
Prediction and Probability Distribution of Defects in
Software Systems

THESIS

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

By

MUTHUKUMARAN K.

ID. No. 2011PHXF0415H

Under the Supervision of

Prof. N L Bhanu Murthy

Co-Supervision of

Dr. Aruna Malapati

BITS Pilani
Pilani | Dubai | Goa | Hyderabad

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2017

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

CERTIFICATE

This is to certify that the thesis entitled “Prediction and Probability Distribution

of Defects in Software Systems” and submitted by Muthukumaran K. ID.No.

2011PHXF0415H for the award of Ph.D. degree of the institute embodies original work

done by him under my supervision.

————————————–

DR. N L BHANU MURTHY

Associate Professor,

Department of Computer Science &

Information Systems,

BITS Pilani, Hyderabad Campus

Hyderabad, Telangana - 500078.

Date:

———————————–

DR. ARUNA MALAPATI

Assistant Professor,

Department of Computer Science &

Information Systems,

BITS Pilani, Hyderabad Campus

Hyderabad, Telangana - 500078.

Date:

Acknowledgement

I would like to thank all the amazing people who contributed in some way to the work

described in this thesis. First and foremost, I would like to express my profound grati-

tude and sincere thanks to my Supervisor Prof. N L Bhanu Murthy, whose expertise,

understanding and patience, added great value at every stage of this thesis work.

I would also like to thank my Co-Supervisor Dr Aruna Malapati for her generous advice

and encouragement. I am thankful to my DAC members Prof. R Gururaj and Prof.

Tathagata Ray, for their encouragement, insightful comments and hard questions. I am

thankful to Prof. K Srinivasa Raju for his insightful questions and suggestions.

I express my gratitude towards Prof. G Sundar (Director and Senior Professor of BITS

Pilani Hyderabad campus) and Prof. M B Srinivas (Dean, Administration). I would also

like to express my gratitude to Prof. Vidya Rajesh (Associate Dean, Academic Research

Division), for her constant support during my Ph.D course.

I would like to thank the co-authors of my papers, Abhinav Choudhury, G Karthik Reddy,

Prateek Talishetti, Akhila Rallapalli, Swapnil Shukla, T Radhakrishnan, Srinivas Suri,

Amrita Dasgupta, Abhidnya Shirode, Pranav Ramarao, Siddharth Dash, C K Shriram

and Janani. I am thankful to fellow PhD scholars Jagan Mohan Reddy, Rakesh Prasanna,

Neha Singh and Sai Kiranmai for their continuous support and encouragement.

I express my gratitude to my parents - Kasinathan Manickam and Selvi Kasinathan, my

sister - Mala Kasinathan and my fiancée - Vanita Jaitly for their constant love, support

and unfailing guidance. I owe them everything.

iii

Abstract

Defect prediction models help software project teams to identify defect prone source files

of software systems. Software project teams can prioritize and put up rigorous Quality

Assurance (QA) activities on these predicted defect prone files to minimize post-release

defects so that better-quality software can be delivered. Defect prediction models are built

by making use of historical data of the same project or similar projects to predict defects

in the current version. The source code, change and complexity metrics of files or classes

are generally used as features to build these models.

Effective defect prediction approaches will assist the quality assurance team to perform

resource intensive, time consuming and high cost involved assurance activities on compa-

ratively fewer segments of the system. In this thesis, approaches or methodologies have

been proposed to enhance prediction accuracies of defect prediction models.

If the generic model for bug distribution across projects and domains is known, quality

assurance activities like testing and review of future releases can be planned efficiently.

Hence finding the right probability distribution that models defects in software systems is

an interesting problem and is attempted to be solved in this thesis.

The list of major contributions of this thesis is presented below.

• The application of feature selection techniques is shown to improve prediction accu-

racies of defect prediction models and many other related questions are answered.

iv

Abstract

• Proposed two novel change metrics as features to build defect models and presented

prediction accuracies of these models.

• Effort-aware defect prediction models are built based on the effort spent in perfor-

ming specific quality assurance activities like code review, testing and showed that

these models are efficient.

• By relaxing conditional independence assumptions on features, Bayesian Network

structures are built and the performance of these augmented Bayesian Network clas-

sifiers have been explored in this thesis.

• By considering misclassification costs, defect prediction models have been built using

cost-sensitive boosting Neural Network methods and their effectiveness has been

compared with competent classifiers.

• Defect Prediction Problem is formulated as multi-objective optimization problem

with contrasting objective functions and benefits / efficiency of these models as

compared to single objective defect prediction models is discussed in this thesis.

• The intuitive idea for probability distributions like Weibull, Bounded Generalized

Pareto, Double Pareto, Log-normal and Yule-Simon distributions to model defects

is discussed and these probability distributions are evaluated for their fitness by

making use of information theoretic approaches to model selection.

v

Contents

Abstract iv

List of Figures x

List of Tables xii

List of Abbreviations xv

1 Introduction 1

1.1 Thesis Overview . 3

2 Feature Selection and Novel Change Metrics 6

2.1 Introduction . 6

2.2 Feature Selection . 7

2.2.1 Related Work . 8

2.2.2 Datasets . 11

2.2.3 Feature Selection Algorithms . 13

2.2.4 Experimental Methodology . 16

2.2.4.1 Learning Algorithms . 17

2.2.4.2 Evaluation Criterion . 17

2.2.4.3 Ranking Prediction Models 18

2.2.5 Results and Discussion . 20

2.2.6 Threats to Validity . 25

2.2.7 Contributions . 26

2.3 Novel Change Metrics . 26

2.3.1 Related Work . 26

2.3.2 Change Metrics . 27

vi

Contents

2.3.3 Novel Change Metrics . 28

2.3.4 Other Change Metrics . 29

2.3.5 Feature Extraction . 31

2.3.6 Experimental Methodology . 34

2.3.6.1 Training Classifiers . 35

2.3.6.2 10-Fold Cross Validations 36

2.3.7 Results and Discussion . 38

2.3.8 Threats to Validity . 40

2.3.9 Contributions . 41

3 Defect Prediction Models 42

3.1 Introduction . 42

3.2 Defect Prediction Using Augmented Bayesian Networks 44

3.2.1 Related Work . 45

3.2.2 Background . 46

3.2.2.1 Score-based Algorithms . 46

3.2.2.2 Constraint-based Algorithms 47

3.2.2.3 Hybrid Algorithms . 48

3.2.2.4 Augmentation with class node 49

3.2.3 Experimental Setup . 49

3.2.4 Results and Discussion . 51

3.2.5 Contributions . 57

3.3 Cost Sensitive Neural Networks for Defect Prediction 57

3.3.1 Related Work . 59

3.3.2 Metrics and Datasets . 60

3.3.3 Experimental Setup . 62

3.3.4 Results and Discussion . 65

3.3.5 Contributions . 75

3.4 Effort-aware Defect prediction . 75

3.4.1 Related Work . 77

3.4.2 Metrics and Datasets . 78

3.4.3 Experiment and Results . 78

3.4.3.1 Effort Based Evaluation . 83

vii

Contents

3.4.3.2 Percentage of Cost Effectiveness 86

3.4.3.3 Statistical Significance . 87

3.4.3.4 Threats to Validity . 89

3.4.4 Contributions . 89

4 Multi-objective Defect Prediction 90

4.1 Introduction . 90

4.2 Related Work . 93

4.3 Datasets and Metrics . 95

4.4 Formulation of multi-objective defect prediction models 96

4.4.1 Optimize misclassification cost and effectiveness 98

4.4.2 Optimize cost of QA activities and effectiveness 100

4.5 Proposed Approach . 101

4.5.1 Data Pre-processing . 104

4.5.2 Training Process . 104

4.5.3 Testing Process . 105

4.5.3.1 Testing Process for M1 . 105

4.5.3.2 Testing Process for M2 . 107

4.5.4 Implementation Settings . 109

4.6 Results and Discussion . 111

4.7 Threats to Validity . 125

4.8 Contributions . 127

5 Probability Distribution of Defects and Object-oriented Metrics 129

5.1 Introduction . 129

5.2 Probability Distribution of Defects . 130

5.2.1 Related Work and Motivation . 131

5.2.2 Probability Distributions and Datasets 134

5.2.3 Model Selection . 140

5.2.3.1 Comparing Models across Multiple Datasets 140

5.2.3.2 Information criteria for model selection; Why not GoF sta-

tistics? . 142

5.2.3.3 Akaike Information Criterion 143

5.2.3.4 Bayesian Information Criterion 144

viii

Contents

5.2.3.5 Hannan-Quinn Information Criterion 145

5.2.4 Experiments and Results . 146

5.2.4.1 Open Source Software . 146

5.2.4.2 Proprietary Software . 150

5.2.5 Contributions . 153

5.3 Probability Distribution of Object-oriented Metrics 155

5.3.1 Related Work . 157

5.3.2 Background . 159

5.3.2.1 Datasets . 159

5.3.2.2 Probability Distributions 160

5.3.2.3 Model Selection . 166

5.3.2.4 Experiments . 166

5.3.3 Results and Discussions . 168

5.3.3.1 Weighted Method per Class (WMC) 168

5.3.3.2 Coupling Between Objects (CBO) 168

5.3.3.3 Response For Class (RFC) 169

5.3.3.4 Depth of Inheritance Tree (DIT) 170

5.3.3.5 Lack of Cohesion of Methods (LCOM) 171

5.3.3.6 Number of Children (NOC) 173

5.3.3.7 Lines of Code (LOC) . 173

5.3.4 Contributions . 174

6 Conclusion and Future Work 175

6.1 Contributions and Findings . 175

6.2 Future Work . 180

Bibliography 182

List of Publications 197

Biographies 199

ix

List of Figures

2.1 AUC vs # of Feature − Naïve Bayes Classifier − Mylyn Project 15

2.2 AUC vs # of Feature − Greedy Forward Selection Algorithm − KC3 Project 15

2.3 Nemenyi Diagram for Naïve Bayes . 23

2.4 (a)Nemenyi Diagram for Logistic Regression, (b) Nemenyi Diagram for

Random Forest . 23

2.5 Data Extraction . 28

3.1 Augmentation with Naïve Bayes . 50

3.2 Performance of classifiers: AUC . 53

3.3 Performance of classifiers: H-measure . 54

3.4 H-measure at different cost distributions . 55

3.5 Eclipse 2.0 2.1 and 3.0 - Complexity Metrics 72

3.6 Change, CK-OO and Static Code Metrics 72

3.7 NASA - McCabe and Halstead Metrics . 73

3.8 CK-OO Metrics . 74

3.9 Nemenyi Diagram . 74

3.10 Actual and Simple Prediction . 81

3.11 Effort-Aware Prediction: DatasetA . 84

3.12 Effort-Aware Prediction: DatasetB . 85

3.13 Effort-Aware Prediction: DatasetC . 85

3.14 Nemenyi Diagram for LOC and Testcases 88

4.1 Example showing selection of multi-objective objective model having same

cost as single objective model . 108

x

List of Figures

2.1 AUC vs # of Feature − Naïve Bayes Classifier − Mylyn Project 15

2.2 AUC vs # of Feature − Greedy Forward Selection Algorithm − KC3 Project 15

2.3 Nemenyi Diagram for Naïve Bayes . 23

2.4 (a)Nemenyi Diagram for Logistic Regression, (b) Nemenyi Diagram for

Random Forest . 23

2.5 Data Extraction . 28

3.1 Augmentation with Naïve Bayes . 50

3.2 Performance of classifiers: AUC . 53

3.3 Performance of classifiers: H-measure . 54

3.4 H-measure at different cost distributions . 55

3.5 Eclipse 2.0 2.1 and 3.0 - Complexity Metrics 72

3.6 Change, CK-OO and Static Code Metrics 72

3.7 NASA - McCabe and Halstead Metrics . 73

3.8 CK-OO Metrics . 74

3.9 Nemenyi Diagram . 74

3.10 Actual and Simple Prediction . 81

3.11 Effort-Aware Prediction: DatasetA . 84

3.12 Effort-Aware Prediction: DatasetB . 85

3.13 Effort-Aware Prediction: DatasetC . 85

3.14 Nemenyi Diagram for LOC and Testcases 88

4.1 Example showing selection of multi-objective objective model having same

cost as single objective model . 108

x

List of Figures

4.2 Example showing selection of closest multi-objective objective model having

lesser cost than single objective model . 108

5.1 Nemenyi plot comparing models using (a) BIC, (b) AIC and (c) HQIC to

perform the ranking for open source data 147

5.2 Nemenyi plot comparing models using (a) BIC, (b) AIC and (c) HQIC to

perform the ranking for proprietary data . 151

5.3 Proportion of Files vs Bugs - Eclipse and Prop1 Projects. 154

5.4 Nemenyi plots WMC . 169

5.5 Nemenyi plots RFC . 170

5.6 Nemenyi plots DIT . 171

5.7 Nemenyi plots LCOM . 172

5.8 Nemenyi plots NOC . 173

5.9 Nemenyi plots LOC . 174

xi

List of Tables

2.1 CK & OO Metrics . 11

2.2 Change Metrics . 12

2.3 Source Code Metrics for NASA projects . 13

2.4 Prediction Accuracy (AUC) of all projects with Naïve Bayes Classifier as

underlying algorithm . 20

2.5 Prediction Accuracy (AUC) of all projects with Logistic Regression as un-

derlying algorithm . 21

2.6 Prediction Accuracy (AUC) of all projects with Random Forst as underlying

algorithm . 21

2.7 Comparison of average AUCs for NASA and Eclipse Projects 22

2.8 Eclipse Data Set . 35

2.9 Moser’s (Recall) Results . 38

2.10 Bug Prediction Results with change metrics on five Eclipse JDT Releases . 38

2.11 Recall of Eclipse JDT 2.1 Release . 40

3.1 Performance of classifiers based on AUC Measure before Augmentation . . 52

3.2 Performance of classifiers based on AUC Measure after Augmentation . . . 53

3.3 Performance of classifiers based on H-Measure Beta(2,2) before Augmentation 55

3.4 Performance of classifiers based on H-Measure Beta(2,2) after Augmentation 55

3.5 Summary of Datasets . 61

3.6 Eclipse - Complexity Metrics: Cost ratio and NECM 67

3.7 Eclipse - Change and Static Code Metrics: Cost ratio and NECM 68

3.8 NASA - McCabe and Halstead Metrics: Cost ratio and NECM 69

3.9 NASA - McCabe and Halstead Metrics: Cost ratio and NECM (continued..) 70

3.10 CK and OO Metrics: Cost ratio and NECM 71

xii

List of Tables

3.11 Average Rank of classifiers at cost ratio 5 and 10 72

3.12 Source Code Metrics . 79

3.13 Change Metrics . 79

3.14 Datasets . 80

3.15 Percentage of Bugs in Top 20% of Files . 82

3.16 Percentage of Effort Required for the Top 20% of Files 83

3.17 Spearman Correlation . 84

3.18 Percentage of Defects Caught by 20% of Effort(LOC) 84

3.19 Percentage of Defects Caught by 20% of Effort(Testcases) 86

3.20 POA - Lines of Code . 87

3.21 POA - Testcases . 88

4.1 Metrics [1] . 96

4.2 Projects under study . 97

4.3 Multi-Objective Genetic Algorithm Parameter Configuration 110

4.4 Misclassification Cost and Recall Comparison for α = 5 113

4.5 Misclassification Cost and Recall Comparison for α = 10 114

4.6 Misclassification Cost and Recall Comparison for α = 15 115

4.7 Misclassification Cost and Recall Comparison for α = 20 116

4.8 F-measure comparison for different cost factor values 117

4.9 Results of Wilcoxon signed rank test. Table shows p-value obtained by

comparing performance measures of MOLR and other algorithms 117

4.10 Single Objective Logistic Regression vs Multi-Objective Logistic Regression 121

4.11 Naïve Bayes vs Multi-Objective Logistic Regression 122

4.12 Decision Tree vs Multi-Objective Logistic Regression 123

4.13 Random Forest vs Multi-Objective Logistic Regression 124

4.14 % Increase in Average Recall achieved by MOLR 124

5.1 Number of Files and Bugs - Proprietary Software Projects[1] 138

5.2 Number of Files and Bugs - Proprietary Software Projects[2] 138

5.3 Number of Files and Bugs - Open Source Software Projects[1] 139

5.4 Number of Files and Bugs - Open Source Software Projects[2] 139

5.5 Open Source Software BIC difference and interpretation tables 148

5.6 Proprietary Software BIC difference and interpretation tables 152

xiii

List of Tables

5.7 Metrics . 160

5.8 Dataset . 161

5.9 Average: AIC . 167

5.10 Average: BIC . 167

5.11 Average: RMSE . 167

xiv

List of Abbreviations

Term Definition
AdaBoost Adaptive Boosting
AIC Akaike Information Criterion
AUC Area Under the Receiver Operating Characteristics Curve
BDE Bayesian Dirichlet Equivalent
BIC Bayesian Information Criterion
BOW Bag-of-Words
C3 Conceptual Cohesion of Classes
CC Cyclomatic Complexity
CD Critical Difference
CDF Cumulative Distribution Function
CE Cost Effectiveness
CK Chidamber-Kemerer
CSBNN Cost Sensitive Boosting of Neural Networks
CSBNN-TM Cost Sensitive Boosting of Neural Networks using Threshold Moving
CSBNN-WU1 Cost Sensitive Boosting of Neural Networks with Weight Updation-I
CSBNN-WU2 Cost Sensitive Boosting of Neural Networks with Weight Updation-II
DT Decision Tree
FAN Forest Augmented Naïve Bayes
FN False Negatives
FP False Positives
GPD Generalized Pareto Distribution
GS Grow-Shrink Algorithm
HC Hill Climbing
KNN K-Nearest Neighbors
LDD Linearly Decayed Entropy
LOC Lines of Code
LR Logistic Regression
LSE Least Square Estimate
LTR Learning-To-Rank
MDL Minimum Description Length
MDP Metrics Data repository
MLE Maximum Likelihood Estimate
MMHC Max-Min Hill Climbing algorithm
MMPC Max-Min Parents and Children
MOGA Multi-Objective Genetic Algorithm

xv

List of Abbreviations

Term Definition
MOLR Multi-objective Logistic Regression
MOM Module Order Model
MoM Method of Moments
MOO Multi-objective optimization
NASA National Aeronautics and Space Administration
NB Naïve Bayes
NBT Naïve Bayes Tree
NECM Normalized Expected Cost of Misclassification
NN Neural Network
NSGA-II Non-dominated Sorting Genetic Algorithm II
OO Object-oriented
P Precision
PCA Principal Component Analysis
PDF Probability Density Function
POA Percentage of Area
QA Quality Assurance
R Recall
RD Relative Differences
RF Random Forest
RMSE Root Mean Square Error
RSMAX2 Two-stage Restricted Maximization
SFAN Selected Forest Augmented Naïve Bayes
SFAND Selected Forest Augmented Naïve Bayes Discarding
SOLR Single-objective Genetic Algorithm
STAN Selective Tree Augmented Naïve Bayes
STAND Selective Tree Augmented Naïve Bayes with Discarding
SVM Support Vector Machine
TABU Tabu Search
TAN Tree Augmented Naïve Bayes
TN True Negatives
TP True Positives
WCHU Weighted Churn

xvi

1 Introduction

The development of today’s large and complex software systems is a challenging task

particularly with constraints on resources such as manpower and time. The software

quality assurance activities encompass all the phases of software development life cycle

and consume major fraction of the total cost of the project. Software defects∗ detected

during post-release phase are proved to be very costly as compared to defects uncovered

in pre-release phases like coding, testing etc. According to a study, fixing a software

bug after deployment is 100 times costlier than fixing it during development [2]. Various

methods have been proposed to identify defects in software systems. Static code analysis

is one such popular method used to identify the defects. Although code review helps the

Quality Assurance (QA) team to identify bugs, it demands considerable amount of time

and expertise for the effective review process. Interestingly, the software bugs or faults

tend to cluster i.e. they are not evenly distributed across all the modules as per previous

studies [3]. The generic pareto principle is observed to be true for defects in software

systems as well and the principle in this context means that 20% of files have 80% of

bugs [4]. The defect prediction model predicts defect prone files using learned models

built from the historical data.

Defect Prediction models are built with training data and they are evaluated for per-

formance on the testing data. Defect prediction models are built using three prediction

techniques that differ based on the source of training data and testing data. The different

prediction techniques are: 1) Cross Validation prediction: In this approach, training and

testing data are taken from the same version of a project. The defect prediction models

are built by taking 70% of data as the training data and tested on remaining 30% of the

∗We use "bugs", "faults" and "software defects" interchangeably.

1

1 Introduction

data, or by using 10-fold cross validation technique; 2) Cross Version prediction: In this

approach, the data of the previous version of a software project is taken as the training

data to build prediction model and it is tested on the data of current version of the same

project; 3) Cross Project prediction: The prediction models are built by taking data from

different projects as the training data and tested on the data of the project under study.

The classification and regression based machine learning algorithms are widely used to

build defect prediction models. The classification models output whether a given file is

buggy or not [5] [6] whereas regression techniques determine the number of bugs in a file [7].

There are many classification algorithms that are used in developing defect prediction

models and the list includes Naïve Bayes Classifier, Logistic Regression, Decision Tree

and ensemble classifiers like Random Forest algorithm. In recent past, defect prediction

problem is also seen as an optimization problem and search-based techniques are applied

to find near-optimal or "good-enough" solutions.

A wide range of software metrics have been developed as defect predictors over the years.

The most widely used metrics for defect prediction models are source code metrics like CK

metrics [8], object oriented metrics (Fan In, Fan Out, Number of Attributes, Number of

Attributes Inherited, Number of Lines of Code, Number of Methods, Number of Methods

Inherited, Number of Private Attributes, Number of Private Methods, Number of Public

Attributes, Number of Public Methods), McCabe and the Halstead metrics [9] [10] and

change metrics like code churn metrics etc. [11] or a combination of source code and change

metrics [12] [6] [13].

Defect Prediction has generated wide spread interest in academic research. The interesting

research problem is to develop effective defect prediction approaches so that the quality

assurance team performs resource intensive, time consuming and high cost involved assu-

rance activities on fewer segments of the system as against to the entire system. The

main objectives of this thesis are listed below.

• Study the impact of feature selection on defect prediction models.

2

1 Introduction

• Develop defect prediction models using various machine learning techniques and

study the effectiveness of these models.

• Formulate defect prediction problem as a multi objective optimization problems with

different objective functions and discuss the advantages of these models.

• Find out the probability distribution that software defects and metrics follow.

1.1 Thesis Overview

We present the overview of thesis in this section. There are four major chapters and they

are described as follows.

CHAPTER 2 Several change metrics and source code metrics have been introduced and

proved to be effective features in building defect prediction models. Defect prediction

models are built using the individual metrics as well as combination of these metrics.

Feature selection is a widely used preprocessing technique to enhance accuracy of

prediction model and it achieves the same by selecting most appropriate features

amongst all available features. We investigate whether the prediction accuracy of

defect prediction models is improved by applying feature selection techniques. We

explore if there is one algorithm amongst ten popular feature selection algorithms

that consistently fares better than others across sixteen bench marked open source

projects in Section 2.2. We investigate whether the same set of features be selected

as the best features for all similar projects.

In Section 2.3, we investigate whether the changes that take place in source files over

period of time contribute to defects. It is intuitive to think that the distribution of

changes (commits) to a file within the timeline correlates to post-release defects. We

propose couple of code change metrics around the distribution of changes and build

defect prediction model with these new metrics.

3

1 Introduction

CHAPTER 3 Naïve Bayes classifier has been widely used for building defect prediction

models [14] [6]. Naïve Bayes classifier assumes conditional independence of all featu-

res while building learning models. As most of the features used in defect prediction

models are not independent, we find it interesting to study whether prediction accu-

racies can be improved if conditional independence assumption is relaxed. In Section

3.2, we use three classes of algorithms to build Bayesian Networks namely score-

based, constraint-based and hybrid class of algorithms. We propose an approach to

augment these Bayesian Network structures. We have compared performance of the

respective Bayesian Network classifiers before augmentation and after augmentation

with popular classifiers like Random Forest, Naïve Bayes and Logistic Regression.

In Section 3.3, we build cost sensitive defect prediction models. In the recent past,

quite a few studies have dealt with cost sensitive learning of software defect pre-

diction models. And very few compare the performance of their cost sensitive defect

prediction models with traditional machine learning approaches. As there is no com-

prehensive comparative study of cost sensitive defect prediction models, we attempt

to conduct the comparative study to figure out the effectiveness of proposed Cost

Sensitive Neural Networks for Software Defect Prediction. We use Normalized Ex-

pected Cost of Misclassification (NECM) [15] as the performance measure in our

comparative study.

In Section 3.4, we perform cost-effectiveness analysis of defect prediction models.

Thilo Mende et al. [16] proposed a strategy to include the notion of effort in defect

prediction models. They propose to rank files with respect to their effort per bug

and used McCabe’s cyclomatic complexity as the surrogate measure for effort. In

this work we argue that the measure of effort should not be a generic measure such

as cyclomatic complexity but instead it should be one that is specific to the kind

of activity involved in the quality assurance process. We identify two most popular

quality assurance activities namely code review and unit testing. We use lines of

code to measure the effort involved in code reviews and the number of test cases to

measure the effort in case of unit testing. We compare the cost-effectiveness of our

specific effort based models to generic effort based models.

4

1 Introduction

CHAPTER 4 Cross version defect prediction is building a prediction model from the pre-

vious version of a software project to predict defects in the current version. This is

more practical than the other two ways of building models, i.e., cross project pre-

diction model and cross validation prediction models, as previous version of same

software project will have similar parameter distribution among files. We formulate

cross version defect prediction problem as a multi-objective optimization problem

with two objective functions: (a) maximizing recall by minimizing misclassification

cost and (b) maximizing recall by minimizing cost of QA activities on defect prone

files. The two multi-objective defect prediction models are compared with four tradi-

tional machine learning algorithms, namely logistic regression, Naïve Bayes, decision

tree and random forest.

CHAPTER 5 Object oriented metrics suite and past defects are extensively used to build

defect prediction models with various machine learning approaches. Finding out the

distributions followed by the past defects is a starting point to explore the stochastic

process that the development and maintenance of software systems follow. Software

defects that measure the quality of software systems provide means to the managers

and developers to track and achieve the goals of software development. Though

the primary goal of software development process is to implement the functional

and non-functional requirements effectively and efficiently, the entire process has an

apparent randomness though the resulting software system metrics have statistical

regularities. If the generic model for bug distribution across projects and domains is

known, quality assurance activities like testing and review of future releases can be

planned efficiently. We study the distribution followed by defects and some popular

software metrics.

CHAPTER 6 Conclusions and future work of this thesis is discussed in this chapter.

5

2 Feature Selection and Novel Change

Metrics

2.1 Introduction

Feature selection is the process of selecting a subset of relevant features for building ef-

fective learning models. Feature selection has been an active field of research for the past

three decades. It is extensively used in text categorization and gene selection problems

where there are enormous numbers of features [17] [18]. The enormity of datasets usually

results in scalability and performance issues while applying learning algorithms. Feature

selection algorithms aim to resolve these issues by eliminating irrelevant or redundant fea-

tures. However, they are also used to enhance the predictive accuracies and interpretability

of models.

Applying a feature selection technique to find the appropriate feature subset prior to

building defect prediction models is found to be useful [6]. A wide range of feature selection

algorithms have been developed and more number of datasets are made available publicly

over the years. In Section 2.2, we have studied the impact of various feature selection

techniques on defect prediction models on publicly available datasets. We investigate

whether a subset of all features under consideration improves prediction accuracies of

learning model. We have also extended our study to find whether the relevant features of

the projects that improve the prediction accuracy are consistent across similar projects.

Defect prediction models are built using static code attributes, change metrics and past

defect data. Change metrics are found to be better predictors of defect prone files [19] [11].

6

2 Feature Selection and Novel Change Metrics

In Section 2.3, we have proposed couple of novel change metrics. We have extracted the

proposed metrics from Eclipse project hosted on Github and built prediction models to

prove their significance.

2.2 Feature Selection

Over the years, defect prediction models have been built by considering all metrics under

the study as features. There has been limited study in the direction of figuring out whether

a subset of these metrics might improve the predictive accuracies of learning models as

compared to model with all features. Krishnan et al. in [20] try to assess if there exists

consistency amongst best features of change metrics across different versions of eclipse

based projects. Shivaji et al. [21] apply feature selection techniques using Naïve Bayes

and Support Vector Machine (SVM) classifiers to determine if there is an improvement in

prediction accuracy of the models. They consider distinct lexemes in the churned source

code as features along with source code complexity measures and features from change

metadata.

In this work, we investigate whether a subset of all features under consideration impro-

ves prediction accuracies of learning model and deal with many other related interesting

questions. There are feature selection algorithms in literature to find out optimal feature

subset and we implement ten popular feature selection algorithms for our study. We have

considered three machine learning algorithms as underlying algorithms to build defect

prediction models. The three underlying machine learning algorithms that we have con-

sidered for this study are Naïve Bayes Classifier, Logistic Regression and Random Forest

Classifier. We have made use of non-parametric measure, AUC (Area under Curve) of

ROC curve, to compute the prediction accuracies of the defect prediction models. There

are comparative studies in literature that show that change metrics are better predictors

than source code metrics [22]. We consider combination of change metrics and source code

metrics to check if the best feature subset has metrics only from change metrics or not.

We put forth four Research Questions in this study and experiments were conducted on

7

2 Feature Selection and Novel Change Metrics

16 projects by implementing 10 feature selection algorithms with 3 underlying machine

learning algorithms.

RQ1: Will prediction accuracy of defect prediction models be improved by implementing

feature selection techniques?

RQ2: Amongst the existing feature subset selection algorithms, will there be algorithm(s)

that offer best feature subset consistently across the projects?

RQ3: Will the feature selection algorithm that offers the best feature subset be indepen-

dent of the underlying machine learning algorithms?

RQ4: Will the metrics in best feature subset be consistent across projects?

2.2.1 Related Work

Numerous software metrics have been introduced as potential predictors to detect bugs

accurately. They can be broadly classified as source code metrics and change metrics.

There is good amount of research that has been carried out using these metrics separately

as well as combined. Some of the source code metrics include McCabe and Halstead

metrics [10] [9], Chidamber-Kemerer (CK) metrics suite [8], the Conceptual Cohesion of

Classes (C3) measure [23] and various file, component based metrics [24] [4]. Fenton and

Neil [25] theorized that the most widely used static code features include Lines Of Code

(LOC) based measures, Halstead metrics and McCabe complexity metrics.

Lessman et al. proposed a framework to compare different defect prediction models and

applied it in a large-scale empirical comparison of 22 classifiers over 10 public domain data

sets from the NASA Metrics Data repository (MDP) and PROMISE repository [5]. Clas-

sifiers are compared based on the area under the receiver operating characteristics curve

(AUC). Further, hypothesis testing methods suggested by Dems̈ar are used to validate the

statistical significance of performance differences among different classification models.

The results confirm the effectiveness of ensemble classifier Random Forest. However, no

8

2 Feature Selection and Novel Change Metrics

significant performance differences could be detected among the top 17 classifiers. Our

study follows this framework in comparing the performance of feature selection algorithms.

Lessman et al. also suggest using pre-processing techniques such as feature selection and

discretization of attributes to improve the performance of classifiers.

Yue Jiang et al. investigate the effectiveness of four pre-processing techniques in predicting

defects by making use of nine datasets from NASA Metrics Data Programs (MDP) and

ten classification algorithms [26]. The four pre-processing methods include the original

data (i.e., without any transformation), log transformed data, discretized data, and dis-

cretization of the log transformed data. The results indicate that the impact of data trans-

formations on prediction models built with distinct learning algorithms differs. Random

forest algorithm, for example, performs better with original and log transformed data set

whereas Boosting and Naïve Bayes perform significantly better with discretized data. It

is concluded that no general benefit can be expected from data transformations. Also it

is recommended to use transformation techniques specific to classification algorithms.

The outstanding results by exploring feature selection techniques in other fields, like gene

selection and text categorization, inspire us to undertake this study. In bio-informatics,

Huiqing Liu et al. [17] show that feature selection improves the classification accuracy

significantly in their comparative study on feature selection and classification methods.

Yang et al. in [18] compare feature selection algorithms in statistical learning of text

categorization. They focus on aggressive dimensionality reduction using five different

feature selection algorithms.

Ambros et al. present an extensive comparison of the explanative and predictive power

of well-known defect prediction approaches over publicly available datasets [27]. Bug

prediction models were built using source code metrics, change metrics, entropy of changes,

churn of source code metrics, entropy of source code metrics and single metrics such as

bug-fixes with and without feature reduction techniques like Principal Component Analysis

(PCA). The results indicate that approaches based on churn and entropy of source code

metrics have good, stable explanative and predictive power, better than all the other

applied approaches. Also defect prediction approaches based on a single metric were

observed to be unstable over the case studies.

9

2 Feature Selection and Novel Change Metrics

Moser et al. presented a comparative analysis of the predictive power of two different

sets of metrics for defect prediction. The two different sets of metrics comprised of 18

change metrics and 31 source code metrics. Cost-sensitive classification models were built

for three releases of Eclipse. The results are very promising and change metrics clearly

outperform predictors based on static code attributes for the Eclipse project [13]. Moser

et al. analyzed the reliability of a subset of the above mentioned 18 change metrics

for defect prediction and demonstrated that 3 out of 18 change metrics contain most

information about software defects across three releases of Eclipse project [22]. The results

also indicate that prediction accuracy is not affected much by using a subset of 3 metrics. It

is worthwhile to note that their work is not towards identifying common predictors across

projects but to find common predictors across different versions of the same project.

Krishnan et al. find that change metrics are consistently good and incrementally better

predictors across the evolving products in Eclipse. Their work tries to explore whether

the set of good predictors change over time for one product and whether the set differs

among products [20]. The data sets for their experiments are sequential releases of various

products in a product line. They conclude that a small subset of these change metrics

is fairly stable and consistent across products and releases. And we consider change and

source code metrics in this work to corroborate this point.

At the same time Menzies et al. argue that static code attributes or source code me-

trics also have significant role in prediction of faults and identify the best predictors

among source code metrics [6]. They try to define a baseline experiment by choosing

publicly available datasets for the study. Their results indicate that the static code at-

tributes with log filtering pre-processor on the numeric data outperform models without

any pre-processing. This work demonstrates the superior performance of models using

preprocessing techniques.

Most of the researchers in this field concentrate their efforts to predict whether a source

file or binary is defect prone or not. But Shivaji et al. predict whether a change request is

defect prone or not based on history of change requests [21]. They consider distinct lexims

in the churned source code, which are quite huge in number, as features and extract them

from churned source code by bag-of-words approach (BOW) [28]. They also consider other

10

2 Feature Selection and Novel Change Metrics

Table 2.1: CK & OO Metrics
CK Metrics

WMC Weighted Methods per Class
DIT Depth of Inheritance Tree
RFC Response For Class
NOC Number Of Children
CBO Coupling Between Objects
LCOM Lack of Cohesion in Methods

OO Metrics
Fan-In Number of classes that reference the class
Fan-Out Number of classes referenced by the class
NOA Number of attributes
NOPA Number of public attributes
NOPRA Number of private attributes
NOAI Number of attributes inherited
LOC Number of lines of code
NOM Number of methods
NOPM Number of public methods
NOPRM Number of private methods
NOMI Number of methods inherited

features from change metadata, source code complexity metrics. They applied feature se-

lection algorithm on all these features to build defect prediction model for change requests

and show that feature selection makes a huge improvement in prediction accuracy.

2.2.2 Datasets

We conducted our experiments on 16 projects and metrics of all these projects are described

in this section. Bug prediction models are built with features as metrics in the project.

Eleven of these projects are NASA projects and the rest are Eclipse based projects.

• NASA Datasets

The data used in this study comprises of the datasets in NASA MDP repository [29].

These include MC1, MC2, MW1, CM1, JM1, KC1, KC3, PC1, PC3, PC4 and PC5.

Besides LOC counts, the NASA MDP data sets include several Halstead attribu-

tes as well as McCabe complexity measures. Halstead attributes estimate reading

complexity by counting operators and operands in a module, whereas the McCabe

11

2 Feature Selection and Novel Change Metrics

complexity measures are derived from a module’s flow graph. The description of

these code metrics and the origin of the MDP data sets are detailed in [10] and [9].

The metrics of all these eleven projects are detailed in Table 2.3. All metrics are not

available for each project and we represent the availability of the metrics for a given

project by a matrix and the same is represented in Table 2.3.

Table 2.2: Change Metrics
Metrics Definition
REVISIONS Number of revisions of a file

REFACTORINGS
Number of times a file has been
Refactored

BUGFIXES Number of times a file was involved in bug-
fixing

AUTHORS
Number of distinct authors that checked
a file into the repository

LOC_ADDED
Sum over all revisions of the lines of
code added to a file

MAX_LOC_ADDED
Maximum number of LOC added for all
revisions

AVE_ LOC_ADDED Average lines of code added per revision

LOC_DELETED
Sum over all revisions of the lines of
code deleted from a file

MAX_ Maximum number of lines of code
LOC_DELETED deleted for all revisions
AVE_ Average lines of code deleted per
LOC_DELETED Revision

CODECHURN
Sum of (added lines of code − deleted lines
of code) over all
revisions

MAX_ Maximum CODECHURN for all
CODECHURN Revisions
AVE_

Average CODECHURN per revisionCODECHURN

AGE
Age of a file in weeks (counting
backwards from a specific release)

WEIGHTED_AGE Age(i) is the number of weeks starting
from the release date for revision i and
LOC_ADDED(i) is the number of lines
of code added at revision i.

• Other Datasets

We also consider other publicly available datasets of five Java based open-source

software systems. These consist of both source code and change metrics. The five

systems include Eclipse JDT Core, Eclipse PDE UI, Equinox Framework, Mylyn

and Apache Lucene. CK Metrics [8] and object oriented metrics have been conside-

12

2 Feature Selection and Novel Change Metrics

Table 2.3: Source Code Metrics for NASA projects
Category Metrics CM1 KC1 KC3 MC1 MC2 MW1 JM1 PC1 PC3 PC4 PC5

LOC
based
metrics

LOC_Total X X X X X X X X X X X
LOC_Blank X X X X X X X X X X X
LOC_Executable X X X X X X X X X X X
LOC_Comments X X X X X X X X X X X
LOC_Code_and_Comments X X X X X X X X X X X
Number_of_lines X X X X X X X X X
Percent_Comments X X X X X X X X X

Halstead
Metrics

Content X X X X X X X X X X X
Difficulty X X X X X X X X X X X
Programming_Effort X X X X X X X X X X X
Error_Estimate X X X X X X X X X X X
Length X X X X X X X X X X X
Level X X X X X X X X X X X
Programming_Time X X X X X X X X X X X
Volume X X X X X X X X X X
Num_Operands X X X X X X X X X X X
Num_Operators X X X X X X X X X X X
Num_Unique_Operands X X X X X X X X X X X
Num_Unique_Operators X X X X X X X X X X X

McCabe
Metrics

Cyclomatic_Complexity X X X X X X X X X X X
Cyclomatic_Density X X X X X X X X X
Decision_Density X X X X X X X
Design_complexity X X X X X X X X X X X
Design_Density X X X X X X X X X
Essential_Complexity X X X X X X X X X X X
Essential_Density X X X X X X X X X
Global_Data_Complexity X X X X
Global_Data_Density X X X X
Normalized_Cyclomatic_Complexity X X X X X X X X X
Maintenance Severity X X X X X X X X

Miscella-
neous

Branch_Count X X X X X X X X X X X
Call_Pairs X X X X X X X X X
Condition_Count X X X X X X X X X
Decision_Count X X X X X X X X X
Edge_Count X X X X X X X X X
Node_Count X X X X X X X X X
Parameter_count X X X X X X X X X
Multiple_Condition_Count X X X X X X X X X
Modified_Condition_Count X X X X X X X X X

red under source code metrics category and Table 2.1 describes details about these

metrics. We have used some of the change metrics that are used by Moser et al. for

our experiments [11] [30]. All these metrics are described in Table 2.2.

2.2.3 Feature Selection Algorithms

Feature selection is primarily the task of choosing a subset of features that enhances

prediction accuracy of learning models and decreases their execution time. It is also an

effective means to identify relevant features for dimensionality reduction. We have imple-

13

2 Feature Selection and Novel Change Metrics

mented ten feature selection algorithms to study research questions RQ1 through RQ4.

All these algorithms have been implemented in MATLAB by Arizona State University∗.

We have made use of these packages for our proposed work.

Feature selection algorithms can be classified into two kinds of algorithms namely Greedy

based feature selection and Rank based feature selection algorithms. The brief description

of these algorithms is discussed below.

• Rank based feature selection algorithms: Every feature of learning problem

inherently contains some information about the target variable and this has been

clearly explored by statistical measures like Information Gain, Gini Index etc. Fe-

ature ranking algorithms initially sort all attributes with respect to a statistical

measure. Models are built with top 1 feature, top 2 features, . . , top n features.

We divide the data randomly into two parts, namely training data and testing data

containing 70% and 30% of total data respectively. Models are built with training

data and the performance measure like AUC will be calculated by validating the

model against testing data. We conduct this experiment for five times by randomly

selecting training data, testing data and average of five runs is considered as the

AUC for the model. The features in the model, that achieves the maximum AUC

value, will be considered as best feature subset. Figure 2.1 depicts graph for Mylyn

dataset using Naïve Bayes classifier. Y axis represents AUC values of the models

and X axis depicts the models having feature subset containing top 1 feature, top 2

features, . . , top n features. The model with highest accuracy is the best one and

those features constitute the best subset. The maximum AUC value is 0.774 and

the corresponding features comprise the best subset.

We use Information Gain, Relief, CFS, Chi-squared, Gini Index, Kruskal Wallis and

Fisher Score measures for our study [31] [32].

• Greedy based feature selection algorithms: There are two greedy algorithms

namely Greedy Forward Selection Algorithm and Greedy Backward Selection Algo-

rithm to find out the optimal feature subset.

∗http://featureselection.asu.edu

14

2 Feature Selection and Novel Change Metrics

Figure 2.1: AUC vs # of Feature − Naïve Bayes Classifier − Mylyn Project

Figure 2.2: AUC vs # of Feature − Greedy Forward Selection Algorithm − KC3 Project

Greedy Forward Selection Algorithm: Prediction models are built by considering one

feature at a time. The model with best prediction accuracy (in this case, AUC) is

chosen. Subsequently, the selected feature is combined with the remaining features

one at a time. The model with best prediction accuracy is chosen again. This

process is further repeated until a model comprising all features is built. The feature

subset with maximum prediction accuracy is chosen as the best feature subset. The

prediction accuracy of model will be calculated as average of AUCs of five runs as

explained previously in ranking selection algorithms. Figure 2.2 depicts the execution

of forward greedy selection algorithm for KC3 dataset comprising of 39 features.

Y axis represents the AUC value of each model and X axis represents the model

15

2 Feature Selection and Novel Change Metrics

with corresponding number of features where in Random Forest Classifier is the

underlying machine learning algorithm. The algorithm as stated above builds models

until all the features are included. The model with maximum AUC value is chosen.

In this particular case, the maximum value of AUC is 0.876 which occurs when the

number of features selected is 10.

Greedy Backward Selection Algorithm: This algorithm is similar to greedy forward

selection except that it begins by considering all the features as best subset. First,

a model is built by considering all the features. Next, models are built by removing

one feature at a time from all the features. The model with best prediction accuracy

is chosen (in this case, AUC). This is repeated until all the features are exhausted.

Out of all the models built, the model with best prediction accuracy is chosen and

the corresponding features comprise the best feature subset.

• We also make use of the following feature selection algorithm in our study

BlogReg Feature Selection Algorithm: This algorithm is an embedded feature se-

lection algorithm presented in [33] to eliminate the regularization parameter λ from

Sparse Logistic Regression SLogReg, which is proposed in [34]. BLogReg uses a

Bayesian approach to remove λ by maximizing the marginalized likelihood of the

sparse logistic regression model.

2.2.4 Experimental Methodology

We have conducted experiments on the datasets presented in Section 2.2.2 using the afo-

rementioned feature selection algorithms detailed in Section 2.2.3. We describe machine

learning algorithms used in our study and measures that are used to assess the performance

of the prediction models in this Section.

16

2 Feature Selection and Novel Change Metrics

2.2.4.1 Learning Algorithms

We implement machine learning algorithms to find the best feature subset as discussed in

Section 2.2.3. There are numerous machine learning algorithms amongst which we have

chosen the following three algorithms.

1. Naïve Bayes Classifier (NB)

2. Logistic Regression (LR)

3. Random Forest (RF)

The reasons for the selection of these algorithms are discussed below. Naïve Bayes model is

extensively used in defect prediction and it is easy to interpret as well as computationally

efficient model as pointed by Menzies et al. [6]. Random Forest is an effective, widely

used ensemble classifier for software defect predictions [32]. It is fast to train and is robust

toward parameter settings. Also it is consistent and demonstrates substantial improvement

over individual tree classifiers [35].

Logistic regression is an equally common technique used especially in building defect pre-

diction models [36]. Ease in interpretation of its coefficients, wide availability of easily

used and reliable software to perform the computations and the ability to estimate the

probability of an outcome are a few reasons behind its extensive usage.

2.2.4.2 Evaluation Criterion

The aim of defect prediction model is to determine if a module is defect prone or not. And

the confusion matrix is generally calculated indicating number of True Positives (TP), True

Negatives (TN), False Positives (FP) and False Negatives (FN). Using these indicators,

measures such as precision, accuracy and recall are calculated. However, these measures

are parametric and are valid only for a certain operating point. An operating point is a

17

2 Feature Selection and Novel Change Metrics

value or threshold based on which we classify the samples as buggy or not. For example,

in a binary model implementing logistic regression if the operating point is 0.5, all samples

with probability greater than 0.5 are classified as positive and others as negative. It is also

argued that even though such error-based metrics have undoubted practical value, they are

conceptually inappropriate for empirical comparisons of the performance of classification

algorithms [5].

A ROC (Receiver Operating Characteristic) curve is a plot with false positive rate (false

alarm) on the X axis and the true positive rate on Y axis. (0, 1) is the ideal point as there

would be no misclassifications. A straight line from (0,0) to (1,1) is a completely random

classifier and offers no information. Any curve above this straight line represents a good

classifier (better than random). The advantages of the ROC analysis are its robustness

toward imbalanced class distributions and to varying and asymmetric misclassification

costs [30]. Due its robustness and being non-parametric measure, we have made use of

AUC as prediction accuracy for our models. Out of the several measures associated with

ROC analysis, area under the curve (AUC) is one of the most popular measures. It can

take values ranging from zero to one, and an AUC value of one represents a perfectly

accurate classifier. An AUC value greater than 0.5 demonstrates an effective classifier

which performs better than a random classifier. Statistically, it measures the probability

that a classifier ranks a randomly chosen fault prone module higher than a randomly

chosen non-fault prone module [37].

2.2.4.3 Ranking Prediction Models

With number of new machine learning algorithms being presented, methods to compare

their performance have become quite popular. Many of the studies make use of statistical

inference to compare various algorithms.

With regard to the current practices employed in comparing performance of algorithms,

Dems̈ar reviewed theoretically and empirically several suitable tests. He recommends a

set of simple and robust non-parametric tests for statistical comparisons of classifiers:

the Wilcoxon signed ranks test for comparison of two classifiers and the Friedman test

18

2 Feature Selection and Novel Change Metrics

with the corresponding post-hoc tests for comparison of more classifiers over multiple

data sets. Results of the Friedman test are called CD (critical difference) diagrams [38].

Friedman’s test is based on ranked performances rather than actual performance estimates

and is therefore less susceptible to outliers. All classifiers are ranked according to their

performance in ascending order for each data set and the mean rank of a classifier i, ARi
is computed across all data sets. The corresponding test is calculated as

χ2
F = 12K

L(L+ 1)

[
L∑
i=1

AR2
i −

L(L+ 1)2

4

]
(2.1)

ARi = 1
K

K∑
j=1

rij (2.2)

with K representing the overall number of data sets, L the number of classifiers, and rij
the rank of classifier i on data set j. The null hypothesis for this test is that all algorithms

perform alike. If the null hypothesis is satisfied, the test statistic is distributed according

to the Chi-Square distribution with L − 1 degrees of freedom. If the null hypothesis is

rejected, Dems̈ar recommends the test of Nemenyi for comparing the performance of all

classifiers with each other. The performance of two classifiers is significantly different if

the corresponding average ranks differ by at least the critical difference

CD = qa;∞;L

√
L(L+ 1)

12K (2.3)

The value qa;∞;L is based on the Studentized range statistic which can be looked up in

standard statistical tables. We adopt the above mentioned methodology to answer our

problems RQ1 through RQ4.

19

2 Feature Selection and Novel Change Metrics

2.2.5 Results and Discussion

The primary focus of this work is to study the impact of feature selection on defect pre-

diction. As discussed in Section 2.2.3, we have considered ten feature selection algorithms

to study the research questions RQ1 through RQ4. For each of these ten algorithms,

we build defect prediction models with the features as selected by the algorithm. Thus

for each of the project and underlying learning algorithm, we build ten defect prediction

models and one more defect prediction model that considers all features. As per Section

2.2.4.2, we will make use of Area Under ROC Curve (AUC) as prediction accuracy to

determine the merit of each model. The project data is randomly partitioned where in

2/3rd of data is for training the prediction model and remaining 1/3rd of data is used for

testing the model. And this is repeated for five times and average of prediction accuracies

is taken as the final value of the prediction accuracy for the project. We will explore

Dems̈ar tests and simple statistical measures to answer research questions laid down in

Section 2.2.

Table 2.4: Prediction Accuracy (AUC) of all projects with Naïve Bayes Classifier as underlying
algorithm

Project Relief Info
Gain

Forward
Greedy

Backward
Greedy CFS Chi-

Sq
Blog
Reg

Gini
In-
dex

Kruskal-
Wallis

Fisher
Score

All
Fea-
tures

JDT 0.818 0.828 0.826 0.818 0.715 0.816 0.724 0.801 0.791 0.805 0.769
PDE 0.736 0.776 0.798 0.768 0.728 0.767 0.726 0.768 0.752 0.759 0.728
Equinox 0.845 0.865 0.881 0.886 0.829 0.848 0.818 0.848 0.861 0.852 0.85
Lucene 0.836 0.834 0.849 0.831 0.754 0.802 0.778 0.807 0.81 0.807 0.767
Mylene 0.784 0.772 0.818 0.805 0.759 0.77 0.755 0.77 0.769 0.771 0.723
CM1 0.794 0.802 0.826 0.785 0.766 0.771 0.708 0.785 0.757 0.773 0.698
JM1 0.697 0.685 0.7 0.699 0.654 0.691 0.651 0.688 0.693 0.69 0.679
KC1 0.8 0.804 0.822 0.826 0.788 0.824 0.776 0.822 0.822 0.823 0.786
KC3 0.75 0.843 0.85 0.826 0.797 0.784 0.738 0.807 0.768 0.795 0.694
MC1 0.924 0.934 0.947 0.942 0.893 0.931 0.831 0.937 0.929 0.935 0.921
MC2 0.784 0.811 0.859 0.843 0.699 0.775 0.707 0.798 0.778 0.773 0.725
MW1 0.852 0.843 0.883 0.871 0.797 0.806 0.719 0.807 0.786 0.785 0.802
PC1 0.833 0.823 0.843 0.839 0.772 0.809 0.737 0.832 0.816 0.817 0.79
PC3 0.829 0.801 0.841 0.834 0.801 0.822 0.825 0.825 0.822 0.822 0.761
PC4 0.848 0.853 0.888 0.896 0.788 0.852 0.87 0.853 0.854 0.853 0.806
PC5 0.95 0.956 0.965 0.963 0.95 0.951 0.936 0.95 0.947 0.962 0.948

We have conducted experiments on data sets of 16 projects by implementing 10 feature

selection algorithms with 3 underlying machine learning algorithms. We have tabulated the

results of 16 projects with three different underlying machine learning algorithm as (Naïve

Bayes Classifier, Logistic Regression and Random forest) shown in Table 2.4, Table 2.5 and

Table 2.6. For example, if prediction models are built with all features, features selected by

20

2 Feature Selection and Novel Change Metrics

forward greedy algorithm and backward greedy algorithm wherein the underlying machine

learning algorithm is Naïve Bayes Classifier, AUC values for PC3 project are 0.761, 0.841

and 0.834 respectively (refer to Table 2.4).

Table 2.5: Prediction Accuracy (AUC) of all projects with Logistic Regression as underlying
algorithm

Project Relief Info
gain

Forward
Greedy

Backward
Greedy CFS Chi-

Sq
Blog
Reg

Gini
In-
dex

Kruskal-
Wallis

Fisher
Score

All
Fea-
tures

JDT 0.86 0.831 0.852 0.863 0.753 0.831 0.78 0.839 0.837 0.837 0.826
PDE 0.771 0.756 0.791 0.775 0.74 0.757 0.764 0.773 0.769 0.782 0.731
Equinox 0.86 0.847 0.874 0.871 0.829 0.847 0.831 0.845 0.845 0.871 0.757
Lucene 0.83 0.809 0.867 0.868 0.725 0.809 0.733 0.809 0.809 0.81 0.756
Mylene 0.824 0.819 0.834 0.84 0.784 0.819 0.783 0.817 0.815 0.821 0.794
CM1 0.857 0.811 0.857 0.846 0.765 0.811 0.771 0.836 0.788 0.819 0.756
JM1 0.714 0.717 0.72 0.719 0.706 0.717 0.707 0.716 0.718 0.718 0.708
KC1 0.814 0.808 0.822 0.823 0.789 0.806 0.789 0.812 0.811 0.82 0.79
KC3 0.787 0.765 0.859 0.86 0.803 0.765 0.812 0.77 0.768 0.793 0.686
MC1 0.925 0.945 0.952 0.958 0.905 0.938 0.832 0.918 0.913 0.928 0.866
MC2 0.739 0.701 0.808 0.833 0.741 0.726 0.743 0.754 0.776 0.732 0.69
MW1 0.797 0.808 0.867 0.858 0.806 0.808 0.752 0.831 0.796 0.798 0.75
PC1 0.875 0.856 0.884 0.886 0.793 0.857 0.805 0.867 0.854 0.869 0.767
PC3 0.827 0.842 0.867 0.86 0.816 0.842 0.825 0.842 0.842 0.842 0.85
PC4 0.903 0.906 0.913 0.919 0.85 0.906 0.881 0.913 0.885 0.913 0.906
PC5 0.958 0.956 0.965 0.965 0.958 0.956 0.952 0.956 0.955 0.957 0.945

Table 2.6: Prediction Accuracy (AUC) of all projects with Random Forst as underlying algo-
rithm

Project Relief Info
gain

Forward
Greedy

Backward
Greedy CFS Chi-

Sq
Blog
Reg

Gini
In-
dex

Kruskal-
Wallis

Fisher
Score

All
Fea-
tures

JDT 0.879 0.881 0.894 0.894 0.817 0.872 0.794 0.874 0.879 0.882 0.843
PDE 0.799 0.796 0.818 0.806 0.77 0.796 0.773 0.787 0.789 0.811 0.779
Equinox 0.872 0.883 0.889 0.897 0.866 0.875 0.826 0.877 0.886 0.881 0.855
Lucene 0.835 0.838 0.877 0.866 0.792 0.841 0.754 0.837 0.867 0.818 0.817
Mylene 0.842 0.841 0.849 0.848 0.823 0.832 0.805 0.837 0.854 0.838 0.828
CM1 0.813 0.786 0.855 0.845 0.761 0.78 0.705 0.76 0.766 0.767 0.767
JM1 0.761 0.763 0.765 0.762 0.735 0.753 0.745 0.759 0.755 0.761 0.754
KC1 0.829 0.847 0.854 0.848 0.795 0.844 0.74 0.834 0.848 0.837 0.827
KC3 0.798 0.797 0.876 0.852 0.758 0.788 0.81 0.8 0.816 0.787 0.781
MC1 0.967 0.948 0.947 0.973 0.785 0.962 0.673 0.96 0.964 0.961 0.942
MC2 0.819 0.793 0.832 0.828 0.731 0.757 0.73 0.758 0.744 0.745 0.719
MW1 0.78 0.792 0.852 0.846 0.672 0.829 0.745 0.782 0.829 0.766 0.739
PC1 0.869 0.895 0.904 0.899 0.823 0.884 0.816 0.878 0.877 0.866 0.851
PC3 0.864 0.863 0.868 0.874 0.816 0.87 0.716 0.855 0.845 0.854 0.827
PC4 0.948 0.948 0.956 0.96 0.841 0.944 0.91 0.947 0.948 0.945 0.942
PC5 0.982 0.978 0.981 0.981 0.947 0.979 0.956 0.981 0.98 0.977 0.975

The averages of AUCs of NASA and Eclipse projects for each of feature selection algorithm

are tabulated in Table 2.7. For example, if prediction models are built with all features,

features as selected by forward greedy algorithm and backward greedy algorithm wherein

the underlying machine learning algorithm is Naïve Bayes Classifier, the average of AUCs

for NASA projects are 0.783, 0.857 and 0.848 (refer to Table 2.7).

21

2 Feature Selection and Novel Change Metrics

For a given project, the AUCs of models built with features that are outputs of feature

selection algorithms are going to be distinct. For each project, the best AUC may be attai-

ned by a model built using features obtained by implementing a certain feature selection

algorithm. The averages of best AUCs of NASA projects (best refer to the best feature

selection algorithm for that project) is calculated and recorded in Table 2.7 as the value of

‘Best Algo’. For example, this value is 0.858 (refer to Table 2.4) if the underlying machine

learning algorithm is Naïve Bayes Classifier. In addition to average AUC for each model,

this table also represents the percentage of Relative Differences (RD%) in AUCs of model

implementing a particular feature selection technique and model comprising all features.

In other words, it indicates the performance of each feature selection algorithm compared

to model comprising all features.

Table 2.7: Comparison of average AUCs for NASA and Eclipse Projects
Projects Eclipse NASA

Algorithms NB LR RF NB LR RF
Statistical Measure AUC RD†% AUC RD% AUC RD% AUC RD% AUC RD% AUC RD%

All features 0.767 NA 0.773 NA 0.824 NA 0.783 NA 0.79 NA 0.829 NA
Best Algo 0.836 8.996 0.847 9.573 0.868 5.34 0.858 9.579 0.869 10 0.884 6.634

Forward Greedy 0.834 8.735 0.844 9.185 0.865 4.976 0.857 9.451 0.865 9.494 0.881 6.273
Backward Greedy 0.821 7.04 0.844 9.185 0.862 4.612 0.848 8.301 0.866 9.62 0.879 6.031

Relief 0.804 4.824 0.829 7.245 0.846 2.67 0.824 5.236 0.836 5.823 0.857 3.378
Information Gain 0.815 6.258 0.812 5.045 0.848 2.913 0.832 6.258 0.829 4.937 0.855 3.136

CFS 0.757 -1.304 0.766 -0.906 0.814 -1.214 0.791 1.022 0.812 2.785 0.788 -4.946
Chi-Squared 0.801 4.433 0.812 5.045 0.843 2.306 0.82 4.725 0.83 5.063 0.854 3.016
BLogReg 0.76 -0.913 0.778 0.647 0.79 -4.126 0.773 -1.277 0.806 2.025 0.777 -6.273
GiniIndex 0.799 4.172 0.817 5.692 0.843 2.306 0.828 5.747 0.838 6.076 0.847 2.171

Kruskal-Wallis 0.796 3.781 0.815 5.433 0.855 3.762 0.816 4.215 0.828 4.81 0.852 2.774
Fisher score 0.799 4.172 0.824 6.598 0.846 2.67 0.821 4.853 0.835 5.696 0.842 1.568

For each underlying machine learning algorithm, we have performed Friedman’s test to

check the null hypothesis whether there is significant difference in the prediction accuracies

of 11 models (ten models resulting from 10 feature selection algorithms and another model

built by considering all features) on 16 projects. It is found that null hypothesis is rejected

and hence the Nemenyi test, that compares the performance of all models with each other,

is conducted with an alpha value of 0.05. The Nemenyi test plots the algorithms against

their mean ranks, with the ranks on X axis and algorithms on Y axis. The length of line

segment of each classifier represents its corresponding critical difference. Any algorithm

which starts to the right of the line segment is outperformed significantly. The results

of these tests are shown using Nemenyi diagrams in Figure 2.3, Figure 2.5a and Figure

2.5b.

22

2 Feature Selection and Novel Change Metrics

Figure 2.3: Nemenyi Diagram for Naïve Bayes

Figure 2.4: (a)Nemenyi Diagram for Logistic Regression, (b) Nemenyi Diagram for Random
Forest

(a) (b)

RQ1: Will prediction accuracy of defect prediction models be improved by im-

plementing feature selection techniques?

Our experimental results are in tune with the intuitive idea that feature selection techni-

ques improve predictive accuracy of defect prediction models. For KC3 project, AUC

values for the prediction models built with all features and features obtained by applying

the greedy forward selection algorithm are 0.694 and 0.850 (refer to Table 2.4), there is an

increase of 15% in prediction accuracy. And there is an increase of 7.4% on Average AUC

for all of NASA projects when greedy forward feature selection algorithm is implemen-

ted (refer to Table 2.7). However, from Table 2.7 we observe that few feature selection

techniques namely CFS and BLogReg negatively impact the performance of prediction

accuracies in some cases. For example, the prediction accuracy is shrunk by 6% when the

23

2 Feature Selection and Novel Change Metrics

underlying machine learning algorithm is Random Forest; BLogReg is the feature selection

technique and the experiments are conducted on NASA data sets.

Nemenyi tests also reveal that there is significant improvement in AUCs if forward greedy,

backward greedy, gini index, information gain and relief based feature selection algorithms

are implemented to select features optimally (refer to Figure 2.3). It is to be noted that

all the above observations are from the experiments in which the underlying learning

algorithm to build prediction model is Naïve Bayes classifier. Similar results are observed

when the underlying learning algorithm is logistic regression and random forest (refer

to Table 2.5, Table 2.6, Table 2.7, Figure 2.5a and Figure 2.5b). Hence we recommend

performing best feature subset selection as part of pre-processing activities to build defect

prediction model to enhance performance accuracies.

RQ2: Amongst the existing feature subset selection algorithms, will there be

algorithm(s) that offer best feature subset consistently across the projects?

This question is whether there exists any feature selection algorithm that consistently

outputs best feature subset across projects. We observed that prediction models built

using the features obtained by implementing forward greedy feature selection algorithm

are having maximum AUC values in 13 projects out of 16 projects. And the second

consistent algorithm happens to be the backward greedy feature selection algorithm (refer

to Table 2.4, Table 2.5, Table 2.6 and Table 2.7). For all of NASA projects, the average

AUC value for the prediction model built by features obtained by implementing forward

greedy and backward greedy algorithms are 0.857 and 0.848 whereas average AUC for

prediction model built with all features is 0.783. And in fact these two algorithms top the

list (refer to Table 2.7). And also the average AUC value for the models built by features

obtained by implementing the forward greedy feature selection algorithm is almost the

same as average of best AUC of NASA projects (best refer to the best feature selection

algorithm for that project).

The Nemenyi’s tests also confirm these observations and declare that forward greedy and

backward greedy algorithms are consistently giving the bests features across projects. It

is to be noted that all the above observations are from the experiments in which the

underlying learning algorithm to build prediction model is Naïve Bayes. Similar results

are observed when the underlying learning algorithm is logistic regression and random

24

2 Feature Selection and Novel Change Metrics

forest (refer to Table 2.5, Table 2.6, Table 2.7, Figure 2.5a and Figure 2.5b). Hence we

strongly recommend implementing forward greedy or backward greedy feature selection

algorithms as compared to any other feature selection algorithms.

RQ3: Will the feature selection algorithm that offers the best feature subset

be independent of the underlying machine learning algorithms?

We have observed that for NASA projects, forward greedy feature selection algorithm

is found to be the best feature selection algorithm if the underlying machine leaning

algorithm is Naïve Bayes algorithm. And the question here is that will it continue to be the

best feature selection algorithm if the underlying machine algorithm is logistic regression

or random forest. After conducting experiments with underlying learning algorithms as

logistic regression and random forest, forward greedy feature selection algorithm continues

to the best feature selection algorithm. Hence we conclude that the best feature selection

algorithm is independent of the underlying algorithm.

RQ4: Will the metrics in best feature subset be consistent across projects?

The fourth question is whether the metrics in the best feature subset will be consistent

across the similar projects, say NASA projects or not. Equivalently the features, which

are found in the best feature subset for one of the NASA projects, say CM1, are there in

the best feature subset of other NASA projects as well. We found that this is not totally

correct as there are very few metrics that are common amongst the best features subsets

of NASA projects and similar observations are found in eclipse based projects also.

2.2.6 Threats to Validity

Like any other empirical experiment, the conclusions of this study may be biased on the

data used in obtaining them. Sampling bias is a valid threat to this study. However, the

appropriateness and representativeness of NASA MDP repository has been appreciated

by researchers in this area and they have made use of some of its data sets for their

experiments (e.g. [6] [39] [40]). And hence we are confident that the obtained results on

these data sets are relevant and valuable for the defect prediction community. The class

imbalance is a common threat to most of the studies on defect prediction problem and

this work is no exception.

25

2 Feature Selection and Novel Change Metrics

2.2.7 Contributions

An extensive empirical study on the impact of feature selection algorithms on defect

prediction models has been carried out and it is established that prediction accuracies can

be enhanced significantly by applying feature selection techniques during pre-processing

steps. Amongst many feature selection algorithms, greedy based algorithms stand out and

perform much better than the other competent algorithms. It is also found out that the

impact of feature selection algorithm is independent of the underlying machine learning

algorithms. It is re-emphasized that there may not be any common metrics amongst

optimal feature subsets of similar projects considered defect prediction.

2.3 Novel Change Metrics

Software development teams continue to deliver software releases in evolutionary fashion

with almost always changing requirements. Changes are inevitable in constantly changing

business environment. Some of the recent studies in defect prediction focused on using

different change metrics as defect predictors. Change metrics clearly outperform code

complexity and other source code metrics in defect prediction [13].

Hence, we have investigated whether the changes that take place in source files over period

of time contribute to defect prone source files. We have built defect prediction models

with existing and proposed change metrics mined from open source softwares hosted on

Github. With the proposed metrics, we expect significant improvement in the performance

of prediction models.

2.3.1 Related Work

Kim et al. proposed FixCache model that uses past bugs to search the vicinity of future

bugs with the assumption that faults do not occur in isolation, but rather in bursts of

several related faults [41]. Zimmermann et al. mapped defects from the bug database

26

2 Feature Selection and Novel Change Metrics

of Eclipse to source code locations and built prediction models that showed that the

combination of complexity metrics can predict defects, suggesting that the more complex

the code, more bugs it has [42]. Studies done by Hassan shows that change metrics are

as good as or even better predictor of faults than prior faults and he concludes that the

more complex changes to a file, higher the chance that file contains faults [19]. Nagappan

et al. found that change burst metrics yield excellent predictive capability in projects

with high-quality changes. They claim that precision and recall exceed 90% for Windows

Vista: the highest predictive power ever observed [11]. Nagappan and Ball took code

churn measures to build defect prediction model and found out that relative code churn

measures are excellent predictors of defect density in large industrial software systems [43].

Moser et al. shows that change metrics clearly outperform predictors based on static code

attributes for the Eclipse project [13] [27]. They confirm the observations made by other

researchers, as change data, and more in general process related metrics, contain more

discriminatory and meaningful information about the defect distribution in software than

the source code itself. They suggest that while most of the past research effort has been

invested in code metrics based approaches and only produced mixed results, there remains

much more to be explored in the area of how the software process impacts the generation

of defects during the software development life cycle.

2.3.2 Change Metrics

Unlike object oriented metrics and CK metrics, change metrics do not concern themselves

with the contents of a source file alone, but rather with the details of changes made to

the source file over time. Change metrics are gathered from the software configuration

management repository of a particular project. One advantage of using change metrics over

source metrics is that they are independent of the programming language. Change metrics

are extracted for the time period between two consecutive major releases of software and

are calculated on a per-file basis. We refer to the time-period between two consecutive

releases as ‘timeline’.

In our work, we propose two novel change metrics namely Entropy of changes, Mean period

of change and build prediction models with these two novel metrics along with ten widely

27

2 Feature Selection and Novel Change Metrics

Figure 2.5: Data Extraction

used change metrics. We have considered all major releases of Eclipse from 3.0 to 3.5, and

calculated these metrics for the time period between any two consecutive releases. We

explain the metrics below, along with the rationale for considering them in the feature set

used for defect prediction.

2.3.3 Novel Change Metrics

Entropy of Code Change It is intuitive to think that the distribution of changes (com-

mits) to a file within the timeline might correlate to post-release defects. If we divide

the timeline into N equal periods, a ‘flat’ distribution would have nearly equal num-

ber of changes in each of the N periods. On the other hand, changes might be

concentrated to one or more regions resulting in peaks and lows in the change dis-

tribution graph. We use Shannon’s definition of Entropy to estimate this change

distribution. If Ci is the number of commits in the ith period that affect the file

and Ctotal is the total number of commits within timeline that affect the file, then

we define Entropy of code change for the file as,

−
N∑
i=1

(
Ci

Ctotal

)
× log

(
Ci

Ctotal

)
(2.4)

All major Eclipse releases are usually spaced one year apart. Hence, we have consi-

dered N as 12. It is to be observed that the way we defined Entropy is fundamentally

different from Hassan’s Entropy [19].

Mean Period of Change (MPC) We divide the timeline into 12 equal periods as in case

28

2 Feature Selection and Novel Change Metrics

of ENTROPY. If all changes (commits) for a file are concentrated in one particular

period, say period i, then we expect that different values of this period of con-

centration i should affect post-release defects in different ways. A low value for i

implies that the file was last changed in the early periods of the timeline and has

been free of changes for the remaining periods. So it can be considered relatively

stable, as compared to a file for which period of concentration is localized closer to

the date of release. Mean Period of Change is an attempt to estimate this center of

concentration of changes.

MPC =
N∑
i=1

i ∗
(

Ci
Ctotal

)
(2.5)

2.3.4 Other Change Metrics

Commits The number of commits within the timeline that have modified a file.

Rationale: More a file is changed, more the probability of a defect.

Add The total number of lines added to the file due to all the commits within the timeline.

Rationale: More the amount of change, more the probability of a defect.

Delete The total number of lines deleted from the file due to all the commits within the

timeline.

Rationale: More the amount of change, more the probability of a defect.

Authors The number of unique authors involved in commits that have modified this file

within the timeline.

Rationale: More the number of different authors involved in modifications to the

file, greater the chances of a defect.

Commits60 The number of times the file was changed (the no. of commits to the file)

in the last 60 days of the later release. That is, if D is the date of the later release

(release 3.7 in figure(2.5)) and d = D − (60days), then COMMITS60 is the number

of commits within dates d and D that modify this file.

29

2 Feature Selection and Novel Change Metrics

Rationale: It is assumed that if a file is changed more just before the release, greater

the possibility of post-release defects.

Last Commit The number of days before the later release date when the file was last

changed in a commit.

Rationale: A file is expected to be more prone to post-release defects if the last

change is closer to the release date.

In Development Bugs The number of bug-fix commits affecting the file within the time-

line (the development period).

Rationale: We expect a file to be more defect prone if it has been frequently fixed

for bugs.

Maximum Burst Nagappan et al. define a change burst as a "sequence of consecutive

changes" to a file. Two parameters are used to detect change bursts, gap size and

burst size. Gap size determines the minimum time gap between two changes (com-

mits) to a file. For a file, commits with time gap less than the gap size will belong

to the same change burst. The burst size determines the minimum no. of changes

(commits) in a change burst. If the no. of commits in a change burst is less than

the burst size, the change burst will not be considered [11]. MAXBURST represents

the maximum change burst for a file, and is the maximum number of commits in

any change burst for the file, i.e. max|B|/Bεbursts(file). We used gap size as 3

and max burst as 3 in our experiments.

Maximum Change Set Both Moser et al. [22] and Krishnan et al. [20] consider two change

metrics, MAXCHANGESET and AVGCHANGESET (described next) that relate to

the number of files changed along with the current file. For every file, the MAX-

CHANGESET is the maximum number of files changed along with this file in any

commit within the timeline. If C is the subset of commits within the timeline that

affect this file, then MAXCHANGESET is

max
cεC

n(c) (2.6)

30

2 Feature Selection and Novel Change Metrics

where n(c) is the number of files modified by commit c, other than the current file.

Average Change Set For every file, the AVGCHANGESET is the average of the number

of files changed together with this file, calculated over all commits affecting this file.

If C is the subset of commits within timeline that affect this file and |C| is the size

of this subset, the AVGCHANGESET is

1
|C|

N∑
i=1

n (ci) (2.7)

where n (ci) is number of files modified by commit, other than the current file.

2.3.5 Feature Extraction

Github is a web-based code hosting platform that uses the Git revision control system

developed by Linus Torvalds. Some popular projects hosted in Github are rails, jquery,

node, html5-boilerplate, homebrew and diaspora. In our research, we have focused on

extracting data from open-source software projects hosted on Github because of the gro-

wing popularity of the platform and also because of the easy availability of the Github

API in different programming languages. To access the Github API, we have found the

open-source Python library PyGithub‡ to be extremely helpful. In revision control termi-

nology, a commit represents a change to the code repository/database. In Github, every

commit is uniquely represented by a 40 character hex-string, generated from the commit

data using SHA-1 hash algorithm.

Extracting six change metrics We describe the procedure followed in data extraction of

first six metrics here (explained in section 2.3.4). We assume we are gathering change

metrics between release 3.2 (release date D1) and release 3.3 (release date D2) of

some open-source repository on Github.

• All commits made to the repository are scanned sequentially and commits with

‡https://github.com/jacquev6/PyGithub

31

2 Feature Selection and Novel Change Metrics

date between D1 and D2 are filtered out. The SHA strings of these commits

are listed to a file.

• For each commit SHA in the file, the following details of the commit are retrie-

ved:

– Author, the person responsible for the change.

– Date and Time, when the change was updated to the repository.

– Number of files modified as a part of the change.

– Names of the modified files.

– Number of lines added to each modified file

– Number of lines deleted from each modified file.

The above details for a particular commit are output to a file in an easily

parsable format, with the commit SHA as the filename, to guarantee uniqueness.

• All Java files from the two releases are listed separately, and only files common

to both releases are considered.

• The commit data files generated in previous steps are processed to extract the

first 6 metrics for each Java file common to both releases:

At this point, we have the name of each Java file along with the 6 generated metrics

for each file. Files that have not been changed at all during the timeline will have

zero values for all 6 metrics. Currently we do not consider such files in our study,

because we focus only on how changes to a file affect the post-release bugs. We filter

out such files.

32

2 Feature Selection and Novel Change Metrics

Extracting number of in-development bug fixes In-development bugs refer to the num-

ber of bug fix commits made to a file during the period between the two releases. To

recognize a commit as a bug fix, we parse the commit message string for the words

‘Bug’, ‘Fix’, ‘fixed’ [44]. If any of the words are matched in the commit message,

the bug fix count for that file is incremented by one.

Calculating the code change entropy We divide the timeline into N periods and calcu-

late the start and end dates for each period. For each file, we loop through the list of

commits (considering only commits affecting the particular file) and distribute them

in the N periods according to their commit dates. So, for every file, we know Ci, the

number of commits to the file in period i. Also, Ctotal is the number of commits out

of all the commits in the timeline that modify the file under consideration. Entropy

for the file is then calculated according to the definition in Section 2.3.3.

Calculating Mean Period of Change As in case of entropy above, the Ci values are calcu-

lated for each file (iε[1 . . . 12]) and then MPC (Mean Period of Change) is calculated

as per definition in Section 2.3.3.

Calculating MAXBURST MAXBURST is calculated as per definition in Section 2.3.4

Calculating MAXCHANGESET and AVGCHANGESET For every file, three variables

are maintained: Max – Holds the MAXCHANGESET value. Initialized to zero.

Sum – Holds the sum of the number of files changed along with this file by commits.

Initialized to zero. Count – Holds the number of commits in the timeline that affect

this file. Initialized to zero. For every commit in the timeline:

• For every file that the commit modifies, increment the file’s Count by 1

• N is the total number of files modifies by the commit. For every file modified by

the commit, add (N − 1) to the file’s Sum. Also for every file that it modifies,

replace max by (N − 1), if max is less than (N − 1)

33

2 Feature Selection and Novel Change Metrics

The final max value of a file is the MAXCHANGESET value of the file. The AVG-

CHANGESET value for the file is the Sum divided by the Count.

Calculating post release bugs Bug reports are traced backwards from bug fixes by iden-

tifying the bug number from the commit message and then looking up the report

date for that particular bug in a bug repository. We make an important assumption

here: "Any bugs reported (for the projects mentioned in this work) are fixed within

six months from the report date" With this assumption, all bugs reported within six

months post-release will have been fixed within one year post-release. So we need

to consider all bug fix commits within one year from the later release date. We

maintain a list of files along with the no. of post-release bug reports, and initialize

the no. of reports to zero for every file. For every bug fix commit within 1 year

post-release:(1) The commit message is analyzed to strip out the bug ID number for

the bug that was fixed in the commit. (2) The bug repository for our project§ is

then consulted and the document for the particular bug ID is parsed to extract the

report date.(3) The report date is checked to see if it lies between the release date

of the later release and within 6 months from that. (4) If it does, the bug report

counts for each file modified by the commit is incremented by 1.

At this point, we have, for each file, the number of post-release defects (bugs) which

is a numeric. Since we would like the output class to be binary nominal (YES or NO),

all zero values for post-release defects are replaced by a ‘NO’ indicating the absence

of post-release defects and all non-zero values are replaced by a ‘YES’ indicating the

presence of post-release defects for that file.

2.3.6 Experimental Methodology

For our experiments, we have used the core Java Development Tools¶ repository of Eclipse

from Github. Metrics were extracted for all releases starting from Eclipse 3.0 to Eclipse

3.5. The Eclipse archives‖ provides the release dates:

§http://bugs.eclipse.org
¶http://eclipse.jdt.core
‖http://archive.eclipse.org/eclipse/downloads

34

2 Feature Selection and Novel Change Metrics

Table 2.8: Eclipse Data Set
Release Version Release Date
3.0 25-Jun-04
3.1 27-Jun-05
3.2 29-Jun-06
3.3 25-Jun-07
3.4 17-Jun-08
3.5 11-Jun-09

The reader should notice that the period between 2 consecutive releases from the above

table is nearly 1 year. Keeping this in mind, we have taken every 2 consecutive releases

(3.0 to 3.1, 3.1 to 3.2 and so on) and generated change metrics for the time-period.

2.3.6.1 Training Classifiers

A study of previous defect prediction research shows that the most popular classification

algorithms used in defect prediction are Naïve Bayes (NB), Decision Trees and Logistic

regression. Menzies et al. [6] used NB successfully for defect prediction using static code

attributes and concluded that it performs better than Decision Trees. Similarly, Moser

et al. [13] did a comparative analysis of the performance of NB, Logistic regression and

Decision Trees while using change metrics to predict defects. Zimmerman et al. [42] used

static code metrics for the Eclipse project and logistic regression models for classification.

For the sake of comparison, we have built prediction models using 10-fold cross-validation

method for all three classification models separately. We have also considered the NB

tree algorithm from Ron Kohavi’s work [45], which is a hybrid of the NB and Decision

Trees algorithms and supposedly has better predictive capabilities than the component

algorithms alone. As per our knowledge, this algorithm has not been used in defect

prediction models.

‖Relative Difference

35

2 Feature Selection and Novel Change Metrics

2.3.6.2 10-Fold Cross Validations

Cross-validation is a general model validation technique for measuring the predictive abi-

lity, usually expressed in terms of accuracy or F-measure of a classification model.

We have used the 10-fold cross-validation technique that works by partitioning the training

data set into 10 nearly equal subsets. Taking one of the subsets as testing/validation set,

the classifier is trained on the remaining 9 subsets and the number of True Positives (TP),

True Negatives (TN), False Positives (FP) and False Negatives (FN) are calculated. This

process is repeated by taking each of the 10 subsets as testing/validation set once. The

values for each of the 10 subsets are then combined to get the mean precision, recall and

F-measure.

Precision(P): Precision measures the fractions of instances that the classifier predicts as

belonging to a particular class actually belong to that class. It is defined as,

(
np
n
∗ TP

TP + FP

)
+
(
nn
n
∗ TN

TN + FN

)
(2.8)

where np = number of instances of positive class in the test set, nn = number of instances

of negative class in the test set, n = total number of instances in the test set.

The precision for the positive output class is:

P(pos) =
(

TP

TP + FP

)
(2.9)

and that for the negative output class is:

P(neg) =
(

TN

TN + FN

)
(2.10)

So the final precision of the classification is a weighted average of the precision for the

individual output classes.

Recall(R): Recall measures the fractions of instances that actually belong to a class are

36

2 Feature Selection and Novel Change Metrics

predicted by the classifier as belonging to that class. It is defined as,

(
np
n
∗ TP

TP + FN

)
+
(
nn
n
∗ TN

TN + FP

)
(2.11)

The recall for the positive output class is:

R(pos) = TP

TP + FN
(2.12)

The recall for the negative output class is:

R(neg) = TN

TN + FP
(2.13)

F-measure(F): F-measure combines Precision and Recall into a single value while as-

signing different weights to each. In the most general sense, F-measure is given as,

F (α) = 1
α 1
P + (1− α) 1

R

(2.14)

where P = precision R = recall α = factor that determines the weights assigned to P and

R; 0 ≤ α ≤ 1 When α = 0.5, F-measure is just the harmonic mean of P and R.

F = 2PR
P +R

(2.15)

If α > 0.5, the F-measure is precision-oriented and when α < 0.5, the F-measure is recall-

oriented. Keeping in accordance with Precision and Recall calculations, we calculate

F-measure separately for each output classes.

F(pos) = 1
α 1
P(pos)

+ (1− α) 1
R(pos)

(2.16)

and

F(neg) = 1
α 1
P(neg)

+ (1− α) 1
R(neg)

(2.17)

37

2 Feature Selection and Novel Change Metrics

The final F-measure calculated for the classification is a weighted average of the two:

np
n
∗ F(pos) + nn

n
∗ F(neg) (2.18)

We have done several experiments with α taking different values but the F-measure values

revolve around the same value as that of F-measure with α as 0.5. Hence we conducted

all our experiments with α as 0.5.

Table 2.9: Moser’s (Recall) Results
Algorithms

Metrics NB DT LR DT with CSA
Change Metrics 24% 60% 28% 80%
Source Code Metrics 40% 38% 27% 65%
Change + Code Metrics 36% 58% 38% 74%

2.3.7 Results and Discussion

As explained in Section 2.3.5, we obtained all code change metrics for the timeline between

two consecutive releases. We have built defect models using 10-fold cross validation on

the data acquired between different releases. We calculated the precision, recall and F-

Measure according to the definitions given in section 2.3.6.2. We have used Gaussian

NB, CART Decision Tree, Logistic Regression and NB Tree algorithms to build defect

prediction models for all considered versions of Eclipse JDT project. NB Tree algorithm

has not been explored for defect prediction models though many researchers have used first

three algorithms frequently. The results of different algorithms with our change metrics set

for versions 3.0 through version 3.5 are depicted in Table 2.10. The consistency of results

across five release by all four algorithms shows that our metrics set consisting of novel

Table 2.10: Bug Prediction Results with change metrics on five Eclipse JDT Releases
Algorithms

Gaussian Naïve Bayes CART Decision Tree Logistic Regression Naïve Bayes Tree
P R F P R F P R F P R F

Eclipse 3.0 - 3.1 73.31 68.448 66.074 71.019 71.034 71.023 73.3 73.3 73.2 76.4 76.4 76.3
Eclipse 3.1 - 3.2 77.445 78.168 76.788 70.621 71.016 70.8 76.3 77.2 75.7 75.4 76.4 75
Eclipse 3.2 - 3.3 72.726 76.149 73.387 70.105 70.678 70.38 73.2 77.2 f71.9 74.6 77.9 73.6
Eclipse 3.3 - 3.4 73.532 74.1 71.001 70.466 70.863 70.641 72.5 73.7 71.8 75.3 76.1 75.3
Eclipse 3.4 - 3.5 72.132 74.177 72.448 70.461 69.873 70.146 71.2 73.9 70.8 73.4 75.4 72.9

Average 73.829 74.2084 71.94 70.5344 70.6928 70.598 73.3 75.06 72.68 75 76.4 74.62
S D 2.0934 3.62765 3.9098 0.33045 0.48014 0.3446 1.875 1.9655 1.8913 1.11 0.91 1.363

38

2 Feature Selection and Novel Change Metrics

metrics like Entropy, MPC and other prominent metrics is one of the ideal set to build

defect prediction models. The recall average of 76.44% is competitive in contemporary

defect predictions models. NB Tree algorithm is better than all other three algorithms

individually for each release. The precision, recall, F-measure averages of NB Tree are

75.02, 76.44, 74.62 and they are better than all other three algorithms. The standard

deviation is around 1 and hence, we can say that results are very consistent across the

releases. Hence, we recommend this algorithm to be used more often in tandem with other

algorithms for all comparison studies.

Nagappan et al., claim recall of 92% on windows vista using change burst metrics [11]. It

is worthwhile to note that these predictions differ from our predictions as described below:

(1) The granularity for their prediction is binaries rather than file. A binary may contain

on an average of 40 files and if a binary is predicted to be buggy then all files in it are to

be reviewed / acted upon. If granularity is file level as in our case then the only predicted

files need to be reviewed and this is much more cost effective than earlier model. The

defect prediction models with granularity such as binary or package level may have good

recall, precision values but they may not be desirable with respect to cost effectiveness.

(2) Windows Vista is developed under controlled environment where in processes are very

much streamlined and are adhered to the core by all Microsoft developers. But whereas

Eclipse being an open source project, the change process may be not as controlled as

it is in Microsoft projects and also there are fundamental differences between the two

developments / change processes.

Nagappan et al. conducted experiments on Eclipse 2.0 with same set of metrics and their

results (Recall - 51% and Precision - 67%) are in no way comparable to the experiments

they conducted on Windows Vista (Recall - 92% and Precision - 91%) [11]. Hence we

believe that our metrics set is worth considering and our results on Eclipse Releases are

competitive. For us to compare the effectiveness of our model with other models, we have

experimented on Eclipse JDT Release 2.0 to Release 2.1 as well. We compare all the models

by making use of the measure, Recall, as it is common across all works and significant

measure for our research problem. Moser et al. performed experiments on Eclipse 2.1

Release with 31 source code metrics and 18 change metrics. They have built three models

with - (1) source code metrics alone (2) change metrics alone (3) both source code and

39

2 Feature Selection and Novel Change Metrics

change metrics. They have used NB Classifier, Logistics Regression (LR), Decision Tree

(DT) and also improvised their results using cost-sensitive analysis on Decision Tree (CT

with CSA) [13] to build defect prediction models. Their results are depicted in Table

2.9.

Schroter et al. considered the impact of importing packages / classes in files on defect

prediction and they performed experiments on Eclipse 2.1 using Support Vector Machines

(SVM) [46]. Two defect prediction models have been built using SVM - the imported

classes inside a file as feature in the first model and imported packages inside a file as

feature in the second model. Recall of 16.9% is observed in first model and 9.69% is

observed in second model.

Zimmerman et al. studied the impact of forty odd source code complexity metrics on defect

prediction using Eclipse 2.1 version data. Recall of 16% is observed when prediction model

is built using Eclipse 2.1 version data and tested again on the same data [42]. We have

gathered all our change metrics in the timeline between Eclipse JDT Release 2.0 and

Release 2.1 and post release bug data for six months after the release date of Release 2.1.

We have experimented with all four algorithms, Gaussian NB, CART Decision Tree (DT),

Logistic Regression (LR) and NB Tree. The results are displayed in Table 2.11.

Table 2.11: Recall of Eclipse JDT 2.1 Release
Algorithms

Metrics NB DT LR NBT
12 Code,Change Metrics
(mix of novel and existing
metrics) as proposed in this work

83.7 85 90.4 86.8

Our change metrics lead to good results with the Recall of 90.4% using LR and the other

three algorithms have performed exceedingly well as compared to any other model.

2.3.8 Threats to Validity

For comparing the effectiveness of our model with other models we have conducted expe-

riments on Eclipse JDT 2.1 Release where as other prediction models can be built using

40

2 Feature Selection and Novel Change Metrics

different or all Packages of Eclipse 2.1 Release. Hence, results of experiments conducted

on all packages of Eclipse 2.1 Release might not be the same. Though we confirmed the

correctness of our datasets with repeated experiments there could still be some issues. For

example, if developer made many overlapping edits to a file in single check-out/check-in

then we could have wrongly captured related metrics. There are chances that we could

have missed some bug data due to lack of proper documentation which is quite natural in

open source platforms. Another limitation of our work is, we have done the experiments

only in different versions of Eclipse project and not with any other project. Hence the

similar metrics for other projects may not yield same consistent results.

2.3.9 Contributions

A definitive procedure has been put forth to get popular code change metrics for any

project that has been hosted on Github. We have proposed couple of new change me-

trics namely, Entropy of Code Change and Mean Period of Change, to figure out whether

commits are uniformly distributed over the timeline between the two consecutive releases.

The defect prediction models are built with these novel metrics along with some existing

prominent change metrics by making use of four different algorithms. Models yield consis-

tent and competent results for five consecutive releases (Release 3.0 through Release 3.5)

of Eclipse JDT project. NB Tree Algorithm, which has not been explored in this problem

domain found to be the better performing algorithm. We compared our results on Eclipse

2.1 Release with the results of other existing defect prediction models on the same version

and discovered that our model is doing exceedingly well.

41

3 Defect Prediction Models

3.1 Introduction

With rapidly growing size and complexity of software systems, the development and main-

tenance of huge code bases have become extremely difficult and time consuming task. A

huge amount of resources are spent in testing and review processes of the software to ensure

defect free releases. Researchers are trying to establish methods to identify the software

source files that are more vulnerable to defects. It helps verification and validation team

to allocate or manage their critical resources well. Hence the research on defect prediction

models has become significant. Since last decade, there has been a lot of emphasis on buil-

ding defect prediction models by implementing machine learning algorithms on historical

data. We study different machine learning approaches to build defect prediction models

and evaluate their effectiveness.

A comparative study is carried out on four source code metric sets, namely, CK, OO, CK

+ OO and LOC. The experiments are conducted on five open source projects, namely,

Eclipse JDT, Eclipse PDE, Lucene, Mylyn and Equinox. The salient features of this work

is outlined below.

We develop models using Naïve Bayes Classifier for all four sets of data - CK, OO, CK +

OO and LOC. It is observed that there is not much difference between the recall of all these

four models. For model with CK + OO metrics, the recall is found to be 0.82 whereas the

percentage of bugs caught is 46.37% by performing quality assurance activities on 10.78%

of files. We would like to make a significant observation from these experiments that the

42

3 Defect Prediction Models

recall appears to be very high in all scenarios but the actual number of bugs found is

not encouraging. Moreover, if project team would like to catch more bugs, say 80% of

total bugs, by spending more money on associated quality assurance activities then these

models and evaluation methodologies will limit them to do so.

Khoshgoftaar et al. proposed software quality model, module-order model that is generally

used to predict the rank-order of modules or files according to a quality factor [47]. We

take this quality factor to be number of defects in our case study. We apply stepwise

multiple linear regressions and order files as per their predicted value of bugs. We build

module-order models using four source code metric sets namely CK, OO, CK + OO and

LOC for each of the five open source projects and thus project team has the flexibility

of picking up the right model depending on the cost borne by the project team towards

quality assurance activities.

In Section 3.2, we build Bayesian Network structures for defect prediction using diffe-

rent classes of algorithms namely score-based, constraint-based and hybrid algorithms.

We propose an approach to augment these Bayesian Network structures with class node.

Bayesian Network classifiers along with Random Forests, Logistic Regression and Naïve

Bayes classifiers are then evaluated using AUC and H-measure.

In Section 3.3, we study defect prediction models built using three cost-sensitive boosting

Neural Network methods, namely, CSBNN-TM, CSBNN-WU1 and CSBNN-WU2. We

have compared the performance of these cost sensitive Neural Networks with the traditi-

onal machine learning algorithms like Logistic Regression, Naïve Bayes, Random Forest,

Bayesian Network, Neural Networks, k-Nearest Neighbors and Decision Tree. Performance

of the resultant models is evaluated using cost centric measure - Normalized Expected Cost

of Misclassification (NECM).

In Section 3.4, we propose testing and code review based effort-aware defect prediction

models. Idea is to promote effort-aware models which consider the effort required to

perform the specific quality assurance activity. We empirically prove the supremacy of the

proposed models over the existing effort-aware models.

43

3 Defect Prediction Models

3.2 Defect Prediction Using Augmented Bayesian Networks

Despite the assumption of conditional independence between the features, Naïve Bayes

classifier is found to be one of the consistently better performing techniques in defect

prediction [14]. It motivated researchers to check whether prediction accuracies can be

improved if conditional independence assumption is relaxed. This is also supported by the

intuition that all the features/attributes used for defect prediction are not conditionally

independent. For example, lines of code (LOC) and number of operands of a source file

can’t be taken as independent. Different Bayesian networks have been studied by Dejaegar

et al. [48] and they have shown that performance of some of the classifiers is as good as

Naïve Bayes and Random Forests classifiers. They have constructed Bayesian Network

structure by implementing model learning algorithms like Tree Augmented Naïve Bayes

(TAN), Forest Augmented Naïve Bayes (FAN), Selective Tree Augmented Naïve Bayes

(STAN), Selective Tree Augmented Naïve Bayes with Discarding (STAND), Selected Fo-

rest Augmented Naïve Bayes (SFAN), Selected Forest Augmented Naïve Bayes Discarding

(SFAND), K2 and MMHC. They have found out that the performance of TAN is signi-

ficantly better than MMHC, STAN-SB though there is no significant difference between

TAN and others variants of FAN, STAND, SFAN, SFAND and STAN. However Random

Forests is found to be better than TAN though the difference is not statistically significant.

Hence in our study, we have considered TAN as one of the algorithms amongst all other

algorithm for building Bayesian Networks.

There are three classes of algorithms namely score-based, constraint-based and hybrid

algorithms to build Bayesian Networks. We have built Bayesian networks using two algo-

rithms from each of three classes. We have built Bayesian Networks structures using Hill

Climbing, TABU from score-based algorithms; TAN, Grow-Shrink from constraint-based

algorithms and MMHC, RSMAX2 from Hybrid class of algorithms. We have compared

performance of the respective Bayesian Network classifiers with popular classifiers like

Random Forest, Naïve Bayes and Logistic Regression.

We have conducted experiments on 15 different datasets. The results of these classifiers

are presented in terms of both AUC and H-measures.

44

3 Defect Prediction Models

3.2.1 Related Work

Studies in defect prediction is either focused on establishing software metric(s) that ef-

fectively captures defect characteristics or algorithm(s) which learns from past data and

improves prediction accuracy consistently. As a consequence, various defect prediction ap-

proaches and their stability in performance on numerous datasets have been reported and

Bayesian Network has always been one of the best performing classification method [5].

Wang et al. [49] has shown that Multi-variant Gauss Naïve Bayes version of Naïve Bayes

classifiers performs better than Naïve Bayes in defect prediction. Fenton et al. used Bay-

esian Networks to predict software defects and reliability. According to their study, as

BN improves the prediction accuracy significantly, if organization collects metrics data,

there is a compelling argument for them in using BNs for defect prediction [50]. Okutan

and Yıldız used Bayesian networks to determine the probabilistic influential relationships

among software metrics and defect proneness [51]. Despite it’s simple assumption of condi-

tional independence, Naïve Bayes is found to be the better performing technique. General

Bayesian Networks haven’t been explored much in the field of Software defect Prediction.

This motivated us to consider a few other ways of constructing Bayesian Networks for

Software fault prediction.

Dejaeger et al. [48] have studied a few other Naïve Bayes classifiers including TAN, vari-

ants of TAN, MMHC and K2 Algorithms. They have shown that these networks perform

better than Naïve Bayes and have compared the results to Random Forests, and conclude

that some of them perform as good as Random Forests. There are many ways to con-

struct the Bayesian network. Naïve Bayes is just one such Bayesian Networks. TAN [52]

is a constraint-based bayesian network. There are other augmented networks [53] like Se-

lective TAN (STAN), Selective TAN with Discarding (STAND), Forest Augmented Net-

work (FAN)and variants of FAN. Another version of TAN called SP-TAN [54] has been

considered by Keogh. Later Webb has shown that aggregating one-dependence estimators

have better performance than SP-TAN [55]. Sahami [56] shows how to build a limited

dependence Bayesian network. Jing et al. introduced boosted bayesian network classifier,

a framework which combines both discriminative data-weighting and generative training

of intermediate models, which require less training time but gives better or comparable

results in comparison with other models [57]. Cheng and Greiner have shown that augmen-

45

3 Defect Prediction Models

ted general Bayesian Networks constructed on constraint-based methods perform better

than Naïve Bayes classifier [58].

3.2.2 Background

Bayesian Networks can be defined as a tuple <S,θ>, where S represents network structure

with the nodes and their directed edges. A directed edge from one node (node A) to

another node (node B) implies that node B is dependent on node A. Thus, the structure

S represents dependence of nodes in the Bayesian Network. θ represents conditional Pro-

bability Tables of all the nodes given their direct parents in the graph. Building Bayesian

Network classifiers involves 3 main steps - 1)Learning the Bayesian Network structure,

2)Estimating the parameters and 3)Using the Bayesian Network structure, find the pro-

bability of the class (Yes/No) given the testing instance, and classifying the instance

accordingly. There are three broad categories of algorithms for learning the structure of

Bayesian Networks. We will not be discussing these algorithms in detail but attempt to

give an overview of these algorithms. We recommend interested readers to refer to the

original papers of these algorithms.

3.2.2.1 Score-based Algorithms

These algorithms learn the structure of a Bayesian networks by maximizing/minimizing

a certain score metric and consider the structure learning problem as a model selection

problem, which means they select the best hypothesis from a competing set of hypothesis.

We have used Hill Climbing and TABU search strategies [59] [60] [61] in our study.

• Hill Climbing Algorithm

Hill Climbing search is a greedy search algorithm. Search will start from an empty

network and if there is a background knowledge about dependency of features, it

can be used to seed the initial network. Then it starts with estimating parameters

46

3 Defect Prediction Models

of the local pdfs, given a Bayesian network structure. Typically this is a maximum-

likelihood estimation of the probability entries from the data set. Algorithm at-

tempts every possible single-edge addition, removal, or reversal, which increases

score of the network, and iterates. The process stops when there is no single-edge

change that increases the score. There is no guarantee that this algorithm will settle

at a global maximum, note that, Hill Climbing algorithm can get struck in local mi-

nima [61]. We have built three Hill Climbing classifiers, each with one of the scores

- K2 [62], BDE [63] and AIC.

• TABU Algorithm

TABU search is a slight modification to Hill Climbing search. As Hill Climbing search

can get struck in a local minima, TABU search addresses this issue by maintaining a

TABU list (list of previously visited states). TABU search will not allow any addition

or removal of the edge which makes the network go to the state that is already in

TABU list. It should be noted that, in the package we have used (bnlearn in R),

the default setting for the TABU list size is 10. That means TABU list keeps track

of the 10 previously visited states. We have built three TABU classifiers, each with

one of the scores - K2 [62], BDE [63] and AIC.

3.2.2.2 Constraint-based Algorithms

Constraint based algorithms learn the structure of Bayesian Network by performing con-

ditional independence (statistical) tests between the attributes.

• TAN Algorithm

Tree Augmented Network [52] is based on Chow Liu algorithm. Let X denote all

the attributes and c denote the classification attribute. A complete graph is learnt

between all attributes in X-{c} using Mutual Independence tests where an edge

represents dependency between the two connected nodes. A maximum spanning

tree is built from this complete graph, and directions of the tree are set as per

47

3 Defect Prediction Models

Chow-Liu algorithm so that every node has exactly one parent. This spanning tree

is augmented with Naïve Bayes classifier and with classification node as root node.

• Grow-Shrink Algorithm

Recovery of local structure around each node is greatly facilitated by knowledge of

the node’s Markov blankets. GS (grow-shrink) algorithm, recovers Markov blanket

of X based on pairwise independence tests. The process consists of two phases,

namely, a growing phase and a shrinking phase. It starts from an empty set S, and

the growing phase adds variables to S as long as they are dependent with X, given

the current contents of S. In this process however, there might be some variables

that were added to S, really outside the blanket. In shrinking phase, such variables

are identified and removed. [61].

3.2.2.3 Hybrid Algorithms

Hybrid algorithms make use of both constraint-based approaches and score-based appro-

aches. We have considered two Hybrid algorithms.

• MMHC Algorithm

Max-Min Hill Climbing algorithm (MMHC) is for learning the structure of a Bayesian

network. The algorithm first identifies the parents and children set of each variable

using MMPC algorithm, and then performs a greedy Hill Climbing search in the

space of Bayesian networks. The search begins with an empty graph. The edge

addition, removal, or direction reversal that leads to maximum increase in score

is taken and the search will continue in a similar fashion recursively. The major

difference from standard greedy search is that the search is constrained to only

consider adding an edge if it was discovered by MMPC in the first phase [64].

• RSMAX2 Algorithm

48

3 Defect Prediction Models

RSMAX2 [65] is a generalized version of MMHC. MMHC is restricted to MMPC for

constraint-based learning and Hill Climbing for score-based learning. On the other

hand, RSMAX2 is more general in the sense that we can input both constraint-

based method and score-based method. Note that, by default, Grow-Shrink is the

constraint-based method and Hill Climb is the default score-based method used in

RSMAX2. bnlearn package in R implements BIC score as the default score for

RSMAX2 algorithm. All these structure learning algorithms are available in bnlearn

in R [65].

3.2.2.4 Augmentation with class node

Let X denote set of attributes of the dataset and c denote the classification node; we define

augmentation with class node as follows: Let G be the Bayesian Network structure learnt

from the dataset D having attributes X and classification node c by implementing any

of the algorithms mentioned above; there need not be an edge between class node and

each node in X. We augment Bayesian Network structure G with class node c by adding

edges between class node and all other nodes in X regardless of the structure G having

edges between c and attributes in X. A simple Bayesian Network is illustrated in Figure

3.2a. As it does not have an arc from c to every other node, it’s not augmented. Bayesian

Network in Figure 3.2b is augmented as it has an arc from c to every other node. For our

experiments we have augmented Bayesian Network structures learnt using HC, TABU,

GS, MMHC and RSMAX2.

3.2.3 Experimental Setup

The data used in this study comprises of the datasets in NASA MDP repository [66]

and these include JM1, JM2, KC1, KC2, MW1, PC1, PC2, PC3, PC4, MC1 and MC2

projects. We have used metrics of these projects to build defect prediction models. We

have also considered Eclipse 2.0, Eclipse 2.1 and Eclipse 3.0 projects [42]. The metrics

considered for building defect prediction models are FOUT avg, MLOC avg, NBD avg,

PAR avg, VG avg, NOF avg, NOM avg, NSF avg, NSM avg, ACD, NOI, NOT, TLOC

49

3 Defect Prediction Models

Figure 3.1: Augmentation with Naïve Bayes

(a) Bayesian Network (b) Augmented Bayesian Net-
work

and post release bugs. Each Dataset is discretized using the method described by Fayyad

and Irani [67] followed by randomizing the dataset (Shuffling the dataset row wise). It is

then split into 2/3rd Training set and 1/3rd Test set. Each classifier is built on training

set and has been tested on test set. First the structure is learned, and then Bayesian

structures are propagated for inference. This process is repeated 10 times for each dataset

and for each classifier. i.e each classifier is evaluated on a single dataset 10 times and the

results presented (AUC and H-Measure) are average of the 10 runs. Logistic regression

and Random Forests have been run on the continuous data as opposed to other Bayesian

classifiers where Bayesian classifiers have been run on discretized data.

AUC is one of the most used classifier evaluation measures with values ranging from 0 to

1, 1 being the best classifier and anything less than 0.5 is worse than a random classifier.

If AUC value is 0.5, the classifier is just as good as random guessing.

Hand developed a performance measure based on expected minimum misclassification loss,

whereby misclassification costs are not exactly known but follow a probability distribution

[68]. Assume that misclassifying a faulty file or class as not fault-prone has misclassification

cost c0, whereas a fault-free file or class classified as fault-prone costs c1. H-Measure can

be calculated for classifier by assuming that the ratio of these two costs follows beta

distribution with parameters α and β. We refer to the original paper by Hand [68] for

detailed discussion of this measure. H-Measure is a normalized measure based on expected

minimum misclassification loss, ranging from zero for a random classifier to one for a

50

3 Defect Prediction Models

perfect classifier. Hand and Anagnostopoulos [69] suggested better parameter values for

beta distribution as (2,2) when the misclassification costs of the domain are not known

in prior. We follow the recommendation by Hand Anagnostopoulos for our problem as

misclassification costs for defect prediction models are not known.

In our study, we have computed H-Measure plots at different cost ratios ranging from

1/500 to 500 (in intervals of 20. That is 1/500, 1/480....1, 20,...500). We have made use

of H-Measure available in hmeasure package in R.

We have computed the results in terms of AUC and H-Measure. The classifiers are then

subjected to Friedman Test to check whether the null hypothesis is rejected. Null hypot-

hesis for this test is that all classifiers perform alike. If the null hypothesis is rejected, as

Dems̈ar suggests, we apply Nemenyi post-hoc test to find out the best performing classi-

fiers [70]. The performance of two classifiers is significantly different if the corresponding

average ranks differ at least by the critical difference. Nemenyi plots at 5% significance

level have been plotted for both AUC and H-Measure where

CD5% = q5%,k=15 ∗
√
n ∗ (n+ 1)/(12 ∗ k) (3.1)

where n represents number of classifiers and k, the number of datasets. In this study

n and k are 13 and 15 respectively. Figure 3.4 shows evaluation of classifiers based on

H-Measures at different cost ratio distributions. Results presented in Figure 3.4 are also

presented after the datasets are discretized and averaging the results after running each

classifier on each dataset for 10 times. Logistic regression and random forests have been

learned on continuous data as in case of AUC and H-Measure.

3.2.4 Results and Discussion

The results obtained from various Bayesian Network classifiers and the standard classi-

fication algorithms like Random Forests and Logistic Regression are presented both in

terms of AUC and H-Measure. Further, all classifiers have been evaluated on H-Measure

at different cost ratio distributions as well. Figure 3.4 shows the mean rank of classifiers

51

3 Defect Prediction Models

Table 3.1: Performance of classifiers based on AUC Measure before Augmentation

Dataset JM1 KC1 MC1 MC2 PC1 PC2 PC3 PC4 E2.0 E2.1 E3.0 CM1 KC2 MW1 KC3
Naïve Bayes 0.677 0.807 0.817 0.725 0.868 0.874 0.820 0.847 0.790 0.733 0.763 0.784 0.865 0.851 0.839

TAN 0.668 0.765 0.791 0.666 0.866 0.877 0.805 0.896 0.791 0.749 0.757 0.739 0.756 0.765 0.743
HC:K2 0.670 0.792 0.803 0.563 0.839 0.828 0.799 0.884 0.781 0.736 0.761 0.713 0.837 0.725 .799
HC:BDE 0.665 0.790 0.818 0.579 0.849 0.847 0.796 0.904 0.781 0.735 0.760 0.737 0.847 0.658 .822
HC:AIC 0.672 0.791 0.821 0.573 0.837 0.839 0.808 0.894 0.785 0.738 0.766 0.719 0.840 0.581 .851
TABU:K2 0.67 0.789 0.803 0.572 0.837 0.808 0.799 0.881 0.781 0.736 0.761 0.709 0.833 0.718 .799
TABU:BDE 0.665 0.789 0.811 0.572 0.846 0.846 0.795 0.901 0.781 0.735 0.760 0.737 0.843 0.664 .816
TABU:AIC 0.672 0.791 0.811 0.575 0.837 0.839 0.805 0.894 0.784 0.738 0.766 0.717 0.837 0.589 0.811

GS 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.492 0.5 0.5 0.5 0.5 0.5 0.523 0.5
MMHC 0.583 0.477 0.791 0.5 0.755 0.5 0.795 0.896 0.781 0.735 0.760 0.547 0.563 0.461 0.583
RSMAX2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.492 0.5 0.5 0.5 0.5 0.5 0.523 0.5

Random Forests 0.696 0.836 0.843 0.712 0.864 0.814 0.826 0.944 0.822 0.749 0.778 7 0.743 0.832 0.767 0.821
Logistic Regression 0.672 0.792 0.691 0.595 0.796 0.760 0.808 0.914 0.784 0.730 0.748 0.754 0.800 0.669 0.766

at different cost ratios. We have conducted experiments with Bayesian Network classifiers

and Augmented Bayesian Network classifiers.

In Table 3.1, we have presented AUC values of different Bayesian Network classifiers. The

Grow-Shrink and RSMAX2 algorithms yield low AUC values. They are just as good as

random guessing. To know if there is a significant difference between performances of

algorithms, we have applied Friedman test and null hypothesis is strongly rejected with

a p-value < 2.2* 10−16. The rejection of null hypothesis suggests that there is significant

difference between performances of algorithms. So, we proceeded with Nemenyi post-hoc

test. The classifiers performance is shown using Nemenyi plots. Though Random Forests is

coming out as one of the best performing techniques with respect to AUC in Nemenyi Post-

hoc test, Figure 3.3a shows that classifiers, Hill Climbing with AIC Score, Hill Climbing

with BDE Score, TAN and Naïve Bayes structures perform as good as Random Forests.

In fact, Naïve Bayes has a mean rank of 3.067 and Random Forests has a mean rank of

2.53 which shows that Naïve Bayes is one of the best performing classifiers.

As MMHC, RSMAX2 and Grow-Shrink have AUC Values of 0.5, we have augmented them

with class node. We have also augmented Bayesian Network structures built using HC and

TABU algorithms. Table 3.2 shows the values after augmentation with Naïve Bayes. Sig-

nificant improvement can be seen in case of MMHC, Grow-Shrink and RSMAX2 classifiers.

Friedman test showed a strong rejection of Null Hypothesis with a p value of 2.426*10−07.

Figure 3.3b shows Nemenyi plots for Bayesian classifiers after augmentation.

52

3 Defect Prediction Models

Table 3.2: Performance of classifiers based on AUC Measure after Augmentation

Dataset JM1 KC1 MC1 MC2 PC1 PC2 PC3 PC4 E2.0 E2.1 E3.0 CM1 KC2 MW1 KC3
Naïve Bayes 0.677 0.807 0.817 0.725 0.868 0.874 0.820 0.847 0.790 0.733 0.763 0.784 0.865 0.851 0.839

TAN 0.668 0.765 0.791 0.666 0.866 0.877 0.805 0.896 0.791 0.749 0.757 0.739 0.756 0.765 0.743
HC:K2 0.653 0.776 0.849 0.757 0.888 0.869 0.765 0.896 0.783 0.728 0.723 0.710 0.797 0.596 0.714
HC:BDE 0.653 0.766 0.868 0.740 0.887 0.865 0.759 0.907 0.789 0.733 0.747 0.726 0.797 0.544 0.746
HC:AIC 0.658 0.769 0.859 0.700 0.889 0.867 0.769 0.905 0.791 0.730 0.736 0.731 0.815 0.589 0.748
TABU:K2 0.650 0.759 0.814 0.731 0.887 0.855 0.743 0.887 0.771 0.722 0.711 0.683 0.733 0.739 0.638
TABU:BDE 0.651 0.748 0.863 0.730 0.882 0.860 0.742 0.896 0.783 0.728 0.737 0.696 0.728 0.656 0.659
TABU:AIC 0.654 0.750 0.849 0.671 0.889 0.843 0.744 0.896 0.785 0.724 0.726 0.702 0.761 0.725 0.699

GS 0.671 0.801 0.820 0.740 0.882 0.885 0.795 0.854 0.786 0.737 0.762 0.784 0.853 0.783 0.854
MMHC 0.652 0.750 0.863 0.699 0.884 0.865 0.755 0.899 0.782 0.731 0.742 0.704 0.826 0.708 0.688
RSMAX2 0.671 0.803 0.822 0.740 0.884 0.886 0.791 0.855 0.786 0.739 0.762 0.785 0.853 0.785 0.855

Random Forests 0.696 0.836 0.843 0.712 0.864 0.814 0.826 0.944 0.822 0.749 0.778 0.743 0.832 0.767 0.821
Logistic Regression 0.672 0.792 0.691 0.595 0.796 0.760 0.808 0.914 0.784 0.730 0.748 0.754 0.800 0.669 0.766

Although Augmented RSMAX2 and Random Forests statistically perform as good as one

another, we can see that RSMAX2 has a lower mean rank(4.167) as against(4.2667) of

Random Forests, which shows that augmented RSMAX2 can be strongly recommended

along with Random Forests when one considers performance of classifiers based on AUC

metric. Naïve bayes, Grow-Shrink (after augmentation), TAN and Hill Climbing algo-

rithms perform as good as the best performing classifier. This shows that Augmentation

has significantly improved the predictive performance of Bayesian classifiers.

Table 3.3 shows H-Measure of Bayesian Network classifiers. Friedman test showed strong

rejection of NULL hypothesis with a p-value less than 2.2* 10−16. Grow-Shrink and

RSMAX2 have H-Measure values of 0 in some cases, confirming the fact that their AUC

values are 0.5. Figure 3.4a shows Nemenyi plot for H-Measure. Similar to AUC results,

Figure 3.2: Performance of classifiers: AUC

(a) AUC Measure before augmentation (b) AUC Measure after augmentation

53

3 Defect Prediction Models

Figure 3.3: Performance of classifiers: H-measure

(a) H-measure before augmentation (b) H-measure after augmentation

Random Forests is the best performing classifier though it is not significantly better than

Naïve Bayes and TABU structure with BDE score techniques. With H-Measure, TABU

structure with BDE score comes out as one of the best performing classifiers, which was

not a best performing classifier with respect to AUC values. In contrast, Hill Climbing

with AIC Score, Hill Climbing with BDE Score and TAN, which are among top performing

techniques with respect to AUC are not figured in top performing techniques with respect

to H-Measure.

Based on the significant improvement in AUC Measures after augmentation, we have

computed the H-Measure values of the Bayesian classifiers as well after augmentation.

Table 3.4 shows the H-Measure values after augmentation. We can see improved results

in both RSMAX2 and GrowShrink classifiers. Friedman test is rejected with a p-value of

6.14*10−12. Figure (b) shows Nemenyi plot of classifiers at 5% significance level. Similar

to our previous results Random forests appears to be best performing technique but it

is not significantly better than RSMAX2, Grow-Shrink, MMHC and Naïve Bayes. Once

again our results show that augmentation has increased predictive performance of Bayesian

classifiers.

Figure 3.4 shows the evaluation of classifiers at different cost ratio distributions. Let c1

denote the cost of misclassifying a buggy file as non buggy file and c0 denote the cost of

misclassifying a non buggy file as buggy. Let c denote the ratio of their misclassification

54

3 Defect Prediction Models

Table 3.3: Performance of classifiers based on H-Measure Beta(2,2) before Augmentation

Dataset JM1 KC1 MC1 MC2 PC1 PC2 PC3 PC4 E2.0 E2.1 E3.0 CM1 KC2 MW1 KC3
Naïve Bayes 0.135 0.313 0.387 0.263 0.442 0.658 0.294 0.421 0.286 0.209 0.241 0.258 0.489 0.474 0.491

TAN 0.092 0.182 0.111 0.297 0.22 0.033 0.189 0.395 0.191 0.123 0.157 0.103 0.332 0.283 0.202
HC:K2 0.12 0.286 0.297 0.181 0.388 0.372 0.303 0.527 0.266 0.195 0.221 0.174 0.427 0.36 0.333
HC:BDE 0.118 0.267 0.379 0.266 0.41 0.473 0.29 0.552 0.256 0.175 0.226 0.191 0.402 0.325 0.327
HC:AIC 0.116 0.286 0.405 0.181 0.367 0.382 0.303 0.526 0.278 0.186 0.237 0.191 0.459 0.306 0.351
TABU:K2 0.117 0.281 0.341 0.272 0.349 0.422 0.309 0.51 0.25 0.189 0.232 0.171 0.385 0.397 0.39
TABU:BDE 0.121 0.27 0.345 0.25 0.383 0.41 0.334 0.533 0.268 0.19 0.238 0.209 0.441 0.331 0.408
TABU:AIC 0.119 0.272 0.358 0.22 0.344 0.396 0.322 0.541 0.265 0.199 0.235 0.188 0.416 0.324 0.352

GS 0.002 0 0 0.08 0 0 0 0 0 0 0 0 0 0.068 0
MMHC 0.073 0.062 0.246 0.001 0.25 0 0.281 0.497 0.273 0.187 0.222 0.036 0.104 0.009 0.03
RSMAX2 0 0 0.014 0 0 0.078 0 0 0 0 0 0 0.047 0 0

Random Forests 0.147 0.355 0.608 0.31 0.44 0.439 0.357 0.631 0.338 0.212 0.261 0.293 0.446 0.34 0.47
Logistic Regression 0.123 0.239 0.045 0.228 0.251 0.043 0.227 0.421 0.201 0.11 0.149 0.166 0.352 0.125 0.227

Table 3.4: Performance of classifiers based on H-Measure Beta(2,2) after Augmentation

Dataset JM1 KC1 MC1 MC2 PC1 PC2 PC3 PC4 E2.0 E2.1 E3.0 CM1 KC2 MW1 KC3
Naïve Bayes 0.131 0.313 0.344 0.398 0.459 0.577 0.306 0.409 0.286 0.187 0.235 0.266 0.49 0.481 0.453

TAN 0.098 0.178 0.106 0.34 0.23 0.048 0.18 0.418 0.182 0.116 0.157 0.114 0.311 0.298 0.189
HC:K2 0.108 0.265 0.466 0.284 0.471 0.588 0.237 0.51 0.283 0.186 0.184 0.271 0.349 0.363 0.305
HC:BDE 0.107 0.247 0.466 0.299 0.455 0.564 0.225 0.508 0.301 0.196 0.21 0.226 0.325 0.34 0.304
HC:AIC 0.111 0.245 0.433 0.296 0.49 0.52 0.249 0.531 0.292 0.199 0.202 0.231 0.35 0.366 0.318
TABU:K2 0.101 0.254 0.427 0.329 0.474 0.569 0.259 0.53 0.276 0.199 0.191 0.209 0.316 0.326 0.241
TABU:BDE 0.099 0.253 0.376 0.255 0.454 0.508 0.257 0.553 0.299 0.212 0.195 0.221 0.393 0.399 0.289
TABU:AIC 0.105 0.259 0.466 0.303 0.481 0.495 0.279 0.539 0.287 0.2 0.197 0.23 0.349 0.309 0.275

GS 0.125 0.32 0.365 0.332 0.467 0.647 0.315 0.42 0.303 0.202 0.244 0.268 0.472 0.514 0.444
MMHC 0.113 0.246 0.379 0.275 0.447 0.578 0.284 0.539 0.275 0.207 0.216 0.243 0.408 0.438 0.367
RSMAX2 0.131 0.315 0.427 0.328 0.429 0.619 0.292 0.422 0.293 0.204 0.239 0.308 0.487 0.48 0.47

Random Forests 0.148 0.373 0.547 0.298 0.437 0.457 0.357 0.645 0.343 0.218 0.265 0.252 0.427 0.407 0.473
Logistic Regression 0.11 0.229 0.048 0.211 0.188 0.081 0.224 0.443 0.204 0.113 0.147 0.199 0.374 0.152 0.202

Figure 3.4: H-measure at different cost distributions

55

3 Defect Prediction Models

cost, c = c0/c1. X-axis shown in Figure 3.4 represents the misclassification ratio c. When

Cost ratio is < 1, cost of misclassifying a buggy file as non buggy file becomes more severe

than cost of misclassifying a non-buggy file as buggy file. This situation is called risk averse

situation. On the other hand, when cost ratio is > 1, cost of misclassifying a non-buggy

file as buggy file becomes more severe than misclassifying a buggy file as non-buggy file.

This situation is called delay averse situation.

In case of risk averse situation, Random Forests stand out as the best performing classifier

among all classifiers; augmented RSMAX2, Grow-Shrink and Naïve Bayes being the next

best performing techniques. Although Random Forests ranked lower than any other clas-

sifier most of the times, there are places at which other Bayesian classifiers have ranked

equal to Random forests and sometimes have ranked lower than Random Forests. At a

cost ratio distribution of .0023, classifier built using RSMAX2 has a mean rank of 3.53

against a mean rank of 3.60 of Random Forests. At a cost ratio of .0027, classifier built

on Grow-Shrink has a mean rank of 3.53 as against the mean rank of Random Forests

with 3.60 . Thus at certain cost ratios, these classifiers have a mean rank even lower than

Random Forests. From the Figure 3.4 based on Nemenyi plots, we can also infer that the

classifiers GS, RSMAX2 and Naïve Bayes perform as good as Random Forests.

It is observed that augmented structures learned using constraint-based methods (Grow-

shrink, MMHC, RSMAX2, MMHC) outperform other augmented classifiers. From Figure

3.4, we can see that classifier built using RSMAX2, Naïve Bayes always perform as good

as Random Forests in case of Risk Averse situations. In case of delay averse scenario, we

show that the classifiers built using RSMAX2, Grow-Shrink and Naïve Bayes structures

once again perform as good as Random Forests and this is shown using Demsar framework.

And thus we show that RSMAX2, Grow-Shrink classifiers perform as good as Random

Forests classifier based on our experiments with different evaluation measures like AUC

and H-Measure.

56

3 Defect Prediction Models

3.2.5 Contributions

We have attempted to relax conditional independence assumption amongst features and

build Bayesian Network structures using ten variants of six algorithms namely TAN, HC,

TABU, Grow-Shrink, MMHC and RSMAX2. And the corresponding Bayesain Network

classifiers are compared with best performing traditional classifiers, Random Forest, Lo-

gistic Regression and Naïve Bayes classifiers. The evaluation methods used are AUC and

H-Measure. We have conducted experiments on 15 datasets and 13 classifiers. Random

Forest classifier is found significantly better than Bayesian Network classifiers when eva-

luated using AUC or H-Measure. However, by our proposed approach on augmenting

Bayesian Network structure, it is observed that RSMAX2 and Grow-Shrink are consis-

tently better, and there is no significant difference between these classifiers and Random

Forest. We have compared classifiers using different cost ratio distributions leading to Risk

Averse and Delay Averse scenarios. In both the scenarios, RSMAX2 and Grow-Shrink clas-

sifiers are performing very close to Random Forests and are found better than Naïve Bayes

classifier.

3.3 Cost Sensitive Neural Networks for Defect Prediction

To carry out software defect prediction, various software metrics defined and extracted

from source code repositories. There are some extensive studies to figure out efficient

classification algorithms and the best possible feature subset to build effective defect

prediction [6] [5] [71] [72]. However, the aspect of misclassification costs has not been

considered while developing prediction models and comparing their performances.

There are two types of misclassification errors. Type I error is misclassifying defect free

file to be defect prone file. Here defect prone file is meant to be the file which is predicted

to be defective by the prediction model. And Type II error is misclassifying defective file

to be non-defect prone file.

The defect prone file will undergo quality assurance activities like expert code review,

57

3 Defect Prediction Models

rigorous testing etc. In general, cost of Type I error is the amount spent by project team

towards quality assurance activities of the defect prone file, and the cost of Type II error

is effort spent by project team to fix the defect that has been uncovered in post-release

phase. As per study [73], the cost of Type II error is much more as compared to Type I

error. Hence it makes sense to build cost sensitive defect prediction models.

In the recent past, quite a few studies have dealt with cost sensitive learning of software

defect prediction models [74] [13] [75] [76] [77] [78] [79]. However, most of them compare

the performances of the software defect prediction models using the cost sensitive appro-

aches proposed by them. And very few compare the performance of their cost sensitive

defect prediction models with traditional machine learning approaches [13]. Zheng et al.

performed comparative study amongst cost sensitive defect prediction models proposed

by them but not with the cost sensitive software defect prediction models proposed in

previous studies [79]. As there is no comprehensive comparative study of cost sensitive

defect prediction models, we attempt to conduct the comparative study in this work.

We have considered Logistic Regression, Naïve Bayes and J48 Decision Tree [13], Cost

Sensitive Boosting of Neural Networks using Threshold Moving(CSBNN-TM), Cost Sen-

sitive Boosting of Neural Networks with Weight Updation-I(CSBNNWU1), Cost Sensi-

tive Boosting of Neural Networks with Weight Updation-II(CSBNN-WU2) [79] and four

other popular machine learning classifiers, namely, Random Forest, Bayesian Network,

K-Nearest Neighbors and Neural Networks. Excepting k-NN, most of the classifiers have

shown to give considerably good performance [32] [80] [81] [82] [83]. In our study, excep-

ting CSBNN-TM, CSBNN-WU1 and CSBNN-WU2, all the other classifiers are made cost

sensitive using the approach suggested by Moser et al. [13].

Majority of the previous studies used performance measures like Accuracy, Recall, AUC

and False-Positive Rate to compare the models built using various learning algorithms.

Amongst several defect prediction models, the model with minimum misclassification cost

is preferred, and hence we use Normalized Expected Cost of Misclassification (NECM) [15]

as the performance measure in our comparative study.

58

3 Defect Prediction Models

3.3.1 Related Work

Software defect prediction is largely seen as a classification problem. Considerable amount

of work has been done to identify classifiers and metrics which predict software defects

accurately. Random Forest is considered to be one of the best classifier for defect pre-

diction. It is consistently accurate and also efficient in large datasets. Guo et al. reports

that defect detection rate is up to 87% when the model is built using Random Forest met-

hod [32]. Gyimothy et el. analyzed object-oriented metrics and their relation with fault-

proneness. They have observed that CBO(Coupling Between Object classes) is the best

metric in predicting the fault-proneness of classes [84]. Menzies et al. recommended Naïve

Bayes classifier for building defect prediction model. They report 71% defect detection

rate and 25% false alarm rate [6]. Few other studies used Tree based methods [85] [86] [32],

J48 [87], Support Vector Machines (SVM) [88] and Fuzzy classification [89] to address this

problem.

A major concern related to software defect prediction is the class imbalance problem.

A study by Boehm [90] has shown that approximately 80% of the software defects are

present in 20% of the source files. Dick et al. addressed class imbalance problem in two

levels, namely, data level and algorithm level approaches. At data level they handled it by

implementing oversampling, under-sampling and also by combining both the approaches.

Oversampling, increases the examples constituting the minority class and under-sampling,

reduces the number of examples constituting the majority class to obtain a more balanced

dataset [91] [92]. At algorithm level, class imbalance problem is addressed by implementing

cost-sensitive learning algorithms [75] [74].

Moser et al. have compared three machine learning algorithms, J48 Decision Tree, Naïve

Bayes and Logistic Regression with and without taking cost sensitive analysis into consi-

deration [13]. The study was carried out on the Eclipse datasets provided by Zimmerman

et al. [42]. The cost sensitive analysis gave > 75% accuracy, > 80% recall and < 30%

false positive rate. It outperformed the performance of classifiers without cost sensitive

analysis. The study also observes that process metrics are more efficient defect predictors,

and J48 Decision reported as the best performing classifier compared to Naïve Bayes and

Logistic regression. Studies have also shown that due to a non-linear and complicated

59

3 Defect Prediction Models

relationship between the source code metrics and defects, Neural Networks outperform

the traditional machine learning algorithms [82].

To solve the imbalanced data problem several cost-sensitive boosting algorithms have also

been proposed by combining the cost factors in the boosting procedure [76] [77] [78]. Zhou

and Liu have shown that threshold-moving is a good choice to train cost sensitive Neural

Networks amongst over-sampling, under-sampling, and threshold-moving. Threshold mo-

ving moves the threshold such that higher cost examples are harder to be misclassified [76].

Zheng [79] has taken two different approaches to incorporate cost sensitive analysis using

AdaBoost with Neural Networks. To make AdaBoost cost sensitive, 1) Apply threshold-

moving at the last stage of AdaBoost algorithm (CSBNN-TM). 2) Include cost matrix

into the weight updating process [78]. He has compared the algorithms performance on

the basis of misclassification rate, Type I error, Type II error, and NECM(Normalized

Expected Cost Minimization). The results of his study shows that Cost-sensitive boosting

Neural Networks with threshold-moving results in lower misclassification cost.

Our work focuses on a comparative study of the three classifiers proposed by Zheng [79]

namely, CSBNN-TM, CSBNN-WU1 and CSBNN-WU2 with the traditional machine lear-

ning algorithms which are reported as top performing classifiers in defect prediction. For

the traditional machine learning algorithms, cost-sensitivity is included as suggested by

Moser et al. [13]. we compare Cost-sensitive boosting Neural Networks with other algo-

rithms using NECM to determine whether CSBNN-TM still outperforms other traditional

machine learning algorithms used in defect prediction.

3.3.2 Metrics and Datasets

We have conducted experiments on software defect data belonging to 22 open source

software systems. It is made sure that these software systems are diverse in terms of their

programming languages, technologies and development environments. The metrics used

for defect prediction and the details of the data are listed in Table 3.5.

We have obtained the datasets from tera-PROMISE repository. The first 6 datasets are

60

3 Defect Prediction Models

Table 3.5: Summary of Datasets
S.No Project Size pndf pdf Language Metrics
1 Ant-1.7 745 0.78 0.22 JAVA CK-OO
2 Poi -3.0 442 0.63 0.37 JAVA CK-OO
3 Camel-1.6 965 0.81 0.19 JAVA CK-OO
4 Xalan-2.6 885 0.54 0.46 JAVA CK-OO
5 tomcat 858 0.91 0.09 JAVA CK-OO
6 Prop-6 660 0.9 0.1 JAVA CK-OO
7 EclipsePDEUI 1497 0.86 0.14 JAVA Change, CK-OO and Static Code
8 EclipseJDTCore 997 0.79 0.21 JAVA Change, CK-OO and Static Code
9 Mylyn 1862 0.87 0.13 JAVA Change, CK-OO and Static Code
10 Lucene 691 0.91 0.09 JAVA Change, CK-OO and Static Code
11 KC1 2109 0.85 0.15 C++ McCabe and Halstead
12 KC2 522 0.8 0.2 C++ McCabe and Halstead
13 KC3 194 0.82 0.18 JAVA McCabe and Halstead
14 CM1 498 0.9 0.1 C McCabe and Halstead
15 PC1 705 0.91 0.09 C McCabe and Halstead
16 PC2 745 0.98 0.02 C McCabe and Halstead
17 PC3 1077 0.88 0.12 C McCabe and Halstead
18 PC4 1458 0.88 0.12 C McCabe and Halstead
19 JM1 7782 0.79 0.21 C McCabe and Halstead
20 Eclipse-2.0 6729 0.85 0.15 JAVA Complexity
21 Eclipse-2.1 7888 0.89 0.11 JAVA Complexity
22 Eclipse-3.0 10592 0.85 0.15 JAVA Complexity

taken from Marian Jureckzo’s CK and OO metrics set and this dataset consists of 21 me-

trics (wmc, dit, noc, cbo, rfc, lcom, ca, ce, npm, lcom3, loc, dam, moa, mfa, cam, ic, cbm,

amc, max cc, avg cc and bug) [93] [8]. The next 4 datasets(7-10) belong to the Eclipse

project and consist of 37 change, CK-OO and static code metrics (Entropy, WEntropy,

LinEntropy, LogEntropy, ExpEntropy, numberOfVersions, numberOfFixes, numberOfRe-

factorings, numberOfAuthors, linesAdded, maxLinesAdded, avgLinesAdded, linesRemo-

ved, maxLinesRemoved, avgLinesRemoved, codeChurn, maxCodeChurn, avgCodeChurn,

age, weightedAge cbo, dit, fanIn, fanOut, lcom, noc, numberOfAttributes numberOf-

AttributesInherited numberOfLinesOfCode, numberOfMethods numberOfMethodsInher-

ited, numberOfPrivateAttributes, numberOfPrivateMethods, numberOfPublicAttributes,

numberOfPublicMethods, rfc, wmc and bugs). We have taken 9 datasets (11-19) from the

mission critical projects of NASA which is part of NASA Metrics Program. They consist

of 21 McCabe [9] and Halstead [10] metrics. These metrics mainly represent the complex-

ity of the software. We request the reader to refer [94] for the details of NASA datasets.

The last 3 datasets(20-22) that we have considered is published by Zimmerman et al. [42].

Though it consists of 198 features, we made use of only 31 complexity metrics (ACD,

FOUT avg, FOUT max, FOUT sum, MLOC avg, MLOC max, MLOC sum, NBD avg,

61

3 Defect Prediction Models

NBD max, NBD sum, NOF avg, NOF max, NOF sum, NOI, NOM avg, NOM max, NOM

sum, NOT, NSF avg, NSF max, NSF sum, NSM avg, NSM max, NSM sum, PAR avg,

PAR max, PAR sum, TLOC, VG avg, VG max, VG sum and bugs) for our study. The

pndf and pdf columns in the table indicate the percentage of non-defective and defective

modules in each dataset respectively.

3.3.3 Experimental Setup

AdaBoost is an adaptive boosting algorithm first introduced in 1995 by Freund [95], and

is the most widely used boosting algorithm. It sequentially trains the individual base

classifiers, changing the weights of each example in each training round such that a cor-

rectly classified example has its weight decreased while incorrectly classified example has

its weight increased. It then combines the base classifiers to form the composite classifier

by simplistic or weighted voting scheme.

Algorithm 1 Boosting Neural Networks with AdaBoost
Require: A Training set T containing N examples (xn, yn) , n = 1, 2, ..., N where xn is a
vector of attribute values and yn ε {1,−1} is the class label
Initialization: Let the weight vector: W1(n) = 1

N for n = 1, 2, ..., N, y ε Y − {yn}
for t = 1, 2, .., T do

Train neural network using weight distribution Wt and obtain the hypothesis
htε [−1, 1].

Calculate the error of ht: εt =
∑
n:ht(xn)6=ynWt (n)

if εt > 0.5 set T = t− 1 and abort loop
Set the weight updating parameter αt = 1

2 log
(

1−εt
εt

)
Update the normalized weight vector Wt+1 (n) = Wt(n)e−αtht(xn)yn

Zt
where n← 1 toN,Zt is a normalization factor chosen so that Wt+1 becomes a

proper distribution.
end for

Ensure: The final classifier: hf (x) = sign
(∑t

t=1 αtht (x)
)

Cost Sensitive Boosting of Neural Networks (CSBNN) is one of the approaches to improve

the performance of Neural Network classifiers. CSBNN uses Neural Networks as the weak

classifier in the AdaBoost algorithm. It alters the weight distribution of the training

sample during each training process such that the weights of misclassified examples are

increased and those of the correctly classified examples are decreased. This kind of weight

adjustment makes the learner to concentrate on different examples in each training round

62

3 Defect Prediction Models

which leads to diverse classifiers. Finally, the individual classifiers are combined to form the

composite classifier by weighted or simple voting schemes. We refer the reader Zheng [79]

for detailed description of the algorithm. However the same is discussed in Algorithm 1

for the sake of continuity and completeness of our work.

The costs associated with the misclassification are represented as C(i, j) where the module

belonging to class i has been misclassified as class j. Threshold moving is incorporated

at the last step of the AdaBoost algorithm to generate a classification model which would

give the minimum misclassification cost. In CSBNN-WU1 and CSBNN-WU2, a separate

cost term is added while updating the weights of the individual examples. The cost term is

kept 1 if the example had been correctly classified. In case of misclassification it is replaced

by the misclassification cost. The parameters of the algorithm are tuned properly to fit

the various systems such that sufficient emphasis is given to the minority class and also

to ensure that the algorithm does not become overly biased towards the minority class.

• CSBNN-TM: This classifier uses Threshold Moving for making the Neural Network

classifier cost sensitive. It takes into consideration the cost matrix to move the output

threshold of the Neural Network classifier such that the high cost examples(Type II

error) are harder to misclassify.

• CSBNN-WU1: This classifier introduces the cost matrix directly into the weight upda-

ting process. It boosts weight for samples with higher misclassification costs such

that performance over those samples can be improved. It does not consider the

weight updating parameter in the formulation.

• CSBNN-WU2: This classifier works exactly like CSBNN-WU1 except that it includes

the weight updating parameter while boosting the weights for samples.

While the first method doesn’t demand retraining base Neural Network classifiers,

other two methods demand retraining all base Neural Networks when the cost chan-

ges.

For the implementation of CSBNN-TM, CSBNN-WU1 and CSBNN-WU2 algorithms, as

63

3 Defect Prediction Models

suggested by Zheng [79], we use a Back Propagation Neural Network consisting of three

layers. The input layer has as many nodes as the number of metrics used for prediction.

The nodes in hidden layer are decided empirically by changing the number of nodes in the

hidden layer. Another parameter found through experiments is the maximum number of

iterations for the Neural Network. A combination of both the parameter values is sought,

which would give the most optimal classification for each system. For most of the systems,

we kept the hidden nodes to be 11 and fixed the maximum number of iterations to be

300. Only in case of some very large systems like the Eclipse versions 2.0, 2.1 and 3.0,

the optimal number of hidden nodes is 30. This experiment is conducted to ensure that

the Neural Network gives its best performance. The output layer consists of one node to

indicate if the software module is defect prone or not.

The approach suggested by Moser et al. [13], is implemented using Bayesian Network, J48

variant of Decision Tree, K-Nearest Neighbors, Logistic Regression, Naïve Bayes, Neural

Network and Random Forest. For the implementation of Bayesian Network, the hill clim-

bing algorithm is used. Similar to the CSBNN-TM, the Neural Network implementation

used here is a Back Propagation Neural Network with three layers. For training and tes-

ting purposes, each dataset is divided into 70:30 ratio randomly and all the experiments

are averaged over 5 runs. All the above mentioned implementations is carried out using

R.

To compare the performances of the classifiers, we have chosen the Normalized Expected

Cost of Misclassification (NECM). For the binary classification problem, there exists two

types of errors, Type I error and the Type II error. The Type I error is the error of

misclassifying a module which is actually defect free to be defect prone. The Type II error

is the error of misclassifying a module which is actually defect prone to be defect free.

The costs associated with these two errors are CI and CII respectively. It is most often

the case that CII >> CI.

MisclassificationRate(MR) = FP + FN

TP + TN + FP + FN
(3.2)

Type I error(ErrI) = FP

TN + FP
(3.3)

64

3 Defect Prediction Models

Type II error(ErrII) = FN

TP + FN
(3.4)

ExpectedCost of Misclassification(ECM) = CIErrIPndf + CIIErrIIPdf (3.5)

NormalizedExpectedCost of Misclassification(NECM) = ErrIPndf + CII
CI

ErrIIPdf

(3.6)

where Pndf and Pdf are the prior probabilities of the not-defect prone and defect-prone

modules in the dataset. The NECM is a unified measure which takes the misclassification

costs of two classes into account along with their prior probabilities. We refer the reader

[15] for complete derivation of NECM. The costs are however expressed in the form of a

ratio of CII to CI . The cost ratio varies with the type project and organization.

3.3.4 Results and Discussion

We have built defect prediction models using 10 learning algorithms - CSBNN-TM,

CSBNN-WU1, CSBNN-WU2, Logistic Regression, Naïve Bayes, Random Forest, Baye-

sian Network, Neural Networks, k-Nearest Neighbors and Decision Tree. We have built

these models for each of 22 data sets. The results are plotted with cost ratio as x-axis

and NECM as y-axis for all 22 systems and they are shown in Figure 3.5 through Figure

3.8. We have also shown the average ranking of the classifiers for cost ratio of 5 and 10 in

Table 3.11.

To compare the performance differences amongst classifiers Nemenyi tests were performed.

It calculates the critical distance from the average rank of each classifier and states that

for any two classifiers, their performances are significantly different if their average ranks

lie at least critical distance apart from each other. The critical difference is calculated

as

CD = qα,∞,L

√
L (L+ 1)

12K (3.7)

To prove the significance of the results obtained in terms of NECM, we carry out Fried-

man Test on the results obtained for cost ratio 5 and cost ratio 10 separately. The null

65

3 Defect Prediction Models

hypothesis of the test being that no two classifiers are significantly different from each ot-

her. For the test carried out on results corresponding to cost ratio 5, we obtain a p-value

of 2.2e-16 at a confidence level of 95%. Since the p-value is less than 0.05, we strongly

reject the null hypothesis and state that at least for two classifiers, the results obtained

are significantly different. The same procedure was repeated for results corresponding to

a cost ratio of 10. The p-value for Friedman Test came out to be < 2.2e − 16. To find

out the classifiers which gave significantly different performances, we next carried out the

Nemenyi test.

From the above results we observe that the performance of the classifiers vary as shown in

Figure 3.9. However, a trend is followed when we observe the average ranks of the classifiers

at cost ratios 5 and 10. Overall for the entire range of cost ratios, excepting few cases,

we observe that Random Forest is giving the best performance in terms of NECM closely

followed by Logistic Regression and Bayesian Network. The significance tests show that

there is no significant difference with the performances of Random Forest with Logistic

Regression and Bayesian Network. However, the average rank of Random Forest at 5% cost

ratio is 1.8636 while the value of next best classifier (Logistic Regression) is 2.6818 which

is quite high compared to RF. We also observe that the cost sensitive boosting Neural

Networks classifiers give a significantly poorer performance when compared to Random

Forest.

Among cost sensitive learners, CSBNN-TM attains lower mean rank at 5 and 10 cost ratios,

respectively 6.1364 and 5.6818. Another point to be observed is that there is a considerable

improvement in the performances of CSBNN-TM, CSBNN-WU1 and CSBNN-WU2 when

the cost ratio goes up from 5 to 10. We realize that this improvement in terms of average

ranking based on NECM is obeserved because the classifiers, namely, KNN, Decision Tree

and Naïve Bayes have higher Type II error rates in comparison to the other classifiers.

However, the cost sensitive boosting Neural Network algorithms still perform significantly

lower than traditional machine learning algorithms like Random Forest, Logistic Regres-

sion and Bayesian Networks. Hence, we conclude that cost sensitive Neural Network may

not be an effective approach to build software defect prediction models.

66

3 Defect Prediction Models

Table 3.6: Eclipse - Complexity Metrics: Cost ratio and NECM
Projects Cost

Ratio
CSBNN
TM BN DT KNN LR NB NNET RF CSBNN

WU1
CSBNN
WU2

Eclipse
2.0

1 0.1595 0.1341 0.1475 0.1439 0.1306 0.1448 0.3421 0.1247 0.1762 0.1511
2 0.3367 0.2360 0.2445 0.2601 0.2310 0.2393 0.5395 0.2173 0.3112 0.3193
3 0.4515 0.3205 0.3396 0.3361 0.3162 0.3344 0.6418 0.2941 0.4226 0.3949
4 0.5247 0.4024 0.4215 0.4121 0.3868 0.4285 0.6492 0.3459 0.4790 0.4609
5 0.5671 0.4563 0.4999 0.4721 0.4502 0.5217 0.7500 0.3935 0.5235 0.5221
6 0.6045 0.5171 0.5610 0.5118 0.4989 0.6148 0.7664 0.4371 0.5747 0.5307
7 0.6239 0.5661 0.6166 0.5492 0.5448 0.7088 0.7772 0.4770 0.5987 0.5976
8 0.6353 0.5829 0.6779 0.5866 0.5923 0.8010 0.8110 0.5092 0.6275 0.5929
9 0.6506 0.6030 0.7323 0.6232 0.6261 0.8929 0.8690 0.5421 0.6223 0.6201
10 0.6658 0.6148 0.7896 0.6599 0.6281 0.9853 0.8507 0.5631 0.6467 0.6620

Eclipse
2.1

1 0.1327 0.1079 0.1274 0.1157 0.1064 0.1312 0.3205 0.1080 0.1450 0.1256
2 0.3558 0.2053 0.2192 0.2390 0.2048 0.2144 0.7050 0.2072 0.3612 0.4169
3 0.4939 0.2960 0.3050 0.3170 0.2957 0.2966 0.8193 0.2946 0.4467 0.5663
4 0.5911 0.3777 0.3939 0.3930 0.3758 0.3784 0.8124 0.3700 0.6635 0.6264
5 0.6440 0.4521 0.4706 0.5087 0.4500 0.4603 0.8581 0.4308 0.7406 0.6759
6 0.6896 0.5022 0.5419 0.5588 0.5143 0.5412 0.8362 0.4731 0.7251 0.6781
7 0.7224 0.5569 0.6065 0.6041 0.5603 0.6228 0.8172 0.5206 0.7492 0.7272
8 0.7341 0.6037 0.6681 0.6481 0.6062 0.7037 0.8801 0.5622 0.8066 0.7768
9 0.7455 0.6414 0.7356 0.6909 0.6509 0.7851 0.9014 0.6025 0.8116 0.7847
10 0.7682 0.6708 0.7922 0.7339 0.6837 0.8659 0.8779 0.6348 0.8223 0.7881

Eclipse
3.0

1 0.1646 0.1452 0.1564 0.1614 0.1443 0.1615 0.4505 0.1344 0.1826 0.1640
2 0.1516 0.1470 0.1936 0.1570 0.1482 0.2085 0.3049 0.1427 0.1821 0.1574
3 0.1497 0.1486 0.2228 0.1682 0.1491 0.2542 0.3377 0.1435 0.1774 0.1531
4 0.1486 0.1493 0.2514 0.1794 0.1501 0.2993 0.4303 0.1437 0.1895 0.1574
5 0.1488 0.1494 0.2817 0.1543 0.1508 0.3442 0.4753 0.1450 0.1803 0.1616
6 0.1480 0.1504 0.2920 0.1563 0.1501 0.3889 0.5440 0.1444 0.1713 0.1626
7 0.1480 0.1508 0.3099 0.1583 0.1508 0.4327 0.5768 0.1443 0.1856 0.1670
8 0.1480 0.1507 0.3311 0.1604 0.1504 0.4758 0.6152 0.1448 0.1763 0.1647
9 0.1480 0.1513 0.3503 0.1624 0.1502 0.5211 0.5368 0.1449 0.1732 0.1735
10 0.1480 0.1520 0.3693 0.1644 0.1495 0.5652 0.8574 0.1452 0.1757 0.1609

67

3 Defect Prediction Models

Table 3.7: Eclipse - Change and Static Code Metrics: Cost ratio and NECM
Projects Cost

Ratio
CSBNN
TM BN DT KNN LR NB NNET RF CSBNN

WU1
CSBNN
WU2

Eclipse
PDE

1 0.1662 0.1362 0.1634 0.1577 0.1376 0.1729 0.3735 0.1381 0.2135 0.1588
2 0.3959 0.2553 0.2657 0.2851 0.2467 0.2609 0.6100 0.2340 0.4340 0.3836
3 0.5687 0.3352 0.3703 0.3692 0.3395 0.3461 0.7261 0.3273 0.5117 0.4796
4 0.6456 0.4288 0.4723 0.4533 0.4211 0.4287 0.7935 0.4065 0.6708 0.5876
5 0.7184 0.5003 0.5797 0.5621 0.5085 0.5136 0.8226 0.4655 0.6949 0.7321
6 0.7487 0.5705 0.6706 0.6055 0.5505 0.5989 0.8682 0.5152 0.7567 0.7594
7 0.7650 0.6090 0.7604 0.6474 0.5825 0.6801 0.8403 0.5294 0.8039 0.7676
8 0.7771 0.6543 0.8567 0.6894 0.6454 0.7645 0.9008 0.5629 0.8397 0.8130
9 0.8008 0.7108 0.9545 0.7314 0.6768 0.8457 0.8508 0.5941 0.8517 0.8294
10 0.8152 0.7313 1.0494 0.7734 0.7104 0.9302 0.8855 0.6125 0.8148 0.7997

Eclipse
JDT

1 0.1796 0.1452 0.1949 0.1717 0.1417 0.1730 0.4854 0.1353 0.2361 0.1842
2 0.3783 0.2481 0.3180 0.2902 0.2437 0.2934 0.6462 0.2252 0.4223 0.3385
3 0.4883 0.2973 0.4418 0.3652 0.3152 0.4115 0.7008 0.3163 0.5218 0.4415
4 0.6181 0.3632 0.5635 0.4403 0.3414 0.5317 0.7840 0.3587 0.6202 0.6183
5 0.6768 0.4394 0.6859 0.4854 0.4213 0.6513 0.7139 0.4083 0.6665 0.5956
6 0.7046 0.4906 0.7925 0.5269 0.4826 0.7709 0.7415 0.4307 0.7229 0.7124
7 0.7420 0.5438 0.8916 0.5669 0.5453 0.8905 0.7614 0.4545 0.7264 0.7030
8 0.7496 0.6137 1.0037 0.6070 0.5841 1.0101 0.8007 0.4863 0.7735 0.7348
9 0.7755 0.6129 1.1195 0.6471 0.6393 1.1304 0.8996 0.4870 0.7477 0.7372
10 0.7780 0.6124 1.2336 0.6871 0.6650 1.2499 0.8107 0.5085 0.7607 0.7836

Mylyn

1 0.1477 0.1272 0.1580 0.1352 0.1291 0.1556 0.3381 0.1229 0.1529 0.1518
2 0.3155 0.2359 0.2505 0.2559 0.2345 0.2396 0.6689 0.2133 0.2816 0.2810
3 0.4421 0.3130 0.3417 0.3334 0.3127 0.3174 0.7006 0.2896 0.3832 0.3510
4 0.5156 0.3652 0.4285 0.4109 0.3646 0.3948 0.7292 0.3370 0.4695 0.4392
5 0.5959 0.4262 0.5183 0.4593 0.4081 0.4700 0.7946 0.3826 0.5019 0.5060
6 0.6215 0.4527 0.5913 0.4935 0.4244 0.5488 0.8212 0.4158 0.5932 0.5289
7 0.6528 0.4559 0.6517 0.5273 0.4693 0.6210 0.8515 0.4480 0.5915 0.5525
8 0.6617 0.5033 0.7196 0.5612 0.5057 0.6989 0.9007 0.4787 0.6543 0.6208
9 0.6828 0.5314 0.7900 0.5950 0.5404 0.7709 0.8612 0.5133 0.6522 0.6311
10 0.7006 0.5698 0.8583 0.6288 0.5724 0.8406 0.9016 0.5305 0.6534 0.6790

Lucene

1 0.1111 0.0825 0.0982 0.0868 0.0782 0.1405 0.2621 0.0817 0.1030 0.1218
2 0.2768 0.1547 0.1617 0.1537 0.1403 0.1903 0.6454 0.1528 0.1906 0.2064
3 0.4039 0.2205 0.2235 0.2070 0.2022 0.2391 0.5086 0.2206 0.2884 0.2879
4 0.4678 0.2922 0.2848 0.2602 0.2691 0.2889 0.6467 0.2725 0.3823 0.3579
5 0.5649 0.3498 0.3461 0.4130 0.3342 0.3377 0.6353 0.3253 0.4480 0.4335
6 0.6022 0.3927 0.3844 0.4467 0.3636 0.3856 0.7850 0.3571 0.4679 0.4847
7 0.6441 0.4435 0.4394 0.4843 0.3981 0.4335 0.7821 0.3853 0.5449 0.5104
8 0.6951 0.4792 0.4867 0.5220 0.4235 0.4823 0.7517 0.4219 0.6063 0.5197
9 0.7254 0.5038 0.5331 0.5596 0.4788 0.5301 0.9035 0.4603 0.6136 0.6371
10 0.7294 0.5346 0.5863 0.5972 0.5156 0.5780 0.8931 0.4701 0.6577 0.5942

68

3 Defect Prediction Models

Table 3.8: NASA - McCabe and Halstead Metrics: Cost ratio and NECM
Projects Cost

Ratio
CSBNN
TM BN DT KNN LR NB NNET RF CSBNN

WU1
CSBNN
WU2

KC1

1 0.1553 0.1472 0.1527 0.1674 0.1424 0.1766 0.2916 0.1424 0.1656 0.1595
2 0.3595 0.2561 0.2634 0.2969 0.2544 0.2743 0.6629 0.2463 0.4383 0.4113
3 0.4979 0.3283 0.3662 0.3865 0.3534 0.3711 0.7262 0.3187 0.5554 0.5222
4 0.5561 0.4104 0.4706 0.4732 0.4091 0.4671 0.7702 0.3726 0.6025 0.5592
5 0.5768 0.4495 0.5697 0.5002 0.4646 0.5601 0.7507 0.4169 0.6218 0.5856
6 0.5899 0.4948 0.6579 0.5487 0.5007 0.6565 0.7411 0.4457 0.7050 0.5881
7 0.5992 0.5182 0.7138 0.5910 0.5405 0.7531 0.8146 0.4780 0.7048 0.6233
8 0.6188 0.5422 0.7635 0.6448 0.5482 0.8495 0.8062 0.5023 0.6642 0.6319
9 0.6274 0.5459 0.7980 0.6909 0.5551 0.9462 0.7655 0.5217 0.6460 0.6259
10 0.6361 0.5727 0.8256 0.7418 0.5721 1.0395 0.8016 0.5320 0.6858 0.6635

KC2

1 0.1704 0.1753 0.1774 0.1889 0.1614 0.1695 0.4279 0.1674 0.2474 0.1815
2 0.3130 0.2700 0.2882 0.3005 0.2757 0.2866 0.6356 0.2768 0.5469 0.3624
3 0.4309 0.3219 0.3891 0.4002 0.3396 0.4063 0.7236 0.3531 0.4966 0.5437
4 0.5569 0.3693 0.4941 0.4974 0.3905 0.5260 0.7403 0.3933 0.7287 0.5735
5 0.5967 0.3906 0.5671 0.5043 0.4045 0.6398 0.7817 0.4405 0.6620 0.6579
6 0.6203 0.4400 0.6552 0.5585 0.4501 0.7583 0.7589 0.4623 0.7394 0.6817
7 0.6782 0.4691 0.7504 0.6146 0.4864 0.8755 0.7484 0.4873 0.7362 0.7232
8 0.7024 0.4986 0.8455 0.6549 0.4976 0.9927 0.7741 0.4858 0.7252 0.7462
9 0.7219 0.5354 0.9360 0.7034 0.5260 1.1099 1.0469 0.5022 0.7673 0.8056
10 0.7539 0.5682 1.0209 0.7584 0.5458 1.2284 1.0346 0.5374 0.7783 0.7699

KC3

1 0.1856 0.1658 0.1990 0.2200 0.1636 0.2048 0.4371 0.2105 0.2730 0.1890
2 0.3970 0.2807 0.3319 0.4196 0.2711 0.3203 0.8144 0.3010 0.8144 0.5036
3 0.5820 0.3751 0.4543 0.5394 0.4124 0.4314 0.8144 0.4051 0.8144 0.7099
4 0.7258 0.5012 0.5871 0.6592 0.5003 0.5490 0.8144 0.5479 0.8144 0.7856
5 0.8696 0.6352 0.7166 0.8539 0.6146 0.6601 0.8110 0.6719 0.8144 0.8144
6 1.0134 0.7652 0.8360 0.9228 0.6817 0.7712 0.8043 0.6812 0.8144 0.7987
7 1.0576 0.8108 0.9419 0.9917 0.6820 0.8891 0.8144 0.7472 0.8144 0.8144
8 1.1690 0.8193 1.0646 1.0606 0.6892 0.9732 0.8443 0.6896 0.8144 0.8916
9 1.2803 0.8246 1.1182 1.1294 0.7200 1.0843 0.8144 0.7072 0.8144 0.8043
10 1.3917 0.8393 1.1499 1.1983 0.7465 1.1920 0.8144 0.7588 0.8144 0.8144

CM1

1 0.1228 0.1052 0.1027 0.0998 0.1035 0.1364 0.3087 0.1131 0.2102 0.1150
2 0.3501 0.1916 0.1960 0.2076 0.1933 0.2156 0.7517 0.2174 0.4789 0.4591
3 0.4953 0.2669 0.2893 0.2907 0.2655 0.2882 0.8900 0.3173 0.5616 0.5665
4 0.5120 0.3485 0.3826 0.3739 0.3435 0.3559 0.7576 0.4018 0.6349 0.5020
5 0.5981 0.3985 0.4620 0.5008 0.4188 0.4307 0.7993 0.4630 0.6826 0.5930
6 0.6244 0.4326 0.5435 0.5583 0.4610 0.5069 0.8654 0.4720 0.7145 0.6577
7 0.6325 0.5005 0.6218 0.6040 0.5006 0.5804 0.7921 0.5328 0.8034 0.6778
8 0.6636 0.5333 0.6979 0.6510 0.5164 0.6350 0.9053 0.5474 0.7906 0.7098
9 0.6712 0.5455 0.7710 0.6966 0.5367 0.7076 0.8652 0.6003 0.7614 0.7314
10 0.6786 0.5886 0.8264 0.7423 0.4992 0.7775 0.9034 0.6287 0.8036 0.7193

69

3 Defect Prediction Models

Table 3.9: NASA - McCabe and Halstead Metrics: Cost ratio and NECM (continued..)
Projects Cost

Ratio
CSBNN
TM BN DT KNN LR NB NNET RF CSBNN

WU1
CSBNN
WU2

PC1

1 0.0924 0.0876 0.1005 0.0931 0.0893 0.1211 0.5827 0.0810 0.1757 0.1096
2 0.2081 0.1585 0.1661 0.2153 0.1599 0.1735 0.9135 0.1400 0.2703 0.2945
3 0.2892 0.2130 0.2308 0.2970 0.2029 0.2259 0.9039 0.2003 0.4717 0.3118
4 0.3185 0.2755 0.2956 0.3788 0.2550 0.2782 0.8782 0.2783 0.6648 0.4999
5 0.3540 0.2960 0.3603 0.5364 0.2943 0.3297 0.9135 0.3290 0.5906 0.6269
6 0.4293 0.3296 0.4103 0.5871 0.3321 0.3811 0.8381 0.3429 0.9032 0.6191
7 0.4543 0.3857 0.4650 0.6379 0.3973 0.4325 0.9135 0.3538 0.7954 0.5359
8 0.4953 0.4148 0.5040 0.6886 0.4454 0.4839 0.8163 0.3598 0.8273 0.8630
9 0.5203 0.4163 0.5424 0.7394 0.4800 0.5354 0.9135 0.3859 0.7107 0.8362
10 0.5982 0.4132 0.5855 0.7901 0.4638 0.5868 0.8741 0.3938 0.8942 0.8749

PC2

1 0.0259 0.0241 0.0268 0.0215 0.0241 0.1353 0.2403 0.0215 0.0305 0.0264
2 0.0988 0.0474 0.0483 0.0456 0.0456 0.1617 0.9305 0.0492 0.0750 0.1248
3 0.1876 0.0689 0.0697 0.0671 0.0680 0.1827 0.8937 0.0742 0.2323 0.1444
4 0.2230 0.0921 0.0921 0.0886 0.0903 0.2046 0.8659 0.1046 0.2788 0.1889
5 0.2700 0.1172 0.1136 0.1955 0.1118 0.2238 0.9026 0.1305 0.2826 0.2166
6 0.2920 0.1395 0.1368 0.2159 0.1333 0.2420 0.6782 0.1512 0.3926 0.2274
7 0.3619 0.1628 0.1583 0.2363 0.1557 0.2612 0.8244 0.1712 0.4795 0.2707
8 0.3714 0.1878 0.1798 0.2567 0.1771 0.2785 0.8952 0.1923 0.2600 0.4198
9 0.4288 0.2111 0.2012 0.2771 0.1986 0.2968 0.8366 0.2062 0.2111 0.3208
10 0.4385 0.2326 0.2227 0.2975 0.2210 0.3151 0.9127 0.1895 0.2991 0.4857

PC3

1 0.1410 0.1331 0.1633 0.1324 0.1373 0.5825 0.5764 0.1364 0.3053 0.1389
2 0.2732 0.2549 0.2651 0.2916 0.2514 0.6212 0.8522 0.2347 0.4338 0.3113
3 0.3494 0.3372 0.3642 0.3842 0.3373 0.6447 0.7649 0.3109 0.5821 0.4149
4 0.4333 0.4024 0.4495 0.4768 0.4150 0.6625 0.8570 0.3740 0.8187 0.6249
5 0.5182 0.4443 0.5394 0.5542 0.4562 0.6854 0.8756 0.4136 0.7896 0.6349
6 0.5985 0.4762 0.5733 0.5997 0.4795 0.6995 0.8756 0.4398 0.8756 0.6405
7 0.6875 0.4942 0.6553 0.6452 0.5012 0.7123 0.8756 0.4758 0.7757 0.6181
8 0.7549 0.5212 0.6919 0.6907 0.5177 0.7270 0.8756 0.4961 0.7767 0.8248
9 0.8195 0.5377 0.7249 0.7362 0.5091 0.7417 0.8744 0.5106 0.7766 0.8194
10 0.8790 0.5700 0.7869 0.7817 0.5135 0.7493 0.8714 0.5284 0.8107 0.7383

PC4

1 0.0610 0.0078 0.0550 0.0276 0.0062 0.1064 0.3136 0.0197 0.0778 0.0540
2 0.1481 0.0343 0.0905 0.1045 0.0317 0.1117 0.8833 0.0707 0.1717 0.1642
3 0.2261 0.1050 0.0937 0.1045 0.0769 0.1179 0.8227 0.1232 0.3133 0.2204
4 0.2775 0.1826 0.0937 0.1050 0.1353 0.1211 0.9007 0.1601 0.3897 0.3308
5 0.3181 0.2477 0.0937 0.3735 0.1857 0.1252 0.8879 0.1897 0.3945 0.2806
6 0.3481 0.3017 0.0952 0.3771 0.2336 0.1268 0.9949 0.2167 0.5374 0.4445
7 0.4127 0.3631 0.0963 0.3776 0.2668 0.1273 0.8511 0.2375 0.4995 0.3330
8 0.4452 0.4110 0.1015 0.3781 0.3007 0.1289 0.9097 0.2614 0.6069 0.4803
9 0.4573 0.4433 0.1088 0.3781 0.3231 0.1315 0.7469 0.2823 0.5972 0.5113
10 0.4755 0.4619 0.1088 0.3781 0.3433 0.1325 0.7000 0.2937 0.6370 0.4387

JM1

1 0.2258 0.2119 0.2291 0.2429 0.2104 0.2185 0.5427 0.2089 0.4469 0.2174
2 0.4282 0.3990 0.3924 0.4709 0.3908 0.3952 0.7741 0.3726 0.7020 0.6471
3 0.5596 0.5370 0.5346 0.5998 0.5193 0.5717 0.7787 0.5052 0.7855 0.7576
4 0.6563 0.6457 0.6588 0.7285 0.6249 0.7461 0.7687 0.6023 0.7813 0.7740
5 0.7378 0.7490 0.7486 0.7896 0.7094 0.9209 0.7973 0.6662 0.7855 0.7806
6 0.7525 0.7897 0.8226 0.8493 0.7847 1.0954 0.7878 0.7119 0.7930 0.7878
7 0.7674 0.7899 0.8682 0.9083 0.8005 1.2703 0.7866 0.7525 0.7940 0.7862
8 0.7802 0.7897 0.8949 0.9673 0.7875 1.4451 0.8505 0.7709 0.7912 0.7857
9 0.7886 0.7909 0.9285 1.0264 0.7851 1.6181 0.7870 0.7978 0.7897 0.7854
10 0.7925 0.7868 0.9334 1.0854 0.7851 1.7904 0.8182 0.8232 0.7935 0.7883

70

3 Defect Prediction Models

Table 3.10: CK and OO Metrics: Cost ratio and NECM
Projects Cost

Ratio
CSBNN
TM BN DT KNN LR NB NNET RF CSBNN

WU1
CSBNN
WU2

Ant
1.7

1 0.2099 0.1749 0.1916 0.2045 0.1846 0.2030 0.3004 0.1700 0.2485 0.1884
2 0.3730 0.2744 0.2922 0.3061 0.2872 0.3011 0.6309 0.2585 0.3772 0.3549
3 0.4583 0.3541 0.3918 0.3846 0.3692 0.3978 0.6926 0.3386 0.5048 0.4482
4 0.5183 0.3836 0.4841 0.4631 0.4041 0.4958 0.7238 0.3857 0.5188 0.5058
5 0.5484 0.4641 0.5819 0.5156 0.4474 0.5878 0.7618 0.4287 0.6173 0.5381
6 0.5773 0.4998 0.6778 0.5548 0.5104 0.6678 0.7562 0.4643 0.6160 0.6016
7 0.6111 0.5188 0.7513 0.5869 0.5060 0.7547 0.8900 0.4955 0.6311 0.6028
8 0.6473 0.5328 0.8445 0.6191 0.5190 0.8396 0.7197 0.5176 0.6994 0.6486
9 0.6613 0.5509 0.9377 0.6512 0.5914 0.9276 0.7217 0.5641 0.7429 0.6676
10 0.6781 0.5850 0.9343 0.6833 0.6497 1.0165 0.8085 0.5846 0.7173 0.6999

Camel
1.6

1 0.2301 0.1916 0.2085 0.2252 0.1937 0.2026 0.4229 0.1906 0.2324 0.2287
2 0.4614 0.3654 0.3649 0.4485 0.3648 0.3563 0.6646 0.3532 0.4550 0.4468
3 0.5769 0.5228 0.5298 0.5700 0.4857 0.5049 0.7092 0.4604 0.6102 0.5336
4 0.6181 0.6135 0.6452 0.6921 0.5958 0.6538 0.7188 0.5445 0.6199 0.5559
5 0.6537 0.6919 0.7700 0.7278 0.6547 0.7909 0.7692 0.5879 0.6699 0.6668
6 0.6623 0.7534 0.8815 0.7708 0.6398 0.9410 0.8169 0.6338 0.7362 0.6993
7 0.6713 0.7915 0.9033 0.8226 0.6965 1.0905 0.8516 0.6628 0.7635 0.6959
8 0.6807 0.8045 0.9270 0.8744 0.7686 1.2406 0.9021 0.6841 0.7362 0.7252
9 0.6908 0.8052 0.9737 0.9255 0.7707 1.3826 0.8217 0.6851 0.7022 0.7614
10 0.7157 0.8052 1.0101 0.9766 0.7716 1.5306 0.8698 0.6984 0.8110 0.7438

Poi
3.0

1 0.2132 0.2944 0.2151 0.2352 0.2266 0.4477 0.4167 0.1905 0.2548 0.2570
2 0.2764 0.3439 0.3211 0.3022 0.3339 0.8190 0.3800 0.2590 0.3029 0.2943
3 0.3147 0.3697 0.4242 0.3396 0.3840 1.1925 0.8647 0.3096 0.3759 0.3215
4 0.3388 0.3891 0.5018 0.3771 0.3848 1.5300 0.4784 0.3438 0.4312 0.3806
5 0.3469 0.3949 0.5770 0.3535 0.3960 1.8815 0.5470 0.3567 0.3837 0.4397
6 0.3563 0.4052 0.5783 0.3757 0.3995 2.2349 0.6762 0.3665 0.4852 0.4497
7 0.3607 0.4074 0.6031 0.3898 0.4085 2.6010 0.5909 0.3895 0.4281 0.4153
8 0.3536 0.3814 0.6278 0.4038 0.4174 2.9182 0.9782 0.3948 0.4112 0.4345
9 0.3597 0.3843 0.6734 0.4178 0.4036 3.2553 1.0405 0.3839 0.3658 0.4329
10 0.3692 0.3886 0.7190 0.4318 0.4009 3.5980 0.7693 0.3771 0.3905 0.4022

Xalan
2.6

1 0.2870 0.2969 0.2641 0.2759 0.2601 0.2770 0.4368 0.2107 0.3044 0.2814
2 0.4081 0.5027 0.3940 0.3746 0.3815 0.5082 0.5120 0.3361 0.4593 0.4317
3 0.4364 0.5348 0.5152 0.4555 0.4717 0.7314 0.5880 0.3597 0.4972 0.4489
4 0.4643 0.5356 0.6361 0.5353 0.5207 0.9525 0.6522 0.3752 0.5781 0.4870
5 0.4768 0.5356 0.7706 0.4880 0.5335 1.1676 0.6285 0.3895 0.5252 0.5236
6 0.4876 0.5356 0.8537 0.5297 0.5420 1.3772 0.7724 0.4158 0.5200 0.5915
7 0.5006 0.5356 0.8739 0.5635 0.5356 1.5942 0.7894 0.4337 0.6549 0.5536
8 0.5034 0.5356 0.9255 0.5934 0.5356 1.7894 0.7081 0.4236 0.5652 0.5836
9 0.5032 0.5356 0.9451 0.6210 0.5356 1.9669 0.7034 0.4337 0.5635 0.5439
10 0.5020 0.5356 1.0060 0.6804 0.5356 2.1728 0.7047 0.4441 0.5422 0.6006

Tomcat

1 0.1128 0.0854 0.1129 0.1035 0.0900 0.1467 0.2313 0.0907 0.1525 0.1138
2 0.2473 0.1558 0.1868 0.1925 0.1647 0.2009 0.5890 0.1794 0.2517 0.2340
3 0.3590 0.2275 0.2568 0.2555 0.2350 0.2559 0.5980 0.2373 0.2900 0.2916
4 0.4250 0.2812 0.3127 0.3184 0.2838 0.3069 0.7976 0.2728 0.4334 0.3734
5 0.4613 0.3088 0.3502 0.4275 0.3392 0.3582 0.7029 0.3032 0.5398 0.4173
6 0.5212 0.3294 0.3980 0.4694 0.3592 0.4095 0.5961 0.3280 0.4920 0.4660
7 0.5514 0.3669 0.4506 0.5082 0.3961 0.4571 0.8200 0.3526 0.5109 0.5090
8 0.5810 0.3926 0.5090 0.5470 0.4069 0.4961 0.8933 0.3691 0.5265 0.5249
9 0.6182 0.4271 0.5522 0.5858 0.4545 0.5390 0.8202 0.3856 0.6264 0.5240
10 0.6489 0.4548 0.6024 0.6246 0.5057 0.5890 0.7888 0.3939 0.5559 0.5933

Prop
6

1 0.1263 0.1020 0.1095 0.1129 0.1037 0.5387 0.4481 0.1149 0.1298 0.1070
2 0.3145 0.2037 0.1848 0.2641 0.2061 0.6327 0.8357 0.2149 0.3925 0.4107
3 0.4406 0.3037 0.2622 0.3424 0.3049 0.6804 0.7597 0.3083 0.7336 0.6130
4 0.5992 0.4151 0.3376 0.4218 0.3823 0.7157 0.8789 0.3625 0.8496 0.7332
5 0.6464 0.4642 0.4130 0.5025 0.4682 0.7473 0.9024 0.4106 0.8360 0.8145
6 0.7641 0.5396 0.4942 0.5483 0.5540 0.7701 0.8750 0.4585 0.9074 0.8046
7 0.7881 0.6207 0.5617 0.5940 0.6147 0.8017 0.9005 0.4921 0.8367 0.8909
8 0.8030 0.6701 0.6202 0.6397 0.6575 0.8282 0.8889 0.4863 0.8397 0.8773
9 0.8067 0.7242 0.6868 0.6834 0.7033 0.8528 0.9234 0.5190 0.9000 0.8868
10 0.8418 0.7813 0.7535 0.7291 0.7438 0.8793 0.9784 0.5495 0.9205 0.9169

71

3 Defect Prediction Models

Figure 3.5: Eclipse 2.0 2.1 and 3.0 - Complexity Metrics

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Eclipse 2.0

(a) Eclipse 2.0

0.25

0.50

0.75

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Eclipse 2.1

(b) Eclipse 2.1

0.2

0.4

0.6

0.8

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Eclipse 3.0

(c) Eclipse 3.0

Table 3.11: Average Rank of classifiers at cost ratio 5 and 10
Cost
Ratio

Random
Forest

Logistic
Regression

Bayesian
Network KNN Decision

Tree
CSBNN-

TM
Naïve
Bayes

CSBNN-
WU2

CSBNN-
WU1 NNET

5 1.8636 2.6818 3.2273 5.4091 5.5909 6.1364 6.1818 6.7045 7.7045 9.5000
10 1.5909 2.6136 3.2045 5.9091 7.1818 5.6818 7.9545 5.7727 6.4091 8.6818

Figure 3.6: Change, CK-OO and Static Code Metrics

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Eclipse PDE

(a) Eclipse PDE

0.25

0.50

0.75

1.00

1.25

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Eclipse JDT

(b) Eclipse JDT

0.25

0.50

0.75

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Mylyn

(c) Mylyn

0.25

0.50

0.75

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Lucene

(d) Lucene

Algorithms

CSBNNTM

BN

DT

KNN

LR

NB

NNET

RF

CSBNNWU1

CSBNNWU2

(e) Algorithms

72

3 Defect Prediction Models

Figure 3.7: NASA - McCabe and Halstead Metrics

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

KC1

(a) KC1

0.25

0.50

0.75

1.00

1.25

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

KC2

(b) KC2

0.5

1.0

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

KC3

(c) KC3

0.25

0.50

0.75

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

CM1

(d) CM1

0.25

0.50

0.75

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

PC1

(e) PC1

0.00

0.25

0.50

0.75

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

PC2

(f) PC2

0.25

0.50

0.75

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

PC3

(g) PC3

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

PC4

(h) PC4

0.5

1.0

1.5

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

JM1

(i) JM1

73

3 Defect Prediction Models

Figure 3.8: CK-OO Metrics

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Ant 1.7

(a) Ant 1.7

0.4

0.8

1.2

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Camel 1.6

(b) Camel 1.6

1

2

3

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Poi 3.0

(c) Poi 3.0

0.5

1.0

1.5

2.0

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Xalan 2.6

(d) Xalan 2.6

0.25

0.50

0.75

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Tomcat

(e) Tomcat

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
CostRatio

N
E

C
M

Prop 6

(f) Prop 6

Figure 3.9: Nemenyi Diagram

Friedman: 0.000 (Different)
 Nemenyi CD: 2.888

TM

BN

DT

KNN

LR

NB

NNET

RF

WU1

WU2

2 4 6 8 10 12

(a) Nemeny 5%

Friedman: 0.000 (Different)
 Nemenyi CD: 2.888

TM

BN

DT

KNN

LR

NB

NNET

RF

WU1

WU2

2 4 6 8 10 12

(b) Nemenyi 10%

74

3 Defect Prediction Models

3.3.5 Contributions

Random Forest is shown to be the outperforming algorithm in terms of NECM closely

followed by Logistic Regression and Bayesian Network. Though the significance tests show

that there is no difference amongst the performances of Random Forest, Logistic Regression

and Bayesian Network, the mean rank values are very low for Random Forest as compared

to others. Among the cost sensitive boosting Neural Network algorithms, we reconfirm

that CSBNN-TM yields lower mean rank compared to CSBNN-WU1 and CSBNN-WU2.

We conclude that Random Forest is shown to be significantly better than these three cost

sensitive boosting Neural Network methods and traditional machine learning algorithms

- Naïve Bayes, Neural Networks, k-Nearest Neighbors and Decision Tree.

3.4 Effort-aware Defect prediction

Quality has always been a non-compromising priority task for all IT companies and post

release defects or defects experienced by end customer hampers the quality heavily. Quality

assurance activities, such as tests or code reviews, are an expensive, but vital part of the

software development process. Any support that makes this phase more effective may thus

improve software quality and reduce development costs.

The project team might perform quality assurance activities on defect-prone files to catch

bugs earlier to release of the software. The quality assurance activities could be peer

code reviews, expert code reviews, testing etc. The team can choose one or more quality

assurance activities that are apt for the project so that maximum number of defects will

be uncovered. Also, project team has to allocate resources/revenues to complete these

activities. Though it is ideal to get assurance activities done for all of the defect-prone

files, it might not be feasible due to cost implications. Hence project team would act on

top x% of defect-prone files based on the costs that can be borne by the team.

The top x% of files will be selected by sorting files in the descending order of number

of predicted bugs and this approach has been adopted by researchers Ohlsson et al. [96],

75

3 Defect Prediction Models

Khoshgoftaar et al. [47]. We illustrate the limitations of this approach with the following

example. Generally it is assumed that after performing the quality assurance activities

like code review of files, all bugs in the file will be uncovered. Suppose project team would

like to take up code review of top x% of files and there are two files File A, File B with

the following characteristics.

File LoC # of predicted bugs Effort per bug
File A 100 2 50
File B 1200 4 300

File B appears prior to File A as per the above mentioned sorted order and File A might

have been ignored when project team selects top x% of files. The Effort per bug indicates

the effort required to uncover one bug and is defined as the ratio of LoC and the number of

bugs. The effort per bug for File A (50) is quite low as compared to File B (300) whereas

the classical ordering ranks File B on top of File A. This issue has been addressed by Thilo

Mende et al. [16]

Thilo Mende et al. [16] proposed a strategy to include the notion of effort into defect

prediction models. They propose to rank files with respect to their effort per bug. They

use McCabe’s cyclomatic complexity as the surrogate measure for effort. They evaluate

their new model against the naive model which just ranks files on the predicted number

of bugs, by adopting to effort aware measures like CE [97]. They apply Demšar’s non-

parametric tests to conclude that their new model is significantly cost effective than the

naive model.

Contributions: In this work we argue that the measure of effort should not be a generic

measure such as cyclomatic complexity but instead it should be one that is specific to the

kind of activity involved in the quality assurance process. We identify two most popular

quality assurance activities namely code review and unit testing. We use lines of code to

measure the effort involved in code reviews and the number of test cases to measure the

effort in case of unit testing. We compare the cost effectiveness of our specific effort based

models to generic effort based models.

76

3 Defect Prediction Models

3.4.1 Related Work

Many approaches in the literature use the source code metrics and change metrics as

predictors of defects. In this study we have used the CK metrics suite [8], object oriented

metrics, lines of code and some change metrics as features to build the defects prediction

model. Basili et al. [98], Tang et al. [99], Cartwright and Shepperd [100], Subramanyam

and Krishnan [101] explored the relationship between CK metrics and defect proneness of

files. Basili et al. [98] found that WMC, RFC, CBO, DIT and NOC are correlated with

faults while LCOM is not associated with faults based on experiments on eight student

projects. Tang et al. [99] validated CK metrics using three industrial real time systems

and suggest that WMC and RFC can be good indicators of defects. Cartwright and

Shepperd [100] found DIT and NOC as fault influencers. Subramanyam and Krishnan [101]

investigated the relationship between a subset of CK metrics and the quality of software

measured in terms of defects. Though they proved the association, they conclude that

this observation is not consistent with different OO languages like C++ and Java.

Nagappan et al. used a catalog of source code metrics to predict post release defects at

the module level on five Microsoft systems [102]. Ostrand et al. [7] conclude that lines of

code is a significant influence on the faults. Also their simple model based only on lines of

code achieves roughly 73% bugs in the top 20% of files which is only 10% less than their

full model.

Ohlsson et al. [96], Ostrand et al. [7] advocate models which rank files based on their fault

proneness. Khoshgoftaar et al. [47] coined the term Module-Order-Model (MOM). It ena-

bles to select a fixed percentage of modules for further treatment which is a more realistic

scenario for projects with a fixed quality assurance budget. MOMs can be evaluated by

assessing the percentage of defects detected at fixed percentages of modules. Ostrand et

al. [7] propose a model which found up to 83% of the defects in 20% of the files. One way

to graphically evaluate MOMs are lift charts, sometimes known as Alberg diagrams [96].

Ostrand et al. validates Pareto principle in defect prediction and their results show that

20% of files have 84% of defects. Ostrand et al. [7] conclude that a prediction using defect

densities is able to find more defects in a fixed percentage of code, but argue that the

testing costs are, at least for system tests, not related to the size of a file.

77

3 Defect Prediction Models

Thilo Mende et al. [103] compare the performance of various classifiers over lines of code

based lift charts. They conclude that performance measures should always take into

account the percentage of source code predicted as defective. In their subsequent work [16],

they propose two strategies to incorporate the treatment effort into defect prediction

models. But both their strategies include cyclomatic complexity as the effort for quality

assurance. In this work we propose that quality assurance activity specific effort measures

perform better than generic effort based models.

3.4.2 Metrics and Datasets

We have considered a hybrid of source code metrics which include the Chidamber and

Kemerer metric suite [8], few object oriented metrics and change metrics. Table 3.12

describes details about metrics considered. We need to have the number of test cases

for each source file to achieve the objectives of this work. The benchmarked open source

datasets, that are used for defect prediction research, do not have the number of test cases

against each file. Hence we, acquired data from a private software company for three

projects in which a record of all testing activities for every file is recorded. For the sake

of convenience and anonymity, let us consider them as datasetA, datasetB and datasetC.

The details about the number of files and number of defects in each dataset are shown in

Table 3.14.

3.4.3 Experiment and Results

We build defect prediction models using the metrics mentioned in Table 3.12 for each of

the three datasets in Table 3.14. We use stepwise linear regression algorithm to build our

model and predict the number of faults for a file. Regression algorithm takes the number of

faults into consideration while building the model whereas a classification algorithm such

as Naïve Bayes classifier only considers the label of the file. Since we intend to predict

effort per bug of a file we use stepwise linear regression algorithm. Nagappan et al. [43]

also used stepwise linear regression to predict file defect density. We adopt the method of

building defect prediction models using 2/3rd data and testing the models with remaining

78

3 Defect Prediction Models

Table 3.12: Source Code Metrics
WMC Weighted Methods per Class
DIT Depth Of Inheritance
NOC Number of Children
CBO Coupling between object classes
RFC Response for a class
LCOM Lack of cohesion in methods
Ce Efferent coupling

NPM Number of public methods
CC Cyclomatic complexity is a popular procedural software metric equal to the

number of decisions that can be taken in a procedure.
NOF Number of fields in the class
NOI Number of interfaces implemented by the class
LOC Number of lines of code in the file
NOM Number of methods in the class
Fan-in Number of classes that reference the class
Fan-out Number of classes referenced by the class

PC Percentage of the file commented

Table 3.13: Change Metrics
noOfBugs Number of bugs found and fixed during development
noOfStories Number of stories this file is part of
noOfSprints Number of sprints this file is part of
revisionCount Number of commits this file is involved in
noOfAuthors Number of authors who worked on this file during the release

LocA Number of lines of code added in total to this file during development
MaxLocA Max Number of lines of code added among all commits to this file

during development
AvgLocA Average Number of lines of code added among all commits to this file

during development
LocD Total Number of lines of code deleted among all commits to this file

during development
MaxLocD Max Number of lines of code deleted among all commits to this file

during development
AvgLocD Average Number of lines of code deleted among all commits to this file

during development
LocAD Total Number of lines of code added-deleted among all commits to this

file during development
MaxLocAD Max Number of lines of code added-deleted among all commits to this

file during development
AvgLocAD Average Number of lines of code added-deleted among all commits to

this file during development

79

3 Defect Prediction Models

Table 3.14: Datasets
Projects Number of Files Post Release Defects
DatasetA 2257 252
DatasetB 2557 652
DatasetC 2151 349

1/3rd data. The division of training and testing data is being done randomly. The data

is split randomly fifty times and the average of values were recorded as final results in

experiments conducted for this work.

Khoshgoftaar et al. [47] proposed software quality model, MOM (Module Order Model)

that is generally used to predict the rank-order of modules or files according to a quality

factor [47]. We take this quality factor to be number of defects in our study. We apply

stepwise linear regression algorithm and order files as per their predicted value of bugs.

MOMs can be evaluated by assessing the percentage of defects detected against the fixed

percentages of files. One way to graphically evaluate MOMs are lift charts, sometimes

known as Alberg diagrams [96]. They are created by ordering files according to the score

assigned by a prediction model and denoting for each fixed percentage of files on the x-axis,

the cumulative percentage of defects identified, on the y-axis. Thus for any selected per-

centage of files, one can easily identify the percentage of predicted defects. We have drawn

Alberg Diagrams [96] for two module-order models namely actual and simple prediction

for each of the project and the plots are depicted in Fig. 3.11a through Fig. 3.11c.

The optimal or ideal or actual model (represented as red curve in the above plot) is

drawn by arranging the modules in the decreasing order of actual defects. The simple

prediction model(represented as blue curve in the plots) is drawn by arranging the files

in the decreasing order of predicted number of faults. The predicted number of faults is

value outputted by the stepwise linear regression algorithm for each file. The optimal or

ideal model represents the best possible model that any defect prediction model can aspire

for. The goodness of any prediction model depends on its closeness to the optimal curve,

closer to the optimal curve better the prediction model is. And the major advantage of

this method is that the model is flexible enough to predict bugs depending on the costs

that can be borne by project team towards quality assurance activities.

80

3 Defect Prediction Models

Figure 3.10: Actual and Simple Prediction

(a) DatasetA (b) DatasetB

(c) DatasetC

81

3 Defect Prediction Models

The Pareto principle for this problem is ‘20% of files should have 80% of bugs’ and we

have evaluated the number of bugs that can be found in top 20% of files for the prediction

models across all the datasets and these values are tabulated in Table 3.15. The percentage

of bugs found using these models across projects is found to be varying between 39.56%

and 80%. These results are depicted visually in Fig. 3.11a-3.11c. Now, we shall explain

the results of datasetB. The results, suggest that if we do quality assurance activities on

the 20% of files we can catch 80% of the bugs. Although this is an excellent result, we

shall now explore the amount of effort it takes to review/test these files. In practice there

are couple of quality assurance activities that can be performed soon after the bugs are

predicted through the learning model. We consider two such popular quality assurance

activities namely code review and unit testing.

We assume that effort to do code review is directly proportional to the lines of code one has

to review and for unit testing, effort is proportional to the number of test cases one has to

perform manually. The effort required to conduct the two quality assurance activities for

the top 20% files mentioned in Table 3.15 are tabulated in Table 3.16. From these results,

we can infer the following: for datasetB, by reviewing the top 20% of the predicted files,

one can uncover 80% of the bugs and the effort required for these files is reviewing 64.72%

of the total lines of code or performing 76.91% of the test cases. This shows that, although

the number of files predicted as defect-prone is only 20%, the amount of effort required to

uncover the bugs from these files is very large which is only slightly better than a random

inspection model which gives n% of bugs for n% of effort. This result is also observed

in the remaining two datasets. In view of effort, the standard Pareto principle should be

modified as follows: ‘20% of effort should give 80% of bugs’.

Table 3.15: Percentage of Bugs in Top 20% of Files
Projects Actual Predicted
datasetA 100 73.18
datasetB 100 80.48
datasetC 100 71.72

82

3 Defect Prediction Models

3.4.3.1 Effort Based Evaluation

In-order to minimize the effort involved to uncover the bugs in files, Thilo Mende et. al [16]

propose a new ranking order. They rank the files based on the ratio: predicted number of bugs
effort

instead of predicted number of bugs alone. They use cyclomatic complexity as the sur-

rogate measure for effort with the assumption that the lines of code as well as testcases

correlate highly with cyclomatic complexity. In our datasets we have found the previous

statement to be not true. Although the cyclomatic complexity is correlating highly with

the lines of code, but it is not so with testcases. The Spearman correlations between cy-

clomatic complexity and lines of code, cyclomatic complexity and test cases is tabulated

in Table 3.17.

Thus, instead of using a generic measure of effort such as cyclomatic complexity, we use

lines of code and the number of testcases as our measures of effort. The predicted number

of bugs term in the ratio is the value outputted by any learning algorithm which is in this

case stepwise linear regression algorithm. The effort term in the ratio can be substituted

with the lines of code, if quality assurance activity is code review or it can be number of

testcases, if quality assurance activity is unit testing. This ratio gives a higher rank to files

which have less effort per bug and a lower rank to files which have more effort per bug.

Using our proposed ranking orders, the percentage of defects captured by 20% of effort

are recorded in Table 3.18 and Table 3.19. The results are depicted visually by a plot of

% of effort vs % defects in Figs. 3.12a-3.14b. Let us consider the Fig. 3.13a and Fig.

3.13b which correspond to datasetB. In both figures, the plots of predicted number of bugslines of code and
predicted number of bugs

testcases is always higher than the plot of simple prediction. This indicates

that, to uncover a certain amount of bugs, our proposed ranking orders require less effort

than the traditional simple prediction rank order. Although the simple prediction model

Table 3.16: Percentage of Effort Required for the Top 20% of Files
Projects Model % Lines of Code % Testcases

Actual 39.75 36.67
DatasetA predicted 66.15 78.06

Actual 47.76 56.97
DatasetB predicted 64.72 76.91

Actual 41.66 40.05
DatasetC predicted 63.81 66.4

83

3 Defect Prediction Models

Table 3.17: Spearman Correlation
Projects Cyclomatic Complexity and Lines of

Code
Cyclomatic Complexity and Num-
ber of Testcases

DatasetA 0.9387 0.2703
DatasetB 0.9379 0.5487
DatasetC 0.9358 0.3687

Figure 3.11: Effort-Aware Prediction: DatasetA

(a) DatasetA (b) DatasetA

is better than our proposed model when considering only the % of bugs caught vs the % of

files (Fig. 3.11b), it fails to perform better when considering the effort required to uncover

the bugs (Fig. 3.13a and Fig. 3.13b). This result is observed in all the three datasets.

Also, common to all the three datasets is the observation that the specific effort based

models i.e predicted number of bugs
lines of code and predicted number of bugs

testcases are performing better than the
predicted number of bugs
cyclomatic complexity . In order to quantify the performance of each classifier we consider

an evaluation scheme described in the next section.

Table 3.18: Percentage of Defects Caught by 20% of Effort(LOC)
Projects Actual Simple Pre-

diction
predicted #bugs

LOC
predicted #bugs

CC

DatasetA 70 22 33 30
DatasetB 65 35 42 40
DatasetC 60 25 40 38

84

3 Defect Prediction Models

Figure 3.12: Effort-Aware Prediction: DatasetB

(a) DatasetB (b) DatasetB

Figure 3.13: Effort-Aware Prediction: DatasetC

(a) DatasetC (b) DatasetC

85

3 Defect Prediction Models

3.4.3.2 Percentage of Cost Effectiveness

Arisholm et. al [104] proposed an effort evaluation measure CE which stands for Cost

Effectiveness. They calculate a cost effectiveness estimation based on the assumption that

a random selection of n% of source lines contains n% of the defects.

A defect prediction model is cost effective only when the files predicted as defective contain

a larger percentage of defects than their percentage of lines of code. Their performance

measure CE can be obtained by calculating the area under the prediction model’s curve

which lies above a line of slope one. Thilo Mende et. al. [103] defined the measure popt
which measures how close a model is to the ideal curve. Closer the curve to the ideal

curve, the higher the value of popt. This measure takes into consideration the effort as

well as the actual distribution of faults by benchmarking against a theoretically optimal

model.

We consider the evaluation measure POA, Percentage of Area. This measure attempts to

combine the aspects of both CE and popt, which has information about the lower bound

of cost effectiveness, the random model and the upper bound, the theoretically optimal

value. POA is the ratio of the CE of a model to the CE of the theoretically optimal model.

This value gives the fraction of cost effectiveness a model achieves out of the theoretically

maximum possible cost effectiveness.

POA = CE of model
CE of the idealmodel

We present the POA values for the models when effort is lines of code in Table 3.20 and

when effort is testcase in Table 3.21. From the results it is clear that specific effort based

models outperform generic effort based measure cyclomatic complexity.

Table 3.19: Percentage of Defects Caught by 20% of Effort(Testcases)
Projects Actual Simple Pre-

diction
predicted #bugs

TC
predicted #bugs

CC

DatasetA 59 10 66 6
DatasetB 50 24 33 14
DatasetC 64 16 55 6

86

3 Defect Prediction Models

3.4.3.3 Statistical Significance

We now test whether the differences between the three models are statistically significant

using the non parametric tests mentioned by Demšar [38]. Demšar uses the Friedman

test [105] to check whether the null hypothesis, i.e that all models perform equal on the

datasets, can be rejected. It is calculated as follows:

χ2
F = 12N

k(k+1)

(∑
j R

2
j −

k(k+1)2

4

)

FF = (N−1)χ2
F

N(k−1)−χ2
F

where k denotes the number of models, N the number of datasets, and Rj the average

rank of model j on all data sets. FF is distributed according to the F-Distribution with

k − 1 and (k − 1) (N − 1) degrees of freedom. Once computed, we can check FF against

critical values for the F-Distribution and then accept or reject the null hypothesis. When

the Friedman test rejects the null hypothesis, we can use the Nemenyi post-hoc test to

check whether the difference of performance between two models is statistically significant.

The test uses the average ranks of each model and checks for each pair of models whether

the difference in their average ranks is greater than the critical difference CD.

CD = qα

√
k(k+1)

6N

where k and N are number of models and datasets respectively. qα is a critical value

which are based on the Studentized range statistic divided by
√

2. The Studentized range

Table 3.20: POA - Lines of Code
Model DatasetA DatasetB DatasetC
Ideal 100 100 100

simple prediction 14.23 35.59 16.03
Predicted Number of Bugs

Lines of Code 22.61 52.2 46.55
Predicted Number of Bugs
Cyclomatic Complexity 19.56 49.84 41.73
Random Model 0 0 0

87

3 Defect Prediction Models

Figure 3.14: Nemenyi Diagram for LOC and Testcases

(a) Nemenyi Plot - Lines of Code (b) Nemenyi Plot - Testcases

statistic depends on the alpha value which in this cases we take as 0.05 and the number

of models k. For our setup, we used k=3, α=0.05 and qα=2.85.

We use Lessmann et al. [5] modified version of Demšar’s significance diagrams to depict the

results of Nemenyi’s post-hoc test: For each classifier on the y-axis, the average rank across

the datasets is plotted on the x-axis, along with a line segment whose length encodes CD.

All classifiers that do overlap in this plot do not perform significantly different and those

that do not overlap, perform significantly different. The Nemenyi’s post-hoc significance

plots are presented in Fig. 3.15a and Fig. 3.15b.

Consider Fig. 3.15a: predicted number of bugs
lines of code ranks the best, followed by predicted number of bugs

cyclomatic complexity

and predicted number of bugs. Although, the predicted number of bugs
lines of code performs better, the

difference between it and predicted number of bugs
cyclomatic complexity is not significant.

In Fig. 3.15b: predicted number of bugs
test cases ranks the best, followed by predicted no. of bugs

Table 3.21: POA - Testcases
Model DatasetA DatasetB DatasetC
Ideal 100 100 100

simple prediction 0.75 13.18 7.06
Predicted Number of Bugs

Testcases 75.13 38.65 67.22
Predicted Number of Bugs
Cyclomatic Complexity 0.73 0.3 0.19
Random Model 0 0 0

88

3 Defect Prediction Models

and predicted number of bugs
cyclomatic complexity . predicted number of bugs

lines of code model performs significantly better than
predicted number of bugs
cyclomatic complexity .

3.4.3.4 Threats to Validity

Since open source softwares are not developed in controlled environment and unavailability

of proper testcases and considering the difficulties of linking them with appropriate files,

We decided to do the experiments in proprietary software datasets. Similar experiments

in different datasets may not yield similar results.

3.4.4 Contributions

The consistent and repetitive results of three projects and generic Demšar test indicate

us that the testing based effort aware models perform significantly better than generic

effort-aware models. The code review based effort-aware model performs slightly better

than generic model individually for each project though Demšar test show that there is

no significant improvement. Hence, we conclude that effort-aware models are sensitive

to the type of quality assurance activity one undertakes and the effort required for these

activities should be considered while building prediction models.

89

4 Multi-objective Defect Prediction

4.1 Introduction

Prediction models are built with training data and they are evaluated for performance on

the testing data. In literature, defect prediction models are built using three prediction

techniques that differ based on the source of training data and testing data. The different

prediction techniques are: 1) Cross Validation prediction: In this approach, training and

testing data are taken from the same version of a project. The defect prediction models

are built by taking 70% of data as the training data and tested on remaining 30% of the

data, or by using 10-fold cross validation technique; 2) Cross Version prediction: In this

approach, the data of the previous version of a software project is taken as the training

data to build prediction model and it is tested on the data of current version of the same

project; 3) Cross Project prediction: The prediction models are built by taking data from

different projects as the training data and tested on the data of the project under study.

It is our intuitive understanding that using data of the previous version of the same

project is more appropriate and can provide better results instead of using data from

different projects to build defect prediction models. The main architectural or design

characteristics of the project will remain more or less the same across different releases.

The pattern of bug occurrences of the current version might also get influenced by the

bug occurrences in the previous version. Hence, for predicting defect prone files of the

current version, the most suitable training data is the data of previous version of the same

project. These factors motivated us to explore further into cross version defect prediction

model.

90

4 Multi-objective Defect Prediction

Harman suggested that the defect prediction problem can be viewed as a search problem,

which can be solved using evolutionary algorithms [106]. The defect prediction problem

can be formulated as a multi-objective optimization problem with contrasting objectives.

We have attempted to solve two multi-objective defect prediction problems with compe-

ting objective functions in cross version setup.

We formulate our first multi-objective defect prediction problem with the following con-

trasting objectives

• Maximize effectiveness of the model

• Minimize misclassification cost

Effectiveness is the ratio of the number of components correctly predicted as defective

to the number of actual defective components (recall). The misclassification cost is the

cost incurred due to quality assurance activities required on wrongly classified files, i.e.

cost of reviewing/testing the False Positive (predicted to be defective but not actually

defective) files and cost of the False Negative (predicted to be non-defective but actually

defective) files during post-release phase. Ideally any good model attempts to minimize

the misclassification cost and maximize the effectiveness of model. Hence we have chosen

them as objective functions.

There are many evolutionary algorithms which can solve multi-objective optimization pro-

blems. In this study, we have used NSGA-II, a multi-objective genetic algorithm proposed

by Deb et al. [107]. Any multi-objective genetic algorithm requires a fitness function that

guides the search process to find optimal or near optimal solutions. We have considered

logistic regression function as fitness function to find out cost and effectiveness. Hence we

are denoting this approach as Multi-Objective Logistic Regression (MOLR).

We build a cross version defect prediction model using multi-objective logistic regression

(MOLR) for our first problem and this model is denoted by M1. We also build prediction

91

4 Multi-objective Defect Prediction

models using four traditional single objective algorithms, namely, Logistic Regression,

Naive Bayes, Decision Tree and Random Forest. We try to answer the following research

question.

RQ1: How does the proposed M1 perform as compared to traditional single objective

defect prediction models in the cross version defect prediction?

We formulate second multi-objective defect prediction problem with the following contras-

ting objectives.

• Maximize effectiveness of the model

• Minimize LOC cost

Canfora et al. proposed this objective function to solve multi-objective defect prediction

problem in cross project setup [1,108]. Effectiveness is the same as it is defined in M1. The

cost borne by project team to perform review/test/any QA activity on all defect prone

files, is taken to be another objective. As the effort required is directly proportional to the

sum of lines of code of all defect prone files, cost is taken as the sum of lines of code (LOC)

of all the files which are predicted defective. This includes both true positives (predicted

to be defective and actually defective) and false positives. Canfora et al. showed that

the multi-objective cross project prediction is more cost-effective than single objective

algorithms when there is lack of training data for a project, which is true for relatively

newer projects [1,108]. We consider these objective functions to implement multi-objective

defect prediction models across versions of the same project.

We build cross version defect prediction model using multi-objective logistic regression

(MOLR) for second problem and this model is denoted by M2. We try to answer the

following research question.

92

4 Multi-objective Defect Prediction

RQ2: How does the proposed M2 perform as compared to traditional single objective

defect prediction models in the cross version defect prediction?

We have used 11 software projects from the PROMISE repository [109], having a total of

41 different versions to answer RQ1 and RQ2. We had 30 pairs of training and testing

versions. For each pair we compared multi-objective logistic regression with the traditional

classification algorithms in terms of cost-effectiveness.

4.2 Related Work

Defect prediction models have been built using various sets of static code attributes and

process metrics. Metrics like lines of code (LOC), Halstead, CK and OO, change metrics

and past bugs are mined from the code base, version control system and bug trackers.

They are used to predict defect prone files either within a project or across the projects.

Ambros et al. tried to consolidate the defect prediction work, using the metrics mentioned

above [27]. Though they found that WCHU (Weighted Churn of source code metrics) and

LDHH (Linearly Decayed Entropy of source code metrics) are better performing metrics

for defect prediction, they concluded that there is not a single metric that predicts defect

prone files well across software projects . But they agree to many other past works which

say that past bugs and source code metrics are right alternatives in terms of overall

prediction and computational requirements. Researchers often say most of the source

code metrics are proxies of size. Zhang et al. investigated the relationship between size

of files and defect, with an assumption that large code base may correlate with more

defects [110]. Their study concludes that the defect proneness increased with the size of

the classes, but they suggested spending more resources on smaller classes which were

found to be more problematic than larger classes. Kim et al. predicted defects using

cached history [41]. They assumed that the defects will not occur alone, but rather in

bursts of several related faults. So they cached locations that are likely to have bugs.

Basili et al. found that CK metrics are useful in finding defect proneness in early phases

of the software development [98]. Subramanyam et al. showed that CK metrics are

associated with defects even after controlling for the size of the software [111]. A few

93

4 Multi-objective Defect Prediction

other studies endorsed the defect prediction models built with change metrics, as they

gave better prediction performance in classifying defect prone files [13,19,20].

Apart from finding better prediction metrics, coming up with competitive prediction

techniques for defect prediction is also an interesting research area. Classifiers like lo-

gistic regression, Naïve Bayes, decision tree, support vector machine, random forest, etc.

are applied by different researchers in the past [41, 44, 103, 112, 113]. Czibula et al. used

relational association rule mining to predict defective modules in software systems. Their

model, Defect Prediction using Relational Association Rules (DAPR) gives better pre-

dictive performance compared to the existing defect prediction techniques [114]. Marian et

al. proposed unsupervised machine learning method based on self-organizing maps which

puts defective and non-defective files in two clusters [115]. Lessmann et al. performed a

comparative study on defect prediction experiments with 22 classifiers applied on 10 pu-

blic domain datasets from NASA repository and concluded that though the metrics based

classification was useful in this domain, the importance of classification algorithm was not

significant. They did not find any significant performance difference between top 17 out of

22 classifiers used in the study [5]. But Ghotra et al. argue that by making use of cleaned

versions of NASA, PROMISE corpus and different classification algorithms, it is possible

to produce defect prediction models with significant differences in performance [116].

With a perspective different from traditional approaches, Harman suggested to reformu-

late the classic software engineering problems as a search problem. This will help the

community in finding solutions to difficult problems with competing constraints (e.g. qua-

lity, cost) [106]. Harman and Clark showed that, many metrics can be used as the guiding

force behind the search for optimal or near optimal solutions to many software engi-

neering problems [117]. Taking a clue from Harman’s work some researchers have come

up with multi-objective defect prediction techniques. Canfora et al. proposed MODEP

(Multi-Objective DEfect Predictor) based on multi-objective forms of machine learning

techniques, logistic regression and decision tree, trained using genetic algorithm [1, 108].

Carvalho et al. came up with Multi-Objective Particle Swarm Optimization (MOPSO),

which generates a model composed of rules with specific properties, which are intuitive

and comprehensible [118].

94

4 Multi-objective Defect Prediction

Research studies mentioned above, were focused on either within project cross-validation

or cross-project defect prediction to build defect prediction models. According to our

understanding, there is not much comprehensive work done on the defect prediction across

multiple versions of a software project. Zimmerman et al. showed that defect prediction

models learned from earlier releases can be used to predict defects for future releases

[42]. For instance, the model trained from release 1.0 can be used to predict defects in

release 2.0. But they concluded that their results were far from being perfect. Yang

et al. built a regression model based on the data of previous version to predict defect

proneness of components in the current version and ranked them based on their defect

proneness [119]. They compared many traditional regression algorithms with their newly

proposed Learning-To-Rank (LTR) approach and concluded that LTR performed better as

compared to other algorithms. One of the recent works in cross version defect prediction

found that network measures are more effective in cross version defect prediction. But they

conclude that it does not improve the prediction performance in a bigger way, especially

when ranking fault-prone modules [120]. Our work treats cross version defect prediction

within a project as a multi-objective optimization problem, with competing constraints like

cost and effectiveness. We have presented a comprehensive comparison of multi-objective

algorithm with traditional algorithms. We have conducted experiments in a large number

of projects with multiple releases, with the motivation of providing more generalizable

results.

4.3 Datasets and Metrics

We are using six CK metrics(Chidamber and Kemerer) [121] and LOC as features to build

defect prediction models. The choice of the metrics is based on the fact that all projects

used in our study are object oriented projects and CK metrics has been widely used as

quality indicators for object oriented softwares [27, 93, 112, 113, 122]. Table 4.1 gives brief

description about predictors used in our study.

We have considered 11 open source projects that are having data for 3 or more versions

in PROMISE repository. The details of these versions, namely number of classes and

95

4 Multi-objective Defect Prediction

percentage of defective classes are presented in the Table 4.2. As the table shows, different

versions of the projects have 109 to 965 classes with average number of classes being 385.

The choice of projects is done with a view of evaluating performance of multi-objective

algorithm across projects having wide diversity, so that the results can be generalized.

Table 4.1: Metrics [1]

Name Description

Lines of Code (LOC) Number of non-commented lines of code for each
software component (e.g., in a class)

Weighted Methods per Class (WMC) Number of methods contained in a class inclu-
ding public, private and protected methods

Coupling Between Objects (CBO) Number of classes to which a class is coupled

Depth of Inheritance (DIT) Maximum inheritance path from the class to the
root class

Number Of Children (NOC) Number of immediate sub-classes of a class

Response For a Class (RFC) Number of methods that can be invoked for an
object of given class

Lack of Cohesion among Methods (LCOM)
Number of methods in a class that are not re-
lated through the sharing of some of the class
fields

4.4 Formulation of multi-objective defect prediction models

We formulate defect prediction problem as multi-objective optimization problem with

contrasting objectives. We propose two multi-objective prediction problems each with

distinct set of objective functions.

Most of the machine learning algorithms are single objective in nature. That is, their final

goal is to estimate one solution that minimizes the prediction error. For example logistic

regression minimizes prediction error, i.e., Root Mean Square Error (RMSE) where RMSE

is defined as follows,

96

4 Multi-objective Defect Prediction

Table 4.2: Projects under study
Project Version Number of Classes % of Defective Classes
Ant 1.3 125 16%

1.4 178 22.47%
1.5 293 10.92%
1.6 351 26.21%
1.7 745 22.28%

Camel 1.0 339 3.83%
1.2 608 35.53%
1.4 872 16.63%
1.6 965 19.48%

Ivy 1.1 111 56.76%
1.4 241 6.64%
2.0 352 11.36%

Jedit 3.2 272 33.09
4.0 306 24.51%
4.1 312 25.32%
4.2 367 13.08%
4.3 492 2.23%

Log-4j 1.0 135 25.18%
1.1 109 33.94%
1.2 205 92.19%

Lucene 2.0 195 46.67%
2.2 247 58.3%
2.4 340 59.7%

Poi 1.5 237 59.49%
2.0 314 11.78%
2.5 385 64.41%
3.0 442 63.57%

Synapse 1.0 157 10.19%
1.1 222 27.03%
1.2 256 33.59%

Velocity 1.4 196 75%
1.5 214 66.35%
1.6 229 34.06%

Xalan 2.4 723 15.21%
2.5 803 48.19%
2.6 885 46.44%
2.7 909 98.79%

Xerces init 162 47.53%
1.2 440 16.14%
1.3 453 15.23%
1.4 588 74.32%

97

4 Multi-objective Defect Prediction

RMSE =

√√√√ n∑
i=1

(f(ci)− dp(ci))2 (4.1)

where f(ci) and dp(ci) take either 1 or 0, f(ci) represents whether ci is defective class or

not and dp(ci) represents whether ci is predicted to be defective or not.

It is always good to have defect prediction models with high recall so as to minimize post-

release defects. And it is easy to build models with recall value of 1. A dummy model

which predicts all files to be defect prone will have a recall value of 1. But this model

is of no use because recall is maximized without considering cost of misclassification.

Hence we would like to view defect prediction problem as multi-objective optimization

problem rather than single objective optimization problem. There will be two types of

costs associated with defect prediction models. We will discuss building multi-objective

defect prediction models that maximizes effectiveness and minimizes cost(misclassification

cost/LOC cost) in the next two subsections.

4.4.1 Optimize misclassification cost and effectiveness

There are two types of errors for any prediction model. For defect prediction problem,

Type I error is predicting non-defective file to be defect prone and Type II error is pre-

dicting defective file to be non-defective. In fact the number of Type I errors and Type

II errors are number of false positive files and number of false negative files, denoted by

FP and FN. The cost incurred due to Type I errors is the effort spent by project team on

quality assurance (QA) activities like reviewing, testing etc. of False Positive files. The

cost incurred to fix Type II errors is the effort spent by project team to fix the defective

file in post release phase.

Misclassification Cost = Cost of Type I errors+ Cost of Type II errors (4.2)

It is evident that cost of Type II error is much more than the cost of Type I error for our

problem as fixing defective file during post release phase takes huge effort as compared

to reviewing / testing a file before release. It is difficult to say how much Type I error

98

4 Multi-objective Defect Prediction

is costly as compared to Type II error. Cost factor denotes how much is the cost of

misclassifying a defective class as non-defective compared to misclassifying a non-defective

class as defective. The cost factor α can be written as follows:

α = Cost of Type II error / Cost of Type I error (4.3)

If cost of Type I error is c then cost of Type II error is αc.

Misclassification Cost = FPc+ (FN)αc (4.4)

We can normalize misclassification cost as follows:

Normalized Misclassification Cost = (FP + α(FN))c/nClasses (4.5)

where nClasses is number of classes in given version. It is always recommended to have

defect prediction model that maximizes the effectiveness and minimizes misclassification

cost. As nClasses and c are constants for a project, minimizing the misclassification

cost is same as minimizing normalized misclassification cost. And minimizing normalized

misclassification is same as minimizing (FP +α(FN))/nclasses. Hence c can be taken to

be 1 for these kinds of optimization problems. Now, we formulate our first multi-objective

defect prediction problem with the following contrasting objectives.

• maximize recall and minimize normalized misclassification cost.

We take effectiveness of model to be recall, misclassification cost as normalized misclassi-

fication cost where

Recall = TP

TP + FN
(4.6)

Normalized Misclassification Cost = FP + α · FN
nClasses

(4.7)

99

4 Multi-objective Defect Prediction

4.4.2 Optimize cost of QA activities and effectiveness

In cross version defect prediction, the defect prone files of the current version will be pre-

dicted by making use of prediction models built using previous version data. The project

team performs QA activities on the files which are predicted defective. The predicted

defective files involves both TP and FP. Hence, the cost incurred by project team is cost

of QA activities on TP and FP files. The cost of QA activities is proportional to LOC of

TP and FP files. Thus cost is measured in terms of lines of code and effectiveness in terms

of recall. The main motive behind these objectives is to find set of models such that they

minimize cost of reviewing/testing files while achieving best possible effectiveness. And

amongst these models, the most effective model can be selected based on the cost borne

by project team.

We formulate second mutli-objective defect prediction problem with the following contras-

ting objectives.

• maximize recall and minimize LOC cost.

We take effectiveness of model to be recall and it is the same as defined in Equation 4.6.

We believe that the cost of QA activities of defect prone class(ci) is proportional to number

of lines of ci(LOC(ci)) and this is also confirmed by Rahman et al. [123]. We can find

LOC cost using the following Equation,

LOC cost =
n∑
i=1

P (ci) · LOC(ci) (4.8)

where P (ci) denotes whether ith class, ci, is defect prone or not. P (ci) is set to 1 if the

predicted probability p(ci) > 0.5, otherwise it is set to 0.

100

4 Multi-objective Defect Prediction

4.5 Proposed Approach

In this section we illustrate our approach to build multi-objective prediction models. Let

C = {c1, c2, ..., cn} be classes of a given version Vk of a project P with each class having

‘m’ attributes. So training data takes form of n×m matrix. A matrix entry xi,j denotes

the value of jth attribute for ith class. The mathematical formulation of logistic regression

is given as,

p(ci) = ew0+w1xi,1+w2xi,2+...+wmxi,m

1 + ew0+w1xi,1+w2xi,2+...+wmxi,m
(4.9)

where p(ci) denotes probability of ith class being defective, while the set of scalars

W = {w0, w1, w2, ..., wm} represents the coefficients for the attributes {xi,1, ..., xi,m}. The

objective of traditional logistic regression approach is to find out a set of coefficients

W = {w0, w1, w2, ..., wm} that minimize the prediction error. It is usually done with the

help of gradient descent algorithm. This model is built using training data, and it is

used to predict defective classes in the test data. A class ci is predicted to be defective

if p(ci) > 0.5, based on the coefficients found during training process and the metrics

{xi,1, xi,2, ..., xi,m}.

The goal of multi-objective problem stated above is to find out a set of coefficients W ,

which optimizes two objectives. As there are two contrasting objectives we will get multiple

models with different trade-offs between two objectives. This problem of multi-objective

optimization can be solved by using genetic algorithm.

Now we briefly describe some basic concepts used to solve multi-objective optimization

problem. The definitions are presented here for the sake of continuity. The set of all

possible values that can be taken by solutions, is defined as the feasible region. In our case

the set of values that can be taken by the coefficients W forms the feasible region, which

is the set of real numbers, as there are no constraints on the values that coefficients can

take.

101

4 Multi-objective Defect Prediction

In multi-objective optimization problems concepts of Pareto dominance and Pareto opti-

mality are used to define the optimality of solutions [124]. These terms are defined for

two contrasting objectives.

A solution x dominates another solution y (also written x <p y) if and only if the values

of the objective functions satisfy the following conditions:

objective1(x) ≤ objective1(y) and objective2(x) > objective2(y)

or

objective1(x) < objective1(y) and objective2(x) ≥ objective2(y)

Let us assume that objective1 is the cost (LOC cost or misclassification cost) and

objective2 is effectiveness (recall) of a prediction model. In simple words above defini-

tion indicates that x is better than y if and only if, at the same level of cost x achieves

greater effectiveness than that of y; or at the same level of effectiveness x incurs lower

cost than that of y. A solution x is Pareto optimal if and only if it is not dominated by

any other solution in the feasible region. The set of solutions (coefficient vectors Wi) that

are not dominated by any other solutions is said to form Pareto optimal set, while the

corresponding objective vectors, cost and effectiveness values of the solution set W , said

to form Pareto frontier.

The final set of solutions on the Pareto frontier give different cost-effectiveness trade-offs.

It is up to software project team to decide upon how much amount of time (cost) they can

spend and then choose appropriate model. For example, with one month away from the

release, owing to shortage of time, the software project manager typically needs to plan

the cost of quality assurance activities on topmost n% of defective components. The value

of n can vary based on quality requirements and cost borne by project and organization.

In this case, there is a need of having a model which can provide multiple solutions with

different cost-effectiveness trade-offs. So multi-objective approach presented here can be

of great help in similar situations.

To search for coefficient vectors in the solution space we have used a Multi-Objective

102

4 Multi-objective Defect Prediction

Genetic Algorithm (MOGA) presented by Goldberg [125]. In general terms a genetic

algorithm works as follows:

• It starts with random set of solutions called population of size p. Each individual in

the population is known as chromosome.

• The population evolves through set of iterations, known as generations.

• From the given generation new population called offspring, is created using crossover

and mutation operations. Crossover operator combines two individuals to generate

new offspring. Mutation operator modifies the internal structure of an individual.

• A fitness function is applied on each individual of the current population to find the

values of objective functions. From the current population, fittest set of p individuals

are selected to be part of next generation using a selection operator. The fittest set

of individuals are selected based on their objective values. The selection process

follows the concepts of Pareto dominance and crowding distance. This is done to

keep the size of population as constant in each generation.

• This process is repeated until termination criteria is met.

The intuition behind the genetic algorithm is that at the end of every generation only the

fittest set of individuals make it to the next generation. So there is some improvement

in the solution at the end of every generation. After many generations, the population

approach to an ideal solution or approximately ideal solution.

In our implementation we have used NSGA-II proposed by Deb et al. [107]. For multi-

objective logistic regression used in our study, one chromosome represents the coefficient

vector W = {w0, w1, w2, ..., wm}, which forms one logistic regression model. Initially a

process starts with a population size of say p. For each model, the fitness function com-

putes the values of objectives. Based on the definition of Pareto optimality and crowding

distance, the best p set of coefficient vectors are selected for the next generation. The

process of selecting best chromosomes depends on implementation of multi-objective ge-

103

4 Multi-objective Defect Prediction

netic algorithm. NSGA-II uses fast non-dominated sorting algorithm and the concept of

crowding distance for selection process. Complete explanation of the selection process,

used in NSGA-II, is beyond the scope of this thesis. One can refer to the original paper by

Deb et al. [107]. The process of generating new population and selection of fittest set of

individuals repeats in each iteration, until optimal set of coefficients is found or maximum

number of generations is reached. At the end of training process we get optimal set of

coefficients, i.e. logistic regression models.

4.5.1 Data Pre-processing

We describe the steps required to build and evaluate the prediction models built using

single objective and multi-objective algorithms. We pre-process the data of training version

and testing version using data standardization. We have used CK metrics [121] and lines

of code (LOC) as predictor metrics. Since the values of different metrics have different

ranges, metrics are standardized to reduce the heterogeneity. Mathematically a metric m

is normalized as follows:

mz(i, cj , Vk, P) = m(i, cj , Vk, P)− µ(i, Vk, P)
σ(i, Vk, P) (4.10)

where m(i, cj , Vk, P) is the value of ith metric computed on class cj of version Vk of project

P . Mean µ(i, Vk, P) and standard deviation σ(i, Vk, P) have been calculated on all the

classes of version Vk of the project P for the ith metric. mz(i, cj , Vk, P) is the normalized

value of ith metric. We apply this normalization on data of both the training and testing

versions, while building and predicting the use of any modeling technique.

4.5.2 Training Process

1. We train MOLR for our first multi-objective optimization problem as mentioned

above on normalized data of the training version Vk−1. At the end of training we get

multiple MOLRmodels and four single objective models. From the final set of MOLR

104

4 Multi-objective Defect Prediction

models, we find out the best model. The best model is the one which is closest to

the ideal model. The ideal model has misclassification cost=0 and recall=1. We find

the closest model with help of Euclidean distance measure as shown in Algorithm 2.

If more than one models are equidistant to the ideal model then we chose the model

with least misclassification cost.

2. We train MOLR for our second problem as mentioned above and single objective

models on normalized data of the training version Vk−1. At the end of training

we get multiple MOLR models and four single objective models. We retain all the

MOLR models and apply it on the data of the test version.

4.5.3 Testing Process

We illustrate testing process for both of our problems in this subsection.

4.5.3.1 Testing Process for M1

The best possible MOLR model and other four single objective models are applied on the

data of test version. We compare all the single objective algorithms with MOLR in terms

of misclassification cost, recall and F-measure.

Misclassification cost changes based on the value of cost factor α. So, for both MOLR

and single objective algorithms, misclassification cost is calculated each time cost factor

changes. For any model (single objective or MOLR model) misclassification cost and

recall can be calculated as per Equations 4.6 and 4.7 . As recall is one of the objectives in

MOLR, its value changes based on cost factor. F-measure is the harmonic mean of recall

and precision. It denotes the balance achieved by the model between recall and precision

values. This, in turn, shows how a model achieves the balance between false negatives

and false positives. This is also a useful measure to find out effectiveness of the prediction

model. For MOLR, F-measure changes as cost factor value changes, recall being one of

105

4 Multi-objective Defect Prediction

Algorithm 2 Algorithm to select best MOLR model among several models of final po-
pulation produced by genetic algorithm.
function findBestModel(X, train_data, α)

/* X is a p × (m + 1) matrix which represents set of coefficient vectors obtained
at the end of execution of multi-objective genetic algorithm. Here p is the number of
coefficient vectors in X (final population) and m is the number of predictor metrics (6
CK metrics and LOC).*/

/* train_data represents n×m matrix denoting predictor metrics values for n classes
in the training data.*/

/* α is the cost factor.*/

Y = calculateMisclassCostRecall(X, train_data, α)
/* calculateMisclassCostRecall function will find out misclassification cost and recall

for each of the coefficient vectors in X based on the current training data and the cost
factor. Y is p× 2 matrix.*/

/* Initializing min_distance, max_recall, min_misclass_cost variables to find
out best model which is closest to ideal model with misclassification cost 0 and recall 1.
*/

best_model_index← (−1)
min_dist←∞
min_misclass_cost←∞
max_recall← 0

for i=0 to p do
dist← sqrt((Y [i, 1])2 + (1− Y [i, 2])2)
if dist < min_dist then

best_model_index← i
min_dist← dist
min_misclass_cost← Y [i, 1]
max_recall← Y [i, 2]

else if dist = min_dist & Y [i, 1] < min_misclass_cost then
/* Choosing the model with lesser misclassification cost in case the distance

is same as current minimum distance */
best_model_index← i
min_dist← dist
min_misclass_cost← Y [i, 1]
max_recall← Y [i, 2]

end if
end for

best_model← X[best_model_index]
return best_model
end function

106

4 Multi-objective Defect Prediction

the objectives of MOLR. For single objective models it remains the same. F-measure can

be calculated using the following equation.

F -measure = 2 · precision · recall
precision+ recall

(4.11)

As explained earlier, after choosing the best MOLR model from the training process we

apply it on the data of test version. The evaluation measures(recall, misclassification cost

and F-measure) are calculated for the MOLR and single objective models.

We perform two tailed Wilcoxon signed rank test for each pair of results between MOLR

and other single objective algorithms to determine whether the following null hypothesis

can be rejected.

• H01: There is no significant difference between evaluation measures of MOLR and

single objective models.

This comparison is different for all four single objective algorithms and for different cost

factors. We have conducted experiments with different cost factors - 5, 10, 15, 20. One

can choose appropriate cost factor as required by project, company and past experiences.

For all the tests, the significance level is assumed to be 0.05, i.e. probability of rejecting

the null hypothesis is 5%, when it should not be rejected.

4.5.3.2 Testing Process for M2

From the training process we get multiple models for MOLR. In this approach we apply

all the training models on the data of test version. We compare all the single objective

algorithms with multi-objective algorithm in terms of LOC cost and effectiveness. LOC

cost and effectiveness can be found using Equations 4.8 and 4.6. After complete training

and testing process we plot LOC cost and effectiveness obtained from data of testing

version on the same graph for comparison purpose.

107

4 Multi-objective Defect Prediction

Figure 4.1: Example showing selection of multi-objective objective model having same cost as
single objective model

Figure 4.2: Example showing selection of closest multi-objective objective model having lesser
cost than single objective model

From the definition of Pareto dominance described in the previous section, for each single

objective model, we try to find out one MOLR model that has the same or lesser LOC

cost than that of the single objective model. In particular we try to compare single and

multi-objective models in terms of effectiveness at the same LOC cost that we have to

spend with the single objective model. Figure 4.1 depicts the process of selecting multi-

objective model corresponding to single objective model, having same LOC cost as that of

single objective model. For the situation shown in Figure 4.1, multi-objective model has

more effectiveness than single objective model.

Due to inherent randomness of NSGA-II algorithm, we may not get a multi-objective

model having the same LOC cost as that of the single objective model. So we try to find

nearest multi-objective model having lesser cost than single objective model. We find out

how multi-objective model performs compared to the single objective model by spending

lesser LOC cost than that to be spent with use of single objective model. The results show

that multi-objective model is more effective even at lesser LOC cost. One example for this

108

4 Multi-objective Defect Prediction

situation is depicted in Figure 4.2. Here multi-objective model has more effectiveness than

single objective model even at lesser LOC cost than that of the single objective model.

For M2, we compare single objective and multi-objective models in terms of effectiveness.

As explained above, we find out MOLR model having same or lesser LOC cost as compared

to given single objective model. After finding such a MOLR model for each of the single

objective algorithm we compare recall values of both the models. We find out how much

effective the MOLR model is compared to single objective model at the same LOC cost.

To prove significance of the results statistically, we compare recall values of MOLR and

single objective model using two tailed Wilcoxon paired test to determine whether the

following null hypotheses could be rejected.

• H02: There is no significant difference between recall values of MOLR and single

objective predictors for cross version defect prediction at the same LOC cost.

This comparison is different for all four single objective algorithms. In other words, we

find out closest multi-objective model with respect to each single objective models, using

the process described above. For all tests, the significance level is assumed to be 0.05, i.e.

probability of rejecting the null hypothesis is 5%, when it should not be rejected.

4.5.4 Implementation Settings

MOLR is implemented using MATLAB Global Optimization Toolbox [126]. Other single

objective algorithms are also implemented in MATLAB. The implementation settings are

kept the same for all experiments and for both the approaches, so that we can compare

results in the same conditions. Otherwise one can choose appropriate parameters according

to project requirement.

The implementation details about single objective algorithms is as follows:

• Logistic Regression: glmfit function has been used for logistic regression imple-

109

4 Multi-objective Defect Prediction

mentation. The distribution parameter has been set to binomial and link parameter

has been set to logit.

• Naïve Bayes: NaïveBayes.fit function has been used for Naïve Bayes implementa-

tion. Implementation of Naïve Bayes function requires unnormalized data as input.

Rest of the functions requires normalized data as described in data preprocessing

process (Section 4.5.1).

• Decision Tree: classregtree function has been used for decision tree implementa-

tion. The method parameter has been set to classification.

• Random Forest: TreeBagger function has been used for random forest implemen-

tation. The method parameter has been set to classification. Number of trees (ntrees

parameter) has been set to 100. We experimented with different number of trees

and chose the one having the least variation in results.

Table 4.3: Multi-Objective Genetic Algorithm Parameter Configuration

Parameter Value

Population size 200

Initial Population Random values between [-10,10]

Number of Generations 500

Crossover Function Arithmetic crossover with crossover probability
pc = 0.9

Mutation function Uniform Mutation with probability pm = 1/n
where n is size of chromosomes

Stopping Criteria
If the average Pareto spread is less than 10−6 in
the subsequent 50 generations, then the execu-
tion of GA is terminated.

gamultiobj function has been used for NSGA-II implementation. Selection of parameters

for NSGA-II implementation has been done with reference to some of the previous studies

like [1,108,124,127] and experimentation. For the parameters chosen by experimentation

we have taken spread value, defined by Deb, as the evaluation criteria [128]. Spread

value gives an indication of how well the solutions are spaced on the final Pareto front.

The greater the spread value, the better the solutions on Pareto front. Krall et al. [127]

110

4 Multi-objective Defect Prediction

have also used spread as one of the parameters to evaluate the multi-objective algorithm

proposed by them. Spread value has been calculated on the Pareto fronts obtained after

each run of NGSA-II on the data of training version. The parameters that are used for

NSGA-II implementation are described in Table 3.

For the first multi objective defect prediction problem M1, NSGA-II algorithm has been

executed 30 times during training process. This is done to account for the inherent rand-

omness of GAs. After each run we choose a best model as described with algorithm 1.

At the end of 30 runs we take best model among all 30 models obtained during each run.

This is also done with help of Algorithm 2, i.e. final logistic regression model is the one

which is closest to ideal model (0 misclassification cost, 1 recall) among all the 30 models

obtained in 30 runs. Final logistic regression model obtained from the training process is

applied on the data of the testing version.

For our second problem, NSGA-II algorithm has been executed 31 times during training

process. The reason behind choosing an odd number (31 runs) is to choose coefficient

vectors with respect to median Pareto front. We chose Pareto front with median spread

value as the final solution, i.e. the coefficient vectors corresponding to median spread value

among these 31 runs. These coefficient vectors represent final logistic regression models

obtained from the training process and these models will be applied on the data of the

testing version.

4.6 Results and Discussion

We discuss the results obtained for both the multi-objective defect prediction models and

four single objective approaches in this section. We have conducted 30 experiments in 11

projects amongst 41 versions. We have taken projects which had at least 3 versions to

put more strength to cross version study, with the hope of achieving more generalizable

results. Each experiment will be referred as ‘project_name train_version-test_version’.

For example ‘Ant 1.3-1.4’ denotes that data of version 1.3 of Ant project is used as training

111

4 Multi-objective Defect Prediction

data and data of version 1.4 is used as testing data. We use this notation to denote each

experiment throughout this section.

RQ1: How does the proposed M1 perform as compared to traditional single

objective defect prediction models in the cross version defect prediction?

In this section we discuss about the results obtained from our experiments and try to

answer research question RQ1. As explained earlier we compare the performance in terms

of misclassification cost, recall and F-measure.

We have built multi-objective defect prediction model MOLR with cost factors being 5,

10, 15, 20 and the results are presented in Table 4.4, Table 4.5, Table 4.6 and Table

4.7 respectively. At the end of training phase of MOLR, we will have the best possible

MOLR model that has (misclassification cost, recall) closest to (0,1) as explained in Section

4.5.2. For each of the experiments, misclassification cost and recall values of MOLR and

four single objective prediction models are recorded. For each of the experiment, we

have boldfaced misclassification value if it is the lowest amongst all other misclassification

values. Similarly we have boldfaced recall value if it is the largest amongst all other recall

values. For example, misclassification cost is the lowest and recall is the highest for MOLR

for the experiment ‘Ant 1.3-1.4’ as shown in in Table 4.4. And in this scenario, we can

always claim that MOLR is preferred to other four single objective models.

From the Table 4.4, we can observe that MOLR achieves lesser misclassification cost and

higher recall as compared to other single objective algorithms in most of the experiments.

Overall, in 20 out of 30 experiments, MOLR achieve better performance in terms of mis-

classification cost and recall combined. As cost factor increases, the performance of MOLR

keeps improving. We can observe that, for the cost factors 10, 15 and 20, MOLR model

dominate 24, 25, and 28 out of 30 experiments respectively in terms of both evaluation

measures (misclassification cost and recall).

With increase in cost factors, FN file is penalized more than FP file. Minimizing misclas-

sification cost takes care of controlling False Negative files in prediction and hence recall

112

4 Multi-objective Defect Prediction

improves. Hence MOLR performs better than other single objective models with increase

in cost factor value.

There are only 2 experiments namely ‘Ivy 1.1-1.4’ and ‘Jedit 4.2-4.3’ where MOLR is not

able to achieve least misclassification cost. One of the reasons can be that the test versions

of both experiments have very few classes which are actually defective.

For Camel ‘1.2-1.4’, ‘Ivy 1.1-1.4’, ‘Poi 1.5-2.0’ and ‘Velocity 1.5-1.6’ experiments, recall

values achieved by MOLR is 1. This means MOLR is able to identify all the defective

classes accurately.

Table 4.4: Misclassification Cost and Recall Comparison for α = 5

Project Train Test MOLR LR NB DT RF
MC
Cost Recall MC

Cost Recall MC
Cost Recall MC

Cost Recall MC
Cost Recall

Ant

1.3 1.4 0.9551 0.3000 1.0169 0.1500 1.0674 0.1250 0.9719 0.2250 1.0843 0.1250
1.4 1.5 0.6894 0.9063 0.4676 0.1563 0.7884 0.6563 0.3686 0.5625 0.5256 0.1250
1.5 1.6 0.8262 0.4239 1.1225 0.1522 1.0342 0.2500 1.1909 0.1087 1.0712 0.1957
1.6 1.7 0.5557 0.8855 0.6765 0.4398 0.8040 0.3735 0.6832 0.5121 0.6268 0.5121

Camel
1.0 1.2 1.4227 0.2824 1.7516 0.0139 1.5526 0.1574 1.7204 0.0370 1.7549 0.0139
1.2 1.4 0.7924 1.0000 0.7397 0.1517 0.7144 0.2345 0.7592 0.3931 0.7099 0.4483
1.4 1.6 0.6705 0.7234 0.9098 0.0798 0.8860 0.1489 0.8642 0.2394 0.8342 0.1702

Ivy 1.1 1.4 0.9253 1.0000 0.5560 0.8125 0.4398 0.3125 0.6805 0.6875 0.6141 0.7500
1.4 2.0 0.3977 0.7750 0.4858 0.1750 0.5341 0.1250 0.5483 0.1250 0.5653 0.0250

Jedit

3.2 4.0 0.5784 0.8667 0.7745 0.4667 1.0523 0.2000 0.6928 0.5333 0.6569 0.5733
4.0 4.1 0.5064 0.8734 0.8237 0.3671 1.0417 0.2152 0.6058 0.6329 0.6795 0.5063
4.1 4.2 0.4823 0.9375 0.3924 0.5417 0.5259 0.3125 0.3760 0.8542 0.4005 0.6042
4.2 4.3 0.3862 0.6364 0.1077 0.4546 0.1240 0.2727 0.1728 0.3636 0.1280 0.3636

Log4j 1.0 1.1 0.5780 0.7568 0.9083 0.4865 0.9908 0.4595 0.6147 0.6757 0.7798 0.5676
1.1 1.2 1.3854 0.7090 3.5659 0.2275 3.2488 0.2963 3.4732 0.2487 3.7122 0.1958

Lucene 2.0 2.2 0.6559 0.9028 1.7692 0.4236 2.2915 0.2292 1.7692 0.4306 1.5830 0.4861
2.2 2.4 0.4412 0.9803 0.7265 0.8670 2.2353 0.2906 1.1676 0.6897 0.9147 0.7636

Poi
1.5 2.0 0.8599 1.0000 0.8567 0.5946 0.6879 0.3243 0.8280 0.7838 0.8280 0.8919
2.0 2.5 2.5403 0.2581 3.1351 0.0282 2.8649 0.1169 2.9558 0.0927 2.9870 0.0766
2.5 3.0 0.3778 0.9893 0.6538 0.8577 2.5317 0.2135 1.1380 0.7011 0.8869 0.7829

Synapse 1.0 1.1 0.9505 0.4167 1.3514 0.0000 1.0991 0.4333 1.1486 0.1667 1.2072 0.1167
1.1 1.2 0.7344 0.7791 1.3594 0.2093 1.5352 0.1279 1.1836 0.3488 1.2930 0.2558

Velocity 1.4 1.5 0.5701 0.9225 0.6729 0.8873 1.4112 0.6620 0.8037 0.8451 0.6121 0.9085
1.5 1.6 0.6332 1.0000 0.5721 0.9615 1.2882 0.3205 0.6900 0.8590 0.5852 0.8718

Xalan
2.4 2.5 1.2304 0.5736 2.2864 0.0543 2.1644 0.1137 2.1270 0.1344 2.2379 0.0801
2.5 2.6 0.5356 0.9903 1.4147 0.4453 2.0362 0.1484 0.8429 0.7348 1.1119 0.6034
2.6 2.7 0.7701 0.8463 3.3333 0.3252 3.6084 0.2695 2.6095 0.4733 2.7393 0.4454

Xerces
1.0 1.2 0.8295 0.9718 0.7614 0.4085 0.8932 0.4507 0.7159 0.2535 0.7591 0.3380
1.2 1.3 0.7550 0.6232 0.7174 0.0580 0.6313 0.3188 0.7638 0.1739 0.7395 0.1449
1.3 1.4 1.9711 0.4783 3.4201 0.0801 3.1207 0.1625 3.1667 0.1510 3.4456 0.0732

Average 0.7603 0.3625 0.2774 0.4346 0.4005

F-measure is the harmonic mean of recall and precision and it explains how the model

is balanced against false positives and false negatives. For each value of cost factor - 5,

10, 15, 20, F-measure achieved by the respective models are reported in Table 4.8. And

113

4 Multi-objective Defect Prediction

Table 4.5: Misclassification Cost and Recall Comparison for α = 10

Project Train Test MOLR LR NB DT RF
MC
Cost Recall MC

Cost Recall MC
Cost Recall MC

Cost Recall MC
Cost Recall

Ant

1.3 1.4 1.4326 0.5000 1.9719 0.1500 2.0506 0.1250 1.8427 0.2250 2.0506 0.1250
1.4 1.5 0.7509 0.9688 0.9283 0.1563 0.9761 0.6563 0.6075 0.5625 0.9727 0.1563
1.5 1.6 0.7664 0.8261 2.2336 0.1522 2.0171 0.2500 2.3590 0.1087 2.1538 0.1848
1.6 1.7 0.6349 0.9157 1.3007 0.4398 1.5020 0.3735 1.2268 0.5121 1.0966 0.5482

Camel
1.0 1.2 2.5707 0.3287 3.5033 0.0139 3.0493 0.1574 3.4309 0.0370 3.4885 0.0185
1.2 1.4 0.7947 1.0000 1.4450 0.1517 1.3509 0.2345 1.2638 0.3931 1.0940 0.4621
1.4 1.6 0.6984 0.9362 1.8062 0.0798 1.7150 0.1489 1.6052 0.2394 1.6435 0.1702

Ivy 1.1 1.4 0.8755 1.0000 0.6183 0.8125 0.6680 0.3125 0.7842 0.6875 0.7261 0.8125
1.4 2.0 0.4773 0.8000 0.9545 0.1750 1.0313 0.1250 1.0455 0.1250 1.0938 0.0500

Jedit

3.2 4.0 0.6993 0.8800 1.4281 0.4667 2.0327 0.2000 1.2647 0.5333 1.1078 0.6133
4.0 4.1 0.7115 0.8861 1.6250 0.3671 2.0353 0.2152 1.0705 0.6329 1.2468 0.5317
4.1 4.2 0.5995 0.9583 0.6921 0.5417 0.9755 0.3125 0.4714 0.8542 0.5886 0.6458
4.2 4.3 0.4817 0.6364 0.1687 0.4546 0.2053 0.2727 0.2439 0.3636 0.1850 0.4546

Log4j 1.0 1.1 1.0183 0.7568 1.7798 0.4865 1.9083 0.4595 1.1651 0.6757 1.5138 0.5676
1.1 1.2 2.4341 0.7407 7.1268 0.2275 6.4927 0.2963 6.9366 0.2487 7.4683 0.1905

Lucene 2.0 2.2 0.9393 0.9028 3.4494 0.4236 4.5385 0.2292 3.4292 0.4306 3.2186 0.4653
2.2 2.4 0.5294 0.9754 1.1235 0.8670 4.3529 0.2906 2.0941 0.6897 1.6794 0.7537

Poi
1.5 2.0 0.8822 1.0000 1.0955 0.5946 1.0860 0.3243 0.9554 0.7838 0.8758 0.8919
2.0 2.5 4.3818 0.3427 6.2649 0.0282 5.7091 0.1169 5.8779 0.0927 6.0104 0.0686
2.5 3.0 0.4887 0.9715 1.1063 0.8577 5.0317 0.2135 2.0882 0.7011 1.6176 0.7758

Synapse 1.0 1.1 1.6757 0.4500 2.7027 0.0000 1.8649 0.4333 2.2748 0.1667 2.3604 0.1333
1.1 1.2 0.9453 0.8488 2.6875 0.2093 3.0000 0.1279 2.2773 0.3488 2.5078 0.2674

Velocity 1.4 1.5 0.5187 0.9718 1.0467 0.8873 2.5327 0.6620 1.3178 0.8451 0.8178 0.9225
1.5 1.6 0.6419 1.0000 0.6376 0.9615 2.4454 0.3205 0.9301 0.8590 0.7860 0.8718

Xalan
2.4 2.5 1.9738 0.6408 4.5654 0.0543 4.3001 0.1137 4.2130 0.1344 4.4060 0.0904
2.5 2.6 0.5458 0.9951 2.7028 0.4453 4.0136 0.1484 1.4588 0.7348 1.8000 0.6545
2.6 2.7 0.3311 0.9677 6.6667 0.3252 7.2167 0.2695 5.2112 0.4733 5.5006 0.4432

Xerces
1.0 1.2 0.8500 0.9718 1.2386 0.4085 1.3364 0.4507 1.3182 0.2535 1.1818 0.4085
1.2 1.3 1.0088 0.6812 1.4349 0.0580 1.1501 0.3188 1.3929 0.1739 1.4062 0.1304
1.3 1.4 3.1412 0.5835 6.8384 0.0801 6.2330 0.1625 6.3214 0.1510 6.8912 0.0732

Average 0.8146 0.3625 0.2774 0.4346 0.4161

114

4 Multi-objective Defect Prediction

Table 4.6: Misclassification Cost and Recall Comparison for α = 15

Project Train Test MOLR LR NB DT RF
MC
Cost Recall MC

Cost Recall MC
Cost Recall MC

Cost Recall MC
Cost Recall

Ant

1.3 1.4 2.0787 0.4750 2.9270 0.1500 3.0337 0.1250 2.7135 0.2250 3.1124 0.1000
1.4 1.5 0.8464 0.9375 1.3891 0.1563 1.1638 0.6563 0.8464 0.5625 1.4437 0.1563
1.5 1.6 1.0399 0.8152 3.3447 0.1522 3.0000 0.2500 3.5271 0.1087 3.2678 0.1739
1.6 1.7 0.8148 0.9036 1.9248 0.4398 2.2000 0.3735 1.7705 0.5121 1.5960 0.5482

Camel
1.0 1.2 3.6266 0.3565 5.2549 0.0139 4.5461 0.1574 5.1414 0.0370 5.2566 0.0139
1.2 1.4 0.7936 1.0000 2.1502 0.1517 1.9874 0.2345 1.7683 0.3931 1.6594 0.4207
1.4 1.6 0.7741 0.9628 2.7026 0.0798 2.5440 0.1489 2.3461 0.2394 2.3648 0.2021

Ivy 1.1 1.4 0.8589 1.0000 0.6805 0.8125 0.8963 0.3125 0.8880 0.6875 0.8589 0.7500
1.4 2.0 0.6278 0.8000 1.4233 0.1750 1.5284 0.1250 1.5426 0.1250 1.6364 0.0500

Jedit

3.2 4.0 0.9183 0.8667 2.0817 0.4667 3.0131 0.2000 1.8366 0.5333 1.5196 0.6267
4.0 4.1 0.8301 0.9241 2.4263 0.3671 3.0288 0.2152 1.5353 0.6329 1.8397 0.5317
4.1 4.2 0.5940 0.9792 0.9918 0.5417 1.4251 0.3125 0.5668 0.8542 0.8965 0.6042
4.2 4.3 0.5346 0.6364 0.2297 0.4546 0.2866 0.2727 0.3150 0.3636 0.2663 0.3636

Log4j 1.0 1.1 1.2569 0.8108 2.6514 0.4865 2.8257 0.4595 1.7156 0.6757 2.1009 0.5946
1.1 1.2 4.5805 0.6720 10.6878 0.2275 9.7366 0.2963 10.4000 0.2487 11.0537 0.2011

Lucene 2.0 2.2 1.2834 0.8958 5.1296 0.4236 6.7854 0.2292 5.0891 0.4306 4.6599 0.4792
2.2 2.4 0.5559 0.9803 1.5206 0.8670 6.4706 0.2906 3.0206 0.6897 1.9147 0.8128

Poi
1.5 2.0 0.8822 1.0000 1.3344 0.5946 1.4841 0.3243 1.0828 0.7838 0.8089 0.9730
2.0 2.5 6.1195 0.3871 9.3948 0.0282 8.5532 0.1169 8.8000 0.0927 8.9351 0.0766
2.5 3.0 0.5045 0.9822 1.5588 0.8577 7.5317 0.2135 3.0385 0.7011 2.2285 0.7865

Synapse 1.0 1.1 2.6126 0.4000 4.0541 0.0000 2.6306 0.4333 3.4009 0.1667 3.5901 0.1167
1.1 1.2 0.5977 0.9884 4.0156 0.2093 4.4648 0.1279 3.3711 0.3488 3.8477 0.2442

Velocity 1.4 1.5 0.6028 0.9718 1.4206 0.8873 3.6542 0.6620 1.8318 0.8451 1.1589 0.9155
1.5 1.6 0.6245 1.0000 0.7031 0.9615 3.6026 0.3205 1.1703 0.8590 1.0087 0.8718

Xalan
2.4 2.5 2.4620 0.7003 6.8443 0.0543 6.4359 0.1137 6.2989 0.1344 6.6389 0.0853
2.5 2.6 0.8203 0.9586 3.9910 0.4453 5.9910 0.1484 2.0746 0.7348 2.3480 0.6910
2.6 2.7 0.6062 0.9599 10.0000 0.3252 10.8251 0.2695 7.8130 0.4733 8.1683 0.4488

Xerces
1.0 1.2 0.8886 0.9155 1.7159 0.4085 1.7795 0.4507 1.9205 0.2535 1.6318 0.4225
1.2 1.3 1.2450 0.6812 2.1523 0.0580 1.6689 0.3188 2.0221 0.1739 2.0839 0.1449
1.3 1.4 4.5340 0.5973 10.2568 0.0801 9.3452 0.1625 9.4762 0.1510 10.3078 0.0755

Average 0.8186 0.3625 0.2774 0.4346 0.4160

115

4 Multi-objective Defect Prediction

Table 4.7: Misclassification Cost and Recall Comparison for α = 20

Project Train Test MOLR LR NB DT RF
MC
Cost Recall MC

Cost Recall MC
Cost Recall MC

Cost Recall MC
Cost Recall

Ant

1.3 1.4 2.2303 0.5750 3.8820 0.1500 4.0169 0.1250 3.5843 0.2250 3.8989 0.1500
1.4 1.5 0.8498 0.9375 1.8498 0.1563 1.3515 0.6563 1.0853 0.5625 1.7850 0.2188
1.5 1.6 1.2251 0.8261 4.4558 0.1522 3.9829 0.2500 4.6952 0.1087 4.3476 0.1739
1.6 1.7 0.9879 0.8976 2.5490 0.4398 2.8980 0.3735 2.3141 0.5121 2.1987 0.5241

Camel
1.0 1.2 4.8059 0.3519 7.0066 0.0139 6.0428 0.1574 6.8520 0.0370 7.0740 0.0046
1.2 1.4 0.7936 1.0000 2.8555 0.1517 2.6239 0.2345 2.2729 0.3931 2.1021 0.4345
1.4 1.6 0.7627 0.9734 3.5990 0.0798 3.3731 0.1489 3.0870 0.2394 3.2394 0.1755

Ivy 1.1 1.4 0.8797 1.0000 0.7427 0.8125 1.1245 0.3125 0.9917 0.6875 0.8423 0.8125
1.4 2.0 0.6165 0.8500 1.8920 0.1750 2.0256 0.1250 2.0398 0.1250 2.2898 0.0000

Jedit

3.2 4.0 0.9444 0.9333 2.7353 0.4667 3.9935 0.2000 2.4085 0.5333 2.0523 0.6133
4.0 4.1 0.9840 0.9114 3.2276 0.3671 4.0224 0.2152 2.0000 0.6329 2.3045 0.5570
4.1 4.2 0.6294 0.9792 1.2916 0.5417 1.8747 0.3125 0.6621 0.8542 1.0599 0.6458
4.2 4.3 0.6138 0.6364 0.2907 0.4546 0.3679 0.2727 0.3862 0.3636 0.3333 0.3636

Log4j 1.0 1.1 1.2752 0.8649 3.5229 0.4865 3.7431 0.4595 2.2661 0.6757 2.9725 0.5676
1.1 1.2 6.1902 0.6667 14.2488 0.2275 12.9805 0.2963 13.8634 0.2487 14.8342 0.1958

Lucene 2.0 2.2 1.2632 0.9236 6.8097 0.4236 9.0324 0.2292 6.7490 0.4306 6.1741 0.4792
2.2 2.4 0.9029 0.9557 1.9176 0.8670 8.5882 0.2906 3.9471 0.6897 3.0941 0.7586

Poi
1.5 2.0 0.8822 1.0000 1.5732 0.5946 1.8822 0.3243 1.2102 0.7838 1.0223 0.8919
2.0 2.5 2.2468 0.8468 12.5247 0.0282 11.3974 0.1169 11.7221 0.0927 12.0130 0.0686
2.5 3.0 0.4593 0.9893 2.0113 0.8577 10.0317 0.2135 3.9887 0.7011 2.8190 0.7936

Synapse 1.0 1.1 3.2658 0.4333 5.4054 0.0000 3.3964 0.4333 4.5270 0.1667 4.7928 0.1167
1.1 1.2 0.9375 0.9419 5.3438 0.2093 5.9297 0.1279 4.4648 0.3488 4.9688 0.2674

Velocity 1.4 1.5 0.7850 0.9648 1.7944 0.8873 4.7757 0.6620 2.3458 0.8451 1.3411 0.9225
1.5 1.6 0.6288 1.0000 0.7686 0.9615 4.7598 0.3205 1.4105 0.8590 1.2271 0.8718

Xalan
2.4 2.5 2.4135 0.7830 9.1233 0.0543 8.5716 0.1137 8.3848 0.1344 8.8406 0.0853
2.5 2.6 0.5480 0.9951 5.2791 0.4453 7.9684 0.1484 2.6904 0.7348 3.0927 0.6886
2.6 2.7 0.8482 0.9577 13.3333 0.3252 14.4334 0.2695 10.4147 0.4733 10.8691 0.4499

Xerces
1.0 1.2 0.9341 0.9437 2.1932 0.4085 2.2227 0.4507 2.5227 0.2535 1.8932 0.5070
1.2 1.3 1.1280 0.8551 2.8698 0.0580 2.1876 0.3188 2.6512 0.1739 2.6556 0.1449
1.3 1.4 4.1395 0.7254 13.6752 0.0801 12.4575 0.1625 12.6310 0.1510 13.8129 0.0709

Average 0.8573 0.3625 0.2774 0.4346 0.4185

116

4 Multi-objective Defect Prediction

Table 4.8: F-measure comparison for different cost factor values

Project Train Test F-measure
MOLR
(α = 5)

MOLR
(α = 10)

MOLR
(α = 15)

MOLR
(α = 20) LR NB DT RF

Ant 1.3 1.4 0.29268 0.34783 0.33333 0.38333 0.21053 0.16667 0.26866 0.15873
1.4 1.5 0.23387 0.22711 0.21429 0.2214 0.25641 0.18341 0.40909 0.16
1.5 1.6 0.5 0.54874 0.54152 0.54676 0.25455 0.34586 0.18182 0.31034
1.6 1.7 0.46519 0.46697 0.43924 0.41913 0.52518 0.40391 0.47887 0.54313

Camel 1.0 1.2 0.33243 0.355 0.37288 0.36715 0.0274 0.23944 0.06957 0.02715
1.2 1.4 0.29562 0.29502 0.29532 0.29532 0.22335 0.2753 0.26887 0.30303
1.4 1.6 0.38256 0.38344 0.35806 0.36346 0.13889 0.20664 0.25568 0.26122

Ivy 1.1 1.4 0.12549 0.13169 0.13389 0.13115 0.17568 0.13889 0.13253 0.15385
1.4 2.0 0.37349 0.4 0.36994 0.39766 0.26415 0.17241 0.15873 0.04444

Jedit 3.2 4.0 0.48689 0.49811 0.4797 0.41916 0.47619 0.26786 0.52632 0.54088
4.0 4.1 0.53906 0.49822 0.45483 0.45283 0.50435 0.30631 0.57803 0.58824
4.1 4.2 0.35294 0.31293 0.31544 0.30719 0.48148 0.32967 0.42708 0.44961
4.2 4.3 0.07447 0.06512 0.06335 0.05833 0.25641 0.17143 0.12308 0.18605

Log-4j 1.0 1.1 0.6747 0.65116 0.60606 0.59259 0.61017 0.54839 0.72464 0.66667
1.1 1.2 0.80723 0.8284 0.78154 0.77778 0.3691 0.45528 0.39496 0.32599

Lucene 2.0 2.2 0.71038 0.71038 0.70685 0.72087 0.53744 0.35106 0.53219 0.59574
2.2 2.4 0.74812 0.74576 0.74953 0.74046 0.7169 0.39073 0.65882 0.72261

Poi 1.5 2.0 0.21512 0.21083 0.21083 0.21083 0.17391 0.17143 0.2028 0.2129
2.0 2.5 0.34595 0.4359 0.45714 0.746 0.05447 0.20351 0.16197 0.13971
2.5 3.0 0.782 0.7913 0.78298 0.79202 0.78887 0.33803 0.70232 0.7483

Synapse 1.0 1.1 0.41322 0.4186 0.3871 0.39695 0 0.325 0.26667 0.2
1.1 1.2 0.54472 0.53875 0.55016 0.52769 0.32143 0.1913 0.43165 0.36975

Velocity 1.4 1.5 0.77059 0.78632 0.79083 0.78963 0.75904 0.63087 0.74074 0.76558
1.5 1.6 0.51827 0.51485 0.52174 0.52 0.55762 0.37594 0.54032 0.5913

Xalan 2.4 2.5 0.57513 0.59759 0.60559 0.63924 0.10145 0.19383 0.22034 0.14253
2.5 2.6 0.63994 0.63757 0.61755 0.64664 0.51841 0.23282 0.66083 0.59903
2.6 2.7 0.91127 0.9775 0.97346 0.9723 0.49076 0.42456 0.6391 0.61633

Xerces 1.0 1.2 0.27879 0.27935 0.29748 0.28571 0.25778 0.21262 0.25899 0.24742
1.2 1.3 0.26543 0.26629 0.26857 0.26879 0.10959 0.30986 0.16901 0.16807
1.3 1.4 0.62857 0.70932 0.72099 0.80457 0.14799 0.2768 0.25882 0.13617

Average 0.4761 0.4876 0.4800 0.4931 0.3436 0.2946 0.3814 0.3658

Table 4.9: Results of Wilcoxon signed rank test. Table shows p-value obtained by comparing
performance measures of MOLR and other algorithms

Cost Mis-classification Cost Recall F-measure
Factor LR NB DT RF LR NB DT RF LR NB DT RF

5 0.00096 0.0002 0.00128 0.0015 0 0 0 0 0.00278 0 0.00496 0.00298
10 0 0 0 0 0 0 0 0 0.00168 0 0.00528 0.00466
15 0 0 0 0 0 0 0 0 0.00386 0 0.01174 0.01108
20 0 0 0 0 0 0 0 0 0.00528 0 0.01552 0.01242

117

4 Multi-objective Defect Prediction

also F-measure of four single objective prediction models are also shown in the same table.

F-measure of MOLR models are relatively better than other single objective algorithms.

For ‘Xalan 2.6-2.7’ experiment, F-measure is greater than 0.9 for all values of cost factosr.

Unlike other experiments F-measure does not always increase with increase in cost factor.

We can observe that on an average, for different values of cost factor, MOLR achieve

better F-measure as compared to four single objective prediction models.

Wilcoxon signed test is applied to test whether MOLR model is significantly better than

single objective optimization model. If p-value is less than 0.05 we can conclude that

MOLR is significantly better than the single objective prediction model. For each evalua-

tion measure (recall, misclassification cost, F-measure) and cost factor value (5, 10,15, 20)

the MOLR model is tested to check whether it is significantly better than the four single

objective prediction models. And p-values are shown in Table 4.9.

From the results, one can observe that p-value is less than 0.05 for all evaluation measures

and cost factors. In fact, for comparison in terms of recall value, p-value is zero for all the

experiments. Even for misclassification cost, p-value is zero for the cost factor greater than

or equal to 10. This shows that MOLR is working quite dominantly. As p-value is less

than 0.05 for all evaluation measures and cost factors, we can easily reject null hypothesis

H01. This confirms domination of MOLR over single objective prediction models.

RQ2: How does the proposed M2 perform as compared to traditional single

objective defect prediction models in the cross version defect prediction?

In this sub-section we discuss about results of our experiments to answer our second

research question RQ2. As explained earlier, we compare the performance of MOLR and

four single objective prediction models in terms of cost and recall.

At the end of the training phase of building multi-objective defect prediction model, there

are several models with varying cost and effectiveness. As described in Section 4.5.3.2, for

each single objective prediction model we select the closest multi-objective model having

118

4 Multi-objective Defect Prediction

the same or lesser LOC cost. We find out how effective (in terms of recall) the multi-

objective model is compared to single objective model at the same or lesser LOC cost.

The comparative results of single objective logistic regression model and the correspon-

ding multi-objective prediction model are shown in Table 4.10. We also report LOC cost

difference along with recall difference of two models since we compare effectiveness at the

same or lesser LOC cost. From the Table 4.10, it can be observed that, for the experiment

Ant 1.6 - 1.7, MOLR gained recall of 0.1446 by incurring lesser cost (-1050) than that of

Single Objective Logistic Regression.

The comparative results of multi-objective prediction model with single objective pre-

diction models - Naïve Bayes classifier, decision tree, random forest are shown in Table

4.11, Table 4.12, and Table 4.13 respectively. We take a deeper look on each comparison

table. For each comparison table, we discuss the gain in recall values achieved by MOLR

and the special cases where MOLR did not achieve any gain compared to single objective

algorithm. From the tables it can be seen that recall values of MOLR are better than

single objective algorithms for most of the cases.

The comparative results of MOLR and Single Objective logistic regression are shown in

Table 4.10. For 25 out of 30 experiments, MOLR is able to achieve better recall than

single objective logistic regression. MOLR is able to achieve 1% to 65% gain in recall. In

Xalan project all 3 experiments achieved more than 40% gain in recall, with Xalan 2.6-2.7

experiment achieving highest recall gain of 65.14%. The LOC cost difference is highest for

Xerces 1.3-1.4 experiment (LOC difference of 11412), but recall gain achieved by MOLR

model is 63.39%.

There are 5 cases when recall value of MOLR is lesser than or equal to SOLR values (Ant

1.3-1.4, Ant 1.4-1.5, Ant 1.5-1.6, Jedit 4.2-4.3, and Synapse 1.0-1.1). In Synapse 1.0-1.1

experiment SOLR achieves zero LOC cost and effectiveness. The reason for this can be

that the train version Synapse-1.0 had very few defective classes (10% of 157 classes), that

gave poor performance when tested on Synapse version 1.1. The SOLR predictor classified

all classes as non-defective, resulting in zero LOC cost and zero effectiveness. The loss in

recall varies from 0% to 10% for these 5 cases, which is very less compared to gains we

119

4 Multi-objective Defect Prediction

achieve for rest of the 25 experiments. For three projects recall remains the same but for

only two project MOLR was not able to get better recall with lesser cost.

Average recall gain across all experiments is 22.77%. This shows how effectively MOLR

model is able to predict defect prone classes compared to SOLR.

The recall and LOC cost values for MOLR and Naïve Bayes classifier are reported in

Table 4.11. MOLR is able to outperform Naïve Bayes in all 30 experiments. The gain

in recall varies from 1% to 76%. In particular, there are 17 cases when MOLR is able

to achieve more than 30% gain in recall compared to Naïve Bayes classifier. In this case

also, maximum cost difference is reported for Xerces 1.3 - 1.4 experiment (LOC difference

of 13834). The gain in recall value for this experiment is 76.89%, which is maximum

among all experiments. MOLR is able to achieve average recall gain of 32.65% across all

experiments.

The recall and LOC cost values for MOLR and decision tree are reported in Table 4.12.

In most of the cases, decision tree achieves good recall values. The decision tree is able to

achieve more than 60% recall for ten experiments, but still MOLR achieves better recall

values in most of the cases. There are 5 cases where the recall values of MOLR are less

than or equal to decision tree (Ant 1.4-1.5, Ant 1.5 1.6, Jedit 4.2-4.3, Log4j 1.0-1.1, and

Synapse 1.0-1.1). The loss in recall varies from 0% to 13% for these 5 cases. For rest

of the 25 cases recall values of MOLR are higher than decision tree. The gain in recall

value varies from 2% to 72%. Maximum recall gain of 72.31% is reported for Xerces 1.3-

1.4 experiment. And maximum cost difference is reported for Xerces init-1.2 case (LOC

difference of 25530). In this case MOLR achieves recall gain of 36.62%. MOLR is able to

achieve average recall gain of 21.08% across all experiments.

The comparative results of MOLR and Random Forest classifier are shown in Table 4.13.

There are only 3 cases when recall values of MOLR is lesser than random forest recall va-

lues (Camel 1.0-1.2, Synapse 1.0-1.1, and Xerces init-1.2). For rest of the 27 cases, MOLR

achieves recall gain up to 77%. Maximum recall gain of 77.12% is achieved for Xerces

1.3-1.4 experiment. MOLR is able to achieve average recall gain of 21.83% across all expe-

riments. Overall recall gains are not as significant as other single objective algorithms like

120

4 Multi-objective Defect Prediction

Table 4.10: Single Objective Logistic Regression vs Multi-Objective Logistic Regression

Project Train
Version

Test
Version

SOLR MOLR Difference
Cost
(LOC) Recall Cost

(LOC) Recall Cost
(LOC) Recall

Ant 1.3 1.4 15115 0.1500 10091 0.1500 -5024 0
1.4 1.5 4614 0.1563 4447 0.0625 -167 -0.0938
1.5 1.6 17451 0.1522 14907 0.0978 -2544 -0.0543
1.6 1.7 102300 0.4398 101250 0.5843 -1050 +0.1446

Camel 1.0 1.2 360 0.0139 281 0.0278 -79 +0.0139
1.2 1.4 24617 0.1517 23840 0.5172 -777 +0.3655
1.4 1.6 18121 0.0798 16678 0.4894 -1443 +0.4096

Ivy 1.1 1.4 49984 0.8125 43924 0.8750 -6060 +0.0625
1.4 2.0 19163 0.1750 17360 0.2000 -1803 +0.0250

Jedit 3.2 4.0 62288 0.4667 61911 0.8000 -377 +0.3333
4.0 4.1 54274 0.3671 52027 0.6582 -2247 +0.2911
4.1 4.2 75135 0.5417 68974 0.6667 -6161 +0.1250
4.2 4.3 56442 0.4546 50416 0.4546 -6026 0

Log-4j 1.0 1.1 8870 0.4865 8588 0.5946 -282 +0.1081
1.1 1.2 19768 0.2275 18850 0.6561 -918 +0.4286

Lucene 2.0 2.2 46442 0.4236 45586 0.9097 -856 +0.4861
2.2 2.4 89882 0.8670 78787 0.9557 -11095 +0.0887

Poi 1.5 2.0 70112 0.5946 69570 0.8649 -542 +0.2703
2.0 2.5 28501 0.0282 26640 0.4597 -1861 +0.4315
2.5 3.0 112170 0.8577 104730 0.9751 -7440 +0.1174

Synapse 1.0 1.1 0 0.0000 0 0.0000 0 0
1.1 1.2 16487 0.2093 13637 0.3954 -2850 +0.1861

Velocity 1.4 1.5 28875 0.8873 28727 0.9366 -148 +0.0493
1.5 1.6 55801 0.9615 55062 1.0000 -739 +0.0385

Xalan 2.4 2.5 60444 0.0543 55952 0.6021 -4492 +0.5478
2.5 2.6 258200 0.4453 255950 0.8832 -2250 +0.4380
2.6 2.7 354260 0.3252 345740 0.9766 -8520 +0.6514

Xerces 1.0 1.2 112560 0.4085 105950 0.6197 -6610 +0.2113
1.2 1.3 30597 0.0580 28773 0.5797 -1824 +0.5217
1.3 1.4 56835 0.0801 45423 0.7140 -11412 +0.6339

Average 0.3625 0.5902 +0.2277

121

4 Multi-objective Defect Prediction

Table 4.11: Naïve Bayes vs Multi-Objective Logistic Regression

Project Train
Version

Test
Version

NB MOLR Difference
Cost
(LOC) Recall Cost

(LOC) Recall Cost
(LOC) Recall

Ant 1.3 1.4 15333 0.1250 10091 0.1500 -5242 +0.0250
1.4 1.5 58017 0.6563 54519 0.8438 -3498 +0.1875
1.5 1.6 38203 0.2500 37861 0.4022 -342 +0.1522
1.6 1.7 86944 0.3735 85265 0.4940 -1679 +0.1205

Camel 1.0 1.2 12036 0.1574 10890 0.1667 -1146 +0.0093
1.2 1.4 30307 0.2345 29462 0.5724 -845 +0.3379
1.4 1.6 30205 0.1489 29745 0.6117 -460 +0.4628

Ivy 1.1 1.4 32032 0.3125 30380 0.7500 -1652 +0.4375
1.4 2.0 16486 0.1250 15265 0.2500 -1221 +0.1250

Jedit 3.2 4.0 45376 0.2000 45040 0.6267 -336 +0.4267
4.0 4.1 45988 0.2152 44391 0.5443 -1597 +0.3291
4.1 4.2 68278 0.3125 67847 0.6667 -431 +0.3542
4.2 4.3 59442 0.2727 50416 0.4546 -9026 +0.1818

Log-4j 1.0 1.1 7685 0.4595 7672 0.5676 -13 +0.1081
1.1 1.2 17090 0.2963 16824 0.5450 -266 +0.2487

Lucene 2.0 2.2 25216 0.2292 24233 0.7500 -983 +0.5208
2.2 2.4 35849 0.2906 34735 0.7291 -1114 +0.4384

Poi 1.5 2.0 36223 0.3243 36180 0.4865 -43 +0.1622
2.0 2.5 40844 0.1169 35412 0.4758 -5432 +0.3589
2.5 3.0 40658 0.2135 40369 0.6619 -289 +0.4484

Synapse 1.0 1.1 28270 0.4333 25356 0.5000 -2914 +0.0667
1.1 1.2 12121 0.1279 11763 0.3023 -358 +0.1744

Velocity 1.4 1.5 22826 0.6620 22658 0.8732 -168 +0.2113
1.5 1.6 43271 0.3205 42496 0.9872 -775 +0.6667

Xalan 2.4 2.5 71233 0.1137 70314 0.6615 -919 +0.5478
2.5 2.6 70599 0.1484 68896 0.4818 -1703 +0.3333
2.6 2.7 306030 0.2695 299830 0.9577 -6200 +0.6882

Xerces 1.0 1.2 56364 0.4507 55448 0.7606 -916 +0.3099
1.2 1.3 123940 0.3188 114900 0.9130 -9040 +0.5942
1.3 1.4 86894 0.1625 73060 0.9314 -13834 +0.7689

Average 0.2774 0.6039 +0.3265

122

4 Multi-objective Defect Prediction

Table 4.12: Decision Tree vs Multi-Objective Logistic Regression

Project Train
Version

Test
Version

D. Tree MOLR Difference
Cost
(LOC) Recall Cost

(LOC) Recall Cost
(LOC) Recall

Ant 1.3 1.4 22266 0.2250 22112 0.3500 -154 +0.1250
1.4 1.5 30936 0.5625 30751 0.4375 -185 -0.1250
1.5 1.6 17600 0.1087 14907 0.0978 -2693 -0.0109
1.6 1.7 104610 0.5121 101250 0.5843 -3360 +0.0723

Camel 1.0 1.2 2937 0.0370 2626 0.0556 -311 +0.0185
1.2 1.4 34238 0.3931 33828 0.6000 -410 +0.2069
1.4 1.6 31877 0.2394 31470 0.6277 -407 +0.3883

Ivy 1.1 1.4 46099 0.6875 43924 0.8750 -2175 +0.1875
1.4 2.0 19995 0.1250 17360 0.2000 -2635 +0.0750

Jedit 3.2 4.0 51516 0.5333 51047 0.6933 -469 +0.1600
4.0 4.1 78999 0.6329 77452 0.8608 -1547 +0.2279
4.1 4.2 118510 0.8542 112650 0.9375 -5860 +0.0833
4.2 4.3 44481 0.3636 39275 0.3636 -5206 0

Log-4j 1.0 1.1 11925 0.6757 10162 0.6216 -1763 -0.0541
1.1 1.2 20216 0.2487 20019 0.6720 -197 +0.4233

Lucene 2.0 2.2 39645 0.4306 38183 0.8958 -1462 +0.4653
2.2 2.4 70512 0.6897 70427 0.9360 -85 +0.2463

Poi 1.5 2.0 71231 0.7838 69570 0.8649 -1661 +0.0811
2.0 2.5 41642 0.0927 41048 0.5282 -594 +0.4355
2.5 3.0 91731 0.7011 90774 0.9537 -957 +0.2527

Synapse 1.0 1.1 8531 0.1667 4909 0.1000 -3622 -0.0667
1.1 1.2 20402 0.3488 20390 0.4884 -12 +0.1395

Velocity 1.4 1.5 27690 0.8451 25848 0.9085 -1842 +0.0634
1.5 1.6 52329 0.8590 42496 0.9872 -9833 +0.1282

Xalan 2.4 2.5 84023 0.1344 83456 0.7158 -567 +0.5814
2.5 2.6 343230 0.7348 336330 0.9562 -6900 +0.2214
2.6 2.7 352990 0.4733 345740 0.9766 -7250 +0.5033

Xerces 1.0 1.2 102530 0.2535 77000 0.6197 -25530 +0.3662
1.2 1.3 29330 0.1739 28773 0.5797 -557 +0.4058
1.3 1.4 64336 0.1510 59471 0.8741 -4865 +0.7231

Average 0.4346 0.6454 +0.2108

123

4 Multi-objective Defect Prediction

Table 4.13: Random Forest vs Multi-Objective Logistic Regression

Project Train
Version

Test
Version

Random Forest MOLR Difference
Cost
(LOC) Recall Cost

(LOC) Recall Cost
(LOC) Recall

Ant 1.3 1.4 18778 0.1750 18699 0.3500 -79 +0.1750
1.4 1.5 10176 0.1563 9342 0.1875 -834 +0.0313
1.5 1.6 30515 0.2174 27254 0.3044 -3261 +0.0870
1.6 1.7 112400 0.5301 110760 0.6566 -1640 +0.1265

Camel 1.0 1.2 56 0.0093 22 0.0046 -34 -0.0046
1.2 1.4 38565 0.4207 37281 0.6207 -1284 +0.2000
1.4 1.6 22497 0.2021 20718 0.5372 -1779 +0.3351

Ivy 1.1 1.4 48820 0.7500 43924 0.8750 -4896 +0.1250
1.4 2.0 10135 0.0750 6557 0.1250 -3578 +0.0500

Jedit 3.2 4.0 65254 0.5733 64131 0.8400 -1123 +0.2667
4.0 4.1 61109 0.5570 59899 0.7215 -1210 +0.1646
4.1 4.2 111950 0.6458 111940 0.9375 -10 +0.2917
4.2 4.3 56148 0.3636 50416 0.4546 -5732 +0.0909

Log-4j 1.0 1.1 9247 0.5405 9153 0.6216 -94 +0.0811
1.1 1.2 20158 0.2169 20019 0.6720 -139 +0.4550

Lucene 2.0 2.2 43632 0.4514 42251 0.9306 -1381 +0.4792
2.2 2.4 86894 0.7783 78787 0.9557 -8107 +0.1773

Poi 1.5 2.0 88547 0.9189 83322 0.9730 -5225 +0.0541
2.0 2.5 38128 0.0685 35412 0.4758 -2716 +0.4073
2.5 3.0 106020 0.7687 104730 0.9751 -1290 +0.2064

Synapse 1.0 1.1 5916 0.1167 4909 0.1000 -1007 -0.0167
1.1 1.2 16572 0.2558 13637 0.3954 -2935 +0.1395

Velocity 1.4 1.5 29876 0.9155 29841 0.9578 -35 +0.0423
1.5 1.6 50271 0.8462 42496 0.9872 -7775 +0.1410

Xalan 2.4 2.5 73382 0.0904 70314 0.6615 -3068 +0.5711
2.5 2.6 291530 0.7470 281600 0.9027 -9930 +0.1557
2.6 2.7 351450 0.4298 345740 0.9766 -5710 +0.5468

Xerces 1.0 1.2 115990 0.6901 105950 0.6197 -10040 -0.0704
1.2 1.3 31204 0.1594 28773 0.5797 -2431 +0.4203
1.3 1.4 45145 0.0801 45130 0.8513 -15 +0.7712

Average 0.4250 0.6417 +0.2167

Table 4.14: % Increase in Average Recall achieved by MOLR

Algorithm Average
Recall

Difference in
Average Recall

% Difference in Recall compared to
Single Objective algorithm

Logistic Regression 0.3625
MOLR 0.5902 0.2277 62.81%
Naïve Bayes 0.2774
MOLR 0.6039 0.3265 117.72%
Decison Tree 0.4346
MOLR 0.6454 0.2108 48.51%
Random Forest 0.425
MOLR 0.6417 0.2167 50.98%

124

4 Multi-objective Defect Prediction

logistic regression and Naïve Bayes. One of the reasons might be that, being an ensemble

algorithm, random forest forms a model consisting of multiple decision trees. This reduces

overfitting and enhances performance compared to single decision tree model.

Overall, there are very few cases when MOLR is achieving lesser effectiveness than single

objective algorithms.

We summarize our findings in Table 4.14. The average recall of each of single objective

prediction model and MOLR is reported in this table. And also the percentage of increase

achieved by MOLR as compared to average recall value of single objective algorithm

is reported. Overall MOLR achieved more than 48% increase in all four cases, with

maximum of 117% increase in case of comparison with Naïve Bayes algorithm. This shows

the dominance of multi-objective approach as compared to single objective algorithms.

Single objective algorithms only optimize prediction error as their objective and they do

not consider cost of prediction. MOLR models are trained to minimize LOC cost and

maximize effectiveness as their objectives. This is one of the major reasons why MOLR

outperformed single objective algorithms. MOLR is able to identify more defect prone

classes than single objective algorithms at same or lesser LOC cost.

To confirm these findings statistically, we performed Wilcoxon two tailed paired test [32]

for all four cases. p-values for all four types of experiments i.e., SOLR vs MOLR, Naïve

Bayes vs MOLR, Decision Tree vs. MOLR and Random Forest vs. MOLR are 0.00000131,

0.00000000, 0.00000117 and 0.00000008 respectively. As p-values are significantly lower

than threshold value 0.05, we can easily reject null hypothesis H02. This confirms domi-

nation of MOLR over single objective algorithms in terms of LOC cost and recall.

4.7 Threats to Validity

This section discusses various threats to validity that may impact the analysis of the

proposed approach and the experimental study presented here.

125

4 Multi-objective Defect Prediction

Threats to Construct Validity

The choice of recall as performance measure is widely adopted in previous studies. The

choice of cost factor is based on the fact that it is more costly to fix defects during post-

release phase as compared to performing QA activities on non-defective files in pre-release

phase [13]. One can choose appropriate cost factor based on the project and organization.

And also different values of cost factor may yield different results. For our second problem

the choice of LOC cost is inspired from the fact that it is related to amount of time

that will be spent to review or test the code. And the same measure has been used

in [1, 108, 123]. But one can use other measures as well. One more threat to construct

validity can be the choice of metrics and datasets. The CK metrics are one of the standard

sets of metrics used for object oriented projects. We have considered datasets from widely

used PROMISE repository, but we are not denying the fact that the datasets are prone

to imperfection and incompleteness.

Threats to Internal Validity

One of the biggest threat is the choice of parameter settings for implementation. These

parameters are chosen from experimentation and past research work [1, 108, 124, 127].

For the parameters chosen from experimentations, we have used spread as the evaluation

criteria for measuring goodness of Pareto optimal solutions, as defined by Deb [128]. The

choice of different evaluation criteria may lead to different parameter settings. The choice

of best parameters may vary from one dataset to another. We chose a uniform set of

parameters to compare the results at the same scale. To mitigate inherent randomness

of GA we ran training process multiple times. For the problem M1 we ran NSGA-II

30 times to get the best model of MOLR which is used for testing purpose. For the

problem M2 we ran and took coefficients corresponding to median Pareto front. The

choice of median Pareto front corresponds to median spread value obtained among all

31 runs. The parameters for other algorithms are standard ones available in MATLAB.

We have used logistic regression as fitness function to multi-objective genetic algorithm

and four traditional machine learning algorithms for the comparison purpose. All of

these algorithms have been used in many of the past works [41, 44, 103, 112, 113], but the

126

4 Multi-objective Defect Prediction

results may not hold true for other machine learning algorithms. Our aim was to compare

cost-effectiveness of multi-objective algorithm with traditional algorithms for cross version

defect prediction, rather than comparing different machine learning algorithms with each

other.

Threats to Conclusion Validity

We have performed two tailed Wilcoxon paired test to statistically compare the difference

in the performance measures obtained from MOLR and traditional single objective al-

gorithms. Wilcoxon test is a non-parametric test, which does not make any assumptions

about input value distributions. We have confirmed our findings at 5% significance level.

Threats to External Validity

We have experimented with 11 open source projects from the PROMISE repository having

different versions. One may find different results with the projects developed in industry,

where certain standards are followed. So the findings presented by us may or may not

hold good for industrial software projects. We have used CK metrics as predictors in our

study. The choice of different metrics may yield different results.

4.8 Contributions

In this work, we have formulated cross version defect prediction as multi-objective opti-

mization problem with two distinct set of objective functions, and the same was solved

using multi-objective genetic algorithm. We compared multi-objective logistic regression

with four single objective algorithms for cross version defect prediction. We applied the

proposed approach to 11 projects and a total of 30 train version-test version pairs. Our

results indicate following benefits of multi-objective approach:

127

4 Multi-objective Defect Prediction

1. The multi-objective defect prediction model (M1) is able to identify more defects at

the same or lesser misclassification cost incurred by all four single objective defect

prediction models. And this observation holds good for four different values of cost

factor 5, 10, 15, 20.

2. The multi-objective defect prediction model (M2) incurs the same or lesser LOC

cost to achieve better recall as compared to all four single objective defect prediction

models. This proves that M2 is able to identify more defect prone classes at the

same or lesser LOC cost than the cost incurred with single objective algorithms.

In summary, multi-objective approach can yield better results for cross version defect

prediction compared to traditional single objective approaches.

128

5 Probability Distribution of Defects and

Object-oriented Metrics

5.1 Introduction

The well-known and widely applicable Pareto principle is verified to be holding good for

bugs across files in software projects and the principle in this context means that eighty

percent of bugs are contained in twenty percent of files [129] [130]. The more insightful

research question is to find out the underlying probability distribution that models bugs

across files in software projects. If the generic model for bug distribution across projects

and domains is known, quality assurance activities like testing and review of future releases

can be planned efficiently. An understanding of the underlying distribution will help in

enhancing the applications of the Pareto and other related principles in managing quality

assurance activities effectively. The generative process of bugs can also be well understood

if the underlying probability distribution is known.

Studies in the past have proposed the Pareto distribution to model bugs in software

systems. However, several other probability distributions such as the Weibull, Bounded

Generalized Pareto, Double Pareto, Log Normal and Yule-Simon distributions have also

been proposed and each of them has been evaluated for their fitness to model bugs in

different studies. In Section 5.2, we investigate this problem further by making use of

information theoretic (criterion based) approaches to model selection by which issues like

over-fitting etc., that are prevalent in previous works, can be handled elegantly. In this

study, we have made an attempt to answer the hypothesis that the software bugs follow a

129

5 Probability Distribution of Defects and Object-oriented Metrics

particular distribution by comparing various distributions applied over a large number of

projects using a recognized statistical framework.

In Section 5.3, we have made an attempt to answer the hypothesis that the software

metrics follow a particular distribution by comparing various distributions applied over

a large number of projects using a recognized statistical framework. The past studies

have shown that the software projects frequently follow power law. Availability of more

datasets and choice of better goodness-fit-measures motivated us to study further about

the appropriate distribution to model metrics. We have used Nemenyi test and Friedman

test to provide concrete results on whether a model is significantly outperforming other

models. And thereby we eliminate the threats of human error and statistical inaccuracy.

5.2 Probability Distribution of Defects

In this work we seek to add to and improve the existing work regarding the choice of

most appropriate distribution to model software bugs. We compare six models which have

been proposed in the context of modelling bug distributions in current literature. The

Bounded Generalised Pareto, Weibull and Pareto distributions are compared by Chin-Yu

Huang et al. [131] [132]. In another study, the authors consider the Pareto and Weibull

distributions for comparison [133] while the Yule-Simon, Double Pareto, Lognormal and

Weibull distributions are compared yet in another study [134]. We discuss the intuition

for considering these six models as relevant to our problem in the third section.

The contemporary work on choosing the most appropriate model for the underlying bug

distribution relies on parameter estimation methods and goodness-of-fit statistics. For

example, in the papers mentioned above, one to all of Maximum Likelihood, Least Squares

and Method of Moments procedures are used for parameter estimation and models are

compared based on goodness-of-fit statistics such as R2, K-S tests and χ2 tests etc. This

approach is found to have some drawbacks from both, practical and theoretical standpoint,

which we shall discuss in fourth section. We note that using goodness-of-fit statistics for

model selection does not take into account model complexity.

130

5 Probability Distribution of Defects and Object-oriented Metrics

In this work we seek to strengthen the model selection methodology and make it less

vulnerable to threats such as over-fitting by making use of information criterion based

approaches. We make use of three prevalent information criteria, namely the Bayesian In-

formation criterion, Akaike Information Criterion & Hannan-Quinn Information Criterion

to compare models. In general, the number of datasets used in previous works is not large

enough to perform a quantitative summarization of results. In this work we use a number

of datasets, large enough to warrant a quantitative method of results summarization. We

use a method proposed by Demsar et al. [38] to summarize results which make our con-

clusions stronger and less prone to human error. In addition, BIC-based model selection

allows us to quantify the relative fit of two models based on the difference between the

BIC values for each of them. We show that this complements the approach specified so

far and use the relative fit values to draw additional conclusions. Using these methods,

we seek to compare models objectively and figure out model(s) that fits bug distribution

well.

5.2.1 Related Work and Motivation

Many studies have shown the applicability of the Pareto principle to bugs in software sys-

tems. Fenton and Ohlsson [129] and Andersson and Runeson [130] studied the distribution

of bugs in software systems and came to the conclusion that a small number of modules

contains majority of faults and that the Pareto principle was applicable to software fault

data. Daskalantonakis [135] showed that the Pareto principle was applicable to Motor-

ola’s software systems and further used Pareto analysis to identify the major causes of

requirement changes. Ostrand and Weyuker’s [136] findings also show that there is strong

support for the applicability of Pareto analysis to model file level fault data.

In contrast, Zhang studied the distribution of both pre-release and post-release faults in

the Eclipse software system and found that the Weibull distribution modelled the data

better than a traditional Pareto distribution [133]. They analyse the package level data

by fitting the Pareto and Weibull distributions to the data using nonlinear regression

methods.They use R2 and Standard Error of Estimates to measure the goodness-of-fit of

the models.

131

5 Probability Distribution of Defects and Object-oriented Metrics

In another study Chih-Song Kuo et al. proposed the Bounded Generalised Pareto distri-

bution as a possible model for bug distributions in software systems [132]. They evaluate

their model on Eclipse pre-release data [42] as well as data from three versions of Bug-

zilla. They computed parameters of the Pareto, Weibull and Bounded Generalised Pareto

distribution using two methods, Maximum Likelihood Estimation and Least Squares Es-

timation. The resulting models are evaluated using the R2, Standard Error of Estimate,

Average Relative Percentage error and Bias measures. They conclude that both the Boun-

ded Generalised Pareto and Weibull distribution model software fault data well.

Chin-Yu Huang et al. extended this study by (a) including an additional method of

parameter estimation(Method of Moments Estimator) (b) performing a study over fault

data collected from Ant, Thunderbird and Mozilla Firefox in addition to Bugzilla and (c)

including more measures of goodness-of-fit [131]. In their extended study Chin-Yu Huang

et al. reduced the magnitude of several internal threats to validity present in earlier work.

They conclude that the Bounded Generalised Pareto distribution models bug data better

than other two distributions.

Giulio Concas et al. study the bug distribution at the granularity of modules across

six versions of eclipse [134]. They propose four models, namely, the Yule-Simon, Double

Pareto, Lognormal and Weibull distributions for modelling bug distribution. For the Yule-

Simon, Double Pareto and Lognormal models, the authors discuss associated generative

models and their applicability to bug generation process. The distributions are fit to

the data using least squares estimation and the goodness-of-fit is measured using the R2

value. Giulio Concas et al. believe that the associated generative model of the Yule-Simon

distribution is more appropriate to model bugs in general. The authors note that while

the graphical evidence reflects that the Double Pareto model fits the data the best, the

R2 statistic indicates that the Yule-Simon model fits the data the best.

Tihana Galinac Grbac et al. compare the Pareto, Lognormal, Weibull, Double Pareto and

Yule-Simon distributions to model bugs in a large scale proprietary software systems [137].

They fit models to the data using non linear regression methods and use R2, and standard

error of estimates to select the best distribution. The results show that Double Pareto

model fits the data better than any other model.

132

5 Probability Distribution of Defects and Object-oriented Metrics

The process adopted by contemporary researchers for selecting the most appropriate dis-

tribution is (a) finding point estimates of the parameters of the distributions and (b)

comparing the resulting models by means of some goodness-of-fit measures. From a sta-

tistical point of view, there are arguments against this approach. First, we note that using

goodness-of-fit measures for model selection can lead to significant over-fitting. Consider

a situation where two models are compared, one simple and another much more com-

plex. Here, even if the data was originally generated from the simpler model, the complex

model might perform better in terms of goodness-of-fit statistics purely by virtue of its

complexity. The second issue is that by making a point estimate of the parameters, be-

fore performing model comparison, we are actually comparing specific instances of models

rather than models. And also model parameters have been chosen by optimizing some

selection criteria, such as, maximum likelihood over the data which might indirectly lead

to over-fitting of the model that is evaluated by making use of goodness-of-fit statistics.

We believe that these issues are serious and hence we attempt to explore better ways of

comparing models.

While the earliest work relies on fault data from relatively fewer software systems, we

seek to generalize the results by using a large collection of datasets consisting of Eclipse

dataset [42] and the datasets collected by Jureczko et al. [93]. In total, we use data from

62 versions of various open source and proprietary software systems. We elaborate further

on the nature of the data in the following section.

The related work on this problem makes use of qualitative methods to summarize conclu-

sions across multiple datasets, while goodness-of-fit measures are used to quantitatively

compare the fitness of different models for a dataset. In addition, as the number of datasets

grow as it does in our study, analysis using this approach becomes intractable. Here we

use statistical methods like Nemenyi and Friedman tests to summarize results across the

multiple datasets [5], [38]. The details of the methodology and its theoretical motivations

are provided in the model selection section.

133

5 Probability Distribution of Defects and Object-oriented Metrics

5.2.2 Probability Distributions and Datasets

Several previous works have shown the applicability of power law distributions for modeling

software fault data. And also, generative models associated with some distributions have

been shown to be applicable to bug generation process. Here, we choose the distributions

that have been justified in literature so far from either of the approaches. In total, we

will consider 6 models, details of which are mentioned below. We will also briefly discuss

associated generative models. In our study we follow the same notation as used by Huang

et.al. and Kuo et al. [131] [132]. And thus x is explained as the normalized proportion

of cumulative software modules where the modules are ordered by decreasing number

of faults. P(x) denotes cumulative density function and it represents the normalized

cumulative number of faults induced by a given proportion of software modules.

• The Pareto distribution (PD) is a highly skewed and heavy tailed distribution based

on the Pareto principle. The Probability Density Function (PDF) of the Pareto

distribution in its simplest form is defined as

p (x) = αkα

xα+1 (5.1)

where k <= x <∞;α, k > 0

• The Weibull distribution (WD) has been proposed by several previous software reli-

ability studies as a model for bug distributions. The PDF of two parameter general

Weibull distributions is defined as

p(x) = γx(γ−1) exp(−(xγ)) x ≥ 0; γ > 0 (5.2)

• The Bounded Generalized Pareto Distribution (BGPD) is a derivative of the Genera-

lized Pareto family that has been formulated to have theoretical properties suitable

to the problem of modeling bug distributions [131] [132]. The PDF of the Bounded

Generalized Pareto Distribution is defined as

134

5 Probability Distribution of Defects and Object-oriented Metrics

p(x) = 1
β

(1− x)((1/β)−1) (5.3)

where β > 0, xε [0, 1]

• The Yule-Simon distribution (YS) was developed based on the preferential atta-

chment model to explain the power law tails in some empirical distributions. It is

a discrete probability distribution supported in the non-negative integers. The dis-

crete Yule-Simon distribution is defined in terms of k which is the rank of the file

when arranged in decreasing order of number of bugs. The PDF of the Yule-Simon

distribution is defined as

p(k) = p0
B(c+ k, α)
B(c, α) (5.4)

where c > 0, α > 0, 0 < p0 < 1 is the probability of a module with no bugs and k is

defined as the rank of the file, arranged in decreasing order of the number of bugs.

• The Lognormal distribution (LGNRM) is characterized by the fact that its natural

logarithm is the normal distribution. It is a continuous distribution supported for

x > 0. The PDF of the Log-normal distribution is

p(x) = 1
x
√

2πσ2
exp

[
− (ln x− µ)2

2σ2

]
(5.5)

where x > 0, σ > 0 and µ is real.

• The double pareto distribution (DP) was designed such that it can closely match the

body of Log-normal distribution and the tail of a Pareto distribution. The Double

Pareto distribution is a continuous distribution supported on 0 < x ≤ xm. The PDF

of the Double Pareto distribution is

p(x) =
(γ
t

) [1 + (xm/t)−β]γ/β

[1 + (x/t)−β]1+γ/β

(x
t

)−(1+β)
(5.6)

where 0 < t < xm, β > 0 and γ > 0. Here the parameter t determines the crossover

point where the behavior of the function changes from Log-normal body to power

law tail.

135

5 Probability Distribution of Defects and Object-oriented Metrics

The Pareto and Weibull distributions have been commonly used in modeling reliability

of systems and were adopted to the bug distribution problem due to the fact that power

law tails were observed in the data. The BGPD model was proposed to deal with several

limitations of applying the Pareto model to bug distributions. And one of the major issues

with Pareto distribution in this context is that the probability density function may take

negative values if parameters of the distributions are estimated by standard methods like

maximum likelihood, MoM, least squared etc. The BGPD is an alternate model derived

from the Generalized Pareto Family such that it remains valid when used to model bug

distributions and is additionally defined on the relevant domain of [0, 1].

Here we note that in case of the other three distributions, namely the Yule-Simon, Double

Pareto and Lognormal models, there is a generative model that backs up the distributions

which may be applicable to the process of bug generation in software systems. In case of

the Log-normal distribution, the generative process is that bugs introduced into a file are

proportional to the number of bugs that are present in the previous version of the file, and

each file has the same probability of being selected for an update. If the bug generation

process follows this generative model, we can say that the resulting bug counts will be

distributed according to the Log-normal distribution [138]. One major drawback of this

model is that it cannot fit the number of bugs introduced into a file/module (or any other

granularity at which we consider the distribution of bugs) with no bugs as yet.

The Double Pareto distribution is able to fit a power law tail while at the same time it

is more flexible and able to fit the body better than pure power law distributions. The

body section of a Double Pareto distribution behaves similar to a Lognormal distribution

while having power law behavior in the tail. The Double Pareto distribution has been

shown to be applicable to a wide variety of data showing power law behavior, such as, the

distribution of file sizes in a file system. Several generative models have been proposed

for the Double Pareto model such as Downey’s multiplicative file size model and Mitzen-

macher’s Recursive forest model [139], [140]. The authors of these works also suggest that

the generative models might be applicable to other areas such as software engineering and

this might well be the case for bug generation.

The generative model of the Yule-Simon distribution is based on the preferential atta-

136

5 Probability Distribution of Defects and Object-oriented Metrics

chment mechanism. This means that in the current version of a system of n files, all new

files introduced in this version are initialized with bug value h0. And files are selected

based on probability proportional to their current bug count and the number of bugs is

incremented for the selected file. If bugs in the current version are likely to follow this

procedure, it can be shown that the resulting empirical distribution will have the form

of a Yule-Simon distribution [141]. The Yule-Simon model is thus a discrete distribution

and models both the inclusion of new files into the system and their bug count values

effectively. We also see that Yule-Simon model’s generative process is the only one that

can deal effectively with files with no bugs. The interpretation and validation of these

generative models using fault data have been partly done in the previous works [134].

In this work, we use fault data from 34 releases of 12 different open source software

systems and 28 releases of 6 different proprietary software systems. This includes fault

data from 3 versions of Eclipse [42] and 11 different open source software systems [93]. The

Eclipse fault data was collected by the University of Saarland while the fault data from

the remaining open source and proprietary software projects was collected by Jureczko et

al. In both cases, the authors looked for keywords in the metadata of commits to identify

bug fixes. The bug count of every file/class was set according to the number of bug fixes

associated with that file/class.

Of the six proprietary softwares projects under consideration, five software systems are

built for companies in the insurance domain and the sixth is a standard tool that supports

quality assurances in software development. All six were built by the same company. The

number of files and bugs in each version of projects - prop1, prrop2, prop3, prop4, prop43

and prop5 are reported in Table 5.1 and Table 5.2. The open source data was collected

from Eclipse (2.0 , 2.1 , 3.0), Apache Ant (1.6 - 1.7), Apache Camel (1.2,1.4,1.6), Apache

Ivy (1.1), JEdit (3.2 - 4.2), Apache Log4j (1.0 - 1.2), Apache Lucene (2.0 - 2.4), Apache

POI (1.5 - 3.0), Apache Tomcat (6.0), Apache Velocity (1.4 - 1.6.1), Apache Xalan-Java

(2.4.0 - 2.7.0), Apache Xerces (1.1.0 - 1.4.4). The number of files and defects for each

version of these projects are reported in Table 5.3 and Table 5.4. These projects are

briefly described below to provide some additional insight into the kind of data studied.

• Eclipse is an integrated development environment (IDE). It contains a base

137

5 Probability Distribution of Defects and Object-oriented Metrics

Table 5.1: Number of Files and Bugs - Proprietary Software Projects[1]
Project prop43 prop5
Version 2 5 6 1 2 3 4 5 6
Files 1740 2172 2265 3445 2863 3260 3514 3815 3509
Bugs 52 126 208 748 722 487 345 743 2427

workspace and an extensible plug-in system for customising the environment. Writ-

ten mostly in Java, Eclipse can be used to develop applications. By means of various

plug-ins, Eclipse may also be used to develop applications in other programming lan-

guages. Development environments include Eclipse Java development tools (JDT)

for Java and Scala, Eclipse CDT for C/C++ and Eclipse PDT for PHP, among

others.

• Apache Ant is a Java library and command-line tool that can be used to pilot any

type of process which can be described in terms of targets and tasks.

The main known usage of Ant is to facilitate the build of Java applications. Ant

supplies a number of built-in tasks allowing to compile, assemble, test and run Java

applications. Ant can also be used effectively to build non Java applications, for

instance C or C++.

• Apache Camel is an open-source integration framework based on known Enterprise

Integration Patterns. Camel can be used to define routing and mediation rules in a

variety of domain-specific languages, including a Java-based Fluent API, Spring or

Blueprint XML Configuration files, and a Scala DSL.

• Apache Ivy is a popular dependency manager focusing on flexibility and simplicity.

An external XML file defines project dependencies and lists the resources necessary

to build a project. Ivy resolves and downloads resources from an artifact repository

which is either a private repository or one publicly available on the Internet.

Table 5.2: Number of Files and Bugs - Proprietary Software Projects[2]
Project prop1 prop2 prop3 prop4
Version 1 2 3 4 5 6 1 2 3 4 5 7 1 2 3 4 1 2 3
Files 3619 3541 3692 4081 4455 3670 1864 2403 1931 2025 2372 2472 1709 2330 2156 2440 2906 2802 2865
Bugs 388 546 107 563 264 2234 234 111 140 729 424 534 253 401 131 560 269 1308 353

138

5 Probability Distribution of Defects and Object-oriented Metrics

Table 5.3: Number of Files and Bugs - Open Source Software Projects[1]
Project Eclipse Log4j Lucene Tomcat Velocity Xalan
Version 2.0 2.1 3.0 1.0 1.1 1.2 2.0 2.2 2.4 2.0 1.4 1.5 1.6 2.4 2.5 2.6 2.7
Files 6729 7888 10593 135 109 205 288 381 536 1162 224 246 261 862 945 1170 1194
Bugs 1692 1182 2679 61 86 498 268 414 632 114 210 331 190 156 531 625 1213

• jEdit is a mature programmer’s text editor with hundreds (counting the time develo-

ping plug-ins) of person-years of development behind it. It was originally developed

as a proprietary software and its development was transferred to the open source

community in 2006.

• Apache log4j is a logging library for Java. Apache log4j was originally written

by a single developer and has since been developed by a team of Apache Software

Foundation.

• Apache Lucene is a high-performance, full-featured text search engine library writ-

ten entirely in Java. It is a technology suitable for nearly any application that

requires full-text search.

• Apache POI was developed to create and maintain Java APIs for manipulating

various file formats based on Office Open XML standards (OOXML) and Microsoft’s

OLE 2 Compound Document format (OLE2). In short, to facilitate reading and

writing MS Excel files using Java. In addition, it facilitates reading and writing MS

Word and MS PowerPoint files using Java.

• Apache Tomcat is an open-source web server and servlet container developed by

the Apache Software Foundation (ASF). Tomcat implements several Java EE speci-

fications including Java Servlet, JavaServer Pages (JSP), Java EL, and WebSocket,

and provides a "pure Java" HTTP web server environment for Java code to run in.

Table 5.4: Number of Files and Bugs - Open Source Software Projects[2]
Project Ivy Jedit POI ANT Camel Xerces
Version 1.1 3.2 4.0 4.1 4.2 1.5 2.5 3.0 1.6 1.7 1.2 1.4 1.6 1.2 1.3 1.4 init
Files 111 272 306 312 367 237 385 531 498 1066 765 1122 1252 440 453 588 162
Bugs 233 382 226 217 106 342 496 500 170 338 522 335 500 115 193 1596 167

139

5 Probability Distribution of Defects and Object-oriented Metrics

• Apache Velocity is a Java-based template engine that provides a template language

to reference objects defined in Java code. It aims to ensure clean separation between

the presentation tier and the business tiers in a Web application.

• Apache Xalan was originally created by IBM under the name LotusXSL and im-

plements the XSLT 1.0 XML transformation language and the XPath 1.0 language.

The Xalan XSLT processor is available for both the Java and C++ programming

languages of which we will be using the data from the Java version.

• Apache Xerces is Apache’s collection of software libraries for parsing, validating,

serialising and manipulating XML. The library implements a number of standard

APIs for XML parsing, including DOM, SAX and SAX2.

5.2.3 Model Selection

5.2.3.1 Comparing Models across Multiple Datasets

In our experiments, we compare six different models and perform our tests on multiple

software systems. While we discuss information criterion based approaches for model

selection in the following subsections (4.2 to 4.5), we also need statistical methods to

summarize our results across multiple datasets and six different models. We discuss the

relevant statistical methods for summarization of results in this subsection.

Demsar has addressed the problem of ranking classifiers across various datasets [38] which

have also been reviewed and recommended in the context of software fault prediction [5].

These recommendations are summarized below and will be used in this work to compare

multiple models across datasets.

The null hypothesis being tested for our problem is that all models are equally good and

there is no significant difference between them. One of the common methods to solve this

problem is through testing the significance of the difference between mean accuracies (or

alternate measures) across datasets. This approach relies on analysis of variance (ANOVA)

140

5 Probability Distribution of Defects and Object-oriented Metrics

and hence makes assumptions such as 1) Performance differences between models are

distributed normally, 2) All classifiers exhibit the same variance in predictive performance

over all data sets (homogeneity of variance), and 3) Variance in performance differences

across two classifiers is identical to all possible pairs of classifiers (sphericity assumption).

Violation of these assumptions especially sphericity assumptions, has been shown to be

detrimental to the performance of ANOVA and consequently subsequent post hoc tests

are recommended [142]. Due to this, Demsar specifically discourages the use of ANOVA

and instead relies on the Friedman test which is based on ranked performance and makes

less restrictive assumptions.

Friedman’s test is based on ranked performance of the competing classifiers rather than

actual performance estimates which make it less susceptible to outliers. Classifiers are

ranked according to their performance for each dataset and their mean ranks are computed

across all datasets. Friedman test statistic is defined as

χ2
F = 12K

L(L+ 1)

[
L∑
i=1

AR2
i −

L(L+ 1)2

4

]
(5.7)

Where L represents the overall number of models, K denotes the number of datasets and

ARi represents the mean rank of model i over the datasets. And χ2
F is Chi-Squared

distributed with L− 1 degrees of freedom. A suitable Pearson’s Chi-Squared test can be

done to reject the null hypothesis at any desired level of significance. If the null hypothesis

is rejected, it can be concluded that there is significant difference among the models being

considered.

The post hoc test recommended by Demsar to establish discrimination among models,

once it has been established that there is a significant difference between models, is the

Nemenyi test. The Nemenyi test for any pair of models tests the null hypothesis that their

mean ranks are equal, and the null hypothesis can be rejected if the difference between

their mean ranks exceeds critical difference, which is:

CD = qa,∞,L

√
L(L+ 1)

12K (5.8)

where qa,∞,L is the studentised range statistic which is widely tabulated.

141

5 Probability Distribution of Defects and Object-oriented Metrics

The performance measure, used to rank the models in order to perform the Friedman and

Nemenyi tests, will be discussed in next three subsections.

5.2.3.2 Information criteria for model selection; Why not GoF statistics?

As we have noted earlier, most of the contemporary work on comparing distributions for

modeling bugs in software projects make use of the Goodness of Fit (GoF) statistics such

as R2 , K-S test, Chi-square Tests etc. The parameters of the chosen models have been

determined by procedures like MLE , least of squares, MoM. We elaborate on arguments

that are prevalent on limitations of these approaches in this section and motivate infor-

mation criterion based measures. It should be noted that model complexity is not being

considered in the above mentioned GoF statistics. A complex model is able to fit random

variations in the data and maximize the goodness-of-fit statistic. This means that even

though data might be generated from a simpler model, the complex model may be wrongly

selected. Hence any conclusion on the best fitting distributions can be misleading if the

above mentioned goodness-of-fit statistic is used to compare models.

Another subtle issue is that the parameter estimation method and the goodness-of-fit

statistic might not be suitable to each other, and lead to a biased result overall. Recently

Crawley et al. have shown that any method, involving optimization of a selection criterion

over a finite sample is prone to over-fitting [143]. They also show that the effects of such

over-fitting are significant and might mislead a model selection algorithm. Hence, if we

choose a parameter estimation method like MLE and a goodness-of-fit measure like R2

to evaluate the resulting model, we cannot guarantee that the goodness-of-fit statistic is

not biased. Overall goodness-of-fit statistics are complex and often involve controversial

issues causing some researchers to question their validity [144]. These issues are not present

when using an information criterion based approach which we will explain further in the

following sections.

We note that in earlier works, these issues are discussed as threats to internal validity

and Chin-Yu Huang et al. attempt to combat some of these by including three methods

of parameter estimation and ten goodness-of-fit measures [131]. However, multiple para-

142

5 Probability Distribution of Defects and Object-oriented Metrics

meter estimation methods and goodness-of-fit statistics does not address the over-fitting

problems. Thus it is unclear how their method addresses the issues highlighted above.

Further, they resort to qualitative means to summarize the results across the multiple

dimensions of variations i.e. the goodness-of-fit statistics and methods of parameter esti-

mation.

The Akaike, Bayesian and Hannan Quinn information criteria penalize the model for

complexity in terms of the number of parameters. The more parameters a model has

more likely it is to over-fit, and this is reflected in the increasing penalty term that seeks

to eliminate this overfitting. We illustrate the origin and meaning of these information

criteria in brief in the following sections. We note that all three of these information

criteria represent relative fit of the models and do not provide any information on the

absolute fit of the models. Hence, after computing the information criteria we perform the

Nemenyi and Friedman tests to check whether the null hypothesis holds good or not. As

the information criteria cannot be used to judge the absolute fit of the models, we have

extensively justified the selection of models to be compared in Section 3. We also note

that these models have shown to produce very high absolute goodness-of-fit measures in

many previous works.

5.2.3.3 Akaike Information Criterion

The Akaike Information Criterion (AIC) was derived as a model selection measure based

on minimum information loss concepts from information theory [145], [146]. We briefly

discuss the original arguments of AIC. We have omitted all mathematical rigor to keep

the it brief and to refer the interested reader to Akaike’s original papers [145], [146] for

further information. The task of measuring the fit of a model can be accomplished by

measuring its discrepancy from the unknown true distribution. To accomplish this Akaike

makes use of the Kullback-Leibler Distance which is an information theoretic measure of

the directed distance between two probability distributions. He then proceeds to show

that in the resulting expression, all models will contain a constant term dependent on the

unknown true distribution. As all models have this constant term, it can be omitted for

model comparison purposes and the left-over expression can be regarded as the relative

143

5 Probability Distribution of Defects and Object-oriented Metrics

distance of the model under consideration from the underlying true distributions. This is

an ideal measure for model selection, provided, it can be calculated. To this end Akaike

shows that negative log likelihood is a biased estimator of this relative distance criterion

and that under certain conditions this bias can be approximated by the number of free

parameters, k of the model. This leads to the expression for the AIC as

AIC = −2 log(P (D/θD)) + 2k (5.9)

where θD represents the maximum likelihood estimate of parameters and k represents

the number of parameters in the model. Here, P (D/θD) is the likelihood of the data

conditioned on the parameters θD. Here on we use the notation P (A/B) to denote the

likelihood of A conditioned on B. We also note that the first term gives the goodness-of-

fit of the model and the second term penalizes the model for complexity in terms of the

number of free parameters, consistent with the intuitive arguments for model parsimony

we have made.

5.2.3.4 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) was first derived by Schwartz et al. as an

unbiased model selection criterion [147]. We note that BIC can be viewed as an approxi-

mation of the Bayesian model selection approach, using a flat non informative prior [148].

Here we briefly explain this approach. The Bayesian approach to model selection is ba-

sed on the posterior odds ratio P (M1|D)/P (M2|D) which is equal to the Bayes factor

P (D|M1)/P (D|M2) when the both the models are considered equiprobable or the prior

odds ratio is one [149]. Here we have considered that M1 & M2 are two competing model

families and D represents the data observed. Considering the two model families to be

parametrized by some parameter vectors θ1 & θ2, we have Bayes factor as

P (M1|D)
P (M2|D) =

∫
P (D|M1, θ1)P (θ1|M1)dθ1∫
P (D|M2, θ2)P (θ2|M2)dθ2

(5.10)

As can be seen from the expression for the Bayes factor, the computation of the marginal

144

5 Probability Distribution of Defects and Object-oriented Metrics

likelihood(or model evidence) involves inclusion of a prior distribution over the parameters

P (θ|Mk).

However, in a model selection scenario where it would be desirable to make each member

of the model family equally like a priori, an uninformative flat prior would be a good

choice. The BIC value for a model is the log of the marginal likelihood, and is derived

by using a flat prior and by approximating the model evidence integral using the Laplace

approximation. The resulting expression is

BIC = −2 log(P (D/θD)) + k logn (5.11)

where θD represents maximum likelihood estimate of the parameters, k represents number

of parameters in the model and n represents number of observations. Using this approxi-

mation, the log of bayes factor for two models is simply the difference of their BIC values.

The interpretation of the strength of evidence based on the bayes factor values is a well

studied problem and a table was proposed by Harold Jeffreys to do the same [149], [150].

Based on this, a table to interpret the BIC differences as strength of evidence for a model

was introduced by Rafetry [151].

The hypothesis tests we use are dependent on the ranked performance of models and

while this has several advantages, it also abstracts away the information contained in

the magnitude of BIC values. We note that this information could be used to further

strengthen our conclusions based on Nemenyi and Friedman tests. To this end we make

use of BIC difference tables mentioned earlier to calculate the strength of evidence for

models.

5.2.3.5 Hannan-Quinn Information Criterion

The Hannan-Quinn Information Criterion (HQIC) was first derived while exploring the

model selection problem relating to the determination of the order of auto-regression

by Hannan and Quinn [152]. However HQIC is applicable as a general model selection

criterion and it has become one of the most cited information criterion for model selection.

145

5 Probability Distribution of Defects and Object-oriented Metrics

HQIC is defined as

HQIC = −2 log(P (D/θD)) + 2k log logn (5.12)

where θD represents maximum likelihood estimate of the parameters, k represents number

of parameters in the model and n represents number of observations. Once we calculate

the HQIC values for models, we rank them using these values and perform hypothesis

tests similar to the AIC and BIC cases.

5.2.4 Experiments and Results

5.2.4.1 Open Source Software

The experiments and results of open source projects using each of the information criteria

are discussed in this section. For each version, we rank six models as per an information

criterion metric, say BIC. We performed Friedman’s test to reject or accept the null hypot-

hesis. And null hypothesis is that there is no significant difference among six models. Our

experiments conclude that null hypothesis can be rejected at 0.01 level of significance.

As there is a significant difference between the models, we perform the post hoc test i.e

the Nemenyi test. The Nemenyi test results are plotted on a graph with the Mean rank

indicated on the y-axis and the models on the x-axis. The critical difference interval for

any model is denoted on the graph as an extended downward line with length CD from the

mean rank. The Nemenyi plot drawn for BIC, AIC and HQIC are shown in Figure 5.1. If

any modelM1 has a mean rank lesser than the lower bound of the critical difference interval

of another model M2, we can say that M1 outperforms M2 with statistical significance.

For example in Figure 5.2a we can see that the Double Pareto model outperforms the

Pareto model with statistical significance.

From the Nemenyi diagram generated using the BIC values, we can see that the top three

ranked models are the Weibull, Bounded Generalized Pareto and Double Pareto distri-

butions. While the Bounded Generalized Pareto model performs slightly better than the

Weibull Model as indicated by its lower mean rank, it fails to do so with statistical signifi-

146

5 Probability Distribution of Defects and Object-oriented Metrics

Figure 5.1: Nemenyi plot comparing models using (a) BIC, (b) AIC and (c) HQIC to perform
the ranking for open source data

1
2

3
4

5
6

Model

M
e
a
n
 R

a
n
k

PD

WD
BGPD

YS

LGNRM

DP

(a) BIC

1
2

3
4

5
6

Model

M
e
a
n
 R

a
n
k

PD

WD
BGPD

YS

LGNRM

DP

(b) AIC

1
2

3
4

5
6

Model

M
e
a
n
 R

a
n
k

PD

WD
BGPD

YS

LGNRM

DP

(c) HQIC

cance. Similar observations can be made for the Double Pareto and Bounded Generalized

Pareto models. Overall, the top three ranked models fail to outperform one another with

statistical significance and are very close in terms of mean ranks for open source fault data.

However all the top three models outperform the Yule-Simon, Pareto and Lognormal mo-

dels with statistical significance. Pareto distribution is the worst performing distribution

and is outperformed by all the other distributions.

For the remaining metrics AIC and HQIC, we performed friedman’s test and found that

null hypothesis is rejected. Consequently we performed post hoc tests, and Nemenyi plot

for each of these metric is shown in 5.2b and 5.2c

The AIC criterion is more lenient than BIC in penalizing the complexity of the model

and this can be observed from the Nemenyi plots. Here again we observe that the top

three ranked models are the Double Pareto, Weibull and Bounded Generalized Pareto

models. The mean ranks of the top three models are slightly shifted. We note that this

shift can be explained by the change in complexity penalty between AIC and BIC. First,

the Double Pareto models mean rank shifts downwards as the complexity penalty for the

Double Pareto is lower than the corresponding BIC case. This means that for projects,

where Double Pareto model was outperformed by another model with a margin smaller

than this change in penalty, the Double Pareto distribution becomes the best performing

model in AIC case. However we observe that this shift is not enough to statistically

147

5 Probability Distribution of Defects and Object-oriented Metrics

Table 5.5: Open Source Software BIC difference and interpretation tables

Software DP vs
WD

DP vs
BGPD

WD
vs
BGPD

∆BIC Model Evidence ∆BIC Model Evidence ∆BIC Model Evidence
eclipse-2.0 464.62 DP V Strong 489.42 DP V Strong 24.81 WD V Strong
eclipse-2.1 385.35 DP V Strong 361.40 DP V Strong -23.95 BGPD V Strong
eclipse-3.0 668.61 DP V Strong 687.43 DP V Strong 18.81 WD V Strong
log4j-1.0 2.33 DP Positive -3.61 BGPD Positive -5.93 BGPD Positive
log4j-1.1 -9.43 WD Strong -16.51 BGPD V Strong -7.07 BGPD Strong
log4j-1.2 64.67 DP V Strong 17.65 DP V Strong -47.02 BGPD V Strong
lucene-2.0 -23.38 WD V Strong -21.86 BGPD V Strong 1.52 WD Weak
lucene-2.2 38.23 DP V Strong 65.26 DP V Strong 27.03 WD V Strong
lucene-2.4 40.52 DP V Strong 30.84 DP V Strong -9.68 BGPD Strong
tomcat 20.45 DP V Strong 14.74 DP V Strong -5.71 BGPD Positive
velocity-1.4 -35.44 WD V Strong -57.05 BGPD V Strong -21.61 BGPD V Strong
velocity-1.5 13.03 DP V Strong -0.20 BGPD Weak -13.22 BGPD V Strong
velocity-1.6 5.47 DP Positive -1.90 BGPD Weak -7.37 BGPD Strong
xalan-2.4 35.59 DP V Strong 28.34 DP V Strong -7.25 BGPD Strong
xalan-2.5 169.24 DP V Strong 131.59 DP V Strong -37.65 BGPD V Strong
xalan-2.6 153.28 DP V Strong 118.64 DP V Strong -34.64 BGPD V Strong
xalan-2.7 304.29 DP V Strong 187.67 DP V Strong -116.61 BGPD V Strong
ivy-1.1 -17.71 WD V Strong 1.20 DP Weak 18.91 WD V Strong
jedit-3.2 -25.08 WD V Strong -1.42 BGPD Weak 23.66 WD V Strong
jedit-4.0 -35.42 WD V Strong -27.40 BGPD V Strong 8.02 WD Strong
jedit-4.1 -12.54 WD V Strong -16.92 BGPD V Strong -4.38 BGPD Positive
jedit-4.2 -1.81 WD Weak -7.51 BGPD Strong -5.69 BGPD Positive
poi-1.5 -15.20 WD V Strong -2.63 BGPD Positive 12.57 WD V Strong
poi-2.5 111.18 DP V Strong 59.37 DP V Strong -51.81 BGPD V Strong
poi-3.0 114.35 DP V Strong 156.49 DP V Strong 42.13 WD V Strong
ant-1.6 14.35 DP V Strong 6.23 DP Strong -8.12 BGPD Strong
ant-1.7 27.98 DP V Strong 18.25 DP V Strong -9.73 BGPD Strong
camel-1.2 57.56 DP V Strong 50.84 DP V Strong -6.72 BGPD Strong
camel-1.4 30.26 DP V Strong 25.53 DP V Strong -4.73 BGPD Positive
camel-1.6 22.80 DP V Strong 44.85 DP V Strong 22.05 WD V Strong
xerces-1.2 10.67 DP V Strong 14.03 DP V Strong 3.36 WD Positive
xerces-1.3 13.58 DP V Strong 22.04 DP V Strong 8.47 WD Strong
xerces-1.4 -22.79 WD V Strong 386.00 DP V Strong 408.78 WD V Strong
xerces-init 31.38 DP V Strong 15.58 DP V Strong -15.80 BGPD V Strong

148

5 Probability Distribution of Defects and Object-oriented Metrics

outperform the Weibull and Bounded Generalized Pareto models. The Weibull models

mean rank moves down and it replaces the Bounded Generalized Pareto Model as the

second best performing model. However, change in mean rank is not big enough to produce

a statistically significant difference between the two models.

The HQIC criterion falls somewhere in-between the AIC and BIC criteria in terms of

penalty for model complexity. Consistent with this, HQIC based mean ranks of models

are shifted with respect to BIC based mean ranks. And reason for shift is the same as

discussed in AIC case. The observations for all models remain consistent with BIC-based

observations as the change in mean ranks is not large enough to induce any statistically

significant changes.

As indicated in Section 5.2.3, we also seek to find the relative fit of the models. To this

end, we have discussed Bayes factors using BIC values and mentioned its applicability

to model selection. Using BIC values, the relative fit criterion as defined in the Section

5.2.3 is computed for all projects. We restrict ourselves to the top three ranked models for

this analysis to understand the relative performance of the these models. The relative fit

criterion values along with the selected model and the associated strength of evidence are

recorded for the top three ranked models in Table 5.5. The strength of the evidence based

on the relative fit criterion is derived from the tables proposed by Raftery et al. [151].

From Table 5.5 we can see that the Double Pareto distribution is selected 22 times with

very strong evidence and twice with positive evidence when pitted against the Weibull

distribution. The Weibull model is selected ten times out of which the evidence is weak

once, strong once, very strong eight times. We observe that the Double Pareto distribution

is selected more number of times with very strong evidence. However even though the

Weibull distribution is selected comparatively fewer number of times, it is also selected

with very strong evidence in most of the cases. Given the number of cases where this is

observed, there is an ambiguity between the Weibull and Double Pareto models as selecting

either of the two leads to significant risk of inferior fit to the data. These conclusions are

in line with the Nemenyi test which fails to find a distribution that is significantly better

than the other distribution.

Comparing BGPD and Weibull distributions, we see that in 21 cases, BGPD is a better fit

149

5 Probability Distribution of Defects and Object-oriented Metrics

while in 13 cases Weibull distribution fits the data better. In the cases where the Weibull

distribution fits the data, the evidence is very strongly in favor of the Weibull distribution

9 times while it is strong twice, positive once and weak in one case. Out of cases where the

BGPD distribution is favored, evidence in favor of BGPD is very strong 9 times, strong

seven times and positive five times. All arguments indicating ambiguity in the previous

case are applicable here also. We, therefore conclude that it is not possible to choose one

of the distributions over the other. We again find that Nemenyi diagram supports our

conclusions and indicates that there is no statistically significant difference between the

two distributions.

Between the BGPD and DP models, in 23 cases DP model is preferred where evidence is

very strong 14 times, strong 6 times and positive thrice. Out of the 11 times the BGPD

model is preferred, evidence is very strong 4 times, strong thrice, positive thrice and weak

once. Again we put forth the same arguments made previously to conclude that we cannot

make a concrete conclusion in favor of either distribution. This is also confirmed by the

Nemenyi plot where there is no statistically significant difference between mean ranks of

two distributions.

5.2.4.2 Proprietary Software

We repeat the same experiments as explained in the previous section on fault data of

proprietary software systems [93] and the results are reported in a similar form. Here also,

we found that null hypothesis is rejected at 0.01 level of significance and hence conclude

that there is a significant difference between the models. Consequently we proceed to

perform the post hoc Nemenyi test.

We observe that the top three ranked models are the Weibull, Pareto and the Double

Pareto models using all three information criteria. And this observation is in line with the

results of open source projects. However, here the Double Pareto model outperforms both

the WD and the BGPD models with statistical significance and is the best performing

model with all three information criteria. The BGPD model performs marginally better

than the WD model in terms of average rank but it fails to pass the test for statistically

150

5 Probability Distribution of Defects and Object-oriented Metrics

Figure 5.2: Nemenyi plot comparing models using (a) BIC, (b) AIC and (c) HQIC to perform
the ranking for proprietary data

0
1

2
3

4
5

6

Model

M
e
a
n
 R

a
n
k

PD

WD

BGPD

YS

LGNRM

DP

(a) BIC

0
1

2
3

4
5

6

Model

M
e
a
n
 R

a
n
k

PD

WD
BGPD

YS

LGNRM

DP

(b) AIC

0
1

2
3

4
5

6

Model

M
e
a
n
 R

a
n
k

PD

WD

BGPD

YS

LGNRM

DP

(c) HQIC

significant difference in all three cases. Consistent with the earlier results, the Yule-Simon,

Lognormal and Pareto models are ranked, fourth, fifth and sixth respectively. The YS,

PD and Lognormal models are outperformed with significance by the top three models

using all three information criteria. Overall, we can see that all three information criteria

produce similar results using the Nemenyi diagram, and the Double Pareto model performs

the best consistently.

The relative fit criterion values along with the selected model and the associated strength of

evidence are recorded in Table 5.6. We can see that the DP model is selected unanimously

when pitted against the WD model. In all but one case, the evidence for DP model is very

strong. Comparing DP and BGPD models, we can see that DP model is selected in all

but one case. In case where the BGPD model is selected, the evidence is positive whereas

in cases where the DP model is selected, the evidence is ‘very strong’ except once where it

is strong. From these values we can conclude that by selecting DP model over BGPD and

WD models, we do not risk a significant loss of fit. This observation is in agreement with

the Nemenyi diagram which indicates that DP model is significantly better than WD and

BGPD.

Comparing the WD and BGPD models from Table 5.6, we can see that BGPD model

was selected 20 times while the WD model was preferred 8 times. Out of the 20 times

BGPD model was selected, the evidence is ‘strong’ 6 times, ‘very strong’ thrice, ‘positive’

151

5 Probability Distribution of Defects and Object-oriented Metrics

Table 5.6: Proprietary Software BIC difference and interpretation tables

Software DP vs
WD

DP vs
BGPD

WD
vs
BGPD

∆BIC Model Evidence ∆BIC Model Evidence ∆BIC Model Evidence
P1-ver1 78.79 DP V Strong 79.61 DP V Strong 0.82 WD Weak
P1-ver2 126.77 DP V Strong 127.91 DP V Strong 1.13 WD Weak
P1-ver3 25.24 DP V Strong 23.09 DP V Strong -2.15 BGPD Positive
P1-ver4 170.73 DP V Strong 164.4 DP V Strong -6.33 BGPD Strong
P1-ver5 37.61 DP V Strong 33.52 DP V Strong -4.09 BGPD Positive
P1-ver6 604.65 DP V Strong 680.09 DP V Strong 75.43 WD V Strong
P2-ver1 43.26 DP V Strong 36.49 DP V Strong -6.77 BGPD Strong
P2-ver2 23.36 DP V Strong 17.93 DP V Strong -5.43 BGPD Positive
P2-ver3 29.98 DP V Strong 25.03 DP V Strong -4.95 BGPD Positive
P2-ver4 298.32 DP V Strong 251.76 DP V Strong -46.56 BGPD V Strong
P2-ver5 66.5 DP V Strong 61.18 DP V Strong -5.32 BGPD Positive
P2-ver7 135.99 DP V Strong 138.29 DP V Strong 2.30 WD Positive
P3-ver1 63.54 DP V Strong 55.1 DP V Strong -8.44 BGPD Strong
P3-ver2 59.5 DP V Strong 50.44 DP V Strong -9.06 BGPD Strong
P3-ver3 14.05 DP V Strong 8.97 DP Strong -5.08 BGPD Positive
P3-ver4 182.28 DP V Strong 191.57 DP V Strong 9.29 WD Strong
P4-ver1 64.47 DP V Strong 65.39 DP V Strong 0.91 WD Weak
P4-ver2 415.71 DP V Strong 347.72 DP V Strong -67.99 BGPD V Strong
P4-ver3 82.34 DP V Strong 79.89 DP V Strong -2.45 BGPD Positive
P43-ver2 2.27 DP Positive -2.03 BGPD Positive -4.29 BGPD Positive
P43-ver5 16.09 DP V Strong 14.55 DP V Strong -1.55 BGPD Weak
P43-ver6 43.35 DP V Strong 36.39 DP V Strong -6.96 BGPD Strong
P5-ver1 171.87 DP V Strong 177.98 DP V Strong 6.11 WD Strong
P5-ver2 92.64 DP V Strong 80.69 DP V Strong -11.96 BGPD V Strong
P5-ver3 67.86 DP V Strong 58.27 DP V Strong -9.59 BGPD Strong
P5-ver4 108.65 DP V Strong 100.14 DP V Strong -8.51 BGPD Strong
P5-ver5 191.84 DP V Strong 187.13 DP V Strong -4.72 BGPD Positive
P5-ver6 204.71 DP V Strong 363.78 DP V Strong 159.07 WD V Strong

152

5 Probability Distribution of Defects and Object-oriented Metrics

8 times and ‘weak’ once. Out of the 8 times WD model was selected, the evidence is ‘very

strong’ twice, ‘strong’ twice, ‘positive’ once and ‘weak’ thrice. Here we can see that even

though BGPD model was selected majority of the times, the evidence for the model is not

strong enough to get to any conclusions. This means that the WD model might be able

to provide a comparable fit in many of the cases where the BGPD model was selected.

A similar observation can be made about the instances where WD model was selected.

This indicates that the models cannot be separated clearly as they are able to provide

very similar fits to the data under consideration. This is consistent with the Nemenyi

diagram which also says that these models do not outperform each other with statistical

significance.

It is always interesting and practically very useful to know the percentage of bugs induced

by a portion of software modules. This helps to plan quality assurance activities like testing

and code review better. We demonstrate two cases where the percentage of bugs can be

estimated better by making use of the best model proposed by this study i.e., Double

Pareto Distribution. Using the top three models in our study, we estimate percentage of

bugs for various proportion of software files for Eclipse 2.1 and Prop1. These are then

compared with the actual values. For these two projects, the estimated percentage of bugs

by top three models and the actual percentage of bugs for several proportion of files is

shown in Figure 5.3. From these figures, it can be observed that the Double Pareto Model

seems to fit better and provide a better estimate in both the projects. The difference

seems to be more pronounced in case of Prop1.

5.2.5 Contributions

We summarize our work, highlight the contributions and outline our conclusions. Several

papers have studied the distribution of bugs in software systems and proposed various dis-

tributions to model them. The previous studies use goodness-of-fit statistics to compare

models and results are summarized across datasets by qualitative means. We note that

using goodness-of-fit statistics for model selection has been shown to be vulnerable to thre-

ats, such as, over-fitting and we attempt to tackle these issues by using an information

criteria based approach to model selection. We make use of three prevalent informa-

153

5 Probability Distribution of Defects and Object-oriented Metrics

Figure 5.3: Proportion of Files vs Bugs - Eclipse and Prop1 Projects.

(a) Eclipse (b) Prop1

tion criteria, namely, the Bayesian Information criterion, Akaike Information Criterion &

Hannan-Quinn Information Criterion to compare models.

The distribution of software bugs across files has been shown to follow power law tails

and hence several power law distributions have been considered for the problem so far.

In this work we consider the Pareto, Weibull and BGPD models. In addition, the Yule

Simon, Double Pareto and Lognormal distributions have been shown to be applicable in

similar situations and also have generative models that have been shown to be applicable

to software bug behavior hence they are included in this study.

We use a large collection of data comprising of fault data from 62 versions of a wide

variety of open and proprietary software systems. We study data from 34 versions of open

source software systems and 28 versions of proprietary software systems. We note that

the number of projects considered in this study is larger than the number of projects used

in previous works and, thus, this work is widespread study in terms of data. We conduct

experiments and analyze results on data sets that have not been used previously to model

bug distributions, to the best of our knowledge, and hence add to the body of published

empirical results. We do away with the qualitative accumulation of results in favor of a

statistically proven methods, Friedman and Nemenyi tests. Specifically, first we use the

154

5 Probability Distribution of Defects and Object-oriented Metrics

Friedman test to establish that there is significant difference between models and then use

the Nemenyi test to check if they outperform each other.

Experiments with open source data showed that the Double Pareto, Weibull and Bounded

Generalized Pareto models are the top three best fitting models. Each of these models

is significantly better than YS, LGNRM and PD models. And there is no significant

difference between YS and LGNRM models but both of them are significantly better than

PD. Further, we also note that DP, BGPD and WD models fail to outperform each other

with statistical significance. However it is found out that DP models fare better than

BGPD and WD models though not significantly. And these conclusions hold good for all

three measures-BIC, AIC and HQIC used in our study. The experiments based on Bayes

factor and BIC relative fit values reveal that DP model is found to be better than WD

model and BGPD model with Very Strong or Positive evidence in nearly 70% of open

source projects.

DP model is found to be significantly better than all other five models in experiments

conducted on proprietary software projects. There is no significant difference between WD

and BGPD models but they are significantly better than YS, BGPD and PD models. And

there is no significant difference between YS and LGNRMmodels but they are significantly

better than PD model. The same results are observed irrespective of the three measures-

BIC, AIC and HQIC used in our study. The experiments based on Bayes factor and BIC

relative fit values reveal that DP model is found better than WD model and BGPD model

with Very Strong or Positive evidence in nearly 100% of proprietary software projects.

Hence we confidently conclude that the Double Pareto distribution fits bugs better than

other distributions for propriety software systems.

5.3 Probability Distribution of Object-oriented Metrics

The distributions followed by the object oriented metrics is a starting point to explore the

stochastic process that the development of a software project follows. Though the process

of software development adopts a design and coding process with the primary goal of imple-

155

5 Probability Distribution of Defects and Object-oriented Metrics

menting the functionalities effectively and efficiently, the entire process has an apparent

randomness, however the resulting software system metrics have statistical regularities.

The distribution followed by metrics indicates the underlying generative process involved.

Each of the distributions have their own generative processes. Mitzenmacher [153] has lis-

ted six unrelated, independent generative models that can result in power Law. Similarly

Concas et al. [154] has provided the generative process for Log-normal distribution and

Normal Distribution. We have considered these generative models and have attempted to

reason if these generative processes could indeed explain the process of the development

of the project attributes.

We have considered five models in our study. Past studies have shown that the software

projects frequently follow power law. They occasionally seem to follow Log-normal or

Gamma distribution [154] [155] [156]. Apart from these three models we have also con-

sidered Weibull distribution and Generalized Pareto Distribution (GPD). The intuitions

for considering the distributions have been discussed in Section 5.3.2.2. The number of

projects that were considered in past studies are not sufficient to infer a more genera-

lizable conclusion. In this study, an attempt has been made to perform an exhaustive

comparison over a large number of projects that shall provide a more definitive conclusion

to the hypothesis that the metric follows a particular distribution or set of distributions.

The CK metrics that have been considered in the study are Weighted Methods per Class

(WMC), Depth of Inheritance Tree (DIT), Response For Class (RFC), Lack of Cohesion

of Methods (LCOM) , Coupling Between Objects (CBO) and Number of Children (NOC).

Apart from these metrics we have also considered Lines of Code (LOC). The process of

choosing the most appropriate model involves parameter fitting followed by comparison

of models using one of the goodness-of-fit statistics. Studies [154] [155] [156] generally

involve parameter fitting using one or more of the following methods: Maximum Likeli-

hood Estimate (MLE), Least Square Estimate (LSE) or Method of Moments (MoM) and

compare the models using the goodness-of-fit measures like KS Distance, R2(Coefficient

of Determination) or Pearson χ2 test. However using these measures have few drawbacks

and Akaike Information Criterion (AIC) is a better statistic to compare the models [157],

and this shall be discussed in Section 5.3.2.3.

Therefore the objectives of the study are to propose the distribution that best fits each of

156

5 Probability Distribution of Defects and Object-oriented Metrics

CK metrics and to reason out the generative model followed by the metric that may have

resulted in the distribution.

5.3.1 Related Work

The pervasiveness of power law in Software systems has been actively explored in various

studies. Louridas et al. [158] have explored in depth the ubiquity of power laws in various

levels of abstraction of software systems. It was established that power law was not

only existent at class and function level but also in the distribution of packages and

libraries in different systems and languages. The measurement of procedural complexity

of software system has been done using fan-in and fan-out. The power law distribution

was fitted using linear regression on the log-log data plots and the benchmark used to

determine the goodness-of-fit was R2. Studies focused on the distribution based on not

only file-dependencies but other attributes as well. Baxter et al. [159] studied the key

structural attributes of about 56 Java programs and fitted power law using weighted least

squares fit. It was concluded that while most of the 17 attributes followed power law, few

of them followed Log-normal or stretched exponential. It was checked whether each fit

was consistent with the data at different confidence intervals, and then the best fit was

decided.

Concas et al. [154] focused on the CK metric properties of the implementation of a Smal-

ltalk system (VisualWorks Smalltalk). They validated whether the data follow a Log-

normal or a Pareto distribution using Maximum Likelihood Estimations. They have found

that most studied metrics followed a power law distribution except for the number of met-

hods metric (i.e., the WMC metric), the number of all instance variables metric, and the

CBO metric, which follow a Log-normal distribution. Though the study performed was

quite detailed, the number of projects considered was too less to arrive at concrete con-

clusions and also the study was performed on SmallTalk programs, the OOP principles

of which vary considerably from the more commonly used languages of Java and C++.

Shatnawi et al. [155] focused on fitting CK metrics to power law distribution using Maxi-

mum Likelihood Estimation and have proposed initial statistical tests (based on Kurtosis

and skewness) that can be used as initial screening test to rule out power law Distribution.

157

5 Probability Distribution of Defects and Object-oriented Metrics

They have considered 5 Java software projects. Herraiz et al. [156] based their study on

the Qualitas Corpus, measuring the CK metrics suite values for every file of every Java

project in the corpus. They concluded that the range of high values for the different me-

trics follows a power law distribution, whereas the rest of the range follows a Log-normal

distribution. They fitted the distribution using the Kolmogorov-Smirnov distance as a

measurement of the goodness-of-fit.

Among the distributions that follow power law, the prominent one is Pareto distribu-

tion. Other specific distributions have been considered quite often in studies pertaining

to software systems. Grbac et al. [137] have considered Weibull distribution and Pareto

distribution among others while studying the probability distribution of faults in software

systems. Adamic et al. [160] provide the analytical derivation of Pareto 80-20 principle by

converting power law to rank size distribution. This has been used by Louridas et al. [158]

more appreciable interpretations of the fitted distribution by providing conclusions like

the richest ‘a’ percent of the items have ‘b’ percent of the resources where a and b are

analytically calculated.

Studies have also attempted to explore the generative models of various distributions. Mit-

zenmacher [153] discovered that Log-normal and power law distributions are connected

quite naturally, and hence it is not surprising to state that Log-normal distributions could

be a possible alternative to power law distributions across many fields contributing sig-

nificantly to the debate over whether file size distributions are best modeled by a power

law distribution or a Log-normal distribution. Further, these model to have been used to

make an attempt at explaining the stochastic process involved in Software Development.

Concas et al. [154] have also tried to justify the possible generation process that could

have resulted in the statistical distribution. The models considered by them are: Random

and Independent increments leading to Normal distribution, Random and proportional

increments paving way to Log-normal distribution and finally Preferential Attachment

resulting in power law.

While most of these studies almost ubiquitously used goodness-of-fit tests like KS Distance

or Chi-Square test, Vose [157] provides reasoning to why Akaike Information Criterion

(AIC) is a better goodness-of-fit measure. Among the reasons stated, the prominent one

158

5 Probability Distribution of Defects and Object-oriented Metrics

is that AIC is based on calculating the log likelihood of the fitted distribution producing

the set of observations. This allows one to use maximum likelihood as the fitting method

and be consistent with the goodness-of-fit statistic. Also, the information criteria penalize

distributions with greater number of parameters, and thus help avoid the over-fitting

problem [146]. Luo Li et al. [161] also adopt AIC as the goodness-of-fit measure while

choosing the distribution that models the number of defect occurrences in each time period

over the lifetime of a release of a widely deployed software project. After comparing the

AIC values it was concluded that Weibull performed the best and Theil statistics values

were derived and analyzed to validate the Weibull model.

In this work, we have considered 5 possible distribution which have been fit over each of the

CK metrics of 50 projects. When the number of datasets is huge as in our case, analysis

becomes intractable. Therefore statistical methods like Nemenyi tests are employed to

summarize results across the multiple datasets [38]. The process was employed by Lessman

et al. [5] in order to determine the significantly better classifier in a large-scale empirical

comparison of 22 classifiers over 10 datasets while benchmarking classification models for

software defect prediction.

Nemenyi test and Friedman test provide a concrete results on whether a model is signifi-

cantly outperforming other models. And thereby we can eliminate the threats of human

error and statistical inaccuracy. The details of the methodology used and its theoretical

motivations are provided in the model selection section. We aim to check if a model is

significantly better in fitting the metric distribution over all the project. In the instances

where such a model exists, we have discussed the possible stochastic generative process

that could have resulted in the distribution and also reasoned if such an inference is valid.

5.3.2 Background

5.3.2.1 Datasets

Most of the earlier studies have relied on CK metric data from relatively fewer software

systems. However we attempt to generalize the results using larger datasets consisting of

159

5 Probability Distribution of Defects and Object-oriented Metrics

the public Eclipse dataset [162] and the public data collected by Jureczko et al. [93]. We

have used the CK Metric values of 50 versions of various software systems that have been

listed in Table 5.8.

Table 5.7: Metrics
Name Description

Lines of Code (LOC) Number of non-commented lines of code for each
software component (e.g., in a class)

Weighted Methods per Class (WMC) Number of methods contained in a class inclu-
ding public, private and protected methods

Coupling Between Objects (CBO) Number of classes to which a class is coupled

Depth of Inheritance (DIT) Maximum inheritance path from the class to the
root class

Number Of Children (NOC) Number of immediate sub-classes of a class

Response For a Class (RFC) Number of methods that can be invoked for an
object of given class

Lack of Cohesion among Methods (LCOM)
Number of methods in a class that are not re-
lated through the sharing of some of the class
fields

Apart from the open source projects, six proprietary softwares have been considered. Of

them, five are custom software systems built for companies in the insurance domain and

the sixth is a standard tool that supports quality assurances in software development. All

six were built by the same company.

5.3.2.2 Probability Distributions

In total we have considered five models which have been discussed below.

• Pareto Distribution

The first distribution that has been considered in the study is the heavy tailed

Pareto distribution, which follows power law [138]. Named after the economist

Vilfredo Pareto, the Pareto Principle was first conceived to model the distribution

of resources in a population, the famous 80-20 principle [163]. Formally the Pareto

Distribution has the following probability distribution,

160

5 Probability Distribution of Defects and Object-oriented Metrics

Table 5.8: Dataset

S.No Project Name Version Number of
Modules S.No Project Name Version Number of

Modules
1

Apache Ant

1.3 126 23 Apache Lucene 2.2 248
2 1.4 179 24 2.4 341
3 1.5 294 25

Apache POI

1.5 238
4 1.6 352 26 2 315
5 1.7 746 27 2.5 386
6 1 340 28 3 443
7

Apache Camel
1.2 609 29

Apache Synapse
1 158

8 1.4 873 30 1.1 223
9 1.6 966 31 1.2 257
10

Apache Ivy
1.1 112 32

Apache Velocity
1.4 197

11 1.2 242 33 1.5 215
12 1.3 353 34 1.6 230
13

jEdit

3.2 273 35

Xalan Java

2.4 724
14 4 307 36 2.5 804
15 4.1 313 37 2.6 886
16 4.2 368 38 2.7 910
17 4.3 493 39

Apache Xerces

init 163
18 Apache Tomcat 1 859 40 1.2 441
19

Apache Log4j
1 136 41 1.3 454

20 1.1 110 42 1.4 589
21 1.2 206 43 Redaktor 1 176
22 Apache Lucene 2 196 44 ArcPlatform 1 234

αxam
xα+1 for x ≥ xm (5.13)

where xm > 0 is the scale (real) parameter and α > 0 is the shape (real) parameter.

Its CDF can be described as,

1−
(
xm
x

)α
for x ≥ xm (5.14)

Pareto distribution is reported to be ubiquitous when it comes to the properties

of software systems. Fenton et al. [129] performed a quantitative analysis of fault

distributions and confirmed that the number of defects in software systems follow

Pareto distribution. The same was replicated and confirmed by Andersson et al.

[130]. Concas et al. [154] have concluded that the software properties systematically

followed Pareto distribution in the SmallTalk project, Visual Works.

161

5 Probability Distribution of Defects and Object-oriented Metrics

The Pareto distribution is the most common power law distribution. Its statistical

distribution can thus be generated by the different stochastic processes listed by

Mitzenmacher [153]. Preferential Attachment is the simplest and most common

explanation of all different stochastic processes [154].

Preferential Attachment It is the phenomena where new objects tend to attach to

popular objects. That means, the probability of choosing an entity to modify

(increment) is directly proportional to the present size of the entity and the

increment value is independent of the entity size. In the software systems, the

objects can be files (classes) and the properties are the metric values. The

probability of modifying a larger file can intuitively be considered to be higher.

The preferential attachment may thus apply in our context.

• Log-normal Distribution

The next distribution that we have considered, a common contender to fit the soft-

ware metrics, is Log-normal distribution. Previous studies have considered Log-

normal distribution and found that few metrics follow this distribution [154] [155]

[156]. The Log-normal distribution has the following probability distribution:

1
xσ
√

2π
e−

(ln x−µ)2

2σ2 (5.15)

where µεR is the location parameter and σ > 0 is the scale parameter. And its CDF

is as follows.

1
2 + 1

2erf
[
ln x− µ√

2σ

]
(5.16)

Law of Proportional Effect: Gibrat’s law proposed by Gibrat [164], also known as

the law of Proportional Effect provides the stochastic process that results in Log-

normal distribution. It states that the probability of change (increment) is same for

162

5 Probability Distribution of Defects and Object-oriented Metrics

all modules (files), independent of their size, however the increment is proportional

to their present property value. In our context, it means that the probability of

a particular file being chosen for increment is the same as other files. However

the magnitude of the increment of metric is proportional to its current value. A

major drawback of this stochastic model is that it cannot fit the metric value to a

file/module (or any other granularity) which is newly introduced and has no metric

value yet.

• Weibull Distribution

Another distribution we have considered is the Weibull distribution, named after the

Swedish mathematician Waloddi Weibull. The distribution has found widespread

application in the field of reliability engineering when we fit the distribution of

failure times of a product. In such cases the shape parameter (k), provides the rate

of failure. The value of k is used to determine if the product faces ‘Infant Mortality’

or ‘Aging’. If the shape parameter k < 1, then failure rate decreases with time. And

Weibull distribution is said to be fat-tailed in this case. This is the case that we

come across in our study.

Weibull distribution is also used to describe the strength of material with shape fac-

tor being the shape module. Weibull distribution is widely adopted in predicting the

reliability of software systems in the software development life cycle where the cumu-

lative number of faults was plotted against weeks after deployment [161]. Further,

Zhang et al. [133] explored the modeling the distribution of faults over file with Wei-

bull distribution and have found it to perform better than Pareto distribution. As

the software metrics are correlated with the fault distribution in modules [165], we

consider Weibull distribution in our study. The probability distribution of Weibull

is:

f (x) =

k
λ

(
x
λ

)k−1
e−(xλ)k x ≥ 0

0 x < 0
(5.17)

163

5 Probability Distribution of Defects and Object-oriented Metrics

where λε (0,+∞) is the scale parameter and kε (0,+∞) is the shape parameter.

While the CDF of Weibull distribution is given as:

CDF =

1− e−(xλ)k x ≥ 0

0 x < 0
(5.18)

• Generalized Pareto Distribution (GPD)

We have also considered Generalized Pareto Distribution (GPD) as another possible

candidate distribution. The GPD was introduced by Pickands [166] and since then

it found applications in reliability engineering. The GPD is mainly used for the

analysis of extreme events as it provides the complex model to describe the full

range of data, especially the tail data. The probability distribution function of GPD

is given by:

1
σ

(1 + ξz)−
(

1
ξ+1

)
(5.19)

where z = x−µ
σ , where µε (−∞,∞) is the location parameter, σε (0,∞) and

ξε (−∞,∞) is the shape parameter and CDF is given by

1− (1 + ξz)−
1
ξ (5.20)

The distribution provides a wide and continuous range of possible shapes with ex-

ponential and Pareto distributions as the special cases. The form of GPD depends

upon the value of its shape parameter (k).

– when k = 0, GPD reduces to exponential function

– when k = 1, GPD reduces to uniform distribution

164

5 Probability Distribution of Defects and Object-oriented Metrics

– when k < 0, GPD reduces to Pareto distribution of second kind

GPD too is not new to the field of software engineering as well, Kolassa et al. [167]

proposed GPD to define commit sizes in open source projects.

• Gamma Distribution

Another distribution that has been considered is Gamma distribution. In their

study, Concas et al. [154] observed that one of the software metrics followed Gamma

distribution.

Let’s consider a Poisson process with ‘points’ occurring randomly in time. The

sequence of inter-arrival times in the process is a sequence of independent random

variables, each of which has exponential distribution. And the distribution of the

nth interval is said to follow Gamma distribution. This formal generative process is

however unintuitive to realize in our study. The probability density function is given

as

1
Γ(k) θk x

k−1e−
x
θ (5.21)

The CDF is given as

1
Γ(k)γ

(
k,
x

θ

)
(5.22)

In the following section we explain in detail how the models are fit to the dataset

and what was the basis of selection of the best model.

165

5 Probability Distribution of Defects and Object-oriented Metrics

5.3.2.3 Model Selection

For this problem, we put forth the same methodology/argument as in Section 5.2 for

comparing models across multiple datasets and the reasons for making use of information

criteria (AIC, BIC).

Root Mean Square Error (RMSE) is a frequently used statistic to predict the difference

between the observed values and predicted values.

RMSE =

√√√√ 1
n

n∑
i=1

(Xi −Oi)2 (5.23)

where Oi is the set of Observed values and Xi is the set of respective predicted values.

The above equation suggests that a low value of the metric indicates better fit. We use the

statistic not to compare various models but to check how well the best model as proposed

by the AIC actually fits the given data distribution.

5.3.2.4 Experiments

We have conducted experiments on 50 versions of software systems and the details of these

projects are described in Section 5.3.2.1. For each of the version, AIC and BIC values are

computed for each of five models and six metrics. We then performed Friedman’s test to

reject or accept the null hypothesis which states that “there is no significant difference

between the five models”. We reject the null hypothesis at 0.01 level of significance. If

null hypothesis is rejected, we perform the post-hoc test (Nemenyi) and plot the Nemenyi

Diagram. The diagram has the models on X axis and their mean rank on y axis. The

Critical Difference (CD), which is used to determine if a model is performing better than

the rest, is denoted as a vertical line extending above the mean rank. If a model M1 has

a higher mean rank than the highest point of the CD interval line of another model M2

then we can say that M2 outperforms M1 with statistical significance. The Nemenyi plots

for different metrics have been plotted and discussed in the next section.

166

5 Probability Distribution of Defects and Object-oriented Metrics

Table 5.9: Average: AIC
Distribution/
Metrics

Gamma GPD LNORM Pareto Weibull

CBO 12529.01 12554.24 12900.62 12554.16 12555.20
DIT 6006.38 7113.30 6077.51 7100.89 6012.88
LCOM 8647.76 7649.41 7579.94 7652.89 7821.39
LOC 22590.38 21002.44 21005.10 21002.43 21138.05
NOC 592.32 -2220.51 -2765.89 -2220.51 -699.13
RFC 12131.79 12209.30 12373.95 12208.77 12160.73
WMC 9584.81 9601.52 9343.66 9602.98 9662.59

Table 5.10: Average: BIC
Distribution/
Metrics

Gamma GPD LNORM Pareto Weibull

CBO 12537.32 12562.55 12908.93 12562.47 12563.51
DIT 6014.70 7121.61 6085.83 7109.20 6021.19
LCOM 8655.79 7657.44 7587.97 7660.92 7829.42
LOC 22598.69 21010.75 21013.41 21010.75 21146.36
NOC 600.76 -2212.07 -2757.45 -2212.07 -690.70
RFC 12139.94 12217.46 12382.11 12216.92 12168.89
WMC 9593.12 9609.83 9351.97 9611.30 9670.90

Table 5.11: Average: RMSE
Distribution/
Metrics

Gamma GPD LNORM Pareto Weibull

CBO 0.048 0.055 0.052 0.055 0.052
DIT 0.156 0.120 0.157 0.119 0.151
LCOM 0.093 0.074 0.067 0.075 0.086
LOC 0.156 0.170 0.150 0.170 0.183
NOC 0.030 0.022 0.032 0.022 0.018
RFC 0.041 0.042 0.054 0.042 0.040
WMC 0.043 0.045 0.036 0.045 0.043

167

5 Probability Distribution of Defects and Object-oriented Metrics

5.3.3 Results and Discussions

The following results have been obtained for each of the metrics:

5.3.3.1 Weighted Method per Class (WMC)

For WMC, the null hypothesis is rejected. This means that not all the models have

performed equally and thus we can conclude that one or few of the models performs

significantly better than others. Nemenyi plots are shown in Figure 5.4. On performing

the Nemenyi test, we observe that the Log-normal model fits better, closely followed by

Gamma and Generalized Pareto models.

Wheedlen et al. observed that WMC follows power law behavior [168]. Concas et al.

observed that the distribution of WMC for a Small Talk project followed a Log-normal

distribution. Our result is in agreement with the observations [134]. However, Law of

Proportionate increment is too rough to model the generative process for the metric dis-

tribution. Most of the methods are written at one go according to the class design that

was drawn initially. Therefore it is too much of a generalization if we say that the class is

selected at random and the increment in the number of methods in class is proportional

to the existing number of methods.

5.3.3.2 Coupling Between Objects (CBO)

The null hypothesis is not rejected for CBO and hence there is no significant difference

among five models.

Many attempts have made to represent a software project as a graph, and observe the scale

free behavior shown by the distribution of edges, which is the characteristic of any system

following power law. Louridas et al. [158] have software project with such a perspective,

links representing the use of a class by another class. And have concluded it to follow

power law.

168

5 Probability Distribution of Defects and Object-oriented Metrics

Figure 5.4: Nemenyi plots WMC

●

●

●

●
●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.863

M
ea

n
ra

nk
s

●

●

●

●

●

●

●

●

●

●

lnorm gpd gamma weibull pareto

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

(a) AIC

●

●

●

●
●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.863

M
ea

n
ra

nk
s

●

●

●

●

●

●

●

●

●

●

lnorm gpd gamma weibull pareto

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

(b) BIC

CBO is a metric closely related to these links. It is the count of the number of classes

that are coupled to a particular class which means that the methods of one class call and

access the variables of other. These calls are counted in both the directions. Therefore

CBO of a class A includes both, the classes referenced by this class and also the classes

referencing class A. CBO is (Number of Links)/(Number of Classes in the module) where

the links represent Dependence and Composition between modules. Therefore it was

intuitively expected that CBO metric shall follow power law, with Pareto model fitting

the distribution well. Our experiment shows all the models (including Pareto) perform

equally and no model performs significantly better than the rest.

5.3.3.3 Response For Class (RFC)

Response for Class is the number of distinct methods and constructors invoked by a class.

It includes the methods defined in the class and also the methods called by the methods of

the class. The null hypothesis is rejected for RFC, suggesting significant difference in the

performance of the models. Nemenyi diagram is shown in Figure 5.5. From the diagram

we observe that Gamma, Pareto, Weibull and Generalized Pareto models fit RFC better

than Log-normal.

Like CBO, RFC is a metric that deals with the relationship between classes. In our

169

5 Probability Distribution of Defects and Object-oriented Metrics

experiment, we observe that the four out of five models, performed no better than each

other. Thus we shall not be able to pinpoint the generative model that may have led to

the current distribution.

Figure 5.5: Nemenyi plots RFC

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.899

M
ea

n
ra

nk
s

●

●

●

●

●

●

●

● ●

●

gpd weibull pareto gamma lnorm

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

(a) AIC

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.899

M
ea

n
ra

nk
s

●

●

●

●

●

●

●

● ●

●

gpd weibull pareto gamma lnorm

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

(b) BIC

5.3.3.4 Depth of Inheritance Tree (DIT)

The null hypothesis is rejected and therefore we proceeded to perform the Nemenyi test.

Figure 5.6 shows the Nemenyi diagram generated using AIC, BIC values for models, fitting

DIT metrics of various projects.

From the Nemenyi diagram we can see that the two best fitting models are Log-normal

and Gamma. Their respective RMSE values are 0.0156 and 0.0157 respectively.

The law of proportionate effect doesn’t seem to be applicable though our experiments

reveal that DIT follows Log-normal. It would be highly impractical to say that the incre-

ment of the depth in inheritance tree is proportional to the present depth value. Every

time a programmer makes the inheritance tree of a class deeper, it is by a single unit.

Therefore increments are constant rather than proportional. It seems unrealistic to say

that all the files will be chosen with equal probability. And at the same time it is equally

extreme to say that the probability of choosing a file is proportional to its existing value.

Thus, though experiments show Lognormal and Gamma Distributions to be fitting the

170

5 Probability Distribution of Defects and Object-oriented Metrics

metric distribution well, their generative processes are too complicated to be intuitively

conceived. Also, since the dynamics exhibited by the metric data is very limited, the result

may be misleading. Hence we cease to explore further possibilities

Figure 5.6: Nemenyi plots DIT

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.863

M
ea

n
ra

nk
s

●

●

●

●
●

●

●

●
●

●

lnorm gamma weibull pareto gpd

1
2

3
4

5
6

(a) AIC

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.863

M
ea

n
ra

nk
s

●

●

●

●
●

●

●

●
●

●

lnorm gamma weibull pareto gpd

1
2

3
4

5
6

(b) BIC

5.3.3.5 Lack of Cohesion of Methods (LCOM)

LCOM gives the correlation between the methods and local variables of a class. High

cohesion suggests good class division. The null hypothesis is rejected, indicating that

there is significant difference between the performance of models. Therefore Nemenyi test

is performed and it is observed that Log-normal distribution is the best performer among

the models. Figure 5.7 shows the plotted graph. The average value of RMSE for the fit

of Log-normal distribution is 0.067

Pani and Concas observed that the Log-normal model fit the LCOMmetric distribution the

best in case of the Java project Eclipse [169]. In our study we notice that this observation

can be generalized to all Java projects.

LCOM metric as originally proposed by Chidamber and Kemerer is as follows [8]. Let a

class C have n methods M1,M2,M3,.....Mn. Let Ii be the set of instance variables used

by method Mi. Let P = {(Ii, Ij) |Ii ∩ Ij = φ} and Q = {(Ii, Ij) |Ii ∩ Ij 6= φ} then,

171

5 Probability Distribution of Defects and Object-oriented Metrics

LCOM = |P | − |Q| , if |P | > |Q|

= 0 otherwise
(5.24)

The above definition shows that a higher LCOM value suggests the splitting of a class as

there is a lack of cohesion. This suggests that |P | > |Q| which means that more pairs

of methods don’t have a common instance variable. An increase in the LCOM value can

be achieved in the following ways: Increasing |P |, i.e., introducing a method that doesn’t

share a common instance variable with more than half of the existing methods. Decreasing

|Q|, i.e., deleting a method that shares a common instance variable with more that half

of the existing methods. In the process of software development, deletion of methods is

highly rare when compared to addition of new methods. Therefore we focus on the 1st

scenario.

Consider 2 classes C1 and C2 with the LCOM value 10 and 20 respectively. This means

that C1 has 10 more pairs of incoherent methods than coherent ones and C2 has 20 more

pairs. This means that the C2 has more ‘clusters’ of methods that are incoherent with each

other. If we introduce a incoherent method to each of these ‘clusters’, the magnitude of

increase in the LCOM value of C2 will be higher than that of C1. The possible magnitude

of increase is approximately proportional to the LCOM value of the class. Hence we

can identify the presence of ‘Law of Proportional Effect’ which leads to the Log-normal

distribution that the metric follows.

Figure 5.7: Nemenyi plots LCOM

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.880

M
ea

n
ra

nk
s

●

●

●

●

●

●

●

●

●

●

lnorm gpd weibull pareto gamma

1
2

3
4

5
6

(a) AIC

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.880

M
ea

n
ra

nk
s

●

●

●

●

●

●

●

●

●

●

lnorm gpd weibull pareto gamma

1
2

3
4

5
6

(b) BIC

172

5 Probability Distribution of Defects and Object-oriented Metrics

5.3.3.6 Number of Children (NOC)

The null hypothesis is rejected and hence Nemenyi test is employed. The nemenyi plots are

shown in Figure 5.8. It is observed that Log-normal fits NOC better than other models.

The average RMSE for the Log-normal fit is 0.0323 which suggests that not only is the

Lognormal model relatively better than other model, but also it fits the data distribution

well in absolute sense too.

It seems unrealistic to say that the metric distribution might have been generated by

Law of Proportional effect, i.e., the classes being chosen with equal probability and the

magnitude of increment in number of children for a class being proportional to its present

metric value. Thus, though experiments show Lognormal model to be fitting the metric

distribution well, its generative process is too complicated to be intuitively obtained.

Figure 5.8: Nemenyi plots NOC

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.909

M
ea

n
ra

nk
s

●

●
●

● ●

●
●

●
●

●

lnorm gpd pareto weibull gamma

1
2

3
4

5
6

(a) AIC

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.909

M
ea

n
ra

nk
s

●

●
●

● ●

●
●

●
●

●

lnorm gpd pareto weibull gamma

1
2

3
4

5
6

(b) BIC

5.3.3.7 Lines of Code (LOC)

Though this is not one of the original CK metric, Lines of Code is a commonly used

metric to understand the size and growth of the software systems. In an attempt to find

the distribution followed by the metric, we fit five models and compare them with their

respective AIC values. The null hypothesis is rejected and hence one or few of the models

fit significantly better than the rest. We further proceeded to perform the Nemenyi test

173

5 Probability Distribution of Defects and Object-oriented Metrics

and found that GPD and Weibull models fit the data equally well and are better than

the other models with a statistical significance. We then observed the RMSE values for

the fits in order to estimate how well the models actually fit the data, and find the score

to be 0.170 and 0.183 for GPD and Weibull respectively. This significant value suggests

that though the models are better among the models that we have considered, they can

not be considered to fit the given distribution well. Their actual performance seems to be

poor.

Figure 5.9: Nemenyi plots LOC

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.863

M
ea

n
ra

nk
s

●

●

●

●

●

●

●

●

●

●

gpd weibull pareto lnorm gamma

2
3

4
5

6

(a) AIC

●

●

●

●

●

Friedman: 0.000 (Different)
 Nemenyi CD: 0.863

M
ea

n
ra

nk
s

●

●

●

●

●

●

●

●

●

●

gpd weibull pareto lnorm gamma

2
3

4
5

6

(b) BIC

5.3.4 Contributions

We attempted to model six object oriented metrics. We have also considered the LOC

metric. With respect to AIC, we observe that WMC, DIT LCOM and NOC metrics follow

the Log-normal distribution. On the contrary RFC follows four of the distributions except

the Log-normal distribution. There is no significant difference between five models in case

of CBO. GPD and Weibull models fit the LOC metric significantly better than other

three distributions. Understanding the distributions followed by CK metrics will help

us in predicting the evolutions of software systems and also in the estimation of efforts

required to maintain such systems.

174

6 Conclusion and Future Work

Defect prediction research has been evolving quite rapidly but its applicability to IT

industry is far from reality. The efficacy of defect prediction models built with various

combinations of metrics, algorithms and performance measures has been investigated in

this work. Defect prediction models built with proposed approaches are compared with

existing approaches.

6.1 Contributions and Findings

The goal of our work is to progress defect prediction research with the pre-processing

techniques, novel features, Bayesian learning techniques, multi-objective optimization

techniques and comparative study of classification algorithms. We have also made an

attempt to model the probability distribution of past defects and object-oriented metrics.

We summarize the contributions of our work as follows.

1. Our investigation on the impact of feature selection on defect prediction establishes

that prediction accuracies can be enhanced significantly by applying feature selection

techniques during pre-processing steps. We encourage to use greedy based algorithms

for feature selection as they stand out and perform much better than the other

competent algorithms. We re-emphasize that there may not be any common metrics

amongst optimal feature subsets of similar projects. We have also found out that

the impact of feature selection algorithm is independent of the underlying machine

learning algorithms used for the classification.

175

6 Conclusion and Future Work

2. We define a modus operandi to extract some popular change metrics from the Eclipse

repository on Github, which can be generalized for any open-source Github reposi-

tory. We have proposed couple of new change metrics, namely, Entropy and Mean

Period of Change to figure out whether commits are uniformly distributed over the

time-line between the two consecutive releases. We establish that a source file which

was last changed in the early periods of the timeline and has been free of changes for

the remaining periods can be considered relatively stable, as compared to a source

file for which period of change concentration is localized closer to the date of rele-

ase. We have used Logistic Regression, CART Decision Tree, Gaussian Naïve Bayes

and Naïve Bayes Tree algorithm to build prediction models using the proposed and

existing change metrics. We have found that Naïve Bayes Tree perform better than

other commonly used algorithms for defect prediction problem.

3. Our initial experiments confirmed that Naïve Bayes classifier is one of the best

performing classification techniques in defect prediction. It assumes conditional

independence of features and for the defect prediction problem which is not entirely

true. For example, lines of code (LOC) and number of operands of a source file can’t

be taken as independent. It motivated us to relax these conditional independence

and to check whether there is an improvement in performance of classifiers. We

defined augmentation as follows.

A simple Bayesian Network which doesn’t not have an arc from class node to every

other node, is not an augmented. Bayesian Network is augmented if it has an arc from

class node to every other node. For our experiments we have augmented Bayesian

Network structures learnt using HC, TABU, GS, MMHC and RSMAX2.

First, we have compared the performance of defect prediction models built using sim-

ple Bayesian Network classifiers with other traditional machine learning classifiers.

In terms of AUC and H-Measure, Random Forest classifier is found to be better per-

forming classifier than Bayesian Network classifiers. However, on defect prediction

models built with our proposed augmented Bayesian Network structure, we observe

that RSMAX2 and Grow-Shrink are consistently better, and there is no significant

difference in performance between these classifiers and Random Forest. When we

176

6 Conclusion and Future Work

compare classifiers using different cost ratio distributions leading to Risk Averse and

Delay Averse scenarios, RSMAX2 and Grow-Shrink classifiers are performing very

close to Random Forests and are found better than Naïve Bayes classifier.

4. The cost of fixing a software defect varies with the phase in which it is uncovered.

Defects found during post-release phase costs much more than the defect that is

uncovered in pre-release phase. Classifying a defective source file to be non-defective

will result in a defect during post release phase and non-defective file to be a defective

file will result in wastage of effort (due to QA activities). These two costs are

called misclassification costs. Such misclassification cost has not been given much

importance while comparing defect prediction models. Hence, we find it interesting

to evaluate defect models using cost centric measure - Normalized Expected Cost of

Misclassification (NECM).

Though there are few studies that consider NECM as a model evaluation measure,

they have built models using either cost sensitive neural networks or traditional

machine learning algorithms. As there is no comprehensive comparative study on

the effectiveness of defect prediction models which are built using cost sensitive

neural networks and traditional machine laerning classifiers, we find it interesting

to build models using both the approaches and compared their performances using

NECM.

Our experiments confirm Random Forest as an outperforming algorithm in terms

of NECM closely followed by Logistic Regression and Bayesian Network. Random

Forest performs significantly better than cost sensitive boosting Neural Network

methods. We also observe that among the cost sensitive boosting Neural Net-

work algorithms, Cost Sensitive Boosting of Neural Networks using Threshold

Moving(CSBNN-TM) perform better than Cost Sensitive Boosting of Neural Net-

works with Weight Updation-I(CSBNN-WU1) and Cost Sensitive Boosting of Neural

Networks with Weight Updation-II(CSBNN-WU2).

5. Researchers proposed effort-aware defect prediction models wherein files are ranked

not only based on their defect-proneness but also on the effort that is required to

177

6 Conclusion and Future Work

perform quality assurance activities like testing, code review etc. on defect prone

files. Previous studies, considered Cyclomatic Complexity as a metric for the effort

required irrespective of the assurance activity that will be undertaken during post

prediction phases. We believe that effort-aware models are sensitive to the type

of quality assurance activity one undertakes. We have proposed effort-aware defect

prediction models that will consider the effort required to perform the specific quality

assurance activities like code review and testing. We have considered lines of code

and the number of testcases as our measures of effort for code review and testing

respectively. We have empirically proven the supremacy of these models over the

existing effort-aware model built with Cyclomatic Complexity.

• Our results indicate that the testing based effort-aware models perform signifi-

cantly better than generic effort aware models.

• The code review based effort-aware model performs slightly better than generic

model individually for each project but we could not find significant difference

in models performance.

6. In multi-objective optimization approach we have formulated two problems with two

sets of contrasting objectives as follows. M1: Maximize effectiveness of the model

and Minimize misclassification cost and M2: Maximize effectiveness of the model

and Minimize LOC cost.

We have compared multi-objective logistic regression models with four single ob-

jective algorithms for cross version defect prediction. Our results indicate following

benefits of multi-objective approach:

• The multi-objective defect prediction model (M1) is able to identify more de-

fects at the same or lesser misclassification cost incurred by all four single

objective defect prediction models.

• The multi-objective defect prediction model (M2) is able to identify more defect

178

6 Conclusion and Future Work

prone classes at the same or lesser LOC cost than the cost incurred with single

objective algorithms.

We recommend multi-objective approach for cross version defect prediction problems

against traditional single objective approaches.

7. Understanding the distributions of CK metrics will help us in predicting the evoluti-

ons and efforts required to maintain such systems. Previously it has been shown that

these metrics frequently follow power law. As these metrics are also shown to follow

Log-normal or Gamma distribution occasionally, we have studied more number of

software systems and applied more distribution models to infer more generalizable

results

In our attempt to model six object oriented metrics, we observe that WMC, DIT

LCOM and NOC metrics follow the Log-normal distribution. RFC follows four of

the distributions except the Log-normal distribution and CBO does not follows any

distribution better than other distributions. We have also found that LOC metrics

follow GPD and Weibull distributions.

8. Studies have proposed the Pareto distribution to model bugs in software systems.

However, few other probability distributions such as the Weibull, Bounded Generali-

zed Pareto, Double Pareto, Log Normal and Yule-Simon distributions have also been

proposed to model bugs. The contemporary work on choosing the most appropriate

model for the underlying bug distribution relies on parameter estimation methods

and goodness-of-fit statistics. In this work we seek to strengthen the model selection

methodology and make it less vulnerable to threats such as over-fitting by making

use of information criterion based approaches.

• Experiments with open source data showed that the Double Pareto, Weibull

and Bounded Generalized Pareto models are the top three best fitting models.

However it is found out that DP models fare better than BGPD and WDmodels

though not significantly. It holds good for all three measures- BIC, AIC and

HQIC used in our study. The experiments based on Bayes factor and BIC

179

6 Conclusion and Future Work

relative fit values reveal that DP model is found to be better than WD model

and BGPD model with Very Strong or Positive evidence in nearly 70% of open

source projects.

• We also find that Double Pareto model significantly better than all other five

models in experiments conducted on proprietary software projects. Similar

results are observed irrespective of the three measures- BIC, AIC and HQIC

used in our study. The experiments based on Bayes factor and BIC relative fit

values reveal that DP model is found better than WD model and BGPD model

with Very Strong or Positive evidence in nearly 100% of proprietary software

projects. Hence we confidently conclude that the Double Pareto distribution

fits bugs better than other distributions for propriety software systems.

6.2 Future Work

Software Analytics is gaining momentum as a result of involved empirical research in

enhancing quality and productivity of software engineering activities. There have been

rigorous research efforts in the areas of defect prediction, bug localization and effort es-

timation by making use of historical data. We recognize following problem areas where

advanced machine learning and search-based software engineering techniques can improve

the state-of-art and define them as our future work.

Bug-fix time prediction We find bug-fix time prediction as an interesting problem with

lots of advantages to industry. In the event of any reported bug, generally the pro-

ject management team approaches experienced team members to get an estimate of

the bug-fix time and the response would be very much a personalized and subjective

estimate. The accurate prediction of bug-fix times is useful in planning and mana-

gement of resources that results in the lessened cumulative bug fix time. There have

been attempts to solve defect prediction problem with machine learning approaches.

Similar techniques can be leveraged to solve the problem of predicting bug-fix times.

180

6 Conclusion and Future Work

By making use of the historical data about bug-fix times of previous bugs of the

project, prediction models can be built to predict bug-fix time of future bugs.

In our initial attempt to predict bug-fix time, we have made use of three major fea-

tures: report title, description and the reputation of the bug reporter. We introduce

a new feature, the score of bug reporter, to predict bug fix time. We define the score

or reputation of a reporter as follows: “Number of bugs reported by a reporter that

were eventually fixed”. For example, if a reporter logs 50 bugs out of which 30 are

fixed, score of the reporter is 30. Our intuition to solve this problem is “Given two

reports which are similar in complexity, the bug reported by the reporter with higher

score will have a lower fix time and vice versa”. Our dataset contains 91 reporters

and around 567 bugs extracted from Jira issue tracking system of JBoss Project.

The prediction models built with ‘reputation of the bug reporter’ as a feature and

other existing features is found to be performing significantly better than other exis-

ting bug fix time prediction models. We are interested in finding more features and

suitable machine learning approaches to build more accurate bug fix-time prediction

models.

Software effort-estimation Effort-estimation has been a very difficult problem in fast

changing development environments. Underestimating results in under-staffing, li-

miting quality assurance activities and missing deadlines. Past projects data can

be used to predict the effort required for future projects. Features like application

domain, project duration, project size, programming language and tools, function

points, geographical locations and project team experience in building similar sys-

tems can be extracted and used for effort prediction. We are interested to propose

novel features and applying state of art learning techniques to enhance prediction

accuracies.

181

Bibliography

[1] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Defect prediction as a multiobjective optimization problem,” Software Testing, Ve-
rification and Reliability, vol. 25, no. 4, pp. 426–459, 2015.

[2] J. M. Stecklein, J. Dabney, B. Dick, B. Haskins, R. Lovell, and G. Moroney, “Error
cost escalation through the project life cycle,” 2004.

[3] S. A. Sherer, “Software fault prediction,” Journal of Systems and Software, vol. 29,
no. 2, pp. 97–105, 1995.

[4] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” in ACM
SIGSOFT Software Engineering Notes, vol. 29, no. 4. ACM, 2004, pp. 86–96.

[5] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification
models for software defect prediction: A proposed framework and novel findings,”
Software Engineering, IEEE Transactions on, vol. 34, no. 4, pp. 485–496, 2008.

[6] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn
defect predictors,” Software Engineering, IEEE Transactions on, vol. 33, no. 1, pp.
2–13, 2007.

[7] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location and number
of faults in large software systems,” Software Engineering, IEEE Transactions on,
vol. 31, no. 4, pp. 340–355, 2005.

[8] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”
Software Engineering, IEEE Transactions on, vol. 20, no. 6, pp. 476–493, 1994.

[9] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE Transactions
on, no. 4, pp. 308–320, 1976.

[10] M. H. Halstead, “Elements of software science,” 1977.

[11] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy, “Change bursts

182

Bibliography

as defect predictors,” in Software Reliability Engineering (ISSRE), 2010 IEEE 21st
International Symposium on. IEEE, 2010, pp. 309–318.

[12] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level bug prediction,”
in Proceedings of the ACM-IEEE international symposium on Empirical software
engineering and measurement. ACM, 2012, pp. 171–180.

[13] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction,” in Software En-
gineering, 2008. ICSE’08. ACM/IEEE 30th International Conference on. IEEE,
2008, pp. 181–190.

[14] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification
models for software defect prediction: A proposed framework and novel findings,”
Software Engineering, IEEE Transactions on, vol. 34, no. 4, pp. 485–496, 2008.

[15] T. M. Khoshgoftaar and N. Seliya, “Comparative assessment of software quality
classification techniques: An empirical case study,” Empirical Software Engineering,
vol. 9, no. 3, pp. 229–257, 2004.

[16] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in Software
Maintenance and Reengineering (CSMR), 2010 14th European Conference on.
IEEE, 2010, pp. 107–116.

[17] H. Liu, J. Li, and L. Wong, “A comparative study on feature selection and classi-
fication methods using gene expression profiles and proteomic patterns,” Genome
Informatics Series, pp. 51–60, 2002.

[18] Y. Yang and J. O. Pedersen, “A comparative study on feature selection in text
categorization,” in ICML, vol. 97, 1997, pp. 412–420.

[19] A. E. Hassan, “Predicting faults using the complexity of code changes,” in Procee-
dings of the 31st International Conference on Software Engineering. IEEE Com-
puter Society, 2009, pp. 78–88.

[20] S. Krishnan, C. Strasburg, R. R. Lutz, and K. Goševa-Popstojanova, “Are change
metrics good predictors for an evolving software product line?” in Proceedings of the
7th International Conference on Predictive Models in Software Engineering. ACM,
2011, p. 7.

[21] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing features to improve
code change-based bug prediction,” Software Engineering, IEEE Transactions on,
vol. 39, no. 4, pp. 552–569, 2013.

183

Bibliography

[22] R. Moser, W. Pedrycz, and G. Succi, “Analysis of the reliability of a subset of change
metrics for defect prediction,” in Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement. ACM, 2008, pp.
309–311.

[23] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual cohesion of classes
for fault prediction in object-oriented systems,” Software Engineering, IEEE Tran-
sactions on, vol. 34, no. 2, pp. 287–300, 2008.

[24] S. Mahmood, R. Lai, Y. Soo Kim, J. Hong Kim, S. Cheon Park, and H. Suk Oh, “A
survey of component based system quality assurance and assessment,” Information
and Software Technology, vol. 47, no. 10, pp. 693–707, 2005.

[25] N. E. Fenton and M. Neil, “Software metrics: successes, failures and new directions,”
Journal of Systems and Software, vol. 47, no. 2, pp. 149–157, 1999.

[26] Y. Jiang, B. Cukic, and T. Menzies, “Can data transformation help in the detection
of fault-prone modules?” in Proceedings of the 2008 workshop on Defects in large
software systems. ACM, 2008, pp. 16–20.

[27] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug prediction
approaches,” in Mining Software Repositories (MSR), 2010 7th IEEE Working Con-
ference on. IEEE, 2010, pp. 31–41.

[28] S. Scott and S. Matwin, “Feature engineering for text classification,” in ICML,
vol. 99, 1999, pp. 379–388.

[29] M. Chapman, P. Callis, and W. Jackson, “Metrics data program,” NASA IV and V
Facility, http://mdp.ivv.nasa.gov, 2004.

[30] F. Provost and T. Fawcett, “Robust classification for imprecise environments,” Ma-
chine Learning, vol. 42, no. 3, pp. 203–231, 2001.

[31] Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, and H. Liu, “Advancing
feature selection research-asu feature selection repository,” School of Computing,
Informatics, and Decision Systems Engineering, Arizona State University, Tempe,
2010.

[32] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-proneness
by random forests,” in Software Reliability Engineering, 2004. ISSRE 2004. 15th
International Symposium on. IEEE, 2004, pp. 417–428.

[33] G. C. Cawley and N. L. Talbot, “Gene selection in cancer classification using sparse

184

Bibliography

logistic regression with bayesian regularization,” Bioinformatics, vol. 22, no. 19, pp.
2348–2355, 2006.

[34] S. K. Shevade and S. S. Keerthi, “A simple and efficient algorithm for gene selection
using sparse logistic regression,” Bioinformatics, vol. 19, no. 17, pp. 2246–2253, 2003.

[35] G. Biau, L. Devroye, and G. Lugosi, “Consistency of random forests and other
averaging classifiers,” The Journal of Machine Learning Research, vol. 9, pp. 2015–
2033, 2008.

[36] D. W. Hosmer, S. Taber, and S. Lemeshow, “The importance of assessing the fit of
logistic regression models: a case study.” American journal of public health, vol. 81,
no. 12, pp. 1630–1635, 1991.

[37] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27,
no. 8, pp. 861–874, 2006.

[38] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” The Jour-
nal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[39] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and R. Haesen,
“Mining software repositories for comprehensible software fault prediction models,”
Journal of Systems and software, vol. 81, no. 5, pp. 823–839, 2008.

[40] S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Analyzing software measurement
data with clustering techniques,” Intelligent Systems, IEEE, vol. 19, no. 2, pp. 20–
27, 2004.

[41] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Predicting faults from
cached history,” in Proceedings of the 29th international conference on Software
Engineering. IEEE Computer Society, 2007, pp. 489–498.

[42] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” in
Predictor Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops
2007. International Workshop on. IEEE, 2007, pp. 9–9.

[43] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system
defect density,” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th Inter-
national Conference on. IEEE, 2005, pp. 284–292.

[44] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E. Has-
san, “Revisiting common bug prediction findings using effort-aware models,” in Soft-
ware Maintenance (ICSM), 2010 IEEE International Conference on. IEEE, 2010,
pp. 1–10.

185

Bibliography

[45] R. Kohavi, “Scaling up the accuracy of naive-bayes classifiers: A decision-tree hy-
brid.” in KDD, 1996, pp. 202–207.

[46] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting component failures at de-
sign time,” in Proceedings of the 2006 ACM/IEEE international symposium on Em-
pirical software engineering. ACM, 2006, pp. 18–27.

[47] T. M. Khoshgoftaar and E. B. Allen, “Ordering fault-prone software modules,” Soft-
ware Quality Journal, vol. 11, no. 1, pp. 19–37, 2003.

[48] K. Dejaeger, T. Verbraken, and B. Baesens, “Toward comprehensible software fault
prediction models using bayesian network classifiers,” Software Engineering, IEEE
Transactions on, vol. 39, no. 2, pp. 237–257, 2013.

[49] T. Wang and W.-h. Li, “Naive bayes software defect prediction model,” in Computa-
tional Intelligence and Software Engineering (CiSE), 2010 International Conference
on, 2010, pp. 1–4.

[50] N. Fenton, M. Neil, and D. Marquez, “Using bayesian networks to predict software
defects and reliability,” Proceedings of the Institution of Mechanical Engineers, Part
O: Journal of Risk and Reliability, vol. 222, no. 4, pp. 701–712, 2008.

[51] A. Okutan and O. T. Yıldız, “Software defect prediction using bayesian networks,”
Empirical Software Engineering, vol. 19, no. 1, pp. 154–181, 2014.

[52] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,”Machine
learning, vol. 29, no. 2-3, pp. 131–163, 1997.

[53] J. P. Sacha, L. S. Goodenday, and K. J. Cios, “Bayesian learning for cardiac spect
image interpretation,” Artificial Intelligence in Medicine, vol. 26, no. 1, pp. 109–143,
2002.

[54] E. Keogh and M. Pazzani, “Learning augmented bayesian classifiers: A comparison
of distribution-based and classification-based approaches,” in Proceedings of the se-
venth international workshop on artificial intelligence and statistics. Citeseer, 1999,
pp. 225–230.

[55] G. I. Webb, J. R. Boughton, and Z. Wang, “Not so naive bayes: aggregating one-
dependence estimators,” Machine learning, vol. 58, no. 1, pp. 5–24, 2005.

[56] M. Sahami, “Learning limited dependence bayesian classifiers.” in KDD, vol. 96,
1996, pp. 335–338.

186

Bibliography

[57] Y. Jing, V. Pavlović, and J. M. Rehg, “Boosted bayesian network classifiers,” Ma-
chine Learning, vol. 73, no. 2, pp. 155–184, 2008.

[58] J. Cheng and R. Greiner, “Comparing bayesian network classifiers,” in Proceedings of
the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc., 1999, pp. 101–108.

[59] K. B. Korb and A. E. Nicholson, Bayesian artificial intelligence. CRC press, 2010.

[60] S. Russell, P. Norvig, and A. Intelligence, “A modern approach,” Artificial Intelli-
gence. Prentice-Hall, Egnlewood Cliffs, vol. 25, 1995.

[61] D. Margaritis, “Learning bayesian network model structure from data,” Ph.D. dis-
sertation, US Army, 2003.

[62] G. F. Cooper and E. Herskovits, “A bayesian method for the induction of probabi-
listic networks from data,” Machine learning, vol. 9, no. 4, pp. 309–347, 1992.

[63] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning bayesian networks: The
combination of knowledge and statistical data,” Machine learning, vol. 20, no. 3, pp.
197–243, 1995.

[64] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-climbing bayesian
network structure learning algorithm,” Machine learning, vol. 65, no. 1, pp. 31–78,
2006.

[65] M. Scutari, “Learning bayesian networks with the bnlearn r package,” arXiv preprint
arXiv:0908.3817, 2009.

[66] T. Menzies, J. S. Di Stefano, M. Chapman, and K. McGill, “Metrics that matter,”
in Software Engineering Workshop, 2002. Proceedings. 27th Annual NASA Goddar-
d/IEEE. IEEE, 2002, pp. 51–57.

[67] K. B. Irani, “Multi-interval discretization of continuous-valued attributes for classi-
fication learning,” 1993.

[68] D. J. Hand, “Measuring classifier performance: a coherent alternative to the area
under the roc curve,” Machine learning, vol. 77, no. 1, pp. 103–123, 2009.

[69] D. J. Hand and C. Anagnostopoulos, “A better beta for the h measure of classifica-
tion performance,” Pattern Recognition Letters, vol. 40, pp. 41–46, 2014.

187

Bibliography

[70] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” The Jour-
nal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[71] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing software metrics
for defect prediction: an investigation on feature selection techniques,” Software:
Practice and Experience, vol. 41, no. 5, pp. 579–606, 2011.

[72] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction approaches:
a benchmark and an extensive comparison,” Empirical Software Engineering, vol. 17,
no. 4-5, pp. 531–577, 2012.

[73] M. Soni, “Defect prevention: Reducing costs and enhancing quality,” iSixSigma.
com, vol. 19, 2006.

[74] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with methods
addressing the class imbalance problem,” IEEE Transactions on Knowledge and
Data Engineering, vol. 18, no. 1, pp. 63–77, 2006.

[75] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,”
IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–443, 2013.

[76] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “Adacost: misclassification cost-
sensitive boosting,” in Icml, 1999, pp. 97–105.

[77] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting for
classification of imbalanced data,” Pattern Recognition, vol. 40, no. 12, pp. 3358–
3378, 2007.

[78] K. M. Ting, “A comparative study of cost-sensitive boosting algorithms,” in In
Proceedings of the 17th International Conference on Machine Learning. Citeseer,
2000.

[79] J. Zheng, “Cost-sensitive boosting neural networks for software defect prediction,”
Expert Systems with Applications, vol. 37, no. 6, pp. 4537–4543, 2010.

[80] Y. Zhou and H. Leung, “Empirical analysis of object-oriented design metrics for
predicting high and low severity faults,” IEEE Transactions on software engineering,
vol. 32, no. 10, pp. 771–789, 2006.

[81] G. J. Pai and J. B. Dugan, “Empirical analysis of software fault content and fault
proneness using bayesian methods,” IEEE Transactions on software Engineering,
vol. 33, no. 10, pp. 675–686, 2007.

188

Bibliography

[82] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya, “A comparative study of pat-
tern recognition techniques for quality evaluation of telecommunications software,”
IEEE Journal on Selected Areas in Communications, vol. 12, no. 2, pp. 279–291,
1994.

[83] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud, “Application of
neural networks to software quality modeling of a very large telecommunications
system,” IEEE Transactions on neural networks, vol. 8, no. 4, pp. 902–909, 1997.

[84] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented me-
trics on open source software for fault prediction,” Software Engineering, IEEE
Transactions on, vol. 31, no. 10, pp. 897–910, 2005.

[85] R. W. Selby and A. A. Porter, “Learning from examples: generation and evaluation
of decision trees for software resource analysis,” IEEE Transactions on Software
Engineering, vol. 14, no. 12, pp. 1743–1757, 1988.

[86] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. Hudepohl, “Classification
tree models of software quality over multiple releases,” in Software Reliability En-
gineering, 1999. Proceedings. 10th International Symposium on. IEEE, 1999, pp.
116–125.

[87] A. G. Koru and H. Liu, “An investigation of the effect of module size on defect
prediction using static measures,” vol. 30, no. 4. New York, NY, USA: ACM, May
2005, pp. 1–5.

[88] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using sup-
port vector machines,” Journal of Systems and Software, vol. 81, no. 5, pp. 649–660,
2008.

[89] C. Ebert, “Classification techniques for metric-based software development,” Soft-
ware Quality Journal, vol. 5, no. 4, pp. 255–272, 1996.

[90] B. W. Boehm, “Industrial software metrics top 10 list,” IEEE software, vol. 4, no. 5,
pp. 84–85, 1987.

[91] S. Dick and A. Kandel, “Data mining with resampling in software metrics,” Artificial
Intelligence Methods in Software Testing, vol. 56, p. 175, 2004.

[92] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse, “Improving software-quality
predictions with data sampling and boosting,” IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, vol. 39, no. 6, pp. 1283–1294, 2009.

[93] M. Jureczko and L. Madeyski, “Towards identifying software project clusters

189

Bibliography

with regard to defect prediction,” in Proceedings of the 6th International
Conference on Predictive Models in Software Engineering, ser. PROMISE ’10.
New York, NY, USA: ACM, 2010, pp. 9:1–9:10. [Online]. Available: http:
//doi.acm.org/10.1145/1868328.1868342

[94] N. Niu and A. Mahmoud, “Enhancing candidate link generation for requirements
tracing: The cluster hypothesis revisited,” in Requirements Engineering Conference
(RE), 2012 20th IEEE International, Sept 2012, pp. 81–90.

[95] Y. Freund, “Boosting a weak learning algorithm by majority.” in COLT, vol. 90,
1990, pp. 202–216.

[96] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules in telephone
switches,” Software Engineering, IEEE Transactions on, vol. 22, no. 12, pp. 886–894,
1996.

[97] E. Arisholm and L. C. Briand, “Predicting fault-prone components in a java le-
gacy system,” in Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering. ACM, 2006, pp. 8–17.

[98] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented design
metrics as quality indicators,” Software Engineering, IEEE Transactions on, vol. 22,
no. 10, pp. 751–761, 1996.

[99] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on object-oriented
metrics,” in Software Metrics Symposium, 1999. Proceedings. Sixth International.
IEEE, 1999, pp. 242–249.

[100] M. Cartwright and M. Shepperd, “An empirical investigation of an object-oriented
software system,” Software Engineering, IEEE Transactions on, vol. 26, no. 8, pp.
786–796, 2000.

[101] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics for object-
oriented design complexity: Implications for software defects,” Software Engineering,
IEEE Transactions on, vol. 29, no. 4, pp. 297–310, 2003.

[102] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component failures,”
in Proceedings of the 28th international conference on Software engineering. ACM,
2006, pp. 452–461.

[103] T. Mende and R. Koschke, “Revisiting the evaluation of defect prediction models,”
in Proceedings of the 5th International Conference on Predictor Models in Software
Engineering. ACM, 2009, p. 7.

190

Bibliography

[104] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models,” Journal of
Systems and Software, vol. 83, no. 1, pp. 2–17, 2010.

[105] M. Friedman, “The use of ranks to avoid the assumption of normality implicit in
the analysis of variance,” Journal of the American Statistical Association, vol. 32,
no. 200, pp. 675–701, 1937.

[106] M. Harman, “The relationship between search based software engineering and pre-
dictive modeling,” in Proceedings of the 6th International Conference on Predictive
Models in Software Engineering, ser. PROMISE ’10. New York, NY, USA: ACM,
2010, pp. 1:1–1:13.

[107] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii,” Lecture notes
in computer science, vol. 1917, pp. 849–858, 2000.

[108] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Multi-objective cross-project defect prediction,” in Software Testing, Verification
and Validation (ICST), 2013 IEEE Sixth International Conference on. IEEE, 2013,
pp. 252–261.

[109] T. Menzies, R. Krishna, and P. D., “The promise repository of empirical software
engineering data,” 2015, http://openscience.us/repo.

[110] D. Zhang, K. El Emam, H. Liu et al., “An investigation into the functional form
of the size-defect relationship for software modules,” Software Engineering, IEEE
Transactions on, vol. 35, no. 2, pp. 293–304, 2009.

[111] R. Subramanyam and M. Krishnan, “Empirical analysis of ck metrics for object-
oriented design complexity: implications for software defects,” Software Engineering,
IEEE Transactions on, vol. 29, no. 4, pp. 297–310, April 2003.

[112] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-source projects:
An empirical study on defect prediction,” in Empirical Software Engineering and
Measurement, 2013 ACM / IEEE International Symposium on, Oct 2013, pp. 45–
54.

[113] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect prediction,”
in Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on,
May 2013, pp. 409–418.

[114] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction using

191

Bibliography

relational association rule mining,” Inf. Sci., vol. 264, pp. 260–278, Apr. 2014.
[Online]. Available: http://dx.doi.org/10.1016/j.ins.2013.12.031

[115] Z. Marian, I. G. Czibula, G. Czibula, and S. Sotoc, “Software defect detection using
self-organizing maps.” Studia Universitatis Babes-Bolyai, Informatica, vol. 60, no. 2,
2015.

[116] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of classification
techniques on the performance of defect prediction models,” in Proceedings of the
37th International Conference on Software Engineering - Volume 1, ser. ICSE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 789–800.

[117] M. Harman and J. Clark, “Metrics are fitness functions too,” in Software Metrics,
2004. Proceedings. 10th International Symposium on. IEEE, 2004, pp. 58–69.

[118] A. B. De Carvalho, A. Pozo, and S. R. Vergilio, “A symbolic fault-prediction mo-
del based on multiobjective particle swarm optimization,” Journal of Systems and
Software, vol. 83, no. 5, pp. 868–882, 2010.

[119] X. Yang, K. Tang, and X. Yao, “A learning-to-rank approach to software defect
prediction,” Reliability, IEEE Transactions on, vol. 64, no. 1, pp. 234–246, 2015.

[120] W. Ma, L. Chen, Y. Yang, Y. Zhou, and B. Xu, “Empirical analysis of network mea-
sures for effort-aware fault-proneness prediction,” Information and Software Techno-
logy, vol. 69, pp. 50–70, 2016.

[121] S. Chidamber and C. Kemerer, “A metrics suite for object oriented design,” IEEE
Transactions on Software Engineering, vol. 20, no. 6, pp. 476–493, June 1994.

[122] S. Herbold, “Training data selection for cross-project defect prediction,” in Procee-
dings of the 9th International Conference on Predictive Models in Software Engi-
neering, ser. PROMISE ’13. New York, NY, USA: ACM, 2013, pp. 6:1–6:10.

[123] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the "imprecision" of cross-
project defect prediction,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ser. FSE ’12. New York,
NY, USA: ACM, 2012, pp. 61:1–61:11.

[124] C. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary algorithms for
solving multi-objective problems. Springer Science & Business Media, 2007.

[125] D. E. Goldberg, Genetic algorithms. Pearson Education India, 2006.

192

Bibliography

[126] MATLAB, version 8.5.0 (R2015a). Natick, Massachusetts: The MathWorks Inc.,
2015.

[127] J. Krall, T. Menzies, and M. Davies, “Gale: Geometric active learning for search-
based software engineering,” IEEE Transactions on Software Engineering, vol. 41,
no. 10, pp. 1001–1018, 2015.

[128] K. Deb, Multi-objective optimization using evolutionary algorithms. John Wiley &
Sons, 2001, vol. 16.

[129] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a com-
plex software system,” IEEE Transactions on Software engineering, vol. 26, no. 8,
pp. 797–814, 2000.

[130] C. Andersson and P. Runeson, “A replicated quantitative analysis of fault distribu-
tions in complex software systems,” IEEE Transactions on Software Engineering,
vol. 33, no. 5, pp. 273–286, 2007.

[131] C.-Y. Huang, C.-S. Kuo, and S.-P. Luan, “Evaluation and application of bounded
generalized pareto analysis to fault distributions in open source software,” IEEE
Transactions on Reliability, vol. 63, no. 1, pp. 309–319, 2014.

[132] C.-S. Kuo and C.-Y. Huang, “A study of applying the bounded generalized pareto
distribution to the analysis of software fault distribution,” in Industrial Engineering
and Engineering Management (IEEM), 2010 IEEE International Conference on.
IEEE, 2010, pp. 611–615.

[133] H. Zhang, “On the distribution of software faults,” IEEE Transactions on Software
Engineering, vol. 34, no. 2, p. 301, 2008.

[134] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, and I. Turnu, “On the distribution
of bugs in the eclipse system,” IEEE Transactions on Software Engineering, vol. 37,
no. 6, pp. 872–877, 2011.

[135] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large industrial
software system,” in ACM SIGSOFT Software Engineering Notes, vol. 27, no. 4.
ACM, 2002, pp. 55–64.

[136] M. K. Daskalantonakis, “A practical view of software measurement and implemen-
tation experiences within motorola,” IEEE Transactions on Software Engineering,
vol. 18, no. 11, pp. 998–1010, 1992.

[137] T. G. Grbac and D. Huljenić, “On the probability distribution of faults in complex
software systems,” Information and Software Technology, vol. 58, pp. 250–258, 2015.

193

Bibliography

[138] M. E. Newman, “Power laws, pareto distributions and zipf’s law,” Contemporary
physics, vol. 46, no. 5, pp. 323–351, 2005.

[139] M. Mitzenmacher, “Dynamic models for file sizes and double pareto distributions,”
Internet Mathematics, vol. 1, no. 3, pp. 305–333, 2004.

[140] A. B. Downey, “The structural cause of file size distributions,” in Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, 2001. Proceedings.
Ninth International Symposium on. IEEE, 2001, pp. 361–370.

[141] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical study of object-
oriented metrics.” Journal of Object Technology, vol. 5, no. 8, pp. 149–173, 2006.

[142] R. J. Boik, “A priori tests in repeated measures designs: Effects of nonsphericity,”
Psychometrika, vol. 46, no. 3, pp. 241–255, 1981.

[143] G. C. Cawley and N. L. Talbot, “On over-fitting in model selection and subsequent
selection bias in performance evaluation,” Journal of Machine Learning Research,
vol. 11, no. Jul, pp. 2079–2107, 2010.

[144] S. Roberts and H. Pashler, “How persuasive is a good fit? a comment on theory
testing.” Psychological review, vol. 107, no. 2, p. 358, 2000.

[145] H. Akaike, “Information theory and an extension of the maximum likelihood prin-
ciple,” in Selected Papers of Hirotugu Akaike. Springer, 1998, pp. 199–213.

[146] H. Akaike, “A new look at the statistical model identification,” IEEE transactions
on automatic control, vol. 19, no. 6, pp. 716–723, 1974.

[147] G. Schwarz et al., “Estimating the dimension of a model,” The annals of statistics,
vol. 6, no. 2, pp. 461–464, 1978.

[148] H. Bhat and N. Kumar, “On the derivation of the bayesian information criterion,”
School of Natural Sciences, University of California, 2010.

[149] R. E. Kass and A. E. Raftery, “Bayes factors,” Journal of the american statistical
association, vol. 90, no. 430, pp. 773–795, 1995.

[150] H. Jeffreys, The theory of probability. Oxford University Press, Oxford, 1939.

[151] A. E. Raftery, “Bayesian model selection in social research,” Sociological methodo-
logy, pp. 111–163, 1995.

194

Bibliography

[152] E. J. Hannan and B. G. Quinn, “The determination of the order of an autore-
gression,” Journal of the Royal Statistical Society. Series B (Methodological), pp.
190–195, 1979.

[153] M. Mitzenmacher, “A brief history of generative models for power law and lognormal
distributions,” Internet mathematics, vol. 1, no. 2, pp. 226–251, 2004.

[154] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a large object-
oriented software system,” IEEE Transactions on Software Engineering, vol. 33,
no. 10, pp. 687–708, 2007.

[155] R. Shatnawi and Q. Althebyan, “An empirical study of the effect of power law
distribution on the interpretation of oo metrics,” ISRN Software Engineering, vol.
2013, 2013.

[156] I. Herraiz, D. Rodriguez, and R. Harrison, “On the statistical distribution of
object-oriented system properties,” in 2012 3rd International Workshop on Emerging
Trends in Software Metrics (WETSoM). IEEE, 2012, pp. 56–62.

[157] D. Vose, “Fitting distributions to data,” 2010.

[158] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,” ACM Tran-
sactions on Software Engineering and Methodology (TOSEM), vol. 18, no. 1, p. 2,
2008.

[159] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton, and
E. Tempero, “Understanding the shape of java software,” in ACM Sigplan Notices,
vol. 41, no. 10. ACM, 2006, pp. 397–412.

[160] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet,” Glottometrics,
vol. 3, no. 1, pp. 143–150, 2002.

[161] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam, “Empirical evaluation of
defect projection models for widely-deployed production software systems,” in ACM
SIGSOFT Software Engineering Notes, vol. 29, no. 6. ACM, 2004, pp. 263–272.

[162] A. Murgia, G. Concas, M. Marchesi, R. Tonelli, and I. Turnu, “An analysis of bug
distribution in object oriented systems,” arXiv preprint arXiv:0905.3296, 2009.

[163] V. Pareto and A. N. Page, “Translation of manuale di economia politica (”manual
of political economy”),” AM Kelley, 1971.

[164] R. Gibrat, Les inégalités économiques: applications: aux inégalitês des richesses,

195

Bibliography

à la concentration des entreprises, aux populations des villes, aux statistiques des
familles, etc: d’une loi nouvelle: la loi de l’effet proportionnel. Librairie du Recueil
Sirey, 1931.

[165] M. Jureczko, “Significance of different software metrics in defect prediction,” Soft-
ware Engineering: An International Journal, vol. 1, no. 1, pp. 86–95, 2011.

[166] J. Pickands III, “Statistical inference using extreme order statistics,” the Annals of
Statistics, pp. 119–131, 1975.

[167] C. Kolassa, D. Riehle, and M. A. Salim, “A model of the commit size distribution of
open source,” in International Conference on Current Trends in Theory and Practice
of Computer Science. Springer, 2013, pp. 52–66.

[168] R. Wheeldon and S. Counsell, “Power law distributions in class relationships,” in
Source Code Analysis and Manipulation, 2003. Proceedings. Third IEEE Internati-
onal Workshop on. IEEE, 2003, pp. 45–54.

[169] F. E. Pani and G. Concas, “Stochastic models of software development activities,”
in WSEAS International Conference. Proceedings. Recent Advances in Computer
Engineering Series, no. 7. WSEAS, 2012.

196

List of Publications

Peer-reviewed Journals and Conferences

1. C K Shriram, K Muthukumaran, N L Bhanu Murthy “Empirical Study on the

Distribution of Bugs in Software Systems”. International Journal of Software

Engineering and Knowledge Engineering. World Scientific Publishing.

(to appear)

2. Swapnil Shukla, T Radhakrishnan, K Muthukumaran, N L Bhanu Murthy “Multi-

objective cross-version defect prediction”. Soft computing. Springer-Verlag

Berlin Heidelberg 2016. (article in press)

3. K Muthukumaran, Suri Srinivas, Aruna Malapati, N L Bhanu Murthy “Software

defect Prediction using Augmented Bayesian Networks”. 8th International Confe-

rence on Soft Computing and Pattern Recognition 2016, Dec 19-21 (pp. 279-293).

Volume 614, Advances in Intelligent Systems and Computing. Springer,

Cham.

4. K Muthukumaran, Amrita Dasgupta, Shirode Abhidnya, N L Bhanu Murthy “On

the Effectiveness of Cost Sensitive Neural Networks for Software Defect Prediction”.

8th International Conference on Soft Computing and Pattern Recognition 2016, Dec

19-21 (pp. 557-570). Volume 614, Advances in Intelligent Systems and

Computing. Springer, Cham.

197

List of Publications

5. Pranav Ramarao, K Muthukumaran, Siddharth Dash and N L Bhanu Murthy “Im-

pact of Bug Reporter’s Reputation on Bug-fix Times” 2016. 2016 International

Conference on Information Systems Engineering (pp. 57-61). IEEE. Los

Angeles, USA.

6. K Muthukumaran, N L Bhanu Murthy, Karthik Reddy and Prateek Talishetti “Tes-

ting and Code Review Based Effort-Aware Bug Prediction Model”. In Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

(pp. 17-30). Volume 653, Studies in Computational Intelligence. Springer

International Publishing.

7. K Muthukumaran, Choudhary A, N L Bhanu Murthy “Mining Github for Novel

Change Metrics to Predict Buggy Files in Software Systems”. In 2015 Interna-

tional Conference on Computational Intelligence and Networks 2015 Jan

(pp. 15-20). IEEE. Bhubaneshwar, India.

8. K Muthukumaran, Rallapalli A, N L Bhanu Murthy “Impact of Feature Selection

Techniques on Bug Prediction Models”. In Proceedings of the 8th India Software

Engineering Conference 2015 Feb 18 (pp. 120-129). ACM. Bangalore, India.

9. K Muthukumaran, N L Bhanu Murthy, Reddy GK, Aruna M “Comparative Study

on Effectiveness of Standard Bug Prediction Approaches”. In Proceedings of the 5th

IBM Collaborative Academia Research Exchange Workshop 2013 Oct 17

(Article No. 9). ACM. New Delhi, India. (Best Paper Award)

198

Prediction and Probability Distribution of Defects in
Software Systems

THESIS

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

By

MUTHUKUMARAN K.

ID. No. 2011PHXF0415H

Under the Supervision of

Prof. N L Bhanu Murthy

Co-Supervision of

Dr. Aruna Malapati

BITS Pilani
Pilani | Dubai | Goa | Hyderabad

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

2017

6 Conclusion and Future Work

Defect prediction research has been evolving quite rapidly but its applicability to IT

industry is far from reality. The efficacy of defect prediction models built with various

combinations of metrics, algorithms and performance measures has been investigated in

this work. Defect prediction models built with proposed approaches are compared with

existing approaches.

6.1 Contributions and Findings

The goal of our work is to progress defect prediction research with the pre-processing

techniques, novel features, Bayesian learning techniques, multi-objective optimization

techniques and comparative study of classification algorithms. We have also made an

attempt to model the probability distribution of past defects and object-oriented metrics.

We summarize the contributions of our work as follows.

1. Our investigation on the impact of feature selection on defect prediction establishes

that prediction accuracies can be enhanced significantly by applying feature selection

techniques during pre-processing steps. We encourage to use greedy based algorithms

for feature selection as they stand out and perform much better than the other

competent algorithms. We re-emphasize that there may not be any common metrics

amongst optimal feature subsets of similar projects. We have also found out that

the impact of feature selection algorithm is independent of the underlying machine

learning algorithms used for the classification.

175

6 Conclusion and Future Work

2. We define a modus operandi to extract some popular change metrics from the Eclipse

repository on Github, which can be generalized for any open-source Github reposi-

tory. We have proposed couple of new change metrics, namely, Entropy and Mean

Period of Change to figure out whether commits are uniformly distributed over the

time-line between the two consecutive releases. We establish that a source file which

was last changed in the early periods of the timeline and has been free of changes for

the remaining periods can be considered relatively stable, as compared to a source

file for which period of change concentration is localized closer to the date of rele-

ase. We have used Logistic Regression, CART Decision Tree, Gaussian Naïve Bayes

and Naïve Bayes Tree algorithm to build prediction models using the proposed and

existing change metrics. We have found that Naïve Bayes Tree perform better than

other commonly used algorithms for defect prediction problem.

3. Our initial experiments confirmed that Naïve Bayes classifier is one of the best

performing classification techniques in defect prediction. It assumes conditional

independence of features and for the defect prediction problem which is not entirely

true. For example, lines of code (LOC) and number of operands of a source file can’t

be taken as independent. It motivated us to relax these conditional independence

and to check whether there is an improvement in performance of classifiers. We

defined augmentation as follows.

A simple Bayesian Network which doesn’t not have an arc from class node to every

other node, is not an augmented. Bayesian Network is augmented if it has an arc from

class node to every other node. For our experiments we have augmented Bayesian

Network structures learnt using HC, TABU, GS, MMHC and RSMAX2.

First, we have compared the performance of defect prediction models built using sim-

ple Bayesian Network classifiers with other traditional machine learning classifiers.

In terms of AUC and H-Measure, Random Forest classifier is found to be better per-

forming classifier than Bayesian Network classifiers. However, on defect prediction

models built with our proposed augmented Bayesian Network structure, we observe

that RSMAX2 and Grow-Shrink are consistently better, and there is no significant

difference in performance between these classifiers and Random Forest. When we

176

6 Conclusion and Future Work

compare classifiers using different cost ratio distributions leading to Risk Averse and

Delay Averse scenarios, RSMAX2 and Grow-Shrink classifiers are performing very

close to Random Forests and are found better than Naïve Bayes classifier.

4. The cost of fixing a software defect varies with the phase in which it is uncovered.

Defects found during post-release phase costs much more than the defect that is

uncovered in pre-release phase. Classifying a defective source file to be non-defective

will result in a defect during post release phase and non-defective file to be a defective

file will result in wastage of effort (due to QA activities). These two costs are

called misclassification costs. Such misclassification cost has not been given much

importance while comparing defect prediction models. Hence, we find it interesting

to evaluate defect models using cost centric measure - Normalized Expected Cost of

Misclassification (NECM).

Though there are few studies that consider NECM as a model evaluation measure,

they have built models using either cost sensitive neural networks or traditional

machine learning algorithms. As there is no comprehensive comparative study on

the effectiveness of defect prediction models which are built using cost sensitive

neural networks and traditional machine laerning classifiers, we find it interesting

to build models using both the approaches and compared their performances using

NECM.

Our experiments confirm Random Forest as an outperforming algorithm in terms

of NECM closely followed by Logistic Regression and Bayesian Network. Random

Forest performs significantly better than cost sensitive boosting Neural Network

methods. We also observe that among the cost sensitive boosting Neural Net-

work algorithms, Cost Sensitive Boosting of Neural Networks using Threshold

Moving(CSBNN-TM) perform better than Cost Sensitive Boosting of Neural Net-

works with Weight Updation-I(CSBNN-WU1) and Cost Sensitive Boosting of Neural

Networks with Weight Updation-II(CSBNN-WU2).

5. Researchers proposed effort-aware defect prediction models wherein files are ranked

not only based on their defect-proneness but also on the effort that is required to

177

6 Conclusion and Future Work

perform quality assurance activities like testing, code review etc. on defect prone

files. Previous studies, considered Cyclomatic Complexity as a metric for the effort

required irrespective of the assurance activity that will be undertaken during post

prediction phases. We believe that effort-aware models are sensitive to the type

of quality assurance activity one undertakes. We have proposed effort-aware defect

prediction models that will consider the effort required to perform the specific quality

assurance activities like code review and testing. We have considered lines of code

and the number of testcases as our measures of effort for code review and testing

respectively. We have empirically proven the supremacy of these models over the

existing effort-aware model built with Cyclomatic Complexity.

• Our results indicate that the testing based effort-aware models perform signifi-

cantly better than generic effort aware models.

• The code review based effort-aware model performs slightly better than generic

model individually for each project but we could not find significant difference

in models performance.

6. In multi-objective optimization approach we have formulated two problems with two

sets of contrasting objectives as follows. M1: Maximize effectiveness of the model

and Minimize misclassification cost and M2: Maximize effectiveness of the model

and Minimize LOC cost.

We have compared multi-objective logistic regression models with four single ob-

jective algorithms for cross version defect prediction. Our results indicate following

benefits of multi-objective approach:

• The multi-objective defect prediction model (M1) is able to identify more de-

fects at the same or lesser misclassification cost incurred by all four single

objective defect prediction models.

• The multi-objective defect prediction model (M2) is able to identify more defect

178

6 Conclusion and Future Work

prone classes at the same or lesser LOC cost than the cost incurred with single

objective algorithms.

We recommend multi-objective approach for cross version defect prediction problems

against traditional single objective approaches.

7. Understanding the distributions of CK metrics will help us in predicting the evoluti-

ons and efforts required to maintain such systems. Previously it has been shown that

these metrics frequently follow power law. As these metrics are also shown to follow

Log-normal or Gamma distribution occasionally, we have studied more number of

software systems and applied more distribution models to infer more generalizable

results

In our attempt to model six object oriented metrics, we observe that WMC, DIT

LCOM and NOC metrics follow the Log-normal distribution. RFC follows four of

the distributions except the Log-normal distribution and CBO does not follows any

distribution better than other distributions. We have also found that LOC metrics

follow GPD and Weibull distributions.

8. Studies have proposed the Pareto distribution to model bugs in software systems.

However, few other probability distributions such as the Weibull, Bounded Generali-

zed Pareto, Double Pareto, Log Normal and Yule-Simon distributions have also been

proposed to model bugs. The contemporary work on choosing the most appropriate

model for the underlying bug distribution relies on parameter estimation methods

and goodness-of-fit statistics. In this work we seek to strengthen the model selection

methodology and make it less vulnerable to threats such as over-fitting by making

use of information criterion based approaches.

• Experiments with open source data showed that the Double Pareto, Weibull

and Bounded Generalized Pareto models are the top three best fitting models.

However it is found out that DP models fare better than BGPD and WDmodels

though not significantly. It holds good for all three measures- BIC, AIC and

HQIC used in our study. The experiments based on Bayes factor and BIC

179

6 Conclusion and Future Work

relative fit values reveal that DP model is found to be better than WD model

and BGPD model with Very Strong or Positive evidence in nearly 70% of open

source projects.

• We also find that Double Pareto model significantly better than all other five

models in experiments conducted on proprietary software projects. Similar

results are observed irrespective of the three measures- BIC, AIC and HQIC

used in our study. The experiments based on Bayes factor and BIC relative fit

values reveal that DP model is found better than WD model and BGPD model

with Very Strong or Positive evidence in nearly 100% of proprietary software

projects. Hence we confidently conclude that the Double Pareto distribution

fits bugs better than other distributions for propriety software systems.

6.2 Future Work

Software Analytics is gaining momentum as a result of involved empirical research in

enhancing quality and productivity of software engineering activities. There have been

rigorous research efforts in the areas of defect prediction, bug localization and effort es-

timation by making use of historical data. We recognize following problem areas where

advanced machine learning and search-based software engineering techniques can improve

the state-of-art and define them as our future work.

Bug-fix time prediction We find bug-fix time prediction as an interesting problem with

lots of advantages to industry. In the event of any reported bug, generally the pro-

ject management team approaches experienced team members to get an estimate of

the bug-fix time and the response would be very much a personalized and subjective

estimate. The accurate prediction of bug-fix times is useful in planning and mana-

gement of resources that results in the lessened cumulative bug fix time. There have

been attempts to solve defect prediction problem with machine learning approaches.

Similar techniques can be leveraged to solve the problem of predicting bug-fix times.

180

6 Conclusion and Future Work

By making use of the historical data about bug-fix times of previous bugs of the

project, prediction models can be built to predict bug-fix time of future bugs.

In our initial attempt to predict bug-fix time, we have made use of three major fea-

tures: report title, description and the reputation of the bug reporter. We introduce

a new feature, the score of bug reporter, to predict bug fix time. We define the score

or reputation of a reporter as follows: “Number of bugs reported by a reporter that

were eventually fixed”. For example, if a reporter logs 50 bugs out of which 30 are

fixed, score of the reporter is 30. Our intuition to solve this problem is “Given two

reports which are similar in complexity, the bug reported by the reporter with higher

score will have a lower fix time and vice versa”. Our dataset contains 91 reporters

and around 567 bugs extracted from Jira issue tracking system of JBoss Project.

The prediction models built with ‘reputation of the bug reporter’ as a feature and

other existing features is found to be performing significantly better than other exis-

ting bug fix time prediction models. We are interested in finding more features and

suitable machine learning approaches to build more accurate bug fix-time prediction

models.

Software effort-estimation Effort-estimation has been a very difficult problem in fast

changing development environments. Underestimating results in under-staffing, li-

miting quality assurance activities and missing deadlines. Past projects data can

be used to predict the effort required for future projects. Features like application

domain, project duration, project size, programming language and tools, function

points, geographical locations and project team experience in building similar sys-

tems can be extracted and used for effort prediction. We are interested to propose

novel features and applying state of art learning techniques to enhance prediction

accuracies.

181

