

7 CPU1 141 231 ASIC2 175 190 CPU2 164 214 CPU2 164 214 

8 ASIC1 231 264 ASIC2 247 267 CPU2 214 270 CPU2 214 270 
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Table 4.9: Optimization results for deadline = 200 

 

Fig. 4.13 shows how fitness value moves towards the optimum solution with increasing 

number of iterations in GA for CPU2 – ASIC1 implementation for deadline = 275. Once the 

algorithm finds minimum cost solution, it will hold this solution till it finds a solution 

optimum to the current one. After certain no. of iterations fitness value reaches to its optimum 

value with deadline constraint algorithm will hold this value in next remaining iterations. 

 

Figure 4.13: Fitness value optimized with iterations in GA for CPU2 - ASIC1  

 

 

 

 

 

 CPU1 & ASIC1 CPU1 & ASIC2 CPU2 & ASIC1 CPU2 & ASIC2 

 Opt. Cost Time Opt. Cost Time Opt. Cost Time Opt. Cost Time 

 155 200 175 176 115 197 120 190 

Nod

e 

Map Star

t 

End Map Star

t 

End Map Star

t 

End Map Star

t 

End 

1 ASIC1 0 20 CPU1 0 60 CPU2 0 30 CPU2 0 30 

2 ASIC1 20  50 ASIC2 60 75 CPU2 30 80 CPU2 30 80 

3 CPU1 20 101 CPU1 60 141 ASIC1 30 57 ASIC2 30 45 

4 ASIC1 50 70 ASIC2 75 85 ASIC1 80 100 ASIC2 80 90 

5 ASIC1 70 100 ASIC2 85 100 CPU2 80 124 ASIC2 90 105 

6 ASIC1 100 127 ASIC2 100 120 CPU2 124 154 CPU2 90 120 

7 ASIC1 127 167 ASIC2 141 156 ASIC1 124 164 CPU2 120 170 

8 ASIC1 167 200 ASIC2 156 176 ASIC1 164 197 ASIC2 170 190 
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Table 4.10: Partitioning results for different deadlines 

Deadline Opt. Cost CPU-ASIC Pattern Time 

120 190 CPU2-ASIC2 01111011 120 

140 155 CPU2-ASIC2 00111011 140 

160 155 CPU2-ASIC2 00111011 140 

180 140 CPU2-ASIC2 00111010 176 

190 120 CPU2-ASIC2 00111001 190 

200 115 CPU2-ASIC1 00110011 197 

210 110 CPU2-ASIC1 00110101 207 

220 105 
CPU2-ASIC1 

CPU2-ASIC2 

00011101 

00101001 

217 

220 

230 95 CPU2-ASIC1 00011010 230 

240 90 CPU2-ASIC1 00011100 240 

260 85 CPU2-ASIC1 00110000 260 

270 80 CPU2-ASIC1 00011000 270 

320 70 
CPU2-ASIC1 

CPU2-ASIC2 
00001000 

314 

310 

360 60 CPU2 00000000 354 

580 50 CPU1-ASIC1 00000100 570 

660 40 CPU1 00000000 657 

 

Table 4.10 represents optimum cost value and corresponding hardware, software partition for 

different deadlines. For lower value of a deadline (up to 200) CPU2 – ASIC2 implementation 

gives best choice because comparatively lower execution time in this implementation, but 

optimum cost value remains high because more no. of tasks scheduled are in hardware. After 

deadline of 200 CPU2 – ASIC1 implementation gives best choice and for a considerably 

larger amount of deadline only one CPU implementation gives optimum cost. 

Table 4.11: Partitioning results for different area 

Area 

constraint 
Opt. Time CPU-ASIC Pattern Area 

40 657 CPU1 00000000 40 

50 
567 

570 

CPU1-ASIC2 

CPU1-ASIC1 

00001000 

00000100 

50 

50 

60 354 CPU2 00000000 60 

70 310 
CPU2-ASIC1 

CPU2-ASIC2 
00001000 70 

80 270 CPU2-ASIC1 00011000 80 

85 256 CPU2-ASIC1 00101000 85 

90 256 
CPU2-ASIC1 

CPU2-ASIC2 
00101000 

85 

90 

95 230 CPU2-ASIC1 00011010 95 

100 206 CPU2-ASIC1 00101010 100 

105 220 
CPU2-ASIC1 

CPU2-ASIC2 

00110010 

00101001 

100 

105 

110 207 CPU2-ASIC1 00011011 110 

115 183 CPU2-ASIC1 00101011 115 

135 184 CPU2-ASIC2 01011001 135 

140 173 CPU2-ASIC1 10101011 140 

155 140 CPU2-ASIC2 00111011 155 

180 134 CPU2-ASIC2 01011011 170 

190 120 CPU2-ASIC2 01111011 190 

200 120 CPU2-ASIC2 01111011 190 
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CPU1-ASIC2 11111111 200 

210 120 ASIC2 11111111 200 

 

Table 4.11 represents optimum cost value and corresponding hardware, software partition for 

different area constraints. For lower value of area CPU1 is the best choice because and for 

high area ASIC2 implementation gives best choice. Optimization of cost depends on no. of 

tasks, initial population, crossover, mutation probabilities and no. of iterations. Here for 

particular results no. of iterations are set to 40. More iteration gives a better optimization 

results, but computations increases. The data of running GA is given in Appendix 2. 

4.6. Conclusion  

This chapter shows the hardware-software co-design framework for C specification and task 

graph specification. The partitioning at functional level has been proposed and shown in the 

co-design flow. ChStone benchmark and a presumed architecture model were used as input 

for showing the effectiveness of the algorithms. The work starts from basic interfacing of an 

IP generated using Vivado-HLS. The profiling and genetic algorithm has been successfully 

shown to give good results. The genetic algorithm deciding parameters like number of 

iterations and population size were explored. This lays the basic foundation of comparison of 

the work with any new proposed model of analysis.  

Summary: 

a) A genetic algorithm was shown to be implemented in co-design flow and actual values 

obtained from Vivado-HLS and profiling were used.  

b) It allowed to show various design chromosomes and guided the designer to chose the 

one with a given deadline. 
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Chapter 5 
 

Static and Dynamic Hardware partitioning for 

Reconfigurable Computing Systems 

 
 
In this chapter we present an elaborate approach used to develop framework 2. In this 

framework we focus on partitioning and scheduling of application which starts from a 

dataflow specification of a design. The dataflow specification represents the computational 

part of the design, where nodes are operators like adder etc. and edges represents the 

communication between them. For partitioning, graph isomorphism has been used to identify 

similar patterns in the design and partitioned graphs are scheduled based on dependence 

analysis. A new approach based on partial reconfiguration has been proposed for running a 

standalone application by creating it as clusters. We explore the effectiveness of genetic 

algorithm for partitioning and scheduling of such standalone application in partial 

reconfiguration flow. A modular random task graph generator has been design to generate 

random load and verify the running time of genetic algorithm. Both the isomorphic and 

genetic algorithm have been compared on a simulation benchmark. A DCT program has been 

used to show the design flow and results on Xilinx ML507 board. 

 

5.1. Partitioning and Scheduling of Dataflow Graphs for Reconfigurable Computing 

Systems 

In framework 1, we were working at high level of abstractions in the form of functions in an 

application. We now move to a lower level of abstraction and explore the design 

methodologies for RCS. In this chapter we have proposed a new design flow, which starts 

from the specification in the DFG format and implements a design by partitioning it into SW, 

HW or a combination of both. These partitions are interfaced and executed on the FPGA 

based SOC platform. The proposed design flow follows two different paths based on the 

condition whether static or dynamic scheduling of clusters is required.  

The two proposed design flows for framework 2 are presented in this chapter and shown in 

Fig. 5.1. In this work, an input specification in the form of dataflow model is created 

manually. The objective of the design flow is to find the best methods for performance and 

area trade-offs. This is similar to the work done in the chapter 3, but the input specification is 

in the form of DFG. In approach one, isomorphic graphs are used to find the similar patterns 
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and these patterns are interfaced and executed statically as IP cores in HW for reusability. The 

second approach addresses partitioning a standalone design using GA and then these clusters 

are executed on partial reconfigurable region dynamically. 

 

Figure 5.1: Framework 2 design flow 

First we present the approach 1 and the step by step method used for partitioning and it is 

discussed in detailed in subsequent sections. In the Fig. 5.1, we can see the following listed 

steps: 

 The design is specified in a data flow model of computation, which aims at the definition 

of data communicated between nodes. Dot language [2.39] has been used to describe the 

specification and capture the graph properties as it is a standard format in many compilers 

for graph representations. 

 The data flow model is specified by arithmetic operators and the edges that represent 

communication between nodes. The partitioning stage should have information about each 

operator with it's area and delay on a given platform. For this a library is created and each 

operator has been written in VHDL language. Similarly the equivalent assembly language 

instruction for a given processor is considered such as ADD/SUB/FADD/FSUB and their 

time has been calculated on PowerPC processor. These operators have been taken as 

integer and float type in our design flow. 

 The partitioning phase has to decide which nodes to club in a cluster so that minimum 

time is taken for the execution and various constraints are satisfied. For achieving 

Specification in 
DFG and

Libarary Creation 

Finding 
Isomorphic 

Graphs

Scheduler Design

Wrapper design

Using GA for 
Clustering

Scheduler Design

Wrapper Design

Comparison
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partitioning, two different methods have been adopted, one is based on graph isomorphism 

and the other one is based on genetic algorithm as shown in Fig. 5.1. 

 The order of execution is controlled by a scheduler, which is designed to load the 

partitions in order. 

 The generated clusters are then wrapped around the bus signals and interfaced with the 

bus.  

 The design is tested for performance gain using a timer and area/delay product is 

compared for each solution. 

The objective of proposing the design flow is to compare static and dynamic scheduling of an 

application by comparing the area delay product. The dynamic scheduling highlights the pros 

and cons of the partial reconfiguration feature available these days in FPGAs and compare it 

with other possible implementations. The remainder of the chapter is organized as follows: 

Section 5.3, 5.4 and 5.5 we discuss the design flow based on isomorphic identification. 

Section 5.6 to 5.10 discusses the use of GA for cluster creation. Section 5.11 proposes a 

random graph generation method that can be used for generating random loads. Section 5.12 

the two approaches are compared. The DCT comparative results are discussed in section 5.13. 

Section 5.14 draws the conclusion made for framework 2. 

5.2. Hardware and Software Synthesis of DFGs 

Many C/DSP applications can be described in the form of DFG models for the computational 

part of the design. The DFG is a directed acyclic graph G (V, E) which contains vertices (V) 

that are operators and edges (E) that are data dependency. The DFGs have been used as a 

model of computation for computational intensive part of the application for verification of 

scheduling and partitioning algorithms [1.7]. DFG is a model which is independent of 

implementation which means a node can either in the SW or in HW. Fig. 5.2 shows how the 

nodes can be modeled, wherein each node is characterized by HW: area, delay, power and 

SW: area, delay and power.  

V

HW SW

area delay power area delay power
 

Figure 5.2: Node model 

These properties such as area, delay, bit-width, memory usage etc., are obtained from HW or 



128 
 

SW target implementation. For e.g. if the node is an adder, the corresponding HDL synthesis 

on a tool can give the area, delay and power. Similarly the SW instruction for a processor can 

give its time, power and code memory occupied. These properties can be used as metrics in 

algorithmic approaches that define the goodness of a set of nodes. The most common property 

that is used for goodness is area-delay product; hence throughout the work we have used the 

same. The implementation of DFGs requires synthesis, which means a description in HW or 

SW. The synthesis of DFGs can be split into three major steps which are: allocation, binding 

and scheduling. Allocation refers to the process of selecting the components such as 

processors, ASIC, memory, accelerators, adders, RTL blocks, etc. Binding refers to the 

process of mapping the functional objects to the library of components. Scheduling step 

decides the order in which the operator will run. This work uses adder, multiplier, subtractor 

and divider through for allocation step. These units are designed as integer or floating point 

units. Hence for the binding phase the operator can be any of the two. Most of the work in this 

thesis uses floating point units for mapping.  

A DFG can be implemented in various combinations of HW and SW. Synthesis of DFGs at 

very low level of granularity (operator level) may not be advantageous due to ineffective 

usage of resources. Hence it is required that these nodes are grouped together and form a 

cluster based on some nearness function. Such clusters should be created in such a manner 

that the system functional parameters are improved. One such parameter commonly used is 

area delay product. For comparison of each implementation (SW or HW or hybrid), the 

performance parameter is required, which can be obtained by timing analysis. To find the total 

SW time and HW time the following set of equations are proposed for five different 

implementations as shown in Table 5.1. 

Table 5.1: Description of different implementations 

Serial Number Name Description  

1 Critical_time Complete HW implementation of the graph 

2 Serial_time Complete SW implementation of the graph 

3 Hybird_time HW and SW implementation of the graph having similar patterns 

4 Par_time HW and HW implementation of the graph having similar patterns 

5 HW_time HW and HW implementation of the graph having no similar patterns 

 

a) HW time referred as Critical_time is defined as the maximum time taken to evaluate all 

the output. Firstly, the end time of each node is required for calculation of critical time, 

this is given by Eq. 5.1 and is recursively used to calculate the time for each node given by 

Eq. 5.2. The process starts from the predecessor node and adds up the maximum time 

taken by each node similar to ASAP schedule. Then the maximum value among those 
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times is taken to be the critical time of the given output nodes. 

Node end time, 𝑇𝑖  = 𝑚𝑎𝑥 𝑇𝑗 ,𝑇𝑘 +  𝑑𝑖…(5.1) 

 

…(5.1) 

Tj and Tk are the end time of the predecessor nodes, di is the delay of the Ti node 

Critical_time,  𝑇𝑐𝑟  = max(𝑡(𝑣0))   …(5.2) 

      Where, vo= set of output nodes 

b) SW time referred as Serial_time which is the time taken to evaluate a given output, when 

the nodes are running sequentially, such as add (time stamp = add (t1), sub (t2), add (t3), 

add (t4), sub (t5), sub (t6), add (t7) ) for Fig. 5.5.  

Serial_time, 𝑇𝑠𝑟  =  (𝑡𝑖)
𝑚

𝑖=1
                                           …(5.3) 

Where m = total number of nodes, ti = time of each node 

ADD SUB ADD SUB

SUB SUB

ADD

 

Figure 5.3: Node matching based isomorphic graphs 

c) As stated previously, many applications show similar patterns in DFG models. Fig. 5.3 

gives an idea of finding the similar patterns that can be used as an optimization of area in 

the design. For such patterns, HW-SW time is referred as hybrid_time, as proposed in Eq. 

5.4. It is the time taken to evaluate a given output with similar part in HW and remaining 

part in SW. The time in this case is the sum of serial nodes in SW, sum of nodes of similar 

clusters in HW and communication overhead (bus overhead), which account to certain 

cycles taken by bus to put/get data. Communication overhead occurs because of the HW 

clusters are wrapped around the bus interface signals. 

Hybird_time, 𝑇ℎ𝑟  =  (𝑡𝑖) 
𝑛−𝑚

𝑖=1
+    𝑙

𝑖=1  (𝑡𝑠𝑖) 
𝑐

𝑖=1
+  (𝑡𝑐𝑜𝑚𝑚 )

𝑝

𝑖=1
 …(5.4) 

 

Where n = total number of nodes, m = number of similar nodes, p = number of cluster 

edges, c = number of clusters, l is the number of levels, ti = SW time of each node and tsi = 

HW critical time of the similar patterns given by Eq. 5.2. 
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In Eq. 5.4 the first factor gives the SW time, the second one gives the similar pattern time 

and last factor contributes to the communication delay. These patterns can occur at any 

level of the design (many different similar patterns), hence the second summation is 

required. 

d) If the entire implementation is done as HW with various clusters interfaced as IP core, 

then the HW-HW time referred as Par_time is the time taken to execute each cluster plus 

the communication overhead as proposed in Eq. 5.5. 

Par_time, 𝑇𝑝𝑟  =  𝑚𝑎𝑥(𝑡𝑖) 
𝑛−𝑚

𝑖=1
+   𝑙

𝑖=1  (𝑡𝑠𝑖) 
𝑐

𝑖=1
+  (𝑡𝑐𝑜𝑚𝑚 )

𝑝

𝑖=1
        …(5.5) 

 

where n = total number of nodes, m = nodes of nodes similar tsi= time of each node, c = 

number of clusters, ti = SW time of each node and tsi = HW critical time of the patterns. 

e) If no similar pattern exists in the design and clusters are created with certain objectives 

like an area constraint, then the HW_time is used to calculate the total time taken as 

proposed in Eq. 5.6. 

HW_time, Thr  =  (tsi ) 
𝑐

𝑖=1
+  (tcomm )

p

𝑖=1
                …(5.6) 

 

where tsi= critical time of each node, c = number of clusters and p = number of cluster 

edges. 

Assuming a sample DFG is given as shown in Fig. 5.4 for the verification of equations 

proposed above. This sample shows the various sizes of patterns found in the graph. The Fig. 

5.4(a), 5.4 (b) and 5.4(c) take into consideration the different sizes of the similar clusters. 
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Add Sub Add Sub Add Sub Add Sub

Add Add Add Sub

Add Add

Add

(a) Four isomorphic graphs with one adder and one subtractor

Add Sub Add Sub Add Sub Add Sub

Add Add Add Sub

Add Add

Add

(b) Four isomorphic graphs with two adder and two subtractor

Add Sub Add Sub Add Sub Add Sub

Add Add Add Sub

Add Add

Add

(c) Four isomorphic graphs with five adder and two subtractor

1 2 3 4

5 6 7 8

9 10

 

Figure 5.4: Creation of isomorphic clusters at different levels 

Let us assume that an floating point adder/sub  takes 10 ms in SW, 1 ms in HW (HW is at 

least 10 times faster than SW), 20 units of area, a basic area of 100 units for a processor for 

SW implementation, a communication overhead of 2 ms for each edge between SW-HW and 

4 ms for HW-HW edge. We are taking these parameters based on the interfacing done in 

chapter 3. The communication overhead of HW-HW interface has been kept more due to 

penalty incurred by the bus. Using the data and equations discussed above, the various results 

of Fig. 5.4 specifications are summarized in Table 5.2. 
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Table 5.2: Comparison of time taken by the DFG in different implementations 

Implementation Time(ms) Area Product 

SW 150 100 15000 

HW 4 100 + 300 = 400 1600 

SW-HW 5.4(a) -

hybrid 

7x10 + 2x4 + 10(edge)x2 = 98 100 + 40 = 140 13720 

explanation Seven adders are executed serially in SW(7x10), four isomorphic graphs 

having delay of four are executed in HW(4x2) and there are 10 edges 

between HW-SW(10x2). 

SW-HW 5.4(b) -

hybrid 

3x10 + 2x4 + 6x2 = 50 160 8000 

 Cluster size increases 

SW-HW 5.4(c) -

hybrid 

10 + 3x2 + 2x2 =20 240 4800 

HW-HW 5.4(a) -

Par 

1 + 2 + 2 10(edge)x4= 45 80 + 40 + 60 = 180 8100 

 In this case three clusters will of HW will be created, C1= four adders(delay 

=1, area = 80), C2 = iso graphs(delay = 2, area = 40); C3 = three 

adders(delay = 2, area = 60); 

HW-HW 5.4(b) -

Par 

2 +  2 + 6x4 = 28 120 3360 

 Cluster size increases 

HW-HW 5.4(c) -

Par 

3 + 1+ 2x4= 12 160 1920 

 

 

 

Figure 5.5: Comparison of various implementations 

As we move towards the HW migration, the area delay product improves except in the case of 

HW-HW (a). This is because of delay caused by various HW-HW edges when clusters are 

small. Hence we can say that the size of the cluster should be adequate to exploit the 

usefulness of isomorphic graphs. These implementations show different design space for the 

designer. The Table 5.2 shows the best product for the HW solution and the worst solution in 

SW with various comparisons shown in Fig. 5.5. In between the two extremes, various other 
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implementations exist. HW-HW solution is implemented by creating IP cores of the clusters 

created. Hence we conclude that the idea of reusing the patterns as IP cores can result in a 

good area and time product. The HW-HW implementation case when no patterns are 

matching is discussed in genetic algorithm section. 

5.3. Algorithmic Approach for Creating Isomorphic Graph  

Many applications such as protein structures, image processing etc. show symmetrical 

structures in their composition or execution model. These structures can be exploited in 

different ways for improving the execution nature of the application. These repetitive node 

patterns are known as isomorphic graphs. This section focuses on the efficient development of 

algorithms for finding such graphs. The graph isomorphism allows finding the similar patterns 

and creating clusters of the required sizes. The following conditions define an isomorphic 

graph: Two graph G and H are isomorphic if H can be obtained from G by relabeling the 

vertices - that is, if there is a one-to-one correspondence between the vertices of G and those 

of H, such that the number of edges joining any pair of vertices in G is equal to the number of 

edges joining the corresponding pair of vertices in H. Additionally, for reconfigurable 

computing systems it is necessary that the node type should also match, which means that the 

adder should match with adder. Hence, next we propose a weighted method to find the 

subgraphs. Entire algorithm is divided into four parts and the input parameters of the 

algorithm are: matrix of graph G (V, E), type of the node, area/delay of the node and number 

of nodes. In part 1 (Weight algorithm), for each individual node in the graph, its level, type, 

degree, area, time and weight is calculated. In part 2 (Subgraphs algorithm) level based 

subgraphs are constructed using edge information. In part 3 (Iso algorithm), the weight of 

various subgraphs is compared and isomorphic subgraphs are found. In part 4 (Performance 

algorithm), the critical time for executing the graph is calculated. The algorithms are shown in 

Fig. 5.7 to Fig. 5.10.  

5.3.1. Weight algorithm 

The first step toward comparing the subgraph matching is by finding a unique method that 

simplifies the process. A weighted method [2.43] has been used to assign a unique number to 

each node, which is further used in the comparison process. What we have added is a type 

number to the weight function which differentiates between the nodes as adder, subtractor etc. 

The objective of the algorithm to find the various parameters such as the weight of a node 

which includes its level, type & total degree as defined by proposed in Eq. 5.7, Eq. 5.8, Eq. 

5.9 and Eq. 5.10: 
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Weight[node] = k1 * Level[node] + k2 * type[node] + 

len(connectionsOfNodes[node]) * type[node];                                                                                                                   

…(5.7) 

Weight of subgraph = ∑ weight of its nodes …(5.8) 

Area of subgraph = ∑ Area of its nodes                                                                     …(5.9) 

Time of subgraph = Time for its critical path                                                            …(5.10) 

 

k1 and k2 are the constants and have been assigned a value of k1 =1000, k2 =100. The weight 

equation has been proposed in such a way that at any point of time the weight of any node will 

be same only if they match in all ways. If more number of nodes are there, we can increase the 

value of constant but always keep k1 : k2 >>1. We have used that ratio to be greater than one, 

so that the weight of a node is always unique. For a random sample shown in Fig. 5.6, the 

value for node 1 are level = 1, length =1, type =1 which gives weight as 1101.  

 

Fig. 5.6: Sample graph 

The above graph contains 15 nodes and their weight values are specified in Table 5.3.  

Table 5.3: Weight of the nodes 

Node Number Level  Length Type Weight Calculation Weight 

1 1 1 1 1000x1+100x1+1x1 1101 

2 1 1 4 1000x1+100x4+1x4 1404 

3 1 1 1 1000x1+100x1+1x1 1101 

4 1 1 4 1000x1+100x4+1x4 1404 

5 1 1 1 1000x1+100x1+1x1 1102 

6 1 1 4 1000x1+100x4+1x4 1404 

7 1 1 1 1000x1+100x1+1x1 1101 

8 1 1 4 1000x1+100x4+1x4 1404 

9 2 3 1 1000x2+100x1+3x1 2103 

10 2 3 1 1000x2+100x1+3x1 2103 

11 2 3 1 1000x2+100x1+3x1 2103 

12 2 3 1 1000x2+100x1+3x1 2103 

13 3 3 1 1000x3+100x1+3x1 3103 

14 3 3 1 1000x3+100x1+3x1 3103 

15 4 2 1 1000x4+100x1+2x1 4102 

 

The specification of the input has been done in the dot language using the IBM Graphviz 

software. While traversing the dot file, nodes and their connections are identified. To 

determine the level of each node, traversing has been made to list the connection that contains 
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the source and destination node of an edge. If a node is encountered for the first time, then its 

level is set to 1. For the connection between two nodes, we set the level of the successor node 

as one more than the level of predecessor node. In case, if a successor has multiple source 

nodes, then the maximum value of the level of source node is considered. After determining 

the level of every node, the weight for each node is to be calculated based on the weight Eq. 

5.7. The time complexity of this algorithm if O(n), since iteration is done for level and weight 

for each node. The step by step details of the algorithm is shown as a flow chart in Fig. 5.7. 

Start

Identify all Edges 

and Nodes

Identify connection 

between Nodes

For each Node:

Set Level=1

Level of Destination 

Node = Max.(Level of 

Source Node) + 1

All Nodes 

Traversed

No

Yes

For Each 

Node

Calculate Weight 

Based on Weight 

Equation

End

No More Nodes

 

Figure 5.7: Weight algorithm 

5.3.2. Subgraph Algorithm 

Next stage of the algorithm proceeds by finding the subgraphs as shown in Fig. 5.8. We have 

taken two variables as i and j where range of i is 1 to the number of levels in the graph, let‘s 

say L, and range of j is i+1 to L. We traverse the graph level wise, and for each node in a 



136 
 

level, search for subgraphs. We add the current node to temporary subgraphs and to the list of 

added nodes. For all the other nodes that are connected to the nodes in the list ‗added nodes‘ 

and the current node, we then check if they fulfil the criteria of the current value of i and j and 

add these nodes to the temporary subgraphs. If at any stage, any condition goes false, then add 

the temporary subgraphs to the list of all subgraphs. The above process is repeated for all the 

nodes traversing level wise in the graph recursively. The time complexity of this algorithm if 

O(n(logn)
2
), since iteration is done for level and subgraphs, n is the number of nodes. 

Start

For i in 1 to 

Max.(Levels)

For j in i+1 to 

Max.(Levels)

addedNodes=[ ]

Subgraphs=[ ]

For

each node in 

level i

Add Node to Subgraph

If Node 

Level=i

Add Node to addedNodes

 For Nodes

connected to current 

node

If

 level in i to

 j+1

Call Recursively

Increment j

Increment i

End

False

False

False

False

False

False

Add Subgraph to 

List of Subgraphs

 

Figure 5.8: All subgraphs algorithm  
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5.3.3. Iso Algorithm  

Start

For Each

Graph in Subgraphs 

List

For each

 Node in Graph

Add Weight, Area, Delay 

of each node of selected 

Graph

Append to the List of 

Weight, Area, Delay of 

the Subgraphs

For Each 

Subgraph i

For Each 

Subgraph j in i+1 to 

Total(Subgraphs)

Store Graph i to 

Isomorphic Graph List

If 

Weight(i)=Weight(j)

 and Area(i) fulfill

 Area Consraint

False

No More 

Graphs

All Graphs Traversed

Display Isomorphic 

Graphs

Form Cluster of Nodes in 

Isomorphic Graphs

Write Modified .dot file for the 

New Isomorphic Node 

End

No More Nodes

All Graphs Traversed

 

Figure 5.9: Iso algorithm 

For each graph in the list of all subgraphs, we calculate the weight, area, delay of every graph 

from the node parameters as defined by Eq. 5.8. We make a record for every graph with its 
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weight, area and delay in a dictionary. Next we select any graph from the list of subgraphs and 

match its weight parameter with all the remaining graphs from the list. If the weight of two 

subgraphs matches, then both of them are added to the isomorphic graphs list. This is done for 

all the graphs present in the subgraphs list. The duplicate isomorphic graphs are sorted and 

removed. Then we create clusters of nodes that form an isomorphic graph with any other, and 

rename the cluster. At the end, we create a new dot file that contains all possible isomorphic 

graph nodes and other individual node connected to each other. The algorithm is shown in Fig. 

5.9. The time complexity of this algorithm if O(n
2
), since iteration is done for subgraphs 

matching for each item in the list. The combined complexity of the previous three algorithm is 

O(n) + O(n(logn)
2
)+O(n

2
), which is much better as compared to brute force method. 

5.3.4. Performance Algorithm 

This algorithm finds the performance in terms of time after the isomorphic graphs are 

identified and condensed along with other nodes. For finding the critical time, source node 

should always be at level 1. For all such nodes that are at level 1, we find the outgoing edges 

and the corresponding destination node. Next we add the time of the source node at the initial 

level to a temporary variable which was initialized as 0 at the beginning. Then we add the 

time of the first destination node. Next step is to modify the destination node as the node 

connected to present destination node and adds its time to the temporary time variable. This 

process is repeated until the destination node reaches the maximum level of the graph. After 

this, we add the value of temporary time variable to a list of possible critical time. 

This is done for all the destination nodes that were encountered at the beginning of the source 

node. If no more destination node is left, then change the source node if any, and repeat the 

above algorithm. The maximum value from the list of possible critical time will be the critical 

time of the graph. The detailed algorithm is shown in Fig. 5.10.  
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Start

For 

node i in Node 

List

If Level(i)==1

For 

nodes j 

connected to 

Node i

tempTime += nodeTime(i)

If 

Level(j) != 

Max.(Level) 

tempTime += nodeTime(j)

j = Next Node connected to j

Store tempTime in Critical 

Time List

False

False

No such Node

All Nodes Traversed

Find Max.(List of Critical Time)

Display Critical Time

End
 

   Fig. 5.10: Performance algorithm 

 

1,+ 2,- 3,+ 4,- 5,+ 6,- 7,+ 8,-

9,+ 10,+ 11,+ 12,+

13,+ 14,+

15,+

 

Figure 5.11: Sample graph 
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In order to verify the results of the above algorithms a sample graph as shown in Fig. 5.11 was 

taken for explanation. Each node shows the number and an operator in it such as node 1 is 

adder. There are 15 nodes in the graph with four kinds of operators (+, -, *, /). These four 

operators were written in VHDL language and complied in Virtex-5. The critical time and 

area of each operator is shown in Table 5.4. 

Table 5.4: Parameters for sample graphs 

 

 

 

 

 

 

 

Table 5.5: Sample graph results 

Subgraph1 Subgraph2 Time (ns) Area (Slice LUTs) 

1 9 2 3 10 4 13.706 96 

1 9 2 5 11 6 13.706 96 

1 9 2 7 12 8 13.706 96 

3 10 4 5 11 6 13.706 96 

3 10 4 7 12 8 13.706 96 

5 11 6 7 12 8 13.706 96 

11 14 12 10 13 9 13.706 96 

1 9 2 13 10 3 4 5 11 6 14 12 7 8 20.559 224 

 

Table 5.5 shows the results of the algorithm discussed. Node 1, 9, 2 is isomorphic with node 

3, 10, 4 having a critical delay of 13.7 ns. Similarly, node 1, 9, 2, 13, 10, 3, 4 is isomorphic 

with 5, 11, 6, 14, 12, 7, 8, with an area of 224.  

5.4. Scheduler Design 

The previous stage gave information about which of the nodes are similar and form a cluster. 

It then gave the critical time of the cluster. The next step is to introspect two factors : 

a) Whether a given node is isomorphic if yes make an entry in scheduling queue if not. 

b) Create a cluster of a given size. 

Symbol Type Time (ns) Area (Slice LUTs) 

+ 1 6.853 32 

- 4 6.853 32 

* 8 13.788 3 DSP slices 

/ 16 67.271 882 
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1,+ 2,- 3,+ 4,- 5,+ 6,- 7,+ 8,-

9,+ 10,+ 11,+ 12,+

13,+ 14,+

15,+

 

Figure 5.12: Various clusters in sample graphs 

Fig. 5.12 shows the concept applied in this phase. We can run (1,2,9; 3,4,10; 5,6,11; 7,8,12) or 

(1,2,9,3,4,10;  5,6,7,8,11,12) based on the area constraint given. After making this decision, 

we need to put clusters in order of execution. 

In the scheduling phase, we need to construct clusters of a given size. Our algorithm is an 

extension of list scheduling algorithm [1.7] for reconfigurable computing. Since list 

scheduling does not consider the hierarchical structure of the program in terms of functions 

and instructions, it needs certain modifications. A better way to schedule this is using LIST 

scheduling [1.7], which takes the priority and then schedules accordingly. LIST scheduling 

still works at operator level and needs to be refined for partial reconfigurable systems. The 

next section aims at developing the mathematical background for DFGs as HW or SW 

implementation. 

The first step towards applying partitioning is the creation of hierarchical clusters as the 

previous stage gives nodes which are isomorphic.  The algorithm is described in algorithm 5.1 

along with comments shown in each line. 

Algorithm 5.1:  Clustering Algorithm 

 Input : Graph as Dot files of the application 

Given: The total area(TA) of the partition in terms of LUTs and ISO graphs. Select ISO 

clusters nearest to  given area. 

Output:  partitions of blocks. 

create a partition PA[j] := Ø   // create a NULL cluster    

for i =1 to n     // loop till all the nodes are covered 

if(Node[i] == ISO)   //check if the node is a isomorphic graph 

Add node to scheduling queue.  // update the scheduler queue   

  

else if ((area(PA[j])+ area(Node[i]) ≤  TA ) //check if the cluster size has reached 
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PA[j] = PA[j]   Node[i]               // if the node is not iso. and cluster area is there 

add node   

else       

Add PA[j] to scheduling queue.   //Add the node to the scheduling queue 

Create a new partition j = j+1     //create a new cluster 

Add Node[i] to PA[j].                       

end if 

end for 

 

Suppose according to the size given (in which two adder and one subtractor can be placed) 

four isomorphic graphs are identified that are (1,2,9), (3,4,10), (5,6,11), (7,8,12) and the 

remaining 13, 14 ,15 form one cluster. Then the scheduler will create a scheduling queue with 

order: (1,2,9), (3,4,10), (5,6,11), (7,8,12), (13, 14 ,15) as shown in Fig. 5.13. 

1,+ 2,- 3,+ 4,- 5,+ 6,- 7,+ 8,-

9,+ 10,+ 11,+ 12,+

13,+ 14,+

15,+

 

Figure 5.13: Sample graph with isomorphic clusters 

After the creation of the clusters, the scheduling queue maintains the order in which the nodes 

will execute. The pseudo code for the calculation of execution time as proposed in Eq. 5.1, Eq. 

5.2, Eq. 5.3 and Eq. 5.4 is shown in algorithm 5.2. 

Algorithm 5.2:  Scheduling Algorithm 

Input: Scheduling queue, ISO nodes level (K) 

Given: the performance algorithm proposed in 6(d) 

Output:  execution time, area and product. 

j =0;tcomm =0;area = 0,product=0; 

for i =1 to n 

If(Node[i]= ISO or HW) 

tc = Call critical time algorithm(Node[i]) 

area = area + area[i]; 

else 

tc= Call serial time algorithm(Node[i])          
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end if 

execution time T= tcomm + tc; 

product = area * T; 

end for 

 

Let us consider an example to understand the algorithms presented above. Assume that an 

adder/sub  takes 10 ms to run SW, 1 ms to run in HW, then for the sequence: (1,2,9), (3,4,10), 

(5,6,11), (7,8,12), (13, 14 ,15), the time will be : 30, 30, 30, 30, 3 resulting in the total time to 

be 123 ms. The above scheduling algorithm gives the clusters that are to be executed in a 

given order in a queue. This queue tags each cluster with either an ISO cluster, SW or HW 

cluster. It also indexes the ISO variation at each level. The algorithm picks each cluster at a 

time and finds whether it is an ISO, SW or HW cluster and respectively calls the algorithm to 

calculate the time taken by the cluster node. This provides the time taken for the execution of 

the application. This algorithms implements the Eq. given by 5.4, 5.5. The communication 

delay is then added to the total time. In the next section we will discuss the result on two 

grounds: 

a) Simulation of the above algorithm on four self written programs 

b) Using DCT program as case study on ML507 Board. 

5.5. Results and Discussion for Isomorphic Design flow 

In order to verify the effectiveness of the algorithm, four programs were created. These are 

listed in Table 5.6, which also highlights the total resource usage of the program. All the 

algorithms were written in python and test cases were written in dot language. 

Table 5.6: Programs used for testing 

Design Kind Nodes Edges Inputs Outputs Resources Used 

LUTs DSP 

Cosine series(float) Self written 15 31 5 1 7280 33 

Exponent (float) Self written 34 69 8 1 15300 75 

Matrix Multi(3x3-Integer) Self written 45 99 18 9 576 81 

Sine series(float) Self written 18 37 4 1 7427 42 

 

These manually created benchmarks programs have four operators, which are adder, 

subtractor, divider and multiplier.  

Table 5.7: Library of hardware blocks and their values on Xilinx ML507 board 
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Node Type(1) 

Resource(2) 
Delay(ns)-

HW(3) 

 

Delay(ns)-

SW(PowerP

C)(4) 

Slice 

Registers 

Slice 

LUTs 

LUT FF 

pair 
IOBs` DSP48E 

Integer adder 0 32 32 98 0 6.8 50.0 -add 

Integer subtractor 0 32 32 98 0 6.8 50.0 

Integer multiplier - - - 98 3 13.7 65.0 

Integer divider 0 882 822 115 0 67.2 90.7 

FP adder(FPU 

unit) 
224 621 705 99 0 7.7 

60.0-fadd 

FP 

subtractor(FPU 

unit) 

223 628 714 99 0 7.8 

60.0 

FP 

multiplier(FPU 

unit) 

0 49 49 97 3 15.8 

70.0 

FP divider(FPU 

unit) 
24 1654 1654 99 2 110.8 

270.0 

 

A library of these operators was created by writing VHDL code and tabulating their 

parameters on Virtex-5 [5.1] series. These actual values were used by the algorithms for 

generating partitions. Appendix 3 shows how the time for SW instructions was obtained. The 

Table 5.7 is divided into four major columns: name of the unit (integer or floating), resources, 

HW synthesis time and SW instruction time. The floating point unit was enabled in PowerPC 

for floating point instructions (fadd). The last column shows the SW execution time for 

PowerPC available on ML507 board. The SW execution time is tabulated by executing a 

floating point instruction in loop for 100 times and taking the average. The Table 5.7 

highlights the two major resources that used by an application: which are LUT slices and DSP 

slices. In algorithmic design we need a unified value corresponding to the area consumed. 

These different resources are combined together in a single equation as proposed in Eq. 5.11. 

                             Area = k1 x LUT + k2 x DSP                                                …(5.11) 

Where k1=1, k2 = 50, since DSP slices are much less as compared to LUTs k2 has been kept 

high since DSP slices are at least 50 times lesser to LUTs. 
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Figure 5.14: Resource consumed by a basic design in ML507 Board 

Figure 5.14 shows that a basic processor based design flow will take 7185 LUTs. Hence for 

pure SW implementation, we have taken a value of 8000 in area calculation. The SW to HW 

communication and HW to HW communication is taken to be negligible. These values have 

been used in calculating the performance of the design for simulation purpose.  

 

 

Figure 5.15: DFG of Cosine series (1 - x
2
/2! + x

4
/4! - x

6
/6!) 

Fig. 5.15 presents the dataflow graph for the cosine series upto four terms. The empty circles 

are representation of constant factorial terms which are pre-computed and stored in SW. Fig. 

5.16 shows the isomorphs in the cosine series. 
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Figure 5.16: Cosine Series with Isomorphic Graphs 

Table 5.8: Comparison of area delay product for Cosine function 

Design COSINE 

operators 1-Adder,1-Sub,9-Mul,3-Div 

 Time(ns) Area Product(LUT-

sec) (x10
6
) 

SW  

Implementation 

1560 8000 12.48 

HW 

Implementation 

173.7 16320 2.834 

SW-HW 

Implementation 

1155.8 8597 9.936 

HW-HW 

Implementation 

188.8 15705 2.965 

 

Table 5.8 shows the time, area and product for four different implementations of cosine 

function. We can see that SW Implementation has the maximum product and HW 

Implementation has the minimum value. For all the benchmarks the SW time is the upper 

limit and HW is the lower limit. Cosine benchmarks show good results in HW-HW 

implementation where two isomorphic subgraphs are identified.  
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Figure 5.17: DFG of Exponent series (1 + x + x
2
/2! + x

3
/3! + x

4
/4! + x

5
/5! + x

6
/6!) 

Fig. 5.17 shows the dataflow graph for the exponent series upto seven terms. The empty 

circles are representation of constant factorial terms are pre-computed and stored. 

 

Figure 5.18: Exponent series with isomorphic graphs 

From  Fig. 5.18 we can see that four isomorphic graphs are there at level 1(iso2_2) and two at 

level 2(iso1_1). 
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Table 5.9: Comparison of area delay product for Exponent function 

Design EXPOENET 

Operators 7-Adder,21-Mul,6-Div 

 Time(ns) Area Product(LUT-

sec) (x10
6
) 

SW  

Implementation 

3510 8000 28.08 

HW 

Implementation 

181.3 27050 4.904 

SW-HW 

Implementation 

1871.4 12503 23.398 

HW-HW 

Implementation 

608.5(critical 

delay is 

long) 

22908 13.939 

 

Table 5.9 shows the time, area and product for four different implementations of exponent 

function. We can see that SW Implementation has the maximum product and HW 

Implementation has the minimum value. Exponent benchmarks show the good results in HW-

HW implementation compared to software. When the density of isomorphic graphs is high, 

HW-HW implementation will give better results. Fig. 5.19 shows the dataflow graph for the 

matrix multiplication for 3x3 terms. Nine isomorphs for matrix multiplication series are 

shown in Fig. 5.20. 

 

Figure 5.19: Matrix Multiplication for 3x3 elements 

 

Figure 5.20: Matrix Multiplication for nine isomorphic graphs 

Table 5.10: Comparison of area delay product for Matrix function 

Design MATRIX 

Operators 18-Adder, 27-Mul 

 Time Area Product(x10
6
) 

SW  

Implementation 

52655 8000 21.24 

HW 

Implementation 

27.3 12626 0.344 

SW-HW 245.7 8514 2.091 
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Implementation 

HW-HW 

Implementation 

245.7 8514 2.091 

 

Table 5.10 shows the time, area and product for four different implementations of matrix 

multiplication function. We can see that SW Implementation has the maximum product and 

HW Implementation has the minimum value In the matrix multiplication density of 

isomorphic graphs is even higher, hence it is much better to pure SW implementation. In this 

case since one isomorphic graph can be used for entire execution, the SW-HW 

implementation is also giving same results. 

 

Figure 5.21: Sine Series with five elements(x - x
3
/3! + x

5
/5! - x

7
/7!) 

Fig. 5.21 shows the dataflow graph for the sine series upto four terms. The empty circles are 

representation of constant factorial terms are pre-computed and stored. 

 

Fig. 5.22: Sine Series with three isomorphic graphs 

From Fig. 5.22 we see that four isomorphic graphs are there at level 1 and two at level 2. 

 

 



150 
 

Table 5.11: Comparison of area delay product for Sine function 

Design SINE 

Operators 1-Adder, 2-Sub, 12-Mul,3-Div 

 Time Area Product(x10
6
) 

SW  

Implementation 

1830 8000 14.65 

HW 

Implementation 

173.7 17527 3.05 

SW-HW 

Implementation 

814.8 12901 10.511 

HW-HW 

Implementation 

411.1 14579 5.991 

 

Table 5.11 shows the time, area and product for four different implementations of sine 

function. We can see that SW Implementation has the maximum product and HW 

Implementation has the minimum value 

 

Figure 5.23: Comparison of four benchmark programs 

Fig. 5.23 shows the comparison of four benchmarks programs. The HW-HW implementation 

the product is better than SW-HW but inferior to HW implementation. In order to create a 

clear practical approach of our implementation in real HW, we have taken a Discrete Cosine 

Transform (DCT) as a case study in result section.  

5.6. Partitioning and Scheduling Problem for Partial Reconfiguration 

The design flow of partial reconfiguration has been discussed in chapter 1. This section 

extends the implementation of DFG nodes on partial reconfiguration region. The partial 

reconfiguration technique allows running different modules on the same defined area, hence 

resulting in area reusability. This feature of reusability gives a new dimension to the 

allocation, binding and scheduling problem. The usage of the partial reconfiguration technique 

requires the modification to existing partitioning and scheduling solving approach. The 
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primary purpose of this design flow is to test the usefulness of partial reconfiguration in HW-

HW implementation. 

In this design flow the same application is partitioned and mapped to a fixed area for 

execution. This is explained with the help of the Fig. 5.24, which shows how a standalone 

design is partitioned into two clusters (C1 and C2) and bound to one PR region: 

Describe the design in HDL

Execute clusters on the time basis on 

the PRR

Use a partitioning algorithm to divide it 

into clusters of required size

Bind the clusters to partial 

reconfigurable regions defined a 

floorplanning software

V1 V2

V3

V1 V2

V3

C1

C
2

FPGA farbic

PRR

FPGA farbic

C1

FPGA farbic

C2

                                                             

Figure 5.24: Partitioned design running on PRR 

In the case of partial reconfiguration flow it is also possible to define many PR regions on 

which different modules can run concurrently making it an active area of research. The PR 

tutorial [2.64] gives a design flow of an adder/multiplier mapped to one PR region. Now let us 

assume that two PR regions (Mult/Mult or one Mult/Add or Add/Add) are available for 

mapping. The floorplan is visualized in Fig. 5.25 and the schedule is shown is Fig. 5.26 for the 

same graph discussed in the section 5.1.  

FPGA Fabric

PRR1

PRR1

Mult & Mult

Mult & Add

Add & Add

        

Figure 5.25: Two PR regions with three PRM 
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Figure 5.26: Two PR regions Schedule 

From Fig. 5.26 we see that at each level two operators are scheduled. This becomes feasible 

by mapping two operators on PRR1 or PRR2. In the current work we have assumed only one 

PRR is available for a single standalone application. This requires partitioning the DFG and 

then effectively scheduling it on one PR region is required. An algorithm which can schedule 

DFG on this PR region with minimum reconfiguration overhead and minimum execution time 

is the call for of the design flow. The PR design flow requires swapping in and swapping out 

of the bit file of the operator. It incurs certain delay in the design flow as overhead, so for such 

an implementation, we need to find the overhead of the reconfiguration process. For this, we 

consider four time parameters to calculate the total time required for executing the DFG as 

defined in Eq. 5.12:  

...(5.12

) 

Configuration time (tconf), is the time it takes to place the bit file of the PR module on the chip. 

The bit files are usually placed outside the FPGA chip on non-volatile memory such as 

compact flash card, SD card etc. During the boot operation, these files can be brought to DDR 

or BRAM memory on the chip. 

Execution time (texe) is defined as the time required to execute the operation on the HW. Input 

time ti is defined as time to place input data. There is certain time elapsed when sending the 

inputs from I-cache/D-cache to the IP core interface to the bus. Similarly Output time to is 

defined as time to place output data. N is the number of times the reconfiguration is done. 

The penalty of tconf  is very high, as the bit files are located outside the chip on a memory like 

CF card, DDR or Flash. Hence there is a need to minimize the number of times the 

reconfiguration is loaded.  

Brining down the penalty has been analyzed extensively over the last decade and many works 

tconf = Loading time + input/output transfer time + execution time 
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exist in this respect as discussed in literaure survey [2.61-2-67]. For such a scenario where we 

want to minimize the number of times the reconfiguration is done, an algorithm can be 

proposed: 

Starting with an area which implements an operation like adder and multiplier, we propose an 

algorithm to check if the next operator which is loaded is same as the current then we can save 

on loading a new configuration.  

Algorithm 5.3: Minimum Time Reconfiguration List Scheduling (MTR) 

Inputs : DFG and FPGA area constraints 

Outputs : set of functions to be migrated 

Begin : 

   Sort nodes in topological order; 

              Assign priority to nodes based on mobility; 

label x: Place maximum priorty node // priority using levels 

 If next module can be same as present 

      t = t + texe + ti +  to 

else 

      t = t + tconf + texe + ti +  to 

If DFG in not NULL go to x 

 

The algorithm to schedule the operators on one PR with minimum latency is shown in 

algorithm 5.3 and is referred a MTR. The schedule is shown is Fig. 5.27. In this algorithm, it 

is checked whether the next node to be placed can be same as present if yes we can save on  

tconf.  

 

Figure 5.27: PR schedule 

In the above DFG, reconfiguration will be done only once since the multiplier is replaced with 
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an adder only once. For e.g. if the multiplier HW time is 40 ns and adder HW time is 10 ns, 

the reconfiguration time is 100 ns and one PRR is given, the execution time of the graph will 

be equal to 40 + 40 + 40 + 40 + 100 + 10 + 10 +10 +10 = 300 ns. 

The reconfiguration time depends on the size of partial bitstream, which depends on the area 

selected on the chip. In the above example, the size of the PRR is decided by the maximum of 

(Mult, Add) area. The detailed discussion of the reconfiguration time is discussed in 

subsequent sections.  

5.6.1. Coarse Level Graph Creation 

Performing the reconfiguration at very low level of granularity i.e. at operator level, may lead 

to huge reconfiguration penalty may be very high as applications can have many such 

operations and FPGA resources cannot be exploited to its best. Hence, it is required that we 

mobilize from fine grain DFG to coarse grain granularity, where clusters of a size given can 

be created. Given the size of the PR region as number of LUTs of the total device, we need to 

create partitions of the design accordingly. For e.g., the Xilinx FPGA series Virter-5 

xc5vfx70t-1ff1136 present in ML507 [5.1] board has 44800 slices LUTs, 48 DSP slices, 128 

BRAM memories. Since any logic can be implemented on LUTs, other resources can be 

ignored. When as embedded system is developed around the FPGA based design, the space is 

returned as a percentage of the total area available. The complete system design encompasses 

processor, memory controller, bus controller and IP cores etc. After creating a complete 

system around the ML507 board we found that the PR region can be allocated as large as 40% 

of the space. This was concluded by creating 10 sample projects in which device was not able 

to place and route the design which consumed more than 40% of the chip.  

Once the size of PRR is given, we need two more parameters for creating clusters of nodes 

called as coarse level clusters. We again focus on four operators ADD, SUB, MUL and DIV 

modules for the DFG clustering similar to operators used in isomorphic design flow. In order 

to estimate the size of the cluster we should first know the area consumed by each operator on 

real device and library created in Table 5.7 will be used again. The coarse level graph can be 

created in different ways depending on the design of the cost function. The easiest method is 

to assign levels using ASAP. Fig. 5.28 shows level wise clustering with area constraints.  
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Figure 5.28:  Level based clusters 

The process of creating and executing partitions on time basis is known as temporal 

partitioning.  In the next section we have used GA for the creation of clusters based on the 

partial reconfiguration design constraints. The effectiveness of GA was demonstrated in the 

chapter 4 and hence has been used. 

5.7. Genetic Algorithm for RCS 

In the chapter 3 we have used the GA for co-design process. The next requirement of our 

design flow requires the application of GA to RCS. Given a PRR region, we have to find the 

best partitions and schedule them for a minimum execution time. Given a partial 

reconfigurable region (PRR) with the resources (R) and a dataflow graph G with nodes N = 

{n1,n2,...nn}, which are operators with a given area A = { a1,a2,...an } and delay D = { t1,t2,...tn 

}, partitioning is defined as the creation of disjoint clusters set C = {c1,c2,...cn} , where ci ⊆ N 

satisfying the condition area(ci) ≤ R. R is the maximum size of the defined area [1.7].  

The above equation also imposes an ordering constraint on the execution model of the device 

which is defined as: a cluster ci can only execute if all its predecessor nodes have executed. 

This condition defines the scheduling order of GA. The objective of the clustering algorithms 

is to find clusters which can fit into a given PR region. GA is the popular algorithm used in 

recent times and has been discussed in chapter 3. The objfct used in our algorithm is shown 

below; it includes time, max_inputs, max_outputs, size and quality [1.7].  In order to calculate 

the quality of the partitions we define connectivity of the graph, 

a. Connectivity of a graph G = (V, E) is given is defined in Eq. 5.15 as:  

con (G) = 2*|E|/(|V|
2
 - |V|), …(5.13) 

Where V is the number of nodes and E is the number of edges. 
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b. Quality of partitioning P = {P1,…, Pn} is given by Eq. 5.14 as: 

                 Average connectivity over P: Q(P) = 1/n i=1,…,n con(Pi)                       …(5.14) 

The objective function is given below (Eq. 5.15) and combines all the constraints imposed by 

the algorithm. The partial reconfiguration design flow imposes many constraints 

(inputs/outputs pins are fixed, area are constant) on the design flow and was presented in 

literature survey [2.66]: 

𝑓_𝑣𝑎𝑙𝑢𝑒 

=

 
 
 

 
 

(𝑘1 ∗ max_𝑡𝑖𝑚𝑒)  +  (𝑘2 ∗ (1/(max_𝑖𝑛𝑝 − 𝑖𝑛𝑝_𝑛𝑢𝑚))) 

+ (𝑘3 ∗ (1/(max_𝑜𝑝 − 𝑜𝑝_𝑛𝑢𝑚)))  +

 𝑘4 ∗ (1/𝑞𝑢𝑎𝑙𝑖𝑡𝑦))  +   𝑘5 ∗  𝑚𝑎𝑥𝑠𝑖𝑧𝑒 − 𝑠𝑖𝑧𝑒𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛                                  𝑖𝑓 𝑡 > 𝑡𝑟

                𝑐                                                                                                                        𝑖𝑓 𝑡 < 𝑡𝑟

  

              ...(5.15) 

Five parameters decide the value of the function and each is weighted by multiplying with a 

constant. The higher the value of a constant, higher will be the effect of the parameter.  The 

detailed algorithm with modification of our requirement is given below: 

Algorithm 4.4: Genetic Algorithm for Reconfigurable Systems 

BEGIN 

    p = population size; 

    tn = no. of nodes; 

    bn = number of bits to represent a partition; // define a variable to define the partitions 

    n= total number of bits in a chromosome; 

   G = generate random population (0 or 1) of size = p x n;  

   REPEAT 

1. Evaluate FITNESS of each chromosome G by finding the following 

        Calculate time; Calculate cost;  Calculate quality;  Calculate objective function (OF); 

2. Evaluate PROBABILITY of each chromosome by, 

      Give max probability to min. OF; 

3. Calculate  CUMULATIVE PROBABILTY (CP); 

4. Evaluate Roulette Wheel for SELECTION of better chromosomes by, 

      g1= generate random no. (0 to 1) for size = p; 

      Find nearest larger CP values for each g1; 

      Generate new population;       

5. Do CROSSOVER between the pairs of parents 

      c = define crossover probability; 
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      g2= generate random no (0 to 1) for size = p; 

      Select chromosome for g2 ≤ c; 

      Generate random position (0 to n) for each  pair of selected chromosome; 

      Interchange bit patterns between pairs after their generated position; 

      Generate new population;                 

6. Do MUTATION of the resulting offspring; 

      m = define mutation probability; 

      g3 = generate random no. (0 to 1) for size= p; 

     generate g4(1 to n) 

      Select chromosome for g4 ≤ m; 

      Toggle bit pattern; 

      G = Generate new population; 

       UNTIL TERMINATION CONDITION SATISFIED 

Schedule optimum OF value pattern; 

END 

 

The GA starts with a population which contains chromosome. The chromosome can be 

visualized containing n bits given by Eq. 5.16 as: 

   n = tn * bn …(5.16) 

Where tn is the total number of nodes present in a chromosome and bn is the number of bits 

taken to represent the partition to which a node belongs. The value of bn is computed by 

calculating the number of partitions required and the number of bits to represent this number. 

Number of partitions required is the maximum of: minimum PRR size (min_PR_size), 

minimum PRR inputs (min_PR_inp) and minimum PRR outputs (min_PR_op). These three 

parameters are required since the created partition should not violate any of these values as 

given by Eq. 5.17, Eq. 5.18 and Eq. 5.19. 

                         n_PR_size = ceil (req_size/max_size)                           ...(5.17) 

                       min_PR_inp = ceil(inp_num/max_inp)                           ...(5.18) 

                          min_PR_op = ceil(op_num/max_op)                 ...(5.19) 

Where req_size is the amount of partition space required for implementing given function and 

max_size is the amount of space available on the FPGA. Similar is the case with min_PR_inp 

and min_PR_op. The maximum of these values is taken to be min_PR which represents the 

number of partitions to be made as given by Eq. 5.20.  

min_PR = mini(min_PR_size, min_PR_inp, min_PR_op)                               ...(5.20)       
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Let us assume that an PRR has 10 inputs, 5 outputs and 200 units of area. Now as application 

has 100 inputs, 20 outputs and 600 units of area required. This gives min_PR_size = 3, 

min_PR_inp = 10, min_PR_op = 4, hence number of partitions required will be 3. The 

parameter bn can be calculated from mini_PR with a ceiling function as given by Eq. 5.21. 

                                     bn = ceil(log($min_PR)/log(2))                                             ...(5.21) 

For generating the initial population, initialize_population () function has been written that 

creates an initial random population for the next stages of the algorithms. After the population 

has been generated, the task of next stage (Fitness) is to find, the better chromosome for which 

an objective function is used. An objective function (Objfct) is defined to guide genetic 

algorithm to optimize a partition for minimizing some attributes for given constraints 

parameters. As a result, some form of metrics needs to be created. Some possible 

minimization attributes are power, delay, hardware, cost, silicon area etc.  

Calculate_chromosome_f()  function calculates the f_value that accumulates the effects of all 

the parameters like num_inputs, num_outputs, max_time,  size,  quality and validity of the 

order. The aim of the genetic algorithm would be to keep the chromosomes with minimum 

f_value. So, by increasing the f_value of a particular chromosome, the probability of it making 

to the next generation decreases. Since we need to minimize the max_time parameter, a value 

proportional to max_time is added to f_value. The proportionality constant is k1. 

The num_inputs are taken to be the difference between maximum  inputs available in the 

partition space of the FPGA  and the number of inputs present in a given partition.  Similar is 

the case with num_outputs. Since this num_inputs should be minimized, a value proportional 

to num_inputs and num_outputs is added to f_value in case these are positive. Proportionality 

constants are taken to be k2_p and k3_p respectively. In cases where the num_inputs or 

num_outputs are negative, those particular chromosomes should be neglected as those are not 

possible to be placed on the partition space of the FPGA.  So, the k2_n and k3_n which are 

the proportionality constants in cases when num_inputs and num_outputs are negative are 

taken to be very high.  

Since the difference between the maximum partition space available on the FPGA and space 

that will be occupied a given partition should also be minimized, we add to f_value a value 

proportional to the difference. Proportionality constants are k5_p and k5_n for the positive and 

negative cases similar to num_inputs and num_outputs.  

The quality of a chromosome indicates how many edges are being cut between the partitions 

of a chromosome. Lesser the number of edges cut, higher will be the quality.  Since the 
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quality is to be maximized, a value inversely proportional to the quality is to be added to 

f_value.  But since the change in the quality is so less, a value that is normally observed to be 

the average of the qualities of chromosomes of few iterations of best populations subtracts 

from the quality and then the inverse is taken.  The proportionality constant here is taken to be 

k4_p and k4_n  in the positive and negative cases respectively.  

As shown by Eq. 4.21, the objective function calculation requires many constants. Table 5.12 

shows the value of constants used in our objective function calculation. Higher the value of 

the constant, less will be the effect of it in the function, hence the values have been set in such 

a way that time gets the highest contribution.   

Table 5.12: Constants used in genetic algorithm 

Type Name Value 

Time $k1  10 

Input $k2_p  1 

Input $k2_n  100 

Output $k3_p  1 

Output $k3_n 100 

Quality $k4_p  0.001 

Quality $k4_n 10000 

Size $k5_p  0 

Size k5_n  100 

 

Following functions were written for calculating the parameters for GA and are called by 

Calculate_chromosome_f() : 

• Critical_time() function calculates the maximum time taken to evaluate a given output in 

the specified partition. This recursive function starts from the input node and adds up the 

time taken by each node till an ouput to the partition is encountered. Then, maximum 

value among those times is taken to be the critical time of the given output node.          

• Calculate_partition_time()  function calculates the critical time for all the available 

outputs and temp_outputs in the given partition by calling critical_time function.  

• Calculate_chromosome_time() function calculates the maximum time taken by a 

chromosome by adding the times taken by partitions in that chromosomes which are 

calculated by calling calculate_partition_time function. 

• Calculate_partition_connectivity () function calculates the connectivity of a partition.   

• Calculate_chromosome_quality () function calculates the quality of partitioning of the 

chromosome. 

The process of selection, crossover and mutation given in algorithm are implemented using 

Roulette wheel [2.27]. A function name GA_generation () does this. The function 
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GA_generation calls the function partition() takes the initial population and creates the 

partitions. After the partitioning process, the order in which the partitions should run must be 

decided, a function named depict_partitions() checks the dependency order and outputs the 

partitions with a specific naming convention. Each partition is then converted to HDL by a 

function named write_to_verilog() in dataflow semantics. The order of complexity of all the 

functions is known in Table 5.13 where N is the number of nodes, G is the number of 

generations and P is the number of population. 

Table 5.13: Order of complexity of functions in GA 

Calculate_chromosome_f O(N
2
) Partition O(N

2
) 

Calculate_chromosome_quality O(N) Permute O(N
2
) 

Calculate_chromosome_time O(N
2
) Validate_order O(N) 

Calculate_partition_connectivity O(1) Write_to_dot O(N
2
) 

Calculate_partition_time O(N) Write_to_verilog O(N
2
) 

Critical_time O(N) Depict_partitions O(N
2
) 

Find_valid_order O(N
2
) Main_control O(N

2
G) 

GA_generation O(N
2
) Partition O(N

2
) 

Initialize_population O(N
2
) Permute O(N

2
) 

 

Explanation for Overall time complexity: 

N -> No. of nodes (Only input of algorithm) 

G -> No. of generations (May need to be increased as the number of nodes is increased) 

The critical operation leading to the mentioned overall time complexity is the partitioning of 

nodes. Since this is done for each generation, O(G) is the complexity. And for each 

generation, partition function needs to loop through number of partitions and through all the 

number of nodes for each partition, the complexity O(N
2
)is used. Hence overall time 

complexity is: O(N
2
G). 

5.8. Wrapper Design and Scheduler Design 

The next step in design flow requires the partitions to be scheduled in precedence order in 

SW. The GA discussed in previous section returns the order of execution of partitions which 

can be used in designing a static scheduler. The function Find_valid_order  checks the 

dependency of the nodes and returns the cluster as C1, C2 and so on. These clusters are 

wrapped around in a common interface. The obtained partitions are supposed to run in one 

PRR, which requires the interface should be the same, since this a constraint in the PR design 

flow as discussed in chapter 1. This is a restriction on the design in terms of inputs and 

outputs channels cannot vary. The wrapper design requires that all the partitions and their 

ports be scanned order and type.    
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Suppose that two clusters given below are supposed to be designed for one partition. 

module prr1(a,b,c) ;       module prr1(x, y, z); 

input [3:0] a, [3:0] b;       input [7:0] x, [7:0] y; 

output [7:0] c;        output [15:0] z; 

The created wrapper is  

module prr(a,b,c,x,y,z); 

This wrapper is then instantiated as a component in the bus wrapper file and can be tested. 

Although this technique uses extra ports for each partition, but is necessary, since the PR tools 

searches the nets and if the same name net is not found it gives an error. When creating a 

partition of size around 20%, the region selection becomes crucial. In many cases the design is 

not routable and gives an error. The constraints discussed in section 2.5.2 (Restrictions in 

design flow) about the number of clock regions may fail as number of clocks available are 

restricted. In this situation the resulting partitions may be of no use and require modification 

in the HDL code of the design. It was found that left side upper region of the Virtex-5 gave 

better results in terms of PR region. This may be due to other regions are better supported for 

specific controllers like DDR memory.  

Load Next 

Configuration

Apply Inputs

Store the 

Intermediate 

Results

More inputs
More 

Configurations
Stop

 

Figure 5.29: Scheduler design in SDK 

After the clusters are wrapped, we need to run them in correct order. This step demands a 

robust scheduler, which configures the memory by picking up partial bit files from external 

memory. The Fig. 5.29 shows the flow chart for the scheduler designs.  

The scheduler designed has following steps: 

• A new configuration is loaded into the FPGA 

• For this configuration inputs are applied  
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• The results of the configuration are saved in temporary registers. 

• If the same existing configuration can be used, then new inputs are applied 

• If more configurations exist then the process is repeated. 

The code given below shows the snippet of the scheduler used in Xilinx SDK: 

xil_printf("\r\n Performing Reconfiguration for b1\r\n "); 

 XHwIcap_FLASH2Icap (XPAR_FLASH_MEM0_BASEADDR+0x01f20000); 

 xil_printf("\r\n done b1\r\n "); 

TEST_mWriteReg (baseaddr, TEST_SLV_REG24_OFFSET, input [16]); 

xil_printf("\r\n--------------\r\n Writing Data Set: %d\r\n",i); 

... 

xil_printf("\r\n b1_output[1] = %X",b1_output[1]); 

TEST_mWriteReg (baseaddr, TEST_SLV_REG8_OFFSET, input[8]); 

... 

b1_output [2] = TEST_mReadReg (baseaddr, TEST_SLV_REG25_OFFSET); 

xil_printf("\r\n b1_output[2] = %X",b1_output[2]); 

xil_printf("\r\n Performing Reconfiguration for b2\r\n "); 

XHwIcap_FLASH2Icap(XPAR_FLASH_MEM0_BASEADDR+0x01e00000); 

... 

In the above code, XHwICAP_FLASH function is used to load partial bits files from flash 

memory using the ICAP controller.   

5.9. Reconfiguration Time Analysis 

The design space exploration starts from SW implementation and can also look for HW, SW-

HW and HW-HW variations depending on the performance and area constraints. Our 

proposed HW-HW approach should be compared in terms of design flow complexity, 

performance gain and running time. The design flow complexity involved in this process is 

the creation of PlanAhead project, which takes specialized knowledge and understanding. For 

performance comparison, the design flow adopted here should be compared in terms of timing 

with respect to  

i. Total SW implementation of design on PowerPC processor in Xilinx SDK. 

ii. Total HW implementation of the design as IP core interfaced to the PowerPC 

processor in Xilinx XPS. 

iii. Proposed PR design flow (HW-HW): using compact flash (CF) card, double data rate 

(DDR) and Flash memory, PowerPC processor and PlanAhead SW. 
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Since the proposed design flow is new hence arises the need for a time estimation model, 

which can compare the obtained results and theoretical results. Estimated time for 

reconfiguration of the FPGA is resolved using the equation [2.73]: 

                                      Config_time[s] = Bitsize /(Cclk* Buswidth)     ...(5.22) 

Eq. 5.22 takes Bitsize, input clock and bus width to calculate the configuration time, but does 

not includes inputs, outputs and execution time required to run the IP core. The Eq. 5.23 

which is below, includes execution time, input, output and reconfiguration time can be 

formulated as 

 

                              …(5.23) 

Where n is the number of time the configuration is done, tconf  as the time required to 

configure the FPGA, ti as the time to apply the input to the configuration, texe as the time 

required to execute the inputs and to as the time required to get the output in registers. Eq. 5.23 

describes the total execution time of an application to run using clustering approach. For our 

HW-HW model, it is used for calculating the total time required for execution. Since we are 

using only one PR region, the tconf will remain constant as it is dependent only on PR region 

size not on the bitstream size. The smaller the value of n, lower will be the reconfiguration 

overhead. This equation can be applied when the reconfiguration time for benchmark 

programs are measured on HW using a timer. The values used in the equation were measured 

using the hardware xps timer, which is a core available in repository and has been described in 

chapter 3.  

After creating the a sample design in PR flow, it was found that partial bitstream for 40% area 

consumption is of 358 KB for and a simple adder file was 128 KB.  Hence it was concluded 

that the size of the partial bit files is of the order of KBs. The maximum throughput of the PR 

design flow reported as discussed in literature survey [2.67]  is 400 Mbps using DMA 

controller and double clocking. This concludes that a file of 100 KB will take 250 

microseconds for reconfiguration. This overhead in writing a new bitstream is of the order of 

microseconds, which is large as compared to applications which are completely their 

execution in microseconds. Hence this technique can only be useful if either this time is 

diminished or application can tolerate this much overhead for saving significant area. Hence 

as a thumb rule we have assumed a throughput of 400 Mbps for reconfiguration time 

calculations in subsequent sections.  
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5.10. Parameters and Results for Genetic Algorithm  

The constants required for the algorithm to run are the maximum size of the PRR in terms of 

LUTs, maximum inputs, maximum outputs, population size and number of generations. The 

parameters used for the GA execution are shown in Table 5.14 for cosine1 and cosine2.  

Table 5.14: PR and GA parameters 

PR Parameters             GA Parameters 

Max_size 2200 LUTs Population size 30 

Max_inputs 30 Num of generations 300 

Max_output 25 Mutation 

probability 

0.1 

  Crossover 

probability 

0.7 

 

GA has been applied to Express benchmark [2.38] available as dataflow graph for cosine1 and 

cosine2 functions. The dataflow graphs of the two programs are shown in Fig. 5.30 and Fig. 

5.31. Table 5.15 shows the number of nodes, number of edges, inputs, outputs and resource 

consumed by the two benchmarks programs. The two differ in the number of inputs. 

 

Table 5.15: Express benchmark programs used for testing GA 

Design Kind Nod

es 

Edges Inputs Outputs Resources Used 

LUTs DSP 

Cosine1 Express 

Benchmarks 

66 76 16 8 17021 48 

Cosine2 Express 

Benchmarks 

82 91 32 8 17021 48 

 

 

Figure 5.30: DFG of Cosine 1 
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Figure 5.31: DFG of Cosine 2  

The number of times the iterations of the algorithm is executed decides the running time of 

the GA.  

 

Figure 5.32: Fitness vs. generations 

Fig. 5.32 shows the plot of fitness value against its generation for cosine 1. Algorithm has the 

initial fitness value to be around 700 which then reached the global optimum solution (having 

fitness value as 580 in this case) by traversing through one local optimum solution (fitness 

value as 680). This being a simpler graph, could be seen to have converged to final optimal 

solution in around 70 generations. 
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Figure 5.33: Fitness value vs. generation for mutation value as 0.2(Blue) and 0.4(Pink) 

Fig. 5.33 shows plots of fitness value against its generation for mutation value as 0.2(Blue) 

and 0.4(Pink). Rate of convergence could be seen to be different for both the plots as 

expected. With mutation rate as 0.4, optimal solution is reached in around 225 generations 

while it took around 350 generations for the case using 0.2 as mutation rate. The algorithm 

with higher mutation value explores more of new solutions and hence reaches the optimal 

solution (which is approximately at fitness value of 510 in this case) faster than the algorithm 

with lower mutation value. On the other hand, too high mutation value leads to losing of the 

essence of genetic algorithm making it a random search algorithm. Spikes on the graph are 

closely proportional to exploration rate and hence to the mutation rate. Algorithm has the 

initial fitness value to be around 730 which then reached the global optimum value of 510 by 

traversing through the local optimal values – 680, 630, 560.  

In the next section we have developed a task graph generator for examining the strength and 

running time of GA. 
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5.11. Random Task Graph Generation 

Validation of the robustness, efficiency of allocation and scheduling heuristics in large scale 

parallel and distributed systems is usually done using synthetic randomly generated 

workloads, represented by task graphs. We present a modular approach to the problem of 

generating random directed acyclic graphs (DAGs), called as modular random task graph 

generator (MRTG), making it very flexible for the researchers to use it. Modular based 

approach provides a great advantage for future development as more modules can be added 

without disturbing the existing stable software. The task nodes are placed randomly using a 

layer-by-layer approach and then connected randomly. Paramount importance has been given 

to user-controlled randomness in developing this algorithm. The MRTG can generate task sets 

containing several different types of task graphs like rooted trees, isomorphic graphs and 

random graphs with same node placement but different connections, with the flexibility to 

dictate the type of graph generated. We also present a comparison of MRTG with existing 

solutions to the random task graph generation problem. 

5.11.1. Random Graph Generators  

Research in real-time embedded systems, operating systems and hardware software co-design, 

as well as in more general allocation and scheduling fields, is hampered by the lack of a 

common base of benchmarks. In general, any example used in allocation and scheduling 

research consists of a task set and a database of processors plus several communication 

resources. A task set is a collection of task graphs, each of which is a directed acyclic graph 

(DAG) of communicating nodes. Generation of sample task sets is often a requirement when 

comparing allocation or scheduling methods with each other. The existing solutions are of 

limited relevance in today's scheduling problems in parallel, distributed systems and fields 

like hardware software co-design, which require a clear definition of the size of the critical 

path and also cater to the possibility of defining different types of task nodes with independent 

parameters. MRTG accomplishes these and also gives researchers an opportunity to clearly 

define the number of inputs to each type of task node, which is necessary in today's computer 

science scheduling problems which require that all inputs arrive for the task node to give an 

output. 

MRTG is highly valuable for simulation of scheduling problem on many core processors in 

order to choose how to divide the work that must be done among such large number of 

processing cores. It is of particular importance to researchers working in areas like 

reconfigurable computing and System-on-Chip. Because of its layer-by-layer [5.2] approach 
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as researchers can define graphs according to the requirements. As MRTG has been created 

with computer hardware scheduling problems in mind, the constraints are defined in terms of 

the silicon area consumed in executing each task and the delay across that task node. But, 

these definitions are flexible and we can interpret these constraints in the way that they are 

relevant to any research. For easy analysis, MRTG currently give output graphs in two 

formats a text file with the list of node placement, an array of ordered pairs describing the 

connections and in GraphViz‘s dot format.  

We now present a thorough comparison of MRTG with popular existing random task graph 

generators. Task Graphs for Free (TGFF) [5.3] is one of the oldest and most popular 

algorithms for generating user-controllable, general-purpose, pseudorandom task graphs. The 

original TGFF algorithm iteratively adds nodes to construct a graph using limits on the 

maximum in and out degrees of each node, this reduces the randomness of the task graph 

generated, making it a pseudo-random task graph generator [5.4]. Fig. 5.34 shows the sample 

graph generated using TGFF. 

 

Figure 5.34: A graph generated using TGFF 

A more recent version provides an option to generate also series-parallel DAGs. MRTG on the 

other hand, keeps the node placement, connection steps separate and adds randomness at 

every level making it a truly random task graph generator. This method of iteratively adding 

nodes, leads to generation of only rooted task graphs by TGFF, while MRTG can produce 

graphs with any number of input nodes, including rooted trees if the number of input nodes 

specified by the user is one. 
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MRTG creates a graph with the exact number of nodes as specified by the user, while TGFF 

takes the average and multiplier from the user, for the lower bound on the number of nodes in 

a graph and creates a graph with number of nodes that are randomly greater than this lower 

bound. Another major difference between TGFF and MRTG is that, TGFF uses a concept of 

depth to decide the communication delay of the graph generated. In MRTG we have a concept 

of levels, where we assume that any task in the next level does not start unless all the tasks in 

the previous level are completed. This is of particular importance to researchers in fields like 

reconfigurable computing, as now they can define different levels in random task scheduling 

to take into account reconfiguration of the hardware between levels. 

TGFF is flexible with the number of inputs of each node and the user specifies the degree of 

inputs. The TGFF algorithm results in a graph that has nodes in which the number of inputs 

connected is any number less than the degree specified, while MRTG takes the exact number 

of inputs required by each task from the user and ensures that they are connected. 

Even so, MRTG and TGFF are similar with respect to the flexibility of the outputs of a node 

as both take the maximum number of outputs and connect any number below this. Also, in 

TGFF only one type of node is specified, while in MRTG, multiple types of nodes can be 

specified with their own individual constraints. The two other generators commonly available 

are Graph Generation for Scheduling Simulations (GGEN) [5.5] and Random Task Resource 

Graphs (RTRG). GGEN provides a very thorough coverage of the different task scheduling 

algorithms developed over the years. It uses the libraries of the existing solutions and provides 

the developer with a single tool to exploit them. But, in doing so it gets limited by the 

shortcomings of those algorithms. It becomes a one stop tool for developers, but has limited 

additions of its own. Different types of nodes with their own individual parameters and 

constraints can be specified in MRTG, while this is not an option in GGEN. One aspect where 

GGEN and MRTG are similar is that both generate an output in Graphviz‘s dot language. 

RTRG is a simple and effective tool, but provides very limited flexibility to the developer. It 

defines resources used by a task node, which is similar to the concept of area used in MRTG. 

It offers different types of nodes but the constraints of each node have to be defined 

individually, which presents a problem when the number of nodes increases, while the node 

type definitions in MRTG are grouped making it easier for the user. The output file generated 

by RTRG is in .rtg format, which is difficult to analyze, while MRTG generates a dot file as 

output along with a text file showing the connections and node placement in matrix form. 

MRTG differs from all existing solutions in the respect that it is divided into self-contained 

modules and changes made in one module don't affect the functioning of another. This 
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modular nature makes the code far more reusable than a conventional monolithic design. 

Future improvements are easier to make, as additional modules can be added without 

disturbing the functionality of the original stable software. It also makes the program very 

flexible to use, as now researchers can choose to run only those modules that they require and 

also change the order of execution of modules to suit their needs. We now describe the 

working of MRTG, which is currently divided into four modules assignLevels, connectNodes, 

isomorphize and plotGraph. 

5.11.2. Algorithmic Design of MRTG  

MRTG primarily generates a specified number of random task graphs, where the graph nodes 

are tasks and the graph edges depict the communication between tasks. In the algorithm, we 

first decide the total number of task nodes needed, the number of levels in which to place 

them, number of input nodes, the maximum area that each level can accommodate and the 

total delay constraint. Along with this, we can specify different types of task nodes here, by 

giving the number of inputs, the fan-out, i.e. degree of the output, area consumed, delay and 

the total number of nodes of that type. Here, we can also give the number of isomorphic 

graphs required. Rooted graphs can also be generated by specifying the number of input nodes 

as one. Given below is the sample input specification file: 

isomorphicCount 

numberOflevel areaPerLevel MaxDelay 

TypesOfInputNodes CountOfTotalInputNodes 

CountOfType1 AreaofType1 DelayOfType1 OutputsOfType1 SymbolOfType1 

CountOfType2 AreaofType2 DelayOfType2 OutputsOfType2 SymbolOfType2 

CountOfType3 AreaofType3 DelayOfType3 OutputsOfType3 SymbolOfType3 

.... 

TypesOfTaskNodes CountOfTotalTaskNodes 

CountOfType1 AreaofType1 DelayOfType1 InputsofType1 OutputsOfType1 SymbolOfType1 

CountOfType2 AreaofType2 DelayOfType2 InputsofType2 OutputsOfType2 SymbolOfType2 

CountOfType3 AreaofType3 DelayOfType3 InputsofType3 OutputsOfType3 SymbolOfType3 

.... 

The seed for randomness in MRTG, which decides the structure and other aspects of the 

generated task graphs, is the current system time making it highly unlikely for any two graphs 

generated at different times to be similar. But if similar task graphs are required, we can 

specify a user-defined seed and share it with another researcher. We have defined four rules in 

this algorithm: 
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a. Every type of node has only specified number of inputs, but the output can go to any 

number of nodes less than the fan-out as input. 

b. The output of every node, except the ones the bottom level, is connected to at least one 

input. 

c. All connections are downward directional, so the output of a lower node cannot 

connect to an input of an upper node and any node‘s output can go into the input of a 

node from any level below its own. 

d. Tasks in a level start only after all the tasks in the previous level are completed. 

5.11.2.1 Module 1: assignLevels 

This module develops on the layer by layer method proposed by Tobita and Kasahara [5.6]. 

Here, we randomly place node in different levels, without violating the maximum area that 

each level can accommodate and the total delay constraint. This module only decides the node 

placement and makes no connections between the nodes. We first create a list, which stores 

the node placement information. Then, we repeatedly select a random level and put a 

randomly selected node in it, while ensuring the maximum area in that level is not exceeded. 

This process continues till all nodes are placed. Lastly, we calculate the total delay of this 

particular node placement by adding the maximum delay at each level and check against the 

delay constraint. If violated, the process repeats from the start. Although very simple, this 

method is very useful in practice because by limiting the number of levels we can limit the 

size of the critical path. 

Algorithm 5.5: Module 1 - assignlevels 

1. Name:assignLevels 

2. Function: Randomly place node in different levels, without violating constraints 

3. Input: numberOfLevels = The total number of levels in the graph 

4.  areaPerLevel = The maximum area that each level can accommodate 

5.  delayLimit = The delay constraint 

6.  inputNodes = Array containing all the input nodes 

7.  taskNodes = Array containing all the task nodes 

8.  nodeList = List defining node placement, with the first index holding the level number 

9.  Output: Passed by reference 

10.  Boolean value returned 

11. Algorithm: 

12. /* assume nodes sorted already by type */ 

13. Define an array freeArea[] and put the value of areaPerLevel for each level. 

14. Insert all input nodes at level 0 of nodeList and subtract area of each from freeArea[0]. 

15. iffreeArea[0] is less than 0 
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16.  then say "Input nodes occupy too much area" and assert false 

17. endif 

18.19. /* fulfill area constraints */ 

20. for i=0 to taskNodes.size()  

21.  Initialize chosenLevel to -1 

22.  Initialize numIterations to 0 

23.  do 

24.   set chosenLevel as 1 + modulus of random number with numberOfLevels 

25.   ifnumIterations is 1e6 

26.    then say "Unable to find suitable level in time" and return false 

27.   endif 

28.  whilefreeArea[chosenLevel] is less than area at taskNodes[i] 

29.  enddowhile 

30.  assert false if chosenLevel is equal to -1 

31.  Push back the node at taskNodes[i] into nodeList[chosenLevel]. 

32.  Subtract the area of taskNodes[i] from freeArea[chosenLevel]. 

33. endfor 

34.35. /* fulfill delay constraints */ 

36. Initialize totalDelay to 0 

37. for i=0 to numberOfLevels 

38.  Initialize maxDelay to 0 

39.  for j=0 to size of nodeList[numberOfLevels] 

40.   setmaxDelay to maximum of maxDelay and delay at nodeList[numberOfLevels][j] 

41.  endfor 

42.  Add maxDelay to totalDelay 

43. endfor 

44. iftotalDelay is greater than delayLimit 

45.  then return false 

46. else 

47. return true 

48. endif 
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5.11.2.2. Module 2: connectNodes  

Here, we take the node placement information from the previous level and randomly make 

downward directional connections and store them in an array of ordered pairs, while satisfying 

the rules of the algorithm. We start moving up from the second level from the bottom and 

randomly connect each output only once to an input below. After all the outputs have been 

connected once, we start moving down from the level below the input level and randomly 

connect all unconnected inputs to an output above, while ensuring that the fan-out is not 

violated. A totally random task graph, subject to input constraints, is generated at the end of 

this module. As a fail-safe, if the algorithm gets stuck at any point and is not able to place the 

nodes or make connections, it will automatically show an error after trying for a hundred 

thousand times. A sample of rooted graph generated from MRTG is shownin Fig. 5.35. 

 

Figure 5.35: A rooted graph generated using MRTG 

Algorithm 5.6: Module 2- connectnodes 

1. Name: connectNodes 

2. Function: Make random downward directed connections subject to number of inputs and fanOut of outputs of 

each node 

3. Input: nodeList = List defining node placement, with the first index holding the level number 

4.  connections = Array of ordered pairs defining connections between nodes 

5. Output: Passed by reference 

6.  Boolean value returned 

7. Algorithm: 

8.   Clear any previous connections. 

9./* ensure every input node is utilized atleast once:: bottom to top*/ 

10. Initialize array of ordered pairsfreeInput 

11.for i=0 to size of nodeList[numberOfLevels] 
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12. for j=0 to number of inputPins of nodeList[numberOfLevels][i] 

13.  Push back (numberOfLevels,i) into freeInput 

14. endfor 

15.endfor 

16.for level=numberOfLevels-1 to 0 

17. Randomly shuffle the array freeInput 

18. for i=0 to size of nodeList[level] 

19.  Initialize a node id to nodeList[level][i] 

20.  if size of freeInput is 0 

21.   then return false 

22.  endif 

23.  Initialize choice to freeInput.size()-1. 

24.  Initialize newLevel to the first value in the pair freeInput[choice] 

25.  Initialize indexInNewLevel to the second value in the pair freeInput[cho.ice]26 

26.  Initialize node newId to nodeList[newLevel][indexInNewLevel] 

27.  Push back (id,newId) into connections 

28.  Increment the value of connectedOutputs of nodeList[level][i] 

29.  Increment the value of usedInputPins of nodeList[newlevel][indexInNewLevel] 

30.  Pop back freeInput 

31. endfor 

32. for i=0 to size of nodeList[level] 

33.  for j=0 to number of inputPins of nodeList[level][i] 

34.   Push back (level,i) into freeInput 

35.  endfor 

36. endfor 

37.endfor 

38.Initialize array of ordered pairsfreeOutput 

39.for i=0 to size of nodeList[0] 

40. for j = connectedOutputs of nodeList[0][i] to fanOut of nodeList[0][i] 

41.  Push back (0,i) into freeOutput 

42. endfor 

43.endfor 

44.Initialize highestLevelInFreeOutput to 0 

45.Sort the elements in freeInput 

46. 

47./* now process all the free inputs top to bottom*/ 

48.for i=0 to size of freeInput 

49. Initialize level to the first value of the pair freeInput[i] 

50. Initialize indexInLevel to second value of the pair freeInput[i] 

51. Initialize node id to nodeList[level][indexInLevel] 

52. while level - highestLevelInFreeOutput is greater than 1 

53.  Increment highestLevelInFreeOutput 
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54.  if level is equal to highestLevelInFreeOutput 

55.   then return false 

56.  endif 

57.  for ii=0 to size of nodeList[highestLevelInFreeOutput] 

58.   for j= number of connectedOutputs of nodeList[highestLevelInFreeOutput][ii] to fanOut of 

nodeList[highestLevelInFreeOutput][ii] 

59.    Push back (highestLevelInFreeOutput,ii) into freeOutput 

60.   endfor 

61.  endfor 

62.  Randomly shuffle the array freeOutput 

63. endwhile 

64. if size of freeOutput is 0 

65.  then say "Insufficient outout pins" and return false 

66. endif 

67. Initialize choice to size of freeOutput -1 

68. Initialize newlevel to the first value in the pair freeOutput[choice] 

69. Initialize indexInNewLevel to the second value in the pair freeOutput[choice] 

70. Pop back freeOutput 

71. Initialize node newId to nodeList[newlevel][indexInNewLevel] 

72. Push back (newId,id) into connections 

73. Increment the usedInputPins of nodeList[level][indexInLevel] 

74. Increment the connectedOutputs of nodeList[newLevel][indexInNewLevel] 

75.endfor 

76.Return true 

 

 

5.11.2.3. Module 3: isomorphize 

A graph G is isomorphic to a graph H if there exists a one-to-one function, called an 

isomorphism, from V(G) (the vertex set of G) onto V(H ) such that (u1,v1) is an element of 

E(G) (the edge set of G) if and only if (u2,v2) is an element of H [2.43]. In simpler terms, two 

graphs are isomorphic when the vertices of one can be re labeled to match the vertices of the 

other in a way that preserves adjacency. This module is used to generate graphs that are 

isomorphic to the one generated above. We randomly select a type of node and swap the 

identification numbers of any two nodes of that type. The number of times this process is 

repeated for each isomorphic graph is also random. 

Algorithm 5.7:  module : assignlevels 

 

1. Name: isomorphize 
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2. Function: Generate isomorphic graphs 

3. Input:typeList = List defining the type of node, with the first index holding type and the second one holding 

the node information. 

4. Output: Passed by reference. 

5. Algorithm: 

6. for i=0 to size of typeList 

7.  while generated random number %10 is not 0 

8.  int u = modulus of randomly generated number with size of typeList[i]; 

9.  int v = modulus of another randomly generated number with size of typeList[i]; 

10.  define Node n1 as typeList[i][u] and Node n2 as typeList[i][v]; 

11.  swap the ID of n1 and n2 by reference; 

12.  endwhile 

13. endfor 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.36: Two isomorphic graphs generated using MRTG 

A sample of two isomorphic graphs generated using MRTG is shown in Fig. 5.36. 

5.11.2.4. Module 4: plotGraph 

The DOT language provides syntax for describing graphs, edges, nodes and the properties 

associated with the graph components in simple text format. We have chosen Graphviz‘s DOT 

language as the default format for graph representation for MRTG, to make it compatible with 

most of the available tools for graph analysis. In this module, we create graphs in DOT file 

format from the list of nodes and array of connections created above. MRTG being modular 

gives a lot of flexibility and control to the researcher. We can run assignLevels module once 

and connectNodesmodule multiple times to generate similar graphs that have the same node 
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place but different connections between the nodes. Rooted trees can be generated by 

specifying only one input node.  

Being modular, MRTG can have future additions in the form of modules, which can be added 

without disturbing the original stable software. We plan to make it open source so that 

researchers who really need it, can develop modules they need and add them to the project so 

the whole community can use them. We plan to develop a module to add weights to the 

connections too. This will be very useful for researchers who need to do scheduling while 

taking into account the communication delay and resource expenditure. After that we also 

plan to add a concept of depth, as proposed in TGFF. MRTG provides a modular approach for 

generating user-controlled, truly random task graphs that find relevance in simulating today's 

scheduling problems in parallel, distributed systems and fields like hardware software co-

design. This modular nature makes the program code far more reusable than a conventional 

monolithic design. It also makes the program very flexible to use, as now researchers can 

choose to run only those modules that they require and also change the order of execution of 

modules to suit their needs. The layer-by-layer approach followed in MRTG, with the ability 

to define different types of nodes with their individual parameters separates it from existing 

available solutions and makes it highly valuable for researchers working in areas like 

reconfigurable computing, System on Chip and for scheduling simulation in the problem of 

many core processors, to choose how to spread the work among such large number of 

processing cores. A sample of two operator based graph generated using MRTG is shown in 

Fig. 5.37. 

 

Figure 5.37: Nodes with operators generated using MRTG 

The sample program used in the analysis of the GA algorithm contains nodes up to 100. In 

real practical applications such nodes can go up to thousands hence arises the need for 

handling large number of nodes. Results of GA applied to MRTG graphs, for number of 
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iterations = 10, Population size = 30 on a desktop machine having i5-2400 CPU @ 3.10GHz 

3.10 GHz are shown in Table 5.16.  

Table 5.16: Number of nodes vs. time taken 

Number of nodes  Time Taken(minutes)  

100  4.32  

250  22.70  

500  98.43  

 

 

Figure 5.38: Number of Nodes vs. time taken 

Figure 5.38 shows a nearly linear behavior of the genetic algorithm for nodes ranging from 

100 to 500. 

5.12. Results and Discussion: Comparing ISO and GA Approaches 

This section focuses on a results based on simulation and experiments done to justify the 

frameworks proposed in chapter 3 and 4. Firstly the results of the GA are discussed and then a 

DCT design has been taken for experimental verification and comparison. 

The results of GA were further applied to the four programs and are tabulated in Table 5.17. 

The partial reconfiguration overhead is neglected in the simulation since the order of time was 

reconfiguration is microseconds as discussed in literature survey [2.61]. The table shows the 

PRR defined and the corresponding partitions and execution time obtained from GA 

execution.  
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Table 5.17: GA applied to four benchmarks 

Design 

(1) 

Nodes 

/edges 

(2) 

Inputs 

/outputs 

(3) 

Resources 

 Used 

(4) 

GA  

Running time 

Seconds 

(5) 

PRR 

Area 

Given 

(6) 

No.  

of 

Partitons 

(7) 

Execution 

Time 

(8) 

Cosine series(float) 15/31 5/1 8302 8 5000 2 276.5 

Exponent (float) 34/69 8/1 19050 8 5000 4 497.9 

Matrix Multi(3x3-Integer) 45/99 18/9 4626 4 2500 2 75.3 

Sine series(float) 18/37 4/1 9527 2 5000 2 284.5 

 

The results in Table 5.17 are calculated in a python script and hence are simulation based 

only.  

 Column 1 : name of the program 

 Column 2 : number of nodes and edges 

 Column 3 : number of inputs and outputs 

 Column 4 : the resource consumed by the program 

 Column 5 : runing time of GA 

 Column 6 : partial area constraints given 

 Columns 7 : Number of partitions returnedby GA 

 Columns 8 : Execution time of program 

Now that two different approaches have been discussed (GA and ISO), the Fig. 5.39 shows an 

algorithm to decide which one to chose, given a dataflow specification. This method helps the 

designer to follow a path based on requirement. 
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Define the specification in dataflow graph

Does Isomorphs of ample size exist
YesNo

Run the isomorphic algorithm

Migrate to Genetic algorithm for 

clustering and scheduling

Create clusters of HW, SW or 

isomorphs

Create clusters Schedule the clusters 

Calculate the area delay 

product

Calculate the area delay 

product

Choose a solution

 

Figure 5.39: Flowchart for comparing the ISO and GA approach 

Table 5.18: Comparison of simulations time 

 Design Area Delay 

Product 

 

GAx(1000) 

Area Delay 

Product 

 

ISOx(1000) 

1 Cosine 

series 

1382.5 1442.05 

2 Exponent 

Series 

2489.5 3453.76 

3 Sine 

series 

1422.5 1654.83 

4 Matrix 183.75 126.28 

 

The comparison of GA and ISO is shown in Table 5.18. In case 1, 2 and 3 the performance of 

GA is better as compared to ISO approach. This is because of the same area used in the GA 

design. If we add the reconfiguration overhead in the GA design flow, the performance of ISO 

flow will be much better. Hence we can say that ISO is a more feasible flow for efficient 

implementation. If the reconfiguration overhead can be neglected (like concurrently loading of 

bitstream) then GA is much better. 

5.13. DCT Case Study for HW Isomorphic Design flow Based on Experimental Work 

Discrete cosine transform is one of the common applications that has been migrated to HW 

over the last two decades. This is due to the fact that it involves computation and processing. 

We now present a basic introduction to DCT: 
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5.13.1. Implementations of Discrete Cosine Transforms   

DCT is a basic coding method to transform the image from the spatial domain to the 

frequency domain and works by separating the images into regions of differing frequencies. 

The 1-D DCT of N real numbers x(n), n = 0, ..., N-1, is the list of length N given by [5.7] as 

given by Eq. 5.24: 

                     𝑋 𝑘 =   
2

𝑁
𝐶 𝑘  𝑥 𝑛 cos  

 2𝑛+1 𝑘𝜋

2𝑁
        𝑁−1

𝑛=0      𝑘 = 0,…𝑁 − 1                        
 

…(5.24) 

 

The list x(n) can be recovered from its transform by applying the inverse cosine transform 

(IDCT) as defined Eq. 5.25: 

             𝑥 𝑛 =   
2

𝑁
𝐶 𝑘  𝑋 𝑘 cos  

 2𝑛+1 𝑘𝜋

2𝑁
        𝑁−1

𝑘=0      𝑛 = 0,…𝑁 − 1                               
 

…(5.25) 

 

                          𝐶 𝑘 =  
1

 2
  𝑘 = 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
  

  
 

 

…(5.26) 

 The constant C(k) is defined by Eq. 5.26. If the input sequence has more than N sample 

points, then it can be divided into sub-sequences of length N and DCT can be applied to these 

chunks independently. In each such computation, the values of the basic function points does 

not change, but the values of x(n) changes in each sub-sequence, enabling the basic functions 

to be pre-computed offline and then multiplied with the sub-sequences. This reduces the 

number of mathematical operations (i.e., multiplications and additions) thereby rendering 

computation efficiency. The sample C code used for testing the 1D DCT is shown in 

Optimization 1. 

Optimization 1: 1D DCT 

void dct(float **DCTMatrix, float **Matrix, int N){ 

         DCTMatrix[u] = 0; 

            for (i = 0; i < N; i++) { 

                { DCTMatrix[u] + = Matrix[i] * cos(M_PI/((float)N) * (i+1./2.)*u) ;    }   }  }  } } 
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We can look at the DCT as a matrix multiplication [5.8] Where the inputs and outputs are 

row-vectors: X=x×M, where M is the cosine coefficient matrix. Optimization 2 shows the 

representation as matrix form. 

Optimization 2: 1D DCT [4.4] 

static const double c0 = 1. / sqrt(2.) * sqrt(2. / 8.); 

static const double c1 = cos(M_PI * 1. / 16.) * sqrt(2. / 8.); 

static const double c2 = cos(M_PI * 2. / 16.) * sqrt(2. / 8.); 

static const double c3 = cos(M_PI * 3. / 16.) * sqrt(2. / 8.); 

static const double c4 = cos(M_PI * 4. / 16.) * sqrt(2. / 8.); 

static const double c5 = cos(M_PI * 5. / 16.) * sqrt(2. / 8.); 

static const double c6 = cos(M_PI * 6. / 16.) * sqrt(2. / 8.); 

static const double c7 = cos(M_PI * 7. / 16.) * sqrt(2. / 8.); 

 

#define a x[0] 

// etc 

 

void dct_ii_8a(const double x[8], double X[8]) { 

  X[0] = a*c0 + b*c0 + c*c0 + d*c0 + e*c0 + f*c0 + g*c0 + h*c0; 

  X[1] = a*c1 + b*c3 + c*c5 + d*c7 - e*c7 - f*c5 - g*c3 - h*c1; 

  X[2] = a*c2 + b*c6 - c*c6 - d*c2 - e*c2 - f*c6 + g*c6 + h*c2; 

  X[3] = a*c3 - b*c7 - c*c1 - d*c5 + e*c5 + f*c1 + g*c7 - h*c3; 

  X[4] = a*c4 - b*c4 - c*c4 + d*c4 + e*c4 - f*c4 - g*c4 + h*c4; 

  X[5] = a*c5 - b*c1 + c*c7 + d*c3 - e*c3 - f*c7 + g*c1 - h*c5; 

  X[6] = a*c6 - b*c2 + c*c2 - d*c6 - e*c6 + f*c2 - g*c2 + h*c6; 

  X[7] = a*c7 - b*c5 + c*c3 - d*c1 + e*c1 - f*c3 + g*c5 - h*c7; 

} 

 

Optimization 2 can be further optimized after factoring leading to Optimization 3. 

Optimization 3: 1D DCT 

 

void dct_ii_8b(const double x[8], double X[8]) { 

  double c0 = 1. / sqrt(2.) * sqrt(2. / 8.); 

 double c1 = cos(M_PI * 1. / 16.) * sqrt(2. / 8.); 

 double c2 = cos(M_PI * 2. / 16.) * sqrt(2. / 8.); 

 double c3 = cos(M_PI * 3. / 16.) * sqrt(2. / 8.); 
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 double c4 = cos(M_PI * 4. / 16.) * sqrt(2. / 8.); 

 double c5 = cos(M_PI * 5. / 16.) * sqrt(2. / 8.); 

 double c6 = cos(M_PI * 6. / 16.) * sqrt(2. / 8.); 

 double c7 = cos(M_PI * 7. / 16.) * sqrt(2. / 8.);       

  double ah = a - h; 

  double bg = b - g; 

  double cf = c - f; 

  double de = d - e; 

  double adeh = a - d - e + h; 

  double bcfg = b - c - f + g; 

  X[0] = (a + b + c + d + e + f + g + h)*c0; 

  X[1] = ah*c1 + bg*c3 + cf*c5 + de*c7; 

  X[2] = adeh*c2 + bcfg*c6; 

  X[3] = ah*c3 - bg*c7 - cf*c1 - de*c5; 

  X[4] = (a - b - c + d + e - f - g + h)*c4; 

  X[5] = ah*c5 - bg*c1 + cf*c7 + de*c3; 

  X[6] = adeh*c6 - bcfg*c2; 

  X[7] = ah*c7 - bg*c5 + cf*c3 - de*c1; 

} 
 

 

Chen et al. algorithm [5.9] represents the 8-point DCT with matrix transforms. Loffler [5.10] 

proposed a new class of a fast 1D-DCT algorithm using 11 multiplications and 29 additions. 

Lee algorithm is also based on the matrix representation [5.11] using butterfly decomposition 

yielding to an even and an odd part. AAN algorithm [5.12] being the most efficient technique 

is discussed next. 

5.13.2. Pipelining Approach and Implementation of DCT based on AAN algorithm 

A fast DCT algorithm commonly known as AAN, named after its authors: Arai, Agui and 

Nakajima is a optimum algorithm. Their algorithm uses five multiplies and eight post-

multipliers.  
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Table 5.19: Computational steps in AAN algorithm 

 

 

 

 

 

 

 

 

 

Constants: 

m1=cos(4*pi/16);   m2=cos(2*pi/16)-cos(6*pi/16);  m3=cos(6*pi/16);                                                                                                                     

m4=cos(2*pi/16)+cos(6*pi/16); 
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Figure 5.40: Pipeline architecture 

The 1D-DCT architecture described in Fig. 5.40 is based on the AAN algorithm. The 

algorithm described above has six steps, so the pipeline will have six stages. The first stage 

has eight adders, second stage has seven adders, third stage has four adders, fourth stage five 

multipliers, fifth stage has six adders, and sixth stage has four adders
. 
Here twenty nine adders, 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

b0=a0+a7 c0=b0+b5 d0=c0+c3 e0=d0 f0=e0 s0=f0 

 

b1=a1+a6 c1=b1-b4 d1=c0-c3 e1=d1 f1=e1 s1=f4+f7 

 

b2=a3-a4 c2=b2+b6 d2=c2 e2=m3*d2 f2=e5+e6 s2=f2 

b3=a1-a6 c3=b1+b4 d3=c1+c4 e3=m1*d7 f3=e5-e6 s3=f5-f6 

 

b4=a2+a5 c4=b0-b5 d4=c2-c5 e4=m4*d6 f4=e3+e8 s4=f1 

b5=a3+a4 c5=b3+b7 d5=c4 e5=d5 f5=e8-e3 s5=f5+f6 

 

b6=a2-a5 c6=b3+b6 d6=c5 e6=m1*d3 f6=e2+e7 s6=f3 

 

b7=a0-a7 c7=b7 d7=c6 e7=m2*d4 f7=e4+e7 s7=f4-f7 
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five multipliers, in each stage eight pipeline registers except stage D and stage E which is 

having nine registers. AAN architectures were written in VHDL and floating point arithmetic 

was used to get precise results.  

 

Figure 5.41: DCT netlist in Xilinx  ISE 

A C program and VHDL for 1-D floating point DCT was written for implementation. Fig. 

5.41 shows the netlist obtained from Xilinx ISE of the Discrete Cosine Transform (DCT) 

architecture taken as a sample. It has four fblocks (F), four multiply_fpt (FPM) and three 

floating_point_adder (FPA) as shown in Fig. 5.42. 
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Figure 5.42: F block netlist in Xilinx ISE 

5.13.3. HW SW Co-design of DCT 

In the previous section we have selected and implemented DCT architecture in HW. Now our 

goal is to implement DCT as a co-design flow as presented in chapter 3. For the co-design 

flow, the application should partly run in HW and partly in SW. The optimization 2 discussed 

above shows that for each X, we need eight multipliers and seven adder/sub. Hence the co-

design flow implements them in HW and for eight vectors(X) a SW loop is used. The co-

efficient used in the sample 3 are computed in SW and shown in Table. 5.20. 
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Table 5.20: Matrix as Coefficient 

 

For creating a dataflow model, we wrote codes for floating point multiplier and floating 

point adder in Verilog.  

 

Figure 5.43: Netlist diagram for dataflow model 
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The dataflow graph for DCT design with floating point adder and multiplier is shown in 

Fig. 5.43. 

Table 5.21 Resources consumed by floating point dataflow model of DCT 

Number of Slice Registers 175 44800 0% 

Number of Slice LUTs 4677 44800 10% 

Number of fully used LUT-FF pairs 175 4677 3% 

Number of bonded IOBs 544 640 85% 

Number of BUFG/BUFGCTRLs 7 32 21% 

Number of DSP48Es 16 128 12% 

 

For calculating the area and delay product, we need the resources consumed. After 

compiling the DFG DCT design in Xilinx ISE, the resources were tabulated and are shown 

in Table 5.21 an are compared in next section. 

5.13.4. Synthesis and Simulation results:  

In this section we compare all the implementations discussed, which include, AAN design 

as HW, isomorphic design, Co-design and partial reconfiguration design. 

 

Figure 5.44: Redrawn DCT netlist showing isomorphic modules 

During the synthesis we found that some isomorphic sets in DCT design (as shown in Fig. 

5.44). The algorithm discussed for identification of isomorphic graphs gives us many sets:  

a) {(F1, F2, FPM5, FPM6, FPA4) (F3, F4, FPM7, FPM8, FPA5)},  

b) {(F1, F2, FPM5, FPM6,) (F3, F4, FPM7, FPM8)},  

c) {(FPM5, FPM6,) (FPM7, FPM8)}, {(F1, F2, F3, F4)},  

d) {(FPM5, FPM6, FP7)}, {(FPA4, FPA5, FPA6)}.  



189 
 

The time obtained from the proposed design flow using xps_timer is given in Table 5.22. 

Table 5.22: Area and delay of each node 

name Time Area 

F Block 4.998 ns 3087 (6%) + 8 DSP(6%) 

FPA 4.921 ns 868(1%) + 0 

FPM 6.539 ns 91(0%) + 1 DSP 

 

From Table 5.22 we see that F block takes 6% of the resource, which means it is a bigger 

block as compared to FPA and FPM. Hence we choose ((FPM5, FPM6,) (FPM7, FPM8)}, 

{(F1, F2, F3, F4)} as implementation, which means one IP core of F black and remaining as 

another IP core. The Fig. 5.45 shows a sample design in ML507 board (With PPC@200 MHz 

and PLB@125 MHz and Timer@125 MHz) 

 

Figure 5.45: EDK components used in implementation 

The AAN architecture was interfaced with the bus and is shown in Fig. 5.33 with test as the 

name of the block. 

Table 5.23: Showing the resources for the AAN and DFG design flow as highlights 
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Report 
Flip Flops 

Used 

LUTs 

Used 

BRAMS 

Used 

E

r

r

o

r

s 

system 11376 26396 6 0 

dfgdct_0_wrapper 965 7426   0 

clock_generator_0_wrapper  4 3   0 

plb_v46_0_wrapper  144 364   0 

xps_bram_if_cntlr_1_bram_wrapper      4 0 

xps_bram_if_cntlr_1_wrapper  255 202   0 

test_0_wrapper 6101 15622   0 

proc_sys_reset_0_wrapper  69 53   0 

jtagppc_cntlr_inst_wrapper    2   0 

dip_switches_8bit_wrapper  124 64   0 

xps_timer_0_wrapper  357 290   0 

sysace_compactflash_wrapper  209 99   0 

ddr2_sdram_wrapper  2355 1770 2 0 

sram_wrapper  544 316   0 

push_buttons_5bit_wrapper  103 55   0 

rs232_uart_1_wrapper  144 127   0 

ppc440_0_wrapper 2 3   0 

 

Table 5.23 shows the resources used by DCT as HW IP and DFG as HW IP. These values 

are used in Table 5.24.  
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Table 5.24: Comparison of various implementations done 

 Design  DCT 

   Cycles(8 ns) Area Product 

a SW  

Implementation 

simulation 7840(8M+7A) 8000 12.48 x10
6
 

b HW 

Implementation 

simulation 173.894 12736 2.622x10
6
 

c SW-HW 

Implementation 

simulation 2000(250x8) 13939 10.15x10
6
 

1 SW  

Implementation-1 

Sample -2 747070 26396 19719659720(11 

digits) 

2 SW  

Implementation-2 

Sample -3 78574 26396 2074039304(10 

digits) 

3 SW  

Implementation-3 

Sample -4 54260 26396 1432246960(10 

digits) 

4 SW  

Implementation-4 

AAN Algo. 12578 26396 332008888(9 digits) 

5 HW 

Implementation 

AAN 

Complete 

IP 

835 26396 + 

15622 = 

42018 

35085030 (8 digits) 

6 SW-HW 

Implementation 

Data flow 

model 

2720 26396 + 

7426 = 

33822 

91995840(8 digits) 

7 HW-HW 

Implementation 

One Fblock 

+ one core 

of(3 FPA + 

4 FPM)  

1459 26396 + 

4096  = 

30492 

44487828(8 digits) 

 

 

 

Figure 5.46: Comparison of area and delay product 

The area delay product has been shown for seven different implementations. Fig. 5.46 shows 

as we move toward the HW implementations the product improves. The HW implementation 

gives the best results. Any kind of HW communication improvement was not applied like 

direct memory transfer or block RAM for local data. This leads to higher communication 

overhead and lower performance. In order to further improve the time such improvement 
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schemes should be used. The next section explores a new HW-HW design flow based on 

partial reconfiguration. 

5.13.5. Synthesis and Simulation Results of PPR Design Flow  

The proposed design flow has been successfully tested with the help of DCT design. The work 

highlights the use of reconfiguration for implementing any design on FPGA without bothering 

about resources. When creating a partition of size around 20%, the region selection becomes 

crucial. In many case the design is not routable and gives error. The constraints discussed 

previously about the number of clock regions may fail as number of clocks available are 

restricted. In this situation the resultant partitions may be of no use and require modification in 

the HDL code of the design. It was found that left side upper region of the Virtex-5 as shown 

in Fig. 5.47 available in ML507 board gave better results in terms of PR region. This may be 

due to fact tht other regions are better supported for specific controllers like DDR memory. 

 

Figure 5.47: Floorplan for DCT having one PRR 

During the synthesis we found that (F1, F2, F3, F4), (FPM5, FPM6, FPM7),(FPA4, FPA5, 

FPA6) were similar. From the synthesis report, we found the resource requirement of the F 

modules was equivalent to (FPM5, FPM6, FPM7),(FPA4, FPA5, FPA6). Hence two partitions 

were created one of F and second of (FPM5, FPM6, FPM7),(FPA4, FPA5, FPA6). The 

scheduler design discussed in the previous section was used to execute the design. For one set 

of input PR1 should execute four times and PR2 should be called one time. For each iteration 

of PR loading the intermediate results are stored and passed to the next stage. The time 

obtained from the proposed design flow using xps_timer is given in Table 5.25.  
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Table 5.25: Comparison of reconfiguration time 

  CF (msec) Flash (msec) DDR (msec) HW-time (usec) SW-time (msec) 

Measured 41.32 32.44 22.68 6.68  5.97656  

 

This time turns out to be very large since we are loading the bitstream from the CF card. This 

time was further improved by loading the bitstream from DDR memory. There was a drastic 

improvement in time since the DDR memory is much faster. Many research works have 

shown the reconfiguration throughput to around 400 Mbps by using direct memory based 

bitstream access. If the throughput is assumed to be 400 Mbps then the DCT of 258 Kb will 

transfer in 647.5 microseconds. This will be a significant improvement in the total time which 

will be 647.5 + 6.68 = 654.18 microseconds. 

5.14. Conclusions 

 The software implementation takes the maximum time for execution and defines the upper 

bound for the performance, but it takes less silicon are and less expertise, hence a 

preferred choice. 

 The software implementation can be manually optimized to give better results by 

converting the computations values to minimum by defining them as constants.  

 The hardware implementation gives the best performance and defines the lower bound of 

the performance, but takes more silicon area and expertise in the implementation. 

 An implementation between these two, which is hybrid approach aims at identifies the 

modules which are similar in the HW description for reusability can be a better approach. 

 PR design is not very user friendly and consumes significant time in design cycle. 

 A new implementation based on partial reconfiguration can only be useful if the 

reconfiguration throughput is very high, order of 400 Mbps. The conventional ICAP 

controller cannot be useful with its current implementation. 

 A generable clustering approach based on genetic algorithm can be very effective for large 

graphs. 

 MRTG provides a modular approach for generating user-controlled, truly random task 

graphs that find relevance in simulating today's scheduling problems in parallel, 

distributed systems and fields like hardware software co-design. This modular nature 

makes the program code far more reusable than a conventional monolithic design. Future 

improvements are easier to make, as additional modules can be added without disturbing 

the functionality of the original stable software. It also makes the program very flexible to 

use, as now researchers can choose to run only those modules that they require and also 
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change the order of execution of modules to suit their needs. The layer-by-layer approach 

followed in MRTG, with the ability to define different types of nodes with their individual 

parameters separates it from existing available solutions and makes it highly valuable for 

researchers working in areas like reconfigurable computing, System on Chip and for 

scheduling simulation in the problem of many core processors, to choose how to spread 

the work among such large number of processing cores. In this chapter the partitioning and 

scheduling was applied to RC systems.  
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Chapter 6 

Conclusions 

 
 

This thesis addresses the various issues involved and parameters to be considered in the 

development and verification of a framework for reconfigurable computing systems designed 

for FPGAs to improve the area delay characteristics of various applications. The knowledge of 

system parameters allows the designer to explore the design space and select a solution 

satisfying the given constraints. This chapter summarizes the various contributions made and 

also points out the some of the possible extensions of the proposed methodology as future 

work.  

We have proposed two design flows, each of which takes the input in different formats. The 

first approach exploits profiling, high level synthesis and genetic algorithm for partitioning a 

C specification into HW and SW. ChStone benchmark written in C language (developed by 

University of Toronto) has been selected and compiled using gcc-powerpc tool chain and 

Vivado-HLS tool. Various optimizations were applied in HLS flow for latency and area trade-

offs. One of the program (DfDiv), which is computationally intensive was selected from 

ChStone benchmark and its processor local bus (PLB) based IP core was migrated in HW, SW 

and hybrid approaches. The results of real time performance were tested on ML507 board. 

After real time performance comparison in both SW and HW, various hybrid implementations 

of Dfdiv program were also generated using genetic algorithm and compared with area-delay 

product for various solutions. 

The second flow of the work is again divided into two approaches. The first one uses dataflow 

models for mapping applications as HW clusters. For this graph isomorphism was explored to 

find the clusters and a scheduler was designed to place them in correct order. The results show 

that this framework is useful for applications where similar patterns exist. In many 

applications it is also possible that the patterns are dissimilar, so we considered a second 

approach which is built on genetic algorithm to guide the creation of clusters as IP cores on 

partial reconfigurable regions. For this the Express benchmark from University of California 

Santa Barbara was used. This benchmark describes the application as dataflow model and 

contains nodes ranging from 50 to 100. To simulate the performance easily four programs 

(sine, cosine, matrix multiplication and exponent) were written which have nodes ranging 
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from 20 to 120. The performance of the above two approaches (ISO and GA) were compared 

for the four programs and it was proved that ISO gave better results as compared to GA. After 

the simulation of GA and ISO, HW experimentation was required to test the feasibility. To 

check the effectiveness of the above proposed approaches (Co-design, ISO and GA) on real 

applications, DCT was chosen and tested on ML507 board. The results offer a wide spectrum 

of design space implementations to the designer with area-delay parameter as the criteria to 

choose among them. 

6.1. Contributions of the Thesis 

The System-on-chip flow based on FPGAs was introduced in Chapter 1. The partial 

reconfiguration feature available in Xilinx FPGA was explained in brief. Chapter 1 described 

the overall frameworks presented in this thesis, and hence a basic foundation was laid. 

In chapter 2 an elaborate literature survey presented which focused on various domains which 

include: 

a. Various frameworks available for HW, SW co-design such as LegUp, ASSET etc. 

b. The concept of isomorphic graphs for identifying the similar clusters. 

c. Usage of Genetic algorithm for scheduling of dataflow graphs. 

d. The partial reconfiguration time overhead. 

Resource estimation technique using LLVM compiler was presented in chapter 3. It was 

successfully demonstrated how resources can be estimated without synthesis for a given C 

specification. In this thesis work we have efficiently shown the process of resource estimation 

by creating a library. We have verified the proposed formula by generating HDL code and 

synthesizing it on Xilinx.  

Chapter 4 presented the ChStone benchmark analysis and one of its programs named DfDiv 

was used as a case study for HW SW co-design. Further GA was applied to a dummy case 

study and its usefulness in co-design was proved. In this work, we have presented a design 

flow to partition an application described in the high level specification into HW and SW. The 

design flow is based on a practical approach, starting from a Vivado compiler. We have 

successfully demonstrated the partitioning of a program and tabulated the time results of a 

benchmark program. The approach discussed opens up new horizon for electronic design 

automation in the field of FPGAs. 

A new framework was proposed in chapter 5 based on similar patterns found in data flow 

graphs. A detailed design flow was presented describing each stage like specification, 
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clustering and scheduling. Four programs were written to find the effectiveness of the 

algorithm. The entire algorithm was explained with examples. The HW implementation 

showed the best result and SW showed the worst. The results of SW-HW were somewhat 

intermediate. HW-SW implementation should have shown better results, but since any kind of 

optimization like DMA was not used hence communication overhead was very high leading to 

intermediate results. The DCT design was used as a case study for proving the effectiveness of 

the flow. It was tested on ML507 board, which also showed the same results as simulation and 

was best implemented in HW. 

Further GA was also used for clustering of dataflow graphs for partial reconfiguration feature. 

For this Express benchmark and four programs were written. The proposed design flow has 

been successfully tested with the help of DCT design. After extensive literature survey AAN 

algorithm for DCT was selected and coded in VHDL. The design was extended with floating 

point adder and multiplier units. An efficient pipelined AAN architecture was chosen for 

partitioning process. DCT was partitioned using the proposed algorithm and implemented in 

Xilinx PlanAhead software which was very challenging. The design flow was compared in  

SW and HW with different memory (CF, DDR) implementations. The results clearly show the 

design flow can be very useful for complex design and open up a new horizon for more 

automation opportunity in future IP designing. So this thesis highlights the use of 

reconfiguration for implementing any design on FPGA without bothering about resources. 

A modular dataflow graph generator is designed for generating large graphs. MRTG provides 

a modular approach for generating user-controlled, truly random task graphs that find 

relevance in simulating today‘s scheduling problems in parallel, distributed systems and fields 

like hardware software co-design. This modular nature makes the program code far more 

reusable than a conventional monolithic design. Future improvements are easier to make, as 

additional modules can be added without disturbing the functionality of the original stable 

software. It also makes the program very flexible to use, as now researchers can choose to run 

only those modules which they require and also change the order of execution of modules to 

suit their needs. The layer-by-layer approach followed in MRTG, with the ability to define 

different types of nodes with their individual parameters separates it from existing available 

solutions and makes it highly valuable for researchers working in areas like reconfigurable 

computing, System-on-chip and for scheduling simulation in the problem of many core 

processors, by enabling them to choose how to divide the work among such large number of 

processing cores.  
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The results show that the proposed design flow is a very useful extension to currently existing 

tools that will allow any program to migrate on FPGA irrespective of amount of resources it 

can use. So it gives the designer a broader overview of how to proceed, plan the resources and 

chose between HW, SW or hybrid approach to suit his requirements. 

The key contributions  of  this thesis are: 

 

 An efficient HW-SW co-design flow is proposed for analysis, comparison and 

effectiveness of an application. The proposed flows have been tested using time analysis 

and resource usage of the function. Using execution time and resource consumption data, 

how an algorithm like GA can partition the system into HW and SW is vividly 

demonstrated. 

 The amount of resources consumed by a C program can be estimated even without 

synthesis and compilation. Such a process has been evidenced by using LLVM compiler 

and generating a library of operators. 

 A new framework for HW-HW implementation of an application described in DFG has 

been proposed. For area reusability, graph isomorphism has been used to identify the 

similarity in the design and interfaced them as static modules on the bus. 

 We have proposed a new framework that partitions the dataflow graphs (DFG) models and 

executes them as partial modules. The advantage of this flow is that it allows the design to 

be mapped onto FPGA irrespective of amount of resources it consumes. The constraints 

imposed by partial reconfiguration flow have been used to design as efficient GA that can 

produce clusters of required size. 

 A modular random task graph generator has been designed for generating heavy loads, 

giving dot format files as input to partitioning process. This is a versatile generator 

through which different graphs can be generated by modifying an input specification 

required. 

 The developed frameworks have been tested on ML507 with the DCT design.  

 The comparison of the proposed design flow with HW-SW implementation is presented 

and we have highlighted the pros-cons of the two approaches. 

6.2. Limitations of the Work Done 

Here we outline the problems and challenges that are encountered while adopting a partial 

reconfiguration design flow. Since all the experiential work has been tested with Xilinx PR 

flow, the same will be used as reference in the problems given below. 
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A. Complex Design Process 

The PR design flow starts from a writing module and testing it in Xilinx ISE.  The module is 

then interfaced with the bus as an empty box with only entry and exit ports. After compiling it 

in XPS and generating the netlist, the design is exported to SDK where the scheduler is 

written in C language. In the same flow, the PlanAhead floor planning SW is used for creating 

the PRR and various modules are bound to these regions. Since the PRR is manually selected 

it was found that certain regions are more favorable than others. Hence the design flow 

becomes a five step process which takes several hours to complie. If any point is missed out 

like incorrect region, time closure failure or incorrect output, then the process has to be 

repeated. This concludes the complexity of the design flow and it was seen that out of 20 

projects only 5 were a success. The design flow should be optimized by creating a PR region 

automatically by the tools in the ISE design flow and when the design is synthesized, the tool 

should guide the design which regions are better for PR flow. 

B. Reconfiguration Overhead 

The partial bitstreams are stored in memory like SD card, CF card or Flash for permanent 

storage. Loading the bit file from these memories takes significant time. ICAP controller loads 

the bitstream and has a maximum throughput of about 400 Mbps. But in reality the throughput 

comes out to be around 4-10 Mbps. This problem can be solved by creating a specialized HW 

for Reconfigurable architectures in the future. 

From the above discussion the following limitations were identified while working on the 

proposed flows: 

 

1. The entire work uses Virtex-5 available on ML507 board. The library tables are 

corresponding to this series. Hence for the migration of the framework to the other platforms 

requires that all the HDL library operates should be compiled again. Though this process is 

not time consuming and can easily be done but it needs manual intervention. 

2. The work has been shown with PLB bus IP cores, which is becoming obsolete and is 

replaced by AXI bus. However, this does not affect the presented framework. 

3. Comparison of work with other work in the case of partial reconfiguration has not been 

done. This is due to the fact the design flow is novel and a standard design for comparison is 

missing. 

4. DCT was used to show the results, which is a sub module in most of the signal processing 

applications. The framework can be extended to large end to end solutions for better results. 
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 6.3. Future Scope 

The process of partitioning has been shown on a dummy specification since a benchmark 

program was not available with tabulated HW-SW area and delay. So as a future work the 

benchmark presented in this thesis can be converted to a standard for this purpose. Moreover, 

currently the entire process has been shown outside the EDA tool. But if the same is tested 

within the tool then automation can be inbuilt in the commercial tool. The parameters of GA 

are decided based on the domain of design. So, automatically defining the optimum iterations 

based on a given a task graph is also challenging. During timing analysis we have assumed the 

bus latency of the order of milliseconds for simulating results. A mathematical model can be 

developed to compute the execution overheads incurred during bus transaction for hybrid 

design. 

The presented thesis work uses dataflow models for experimentation and algorithm 

verification. The same work can be extended with netlist partitioning that can be directly be 

used in ASIC design flow. The isomorphic graphs computation has been applied to operator 

based clustering and the effectiveness of the proposed isomorphic algorithm can be tested with 

other domains also. A sample design of DCT was created for verification of the algorithm. 

Many other high level synthesis tools which generate HW can be used for the verification of 

the algorithm. As mentioned previously, the use of DMA controller and BRAM for data 

transfer in IP core can considerably improve the performance. Hence they can also be tested 

and compared for performance. 

In this work, we have designed the DCT application and shown the software, hardware and 

partitioning time on one PR region. Such partitioning of a standalone design has not been 

reported on real HW. Among the various steps for the design, the most crucial step is 

partitioning the design so that overall performance is good. In future, we plan to propose a 

partitioning model so this design flow becomes easy for the designer. In addition, the 

scheduler design is complicated and depends on the partitioning of ports, number of partitions 

and a sequence of partitions. It is possible to generate this scheduler automatically which will 

bring down the time taken for the design flow. Many steps done in the design flow can be can 

be automated to bring reconfiguration to real world devices. 

Being modular, MRTG can have future additions in the form of modules, which can be added 

without disturbing the original stable software. We plan to make it open source so that 

researchers who really need it, can develop modules they need and add them to the project so 

the whole community can use them. We also plan to develop a module to add weights to the 

connections too. This will be very useful for researchers who need to do scheduling while 
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taking into account the communication delay and resource expenditure. As an extension we 

also plan to add a concept of depth. 

In this work we were able to estimate the resource requirement of the program on the 

reconfigurable hardware. Depending on the estimated values, the program can be now 

partitioned into clusters and executed on partial reconfigurable HW. By estimation technique 

it is possible to create clusters of the required size. For mapping the partitioned design to one 

PR region a wrapper generation is required which will interface to the bus. This wrapper 

should be automatically generated for each partition created. A significant research work is 

required to generate the scheduler automatically depending on the control flow of the 

program. The process can be applied to EDA tools on the netlist specifications giving better 

options for the designer. Further DFG can be created for equations directly giving a new 

automated flow. The current work will continue in this direction and we propose to bring up a 

robust scheduler. 
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APPENDIX-1 
 

The code given below is used to find the time consumed by the program using XPS_timer 

 
Timer Code 

float time = 0; 

float roll_back_time = 0; 

 

int main()  

{ 

 

 

   XCACHE_ENABLE_ICACHE(); 

   XCACHE_ENABLE_DCACHE(); 

 

   print("---Entering main---\n\r"); 

 

int i,j,k,r; 

 

int data_to_local_link[] = { 

       23170, 23170, 23170, 23170, 23170, 23170, 23170, 23170, 

       32138, 27246, 18205,  6393, -6393,-18205,-27246,-32138, 

       30274, 12540,-12540,-30274,-30274,-12540, 12540, 30274, 

       27246, -6593,-32138,-18205, 18205, 32138,  6393,-27246, 

       23170,-23170,-23170, 23170, 23170,-23170,-23170, 23170, 

       18205,-32138,  6393, 27246,-27246, -6393, 32138,-18205, 

       12540,-30274, 30274,-12540,-12540, 30274,-30274, 12540, 

        6393,-18205, 27246,-32138, 32138,-27246, 18205, -6393 

     }; 

 

int data_back_local_link[64]; 

 

static XTmrCtr xps_timer_0_Timer; 

            u32 CounterControlReg; 

            u32 cyclestart; 

            u32 cycleend; 

            u32 roll_back_count; 

            u32 roll_back_cycle_end; 

                 { 

 int status; 

    status = XTmrCtr_Initialize(&xps_timer_0_Timer, TIMER_CNTR_0); 

   if (status != XST_SUCCESS) { 

   return XST_FAILURE;} 

 

 

    XTmrCtr_SetOptions(&xps_timer_0_Timer, TIMER_CNTR_0,XTC_INT_MODE_OPTION | 

XTC_AUTO_RELOAD_OPTION); 

    XTmrCtr_SetResetValue(&xps_timer_0_Timer, TIMER_CNTR_0, RESET_VALUE); 

    XTmrCtr_Reset(&xps_timer_0_Timer, TIMER_CNTR_0); 

 

    cyclestart=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0); 

 

    XTmrCtr_Start(&xps_timer_0_Timer, TIMER_CNTR_0); 

 

     k = 0; r = 0; 

for (j=0;j<8;j++) 

     { 

if (j==0) 

         xil_printf("Perform %dst Datablock out of 8\n\r",j+1); 

elseif (j==1) 
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         xil_printf("Perform %dnd Datablock out of 8\n\r",j+1); 

elseif (j==2) 

         xil_printf("Perform %drd Datablock out of 8\n\r",j+1); 

else 
         xil_printf("Perform %dth Datablock out of 8\n\r",j+1); 

 

 

       print("\n\r"); 

       print("Write input values to FSL Channel\n\r"); 

for (i=0;i<8;i++){ 

         nputfsl(data_to_local_link[k],0); 

         xil_printf("%d; ",data_to_local_link[k]); 

         k++; 

       }; 

       print("\n\r\n\r"); 

       print("Read transformed values back from FSL Channel bus\n\r"); 

for (i=0;i<8;i++){ 

         ngetfsl(data_back_local_link[r],0); 

         xil_printf("%d; ",data_back_local_link[r]); 

         r++; 

       }; 

       print("\n\r\n\r"); 

       print("-------------------------------------------------------------"); 

       print("\n\r\n\r"); 

       CounterControlReg = XTmrCtr_GetControlStatusReg(&xps_timer_0_Timer,TIMER_CNTR_0); 

if ((CounterControlReg) == XTC_CSR_INT_OCCURED_MASK) 

    { print("\n\r\n\r Timer rolled under!"); 

      roll_back_count = roll_back_count + 1; 

 if (roll_back_count == 1) 

      { 

   roll_back_cycle_end=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0); 

   roll_back_time = (cycle_start - roll_back_cycle_end )*0.000000008; 

   xil_printf("\r\n roll back time= %ld",roll_back_time); 

    } 

 

     }; 

     XTmrCtr_Stop(&xps_timer_0_Timer, TIMER_CNTR_0); 

                 } 

                 xil_printf("\r\n %ld",cyclestart); 

    cycleend=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0); 

    xil_printf("\r\n %ld",cycleend) 

 if (roll_back_count>0) 

     {  

      time = (roll_back_count*roll_back_time) + (cyclestart-cycleend)*0.000000008; 

         xil_printf("\r\n time= %ld",time); 

     } 

 else 
     {  

      time = (cyclestart-cycleend)*0.000000008; 

      xil_printf("\r\n time= %ld",time); 

     } 

 if (roll_back_count == 0) 

     { 

      XTmrCtr_Reset(&xps_timer_0_Timer, TIMER_CNTR_0); 

         cyclestart=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0); 

         XTmrCtr_Start(&xps_timer_0_Timer, TIMER_CNTR_0); 

         CounterControlReg = 

XTmrCtr_GetControlStatusReg(&xps_timer_0_Timer,TIMER_CNTR_0); 

  while ((CounterControlReg) != XTC_CSR_INT_OCCURED_MASK)  

      { 

      CounterControlReg = 

XTmrCtr_GetControlStatusReg(&xps_timer_0_Timer,TIMER_CNTR_0); 



208 
 

      } 

      }                    

         XTmrCtr_Stop(&xps_timer_0_Timer, TIMER_CNTR_0); 

         cycleend=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0);  

         roll_back_time = (cycle_start - cycleend)*0.000000008; 

         xil_printf("\r\n roll back time = %ld\n",roll_back_time); 

       } 

   print("---Exiting main---\n\r"); 

   XCACHE_DISABLE_ICACHE(); 

   XCACHE_DISABLE_DCACHE(); 

return 0; 

} 

 

 

 

 

 

 

 

 

 

 

 

 



209 
 

APPENDIX-2 

The data values given below show the way the GA produces the iterations. 

enter deadline: 250 

enter population size: 10 

enter no of iteration: 4 

 

random_population1 = 

     1     1     0     1     1     0     1     0 

     1     0     1     0     1     0     1     0 

     1     1     1     1     1     1     0     1 

     1     1     0     1     0     0     1     0 

     0     0     0     1     0     1     1     1 

     0     0     0     1     0     0     1     1 

     1     1     0     0     0     0     1     1 

     0     0     0     0     1     1     1     1 

     1     1     0     0     1     0     1     0 

     1     0     1     0     0     1     0     1 

 

random_population2 = 

 

     1     1     0     1     1     0     1     0 

     1     0     1     0     1     0     1     0 

     1     1     1     1     1     1     0     1 

     1     1     0     1     0     0     1     0 

     0     0     0     1     0     1     1     1 

     0     0     0     1     0     0     1     1 

     1     1     0     0     0     0     1     1 

     0     0     0     0     1     1     1     1 

     1     1     0     0     1     0     1     0 

     1     0     1     0     0     1     0     1 

 

random_population3 = 

     1     1     0     1     1     0     1     0 

     1     0     1     0     1     0     1     0 

     1     1     1     1     1     1     0     1 

     1     1     0     1     0     0     1     0 

     0     0     0     1     0     1     1     1 

     0     0     0     1     0     0     1     1 

     1     1     0     0     0     0     1     1 

     0     0     0     0     1     1     1     1 

     1     1     0     0     1     0     1     0 

     1     0     1     0     0     1     0     1 

 

random_population4 = 

     1     1     0     1     1     0     1     0 

     1     0     1     0     1     0     1     0 

     1     1     1     1     1     1     0     1 
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     1     1     0     1     0     0     1     0 

     0     0     0     1     0     1     1     1 

     0     0     0     1     0     0     1     1 

     1     1     0     0     0     0     1     1 

     0     0     0     0     1     1     1     1 

     1     1     0     0     1     0     1     0 

     1     0     1     0     0     1     0     1 

 

fitness_value = 

Columns 1 through 8 

67130      106105         155      157120      171090      191080      151125      141090  127120      133105 

42180       96150         205      132170      126130      178105      113170       96125    102165      110145 

 150         125         175         140       28110         100        1145       24110          140         125 

200         170         225         190         150         125         190         145                185         165 

tot_time = 

 317   356   200   407   421   441   401   391   377   383 

 292   346   150   382   376   428   363   346   352   360 

200   223   187   234   278   241   251   274   230   237 

165   186   110   209   233   228   213   229   205   214 

probability_value = 

Columns 1 through 5 

 0.176738929286603   0.155299083818076   0.197560360087906   0.045259115745567   

0.022788156046132 

0.176591324708580   0.133358747577602   0.197140185340663   0.023237851213118   

0.045566961851729 

0.089963068055363   0.162325164546130   0.071860502351513   0.126148268570111   

0.000000332181549 

0.022118533805913   0.109033604019920   0.000011216295033   0.065660191125667   

0.151958365112836 

Columns 6 through 10 = 

0.000000015866957   0.067508414049207   0.089662589942840   0.133525794238406   

0.111657540918305 

0.000000019782754   0.067776584657921   0.154975283427512   0.111623218464114   

0.089729822976007 

0.180411121172521   0.053435720544964   0.027382389461607   0.126148268570111   

0.162325164546130 

0.194434474404415   0.065660191125667   0.173224460496209   0.087374938310377   

0.130524025303962 

cum_probability_value = 

Columns 1 through 5 
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0.176738929286603   0.332038013104679   0.529598373192585   0.574857488938152   

0.597645644984284 

0.176591324708580   0.309950072286182   0.507090257626845   0.530328108839963   

0.575895070691692 

0.089963068055363   0.252288232601493   0.324148734953006   0.450297003523118   

0.450297335704667 

0.022118533805913   0.131152137825833   0.131163354120867   0.196823545246534   

0.348781910359370 

Columns 6 through 10 

0.597645660851242   0.665154074900449   0.754816664843289   0.888342459081695   

1.000000000000000 

0.575895090474446   0.643671675132366   0.798646958559879   0.910270177023993   

1.000000000000000 

0.630708456877188   0.684144177422152   0.711526566883758   0.837674835453869   

1.000000000000000 

0.543216384763785   0.608876575889452   0.782101036385661   0.869475974696038   

1.000000000000000 

roulette_wheel = 

Columns 1 through 5 

0.660393951257713   0.127848763367490   0.332527054109658   0.394632113574479   

0.264216402533851 

0.088531581788494   0.490531413270812   0.412561610870134   0.335599558553777   

0.045696180184506 

0.723845934535098   0.579134452532590   0.441270757276153   0.978874376391397   

0.851882048321298 

0.962940347350769   0.052232229893487   0.436149459040004   0.292011418871669   

0.694746803353756 

Columns 6 through 10 = 

0.763810931237840   0.841540169840319   0.469050001539782   0.538066460330539   

0.237809971328859 

0.688557909510549   0.285173447520110   0.180361835941481   0.450591840233820   

0.108927749991106 

0.774427087251813   0.059198299574430   0.569443789123108   0.393090112338098   

0.548257380847610 

0.961182516696144   0.181149785587021   0.517754273201131   0.059416332311161   

0.779767512749519 

CPU1 AND ASIC1 

PATTERN = 1  1  1  1  0  1  0  1 
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COST = 145   TIME = 233 

node 1   start = 0   end = 20 

node 2   start = 20   end = 50 

node 3   start = 50   end = 77 

node 4   start = 77   end = 97 

node 5   start = 20   end = 110 

node 6   start = 110   end = 137 

node 7   start = 110   end = 200 

node 8   start = 200   end = 233 

######## 

CPU1 AND ASIC2 

PATTERN = 0  1  1  0  1  1  0  1 

COST = 145   TIME = 245 

node 1   start = 0   end = 60 

node 2   start = 60   end = 75 

node 3   start = 75   end = 90 

node 4   start = 75   end = 135 

node 5   start = 90   end = 105 

node 6   start = 135   end = 155 

node 7   start = 135   end = 225 

node 8   start = 225   end = 245 

####### 

CPU2 AND ASIC1 

PATTERN = 0  0  0  1  0  0  1  1 

COST = 100   TIME = 241 

node 1   start = 0   end = 30 

node 2   start = 30   end = 80 

node 3   start = 80   end = 134 

node 4   start = 80   end = 100 

node 5   start = 134   end = 178 

node 6   start = 178   end = 208 

node 7   start = 134   end = 174 

node 8   start = 208   end = 241 

####### 

CPU2 AND ASIC2 

PATTERN = 0  0  0  1  0  0  1  1 

COST = 125   TIME = 228 

node 1   start = 0   end = 30 

node 2   start = 30   end = 80 

node 3   start = 80   end = 134 

node 4   start = 80   end = 90 

node 5   start = 134   end = 178 

node 6   start = 178   end = 208 

node 7   start = 134   end = 149 

node 8   start = 208   end = 228 

>> 
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APPENDIX-3 
 

The code given below shows how the time for SW instruction was calculated to create the 

library 

 
 

#include <stdio.h> 

#include "xparameters.h" 

#include "xenv_standalone.h" 

#include "xbasic_types.h" 

#include "xgpio.h" 

#include "gpio_header.h" 

#include "xbasic_types.h" 

#include "xgpio.h" 

#include "gpio_header.h" 

#include "xbasic_types.h" 

#include "xgpio.h" 

#include "gpio_header.h" 

#include "xtmrctr.h" 

#include "tmrctr_header.h" 

 

#define TIMER_CNTR_0  0 

#define TMRCTR_DEVICE_ID  XPAR_TMRCTR_0_DEVICE_ID 

#define RESET_VALUE  0xF0000000 

int main()  

{ 

 

 

   XCACHE_ENABLE_ICACHE(); 

   XCACHE_ENABLE_DCACHE(); 

 

   print("---Entering main---\n\r"); 

   static XTmrCtr xps_timer_0_Timer; 

 

   u32 cyclestartadd,cyclebitloadcompadd,cycleresultadd; 

         u32 cycleendadd; 

         u32 cyclestartmult,cyclebitloadcompmult,cycleresultmult; 

               u32 cycleendmult; 

 

       int status; 

 

       status = XTmrCtr_Initialize(&xps_timer_0_Timer, TIMER_CNTR_0); 

          if (status != XST_SUCCESS) { 

          return XST_FAILURE;} 

        xil_printf("start program\r\n"); 

 

       XTmrCtr_SetOptions(&xps_timer_0_Timer, TIMER_CNTR_0,XTC_INT_MODE_OPTION | 

XTC_AUTO_RELOAD_OPTION); 

       XTmrCtr_SetResetValue(&xps_timer_0_Timer, TIMER_CNTR_0, RESET_VALUE); 

       XTmrCtr_Reset(&xps_timer_0_Timer, TIMER_CNTR_0); 

 

    float a = 0.0 , b= 5.0 ,c = 6.0 ; 

    xil_printf("\Multiplication\n\r"); 

          XTmrCtr_Reset(&xps_timer_0_Timer, TIMER_CNTR_0); 

         

 cyclestartmult=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0); 

          XTmrCtr_Start(&xps_timer_0_Timer, TIMER_CNTR_0); 

        //  __asm__ __volatile__ ("lwarx %0, 0, %1 \n\t" : "=&r"(ret) : "r"(p)); 

        // asm("lwi r3, r0, 292"); // load word immediate  

        // asm("addik r3, r3, 1"); // immediate add w/ keep carry  
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        // asm("swi r3, r0, 292"); // store word immediate 

 

        // asm ( " addc.    %0,%1,%2        \n" : "=r"(res): "b"(op1), "r"(op2): 

"r0"       ); 

 

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

// asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

// asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

// asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 // asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //  asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //  asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //  asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //  asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

//    asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //   asm ("add %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 //asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 

//  asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

//asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

//asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

 // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

// asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //  asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //  asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //  asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //  asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  // asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //  asm ("mullw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

  //    asm ("fadd %1,%2,%0": "=f" (a): "f" (b), "f" (c)) ; 

// asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

 //asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

//asm ("fadd %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

 

 //asm ("fmul %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

asm ("fdiv %0,%1,%2": "=f" (a): "f" (b), "f" (c)) ; 

 //  asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

   //     asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

   //       asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 
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   //       asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

   //     asm ("divw %0,%1,%2": "=fr" (a): "r" (b), "r" (c)) ; 

   //     asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

   //     asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

   //     asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

   //     asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

   //     asm ("divw %0,%1,%2": "=r" (a): "r" (b), "r" (c)) ; 

        

 cyclebitloadcompmult=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0); 

 

 

        

 //cycleresultmult=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0); 

 

 

        

 //cycleendmult=XTmrCtr_GetValue(&xps_timer_0_Timer,TIMER_CNTR_0); 

         XTmrCtr_Stop(&xps_timer_0_Timer, TIMER_CNTR_0); 

 

 

         print("-- Exiting main() --\r\n"); 

            print("-- ---------------for mult ----------------------\r\n"); 

            xil_printf("\r\n cyclestart= %x\r\n",cyclestartmult); 

            xil_printf("\r\n cyclebitloadcomp= 

%x\r\n",cyclebitloadcompmult); 

            //xil_printf("\r\n cycleresult= %x\r\n",cycleresultmult); 

           // xil_printf("\r\n cycleend= %x\r\n",cycleendmult); 

            //print("-------------------- for adder --------------------\r\n"); 

            //xil_printf("\r\n cyclestart= %x\r\n",cyclestartadd); 

            //xil_printf("\r\n cyclebitloadcomp= 

%x\r\n",cyclebitloadcompadd); 

            //xil_printf("\r\n cycleresult= %x\r\n",cycleresultadd); 

            //xil_printf("\r\n cycleend= %x\r\n",cycleendadd); 

 

   XCACHE_DISABLE_ICACHE(); 

   XCACHE_DISABLE_DCACHE(); 

 

   return 0; 

} 
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Chapter 6 

Conclusions 

 
 

This thesis addresses the various issues involved and parameters to be considered in the 

development and verification of a framework for reconfigurable computing systems designed 

for FPGAs to improve the area delay characteristics of various applications. The knowledge of 

system parameters allows the designer to explore the design space and select a solution 

satisfying the given constraints. This chapter summarizes the various contributions made and 

also points out the some of the possible extensions of the proposed methodology as future 

work.  

We have proposed two design flows, each of which takes the input in different formats. The 

first approach exploits profiling, high level synthesis and genetic algorithm for partitioning a 

C specification into HW and SW. ChStone benchmark written in C language (developed by 

University of Toronto) has been selected and compiled using gcc-powerpc tool chain and 

Vivado-HLS tool. Various optimizations were applied in HLS flow for latency and area trade-

offs. One of the program (DfDiv), which is computationally intensive was selected from 

ChStone benchmark and its processor local bus (PLB) based IP core was migrated in HW, SW 

and hybrid approaches. The results of real time performance were tested on ML507 board. 

After real time performance comparison in both SW and HW, various hybrid implementations 

of Dfdiv program were also generated using genetic algorithm and compared with area-delay 

product for various solutions. 

The second flow of the work is again divided into two approaches. The first one uses dataflow 

models for mapping applications as HW clusters. For this graph isomorphism was explored to 

find the clusters and a scheduler was designed to place them in correct order. The results show 

that this framework is useful for applications where similar patterns exist. In many 

applications it is also possible that the patterns are dissimilar, so we considered a second 

approach which is built on genetic algorithm to guide the creation of clusters as IP cores on 

partial reconfigurable regions. For this the Express benchmark from University of California 

Santa Barbara was used. This benchmark describes the application as dataflow model and 

contains nodes ranging from 50 to 100. To simulate the performance easily four programs 

(sine, cosine, matrix multiplication and exponent) were written which have nodes ranging 
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from 20 to 120. The performance of the above two approaches (ISO and GA) were compared 

for the four programs and it was proved that ISO gave better results as compared to GA. After 

the simulation of GA and ISO, HW experimentation was required to test the feasibility. To 

check the effectiveness of the above proposed approaches (Co-design, ISO and GA) on real 

applications, DCT was chosen and tested on ML507 board. The results offer a wide spectrum 

of design space implementations to the designer with area-delay parameter as the criteria to 

choose among them. 

6.1. Contributions of the Thesis 

The System-on-chip flow based on FPGAs was introduced in Chapter 1. The partial 

reconfiguration feature available in Xilinx FPGA was explained in brief. Chapter 1 described 

the overall frameworks presented in this thesis, and hence a basic foundation was laid. 

In chapter 2 an elaborate literature survey presented which focused on various domains which 

include: 

a. Various frameworks available for HW, SW co-design such as LegUp, ASSET etc. 

b. The concept of isomorphic graphs for identifying the similar clusters. 

c. Usage of Genetic algorithm for scheduling of dataflow graphs. 

d. The partial reconfiguration time overhead. 

Resource estimation technique using LLVM compiler was presented in chapter 3. It was 

successfully demonstrated how resources can be estimated without synthesis for a given C 

specification. In this thesis work we have efficiently shown the process of resource estimation 

by creating a library. We have verified the proposed formula by generating HDL code and 

synthesizing it on Xilinx.  

Chapter 4 presented the ChStone benchmark analysis and one of its programs named DfDiv 

was used as a case study for HW SW co-design. Further GA was applied to a dummy case 

study and its usefulness in co-design was proved. In this work, we have presented a design 

flow to partition an application described in the high level specification into HW and SW. The 

design flow is based on a practical approach, starting from a Vivado compiler. We have 

successfully demonstrated the partitioning of a program and tabulated the time results of a 

benchmark program. The approach discussed opens up new horizon for electronic design 

automation in the field of FPGAs. 

A new framework was proposed in chapter 5 based on similar patterns found in data flow 

graphs. A detailed design flow was presented describing each stage like specification, 
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clustering and scheduling. Four programs were written to find the effectiveness of the 

algorithm. The entire algorithm was explained with examples. The HW implementation 

showed the best result and SW showed the worst. The results of SW-HW were somewhat 

intermediate. HW-SW implementation should have shown better results, but since any kind of 

optimization like DMA was not used hence communication overhead was very high leading to 

intermediate results. The DCT design was used as a case study for proving the effectiveness of 

the flow. It was tested on ML507 board, which also showed the same results as simulation and 

was best implemented in HW. 

Further GA was also used for clustering of dataflow graphs for partial reconfiguration feature. 

For this Express benchmark and four programs were written. The proposed design flow has 

been successfully tested with the help of DCT design. After extensive literature survey AAN 

algorithm for DCT was selected and coded in VHDL. The design was extended with floating 

point adder and multiplier units. An efficient pipelined AAN architecture was chosen for 

partitioning process. DCT was partitioned using the proposed algorithm and implemented in 

Xilinx PlanAhead software which was very challenging. The design flow was compared in  

SW and HW with different memory (CF, DDR) implementations. The results clearly show the 

design flow can be very useful for complex design and open up a new horizon for more 

automation opportunity in future IP designing. So this thesis highlights the use of 

reconfiguration for implementing any design on FPGA without bothering about resources. 

A modular dataflow graph generator is designed for generating large graphs. MRTG provides 

a modular approach for generating user-controlled, truly random task graphs that find 

relevance in simulating today‘s scheduling problems in parallel, distributed systems and fields 

like hardware software co-design. This modular nature makes the program code far more 

reusable than a conventional monolithic design. Future improvements are easier to make, as 

additional modules can be added without disturbing the functionality of the original stable 

software. It also makes the program very flexible to use, as now researchers can choose to run 

only those modules which they require and also change the order of execution of modules to 

suit their needs. The layer-by-layer approach followed in MRTG, with the ability to define 

different types of nodes with their individual parameters separates it from existing available 

solutions and makes it highly valuable for researchers working in areas like reconfigurable 

computing, System-on-chip and for scheduling simulation in the problem of many core 

processors, by enabling them to choose how to divide the work among such large number of 

processing cores.  
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The results show that the proposed design flow is a very useful extension to currently existing 

tools that will allow any program to migrate on FPGA irrespective of amount of resources it 

can use. So it gives the designer a broader overview of how to proceed, plan the resources and 

chose between HW, SW or hybrid approach to suit his requirements. 

The key contributions  of  this thesis are: 

 

 An efficient HW-SW co-design flow is proposed for analysis, comparison and 

effectiveness of an application. The proposed flows have been tested using time analysis 

and resource usage of the function. Using execution time and resource consumption data, 

how an algorithm like GA can partition the system into HW and SW is vividly 

demonstrated. 

 The amount of resources consumed by a C program can be estimated even without 

synthesis and compilation. Such a process has been evidenced by using LLVM compiler 

and generating a library of operators. 

 A new framework for HW-HW implementation of an application described in DFG has 

been proposed. For area reusability, graph isomorphism has been used to identify the 

similarity in the design and interfaced them as static modules on the bus. 

 We have proposed a new framework that partitions the dataflow graphs (DFG) models and 

executes them as partial modules. The advantage of this flow is that it allows the design to 

be mapped onto FPGA irrespective of amount of resources it consumes. The constraints 

imposed by partial reconfiguration flow have been used to design as efficient GA that can 

produce clusters of required size. 

 A modular random task graph generator has been designed for generating heavy loads, 

giving dot format files as input to partitioning process. This is a versatile generator 

through which different graphs can be generated by modifying an input specification 

required. 

 The developed frameworks have been tested on ML507 with the DCT design.  

 The comparison of the proposed design flow with HW-SW implementation is presented 

and we have highlighted the pros-cons of the two approaches. 

6.2. Limitations of the Work Done 

Here we outline the problems and challenges that are encountered while adopting a partial 

reconfiguration design flow. Since all the experiential work has been tested with Xilinx PR 

flow, the same will be used as reference in the problems given below. 

 



200 
 

A. Complex Design Process 

The PR design flow starts from a writing module and testing it in Xilinx ISE.  The module is 

then interfaced with the bus as an empty box with only entry and exit ports. After compiling it 

in XPS and generating the netlist, the design is exported to SDK where the scheduler is 

written in C language. In the same flow, the PlanAhead floor planning SW is used for creating 

the PRR and various modules are bound to these regions. Since the PRR is manually selected 

it was found that certain regions are more favorable than others. Hence the design flow 

becomes a five step process which takes several hours to complie. If any point is missed out 

like incorrect region, time closure failure or incorrect output, then the process has to be 

repeated. This concludes the complexity of the design flow and it was seen that out of 20 

projects only 5 were a success. The design flow should be optimized by creating a PR region 

automatically by the tools in the ISE design flow and when the design is synthesized, the tool 

should guide the design which regions are better for PR flow. 

B. Reconfiguration Overhead 

The partial bitstreams are stored in memory like SD card, CF card or Flash for permanent 

storage. Loading the bit file from these memories takes significant time. ICAP controller loads 

the bitstream and has a maximum throughput of about 400 Mbps. But in reality the throughput 

comes out to be around 4-10 Mbps. This problem can be solved by creating a specialized HW 

for Reconfigurable architectures in the future. 

From the above discussion the following limitations were identified while working on the 

proposed flows: 

 

1. The entire work uses Virtex-5 available on ML507 board. The library tables are 

corresponding to this series. Hence for the migration of the framework to the other platforms 

requires that all the HDL library operates should be compiled again. Though this process is 

not time consuming and can easily be done but it needs manual intervention. 

2. The work has been shown with PLB bus IP cores, which is becoming obsolete and is 

replaced by AXI bus. However, this does not affect the presented framework. 

3. Comparison of work with other work in the case of partial reconfiguration has not been 

done. This is due to the fact the design flow is novel and a standard design for comparison is 

missing. 

4. DCT was used to show the results, which is a sub module in most of the signal processing 

applications. The framework can be extended to large end to end solutions for better results. 
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 6.3. Future Scope 

The process of partitioning has been shown on a dummy specification since a benchmark 

program was not available with tabulated HW-SW area and delay. So as a future work the 

benchmark presented in this thesis can be converted to a standard for this purpose. Moreover, 

currently the entire process has been shown outside the EDA tool. But if the same is tested 

within the tool then automation can be inbuilt in the commercial tool. The parameters of GA 

are decided based on the domain of design. So, automatically defining the optimum iterations 

based on a given a task graph is also challenging. During timing analysis we have assumed the 

bus latency of the order of milliseconds for simulating results. A mathematical model can be 

developed to compute the execution overheads incurred during bus transaction for hybrid 

design. 

The presented thesis work uses dataflow models for experimentation and algorithm 

verification. The same work can be extended with netlist partitioning that can be directly be 

used in ASIC design flow. The isomorphic graphs computation has been applied to operator 

based clustering and the effectiveness of the proposed isomorphic algorithm can be tested with 

other domains also. A sample design of DCT was created for verification of the algorithm. 

Many other high level synthesis tools which generate HW can be used for the verification of 

the algorithm. As mentioned previously, the use of DMA controller and BRAM for data 

transfer in IP core can considerably improve the performance. Hence they can also be tested 

and compared for performance. 

In this work, we have designed the DCT application and shown the software, hardware and 

partitioning time on one PR region. Such partitioning of a standalone design has not been 

reported on real HW. Among the various steps for the design, the most crucial step is 

partitioning the design so that overall performance is good. In future, we plan to propose a 

partitioning model so this design flow becomes easy for the designer. In addition, the 

scheduler design is complicated and depends on the partitioning of ports, number of partitions 

and a sequence of partitions. It is possible to generate this scheduler automatically which will 

bring down the time taken for the design flow. Many steps done in the design flow can be can 

be automated to bring reconfiguration to real world devices. 

Being modular, MRTG can have future additions in the form of modules, which can be added 

without disturbing the original stable software. We plan to make it open source so that 

researchers who really need it, can develop modules they need and add them to the project so 

the whole community can use them. We also plan to develop a module to add weights to the 

connections too. This will be very useful for researchers who need to do scheduling while 



202 
 

taking into account the communication delay and resource expenditure. As an extension we 

also plan to add a concept of depth. 

In this work we were able to estimate the resource requirement of the program on the 

reconfigurable hardware. Depending on the estimated values, the program can be now 

partitioned into clusters and executed on partial reconfigurable HW. By estimation technique 

it is possible to create clusters of the required size. For mapping the partitioned design to one 

PR region a wrapper generation is required which will interface to the bus. This wrapper 

should be automatically generated for each partition created. A significant research work is 

required to generate the scheduler automatically depending on the control flow of the 

program. The process can be applied to EDA tools on the netlist specifications giving better 

options for the designer. Further DFG can be created for equations directly giving a new 

automated flow. The current work will continue in this direction and we propose to bring up a 

robust scheduler. 

 

 

 

 

 

 

 

 

 

 

 

 

 


