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PREFACE 

It is now generally recognized that the mathematical equipment 
of the well-trained physicist or engineer of thirty years ago is no longer 
adequate for the physics and engineering of today. To understand 
wave mechanics it is not sufficient to master an old-fashioned treat¬ 
ment of vector analysis with its limitations to plane and space vectors 
with real coordinates and its emphasis on a \ isual realization of the 
basic concepts and relations. We must become familiar with multi¬ 
dimensional vectors with complex coordinates and w ith the matrices, 
or linear vector functions, which operate on these ve(rtors. A thorough 
and detailed treatment of these vectors and matrices is given in 
(Chapters 1 and 2 of this book. C-hapter 3 is devoted to the concept 

of function-vectors and of the linear integral operators associated with 

them; it includes an account of the various Fourier series which are 
attached, each to a given oTihonormal set of function-vectors. (Chap¬ 
ter 4 gives a full account of the concept, so important from thcj practical 

point of view, of curvilinear (Coordinates of a vector and of a linear vec¬ 
tor function. The next U\o chapters treat the solutions of Lapla(!e’s 
(equation which may be derived by the method of s(‘parati()n of vari¬ 
ables, particular att(ention being given to spheric.al harmonics and 
Bessel functions, and the application of the method of inversion to the 
determination of the electrostatic capacities of various condensers is 
considered in detail. Chapter 7 treats boundary-value prcjbkcms and 
the associated Green’s function, and Chapter 8, which is devoted to 
the Fredholm and Ililbert-Schmidt theory of integral ecpiations, 

culminates with a proof of Rayleigh’s principle. The last two chap¬ 
ters treat the calculus of variations (with particular emphasis on 
dynamical applications) and the operational calculus. 

The subject matter of this book is that of a graduate course in 
applied mathematics wffiich T have given for the past twenty years at 
Johns Ilc^pkins. The course met three hours weekly for thirty wrecks 
and was attended by graduate students in physics, engineering, 
chemistry, and mathematics. The content of the course has changed 
somewhat in the two decades during wdiich it has been given, but the 

emphasis has always been* on vectors and matrices, boundary-value 

problems, integral equations, and the calculus of variations with its 

applications to dynamics. 



VI PREFACE 

In the days when Ireland was known as the Land of Saints and 

Scholars, the usual inscription on a literary effort was '*To the Glory 

of God and the Honor of Ireland.” Now that my work at Hopkins 

is over and as I leave to teach mathematics in Brazil, I think it appro¬ 

priate to close my preface with the inscription 

To the Glory of God, Honor of Ireland, 
and 

Solidarity of the Americas. 

Francis D. Murnaghan 
Baltimore, Maryland 

May, 1948 
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VECTORS AND MATRICES 

1. Two-dimensional vectors 

Let Oxy and O'x'y^ be any two rectangular Cartesian reference frames 

in the {x^ 2/)-plane, and let (L, wii), (Z2, W2) be the direction cosines of 
the positive a;'- and t/'-axes with respect to the Oxy reference frame. 
In other words, if cos {xx') denotes the cosine of the angle between the 

positive a:-axis and the positive x'- 
axis, and so on, let 

Zi = cos {xx')^ mi = cos {yx')\ 

h = cos (x2/'), m2 = cos {yy'). 

If P is any point in the (x, 2/)-plane 

we denote its coordinates with re¬ 
spect to the Oxy reference frame by 
{Xy y) and its coordinates with re¬ 

spect to the O'x'y' reference frame 
by {x'y y')y and we use the symbol 
P: {Xj y) to denote that P is the point 

whose coordinates with respect to the Oxy reference frame are (x, y). 
If 0':{xqj 2/0), the coordinates of P with respect to the reference 
frame O'xy (i.e., the reference frame whose origin is O' and whose 

axes have the same directions as the axes of the Oxy reference frame) 
are {x — xoj y — 2/0), and these coordinates are related to the coordi¬ 
nates (x', 2/') of P with respect to the O'x'y' reference frame as follows: 

X - xo = Zix' + Z22/'; y — yo = mx^ + my*- 

Let P + AP be any point, other than P, in the (x, 2/)-plane, and 
denote the coordinates of P + AP with respect to the Oxy reference 

frame by (x + AXy y + Ay) and with respect to the O'x'2/' reference 
frame by (a;' + Aa?', y' + Ay'). Thus the numbers (Ax, Ay) are the 

1 



2 VECTORS AND MATRICES 

projections of the line segment P —> P + AP on the axes of the Oxy 

reference frame, and (Ax', Ai/') are the projections of the same line 

segment on the axes of the reference frame. The coordinates of 

P + AP with respect to the O'xy reference frame are 

and so 

(x + Ax - Xo, 2/ + Ay - yo) 

X + Ax - Xo = Zi(x' + Ax') + h{y^ + Ay'); 
y + Ay - yo = mi(x' + Ax') + m^iy' + Ay'). 

On combining these with the two equations which furnished x — Xo 
and y — yo in terms of x' and y' we obtain 

Ax = Zi Ax' 4* U Ay'; 

Ay = mi Ax' + m2 Ay'. 

The projections Ax and Ay of the line segment P —^ P + AP on the 
axes of the Oxy reference frame do not determine the segment 

P-^P + AP 

(in other words, there are many line segments P P + AP which 

have the same projections on these axes; in fact the initial point 
P: (x, y) of the line segment may be chosen arbitrarily, and then the 

terminal point P + AP: (x + Ax, y + Ay) is unambiguously deter¬ 

mined by the numbers (Ax, Ay)). All these line segments have the 
same magnitude 

|AP| = {(Ax)» + (Ay)=}^ 

and direction. We term the collection of all these equally long and 
equally directed line segments a vector {not many vectors), and we 
say that any one of the multitude of line segments (all of which have 

the same projections (Ax, Ay) on the axes of the Oxy reference frame) 
is a representation of the vector. The numbers (Ax, Ay) are termed the 

coordinates of the vector (of which the line segment P —» P AP is a 

representation) in (or with respect to) the Oxy reference frame. 

Similarly the numbers (Ax', Ay') are the coordinates of the same vector 
in the O'x'y' reference frame. In this terminology we have, then, the 
following fundamental result: 

The coordinates (Ax, Ay), in the Oxy reference frame, of an arbi¬ 
trary vector are connected with the coordinates (Ax', Ay'), in the 
O'x'y' reference frame, of the same vector by the formulas 

Ax = h Ax' + h Ay'; Ay = mi Ax' + m2 Ay'. 
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Here Oxy^ O^x^y' are any two rectangular Cartesian reference frames in 
the (x, 2/)-plane. 

These formulas may be conveniently remembered by means of the 
following diagram: 

Ax 

Ay 

Ax' Ay' 

h h 

mi m2 

When the four direction cosines (Zi, mi), (Z2, m2) are written in this way 
we say that we have set up a table of direction cosines. To read from 
the table the expression for Ax we multiply each number in the first 
row of the table by the projection, in the O'x'y' reference frame, which is 
directly above this number, and we add the two products so obtained: 

Ax = h Ax' -f“ U Ay'. 

Similarly Ay is obtained from the second row of the table: 

Ay = mi Ax' + m2 Ay'. 

Now Oxy and O'x'y' were any two rectangular Cartesian reference 

frames in the (x, 2/)-plane. Hence the two reference frames may be 
interchanged. Since h = cos (xx'), m2 = cos {yy') this interchange 
does not affect the value of h or the value of m2 (why?); on the other 

hand, mi = cos (yx'), h = cos (xy') so that the interchange of the 
roles of the reference frames interchanges mi and h (why?). We thus 
obtain the new table of direction cosines: 

Ax' 

Ay' 

which is read as follows: 

Ax' = Zi Ax + mi Ay; Ay' = U Ax + m2 Ay. 

An equivalent statement of this result is as follows: The table of 

direction cosines 

Ax 

Ay 

Ax' Ay' 

lx u 

mi m2 

Ax Ay 

h mi 

12 m2 
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may be read either by rows or by columns; thus 

Ax = h Ax' + h Ay'] Ay = mi Ax' + m2 Ay'] 

Ax' = h Ax + mi Ay] Ay' = hAx + m2 Ay, 

EXERCISES 

1. Show that when Ox'y^ is obtained by rotating Oxy through tt then Ax' ~ —Ax, 
Ay' « —Ay. 

2. Show that when Ox'y' is obtained by rotating Oxy through ~ then Ax' « Ai/, 

Ay' s* —Ax. What are the formulas for Ax' and Ay' when Ox'y' is obtained by 

rotating Oxy through ~ 

3. Show that when Ox'y' is obtained by rotating Oxy through - then 
4 

Ax' s* 2“^^^(Ax + Ay), Ay' = Ax + Ay). 

We have been led to the consideration of plane vectors by consider¬ 

ing line segments P —>P + AP in the plane. We have seen that a 
vector is unambiguously determined by its coordinates (Ax, Ay) with 

respect to any given reference frame Oxy (its coordinates with respect 
to any other reference frame O'x'y' being furnished, in terms of Ax 
and Ay, by means of the table of direction cosines). Instead of 

regarding the representation of a vector (by any one of a multitude of 

line segments) as fundamental, we now adopt the point of view that 
the important thing is the manner in which the coordinates of the 

vector change when the reference frame is changed. Thus, instead of 

saying that “a vector is the collection of all line segments which have 
the same projections on the axes of any reference frame,we say 

that 

A vector is a collection of pairs of numbers (Ax, A^), it being under¬ 
stood that there is one pair for each reference frame and that the 
pairs for any two reference frames are connected with each other by 
means of the table of direction cosines which is defined by the two 
reference frames. 

Thus the pair for any given reference frame Oxy may be arbitrarily 

assigned, and then the vector is determined, the pair for any other 

reference frame O'x'y' being furnished by the formulas 

Ax' = Zi Ax + mi Ay] Ay' = Z2 Ax + m2 Ay, 

The numbers (Ax, Ay) are termed the coordinates in the Oxy reference 
frame of the vector (Ax being the x-coordinate and Ay the ^/-coordi- 
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nate). Similarly Ax' is the x'-coordinate and Ay' the y'-coordinate of 

the vector. 
Remark. This definition of a vector will undoubtedly seem some¬ 

what vague and abstract at first, and the familiar definition may seem 
preferable: A vector is that which possesses, in addition to the quality 
of magnitude, the quality of direction.” Actually it is this ‘^col¬ 
loquial” definition that is vague. How can we tell when something 

“possesses the quality of direction”? The only answer is that it must 

have assigned to it, in each reference frame, a pair of numbers, and 
the various pairs, one in each reference frame, must be connected with 

each other in exactly the same way as are the projections of a line 
segment, i.e., by means of the table of direction cosines. 

The simplest, and in some respects the most important, vector is 

the one obtained by setting (Ax, Ay) = (0, 0). It follows (why?) that 
(Ax', Ay') = (0, 0) so that this particular vector has the property 

that its coordinates in all reference frames are the same. We term 
this vector the zero vector. Whenever we are in possession, in every 

coordinate reference frame, of a number which is the same in each 
reference frame we term this number a scalar. 

Remark. Be sure that you understand clearly the difference 

between the terms “number” and “scalar.” Every scalar is a num¬ 
ber, but not all numbers are scalars. Thus the x-coordinate of any 
vector other than the zero vector is a number, but it is not a scalar. 

(Prove this.) 
When we wish to denote a vector by a single symbol we shall use 

boldface type, and we shall indicate that v is the vector whose coor¬ 

dinates in a given reference frame Oxy are (a, 6), say, by the notation 

V = t^(a, 6). 

Thus 
0 == t;(0, 0) 

(it being unnecessary to specify which coordinate reference frame we 

are using). We have, then, the following result: 

The zero vector O.is characterized by the fact that it is the only 
vector whose coordinates are scalars. 

Note. Despite the importance of the zero vector, it does not pos¬ 

sess “the quality of direction”; in other words it does not single out 
any particular direction which it calls its own. If we attempt to 

represent it by a line segment the “two” ends of the segment coincide. 

Every vector furnishes us with a scalar, namely, the common length 
of any line segment which is a representation of the vector. We term 
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this scalar the magnitude of the vector, and we denote the magnitude 

of V by |v| or simply by v] thus if v = t;(Aa;, Ay) 

|v| = w = {(Ax)2 + (Ay)*)*^. 

The fact that t; is a scalar assures us that 

{Axy + (AyO^ = (Ax) 2 + (Ay) 2, 

and since Ax' = Zi Ax + mi Ay, Ay' = Z2 Ax + m2 Ay this yields 

(Zi2 + W){hxy + 2(Zimi + hm^) Ax Ay + (mi^ + m2^)(Ay)2 

= (Ax) 2 + (Ay) 2. 

This relation must be true for arbitrary numbers (Ax, Ay); on setting 
Ax = 1, Ay = 0 we obtain + W = 1, and on setting Ax = 0, 

Ay = 1 we obtain mi^ + m2^ = 1. Hence 2(Zimi + Ax Ay = 0, 
and on setting Ax = 1, Ay = 1 we obtain Zimi + = 0. Thus 

The four direction cosines of the table of direction cosines are connected 

by the relations 

= 1; Zimi + hmz == 0; mi^ + m2* == 1. 

EXERCISES 

4, Show that the four direction cosines of the table of direction cosines are con¬ 
nected by the relations + mi* = 1, hk -f mim2 — 0, 4* WI2* *=* 1. Hint. 
Interchange the roles of the reference frames Oxy, O'x'y'. 

5. Show that if 0 is the angle from O'x to O'x' then the angle from O'y to O'x' 

^ — o o table of direction cosines is 
2 2 

Ax' Ay' 

cos B —sin 9 

sin 0 cos 0 

Verify the validity of the relations of Exercise 4. Hint. The angle from O'x to 

O'y' is 0 

6* Show that the magnitude of the vector whose coordinates in the Oxy frame 
are (h, mi) is un'ty. Note. We shall term any vector whose magnitude is unity a 
unit vector. 

7. Show that the coordinates in the O'x'y' reference frame of the vector of 
Exercise 6 are (1, 0). 

8. Show that the coordinates in the O'x'y' reference frame of the vector whose 
coordinates in the Oxy reference frame are (0, 1) are (mi, m2), and deduce that 

mi* 4- m2* 1. 
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2. The scalar product of two plane vectors 

If P: (Xj y), the vector of which the line segment 0 —» P is a representa¬ 
tion is the vector v = v{Xy y); this vector is termed the position vector 
of the point P (with respect to the origin 0 of the Oxy reference 
frame). Conversely, when we are given any vector v, there is an 
unambiguously determined point P which has v as its position vector 
with respect to 0. It is convenient, then, when specifying the coordi¬ 

nates of a vector in a given reference frame Oxy, to write these as the 
coordinates of the point P. When we write v = v(x, y) we under¬ 
stand that ‘‘v is the vector of which the line segment 0 where 
P:{x, y), is a representation. 

Let, then, Vi = v(xi, yi), V2 = v(x2, 2/2) be any two plane vectors, 
and let us construct the vector v = v(xi + X2, yi + t/2). What are 
the coordinates of v in any other reference frame O'x'y'l From the 
table of direction cosines we see that the a:'-coordinate of v is 

li{xi + X2) + mi{yi +'2/2) = (^1^1 + Wit/i) + {I1X2 + mi2/2). 

In other words the a;'-coordinate of v is the sum of the a;'-coordinate of 

Vi and the a;'-coordinate of V2. Similarly the i/'-coordinate of v is the 
sum of the i/'-coordinate of Vi and the ^/'-coordinate of V2. But how 
was V defined? It was the vector whose a;-coordinate was the sum of 
the ^-coordinate of Vi and the ^-coordinate of V2 and whose y-coordi- 
nate was the sum of the y-coordinate of Vi and the ^-coordinate of V2. 
In other words 

We obtain the same vector v when we proceed in the O'x'y' reference 
frame as we have proceeded in the Oxy reference frame; the vector v is 
independent of the reference frame used to define it. 

We express this fundamentally important result as follows: 

i;(xi + X2, yi -f- 2/2) is a vector. 

Remark. Be very sure that you understand what is meant by this 
abbreviated statement. Every pair of numbers, in particular the pair 

{xi + X2, yi + 2/2), defines a vqctor. What we mean when we say that 

v{xi + X2y 2/1 + 2/2) is a vector is not merely the platitude that we can 
construct a vector whose coordinates in the Oxy reference frame are 

(xi + X2f 2/1 + 2/2)* We mean that this construction is independent 
of the reference frame; if we repeat the construction in any other refer¬ 
ence frame we arrive at the same vector (the coordinates of the vector 
we arrive at being generally, and naturally, different). 
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We term the vector v = v{xi + xzj yi + 2/2) the sum of the vectors 

Vi and V2, and we write 
V = Vi + V2. 

It is at once evident that V2 + Vi = Vi + V2 simply because X2 + Xi — 

Xi + X2 and 2/2 + 2/1 = 2/1 + 2/2- If the line segment 0 Pi is a rep¬ 
resentation of Vi and the line segment Pi —^ P a representation of V2 

then the line segment 0 —> P is a representa¬ 
tion of v (why?). This furnishes the triangle 

construction for the addition of vectors: 

To add two plane vectors lay line segments 
which represent them end to end; then the 
line segment from the initial point of the 
first segment to the terminal point of the sec¬ 
ond segment is a representation of the sum of 
the two vectors. 

If we have three vectors Vi, V2, Vs it is clear that 

(vi -b V2) + V3 = Vi + (v2 + V3). 

In words: The addition of plane vectors is associative. We term the 

common sum (vi •+- V2) + V3, Vi -|- (v2 + V3) simply the sum of the 
three vectors Vn V21 and V3, and we denote this sum by the symbol 

Vi + V2 + V3. More generally if Vi = v{xi, 2/1), • * * , Vn = 2/n) 
are n plane vectors their sum is the vector 

v(a:i + • • ' + Xn, 2/1 + * * • + 2/n). 

The geometrical construction of the sum of any number of plane 

vectors is the same as that of the sum of two plane vectors: 
Lay representative segments of the vectors end to end; the segment 

from the initial point of the first segment to the terminal point of the 
last segment is a representation of the sum of the vectors. 

EXERCISES 

1. Show that if c is any scalar and v =* t>(ar, y) any vector then v{cx^ cy) is a 
vector. (What does this mean?) Note. The vector v(cxj cy) is termed the 
product of the vectorV by the scalar c and is denoted by the symbol cv. 

2. Show that the magnitude of cv is |c|v where |c| is the absolute value of c; i.e., 
|c| * c if c ^ 0, [cj * —c if c < 0. 

3. Show that cv has the same direction as v if c > 0 and the opposite direction 
to V if c <0. How is any representative segment of cv related to any representa¬ 
tive segment of v? 
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Now let Vi = v{xiy yi) and V2 = v(x2, 2/2) be any plane vectors, and 
let V = Vi + V2 be their sum. The squared magnitude of v is a scalar 
which is furnished by the expression 

= (xi 4- + (yi + 2/2)2 
= (xi^ + yi^) + 2(xiX2 + 2/12/2) + (0:22 + 2//). 

Since Xi^ + 2/i^ = iC22 + yi^ = are scalars it follows (why?) 
that 3:10:2 + 2/12/2 is a scalar. We term this scalar the scalar yroduct 
of Vi and V2, and we denote it by the symbol (vilv2): 

(Vilv2) = 0:1X2 + 2/i2/2. 

It is clear that (v2|vi) = (vi|v2) simply because X2X1 = X1X2 and 2/22/1 = 
2/1^2; in other words 

Scalar muliiplication of plane vectors is commutative. 

The geometrical interpretation of (vi|v2) follows at once from the 
fact that (vilv2) is a scalar; in fact the coordinates of Vi in a reference 
frame whose positive x-axis has the direction of Vi are (?;], 0) so that 

(Vi|v2) = 2^1X2 + O2/2 = 1^10:2 = ViV2 cos e, 

where B is the angle between the vectors Vi and v^. Thus 

The scalar product of two plane vectors is the product of their 
magnitudes by the cosine of the angle between them. 

It follows that 
The scalar product of two plane vectors is zero when^ and only when^ 

the vectors are perpendicular (i.e.j any representative segment of the 
first vector is perpendicular to any representative segment of the second) or 
when one of the two vectors is the zero vector. 

EXERCISES 

4. Show that (v|v) = i.e., that the scalar 
product of a vector by itself is the squared mag¬ 
nitude of the vector. 

5. Show that (v|v) ^ 0, the equality holding 
when, and only when, v is the zero vector. 

6. Show that (vil(v2 + Vs)) — (vilvo) 4- (vijva) 
and that ((vi + V2)lv3) =* (vijva) + (V2IV3). Note. 

The results of this exercise may be expressed as 
follows: 

Scalar multiplication of vectors is distributive with respect to addition. 
7. Show that ((vi 4- V2)|(V3 + vd) « (vi|vs) 4* (vijv^) 4- (V2IV8) 4- (V2IV4). 
8. Show that ((vi 4* V2)|(vi 4- V2)) « (vi|v,) 4- 2(vi|v2) -f (vajva). 
9. Deduce from the results of Exercises 4 and 8 the cosine law for plane triangles: 

c* ta a* + — 2a6 cos C. Hint. If P2 —P3 and P3 —> P\ are representations of 
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Vi and V*, respectively, P2 —+ Pi is a representation of Vi + Vsi and the angle from 
Vi to V2 is T — C {not C, since the angle from Vi to is the exterior^ not the interior^ 

angle of the triangle at Pa). See Figure 3. 

3. The alternating product of two plane vectors 

If 6 is the angle from Ox to O'x', the four cosines which occur in the 
table of direction cosines which is defined by the Oxy and O^x^y' refer¬ 

ence frames are given by the 
formulas 

h = cos dj mi = sin 6; 
I2 == —sin By m2 = cos B. 

Hence m2 = Ih h = —mi. It fol¬ 
lows that if V = v(x, y) is any vector 

so also is v{^y, x). In fact the 

coordinates, in the O'x'y' reference 

frame, of the vector w'hose coordi¬ 
nates in the Oxy reference frame are (—1/, x) are 

+ miX, —hy + m2x) = {—m2y — te, rrtiy + hx) - (—2/', x'). 

We term the vector v( — yy x) the complement of v{Xy y)y and we denote 
it by v’*'. If P:{Xy y) and —line segment 0 has 

the same length as the line segment 0 —> P, and the angle from 0 —^P 

fo 0 —^ P* is + Thus 

A representative segment of y* may he obtained from any representative 

segment of y by rotating the latter through a right angle in the positive 

sense. 

EXERCISES 

1. Show that (▼*)• —V and that (vi + V2)* = vi* -f V2*. 
2. Show that (mv)* =* ?wv*. 
3. Show that if Ui = v{li, mi), U2 = vih, m2), where h, m\, U, m2 are the cosines 

of a table of direction cosines then Ui and U2 are unit vectors and U2 Ui*. 
4. What are the coordinates of the vectors Ui and U2 of Exercise 3 in the O^x'y' 

reference frame? 
5. Show that (vi|v2) » (vi*|v2*). 

If Vi = v{xiy yi) and V2 = v{x2, 2/2) are any two plane vectors the 

number (vi*lv2) = xiy2 — X2yi is a scalar (why?). Since 

(V2*lvi) = Xiyi — Xiy2 = — (vi*lv2) 
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this kind of multiplication of plane vectors is not commutative; it is, 

rather, anticommutative, i.e., an interchange of the two vectors 
involved in the product changes the sign of the product. We term 

(vi*|v2) = Xiy^ — X2yi the alternating product of Vi and V2, and we 
denote this alternating product by the symbol (vi, V2). Thus 

(vi, V2) = xi2/2 “ x^yi = ~(V2, vi), 

EXERCISES 

6. Show that (v, v) = 0 and that (ciVi, C2V2) = ciCzCvi, Va), where ci, c* are any 
scalars. 

7. Show that (vj + Va, Va) - (Vj, V3) + (va, V3) and that 

(Vi, V2 + Va) * (Vi, V2) + (Vi, Va). 

8. Show that (Vi, V2) = 0 when, and only when, one of the two vectors Vi, Va is 
a multiple of the other. Hint, (vi, V2) = (Vi^jva). 

Note. When one of two vectors Vj, Va is a multiple of the other the two vectors 
are said to be linearly dependerd. If Vi and V2 are linearly dependent then either 
of them has the same direction as, or the 
opposite direction to, the other, or else one of 
the two vectors is the zero vector. The result 
of this exercise may be phrased as follows; 

The equation (Vi, V2) = 0 is the criterion for 

linear dependence of the two vectors Vi and if 

(Vi, V2) 7^ 0 the two vectors Vi and are linearly 

independent. 

9. Show that if the line segments O —♦ Pj, 
O Pi are representations of the vectors Vi and 
V2, respectively, then (vi, V2) is the (signed) area 
of the parallelogram of which 0 —♦ Pi and 0 —*p2 are adjacent sides. Hint. 

(7If V2) « (vi*|v2) « vi*V2 cos 

where 6 is the angle from 0 Pi to O P%. IXi Xi 

yi y2 

11. Show that if Vi, V2, and V3 are any three plane vectors then 

(V2, V3)Vl + (Vs, Vl)V2 4- (Vl, V2)V8 * 0. 

Hint. The first coordinate of the vector on the left is the three-rowed determinant 
Xi Xa x^ yi Pi s/« 
Xi Xa Xi , and the second coordinate is the three-rowed determinant Xi X2 Xi 

y\ Vi Vi 2/1 S/2 y* 

Fig. 5. 
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It follows from the definition given in Exercise 8 that 

Two plane vectors vi and V2 are linearly dependent when, and only 
when, two scalars ci and C2, not both zero, exist such that ciVi + C2V2 is 
the zero vector. 

If we are given n plane vectors Vi, • • • ,Vn the vector 

V = CiVi + • • • + CnVnf 

where (ci, • • • , c„) are any n scalars, is termed a linear combination of 

the n given vectors. If all the n scalars (ci, • • • , Cn) are zero the 
linear combination is said to be trivial. In this terminology the defini¬ 

tion of linear dependence of two plane vectors may be phrased as 

follows: 

Two plane vectors are linearly dependent when^ and only when, there 

exists a nontrivial linear combination of the two vectors which is the zero 

vector. 

We extend the scope of this definition as follows: 

n plane vectors are linearly dependent when, and only when, there exists 

a nontrivial linear combination of the n vectors which is the zero vector. 

EXERCISES 

12. Show that if a collection of n vectors is linearly dependent any collection of 
?i + p vectors which contains the original collection is linearly dependent. Hint. 

If CiVi +•■••+ CnV« is a non-trivial linear combination of the vectors of the 
original collection, CiVi 4- . . . -f -|- Ov«^-i + • • • + is a non-trivial 
linear combination of vectors of the second collection, and 

ClVi + • • • + CnVn + Ov„^.i + • • • + OVn^-p = CjVi + * * * + C^Vn. 

13. Show that the only linearly dependent collection of one vector is the zero 
vector. 

14. Show that there exist collections of two plane vectors which are linearly 

independent, i.e., not linearly dependent. Hint. If Vi — y(l, 0), V2 = t^(0, 1), 
(Vl, V2) = 1 7*^ 0. 

15. Show that all collections of three or more plane vectors are linearly de¬ 
pendent. 

Solution. From the result of Exercise 12 it suffices to prove this result for the 
case n — 3. Let, then, {vi, Vj, V3} be any collection of three plane vectors. If 
(V2, V3) ~ 0 the collection of two plane vectors {v2, V3I is linearly dependent, and 
hence the collection {vi, V2, V3) is linearly dependent. If (V2, V3) 7^ 0 the collection 
{Vl, V2, V31 is linearly dependent by virtue of the result of Exercise 11. Note. The 
results of Exercises 14 and 15 are expressed by the statement that a plane pos-- 

sesses two dimensions. 

It follows from the result of Exercise 11 that if {vi, V2} is a linearly 

independent collection of two plane vectors then every plane vector v 
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may be expressed as a linear combination of Vi and V2. In fact we 
are given that (vi, V2) 5*^ 0 and so 

V = CiVi + C2V2, 
where 

_ (v» V2) ^ _ (Vi, v) 

(Vi, V2)’ (Vi, V2) 

(To see this, replace V3 by v and use the alternating property of the 
products (v2i v) and (v, Vi).) We express this result as follows: 
Every linearly independent pair of plane vectors is a basis for all plane 
vectors; we term the scalars Ci and C2 the coordinates of v wdth respect to 
the basis {vi, V2). 

The simplest basis (from the point of view of computation) is one in 
which each of the basis vectors is a unit vector, the second being the 
complement of the first. Writing this basis as {ui, Ui*l we have 

(Ui, Ui*) = (ui*|ui*) = 1 
and so 

Cl = (v, Ui*) = (v*|ui*) = (v|ui) = (Ui|v); 

C2 = (ui, v) = (ui*|v) = (uilv), where Ui = Ui*. 

Thus we have the following rule: 
Ths coordinates of any plane vector with respect to the basis {ui, u^l, 

where Ui and U2 are unit vectors and U2 = Ui*, are (ui|v) and (u2lv). 

EXERCISES 

16. Show that the vectors Vi = v(l, 1) and V2 = v(0, 1) constitute a basis for 
all plane vectors, and determine the coordinates of i>(3, 2) with respect to this basis. 

17. Show that x and y arc the coordinates of v{Xy y) with respect to the basis 

ui = v(l, 0), U2 = Ui* * i;(0, 1). 
18. Show that if the pair of vectors {vi, V2I constitutes a basis for all plane 

vectors so also does the pair {vi*, V2*l. Hint, (vi*, V2*) == (vi, V2). 
19. Show that the coordinates of v* with respect to the basis {vi*, V2*} are the 

same as the coordinates of v with respect to the basis {vi, V2I. 

4. Three-dimensional vectors 

The theory of three-dimensional or space vectors is so similar to that of 
two-dimensional or plane vectors that it will suffice to run over (largely 
without proofs) the main points. If you have difficulty with any of the 
statements made, refer back to the corresponding statement for two- 
dimensional vectors. 

You must first of all be clear about what is meant by a right-handed 
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rectangular Cartesian reference frame. If you hold out your right 

hand with your thumb, first finger, and second finger as nearly as 

possible at right angles to each other these will constitute a right- 
handed reference frame if the thumb has the direction of the positive 

x-axis, the first finger the direction of the positive 2/-axis, and the second 

finger the direction of the positive 2-axis. An equivalent description 
of a right-handed reference frame is as follows: The point of an ordi¬ 

nary commercial screw will move in the 

direction of the positive 2-axis when 

turned through a right angle from the 

positive x-axis towards the positive y- 

axis. 
From now on we shall suppose that 

_^ all our rectangular Cartesian reference 

^ frames are right handed. Let P —F + 
AP be any line segment, and denote its 

projections on the axes of any two ref¬ 

erence frames Oxyz and O'x'y'z^ by (Ax, 

At/, Az) and (Ax', At/', A2'), respectively. These two sets of pro¬ 

jections are connected vv4th one another by a table of direction cosines: 

Fiq. 6. 

Ax' A?/ Az' 

Ax /. h h 

rni Wt nh 

Lz Ui W2 nz 

This table may be read either ^'by rows” or “by columns”; for example 

Ay = mi Ax' + m2 Ay' + m^ Az'; 
Az' = Is Ax + ms Ay + Us Ax, and so on. 

A three-dimensional vector is a collection of sets of three numbers, there 

being one set attached to each reference frame, where the set attached 

to any reference frame Oxyz is connected with the set attached to any 

other reference frame through the table of direction cosines. Thus if 

(Ax', Ay', Az') are the coordinates in the O'x'y'z' reference frame of the 

vector whose coordinates in the Oxyz reference frame are (Ax, Ay, Az) 

we have 

Ax' = Zi Ax + m\ Ay + ni Az; 
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Ay' = ^2 Ax + m2 Ay + 712 A^; 

A«' = U Ax + ms Ay + Az, 

Attached to any vector v = i>(Ax, Ay, A2) is a scalar, namely, its 

magnitude v: 
V = {(Ax)>‘ + {Ayr + 

Since the relation 

(Ax')2 + (Ay')2 + (Az'y = (Ax)^‘ + (Ay)^ + (A^)2 

must hold for arbitrary values of (Ax, Ay, A2;) the nine direction 

cosines of the table of direction cosines must satisfy certain readily 

determined relations. On setting (Ax, Ay, Az) = (1, 0, 0) we 
obtain = 1; on setting (Ax, Ay, Az) = (0,1, 0) we obtain 

mi^ + m2^ + ms^ = 1, and on setting (Ax, Ay, Az) = (0, 0,1) we obtain 

ni^ + 712^ + = 1. On setting (Ax, Ay, Az) = (0, 1, 1), and using 

the relations already obtained, we find that mini + m2n2 + mans = 0. 

Similarly Uih + n2^2 + nzU = 0, ^imi + hm2 + hirii = 0. (Prove 
this.) Hence the nine cosines of the table of direction cosines satisfy 

the six relations: 

+ i^s^ = 1; mi^ + W2^ + ms^ == 1; 

ni^ + rii^ + ^^3^^ = 1; mini + m2W2 + mzu^ — 0; 

Uili -f" n^2 “h fizlz = Oj livii -f- l2m2 “h Izmz — 0. 

EXERCISES 

1. Show that the nine cosines of the table of direction cosines satisfy the six 
relations 

“h THi^ -f" Wi* — 1 j Z2* “{” Tti^ -f* 712* = 1J /a* -f" Jtiz^ “h ria* = 1 ] 

I'llz “h w-aWa "h n^tiz = 0| I3I1 4" nizVfii fizfii = 0) hlz 4“ ntimz 4" WiWa = 0. 

Hint, Interchange the roles of the two reference frames OxyZy O'x'y'z', 
2. Show that the determinant 

li I2 I3 

mi THz fflz 

ni 712 Wa 

- 1. 

Solution. This determinant has the same value as the determinant obtained by 
interchanging its rows and columns, and the product of these two equal deter¬ 
minants is 1 (by virtue of the relations satisfied by the nine direction cosines). 
Hence the determinant in question is ±1. Being a continuous function of the 
nine direction cosines it must be always 4"1 or always —1. Since it is 4“1 when 
the two reference frames coincide, it must be always 4-1. 



16 VECTORS AND MATRICES 

3. Show that each clement of the determinant of Exercise 2 is equal to its cofac¬ 
tor; e,g., li — miUz — mana, h ~ WaWi — mina, and so on. Hint. The two 
equations hnii + hnii + hmz ~ 0, hni + hn2 + hnz =* 0 yield 

h = — maWa), h = k{nizni — miWa), h — k{minz — WaWi), 

where k is a factor of proportionality. On multiplying these equations by b, 
fa, and fa respectively, and adding, we obtain, in view of the result of Exercise 2, 

A; = 1. 

If the line segment 0 —> P is a representation of a vector v we have 

V = v{Xj 2/, z), where P:(^, 2/, z). The sum Vi + V2 of two vectors 

Vi = v(xi, 2/1, 2i), V2 = v(x2y 2/2, 22) is the vector 

v(xi + 2/1 + 2/2, Zi + Z2). 

(Prove that this is a vector.) The product of the vector v — v{x^ y, z) 

by the scalar c is the vector cv = v{cxj cy^ cz). (Prove that this is a 

vector.) Addition of vectors is commutative and associative. (What 

does this mean?) To obtain a representative segment of the sum of 

any number of vectors we have merely to lay representative segments 

of the individual vectors end to end; the line segment from the initial 

point of the first line segment to the terminal point of the last line 

segment is a representation of the sum of the vectors. 

From a consideration of the squared magnitude of Vi + V2 we obtain 

the scalar product of two vectors: 

(Vi|v2) = X1X2 + 2/i2/2 + 2^12^2, 

and we observe that (v|v) is the squared magnitude of v. On choosing 

a reference frame whose positive x-axis has the direction of Vi we find 

that 
(Vijvj) = ViVi 00s B, 

where 6 is the (unsigned) angle between Vi and V2. 

EXERCISES 

4. Show that scalar multiplication of space vectors is commutative (what does 
this mean?) and distributive with respect to addition (what does this mean?). 

5. Show that (vi|v2) = 0 when, and only when, V] and Va are perpendicular, or 
else when one or other of the two vectors is the zero vector. 

6. Show that (ciVijcaVa) = ciC2(vi|v2), where c, and ca are scalars. 

5. The vector or cross product of two space vectors 

If Vi = i;(xi, 2/1, 2i), V2 = v{x2^ 2/2, 22) are any two space vectors, 

v{yiZ2 — 2/2^1, Z1X2 — Z2:ri, Xiy2 — X2y^) is a vector. In fact 
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h{y\Z2 ~ 2/22i) + mi{ziX2 — 222:1) + ni{xiy2 — x^y^) 

= {miUz — mzn2){yiZ2 — 2/2^1) + (712^3 — n3Z2) (2:1X2 — 22X1) 

+ (hmz - hm2){xiy2 — X22^i) 

(see Exercise 3, p. 16) == t/1'22' — y2Zi' since 2/1' = ^2X1 + 7712^1 + 71221, 
etc. This vector is the vector or cross 'product of the vectors V] and V2; 

we denote it by the symbol (vi X V2). If either Vi or V2 is the zero 

vector so also is (vi X V2); if neither Vi or V2 is the zero vector we choose 
the reference frame Oxyz so that Ox 

has the direction of Vi while Oy lies 

in the plane determined by 0—>Pi 

and 0 —> P2 (the direction of Oy being 
such that the ^/-coordinate of V2 is 

positive). We have, then, 

Vi = v{vi, 0, 0); 

V2 = v{v2 cos V2 sin 6, 0), 

where 6 is the (unsigned) angle be¬ 

tween 0~^Pi and 0-^P2 (0 being measured so that 0 ^ 0 ^ x; 

if 0 = 0 or X the line segments 0 Pi and 0 —> P2 do not determine 

a plane, and the 7/-axis may be taken to have any direction perpendic¬ 
ular to Vi). Hence 

(vi X V2) = v(0, 0, V1V2 sin e). 

Thus the magnitude of (vi X V2) is V1V2 sin and if (vi X V2) is not the 

zero vector the direction of (vi X V2) is that of the positive z-axis. 

In other words 

The magnitude of (vi X V2) is the area of the parallelogram of which 

0 ~>Pi and 0 are adjacent sides; when (vi X V2) is not the zero 

vector the direction of (vi X V2) is that one of the two directions per¬ 

pendicular to the plane containing O Pi, 0 —> P2 along which the 
point of an ordinary commercial screw will move when the screw is turned 

through the angle (less than x) between O —> Pi and 0 —» P2. (vi X V2) 

is the zero vector when, and only when, one of the vectors Vi, V2 ts a multiple 

of the other. 

EXERCISES 

1. Show that (V2 X Vi) « —(vi X V2), i.e., that vector or cross multiplication of 
space vectors is anticommutative or alternating. 

2. Show that (ciVi X C2V2) = CiC2(vi X V2), where ci and C2 are scalars. 
3. Show that ((vi + V2) X Vs) =* (vi X Va) 4- (va X Va) and that 

(Vi X (V2 + Va)) « (vi X V2) + (vi X Va), 
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i.e., that vector (or cross) multiplication of space vectors in distributive with 
respect to addition. 

4. Show that 

((vi + Va) X (V8 + V4)) * (Vi X V3) + (vi X V4) + (va X Vi) -f (va X V4). 

6. The alternating scalar triple product; linear dependence of 

space vectors 

Let vi = v(xi, yu 21), V2 = v{x2y 1/2, 22), and V3 = v(x2y yz, Zz) be any 
three space vectors, and consider the scalar product (vi|(v2 X Vs)) of 

Vi and the vector, or cross, product of V2 and V3. This is the three- 

rowed determinant 

Xi X2 Xz 

yi 2/2 2/3 = xi(y2Zz - 2/322) + yi(z2Xz - Zzxz) + ziixzys - 2/2^3). 

2i Z2 Zz 

Hence it is alternating in the three vectors Vi, V2, and V3, i.e., an inter¬ 

change of any two of these vectors changes the sign of this scalar 

product. On the other hand an interchange of the | and X in the 
symbol (vi|(v2 X V3)) leaves the 
scalar product unaffected: 

(V]1(V2 X Vs)) = ((Vi X V2)|v8). 

We may, then, without fear of 

ambiguity omit both the | and the 

X from the symbol. We do this 

and write it as follows: 

(vi, V21 Vs). 

We term this scalar the alternating product of the three vectors. Thus 

(vi, Vs, Va) = -(vi, Vs, V2) = (V2, Vs, Vi) 

= ~(V2, Vi, Vs) = (Vs, Vi, V2) = ~(V3, V2, Vi). 

The geometrical interpretation of (vi, V2, Vs) is clear; since the mag¬ 

nitude of (V2 X V3) is the (unsigned) area of the parallelogram of which 

O —^ P2 and 0 -^Pz are adjacent sides, (vi, V2, V3) is the product of 

this area by vi times the cosine of the angle between Vi and (V2 X V3). 

It is, then, the signed volume of the box of which 0 —^ Pi, 0 —+ P2 

and 0 P3 are adjacent edges. This signed volume is positive when 

the angle between Vi and (v2 X V3) is acute and negative when this 
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angle is obtuse. When (vj, Va, Va) is positive we say that the three 

vectors Vi, Va, and Vs, taken in this order, are 'positively oriented; 

when (vi, Va, Va) is negative we say that they are negatively oriented. 

EXERCISES 

1. Show that (ciVi, C2V2, CaVa) = ciC2C3(vi, V2, Va), where Ci, C2, and ca are any 
Bcalars. 

2. Show that (vi -|- Wi, V2, Va) ~ (vi, V2, Va) + (wi, V2, W3). 
3. Show that (vi, Vi, V2) ** 0. Hint. Since (vi, Vi, V2) is alternating 

(Vi, Vi, V2) = ~(Vi, Vi, V2). 

4. Show that (vi, V2, CiVi + C2V2) =» 0, where Ci and C2 are any two scalars. 

We define linear dependence of space vectors exactly as in the case of 

plane vectors: 

A set of n space vectors {vi, • • • ,Vn) is said to be linearly dependent 
if there exists a non-trivial (what does this mean?) linear combination 
CiVi + • • • + CtiVn of the space vectors which is the zero vector. 

Thus when n = 1 the only linearly dependent set is the set consist¬ 

ing of the zero vector. The criterion for linear dependence of sets of 

two vectors has been already obtained: 

The set of two space vectors {vi, V2} is linearly dependent when, and 

only when, (vi X V2) is the zero vector. 

It is easy to see that (vi, V2, V3) = 0 if, and only if, the set of three 

space vectors {vi, V21 Vs) is linearly dependent. In fact if this set is 

linearly dependent one of them, V3 say, is a linear combination of the 

other two (why?): 

Va = CiVi + C2V2* 

Hence (vi, Va, Va) =* 0 (why?). Conversely, let (vi, V2, Va) = 0. 

If (V2 X Va) = 0 the set {V2, Va} of two space vectors is linearly depend¬ 

ent, and hence the set {vi, V2, Va} of three space vectors is linearly 

dependent (why?). If (v2 X Va) is not the zero vector the relation 

(vi|(v2 X Va)) =0 tells us that Vi is perpendicular to (v2 X Va) so 

that Vi is a linear combination of V2 and Va (why?). Hence the set 

{vi, V2> Va} is linearly dependent. Since (ui, U2, Ua) = 1, where 

Ui = 2;(1, 0, 0), U2 = 1^(0, 1, 0), Ua = v(0, 0, 1), there exist in space 
linearly independent sets of three vectors. 

If {vi, V2, Va, V4I is any set of four space vectors we have 

(V2. Va, V4)vi + (va, Vi, V4)V2 + (Vi, V2, - (vi, Va, Va)v4 - 0. 
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In fact the a;-coordinate of the vector on the left is the four-rowed 
determinant 

Xi Xi Xz Xi 

Xi X2 Xz X\ 

yi y% ys 2/4 

Zi Zz Zz 24 

which is zero. Similarly the y- and z-coordinates of the vector on the 

left are zero. If, then, the set of three vectors {vi, V2, V3} is linearly 

independent, so that (vi, V2, V3) 0, we have 

V4 = CiVi + C2V2 + C3V3, 

where 

(V2, V3, V4) (Vs, Vi, V4) (Vi, V2, V4) 

(Vi, V2, V3) (Vi, V2, V3) (Vi, V2, V3) 

Thus, while there exist linearly independent sets of three space vectors, 

every set of four or more space vectors is linearly dependent. We 
express this result by the statement that space is three dimensional. 

We have just seen that every space vector is a linear combination of 

the vectors of a linearly independent set of three space vectors. In 
other words every linearly independent set of three space vectors is a 

basis for space vectors. We term the scalars Ci, C2, C3 which occur in 

the linear combination v = CiVi + C2V2 + C3V3 the coordinates of v 

with respect to the basis {vi, V2, V3}. The simplest bases, from the 
point of view of computation, are those in which the vectors of the 

linearly independent set of three vectors {ui, U2, U3I are unit vectors 

such that (uilu2) = 0 and U3 = (ui X U2). Then 

(ui, U2, U3) = ((ui X Us)|u3) = (U3IU3) = 1 

and (us X Us) = Ui, (us X Ui) = Uj (see Exercise 3, p. 16). Hence 
(Uj, U3, v) = (ui|v), (U3, Ui, v) = (ujIv) and (ui, U2, v) = (U3|v) so that 

V = (Ui|v)Ui + (U2|v)U2 + (U3|v)U3. 

Thus the coordinates of v with respect to the basis {ui, U2, Us} are 

(uilv), (U2|v), and (u3|v). 

EXERCISES 

5. Show that if Ui ~ v(l, 0, 0), U2 = ti(0, 1, 0), U3 - r(0, 0, 1) the coordinates of 
V =* v{Xy yy z) with respect to the basis {ui, U2» Us} are (z, 2/, z). 

6. Show that the set of three space vectors {vi, V2, Vat, where Vi = r(—2, 0, 3), 
▼2 ™ i?(3, 6, 0), Va *■ t;(—7, —6, 6), is linearly dependent, and express Vi as a 
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linear combination of V2 and Vj. Hint. Write Vi « C2V2 + C3V8, and solve for 
C2 and cz the two equations obtained by equating two of the coordinates of Vi 
and C2V2 + C3V3. 

7. The vector triple product 

Let Vi == v(xi, 2/1, 2i), V2 = v{xi, 2/2, 22), Va = v{xz, yz^ Zz) be any three 

space vectors. Then (V2 X Va) is the vector v(y2Zz — 2/3^2, 22X3 — ZzXZf 

X2yz — Xzy^) so that the a:-coordinate of the vector (vi X (V2 X Va)) is 

y\{x2yz — 2:32/2) — 21(222:3 ~ 23X2) = (vilv3)a:2 — (vi|v2)2:3. Similarly 
the 2/“Coordinate of (vi X (v2 X V3)) is (vilv3)2/2 — (vi|v2)2/3 and the 
z-coordinate of (vi X (v2 X V3)) is (vilv3)22 — (vi|v2)23. Hence 

(vi X (V2 X Va)) = (vilv3)v2 - (Vi|v2)V3. 

A similar argument (give it) yields the result 

((Vi X V2) X V3) = (Vi|v3)V2 - (V2|v8)Vi. 

These results may be readily remembered as follows: The vector triple 

product (vi X (V2 X V3)) or ((vi X V2) X V3) is a linear combination 

of the two vectors which are first crossed, and the coefficient of the 

middle vector is the scalar product of the other two. The coefficient of 

the other vector (of the two which are first crossed) is the negative of 
the scalar product of the other two. 

EXERCISES 

1. Show that ((vi X V2) X (vs X V4)) = (vi, V3, V4)v2 — (v2, Vs, V4)vi. Hint. 
Set (vs ^4) fliTlcl 6X{3£Lrid ((Vi w)* 

2* Show that ((Vi X V2) X (va X V4)) = (vi, V2, V4)V3 - (vi, V2, V3)V4. 
3. Show that ((v, X V2)l(v3 X V4)) (vi|v8)(v2lv4) - (Vilv4)(v2|v3). Hint. 

((Vi X V2)|(V3 X V4)) = (((Vi X V2) X V8)|V4). 

8. Scalar fields; the gradient vector 

We first consider the case of the plane. If we have, attached to each 

point P: (Xy y) of a collection of points (= point set) in the plane, a 

scalar / = f(P) = /(x, y) we say that f = f{P) is a, scalar field defined 

over the given point set. If / = f{P) is defined over a neighborhood of 
P its increment A/ = J(P + AP) — /(P), where 

P + AP:(x + Ax, y + Ay), 

is a scalar since the difference of two scalars is a scalar and both 

/(P + AP) and /(P) are scalars. It follows that if / = /(P) is dif¬ 

ferentiable at P its differential df is a scalar. In fact Af = df + >'|aP|, 
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where v is null at |aP| ~ 0, so that, since |aP| is a scalar, is a 

scalar. Since is independent of the magnitude |aP| of the vector 

v(Ax, Ay), being dependent only on the direction of this vector, it 

follows that hence df, is a scalar. In fact, on denoting by 

primes the values in any new reference frame O'x'y' of the various 

df 
expressions involved, the fact that + v is a scalar yields 

|AP| + 

V — / is null at |aP| = 0. Being independent 

df 
+ V 

and so 
{dfV df 

lAPl |APi 

of [APj it must be zero (why?) and so = 0, or, equiv- 

alently, 

m = df. 

In words: 
df = fx Ax + fy Ay is a scalar. 

Since the direction of the vector v(Ax, Ay) is arbitrary it follows that 

v{fxy fy) is a vector. In fact the equation 

fx» Ax' + fy> Ay' = fx Ax + fy Ay 

yields (on setting Ay' = 0 so that Ax = h Ax', Ay = mi Ax' (why?)) 

/x' == hfx + mify and, similarly, fy^ = Z2/X + m2fy. 
Remark. These equations which furnish fx' and fy* in terms of 

and fy might have been written down at once by using the law of 

composite differentiation for functions of two variables. We have 
preferred not to do this in order to point out the intrinsic meaning of 

the equations: They simply express the fact that df is a scalar when / 

is a scalar field. Incidentally we have proved the following useful 
converse of the scalar product theorem: 

If we have, attached to each reference frame, a pair of numbers 
(a, h) having the property that ax + hy is a scalar for every vector 
v(x, y) then v{a, h) is a vector. Since every plane vector is a linear 
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combination of the two vectors of a basis it is sufficient for the validity 

of this converse of the scalar product theorem to know that ax + by is 
a scalar for each of two linearly independent vectors 

Vi = v{xi, 2/1), V2 = v{x2, 2/2). 

We term the vector /y) the gradient of the (differentiable) 
scalar field /, and we denote it by grad /. grad / is a vector field; in 

other words we have, attached to each point P of our point set over 

which the scalar field / is granted to be differentiable, a vector. If we 
introduce the differentiating operator 

we may write 

or, simply, 
grad f = Vf 

grad = V. 

When the symbol V is used in this way it is sometimes called a sym¬ 

bolic vector; all that is meant by this statement is that the “coordi¬ 

nates’’ l—j —) of V transform, when we pass from the reference 
\dx dy/ 

frame Oxy to any other reference frame, in exactly the same way as do 

the coordinates of a vector. 

The squared magnitude of grad / is itself a scalar field which we shall 

denote by Ai/. In this notation, then, we have the following result: 
Associated with any differentiable scalar field f is a new scalar field 

A./ = (grad/|grad/) = (/,)» + (/,)=. 

When we restrict our attention to points P{t):{x(t), y{t)) lying on 

a curve x = x{t)y y = 2/(0> is given by the formula 

d/ ^ fzdx +fydy = (grad/|dP), 

where dP = v(dXy dy) is the vector element of arc of the curve. That 

dP actually is a vector is cfear; in fact the equations 

X - Xo + hP + hy'] y — yo + mix' + 77121/' 

yield at once 

dx = h dx' + U dy'; dy = mi dx' + m2 dy' 
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which prove that v{dx^ dy) is a vector. If our curve is a level curve of 

the scalar field/, i.e., a curve along which the point function/ = /(P) is 
constant, we have df = 0. This furnishes the following important 

geometrical property of grad /: 
The gradient vector grad / = t;(/*, /y) of a scalar field f is perpendicular 

at each point P: (Xy y) to the level curve of f which passes through P, 

If u is any unit vector the number (grad/lu) is termed the directional 
derivative of / at P in the direction 

' of u. If 0 is the angle between u and 

^ grad / it follows that 

f = constant / directional derivative of f at P 
in the direction of n = |grad/| cos 6. 

In particular, when ^ = 0, we 
have the following useful fact: The 

— magnitude of grad / is the directional 
_^ derivative of / at P in the direction 

^ ^ of grad/, i.e., in the direction of that 

one of the two directions perpendic¬ 
ular to the level curve of / which passes through P for which 

the directional derivative of / is positive (for the unit vector which has 

grad / 
the direction of grad / is |yp Since the magnitude of grad / > 0 

it follows that the direction of grad / (when grad/is not the zero vector) 

is that direction normal to the level curve of / in w'hich the directional 

derivative of / is positive). 
Note, If 5 is the arc length along a curve through P which has 

u as tangent vector at P (the direction of u being that in which s 
increases) the function induced by / = /(P) on the curve may be 

written as a function of s, and the derivative of this function with 

respect to s is/a,2r, + fyy, = (grad/|u). For this reason the directional 

derivative of / in the direction of u is often written in the form —■ 
ds 

The directional derivative of / in a direction normal to a given curve 

through P is, similarly, often written in the form — Thus if n is a 

unit vector normal to the curve 

£=(grad/|n). 
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EXERCISES 

1. Determine grad /, where / = (x* + What are the level curves of this 
scalar field? 

2. Determine the directional derivative of the scalar field of Exercise 1 in the 
direction of the ^c-axis and in the direction of the negative z/-axis. 

3. In what direction is the directional derivative of the scalar field of Exercise 1 
greatest? least? zero? 

4. WTiere does grad (a:* + fail to possess direction? Is there any level 
curve of the scalar field / — (x* + through such a point? 

5. Repeat Exercise 1 for / *= x. Note. Since / is a scalar field, /' is not x* but, 
rather, l\x' -f /a?/'. It is the value^ not the form, of the point-function/ = f(P) that 
is preserved under transformation from one reference frame to another. 

dr 
6. If r =* t;(0 —»■ P) show that --- = cos 6, where 0 is the angle between r and n. 

dn 

The fact that V = vi^f ^ ) is a symbolic vector assures us that if 
\dx dy/ 

V = v{fy g) is a differentiable vector field the expression 

is a scalar. (Prove this. Hint, f' = + migy — — l\-—h — 
ox ax dy 

Hence + limi{g^ + fy) + mrgy. Similarly g'y^ = + 

etc.) We term this scalar the divergence of the vector field v, and we 

denote it by the symbol div v: 

div V = (V|v) = /, + Qy. 

div V is a scalar field. A second such scalar field may be associated 

with the given (differentiable) vector field v = i;(/, g) as follows. 

V* = t;(—gf, /) is a vector field whose divergence is —gx+fv We 

term the negative of div v* the curl of the vector field v, and we 

denote it by the symbol curl v: 

curl V = — div v* = p* — fy. 

We may summarize these results as follows: 

Associated with any differentiable vector field v = t;(/, g) are two scalar 

fields: 
div V = (V|v) = /, + gy) 

curl V = — div v* = “(Vlv*) — gz ~ fy. 

Assuming that the partial derivatives of / and g are continuous, it is 
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easy to express the double integrals of div v and of curl v over a domain 

in the (x, ^)-plane in terms of line integrals around the boundary of the 
domain. We suppose that the boundary of the domain D is a piece- 

wise-smooth closed curve C (or 

that it is composed of several 
such). Applying the method of 
repeated integration we obtain 

where the +C attached to the integral sign indicates that the integra¬ 

tion around C is in the positive sense (i.e., that C is traced so that D lies 

to the left). Denoting by n the unit normal to C drawn away from D 

we have, since the positively drawn tangent to C is - ahead of n, 

v{dXy dy) = dsn*. 

Hence dsn = v(dy, —dx) so that 

Jdiv y dxdy = I (/* + Qy) dx dy 
D Jd 

In words: 
The double integral of div v over D is equal to the integral around the 

boundary C of Z), in the positive sense, of (v|n), where n is the outward 
normal to C, i.e., the normal which is drawn away from D. 

Since curl v - — div v* we have 

X curl V dx dy + gdy) 

since (v*|n) = (v**|n*) = — (v|n*). In words: 
The double integral of curl v over D is equal to the integral around 

the boimdary C of Z>, in the positive sense, of (v|n*) = (v|t), where t 
is the unit tangent vector to C drawn in the positive sense. In other 

words the double integral of curl v over Dis the line integral I (vlds), 
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where ds = <2$ t is the vector element of arc. This important result 

is known as Stokes's theorem in the plane (after G. G. Stokes [1819- 

1903], an Irish mathematician). 

EXERCISES 

7. Show that the area of D if (: 
J+c 

(xdy — ydx) *= i J(r|n) da, 
+c 

Hint, 

Set V ** v{x, y) = r. 
8. Show that, if v is the gradient of a scalar field /, div v =«/« Note. 

We term the scalar field div grad / the Laplacian of / (after P. S. Laplace [174&~ 
1827], a French mathematician), and we denote it by the symbol A^f. Thus 

Aa/ = fxx H- fvu' 

9. Show that I A^f dx dy I (grad/In) ds «= j -^ds. 
JD J+C J+cdn 

10. Show that curl grad / 

X 11. Show that I [g A^f + (grad gjgrad/)) dxdy 

0, it being understood that fxy is continuous 

d/ X g -f-dSy where / and g 
■irC dn 

are any two scalar fields which are such that/possesses continuous second deriva¬ 
tives and g a continuous gradient vector field. Note. A vector field is said to be 
continuous when each coordinate of the variable vector is continuous. Hint. 

Set v g grad/in the relation I div v dxdy — I (vln) 
JD J+C 

ds. 

12. Show that if / and g are any two scalar fields which possess continuous second 
derivatives then 

Note. This important relation is known as Greenes Lemma (after G. Green [1798- 
1841 ], an English mathematician). Memorize it. 

13. Show that if curl v = 0 over a domain D the integral j. ,(vlds). where Cis 

any closed curve which, together with its interior, is covered by /), is zero. 
14. Deduce from the result of Exercise 13 that, if curl v =* 0 over a simply con¬ 

nected domain Z>, v is the gradient of a scalar field over D. Note. A domain D 
is said to be simply connected if the interior of any simple closed curve in the domain 
is covered by the domain (a simple closed curve being one which does not cross 

itself). Hint Set X,HJ.) • /, and show that / is a point-function/ « /(P), 

i.e., that the value of / does not depend on the curve of integration from Po to P. 
Then show that grad / *= v. 

The discussion of space vectors is so similar to that of plane vectors 
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that it will suffice to give, without proofs, the main results. If 
/ = /(P) = f{Xj yy z) is a point-function which maintains its value 
(at each point P) when we change from the reference frame Oxyz to 

any other reference frame O'x'y^z* we term / a scalar field. Thus, if / 

is a scalar held, 

f = r- 

It follows that df — fx Ax + fy Ay + /* Az is a scalar (/ being granted 

to be differentiable at P). Hence v{fxy fy, Jz) is a vector (why?). We 
term this vector the gradient of the scalar field, and we denote it by 

the symbol grad /. The level surfaces of the scalar field / are those 

surfaces on each of which / has a constant value. At any point P 

d/= (grad/IdP) = 0, 

where dP = v(dXy dy, dz) is an arbitrary vector in the tangent plane at 

P to the level surface of / which passes through P. Hence 

grad / at P is perpendicular to the level surface of / which passes 
through P. 

If u is any unit vector (grad /|u) is the directional derivative of / in 

the direction of u. If u is normal to a given surface this directional 

df 
derivative of / is frequently denoted by the symbol —Thus 

^ = (grad/|n). 
dn 

It follows that I grad/I is the directional derivative of/ in that one of 

the two directions at P, normal to the level surface of / through P, in 

which the directional derivative of / is positive (this direction being 
that of grad /). 

The vector differential operator 

enables us to associate with every differentia})le vector field 

V = v{fy g, h) 

a scalar field (known as the divergence of the vector field) 

div V = (v|v) = ^ + A 
dx dy dz 

and a vector field (known as the curl of the vector field) 
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curl V « (V X v) = vQhy - /, - K, - /y). 

(Prove that this actually is a vector.) Upon applying the principle of 

repeated integration to the volume integrals I fxdxdydz, I gydxdydz, 
Jv Jr 

J* hz dx dy dz (it being understood that the integrands /*, g^, h, are 

continuous) we obtain 

J^fx dx dy dz = J^/ d(y, z); 

j^gy dx dy dz = Jg d(z, x); 

^Jiz dx dy dz = d{x^ y), 

where S is the boundary of the volume V of integration and v(d(yj z), 

d(z, x), d(x, y)) is the vector element of area dS of aS, S being so oriented, 

by the choice of the two parameters on it, that dS has the direction 

of the normal to S which is drawn away from V, If a and 0 are the two 

parameters on S, dS is the vector or cross product 

dS = (d„s X d/js), 

where daS = da v{Xa, yaj 2a), d^s = dfi v{xfi, yp, z^). Upon adding 

together the three equations just written we obtain 

J div V dx dy dz ~ J (vjdS) = J (v|n) dS, 
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where n is the unit normal to S drawn away from V, and dS is the scalar 

element of area, i.e., the magnitude of dS. 
If X = x(a, y = y(a, z = 2 (a, /9) is any surface whose bound¬ 

ary is the closed curve C obtained by setting 

a = a(t), jS = 

the line integral | (vlds) = I (f dx + g dy + hdz) (where v 
J+c J+c 

Kfj 9} ^)) niay be written in the form I (A da + B d/S), where T 
J+r 

is the closed curve in the (or, /9)-plane 
that corresponds to C, and 

A = fxcc + gya + hza; 

' B = fx0 + gyfi + hZfi 

(the positive direction on C being 

determined by the positive direction 

on r). Since fa = f^a + fvVa + fzZay 

and so on, an easy calculation (per¬ 

form it) shows that 

(Ba — Af) dad^ = (curl v|dS). 

It follows, then, on applying Stokes's theorem in the plane that 

J (vjds) = J (curl v|dS). 

This important result is known as Stokes’s theorem in space. 

EXERCISES 

15. Show that the divergence of the vector field grad / is the scalar fiedd fxx 
+ /yy + fu. Note. This scalar field is known as the Lapladan of the scalar field / 
and is denoted by the symbol Aof: 

As/ = div grad / =/« +/yy +/«. 

16. Show that the Laplacian of any linear function of x, y, and z is zero and 
that the Laplacian of the quadratic function ax^ + by^ -|- css* + 2fyz + 2gzx 
4- 2hxy is zero if, and only if, a + fe + c * 0. 

17. Show that div curl v = 0 and that curl grad / = 0. 

18. Show that 

19. Show that 

.ifdxdydz = J (grad/|dS) = 

[g ^2/ + (grad p|grad /) j dx dy dz » 



VECTORS AND MATRICES 31 

20. Show that ^ (g A2/ — / A2^) dxdydz “ ^ ~ 

21. Show that if curl v « 0 over a surface S the integral I (v|ds), 
Jc 

where C is 

the closed boundary of is zero. 
22. Show that if curl v = 0 over a domain V then v is the gradient of a scalar 

field over V. Hint. See Exercise 14, p. 27. 

9. Vectors and matrices in n-dimensional complex space 

There are two directions in which it is important to extend the concept 

of plane and space vectors: 

1. We pass from the real to the complex field; in other words we 

permit the coordinates of the vectors involved to be complex numbers. 

2. We pass to spaces of higher dimensions; in other words we permit 

the number of coordinates of a vector to be more than three. 

In each of these extensions our geometrical intuition fails us. In 

the very special case of one-dimensional complex vectors (where each 

vector is simply one complex number z x + yi) we could represent 

the vector by the line segment 0 where P: (x, y). In other words 

we could regard our one-dimensional complex vectors as two-dimen¬ 

sional real vectors. For the (still very special) case of two-dimensional 
complex vectors we would require, for this method of realization of 

the vectors, a four-dimensional space so that we could no longer count 
on geometrical intuition as a guide. The best procedure is to lean on 

the algebra which formalized, in the cases already treated of plane 

and space vectors, our geometrical intuition. Once we decide to do 

this it becomes clear that the extension to the complex field (from the 

real field) is a simplification rather than a complication, for we can use 

the fundamental theorem of algebra which says that 

Every algebraic equation in the complex field has a solution. 
This theorem is, as you well know, not valid in the real field; for 

example there is no real number x for which x^ + 1 = 0. The exten¬ 

sion to the case of n dimensions (where n > 3) is quite formal and does 

not present any essential complications (you have already seen that 

the theory of space vectors was, in most respects, the same as the 

theory of plane vectors). The main point of difference is that the 

number 2 no longer plays the very special role it occupies in the case 

n — 3, where 2 = 1 + 1 is also 3 — 1. For example, we shall meet, 

in the theory of n-dimensional vectors^ a vector or cross product of 

(n — 1) vectors rather than of two vectors. 
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Since we no longer have our geometrical intuition to guide us we 

cannot start, as we did when discussing real plane and space vectors, 

with coordinate reference frames and the table of ^^direction cosines^^ 
which describes the relative orientation of any two of these. We 

start, rather, with the concept of the squared magnitude of a vector. 
In the cases already treated this was the sum of the squares of the 

coordinates of the vector. The essential quality of this concept of 

magnitude is the following: 

The only vector whose viagnihide is zero is the zero vector. 
When we pass from the real to the complex field this quality would 

be lost if we defined the squared magnitude to be the sum of the 

squares of the coordinates of the vector (for there is no essential differ¬ 
ence in the complex field between a sum of two squares and a difference 

of two squares). For example if, in the case of two-dimensional 

complex vectors, we defined the magnitude v of the vector v(Zj w) to be 
this magnitude would be zero for all vectors for which 

w = iz. What we have to do (in order to preserve the feature which 

we regard as essential, namely, that the only vector whose magnitude 

is zero is the zero vector, i.e., the vector all of whose coordinates are 

zero) is to use the ‘^complex square,^’ i.e., the squared modulus, of each 

of the coordinates rather than the ^‘actual square’^ of each of the 

coordinates. Denoting the conjugate of any complex number by a 

superposed bar so that, li z — x + yi^ z ^ x — yi, we define the mag¬ 

nitude of the two-dimensional complex vector v{z, w) by the formula 

— {zz + wwff'\ 

It follows (prove this) that v = 0 when, and only when, v is the zero 
vector v{0j 0). 

We shall denote each of the n coordinates of an n-dimensional com¬ 

plex vector by the letter z, and we shall distinguish these coordinates 

from one another by a superscript. Thus we denote the jih. coordinate 

byis^i = 1, 2, • • • , n. {Warning. Be careful not to confuse z^ 

with the square of z; if we have to wTite the square of z we shall write 

zz. In actual fact we shall need merely the complex square of z 

which we write as zz.) Thus a complex n-dimensional vector v 

= v{z^, • • • , z”) is an ordered set of n complex numbers z^, • • • , z^ 

with which there is associated a non-negative number v, termed the 

magnitude of the vector, \vhich is defined by the formula 

= ZiZi + • • • + 

What corresponds to a change of reference frame? This is merely a 
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homogeneous linear transformation 

(z^)' = Ui^Z^ + * • • + Un^Z^ 

(Z'^)^ = Ui^Z^ + • • ' + Un^Z^ 

(Z^^y = + * * ‘ + Un^Z^ 

which is such that v'^ is a scalar^ i.e., such that 

{z^y{z^y + • • • + (r*)'(^")' = z^z^ + * • * + 

It is essential to introduce a condensed notation. To do this we agree 

to denote summation symbols by Greek letters. A roman superscript 

will denote any one of the numbers 1 to n. Thus the homogeneous 

linear transformation above appears in the compact form 

{z^y = ujz^. 

In reading this be sure that you understand that this is any one of n 

equations of which the fifth, for example, is 

{Z^y = + • • • + WnV'. 

The numbers u/^ are complex numbers; regarded as a single entity 

they constitute an ?i X n matrix U of which the element in the jth row 

and kth column is Uk^. (Note carefully that the superscript tells the 

row and the subscript the column.) If we regard the n complex 

numbers z^' as constituting an n X 1 matrix z (i.e., a matrix of n rows 

and one column) we may write the homogeneous linear transformation 

(which defines a transformation from one reference frame to another) 

in the compact form 

2' = Uz. 

Here the matrix produt;t IJz follows the general rule of matrix multipli¬ 

cation: 
If A is a X 9 matrix (i.e., a matrix of p rows and q columns) and 

B SL q X r matrix then AB is a p X r matrix C, where Cj/ = is 
the ^‘product*’ of the yth row of A by the feth column of B. Note care¬ 

fully that the product AB cannot be formed unless B has the same 

number of rows as A has columns. 

If A is a p X g matrix we denote by A * the q X p matrix obtained 

by transposing A (i.e., interchanging its rows and columns) and replac¬ 

ing each element by its complex conjugate. Thus (a*)/ = dj. In 

particular 2* is a 1 X n matrix (i.e., a matrix of one row and n columns) 
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whose coordinates are (2^, • • • ,2"). The squared magnitude of the 

vector v{z^f • • • , 2:”) is the 1 X 1 matrix (= complex number) z*z. 

In this notation, then, we define an n-dimensional complex vector as 

follows: 
An n-dimensional complex vector v = , z'^) is the collection 

of all n y. 1 complex matrices z which are connected with one another by 

the formula 

z^ = Uz, 

where the n X n complex matrix U is such that (2') *2' = z*z. The 

scalar z*z is the squared magnitude of v. 

EXERCISES 

1. Show that matrix addition is commutative and associative. (What does 
this mean?) Note. Matrix addition is defined only for matrices of the same type, 
i.e., of the same number of rows and columns. If A and B are tw^o p X (j matrices, 
A A- B — C defined by the formula Ck^ = -f- hd. 

2. Show that A{B + C) == AB A- AC. 
3. Show that when both AB and BA are defined A and B are square (i.e., 

possess the same number of rows and columns) and of the same dimension (the 
dimension of a square matrix being the number of its rows or columns). 

4. Show that AB and BA are not in general the saiiu*. 
5. Show that if 4 is an unrestricted variable square matrix of dimension n 

the one and only fix(^d matrix B for which AB = A is the matrix whose diagonal 
elements arc 1, all other elements being zero. Show that when this is the case 
BA — A. Not^. In view of this result we term the n X n matrix whose diagonal 
elements are 1 and whose non-diagonal elements are zero the n-dimensional unit 
matrix. We denote it by /?«. 

6. Show that if AB exists so also does B*A* and {AB)* — B*A*. Note. 
Remember this important result; note that the existence of AB does not in general 
guarantee the existence of A*B*. 

7. Show that matrix multiplication is associative, i.e., that {AB)C — A{BC). 
Note. The common value of these two products is denoted by ABC. 

8. Denoting by c* the n X 1 matrix for which the number in the kih row is 
1, the numbers in all the other rows being zero, show that Aek is the n X 1 matrix 
furnished by the A:th column of A {A being any n X n matrix). 

9. In the notation of Exercise 8 show that is the 1 X n matrix furnished 
by the jth row of A. 

10. Show that is zero unless j = ky which case it is 1. 
11. Show that ej*Aek — a*'. 
12. Show that {B -f C)*A{B + C) = B*AB + B*AC + C*AB + C*AC. 

The scalar nature of the squared magnitude = 2*2 of the vector 

V = p(2^, • • • , 2’^) leads naturally to the concept of the scalar product 

of a vector V2 by a vector Vi. If Vi = v{zdy ‘ V2 = 

v{z2^y* • • , 22”) are any two vectors so also is Vi'+V2 = t^(2i^ + 22S * * • , 
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Zi^ + Z2^) (prove this), and the squared magnitude of Vi + V2 is 

{Zl + Z2)*iZl + Z2) = Zi*Zi + Zi^Z2 + Z2*Zi + Z2*Z2 

= Vi^ + Zi*Z2 + 22*^1 + V2^. 

Hence 251*2:2 + 22*^1 is a scalar (why?). If v = v(z^y • • • , 25**) is any 
vector then cv == ?;(c2:^, * * * , cz^) is a vector, c being any scalar. 

(Prove this.) In particular iv is a vector if v is and (iz) * = —^2:* since 

i == —t. Replacing, then, V2 by tV2 we see that 2(251*2:2 — 22*21) is a 

scalar, and it follows that 251*2:2 — 22*21 is a scalar (why?). Hence 

2i*22 == -^{(21*22 + 22*2i) + (21*2:2 — 22*2i)} is a scalar. We have, 
then, the following result: 

Ifvi = v{zi^j • • • ,2i”),V2 = v{z2^y • • • , 22”) are any two n-dimen- 
sional complex vectors, 21*22 is a scalar. 

We term this scalar the scalar product of V2 by Vi, and we denote it 

by the symbol (vi|v2). (vi|v2) is a 1 X 1 matrix, i.e., a complex num¬ 
ber; hence (vi[v2)* is the conjugate complex number to (vi|v2) (why?). 

But (vi|v2)* = (21*22)* = 22*2i** = 22*2i = (v2|vi). In words: 

An interchange of the two vectors in a scalar product changes the 
scalar product into its conjugate complex. 

Thus scalar multiplication of complex vectors is not, in general, a 

commutative operation; it is commutative when, and only when, the 

scalar product is real. In particular when (vi| V2) is zero so also is (V2I Vi). 

When (vi|v2) = 0 we say that V2 is perpendicular to Vi; if, then, V2 is 

perpendicular to Vi, Vi is perpendicular to V2, and we say, simply, that 

the two vectors Vi and V2 are perpendicular or orthogonal, 

EXERCISES 

13. Show that ((vi + V2)|v3) = (vjIvj) -h (vzlvj). 
14. Show that (cvi|v2) — C(vi|v2); (vilcv,) » c(vi|v2), where c is any scalar. 

Note that when the scalar c is factored out from the first of the two vectors in the 
symbol (vi|v2) it is its conjugate 5 that must be prefixed to the scalar product. 

It is easy to determine the conditions imposed on the n X n matrix U 

by the fact that (vi|v2) is a scalar. Since 2/ = Uzi^ (21')* = Zi*U* 

and so the relation (2/) *22' = 21*22 yields Zi*U*Uz2 = 21*22. On 
setting 2i = c/, 22 = ek we find (see Exercises 10 and 11) that the 

number in the jth row and A5th column of U*U is zero unless j — kin 

which case it is unity. In other words 

U*U is the n X n unit matrix 
It is clear, conversely, that if U*U = En then 21*22 is a scalar. We 

term any n X n matrix which is such that = En a unitary 

matrix. 
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EXERCISES 

15. Show that det 1/ is a complex number of unit modulus. Hint det f/* 

« det r/, and det {U*U) = dot V* det V, 
16. Show that if z is any n X I matrix there is an unambiguously determinate 

n X 1 matrix w such that z = IIw. Hint, det II 9^ 0. 
17. Show that if U*z is the zero n X 1 matrix so also is z. 
18. Show that UU* = En. Hint. From U*U == Kn we obtain U*UU* so 

that U*{UU* — En) is the zero n Xn matrix. Hence each column of VV* — En 
is the zero n X 1 matrix. Hence UU* *= En^ Note. The result of this exercise 
may be phrased as follows: 

If U is unitary so also is U*. 

Let Vi and V2 be any two n-dimensional complex vectors, and let c 

be any real scalar. Then ((vi + cV2)|(vi + evo)), being the scpiared 

magnitude of Vi + evo, ^ 0. Hence 

Vi^ + c{(vi[v2) + (Vsivi)} + cW ^ 0. 

If the quadratic function of c on the left had two real zeros it would be 

negative in any neighborhood of each of these zeros, which is impos¬ 

sible. Hence {(vi|v2) + (volv^p ^ 4vih2“. If V2 is multiplied by 

where $ is the argument of (vj V2), the left-hand side of this 

inequality becomes 4|(vi|v2)|- since (vi V2) becomes |(vi|v2)|, and when 
(Vi|v2) is real it is equal to (V2|vi). On the other hand the right-hand 

side of our inequality is unaffected (why?). Hence |(vi[v2)|“ ^ 

or, equivalently, 

|(Vi|v2)| ^ V1V2. 

This inequality is known as Schwarz’s inequality (after H. A. Schwarz 

[1845-1921], a German mathematician). Expressed in words: 

The modulus of the scalar product of any n-dimensional complex 
vector by any other is not greater than the product of the magnitudes 
of the two vectors. 

When the scalar product of two n-dimensional complex vectors Vi 

and V2 is real [so that (v2|vi) = (vi|v2)] we define the angle $ between 
the two vectors by the formula 

t;iP2 

(it being assumed that neither of the vectors Vi and V2 is the zero 

vector). It follows from Schwarz’s inequality that the angle B defined 

in this way is always real. In the case of real n-dimensional vectors 

this definition of 6 enables us to introduce the concept of direction 
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cosines which played such an important role in the theory of real plane 

and space vectors. 

EXERCISES 

19. Show that if u,* is the vector v(w,‘, • • • , Uj^) then u,- is a unit vector and u,* 
is perpendicular to Uk if j 7^ A* (the being the elements of a unitary matrix). 

20. Show that if any, or all, of the columns of II are multiplied by complex num¬ 
bers of unit modulus the new n X n matrix so obtained is unitary. 

21. Show that by multiplying one of the columns of U })y a complex number of 
unit modulus we can obtain a unitary matrix whose determinant is unity. Hint. 
det 17 is a complex number of unit modulus. Note. A square matrix whose 
determinant is 1 is said to be unimodular. We shall from now on restrict our linear 
homogeneous transformations 2' — Uz to those whose matrices U are unimodular 
unitary matrices (just as in the case of real plane and space vectors where we 
restricted ourselves to reference frames for which the determinant of the table of 
direction cosines was +1). 

22. Show that each element of a unimodular unitary matrix is equal to the 
conjugate of its cofactor. Hint. The various equations -f- + • • • 
-h == 0, y 7^ 1, tell us that = k times the cofactor of On multiply¬ 
ing these equations by • • • , wi% respectively, and adding we find A: = 1. 

/a -b\ 
23. Show that the general unimodular unitary 2X2 matrix is I I, where 

\b a/ 

da -\-bb = 1. What does this reduce to when the matrix is real? Note. On 
setting a — Xi x^i, b = x-i xd the relation da bb 1 appears as (xi)* + 
(X2)^ + (x,y -h (x4)2 = 1, Thus 

Every 2X2 vnirnodxdar unitary matrix is identified by a point on the unit sphere 
in four-di7nensional spare. 

This is the analogue of the fact that every complex number of unit modulus is 
id(;ntified by a point on the unit circle in the plane. 

10. The alternating product of n vectors; the vector or cross 

product of (n — 1) vectors 

LetVj = v(Zj^y * • • = 1, • • • , n, be any set of n w-dimensional 

complex vectors. The determinant of the n X n matrix Z, whose 

jth column consists of the coordinates of v,-, is a scalar which we shall 

denote by the symbol (vi, • • • , Vn) and term the alternating product 

of the n vectors (in the indicated order). The reason for the adjective 
alternating is clear: An interchange of ani/two of the vectors Vi, * • • , 

Vn changes the sign of det Z. The proof of the fact that det Z is a 

scalar is simple. Indeed since v,- is a vector we have 

2^', = Uz,, 

where z, is the n X 1 matrix whose elements are the coordinates of v,-; 

in other words z, is the jth column of Z. The n equations obtained by 

letting j run over the range 1 to n may be compactly written as 
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Z' = UZ. 

Hence det Z' = det U det Z, and since det = 1 it follows that 

det Z' = det Z. 

In other words det Z is a scalar. 

If (vi, • • • , V*) are any k n-dimensional complex vectors and 

cS • • ■ , are any k complex scalars the vector 

V = C^Vi + • * • -f 

is said to be a linear combination of the vectors Vi, • * * , v^. If not 

all the scalars (c^ • • • , c^) are zero the linear combination is said to 

be nontrivial; if all the scalars are zero the linear combination is trivial. 

If there is no non-trivial linear combination of the k vectors Vi, • • • , 

v* which is the zero vector, the set {vi, • • • , v^kl is said to be linearly 

independent; otherwise it is linearly dependent. 

EXERCISES 

1. Show that (vi, ♦ • • , v„) « 0 if any two of the n vectors are the same. 
2. Show that (vi, * * • , v„) is a linear function of each of the n v(‘ctors, i.e., 

that (vi, * • • , rvy, •••,▼„)=* r(vi, • * • , v„ • • • , v„), c being any scalar, and 
that (vi, • • • , Vy + Wy, • • • , Vn) = (Vi, • • * , Vy, * * * , V„) -f (Vj, • • • , Wy, 

• • • , Vn). 
3. Show that (vi, • • • , Vn) = 0 if any one of the vectors Vi, • • • , Vn is a 

linear combination of the remaining vectors. 
4. Show that (vi, • • • , v„) = 0 if the set {vi, • • • , Vn| is linearly dependent. 

Hint. This is merely another way of phrasing Exercise 3. 
5. Show that the set of n vectors |ui, • • • , Un}, where the coordinates of Uy 

are furnished by the jth column of a unitary matrix, is linearly independent. 
Hint, (ui, • • • , Un) = det U 9^ Q. 

6. Show that if jvi, • • • , Vn+i} is a set of n + 1 n-dimensioiial vectors then 
(Vs, • • • , Vn+l)Vi - (Vi, V3, • • • , Vn+i)V2 + (V,, V2, V4, * * * , V„+,)V3 - • • • 
+ ( —l)"(vi, • * • , v„)v„4.i ~ 0, Hint. See Section 4. 

7. Show that no set of more than n n-dimensional complex vectors is linearly 
independent. Note. The results of Exercises 5 and 6 constitute the reason for 
terming the vectors '^?i-dimensional.^^ 

8. Show that if (vi, • • • , Vn) * 0 the set |vi, • • • , Vn} is linearly dependent. 
Hint. If Z is the n X n matrix whose jth column is furnished by the coordinates 
of Vy, det Z — (vi, • • • , v„) * 0. Hence there exist a set of n numbers 
• • • not all zero, such that =* 0. The numbers (c^, • * • , c'^) are scalars 
since the equations c**Za^ == 0 imply that c®(2a»’)' = 0. (Prove this. Hint, (zk^)' 
** ufif^Zk^.) Hence the scalars (c‘, * * • , r") are such that c“Va = 0. Note. On 
combining the results of Exercises 4 and 8 we obtain the following criterion for 
linear dependence of a set of n vectors: 

The set {vi, • • • Vn) of n vectors in n-dimensional complex space is linearly 
dependent if, and only if, (vi, • • • , v„) « 0. 
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9. Show that any set of n linearly independent vectors is a haaia (what does this 
mean?) for n-dimensional complex vectors. 

10. If {vi, * • • , Vi} is a basis for four-dimensional complex vectors, determine 
the coordinates (what are these?) of an arbitrary vector v with respect to this basis. 

11, If {ui, • • • , Un) is a basis for ?i-dimensional complex vectors which is such 
that the matrix Z, whose jih. column is furnished by the coordinates of u,-, is unitary 
and unimodular, show that the coordinates of any vector v with respect to the 
basis are *= (u,|v),y *= 1, • • • , n. Hint. Exercise 22, p. 37. 

Let, now, {vi, • • * , Vn_i} be any set of (n — 1) n-dimensional 

complex vectors. If v = v{z^y • * * , «") is an arbitrary vector 

(vi, • • • , Vn--i, v) is a scalar, and on expanding this n-rowed deter¬ 

minant in terms of the last column we obtain a homogeneous linear 

function of the coordinates of v which is a scalar. The conjugates of 

the coefficients of this linear function are, then, the coordinates of a 

vector. The proof of this important converse of the scalar product 

theorem runs as follows: On denoting the coefficients of the homo¬ 

geneous linear function by (ai, • * * , an) we are given that 

a„2" = {aaViz^y = {aaYufz^, 

and since v = v{z^, ‘ is arbitrary this yields (how?) 

aic = (^a) k ^ Xf * ' * j n. 

On multiplying these equations by Uk^ and summing on k we obtain 

(a/) = a^^\ 

On taking the conjugates of these equations and denoting a, by y^' we 

obtain 

(2/0' = 

so that v{y^j • • • , 2/^*) is a vector. 

We denote the vector which is obtained in this way from the (n — 1) 

vectors Vi, • • • , Vn_i by the symbol (vi X V2 X • * • X Vn_i), and 
we term it the vector or cross product of the (n — 1) vectors. Its 

coordinates are the conjugates of the cofactors of 2^, • • • , z*^ in the 

matrix Z whose columns are furnished by the coordinates of the 

vectors Vi, V2, • • • , v^-i, v. It follows at once that 

(vi X V2 X • • * X Vn-i) is the zero vector when the set of (n — 1) 
vectors {vj, * • • , v„_i} is linearly dependent. 

In fact wffien {vi, * • • , Vn-i} is linearly dependent so also is 

{vi, • • • , Vn_i, v}, where v is an arbitrary vector (why?). Hence 

(vi, • • • , Vn_i, v) = ((vi X V2 X • • • X Vn-i)|v) = 0, where vis an 

arbitrary vector. Hence (vi X V2 X • • • X Vn-i) = 0 (why?). 
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On the other hand if (vi X V2 X • * * X Vn-i) is the zero vector 
the set {vi, • * • , v«_i) is linearly dependent. For (vi, • • • , v„_i, v) 
== 0, where v is arbitrary; hence there exists a non-trivial linear com¬ 
bination of Vi, • • • , Vn~i, V which is the zero vector. If {vi, • • • , 
Vn_i} were a linearly independent set the coefficient of v in this non¬ 
trivial linear combination could not be zero (why?) so that an arbitrary 
vector V would be a linear combination of the n — 1 vectors Vi, • • • , 

Vn~i. But this would be absurd since there would then be no linearly 
independent set of n vectors (why?). We have, then, the following 
criterion for the linear dependence of sets of (yi — 1) vectors. 

The set {vi, • • • , Vn-i} of n ~ 1 n-dimensional complex vectors 
is linearly dependent when, and only when, (vi X V2 X * * * X v„..i) 
is the zero vector. 

Note. The case n = 2 is somewhat special. Here (vi X * * * 
X v«_i) is replaced by — ZiO which we may term the complement 

of Vi. On the other hand the complement of V2 is ^^(22^ —220- fii 
fact to get the complement of Vi we take the conjugates of the cofactors 

/zii 
of and in the matrix I 1 while to get the complement of V2 

zy 

we take the conjugates of the cofactors of and in the matrix 

A' 
( 1’ In this terminology (vi X * • • X v„«i) is the complement 
\z^ Z'^J 
of the (ordered) set oin ^ 1 vectors {vi, • • • , Vn-i) which we suppose 
to be linearly independent. 

Let, now, {vi, • • • , Vn} be any linearly independent set of n 
n-dimensional complex vectors. There is associated with this set a 

second linearly independent set {wi, • * • , Wn} which is reciprocal to 
the first set in the following sense: 

(w/(v/) = 1, j = 1, • • • , n; 

(w,|vt) =0, j k. 

Vi 
This set is constructed as follows: If n = 1, Wi = — Note that 

Vi^ 
1 , Wi 

Wi — — so that Vi -- 
Vi Wi^ 

If n = 2, (Vi, V2)wi^j^^ -22^), (Vi, V2)W2 = v(-Zi^, zii). It 

follows that (Wi, W2) (vi, V2) = 1 and the relation between the two 
pairs of vectors {vi, Vo} and {wi, W2I is a reciprocal one. 

If n > 2, let ji, * * * , jn be an even permutation of the numbers 

1, 2, • • • , n, and set (vi, • • • , Vn)w/j = (v,-, X • • • X V/J. It is 
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clear that (wy|v,) = 1 and that (Wj|va:) = 0, j 9^ k. (Remember that 
when a scalar is factored out from the first vector in a scalar product 
the conjugate of the scalar must be prefixed to the scalar product.) 
The last n — 1 of these relations tell us that Vy^ = ^(wy^ X * * * 

X w,-), and the first tells us that k = .-3.— Thus 
(W., ' • • , Wj 

(Wi, • • • , W„)Vy, = (Wy, X * * * X WyJ. 

That (wi, * • • , w„) is the reciprocal of (vi, * • * , v^) is a consequence 
of the relations (wy|vy) = 1, (wylv*) = 0. In fact if Z and Y are the 

matrices whose columns are furnished by the vectors v and w, respec¬ 
tively, these relations say that F*Z is the unit n X n matrix. Hence 

det F* det Z = I and det Z = (vi, * * * , v„),det F* = (Wi, * • • , w„). 

EXERCISES 

12. Show that the coordinates* of an arbitrary vec^tor v with respect to the basis 
Ivi, • • • , v„} are = (wy!v),y = 1, • • • , w. 

13, Show that if the coordinates of u, are the elements of the yth column of a 
unimodular unitary n X n matrix the set {ui, • ♦ • , u,,} is self-reciprocal. 

REVIEW EXERCISES 

1. Show that if V = v(/) is a vector whose coordinates 0^, • • • , 2:” are differenti- 
al)le functions of a scalar parameter t then vfed, * * * , is a vector {zf denoting 
the derivative of with respect to t). Note. We term this vector the derivative of 
V with respect to t, and we denote it by the symbol Vt. 

2. Show that if V] = V2 = V2(t) are two differentiable vectors (vi|v2)< 
= ((v,),|vj) 4- (Vi|(vj),). 

3. Show that if v = v(t) is a differentiable vector and c = c(t) a differentiable 
scalar then (rv)^ — ctv + cVf 

4. Show that if v is a real vector of constant magnitude (?»^ 0) then v< is per¬ 
pendicular to V, or else v* = 0. 

5. If V = v(f, g, h) is a three-dimensional vector field, possessing second deriva¬ 
tives, show that Ajv = Aa^, Aa/i) is a vector field, where Ajj/^ = fxx + fw + /«, 
etc. 

6. Using the notation of Exercise 5 show that curl curl v = grad div v — AaV. 
Note, curl curl v is the vector triple product (V X (V X ▼)). The result of this 
exercise may be written as follows: (V X (V X v)) = V (v|v) — (v|v)v. 

7. Show that if U ~ U{t) is a real unitary matrix which is a differentiable 
function of a real scalar parameter i and if u,(0 is the vector whose coordinates are 
furnished by the yth column of U then (uy|(uy)t) =* 0, (uy|(ujfe)<) + (u*|(uy)«) = 0. 
Hint. (uy|u,) «= 1; (uy|u*) = 0. 

8. Prove the following converse of the vector product theorem: If (a, 6, c) is a set of 
three numbers attached to any reference frame Oxyz which has the property that 
w « v{hz epf cx — a«, ay — hx) is a vector, where r — v{x, y, z) is an arbitrary 
vector, then t>(a, 6, c) is a vector. Hint. If v is an arbitrary vector (v| w) is a scalar; 
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(v|w) « o/ -h + ch, where (r X v) « v(f, g, h). Since r and v are arbitrary 

vectors so also is (r X v) (why?). Hence via, h, c) is a vector. 

9, Let Ui « Ui(0, ii2 = U2(0, ^3 ~ “3(0 a variable three-dimensional real 
unitary basis, and let v be a vector whose coordinates with respect to this variable 

basis are constant. Calculate the coordinates of Vt with respect to the variable 
basis. Hint. Let v =/ui-f ^U2-f-Aua; then Vt - fiux)t-h §(^2)1 + 
(v<|ux) « 6A - eg, (v<|u2) = cf - ah, (v<|u3) ^ ag - bf, where a ^ ((U2)r|u8) 
« ~(u2i(u8)0, b = ((U3)t|ui) = -(ualCui)*; c = (Cui)*|u2) = -~(ui|(u2)d (see 
Exercise 7). Since v(f, g, h) is an arbitrary vector it follows that via, b, c) is a 
vector. This vector is termed the angular velocity of the variable reference frame 
{ui, U2, Us). Denoting it by o we have v* « (w X v). 

10. If the coordinates of v with respect to the reference frame (ui, U2, Usj of 
Exercise 9 are not constant calculate the coordinates of Vt with respect to the 
reference frame {ui, U2, Ua). Answer, ft -1- bh — eg, etc. 

Note. The vector vift, gt, ht) is called the derivative of v with respect to the 
variable reference frame (ui, U2, Us). Referring to V( as the absolute derivative of v 
and to vift, gt, ht) as the relative derivative of v we have the following important 
relation: 

The absolute derivative of v — The relative derivative of v plus (to X v). 
11. Calculate v« (see Exercise 10). 

dv 
Solution. On denoting the relative derivative of v by — we have 

Vt 

dV 
- + (» X V); 
at 

V« 
d^V (dm \ ( dy\ 

d*V (dm \ ( dv\ 

d*V (dm \ / dv\ , 

+ U ^ 7 V“ ^ M ^ 
Note. When v « r(0 —► P) is the position vector of a point P and t is the time 

d^V 
variable, Vu is the (absolute) acceleration of P, and — is the relative acceleration 

dP 
of P, i.e., the acceleration of P relative to the moving reference frame {ui, U2, Us}. 

The contribution 

acceleration. 
12. Show that when Ui = vicos B, sin B, 0), U2 = v(— sin B, cos B, 0), U3 « 

t>(0, 0, 1) the angular velocity (sec Exercise 9) is w = fitUj. Deduce that the 
dV 

absolute derivative of a vector v is-h 0<(U3 X v). 
dt 

13. Show that when ui = t;(sin B cos 0, sin B sin cos B), U2 « v(cos B cos 4>, 
cos 6 sin 4>t —sin B), Uj =» »(— sin <t>, cos <f>,0),m =» cos B <t>tVki — sin B <^tU2 + BtUz 
« 4>tvi0, 0, 1) 4” BtUz. Note. This result may be expressed as follows: 

The angular velocity of a moving polar coordinate reference frame is the sum of 
4>t times a unit vector along the z^xis and Bi times a unit vector along the third polar 
coordinate axis. 

to the absolute acceleration is known as the Coriolis 
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LINEAR VECTOR FUNCTIONS 

1. Quadratic and bilinear forms; linear vector functions 

We shall introduce the concepts of quadratic and bilinear forms (a 
form being a scalar function of one of more vectors) by considering real 
three-dimensional vectors. The extension to n-dimensional complex 
vectors is simple and will cause no diflSculty. 

If V = v{x, y, z) is any real three-dimensional vector its squared 
magnitude 

is a scalar quadratic function of the coordinates of v. We say that 
it is a quadratic form, in v. If Vi = v{xiy 2/1, 21) and V2 = v(x2, 2/2, 2^2) 
are any two real three-dimensional space vectors the scalar product 

(Vi|v2) = X1X2 + 2/i2/2 + ZlZ2 

is a bilinear form in the two vectors Vi and V2; by this we mean that it 
is a scalar which possesvses the following properties: (a) If c is any 
scalar then (cvilva) = c(vilvs) = (Vi|cv2). (b) ((vi + Wi)|v2) = (Vi|v2) 
+ (Wi|v2); (Vi|(V2 + W2)) = (Vi|v2) + (Vi|w2). 

These two properties imply (prove this) that if ci, di, C2, ^2 are any 
four scalars then 

((ClVi + dlWi)|(C2V2 + d2W2)) = CiC2(Vi|v2) + Cirf2(Vi|w2) 
+ diC2(wi|v2) + di«i2(w,|w2). 

If we denote by x the 3X1 matrix whose elements are the coordinates 
of V, the squared magnitude of v appears in the form 

— x*x = Xa*X*^ 

(where x^ = Xy x"^ - y, x^ - z) xi* = x, Xz* - y, Xz* - z). Similarly 
if we denote by y the 3X1 matrix whose elements are the coordinates 
of w the scalar product (w|v) appears in the form 

43 
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(w|v) = y*x = 

This bilinear form is a member of the class of bilinear forms of the type 

y*Ax — ya*o0^x^y 

where A is a 3 X 3 matrix of which is the element in the jth row 

and A:th column; in fact when A is the unit three-dimensional matrix 

y'^Ax reduces to y*x. We now raise the question: What conditions 

are imposed on the matrix A by the requirement that y*Ax be a 

scalar? 

To answer this question we observe that since w = y^, y^) is an 

arbitrary vector the elements of the 3X1 matrix Ax are the coordi¬ 

nates of a vector (by the converse of the scalar product theorem). 

Thus the matrix A must be such that the elements ol Ax are the 

coordinates of a vector, where v = vix^, x^) is an arbitrary vector. 

Conversely, if this is so, y'^Ax is a scalar. For this reason we say that 

the elements of A are the coordinateSy in the reference frame Oxyz 

being used, of an operator (or machine) which feeds on vectors and 

produces vectors. We denote this operator by the symbol A, and we 

denote by Av the vector whose coordinates in the Oxyz reference 

frame are the elements of the matrix Ax. It is at once evident (prove 

this) that 
A(cv) = cAv, 

where c is any scalar; 

A(vi + V2) = Avi + Av2, 

where Vi and V2 are any two vectors. 

We express these facts by the statement that A is a linear vector 
function. Remember always that a linear vector function feeds on 

vectors to produce vectors; in other Avords the independent variable is a 

vector, and the dependent variable is a vector. We indicate by the 

symbol A: A that the coordinates of A, in the reference frame Oxyz 
being used, are the elements of the 3X3 matrix A. 

EXERCISES 

1. If ki A and BiB are linear vector functions show that the elements of 
A ^ B are the coordinates of a linear vector function (which we denote by A -f- B 
and term the sum of A and B). 

2. Show that the addition of two linear vector functions is commutative, i.e., 
that B -f" A = A -f" B. 

3. Show that If A: A is a linear vector function the elements of cA, where c is 
any scalar, are the coordinates of a linear vector function (which we denote by cA 
and term the product of A by r). 

4. Show that e{k + B) = rA -f rB, 
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5. Show that if A: A and B: B are linear vector functions then the elements 
oi AB are the coordinates of a linear vector function (which we denote by AB and 
term the product of B by A). 

6. Show that multiplication of linear vector functions is not, in general, com¬ 
mutative, i.e., that the product of A by B is not, in general, the same as the product 
of B by A. 

It is easy to find the coordinates of a linear vector function A in any 
new reference frame O'x'y'z'. Since y*Ax is a scalar we have 

y'^^A'x^ — y*Ax, 

Here the coordinates (x^', (x^y of v in the O'x^y'z^ reference frame 

are connected with the coordinates x^j x^y of v in the Oxyz reference 

frame by means of the table of direction cosines which describes the 

relative orientation of the two reference frames. This table of direc¬ 

tion cosines is a real unimodular unitary 3X3 matrix which we shall 

denote by R and which we term a rotation matrix (since, when the two 

reference frames have a common origin, either of them may be trans¬ 

formed into the other by a rigid rotation). We have, then, 

x = Rx\ y = Ry'y y* — y'*R’^ 

so that 
2/'*AV = y'*R*ARx\ 

It follows at once that 
A' = R*AR. 

(To see this set w = u/, v = Ua:; i.e., w is the vector whose jih. coordi¬ 
nate in the O'x^y'z' reference frame is unity, all the other coordinates 

being zero, and v is the vector whose A:th coordinate in the O'x'y'z^ 

reference frame is unity, all the other coordinates being zero.) We 
have, then, the following fundamental result: 

Under a change of reference frame the coordinates of a linear vector 

function A undergo the transformation 

A' = R^AR, 

Here 7^ is a rotation matrix: 

R^R RR* = Ez; det7? = l, 

and the change of reference frame is such that the coordinates of a 

vector imdergo the transformation 

X = Rx\ 

Note. Since R is real R* is obtained from R by transposing it, i.e., by 

interchanging its rows and columns. 



46 LINEAR VECTOR FUNCTIONS 

EXERCISES 

7. Show that when the roles of the reference frames Oxyz and 0*x*y*z* are inter¬ 
changed R is replaced by 72*, i.e., that x — R*x'j A = RA'R*, 

8. Show that the coordinates of the identity linear vector function Eg, i.e., the 
linear vector function for which Egv — v, every v, are scalars and are furnished by 
the elements of the three-dimensional unit matrix. Hint. If Ax x for every 
X then A El and R*EzR — R*R — Ez. 

9. Show that the zero linear vector function O, i.e., the linear vector function 
for which Ov — 0, every v, are scalars and are furnished by the elements of the 
three-dimensional zero matrix. 

10. Show that the only linear vector functions whose coordinates are scalars 
are scalar multiples of the identity linear vector function. Hint. The relation 
R*AR = A is equivalent (why?) to AR — RA. Hence aiVi + a2^wi -f ag^i 
*» hai^ “h hdi^ + hcLi^, etc. Since mi and ni are independent of h and h we have 
ai* ~ 0, oi® =“ 0. Similarly a/* — 0, j 5**^ k. Equating the elements in the first 
row and second column of AR and of RA we find ai^ = flg®. Similarly oi^ = Og®. 
Note. A scalar multiple cEg of the identity linear vector function is known as a 
scalar linear vector function; when an arbitrary vector v is fed into a scalar linear 
vector function cEg it is returned multiplied by the scalar c. 

11. Show that the elements of the 3X3 matrix A — xy* are the coordinates of a 
linear vector function. Hint. If Vg = v(2', z^, 2®) is an arbitrary v(*ctor the 
elements of the 3X1 matrix Az ** xy*z = (V2|v3)a: are the coordinates of the 
vector (v2|va)vi. Note. The linear vector function A: xy^ is termed the direct 
product of the vector V2 = 2/^, y^) by the vector Vi = x^). 

2. Symmetric and alternating linear vector functions 

If A is any linear vector function the bilinear form (v2|Avi) is a scalar, 

Vi and V2 being arbitrary vectors. On interchanging the vectors Vi 

and V2 we obtain a second scalar (vi|Av2) which may, or may not, be 

the same as the first. If the linear vector function A is such that the 

bilinear form (v2|Avi) is insensitive to an interchange of the vectors 

Vi and V2 we say that it is symmetric or Hermitian (after C. Hermite 

[1822-1901], a French mathematician). Thus 

The (real) linear vector function A is symmetric, or Hermitian, if 

(v2|Avi) = (vi|Av2), Vi and V2 being any two real vectors. 

It is easy to find the conditions imposed on the matrix A by the fact 

that A: A is symmetric. We must have 

y*Ax = x*Ay, 

where x and y are any two (real) 3X1 matrices. Since y*Ax is a 

1X1 (real) matrix (i.e., a real number) it is equal to its ‘‘star’'; 

y*Ax = {y^Ax)"^ = x*A*y. 
Hence 

x*A’*^y = 
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where x and y are any two real 3X1 matrices. On setting x = C;, 

y == Ck we obtain 
aV = Qk^; j, A* = 1, 2, 3; 

i.e., 
A* = A. 

In words: 
The matrix whose elements are the coordinates of a symmetric real 

linear vector function is insensitive to an interchange of its rows and 

columns: 
aj^ = Ok^; j, k = 1, 2, 3. 

EXERCISES 

1. 8how that if A and B arc any two symmetric linear vector functions so also 

is A -h B. 
2. Show that the elements of the 3X3 matrix xy* + x*7j are the coordinates of 

a symmetric! linear vector function (the elements of the 3X1 matrices x and y 
being coordinates of vectors). 

If the linear vector function A, instead of being symmetric, is such 

that (v2|Avi) changes sign when the two vectors Vi and V2 are inter¬ 
changed we say that A is alternating or skew symm,etric. Thus 

The (real) linear vector function A is alternating, or skew symmetric, 

if (v2|Avi) = “(vi|Av2), Vi and Vo being any two (real) vectors. 

The same argument as that for symmetric linear vector functions 

(repeat it) shows that 
The elements of the 3X3 matrix A are the coordinates of an alternat¬ 

ing, or skew-symmetric, linear vector function if, and only if, 

A* = -A. 

It follows that the diagonal elements of A are zero (why?): 

0/ = 0, j = 1, 2, 3 

while 

ad = j ^ k. 

EXERCISES 

3. Show that the elements of the 3X3 matrix xy* — x*y are the coordinates of 
an alternating linear vector function (the elements of the 3X1 matrices x and y 
being coordinates of vectors). 

4. Show that if A: A is an alternating linear vector function then the elements 
of the 3X1 matrix {a%^, aa', ad) are the coordinates of a vector. HinL The 
coordinates of Av, where v *= v{x, y, z), are — ady, adx — at^y — adx), 
and since Av is a vector, v being an arbitrary vector, it follows by the converse of 
the vector product theorem (see Review Exercise 8, p. 41) that (aa®, ad, ad) are 
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the coordinates of a vector. Note. Remember this result; we shall denote by 
a the vector l^(a2^ osS ui*), and we shall say that a is the vector associated with the 
alternating linear vector function. 

5. Show that \i kixy* ~ yx*^ where v = v{x^j x^, a;®), w ** w(y^j y^, y^) are arbi¬ 
trary vectors, then the vector a associated with A is (v X w). 

6. Show that if a is the vector associated with the alternating linear vector 
function A then Av = (a X v). 

3. The gradient of a vector field; the divergence of a linear 

vector function field 

On combining the following facts: (1) If v = v{x^^ x®), w = 

y^) any two vectors then the direct product a*?/* of w by v (see 
Exercise 11, p. 46) is a linear vector function; and (2) the differentiat- 

f d d d\ . 
mg operator V = v\ —^ —> — I is a symbolic vector (see p. 28) we 

\dx dy ox/ 

obtain the important result that if v = i>(/, h) is a differentiable 

vector field then the elements of the 3X3 matrix 

■ d' 

dx 
(/, 9, h) /* Ox hx 

d 

dy 
= fii 0« 

d 

dz_ J‘ Ox I'x. 

are the coordinates of a linear vector function which we term the 

gradient of the vector field v = v{f, g, h) and denote by the symbol 
grad V. Thus 

grad V: V/*, 

where is the 1X3 matrix whose elements are the coordinates of v. 

The adjoint of grad v is the linear vector function 

(grad v)*:/V*, 

where V* is the 1X3 matrix 

have 

If dP = v{dx, dy, dz) we 

(grad v)* dP = dv = v{df, dg, dh). 

This relation serves, since dP is an arbitrary vector, to verify that 

(grad v) * :/V* and hence grad v: V/* are linear vector functions (why?). 

On subtracting from (grad v)* its adjoint grad v we obtain the alter- 
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nating linear vector function whose coordinates are the elements of the 

matrix 

0 fy ffx fz fix 

9x fv 0 hy • 

_}ix fz fh/ 9z 9 _ 

The vector associated with this alternating linear vector function is 

curl V. (Verify this.) Note that div v is the sum of the diagonal 
elements, or trace^ of the matrix whose elements are the coordinates 

of the linear vector function grad v and that the determinant of this 

matrix is the Jacobian determinant of /, and h with respect to x, y, 

and 0. We shall see shortly that if A: A is any linear vector function 

then the trace of A and its determinant (and also the sum of its two- 

rowed diagonal minors) are scalars. 
Let, now, A: A be a differentiable linear vector function field. We 

mean by this that each element of the 3X3 matrix A is a differentiable 

func.tion of (.r, i/, z)\ thus to each point P: (x, y, z) of a three-dimen¬ 

sional domain there is attached a linear vector function A and 

each of the coordinates of A is a differentiable point-function. 

Since A* is a linear vector function, A*v is a vector, v being an arbitrary 

vector. Hence, on replacing v by V, we see that 

/dad dad da2^ dad^ da^d dafi dad , da3®\ 

^\dx^dy^dz' dx dy dz ^ dx dy dz ) 

is a vector. LTsing the compact “Greek label for summation notation 

we may express this result as follows: 

// A: A is any differentiable linear vector function field the elements of 

^aai° aaz“ da^ 
Kdx^’ dx^’ dx“ 

the 3 X 1 matrix are the coordinates of a vector. We 

term this vector the divergence of the linear vector function field, and 

we denote it by the symbol div A. 
Note. The following rule of procedure may help you remember how 

to calculate the divergence of a linear vector function field: Imagine 

that the elements of each column of A are the coordinates of a vector, 

and calculate the divergence of each of the three “column vectors.^’ 

The three numbers so obtained are the coordinates of div A. 
Warning. Never forget, when using this rule of procedure, the 

fiction involved. The elements of a column of A are not the coordi¬ 

nates of a vector (why?). Thus you should not be surprised by the 



50 LINEAR VECTOR FUNCTIONS 

fact that the divergences^ of any of the column vectorsof A is 

not a scalar. 

EXERCISES 

1. Show that div grad v = Asv. 
2. Show that if c is any differeiitiablo scalar field grad (cv) — c grad v + the 

direct product of v by grad c. 
3. Show that div ck ~ c div A + A* grad c, 

4. Linear vector functions for w-dimensional complex vectors 

It will suffice to run over the main points since the extension from 

three-dimensional real vectors to n-dimensional complex vet^tors pre¬ 

sents no essential difficulty. If A is an n X n matrix, whose elements 

are complex numbers, which is such that the bilinear form 

is a scalar, wffiere z and w are arbitrary n X 1 complex matrices wffiose 

elements are the coordinates of tw’o arbitrary vectors Vi and V2, we 

say that the elements of A are the coordinates, in the reference frarm^ 

being used, of a linear vector function A. The reason for the name is 

that the elements of the n X 1 matrix Az are the coordinates of a 

vector (prove this) which we denotes by Avi; the scalar bilinear form 

w*Az is, then, the scalar product (v2|Avi). We shall use the notation 

A: A to indicate that A is the linear vector function whose coordinates, 

in the reference frame in use, are furnished by the elements of the 
7i X n matrix A. Then addition, multiplication by a scalar, and 

multiplication of linear vector functions are defined by the formulas 

A + B: A + R; cA: cA; AB: AB, 

(Prove that these formulas are legitimate^ i.e., that they actually define 

linear vector functions. Hint Remember that the essential or 

intrinsic quality of a linear vector function is the scalar natui-e of the 

bilinear form w'^Az = (v2|Avi) for arbitrary vectors Vi and V2.) Under 

the change of reference frame z = Uz\ wdu^ro U is an n X n uni- 
modular unitary matrix, the n X n matrix A transforms according to 

the formula 

A' == U*AU, 

(Prove this.) 

Associated with any linear vector function A is another linear vector 

function B which is defined by the formula 

(valBvi) = (vijAvs). 
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In other words an interchange of the two vectors Vi and V2 in the 

bilinear form (vi|Av2), when accompanied by a replacement of A by 

B, changes the value of the bilinear form into its conjugate. 

The matrix B whose elements furnish the coordinates of B is readily 

determined. We have _ 

w^Bz = z*Aw; 

now z*Aw is a 1 X 1 matrix and so its conjugate is its star, i.e., 

Hence 

z*Aw — (z*Aw)* = 

w*Bz = w*A*z, 

and since this relation must hold for arbitrary n X I matrices z and w 

we must have (prove this) 

B = A\ 

We denote, accordingly, the linear vector function B by the symbol 

A*, and we say that A* is the adjoint of A. (Verify that A*: A* is 

a linear vector function.) 

EXERCISES 

1. Show that (A + B)* = A* -f B*: (cA)* = cA* (note carefully the c rather 
than c); (AB)* = B’^A*. 

2. Show that the relation between A and A’*' is a partnership^ i.e., that (A"') * = A. 
3. Show that (v|A*v) is the eonjugate of (v|Av). Hint. (vi|A*V2) is the conju¬ 

gate of (V2I Avi) for any pair of vectors Vi and V2; set V2 = vi = v, 
4. Show that (A*V2|vi) — (v2|Avi). Note. This important result may be 

phrased as follows: 
The linear vector function (or operator) may be transferred from one of the 

vectors vi, V2 to the other in the symbol (v2|Avi) if it is replaced by its adjoint. 

A linear vector function A is said to be self-adjoint or Hermitian 

(after C. Hermite [1822-1901], a French mathematician) if (viIAv^) 

shares with the scalar product (vi|v2) the property that an interchange 

of the two vectors Vi and V2 changes it into its conjugate. It follows 

that 
If V is any vector and A is Hermitian, (v|Av) is real. 

In fact (v|Av) is equal to its conjugate, and a complex number which 

is equal to its conjugate is real. 

It is easy to tell when a linear vector function is Hermitian. We are 

given that (v2|Avi) = (vi1Av2), and we know that (vi|Av2) = (A*Vi|v2) 

= (v21a*Vi). Hence (V2IAV1) - {v2\A'^i)y and since V2 is arbitrary 

this implies that Avi = A*Vi (why?). Since Vi is arbitrary this implies 

that A = A* (why?). Thus 
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A linear vector function A is Hermitian when, and only when, 

A = A*. 
In particular 

A linear vector function for which A is real is Hermitian when, and 

only when, A is symmetric, i,e., aji = ct?*; i, A* = 1, • • * , n. (Note 
that this symmetry relation is independent of the reference frame; in 

other words au^ = a,-* implies a*ic^ = a',-*; y, A* = 1, • • • , n. This is 

evident since the definition of the Hermitian character of a linear 

vector was intrinsic; i.e., it made no mention of the reference frame in 

use. It may be readily verified since the relation A' = JJ yields 

A'* = (7*A*U. Hence, if A = A*, A' = A'*) 

A linear vector function A is said to be unitary if Av has the same 

magnitude as v for every v. Since the coordinates of Av are furnished 

by the n X 1 matrix Az the definition of a unitary linear vector func¬ 
tion is contained in the formula 

z*A*Az = 2*2; 2 an arbitrary n X 1 matrix. 

On replacing z, in turn, hy z + w and z + iw it follows that this implies 
the (apparently stronger) relation 

w*A*Az = w*Z] z and w arbitrary n X 1 matrices. 

(Prove this.) On setting w = Cj, z = Ck we see that A*A is the unit 
n-dimensional matrix. Thus 

A linear vector function A: A is unitary when, and only when, A is a 

unitary matrix, 

EXERCISES 

5. Show that if Hi and H2 are any two Hermitian linear vector functions so 
also is Hi -h H,. 

6. Show that if Ui and U2 are any two unitary linear vector functions so also 
are XJ1U2 and U2U1. 

7. Show that if U is a unitary linear vector function so also is cU, where c 
is a scalar of unit modulus. 

8. Show that if A is either a Hermitian linear vector function or a unitary linear 
vector function then AA* = A*A. 

9. Show that if A is any linear vector function then both the linear vector 
functions AA* and A*A are Hermitian. 

10. Show that if v is any vector both (v|AA*v) and (v|A*Av) are nonnegative. 
Hint. (v|AA*v) == (A*v|A*v): (v|A*Av) = (Av|Av). Note. A Hermitian linear 
function H which is such that (v|Hv) > 0 for every vector v is termed positive. 
If the equality is valid only when v = 0 we say that H is definitely positive. 

11. Show that the linear vector functions AA* and A*A are definitely positive 
if the linear vector function A is non-singular. Note. A linear vector function A is 
said to be singular when there exists a vector v, other than the zero vector, such 
that Av — 0. Thus A: A is singular when, and only when, det A = 0. 
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12. Show that A* is singular when, and only when, A is sing\ilar. 
13. Show that if A is a real three-dimensional Ilermitian linear vector function 

(so that A is symmetric) and v = v(x, y, z) then Av = grad (v|Av). Note. This 
result shows that Av is perpendicular to the level surface through P:(x, y, z) of the 
homogeneous quadratic function (v|Av). Thus the Hermitian linear vector func¬ 
tion A may be regarded as an operator or machine that feeds on the vectors 
v(0 -^P)i where P is any point of the quadric surface (v|Av) = constant, and 
returns a vector which is perpendicular to the tangent plane at P to the quadric 
surface. Note that when A is the identity linear 
vector function the quadric surface is a sphere. 

14. Show that if (v|Av) is real, v being an arbi¬ 
trary complex vector, then A is Hermitian. Hint, 
Since ((v -f w)|A(v + w)) is real for every pair of 
vectors v and w, (v|Aw) -f- (w|Av) is real. It 
follows that a,-* + is real and, on replacing w 
by iWf that i(aj* — a*0 is real; hence A ^ A*. 
Note. It follows from this result that 

A linear vector function is Hermitian when, 
and only when, (v|Av) is real, v being an arbitrary vector. 

This reality of the quadratic form (v|Av) makes Hermitian linear vector fun(!- 
tions of special importance in theoretical physics. 

5. Characteristic vectors and characteristic numbers of a linear 

vector function 

We now raise the following question: Given a linear vector function A 
does there exist a vector v such that Av is a scalar multiple of v? 

Av = Xv; X a scalar. 

In the case where A is a real three-dimensional linear vector function 

and the scalar multiplier X is real the question may be phrased as 
follows: Does there exist a vector v such that Av has the same direction 
as, or the opposite direction to, that of v, or, equivalently (see Exercise 

13, p. 53), does there exist a point P on a level surface of the quadratic 
form (v|Av) at which the tangent plane is perpendicular to v{0 ~>P)? 

Note, At this point the simplification (rather than complication) 

introduced by passing from the real field to the complex field shows up. 
We shall see shortly that every linear vector function in the complex 

field possesses at least one characteristic vector. In particular every 

real linear vector function possesses, in the complex fields at least one 
characteristic vector. In other words there exists a complex vector v 
(other than the zero vector) and a complex scalar X such that Av = Xv. 

But it may well happen that no such real vector v and real scalar X 
exist. If we insisted on working in the real field we would have to 
introduce the more complicated idea of a characteristic plane defined 
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as follows: If v is any vector in the characteristic plane then Avlies 

in the characteristic plane. 
Equivalent to the definition of a characteristic plane is that of a 

characteristic pair of linearly independent vectors: A linearly inde¬ 

pendent pair of vectors {vi, V2} is a characteristic pair of the linear 

vector function A if both Avi and Av2 are linear combinations of Vi and 

V2. 
We term any non-trivial vector (i.e., any vector other than the zero 

vector) which is such that Av is a scalar multiple of v a charcLcteristic 

vector of A, and we term the scalar multiple X a characteristic number of 

A. We say, further, that the characteristic vector v of A and the 

characteristic number X of A are associated with one another. It is 

clear that if v is any characteristic vector of A, with the associated 

characteristic number X, then cv, where c is any scalar other than zero, 

is a characteristic vector of A with the same associated characteristic 

number X. We use this flexible multiplying scalar c to arrange that 

the magnitude v of v is unity; when this is done we say that the char¬ 

acteristic vector is normalized. We shall use the symbol u to denote a 
normalized characteristic vector. Thus 

A normalized characteristic vector of A is one for which 

Au = Xu; (u|u) = = 1. 

It is clear (prove this) that if u is any normalized characteristic vector 

of A, with the associated characteristic number X, then e^^u, where e"®, 

0 real, is an}^ complex number of modulus 1, is a normalized character¬ 

istic vector of A with the same associated characteristic number X. 

This result is expressed as follows: 

Any normalized characteristic vector u of a linear vector function A is 

indeterminate to the extent of a 'phase factor. 

In the real field the corresponding result is as follows: 

Any normalized real characteristic vector of a real linear vector function 
is indeterminate to the extent of a reversal of direction {the multiplying 

scalar being now restricted to the values +1). 

The fact that every linear vector function possesses, in the complex 

field, at least one characteristic vector is easy to prove. On writing Xv 

in the form Lv, where L is the scalar linear vector function defined 

by the formula 

L I X^n, 

the definition of a characteristic vector v appears in the form 

Av = Lv; V 0 
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or, equivalently, 
(A — L)v = 0; V 5*^ 0. 

Hence the linear vector function A — L is singular; it follows that 

If \ is a root of the algebraic equation of degree n 

det (A — XEn) = 0 

then X is a characteristic number of the linear vector function A. If not all 

the cofactors of the matrix A — \En are zero the ra tios of the coordinates 

of an associated characteristic vector are those of the cofactors of a 

row of the matrix A — XEn. When the rank r of A — \En < n — 1, 

n — r oi the coordinates of a characteristic vector of A which is associ¬ 

ated with X may be chosen arbitrarily, and then the remaining r 

coordinates are linear combinations of these. 

The algebraic equation which furnishes the characteristic numbers 
of the linear vector function A may be written in the form 

Xn ^ + 72X^-2 - . . . + (-l)n/,, = 0, 

aa* is the sum of the diagonal elements (i.e., the trace of the 

matrix A); 

Ua" ap** 
is the sum of the two-rowed 'principal (or 

a < 0 aj a/ 
diagonal minors) of A; 

Ij is the sum of the j-rowed diagonal minors of A; 

In = det A. 

Since the characteristic numbers of a matrix are intrinsic, i.e., their 

definition is independent of the reference frame, the numbers /i, • • • , 

In are scalars. This is easy to verify; in fact 

X”~/i'X"--i+ • • • +(--l)V/= det(A'-XEO===det(I/*AC/--XEn) 

= det f7*(A — \En)U = det (A — XEn), (since det t/* det U 

= det U*U = det En = 1), = X" - /iX«-^ + * • • + (-l)Vn. 

where Ii = 

/2 = 
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Since this relation is an identity in X (why?) we have (why?) 

/l' = /l, • • • , /n' = /n. 

In other words the mimbers /i, • • • , /„ are scalars. We term them 

the invariants of the linear vector function A. The equation X" 

— /iX"“^ + * * • + ( — !)”/« = 0 is known as the characteristic equa¬ 
tion of the linear vector function. 

EXERCISES 

1. Show that each characteristic number X of a linear vector function A is the 
value of the quadratic form (u|Au), where u is any (normalized) characteristic 
vector associated with X. Hint. (u|Au) = (u[Xu) = X(u|u) = X. 

2. Show that any characteristic number of a Hermitian linear vector function 
is real. Note. Remember this important result. 

3. Show that if X is a characteristic number, and u an associated (normalized) 
characteristic vector, of any linear vector function A then XX = (Au|Au) = 
(u|A*Au). Hint. XX « (Xu|Xu). 

4. Show that any characteristic number of a unitary linear vector function 
is of modulus unity. Hint. See Fkercise 3 and remember that (Uu|Uu) — (u|u) 
== 1. Note. The following important case of this result is worthy of special 

mention: 
A real characteristic number of a unitary linear vector function is either 1 or —1. 
5. Show that a real three-dimensional unimodular unitary linear vector func¬ 

tion, i.e., a rotation R: J2, has 1 as a characteristic number. Hmi. One root of 
a third-degree algebraic equation is real; if only one is real the other two are con¬ 
jugate complex numbers so that their product is positive. Furthermore the 
product of the three roots is positive, being det 7^ = 1. 

6. Show that the invariants of a linear vector function are connected with 
its characteristic numbers as follows: 

I\ — the sum of the characteristic numbers; 

I2 = the sum of the products of the characteristic numbers taken two at a time; 

In — the product of the characteristic numbers. 

Note. It is understood here that if a characteristic number is a multiple root of the 
characteristic equation it is repeated as often as it occurs. For example the charac¬ 
teristic equation of the identity linear vector function E„ is (X — 1)" = 0; thus En 

has the one characteristic number 1 repeated n times. Hence h = n; 12 

and so on. 

7. Show that the linear vector function A: C ^ has the same characteris- 
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tic equation as the identity linear vector function Ej but that while every vector 
(other than the zero vector) is a characteristic vector of E2 the only characteristic 
vectors of A are the non-zero scalar multiples of Ui = v(l, 0). 

8. Show that the characteristic numbers of A* are the conjugates of the charac¬ 
teristic numbers of A. Hint. The invariants of A* are the conjugates of the 
invariants of A. 

9. Show that if u is a characteristic vector of A, associated with the charac¬ 
teristic number X, and v is a characteristic vector of A*, associated with the charac¬ 
teristic number f*, then the two vectors u and v are perpendicular unless /tl = X. 
Hint. (v|Au) « X(v|u); (v|Au) = (A*v|u) = m(v1u). Hence X(v|u) ~ A(v|u) so 

that, if A 5*^ (v|u) = 0. 
10, Show that any two characteristic vectors of a Hermitian linear vector func¬ 

tion A which are associated with two different characteristic numbers of A are 
perpendicular. 

11, Show that if X is a characteristic number of the linear vector function A, 
with the associated characteristic vector u, then X^' is a characteristic number of 
A» with the same associated vector u, j = 2, 3, • • • . Hint. A^u == A(Au) 
= A (Xu) = XAu =« X%, and so on. 

12, Show that if two linear vector functions A and B commute^ i.e., if AB = BA 
and if X is a characteristic number of A with an associated characteristic vector u, 
then Bu is, if it is not the zero vector, a characteristic vector of A which is asso¬ 
ciated with the characteristic number X. Hint. ABu = BAu = B(Xu) ~ XBu. 

13, Show that if the vectors Vi, • • • , v* are characteristic vectors of the linear 
vector function A which are associated with the same characteristic number 
X of A then any linear (combination of the vc^ctors Vi, • • • , v* is, if it is not the zero 
vector, a characteristic vector of A which is associated with the characteristic 
number X. 

6. The canonical form of a linear vector function 

We propose to prove in this section the following useful result: Let 

A: A be any linear vector function; then there exists a unimodular uni¬ 

tary matrix U such that every element of A' = U*A U which is below 

the diagonal is zero, i.e., a'jJ = 0 if y > A*. 

We term a matrix which is such that every element below the 

diagonal is zero a triangular matrix. In this terminology the theorem 

we wish to prove may be phrased as follows: 

There exists for every linear vector function a basis in which the 

matrix which presents the linear vector fimction is triangular. 

To prepare for the proof of this theorem we first observe that if Vi 

is any vector other than the zero vector there exists a linearly inde¬ 

pendent set of n vectors {vi, • • • , Vn} containing Vi. In fact V2 is 

any vector which is not a multiple of Vi; V3 is any vector which is not 

a linear combination of Vi and V2, and so on till, finally, v„ is any vector 

which is not a linear combination of Vi, • • • , Vn-i. (How do we 

know, at each stage, that the vectors V2, Vs, * • • , Vn exist?) That 
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the set so constructed is linearly independent is clear; for if CiVi + • • • 

+ CnVn = 0 we must have Cn = 0 (for, otherwise, would be a linear 
combination of Vi, * • • , v„_i). Knowing that Cn = 0 it follows, 

similarly, that Cn-i = 0, and so on to Ci = 0. Next we observe that 

if {vi, • • • , Vn} is any linearly independent set there exists a set of 

scalars c/, where = 0 if A* > j, such that the vectors 

Ui = ci^vi; 

U2 = C2^Vi + C2V2; 

Un = + • • • + Cn”V„ 

are each of unit magnitude and are mutually perpendicular: 

(u,|uf) = 1, i = 1, • • • , n; (u,|ut) =0, j 5^ k. 

To see this we set Ci^ = -^ so that = 1. We then ‘^pull off’’ from 
Vi 

V2 the ^‘component” of V2 along Ui, and we multiply what is loft by a 

scalar to make it of magnitude unity. Thus we set 

Ua = — {Va — (ui|v2)Ui), 
m2 

where m2 if the magnitude of V2 — (ui|v2)ui. That m2 0 follows 
from the fact that V2 — (ui|v2)ui is a non-trivial linear combination of 

V2 and Ui, i.e., a non-trivial linear combination of Vi and V2. That 

(ui|u2) = 0 is immediately evident. (Verify this.) To define U3 we 

‘‘pull off” from V3 the components of V3 along Ui and U2, and we mul¬ 

tiply what is left by a scalar to make it of magnitude unity. Thus we 

set 

U3 = — {V3 - (Ul|v3)Ul - (U2|v3)U2}, 
m3 

where mg is the magnitude of V3 — (ui|v3)ui — (U2|v3)u2. (How are 
we sure that m3 9^ 0?) It is clear that (uijua) = 0, (U2IU3) = 0. 

(Verify this.) Proceeding in this way we prove the result stated since 

a linear combination of Ui, . . . , U/is a linear combination of Vi, • • • , 
vy, i = 1, 2, • • • , n. 
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Note, The process outlined here for obtaining a set of n mutually 

perpendicular unit vectors {ui, • • • , Un} each of which is an appropri¬ 
ate linear combination of the vectors of a given linearly independent 

set of n vectors {vi, • • • , v^} is known as the orthogonalization 

process of Schmidt (after E. Schmidt, a German mathematician). 
Let, now, Ui be any unit vector; then there exists a linearly inde¬ 

pendent set of n vectors {ui, V2, * • • , Vnl of which Ui is the first. 

Hence there exists a set of n mutually perpendicular unit vectors 

{ui, U2, • • • , Un} of which Ui is the first. The matrix U which is 
such that the elements in the jth column of U are the coordinates of u,-, 

j = 1, • • • , n is, then, unitary, and we may, without lack of gener¬ 

ality, take it to be unimodular (because any one of the vectors u,- may 

be multiplied by a scalar of modulus unity). 

Returning now to our linear vector function A, let Ui be a normalized 

characteristic vector of A associated with the characteristic number Xi 

so that 

.Aui = XiUi. 

If Ui is any unimodular unitary n X n matrix which is such that the 

elements of its first column xi are the coordinates of Ui we have 

xi = UiCi; Axi = \iXi, 

where ei is the n X 1 matrix (1, 0, 0, • • • ,0) (why?). Hence 

AUiCi = XiUiCi 
or, equivalently (why?), 

Ui*AUi = Xici. 

In other words the first column of Ui*AUii& the n X 1 matrix (Xi, 0, 0, 

• * • , 0). If we delete the first row and first column of U*iAUi we 

obtain an (n — 1) X {n — 1) matrix B to which we may apply the 
argument just given; thus there exists an (n — 1) X (n — 1) unimodu¬ 

lar unitary matrix V such that the first column of V*BV is the (n — 1) 

X 1 matrix (X2, 0, • • • , 0). Now 

U, 
is an n X n unimodvilar unitary matrix (prove this), and 

U, *Ui*AUiU, = (^ ^ = h ) 
\0 V*J\0 B/\o v) \o Y*BY) 
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(where the * above the B in the middle matrix indicates a 1 X (n — 1) 

matrix whose elements we do not need to know). Thus all the ele¬ 

ments of the first column of U^^Ux^AUiU^ except the first are zero, 
and all the elements of the second column of this matrix are zero except 

the first two. Continuing this process and denoting by U the uni- 

modular unitary n X n matrix 

U = UtU, • • • Un-l 

(show that U is unimodular and unitary) we see that U*AV is tri¬ 
angular. This triangular matrix 

A' = UWIJ 

is said to be the canonical form of the linear vector function A. 

When the canoni(;al form of a linear vector function A is not only 

triangular but diagonal^ i.e., when all the elements of A above the 

diagonal (in addition to those below the diagonal) are zero, we say that 

A is normal. The following criterion enables us to tc;ll, without having 

to determine the canonical form, whether a given linear vector function 

is normal or not: 

A linear vector function is normal when, and only when, it commutes 

with its adjoint, i,e., when, and only when, 

A*A = AA* 

or, equivalently (whyf), when 
A*A = AA*, 

The necessity of this commuting property is evident; in fact when A 

is normal its canonical form is diagonal. Hence, in the basis in which 

A is presented in its canonical form, A * is also diagonal (why?). Since 

any two diagonal matrices commute (prove this) it follows that A and 

A* commute. (Show that the commuting property of any two linear 

vector functions is an intrinsic property, i.e., if it is valid in any one 

reference frame it is valid in all reference frames.) To prove the 
sufficiency of the commuting property we observe that the element in 

the first row and first column of A*A is a*a^ai^ = and that, 

similarly, the element in the first row and first column of AA* is aa^da^. 

On equating these expressions and observing that (A being supposed 

to be the canonical form of A) ai^ = 0 if j > 1 we obtain 

a2^d2} + * • • + an^dtf — 0. 

Since each of the terms in the sum on the left is non-negative (why?) 
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it follows that = 0, A* > 1. In words: All elements of the first row 

of A are zero except the first. 
Equating now the elements in the second row and second column of 

A* A and A A* we find that all elements of the second row of A are 

zero except the second, and so on. Hence A is diagonal so that A is 

normal. 
We may summarize the important results of this section as follows: 

Every linear vector fimction is essentially triangular; i.e., there 

exists a basis or reference frame in which the matrix, whose elements 

are the coordinates of the linear vector function in this reference 

frame, is triangular. The normal linear functions are those which are 

essentially diagonal; i.e., there exists a reference frame in which the 

matrix which presents the linear vector function is diagonal. They 

are distinguished from non-normal linear vector functions by the 

fact that any normal linear vector function commutes with its adjoint 

while no non-normal linear vector function does this. 

The process of determining the canonical (i.e., diagonal) form of a 

normal linear vector function is termed diagonalization of the (normal) 

linear vector function. It is clear (prove this) that 

The diagonal elements of the canonical form of a linear vector fimc¬ 

tion A are the characteristic numbers of A. Hint Show that if the 

diagonal elements of the canonical (triangular) form A of A are 

Xi, • • • , Xn then det (A — \En) = (Xi — X) * * • (X„ — X). In 

particular 
The diagonal elements of the diagonal form of a normal linear vector 

function A are the characteristic numbers of A. Furthermore each 

vector of the basis in which A is diagonal is a characteristic vector of 

A. (Prove this.) 

EXERCISES 

1. Show that every Hermitian linear vector function is normal, and use this 
fact to verify that every characteristic number of a Hermitian linear vector func¬ 
tion is real. 

2. Show that every unitary linear vector function is normal, and use this fact 
to verify that every characteristic number of a unitary linear vector function is of 

unit modulus. 
3. Show that every normal linear vector function A possesses a set of n unit 

and mutually perpendicular characteristic vectors Ui, • • • , u». 
4. Show that if U is the unitary matrix of which the elements in the jith column 

are the coordinates of u, (see Exercise 3) then AU = UA, where A is the diagonal 
matrix whose diagonal elements are the characteristic numbers (Xi, • • • , X„) of A. 
Deduce that U*AU = A. 

5. Show that if v is a characteristic vector of a real linear vector function A, 
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the real and imaginary parts Vi and V2 of v are such that Avi and Av2 are linear 

combinations of vi and V2. 
Solution. That Vi and V2 are real vectors is clear. In fact if z is the n X 1 

complex matrix whose elements are the coordinates of v and we set z ^ x yi^ 
where x and y are real n X 1 matrices, the equation z' ~ Rz implies, in view of the 
reality of 72, the two equations x^ — Rx, y' = Ry. If X = Xi + X2?- is the charac¬ 
teristic number of A which is associated with the characteristic vector v ~ Vi + Vzi 
the equation Az — \2 yields, in view of the reality of A, the two equations Ax 
« Xix — Xzy; Ay = X2a; + Xiy. Hence Avi = XiVi — X2V2; Av2 = X2V1 -j- X1V2. 

6. Show that if X is a non-real characteristic number of a real linear vector 
function A the two vectors Vi and V2 (see Exercise 5) are linearly independent. 
Hint. If Vi and Vo were linearly dependent one of them, being a non-zero multiple 
of V, would be a real characteristic vector of A associated with the non-real charac¬ 
teristic numh(^r X. This is absurd in view of the reality of A. Note. On com¬ 
bining the results of Exercises 5 and 6 we obtain the following thc^orem: 

Associated with each non-real characteristic number of a real linear vector 
function is a linearly Independent characteristic pair of (real) vectors, i.e., a 

characteristic plane. 
7. Show that there is associated with each real characteristic number of a 

real linear vector function a real characteristic vector. Hint. If X2 = 0 (see 
Exercise 5) so that Xi = X, Vi and Vo satisfy the relations Avi = Xvi, Av2 = XV2. 

8. Show that every real Hermitian linear vector function A possesses, in the 
real field, a diagonal canonical form; i.o., there exists a rotation matrix R such that 
A' = R*AR is diagonal. Hint. The characteristic numbers of A are real, and 
the orthogonalization process of Schmidt may be carried through in the real field. 
(Prove this.) Note. The reality of the characteristic numbers of A is an essential 
part of the argument. Thus it is not true that every real normal matrix possesses 
in the real field a diagonal canonical form (if it did the diagonal elements of the 
canonical form would be real and these are the characteristic numbers of A). 

9. Show that the 2X2 rotation matrix 

/ cos e — sin A ^ 

ysin 6 cos Oj' 
^ e <%r 

possesses, in the real field, a diagonal canonical form when, and only when, 
or IT. What is the canonical form of Rz in the complex field? 

10. Show that the 2X2 reflexion matrix 

/cos 6 

\sin e 

0 

possesses, for every Bj in the real field a canonical diagonal form which is the same 
for every value of B. 

11, Show that every real linear vector function possesses, in the real field, a 
nearly triangular canonical form (where we mean by the statement that a matrix A 
is nearly triangular that a,-* = 0 if A: > j -f 1). Hint. Follow the argument used 
in the complex field modified in the light of the note to Exercise 6. 

12. Show that every normal real linear vector function possesses in the real 
field a nearly diagonal canonical form, where we mean by the statement that a 
matrix A is nearly diagonal that a,* = 0 if A; > j 1 and if ^ > A; -j- 1. 



CANONICAL FORM OF A LINEAR VECTOR FUNCTION 63 

13. Show that every positive linear vector function A possesses an unambiguo 
ously determinate positive square root defined by the relation A = B*. 

Solution. If the canonical diagonal form of A has the diagonal elements (Xi, 
• • • , X„) then the diagonal matrix B whose diagonal elements are (Xi^, • • • , X«l^) 
is the canonical form (in the same reference frame) of a linear vector function B 
which is such that B* *= A. The uniqueness follows from the fact that when B 
is in canonical form so also is A so that the canonical form of B is unambiguously 
determined (in view of the positive nature of B). It follows that if Bi: Bi and 
B2: Bz were two determinations of B then Bz = U*BiU (why?), and this implies, 
since Bz* ~ A, Bi* = A, that A — U*AU. Hence UA = AU. If Bi is the 
canonical diagonal form of Bi, A is the canonical diagonal form of A, and it follows 
that if the characteristic numbers of A are all different that U is diagonal. (Prove 
this.) Hence Bz — U*BiU ~ B\U*IJ = Bi. (Remember that diagonal matrices 
commute.) If the characteristic numbers of A are not all different U breaks up 
into diagonal blocks (each block being associated with a set of equal characteristic 
numbers of A), and the relation UA = AU implies the relation UB\ = BiC7. 
(Prove this. Hint. To each set of equal characteristic numbers of A corresponds 
a set of the same number of equal characteristic numbers of Bi.) Hence, again, 
Bz = Bi. 

14. Show that every linear vector function A can be written in the polar form 
A =* PU, where P is an unambiguously determinate positive linear vector function 
and U an unambiguously determinate unitary linear vector function. Hint. AA* 
is positive and so possesses a positive square root defined by AA* — P*. On 
setting U * P”^A it follows that UU* = E» so that U is unitary. That P and 
hence U are unambiguously determinate follows from the fact that if A = PU 
then P* = AA*. Note. WTien n = 1 this result is the polar factori25ation z = re*® 
of complex numbers. 

15. Show that every linear vector function A may be written in the polar form 
A = VQ, where Q is an unambiguously determinate positive linear vector function 
and V an unambiguously determinate unitary linear vector function. Hint. 
A*A = Q2. 

16. Show that the V of Exercise 15 is the same as the U of Exercise 14. Hint. 
A * VQ = (VQV*)V = PV, where p = VQV* is a positive linear vector function. 

17. Show that the two polar factors P and U of A (see Exercise 14) commute 
when, and only when, A is normal. 

18. Show that when A is Hermitian its polar factor U is such that U* = En. 
19. Show that every real linear vector function A may be factored in the form 

A = RP, where P is a positive real linear vector function and R is either a rotation 
or a reflexion. 

20. Show that the factor R of Exercise 19 may be restricted to be a rotation 
if it is not insisted that P be positive. Hint. Write RP — RFFP, where F is the 
linear vector function for which, in the reference frame in which P is diagonal, 
F is the diagonal matrix whose diagonal elements arc ( — 1, 1, • • • , 1). Note. 
In the classical theory of elasticity a homogeneous linear deformation is described 
by a real three-dimensional linear vector fxmetion A. If A transforms the arbitrary 
(real) vector v into the vector w: 

Av =* w 
we may write this in the form 

R(Pv) - w, 
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where P is a real Hermitian (i.e., a symmetric) linear vector function and R is 
a rotation. Thus R transforms Pv into w. The symmetric linear vector function 
P is said to describe a pure deformation^ and the result A = RP is phrased as 
follows: 

Every homogeneous linear deformation is the product of a pure deformation by a 

rotation. 

The linear vector function ■2-(A*A — Ej) = ■^(P^ — Ej) is known as the deforma- 

tioUf or strain, tensor. 



3 

FUNCTION-VECTORS; FOURIER SERIES 

1. Function-vectors 

Let f{x) and g{x) be two complex-valued functions of the real interval 

variable a ^ x ^ h. We assume that the real and imaginary parts 
of / and g are piece wise-continuous functions of the interval variable 
[a, 6]; in other words if fix) =/i(x) + fi{x)i, g{x) = gi{x) + g2{x)i 

there exists a net a = a:o < xi < • • * < Xn = b on [a, h] such that 

each of the functions fi{x)j pi(x), g^ix) is continuous over each 
cell of the net. We denote by g{x) the conjugate complex of g{x): 

»(a:) = ?i(x) - gt{x)i 

and consider the integral 

£g{^)S{x) dx. 

This integral has many points of similarity with the scalar product 
(v|u) of a complex vector u by a complex vector v. We regard, then, 
each of the complex-valued functions f{x) and g{x) of the real interval 
variable [a, h] as a vector, and we denote them, when so regarded, by 

the symbols f and g, respectively. We denote the integral g{x)f{x)dx 

by the symbol (g|f), and we term this integral the scalar product 
of the function-vector f by the function-vector g. Just as for complex 

vectors, we term the scalar product of a function-vector f by itself: 

= XV(x)/{x) dx 

the squared magnitude of the function-vector f. When (f|f) = 1 the 
function-vector f is termed a unit vector. It is clear that (f|f) is real 
and ^0 (why?), and it is easy to see that if the equality holds f{x) 

must be zero at any point of [a, 6] at which it is continuous. In fact 

if Six) is continuous and different from zero at a point t of [a, b] so also 
is // and so there exists a neighborhood of t over which// > 0 (why?); 

65 
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the integral of // over this neighborhood >0 (why?) and so (f|f) > 0 

(why?). In the case of complex vectors the squared magnitude of a 
vector was zero when, and only when, the vector was the zero vector. 

In order that this should remain valid for function-vectors we define 
the zero function-vector 0 as follows: 

If the piecewise^ontinuous function f(x) of the interval variable [a, fe] 

is zero at all points of [a, 6] at which it is continuous the function-vector f 
is the zero function-vector. 

We use the notation i*f{x) to indicate that f is the function-vector 
defined by the piecewise-continuous, complex-valued function f{x) of 

the real interval variable ja, 6] (it is unnecessary to specify this interval 

variable since all the functions involved are supposed to be functions 
of the same interval variable [a, b]). We term any constant function c 

a scalar; then multiplication of a function-vector f by a scalar c is 
defined by the formula 

dicf{x), 

and the addition of two function-vectors f and g is defined by the 

formula 

f + g'f{x) + g{£)- 

On combining these we obtain the general linear combination 

cHi + cH2 : c^fi{x) + c^fiix) 

of two function-vectors. Two function-vectors are equal when their 
difference is the zero vector. In other words 

The two function-vectors i'f{x) and g: g{x) are the same ify and only ify 

the two functions f(x) and g{x) have the same value at those points of 

[o, b] at which f{x) — g{x) is continuous. 

It follows (prove this) that equality of function-vectors, defined in 

this way, is a transitive relation; i.e., the two relations f = g, g = h 

imply the relation f = h. (In your proof consider the case where 

f — g and g — h are discontinuous and f -- h continuous.) 

It is easy to verify (do this) that the scalar product (g|f) of a func¬ 
tion-vector f by a function-vector g possesses the following properties 

of the scalar product (v|u) of a complex vector u by a complex vector v: 

a- (fig) = (il?); 

b. (glcf) = c(g|f); (cg|f) = c(g|f), 

where c is any scalar; 

C. ((gl + g2)\f) = (gijf) + (g2|f); (g|(fi + f*)) = (g|fl) + (g|f2). 



ORTHONORMAL SETS OF FUNCTION-VECTORS 67 

EXERCISES 
1. Show that ((digi + ^afa)) = 3iri(gi|fi) + 3iC2(gi|f2) + 52Ci(g2|fi) 

+ 32C2(g2|f2). 
2. Show that the squared magnitude of f + g = (f|f) + (g|g) + twice the 

real part of (f|g). 
3. Show that Schwarz*s inequality 

|(f|g)h ^ (f|f)(g|g) 

is valid for function-vectors. Hint. The proof of Schwarz's inequality for com¬ 
plex vectors is valid. Note. When (f|g) is real we term the (real) angle 0 defined 
by the formula 

(f|e) 

(it being understood that neither f nor g is the zero function-vector) the angle 
between the two function-vectors f and g. When (f|g) — 0 the two function- 
vectors f and g are said to be perpendicular or orthogonal. 

4. Show that the squared magnitude of f + g is less than or equal to the square 
of + (g|g)«; in other words show that 

The magnitude of f + g is less than or equal to the sum of the magnitudes of 
f and g. 

Note. This is the triangle inequality for function-vectors. 
5. Show that if c = B real, is any complex number of unit modulus then cf 

has the same squared magnitude as f. 

Complex-valued functions of two or more variables may also be 

regarded as vectors. It will suffice to illustrate what we mean by 

considering functions of three variables. The real and imaginary parts 

/i and /z of / = /i + fii are point-junctions: 

fi = y, 2) = h = V, 2) = SiiP)', P-i^, y, 2), 
and we suppose them defined and continuous over a three-dimensional 

interval 

ai ^ X ^ hi] a2 ^ ^ 62; as ^ z ^ hs. 

The scalar product (g|f) of f by a second such vector-function g is the 

integral (triple) of ff(P)f(P) over this interval. This scalar product 

possesses (verify this) the properties mentioned above (where we were 

dealing with complex-valued functions of a single variable x). The 

three-dimensional interval may be replaced by any three-dimensional 

domain; if this domain is unbounded the squares of ji{P) and f^iP) 

must be integrable over it. 

2. Orthonormal sets of function-vectors 

Let us consider the function-vectors 

n = 0, ±1, ±2, * • • ; —x ^ a: ^ x. 
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These constitute a sequence of function-vectors of which the first is 

gi = fo: 1, the second g2 = fi: e**, the third gs = f-i: and so on: 

gi = fo: 1; g2,* = f, : gw = j = l, 2, • • • . 

It will prove more convenient, however, to indicate this sequence by 

{fn}, n = 0, ±1, +2, • • • 

rather than by 

{gn}, n = 1, 2, 3, • • • . 

It is clear that all the function-vectors of the sequence have the same 

squared magnitude 2t (prove this) and that the scalar product of any 

function-vector of the sequence by any other is zero (prove this). If 

we set Un = (27r)’”^„, n = 0, ±1, ±2, • • • we obtain a sequence of 

function-vectors possessing the following two properties: 

a. Each member of the sequence is a unit vector: 

(u„|un) = 1; n = 0, ±1, ■ • ■ . 

h. Any two members of the sequence are perpendicular: 

(u,|u») =0; i A- = 0, ±1, • • ■ . 

We term any set of function-vectors possessing these two properties 
an orthonormal set. The particular orthonormal sot defined by the 

formula: 

Un: (2ir)“‘^e‘”*; —tt ^ x ^ t; n = 0, ±1, ±2, • • • 

is known as the exponential orthonormal set over [—tt, tt]. 

The definitions of linear dependence and of linear independence of a 

(finite) set of function-vectors is the same as for n-dimensional complex 

vectors. Thus the set of n function-vectors fi, • • • , fn is linearly 

independent if the only linear combination 

C®f« = C^fi + • • . + c"fn 

of them which is the zero function-vector is the trivial one (for which 

= 0, j = 1, • • • , n). It is clear that if the n vectors fi, • * * , fn 
constitute an orthonormal set then {fi, • • • , f„) is a linearly inde¬ 

pendent set. In fact 

((c>fi + • • • + 

(why?) so that, if c^fi + • * ' + c”fn == 0, = 0, j = 1, • • • , n. If 

{Un} is any orthonormal sequence (finite or infinite) we term the numbers 

P — ('i/lf) I i ~ 2, * • * , 
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the Fourier coefficients of the vector f with respect to the orthonormal 

sequence (after J. B. J. Fourier [176S-1830], a French mathematician), 
and we term the vectors /»u/ = (u,lf)u/ the components of the vector 

f with respect to the orthonormal sequence (/%,• being the component 

along u,). 
With this understanding the orthogonalization process of Schmidt 

may be applied to sequences, finite or infinite, of function-vectors (it 

being understood that if the sequence is finite it is linearly independent 

while if it is infinite any finite subsequence selected from it is linearly 
independent). As an illustration let us consider the sequence of power 

function-vectors 

n = 1, 2, • • • ; —1 ^ ^ 1. 

Any finite sequence selected from this infinite sequence of function- 

vectors is a linearly independent set (for the only polynomial which is 

zero over [—1, 1] is the zero polynomial, all of whose coefficients are 

zero). Since the squared magnitude of fi: 1 is 2 the first step in the 

orthogonalization process consists in setting 

Ui = -1 ^ a: ^ 1. 

Since 2“^ is an even function of x (being a constant function) (ui|g) =0 
if g is any linear combination of the evenly labelled function-vectors 

f2, f4, * • * (because the function which defines g, being a linear com¬ 

bination of x, X®, • • • , is an odd polynomial). In particular, (ui|f2) 

= 0 so that the component of f2 along Ui is the zero vector. The 

second step in the orthogonalization process, then, is to set U2 equal 

to the product of f2 by the reciprocal of the magnitude of £2. Since 

f2: X, (f2|f2) ~ J* dx = ^ and so U2 = Since fa: x^, J+i 

x^dx = •J-(2^); (U2jf8) = 0 (why?) and so 

“• - irl'- - 5 j’ 
where m3 is the magnitude of fa — ■J'(2^)ui. Since fa ^(2^^)ui: x^ 

/ l\2 g I /3\ /5\H 
(X® — ~ I dx = — so that — = l~)l:::) • -A 3/ 45 ma \2/\2/ 

Hence 

U, = 
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Continuing this process (carry out the calculations) we find 

U4 = - |x); 

+ ffi!: - Jjp-x* + t). 

The function-vectors Ui, U2, • • • , obtained in this way constitute an 

orthonormal infinite sequence. Vin+ii the product of 

by a polynomial of degree n which is knowm as the Legendre 'polynomial 

of degree n (after A, M. Legendre [1752-1833], a French mathema¬ 

tician) and is denoted by the symbol P„(x), n = 0, 1, 2, • * • . Thus 

we have shown that Pq{x) = 1; Pi{x) = x] P2(x) = ^x^ — Paix) 
= ^x^ — ^x] Pa{:x) = We shall see later how to 

obtain Pn(x) as a particular solution of a linear second order differential 

equation, and it will appear that, for every n = 0, 1, 2, • * • , Pn(l) 
= 1. 

EXERCISES 

1. Show that Ph(x) — -f- '-^x. 
2. Show that = Po, — Pi, x^ = 4* ^Po, x^ = -fPa + §Pi. 

3. Show that ^ Pj{x)Pk{x) da; == 0, j 5^ A) = 0, 1, 2, • • • . Hint. ii,+i: 

a multiple of P,-. 
4. Calculate the Fourier coefficients of f:a; with respect to the exponential 

orthonormal set over [—tt, irl. 
Solution. Denoting the Fourier coefficients byp, n = 0, ±1, ±2, • • • , wc 

have /" = (27r)”^^ ^ e~‘'’*^xdx. Hence = 0 (why?): = (27r)^( —1)" 

n ** il, ±2, • • • . 
5. Calculate the P'ourier coefficients of fra;* with respect to the exponential 

orthonormal set over [ —ir, ir]. 

-2 2(2Tr)^^( — 1)^ 
Answer, p = (27r)^^—; p =-—-; n =» ±1, ±2, • • ♦ . 

3. Bessel’s inequality 

Let {ui, • * • , u„} be any finite orthonormal set, and let f be any 

function-vector. We ask the following question: What linear com¬ 

bination c"Ua = c^Ui + * • * + c^n of the vectors of the orthonormal 
set best approximates f in the sense that the squared magnitude of 

f — c“Ua is least? 

To answer this question we observe that the squared magnitude of 

f — c®u« is the scalar product ((f — c“u«)|(f — c^U/s)) (remember that 

c^Ufi means precisely the same, namely, c^Ui + * * • + c^Uny as does 
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c®u«). On developing this scalar product we see that the squared 

magnitude of f — c“Ua = (f|f) — (Remember that 

(u/jf) = (f|uifc) = f, (u,|ufc) = 0, i (U;|ui) = 1.) Hence the 

squared magnitude of f — c®Ua = (flf) — /“/“ + (/“ — c“)(/“ — c“) so 

that the squared magnitude of f — c“Ua is least when c^' = i = 1, 

• • • j Tij this least value being (f|f) — /“/“(because the sum (/“ — c“) 

(/“ — c“) ^ 0). We have, then, the following result: 
The Unear combination of the vectors of the orthonormal set 

(ui, • ' • , Un) which best approximates a given vector f, in the sense 
that the squared magnitude of the difference between f and the linear 
combination is least, is 

/“Ua = fVii + • • ‘ 

where f = (u,|f) is the Fourier coefficient of f with respect to u,. 
Furthermore the squared magnitude of 

f - /“u„ = (f|f) - = (flf) - + • • • + m 
so that 

(f|f) ^ = (Tip + • • • +m 

I^t, now, {Unl be an infinite orihonormal sequence. It follows from 

the result just proved that, no matter what is the integer n, (f|f) 

+ * • * + /”/”. Hence (since each of the numbers is real and 
non-negative): 

00 

The series Y/r of non-negative terms converges to a sum which 
1 

is less than or equal to the squared magnitude of f: 

00 

This result is known as BesseVs inequality (after F. W. Bessel [1784- 

1846], a German mathematician). 

For n-dimensional complex vectors the relation corresponding to 

Bessel’s inequality is the equality 
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where = (u,|v). In fact the vectors u,-, j = 1, • • • , n, consti¬ 

tute a basis for the n-dimensional complex vector space so that 

(u/|v)u,' (why?) = 2 v^Uj. Hence (why?) 

For some orthonormal infinite sets (in particular for the exponential 

orthonormal set) it happens that the equality in Bessel’s inequality is 

valid for every function vector f:f(x) (where f{x) is a piecewise- 

continuous function of [a, 5]). We term such orthonormal sets com¬ 

plete for the following reason: 

The only Junction-vector which is perpendicular to all the vectors of a 

complete orthonormal set is the zero Junction-vector; in other words a 

complete orthonormal set cannot he enlarged by the addition oj a vector 

which does not belong to it. 

The proof of this statement is immediate: If f is perpendicular to all 

the vectors of a complete orthonormal set all its Fourier coefficients 

with respect to this orthonormal set are zero. 

= 0 so that f is the zero vector. 

Hence 

EXERCISE 
00 

1. Show that if {u„} is a complete orthonormal set (g|f) == Hint, 

■2 The relation ((g +f)|(g + f)) = / 4-/0 yields (g|f) -f (f|g) 

00 

2 ■\’J^g^), On replacing f by ff we obtain (g|f) — (f|g) = > {gifi - pg^'); ■2 
hence (g|f) 

00 

= Note. The result of this exercise is known as the Parseval 

identity (after M. A. Parseval, a French mathematician). 

If {f„} is a sequence of function-vectors we say that this sequence 
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has the limit f if the squared magnitude of f — f» may be made arbi¬ 
trarily small by merely making n sufficiently large, i.e., if the squared 
magnitude of f — f„ is null at n = ». It is immediately evident 

that the limit f of a convergent sequence {f„}, i.e., of a sequence which 

possesses a limit, is unambiguously determinate. In fact if g were a 
second limit the squared magnitude of f — g = (f — fn) + (fn — g) 
would be null at n = oo (why?). (Hint. Remember the triangle 

inequality.) Being independent of n it must be zero (why?). Hence 
i = g (why?). 

EXERCISES 

2. If {f„} is a convergent sequence of function-vectors with limit f show that 
the sequence (g|fn) of complex numbers, g being any function-vecitor, is convergent 
with limit (g|f). Hint. On using Schwarz's inequality it is clear that the sequence 
(g|(f -f n)) of complex numbers is null at n = «; this is only another way of 
saying that the sequence (g|f«) is convergent with the limit (g|f). 

3. Show that if 1 is the function-vector defined by the unit constant function 
'*b 

1 then (l|f) = J fix) dx. 

4. Show that if {f„) is a convergent sequence of function-vectors with limit f 

then the sequence I /„(x) dx of complex numbers converges to the limit I / dx. 

5. Show that if [.ro, x] is any subinterval of [a, h] the sequence I /„(0 dt of com¬ 

plex numbers converges to the number I f(t) dt, {f„) being a convergent sequence 
%Jro 

of function-vectors with the limit f. Hint. Replace the function-vector 1 of 
Exercise 3 by the function-vector g defined by g{t) — 1 if xo ^ t ^ x, git) = 0 if 
a ^ i < xo and if x < ^ ^ b. 

/' 
/; 

/■ 
6. Show that the convergence of the sequence | /n(0 dt of Exercise 5 to its limit 

^ is uniform with respect to x over la, 6]. Hint. l(gl(f — f»))l“ ^ 

(g|g)((f - f.)|(f - fn)) = (* - ®0)((f - fn)|(f - fn)) < (6 - a)((f “ fn)I(f - fn))- 
Note. On combining the results of Exercises 4r-6 we obtain the following important 
theorem: 

If a sequence of function-vectors (fn) converges to the function-vector f the sequence 

number I /(/) dt^ the convergence being uniform with respect to x over [a, b]. 
• /xo 

7. Show that if g{x) is any piecewise-continuous function a continuous function 
fix) may be determined, once any positive number e is given, such that the squared 
magnitude of g — f: (^(x) — fix) is not greater than c. Hint. Consider first the 

of complex numbers I fnit) dty where a ^ Xo < x ^ b, converges to the complex 
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case where g{x) has only one point of discontinuity a?i, and set/(a;) « g{x) if x is 
not covered by the interval [xi — 5, a;i + 6], where S > 0 will be determined later; 
over [xi — S, Xi 5], f(x) may be any continuous function which takes the same 
values as g(x) at the points X\ — S and xi + 6. If Xi ~ o replace [xi — 5, xi + 5] 
by \a, a -f- 5], and if xi — h replace [xi — 5, + 6] by [6 ~ 6, 6]. Both g{x) and 
f(x) are bounded over [a, 6] (why?) and so there exists a number M such that 
\g{x) — f{x) I ^ M over |o, b]. Hence ((g — f)|(g — f)) ^ 2M‘^b (why?), and all we 
have to do is to choose 6 so that 2M^b ^ e. If g{x) has n points of discontinuity 
(xi, • • • , a:„) set/(a;) = g{x) if x is not covered by any of the n intervals \xj — 3, 
iC/ + = 1, • • * , w, and choose 8 so that 2nM^S ^ e. 

8. Show' that the infinite orthonormal sequence {u„| is complete if Bessel’s 
inequality is an equality for every function-vector f:/(a:) for which f{x) is 
continuous. Hint. Let g: g{x) be any function-vector (so that g{x) is piecewise- 
continuous over [a, b]), and let f:f(x) be a function-vector for which/(a:) is con- 

n 

tinuous over [a, b], and the squared magnitude of g — f is ^ e. If s„ X- pUj we 

are granted that the squared magnitude of f — s« is null at w = » (why?). Hence, 
by the triangle inequality, the squared magnitude of g — = (g — f) -f (f — s„) 

n 

is null at n — 00. If s^n S giUj the squared magnitude of g — s'„i8 not greater 

1 

than the squared magnitude of g — s„ (why?); hence the squared magnitude of 
g — s'r, is null at n = eo. In other words Bessel’s inequality reduces to an equality 
for the arbitrary function-vector g: g(x), where g(x) is piecewise-continuous. 

4. Fourier series 

Let {Un) be a complete infinite orthonormal sequence, and let f be any 
function-vector (so that f{x) is a piecewise-continuous function of the 
interval variable [a, h] which is attached to the orthonormal sequence). 
The Fourier coefficients of f with respect to the orthonormal sequence 

are defined by the formula 

f = (u/jf). 

The linear combination of the first n members of the orthonormal 
sequence which best approximates (in what sense?) the function-vector 

f is 

X f’Vii = f U, + + /“U„ 

If we denote this function-vector by Sn it is easy to see that the sequence 
{s«) of function-vectors has at n = « the limit f (what does this 

n 

mean?). In fact the squared magnitude of f — Sn is (f|f) ~ 
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(prove this), and this is null at n = qo (since the orthonormal sequence 

{Unl is complete). We say, then, that f is the sum of the infinite 
series of function-vectors and we write 

«e 

f = = /'ui + /^2 + • • • + /’*u„ + • • • . 
1 

In other words 

Every complete orthonormal sequence {Un} is such that the sequence of 
function-vectors {Sn), where 

n 

Sn = = /‘“l + • • • + /“Un. 

1 

converges to the {arbitrary) function-sector f whose Fourier coefficients 

with respect to the orthonormal sequence are 

f = (u,]f); i = 1, 2, • • • , 
00 

We term the series ^^pUj{x) = Pui{x) + • • • + f^n{x) -f • • • the 

1 

Fourier series of the function/(a:) with respect to the given orthonormal 

set, and we express the convergence of the sequence {Sn} of function- 

vectors by the statement that the Fourier series of an arbitrary 

(piecewise-continuous) function f{x) with respect to any complete 

orthonormal sequence converges in the mean tof{x). The theorem of 

the note to Exercise 6 of the preceding section may, then, be phrased 

as follows: 

If the Fourier series of any piecewise-continuous function-vector f 
with respect to any complete orthonormal set is integrated term by 
term over any subinterval [xo, x] of the basic interval [a, b] the resulting 

series converges to the limit I f{t) dt, the convergence being uni- 
Jxo 

form with respect to x over [a, b], 
The fact that the exponential orthonormal set is complete is proved 

in a course in advanced calculus, and we shall not repeat the proof here 

but shall merely recall the guiding idea of the proof (which is due to L. 
F4j^r, a Hungarian mathematician). Let/(a:) be any function which 

is continuous over [—x, x], and denote by Sn the sum of the 2n + 1 

‘^centraF’ terms of the Fourier series of f{x) with respect to the expo¬ 

nential orthonormal set over [—x, x]: 
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n n 

SnW = n = 0, ± 1, • • • . 

— n —n 

Denote by Sn-i{x) the average of the n functions So, Sj, • • • , Sn-i: 

^n-lW = 
SoW + Si{x) + H- Sn-iW 

n - 1, 2, 

It is then proved that J{x) may be approximated arbitrarily closely, 
uniformly over [—ir, t], by by merely making n large enough. In 

other words if e is any positive number a positive integer N can be 

found such that \f(x) — >Sn-i(a;)| ^ e for every x covered by the 

interval [—ir, ir] provided only that n N, Now Sn-i: ^n~i(a;) is a 

linear combination of the 2n — 1 central’' function-vectors u,-, 
i = 0, ±1, • • • ± (n — 1), of the exponential orthonormal set, and 
the squared magnitude of f — Sn-i is null at n = » (being ^ 27r€^ 

(why?)). Hence the squared magnitude of f ~ s„_i is null at = oo 

(why?); in other words Bessel’s inequality reduces to an equality for 

the arbitrary continuous fxmction-vector f. Hence (see Exendse 8, 

p. 74) the exponential orthonormal set is complete. 

It follows at once from the result that f{x) may be approximated 
arbitrarily closely, uniformly over [—tt, it], by Sn-i that/(x) may be 

approximiated arbitrarily closely, uniformly over [—tt, tt], by a poly¬ 

nomial Junction. In fact jg defined by an everywhere convergent 

power series which, accordingly, converges uniformly over [—tt, tt]. 

This is only another way of saying that is approximated arbitrarily 

closely, uniformly over l^ir, x], by the partial sums of its defining 

power series and these partial sums are polynomials. Now 8n~\(x) 

is a linear combination of the 2n — 1 functions j = 0, +1, • • • , 

± (n — 1), and hence Sn-i{x) may be approximated arbitrarily closely, 

uniformly over [—x, x], by a polynomial (why?). Hence J{x) may be 

approximated arbitrarily closely, uniformly over [—-x, x], by a poly¬ 

nomial (why?). Let, now, [a, b] be any closed interval, and let f(x) 

be any function which is continuous over [a, 6]; the substitution 

X 
b — a 

2x 

a + b 

2 

transforms the interval a ^ x ^ b into the interval — x ^ f ^ tt 

(prove this) and the function f{x) into the function 0(f) = f(x) which 
is continuous over [—x, x] (xvhy?). Hence 0(f) may be approximated 

arbitrarily closely, uniformly over [—x, x], by a polynomial function 
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of f. Since a polynomial function of { may be written as a polynomial 

function of x this proves the following important theorem (which is 

due to K. Weierstrass [1815-1897], a German mathematician): 

Every continuous function of a closed interval variable may be 
approximated arbitrarily closely, uniformly over the closed interval, 
by a polynomial. 

It follows at once from this theorem that the power-function ortho¬ 

normal set (attached to the closed interval [ — 1, 1]) is complete. In 

fact any polynomial is a finite linear combination of the functions Uj{x) 

which define the power-function orthonormal sequence {Un}. Since 

the squared magnitude of the difference between an}'^ continuous 

function-vector f and such a linear combination is null at n == oo 

(why?) it follows that the power-function orthonormal set is complete 

(why?). Thus 
The Fourier series of every piecewise-^ontinuous function of the interval 

variable [~1, 1] with respect to the power-function orthonormal set con¬ 

verges in the mean to the function. 

Warning, Be very sure that you understand clearly that this result 

says nothing about what happens at any specified point x of the 

interval [ — 1,1]. If we denote the sum of the first n terms of the 

Fourier series of f{x) by Sn{x) it is true that the sequence of function- 
vectors {Snj converges to the function-vector f (what does this mean?), 

but this tells us nothing about the convergence of the sequence of 

complex numbers {Sn{x)}. 

EXERCISES 

1. Show that the only continuous function of the closed interval variable 

[ —1, 1] which is such that I Pn{x) f(x) dx = 0, n = 0, 1, 2, • • • , is the zero 
J-I 

constant function (Pn(x) being the Legendre polynomial of degree n). 
2. State and prove the theorem concerning pieccwise-continuous functions 

which corresponds to that of Exercise 1 concerning continuous functions. 

When the complex-valued function f{x) of the closed-interval vari¬ 

able [—TT, w] is real it is convenient to write the Fourier series of f(x) 

with respect to the exponential orthonormal set over [—x, x] in a real 

form. Since Uj{x) = (2x)“^^^e*'‘® we have u^j(x) = Uj{x) and so f~^ = f 
n — 1 

(why?). Hence = Puj{x) and so the sum V f’Uj{x) 

-(7^1) 

may 

be written as 
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n — 1 

/®wo(x) -1- +/*M,(x)} 

n —1 

= f^uo(x) + ^2 {real part of fui{x)}. 

1 

Since Uj(x) = (2ir)”^e«* = (27r)"‘^(coe jx + i sin jx) we have 

P = (uy|f) = (27r)“^'"|J* cos jtf(t)dt — ij sin jtf{t) dt^. 

Hence Puo{x) = (2ir)“^^ f(t)dt while f~^u-j{x) + pUj{x)^\.e.j twice the 

real part of fuj(x)j 

= J* i^/(0 cos jx + ^J* sin jt f(t) d^ sin ja*|. 

Adopting the notations 

ao « TT”^ I fit) dt; Oj = 7r~^ j cos jt fit) dt; 6/ = I sin i^/(0 dt; 
*/ —IT t/ —IT d “IT 

J = 1, 2, • • • , 

the Fourier series of /(x) appears as 

do + 
00 

COS nx + hn sin nx). 

The numbers Oo, Ui, • • • are known as the Fourier cosine-coefficients 

and the numbers bn are known as the Fourier sine-coefficients of the 
real-valued function fix). We indicate that a function fix) has Fourier 

cosine-coefficients a„, n = 0, 1, 2, • • • , and Fourier sine-coefficients 
6n, w = 1, 2, • • • , by the notation: 

fix) cos nx + bn sin a:); —TT ^ X ^ T. 

Suggestion. In calculating the Fourier cosine- and sine-coefficients 
of a given real-valued function fix) it is best to first calculate p and to 

use the relation 
(2ir)^/'- = T(a,- - ibi) 
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or, equivalently, 

For example we have seen (Exercise 4, p. 70) that, for f(x) « x, 

;-. hence a, = 0, 6/ =-:-so that 
3 3 

sin 2x . _ , sin nx , 
+ -h 

n 

EXERCISES 

3. Show that the Fourier cosine-ooefficients of an odd function and the Fourier 
sine-coefficients of an even function are all zero. 

4. Show that 

a;* T® cos z cos 2x ^ ^ 

T '^12 "" |~P ¥~ ‘ ‘ 

5. Show that if the Fourier series of a continuous function/(a;) with respect to 
the exponential orthonormal set converges uniformly over [ — x, x] its sum is f[z) 
over [ —X, x]. Hint, Since the Fourier series may be integrated term by term 
(after multiplication by uj(x)) its sum 8(z) has the same Fourier coefficients as/(a;) 
(why?). Since f{x) and 8(a;) are both continuous over [~x, x] (why?) s(x) — f(x) 
= 0 over [—x, x] (why?). 

6. Show that the symbol in Exercise 4 may be replaced by =. 
X z^ 

7. Show, by integrating the Fourier series for - from 0 to x, that — — 
2 4 

(I — cos x) — ~ (1 — cos 2a;) -|- (1 — cos na;) and 

x^ 1 1 
deduce (by comparing this result with that of Exercise 6) that ^ ^ ^ 

X sin 3a; 

8. Determine the Fourier series, with respect to the exponential orthonormal 
set over ( —x, x], of the odd function which = 1 if 0 < a; ^ x. (Give your answer 
in real form.) 

4 /sin X sin 3a; sin (2n -j- 1 )a; \ 
Answer. + . . . +____+ . . . J. 

9. Determine the Fourier series, with respect to the exponential orthonormal 
set over [ ~x, x], of |a;|. (Give your answer in real form.) Hint. Integrate term 
by term the Fourier series of Exercise 8 and deduce from the result of Exercise 7 

that 1 + ^ + ^, + • • • “ 

X 4 / cofi 

2 ' i V~1 

cos X cos 3a; 
“JT' 3» 

cos (2n -f l)a; 

(2n + 1) 2 " 
A nswer. 
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10. Show that the sum of the Fourier series of Exercise 9 is |a;|. Hint, 
the theorem of Exercise 5. 

Use 

5. Linear integral operators 

The analogue for function-vectors of the linear vector function concept 

for n-dimensional complex vectors may be described as follows. Let 

Ch‘ K 

interval 

continuous complex-valued function of the two-dimensional 

a ^ X ^ b; a ^ t ^ h; 

if f if(x) is any function-vector attached to the interval [o, 6] the func¬ 

tion of X 

H) fit) dt 

is a continuous function of the inter\^al variable [a, 6]. (Prove this.) 

It defines, then, a function-vector which we denote by the symbol ICf. 

K is an integral operator which feeds on function-vectors f to produce 

function-vectors Kf; and we say that Kf is the result of operating upon 

i by the intfigral operator K. The following properties are immediate 

consequences of the definition of Ki. (Prove them.) 
1. If c is any scalar, i.e., any constant function, 

K(cf) - c(Kf) 

2. If f and g are any two function-vectors 

K(f + g) = Kf + Kg. 

It follows that if c^fi + cH^ is any linear combination of any two func¬ 

tion-vectors fi and f2 then 

K(cifi + cHf) = c^Kfi + c2Kf2. 

If c“ia = c^fi + • • • + c^fn is any linear combination of any set of 

n function-vectors we have 

K(c«f.) - c«(Kf«) = cHKfi) + + c-(Kfn). 

We express this result by saying that the integral operator K is a linear 
integral operator. 

is the zero constant function (over the two-dimensional 

interval a ^ x ^ b, a ^ t ^ b) Kf is the (continuous) zero vector no 
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matter what is the vector f. Conversely if ICf is the zero vector (no 

matter what is the vector i) K [ j must be the zero constant function. 

/ \ 
In fact if A" I ] ^ ^ there is a (one-dimensional) neighborhood of the 

point ti over which /v ^ y is one-signed. Choosing /(/) to be zero 

/^A 
outside this neighborhood and to b(i = A" I j over this neighborhood 

P A A 
we have I KI ]f{t) dt > 0. In view of the continuity of 

\t 

/>(:) m dt 

it follows (how?) that Kf is not the zero vector. We term the linear 
integral operator which transforms every function-vector f into the 

zero function-vector 0 the zero operator^ and we denote it by the 
symbol O: 

Of = 0; every f. 

Multiplication of an operator K 

formula cK "'0 
■(:) by a scalar c is defined by the 

and the addition of two linear integral operators 

Ki and K2 is defined by the formula 

Ki + K2:ii:i 

Two operators Ki and K2 are equal when, and only when, their differ¬ 

ence (what is this?) is the zero operator. It follows at once from these 
definitions (prove this) that 

1. (cK)f = cKf = K(cf); 

2. (Ki + K2)f = Kif + Ksf. 

Finally the multiplication of a linear integral operator K2 by a linear 
integral operator Ki is defined by the formula 
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(KiKj)! = Ki(K2f):J^V OIX 
In view of the continuity of Ki and of the piecewise 

continuity of f(t) the order of the repeated integration may be inter¬ 

changed. We find, then, that 

K1K2: dti. 

It follows at once that the multiplication of linear integral operators is 

associative since 

We denote the various powers of a linear integral operator K: K 

the symbol K**; thus 

by 

and so on. 
Warning, 

K2 = KK; = KK^ = K^K = KKK, 

Do not fall into the mistake of thinking that 

K^: 

In multiplying K by K we must proceed as in matrix multiplication 

where we understand that the upper variable x in the symbol K 

tells the row and the lower the column. Thus 

dti. K2 - KK: 
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EXERCISES 

1. Show that if r and a are two positive integers whose sum is n then K** ** K'‘K*. 
In other words * KK"~^ ** s* . . . a= 

2. Show that if ri, r2j • • • , rp are p positive integers whose sum is n then 
K« - • • • K^p. 

Associated with each linear integral operator K and each pair of 

function-vectors f and g is the bilinear form 

(giKf) = £ 

Exactly as for linear vector functions of n-dimensional complex 

vectors we see that this form is linear (in the sense of the scalar product 

of complex vectors) in each of the vectors f and g: 

((g. + g5)|Kf) = (g.|Kf) + (g^lKf); 

(cgiKf) = c(g|Kf) 

(glK(cf)) = c(glKf); 

(g|K(f, + f^)) = (g|Kfi) + (glKfO. 

When g == f we obtain the quadratic form 

(f|Kf) = rr J{x) 

Associated with each linear integral operator K is another linear 
oi>erator which we term the adjoint of K and denote by the symbol K*; 

it is defined by the formula 

(g|Kf) = (K*g|f); every f and g. 

Since (Kg|f) = (flKi) = (K^) = (g|K*f) we may phrase the 
definition of the adjoint linear integral operator K* of K as follows: 

The bilinear form (giKf), or (Kg|f), is unaffected when the linear 

integral operator K is transferred from one of the two function-vectors 

f, g to the other provided that when this is done K is replaced by its adjoint 

K*. 

EXERCISES 

3. Show that (g|Kif) « (g|Kaf) for every pair of function-vectors f and g when, 
and onlj'^ when, Ki = K2. 



84 FUNCTION-VECTORS; FOURIER SERIES 

4. Show that if ^ then ^ >= ^ Hird. (g|Kf) = 

(f|K*g). 
5. Show that (f|Kif) — (f|K2f) for every function-vector f when, and only when, 

Ki « K2. Hint. Replace f, in turn, by f + g and if + g, and use the result of 
Exercise 3. 

6. Show that (K1K2)* = K2*Ki*. HirU. (glKiKaf) == (Ki>^g|K2f) = (K2*Ki*g|f). 

A linear integral operator K is said to be self-adjoint or Hermitian 

when K* = K. In other words 
K is Hermitian when, and only when, the bilinear form (g|Kf) is 

insensitive to a transfer of the operator K from the vector f to the 
vector g: 

(glKf) = (Kglf). 

An equivalent formulation is the following (prove this): The linear 

integral operator K is Hermitian when, and only when, an interchange 

of the two function vectors f, g in the bilinear form (g|Kf) changes 

this bilinear form into its conjugate complex. 

EXERCISES 
7. Show that when K is Hermitian the quadratic form (f|Kf) is real, f being any 

function-vector. 
8. Show that the property of Exercise 7 is characteristic of Hermitian linear 

integral operators, i.c., that it is not possessed by any linear integral operator 
which is not Hermitian. Hint. (flKf) = (Kf|f) (since (flKf) is real) ~ (f|K*f). 
Hence (see Exercise 5) K* — K. 

If the Hermitian linear integral operator K is such that (f|Ki) ^ 0, 

every f, we term it positive; if the equality is valid only when f is the 

zero function-vector, K is said to be definitely positive. 

EXERCISES 
9. Show that the linear integral operators KK* and K*K are positive. Hint. 

(fiKK*f) = (K*f|K*f). 
10. Show that if K is Hermitian K* is positive. 

If K is a linear integral operator the equation 

u = XKu, 

i.e., 

u{x) = K ^^u(t) dt; X a constant. 

is known as a homogeneous linear integral equation. Any solution of the 

equation u == XKu, other than the zero function-vector, is a character- 
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istic vector of the linear integral operator K, and the scalar constant X 

is a characteristic number of K. Just as for n-dimensional complex 
vectors there is no lack of generality in taking u to be a unit vector; 
then X is the reciprocal of the quadratic form (u|Ku) (why?). 

Note. In the case of n-dimensional complex vectors the character¬ 
istic numbers of a linear vector function were defined by the formula 

Au = Xu rather than, as here, by the formula Ku = - u. In other 
X 

words the characteristic numbers of a linear integral operator are the 

analogues of the reciprocals of the characteristic numbers of a linear 
vector function. 

EXERCISES 

11. Show that the characteristic numbers of a Hermitian linear integral operator 
are all real. 

12. Show that if u is a characteristic vector of K, associated with the charac¬ 
teristic number X, and v is a characteristic vector of K*, associated with the charac¬ 
teristic number fi, then (u|v) = .0 if /i Hint, u = XKu; v = Hence 
(u|v) — X(Ku|v) = /i(u|K*v). Since (Ku|v) = (u|K*v) the inequality X /x 
forces the relation (ujv) = 0. 

13. Show that any two characteristic vectors of a Hermitian operator which are 
associated with different characteristic numbers are perpendicular. 

14. Show that the characteristic numbers of a positive linear integral operator 
are non-negativ(‘. 

15. Show that K:xt has only one characteristic number, and determine this 
(Oiaracteristic number and the associated characteristic vector. 

r Solution. u(x) = X I xt u(t) fit. Setting X t u{t) dt = c we have u(x) — \cx 

and so c = i 
b 

X u{x) dx = Xr Since c 0 (otherwise u would be the 

zero vector) X = —-- The associated characteristic vector is u: kx, where k 
(63 - a3) ’ 

is a constant. If u is normalized (i.e., if (u|u) = 1) and real, A; = ± 

16. Show that K : a; + < has two real characteristic numbers, and determine 

these for the interval [—1, 1]. 

X(cix + Ca), say. Then Ci = 

Hence X == ±^(3^). 
17. Determine the two characteristic numbers of K: -f- for the interval 

[0, 1]. 

18. Show how to determine the characteristic numbers of K when K 
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pjix) is the sum of n terms each of which is the product of a function of x 

by a function of t. Note. A linear integral operator of this type is said to be 
separable. 

19. Show that K:$(0 p{x) has at most one characteristic number and that 

it has no characteristic number if (g|p) = I q{t) p{t) dt =» 0. 

20. Determine the conditions under which K: ^\{t) p\{x) + $2(0 p^ix) does not 
possess a characteristic number. 



4 

CURVILINEAR COORDINATES 

1. Plane polar coordinates 

The simplest and most familiar example of plane curvilinear coordinates 
is the system of plane polar coordinates. If P: (.r, y) is any point in 
the plane other than 0: (0, 0) its plane polar coordinates are 

r I^Pj; 6 = the angle from 0^1 to 0 —> P, where I: (1, 0). 

The connection between the plane polar cooidinates (r, 6) of P and 

the rectangular Cartesian coordinates 

(x, y) of P is furnished by the equations 

a; « r cos 6; y ^ r sin B, 

The point O:(0, 0) is a singular point 
of the polar coordinate system. It is 

characterized by the fact that r = 0 
while B is irvdetermirmte. If r 0 the 
polar coordinates are furnished in terms 

of the Cartesian coordinates by the 
formula 

r = + y^)^; B = arc tan -f x 0; B=±^ifx=0 
X 2 

(it being understood that the determination of B which corresponds to 
the quadrant in which P lies is chosen). The polar coordinate lines 
are obtained by holding first B constant and then r constant in the 
equations 

rr == r cos B] y ^ r B. 

Thus the first family of polar coordinate lines is the family of rays from 
O towards P and the second family of polar coordinate lines is the 

87 
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family of concentric circles whose common center is at 0. The 
directions of the two polar coordinate lines which pass through any 
point P: (x, y), other than 0: (0, 0), are those of the vectors 

Tr = V{Xri Vr) = w(C0S Sin d)] 

Tff = v(x0j ye) = v{—r sin B, r cos 6), 

where r is the position vector v(Xj y) of the point P. We denote the 
unit vectors which have the directions of Xr and respectively, by Ui 
and U2 so that 

Ui = «;(cos sin B) = r,; U2 = sin cos B) = - Xe, 
r 

Thus U2 is the complement Ui* of Ui. 
Note, The polar coordinates (r, B) are chosen in this order so that 

U2 may be the complement of Ui; if we had taken them in the order 
{B, r), Ui would have turned out to be the complement of U2. The 
proper order in which to choose the polar coordinates is determined 
by the fact that the alternating product (ui, U2) = (ui*|u2) = 1 must 
be positive. Since this alternating product is the product of the two- 
rowed determinant 

J = (Xr, Xe) 
Xr Xe cos B —r sin B 

Vr ye sin B r cos B 

by - we have J > 0. This two-rowed determinant is known as the 
r 

Jacobian determinant of the pair of (dependent) variables (Xy y) with 
respect to the pair of (independent) variables (r, B) (after C. G. Jacobi 
[1804-1851], a German mathematician). We shall denote this Jaco¬ 
bian determinant of (x, y) with respect to (r, B) by the symbol 

(x y) (x y) 
—: the symbol \ without the vertical bars, indicates the 
(^ ^) (r, B) 

2X2 Jacobian matrix 

(note that the upper letters tell the rows and the lower the columns). 
Thus the rule determining the order in which the polar coordinates are 
chosen may be phrased as follows: 

The polar coordinates (r, B) are ordered so that the Jacobian deter¬ 
minant 
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J = 
y) 

(r, e) 
> 0. 

The rectangular Cartesian reference frame whose axes have the 

directions of the polar coordinate lines through P, i.e., the directions 
of Ui and U2 = Ui*, is termed the polar-coordinate reference frame which 
is attached to the point P, Since the vectors Ui and U2 vary as the 

point P is changed, the polar-coordinate reference frame is termed a 
moving reference frame. If v = v^xxi y®U2 is any vector the scalars 
(v^, v^) are termed the coordinates, with respect to the polar-coordinate 
reference frame, of the vector v. 

Warning. Be sure that you appreciate fully the fact that the vectors 

Ui and U2 = Ui* depend on the point P to which the polar-coordinate 
reference frame is attached. Thus if v is a constant vector field (i.e., 
if the coordinates of v with respect to a fixed Cartesian reference frame 
are constant point-functions) the polar coordinates and of v will 

not be, in general, constant pointr-fimctions. 

One of the first questions we have to answer when we plan to use 
polar-coordinate reference frames is the following: 

What are the polar coordinates of the gradient of a scalar field ff 
To answer this question we observe that if / is any differentiable 

function of (r, 6), not necessarily a scalar (so that / may be, for 

example, one of the Cartesian coordinates of a vector field) we have 

fx ~ frVx “b fo^Xf fy ” fr^v "b fff^y 

In other words the 1X2 matrix (/x, fy) is the product of the 2X2 

(r, d) 
matrix 

{x, y) 
by the 1X2 matrix (/„ /»). 

When the rectangular Cartesian reference frame Oxy is so chosen 

{x. 
that 0 = 0 we have 

. {x, y) 

X, y) ^ /I oy 
r, 9) \0 rf 

reciprocal of 
(r, e) 

ir, 
(Prove this. 

Now the matrix 7- is the 
y) 

Hint. XrTx + Xe^x is the derivative 

of X with respect to x through the intermediary variables (r, 0); hence 

it has the value 1. Xrry + xeBy is the derivative of x with respect to y 
through the intermediary variables (r, 0); hence it has the value zero.) 

■1 0l 

Hence, when 0 = 0, 
(r,0) 

(x, y) 0 1 
r 

Thus if 0 = 0, i.e., if 0 / 
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has the direction of Ui, the 1X2 matrix (/*, fy) 

In particular, when/is a scalar field, we have the following important 

result: 

The polar coordinates of grad / are ^/r, ^/^ 

EXERCISES 

1. Show that the polar coordinates of grad r are (1, 0) and that the polar coordi¬ 

nates of grad $ are | 0, - 
V ^ 

2. Show that the polar coordinates of the vector element of arc ds *= v{dXj dy) 
are (dr, r dB). Hint. If/is any scalar field df = (grad f\ds) and df ^ frdr fedB 

= /r<ir + i/*(r de). 
r 

Let, now, v be any vector field whose polar coordinates are (?/*■, v^): 

V ~ V^Mi + V^\X2, 

This relation tells us that the coordinates of v in the fixed Cartesian 

reference frame Oxy are the elements of the product of the 2X1 
matrix (!;*■, v^) by the 2X2 rotation matrix 

/cos 6 — sin 6\ 

Vsin 6 cos 6/ 

(because the elements of the first (second) column of R are the coordi¬ 
nates in the Oxy reference frame of Ui (U2)). Let us denote by p the 
2X1 matrix whose elements are the polar coordinates («;’', v^) of 

the vector field v and by f the 2X1 matrix whose elements are the 
Cartesian coordinates (y®, v^) of the vector field v; then 

i = Rp^ 

The Cartesian reference frame Oxy being supposed chosen so that 
^ = 0, is the 2X2 unit matrix and f = p (a relation which only 

restates the definition of the polar coordinates of v as the Cartesian 
coordinates of v in the reference frame Oxy for which 6 = 0). Let us 
calculate the divergence of the vector field v, performing the calcula¬ 

tion in the reference frame Oxy for which 0 = 0. Since, in this refer¬ 

ence frame, the derivative of any point-function with respect to x is 
the same as its derivative with respect to r and since R is independent 
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of r we have 

— J^Pr — Pt) 

where for example, is the 2X1 matrix (the subscript x indi¬ 

cating differentiation with respect to x). The reason that Rpr = Pr 

is that, when 6 = 0^ R is the 2X2 unit matrix E2- Since, when 0 = 0, 

differentiation with respect to y is equivalent to differentiation with 

respect to 6 followed by division by r, and since, when 0 = 0, 

we have 

Re 
\ cc 

sin 0 

cos 0 

Jy = - (Rep + Rpe) 

The first element of is (v^r, and the second element of fy is - {v' 
r 

+ The sum of these is the expression for the divergence of the 

vector field calculated in the Cartesian reference frame Oxy for which 

0 = 0. Since div v is a scalar it does not matter in what reference 

frame it is calculated. We term, then, this sum the divergence of v 
in plane polar coordinates. Thus 

The divergence of the vector field v in plane polar coordinates is 

(v^)r + i V’’ + i (v^)6. 
r r 

EXERCISES 

3. Express the Laplacian A2/ of a scalar field/in plane polar coordinates. Hint, 

A‘2f = div grad/; set tf = /r, == -fein the expression for div v. 
r 

Answer, frr + -/r 4- \fe6. 
r r® 

4. Obtain the expression in plane polar coordinates for curl v. Hint, curl 
V » —div V*. Since v — v* — v’^Uz—v^Ui. Hencev*'’ — —v*® = v^. 

Answer. (v^)r -h ~v^ — — (v’')e. 
r r 

5. Obtain the expression in plane polar coordinates for the direct product of the 
symbolic vector V by the vector field v; in other words express the linear vector 
function 

^ (t^)A 

* {vy)J 
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in plane polar coordinates. Hint. 
vector function are and fy. 

The columns of the matrix A of this linear 

Answer. 

(v')r — ~ -h - (v*’)e 
r r 

{V^)r 
r r 

6. Find the plane polar coordinates of the linear vector function whose Cartesian 
coordinates are the elements of the matrix of second derivatives 

/Ax Ay\ 

vyx Svv' 

of a scalar held. Hint. Set v grad / in Exercise 5. 

Answer. 

~fr + — f»e 
r 

7. Find the plane polar coordinates of the differential vector dv = dv^). 
Hint, dv is the result of operating on ds = v(dx, dy) by the linear vector function 
of Exercise 5. See Exercise 2 for the plane polar coordinates of ds. 

Answer, {dv'' — dO, dv^ -f v' dB). 
Note. Since (—u®, v') are the polar coordinates of the complement v* of v (see 

Exercise 4) it follows that {dv', dv^) are the plane polar coordinates of a vector, 
namely, the vector dv — • v*. This vector (which we shall denote by the 
symbol 5v) is the relative differential of the vector field v (with respect to the moving 
polar coordinate reference frame), the vector dv being the absolute differential of 
the vector field v. The relation between the absolute differential and the relative 
differential of the vector field v is, accordingly, given by the formula 

dv — hv + de ' V*. 

8. Show that the plane polar coordinates of the (absolute) velocity of P: {x, y) 
are (r*, rBt). Hint. Here v is the position vector field r = v{x, y), and its plane 

polar coordinates are v' =* r, v® *= 0. The absolute velocity of Pisrt = ~ • 
dt 

9. Show that the plane polar coordinates of the (absolute) acceleration of 
P: {x, y) are (r« - r(0<)^ rBu + 2rtBt). 

Let, now, A: A be any linear vector function. When our fixed Car¬ 

tesian reference frame is the one for which ^ = 0 we term the elements 

of A the plane polar coordinates of the linear vector function A. We 
shall denote these plane polar coordinates of A as follows: 
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Note that the first letter in a symbol such as rB tells the row while the 

second tells the column; thus rB is the element in the rth (i.e., the first) 

row and in the ^th (i.e., the second) column. On denoting by A' the 

2X2 matrix whose elements are the plane polar coordinates of the 

linear vector function A and by A the 2X2 matrix whose elements 

are the coordinates of A in the fixed Cartesian reference frame Oxy we 

have 

A == RA^R* 

(in fact the elements of are the coordinates in the reference frame 

Oxy of the vector whose plane polar coordinates are A'p; hence A^ 

= RA^p, and since ^ — Rp and p is an arbitrary 2X1 matrix it follows 

that AR = RA'] since RR* = it follows that A == '/?*). We 

proceed to calculate div A in plane polar coordinates, and as a first 

step we calculate A* in the reference frame Oxy for which 0 = 0; since 

for this reference frame both R and R* are the 2X2 unit matrix, and 

since differentiation with respect to x is equivalent to differentiation 

with respect to r (so that both R^ and are each the 2X2 zero 

matrix) we obtain 

A. = A',. 

Since differentiation with respect to y is equivalent to differentiation 

with respect to B followed by division by r wc have 

r 

- - 0 
r 

+ A' 

row of Ax to the second row of Ay we obtain div A in plane polar 

coordinates. We find that the plane polar coordinates of div A are the 

elements of the 1X2 matrix: 
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EXERCISE 

10. Find the plane polar coordinates of the Laplacian Aav of a vector field v. 
Hint. Take A to be the adjoint of the linear vector function of Exercies 5. 

Answer. The first plane polar coordinate of A2V is {if)rr + - (v’‘)r + — 
r r* 

12 1 
--the second plane polar coordinate of AjV is (v^)rr H— (v^)r + 

r* 7*2 7. 

1 12 
- (»*)«» -1 
7.2 7.2 7.2 

2. Orthogonal curvilinear coordinates in the plane 

The general theory of orthogonal curvilinear coordinates in the plane 

is so similar to that of plane polar coordinates (which are a special case) 

that you should experience no difficulty with it, and we shall merely 

run over the main points. 

The position vector r = i^(0 —^P) is a differentiable function of two 

independent variables which we shall denote by (a, i3). Thus we 

have two equations 

X = x(a, /3); y = y{a, /?), 

and we obtain two families of curvilinear coordinate lines by holding 

first ff constant and then a constant in the equation 

r = T(a, /?). 

We assume that the two vectors 

To “ v{Xai ya)] Tp ~ 

are linearly independent, i.e., that the Jacobian determinant 

J = (r«, r^) = 
{x, y) 

(«, 
Xa 

Va 

Xp 

yp 

is different from zero, and we agree that the curvilinear coordinates 

(a, /?) are so ordered that J > 0. Furthermore we assume that the 

coordinate lines a = constant, p = constant intersect at right angles 

wherever they meet. Thus 

(talffl) = 0. 

We denote by Ui and U2 the unit vectors which have the directions of 

Ta and respectively, and we write 

Ui = hiXa\ U2 = hiXp 
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so that hi and h^, are the reciprocals of the magnitudes of ta and T/j, 
respectively. The 2X2 matrix whose columns are furnished by the 
coordinates of Ui and U2 is a rotation matrix 

(cos 6 —sin 

I sin 6 cos 6/ 

where B is the inclination of Ui to the positive x-axis. The coordinates 
of a vector v in the rectangular Cartesian reference frame for which 
0 *= 0 (i.e., in the rectangular Cartesian reference frame whose positive 
a;-axis has the direction of Ui) are known as the curvilinear coordinates 

of V. We denote these curvilinear coordinates of v by (v“, v^) so that 
V® = (Ui|v), = (U2|v), and 

V = v^Ui 4- 

If / is any differentiable function of a and /? (not necessarily a scalar) 
(cK, B) 

the 1X2 matrix (/x, fv) is the product of the 2X2 matrix --f by 
y) 

the 1X2 matrix (/«, /^). When the fixed Cartesian reference frame 
Oxy is such that ^ = 0 we have 

(why?) and so 7-^—r, which is the reciprocal of ) ' J. (why?), is 
(^, y) (of, fi) 

/hi 0\ 

\0 /l2/ 
Hence, for this particular reference frame, 

(fz, fv) = QliSa, hifff). 
In particular 

The curvilinear coordinates of grad /, where / is a differentiable 
scalar field, are (/ii/«, ^2//?). 

Observe that, when ^ = 0, Xa = 7-> !/« = 0, == 0,2/^ = ~ Note, 
hi n2 

The functions hi and h^ are most easily remembered as follows. Since 

ra = 7- Ui, r/5 = 7- U2 we have 
hi h^ 

da d^ 
ds = v{dXy dy) = tada + r^d^ == + T* ^2. 

All AI2 
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Hence (rfs)®, the squared magnitude of ds, is given by the formula 

(ds)= = (ds|ds) = + 
(d^y 

Thus 
hi and hz are the (positive) square roots of the reciprocals of the 

coefficients of and in the expression for (dsy. 

EXERCISES 

1. Show that the curvilinear coordinates of grad a are (hi, 0) and that the curvi¬ 
linear coordinates of grad /3 are (0, h^). 

2. Show that the curvilinear coordinates of the vector element of arc ds = 

v(dx, dy) are 

Let, now, v be any vector field, and denote by f the 2X1 matrix 
whose elements are the Cartesian coordinates of v and by a the 2X1 

matrix whose elements are the curvilinear coordinates of v. Then 

{ = Ra. 

Choosing, as always, the fixed Cartesian reference frame Oxy so that 
0 = 0 we have 

/o -0„\ /o 
Ro = ) 

\fl« 0/ \es 0/ 
and so 

/O -1\ 
£x = hiBa I J o + hiUal 

\1 0/ 
/O -1\ 

= h260 I I a “h 
\1 0/ 

The quantities (0a, 0^) are readily expressed in terms of hi, h2 and their 
derivatives with respect to a and 0, In fact, on differentiating the 
relation —sin 0 = h2X0 with respect to a and then setting 0 = 0 (so 
that = 0), we obtain 

0a 

On differentiating the relation {xaY 4- (i/a)^ = with respect to 
hi^ 

and then setting 0 = 0 (so that Xa — Va — 0) we obtain 
h\ 
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"h h 
Hence 6c = {hi)^, and, similarly, = - ^ The diver- 

/12 
gence of the vector field v is obtained by adding the first element of £* 
to the second element of Jy. Thus the expression in (orthogonal) 
curvilinear coordinates for div v is 

hi{v*^)ct — hiSaV^ + + h2{v^)^ 

h h 

= hi(v“)c — 7^ {hi)gv^ - (hi)cV‘' -H hi(v^)s 
h\ n2 

!(0«+(Oj' 

EXERCISES 

3. Express the Laplacian A^f of a scalar field / in orthogonal curvilinear coordi¬ 
nates. 

Answer, 

Note. Remember this important result. 
4. Obtain the expression for curl v in orthogonal curvilinear coordinates. 

, / vP 
Answer, hjiz 

5. Obtain the expression for the linear vector function A: 

orthogonal curvilinear coordinates. 
V(v*')x («>*')i,/ 

Answer. 

I hiiv«)a - ~ {hi)ffv^ h2{v^)p -f ~ ih2)aV^] 
hi hi 

[hi(v^)a + “ h2{vP)p - ^ ih2)aV*^l 
hi hi 

6. If / is a scalar field find the expression in orthogonal curvilinear coordinates 
of the linear vector function whose Cartesian coordinates are the elements of the 

matrix of second derivatives 
/fxx fxy\ 

Vi/x /»»/ 

Answer. 

f hi^faa + hiihi)afa — ^ hikifafi + Al(^2)a//5 + A.2(/li)/j/o ] 

{^hihifa^ + hi(}l2)afp + h2ihi)0fa -h h2{h2)$ffi — {h2)afa J 
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7, Find the orthogonal curvilinear coordinates of the (absolute) differential 
vector dv. 

Answer, 

8. Denoting the orthogonal curvilinear coordinates of a linear vector function A 
as follows: 

/ (xot a^\ 

determine the orthogonal curvilinear coordinates of the vector div A, 
Solution. On denoting by A the 2X2 matrix whose elements are the coordi¬ 

nates of A in the fixed Cartesian reference frame Oxy and by A' the 2X2 matrix 
whose elements are the orthogonal curvilinear coordinates of A we have A RA'R* 
and so 

Ax « RxA^ + A^x + A'R*x 

hiRctA' 4“ hiA'a 4" hiA'R*a 

to zero after the differentiation). Here 

/O -1' V hi 1 II 

0
 

U 0. 

/or \ h, 1 f 0 1' 
B*. - ff. 1 

\-i 0, 

II 

^
1
; 

M
 I
 ' 

^-1 0, 

Hence 

and, similarly. rly, 

/O -1\ hi / 0 1\ 
A, ^ - r ( jA'-h hzA'p - ^ (h2)aA' ( )• 

Aa \l 0/ \~1 0/ 

The vector div A is obtained by adding the first row of i4* to the second row of Ay. 

The first orthogonal curvilinear coordinate of div A is, then, 

hiiaa)a 4“ ^ (a^ 4- /8a) — ~ (^2)® — S®) 
til tl2 

while the second is 

hi(a^)a 4- h2(^)fi 4- (hi)0{aa — ®) — {k2)a{^ 4“ jSa). 
til tl2 

These may be written as follows: 

Firrt coordinate - ® (i) j, 
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Second coordinate 

9. Show that is the curvature of the first of the two orthogonal 

coordinate lines « constant) which passes through P, Hint. Since sin B 
=» h\ya we have, at 0 «= 0, 0® = hiyaa^ and the curvature of the line » constant is 

^aVaa ya^aa| 
IxJTy^ 

since hiXa =® 1 and j/a — 0 at ^ = 0. Hence «« 

^1*1 ^ao| 

3. Conjugate functions 

A simple and important way of obtaining systems of orthogonal curvi¬ 

linear coordinates in the plane is as follows. 

Let z = X + yi he SL function (in the complex variable sense) of 

y = a + ffi. Then dz = Zy dy so that 

(dsy = dzdz == 2y Zy dy dy, 

or, equivalently, 

(dxr + idyY = 

Hence a and P furnish a system of orthogonal curvilinear coordinates 

which is special in the following sense: 

We shall denote the common value of hi and simply by h. Since 

for any system of orthogonal curvilinear coordinates the Jacobian 

determinant 

j = y) ^ _L 
(a, fi) hihz 

we have here / = A’ The fimctions a = a(x, y), = fi(x, y) are 

termed conjugate Junctions; their level curves intersect at right angles 

(since these level curves are the coordinate lines of the system of 

orthogonal curvilinear coordinates furnished by the equations x 
= x(a, jS), y = y{a, fi)). We term the special system of orthogonal 

curvilinear coordinates which is furnished by a pair of conjugate func¬ 

tions a conjugate system, and we shall refer to the coordinates in a 

conjugate system of a vector or of a linear vector function as the 
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covQugaie coordinates of the vector or linear vector function. The 

following results (which we set as exercises) follow from the results 
for any system of orthogonal curvilinear coordinates by setting 
hi ^ hi = h, 

EXERCISES 

1. Show that the expression for the gradient of a scalar field / in a conjugate 
system is grad / = v{hfay hf^). 

2. Show that the conjugate coordinates of the vector element of arc ds » 

vidxj dy) are 7 {da^ dfi). 
h 

3. Show that the expression for the divergence of a vector field v in a conjugate 
system is {(»“)« + 

4. Show that the expression for the Laplacian A2/ of a scalar field / in a conju¬ 
gate system is 

A2/ = A*(/aa +/3^). 

Note, Pay particular attention to the remarkable simplicity of the expression for 
A2/ when h\ — h^, 

5. Show that in a conjugate system 

curl V = h\{v^)a - - v^ha. 

6. Obtain the expression for the linear vector function 

in a conjugate system. 

7. Obtain the expression 

Answer. 

for the linear vector 

A(v“)« ~ 

\h{v^)a 4* hfiv^ 
function 

A: 

+ haV^\ 

— haV°/ 

where/is a scalar field, in a conjugate system. 

(k%a + hhafa “ hhpfp -h hhaffi 4- hhpfa\ 
I- 

hy‘a0 + hhaf^ 4- hh^a 4" hh^fff — hhafa/ 

8. Obtain the conjugate coordinates of the (absolute) differential vector dv. 

Answer. i \h^ - +1 - hadp]v“y 

9. Obtain the conjugate coordinates of the divergence of a linear vector function 

Answer. A{(««)« 4- haiota — ^0) — 4- fia); 

h{(a^)a 4- (/3^)/3l — ha(oc^ + fict) -4 hff(oia ■— /3/3). 
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10. Show that the curvatures of the coordinate lines of a conjugate system are 
Ihfil and \ha\t respectively. 

Examples of conjugate systems 

1. z = e'T] y — log z. Here a = log r, jS = 0 so that the coordinate 
lines are those of the system of plane polar coordinates. The difference 

between this conjugate system 
and plane polar coordinates is 
that the first coordinate is log r 
instead of r. For this conjugate 

system h = = — 
r 

2. 2 = y^^] y = 2^ Here a = —— ^ 

— y^j 0 — so that the coor- 
dinate lines are two orthogonal 7^ 
families of rectangular hyperbolas. Z/y 

The point 0: (0,0) at which y» = 0 
is a singular 'point (what does this 
mean?) of the conjugate system. 

For this conjugate system h = Fia. 15. 
2|7|^'^ == 2r. 

3. 2 = 7^. ^ = 2^^. Here a: ~ y = 2a^ so that the first 

wm 
SillK 

system of coordinate lines is the family of parabolas x = — — 

jS 5*^ 0, all of which have the origin t0:(0, 0) as focus. (Prove this.) 
= 0 is the positive x-axis (why not 

the entire x-axis?). The second 
system of coordinate lines is the 
perpendicular family of parabolas 

* X = a 9^ Of all of which 

have 0:(0, 0) as focus. (Prove 
this.) a = 0 is the negative x-axis 
(why?). For this conjugate sys- 

^ 11 
Kio. 16. ^ ^ 

O:(0, 0), at which Zy = 0, is a singular point of the system. 
4. 2 == cos 7; 7 = arc cos 2. Here x = cos a cosh y = —sin a 

sinh The first system of coordinate lines is the family of ellipses 
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+ 
cosh* sinh* 

all of which have their foci 

= 1; 

at the points (±1, 0). (Prove this.) 
/3 = 0 is the segment ( —1, 0) (1, 0) 
of the a;-axis (why?). The second 
family of coordinate lines is the family 

of hyperbolas 

cos* a sin* a 
1; sin a 7*^ 0 

all of which have their foci at the points 
( ± 1, 0). (Prove this.) a = 0 is the ray 
(1, 0) —> C30 on the x-axis, and a = tt is 
the ray (— 1, 0) —> — co on the a;-axis. 

a is the interval variable 0 ^ a < 27r 

and is the unrestricted variable. For 
this conjugate system h = |sin 7|“^. Expressed in terms of the vari¬ 
ables X and y we have 

h = i7.| = 
(1 - 

1 

where ri and r2 are the distances of the point P from the common foci 

(± 1, 0) of the two systems of conjugate coordinate lines. 

EXERCISES 

11. Discuss the conjugate system furnished by the reciprocal function z = 
y 

12. Discuss the conjugate system furnished by the linear fractional function 
z — c 

7 as-(Assume that c is real and positive.) Show that the coordinate 
z c 

lines of this conjugate system are all circles. 

4. Orthogonal curvilinear coordinates in space 

The simplest and most important instances of orthogonal curvilinear 
coordinates in space are the systems of cylindrical coordinates and of 

space polar coordinates. Cylindrical coordinates are obtained by adding 
to a system of plane polar coordinates in the (x, t/)-plane a Cartesian 
coordinate z. Since we wish to reserve the symbols r and 6 for two 
of the coordinates of the system of space polar coordinates we shall 
now denote the plane polar coordinates in the (x, 2/)-plane by (p, </>); 
thus the system of cylindrical coordinates is defined by the formulas 
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X = p cos <l>; y = p sin <l>; 2 = z. 

Here p is the positive variable p > 0, is the interval variable 0 ^ 
< 2Tf and z is the unrestricted varia¬ 

ble, (t> is an angle measured in the 
(x, 2/)-plane; regarded as an angle in 
space it is a dihedral angle, i.e., an 

angle between two half-planes. These 
half-planes intersect in the 2-axis, and 
<t> is the angle from the half-plane 
which contains the positive x-axis to 

the half-plane which contains the 

point P:(x, 2/, 2). The points of the 
axis p = 0 of the system of cylin¬ 

drical coordinates are singular points 
of the system (why?). Since 

Tp = t;(cos 0, sin </>, 0); = v(—p sin </>, p cos 0); r« == y(0, 0, 1) 

the three unit vectors which determine the cylindrical coordinate 
reference frame at P are 

Ui = v(cos sin 0, 0); U2 = sin <^, cos <t>, 0); U3 = t>(0, 0, 1), 

and it is clear (prove this) that the tlu*ee unit vectors Ui, U2, and U3 are 

mutually perpendicular. The three cylindrical coordinates are so 
ordered that the alternating product (ui, 

U2, U3) is positive; in other words the 
3X3 matrix R whose columns are fur¬ 
nished by the coordinates of the vectors 

Ui, U2, U3 in the Oxyz reference frame is 

a rotation matrix, i.e., an orthogonal 
matrix whose determinant is 1. Since 

ds = v{dxj dyy dz) = Tp dp + d<i> 

-\-Tzdz = (dp)ui -f (p d<^)u2 + (d2)u3 

the squared magnitude {dsY of ds is 

{dsY = (dp)2 -f p2 {d4>y + {dz)\ 

The space polar coordinates of P:(x, y, z) are r, 0, where r = |OP|, 

B is the (unsigned) angle (^ tt) between the positive 2-axis and 0 

and <l> is the angular coordinate of the system of cylindrical coordinates. 
The connection between space polar coordinates and cylindrical 
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coordinates is furnished by the equations 

2: = r cos 6; p = r sin B 
and so 

X — p cos </) = r sin 6 cos <l>; y = p nin <f> = r sin $ sin 
z = 7' cos 6, 

where r is the positive variable, 6 is the interval variable 0 ^ 0 ^ tt, 

and <t> is the interval variable 0 ^ < 27r. Notice carefully the differ¬ 

ence between the two angular coordinates 6 and 0; 0 is an angle 

between two rays while </> is a dihedral angle. Since 

Tr = 2>(sin 6 cos siii ^ sin <#>, cos 0); 

Xe = v{r cos B cos <#>, r cos B sin <i>, —r sin B); 

= v(—r sin B sin r sin B cos 0) 

the three unit vectors Ui, U2, U3 which determine the space polar coordi¬ 

nate reference frame at P are 

Ui == ^(sin B cos <^, sin B sin 4>, cos B); 

U2 = y(cos B cos (f>, cos B sin — sin B); 

Uj = t;(— sin <t)y cos <t>y 0) 

(notice that we pass from Ui to U2 by replacing 0 by B + w). Since 

ds = v(dxy dy, dz) = {dr)vLi + (r c?0)u2 + (r sin B d<i>)\iz, and since Ui, 

U2, and U3 are mutually perpendicular (prove this) we have 

{dsy- = (ds|ds) = {diY + r"-{de)- + sin^ 0 (d^y. 

The points of the polar axis (i.e,, those points for which either r = 0 

or 0 = 0 or tt) are singular points of the space polar coordinate system. 

Finally the order in which the space polar coordinates are chosen is 

such that the alternating product (ui, U2, U3) is positive (being in 
fact 1). In other words the 3X3 matrix R w^hose columns are 

furnished by the coordinates of the vectors Ui, U2, Us in the Oxyz 

reference frame is a rotation matrix (what does this mean?). 

Cylindrical and space polar coordinates are particular instances of 

the general concept of a system of orthogonal curvilinear coordinates 

in space. These are furnished by a vector formula 

r = r(a, 0, y) 

i.e., by three equations 

x = x{a,0,y); y = yia,0,y); z = z(a, 0, y). 
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We denote the magnitudes of the vectors fa, r^, by —> —> —> respec- 
h\ h2 hz 

lively (it being granted that none of these vectors is the zero vector), 
and we define the three unit vectors Ui, U2, U3 as follows: 

Ui = hiXcc\ U2 = U3 == hzty. 

We assume that the three unit vectors Ui, U2, and U3 are mutually 
perpendicular and that the curvilinear coordinates a, jS, 7 are so 

ordered that the alternating product (ui, U2, U3) is positive. (Prove 
that the value of (ui, U2, U3) is then 1.) The rectangular Cartesian 

reference frame whose axes have the direction of the unit vectors 
Ui, U21 and U3 is said to be the curvilinear coordinate reference frame 

which is attached to the point P. The coordinates (y", v^, v^) of any 

vector V in this Cartesian reference frame are termed the curvilinear 
coordinates of v; thus 

V ==* V^Vii + t^%2 + 

If, then, we denote by J the 3X1 matrix whose elements are the 

coordinates («;*, v^, v^) of v in the fixed Cartesian reference frame Oxyz 

and by a the 3X1 matrix whose elements (t;“, are the curvilinear 
coordinates of v we have 

i = Ra, 

w here R is the 3X3 rotation matrix the elements of whose columns 

are the coordinates, in the fixed Cartesian reference frame Oxyz^ of the 

unit vectors Ui, U2 and Us. 
If /(a, 7) is any differentiable function of (a, /?, 7) the 1X3 matrix 

(/x, /v, fz) is the product of the 3X3 matrix by the 1X3 
Vi 

matrix (/«, /js, />). When the fixed Cartesian reference frame Oxyz is 

so chosen that R is the 3X3 unit matrix Ez we have 

(a;, y, z) 

(a, /3, 7) 

hi 
0 0 

0 
1_ 

h2 
0 

0 0 
hz. 
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and so (why?) 

hi 0 0 

0 h2 0 

0 0 /is 

Hence 

(q^> y) 

Vy z) 

(/*> Svy /*) ~ {hifay h‘jj^y hzfy). 
In particular 

The curvilinear coordinates of grad where / is a scalar held, are 

(hifay WiS, /isA)* 
Observe that for the particular fixed Cartesian reference frame Oxyz 

which furnishes the curvilinear coordinate reference frame at P 

Xa “ 7 ^ 2/« ^y ^0 0, j ~fZ0 — 0, 
h-i 1I2 

Xy = 0,yy= 0, Zy = ~ 
hz 

Since the vector ds = v(dx, dy^ dz) 

we have 

Us 

(<fe)= = (ds|ds) = 
A,* 

4. 

/is^ ‘ 

This formula provides the easiest way of remembering the expressions 

for the functions /ii, /12, and hz. Thus 

For cylindrical coordinates (hi, /12, hz) 

For space polar coordinates (hi, h^, hz) 

EXERCISES 

1. Show that the cylindrical coordinates of grad/are 

2. Show that the space polar coordinates of grad/ are (/r, -/e, -—^—- /^ )• 
y r r sin 9 / 

In order to evaluate the divergence of a vector field in orthogonal 
curvilinear coordinates we must evaluate the derivatives of the ele¬ 
ments of R with respect to (x, y, z), where Oxyz is the fixed Cartesian 



ORTHOGONAL CURVILINEAR COORDINATES 107 

reference frame for which R is the 3X3 unit matrix Es. (Why, then, 

is the derivative of R with respect to x, for example, not the zero 
matrix? Hint R is Ez at P but not at every point P + AP of a 

neighborhood of P.) Since PP* = Ez (at every point) we obtain, on 

differentiating this relation with respect to x and evaluating the deriva¬ 

tive at P, where P = P3 = P*, 

Rx “h P*® = 0, 

Thus Rx is a skew-symmetric matrix (when evaluated at P). In 

other words if rjb» denotes the element in the jth row and kth. column 

of P we have 

(nO® = 0; (ri^)x = —{ri^)x] A* j = 1, 2, 3. 

It is clear that these relations remain valid if x is replaced by y or by z 

(why?) or by a, /S, or 7 (why?). Furthermore 7-2®, for example, = 

and so (7*2®)® = /ii(7'2®)a = hih^^Sfia at P (since Zp 0 atP). The sym¬ 
metry of Z0a in the labels and a tells us that 

(ri®)y = (r2®)®. 

It follows that each of the three derivatives 

(r2®)®, (rsOi/, 

is zero at P. In fact 

(7*2®)® = -(^3-)® = “(rr). = (r2^)z = (rsOv = = “-(7-2®)® 

so that (r2®)* = 0; similarly (r3^)v = 0, (ri^), = 0. To calculate the 

various derivatives of the type (r2®)* we observe that since r2® = 

(r2^)y = at P (why?). On differentiating with respect to the 

relation 

— = (iT^r)^ + (2/>)^ + (^7)^ 
hz^ 

and evaluating at P we obtain 

+ 7-: = — 27/5* 
hz^ hz 

Hence Zy^ = so that (r2®)7 == h2 Thus 
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Note. The elements of the first column of are the coordinates 
of the curvature vector at P of the first coordinate curve through P 
(since the curvature vector is the derivative, with respect to arc length, 
of the unit tangent vector). 

Since f = i^a we have, at P, 

““ IRjfii } hlQ/fx J I^yCi I hzCip f Rz^ | h^Ciy, 

The divergence of the vector field v is obtained by adding together the 

first row of {», the second row of and the third row of We 
obtain 

divv =■ Ai(r“)a + hihi tii' 

+ hihi v” + h2(v^)fi + hjii 
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= l(i). + (£), ^ 
EXERCISES 

3. Show that div v is given, in cylindrical coordinates, by the expression 

ivP)p + -+ - iv*U + W*. 
p P 

4. Show that div v is given, in space polar coordinates, by the expression 

i«')r + - »' + - (!>*)« + — V> + -4— i«*U. 
r r r r sm $ 

5. Show that the expression for the Laplacian Az/of a scalar field/in orthogonal 
curvilinear coordinates is 

- hM. 

Hint. A2/ = div grad /; the curvilinear coordinates of grad / are (hifa, A2//3, hjfy). 
Note. Remember the result of this exercise; it is one of the most useful formulas in 
applied mathematics. 

6. Obtain the expression for A2/ in cylindrical coordinates. 

Answer, fpp -f -/p + 4*/«. 
p p* 

7. Obtain the expression for A2/ in space polar coordinates. 

2 1 cot 9 ^ 
Answer. /„ ~ fr -¥ — fee -fe + - 

1 
■ fibdy- 

r r- /- r* Sin* 0 
8. Obtain the expression for curl v in orthogonal curvilinear coordinates. Hint. 

The first coordinate of curl v is obtained by subtracting the second row of from 
the third row of ^y. 

f/rA (fA\ \ 
Answer. The first coordinate of curl v is il— I — 1;-) il the second 

IV3/U Xhi/yf 

coordinate is h^hi f - U- ; and the third coordinate is hih2 

9. Determine the cylindrical coordinates of curl v, 

Answer. e iv% ~ (v4),; (pp), - (i>*)p; {v*)p - - (vP)^ 4- 
P P ;-)■ 

10. Determine the space polar coordinates of curl v. 

" 0 Answer. I - ——: (»*)♦ + V*', ■ («>’■)♦ - (»*)r -- V*, 
r sm 0 r r sm 0 r 

1 1 
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11. Obtain the orthogonal curvilinear coordinates of the linear vector function 

’(«*). («*)« (»*)/ 

(»»)x (»»), (IS'). 

_(»•). (»*)» W.. 

Hint. The columns of the desired matrix arc {x, and 

Answer. hi(if‘)a 4- hlhi — ) 4- hihi 
ii/0 

hi{l^)a — hihz ( ■: 
U/f 

h\ivy)a — hihz O/ 

h2(v“)0 — hshi fe). h«(»“)Y - I r I 

hi{v^)0 -f- hihi 17“) 4" hihx \ T" ) hz(v^)y — hih 

— hihz I f" I 
* 'y 'fc)r 

hz{v'y)y 4“ hzh\ hzhz 

12. Write out the cylindrical coordinates of the linear vector function of P^xercise 

11. 

Answer. (»0p 

1 1 

p p 

- 
P 

Wp 

13. Write out the space polar coordinates of the linear vector function of Exer¬ 
cise 11. 

(vOr - (v^)e 
1 

r sin 6 
{v% - -V* 

{v^)t - {{v^)0 4“ tr] —]— {v% - V* 
r r sm 0 r 

r 

1 cot I 
—r-- 4- “ w*' 4- 
r sin 0 r 

Answer. 
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14. Obtain the orthogonal curvilinear coordinates of the linear vector function 

fxx fxy fxM 

A : fyx fyy fyz , 

\_fzx fzy ftzj 

where / is a scalar field. Hint. Set vy) = (htfay hifp, k^fy) in the answer to 
Exercise 11. 

15. Obtain the orthogonal curvilinear coordinates of the vector field dv. Hint. 

Multiply the 3 X 1 matrix 
/dot dft dy\ 

\hi hz / 
by the 3X3 matrix given in the answer to 

Exercise 11. 

Answer, dv is the sum of the vector whose curvilinear coordinates are (dv®, dv^, 
dvy) and the vector product of v by the vector whose curvilinear coordinates are 

If A is any linear vector function we denote its orthogonal curvilinear 

coordinates (what does this mean?) as follows: 

Ota a/3 a7 

A' = iSa iS/3 . 

ya y^ yy _ 

Then A = RA'R* so that (at the point P where R is the unit 3X3 

matrix 
A* = RxA' + A'x + A'R^x. 

From the expression given above for Rx it follows that the element in 

the first row and first column of A* is 

hi{aa)ct + (a/S + jSa) + hjH {oty + 7a). 

Similarly the element in the second row and first column of Ay is 

+ A2/11 + ^2^3 /i2(i9a)/3 + A2/11 

and the element in the third row and first column of A ^ is 

hs{ya) + hzhi "I" ^*^2 ““ (/t) 

On adding these three expressions together we obtain the first curvi¬ 
linear coordinate of div A. It may be written in the form 
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1(S;I + {h£), + fe)J + (iX ^ 
(0 ^Q) (r,) '^- 

The other two coordinates are obtained by permuting cyclically the 

letters a, /3, y and the labels 1, 2, 3. Note. This result is of importance 

in the Theory of Elasticity. 

EXERCISES 

16. Write out the cylindrical coordinates of div A. 

Answer. (pp)p H—pp + - (<t>p)^ + (zp)*-«/></>; (p4>)p + “p^ + ~ + C^*/*)* 
p p p P p 

+ - <^»p; (p2)p + - p2 H— + izz)t. 
p p p 

17. Write out the space polar coordinates of div A. 

^ 2^1^ cot $ ^ 1 ^ 
Answer. (rr)r H— rr H— {er)e H-&r H-:--- 

r r r r sm 0 r r 

2 1 cot 0 - 
(^^)r d-Td -(00)$ H-< 

r r r 

1 I cote ^ 
-^- r sin ^ r r 

, ^ 2 ^ 1 , cot 0 1 
(r</>)r H— H— H-0<l> H-—~ 

r r r r sin 0 

1 ^ cot 0 ^ 
H— H-K^0. 

r r 

18. Denoting by E the average ^(A + A*) of the linear vector function A of 
Exercise 11 and its adjoint A* determine the orthogonal curvilinear coordinates 
of E. 

Answer. Denoting the desired curvilinear coordinates by 11, 12, etc. we have 

11 = "h h,\h‘i 

4" — hthz vy 

1 

2 
— {hzvy)fi + 7~ {h2tfi)y 
rlz fl9 

32. 

The other coordinates are obtained by permuting cyclically the coordinates a, y 
and the labels 1, 2, 3. Note. This important result furnishes the orthogonal 
curvilinear coordinates of the strain tensor in the theory of elasticity. 

19. Write out the cylindrical coordinates of the linear vector function £ of 
Exercise 18. 
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Answer. 11 = 22 = - \ {v*)^ + t?^}; 33 =* (v*),; 23 
p 2 

1 
Answer. 11 * 22 *= - + »*“); 33 

1 1 
(v% 4- 

1 I 
31 = - {(v^h + (f^)p}; 12 = - I {v^)p 4- : (v% -- v<i> 

20. Write out the space polar coordinates of the Hnear vector function E of 
Exercise 18. 

1 , ,1 , cot 0 
—r-- (v*)^ 4- - H-v®: 
r sin 0 r r 

1 

2r 

1 
23 * — j {v*)e 4- —- (.v% - cot e 

sin $ 
31 

2 (r sm 0 r 

12 

21. Determine the cylindrical coordinates of AaV, the Laplacian of a vector 
field V. Hint. A^v is the divergence of A* where A is the linear vector function 
whose cylindrical coordinates are given in the answer to Exercise 12. See Exer¬ 
cise 16. 

11 2 1 
Answer. (vP)pp 4“ “ (v^)p 4* -r -; -; 

p p* p* P* 

i.V*)pp + - + “2 (VP)^ - \ V*] 
p p^ p^ p* 

(v')pp 4- ~ (t^)p 4- ^ 4- (v‘)«. 
p p* 

22. Determine the space polar coordinates of A2V, the Laplacian of a vector 
field V. 

2 1 cot 0 
Answer. (vOrr 4- - (p’‘)r 4--: (vOw 4-r- + , • o « ^ («^W - 

2 cot 9 _ . 
r* sin 0 

(«^V; 

(»»)„ + - (t-»)r + ^ ^ (t>»)9 + , . , ^ 
r r* r2 sin** ^ 

4- (*'’■)» 

cosec* 0 
»<* — 

(V^)rr 4- - {V*)r 4" \ 4- 4- - 4" r f2 ^ y.2 gin2 e 

2 cos ^ 

r* sin* ^ 

2 

r* sin 0 
(O’)t 

2 cos 9 , cosec' « ^ 
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LAPLACE’S EQUATION 

1. Problems in electrostatics 

In an electrostatic field there are two fundamental vectors: 
1. The electric intensity vector E. This vector is such that the 

mechanical force which acts on a point charge e is given by the formula 

F = cE. The line integral I (Elds), along any curve C connecting 
cjpo 

any two points Po and P, is independent of the curve C and so there 

exists a scalar point-function F(P) such that 

J^%|ds) = F(P„) - V(P). 

The function F(P) defined by this relation is indeterminate to the 

extent of an additive constant; if the electrostatic field is unbounded 

we determine this additive constant by arranging that F(P) —► 0 as 
P —► oc (it being assumed that F(P) has a limit as P —► <»). Note, 

The definition of F(P) by the formula given above rather than by the 
formula 

f'^CElds) = F(P) - F(P„) 
c/ Pq 

is attributable to a desire to have the direction of E that of the 
negativej rather than of the 'positive^ gradient of F so that F decreases 
(rather than increases) in the direction of E. It follows from the 
definition of the point-function F(P) that 

E = -grad F. 

Hence at any point P, E is perpendicular to the level surface of the 
point-function F which passes through P. F(P) is called the potential 

114 
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of the electrostatic field, and a conductor is an equipotential surface^ i.e., 

a level surface of the potential point-function. 

2. The displacement vector D. The displacement vector D deter¬ 

mines the distribution of charge in the electrostatic field as follows: 

The surface integral dS) of D over any closed surface S (where 

dS has the direction of the outward normal to S) furnishes the amount 

of electric charge inside (in the sense of: interior to or on) the surface. 

If S is the surface of a conductor and if n is the outward unit normal to 

S then 

D„ = (D|n) = (T 

is the surface density of electric charge on S, the total charge on S being 

dS). 

Note. Be sure that you understand clearly the different roles of 

the two vectors E and D. E serves to determine the mechanical force 

that would act upon a point charge at a given point P of the electro¬ 

static field while D serves to determine the distribution of electric 

charge in the field. E is what may be termed a line vectory i.e., the 
kind of vector which is integrated along a curvCy while D is w^hat may 

be called a surface vector, i.e., the kind of vector that is integrated 

over a surface. 

Let W denote the volume of which a given closed surface S is the 

boundary (we use W rather than V since w^e are using V to denote the 

potential of the electrostatic field; we shall denote the element of 

volume dx dy dz by dr). The relation 

- i div D dr 

tells us that the charge w^hich is distributed over W is furnished by the 

volume integral D dr = J^p dr, where p = div D. For this 

reason the point-function p = div D is knowm as the volume density of 

the distribution of charge in the electrostatic field. At points free 

from charge p = 0 so that 

div D = 0. 

If we consider the electrostatic field due to a single point charge e 

located at the origin O of a system of space polar coordinates, reasons 
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of symmetry tell us that the polar coordinates of D are (Z)’’, 0, 0), where 

is a function of r alone. Taking S as the surface of a sphere of 
radius r with center at O we have 

J^(D|dS) = 47rr2D>' 

and so (why?) 

ly = —- 

w 

The same reasons of symmetry tell us that the space polar coordinates 
of E are (E’’, 0, 0), where is a function of r alone, and experience 

shows that E*' varies as The unit of electric charge is determined 
ri 

so that, in empty space, 

or, equivalently (why?). 

= — and so y.2 

1 T. Dr ^ 
Air 

We postulate that this relation is valid at points free from matter in gen¬ 
eral electrostatic fields and not merely for the electrostatic field due to 

a single point charge. Then on combining the relations 

we obtain 

div D E = -grad V 

A2F = div grad V = —Airp. 

This equation governing the potential of an electrostatic field is known 

as Poisson’s equation (after S. D. Poisson [1781-1840], a French mathe¬ 
matician). At points w'here p = 0, i.e., where there is no volume 
density of electric charge, it reduces to 

A2F = 0. 

This is known as Laplace's equation (after P. S. Laplace [1749-1827], a 

French mathematician). The problem of determining the electro¬ 
static field due to a charged conductor may, then, be phrased as 
follows: 
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Determine a solution V of Laplace's equation A2F = 0 which takes an 

assigned {constant) value Fo over the surface of the conductor. 

It is understood that F possesses a continuous matrix of second 

derivatives (and, hence, a continuous gradient) over the volume TF 

bounded by S and that F is continuous over TF + /S; furthermore, if 
TF is the region exterior to F must satisfy certain conditions, which 

we shall describe shortly, as the point of evaluation P of F 00. 

That this problem does not have more than one solution is an 

immediate consequence of the relation 

r {(/A2/+ (grad i?|grad/)} dr = Xg^dS 
jw js an 

(see Exercise 19, p. 30). When g = f this relation becomes 

+ (grad/|grad/)) dr = ff -^dS. 

If f is the difference of two hypothecated solutions of the conductor 

problem we have A2/ = 0 over TF (why?), and / = 0 over S (why?). 

Hence, when TF is the interior of S, 

J^(grad/|grad/) dr = 0. 

Since (grad /[grad /) is continuous and ^ 0 over TF it follows that 
(grad /|grad /) = 0 over TF (why?) and hence that grad / is the zero 

vector over TF. Hence / is constant over TF, and, being zc^ro over S, 

/ must be zero over TF. Hence the two hypothecated solutions of the 
conductor problem are one and the same. 

Note 1. It is clear from the proof that it is not necessary for the 

validity of this uniqueness theorem that F be constant over S or that 

A2F be zero over TF. All that is required (in addition to the con¬ 

tinuity assumptions) is that F have an assigned value at each point of S 

and that A2F have an assigned value at each’ point of TF. Then the 

difference / of two hypothecated solutions is zero over S and is such 

that A2/ is zero over TF; thus the proof proceeds as before. 

Note 2. The uniqueness theorem limits the number of possible 

solutions to one, but it does not show that there is actually one solu¬ 

tion. This existence theorem is known as the Dirichlet problem (after 

P. G. L. Dirichlet [1805-1859], a German mathematician). Its proof 

requires a detailed treatment, and we shall not enter into it here; a full 

discussion may be found in Foundations of Potential Theory by W. D. 
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Kellogg. In the problems we shall treat we shall actually furnish a 

solution of the conductor problem, and we only need the uniqueness 
theorem (proved above) to assure us that this solution is the one and 
only solution. 

When W is the interior of the closed surface S the one and only solu¬ 
tion of the conductor problem is F= F„, where To is the assigned 
constant value of V on S. Hence we have the following theorem 

(which explains the screening effect of closed conductors): 
The elecirostaiic potential throughout the interior of a closed'conducting 

surface is constant. 
Since E = —grad V an equivalent form of statement of this 

theorem is as follows: 
7^he electric intensity inside a closed conductor is zero. 

Note. If the region W is bounded by an exterior surface S' and an 

Fig. 20. 

interior surface S (both surfaces being those 
of conductors) the electric intensity through¬ 

out W will be zero if, and only if, F'o = Fo 
i.e., if, and only if, both conductors are kept 

at the same potential. When F'o 9^ Fo there 
will be a non-zero electric field throughout 
TF, and the problem of determining F for 
this field is known as the condenser problem. 

In view of the relation (see Exercise 18, p. 30) 

we have, since A2F = 0 over IF, 

- - dS = 0 
' an 

(the unit normal vector n being, in each of the two surface integrals, 

drawn away from W). Since 

— = (grad y|ii) = -(E|n) = -45r(D|n) = 4x0- 

(where a is the surface density of charge on the inner side of S' and on 
the outer side of S) the relation just written may be put in the form 
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In other words the total electric charge I trdS on the outer side of the 
Js 

conducting surface S is the negative of the total electric charge I a dS 
Js' 

on the inner side of the conducting surface S\ We term the absolute 
value of either of these charges the charge on the condenser, and we 

term the absolute value of the difference Po F'o between the 
potentials of S and respectively, the voltage of the condenser. The 
ratio 

charge on condenser 

voltage on condenser 

is known as the capacity of the condenser. 
When W is the region external to a single conducting surface S the 

electric field throughout W will not be, in contrast with the internal 
field, zero unless Fo = 0, i.e., unless the con¬ 

ductor is at zero potential. The reason for 

this is that the unbounded region W must 
first of all be replaced by a bounded region 
IT' which may be conveniently obtained as 
the region between the inner conducting sur¬ 

face S and an outer conducting surface S' 
which is a sphere of sufficiently large radius 
r with its center located at any convenient 
origin 0. We then investigate what happens 
as r —> 00. In order to prove the uniqueness theorem we must now 

pay attention to the integral 

where f is the difference between two hypothecated solutions of the 
(external) conductor problem. If this integral has the limit zero at 
r = 00 the uniqueness theorem is valid since then the (improper) 

integral 

J^(grad /|grad /) dr 

is zero (the integral being improper since the region W is unbounded). 
df 

In order to make sure that the integral of / — over S' is null at r = <» 
dn 

we impose the following condition on the potential function V: 
Not only is V null atr = cx> hut the product r grad V is null atr ^ oo. 
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Tliis condition is sufficient to ensure that the 
dV 

integral of V — over 
dn 

S' is null at r = oo, and this implies (since both / and r grad / are null 
rl-f 

at r = 00) that the integral of / -p over S' is null at r = oo. In order 
dn 

to see that the conditions imposed on V near /• = oo are sufficient to 

mak(i the integral of V — over S' null at r = oo we first observe that 
dn 

Fig. 22. 

the function - satisfies Laplace\s equa- 
r 

tion at all points save 0. (Prove this. 
Hint See Exercise 7, p. 109.) Let, 
then, 0 be any point exterior to the 

closed conductor S, and let W" be 
the region bounded by aS, by a sphere 
S' of sufficiently large radius and 

by a sphere S" of sufficiently small 
radius e (both S' and S" having the 

same center 0). Applying to W" the 
relation (see Exercise 20, p. 31) 

dS 

we obtain 

since 

dS = 0 

A2F = 0, = 0 

over W". Over S, V has a constant value Fo and so 

dS = 0 

(since A 0 over the interior of S, See Exercise 7, p. 109). 

dV 
Furthermore, over S, — — where a is the surface density on the 

outer side of S. Hence 
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(since dS — sin 6 dS d<t> over S'), Hence, since V is null at r = oo, 

I ^ (“ ) at = 00. Since r grad V is, by hypothesis, 
Js* dn \r/ 

null at r = 00, J dS is null at r = oo (why?). Over S''^ 
S' J* CiTl 

dS = sin 8 do d4> and so I “ ^ dS is null at e = 0. On the other 
Js" r dn 

dS is null at 6 = 0. On the other 

hand I F ) d/S has the limit 4x7(0) at e = 0. (Prove this. 
J-s" dn \r/ 

Hint. Remember that n has the direction of the inward drawn radius 

of S"\ hence, over S", ^ ==“;)• C>n letting € •-> 0 and E —» oo 

we see that 

or, equivalently, 

4x -dS - 4xF(0) « 0 
\J S T 

7(0) = I -d-S. 
Jsr 

Since O is any point exterior to the conducting surface S this relation 
may be phrased as follows: 

The potential at any point P external to a conductor S is given by the 

surface integral 

F(P)= (-dS, 
Js r 

where a is the surface density of charge on the outside of S and r = |QP| 
is the distance from the variable point of integration Q of integration on S 

to the point of evaluation P of V. 

Note 1. This important result is easily remembered as follows: The 

element of the integral which furnishes F(P) may be regarded as 

the potential at P of the charge <r dS on the element of area dS at Q. The 

potential at P is the result of integrating over S the potentials of the 

charges a dS on the various elements of area dS of S. 

Note 2. It is clear that the result just proved is valid if there are 
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present several conductors Si, St, Sn. Then 

- f Jsi r 

Let, now, O be any fixed origin, and denote \OP\ by R (to distinguish 
it from r = |QP|, where Q is the variable point of integration on S), 

Then it follows at once from the formula 

F(/>) 

that not only is V(P) null at R = oo but also the product RV(P) has 

a limit at = <», this limit being the charge J* a dS on S (or, if several 

conductors * • * , Sn are present, the 
/ sum of the charges on these various con- 

( j / ductors). In fact if we denote by d the 

absolute maximum of IOQI over S we 

N f j have [r — ^ d (why?) and so ~ has 

at 2? = 00 the limit 1, the convergence 

23. of ~ to its limit 1 being uniform over 
R 

(What does this mean?) Hence ~ has at R = ^ the limit 1, the 
r 

R 
convergence of — to its limit 1 being uniform over S, But 

r 

R V{P) 

and so R V(P) — ^ ^ null at R = (why?). In other words 

R V(P) has at R = CO the limit J a dS. 

EXERCISES 

1. Show that if V(P) is the potential due to a point charge in the presence of 
one or more conductors then RV{P) has at 72 = oo a limit equalling the total 
charge in the field, i.e., the sum of the point charge and the charges on the various 
conductors. Hint. A point charge e is characterized by the fact that near it V is 
unbounded. The product rF, where r is the distance from the point charge, is 
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granted to be bounded at r *= 0, and the integral of 7— over any sufficiently small 
an 

surface enclosing the point charge, n being the outward drawn normal, is — 47r€. 
Apply the argument of the text to a region obtained by removing from the region 
W” of the text a sphere of sufficiently small radius with center at the point 
charge, obtaining 

V{P) 
r adS . C erdS e 
1-h • • 
jSi r JSn r r 

where, in the last term, r denotes the dis¬ 
tance from the point charge to P. 

2. Show that the potential function of 
the field of several point charges ci, • • • , 
ek in the presence of several conductors Si, 
• • • , jSb is given by the formula 

V{P) = 
adS C cdS 

Jsi r Jsn r 

+ - + 
ri 

€k 
■ —» 

rk 

where r,-, i = 1, • • • , A:, is the distance from the^th point charge to P. 
Warning. Do not fall into the illusion of thinking that this formula solves 

the problem of determining the electrostatic field of several point charges in the 
presence of several conductors. The surface density of charge a on the various 
conductors is unknown and can be determined, only after the problem has been 

dV 
solved, by means of the relation — = — 4ira. 

dn 
Note. The part of the formula for F(P) which is known before the problem is 

Cl Cfc 
solved, namely,-h * • • H-, is termed the inducing potential, and we shall 

ri r* 

denote it by F'; the remaining part, namely, | . . . -f. I is termed 
Jsx r Jsn r 

the induced potential, and we shall denote it by F". Thus 

F = F' + V”, 
and the general problem of electrostatics may be phrased as follows: Given the 
inducing potential F', determine the induced potential F" so that their sum 
F = F' 4* F", which is the actual or total potential of the field, may satisfy the 
various conditions imposed on it. These conditions are 

1. F must be a solution of Laplace^s equation A2F = 0. 
2. F must have an assigned constant value on each conductor in the field. 

dV 
3. The integral of — over any sufficiently small surface enclosing a point 

dn 
charge must be the product of this point charge by — 47r. 

4. F must be null at r = 00, and r grad F must be null at r — «. 
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3. Prove the uniqueness theorem for the field of several point charges in the 

presence of several conductors. 

4. Show that the potential of a single point charge is — Note. Alt hough this 
r 

is not the definition of the potential of a single point charge (what is the definition of 

this?) it was in order to have this relation that the hypothesis D = ~ E =» 

— — grad V was adopted. 
47r 

5. Show that the potential of a charged sphere is (at points outside the sphere) 
the same as if the total charge were 
concentrated at the center of the sphere. 
What is the potential of the charged 
sphere at points inside the sphere? 
What is the surface density of charge on 
the sphere? 

6. Show that one of the hwel surfaces 
of the potential function V' = V(P) of 
two point charges of unlike sign is a sphere 
whoso center is on the line joining the 
two point charges. Hint. If the point 
charges are c' and e" the level surface 

' are the distances of a variable point 

P of the level surface from the charges e' and e", respectively. 
7. Show that if C is the center and a the radius of the sphere of Exercise 6 

and if the point charges e' and e" are at Q' and Q", respectively, then |CC>'| \CQ”\ 

Fro. 25. 

r" c" 
E — 0 is such that -7- ---> where r' and 5 

r P 

and — i^gTj' Hint. To obtain the relation e” = — ICQ'l ‘ 

evaluate — at the point where the sphere intersects the rav C —> Q'. 
r 

8. Show that the induced potential of a point charge c' at a point Q' outside a 
conducting sphere of radius a which is earthed, i.e., maintained at potential zero, 

ae^ 
is the same as that of a point charge e" = - located at the point Q", where 

Q" is located on the ray C —Q', and such that \CQ'\ ICQ"! = a^. Hint. Show 
e' e" 

that ^ ^ 'h satisfies all the conditions imposed on V, and use the uniqueness 

e" 
theorem. Note. The point charge e" whose potential Y” = -- is the induced 

r" 
potential is termed the image in the earthed sphere of the inducing point charge e' 

^whose potential is F' = The point Q'' at which the image of e' is located is 

termed the image point of in the sphere. 

9. Show that the capacity of a condenser formed by two concentric spheres of 

radu o and 6 > a is the reciprocal of ^ Hint. Tlie potential of the 
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electrostatic field between the two spherical conductors is of the form AH—t 
r 

where r denotes the distance from the common center of the two spheres and the 
constants A and B are so determined that V (P) has assigned values on the two 
spherical conductors. 

10. Show thnt the capacity of a sphere of radius a is a. Note. The capacity 
of a single conductor is the limit at r = oo of the capacity of the condenser formed 
by the giv(;n condu(;tor S and a sphere S' of sufficiently large radius. It is the 
ratio of the charge on the conductor to its potential, (Prove this.) 

2. The melhod of separation of variables 

The conductor problem may be divided into two parts: 

1. We must solve Laplace^s differential cejuation A2V = 0. 

2. We must adjust the solution of Laplace^s equation which we have 

obtained to the boundary conditions; for example, we must make sure 

that V takes an assigned constant value over each of the given con¬ 

ductors, and, if the field is unbounded, we must make sure that V{P) 
behaves properly (what does this mean?) as r —» 00, 

Of these two parts the second is the more difficult and the more 

individual; the potential of every conductor problem must satisfy 

Laplace's equation, and what distinguishes one conductor problem 

from another is the shape and loctation of the one or more conductors 

invoIv(‘d. The boundary condition over a conductor is very stringent. 

Thus if the surface S of the conductor is given by 

r = x{Uy v) 

then V = V{P) = V{x, y, z) becomes, over S, a function of the two 

independent variables, or parameters, u and v. This function must 

be a constant function of u and v. Let us suppose, for example, that 

u = y, V = z so that the conductor S (or, at least, a portion of it) is 

furnished by an eejuation of the form 

X = xiy, z); 

then V{Xy y, z) must reduce, when x is replaced by x{yy s), to a constant 

function of (y, z). The simplest case would occur when x(yj z) is a 

constant function Ci, say, so that S (or, at least, a portion of S) is 

part of a plane parallel to the x-plane. If Fo is the assigned potential 

of the conductor S the function 

F(ci, yy z) ~ Fo 

must be zero, identically in y and z. In other words the function 
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V{x, y, z) — Fo must have the property that when x is set equal to Ci 

the resulting function of y and z must be identically zero. One way of 

securing this result is to have F(x, z/, z) — Fo the product of a function 

X of X alone by a function C7(2/, z) which does not involve x: 

V(x, y, ;2) - Fo = X{x) U(y, z). 

If X(x) is such that X(ci) = 0 then V(z, y, 2) — Fo is such that 

F(ci, y, z) is identically zero. It is clear that this is not the only way 

of making sure that F — Fo is zero, identically in y and 0, when 

X = Cl. In fact the sum of any number of terms of the type X{x) 

U{y, z) would do equally well, 

V{x, y, z) ~ Fo = X,{x)U^{y, z) + - - + Xn(x)Un(y, z\ 

provided that each of the functions Xj(x), j = 1, • • • , n, has the 

value zero when x = Ci; and we may let n = cc provided that con¬ 

vergence questions are attended to. Since F satisfies Laplace’s equa¬ 

tion so also does F — Fo. (Prove this.) Our first attempt, then, in 

trying to solve a conductor problem in which one of the conductors 

(or part of it) is a portion of a plane a: = Ci is to seek for a solution of 

Laplace’s equation of the form X(x)U(yj z). Such a (very special) 

solution of Laplace’s equation has the variable x separated from the 

other two variables y and z, and tlw^ method of obtaining such special 

solutions of Laplace’s equation is referred to as solving Laplace's equa¬ 
tion by the method of separation of variables. 

The function X(x) which occurs in the solution of Laplace’s equation 

by the method of separation of variables is, naturally, very special. 
On substituting XU for F in Laplace’s equation we obtain 

or, equivalently. 

XixU + X{Uyy + Uzr) = 0 

Xxx Uyy -h Uzz 

X U 
V 9^ 0. 

Hence, at any point where F 0, which is, by hypothesis, a 

constant function of y and z is also a constant function of x (since it is 

the negative of jj{Uyy + U„), and U is, by hypothesis, a constant 

function of x). In other wwds 

Xxx = hX\ k a constant. 
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Hence X is a combination of exponential functions where 

= k; we indicate this by the notation 

X = 

TFarmn^. Do not think that the ambiguous sign ± means that 

you must take one or other of the two signs + and —. It means that 

you may take any linear combination of what you obtain by each of 

these choices. Thus is merely an abbreviation for Cie^^ + C2e~^^, 

where Ci and C2 are arbitrary constants. 

Note 1. Although V{P) is a real point-function so that X and 

hence k are real it is convenient to work in the complex field (for when 

k is negative p is a pure imaginary). Thus when A* = say, is 

negative we write 

X = 

by which we mean that X is any real linear combination of the con¬ 

jugate complex functions and Thus is any linear com¬ 

bination of cos nx and sin nx with real coefficients. We indicate such 

a linear combination by the symbol 

cos nx 

sin nx 

cos nx I 
so that e^*^ means exactly the same as h namely, Ci cos nx 

sin nx ] 

+ C2 sin nx, where C\, C2 are arbitrary real constants. 

Note 2. When A* = 0 so that p = 0, e^^^ is merely a constant mul¬ 

tiple of = 1. In this case the differential equation governing X 

is simply Xzx = 0 so that X is any (real) linear polynomial, i.e., any 

linear combination, with real coefficients, of the two functions 1 and x. 

We agree, then, to understand by the symbol any real linear 

polynomial. We indicate any such linear polynomial by the symbol 

x] 
> so that 

1 I 

Example 1* The parallel plate condenser 

We take it as granted that the plates of the condenser are so large 

that V may be assumed to be independent of y and z (the plates of the 
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condenser being parallel to the a^-plane). This assumption is usually 

expressed by the statcihent that the plates of the condenser arc infinite^ 
but this form of statement is rather unfortunate since if the plates 

extended to infinity they would each have to be at potential zero. 

If the plates are reasonably large our assumption will be sufficiently 

accurate if we are not too near their edges, and the departure from 
reality of the assumption near the edges can be made negligible by 

suitable experimental arrangements (such as a guard ring). Since V 

is independent, by hypothesis, of y and z we have V = A" so that 1" is 

a linear function of x\ 

V = Cix + Uo. 

The voltage of the condenser is, accordingly, where d is tlie 
distance between the plates of the condenser. Hie surface density of 

C 
electric charge is ± (Remember that n has the direction of the; 

positive or negative x-axis and that e = Hence the 

charge on the positively charged plate is --—wliere A is the area of 
47r 

either plate of the condenser, so that th(‘ capacity of the condcuiser is 

Note. If the insulating material of the condenser has a specific 

inductive capacity € the relation betw-een the two fundamental vectors 

D and E is 

The capacity of a condenser w^hose 

insulating material has specific inductive capacity e is, then, e times 

the capacity of the same condenser when its insulating material has 

unit specific inductive capacity. Thus the capacity of a parallel plate 

condenser whose insulating material is of specific inductive capacity e is 

±1. 
4ird 

Example 2. Separation of variables in cylindrical coordinates 

Any solution of Laplace's equation A2F = 0 which is of the form 
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V = ZU, 

where Z is a function of z alone while f/ is a function of p and <l>, is such 

that Z = 0=*=’"*. In fact since, in cylindrical coordinates, A2F = Fp, 

+ - Fp + -^ Fi* + V,z (see Exercise 6, p. 109) we have 
P 9^ 

Z (l%p + U, + i + UZzz = 0 

SO that, at all point? where V 9^ 0, 

Zzz 
Hence is a constant which we may denote by a-; we do not insist 

Z 

that a be real so that the constant is not necessarily positive. Hence 

Z = The function U of p and <f> satisfies the ecjuation 

Cpp + - r/p + 4 = -“'t/ 
p 

(why?), and we seek solutions of this equation of the type 

U 

where P is a function of p alone while is a function of <t> alone. We 

find that 

$ (Ppp + -^P, + ^ = 0 

or, equivalently, that 

Hence “ is a constant (why?), and we denote this constant by 

(the prefixed negative sign being used for reasons that will be immedi¬ 

ately clear). Then ^ If we demand that F be a uniform 

point-function, i.e., that V be unambiguously determined by the point 

(x, y, z)f ^ must be a periodic function of 0 with period 2t (because the 

angular coordinate <l> of the point (x, i/, z) is indeterminate to the 
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extent of an arbitrary integral multiple of 27r). Hence the constant m 

must be an integer which may be taken, without loss of generality, 

to be non-negative since we arc using both +m and — m (when m = 0 

only one solution, namely, 1 of the two, 1 and <^, indicated by the 

symbol is acceptable). This is the reason that we wrote our 

original constant in the form — if we had written we would 

have merely found that m must bo an integral multiple of i. hen a 

constant which arises in the discussion is restricted in this way we say 

that it is quantized; thus the constant m which occurs in the formula 
$ = is quantized to integral values by the condition that F be a 

uniform point-function. The remaining factor P in the expression 

V = ZU = Z^P 

must satisfy the differential equation 

Ppp+-p+(«’ = 0. 
p \ pv 

On introducing a new independent variable ^ defined by the formula 

{ = ap we have Pp = Ppp = so that 

•P{{ + |^{ + (i = 0- 

This is BesseVs equation of order m (after F. W. Bessel [1784-1846], a 

German astronomer). We shall discuss it in some detail later and 
note here only that its general solution is a linear combination of two 

functions Jm{i) and Am({): 

Jm{ap) 

Kmiap) ’’ 

Thus the solutions of Laplace^s equation in which the cylindrical 
coordinates are (completely) separable are of the form 

Map) ] 

Am(ap) j 

The condition that V be uniform quantizes the constant m to non¬ 
negative integral values. 

Example 3. Separation of variables in space polar coordinates 

Laplace s equation takes, when written in space polar coordinates 
the form (see Exercise 7, p. 109) 
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2 1 cot 0 
+ -Vr + -Vee + ^Ve 

sin 2 e 
V,f„f, =0. 

Those solutions V = RUj where i? is a function of r alone while 17 is a 

function of d and </> (so that the radial variable r is separable from the 

angular variables 6 and </>), are such that 

U [Rrr + -li^ + -A Uh + cot d U, + LV* ) = 0. 
\ T / r^\ Sin2 e / 

Hence, at any point where F 5*^ 0, 

^ {r„ + -RA+Tr( Vu + cot eu, + -r^ = 0 
R\ r / U \ sm^ d / 

/ 2 \ 
so that (why?) ~ I/2rr H— Rr) is a constant Zr, say. Thus R satisfies 

the differential equation 

r^Rrr H“ ^vRr = kR, 

On setting R == we see that n is one of the two roots of the quadratic 

equation 

n{n + 1) = k. 

The sum of the two roots of this quadratic equation is — 1 (why?) so 

that if one root is n the other is — (n + 1). Instead of solving the 
quadratic equation (thus expressing n in terms of k) it is simpler to 

leave n undetermined and use the relation n(n + 1) = A* to express k 

in terms of n. We shall see later that n is quantized (by the fact that 

V is continuous) so as to be a non-negative integer 

n = 0, 1, 2, • • • , 

but we shall not need this result just now. We have, then, 

r” ' 
R ^ 

—n—1 

and IJ satisfies the differential equation 

^99 + cot 0 UB —:—~— i7^0 + n{n + 1)^7 = 0. 
sm* d 

It is important to notice that the solutions 

Vi = V, = r— 



132 LAPLACE’S EQUATION 

of Laplace’s equation, obtained in this way, are homogeneous functions 

of {Xy yy z); in other words Vi(kXy A-y, kz) — k”Vi(Xy y, z) so that F, is a 

homogeneous function of degree n of (Xy ?/, z) while Veihxy A*?/, hz) 

= k~^~We{Xy yy z) so that Ve is a homogeneous function of degree 

— (n + 1) of {Xy yy z). If n is a non-negative integer Ft is not null at 
r = 00 (unless it is the constant zero) and so it is only legitimate over 

a bounded region. On the other hand Ve is null at r = oo as is also 

r grad Ve so that Ve is acceptable as a potential function over an 
unbounded region. For these reasons F* is termed an internal har¬ 

monic and Ve an external harmonic (any potential function being 

termed a harmonic). It is clear that if F is any homogeneous harmonic 

function of degree n then F,- = r”t/, where U, being a function of the 

ratios x:y\z (since it is a homogeneous function of degree zero of 

(x, yy z)) is a function of the angular coordinates (0, </>). We have, 

then, the following important result: Associated with any intc^rnal 

harmonic F* == r"C7 of degree n is an external harmonic Vc — 

= Jli. 
y.2n+l 

Example 1 

F* == 1 is an internal harmonic of degree 0; hence Ve — " is an 
r 

external harmonic of degree —1. 

Example 2 

X V z 
Xy yy and z are internal harmonics of degree 1; lamce — ? - are 

y*3 

external harmonics of degree —2. 

EXERCISES 

1. Show that the homogeneous polynomial function of degree 2, ax^ + 
+ cz2 -I- 2fyz -f 2gzx -f 2hxy, iv an internal harmonic if, and-oiily if, a -f & + ^ = 0. 

2. Write down five linearly independent internal harmonics of degree 2, and 
determine the function U ol B and ft> in each case. 

3. Determine the function U oi 6 and for each of the internal harmonics of 
degree 1: x, y, and z. 

4. Write down five linearly independent external harmonics of degree —3. 

If the angular coordinate <^> may be separated from the angular 

coordinate 6 in the surface harmonic U we have U = where M is a. 
function $ alone while is a function of alone. Hence 
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M 
^{Mee + cot e Me) + "T-7- + n{n + = 0 

Kin2 d 

so that, at any point where U 9^ 0, 

— = •— - ^ {M00 + eot 6 Me + 4" l)Af}. 

Hence ~ is a constant (why?) which we shall denote, as before, by 
<p 

the symbol — m-. Then 

and 7n is quantized (by the requirement that V = RU = RM^ be a 
uniform function of position) so as to be a non-negative integer. The 
remaining factor M satisfies the following differential equation: 

(171“ • ) 
7i {n + 1) — ~ I M — 0. 

sm*- 6) 

On introducing the new independent variable n ~ cos 6 we have 

Me = —sin 6 Mf^; 

M00 — —iJ^M-|- sin^ B Mnn = —jjlMh 4- (1 — yP‘)Mfm^ 

and the differ(‘ntial equation governing M appears in the form iwj 2 I 

7i{n 4" 1) ~ -M = 0. 

The particular case of this equation that occurs when m = 0 is known 

as Legendre's equation (after A. M. Legendre [1752-1833], a French 

mathematician), and we shall discuss it in some detail later. The 

general equation which occurs when m = 1, 2, 3, • • - is known as 

Legendre's associated equation, and its general solution is a linear 

combination of two functions Pn^in), which we shall define 
later. Thus 

Q.-M I 
We see, then, that the solutions of Laplace's equation in which the 

space polar coordinates are (completely) separable are of the form 
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Those particular harmonics that arise when m = 0 (in which case 

reduces to 1 (why?)) are independent of <t> and are known as zonal 

harmonics. They are of the form 

r” ] Pn(ju) 
F = > 9 

) QM 

where P«(m), QnM stand for P„®(m) and Qn®(M), respectively. 

EXERCISES 

5. Show that the solutions of the wave equation 

A,W = 4 W„ 

(c being a constant and W being a function of the three space variables x, y, z and 
the time variable t) in which the time variable is separable from the space variables 
are of the form W =* where V — V{x, y, z) satisfies the equation 

A2F + v^V = 0. 

6. Show that the solutions of the equation A2F + p“F = 0 of Exercise 5 in 
which the variables x, y, z are completely separable are of the form 

where /* + m* + n* « 1. 
7. Show that the solutions of the wave equation of Exercise 5 in which the 

variables x, y, 2, t are completely separable are of the form W — g±»p(/x+my+n*-cO^ 

where = 1. Note. The level (moving) surfaces of TF are the planes 
lx + my + nz ==> ct + constant, any one of which moves perpendicular to itself 
with velocity c. (Prove this.) The solution IF of the wave equation given in 
this exercise is said, then, to be characteristic of plane waves whose velocity of 
propagation is c. 

8. Show that the solutions of the equation A2F + p*F = 0 of Exercise 5 in 
which the cylindrical coordinate z is separable from the other two cylindrical 
coordinates (p, tt>) are of the form 

F = Z7(p, 

where Vpp H— Up + {p^ — n^)U = 0. 
p p^ 

9. Show that the solutions of the equation A2F + p*F = 0 in which the 
cylindrical coordinates (p, 0, z) are completely separable are of the form 

Kmitxp) I 

where a — (p* — and m is quantized to be a non-negative integer if F is a 
uniform point-function. 

10. Show that the solution of the wave equation A2IF = — TF« (written in 
c* 



THE METHOD OF SEPARATION OF VARIABLES 135 

cylindrical coordinates) in which the variables (p, 0, t) are completely separable 
are of the form 

J m(oep) I 1. I 

Km(otp) J 

where a = (p* •— and m is quantized to be a non-negative integer if PF is a 
uniform function of position and time. 

11. Show that the solutions of the equation A2F + p^V == 0 (written in space 
polar coordinates) in which the radial variable r is separable from the angular 
variables (0, </>) are of the form 

V = R(r)U(e, ^), 
where 

r^R,r 4- 2r72. + {pV* - n(n 4* I))/? « 0; 

Uee 4- cot eUd-\- U^4> + n(n 4- 1)^/ = 0. 
sm® d 

12. Show that the substitution R = r~^ S transforms the equation of Exercise 
11 governing R into the equation 

and deduce that 
r^Sr, + rSr + - (n + S = 0, 

(pr) 

r-iiKn^yi(pr) } 

13. Show that the solutions of the wave equation A2IF = — (written in 
c® 

space polar coordinates) in which the variables (r, 0, i) are completely separable 
are of the form 

r-^Vn+^i(pr) I Pn-(M) 

r^^^^Kn+y^ipr) j C>«’”(m) 
(e±tpc<)^ 

where p = cos 0 and m is quantized to be a non-negative integer by the condition 
that W be a uniform function of position and time. 

g±»p(r-cO J 

14. Verify that W =-is a solution of the wave equation A2TF = — TF«. 
r c® 

Note. is a constant multiple of sin x so that it follows, on setting n ** 0, 

0 in the result of Exercise 13, that (>±tpc< jg ^ solution of the wave 

equation. x^Ky^{x) is a linear combination of sin x and cos x so that (again from 

(COS pr \ 
--1 is a solution of the wave equation. Hence 

(•it) is a solution of the wave equation. The solution W of the wave 

equation given in this exercise is characteristic of spherical waves emanating from 
the origin, the velocity of propagation being c (the level (moving) surfaces of rW 
being the spheres r = ci 4- constant). 
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3. Two-dimensional problems; conjugate functions 

If the potential function V = V(P) of an electrostatic problem is 

independent of one of the coordinates, z say, of the point of evaluation 

P: (x, y, z) of V, the electrostatic problem is stiid to be two-dimensional. 

When the conductors are long cylinders whose axes are parallel to the 

2-axis the field is, at least approximately, two-dimensional provided 

that we do not approach too closely the ends of the cylindrical con¬ 

ductors or recede too far away from the conductors. The surface 
density a- of electric charge on any conductor in a two-dimensional 

problem, being furnished by the formula 

ld_V 

47r dn 

is independent of z. If C is the curve of intersection of the cylindrical 

conductor and the 2-plane the charge on any portion of kmgtli I of the 

cylinder (intercepted between two planes parallel to the 2-plane) is 

given by 

a ds. 

When / = 1 we obtain J a- ds, and we term this the charge per unit 

length or, briefly, the charge on the (cylindrical) conductor. Thus line 

integrals play in two-dimensional problems the role previously played 

(in three-dimensional problems) by surface integrals. 

Laplace’s equation reduces, for two-dimensional problems, to 

Vxx + Vyy = 0. When written in plane polar coordinates (r, B) this 
takes the form (see Exercise 3, p. 91) 

Vrr+-Vr + -^ Ve, = 0. 
r r^ 

The solutions of this equation which are symmetrical about the origin, 
(i.e., which are independent of $) are of the form 

V = /I log r + B. 

(Prove this.) If C is a circle of radius e with center at the origin 
dV A ^ ^ . I dV A 
— = — over C so that the integral of-over (7 is- 
dn € 47r dn 2 



TWO-DIMENSIONAL PROBLEMS 137 

On denoting this integral by e we have 

F = 2e log - + R. 
r 

This is said to be the (logarithmic) potential of a line charge of strength 
e located at the origin. 

The proof of the uniqueness theorem for a bounded (plane) region 

interior to a conductor (there being any number of other conductors 

and line charges in the field) is the same as that of the corresponding 

theorem for a bounded three-dimensional electrostatic field. (Repeat 

this proof.) 

Since V is indeterminate to the extent of an additive constant there 

is no lack of generality in taking the potential of the enclosing con¬ 

ductor to be zero; when this is done the potential function is unam¬ 

biguously determined by the potentials of the enclosed conductors and 

by the strengths and locations of the various line charges. The sim¬ 

plest problem of this type is that of the (cylindrical) condenser; here 

there is only one enclosed conductor, and there are no line charges. 

The capacity {per unit length) of the condenser is the quotient of the 

absolute value of the charge per unit length on either the enclosed or 

the enclosing conductor by the voltage of the condenser (what is this?). 

Since Laplace’s equation in a system of conjugate orthogonal curvi¬ 

linear coordinates (a, /3) obtained by setting the complex variable 
z = z + iy equal to any analytic 

function of the complex variable 
.y ^ ig 

Faa + = 0 

(see Exercise 4, p. 100), the solu¬ 

tions of Laplace’s equation in which 

the coordinates a and ^ are separa¬ 

ble arc of the form 

F = k any (complex) 

constant 

(see Section 2). In particular the solutions which are functions of a 

alone are linear functions of a (why?). Let us suppose that the two 

curves C and C', which furnish the cross sections of the two conductors 

of our condenser, are level curves of the function a = a(x, i/), C being 

the inner conductor. Since F satisfies the equation Fxx + Vw = 0 
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there exists a conjugate function W W(Xf y) such that V + iW is a 
function, in the complex variable sense, oi z — x + iy. Since grad W 

dV dW 
= (grad F)* we have —■ =-» where the direction s is a quarter 

dn ds 
turn ahead of the direction n. Hence the charge per unit length on 
the conductor C is 

I C dV ^ I C dW ^ LW 

^ 47rjcdn ^ 4ir Jc ds ^ 47r 

where AW denotes the increment in IF as we pass around C in the 
positive (= counterclockwise) sense. If F = Aa + B, the voltage 
of the condenser is |AA«|, where Aa is the increment of a as we pass 
from C to C\ Since W is the function oi z = x + iy or, equivalently, 
of 7 = a + ^/S, which is conjugate to F, we have W — A/? + B' (why?) 
so that AlF = AAp. Hence 

e = 

and the capacity (per unit length) of the cylindrical condenser is 

^ = r 

The potential function of the field is 

4x6 
F = - 

Aa 

a + B. 

Example 1, The concentric circular cylinder condenser 

Here z = y = log 2, a = log r, 0 == 6. Hence AjS = 2t. If a 

and h > a are the radii of the circles C and C' we have Aa = log - 
a 

and so the capacity is 

c = --i-. 
2 log - 

a 
The potential function is 

F ~ — 26 Jog r + B, 

or, on determining the additive constant B so that the outer conductor 
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is at potential zero, 

F = 2e log 
r 

Note. It is worthy of notice that V is independent of a; thus the 
potential function of a circular cylinder depends only on the charge 

and is the same as if the entire charge were concentrated, as a line 
charge, on the axis of the cylinder. 

Example 2. The confocal elliptical condenser 

Here z = c cosh 7, x = c cosh a cos /0, y = c sinh a sin The 
curves a = constant are the confocal ellipses 

+ = 1. 
cosh^ a sinh^ a 

If the semimajor axes of the interior and exterior ellipses are o and a', 

/ a'\ ( a\ 
respectively, we have Aa = cosh“^ I y • trace 

the interior ellipse C in the counterclockwise direction, traces the 

interval [O, 27rl so that = 27r. Hence the capacity of the elliptical 

condenser is 

1 
C = 

2 1 cosh~^-cosh~^ 
\ c 0 

Since cosh“^ u = log {u + {u^ — 1)^) this may be put in the equiv¬ 
alent form 

C = 1 2 log “-(■-sy 
and as c —> 0 this approaches 1 2 log capacity, per 

unit length, of the concentric circular cylinder. 

Example 3. The eccentric circular cylinder condenser 

Here 7 = log a = log (—), where Vi and are the dis- 
[z + c) \r2/ 

tances of any point in the field from the points z = c and 2 = ~c, 
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respectively. Let both circles enclose the point z = and let the 
distances of the centers of the circles of radii a and h > a, respectively, 
from the point z — c he p and respectively. Furthermore let d 

be the distance between the centers of the two circles. Then q p 

+ dj and since the distances of the two centers from z — --c are 
/ /y| 

52 
and —, respectively, we have also — =-h On eliminating q 

q q V 
Ave obtain the quadratic ecjnation 

PX 

.«> 
— d^) fp 

ad Va. 
+ 1=0 

for -. On setting 
a 

cosh d 
¥ - a2 - d\ 

2ad ' 
e>o, 

we have, since - < 
a 

Similarly (show tliis) 

q 

b 
e~^ where cosh <t> = 

Z/2 - + fP 

2bd 
; > 0. 

For the inner circle we obtain (on evaluating — at the point where the 
r2 

circle intersects the segment from 2 = —ctoz= +c) 

a = log 
a — p 

a2 
-a 
V 

= log - = 
a 

-e. 

For the outer circle a has the value — so that 

|Aa| = ^ — 0 

(it being easy to verify, since h — a> d (why?), that 6 > <j>). Since 
jS is the angle from the ray — c 2 to the ray c 2 the increment A/8 
in /8 as we go around the inner circle in the positive sense is — 27r. 
Hence the capacity of the eccentric circular cylinder condenser is 

C = 
2|Aa| 

= 1.2} cosh“^ 
52 __ _ ^2 

cosh~^ 
- a2 + d^ 

2ad 2bd 
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Let us examine the limit of C b.s b a and p remaining fixed. 

From the two relations q = d + pj = q yd A J we obtain 

= d"^ + + d(^ + and so -=^1 + 

a" 
p -\— 
_P , ^ 

d d\ 

the limit 1 as 6, and hence d oo, Hence 
b^ — a- + d- 

('’+0 
has the limit 1 as h —» w and so cosh 

1,2 - a" + 

* 5sr“ 

has the limit 0 as Z> oo. On the other hand 
52 _ ^2 _ fp 

has the 

constant value and so 

C has the limit 

.2cosh-l(H+f) 
2 Va V/ 

as b—> 00. We term this the " ^■‘“4—j 
capacity per unit length of the \ / 

circular cylinder in the presence ^ 
of th(» infinite plane which bisects - 

perpendicularly the join of the 
two points —c and +c. If 8 is 

the distance of the axis of the circular cylinder from this plane we 

have — = 25 — p so that - ( —|— ) = ""^ and the capacity per unit 
p 2\p a/ a 

length of the circular cylinder in the presence of the infinite plane 
takes the simple form 

5 
C = 1 2 cosh~^ — 

a 

4. The method of inversion 

Let P be any point whose coordinates in a system of space polar coordi¬ 

nates are (r, <(>); the point P' whose coordinates in the same system of 
^.2 

space polar coordinates are (r\ $, <f>)y where r' — —f k being any 
r 

positive real constant, lies on the ray 0 P and is such that 



142 LAPLACE^S EQUATION 

|OP||OP'| = k\ 

P' is termed the inverse of P in the sphere of center 0 and radius k 
(which sphere is termed the sphere of inversion). It is clear that the 

relation between P' and P is a partnership: When P' is the inverse of P, 

P is the inverse of P'. As P O, P' approaches oo, i.e., as r 0, r' 
becomes arbitrarily large. We adopt the convention that there is only 

one point at infinity (whose neighborhoods consist of the points for 

which r is greater than a specified number P), and then we can say that 

the inverse of the center of inversion O is the point at infinity. 

Note. If the convention that there is only one point at infinity 

confuses you, think of the relationship between the North Pole and 

the South Pole on the earth. To one whose vision is restricted to a 

small neighborhood of the North Pole the statement that the meridians 

converge to a point, the South Pole, as we proceed southward along 
them, seems absurd. The South Pole bears to the North Pole exactly 

the same relationship that the point at infinity bears to the center of 

inversion in the theory of inversion. 

k^ 
Since r' = we have df 

'--Q 
dr. If, then, C is any curve 

having the vector element of arc ds whose space polar coordinates are 

(dr, r, d^, r sin 0 d<l>)} C will invert into a curve C' whose vector element 
of arc ds' has the space polar coordinates (dr', r' dd, r' sin B d4>) 

{ — dry rddy r sin 6 d<f>). Hence the magnitudes of the two 

vector elements of arc are connected by the relation 

ds' 
k^ 

ds. 

If we have two curves Ci and C2 intersecting at P their angle of inter¬ 
section a is furnished by the formula 

dis d2S cos a = dir d2r + r^ did d^B + r^ sin^ B di0 d2<#> 

(remember that ri = r2 = r, = ^2 = <l>i = <f>2 = <t> since the 
curves intersect at P. Why is dir not, necessarily, the same as d2r?). 

The inverse curves C/ and C2' intersect at P', their angle of intersection 
a' being furnished by the formula 

dis' d2s' cos a' = dir' d2r' + r'^ diB d2B + r'^ sin^ B di<f> d2<t> 

k^ 
= (dir dar + r^ diB d2B + r^ sinW di<^ d2</>) 
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= —7 d2S cos a. 

Since dW = dis' d^s it follows that cos a' = cos a. 

In words: 
The cosine of the angle of intersection of any two curves is unaltered 

by inversion. 
Since the scalar element of area of any surface S is the magnitude of 

the vector product (diS X d2s), where the subscripts refer to the 

parameters on the surface, it follows (prove this) that 

Similarly, since the element of volume is the absolute value of the 
alternating product (diS d2S das), where the subscripts refer to the 

independent variables, or parameters, which describe the region whose 

element of volume is being calculated, we have 

dr' = ^ dr. 
r® 

(Prove this. Hint, The alternating product of any three vectors is a 
three-rowed determinant; the numerical, or absolute, value of this 
determinant is unaffected by a change of sign of the elements in its first 
row.) 

It follows from the fact that P' is on the ray 0 that 

and so 

X y z r 

X' " ^ " 7' " ^ 

k^x' k^y^ 

{xr + {y'Y + {i'r ^ “ {x'Y + {y'Y + {z'Y’ 
_AV_ 

* " {x'Y + {y'y + {zT 

Hence the surface S whose equation is 

A{x^ + y^ + «*) + 2Bx + 2Cy + 2Dz + E = 0 

inverts into the surface S' whose equation is 

E{x'^ + y'^ + 2'*) + 2k\Bx' + Cy' + Dz') + Ak^ = 0. 
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#5 is a sphere or a plane (according as A is not zero or is zero), and S' 
is a sphere or a plane (according as B is not zero or is zero). S passes 
through the center of inversion 0 if A' = 0, and S' passes through the 
center of inversion 0 if A = 0. A plane is, then, the inverse of a 

sphere which passes through O, and we express this result as follows: 
A plane is a sphere which passes through the point at infinity. 
In this terminology we may phrase our result as follows: 
Every sphere inverts into a sphere; the particular spheres which are 

planes invert into spheres through the center of inversion, or, equivalently, 
the particular spheres which pass thro'ttgh the center of inversion invert 

into planes. 
Since the cosine of the angle between an^?' two directions is unaffected 

by inversion any two surfaces S\ and >5^2 
which intersect at right angles invert into 
two surfaces Sf and S2' which intersect at 
right angles. Let Si and S2 be two spheres 

which intersect at right angles and invert 
from any point of intersection of Si and 
S2) then Si and S2 are two planes which 

intersect at right angles. If, then,P' is any 
point on Sf the image Q' of P' in S2' lies on 
Sf, and Q' has the property that any sphere 
through P' and Q' cuts S2 at right angles; 
conversely, every sphere through P' which 
cuts S2 at right angles passes through Q'. 
Hence, if P is any point on S\, Si also 
contains a point Q such that every sphere 

through P and Q cuts AS2 at right angles, and, conversely, every sphere 
through P which cuts S2 at right angles passes through Q. Since 
every plane through P and the center C2 of S2 cuts S2 at right angles, Q 
lies on every plane through C2 and P; in other words Q lies on the line 

through C2 and P. Since Si cuts S2 at right angles the product 
|U2P|1(72Q| is the square of the radius of S2 (why?); hence P and Q 
are a pair of inverse points with respect to the sphere S2. Let us now 
consider any sphere S and a pair of inverse points P and Q with respect 
to S. Inverting from any center of inversion 0 we obtain a sphere S' 
and a pair of points P' and Q' which have the property that any sphere 
through P' and Q' cuts S' at right angles. Hence P' and Q' must 

be a pair of inverse points with respect to S'. We have, then, the 
following result: 

Any sphere S and a pair of inverse points with respect to S invert 
into a sphere S' and a pair of inverse points with respect to S'. 
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Since the center of a sphere and the point at infinity are a pair of 
inverse points with respect to the sphere we have the following special 
case of this result: 

Any sphere S and its center C S' 
invert into a sphere S' and the 
inverse point of the center of 
inversion with respect to S'. 

For example, if S is a sphere 
of radius a and if S' is a plane 
(so that O is on S), the center C 
of S inverts into a point whose 
distance from 0 is 25, 5 being 
the distance of 0 from the plane. 

Hence 2a5 = k'\ 
Laplace’s ecpiation in space 

polar coordinates is 

C' 6 

klJ 

riu. 30. 

2 1 xr ^ Tr . 1 
+ ~Vr + “;:l0oH-- V & ^ : 7- 

r r- n sin- 
T d>(f, — 0. 

Replacing the independent variable r by r' by means of the substitution 

_ F , _ ^ 

r' ^ r 

we have 
r'2 

and so 

AaV = 

2/i2 2r'^ 

i' I ^ I ® r I ^ r 

We now replace the dependent variable Y b}^ a new dependent 
variable TF defined by the formula 

IF = 
rV 

then 
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AaF - A'.TT, 

where A'2 is the Laplacian written in the space polar coordinates 

(/, e, <l>): 

A\W = ^ If^ 1 Wee + ^-^We + 
1 

r'2 sin^ B 
00. 

Thus at any point P', which is the inverse of a point P at which 

A2F = 0, the function W satisfies the equation A'2ll^ = 0. Let us 
suppose, for a moment, that V is the electrostatic potential of a 

conductor S at potential Fo, there being no point charges present. 

Then W = over the inverse S' of S, Since is, in general, 
T 

variable over S' (wh}^?) TF cannot serve as the potential of S' regarded 

as a conductor. However, the function V' defined as follows: 

r' r' 

is constant over S', its constant value being zero. Furthermore 

A'2F' = 0 at all points except the center 0 of inversion; at r' = 0, IF 

has the value - where e is the charge on S (since rF has at r = 00 the 
tC 

limit e) and so F' is unbounded at r' = 0 in the manner characteristic 

of the potential of a point charge = — A:Fo at 0. In other words 

W is the induced potential of the conducting surface S' supposed 

earthed (i.e., at potential zero) in the presence of an inducing point 

charge — A:Fo located at the center of inversion. 

Note, Be sure that you understand clearly that F is evaluated at 

P while TF and V' are evaluated at P'. Thus in order to obtain the 

value of F' at P' we must evaluate F at P {not at P'), subtract Fo from 

k 
this value, and multiply the result of the subtraction by —• 

r 
We obtain in this way from one electrostatic field another, and we 

say that either field is the inverse of the other. We started with the 

field of a conductor S at potential Fo; its inverse was the field of an 

earthed conductor S' in the presence of an inducing point charge 

—A;Fo located at the center of inversion. We could, however, have 

started with the second field and obtained the first. Thus, if TF is the 
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induced potential of an earthed conductor S' in the presence of a 

kW 
point charge c', V = -is the potential of the inverse S of S' (regarded 

as a conductor at potential Vo = — 7), the center of inversion being 
fc 

at the inducing charge e'. When we look at the matteT* in this way 

we say that we have inverted away the inducing charge. Since the 

charge e on ^ is kW{0) the capacity of S is the absolute value of 

k^W{0) 
-;-We have, then, the following rule which is very useful for 

the determination of the capacities of certain conductors: Let W be the 

induced potential of an earthed conductor S' in the presence of a 

k'^WiO) 
charge e' at 0, Then the absolute value of -is the capacity 

of the conductor S obtained by inverting S' with respect to a sphere 

of radius k whose center is at 0. 

If Y is the potential of the field due to a single point charge e located 
at Q, where Q is any point other than 

the center of inversion 0, W is the field 

due to a single point charge e' located \ p, 

at Q'. In fact V(P) = r~,’ W^P') = \ 
\ / 
\ / 

fi—and since the four points P, Q, \ / 

Q', P' are concyclic the triangles OPQ and 
\()P\ 100^ I Q 

OQ’P' are similar so that |-r4 = Fio. 31. 
iQPl iQ'P'l 

Hence 

W{P') = 

so that W is the potential of a point charge e' = located 
k |0Q| 

at Q'. The value of e' may be conveniently remembered by the follow- 

ing rule: The value of TV at O = -• 
iC 

When the point charge e is located at the center of inversion O, 

e e 
F == - so that TF = 7 is constant. Hence grad' IF = 0. Thus the 

r k 
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inverse of the field due to a point charge, from a center of inversion 

located at the point charge, is the zero field. 
If we have several point charges ei, • • • , Cn located at points 

Qny none of which is the center of inversion 0, W is the 

potential of the point charges c'l, * • * , e'n, where 

eM ^ ±1^ , 
k \0Qi\’ ■’ 

located at the points Q'l, respectively. The value of IT 

“ I %■ 
If one of the point charges Ci, say, is located at O, W is (save for an 

additive constant) the i)otential of the point (dierges c'z, • * * , 

located at the points Q'*., * * * , Q\,- 

Example 1. The earthed plane in the presence of a point 

charge 

Let S be a sphere of radius a at potential To. Then V is (at points 

outside S) the potential of a charge e = aTo located at the center of S, 

.32. 

Inverting from a point on S we obtain the fi('ld due to an earthed plane 

conductor aS' in the presence of an influencing charge c' = —A:To at a 

distance 5 from the plane where 25a = k^. The induced potential is 

that due to a point charge e" located at the image point of O in the 

plane (because this is the point into wliich the center of the sphere 

inverts); the connection between e" and the influencing charge e' 
follows from the relation 

e 

k 
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__ ., 2S^ IcQ __ , • 
Hence e = —■ = — = kVo = — e ; m other words e is the negative 

k a 

of the influencing point charge e' = —kVo which is located at O. Thus 

The induced potential due to a point charge in the presence of a con¬ 

ducting plane is that of an equal, but oppositely signed, point charge 

located at the image point of the influencing charge in the plane. 

Note. Assuming this result known we can determine the capacity 

of a sphere. Inverting from the location 0 of the influencing charge 

(so as to invert this charge away) we obtain a sphere of radius a where 

e" 
25a = k^. Since the value of the induced potential W at 0 is 

25 

= — ^ the capacity of a sphere of radius a is a (why?). 

The relation between the surface density of charge cr' on the earthed 

conductor >S' and the surface density of charge a on the conductor S 

follows readily from the relation 

./:(F~Fo) 

Since F = Fo over S we have, over S' 

4 v'e = 4, 
r r ^ my-: r' sin e rv r sin 6 

Hence grad'F' at any point P' of S' = the product of grad F at the 

fkV 
corresponding point P of ^ by 1 — I • Since any direction (dr, r dQ, 

r sin 6 d(l>) inverts into a direction { — dr^r dSj r sin 6 d(f)) it follows that 

dF' dF / A® 
—- over S' is the product of — over S hy [—A (remember that 

(grad F|n)). Hence 

fk\ 

Kt') 

Since cr is constant for an isolated sphere at potential Fo it follows that 

the surface-density of charge on an earthed plane in the presence of an 
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influencing point charge varies inversely as the cube of the distance 
from the influencing charge. The factor of proportionality is easily 
determined by evaluating the density at the foot A' of the perpen¬ 
dicular from O on the plane. At this point n' has the direction of 

A' 0; if 6' is the influencing point charge V' = e' where 

r" is the distance from the image Q' of 0 in the plane to the point of 

evaluation P' of F'. Hence, at A', 

dn' ^ 5V 5^ 

where 3 is the distance |OA'| of the influencing point charge from the 

plane (remember that n' has the direction of Q' —> A' so that, at A', 

e' c'S 
Hence, at A\ <r' = — -——:• It follows (why?) that at any 

27r3'“ 27r3^ 

point P' of the earthed plane 

2w{r'/ 

w^here r' = |0P'|. 

Example 2. The earthed sphere in the presence of a point 

charge 

Let S be again a sphere of radius a at potential Fo, and invert from 
a point outside S, Then S' is a 
sphere, and we have the solution 

of the problem of an earthed 
sphere in the presence of an 
influencing charge located at a 

point 0 outside S', The induced 

potential is that of a point charge 
e" located at the image point Q' 

of 0 in S' (why?). Let a' be 
the radius of S', and let d' be the distance of 0 from the center 
of S', Then the distance of the image point of 0 in S' from 0 is 
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Hence W{0) 

-77; where t' is the length of the tangent from 0 to S', 
a 

e"d' e 
= and since W(O) = 7 we have 

I K 

€ 
// _ 

kd'‘ 

If t is the length of the tangent from 0 to we have tt' = and 

a' t' 
— = - = ^ so that 
a t 

kea' , a' 

Id' ^ '^“5'’ 

In words: 

The point charge whose potential furnishes the induced potential W 
due to the influencing charge e' = — kV^ in the presence of an earthed 
conducting sphere of radius a' is the negative of the product of this 

a' 
influencing charge by where d' is the distance of the influencing 

d 

charge from the center of the earthed sphere. 

The surface density of charge on the earthed sphere varies inversely 
as the cube of the distance from the influencing charge (why?). The 
factor of proportionality is found in exactly the same way as for the 
earthed plane by evaluating the density at the point A' of the sphere 

which is nearest the influencing charge. The value of v' at A' is 

4ir|0.d'|2 ^ 

of <r' at A' is 

Ar\Q'A'\ 
e' 

Since e" 

^\OA'\ 
1 + -I 

a', 

, ® 

d' 
and 

Q'A' 

OA' 
1 

47ra' \OA'\' 

= ^ the value 

where = d'^ 

— a'Ms the square of the tangent from 0 to S' (remember that \0A'\ 

— d' — a'). Hence the density at any point P' of S' is given by the 
formula 

e't'^ 1 

W |OP'|>' 

— a' is the distance \OA'\j and we recover the formula 

where h = d' 
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e'h 1 

27r |OPt 

for the surface density of electric charge on the earthed plane conductor. 

Example 3. The capacity of a conductor formed by two spheres 

which intersect at right angles 

Let B' consist of two infinite planes intersecting at right angles, and 
let O be at distances 5i, 82 from the two 
planes. Then the inducjed potential W 
of the charge induced on S' by a charge 
— kVo at O (S' being at potential zero) 
is the same as that due to the following 

three charges: 

1. a charge e'l — kVo located at the 
image of 0 in the first plane; 

2. a charge e'2 — kVo located at the 
image of 0 in the second plane; 

3. a charge c'3 = —kVo located at the “image of 0 in the line of 
intersection of the two planes; this point is equally the image of the 
location of the charge 1 in the second plane and the image of the loca¬ 
tion of the charge 2 in the first plane. 

kVo 
(Prove this statement. Hint, Show that V' = W-- satisfies the 

r 
conditions on V' at 0, on S', and at and use the uniqueness 
theorem.) Hence 

•V 

W{0) = 
kVjl 1 

2 \5i 52 

1 

On inverting from 0 we see that the potential function of a conductor S 
which consists of two spheres of radii Ui and a2 which intersect at right 
angles is that due to the following three charges: 

1. a charge ci = 

sphere; 

2. a charge 62 = 

sphere; 

3. a charge ez = 

28i 

JfV, 

252 

= uiFo located at the center of the first 

= a2V0 located at the center of the second 

kWo aia2V 0 

2(«i2 + + 02“)^^ 

located at the 
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point Qs which is equally the image of the center of the second sphere 
in the first and the image of the center of the first sphere in the second. 
In view of the relations 2diai == k^, 26202 = we have 

WiO) 
^ Vo,' 

k 
CLi "1“ O2 

O1O2 

(Oi^ + 02^) 

Hence the capacity of the conductor S is 

C — di CI2 — 

01O2 

(since the charge on S is kW{0)). 
The density of electrification at any point P oi S may be readily 

determined as follows. The contribution to the density <t at any point 

P of Si from the potential of the point charge ei = OiFo is 
4x01^ 4x01 

The contribution to <r from the potential of the two point charges 

and C3 (which together would maintain Si at potential zero) is 

O2V 0^2^ 1 

4ira, 

Here <2 is the length of the tangent from the center C2 of >S2 to so 
that t2 = 02 (why?). Hence the value of a at any point P of Si is 

Vo L 02® 1 

“ 4wa^ \ ~ IC^Pl^r 

Similarly the value of a at any point P of S2 is 

V ICiPl’J’ 

where Ci is the center of Si. The density at any point of intersection 
of Si and S2 is zero. 

EXERCISE 

1. Show that the charge 011 the first sphere is 

Fo 

2 
fl\ + + 

oi^ — a2* — ©10.2 

Hint. The potential of ei contributes to the charge on Si the same fraction of ei 
that the area of the “exposed” portion of jS»i is to the total area 4x01^ of Si. The 
potential of €2 contributes to the charge on the same fraction of €2 that the area 
of the “unexposed” portion of S2 is to the total area 4x02* of S2. The potential of 
ei contributes to the charge on Si one-half the charge of ez (why?). 
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Example 4. The capacity of a conductor formed by two spheres 

which touch externally 

Inverting from the point of contact we have the problem of two 
parallel earthed planes under the influence of a point charge e' = —kVo 
located between them (at distances 8i and ^2, say, from the two planes). 
This problem is solved by two trains of images designed to keep the 

planes at zero potential. Take the x-axis of a system of rectangular 
Cartesian coordinates, whose 
origin 0 is located at the inducing 
charge, perpendicular to the 

planes, and let the equation of 
the left-hand plane be x + 5i = 0 
while that of the right-hand plane 
is X ~ ^2 = 0. The first train of 
images is obtained by starting 
with the image of e' in the left- 
hand plane. The first image of 

this train is a charge at the point ( — 251, 0, 0); the second is a 
charge e' at the point (2(5i -f 0, 0); the third is a charge — e' at 

the point (—(45i + 262), 0, 0); the fourth is a charge e' at the point 
(4(5i + 52), 0, 0), and so on. All the images of the first train in the 
left-hand plane carry the charge — e', and the common spacing 
between them is 2(5i + ^2), i.e., twice the distance between the 
parallel planes. All the images (of the first train) in the right-hand 
plane carry the charge e', and the common spacing between them is 

again 2(6i + 82). The images of the second train are obtained by 
interchanging the roles of the two planes (and 81 and 62). The con¬ 
tribution to W(p) from the images in the left-hand plane is 

-e'U_!—+ -^- 
l25i 2(5i -j- 82) 45i 4- 2^2 4(5i -f- 62) 

Note carefully that this series, while convergent (since it is an alternat¬ 
ing series) is not absolutely convergent. Thus the order in which the 
terms appear is of importance. The charge on the left-hand sphere of 
the conductor S (the radii of the two spheres being Oi and 02) is, accord¬ 
ingly, the product of the series just written by k; since 25iai = k^, 
2^202 == e' = —kVo this turns out to be 

a^(i2 ^102 aia2 ^ aia2 
ai + 02 Oi + 202 2oi + 2o2 ^ 2oi + 802 

Fo ai “ 

«5iO ^2 

Fio. 35. 
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(the successive denominators being obtained by adding alternately ai 

and 02 to the previous denominators). Since the charge on the second 
sphere S2 is obtained by interchanging oi and 02 the capacity of the 

conductor S is 

0,1(12 ^ O1O2 

Oi 02 Oi + 202 

O1O2 ^ O1O2 

” Oi “b 02 2oi “b 02 

In the particular case when 01 = 02 = o, say, this reduces to 

2o(l — -J- + -J- — * * •) ~ 2a log 2. 

4-102 

|oi 

5. Ellipsoidal coordinates 

Let o, 6, c be any three unequal positive real numbers which we suppose 
arranged in descending order of magnitude 

Then the equation 
o > 6 > c > 0. 

z 
-b “ 4- - 02 ^ 52 ^ 

is an equation of an ellipsoid whose semiaxes are (o, h, c). This 
ellipsoid is a member of the family of second-degree surfaces 

z'^ 
—-j--1-- 1 
o^ 4" ^ 6^ 4“ ^ 4" ^ 

obtained by assigning to the parameter t different fixed values. In 
order not to rule out the values — o^ — 6^, as possible values of i 
we shall write the equation of the family in the form 

m = 0, 
where 

+ i)(c^ + 0^^ + + W 4- (a^ 4- iW 4- i)z'^ 
- (o2 4- iW 4- 0(c^ 4- i\ 

When t — the corresponding surface is the plane 2 = 0 (counted 
twice); when t = the corresponding surface is the plane 2/ = 0 

(counted twice); and when t = —a^ the surface is the plane x = 0 
(counted twice). Let, now, P:(x, y, z) be any point which does not 
lie on any of the coordinate planes so that none of the numbers x^y^z 
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is zero. Since the term of highest degree in F{t) is — F(t) is negative 
if t is sufficiently large. On the other hand F(-"C^) is positive since 

F{-cr) = (a2 - - c2)2:2 

and > c^, > c^. Hence no matter what is the point (x, z), 
as long as it does not lie on one of the coordinate planes, there is a 
value of t > —c2 for which F{i) = 0. We denote this value of ^ by X 
and observe that each of the three numbers + X, + x, + X is 
positive. Since the equation F(X) = 0 may be written in the form 

X- y~ -1-±-1-- 1 
a2 -f X 62 + X c2 + X 

F(X) =0 is an equation of an ellipsoid. 
Since F{ — b-) = (c‘^ — b-){a- ~ b^)y- < 0 there is a value of t in the 

open interval ( — 62, —c^) for which F(0 = 0. We denote this value of 
thy II and observe that a- + y and + y are positive while + /x is 

negative. Since the equation F(m) = 0 may be written in the form 

0*2 ?/2 z'" -^-^-j-- I 
+ y b- + y + y 

F(y) == 0 is an equation of a hyperboloid of one sheet. 

Finally, since ” a^){c^ — a^)x'^ > 0, there is a value of 
t in the open interval ( —a^, —b'^) for which F{t) = 0. We denote this 
value of ^ by r and observe that is positive while 6^ + j; and 

V are negative. Since the equation F{v) =0 may be written in 
the form 

-Ji—j—yl—I—= 1 
V b^ V V 

F(p) — 0 is an equation of a hyperboloid of two sheets. 
Associated, then, with any point P: (x, y, z) which does not lie on one 

of the coordinate planes are three numbers X, y, v which are such that 

X > —c2 > y > —62 > V > —a2. 

Thus each of the three symbols (X, /x, p) is a point-function; the level 
surfaces of the point-function 

X = X(P) = X(x, 2/, z) 

are ellipsoids while the level surfaces of the point-function 

y = y(P) = y{x, y, z) 
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are one-sheeted hyperboloids and the level surfaces of the point- 

function 

V = viP) = v(x, y, z) 

are two-sheeted hyperboloids. The three numbers (X, /u, v) may be 
regarded as curvilinear coordinates of the point P; we shall see shortly 
that they constitute a system of orthogonal curvilinear coordinates, and 
this system is known as the system of ellipsoidal coordinates. 

When P: (x, z) is given, (X, v) are the three zeros of the cubic 
polynomial F{t) = 0. In other words 

, _lL 1 =_^_ 
+ t + t + t (a^ + t)(b^ + ()(c^ + i) 

^ (X - 0(m - t)(u - t) 

(a\+ t)(b^ + 0(c“ + i) 

(X, n, v) are the point-functions X(x, y, z), n{z, y, z), p(x, y, z) referred 

to above, and the relation 

y^ z^ ^ (X - t){n - i){v - t) 

b^ + + t (a^ + t)(b^ + t)(c^ + t) 

is an identity in the four independent variables x, y, z, and t. On 
differentiating this identity with respect to t and then setting < = X we 

obtain 

y^ z^ (m - X)(^ - X) 

{a^ + (b^ + W ic^ + X)" («=' + + ^)' 

Similarly 

z^ _ (X — M)(y — y.) 

(a^ + fj.y (6^-H m)“ (c’’+ m)'® (a'* + + m)(c“ + ji)’ 

x^ y^ , _ (X — v){iJ. — y) 

(a2 + vY -h vY (c* -h vY (a^ + v){b^ + r)(c“ -|- v) 

1/^ 
The equation ■ + r::'":'""T + “T~rT = 1 is an identity in the 

+ X 0^ + X + X 

three independent variables (x, y, z) (X is here not a constant, but 
the point-function X = X(x, y, z)). On differentiating this identity 

with respect to x we obtain 
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+ 
y‘‘ 

A ”” ""T 2) 

2x 

+ X I(a2 + X)2 ‘ (62 + X)2 (c2 + X)2| 

and there are similar equations for Xy and X,. Thus grad X has the 

direction of the vector ^), 

grad 

and, similarly, 

I ^ y 
/i has the direction of the vector v ( —t 7——; —-— )■ It 

\a^ + fi 6^ + M + M/ 

follows that the two vectors grad X and grad n are perpendicular; in 
fact we obtain on subtracting the equation 

+ 
+ X 62 + X c2 + X 

= 1 

from the equation 

the equation 

(x-m) 

+ + 
+ fJL 

= 1 

I(a2 + X)(a2 + ^) (62 + X)(62 + ^) 

+ 

Since X —■ u > 0 it follows that 

(C2 + X)(C2 + /x) 
= 0. 

y" 
(a2 + X)(a2 +/x) (62 + X)(62 + ^) 

Hence the vectors v\—^ 
\a 

+ = 0. 
(c" + X)(c2 + /x) 

C24- 

2 + X 62 + X c2 + X/ ' \a2 + M 62 + tx 

- ) are perpendicular so that the vectors grad X and grad u are 
M/ 

perpendicular. A repetition of this argument shows that the three 
vectors grad X, grad Hj grad v are mutually perpendicular. In other 
words 

The system of curvilinear coordinates (X, /x, v) is a system of orthogo¬ 
nal curvilinear coordinates. 

Denoting by (61, 62, 63) the magnitudes of the vectors grad X, grad /x, 

grad V the Jacobian matrix is the product of a 3 X 3 rotation 
2/, z) 

matrix by the 3X3 diagonal matrix 
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hx 

D = 0 

0 

0 

hx 

0 

0 

0 • 

A, 

Hence the Jacobian matrix 7-^—being the reciprocal of the 
M, y) 

Jacobian matrix ~ » is the product of the reciprocal of D by a 
\^y Vt 

3X3 rotation matrix. Hence the magnitude of the vector yx, zx) 

is and so on. Thus the vector element of arc ds = v(dx, dy, dz) 
hi 

may be written in the form 

ds 
dX 

hi 

dfi dp 
Ui + T- U2 + 7“ Us, 

ti2 hz 

where Ui, U2, Us are a set of unit and mutually perpendicular vectors 
(namely, the unit vectors along the axes of the system of orthogonal 
curvilinear coordinates). Hence 

{dsY 
{d\y {dnY {dvY 

hi^ hz^ ‘ 

Since hi is the magnitude of grad X it follows from the equations 

+ « 
(a2 + X)2 (62 + X)2 (c2 + X)2 

Xx = 
2x 

-j- X 
f etc., 

that = 4 4- + ■ 
(a2 + X)2 ’ (62 + X)2 (c2 + X)2j 

^ 4(a^ + X)(b^ + X)(c^ + X) 

0* - ^)(>' - h) 

It is convenient to denote the product (a^ + t){h^ + t){c^ + 0 by the 

symbol A(i); then A(X) is positive, A(/i) is negative, and A{v) is positive. 
(Prove this.) In this notation 

hx = 2{A(X)}«(X - m)-^(X - 

hx = 2{ -a(m)}^(x - - y)-^; 

ht = 2{A(v)}>^(X - v)-^{n - v)-^. 
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The Laplacian AjF of any doubly differentiable point-function V 
appears when expressed in orthogonal (nirvilinear coordinates in the 
form 

(see Exercise 5, p. 109). For the system of ellipsoidal coordinates this 
appears as 

4 |{A(X)|»lA(X)^Fxix {-A(^)1»U-A(m)]^^7,1. 

1 (X — ;r)(X — p) (X — — y) 

IA(p)}^UM^)^V.}.] 
(X - i/)(m - f) J 

The solutions of Laplace^s equation A2F = 0 which are functions of X 
alone satisfy, then, the equation 

A(X)^’Ma(X)^'Fx}x = 0. 

Let J = J(X) be such that (x = -{A(X)}”^^; then X^ = —{A(X)}^^ so 
that 

-lA(x)}^'yx = Vi-, 
-{A(x)j«(r{)x = Fh. 

Hence = 0 so that F is a linear function of 

F = A -f 

where f is undetermined to the extent of an additive constant; we fix 
this additive constant by the requirement that f —> 0 as X —> 00, Then 

_ r du 
Jk {A{u)]^ Jx {(a2 + M)(6^ + M)(c= + M)l>‘' 

Thus i is an elliptic integral. Since X, n, v are the three roots of the 
equation F{t) = 0 we have 

X + /X + + ^2 _|. ^2 == ^2^ 

Since /x and v are bounded it follows that as P —> 00, X 00 and so 

{ -> 0. Since the potential function of an electrostatic field is null 
at 00 it follows that A = 0; hence we have the following result: 
If the potential function F of an electrostatic field is a function of 
the ellipsoidal coordinate X alone then 

F = B?, 
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f" du ^ 00 

Jx f (a^ + u) Jx {A(w)}^^ Jx {(a2 + w)(fe2-j-^)(c2 _|_ 

On writing {(a^ + u){h^ + w)(c^ + in the form 

•“(-r(-r(-r= 
+ b^ + c^)u~^ + • • • 

we see that f has, near X = oo, the development 

f = 2\“^^ - + b^ + c')X-’^ + • • ■ . 

Hence has at X = «> the limit 2. Since — has at r = w the limit 1 
J.2 

it follows that the limit of rf at r = qo is 2. 
y“ 

Let, now, “: + 7:-h“~lbe the surface of a conductor at poten- 

tial V0. The function 

F = 

satisfies Laplace’s equation outside the conductor and takes the 
r~ du 

constant value B — ^ over the conductor. Hence the potential 

of the electrostatic field of the conductor is 

Jo {A(m))>^ 

The charge e on the conductor, being the limit of rF at r = », is 

Jo IA(m)|^ 

Hence the capacity of the ellipsoidal conductor is given by the formula 

(A(M)t> {(o>' + m)(62 + u)(c2 + m)}> 
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EXERCISES 

1. Show that the capacity of an oblate s'pheroid (i.e., an ellipsoid of revolution 

for which 6 ■■ o > c) is C ■» (a* — c*)^/Arc cos — 
a 

Hint. Use the substitution c* + u = t?* to evaluate the integral 

du 

Jo (a’ + u)(c» + «)>^' 

2a 
2. Show that the capacity of a circular disc of radius a is — Hint. I^et 

TT 

c —► 0 in the result of Exercise 1. 
3. Show that the capacity of a prolate spheroid (i.e.. an ellipsoid of revolution 

for which b * c < o) is 

C = (O^ - 0°)^ 

, fa + (a‘ - 

4. Show that hi is twice the perpendicular distance p from 0: (0, 0, 0) to the 
tangent plane at P to the first coordinate surface, X = constant, through P. 

3/^ 2/^ 
Hint. The surface X = constant is the ellipsoid-f- --1--— = 1: 

o* + X b2 ^ X c2 + X 

p is the reciprocal of the magnitude of the coefficient vector v 
+ X b* + X 

—^— ) of the tangent plane ( —~— ) X + ( ;;—-— ) E -f ( —-— ) Z = 1 to the 
c* + X/ ^ ^ \a2 + X/ \6* -f X/ \c* + X/ 

level surface X «=* constant. Since grad X = 2p*v, hi = |grad x| *= 2p^ 0 = 2p. 

5. Show that the surface density of electric charge at any point P of 

the ellipsoidal conductor = 1 (supposed isolated and carrying a 
a* 0* c* 

ep 
charge e) is -——; where p is the distance from the center of the ellipsoid to the 

47robc 

tangent plane atP. Hint, a - » 
dn 47r 47r 4ira6c 

where B ** ie. Since hi = 2p (see Exercise 4) it follows that or = ——— 
47ra6c 

6. Show that the surface density of electric charge at any point P not on the 
edge of a conducting circular plate of radius a (supposed isolated and carrying a 

charge e) is -—— -where r =» jOPl 5*^ a is the distance of P from the 
47ra(a* ~ ' 

ifcHx^ -f 

c\ a* 

1 
of the plate. Hint. For a prolate spheroid - « I-- H— ) 

p \ cy 

+ y^) I _ 

Note, c is unbounded at r * a. 

. Hence the limit of - as r 
V 
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In dealing with problems such as that of determining the induced 
potential of an earthed conducting ellipsoid when subjected to a uni¬ 
form electrostatic field we seek for solutions of Laplace^s equation of 

the form 

V = xU, 

where 17 is a function of the ellipsoidal coordinate X alone. Since 

Vx — U + xUxt Vxx = 217* + xUxxj Vw = xllyy^ Vgg = xUmm we have 

A2F = XA2U + 2Ux = X A2U + 2l7xXz. 

Since 

X. = 
2x 

UaM 
+ 

a^ + \ I(a2 + X)2 (62 + X)2 (c^ + X)®] 

2A(X) 

(X — m) (X “ v) + \ 

we have, if F is a solution of Laplace’s equation, 

4 A(X)[7x 
A2U + - = 0. 

(X - /x)(X - v)(a2 + X) 

Since U is, by hypothesis, a function of X alone we have 

4{A(X)1« 

(X — m)(X — v) 

and so U must satisfy the equation 

{A(X)«C7x}x 

Hence 

and so 

{A(X)^{/x!x + A(X)^-j^ = 0. 
+ X 

A(X)^(a^ + X)C7x = a constant 

= D 
du 

(a2 + w){A(w)l^' 

where B and E are constants of integration. The requirement that U 
be null at infinity (i.e., at X = «?) makes E zero and so 

17 = D X du 

(a* + m){A(m))^ 

du 

(a^ + u)’^{h'‘ + 
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Example. The potential of the electrostatic field due to an 

earthed conducting ellipsoid in the presence of a uniform field 

We take, in the first instance, the uniform field to be a field of in- 
2 9,2 ^2 

+ ” = 1 is an equation tensity Ex parallel to the x-axis, where — + ” 
a“ 0“ 

of the ellipsoid. The inducing potential is, accordingly, —ExX. 
Note, This inducing potential is not null at infinity. We ignore 

this fact, however, and assume that in a sufficiently large neighborhood 
of the ellipsoidal conductor the potential of the inducing field is 
approximated, to a sufficient degree of accuracy, by —ExX. The fact 
that this potential is not null at a; = ± cc means simply that it is 
impossible to realize an electrostatic field which is uniform over the 

entire x-axis. 
The function V = —ExX 4- AxU is harmonic outside the ellip¬ 

soid, and the part AxU is null at In fact the development of 
(a^ + u)~^^ near u = ^ starts out with the 
term so that the development of U{\) near X = oo starts out with 

r 
the term f X' Since has the limit 1 at X = co it follows that rlJ 

has the limit zero at r = <» ; in fact r^U is null at r = « so that xU 
is the potential of a distribution of electric charge for which the total 
charge is zero (since rxU is null at r = oo). In order that V may 

have the constant value zero over the conductor X = 0 we have 

merely to set 

A 
du 

(a^ H- w) {A(w) 

Hence, by the uniqueness theorem, the field outside the conductor has 
its potential furnished by the formula 

V = 

^ * du \ 

L (a^ -j- -f- -f u)^~\ 

( J p du ( 

>0 (o^ + u)^{h^ + uy\c^ + u)^f 

The potential of the field outside the earthed conductor when the 
potential of the uniform inducing field is —ExX — Eyy — EgZ is the 
sum of the potential just given and the two similar potentials 
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-Eyy h - 

-E,z l\ 

i* oo 
du 

Jx (a^ +_ 1^(52 + u)^(c‘ + 

f- 
du 

Jo (a^ T uy + u)^{c^ + u)^f 

f"~ 
du 

Jx (a^ T J£) + u)^{c^ + 

f- 
du ’ 

Jo (a^ T u) + + uf‘‘l 

If the conductor, instead of being earthed, is at potential Fo we simply 
add to the potential just given the potential of an isolated ellipsoidal 
conductor at potential Fo, namely, 

/; 
i 

du 

du 

0 {A{u)}^ 

6. Concluding remarks 

The problem of determining the capacity of a conductor has been 
solved for very few conductors. No one has yet been able to deter¬ 

mine the capacity of a conductor whose bounding surface is a cube 
or the capacity of a right circular cylinder. Recently progress has 
been made in the direction of determining limits between which the 
capacity of a conductor must lie. An interesting account of this 
progress may be found in the paper by G. P61ya: Estimating Electro¬ 
static Capacity,’’ American Mathematical Monthly^ 54 : 201-206, 1947. 

For instance the capacity of a cube of edge a lies between 0.62a and 
0.72a. 



6 

SPHERICAL HARMONICS AND BESSEL 
FUNCTIONS 

1. The power series solution of Legendre’s equation 

We have seen in Chapter 5, Section 2 that the solutions of Laplace^s 

equation A2F = 0 in which the space polar coordinates (r, 6, 0) are 

completely separable are of the form 

V = 
Pn-(M) ^ 

where m = cos 6 and m is quantized (by the requirement that F be a 
uniform point-function) to be a (non-negative) integer. The functions 

are linearly independent solutions of the equation 

(1 - + |»(n + 1) - ^ = 0- 

We shall consider first the case m = 0 (so that F is independent of 0), 

and we shall denote simply by Pn(M), Qn(M), respectively. 
On denoting differentiation with respect to ju by the symbol the 

differential equation of which Pn(M) and Qn(M) are linearly independent 
solutions is Legendre^s equation: 

(1 ~ - 2fAl)M + n{n + l)M = 0; 

M = cos ^ is a real number which is restricted to lie in the interval 
[ —1, 1]. It is better, in discussing the differential equation, to ignore 

this restriction and to regard /x as a complex variable. Since Legendre^s 
equation appears, when solved for DW, in the form 

166 
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DW 
2m 

1 - 

the point m == 0 is a regular point of the differential equation (by which 

2ii j n(n + 1) 

(1 
we mean, simply, that the coefficients and are (1 - ^2) (1 ^ ^2) 

analytic (what does this mean?) at m = 0). It follows from the general 

existence theorem for linear differential equations (in the complex field) 

that 

Legendre^s equation possesses over a neighborhood of the point p = 0 

two linearly independent solutions each of which is analytic at n = 0 andy 
hence, developable in a series of powers of /x. 

2/i n(n + 1) . . 
- are analytic Note 1. Since the coefficients 

(1 ^ M^) ^ (1 - M^) 
over the (open) circle < 1 the general existence theorem assures us 

that the two linearly independent solutions which are analytic at 

/X = 0 are analytic over the (open) circle |m1 < 1. 

Note 2. Since n{n + 1) is unchanged when n is replaced by — n — 1 

and since the average of n and —n — 1 is —-J- there is no lack of gen¬ 

erality involved in the assumption that it ^ and we shall make 

this assumption. In particular if n is an integer it is a non-negative 

integer. 

In order to obtain the two linearly independent solutions of Legen- 

dre^s equation which are analytic over the circle j/xj < 1 we set 

M = Com® + CiM°^^ + + C;bM‘^* + 

where Co 5*^ 0 and a is an as-yet-undetermined non-negative integer. 

On substituting this expression for M in Legendre^s differential equa¬ 

tion (remember that power series may be differentiated term by term) 

and collecting together like powers of m (this is permissible since power 

series converge absolutely) we obtain a power series whose sum is 

zero over the (open) circle |m| < 1, namely, 

a (a — 1)coM“*~^ + (a + l)aCiM“”^ 

+ {{a + 2)(a + 1)C2 + [n{n + 1) ~ «(« + 1)]co}m® 
+ • ‘ * + {(a + i + 2)(a + j + l)c«4/4.2 

+ [n(n + !)-(«+ j){a + j + l)K4-y}M®+^‘ + * • * . 

Since every coefficient of this power series must be zero (why?) we 

obtain the following series of equations: 
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a{a ~ l)co == 0; 
(a + l)aci = 0; 
(a -f 2)(a + l)c2 + {n(n + 1) — a£(a + l)jco = 0; 

(a + j -f- 2)(a + j + l)C;+2 + {w(n + 1) — (a j){a + j + l)}Cj = 0; 

1,2, • • • . 

Since Co 0 we learn from the first of these equations that a must be 

either 0 or 1. The second equation tells us nothing about Ci if a = 0 

(in other words Ci is arbitrary if a == 0) while it tells us that Ci = 0 if 
a = 1. Making the choice « = 0 the third of our series of equations 

tells us that 

n(n + 1) 
C2 = — 7—7; ^0* 

The fourth of our equations tells us that 

Cz 
1 

2-3 
{n{n + 1) — 2}ci = 

(n - l)(n + 2) - 

and so on.. In general, we find that C/+2 is a multiple of q: 

- __ + 1) - i(i + 1)1 ^ ___ {n - 3)iyi + j 4- 1) 

“ (i + i)(i + 2) (i +1 )a- + 2) 

Thus 

(//. - 2)(»t + 3) (w - 2)n(« + ])(n + 3) 
C4- 3.^ C2- c„; 

{n - 3)(ri. + 4) {n - 3)(n - l)(n + 2)(n + 4) 
C5 ------ Cz = --- Cl 

and, generally, 

C27 = 

/ iy 2j + 2)(n — 2j) • • • n(n + l)(n4-3) • • • (w4-2j-l) 

^ (2i)! 

Cii+l = 

(n-2j+l)(w-2j-]) • • • (7i-l)(n+2)(n+4) • • • (n+2j) 

^ ’ (2j + l)! 

Co, 

Cl,* 

i = 1. 2, • • • . 
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In this way we obtain the solution 

M = coMi + C1M2 

of Legendre’s equation, where 

n + 1) , , (n. - 2)n(n + l)(n + 3^ ^ 
M, = 1-+-jj-_ . . . ; 

„ (n - l)(ft + 2) (» - 3)(»i - 1)(« + 2)(n + 4) ^ 
= M-^-M’ +-g-j- 

EXERCISES 

1. Show that the choice a = 1 furnishes a solution which is a multiple of Mz. 
2. Show that the two solutions M i and Mt are linearly independent. HM. 

Afi(O) = 1, ilf 2(0) - 0. 

If n is an integer it is non-negative (why?), and one of the two solutions 

Af 1, M2 of Legendre’s equation is a polynomial function of /u (but not both). 

If n is not an integer no solution of Legendre’s equation is a poly¬ 

nomial function of /x, for, then, neither Mi nor ilf2 is a polynomial, and 

no linear combination of them can be a polynomial since Mi involves 

only even powers of m while M2 involves only odd powers of fi. If n is 

an even integer. Mi is an even polynomial of degree n, i.e., a polynomial 

function of of degree ??, involving only even powers of /x while, if n is 

an odd integer, M2 is an odd polynomial of degree n, i.e., a polynomial 

function of ijl, of degree n, involving only odd powers of /x. 

EXERCISE 

3. Show that any polynomial solution of Legendre^s equation is a multiple of Afi 
if n is an even integer or a multiple of Mz if n is an odd integer. Hint. Any 
solution is a linear combination of Mi and M2, and Mi and M2 are not hoik 
polynomials. 

When n is an integer we may obtain a polynomial function of /x which 

is a solution of Legendre’s equation by the following device. First 

construct the polynomial function of /x, of degree 2n, (/x^ — 1)’^; differ¬ 

entiate this 71 times with respect to fjL, The resulting polynomial of 

degree n 

D«(/x2 ~ I)** 

is a solution of Legendre’s equation. To see this set 

{ = (m^ - 1)»; 
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then log f = n log (m® — 1) so that 

_ 2n/x 

T ~ - 1 
or, equivalently, 

• (/x2 - i)D{ - == 0. 

Differentiating this relation (n + 1) times we obtain 

(m* - l)D"+2{ + 2(n + l)/iD»+^f + (n + l)nD~f - 2n/iD»+if 

— 2(n + l)nD”£ 

i.e., 
(m^ - l)D»+2j + 2/xD«+i{ - (n + l)nD^{ = 0. 

Hence M = D"f = D"(/Lt^ — 1)” satisfies Legendre^s equation 

0; 

(1 - m")D2M - 2MDAf + (n + l)nM = 0. 

It follows that, if n is even, D"(/Lt2 — 1)" is a multiple of My or, equiva¬ 

lently (why?), that Mi is a multiple of — 1)" and that, if 

n is odd, M2 is a multiple of — 1)”. On writing D”(m^ — 1)” 

= D"{(m — 1)*‘(m + 1)**} = ^Km + 1)” + terms having (m — 1) as a 
factor, we see that D”(/i2 — 1)» has the value 2’‘n! at = 1. It 

follows then that 

No polynomial solution of Legendre's equation is zero at y = 1. This 

result enables us to normalize the polynomial solutions of Legendre^s 
equation as follows: The normalized polynomial solutions of Legendre’s 

equations are those solutions which have the value 1 at jn = 1. 

These normalized polynomial solutions of Legendre’s equation (there 

being one for each non-negative integral value of n) are known as 

Legendre polynomials and are denoted by the symbol Pn(y)jn = 0, 1, 2, 

EXERCISES 

4. Show that P«( ~ 1) *» 1, if n is even, while Pn(— 1) *= — 1, if w is odd. Hint. 
P« is an even, or odd, polynomial according as n is even or odd. 

5. Show that PnC/*) = -.. ■— 1)". 
2”(n!) 

6. Show that Poin) « 1, PM = M, P2(m) = - i), Pz(t^) = l(/i* - l/x), 
PM * - TM* + to), pm = “ TTM® 4- Am). Hint Use the 
power series for Mi and Af 2 rather than the formula of Exercise 5. 

7. Show that the coefficient of in P»(/i) is 

(2n!) ^ (2w - l)(2n - 3) • » • 5 • 3 

2»(n!) n! 
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Hint. Use the formula of Exercise 5. 

8. Show that Pniti) 
(2n - l)(2n - 3) • • • 5-3 j n(n — 1) 

n! Y 2(2n-l)'‘ + 

Hint. Use the relation — 
J Cj+2 2 • 4 (2w - l)(2w - 3) 

-— ~ ■ connecting the coeflScients c,- and Cj+2 of the general power 
(n -j){n + J + 1) 
series solution of Ijegendre’s equation. 

9. Show that =* nnE^(M* ~ 4* Am* — t^t)* 

10. Show that PiniO) * 

,, .. .. (-1)» (2n + 2)I 
11. Show that lim- = - ——;-. 

M 2*”'’'^ n\{n + 1)! 
,12. Show that all the zeros of Pnitt) are real and simple and that they are covered 

by the open interval ( — 1, 1). Hird. (i<* — 1)*^ has a zero of multiplicity n at 
/X = —1 and a zero of multiplicity n at ;t «• -fl. Hence D(m* — 1)” has a zero of 
multiplicity (n — 1) at = —1, a (simple) zero in the open interval ( — 1, 1), and 
a zero of multiplicity {n — 1) at /x * -j-l. Continuing this argument we see that 

— 1)" has n simple zeros which are covered by the open interval ( — 1, 1). 
13. Show that any polynomial of degree n is a linear combination of the poly¬ 

nomials Po = 1, Pi, • • • , Pn. 
14. Show that /n° * Po, = P i, M* = m* ** M^ * 

4 jP^ 4 yPo, /i® = 4- yPa + fPi. Note. The sum of the coefficients in 
each of these linear combinations must be 1 since all the Pn are 1 at = 1. 

2. The second solution of Legendre^s equation when n is an 
integer 

When n is an even integer 

Ml = 1 
w(« + 1) , . (n — 2)n(n + l)(n + 3) , 
-4-77-M 

is a constant multiple of Pn{d) while, when n is an odd integer, 

(n-l)(n + 2) , , (n - 3)(n - l)(n 4-2)(n 4“ 4) ^ 
ikZ2 = M-M 4-77- 

is a constant multiple of Pn(M)- Let us denote by Af, simply, Af2 when 
n is an even integer and Af i when n is an odd integer. Then the func- 

M 
tion — is an odd function of fi (why?), and it is easy to verify that the 

P n 

derivative of this odd function is the product of —-- - 

zero constant. To do this we combine the two equations 

by a non- 
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(1 - M')D2ilf - 2/xDM + n{n + l)M = 0 

(1 - - 2mDP„ + n{n + l)Pn = 0 

as follows: Multiply the first equation by Pn, the second by — M, and 
add. We obtain 

(1 - M‘')(/^nDW ~ MD2P„) - 2/x(PnDM - MDPn) = 0. 

SincePnD‘W - MD^P^ = D(P„DM - MDPn) and -2^ = D(1 - /x') 
it follows that (1 — /x^)(PnDM — AfDPn) is a constant (why?). The 

constant cannot be zero since, if it were, P„DM — MDPn = Pn^D 

would be zero, and this is absurd since M is not a constant multiple of 

Pn (why?). Hence 

D 
C 

(1 ^ /X^)PnnM)^ 
C 9^ 0. 

Let the n (real and simple) zeros of Pn be ai, a2, ♦ • • , Then the 

analysis of --- - into simple fractions is of the form 
(1 - M^Pn^M) 

^_=_i_ 4._i_ + VI 4/_|_ _ I 
(1 — /x‘^)Pn‘-^(M) 1— M 1+M ^UM — oljY fi — aji 

(remember that the value of Pn^{n) at each of the points ± 1 is 1). It 

is easy to see that Py = 0, j = 1, 2, ♦ • • n. In fact |a,| < 1 so that 
M 

M is analytic at m = «/; hence, since does not have a logarithmic 
^ n 

singularity at m = D ( ^ ) has no —^— term in its development 
Vn/ M — Otj 

in a Laurent series about its isolated singularity /z = ay. We have, 
then, 

and so 

Pn 
C 

1 +M 

1 - M 
+ constant}- 
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Hence 

1 1 + jU Wn-l{p) , ^ ^ j(^g -1--1. constant ■> 
2 1 — M Fn 

where TFn-iC/x) is a polynomial function of /x of degree not greater than 

71 — 1 (remember that Pn{y) is a constant multiple of (/n — ai) • • • 

Since -i log 7/ is an odd function of fi (prove this) 
(1 - N 

as is also ” (why?) it follows that + constant is an odd 
1 n F nxH) 

function of /x. The additive constant must, then, be zero; in fact it is 

“ ^ ^ which is the quotient of a polynomial of 
2 I Fn\ /x) 1 n(M) ' 

degree < n by a polynomial of degree n, and such a quotient is con¬ 

stant only when it is zero (why?). We have, then. 

M 
1 1 + M 

= C j-P„log^^ + Wn-l 
1 - M 

and it follows that when n is even TTn-i is an odd polynomial and 

that when 71 is odd ITn_i is an even polynomial (remember that 

1 jQg is an odd function and that when n is even M is an 
2 (1 - m) 
odd function while when n is odd M is an even function). We 

denote by Qn the function 

Q« = QM = ipn log + W„_^; 
Z I — fJL 

Qn is a solution of Legendre's ecjuation which is not a constant multiple 
of Pn. The general solution of Legendre's equation (when n is a non¬ 

negative integer) is, accordingly, a linear combination of Pn and Qn. 

Note. The case n = 0 is somewhat special since Po = 1 has no 

zeros. Here 

Qo 
1 +M -f 
1 - M 

and in order to fit this into the general formula 
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we understand that W^i is the zero constant function. 

The polynomial function TTn-i is best determined by the fact that M 
1 1 “1“ /i fJL^ 

is a constant multiple of -Pn log:;-h Wn^i = Pn (m + tt + T 
2 1 — At o 5 

1 - U2 

- ~ + 
3 

•) + TFn-i. For example, when n == 1, M = Mi 

{m' + J + • • • j + Wo. 

Hence TFo = —1 (and the constant multiple is —1). Thus 

is a constant multiple of j + "T + 
3 

1 1 “f" U LL^ 
Oi=XMlogr^-l = -1+/.“ + ^+ • • • . 

2 1 — /i 3 

Whe.« - 2,ip.l08 ^ - 5 (-■ - 0(' + ? + • • ^ 
+ + * * * and M — M2 = M l-M* + * • • . Hence the con¬ 
stant multiple is — and TFi = — fju. Hence 

Q*(m) = \Pz^Og = -2m + + • • • . 

EXERCISES 

1 1 "1“ it* 
1. Verify that Qi(m) — log ;-1 is a solution of Legendre^s equation 

1 — M 
when n 1. 

2. Verify that Q2(m) = f (m* — log ^ - fm is a solution of I^egendre's 
1 “ A* 

equation when n = 2. 
3. Show that Wzin) = -f ~ -f/i®. 

4. Verify that QsCm) ~ t(m* ”* Im) log ; -h -f — 1m* is a solution of Legen- 
1 — M 

dre’s equation when n = 3. 
5. Obtain the power series development of the solutions of Legendre’s equation 

near m “= ®®- Hint, Set m and show that Legendre’s equation takes the 

form — l)M^^ + + n(n 4- l)ilf = 0. On setting M * co^“ + 
4” • • * we find that a ** —norn4-L The choice a ^ —n gives a multiple of 
Pn while the choice a =* n 4- 1 gives a linear combination of P„ and Q«. 

An«ti;€r. The solution which is not a polynomial function of M * “ is Co 

(n4-l)(n4-2) (n + l)(n 4-2)(n + 3)(n 4-4) 
* rk/r» I r»N > i r%\/e\ i m\ ^ I 2(2n + 3) (2)(4)(2n 4- 3)(2n 4- 5) 



SURFACE HARMONICS 175 

1 1 “f" 
6. Obtain the general formula for Wn^i where Qn *= log -h TTn-i. 

1 ~ /i 

Hint. Consider the development of Qn near ^ * 0, where ^ — Qn differs from 
M 

iPn log j —~ + Wn~-i by a constant multiple of Pn Since i log 

- = f + -r 4- • • * the lowest power of { in the development of ^Pn I - ) 

log 1-^® — (w — l)st. Hence the lowest power of { in the development of 

^Pn log + Wn^i is the — (n — l)st. The solution given in Exer¬ 

cise 5 is a linear combination of ^Pn and Pn 

the coefficient of Pn in this linear combination must be zero since there is no ent of Pn 

'^ing in t term involving I - ] in the solution in Exercise 5. Since this solution starts out 

with the term W 

"■0)'°“r 

-0) is such as to cancel the negative power terms in 

Use the formula for Pn(ti) given in Exercise 8, p. 171. 

_ _ (2n - l)(2n - 3) ♦ • • (5)(3) . 
Answer. Wn^iW --\M ^ + a* 

n\ 

2(2n-l)/ \5 

n{n — 1) 1 (n — 2)n(n — 

2(2n - 1) 3 '(2)(4)(2» - 1 

n{n - l)(n - 3)\ I 

2n - l)(2w - 3)/ ' J* 

3. Surface harmonics; the orthogonality relation 

We have seen that any solution of Laplace^s equation = 0, in 
which the space polar coordinate r is separable from the angular 
coordinates (^, is of the form 

y.n 

= -U, j.—n—1 

where C7 is a function of (0, </>) which satisfies the equation 

A2*^7 ^ Uee + cot 6 Ue + + n{n + \)U = 0. 
sin-^ d 

We term U a surface harmonic, and when we wish to indicate the 
value of n with which U is associated we do this by means of a sub- 
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script. Thus if Un is a surface harmonic then r"*?7n and are 
solutions of Laplace^s equation. 

Let, now 
- X""’ 

be a power series in r whose coefficients Cn, n = 0, 

1, 2, • ■ • , are functions of the angular coordinates (0, 0). If the sum 
of the power series is a solution V of Laplace’s equation and if term by 
term differentiation is permissible for the differentiations involved in 
A2*F then each coefficient c„ of the power series is a surface harmonic, 
Cn being associated with n. In fact, since 

ao 

A2F = ^r"“2A2*Cn = 0, 

A2*Cn = 0, L 2. An important instance of this result is the 
following: Denote by R the distance from a point (0, 0, h) on the 

positive 2-axis to a variable point (x, y, z) in space. Then 4 = 
H 

+ 2/^ + is a solution of Laplace’s equation, as is at once 
seen by introducing a system of space polar coordinates whose origin 
is at (0, 0, h). Since 2 = r cos 6 = ?*// we have 

1‘ \ ( T 

Let r be so small that 2 (Ow“'"KO' 

©■1=1 

< 1; then, if f == 

< 1, and 

The series The series 

l/r r2\ 1 • 3 / r2 rA 

- w+2-4 • 

obtained by expanding the various powers of £ is absolutely convergent 

(because the series of absolute values is the series for - (1 — 
h 

where 17 = 2 (0 M + © * and any partial sum of this series is less 
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than 7 (1 ~ Hence the terms involving like powers of r may be 
h 

collected, and we obtain 

where 

\ 

R 
Co + Cir + + 

and so on. 

Since the series for — may also be written as a power series in 

repeated term-by-term differentiation with respect to is permissible. 

Hence each of the coefficients Co, Ci, * * • , Cn, • • • of the series for ^ 

(as a power sciries in r) is a surface harmonic; since these coefficients 
are independent of <^, Cn satisfies Legendre^s equation 

(1 -- n^)T>‘^Cn — 2/xDc„ + n(n + l)cn = 0. 

Since Cn is a polynomial function of ^ it is a constant multiple of P„. 

When M = 1 we have 

1 1 1 r . r” 
— --— — ... ^- _L • • • 

R h - r h h^ 

so that the value of Cn when /n = 1 is 
1 

Hence 

Pnin) 

jijn+l 

SO that 

I 

R 

Po(m) 4- -r 4- 4-r" + 

Note. It was precisely in order to have this simple formula that the 

Legendre polynomials were normalized by the requirement that they 
should all have the value 1 when iu = 1. 

EXERCISE 

1. Show that if r is so large that 2 < 1 then 
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1 _ Po(m) fePi(M) h-PM 
R ^ ‘ + ;.«+l ‘ 

Note. ^ so that the only singularities of —> regarded as 

a function of the complex variable r, are on the cirtnimference |r| = h. Hence the 
development 

1_ 
R 

PM 
h 

4- • • • + 
Pn{p) 

r" + • • • 

is valid over the interior of the circle (in the complex r plane) |r| < h, and the 
development 

1 
R ^ ^«+i ‘ ' 

is valid if |r| > h. 

Let, now, j and k be any two different non-negative integers, and let 
Ui, Uk be surface harmonics which are associated with j and k, 

respectively. Then Vj — r^Uj, Vk = r^Uk are solutions of Laplace’s 
equation so that 

X('''I 
S being any closed surface (see Exercise 20, p. 31). Taking S to be a 

d d' 
sphere of radius a with center at 0, — F* = {Vk)rj — Vj = (F,)r, and 

dn dn 

we obtain 

am+i{k - i) JUiUk dw = 0, 

where doj = sin 6 dd d4) is the element of area of the unit sphere (i.e., 
the element of solid angle). Since k 9^ j we have 

J UjUtda = 0. 

If Uj is a complex-valued iunction of 0 and <f> its conjugate complex, ?7y, 
is also a surface harmonic associated with the integer j. (Prove this.) 
Hence 

J UjUi do, = 0. 
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We express this result as follows: 
Two surface harmonics Uy, 14 which are associated with different 

non-negative integers j and k are orthogonal over the unit sphere. 

An important special case of this result occurs when Uy and Uk are 
zonal surface harmonics, i.e., surface harmonics which are independent 
of 6. In this case the integration with respect to is trivial and 

J*UjUk do) reduces to 27r J* UjUk sin d dS = 2ir J* UjUk d^i. Thus, in 

particular, if Py(iLi) andPjfc(M),i 5*^ A*, are Legendre polynomials (so that 
H(m) = Fy(M)) then 

(fM)Pk(fx) dij. = 0. 

We express this result as follows: 
Any two different Legendre polynomials are orthogonal over the 

interval [—1,1], 

We can construct from' the sequence of Legendre polynomials 
{Pn}, ^ = 0, 1, 2, • • • , an orthonormal set as soon as we know the 
squared magnitude of the function-vector P^, i.e., the value of the 

1 
integral I PnKy) dfx. To obtain this we consider the solution F = ~ 

J-i R 
of Laplace’s equation, where R = [QP], Q: (0, 0, h),P:(x, y, z) (P being 
distinct from Q). If C/y is a surface har¬ 
monic associated with any non-negative 
integer j, both F and Fy = r'T7y satisfy 
Laplace’s equation over the region between / ^ 
a sphere S of sufficiently small radius c / h \ 
with center at Q and a sphere 5' of radius [ j 

a > h with center at 0. Hence \ ^ / 

X(’' ij’- ^ 
+X(''£*''-’'4'') 

Over >S, F = -~F = dw so that the limit at € == 0 of 
€ dn 

(because the value of Fy at Q = /i»(I7y)j«o). Over S', 
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00 

A 
dn 

Vi = Vi 
Xh’’ 

dS = dw and so 

= i2j + l)h> jPMUi do> 

(remember that the integral of PibC/x) Uj over the unit sphere, k 9^ j, is 

zero). Hence 

^PMUidw = (C7,),_o. 

In particular when Uj = P;(m) we have 

J*F,=“(m) do, = 2xJ*F,-2dM 

and so 

J* iP,-2(^) since (P,)«-o = Pi(l) = 1- 

It follows that the function-vectors 

constitute an orthonormal set (see Chapter 3, Section 2) which we 

term the power-function orthonormal set. We have seen (see Chapter 

3, Section 4) that this power-function orthonormal set is complete. In 

other words the only function which is continuous over the closed 

interval [ — 1, 1] and which is orthogonal to every vector of the power- 

function orthonormal set is the zero constant function. This fact 

serves to quantize to non-negative integral values the constant n which 
appears in Legendre^s equation. In fact if k is any constant (^ — -J-) 
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which is not a non-negative integer and if M is any solution of the 

corresponding Legendre equation 

(1 ~ m')DW - 2fiDM + kik + l)ikf = 0 

over the dosed interval [ — 1, 1] then r^M is a solution of Laplace^s 

equation, and the same argument which proved the orthogonality of 

Pj{y) and P*(/x), j 5*^ A*, over I 1, 1 ] proves the orthogonality of M and 

every j = 0,1, 2, * • • . Hence M is the zero constant function. 

We have, then, the following fundamental result: 
If Legendre’s equation 

(1 - m')D2M ~ 2mDM + k{k + \)M = 0 

possesses over [ — 1,1] a solution which is not identically zero then k 
is a non-negative integer n, and ikf is a constant multiple of Pn. 

4. The associated Legendre functions 

The differential equation whifch Pn”*(M) and must satisfy is 

(1 - - 2nT)M + jn(ra + 1) - ^ = <>• 

We proceed now to the proof of the following important theorem: If N 

is any solution of Legendre^s equation 

(1 - /x2)DW - 2mDN + n(n 4- 1)A = 0 

then ilf = (1 — ^ solution of Legendre^s associated 

equation 

(1 - m=)DW - 2nDM + jw(n + i; - ^ = 0. 

To prove this theorem wc calculate DM and D^M: 

DM = -my{l - + (1 - 

DW = -m(l - ;i2)(m/2)-lDm2Vr + rn{m - 2)n^{l - ^2ym/2)^2Y)m]^ 

- 2mn{l - + (1 - 

On substituting these expressions in the left-hand side of Legendre^s 
associated equation we obtain the product of (1 — pi2)(»»/2) i^y 

(1 - - 2(m + + (n - m)(n + m + 1)N. 

It follows, on differentiating Legendre’s equation m times, that this 

expression is zero, which proves the theorem. 
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In particular, when n is a non-negative integer and N == Pn(M), we 

obtain a solution of Legendre’s associated equation which we denote 

by : 
= (1 - 

If m > w, Pn'^iij) — 0 (why?). The solution which is obtained from 

Qn in this way is denoted by Qn”"{tx): 

= (1 - 

For each non-negative integral value of n we have n + 1 values of in, 

namely, 0, 1, • • • , n for which Pn^iix) is not identically zero. With 

each of these values of m, except the value m = 0, we may associate 

two surface harmonics and or, equivalently, 

Pn^{li) cos m<#> and Pn^{ii) sin m<i>. Associated with the value m = 0 

we have only one surface harmonic, namely, Pn°(M) = Pniij)- Thus 
we have associated with any non-negative integral value of n, 2n + 1 

surface harmonics U„, and for each of these V = r"C/n is a polynomial 

function of a:, and z. 

Examples 

n = 0; m = 0; Po®(m) = 1; Po°(m) cos 0<^ = 1; 7=1; 

71 = 1; m = 0; Pi°(m) = m; Pi(m) cos 0<^ = 7 = Z] 

m = 1; = (1 - 
PiHm) cos <t> = {I — cos <t> = sin 0 cos </>; F = x; 

Pi*(m) sin <#> = (1 — sin <#> = sin 6 sin <#>; V = y; 

n = 2; m = 0; /V(m) = Km'- i); F = f ('’V - M 
= i{2z^ - x= - 

m = 1; PjHm) = 3(1 - m')’^m; 
P2^ COS <t> = 3(1 — m')’^m cos <#>; F = 3xa; 

Pj* sin 4> = 3(1 — m')^V sin </>; F = Zyz; 

m = 2; P2* = 3(1 - m'); 

P2^ COS 2</> = 3(1 — jjL^) cos 2<f); V = 3(a:® — y^) 

Pi^ sin 2<i> = 3(1 — sin 2<^; 7 = 3a:2/; 

Let us denote Pn”*(iLi)6'’”^> where m is any integer positive, negative, 
or zero, by Then Un^ is a surface harmonic which is associated 

with the non-negative integer n. Hence, by the orthogonal property 
of surface harmonics, 
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/ do) = 0 if ni 712. 

When ni = 712 the integral is still zero if mi ^ m2 since 

J* U„’"‘U„’^dw = i 
X2, 

When til = nt = n, say, and mi = wtj = m, say, we have 

J “ dM. 
On writing {Pn'"(M)P in the form {(1 — jLi’)’”D”'Pn}D’"Pn and integrat¬ 
ing by parts we obtain (since, when m > 0, the integrated part is zero 
at /x = ±1) 

j: {P„’"(M)pdM 

- ~ J D^-'PnKl — ll^)”D’^^Pn — 2mtt(l — M*)’”-"D’"Pn) dfi. 

On differentiating the equation 

(1 - H^)D^Pn - 2mDP„ + 7l{7l + 1)P„ = 0 

(m — 1) times we obtain 

(1 ~ _ 2m/LiD”‘P„ + {71 + m)(n — m + 1)D”‘“^P„ = 0 

so that 

J dn = (tI + 7n){7l — 7n + 1)J* (1 — dfi 

= (n + m)(n — m + 1) (M)PdM. 

On continuing this reductioTi until we reach /: {P.oWPdM = 

2n + 1 
we find that 
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/: {PrTin)]^ dyi = (n + m)(n + m - 1) in + 1) 

(n — m + 1) 
2n + 1 

{n + m)\ 2 

(n — m)\2n + \ 

Hence J* O'*"!/*” do) = 
(/i + m)! Air 

so that the function-vectors 
(n — 7n) \ 2n -f- 1 

"" M 4,r(n+«)! j 1 Mn+n,)\ I ” 

— 1 ^ At ^ i; 0 ^ < 27r; = 0, 1, 2, • • • ; 
= 0, ±1, • • • , ± '/t 

constitute an orthonormal set over the unit sphere. If /(ai, <t>) is any 

function which is integrable over the unit spliere its Fourier coefficients 

with respect to the orthonormal set {u„"*j arc given by the formula 

Cn” = (u„"|f) = ^u,rfclo3, where ip). 

The Fourier series of f with respect to the orthonormal set |u„™j is 
GO n 

n — 0m—~n 

This series is known as the Laplace series of the function /(ai, </>) of 

position on the unit sphere. Just as for the Fourier series of a con¬ 

tinuous function /(ai) with respect to the power-function orthonormal 

set, and of a continuous function /(<^) with respect to the exponential 

orthonormal set, it is possible to show that if /(ai, <#>) is continuous over 

the unit sphere it may be approximated arbitrarily closely, uniformly 

over the unit sphere, by a linear combination of a finite number of the 

functions (this finite combination being an average of partial sums 

of the Fourier series of /(a*, <^)). The proof of this fact is detailed, and 
we do not give it here. It may be found in Spherical and Ellipsoidal 

Harmonics by E. W. Hobson, Cambridge University Press. Taking 

this proof as granted it follow^s that the orthonormal set {Un*”} is 

complete (prove this), and this serves to quantize the integer m which 
occurs in the formula 

PrTiy) 
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for those solutions in which the space polar coordinates are completely 

separable. In the first place if k is not a (non-negative) integer and 

we denote by Mk”' any solution of Legendre^s associated equation over 

[ — 1, 1] then /(/i, </)) = Mis orthogonal to every vector of the 

complete orthonormal set {Un”^} by virtue of the general principle of 
orthogonality of surface harmonics. Hence /(/x, </>) = 0; this quan¬ 

tizes k to the non-negative integers. If n is any non-negative integer 

and m is any integer greater than n let us denote by Mn*" any solution 

of Legendre’s associated equation over [ — 1, 1]. Then /(/x, 4) = 
is orthogonal to every member of the complete ortho¬ 

normal set {Un*”} (why?) so that /(m, 4) ^ 0. Thus we have the fol¬ 
lowing fundamental result: 

If Legendre’s associated equation 

(I - - 2mDM + |a-(A- + 1) - = 0 

possesses over [ — i, i] a solution which is not identically zero then 

1. A: is a non-negative integer n; 

2. m is one of the n + 1 non-negative integers 0, 1, • • , n. 

Note, Pay particular attention to the closed nature of the interval 

[ — 1, 1] in the statement of this theorem. for example, is not 

a solution of Legendre’s associated equation over [ — 1, 1] since Qn^{p) 

is not differentiable at the end-points +1 of this interval. 

EXERCISES 

1. At what points of the unit sphere are Pi, Pi* cos and Pi* sin <f> zero? 
2. At what points of the unit sphere are P2, P2^ cos </>, P2* sin <t>, cos 2i^, 

and P2* sin 24> zero? 

5. The power series solutions of Bessel’s equation 

We have seen in Chapter 5, Section 2 that the solutions of Laplace’s 

equation A2F = 0 in which the cylindrical coordinates (p, 4, z) are 

completely separable are of the form 

J„{ap) I 

KUcep) ) 

where m is quantized (by the requirement that F be a uniform function 

of position) to be a (non-negative) integer. The functions J^iotp), 
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Km(ap) are linearly independent solutions of the equation (BesseVs 

equation of order m): 

Pu + \p,+{l-j)p~0. 

We shall consider first the case m = 0 so that the equation we have to 

discuss is BesseVs equation of zero order 

+ fP = 0. 

We shall regard { as a complex variable, and on writing our differential 

equation in the form 

p«= - \pi-p 

it is clear that the point { = 0 is a singular point of the differential 

equation (i.e., that at least one of the coefficients (of and P) is not 

analytic at { = 0). There is a general theorem on second-order linear 

differential equations in the complex field which says that if { = 0 is an 

(isolated) singular point of the differential equation and if (1) the 
coefficient of P|, when the equation is solved for P^f, is either analytic 

at f = 0 or has ^ = 0 as a simple pole and if (2) the coefficient of P, 

when the equation is solved for P^f, is either analytic at ^ = 0 or has 

{ = 0 as a pole of either the first or second order then the differential 

equation has a solution which may be written, in a neighborhood of 

f = 0, as the product of a power series in { by a power f« of f, a being 

some complex number. 

Note. The theorem just stated is part of a theorem known asPwc/is's 

theorem (after L. Fuchs [1833-1902], a German mathematician). A 

singularity of the type described is known as a regular singular point. 

In order to determine a solution of BesseFs equation of zero order 

of the type described we set 

P = {*(Co + Cii + • • • + + . .^ . ) = + • • • + 

+ * ' • , 
where Co 7^ 0. On substituting this expression in BessePs equation we 

obtain a power series whose sum is zero over a neighborhood of J = 0. 

Since each coefficient of this power series must be zero (why?) we 
obtain the following series of equations; 
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Coa^ = 0; 

Ci(a + 1)2 = 0; 

C2(a + 2)2 + Co = 0; 

Cjia + jy + Cj-2 = 0; j = 2, 3, • • • . 

The first of these equations tells us that a = 0, the second that ci = 0, 
and the remaining coefficients are determined by the formula 

Ci = - 3 = 2,3, • ■ ■ . 
3^ 

Hence c^+i = 0 (why?), cy = (2T)'^zy:" T: ~(2j)2’ 

tion is 

f + _J!_ 
22 (22) (42) 

+ (-1)' 
p- 

(22) (42) i.23)' 
+ 

The function inside the brackets is known as Bessel’s function of zero 

order of the first kind and is denoted by Jo(0' 

JoU) 1 2”- (22) (42) n\n\ 
0 

The power series which defines /©({) converges for every (finite) value 
of (Prove this.) 

Since the quadratic equation which determined a, namely = 0, 
had a = 0 as a double root, Fuchses theorem {part of which we have 

already quoted) assures us that BessePs equation of zero order possesses 
a second solution of the form 

P = Jo(J) log { + 'U?(f), 

where w?(J) = Oif + + • * * + cin£” + • * • is analytic, and 
zero, at £ = 0. Upon substituting this expression for P in BessePs 

equation of zero order we find that w(() must satisfy the following 
differential equation: 

£D2tt? + Dw + (w = —2DJof 
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where D denotes differentiation with respect to Upon equating 
coefficients of like powers of f on both sides we obtain the following 
series of equations: 

ui = -2ci; 

- -(2)(2)c2; 

S^as + ai = -(2)(3)c3; 

+ ay_2 = -{2)(j)cj = ? Cy-o; y = 3, 4, • • • , 
J 

where Jo(f) = 1 + + • • • . Since ci, ca, C5, • * • are all 
zero it follows that Ui, as, as • * • are all zero. The second of our 

series of equations tells us that 02 = "“^2 = the fourth that 

1 (2 

and so oh. Thus 

1 

(22) (42) 

1 

(22)(42)(0 

and, generally, 

asy = 
(2“)(4=>) ’ +2 + 

This second solution of Bessel’s equation of zero order which we have 
obtained is known as Bessel’s function of zero order of the second kind 
and is denoted by the symbol iiCo(?): 

A'o(i) = /o(f) log f 

i' 
22 (22) (42) \ 

+ 
0 1 + :;) + (22) (42) (02) 0+5+0 

Applying the same method to Bessel’s equation of order m 

+ (DP + ({2 - m‘)P = 0 
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we find first that a — ±m. In the case we are discussing m is quan¬ 

tized so as to be a (non-negative) integer, but it is useful (in other 

connections) to develop the solution ol Bessel’s equation ‘*of order m” 

when m is not an integer. For instance the case where m is an integer 

plus is important in connection with those solutions of the wave 
equation in which the radial coordinate r of a system of space polar 

coordinates is separable from the angular coordinates (0, <#>) (see Exer¬ 

cises 12 and 13, p. 135). We shall, therefore, ignore the fact that m is 

quantized to (non-negative) integral values and proceed on the 

assumption that m is any (positive) number. The two roots of the 

quadratic equation w^hich determines a are distinct since m 0; their 

difference has the numerical value 2m, and if this is not an integer we 

obtain two linearly independent solutions of the differential equation 

by setting first a = m and then a = — m. We denote these solutions 

by Jm{^) and /_m(f) so that Jm{i) is the product of a power series, 
which is different from zero at J = 0, by while J-mii) is the product 

of a power series, which is different from zero at f = 0, by f"”*. 

On substituting P = ^ + • * • in the 

differential equation + fDP + ({^ — m^)P = 0, the equations 

which determine a and the coefficients ci, C2, • • * (the latter in terms 

of Co) are 

(a^ — m2)6*o == 0; 

{(a + 1)2 — m^jci = 0; 

{(« + jy - + Cj-2 = 0; i = 2, 3, • • • . 

Since m > 0 none of the coefficients of ci, C2, • • * in these equations 

is zero when a = m. Hence ci = 0, and it follows at once that Cs, cs, 

* • , C2n+i) • • * are all zero. Furthermore 

_ _Co_^ _ _C2_ 

(a + 2 + m)(a + 2 — m)' (a + 4 + m){a -f- 4 — m) 

and so on. On setting a = m we obtain 

_ _Co_^_C2__Co_^ 

~ 2^(m + 1)(1)’ “ (22)(m + 2)^ “ 2*{m + 2)(m + 1)2!’ 

• • • , C2,- - ; 2W(m + j) • • • (m + l)(i!j’ 

On replacing Co by Co ^ r(m + 1) we obtain the formally simpler 

expressions 
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C'o . Co 

r(TO + 2)(l!)’ r(m + 3)(2!)’ 
Co 

r(OT+j + 1)0’!)’ 

Note, r(/3) is the gamma function which is defined for all complex 
numbers P whose real part is positive by the formula 

r(;8) == dt. 

When /3 is a positive integer we have 

r(^) = (/3 - 1)! 

(it being agreed that 0! = r(l) = 1). When 0 = i we have 

r(i) = 

We have, then, the following solution of BessePs equation of order m 

(obtained by setting Co = —) 
2^ 

(.) ==_L__ (iY_(i) 
r(m + 1) \2/ r(m + 2)(1!) \2/ 

1 

r(m + 3)(2!) 

_1_ 
r(m + n + l)(n!) 

0 

When m is an integer r(m + p + 1) 
For example, 

m+2n 

may be replaced by (m -)- p)!. 

Ji(0 
2 (22)4 (22)(42)(0) (22) (42) (62) (8) 

+ • • • 

EXERCISE 

/ 2 
1. Show that Jj^(€) = i J Remember that r(-J) « 

When 2m is not an integer (so that none of the coefficients in the 
equations which serve to determine ci, C2.. • • • is zero) we obtain a 
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second solution of BessePs equation of order m on setting a = — m. 
This second solution is 

If m < 1 

2^ 

(^0 
(1 - m) (22)(42)(1 - ot){2 - wi)(2!) 

we may set Co = —-r, and we denote the solu- 
r(l — m) 

tion so obtained by the symbol /_»»(£): 

J-mii) r(2 - m)(l!) r(3 - w)(2!) 

eo 

-2<-. r(n + 1 — m)(n!) 

The (apparently) exceptional case m = ^ falls under this formula. In 
this case the coefficient of ci is zero, but this only means that Ci is 
arbitrary. On setting ci = 0 we obtain a multiple of CO'S 

defined above). If we do not set ci = 0 we simply obtain a linear 
combination of i/-^(i) and /j^Cf). 

EXERCISES 

/ 2Y 
2. Show that 7-^4($) = I 

3. Show that the change of dependent variable P « transforms Bessers 
differential equation of order m into 

D^w + i 1 + • - jiy ~ 0. 

4. Deduce from the result of Exercise 3 that must be a constant multiple 
of sin ^ and that must be a constant multiple of cos Hint. 

is a linear combination of cos ^ and sin Since is zero at ^ » 0 
it must be a constant multiple of sin ^ Similarly is a linear combination 
of cos { and sin ^; being an even function of ^ it must be a multiple of cos 

5. Verify that Ji(i) « —D/o(i). 

In order to obtain the second solution KmiO of BessePs equation of 
order m, when m is an integer, we combine the two equations 

f^D^P + {DP + ie ~ wi2)P = 0; 

£2DV« + ^DJm + (f* - m^)J^ = 0 
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as follows: Multiply the first equation by Jm, the second by and 

add; we obtain, on dividing through by 

+ {JmDP ^ PT>Jm) = 0. 

Since - PDVJ = D(J„.DP - PDJJ it follows that iUJDP 

— PT>Jm) is a constant (why?). Hence 

where the constant C is not zero since we take it as granted that P is 

not a constant multiple of Jw is a power series in £ which starts 
P 

out with the jsm+i term. Hence — is a constant times log £ plus a 
m 

power series in £ plus some terms involving negative powers of £, the 

lowest power of £ being the — 2mth power. Since it is shown, in the 

proof of Fuchs’s theorem, that the constant which multiplies log £ is 

not zero we can take it, without lack of generality, to be 1 (why?). 

Hence 

P = log { + w{0y 

where t4?(£) is a power series in £ plus the sum of a finite number of terms 

involving negative powers of £, the lowest power being the — mth. 

Upon substitution of this expression for P in Bessel’s equation we 
obtain 

+ £Dw; + (£2 — m^)w == — 2£DJ,„. 

On setting w = ao£“^ + ai£~»”+i + • • • + an»_i£ + we 

n*>0 

obtain a series of equations which serve to determine the coefficients 

Oo, tti, • • . The first of these equations tells us nothing about 

ao] the second ( — 2m + l)oi = 0 tells us that ai = 0; the third 

2(—2m + 2)a2 + ao = 0 tells us (provided that m > 1) that 02 

= —-77; the fourth equation 3( —2m + 3)a8 + Oi = 0 tells us 
2^(m — 1) 

that as = 0 (why?). In this way we see that all the coefficients 
02!,>i are zero and that, if m > 2, 

04 
02 

4 (2m — 4) 

do 

(2*)(ot - 1)(ot - 2)2!' 
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Similarly 

ae 
do 

(6) (2m — 6) 

and, generally, 

2«(m - l)(m - 2)(m ~ 3)31 
if m > 3, 

Cl2j — 

do 

22?m(m — 1) (m - j)jV 
3 = 1, 2, m 1. 

When we reach the term d^m its coefficient is zero, and we have the 
equation 

fl’2m—2 = 2mCo, 

1 
where J«($) = Co^T + + 

d>2m-2 = ~ 

SO that Co == 

1 

(2”‘)m! 
Hence 

(2”*-i)(m ~ 1)! 

so that (from the formula for a2j, with^* = m -- 1) 

ao = 22(’»~h(;n - l)!(m - l)!a2„»-2 = - 1)!. 

The coefficient d2m is undetermined (^vhich is only another way of 
saying that P is indeterminate to the extent of an additive constant 

multiple of /m(f)). The remaining coefficients d2m+2f «2m4-4, * • * , are 
determined by the series of equations 

2(2m + 2)a2m+2 + a2m = —2(m + 2)c2; 

4(2m + 4)a2m+4 + a2m+2 = —2(m + 4)c4; 

6 (2m + 6)a2m+6 + <i2m+4 = — 2(m + 6)c6; 

and so on. The first of these equations yields 

0'2m 

If we set 

Cl2m 

li ■+5 + 4(m + 1) 

we obtain the relatively simple formula 

4(m + 1) 

a2»»+2 
=-i( 

i+i+j+ 
m Tl)- 
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C2 1 
Since — = — —-—— the definition of ajm may be put in the form 

Co 4(m + 1) 

-fO+i+ • • • 

Note. The reason for the particular choice of the value of a^m just 
made will be explained in the following section. 

The second of our equations yields 

0'2in+2 
(22) (m + 2)2 

and since, by virtue of the relation C2 = — 4(m + 2) (2^4), 

22(m + 2)(2) ^m + 1/ 

we obtain a^4= -|‘(l+i + l+i+ • • • + ;;;^} 

Continuing this argument we obtain the general formula 

«^.+^=-|{(l+i+ ••• + j) + (l+i+ ••• 

We denote by K^i^) the solution of BessePs equation of order m 
obtained in this way; thus 

K.m/.(s) kg i - i (c -1) 1 (|)~+(!)■"’ 

00 

- X'''l(‘+i+ • ■ • +j) + (‘ + ^+ • ■ • 

where J„({) = cof” + C2p“+^ + • • • + + • • • , so that 

ca = (-ly 2"'+«j\m+jl. 

EXERCISE 

6. Write out the expression for and verify the relation 
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6. The recurrence relations for Bessel functions 

The relations of Exercises 5 and 6 of the preceding section are special 
cases of the following general theorem: 

/«+i(i) - K„+i(i) = -i"D 1^1- 
To prove this theorem we observe that if Pm({) is any solution of 
BessePs equation of order m then 

satisfies the differential equation 

+ (2m + 1)DP^ + iRm = 0. 

In fact DPm = T>^Rm = -f 
+ m(m — so that 

i^D^P^ + {DP« + ({2 - m2)P„ 

= + (2m + 1)DP. + JP.}, 

which proves the statement. Set, now, f = ami denote differenti¬ 
ation with respect to f by the symbol 5 so that 

DPm = (SRm, D^Rm = 5Pm + = ^Rm + 2f5^Pm. 

It follows that 

2f52Pm + 2(m + l)5Pw + Pw = 0, 

and on differentiating this equation with respect to f we obtain 

2f5*Pm + 2(m + 2)b^Rm + 5Pm = 0. 
In words: 

5Pm is a solution of the equation which Pm+i satisfies. 
Returning to the original dependent variable Pm and independent 

variable f this result appears as follows: 

If Pm is any solution of Bessel’s equation of order m then D 

is the quotient of a solution of Bessel’s equation of order m + 1 by 
^+1 

An equivalent statement is the following: 
If Pmii) is any solution of Bessel’s equation of order m then 

is a solution of Bessel’s equation of order m + 1* 
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When P»»({) is JmiOy — is a power series and so (— ) is the jm f 

product of a power series by Hence (f") , which we know 

to be a linear combination of and the second solution, A'm+iCJ) 
or as the case may be, cannot involve this second solution. 

Hence m is a constant multiple of Jm+i{0- checking the 

derivative of the second term of against the first term of Jm+iii) 

we find that the constant multiple is — 1. Hence 

= -{“D 

or, equivalently, 

fm+l J ^ I 

When F„ is {"D 
(KM)\ . 

\ / 
is a linear combination of /„+]({) and 

Since the coeflScient of log {in f”D |~~~ | is 

= — Jm+i({) and since the coefficient of log ^ in is J^+jU) the 
coefficient of is the linear combination of Jm+i({) and Km+i{^) 

which furnishes f“D 
I I" ) ' 

is —1: 

— AJm+lii) — Kta+liO- 

On comparing the coefficients of in this equation we find that 

A = 0. In fact —= (co + + * • * ) log J + • • • — - C2 
S " 

|l-|-l+“ + * ■ * H-;—71 f* so that the coefficient of 
I 2 m + IJ 

{ in D is -C2 |l + ^ + • • • + —J- However, the 

Co for t/m+i = ;rT77-TTr; ~ so that the coefficient of 
+ 1)* 

in ^■H-id)= -c. jl + ^+ • • • Hence A = 0. 



THE RECURRENCE RELATIONS 197 

Thus 

j^). 

or, equivalently, 

Jm+1 J 1 r 

Note. It was in order to have this relation that the particular choice 

— + • • • + —) for the constant a2m that occurred when 
2 \ 2 m/ 

we were defining Km{i) was made. 

-fe). 

EXERCISES 

1. Show that ./^^(?) = ( — ) (sin f — ^ cos f). 

2. Show that if Pm is any solution of Bessel’s equation of order m then 

I){!i^Pm) is a solution of Bessel’s equation of order (m — 1). 

3. Show that 

(0 
(f) =./«_! or, equivalently, that 

“y D(^”/m). Note. When m is half an odd integer, so that 2m is an integer 

without m being an integer, the second solution of Bessel’s equation may be 
obtained from by repeated application of the formula Jm-\ ~ 

Thus/-H(«) = = {’^D|r^V_H(£)l,and80on 

, . , cos $ 
}sm ^ + -y- 4. Show that 

5. Show that D(f^iCw) = Km-\ or, equivalently, that « 

Hint, (/heck the coefficients of on both sides of the relation 

= AJm-i + Km-\ to show that A — 0. 

6. Show that 
the two relations 

2mJm.(^). Hint. Eliminate DJm from 

i(U-rD Jm-lU) (f) 
7. Show that ^\K„,+i(^) + /v„_i(U} = 2mKn(^). 

8. Show that DJ»t(U “ 
9. Show that /-i(U ~ —JiU) and, generally, that if m is an integer J-mU) 
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7. The zeros of the Bessel functions of the first kind 

The function /m({) satisfies the differential equation 

= 0. 

Let a and be any two complex constants, and consider the two func¬ 
tions/({), g{i) defined as follows: 

/(£) = gii) = JmiPi); ^ ^ a. 

Since the operators {D and are unaffected when { is replaced by 
any multiple of itself we have 

m + fD/ + - m^)f = 0; 

+ iT>g + - m^)g = 0. 

On dividing each of these equations by f they appear as follows: 

D({D/) + («*{ -j^f = 0; 

D«D(7) j)i7 = 0. 

Upon multiplying the first of these two equations by g^ the second by 
—/, and adding we obtain 

{gDf - fDg) + ^{gB^f - fB^g) + - P^)^fg = 0, 

or, equivalently, since (gB^f — fB^g) = B{gBf — fBg), 

BiiigBf - fBg)} + (a* ~ P^)^fg = 0. 

Upon integrating this relation over the interval [0, 1], provided that 

iigBf — fBg) exists over [0, 1], we obtain 

iigBf - fBg)' = - a^) f di, 
0 Jo 

From the series expansion Jmii) = cof” 11 — —-—r + * * • 1 > 
I 4(m + 1) I 

where co = it is easy to verify that 

i(gBf-fBg) = i[aJmifii)J'm(a^) - }, where t/'m(Q!{), 

J'miPi) denote the values of DJm({) when J is replaced by aj and /SJ, 
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respectively, starts out with the term involving unless ~ — a, 
in which case it starts out with a higher power term. (Prove this.) 
Hence f(^D/ -- fDg) is zero atf = Oifm> —1, and we shall suppose 

this to be the case. Let, now, a and be any two distinct zeros of /«(£) 
(assuming that Jw(£) has two distinct zeros). Then both g and / are 
zero at J = 1 so that 

- a^)£m)9(i)d^ = 0. 

It follows from this relation that Jmii) has no non-real zeros if m > — 1. 

In fact it is evident, since Jm(£) is the product of f”* by an alternating 
power series in that /«»(£) has no purely imaginary non-real zeros. 
If, then, a is a non-real zero of /m(£), a 7^ a (since a is non-real) and 
a 5*^ —a (since a is not purely imaginary). Hence 5^ — a® 5*^ 0. 
Now, since the coefficients of the power series multiplying in the 
definition of Jmii) are real, it follows that a is a zero of Jm when a is; 
in fact /m(a) is the conjugate of On setting, then, = a we 
have, since 

{/(!)(;({) df = 0. 

Since/(f) = Jm(«£), ^(£) = JmiPi) = Jm(a£) wehavefir(j) = /(J), and 

the relation I f/(£)p(f) d£ = 0 is absurd since the integrand £/(£)^(£) 
Jo 

is non-negative and not identically zero. We have, then, the following 
fundamental result: 

If m > —1, Jmii) has no non-real zeros. 
Furthermore if ai and a2 are any two (necessarily real) distinct positive 
zeros of Jm(£) the two function-vectors 

Vi:ri = 0 ^ i ^ 1 

are orthogonal. (We confine our attention to positive zeros since 

*/m( —£) is a constant multiple of Jmii)-) 
Note. The same argument is applicable to the zeros of T>Jm if 

m ^ 0. It is necessary for the argument to go through that m be 

non-negative (and not merely > — 1) since, on writing 

JM) = cof*” + C2r+' + • • • , 
we have 

U/m(£) = + (m + 2)c2£'^+^ + • • • 

so that DJ„»({) can have a pure imaginary zero if m < 0. Let f = try, 

7} real, be a hypothecated zero of DJm(£); then 
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2/„Y (m + 4) AV . . . . = n 
772- “h 1 \2/ 1(2)(?71 -f- l)(7?l -j- 2) \2/ 

The function of on the left is monotone-increasing (why? remember 

that m > —1). Hence if m < 0 it has precisely one positive zero. 

Since it is an even function it has precisely two zeros. Thus, 

When — 1 < m < 0, DJ^ has two purely imaginary zeros and no 
other complex zeros. If Pi and 02 are any two positive zeros of D7^(f) 
the two function-vectors 

== W2:u72 - 0 < £ ^ 1 

are orthogonal. 
Having shown that has, when m > —1, no non-real zeros it 

only remains to discuss the situation as regards real zeros. We shall 

confine our attention to (non-negative) integral values of m and shall 

prove the following result: 

JmU) has an infinity of real zeros. 
It is sufficient to prove this theorem for ./o(f) in view of the recur¬ 

rence relations. For example the two relations 

J,a) = -DJ«({); Joi^) = ^DU./,(£)! 

tell us that (1) between any two zeros of Jo(^) there lies at least one 

zero of and (2) between any two zeros of $/i(J) there lies at 

least one zero of ^/o(f)- Since Jo(f) is an even function and Ji(i) 
is an odd function we may confine our attention to non-negative values 

of J. Then statement 2 above may be phrased as follows: (2') between 

any two non-negative zeros of Ji(i) there lies at least one zero of Jo(()- 

Note. We shall understand from now on by the phrase ‘^a zero of 

a non-negative zero of Jm- 

Assuming for the moment that Jmii) possesses zeros we know, since 

«/m(f) is an analytic function of {, that each of these zeros is isolated 

(what does this mean?). Hence in any circle with center at f = 0 

there are only a finite number of zeros of «/m(f) (why?). Hence the 

zeros of JmiO can be counted^ and it is convenient to do the counting 

according to size. We shall see shortly that Jo(J) has an infinity of 

simple real zeros, and we denote these by ai, ^2, * * * , where 

0 < ai < a2 < • * * . 

It follows, on combining the statements 1 and 2' with the fact that 
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f = 0 is a zero of /i, that Ji has an infinity of zeros which we denote by 

0, /3i, /32, ‘ ‘ and which are such that 

0 < ai < < as < /32 < • • * . 

We express this result as follows: 

The zeros of 7o({) and 7i(f) interlace each other. 
On using, in a similar manner, the two relations 

Ji(() = -fD ; Ji(f) = i D{{V2(f)| 

we see that J2(() has an infinity of zeros 0, 71, 72, * * * , which are 
such that 

0 < iSi < 7i < /?2 < 72 < • * • . 

In other words the zeros (other than { = 0) of Ji(f) and J2(J) interlace 

each other, the first positive zero of JiU) being less than the first 

positive zero of J2(i). In general. 
The zeros, other than ^ = 0, of 7m({) and interlace each 

other, the first positive zero of Jm(() being less than the first positive 
zero of 

In order to prove that Jo(|) has an infinity of positive zeros we set 

w = Then (see Exercise 3, p. 191) w satisfies the equation 

+ (1 + ^) w = 0. 

We combine this with the equation 

T>H + V = 0 

of which = sin (f — a), a any number, is a solution, as follows: Multi¬ 

ply the equation satisfied by ti; by v and the equation satisfied by v by 

and add to obtain 

vw 
— wl>h)) + ~ = 0. 

4J2 

Since {vD^w — wDh) = D(z;Dt4; — wDv) we obtain, on integrating 

over the interval [a, a + tt], a being any 'positive number. 

|a+» 

{vDw — 
la 

1 

4 Ja ^ 
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Since v(f) = 0 when { = a and when { = (a + ir) and since Dv(i) 
= cos (f — a) is 1 when £ = a and —1 when f = a + tt, we obtain 

w(a •+■ tt) + w(a) = 
1 

4 Ja e 

Since v(£)/£* is non-negative over the interval [a, a -f- tt] it follows that 
w{i) changes sign over this interval. In fact if wi^) were non-negative 
over the interval we would have the contradiction that w{a v) 

vw. 
+ w(a) is negative (remember that ~ is not the zero constant function 

over [a, a + ir]). Similarly cannot be non-positive over [a, a 4- tt]. 
Since u?(£) is a continuous function of £ (why?) it follows that iy(£) 
has at least one zero in the interval (a, a + x). Thus, since w{i) 

Every open interval of length ir on the positive x-axis contains at 
least one zero of yo(£). 

On denoting by ai, 0:2, * •, ain,* * • the positive zeros of Jo(£), 
arranged in order of magnitude, the function vectors {v„l defined as 
follows 

▼ntWnCi) = (^JeianO; 0 ^ J ^ 1 

are mutually perpendicular. To obtain from this sequence of mutually 
perpendicular vectors an orthonormal set we must determine the 

squared magnitude I £Jo^(«♦»£) d£ of Vn. For this purpose we con- 
Jo 

sider the relation 

((gDf ~ /Dg) ' = (/3^ ~ a^) rmOffU) d£, 
0 Jo 

where 

f — Jo(a£), g = Jo(iS£); a and p any two real numbers. 

Written out in full this relation appears in the form 

aJo((8)DJ„(a) - /S/„(a)DJ,(/S) = (/S^ - a*) 

and on differentiating this with respect to 0 and then setting i3 = a we 
obtain 

a{DJo(«)P — Jo(oc)DJo(a) — aJo(a)D^Jo(a) = 2aJ* £{t/o(a£) P d£. 
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On replacing aDVo(a) by — DJo(a) — aJ^ia) we obtain 

a{D/„(a)P + {^o(a)P = 2aJ^'f {/„(«{)}* 

Let, now, a be a (positive) zero of Jo(0 5 then 

r 
Thus the function-vectors jun} defined by 

o«Ki. 
Dj o(otn) 

constitute an orthonormal set. We shall prove later (by means of a 
general result concerning integral equations) that this orthonormal set 
is complete. 

Note. The relation J* i{«/o(Q:{)P = ■J^(D/o(a)j2 assures us that 

DJo(a) 7^ 0 (why?). Hence the zeros oci, • • • , an, * * * of /0(f) 
are all simple. 

EXERCISES 

1. Show that if a 5^ 0 is a zero of t/m(€), where m > — 1, then 

and deduce that the positive zeros of Jm{i) are all simple. 
2. Show that if /3 is a positive zero of /i(€) (or, equivalently, of D/o(^)) then 

3. Show that if /81, 02, Pm •• • are the positive zeros of Jii^) then the 
function-vectors {u») defined by 

Unl Wn({) 
/oOJ.) ’ 

0 < £ ^ 1, 

constitute an orthonormal set. 
4. Show that if yi, 72, • • • , 7n, * • • are the positive zeros of DJm((), m any 

positive integer, then the function-vectors {Un} defined by 

UnZ W«($) 
2>^£^/„(7.£) 

Jm (7n) 

constitute an orthonormal set. 
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5. Deduce from the proof of the result of Exercise 4 that the smallest positive 
zero of DJmU) is greater than m. 

6. Show that, using the notation of Exercise 4, {Jm^(yn)} is a monotone decreas¬ 
ing sequence (m fixed, n = 1, 2, 3, • • • )• Hint. On setting E(0 = 

m2 
we obtain 

DE(^) * 
2 

Hence F(0 is a monotone decreasing function of ^ over $ > 0. At the points 
71, 72, • • • , 7n, • ' * , F(0 = Note. This result tells us that the 
absolute values of the successive maximum and minimum values of Jmi^) steadily 
diminish as $ > 0 increases. 
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BOUNDARY-VALUE PROBLEMS 

1. Self-adjoint linear differential operators 

We have seen (Exercise 5, p. 134) that the solutions of the wave 

equation 

which depend only on x and ty where x is one of the rectangular Car¬ 

tesian coordinates of a point in space, and for which the variables 

X and t are separable are of the form 

V = 

Here p is a constant and u = u{x) is a function of x alone w'hich satis¬ 

fies the equation 

D^u Xu = 0; X = p^y 

where D denotes differentiation with respect to x. (Prove this.) 

This equation governs the (free) vibrations of a tightly stretched 

string or wire, x being a coordinate along the string and u = u{x) 

being the amplitude of the (transverse) displacement of the point 

whose coordinate is x. If we denote the left-hand side of the differ¬ 

ential equation which u must satisfy by L(u) -f Xu so that 

L(u) = D^u, 

L is a linear differential operator; in other words 

L(cu) = cL(u); c any constant; 

L(u + v) = L(u) + L(t;); u and v any two functions possessing 

second derivatives. 

We term L a linear differential operator of the second order to indicate 

205 
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that the highest order derivative that occurs in L is the second, and 

we write 

L = T>\ 

L is not the most general linear differential operator of the second order, 

this being the linear differential operator 

+ gD + r, 

where p, g, and r are functions of x which we assume to be continuous 
over some interval [a, h]. The particular operator L = is special 

in the sense that its coefficients are constant functions of x: 

p = 1; g = 0; r = 0; 

but this is not the feature of L = to which we wish to direct your 

attention. L = arose from a consideration of special solutions 

of the wave equation A2V == ~ Vu- Now those solutions of the wave 
c^ 

equation in which the time variable is separable from the space vari¬ 

ables are of the form 

V = 

where p is a constant and the function U of the space variables satisfies 

the equation 

A2U + Xl/ = 0; X = p\ 

The Laplacian linear operator A2 possesses the following remarkable 

property: 

I (u A2V — V A2U) dr = 

JR 

dS; S the boundary of the 

region R 

(see Exercise 20, p. 31). When u and v are functions of x alone A2 
reduces to and the relation just written reduces, when applied to a 

cylinder whose axis is parallel to the x-axis, to 

/: (uUh} — vDhi) dx = {uT>v — vDu) 
X 

a 

which is only another way of writing the relation 

(uT>h — vT>^u) = D(wDt; — vDu). 
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Now, when L = D^, we have uhv — vLu = {uT>H — vD’^u) and so 

u\j) — vLu = D(uDv — vDu). 

Thus 
The linear differential operator L = possesses the property 

that uLv — vLu is the derivative of an expression uDi; — vDu which 
involves only the first derivatives of u and u and which is a linear 
differential operator on either of the two functions u and u, the other 
being regarded as a given fixed function. 

If L = pD^ -|- gD + y* is any linear differential operator of the sec¬ 

ond kind we can obtain a relation similar to, but not as special as, the 

relation uLv — vIjU = T>(uDv — vT>u) which the particular operator 

L = D^ satisfies. In fact a simple application of the process of 

integration by parts yields 

uqT>{v) dx == (juv ! vDiqu) dx; 

upD^ip) dx = puDv r DvD(pu) dx 

= puDv — vDCpu) -f- I vD^Cpu) dx. r 
Hence I uL(v) dx = puDv — vl>{pu) quv + I yM(w) dx, or, equiv¬ r 
alently. 

— vM(u)} dx = p{uT>v — vDu) + (g — Dp)uy, 

where M(ifc) = D^ipu) — D(gw) + ru so that M is the linear differen¬ 

tial operator 

M = pD^ + (2Dp — g)D + D^p — Dg + r. 

We say that the linear differential operator M is the adjoint of the 
linear differential operator L, and the relationship between an operator 

L and its adjoint M may be written as follows: 

uli{v) — 2;M(u) = 'D[p(uDv — vDu) + (g ~ Dp)uv}, 

From the alternating character of this relationship (i.e., from the fact 

that an interchange of u and v followed by a change of sign is equivalent 

to an interchange of the two operators L and M) it is clear that the 
relation between L and M is a partnership: 
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When M is the adjoint of L then L is the adjoint of M. (Verify 

this. Hint. You have merely to show that 2Dp — (2Dp — q) = q 
and that — D(2Dp — g) + (D^p — 0(2^ + r) = r.) 

When the two mutually adjoint operators L and M coincide we say 

that L is a self-adjoint operator. This is the property of the special 

operator L = to which we wish to direct your attention. This 

special operator is self-adjoint. (Prove this.) The quality of a linear 

differential operator of being self-adjoint is the analogue of the quality 

of a real linear vector function of being symmetric or of the quality of a 

complex linear vector function of being Hermitian. For this reason 

self-adjoint operators are also termed Hermitian. The criterion by 

which we can recognize self-adjoint linear differential operators of the 
second order is clear. We must have 2Dp — q = q ot, equivalently, 

q = Dp, and this necessary condition is sufficient since, then, D^p — T>q 
-h r = r. We have, then, the following result: 

The linear differential operator of the second order L = -h gD 
-t- r is self-adjoint when, and only when, q = Dp, i.e., when it is of 
the form L = D(pD) -f- r. 

For a self-adjoint operator of the second order L wo have 

{kLv — = D{p(wDv — 

An operator L = pD^ -h qT> *+- r which is not self-adjoint may be made 

self-adjoint by multiplying it by a factor /x which is never zero (it 

being understood that /xL is the operator mpD^ + yql) + pr). We 

have only to determine y so that nq = D(/xp). On dividing this 

relation by /xp and integrating we see that 

log (up) = r - dx. 

EXERCISES 

1. Show that the operator L = (1 — ^^2)1)2 _ 2^D -}- n(n -|- 1)-which 
1 — M* 

occurs in the theory of Legendre’s functions is self-adjoint (ju is the independent 
variable). 

2. Show that the operator L = -j- -f- — m*) which occurs in the 

theory of Bessel’s functions is not self-adjoint but that the operator ^L is self- 

adjoint (€ is the independent variable). 
3. Show that any operator of the form D* -f r is self-adjoint. 
4. Show that the operator adjoint to the third-order linear differential operator 

pD» -I- gD* -f- rD -h « is furnished by the formula M(i/) *= — D®(pw) -j- D^(qu) 
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— D(rw) + sUj and deduce that no third-order linear differential operator is self- 
adjoint. Hint. Self-adjointnoss would require — p = p, i.e., p = 0. 

5. Show that the operator adjoint to the fourth-order differential operator 
poD^ + piD® + P2D2 -f- paD 4- p4 is furnished by the formula 

M(m) = D^(pow) •— T>^{piu) 4- D*(p2w) — D(p3u) d- p4W, 

and deduce the conditions for adjointness. 
Answer, pi = 2Dpo; pa = Dp2 — D®p». 

6. Show that a linear differential operator of the fourth order is self-adjoint if, 
and only if, it is of the form L ~ D2(pD*) ~\- 4- r, and verify the relation 

uh{v) — vL(u) = D{p(uD% — vD^u) 4- (Dp)iuT)^v — vT>^u) 

— p(DuD^v — -f q(u'Dv — vT>u)\. 

Hint, p = po; S' - P2 — D^po; r = p4. 

2. The boundary conditions; regular boundary-value problems 

In the case of the free vibrations of a tightly .stretched string the 

amplitude u = u{x) of the transverse displacement of any point x 

of the string must not only satisfy the differential equation 

L{u) + 'Ku ^ Y>-u + Xu = 0; X = 

but also u{x) must be zero at the (fixed) ends of the string. Taking 

our origin at the mid-point of the string (whose length we denote by i) 

we must have 

These conditions which must be satisfied by a solution of the differen¬ 
tial equation L(u) Xu = 0 so that it may be an acceptable solution of 

the problem are known as boundary conditions^ and the problem of 

determining a function u = u{x) which does the following two things: 

1. u = u{x) satisfies the differential equation L(u) + Xu = 0; 

2. u = u{x) satisfies the boundary conditions, 

is known as a boundary-value problem. The zero constant function is 

evidently a solution of the boundary-value problem, but we disregard 

this trivial solution; when we speak, then, of a solution of the boundary- 

value problem we shall always mean a non-trivial solution, i.e., a 
solution which is not the zero constant function. 

The boundary conditions serve to quantize the constant X which 

occurs in L(u) -f- Xu. In fact the general solution of L(u) + p^u = 0 is 

{cos px 
= A cos px B sin px, 

sin px 
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where A and B are undetermined constants. On substitution of the 

values ± ~ for a; we obtain the two equations 

vl vl vl vl 
A cos ^ + R sin ~ = 0; A cos ^ ~ R sin ~ = 0 

2 2 2 2 

so that A cos 
2 

0, R sin 
2 

= 0. Since not both A and R are zero 

pi pi 
(why?) we must have either cos — = 0 or sin ■— = 0. 

2 2 
Hence pi must 

be an integral multiple of so that p must be real. Since p enters the 

problem only through its square there is no lack of generality in taking 

p to be non-negative. It must actually be positive since, if p = 0, 

A = 0, and u is the trivial solution u ^ 0. Hence p is quantized 

tvtc 
to the numbers Y"' ^ 2, 3, , or, equivalently, X is quantized 

n IT 
to the values —r—y n = 1, 2, 3, 

r 
We term the values to which X 

is quantized the characteristic numbers of the boundary-value problem. 

Thus 

A characteristic number of a boundary-value problem is a value of X 
for which the botmdary-value problem, supposed homogeneous, 
possesses a non-trivial solution. 

Note, A boundary-value problem is said to be homogeneous when 

it is insensitive to multiplication of the unknown function u by any 
constant. The differential equation L(?-^) + Xw = 0 must be homo¬ 

geneous, and the boundary conditions must be homogeneous. A linear 

differential equation such as D^u + Xu = 1 is not homogeneous 

(why?), and a boundary condition such as u “) = 5 is not homo¬ 

geneous (why?). 

When X is a characteristic number we term any (non-trivial) solution 

of the boundary-value problem a characteristic function which is said 

to be associated with the characteristic number X. Thus, in the case 
n^TT^ nTTX 

of the vibrating string, when X = > u = cos —7- is a characteristic 
r I 

function when n is an odd integer, and u = sin -y- is a characteristic 

function when n is an even integer. When n is an odd integer 2/r + 1, 
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say, the amplitude u = u{x) of the transverse vibration is zero at the 
I 

points a; = ± (2j + 1) j = 0, 1, 2, • • • , A*, and when n is an even 

integer 2A*, say, the amplitude is zero at the points a: = ± 7 = 0,1, 

• • • fr. The 71 — 1 points ± (2j + 1) y j = 0, • • • , — 1 when 

n = 2A- + 1 is odd and 0, ±2^ 4 j = 1, • • • , A* — 1 when n = 2A* is 
2 

even are known as nodes. Thus the string vibrates in n separate 

parts which are separated from one another by the nodes. 

n - 3 
Fig. 37. 

We shall confine our attention for the present to second-order differ¬ 

ential equations, and we shall suppose that the linear differential 

operator which is furnished by the differential equation is self-adjoint. 
An undetermined constant X will appear in the differential equation, 

and one of the first problems we have to answer is the following: 

How is the constant X quantized by the boundary conditions? 

An equivalent formulation of this problem is the following: 

What are the characteristic numbers of the boundary-^alue 'problem? 

We shall write our differential equation in the form 

here 

L(w) + 'Ksu = 0; 

L(w) = T>[pT>u] + rw, 

and s = s(a:^) is a function of x which we shall assume (for reasons that 

will shortly be (dear) to be non-negative. The functions p, r, and s are 

taken to be continuous over a given interval [a, 6], and p is granted to 

be differentiable over this interval. The boundary conditions involve 
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the values of w and Du at the points a and 6 in a linear and homogeneous 

manner. We write them as follows: 

B\{u)\aiu{a) -f- a'iDu(a) + Piu{b) + j(3'iDw(6) = 0; 

B^iu^'•ol2u{ci) -}- cx!2Du{a^ -f- ^2u{\)) -j- ^'2Du{h) — 0. 

Thus in the case of the vibrating string for which Bi(u):u{a) = 0 and 

B2{u):u{h) = 0 ^where a — we have (oti, a'l, jSi, 

= (1, 0, 0, 0) and {ot2y a'2, ^2, ^'2) — (0, 0, 1,0). The vibrating string 

is an instance of a special type of boundary-value problem which is of 

great importance. For this type of boundary-value problem = 0, 
= 0 (so that the end-point h is not mentioned in the statement of 

the boundary condition Ri), and a2 = 0, a'2 = 0 (so that the end-point 

a is not mentioned in the statement of the boundary condition B2). 
We say that this type of boundary-value problem is unmixed (by 

which we mean, simply, that the end-points a and h of the interval 

[a, 2>] are kept separated from one another in the statement of the 

boundary conditions). 

Let us suppose that we have two functions u = u{x) and v ~ v{x) 

which satisfy the boundary conditions Bi and R2: 

Bi{u) = 0; B2{u) = 0; B\.{v) = 0; B2{v) = 0. 

Whether or not u = \i{x) and v = v{x) satisfy the differential equation 
which is part of the boundary-value problem is, for the moment, of no 

concern to us. We denote by P23, Psi, * ' ’ , P34 the two-rowed 
determinants which may be obtained from the 2X4 matrix 

/ai a! I fix iS'A 

\a2 a'2 02 0'2/ 

by ignoring two of its columns (the subscripts on the p^s indicate the 

columns we do not ignore and also the order in which these appear in 

the two-rowed determinant in question). Thus 

p2S = Ol'\02 OL^201] p31 = 0lOL2 02(^l] Pl2 = Otia'2 Ot20L\] 

Pl4 == 0110^2 OL20\] P24 = OC\0^2 — Cl\0'\\ P34 = 010^2 020'1- 

In the same way we denote by 7r23, ttsi, • * * , 2r34 the two-rowed 
determinants obtained from the 2X4 matrix (u{a) Du(a) u(h) Dw(6)\ 

v{a) Dv{a) v{b) Dv(b)) 
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by ignoring two of its columns so that 

7r28 = T>u{a)v(b) — T>v{a)u{b); ttzi = u(b)v(a) — v{b)u{a); 

7ri2 = u{a)Dv{a) — v{a)Du{a); ttu = u{a)Dv(f)) — v{a)Du{b); 

TzA = 'Du(a)T)v{b) — T>v{a)T>u(b); tsa = — v{b)T>u{b). 

Then it is easy to see that the ratios 

?>23*7>31‘Pl2*pl4*P24-7>34 

are the same as the ratios 

TT I4‘'7r24*‘n*34:7r23-ir3i:7ri2. 

(Note the rule: tt/*, corresponds to pim if (Imj/c) is an even permutation 
of 1234.) To prove this we eliminate ii{a) from the two relations 
Bi{u) = Oj B2iu) =0 obtaining 

PioDuia) + Piauib) + puDu{b) == 0. 

Similarly pi2D2;(a) + puvQ))' + piJ^vib) = 0, and on eliminating pi2 

from these two relations we obtain 

Pl37r23 + Pl4^24 = 0. 

Since psi = “Pis it follows that pzi'Pu = Tr2i-Tr2h and the equality of 
the other ratios may bo similarly proved. 

The boundary-value problems for which 

p(a) {2^(a)Dy(a) — 2;(a)Dw(a)} = p{b){u{b)Dv{b) — v{b)Du(b)\ 

(where u = u{x)j v = v{x) are any two functions which satisfy the 
two boundary conditions and where p = p{x) is the coefficient of 
in the self-adjoint operator L) are particularly important and simple. 
We term such boundary-value problems regular^ and we shall confine 
our attention to regular boundary-value problems. Since 

u{a)lL>v{a) — v{a)Du{a) = 7ri2, u{h)'Dv{h) — v(l})T>u{b) = 7r84 

and since iri2:T34 = pzA'Pi2 we have the following result: 
The boundary-value problem 

L(u) -f \su = 0; Bi{u) = 0; B^iu) = 0 

is regular when, and only when, 

Since pi2 and p34 are each zero for an unmixed boundary-value problem 
(why?) we see that 
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Every unmixed boundary-value problem is regular. 
The characteristic feature of regular boundary-value problems which 

makes them particularly simple is the following: Since uIj{v) — vL{u) 
= T>[p{uDv — vDi/)} it follows that 

h 
[vL{v) — i;L(2^)} dx = p{uDv — vDu) . 

a a 

Hence if u and v are any two functions which possess second derivatives 
which are continuous (or piecewise-continuous) over [a, b] and which 
satisfy the boundary conditions Bi and B2 then 

j: {i4L(i;) — vL('w)) dx == 0 

if, and only if, the boundary-value problem is regular. Note carefully 
that u and v are any two functions satisfying the boundary conditions 
for which L(i<) and L(t;) are piece wise-continuous over [a, b]. It is by 
no means implied that u and v are solutions of the boundary-value 
problem. 

EXERCISES 

1. Show that if u and v are two solutions of the boundary-value problem (sup¬ 
posed regular) corresponding to different characteristic numbers X and fx then 

r I 8UV dx — 0. 

2. J2 sin nwx\ sin 

_ I cos I j cos I 
dx = 0, n 7^ m — 1, 2, 

Hint. L(w) -4- \8u = 0, L(i;) -f fxsv = 0. Hence uJj(v) — vh{u) « (X — fi)8uv. 
l 

, sin nwx\ 
Show that the relation 

cos 
2 

is a consequence of the fact that the problem of the vibrating string is a regular 
boundary-value problem. 

3. Show that the characteristic numbers of a regular boundary-value problem 
are real (the coefficient functions p, r, and s ^ 0 which occur in the differential 
equation being real as are also the coefficients a and j8 which occur in the boundary 
conditions). Hint. If u = u(x) is a (non-trivial) solution of the boundary-value 
problem wliich corresponds to a characteristic number X then v = w(a;) is a solution 
of the boundary-value problem which corresponds to the characteristic number 

If X is not real p 7^ X and so I suu dx = 0. Since s is by hypothesis 

non-negative (and not identically zero) the relation I situ da; = 0 is absurd (why?). 

Hence if a characteristic number exists at all it must be real. 
4. Show that if a regular boundary-value problem has two distinct characteristic 
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numbers X and ft (so that X and n are real) and if u and v are solutions of the bound¬ 
ary-value problem which are associated with the characteristic numbers X and 

r 
respectively, then I auv dx » 0. Note, This important result may be phrased 

as follows: 
If a regular boundary>value problem has two distinct (real) characteristic 

numbers X and /u and if u and v are solutions of the boundary-value problem which 
are associated with X and respectively, then the function-vectors Vi and V2 
defined by 

Vi{x) = 8^u{x); vz{x) « 8^*^v{x)\ a ^ X ^ b 

are orthogonal. 
It follows that if a regular boundary-value problem has an infinite sequence of 

distinct characteristic numbers Xi, X2, * • • Xn, • • • there is associated with the 
boundary-value problem an orthonormal set. One of the n^in results which we 
shall prove in the next chapter is the following: 

Every regular boundary-value problem possesses an infinite sequence of charac¬ 
teristic numbers. If all, or all but a finite number, of these characteristic numbers 
are positive the corresponding orthonormal sequence is complete. 

3. The Green’s function of a regular boundary-value problem 

for which zero is not a characteristic number 

We know that the characteristic numbers of the boundary-value 
problem of the vibrating string 

(D^ + X)«=0; m(-0 = O; « Q) = 0 

are the numbers X = 2, • • • . Thus the boundary-value 
r 

problem of the vibrating string does not have zero as a characteristic 

number; in other words the boundary-value problem 

D»m = 0; m(-|)=0; ^Q) = 0 

does not have any solution other than the trivial one w s 0. An 
important class of boundary-value problems shares this property with 
the boundary-value problem of the vibrating string. No problem of 
the class has zero as a characteristic number. We shall treat this 
class of boundary-value problems first and shall consider later those 
boundary-value problems which have zero as a characteristic number. 

Assuming, then, that zero is not a characteristic number of our 

boundary-value problem 

L(w) + \su — 0; Bi{u) = 0; B^iu) = 0 
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we know that the boundary-value problem 

L(u) = 0; Bi(u) = 0; = 0 

has no solution (other than the trivial one = 0). In other words the 

conditions imposed on u are too stringent to permit the existence of a 
(non-trivial) solution. We lighten these conditions in the slightest 

possible manner as follows: We still demand that u — u{x) satisfy 

the boundary conditions Bi(u) = 0, B^iu) = 0, and we demand that 

it satisfy the differential equation Ij{u) = 0 at every point except one 

of the interval [a, h]. At this point (which is an arbitrarily selected 

point t of the interval) we do not demand that u possess a second 

derivative or even a first derivative so that the operator L becomes 

devoid of meaning at the point i for the (non-trivial) solution (of the 

lightened (or weakened) boundary problem) which we are attempting 

to determine. This solution is a function of the interval variable 

a ^ X ^ h which depends on the accessory variable or parameter t. 

We shall see shortly that it is unambiguously determinate if we impose 

a certain condition concerning the permissible discontinuity of the 

first derivative at the point t (no discontinuity in the function itself 

being permitted). This unambiguously determinate solution of the 

lightened boundary-value problem 

L(w) =0; X 9^ t) B\{u) = 0; B^iu) = 0 

is known as the Creen^s function of the original boundary-value problem 

L(w) + \su — 0; Bi(u) = 0; B2{u) — 0 

(after G. Green [1793-1841], an English mathematician). We shall 

denote it by the symbol 

The upper symbol x indicates the variable of which Gi ) is a function, 
V/ 

and the lower symbol t indicates the point of the interval [a, h] at 

which a discontinuity in the derivative DG of G is permitted. 

/x\ 
Note, We use the symbol (j ( Jin anticipation of the result, which 

we shall shortly prove, that there is closely associated with G I 
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linear integral operator K: K which serves to replace the linear dif- 

fereptial operator L *+■ Xs CLnd the boundary conditions Bi and R2. 
The fact that we have selected a point t of the interval [a, b], at 

which the linear differential operator is devoid of meaning when applied 
/x\ 

to (? ( I, forces us to consider two intervals [a, t] and [t, 6] rather than 
\tj 

the single interval [a, b]. The function GI I must be a solution of the 

equation L((j) =0 over each of the two intervals, but it need not be the 
same solution. In other words, if Ui = Ui(x) and U2 = ^^2(x) are two 
linearly independent solutions of the equation L(w) = 0, the Green’s 
function which we are seeking must be a linear combination of Ui and 
U2 over each of the intervals [a, <], l^, h], but it need not be the same 

linear combination over these two intervals. We denote by Gi 

the linear combination 

Gi == CiUi{x) + C2U2{x) 

over the left interval [a, /J, and we denote by Gr the linear combina¬ 

tion 

cni\{x) + Cia2(x) 

over the right interval [^, h]. Warning. Do not fall into the mistake 

of thinking that there are two Green’s functions Gi I 

Gi (:) is a function of the interval variable [a, t] while 

function of the interval variable [t, b]. The Green’s function G 

of our boundary-value problem is a function of the interval variable 
[a, b] which is defined as follows: 

(x\ 
ilc Gr\ ] is a 

V/ 

C) 
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The two functions Gi 
(x\ (x\ 

ions I I \ / 

over [a, t], i.e., H x ^ t; 

over [<, 6], i.e., li x ^ L 

must fit together at the point t 

which is common to their intervals of definition [a, and [<, 6], respec¬ 
tively. This establishes one linear, homogeneous relation between 
the four coeflScients (ci, C2, Ca, C4) of the two linear combinations of 

Ui and U2 which serve to define Gi this relation is 

CiUi{t) + C2U2{t) = CsUlit) + CAU2{t). 

(x\ 
The fact that ^ I ) satisfy the two boundary conditions 

Bi{G) = 0; B2{G) = 0 

imposes two more linear homogeneous relations between the four 

coefficients, (ci, C2, Ca, C4), namely, 

«!<?, + a'jyOi Q + fiffr + /S'lEX?, = 0; 

”■*‘0 
We suppose that these three linear homogeneous relations between the 
four coefficients (ci, C2, Cs, C4) serve to determine the ratios of these four 

coefficients. Then G 

constant. 

is determined up to a multiplicative 

Example 

For the boundary-value problem whose solution determines the free 
vibrations of a tightly stretched string L = so that we may set 

ui = 1, = X. Hence = ci + c^x; ~ + Cia:, and 
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the fitting together relation Gi 

= 0; the boundary condition B^iG) 

I 
= 0. Hence Ci = -C2; cs 

Jd 

yields Ci + c<it = Cg + c^t. 

1 

2 

I 

/- Z/2\ 
The boundary condition Bi{G) = 0 isGj I ) = 0 so that Ci — > 

\ t / 
/l/2\ 

= OisCr,l 1 = Oso that Cj + < 

^ 
Z / Z \ Z I /I \ I 

thatci:c2:cj:c4 ^2V2'*’/~2'*^^‘~2\2^/2'*’^' 

’2 

so 

where c is an undetermined, constant. 
The undetermined multiplicative constant c is fixed by the following 

requirement: 

/>(0 rx?i 
'C)-“'0 = 1. 

The reason for this (at present artificial looking) requirement will 

be clear in the next paragraph. It requires that ?>(0 I UGi I 

DG, 0) 

'0 
be different from zero over [a, 6], and we shall make this 

assumption. 

In the case of the vibrating string 

so 

De,(‘) . e. ^ DO.Q - c. - c0+ .) 

that DGi ^ ^ ~ ^ ^ ~ Since p{t) = 1, c = —j* Hence 

the Greenes function for the vibrating string is 

{:)- 
< ^ X < 
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Thus the graph of the Greenes function for the vibrating string is 

L broken line connecting the two ends of the string, the 

slope of the left part of the broken line being 
greater than the slope of the right part by 1. 

The Green’s function of a regular self- 

adjoint boundary-value problem possesses a 
remarkable property: 

is a symmetric function of the two variables {x, t)\ i.e., 

In order to prove this let h and U > U be any two points of the open 

interval (a, 6), and consider the two functions 
(x\ 

ions u(x) = G\ I, 
\uJ 

v{x) 

Then we have to prove that = v{ti). Since both u 

and V satisfy the boundary conditions Bi and B2 (why?) and since the 
boundary value problem is regular we know that 

p{uUv — vDu)\ = 0. 

Furthermore, since the boundary-value problem is self-adjoint, we 
know that, at any point x where u and v possess second derivatives, 

D{p(wDy — v1l>u)\ = vL{v) — vL{u) = 0 

(why? Remember that L 0 for every t). Since u does not 

possess a first derivative at or = and since v does not possess a first 
derivative at x = ^2 this relation is meaningless at the points U and ti) 
however, it is true over the open interval (^i, U) and the half-open 

intervals [a, fi) and (^, 6], and on integrating it over these intervals we 
obtain 

p{uT>v — i;Du) = 0, 

where we mean by a symbol ^i-|-, for example, that we take the limit of 
p{uDv ~ vDu) as x approaches <1 through values greater than <1. 
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p{uDv — v1l>u)\ + + = 'p{uT>v — i;Dw) + -f- 
l<»+ \tz + 

since each side means the same thing, namely, the sum of the values of 
p(uT>v — vT>u) at the points ti — , <2—, h less the sum of the values of 
P(2iDv — at the points a, h+j and t2+. The first of the three 
terms in the expression on the right is zero (why?); since p, ii, v, and 

Dv are continuous at a: = the second term = —p(ti)v(ti) {Dd [ 
I k+J 

and since p, u, r, and Du are continuous dX x U the third term = 

p{t2)u{t2) |dJ |- Hence we shall have u{t2) = v{ti) if, and only if, 

or, ecpiivalently, 

p{x)DG Cl= p{x)DG 

We arrange the multiplicative constant which remained undetermined 

h\ 
in the definition of CI 1 so that this equality is valid; in other words 

V/ 
we determine this multiplicative constant (which is a function of t) 

so that p{x)DG is independent of f We choose it to be 1 

(note that this choice makes p(0DG/^ y greater than p(0DCr^ J). 

We have proved, then, the following result: If a < h < k < h, 

0 ■ '{<’)■ 
Since this relation is equivalent to the relation 

and since GA ) is a continuous function of k over [a, <2] it follows that 
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/tt\ 
UJ 1 is a continuous function of <i over [o, <2] and that Gi 

®'C) “rlyoQ.oQ^deQ 

.«Q Thd. 

0- 

^ t ^ b. 

Warning. Be careful, in checking the Green’s function of a bound¬ 
ary-value problem for symmetry, that you do not thoughtlessly merely 

interchange x and t in either 6i 

"'0“' 

by the relation 
(:)■ 

nor 

in general, symmetric; the symmetry of G' ( ) is expressed 

Gi 

■(:) 
(:)-<> 

Thus once you have Gi ( ) you may write down G, 

interchanging the variables {x, t) in the expression for Gi 

■(:) by merely 

(:) How¬ 

ever, this is merely a convenient memory rule since, in order to deter- 

'(:) mine Gj I ]; you have to simultaneously determine 

4. The Green’s function as a linear integral operator 

/x\ 
Let GI ) be the Green’s function of a regular self-adjoint boundary- 

value problem (for which zero is not a characteristic number), and let 
h = h{x) be any function which is continuous over [a, h]. We regard 

the function h of the interval variable [a, b] as a function-vector h, and 

we regard the function G the square variable a ^ x ^ b, 
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a ^ ^ & as a linear integral operator G. Then 

"/>(:) h(t) dt = l^{x)\ a ^ X ^ b 

is a new function-vector k which is in important respects smoother than 
h. Thus k{x) is not only continuous but differentiable over [a, 6] 
while h{x) was not assumed to be differentiable over [a, 6]. To show 
that k{x) is differentiable over [a, h] we write its definition in the form 

Since both (r, 
a/x\ 

and(jjl Jar 

h(t) df -f" 

\h(t) dt + 

f"(:> 
/>.(:) 

\h{t) dt 

\h(t) dt 

are differentiable (with respect to x) over 

[a, h] it follows by the rule for differentiating an integral that k(x) is 
differentiable over [a, h] with 

since G 

= dt + />(:} 
/>C) \h{t) dt 

\h{t) dt 

Thus DA; may be written in the form 

\h{t) dt. 

Warning. Do not fall into the error of trying to obtain this result 

cheaply by merely differentiating, under the sign, the integral 

XH:) \h{t) dt which furnishes k{z). This is not a legitimate pro¬ 

cedure since Gl ) is not differentiable over [a, &] (although Oi and Gr 
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are differentiable over their intervals of definition). The fact that the 
incorrect procedure would furnish the correct result is due to the 

(accidental) facts that Gi 
O-'O 

and that h is continuous at x. 

It follows by repeating the argument that A'(or) is not only differenti¬ 
able over [a, b] but that it possesses a continuous second derivative over 
[a, h]. However, this second derivative is not furnished by the formula 

-JH) |/i(0 dt. In fact 

jh(t) dt “h 

so that 

= DG, 

= - DG, h(t) dt. 

\h{t) dt 

Hence p(x)D^k = —h{x) + 

relation 

pDG (:)[= 

\h{t) dty by virtue of tlie 

On combining this result with the two relations 

Dp{x)Dk — J Dp(a;)DG 

r(x)k = r{x)G^ 

\h{t) dt; 

\h{t) dt 

(note that t is the variable of integration so that x is constant in the 
integration) we obtain, since L = pD* ■+■ (Dp)D + r, 
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LA- = + r-c) h{t) dt 

- -At 

(x\ 
( I = 0 for every point P\{xj t) of the square a ^ x ^ h since I/r = 0 for every point P\{x, t) of th 

a ^ t ^ h except the points of the diagonal x = 
view of the definition k = Gh we may write this 

t of this square. In 

LGh = -h. 
In words: 

The linear integral operator G followed by the linear differential 
operator L is equivalent to multiplication by — 1. 

It is clear that the function-vector k — Gh satisfies the boundary 
conditions Bi(k) = 0, B2(k) = 0 (it being indifferent whether or not 
the function-vector h satisfies these boundary conditions). In fact 

and, similarly, J?2(k) = 0. Thus 
The linear integral operator G not only smooths out the arbitrary 

continuous function-vector h so that the linear differential operator L 
can feed on it but it also adjusts k to the boundary conditions. When 
L feeds on k = Gh it returns to us the original function-vector h 
changed in sign. 

Conversely let k{x) be a function which satisfies the boundary 
conditions Bi and B2 and which possesses a continuous second deriva¬ 
tive over [a, h]. On denoting L/r by —h we have, on combining the two 

relations 

L{k) = -h; L((?) = 0 

in the manner with which you are now familiar, 

kUG) - GLik) = Gh. 

Since both k and G satisfy the boundary conditions B} and B^ we have 
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6 

piJkJXj — UDA*) = 0 (since the boundary-value problem is regular). 
a 

Hence on integrating the relation 

over the intervals [a, i\ and [ty 6] and adding the results we obtain 

since 

=A-(t) 

p{x)'DG = 1. 

On interchanging the roles of the variables x and t we obtain 

h{t) dt = k{x), 

and, by virtue of the symmetry of G this is equivalent to 

i.e.. 

h(t) dt = 

Gh = k. 

Thus not only is LGh = —h but GLk = — k. Combining these 
results we have the following fundamental theorem: 

The linear integral operator G and the linear differential operator L 
combine, in either order, to yield a simple change in sign. G feeds on 
any continuous vector h and returns a vector k which possesses a 

continuous second derivative and which satisfies the boundary con¬ 
ditions Bi and 82* L feeds on ftmction-vectors k which possess 

continuous second derivatives over [a, h]; if, in addition, k satisfies 
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the boundary conditions B\ and it is of the form Gh, where h 
~ — Lk. In other words either of the two relations 

Lk = ~h; k = Gh 

is equivalent to the other. 

We indicate this theorem by the symbolism 

LG = GL = -1. 

Warning, In using this symbolism be sure that you understand the 

difference between the vectors h and k on which G and L, respectively, 
operate, h is any continuous vector while k must not only possess a 

continuous second derivative but must also satisfy the boundary con¬ 

ditions Bi and B2. 

5. The equivalence of the boundary-value problem and an 

integral equation 

We can now easily show that any solution of our boundary-value 

problem is a solution of an integral equation and, conversely, that any 

solution of this integral equation is a solution of the boundary-value 

problem. In proving this theorem it is just as easy to deal with a 
non-homogeneous boundary problem 

L{y) + Xsy = /; Bi(y) = 0; ^2(2/) = 0 

(where / = f{x) is a given continuous function of x and y = y{x) is the 

sought for function) as with the (associated) homogeneous boundary- 

value problem 

L{u) + \su = 0; Bi{u) = 0; B2{u) = 0, 

and we shall do this. We first suppose that y = y{x) is & solution 

of the non-homogeneous boundary-value problem. Then L(y) 

= —'Ksy + / so that 

GL(y) = -XG(sy) + Gf. 

Since GL(y) = — y we have 

y = XKy + F, 

where K: G ^ ^s(0 and F: — />(;>» dt Thus y = y{x) is a solu¬ 

tion of the following integral equation 
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j/{x) = X />(')“« di + Fix), 

where K :)-(:) F{x) = - dt. The function 

K[ ) of the square variable a ^ x ^ b, a ^ t ^ b is termed the 
vJ 

kernel of the integral equation. Since s{x) is non-negative we may 
replace the integral equation by an integral equation whose kernel is 

symmetric. All we have to do is to introduce the new unknown 

z = z{x) = {s(a-)}’^2/(a;); 

then the function-vector z satisfies the integral equation 

z = XHz -f- Fi, 

where H 

(:)‘ 
<) s{x)s{t)]^^ imdFi: [s(x)]^F{x), (Provethis.) Since 

is symmetric it is clear that IS symmetric. 

Conversely, let y = y{x) be any solution of the integral equation 
y = XKy + F. Since XKy and F are continuous (why?) so also is y 
(why?). Since 

Ky: £k dt = £g Qs(02/(0 dt 

we have 

and since F = 

LKy = LG(sy) = ~«y 

-Gf w^e have L(F) = f. Hence 

L(y) = -Xsy + f 

so that y = y{x) satisfies the differential equation 

L{y) + \s{x)y(x) = f{x). 

Furthermore Ky = G(sy) and F = — Gf each satisfies the boundary 
conditions Bi and B2. Hence y = XKy -f F satisfies the boundary 

conditions Bi and B2. This completes the proof of the equivalence 
theorem: 

Each solution of the boundary-value problem is a solution of the 
integral equation, and each solution of the integral equation is a solution 
of the boundary-value problem. 
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We shall disctiss in detail in Chapter 8 the integral equation 

y{x) = € ^ (i) 2/(0 

or, equivalently, 
y = XKy + F. 

The equivalence theorem assures us that in solving this integral equa¬ 

tion we solve the boundary-value problem: every solution of the 
integral equation is a solution of the boundary-value problem, and no 

solution of the boundary-value problem escapes us. The essential 
advantage of the integral equation point of view is that the boundary 
conditions are automatically cared for; once the Greenes function has 
been constructed from a knowledge of these boundary conditions we 

do not have to worry about them any more since every function-vector 
of the form Gh satisfies them. 

We carry over the terms characteristic number and characteristic 
function from the boundary-value problem to the integral equation. 

Thus a characteristic number of the integral equation of which K 

is the kernel is a value of X for which the homogeneous integral equation 
u = XKu possesses a non-trivial solution, i.e., a solution other than 

the zero function-vector u: u{x) m 0. Any such non-trivial solution is 
a characteristic function or characteristic vector which is said to be associ¬ 
ated with the characteristic number in (piestion. 

EXERCISE 

1. Show that when X is a characteristic number of the boundary-value problem 
then the noii-homogcneous boundary-value problem does not, in general, possess a 
solution. Hint. If u is a characteristic vector associated with X so also is u; 
combine the tw^o equations L(w) -h Xsw = 0, L(y) -h 'Ksy = / to obtain wL(y) — 
7/L(w) ~ uf. Upon integrating and using the fact that the boundary-value 
problem is regular we obtain (u|f) =0 (remember that u and y both satisfy the 
boundary conditions). Note. The important result of this exercise may be 
phrased as follows: 

In order that the non-homogeneous boundary-value problem may possess a 
solution when X is a characteristic number the function-vector f must be orthogonal 
to every characteristic vector u which is associated with X. 

We shall see in the next chapter that this necessary condition is sufficient. 

6. The Green’s function when zero is a characteristic number 

The boundary-value problem 

(D» + X)u = 0, Dm (- ^ = 0; Dm Q) = 0 
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has X = 0 as a characteristic number. In fact w{x) = 1 is a non¬ 
trivial solution of the boundary-value problem 

D»m = 0, Dm(-^) = 0, D«Q) = 0. 

The construction of the Green’s function of a boundary-value problem 
which has zero as a characteristic number is as follows. Let v be a 
real characteristic vector which is associated with the characteristic 
number zero. The assumption that v is real is merely a simplifying 
assumption which involves no loss in generality; in fact if v is any 
characteristic vector which is associated with the characteristic number 
zero BO also are v and v + v, and v + t is a real vector. Since any 
multiple of v is also a characteristic vector which is associated with the 
characteristic number zero we may assume, without any lack of gen¬ 
erality, that is a unit vector. We consider the non-homogeneous 
boundary-value problem 

L{z) = s(x)v(x)v(i); Bi(z) = 0, ^2(2) = 0. 

Since s(x)v(x)v(i) is not, in general, orthogonal to v(x) (why?) this non- 
homogeneous boundary-value problem does not, in general, possess a 
solution (see Exercise 1 p. 229). We seek solutions of the differential 
equation over [a, t] and over [^, 6], and we patch these together to 
form the desired Green’s function: 

On combining in the usual way (what is this?) the equations 

L(z;) =0; L{G) — s{x)v(x)v(t) 
we obtain 

vUG) - GL{v) = s{xy{x)v(t), 

and on integrating this over the intervals [a, t], [t^ &] and adding we find 
(since both v and G satisfy the boundary conditions B\ and B2 and since 
the boundary-value problem is self-adjoint and regular) 

t- 

pT>G = 1 
t+ 
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at those points where v{t) 0. Thus we do not have to use our last 
undetermined constant to ensure the validity of this relation; we use 

this constant to make the integral { oi dx zero since this 

will ensure the symmetry of G (:) In fact \i a < t\ < ti <h and we 

denote G ^ ) by Zi and G ( J by 22 we find, on combining the two 

equations 

L(2i) = s{x)v{x)v{ti)) L(22) == s(x)y(a:)2;(^2), 

that22L(2i) — 2iL(22) = s{x)v{x)[v{ti)z2 — v{t2)zi}. Upon integrating 
this relation over the intervals [a, <i], [h, (2], [^2, h] and adding we obtain 

Z2(ti) - Zi(t2) = v(ti) 

Hence G 

ls(a:)y(a:) dx 

= 0. 

so that (t ( ] is symmetric in x and t over [a, b] 

(why?). 

Let, now, k(x) be any function possessing a continuous second deriva¬ 
tive which satisfies the boundary conditions Bi and B2, and set L(k) 
= -—h. From the two equations 

LA; 
- “0 ■ 

we obtain (how?) 

k{t) = ^(0 s{x)v{x)k{x) dx + 

and this may be written, in view of the symmetry of UI ), in the form 

/.'"D |/i(a;) dx, 

k(x) = v{x)j s(,t)v(t)k{t) dt + x»(:> (0 dt 

or, equivalently, 

k = Gh + av 8{t)v(t)k(t) dU 
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It follows (how?) that any solution of the boundary-value problem 

L(2/) + \sy = /; Bi(y) = 0; Bziy) = 0 

satisfies the integral equation 

yi^) 
rb /x\ rb /x\ n\ 

^\t - ja ^ Ja 
s{t)v{t)y{t) dt. 

Since y is a solution of the boundary-value problem 

h{v) = 0; B,{v) = 0; B^iv) = 0, 

a necessary condition for the boundary-value problem 

Liy) + \sy = /; Bi(y) = 0; B2(y) = 0 

to have a solution is that v be orthogonal to f — Xsy. Thus 

s(t)y(t)v(t) dt 
=/: 

f{t)v{i) dL 

Hence, if X 0, y(x) must satisfy the integral equation 

yi^) = \£g Qs(<)2/(0 dt - £g ^ £ fit)v{t) dL 

Conversely it follows (exactly as in the case wIktc X = 0 was not a 

characteristic number) that any solution of this integral equation is a 
solution of the boundary-value problem 

L(y) + Xsy = /; Bi(y) = 0; B2{y) = 0. 

(Prove this. Remember that L(v) = 0.) 

Example. The Green’s function for the boundary-value 

problem 

(D^ + \)u = 0; Dm (- ^ = 0; Dm Q) = 0. 

Here X = 0 is a characteristic number. v(x) is a constant function, 

and to make v a unit vector we set v{x) = The Greenes function 

satisfies the equation DHjf = j and so Gi + C2x; 

+ ax. The boundary conditions yield C2 = •J', 
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u = —J-, and the fitting together'' condition Gi 

Cl + it = cs — = c, say. Hence 

yields 

Gi |-; + c + i(e-*). 

The remaining constant c is determined by the relation 

/>(:)--• 
I 

We find c = 7“ + — so that 

7. BessePs and Legendre’s boundary-value problems 

Bessel's equation of zero order is 

+ Dw + = 0. 

On setting ^ — ax this appears as 

xD^u + Dw + a^xu = 0, 

where, now, D denotes differentiation with respect to x (rather than 
differentiation with respect to f, as before). On introducing the 
notation 

L = a:D2 + D = D(xD); X = aS* s{x) = x 

the differential equation part of our boundary-value problem is 

1j{u) + \su — 0. 

The interval [a, b] is [0, 1], and we note at once that p = a; is zero at 
X = 0. In other words the end-point a = 0 of the interval is a singular 

point of the self-adjoint linear differential operator L. This introduces 
a certain novelty in the statement of the boundary conditions. We 
shall consider only unmixed boundary-value problems, and we choose 
the boundary condition which refers to the end 6 = 1 of the interval 
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to be simply u = 0. Hence the value of p{ul>v — vDu) at 6 = 1 is 
zero {u and v being any two functions which satisfy the boundary 
condition In order, then, that the boundary-value problem be 

regular the boundary condition Bi which refers to the end a = 0 must 
be such that p{uT>v — vDu) be zero at a: = 0. Since p = xis zero at 
X = 0 it is not necessary to prescribe a relation between u and T>u 
at a: = 0; it is sufficient (but not necessary) that u and 'Du be defined 
over [0, 1] for then x{uDv — vDu) will certainly be zero at a; = 0. 
Since L is self-adjoint, and s = x is non-negative, the boundary-value 
problem, being regular, has no non-real characteristic numbers. The 

general solution of h{u) = D(xDu) = 0 is w = Ci + C2 log x. Hence 

Gi 

condition Gi 

“O-r 

Cl log x (why?), and the fitting together 

yields ci = C4 log L Since DGi j 

the condition 

pDG (X- 
yields C4 = —1. Hence 

G (:)={: 
— log t; 0 ^ X < t; 

log x; i ^ X ^ I, 

The point O:(0, 0) is a singular point of G is not 

bounded over the square 0 ^ x ^ 1, 0 ^ t ^ 1. Nevertheless the 
general theory of the previous sections is applicable since if h is any 

function which is continuous over (0, 1) the integral r-t) h{t) dt 

exists and possesses a continuous second derivative over [0, 1] (it 

being understood that the integral 

integral, its value being the limit of 

positive values). 

/.‘‘O 
r-c) 

h(t) dt is an improper 

h(t) as X —> 0 through 
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For Legendre^s boundary-value problem we have 

L = D{ (1 - m')D} ; X = n(n + 1), s(m) = 1. 

The underlying interval is [a, 6] = [ — 1, 1], and the end-points of this 
interval are singular points of the self-adjoint linear differential 
operator L. The boundary conditions state simply the existence of u 
and Du at the end-points of the interval [ — 1,1]. In view of the fact 
that p = 1 — is zero at these end-points the (apparently vague) 
boundary conditions are strong enough to make the boundary-value 
problem regular. Since L = D{(1 — ^1^)0), X = 0 is a characteristic 
number, i; = a constant being an associated characteristic function. 
Choosing the constant so that s^v = v is a unit vector we have 
v{x) = 2“^. The differential equation which serves to determine the 
Greenes function is 

D{(1 - m^)DG1 = 

and a particular solution of this is — log (1 — pL^). (Derive this 

result (mere verification is not enough). Hint The solution of the 

associated homogeneous differential equation is ci + C2 log 7——• 

Use the method of variation of constants.) Hence 

= Cl + C2 log ] '*' - - ^ log (1 - ft*); 
1 — /i 4 

= Cs + C4 log - 7 log (1 - ft*). 
1 — p 4 

The boundary conditions yield C2 = i (since the coefficient of log 

(1 + ju) in Gi must be zero) and, similarly, C4 = — The fitting 

0/A 1 1 -f < 
== Gr I ) yields ca = ci + log--• Thus 

\t/ 2 1 - i 

log (1 - ft); 
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where we have denoted ci simply by c. Determining the constant c 

by the relation />(:) dt = 0 we find 

c = log 2 - ^ - -J- log (1 + t). 

(Prove this. Hint 

(:)={ 

ini. log xdx = a:(log X — 1).) Hence 

iog2~i-iiog(i + /.)(i-~M); 

log 2 - -I- ^ log (1 - 0(1 + m); IX 

8. The Green’s function for boundary-value problems of higher 

order 

In the theory of the vibrations of beams we are confronted with a 
boundary-value problem of the fourth order such as 

(D^ + X)w = 0; u(0) = 0, Dw(0) = 0, D2w(Z) = 0, D®w(Z) = 0 

(this is the boundary-value problem which governs the free vibrations 
of a beam which is built in at one end and free at the other). Here the 
operator L = D^ is self-adjoint: 

uUv) - vLiu) = DiiuB^v - vD^u) - (DwD^y - Dvjyu)}. 

The boundary-value problem is regular; in other words if u and v are 
any two functions which satisfy the/o?/r boundary conditions Bi, B2, 
Bz, and Ba and which possess fourth-order derivatives then {uDH 

— vT>^u) — (DwD^i; — Dt^D%) has the same value at both ends 0 and 
I of the interval [0, /]. X = 0 is not a characteristic number. (Prove 

this.) The Greenes function y J possess a continuous second 

derivative over [0, Z], but a discontinuity in the third derivative is 
. permitted at the point Z. The amount of the discontinuity is furnished 
by the formula 

Exactly as in the case of a boundary-value problem of the second order 

/A 
it follows that 6^ I ) is symmetric. (Prove this.) The actual deter¬ 

mination of O I runs as follows: 
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Gi ~ (why?); Gt ^ ^ = c% 

■0 
+ Ca{x — 1) 

(the expression for (?r ^ y follows from the fact that any cubic poly¬ 

nomial function of x may be written as a cubic polynomial function of 

X -1), Since 

= 

DKJ.Q-O the relation 
<+ 

1 yields C2 = i- Continuity of D2(? at 

X = i yields 2ci + 6c2^ = 0 so that Ci = — Continuity of DG 
z 

at a: = < yields ca = 2c\t + and continuity of 6^ at a: = t 
yields cs = — Thus 

- 2^ ^ a:®; 0 ^ a; $ 

f 1 
“ 2^ + ^ ^ ^ ^ 

EXERCISES 

1. Determine the Green's function for the boundary-value problem. 

(D* + X)m = 0; ^ Dw ^ = 0; u = 0; Dm = 0. 

Note. This is the boundary-value problem governing the free vibrations of a 
beam which is ‘‘built in" at both ends. 

2. What is the definition of regularity for the general self-adjoint boundary- 
value problem of the fourth order? 

Answer. p(mD*m — vD^u) — p(DMD*t; — ’DvDhi) + T)p{uT>H — vD^u) + 
qinl^v — vT>u)y where L ~ D^CpD*) -f- D(^D) + r, must have the same value at 
both ends of the interval. 

3. Show that if the discontinuity in DHr for the general self-adjoint regular 
boundary-value problem of the fourth order for which L = D*(pD*) -f- D(^D) + r 
is determined by the formula 

,D«Q 

/A 
then G{ 1 is symmetric. 

\</ 

1 
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9* Boundary-value problems in more than one dimension 

The argument being the same for two, three, or more independent 
variables we shall leave unspecified the number n of these independent 
variables. Let P be any n X n matrix whose elements are differ¬ 
entiable functions of the n variables (xij • • • , a;„), and let be a 
function of position which possesses continuous second derivatives Wr«. 

The matrix D2U of these second derivatives is symmetric, and the trace 
(i.e., the sum of the diagonal elements) of the product PD2U is given 
by the formula 

IPD2U] = 

r = l 8=1 

(Prove this.) If g is a 1 X n matrix whose elements qr are continuous 
functions of position the product q grad u (where grad u is the n X 1 
matrix whose elements are Wr, r == 1, • • • , w) is furnished by the 
formula 

n 

The linear differential operator L which we have to consider is 

L(w) = [PD2y] + q grad u + ru^ 

where r is a continuous function of position. The boundary conditions 
are of the form 

du 
B(u) :au + fi — = 0 over Sy 

an 

where is a closed (n — l)-dimensional spread in the n-dimensional 
space. The function u = u{P) must satisfy these boundary conditions 
and, in addition, must satisfy the partial differential equation 

L(w) + \su = 0 

over the n-dimensional region R whose boundary is 8, 
The conditions that are imposed on the linear differential operator L 

by the requirement that it be self-adjoint are found in much the same 
way as in the case n = 1 which we have already treated in detail. 
Since 

UPrtVrB = (npr.«^,)r — {v(wPr,)r)e + v{upr,)rs; 

UqrVr = (uprV)r ~ v(uqr)r 
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the integral of vL{v) over R may be replaced by an integral over the 
boundary S oi R plus the integral of t;M(w) over R, where M(w) is the 
linear differential operator 

MM - YX 

r=la= 1 

(upra^ ra 

n 

r-=l 

+ rw. 

(Remember that if / is any differentiable function of position the integral 
of fr over R is equivalent to an integral over S. See Chapter 1, 
Section 8; and observe that the results given there for spaces of two 
and three dimensions may be extended to spaces of n dimensions, 
n = 4, 5, • • • .) 

We term M the adjoint operator to L; its characteristic feature is 

that the integral I {vL{v) — t;M(w)} dr of vL{v) ~ *;M(w) over R 
Jr 

(dr being the n-dimensional element of content) is equivalent to an 
integral over the boundary S of R. The operator L is said to be 
self-adjoint when M coincides with L. Since M(w) may be written in 
the form 

{Pr.Mr. + 2«,(p„), + W(pr.)r.l — ^ I (jr)rM + Wr^r} + TU 
r = l 

(prove this) a necessary condition for self-adjointness is 

^(Pr.). = 

and it is at once clear that this necessary condition is sufficient. Thus 
The linear differential operator 

L = [PDa] + q grad + r 

(where IPD2] indicates the trace of the product of the matrix D2 of 
second derivatives by the matrix P) is self-adjoint if, and only if, 

q = div P. 

In particular if P is a constant matrix the condition for self-adjointness 
is simply = 0. 

EXERCISE 

1. Show that the Laplacian differential operator A2 is self-adjoint. 

When the operator L is self-adjoint the vector whose integral over S 
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is equivalent to the integral of {ML(t)) — j;L(u)} over R takes a simple 
n n n 

form. uh{v) ~ vL{u) reduces to Vr»Vs — v^pr»u}^ and the 

r«=l «“1 a»»l 

integral of wL(?;) — vh{u) over R is the same as the integral of the 
n n 

vector whose rth coordinate is i.e., the vector 

5—1 «>»1 

u (P grad v) ~ (P grad u), over S. If n is the unit vector normal 

to S (drawn away from R) and if Pn is the vector N we have 

I [yL{v) — vL{u)] dr = I {w(grad v\N) — y(grad w|N)} dS. 
mJ R US 

In the particular case where P is the unit matrix (so that L is the 
n-dimensional Laplacian) N = n, and we recover the familiar formula 

r / . a N . Cf M I (u A2V — V A2U) dr — I I w - 
JR Jsx dn dnf 

The boundary-value problem is said to be regular if the integral over S 

is zero for any two functions u and v which satisfy the boundary 
conditions. In particular, if the boundary condition is w = 0, or 

(grad u\N) = 0, the problem is regular. The values of X for which 

the boundary-value problem 

L{u) + \su = 0; B(u) = 0 

possesses a non-trivial solution (what does this mean ?) are termed the 
characteristic numbers of the boundary-value problem. When X = 0 

is not a characteristic number we define the Greenes function of the 

boundary-value problem by the following specifications (the question 

whether any function exists which meets the specifications being a 

fundamentally important one which must be settled): Let T: (<i, * * • , 

In) be any fixed point of R, Then the Greenes function of the problem 

is a function of position G P being the point of evaluation of (?, 

which depends on the location of the point T and which satisfies the 

(partial) differential equation L(G) = 0 at every point of R^ except T; © /P\ 
also satisfies the boundary conditions. Gl ] need not be 

\tJ 
bounded at T, but if S' is a sphere (n-dimensional) with center at T 
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and of radius e the integral of Gv over is null at € = 0, v being any 

vector which is bounded at T. Furthermore the integral of (gradCzlN) 

over S' has the limit 1 at e = 0. Here N is the vector Pn where n is 

the unit vector normal to S' (drawn away from the region R' bounded 

by S and S') . 
The question as to the existence of this Greenes function is a difficult 

one about which we shall make only a few remarks. In the one¬ 

dimensional case the function p(x) dominated the situation, and it was 

not permitted to change sign over the interval [a, h] (any point at which 

p{x) is zero being a singular point of the differential operator L). 

When n = 2 the coefficient function p(x) is replaced by the coefficient 
matrix 

which may be taken, without loss of generality, to be symmetric 

(why?). The differential operator L is said to be elliptic when P is 

either positively or negatively definite^ and (since L may be multiplied 

through by — 1) we may restrict ourself to the case where P is positively 

definite, by which we mean that v'^Pv > 0 for every non-zero, two- 

dimensional vector V. If the matrix P is indefinite (so that > 0 

for some vectors v and v*Pv < 0 for some vectors v) then the differ¬ 

ential operator L is said to be hyperbolic. The Greenes function does 

not exist for hyperbolic differential operators while it does exist (under 

suitable conditions) for elliptic differential operators. When n > 2 

the same distinction and difference in behavior as regards the existence 

of the Greenes function between elliptic and hyperbolic differential 

operators exist. The simplest case of an elliptic differential operator 

arises when P is the unit matrix. When n = 2 we have, then, 

IjU = Uxx + ttyv = ^2^, 

and when n = 3 we have 

'JLiU — Xtxx Uyy ““ A2W 

so that L is, in either case, the Laplacian operator. In these cases the 

Green’s function exists and takes the following forms: 

1. w == 2. “ + yi^)y where r = \TP\ and F is a solu- 
2ir r 

tion of Laplace’s equation over R. Since P is the unit matrix N = n so 
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^ ^ dG I dV dV , 
that (grad GN) = — = --1- —Since — is continuous at T 

an 2ir€ an dn 
(why?) the integral of (grad G|N) over aS' has the limit 1 at € = 0. 
Furthermore the integral of Gv, where v is bounded at 7", over S' is 
null at € = 0. (Prove this.) If the boundary condition is w = 0 the 

function V{P) must = log r over S, In other words, V{P) is the 

potential of the electrostatic field of the charge induced on the earthed 

conductor aS by a (line) charge of strength at P and G is the potential 

(inducing plus induced) of the field. This is not a “proof” of the 

(^\ 
existence of G ( 1, but it makes the existence of G plausible. 

\t) 

2. n = 3. G = + U(P), where r = | TP\ and V{P) is a solution 

of Laplace’s equation over R. The integral of (grad GIN) = ^ over 
dn 

S' has again the limit 1 at € = 0; and the integral of Gv where v is 

bounded at T, over S' is null at c = 0 (prove this); G is the potential of 

the field of a point charge ^ at T in the presence of the earthed con- 
4:Tr 

ductor S. 
Assuming the existence of the Green’s function (so that L is granted 

to be not hyperbolic at each point of R) we proceed exactly as in the 
one-dimensional case. On combining the two equations 

Lu + \su = 0; L(G) = 0 

in the usual manner we obtain 

uL(G) - GL(u) = \Gsu, 

and on integrating this relation over the region R' between S and S' we 
obtain ’ 

(G) - GL(u)] dr = X s(P)u(P) dr 

(P being the variable point of integration). The integral on the left 
may be replaced by an integral over S plus an integral over S'j the 
integrand being, in each case, w(grad G|N) — G(grad t^|N). The 

integral over S is zero since the boundary-value problem is, by hypothe- 
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sis, regular. The integral of Gcgrad w|N) over is null at e = 0 since 
grad u is bounded at T, and the integral of w(grad G\N) over /S' has 
the limit u(T) Bit € = 0 (why?). Hence 

uiT) = X G Qs(P)«(P) dr. 

On interchanging the roles of the points P and T this may be written 
in the form 

u(P) = X (^s(T)u(T) dr 

(where P is now the point of evaluation of u and T denotes the variable 
point of integration). 

If Ti and T2 are any two points of R we consider the two functions 

Ui = U2 

and denote by jR" the region bounded by S, S\, and /S'2 where S\ and 
S'2 are spheres of radii €1, €2 with 
centers at Ti and T2, respectively. 
On combining the two equations 

L(wi) = 0; L{u2) = 0 

we obtain the relation 

U2lj{Ui) —• WiL(W2) = 0 

which is valid over E". On inte¬ 
grating this relation over R" and 

replacing the integral over R" by 
the sum of three integrals over /S, 
/S'l, and /S'2, respectively, we obtain, on letting ei and €2 tend, inde¬ 
pendently, to zero (and using the fact that the boundary-value problem 
is regular), 

U2(Ti) = Ui(T^ 

or, equivalently, 
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Thus 

The Green’s function G ( ) is a symmetric function of the two 
^Tf 

points P and T. 
It follows that 

u{P) s{T)u{T) dr 

or, on regarding u{P) over P as a function-vector u» 

u = XKu, 

where K is the linear integral operator K Hence 

Every solution of the homogeneous boundary-value problem is a 
solution of the integral equation 

u = XKu = XG(&u). 

When s is non-negative this integral equation may be replaced, on 
setting s^u = v, by the integral ecjuation 

V = XHv, 

where the linear integral operator H: G ( ) {s{P)s(T)} ^ is symmetric. 
\t 

EXERCISE 

2. Show that if LA; — —h then k = Gh: i.e., that GL « — 1. 

In order to prove the equivalence of the boundary-value problem and 
the integral-equation problem we have merely to show that if k = Gh 
then LA; = —h, i.e., that LG = — 1. In performing the differentiations 
of Gh involved in calculating LGh we have to pay attention to the fact 

that Gh is an improper integral. Owing to the fact that the limit of the 
integral of the product of G by any function which is bounded at P over 
iS' (where *S' is a sphere of radius € with center at P) is null at € = 0 the 

first derivatives of k = Gh are obtained by differentiating under the 
sign: 

hr h(T) dr. 

However, when we pass to the second derivatives, we have to take 
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account of the fact that the integral of (grad (?|N) over has the limit 

1 at € = 0. The integral over S' arises from an inner bounding surface 

of the various improper integrals involved and this introduces a minus 

sign. The end result is that 

hk = -A(P). 

This sufBces to prove the equivalence of the integral equation problem 

and the boundary-value problem. (Show this.) 

Warning. Be sure that you understand clearly that you do not have 

any integral equation at all until you have the Green's function. Thus 

you must be sure that the Green's function actually exists before you 

attempt to apply the method of integral equations. For example, it 

would be absurd to attempt to deal with hyperbolic partial differential 

operators by methods which depend on the existence of the Green's 

function. 
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INTEGRAL EQUATIONS 

1. The Fredholm determinant 

The integral equation we propose to consider is of the form 

y(x) = X r^:) y(t) dt +f{x)\ 

y = XKy +1 

The function K is granted to be continuous over the square 

f = f(x) is a given function which is granted 
to be continuous over [a, 6], and the problem is to determine the 
unknoAvn function y = y(x). Since Ky is continuous (why?) y = y(x), 
if the integral equation has a solution at all, must be continuous. 
When the given function / = f{x) is the zero constant function the 
integral equation is said to be homogeneous; if / = f{x) is not the zero 
constant function, the homogeneous integral equation 

u = XKu 

is termed the homogeneous equation associated with the non-homogene- 
ous integral equation 

y = XKy + f. 

EXERCISES 

1. Show that the difference of any two solutions of the non-homogeneous equa¬ 
tion y « XKy + f is a solution of the associated homogeneous equation u « XKu* 

2. Show that if u is any solution of the homogeneous integral equation u =» XKu 
so also is cvL where c is a constant and that if Ui, U2 are any two solutions of the 
homogeneous integral equation so also is Ui -f U2. 

246 
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3. Deduce from the results of Exercise 2 that if Ui, ti2 are any two solutions of the 
homogeneous integral equation u = XKu so also is CiUi + C2U2, where Ci, C2 are 
any constants. Note. In view of the result of this exercise the homogeneous 
integral equation u = XKu and the non-homogeneous integral equation y =* XKy 
+ f are said to be linear. 

We may find an approximation to a solution of the homogeneous 
equation u == XKu (provided always that this equation actually 
possesses a solution, other than the obvious and trivial solution u ^ 0) 
as follows: Construct a net 

a = to < h < • • • < tn-i < U == h 

on the interval [a, h], and replace the integral AO u(t) (it by the 

approximating sum 

n{h) + • • % + K Ap(0 — 

On evaluating this approximating sum at the n points h, in we 

obtain n linear homogeneous combinations of the expressions 

= K n{ti) Aj^ + + A 

()n setting 

u{tp) — U^'j Agt = K/ 

the sum is the jth element of the n X 1 matrix Ku^ where K is the 

n X n matrix of which the element in the pth row and qth column is 
KgP and u is the w X 1 matrix whose pth element is Then the 
elements of the n X 1 matrix u will furnish an approximation to the 

values of the sought-for function-vector u at the points L, * • • , if 

u = \Ku 
or, equivalently, 

{En — \K)u = 0; En the n X n unit matrix. 

In order that this equation may have a solution other than the trivial 
one = 0, p = 1, • • • , n, the matrix En — XK must be singular: 

det (En “ \K) = 0. 
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Each element of the matrix En — \K is obtained by subtracting 
an element of }s.K from the corresponding element of En- Hence 
det {En — may be analyzed into the sum of 2” determinants in 
each of which there are a certain number of columns from En and a 
certain number of columns from —\K, Thus any one of the 2” 
determinants is a principal minor of (the determinant of En^ 
namely, I, and the determinant of —XX being included). For exam¬ 
ple, when n = 3, the determinant of E^ — \K is the sum of eight 
determinants of which the first is 

the second 

-X 

1 0 0 

0 1 0 

0 0 1 

Xd 0 0 

Xi2 1 0 

Xi» 0 1 

= 1; 

= -XXd; 

and so on, the last being 

Xi^ X2I X. 

Xr Xo2 Ki 

Xi’^ K2^ X; 

— det X. 

On collecting these eight det(*rminants together we obtain 

det (Xa - XX) = 1 - X(Xd + X.>2 -h Xa-'’) 
+ X2(X2a“'^ + Xai®^ + Xio^^) _ det X, 

where 

In general, we have 

X^^ 

X2« 

Xa^ 

Xa^* 
and so on. 

det {En - XX) = 1 - XX«« + XHX«^«^)* - . . . + (-1)«X^ det X, 

where a symbol such as (Xa^“^)* indicates a summation of two-rowed 
principal minors of X, the summation being over all pairs of numbers 
selected from the set 1, • • • , n. Since X^/" = 0 if r = s and since 

X«/^ = Xr/* the summation (Xa^“^)* is one-half the summation 
where, in this summation, a and 13 range, independently of each other, 
over the numbers 1, • • • , n. Similarly 
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i A'.,,“Or, 

and so on. Hence we may write det (E^ — \K) in the form 

det {En — XK) = 

1 - XAV + - . . . + X«A..... 
1\ 711 

(where Kj^...= det K when the n letters ji, • • • ,jn constitute 

a permutation of the n numbers (1, • • • , ?i)). As n increases 

indefinitely iCa" approaches J ^ dt arbitrarily closely, 

nb /h tA 
iv I I dti arbitrarily closely, and so on. 

\^1 ^2/ 
We are led in this way to a consideration of the following poAver series 

in X: 

D(X) = 1 — AiX + — A2X^ 1^ Ap\^ + ‘ , 
Jl pi 

Avhere 
rb rb //i • • • fA 

A p = I • • • I XI ) dti d(2 ' ' ' dtp, 
Ja \/l • • • ip) 

We shall see shortly that this power series in X converges for every 

(finite) value of X. It is known as Fredhohn^s determinant (after E. I. 
Fredholm, a Swedish mathematician). The poAver series D(X) is called 
a determinant since it AA^as suggested to Fredholm by the determinant 

of the matrix — \K, and it plays, for the integral equation, the 
role played by the determinant of the matrix En — XiC for the system 
of n homogeneous equations 

u = \Ku, 

In order to show that D(X) converges for every (finite) value of X Ave 
first make an appraisal of a p-roAved determinant. At first Ave confine 

ourselves to the case where the column vectors Ui, • • • , Up, of the 
matrix Avhose determinant we Avish to appraise are 7init vectors. The 
elements of the matrix need not be real so that the vectors Ui, * • • , Up 

are p-dimensional complex vectors. The determinant of the matrix 
is a complex variable Avhich is a continuous function of the elements 
of the matrix. Hence the modulus (i.e., absolute value) of the deter¬ 

minant of the matrix is a continuous function of the (real) parameters 
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which identify the points of the p-dimensional (in the complex sense) 

unit sphere whose coordinates are the coordinates of the vectors Ui, 
• • • , Up. This unit sphere may be regarded as the 2p-dimensional 

real unit sphere, and since this is closed (what does this mean?) the 

modulus of the determinant of our matrix has an absolute maximum 
(why?). Now the determinant of the matrix whose column vectors 

are Ui, * * • , Up is the scalar product of Ui by the vector product 

(U2 X • * • X Up) (see Chapter 1, Section 10). Let us denote, for a 
moment, (U2 X * • * X Up) by vi so that the determinant we are 

interested in is (vijui). We know, from Schwarz^s inequality (see 
Chapter 1, Section 10) that (vijui) ^ vi. The equality is valid when 

Vi 
Ui = — (why?), and it is easy to see that the equality is not valid unless 

Vl 

Vi 
Ui is the product of — by a complex number of unit modulus. {Note. 

V\ 

We have no concern with the case where = 0 since, then, the 

determinant in which we are interested is zero (why?).) In fact if 

(vi|ui) = t’lthe vector Vl — (ui|vi)ui is the zero vector since its squared 

magnitude is ((vi - (ux|vi)ui)|(vi — (ui|vi)ui)) = Vi* — 2(ui|vi)(vi|ui) 

4- (ui|vi)(vi|ui) = - (ui|vi)(uiivi) = 0. Thus 
When the modulus of the determinant of the matrix whose column vectors 

are the unit vectors Ui, • • • , Up attains its absolute maximum, Ui is the 

product o/ (U2 X * • • X Up) by a constant; in other words Ui is perpen- 
dicular to each of the vectors U2, • • * , Up. 

Since the modulus of the determinant in question is a symmetric 

function of the vectors Ui, • • • , Up (why?) this result is valid for any 
one of the vectors Ui, • • • , Up and not merely for Ui. Hence the p 
vectors Ui, • • * , Up are mutually perpendicular and so, since these 

vectors are all unit vectors, the matrix whose column vectors they are 
is unitary (why?). Hence the modulus of the determinant of the 

matrix is 1 (see Exercise 15, p. 36). We have, then, the following 
important result: 

The absolute maximum of the modulus of the determinant of a 
p X p matrix all of whose column vectors are unit vectors is 1 (the 
matrix being unitary when its modulus is 1). 

It is easy to extend this result to the case of any p X p matrix (none 

of whose column vectors Vi, • • • , Vp is the zero vector). In fact if 

we set V; = VjUjjj = 1, • • • , p, the vectors Ui, • * * , Up are all unit 

vectors, and the determinant of the matrix whose column vectors are 

Vl, • • • , Vp is the product of the determinant of the matrix whose 

column vectors are Ui, • • • ,Upbyi;i?;2 • • • Vp. Hence if the magni- 
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tudes Viy * • * f Vp are assigned we know that the modulus of the 
determinant of the matrix is not greater than Vi • • • Vp. Thus 

The modulus of the determinant of a p X p matrix whose column 

vectors have magnitudes vi, t;2, * * * , is not greater than the product 
of these magnitudes, and it is equal to the product of these magnitudes 
when, and only when, the p vectors are mutually perpendicular. 

This theorem is known as Hadamard/s theorem (after J. Hadamard, 
a French mathematician). 

If the modulus of each element of our matrix is less than, or at most 

equal to, a given number M then each of the column vectors Vi * * • , 
Vp has a magnitude which is less than, or at most equal to, (why?) 

Z 
so that the modulus of the determinant ^ It is this corollary 
to Hadamard\s theorem that shows at once that the power series which 
defines D(X) is convergent for every finite value of X. In fact we are 

granted that K ^ ^ is continuous over the square a^x^b^a^t 

/x\ 
^ h. Hence the modulus of A" ( ) has an absolute maximum, M say, 

V/ 

over this square. Hence the modulus of TiC ( ) is not greater C'■•<;)" 
p 

than p^M^ and so the modulus of Ap, where 

A^= ( ■ ('k dh 
Ja Ja \li ■ ■ ■ Q 

dtp 

is not greater than p^M^{b — a)^. Hence the power series whose sum 
is D(X) is dominated by (what does this mean?) the following power 

series: 

l+Mib- a)|x| + I M\b - a)^|x|» + • • • + ~ 

+ • * ' . 

The ratio of the (p + l)st term of this series to the pth is 

p^MQ) - a)|x| 
p-i 

(p - 1) 2 p 

1 - a)|x 
p - 1/ p'^ ’ 
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(1 y~^ 
1 +-7 ) ^ the ratio of the (p + l)st term 

p — 1/ 
of our dominating series to the pth has at p = oo the limit zero (no 

matter what is the value of |x|). Hence the dominating series con¬ 
verges for every value of |x|, and it follows (why?) that the power series 
whose sum is D(\) is convergent for every (finite) value of X. Thus 

Z)(X) is an integral function of the complex variable X; in other words 
it is an analytic fimction of X at every point (other than X = oo) of the 
complex X-plane. 

Suggestion. Tiy to grasp how remarkable this result is. The only 

information you were given about K w'as that it w as continuous 

and, therefore, bounded over the square a ^ x ^ h, a ^ t ^ b. Nev¬ 
ertheless this mere boundedness (you did not have to use its continuity) 
coupled w’ith its integrability is enough to ensure the convergence of 
the power series, w'hose sum is /)(X), for every (finite) value of X. 

2. The Fredholm minors 

Fredholm w as led, by his examination of the system of n linear equa¬ 
tions u = XKu» to other pow er seiies in X which are closely associated 
with D(K}. Since w^e shall not have t.o use anything more than the 
definition of these power series we shall merely give this definition and 
shall content ourselves with the remark that they play for the integral 
eciuation 

u = XKu 

the role played by the cofactors and lower-order minors of the matrix 
En — XA for the system of cciuations 

u — \Ku. 

In order to abbreviate tlie WTiting we adopt the following notation: 

K 

r<i • • • h 
e denote by what 

[h ■ • tp 

• • 
I ) Thus 
\h ■ tj -^1 * • • <... 

is the determinant of the p X p 

matrix of which the element in the rth row and sth column is K 
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More generally, we understand by the symbol 

Xi ' ' ' Xp 

the determinant of the matrix of which the element in the rth row and 

AA 
sth column is iC I b 

general rule 

In particular = K C) Remember the 

In the symbol 
Xi 

the upper letters tell the row, and the lower 
L 

the column, of the matrix involved. 
Furthermore a single integral sign will be used to denote multiple, or 

repeated, integration. The integrations are all over the basic interval 

[a, b], and the variables of integration are those symbols which occur 
twice, once above and once below, in the integrand. In this abbreviated 
notation Ap appears, for example, as follows: 

(the limits are not attached to the integral sign since the lower limit is 
always a and the upper limit always b). We now introduce the symbol 

(Xl ' • • Xq\ 

I by means of the following definition: 
• • • tj (xi • • xA r xi • ' • Xg 

tl ’ * ' tg / ^ tl ' ' ’ tg 

Tl • 

Tl * 

dr I • • • dxjj. 

The subscript p attached to B tells the number of integrations involved 

in its definition. We shall agree, then, that 

the determinant 

q points Pr. {xi, ti), 

xi • 

h • 

I I indicates 
V^i • • • 4/ 

/xi ■ ■ • Xq\ 

■ bJ ] is a function of the 
J \h • • tg/ 

• , Pg\{Xg, tg) of thc squarc a^x^b,a^t 

$ b. Wlien g = 1 we obtain the functions Bp I ) of the single point •(:) 
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P: {Xy t)y and we use these to define the simple Fredholm minor D 

as follows: 

A \ 
wior Z) ( X I 

{p ~ 1)! 

The generalized Fredholm minor D j defined in the 

same way: 
(Xl • ' • Xq \ /Xl • • • Xq\ /Xl • • • Xq\ 

V--(. 
(*1 • 3:A 

. . . ) 
-b:-h— + • • * . The same proof + (-l) . V (p - 1)! 

as that given for D{\) shows that the Fredholm minors (simple and 

generalized) are integral analytic functions of the complex variable X; 

in other words the power series which serve to define 2) 
(Xl ^ • Xg \ 

h ' - tg / 

^ = 1, 2, • ‘ , converge for every (finite) value of X. In fact the 
\ xi • ' ' Xg Ti • • ■ Tp1 e+p 

modulus of is not greater than (g + p) ^ 
[Xl • ' ' Xg Tl • ■ ■ Tp 

is not greater 
tl ' ' ' tq Tl • ' ' Tp (Xi ' • ' xA| Q_±p 

k (^ + p) 2 M^p(b 

tl - ' tj\ 
and so \B 

power series whose sum is D 

^ {q p) ^ M^pij) — ay. Hence the 

fXl — • Xg \ 

I ...V 
is dominated by the power 

(b-a)” 
series whose (p + l)st term is (g + p) ^ 

p! 
ratio of the (p + l)st term of this series to the pth is 

g+p 

-t-H = , + » - «)W 
(g + p_l)-2~p V 9 + P 1/ 

\\Py and the 

(q + p)^ 

The limit of this ratio at p = oo is zero (why?) no matter what are the 
values of g, M, or X and so the dominating power series converges for 
every value of |x|. In other words 
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X ) is an analytic function of X at every {finite) point 

ti ' ' ' tq J 
of the complex \-plane. 

Note, The convergence of the dominating series shows (since the 
coefficients of this series do not depend on the points Pi: (xi, ^i), * * * , 
Pg! (xg, tg)) that tho convorgcnce of the power series in X, whose sum is (Xl ’ * * Xq \ 

X Jj is uniform with respect to the points Pi, • • ' j Pg 
tl ’ ' ‘ tq j 

over the square a^x^hja^t^b (what does this mean?). Since 
the coefficients of this series are continuous functions of the points (Xl • • • Xg \ 

X) is, then, a continuous function of 
tl ' - h / 

these points (why?). 

EXERCISES 

1. Show that AI *= jk:) dr] A2 = dr and, generally, that 

2. Show that H 0 dr <= A\ — A-i\ . r= _7)'(x), where i42X As -7)'(X), where 

the prime denotes differentiation with respect to X. Justify term-by-term integra- 

3. Show that 

4. Show that 

tion of the series for D C') J/ri T2\ 
Bp{ 1 dri drz = Ap^z and, generally, that 

^ ^ drj • • drq — Ap+q. 

4. Show that ^ ^ drjdrs — As — A—• • • =* P"(X 

5. Show that dri • • • drq =s Aq — ^g+iX -{-••• = 

(— 1)«D<«^(X), where Pf«^(X) denotes the 5th derivative of />(X) with respect to X. (Xl • • • Xq\ r /Xl • ■ • Xg t\ 

1 =: I Bp I )dT,p = 0,l,2,-- 
t\ ' • ' tq / J \tl ' ' ' iq r/ J/Xl • • Xg T \ /X, • Xg \ 

D[ X j dr » — D' I X J. 
\tl- -t, T ) \U ' 'U ) 

dri drz a* Ap^z and, generally, that 

dri • • • djq 

drydrz ~ Az — /^aX 4“ X* — 

drq Ag — .4g+iX 4- 
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/X\ • • • Xq\ r /X\ ' ■ ' Xq Tl • • • tA 
8. Show that Bp+r [ ) ~ I 1 ) rfri • • • drr. 

\tl ' tqj J \il ‘ ' tq Tl • • • T^/ 
J/Xl ■ ’ Xq Tl • • • Tr\ 

) (in • • rfTr = 
\tl ■ • tq Tl • • Tr/ 

/Xl ’ ■ ‘ Xq \ 

\tl - • tq ) 

10. Show that if Xo is a simple zero of i)(X) then /X C") is not the zero con- 10. Show that if Xo is a simple zero of i)(X) ther ! not the zero con¬ 

stant function over the square a ^ x ^ b, a ^ t ^ b. Hint. /X'(Xo) 9^ 0 (see 
Exercise 2). 

11. Show that if Xo is a zero of multiplicity p of />(X) then D 
/Xi Xp \ 

(.. ") 
is not identically zero, i.e., is not zero for every choice of the points Pi:{xi, h), 

* • ■ , Fpi (xp, tp). Hint. See Ex(‘rcise .‘5. 

12. Show that the symbol B 
\ti ’ tq/ 

is alternating in the upper variables 

X and in the lower variables t\ i.e., that an interchange of any two of tlH‘ 
symbols a;i, • ■ • , or any two of the symbols Uj ' ' • , tq changes the sign of 

- tq/ 

i alternating in the upper variables x and in 
/XX ‘ • Xq \ 

13. Show that T)[ ^ ) is alternating in the upper variab 
\U -tq ) 

e lower variables t. 
/XX ■ • Xq \ 

14. Show that I)\ X ) is zero if anv two of the x’s, or an^ 
\b / 

, are equal. 

15. Show that Bn dr. Hh 

the lower variables t. 

<'s, are equal. 

F any two of the x’s, or any two of the 

nt. (Xn (*x- 

in terms of tin; first row we obtain 
[a:T, • • • T„“| 

in terms of tin; first row \ 
< Tl . • . T„J 

“ a;! Tn • • • T„"| ^ ' arT Tti • • • t„~| 

TiJ L < T2 • • T„J LT2J L/tiT3 • • T„J 

"Ti • • ' Tnl r ’ Tn~ 
- - • • • (in vii 

_ < TO • • TnJ LtjJ i Tl T3 • T„_ 
[Tl • ■ • T„1 

in its uppe 

ra:"] Tt, • • Tnl 
V we obtain I — 

_t J LTI • * TnJ 

~X' Tt, • • r,,"| r j-'j 

J J Lti • • • TnJ LTi j 

view of the alternating charac¬ 

ter of the symbol in its upper (i.e., row) labels). Hence 

integrate to the same thing, namely, 

dr since the n ncigatively signed terms all 
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16. Show that Bn dr. Hint, Expand the 

determinant 

17. Show that B, 

[XTl ’ ’ ’ Tn"| 
in terms of the first column. 

v-/ U-'-J x-w 

■/"-c :)[:]* 
/Xi ■ ' XA ra:i"j /X2 • • • * • • a:A 

19. Show that Bn ( )=>( —| 
\h t,J L( Itpi \ti tp-itp+i - u) 

(Xx ' ' x\ 
20. Show that B„ I I = 

Vi • • ij 
q Xfa*;.] /x^ ‘ • Xp^iXp^x ■ ' x\ r /a;i • •• a^Arrl 

. 

It follows from the result of Exercise 15 that 

D[ X - D(X) + X I) I X 1 dr. 

X« . . ixX 
In fact the coefficient of ( — 1)’* —, on the left is B„ ( ) while the coeffi- 

n\ \t 

cient of ( — 1)”-- on the right is An — n 
n\ / 

Bn-i( Ir/r. In 

the same way it follows from the result of Exercise 16 that 

\^ = J I>(X) + X Jz) X^ ^ dr. 

The two relations 

D[ X = D(X) + X D X dr) 
t 



dr 
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z)(; x)-[;]i>w+x/«(; x) 

are known as the Fredholm relations. If we consider the two linear 

integral operators 

they state that the two linear integral operators K and D commute: 

KD = DK = - |D - Z>(X)K). 

(we assume that \ 9^ 0 since when X = 0 we have no integral equation). 
We obtain in the same way from the result of Exercise 19 the follow¬ 

ing generalized Fredholm relation: 

D 
tq 

From the result of Exercise 20 we obtain the second generalized Fred¬ 
holm relation 

D 
- ‘ Xq 

' ‘ ’ tq 

Xp^lXp.^1 ' * ’ Xq 

to 

HXi ■ ■ • X, \ Ft 

Th ■ ■ t, / L<1 

Suggestion. In a first reading these various Fredholm relations will 
doubtless seem forbidding, complicated, and confusing. They are, 
however, the central core of the subject of integral equations, and you 

must try to master them. Content yourself at first with the simple 
Fredholm relations which merely express the commutativity of the two 
linear integral operators K and D, the common value of XKD and XDK 
being D — Z)(X)K. You will see in the next section how this result 

enables you to solve in a very simple manner the non-homogeneous 
integral equation 

y = XKy + f 
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when D{\) 9^ 0 and the homogeneous equation u = XKu when Z)(X) 
== 0 provided that D is not the zero linear integral operator. It is 

only in the ''exceptional^ case where D is the zero linear integral 

operator that you will have to appeal to the generalized Fredholm 

relations. 

3. The solution of the integral equation when Z)(X) 9^ 0 

If we assume the existence of a continuous solution of the integral 
equation (non-homogeneous or homogeneous) 

y = XKy + f 

it follows at once from the first simple Fredholm relation that this 

solution is unambiguously determinate. In fact 

Dy = XDKy + Df = (D - Z>(X)K)y + Df 

so that Z)(X)Ky = Df. Hence if Z)(X) 0 we have Ky = ^ so 

that 

y = 
X 

D(\) 
Df+ f. 

The second simple Fredholm relation enables us to verify that the 

function-vector y furnished by this formula actually is a solution of the 

integral equation, and thus our assumption that the integral equation 

actually possesses a solution is validated. In fact it follows from the 

relation 

that 

y = 
X 

DW 
Df+ f 

[D - i)(X)K| t 
~ n(\) 

+ Kf = /■v \ Df. 

Hence y = XKy + f. We have, then, the following fundamental 
result: 

When D(X) 0 the linear integral equation y = XKy + f possesses 
one and only one continuous solution 

y = xrf + f; r = 
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D{\) 
which fur- The linear integral operator T: 

nishes, in this way, the unambiguously determinate solution of the 

integral equation is known as the resolving operator, and T | C^) 
known as the resolving kernel. 

In particular we see that when/is the zero constant function, so that 

the integral equation is homogeneous, the one and only solution of the 
integral equation is the zero constant function. In other words 

When D{K) 0 the only solution of the homogeneous integral equation 

u = XKu 

is the trivial one u = 0. ThuSj if D{\) 5*^ 0, X is not a characteristic num¬ 
ber of the integral equation. We may phrase this result as follows: 

If the integral equation possesses characteristic numbers these will 
be fotmd amongst the zeros of the Fredholm determinant Z>(X). 

EXERCISE 

1. Show that if D(X) = 0 the integral equation y = XKy -|- f does not possess a 

solution unless Df = 0. 

4. The solution of the homogeneous integral equation when 

2)(X) - 0 

Let X = Xo be a zero of D{\). Then 

XoDK = XoKID == D* 

Hence u{x) is a solution, no matter what is the value of 

of the homogeneous integral equation 

u = X(JKu. 

\ . 
:, then, D ( Xo 1 is not identically zero, Xo is a characteristic number If, 

of the integral equation. This will certainly be true if Xo is a simple 
zero of D{\) (see Exercise 10, p. 256), but it may also be true if Xo is a 
multiple zero of Z)(X). Let Xo be a zero of multiplicity p of Z>(X); then 
/V 

is not identically zero (see Exercise 11, p. 256). Let D Xo) 
\ti ’ ’ ' tp ) 
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fxi • • • Xq \ 
q be the positive integer ^ p which is such that D I Xo) is 

\tl • • tg / 
(X1 • • • Xr \ 

... .. 
not identically zero while D 

and let the points tti : (Ji, n), 

D C' "' k) i. 
\t1 • • • Tg / 

(: 

is identically zero if r < g, 

f '^q) he such that the number 

is not zero. Then the functions 

^2 

T2 

• \ 
Xo) 

‘ r, / 

('■ ■ ■■ X.) ' D 

Ug(x) = 

/fl ‘ ‘ ^q-1^ \ 

’( ^7 yi./ 

are all solutions of the homogeneous integral equation u = XKu. To 
jjrove this we observe that, in view of the definition of g, the first 
generalized Fredholm relation yields 

and on dividing this equation by D 

Ui = XoElui 

we obtain 

so that Ui{x) is a solution of the homogeneous integral equation. Ui{x) 

has the value 1 when x = U so that Xo is a characteristic number 
(why?). Thus we have the following result: 

Every zero of D(\) is a characteristic number of the integral equation. 
On combining this result with the result given at the end of Section 3 

we see that 
The zeros of Z)(X) are all characteristic numbers of the integral 

equation and there are no others; in other words the characteristic 

numbers of the integral equation are precisely the zeros of Z>(X). 
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Since ^2(0;) 

^ is • • • f. \ 

D { Xo 1 
Vi./ 

‘ /£i • * i. \ 
“i, ■•.. 

(why?) the same argu¬ 

ment as that given for ui{x) shows that U2(x) is a solution of the homo¬ 

geneous integral equation. Similarly u^ix)^ * * * ? Ug{x) are also 
solutions of the homogeneous integral equation. Hence any linear 
combination 

U = ClUl + • • * + CgUg 

of the function-vectors Ui, • • * , is a solution of the equation 
u = XoKu. The q function-vectors Ui, • • • , are linearly independ¬ 
ent. In fact if CiUi + * • • + is the zero vector it follows on 
setting X = that ci = 0 (since the functions u^ix), • • * , Ug{x) are 
all zero at x = (see Exercise 14, p. 256)). Similarly C2 = 0, • • • , 

Cg = 0. 

We now proceed to prove, conversely, that any function-vector 
which satisfies the homogeneous integral equation u = XoKu is a linear 

combination of the function-vectors Ui, • • • , u,. Let, then, v be 
any function-vector ivhich satisfies the equation u = XoKU) and con¬ 
sider the function-vector 

<7 

= V - v” = v{^p); p = 1, g- 

Since v satisfies the equation u = XoKu we have 

1'{t) dr 

and so 

w 

From the definition of the functions Up{x) the sum 

is, by virtue of the second generalized Fredholm relation, the quotient 

by D Xo^ of 
Vl * ‘ Tg / 
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\r Ti • • • Tg / \r/ \ri • • • Tg/ 

■ \ a 

Pi Xo 
J \aTt- • • Td / T _ 

da. 

Hence 

Since v is, by hypothesis, a solution of the homogeneous integral equa¬ 
tion the first and third of the terms on the right cancel each other. 

Since Xi J a 

T 

v(t) dr = v(a) the second and fourth terms on the right 

also cancel (why?) and so w is the zero constant function, or, equiv¬ 
alently, V is a linear combination of the function-vectors Ui, • • • , Ug. 
We have, then, the following fundamental result: 

If X = Xo is a zero of multiplicity p of Z)(X) there exists a positive 
integer g ^ pf which we term the index of the characteristic number 
Xo, such that every solution of the homogeneous integral equation 
(i.e., every characteristic vector) which is associated with the char¬ 
acteristic number Xo is a linear combination of q such characteristic 

vectors. 

5. Necessary and sufficient conditions for the solution of the 
non-homogeneous integral equation when X is a character¬ 

istic number 

We have already seen (Exercise 1, p. 260; that a necessary condition 
for a solution of the non-homogeneous equation y = XKy + f when 

Z)(X) = 0, i.e., when X is a characteristic number, is Df = 0. This 
condition is vacuous when D is the zero linear integral operator i.e., 
when X = Xo is a characteristic number of index > 1. Let X = Xo 
be a characteristic number of index g, and let (fi, n), • • • (fg, rg) be 
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such that Z> I Xo 1 7*^ 0. On multiplying the relation 
\ri ‘ ' Tg / 

^ ^ /fi • * • • \ , . 
y = XoKy + I by D I Xo j and integrating with respect 

\X T2 ' ' ’ Tg / 
to X we obtain 

Xo )?/(a;) dx 
X r2 • * • Tg / 

= Xo J*| j y{T)D^ Xo^ dr dx 

” r 4 
J \x T2 ' ^ Tg / 

Xo ]f{x) dx. 

By virtue of the second generalized Fredholm relation 

Xo 0 J Z) I Xo j dx — i) ( Xo I 
J \x T2 ' ' ' Tq / L ^ J \t T2 ' ' ' Tq / 

(remember that q is the index of Xo) and so the first term on the right 
cancels the term on the left. Thus a necessary condition for the 
existence of a solution of the non-homogencous ecjuation is 

JIa ^ ^ Xo )/(:r) dx — 0 

/?i • • •«. \ /ei' 
On denoting the quotient of Z)l Xo 1 by Z>l 

\X T2 ' ' Tq / \r, • 

by Vi{x) this necessary condition may be written as follows: 

(v,|f) = 0. 
In words: 

The function-vector f must he perpendicular to the function-vector Vi. 

Since D[ Xo 
TZ ' ' ’ Tq 

the same argument as that for the function Vi{x) shows that f must be 
perpendicular to the function-vector 

.caun-vecwr i must oe perpenatcuiar 10 ine junction-vector Vi. 

^ Ai .\ ^ .\ 
Z) I Xo ] — — Z) ( Xo I 

\ti X Tz ' • ’ Tq / \x T1 73 • • • Tg / 

V2:2^2(x), where i52(x) = 

d(*‘ .X.) 
_ Vi a; T» ■ ■ ■ T,_/ 
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Proceeding in this way we see that, in order that the non-homogeneous 
integral equation 

y = X(Zy + f 

may possess a solution when Xo is a characteristic number of index g, 
it is necessary that the function-vector f be perpendicular to each of 
the function-vectors Vi, • • * , Vg, where Vp(x) is the quotient of 

EXERCISE 

1. Show tliat the fonction-vectors Vi, • • • , v, are linearly independent. 
Hint. When x = ti, Vi(a;) « 1, t;2(x) == 0, • • • , v,j(x) — 0. 

It is easy to see that when the function-vector f is perpendicular 
to each of the g function-vectors Vi, • • • , Vg the non-homogeneous 

integral equation y = XKy + f possesses a solution. Let us denote 

and let P be the linear integral operator 

The first generalized Fredholm relation tells us that 

Since f is perpendicular to each of the function-vectors Vi, • * • , Vg 
it follows that 

Pf = Kf + XKPf = Kz, 

where z — f + XPf. Henc;e z = XKz + f so that z is a solution of the 
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non-homogeneous linear integral equation y = XKy + f. If y is any 

other solution of this equation y — z is a solution of the homogeneous 

equation u = XKu (why?). Hence y — z is a linear combination of 

the function-vectors Ui, • • • , u^. Thus the general solution of the 

non-homogeneous linear integral equation is 

y = z + ciUi + • * • + 

where the ci, • • • , are arbitrary constants. 

We have now fmished the theory of the homogeneous integral equa¬ 

tion u = XKu and of the non-homogeneous integral ecjuation y = XKy 
+ f. The net result is as follows: 

If Z>(X) 0 the integral equation, homogeneous or non-homogene¬ 
ous, possesses the unambiguously determinate solution y = rf + !> 

(x 
where r: r ( X 

\t J D{\) 
The unambiguously determinate solution of the homogeneous 

integral equation is, accordingly, the zero vector. If we reject this 

solution of the homogeneous integral equation as trivial we have the 

following contrast between the non-homogeneous integral equation 

and the homogeneous integral eciuation: 

When D{\) 9^ 0 the non-homogeneous integral equation possesses 
an unambiguously determinate solution while the homogeneous 
equation does not possess a (non-trivial) solution. 

On the other hand the situation is reversed when 2)(X) =0. X has 

an index q which is not greater than its multiplicity (as a zero of I>(X)), 

and the general solution of the homogeneous equation is a linear 

combination of q linearly independent vectors Ui, * • • , Ug. The 

non-homogeneous integral equation does not now, in general, possess a 

solution. If, however, f is orthogonal to q linearly independent 

vectors Vi, • • • , Vg the non-homogeneous equation does possess the 

solution z = f + XPf, and the general solution of the non-homogeneous 

equation is obtained by adding to z an arbitrary linear combination 

of the vectors Ui, * * • , u^. 

6. Adjoint integral equations; Hermitian integral equations 

fx\ ^ / A 
If K*: K* I ) = K I ) is the adjoint linear integral operator to K (see 

\t/ \x/ 

Exercise 4, p. 84), we say that the integral equation y = XK*y + f is 
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the adjoint of (or is adjoint to) the integral equation y = XKy + f. It 
follows that the relationship between two adjoint integral equations 
is a 'partnership: Either of the two equations is the adjoint of the other. 
If we indicate the various quantities that refer to the adjoint integral 
equation by attaching a star to the symbol for the corresponding 

quantity for its partner, it is at once clear that 
iTi * * * 

conjugate complex of (why?). Hence is the con- 
[xi • • • 

jugate complex of (why?) and so Z>*(X) is the power series whose 
coefficients are the conjugate complexes of the coefficients of Z>(X). 
Denoting the conjugate complex of X by X* (rather than by the usual 
X) it follows that D*(X*) is the conjugate complex of Z)(X). In par¬ 
ticular Z)*(X*) = 0 when D{\) =0 and Z>(X) =0 when D*{\*) = 0. 

Hence 
The characteristic numbers of the adjoint integral equation are the 

conjugate complexes of the characteristic numbers of its partner. 

The same argument that showed that Ap* is the conjugate complex 

of Ap proves that B 

■ ■ ■ '•)■ 
\xi ' ^ xj 

Vi ■ • • ij 
is the conjugate complex of 

It follows (why?) that D 

the conjugate complex of D\ f‘ ■ ■ ■ '* x)- 
Vl • • • Xg / 

• • • Xg \ 
( X*) IS 
Vi • • • 4 / 

Hence the index of the 

characteristic number X* of the adjoint integral equation is the same 
as the index of the characteristic number X of its partner. The 
functions 

ui^{x) 

(Xr2 ' ' Tg 

/ri • Tg 

\fl • • • 
n • * * Tg-1 X 

Ug*{x) = 

n * • • Tg 

X, 
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are such that Ui*{x) — 

... 

\:rr2 • 

D 1 
/... 

Vi * • • 'Tq 

In other words 

Ui*(x) = Vi(x), • • • ,Uq*{x) Vq(x). Thus the necessary and sufficient 
condition that the non-hoinogeneous equation y = XoKy + f should 
possess a solution when Xo is a characteristic number of index q may be 

phrased as follows: 
f must be orthogonal to every characteristic vector of the adjoint 

homogeneous equation u == XK*u which is associated with the char¬ 
acteristic number Xo* of this equation. 

Let, now, Xm and X„ be two distinct characteristic numbers of the 
equation u == XKu. We have the following remarkable theorem: 

Every characteristic vector u of the equation u = XKu which is 
associated with the characteristic number X„» is orthogonal to every 
characteristic vector u* of the adjoint equation u = XK*u which is 

associated with the characteristic number Xn*. 
To prove this theorem we observe that the relation u = XJKu 

implies that (u*|u) = Xt„(u*1Ku) and that the relation u* = Xn*K*u* 
implies that (u*|u) = Xn(K*u*|u). Since (K*u*|u) = (u*|Ku) (why?) 
it follows that 

(X„ - X„)(u*|Ku) = 0. 

Since Xm — X„ 0 it follows that (u*|Ku) = 0. Hence (u*luj = 0 

which proves the theorem. 
When the integral equation y = XKy + f is Hermitian (i.e., self- 

adjoint) all its characteristic numbers are real. In fact the relation 
u = XKu implies that (u|u) = X(u|Ku) and both (u|u) and (u|Ku) are 

real (why?). Since (u[u) 5*^ 0 (why?) (u|Ku) 9^ 0 and so X = 

is real. We shall denote a self-adjoint (or Hermitian) linear integral 
operator by the symbol H, and, on applying to a Hermitian integral 
equation the result just derived for two adjoint integral equations, we 
have the following fundamental theorem: 

Let Xm and Xn be two distinct characteristic numbers (necessarily 
real) of the Hermitian integral equation u = XHu. Then any char¬ 
acteristic vector associated with X^ is orthogonal to any characteristic 
vector associated with Xn. 

If Xm has an index q > 1 the characteristic vectors Ui, • • • , u, 
associated with X„ are not necessarily mutually orthogonal, but, on 
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applying to them Schmidt’s orthogonalization process (see Chapter 3, 
Section 2) we obtain a set of q mutually orthogonal unit characteristic 
vectors which are associated with the characteristic number Xm. 

Dealing in this way with each of the characteristic numbers we obtain 

an orthonormal secjuence, (Remember that since the zeros of an 
analytic function are isolated they can be counted, there being only a 

finite number of them whose modulus is less than any given positive 

number.) In counting the members of the orthonormal secpience we 
attach to each the characteristic number with which it is associated 

(so that eacih characteristici number is repeated if its index is greater 

than 1, the number of times it appears being equal to its index). 
The important results of the preceding paragraph would be vacuous 

if our Tlermitian integral equation did not possess any characteristic 

numbers. We shall prove, however, in the next section the remarkable 
theorem that every Hermitian integral equation possesses at least one 

characteristic number. Anticipating this result we summarize the 

important results of the preceding paragraphs as follows: 
Associated with every Hermitian integral equation is an orthonormal 

sequence of function-vectors each of which is a characteristic vector of 

the integral equation; every characteristic number of the integral equa¬ 

tion is real, and every characteristic vector of the integral equation 

is a linear combination of members of the orthonormal sequence. 

7. The existence of a characteristic number for a Hermitian 

integral equation 

In order to show that a given integral equation possesses a (diaracter- 

istic^ number it suffices to prove that its Fredholm determinant D(X) 
possesses a zero (why?). If D(X) did not possess a zero the resolving 

kernel 

D{\) 

would be an integral analytic function of X (i.e., it would be analytic at 

every finite point X in the complex X-plane), for both D (:>) and 

Z)(X) are integral functions of X. Hence if the integral equation 

u = XKu does not possess a characteristic number the development 

of r (:>) as a power series in X is convergent for every value of X. 
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We propose to show that this cannot be the case if K = H is a Her- 
mitian linear integral operator. 

The development of T as a power series in X is readily found, 

whether K is Hermitian or not, provided that |x| is sufficiently small. 
When X = 0, y = f, and on setting y = f in the right-hand side of the 

integral equation y = XKy + f we obtain y = f + XKf. Since y = f H- 

Xrf the power series for T must start out with the term K 

On substituting the expression f + XKf for y in the right-hand side 
of the integral equation we obtain y = f + XKf + X^K^f, Proceeding 
in this way we obtain the successive approximations 

yo = f; yi = f + xKf; • • • ; y« = f + xKf + • • • + x«K”f 

to the sought-for solution of the integral equation. The question 

immediately arises: Do these approximations converge, and, if they 
do, is their limit a solution of the integral equation? The answer to 
both parts of this question is ‘‘yes^^ provided that |x[ is sufficiently 

small, and we proceed to show this. 
In the first place we observe that the various powers K" of the linear 

integral operator K obey the exponent law: K”*+” = K^^K'* (why?). 
In particular 

K * = KK”-i 

so that 

H) 
dr. On regarding k[ ) and (:) 

as function-vectors over the interval a ^ r ^ h it follows 

that K' 
•0“ 

is the scalar product of the second of these function- 

vectors by the first. Hence, by Schwarz^s inequality. 

r- C) f«0 * C) C) C) 
Let us denote by Gn^ the integral of | K” ^ ^ | = K”* ^ ^ ^ ^ 

over the square a ^x^b;a^t^h. Then it follows, on integrating 
the inequality just written over this square, that 
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On* n = 2,3, • • • . 

Thus (?2* ^ Gi\ (?,* ^ ^ Gi\ and, generally. 

On* ^ Oi^"; n = 1, 2, • • • . 

On writing K“ in the form KK the form KK“~’‘K, K” appears as 

On regarding iC" and K (■}'(■:) as function-vectors (two 

dimensional) over the square a ^ n ^ b, a ^ t2 ^ h, is the 

scalar product of the first of these two function-vectors by the second. 

Hence (why?) 

0^ C.) ^ C’)0 ^ 
Gn-i^C^ ^ C*Oi^»-S 

v'here C* stands for the non-negative number /'O'O'O 

I dr I dr 2. Thus ^ and so H) m dt 

$ CG\^''^NQ) — a)y where |/(a:)| ^ N over a ^ x ^ h. It follows 

that the series f + XKf + • • • + X”K”f + • • • converges at every 

point X of [a, 6] if [x| < the convergence being uniform with 
Gi 

respect to x over [a, fe]. On denoting the sum of the series by z we 
have Kz = Kf + XK^f + • • ■ + + • • • (term-by-term inte¬ 

gration being permitted by the uniformity of the convergence of the 

series f + XKf + • • • + X"K-f +•••)• Thus XKz - XKf + X^K^f 

+ • • • + X’^+'K^+if -+-•••== z ~ f so that z = f + XKf + • • • 

-f X”K”f + • • • is a solution of the equation y = f + XKy. We 

have, then, the following result: 
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If |x| < is not a characteristic number, and the unambiguously 
Oi 

determinate solution of the integral equation y = XKy + f is given by 

the formula 

where 

y - xrf + f, 

r = K + XK’’ + • ♦ • + X“"'K« + • • • . 

We have already seen that if D{\) 9^ 0 the unambiguously determi¬ 

nate solution of the integral ecjuation is 

y = 
D{\) 

Df+ f 

and so 

On setting /(/) ^ 

every x. Hence 

'"'■'S' 

r { ^ /> ( xj we obtain (f|f) = 0, 

D 
{» 
ij(\) 

+ 

D 

If D(X) has no zeros the power series expansion of 

+ X--1A' 

(:■) 

'0 

completely determined by the values of 
{;*) 
D(\) 

D(\) 
vhich is 

over any neighbor¬ 

hood of X — 0 must converge for every (finite) value of X. In other 

words the series K + 

must converge for every (finite) value of X. In order to prove, then, 
that every Hermitian integral equation y = XHy + f has a character¬ 

istic constant it is sufficient to show that the series 
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H + * • • 

has a finite radius of convergence. 
Note. The solution of any integral equation y = XKy + f, namely. 

y = f -}- XXf -j- • • • X'X'*! “]-••• 

which is valid if |x| is sufficiently small ^in particular if |x| < is 

known as the Neumann solution (after C. Neumann [1832-1925], a 
German mathematician). It suffers from the serious fault that it is 
valid only when |x| is sufficiently small. By way of contrast compare 

the Fredholm solution 

X 

i>(X) 
Df + f 

which is valid for every X which is not a zero of D(X). 

It is clear from the definition of a Hermitian linear integral operator 
that if H is Hermitian so also are • • • H'‘. In fact (u|H^v) 
= (HuIHv) = (H^u|v) so that is Hermitian (why?). Similarly 

is Hermitian, and so on. Since (:)=/ 7/* 7/ :* (;)*- 

dr it follows that 11 ■O' is real and non-negative. 

Furthermore 77^” ^ ^ dx > 0 since if J77^" 0* 

"■(;) 
(:)• 

were zero 

would be identi(5ally zero (why?), and no poAver of H is the 

zero operator. In fact if 71^” rere identically zero 77" would be 

identically zero (why?), and if Avere identically zero 
= would be identically zero, and this AA^ould force to be 
identically zero. Thus the lowest poAA'er of H which is identically 
zero is neither even nor odd; in other words no poAver of H is identically 

zero (it being understood that H is not identically zero). Let us 

denote by the positive number p2n == J77^” ^ ^ dx (so that p2n 
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is the squared magnitude of the two-dimensional function-vector 

it follows from the relation 

(:) 

;„ = J//»-' //»+' dr dx; n = 2, 3, 

calar 

0 
that p2n is the scalar product of the (two-dimensional) function- 

vector M 1 by the (two-dimensional) function-vector w„_i: 

lienee, by Schwarz^s inequality, 

P2J ^ P2n-2P2«+2; n = 2, 3, • • • . 

In other words the sequence of positive numbers I ; n — 1, 2, 
I P2n ) 

• • • , is monotone-increasing. Hence the ratio of the (n + l)st term 

of the series 

P2 + MP4 + + M’*"'^P2n + M > 0 

P4 
to the nth term > m The series is, accordingly, divergent if 

P2 
P2 

n > — It follows that the series 
P4 

+ ■0 + 

P2 
does not converge (uniformly with respect to a;) if /x > —, for if it 

P4 

did the series 

P2 + MP4 + • • ’ + M”“^P2n -!-••• 

obtained by term-by-term integration would be convergent. Hence 

/A 
the integral equation whose kernel is I 1 possesses a characteristic 

number, for if it did not the series 

IP C)+""C) + ■f (:) + 
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would converge, uniformly over the square a ^ a: ^ 6, a ^ ^ ^ 6, for 

every (finite) value of m- 
Since (u|H^u) = (Hu|Hu) all characteristic numbers of are posi¬ 

tive (why?). Denote, then, the characteristic number of whose 

existence we have just proved, by /x > 0. Let u be a characteristic 
vector of which is associated with jit, and construct the two vectors 

vi = u + V2 = u — m^Hu. 

Since Vi + V2 = 2u not both the vectors Vi and V2 can be the zero vector 

(why?). Furthermore 

Hvi = Hu + Hv2 = Hu - /x^^H^u 

so that, since u = /xH^u, 

/x^'^Hvi = u + = vi; -/x^^Hv2 = u ~ = V2. 

Hence either /x^ or —/x^ (possibly both) is a characteristic number of 

H. This completes the proof of our principal theorem: 

Every Hermitian integral equation possesses at least one character¬ 

istic number. 

IncidentaUy we have proved that every characteristic vector of H^ 

is a linear combination of characteristic vectors of H (since 2u = Vi 

+ V2 and each of the vectors Vi, V2 is either the zero vector or else is a 

characteristic vector of H). It is clear that if X is a characteristic 

number of H then is a characteristic number of H^, any character¬ 

istic vector of H which is associated with X being a characteristic vector 

of H^ which is associated with X^. In fact the relation u = X(Hu) 

implies u = XH(X(Hu)) = X^H^u. Thus the characteristic numbers 

of H^ are precisely the squares of the characteristic numbers of H. 

EXERCISES 

1. Show that if X is a characteristic number of H of index q then X* is a charac¬ 
teristic number of H* of index ^ q, 

2. Show that if X is a characteristic number of H of index q^ and —X a charac¬ 
teristic number of H of index (it being understood that — 0 if —X is not a 
characteristic number of H) then X* is a characteristic number of H* of index 

9+ + ?- 
3. Show that if {Un) is an orthonormal sequence determined by H then {u») is 

an orthonormal sequence determined by H®. 

4. Show that the modulus of the characteristic number of H whose modulus is 

— I * Hird. There is at least one singular point of an analytic function 
V</ 

on the circumference of its circle of convergence. 
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5. Show that if X is a characteristic number of the integral equation y = XK”y 
-f f then one of the wth roots of X is a characteristic number of K and that every 
characteristic vector of K” is a linear combination of characteristic vectors of K. 
Hird. Let u be a characteristic vector of K" which is associated with X, and let 

n — 1 
1 ir± 

ep — |x|”e ” , p = 1, • • • , n be the n nth roots of X. Set ^ 

p»= 1 
y = 1, • • • , n. Then the function-vector v, satisfies the equation v, = e/Kv„ 

and 

n — 1 

let Vy = U + ^ €;PK»'U, 

Vj = nu. 

y-1 
6. Show that the characteristic number X of the int(‘gral equation y = XHy -f f 

whose modulus is least is such that j; * I'l«fe)"' where is the squared 

magnitude of tin? (two-dimensional) function-vector H 
■"0 

7. Show that when [n, 6] = f —1, 1] then /)(X) =1 — -f X. Show that 
H*: xl so that = -| H and H. Show, further, that pa = •!, P4 = -ffi, 

and verify that the inequality |x| ^ I reduces to an equality in this case. 

8. Show that, for tlic TTermitian linear integral operator of Kxercisc 7, the 

inequality — ^ |x| reduces to an equality. 
G\ 

9. Show that when H: a: -f f, [a, M = I ~ L 11 then D{\) = 1 — -Jx^ 
-h-f, H- p2 — 1^, P4 = Verify that the inequality of 
Exercise 6 is ^ (3)^^ ^ ^ (3)^. 

8. Separable linear integral operators 

When X ( ) is of the form pi(a;)gi(0 + + Pn(x)§n(0 the linear 

integral operator K: is said to be separable. There is no lack of 

generality in assuming that the n function-vectors Pi, * * • , Pn are 
linearly independent (why?), and we shall make this hypothesis. On 

denoting (q,|y) by c', jf = 1, • • • , n, the integral equation y = XKy 
-f- f is equivalent to the eciuation 

y{x) = X{c^pi(x) + • • • + c^Vn{x)] -\- f(x) 

and so c? = (q,|y) is given by the formula 
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= X{(q/|pi)ci + • • • + (qj-lpjc”} + (q,jf). 

On denoting by A tlie w X n matrix of which the element in the jth row 

and mth column is (qjlpm) we have 

c = XAc + d, 

where c is the n X 1 matrix of which the element in the jth row is 

d and d is the n X 1 matrix of which the element in the jth row is (q,jf). 

In order that the homogeneous integral eciiiation may have a (non¬ 

trivial) solution it is necessary that the matrix En — be singular. 

Conversely if Bn — XA is singular there exists a non-zero n X 1 matrix 

c such that c = X-4c. On setting 
n 

u(x) X ^ r“pa (^) 

it follows that 

V V n n 

/S=l a=] 

so that XKu = u. Since the function-vectors pi, * ’ * , pn are, by 
hypothesis, linearly independent, u is not the zero ve(dor. Hence X 

is a characteristic number of the separable kernel K Thus 

The characteristic numbers of a separable kernel are finite in num¬ 

ber; they are the zeros of the determinant of the n X n matrix En — XA 

where AJ = (q,|pj. 

EXERCISES 

1. Show that K: p(x)q(t) does not have a characteristic number if (q|p) = 0 

and that if (q|p) 5^ 0 it has as its only characteristic number the reciprocal of (q|p). 

2. Determine the one and only characteristic number of the TIermitian linear 
integral operator H: xi, [a, b] — [ — 1, 1]. Check your answer with the result of 
Exercise 7, p. 276. 

3. Determine the two characteristic numbers of H:a: [a, 6] = [~1, 1]. 
Check your answer with the result of Exercise 8, p. 276. 

4. Show that the necessary and sufficient conditions that K: pi{x)qi{t) -f 
P2(x)q2{t), where the function-vectors pi and p2 are linearly independent, should 

have no characteristic numbers are (qi|pi) 4- (q2|p2) = 0, det 
((qi|pi) (qi|ps)\ 

(q^lpi) (qalps)/ 
0. 
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9. The bilinear formula 

be any Ilermitian linear integral operator, and let {u« 

be the orthonormal sequence (finite or infinite) which it determines. 
/x\ 

If we hold t fixed H ( J may be regarded as a one-dimensional func- 
V/ 

tion-vector whose jth Fourier coefficient with respect to the ortho¬ 

normal sequence {UnJ is 

This is the conjugate of Thus (since the 

characteristic numbers of H are real) the Fourier coefficients of // ( ), 
V/ 

regarded as a one-dimensional function-vector by the device of holding 

4 _]_‘^j(0 TT_xU-. _II f^\ 4 £_1 t fixed, are Hence the Fourier series of HI t fixed, is 

Un{t)Un{x) 

x« 

This Fourier series may, or may not, converge, and, if it converges, its 

sum may, or may not, be H We proceed to prove the following 

fundamental theorem: 

If the Fourier series of H ^ j converges over the square o ^ x ^ 6, 

a ^ t ^ b and if its convergence is uniform with respect to x for every 

/x\ 
ies of H ( J com 

convergence is v 

its sum is H I I 

the proof of this i 

I I converges u 
V/ 

fixed tj a ^ t ^ bi its sum 

As a first step in the proof of this theorem we shall prove that if the 

Fourier series of H ^ y converges uniformly (regarded as a function 

of the two variables x and t) over the square a^x^bjO^t^b then 
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its sum is 

operator 
«(:) To do this we denote by H' the linear integral 

(^) 

00 

The assumed uniform continuity of the series ^ ----------- over the 

square a^x^bja^t^b, coupled with the continuity of H 

over this square, assures us that 

C) 
continuous over this square. 

H' is Hermitian (why?) so that, if /I' ^ y is not identically zero, it 

possesses a characteristic number fi, say, and an associated character¬ 

istic vector V, say. Since the infinite series which appears in the 

definition of H •(:)• onverges uniformly in t for every fixed Xy H'u,- 

may be obtained by term-by-term integration. By virtue of the 
orthonormal character of the sequence {u„) we find that 

H'u, = Hui - ^ = 0 (why?); j = 1, 2, • ■ • 
A/ 

Since V = /.H'v it follows that v is orthogonal to each and every 
member of the orthonormal sequence {un). In fact (u,|v) = ^(uylH'v) 
= /i(H'u,|v) (why?) = 0. Hence, on evaluating H'v by term-by-term 

integration, H'v = Hv so that v is a characteristic vector of H. But 
this is absurd since v is orthogonal to every characteristic vector of H 

(why?). Hence H must be identically zero or, equivalently, 

H 
Un{t)Un{x) 

x« 

This fundamental result is known as the bilinear formula. Our pre¬ 
liminary result may, then, be stated as follows: 
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00 

The bilinear formula is valid when the series / ci 
Z-/ Xn 

converges 

uniformly over the square a^x^h, a^t^h. 

When the series ^ is a finite one, i.e., when H has only a 
Z-/ X„ 

finite number of characteristic numbers, the question of convergenc^e 
does not arise. Thus 

Every Hermitian kernel which possesses only a finite number of charac¬ 
teristic numbers may he written in the form 

uft)uf 

u 

Un{t)u,fx) 

In particular every such Hermitian kernel is separable. 
Note. This result assures us that the Hermitian linear operator 

"•(:) {s(a;)s(0 which occurs when we look at a regular self- 

adjoint boundary-value problem from the integral equation point of 
view, always possesses an infinite number of characteristic numbers. 
In fact, since the functions ufx)^ * * • , Un{x)^ • • • are differentiable 

over [a, h] ( why?), i/Q would be differentiable over [a, b] if it 

possessed only a finite number of characteristic numbers (why?). 

But H Cf is not differentiable over [a, h] (why?). Hence it must 

possess an infinite number of characteristic numbers. 

The Fourier series oi I is 

Un(t)Un{x) 

(see Exercise 2, p. 275). This series is uniformly convergent over the 
square and the bilinear formula 
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is valid. In order to prove this we first consider the Fourier series 

XUn{t)Un{ 

of ( ) (why is this the Fourier series of W 
0 

In order to 

examine the convergence of this series we consider the absolute value 
iV + p N-j-p 

r .1, \^U„(t)Un(x) ^ ^ 1 V M„(«)m»(x) 
of the sum > -—-; this is not greater than --- / *---- 

/-/ Xn Xjv+r -w Xn 
JV-Hl N + 1 

JV+P 

since \n+i^ ^ XAr+2^ ^ ^ Now the sum V — 
Xn 

JV+1 

may be regarded as the scalar product of the two real p-dimensional 
vectors 

/ Un+ 

\ \n. 

|u.v+p(0| 

Xjv+p 

Hence, by Schwarz’s inequality ity, ^ 

Xitf+1 

|M„(0Mn(g)[ . 
is not greater than the 

product of the magnitudes of these two p-dimensional vectors. Now 

/^\ u {t) 
since the Fourier coefficients of // { fixed, are - - it follows from 

Bessel’s inequality that 

/*C)" O'" ■"’(')■ 

Since ( .) is a continuous function of the square variable a ^ x ^ 6, 

d ^ t ^ h 
•"■Q* 

is bounded over [a, 6]. Thus there exists a number 

M, say, such that 

00 XUp(t)Up{ 

\p^ 
^ M over lo, ?j], M being independent 

of t. Hence the squared magnitude of each of the vectors 
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^ ^ kv4^Y ^ /K±iM1, . . . , k^+pWl\ < 
\ \n+1 Xa^+P / \ Xjv+l XaT+p / 

and so 

Thus 

S' 
N+1 

Unit)Un{x)\ 

N + p 

XUn(t)v 

K 
N+l 

(t)Un(x) 

^ M\ 

Af2 

Xiv+l^ 

and since XAr^.l^ may be made arbitrarily large by making N sufficiently 
large the uniform convergence over the square a^x^h, a^t^b 
of the series 

ao 

s 
Wn(^)'Mn(»r) 

has been demonstrated; this guarantees the validity of the bilinear 

formula for I 0 
H* (:)■? 

It is not so easy to prove the uniform convergence of the Fourier series 

I over the square a^x^b^a^t^b^ but it is easy to show 
“'"‘O' 
that this Fourier series converges uniformly in x for every fixed t 
(and uniformly in t for every fixed x). This together with the validity 

'0 
of the bilinear formula for | ) enables us to prove the validity of 

the bilinear formula for [ jf and after (not before) this validity 

/x\ 
of the bilinear formula for I 1 is known we can prove that the 
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Fourier series of ^ J actually does converge uniformly over the 

square a^x^b,a^l^b. To see that the Fourier series of ( 1 

converges uniformly in either of the two variables (x, t) when the other 
is fixed we consider the sum 

N + p 

4 Xn^ 
N+l 

This may be regarded as the scalar product of the p-dimensional vector 

(un^i{x) Un+p{x)\ , . I , (Us^l{t) 
V I-) • ’ • f - I by the p-climensional vector v {-f 
\ ^s+i Xat+p / \ Xjv+i 

. . . , Y Hence, by Schwarz^s inequality, the absolute value 
XjV-fp / 

N-\-p 

Hence, by Schwarz^s inequality, the absolute value 

of the sum 4 V' is not greater than the prodiujt of the magni¬ 

tudes of these two vectors. In order to prove the uniform convergence 

with respect to x, t being fixed, of the series y ^y0 observe 
Xr* 

1 

that the squared magnitude of the vector v f • • • > 
\ f^N+l XjV+B / 

XUn(x)Un( 
(why?) ^ M (where M is independent of x). Also, in 

view of the convergence of the series / the magnitude of 

1 

the vector v • • • > J may be made arbitrarily small by 
\ XaT-I-I Xat+p / 

making N sufficiently large (the choice of N depending on t but not 
N+p 

^ Un{t)Un{x) 
on x). Thus the absolute value of the sum > --- may be 

w Xn 
v+i 

made arbitrarily small by merely making N sufficiently large, the 
choice of N depending on t but not on x. In other words the series 
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^uMUn(x) . 
^ergent over the square a^x^bya^t^h, the 

convergence being uniform with respect to x for every fixed i. Sim¬ 

ilarly (or by observing that 
Xiin(t)uni 

is Hermitian) (what does 

this mean?) the convergence is uniform with respect to t, x being fixed. 
In order to prove the validity of the bilinear formula for we set 

so that 

; w = 1, 2, • 

Thus R^n ( 1 is null at ?i = 00 uniformly with respect to x for any 

fixed t, SiiKie //‘oo ( 1 is a continuous function of x, for any fixed t, 

and since u is null at n == oo^ uniformly with respect to x, it 

follows that is a bounded fum^tion of Xy the boundedness 

being uniform with respect to n\ in other words there exists a constant 
C such that 

V/l ^ t fixed, X and n arbitrary 

(C may well depend on ty but it is independent of x and n). Let us 
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calculate the squared magnitude of H\ ^ j regarded as a function of x, 

t being fixed. On taking account of the relations 

J*'^n„{x) dx = ^Uj,{x) dx = 

(up|up) = 1; (Up|u,) =0; v 9^ q 

we obtain 

"H.r-lr-"' :-x Up{t^ Up(^t') 

Since the bilinear formula is.valid for it follows that the squared 

(x\ 
magnitude of ( J, ^ fixed, is null at n = <». 

fx\ 
We next appraise the squared magnitude of //^w ( I* Since 

V/ 

//^oo ^ ^ ^ ^ ~ ' ^ squared magnitude = JH^„ ^ ^ 

c) - J®’- o^’-b - /"“■ c)®*- c) /®‘- 
M M M 
I JR^nl j dx. Since R\ I I is null at n = oo, uniformly with 

respect to x, and since j IPn wi is bounded, uniformly with respect 

/x\ 
to X and n, it follows that the squared magnitude of //“oe I ^ fixed, 

is null at n = oo. (Prove this.) Being independent of n it must be 

zero (why?) and so HK 0- for every x and every t. In other 

words 
The bilinear formula is valid for 

A repetition of this argument (applied to H rather than H^) proves our 

main theorem. We set 
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H, 
Up{t)Up{x) 

n = 1, 2, 3, 

w 

ies^ 
Up(t)Up(x) 

Note. We cannot prove the convergence of the series 

(the convergence being uniform with respect to x for every fixed 

^Un(t)Vp(x) 
as we could for the series 

X 2 
This must now be granted, 

but from this point on the argument is precisely the same (except 
for the fact that we lean upon the validity of the bilinear formula for 

rather than, as before, on the validity of the bilinear formula for 

H^). We have, then, proved the following fundamental result: 

If the Fourier series ies of H converges uniformly in x for every 

fiixed t the bilinear formula is valid: 

H CH Un(l)u„(x) 

The bilinear formula is valid for H“ no matter what is the (Hermitian) 
linear integral operator H : 

As a first application of this result we prove the following remarkable 
theorem: Every function-vector k of the form Hh, where h is any 
continuous function-vector, possesses a uniformly convergent Fourier 
series, with respect to the orthonormal sequence j Un} determined by H, 
and the sum of this Fourier scries is h(x). 

Since (u/|k) = (u,|Hh) == (Hu/[k) = — (u/|h) the Fourier coefficients 

of k are given, in terms of the Fourier coefficients of h, by means 
of the formula 
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fc»' = j = 1, 2, 

Thus the Fourier series of k{x) is 

Since the series 2^^%^ converges (why?) and since 

1 

00 

X Ui{x)u,ix) 

X,” 
IS 

less than a fixed number M (by fixed we mean independent of x) it 

follows, by the same argument which proved the uniform convergence 

in X (for every fixed t) of the bilinear formula for that the Fourier 

series for k{x) converges uniformly in x. It remains only to prove that 

its sum is k(x). To do this we set V = k — Since the uniform 

Xy 
— Uj{x) permits term-by-term integration 

1 ^ 
(after multiplication by Uj{x)) it follows (by virtue of the orthonormal 

quality of the sequence {Un}) that (u/|v) = (uy|k) — — = 0. Hence v 
A/ 

is orthogonal to each member of the orthonormal sequence {u„}. In 

view of the uniform convergence in for every fixed x, of the bilinear 

formula for it follows that H^v = 0. (Prove this.) Hence 

(H^vlv) = 0 and so, since (H^vlv) = (Hv|Hv), Hv = 0. Since 

k = Hh it follows that (k|v) = (Hh|v) = (h|Hv) = 0. Hence (on 

again using term-by-term integration) (v|v) = 0 so that v{x) = 0. In 

other words the sum of the Fourier series of k{x) is k{x). 

Let, now, y be a solution of the integral equation y = XHy + f. 

Since is of the form Hy it possesses a uniformly convergent 

Fourier series 

y - f 
X X 

1 

C^Up. 

On multiplying this equation scalarly by Up we find 
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r P = 1, 2, 

yP 
Since is the pth Fourier coefficient of Hy we have ~ and so 

j/f Hence, if X 
^ \X Xp/ X 

7^ Xp 

fv 

\x xJ 
XX, 

so that y = f + \ 'Up(x), This form of the solution of a 

Hermitian integral equation is known as the HiJhert-Schmidt solution 
(after the German mathematicians D, Hilbert [1802-1943] and E. 
Schmidt). It shows clearly the effect of resonance as X approaches 
one of the characteristic numbers \p of the integral equation. When 
X = Xp we must have /^ = 0; in other words it is nccessaiy, for the 
existence of a solution of the non-homogeneous equation, that / be 
orthogonal to every characteristic vector associated with Xp. When 
these necessary conditions are satisfied, the y^ (and hence the c^) 
which are associated with Xp are arbitrary, but the which are associ¬ 
ated with the other characteristic numbers are determined by the 

formula c*’ = 
X„ - X' 

10. The completeness of the orthonormal sequence jun] defined 

hy a regular bound ary-value problem 

We know that, if H is any Hermitian linear integral operator, its 
square” is furnished by the bilinear formula 

where the series converges uniformly in x for every fixed i (and uni¬ 
formly in t for every fixed x). Since term-by-term integration (after 
multiplication by any continuous function v{t)) is legitimate (why?) 
and since the sequence {u„( is orthonormal it follows that if the 
function-vector v is orthogonal to every vector of the orthonormal 
sequence then H^v = 0. (Prove this.) Hence (H^vlv) = (Hv|Hv) 
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= 0 so that Hv = 0 (why?). If the linear integral operator H is such 

that Hv = 0 only when v is the zero vector it follows that the ortho¬ 

normal sequence {u„) is complete (what does this mean?). We have, 

then, the following theorem: 

If the function-vector v is orthogonal to every vector of the ortho¬ 

normal sequence {u„} determined by the Hermitian linear integral 

operator H then Hv = 0; if H is such that Hv = 0 only when v is the 

zero vector then the orthonormal sequence (Un} is complete. 
We know that a regular self-adjoint boundary-value problem 

Iju -|- \su = 0; Bi{u) = 0, B2{u) = 0 

for which s{x) is non-negative is equivalent to the integral equation 

problem 

V = XHv, 

where v(x) — {s(x)}^w andH:G Since LG = — 1 it 

is clear that Hu is zero only when u is the zero vector. In fact Hu = 

{s(x))^Gv so that Gv == {6*(x))'"^‘^Hu. If, then, Hu = 0 we have 

Gv = OandsoLGv, i.e., —v, is the zero vector. Hence u = {5(a:))"^v 
is the zero vector. Note, We take it as granted that if 8{x) is ever 

zero the points at which it is zero are either finite in number or else 

they may be covered by a sequence of intervals the sum of whose 

lengths is arbitrarily small. The fact that Gv may fail to be defined 

at these points is, therefore, of no consequence (why?). We have, then, 

the important result that 

The orthonormal sequence {u„) determined by any regular self- 

adjoint boundary-value problem is complete. 

11. Non-negative and positive linear integral operators 

A Hermitian linear integral operator H is said to be non-negative if 

the real number (v|Hv) is non-negative for every vector v; if this num¬ 

ber is positive when v is not the zero vector H is said to be positive. It 

is clear that the characteristic numbers of a non-negative linear 

integral operator are positive; in fact if Xp is any characteristic number 

of H and Up a characteristic vector of H associated with Xp we have 

Up = XpHup so that (up|up) = Xp(Up|Hup). Hence (Up|Hup) > 0 

(why?) and Xp > 0. The converse of this theorem is true: 

If all the characteristic numbers of a Hermitian linear integral oper¬ 

ator H are positive, H is non-negative; if the orthonormal sequence 

{Un} is complete, H is positive. 
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In fact if V is any vector Hv possesses a uniformly convergent Fourier 
oe » 

series Up(x) and so (v|Hv) == ^ orthonormal 

sequence {Un} is complete not all the Fourier coefficients of v are 
zero if v is not the zero vector; hence (v|Hv) > 0 if v is not the zero 

vector so that H is positive. 

The ^Miagonal valuesh(\ oi any Hermitian kernel are real 

(why?); if H is non-negative H ^ y is non-negative over the closed 

interval a ^ x ^ h. To see this set ^ ^ ^ ^ + f/S ^ where 

A\ /x\ 
both R and S are real linear integral operators. Then // i 1 = ^1 1 

and if v is any real vector (v|Hv) = (v|Rv) (why?). If 7? ^ ^ were 

/x\ 
negative at an interior point f of the interval a ^ x ^ h, R [ ] would, 

V/ 
would, 

by virtue of its continuity, be negative over a two-dimensional interval 
i — d^x^^ +5, ^ — centered at (f, J), Choosing 
v{x) == 0 outside the open interval (f — 5, f + 5) and positive over 
this interval, (v|Rv) < 0 (why?) which is absurd since H is, by 
hypothesis, non-negative and (vjRv) = (v|Hv) since v is a real vector. 

Hence H ^ y is non-negative over the open interval (a, b); by virtue of 

the continuity of H (;) it follows (why?) that lEf ^ ^ is non-negative 

over the closed interval [a, b]. This result enables us to prove the 
following important theorem: 

Every non-negative kernel HI ) is furnished by the bilinear 

(:)-? 
(OMn(x) 
-J 

x» 

formula 
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where the infinite series (if it is infinite) converges uniformly over the 
square a^x^b, a^t^h. 

To prove this theorem we set 

Un{t)Un(x) 
x„ 

It is clear that Hp is Hermitian (why?) and that HpUn = 0, n = 1, 
• • • p. (Prove this.) Let n be any characteristic number of Hp, 

and let v be a characteristic vector of Hp which is associated with p. 

Since v = /xHpV it follows that (Un|v) = 0, n = 1, * * • p. (Prove 
this. Use the fact that HpUn == 0.) Hence HpV = Hv (prove this) 
so that V is a characteristic vector, and p a characteristic number, of H. 

Note that p is one of the characteristic numbers Xp+i, \p+2j * * * 
since v is orthogonal to each of the vectors Ui, * • • , Up. Since all 

the characteristic numbers.of Hp are positive, Hp is a non-negative 

linear integral operator. Hence Hp ^ ^ ^ 0, p = 1, 2, • • • so that 

^^ H ^ ^ ^ ikf, say, where M is independent of x. 

Hence the series 

N+p 

. S;;^Un(x)Un(x) ^ ^ 
les 7 -converges to a sum ^ M, On regard- 

X„ 

ing the sum 
XUnit)Ur. 

Xn 

(x) 
as the scalar product of the p-dimensional 

isr+i 

vector V f ^' ' ' > p-dimensional vector 
n(Xjv+i) (Xa'+p) / 

^ (7x~"!L^ * * * ; -7^-) it follows, on applying Schwarz's inequal- 
VCXat+i) (Xjv-fp) / 

ity, that the bilinear formula 
XUnjQUr,' 

Xn 

(x) 
converges uniformly in x 

for every fixed L Hence its sum is ■(:> 
'(:)■?* 
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and, in particular 

^Un(x)Un(x) 

^ \n 

The convergence of the sericvS 
n{x)Un{x) . 

is uniform with respect 

to X for the following two reawsons: (1) Each term of the series is posi¬ 

tive; and (2) the sum of the series is continuous. In fact let us 

denote by Rn{x) the remainder after n terms: 

Then Rn{x) is non-negative and continuous ovc^r [a, h]; denote by x,^ a 

point of [a, 6] at which Rn{x) attains its absolute maximum over [a, h], 

and let | be an accumulation point (what does this mean?) of the 

sequence {oJn}. Since converges we can determine N 

such that 0 ^ Rn{^) ^ where e is any given positive number, if 

n ^ N. Hence 0 ^ Rn{xm) ^ 2€, if n ^ Ny for arbitrarily large values 

of m. Hence there exists an integer m for which Rm{Xm) ^ 2€. Hence 
Rm{x) ^ 2c over [a, 6] (why?). Hence y^<^(a*) ^ 2e if g ^ m(why?). In 

other words the senes >--- converges uniformly over [a, h]. 

Since the modulus of 
' Un{t)Un{x) . 

is not greater than the product 

of the magnitudes of the two p-dimensional vec^tors v ( * * * , 

(Ukj^iQ) tfc.V4p(0 \ 

^^Un{t)Un{x) 

converges uniformly over the square a ^ x ^ hy 

a ^ t ^ h. Note carefully that this is a stronger statement that this 
series converges uniformly in x for every fixed t. 
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The uniform convergence of the series 

by-term integration of the relation 

QO 

X 
1 

Un{x)Un(x) 

Xn 
permits term- 

and so 

H 
Un (x) Un (3?) 

K 

X2 
-h + + 

In words: 

The series formed by the reciprocals of the characteristic numbers 
of a non-negative linear integral operator converges to the value 

Since the characteristic numbers Xi, X2, • * • are all positive it 

follows An equivalent statement is the 

following : 

The smallest characteristic number of a non-negative linear integral 

operator is not less than the reciprocal of 

If H is any Hermitian linear integral operator the squares of its 
characteristic numbers are the characteristic numbers of Hence 
W is non-negative (why?), and 

Xr 
+ -j-. — j_ 

Thus 
The modulus of any characteristic number of any Hermitian kernel 

is not less than the positive square root of the reciprocal of dx. 

Example 

The boundary-value problem of the vibrating string is equivalent to 

the Hermitian integral equation whose kernel is the Greenes function 
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1 

2 
- ^ X ^ 

t ^ X ^ 

t; 

1 

2 

The characteristic numbers of the boundary-value problem (or 

equivalently of the integral equation) are all positive: 

Xn 
nV 

P ’ 

Since Xi ^ Actu¬ 

ally Xi = —• 

12. Rayleigh’s principle 

Let us consider the boundary-value problem which is involved in the 
discussion of the transverse vibrations of a string, not necessarily 
uniformly dense, which is tightly stretched between two fixed points. 

If 0), P2: (x2f 0) are any two 
points of the string when it is in its 
equilibrium position we denote by 

Pi : (xiy yi), P2 : (^2,2/2) the positions, 
at any time i during the vibration, of 
these two points of the string. If p 

is the (linear) density of the string when in its equilibrium position the 
principle of conservation of mass yields p' ds — p dx^ where p' is the 
linear density and s the arc length, at the time t. The transverse 
component of the force acting at the time t on the portion of the string 
between Pi and P2' is 

^92 rX2 I p't/« ds = I pytt dx. 
Jai Jxt 

This force is exerted by the tensions of the remaining portions of the 
string at +he points Pi and P2'. We suppose the tension P when the 
string is in its equilibrium position so great that the additional tension 

due to its slight extension when vibrating may be neglected (this is 
what we imply when we refer to the string as tightly stretched). Then 

the transverse component of the force due to the tension at P2' is 

2 
Fig. 40. 
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dv 
P-T- (P2')> and we suppose the string so slightly bent away from its 

ds 
dy 

equilibrium position (along the a;-axis) that — may be replaced by y- 

this amounts to replacing s* = (1 + yx^)^ by 1. The transverse 
component of the force acting on the portion P1P2 of the string is, 

accordingly, P\yx{x^ — 2/*(^i)l = Ax where Xi < i < X2 and 
Ax = X2 — Xi. Hence 

PyxxU) Ax x: pyu dx = 

where xi < < X2. Thus 

PyUi) = p({')2/*i(«'), 

and on setting xi = x and letting Ax 0 we obtain, by virtue of the 

assumed continuity of p and of the second derivatives 2/**, 2/«, the 
equation 

_ ^ . 2 
2/xx “ 2 ^ ~ 

P p 

This is the equation we have discussed in detail in the particular case 
where p is a constant function of x (so that the string is uniformly 
dense). In the more general situation of a non-uniform string we 
find, on setting y == that 

Uxx + pp^u = 0. 

Taking the string to be of length I and the origin to be at its mid-point 
(when it is in its equilibrium position) the boundary conditions are 

= 0, setting = \ we have the self- 

adjoint equation 

Lw + Xsw = 0, 

where L = s — p > 0. 
The kinetic energy of the vibrating string is 

I 

T = ^py,^ dx. 

Hence the time rate of change of T is 
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i - 

r, = J* ^ pytyu dx = pj, 

On integrating by parts and using the fact that 2/« = 0 at both ends of 

the string we obtain 
/ 

pj jVxVxtdx 

“2 

r. 

If, then, we set 

Vx^dx 

we have = 0 so that V + T is constant. By virtue of the 
principle of conservation of energy we term V the potential energy 
of the vibrating string. On integrating by parts and using the fact 

that 2/ = 0 at both ends of the string we obtain 

i I 
2 

J ^yx^dx = ““ J* / 2/2/*x dx, 

Thus the additive constant in the potential energy has been fixed so 
that the potential energy is zero when the string is in its equilibrium 
position. We have, then, the following result: 

i 

The kinetic energy oj the vibrating string is T — \ ^ ^pyi^ dx, and the 

~2 

potential energy of the vibrating siring is F = — I _ /: 
_Pp 

2 j_i: 
yvxx dx. 

When the string is executing a normal vibration 

y = P 5^ 0 

we have yt = ippym{ae}^^'^^^ — so that 

yt^ = _ 2aoL + 

Hence the average value of T with respect to t over a cycle is 
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aoLp^P r. 
J-1/2 

pu^ dx 

(the time average of ^~2ippiU Qy^j. cycle being zero since 

p 9^ 0). A similar cakmlation shows that the time average of V 
'*1/2 r*i/2 

dx over a cycle of a normal vibration is aaP j Ux^ dx, 
^-^/2 ‘ J-l/2 

An integration by parts yields, since w = 0 at each end of the vibrating J//2 ni/2 ni/2 

dx = ~ \ uuxx dx = I pu^ dx since u^x -f p^pu 
-1/2 J-1/2 J-l/2 

= 0. Thus 
The time average, over a cycle, of the kinetic energy in a normal 

vibration is the same as the time average, over a cycle, of the poten¬ 
tial energy. 

This result merely expresses in terms of the physical concepts of 
kinetic and potential energy the fact that if u is a characteristic vector of 

the bound ary-value problem which is associated with the characteristic. 

number X the ratio of — ( 
1 

u Lu) = — I i* 
J-l/2 

UUxz dx to 
Jl/2 

-1/2 

pu^ dx is X. 

Since s = p the vector v = p^% satisfies the Hermitian integral 

equation v = XHv, where H: 

expression for H that 

and so 

<■) pH(a;)pH(^). It is clear from the 

Hv = p^^^G(pu) 

(v|Hv) = (pV%|p^4G(pu)) = (pu|G(pu)) = (h|Gh), 

where h = pu = p^^v. If v is any continuous vector the vector Hv 
= p^'^Gh possesses a uniformly convergent Fourier series 

Hv: 

with respect to the orthonormal sequence {v„I determined by H. 

Hence 

(h|Gh) = (viHv) = 

1 

On setting k = Gh = p~^^Hv, so that k satisfies the boundary condi¬ 

tions, we have Lk = —h, since LG = — 1. Hence (h|Gh) = — (Lk|k) 
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ni/2 

so that (h Gh) = I dx (since Lk: k^x and A; = 0 at both ends of the 
J-1/2 

90 

string). On the other hand (pGhjGh) = (Hv|Hv) = si 

the orthonormal sequence (vnj is complete. Hence 

<^1..= 
1 

On combining the two relations 

00 ao 

SO as to eliminate we obtain 

(h|oh)-x,(Aik)- 

/1/2 

kx^ dx the kernel H is non-negative 
-1/2 

so that the characteristic numbers Xi, • • • , Xn, • • are all positive. 
Xi being the smallest of these it follows that 

(h|Gh) - X.(pk|k) ^ 0 
or, equivalently, 

^ (h|Gh) _ -(Lk|k) 

(pk|k) (pk|k) 

In this formula lies the content of Rayleigh’s principle (after J. W. 
Strutt, Lord Rayleigh [1842-1919], an English applied mathematician), 
which may be phrased as follows: 

Let Lu + \pu = 0, Bi{u) = 0, 82(0) = 0 be a regular self-adjoint 

boundary-value problem whose associated linear integral operator 

H:gQpH(x)p^(0 is non-negative. Then the least characteristic 

number Xi of H is not greater than the quotient of — (Lk|k) by (pk|k), 
where k is any vector which is such that Lk is continuous and which 
satisfies the boundary conditions. 
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Note. Rayleigh phrased his principle in terms of the physical con¬ 

cepts of kinetic and potential energy. The numerator of our fraction, 

namely, ~ (Lk|k) was termed by him a multiple of the average potential 

energyj and the denominator was termed the same multiple of the 

average kinetic energy of the mechanical system whose vibrations are 
governed by the boundary-value problem. In actual computation 

it is simpler to start with the explicit formula 

Xi ^ 

In order to determine a function k{x) which satisfies the boundary 

conditions you may set k = Gh, where h is any continuous vector; 

then Lk = —h, and k{x) may be determined by integrating this 

equation and determining the constants of integration so that k 

satisfies the boundary conditions. 

Rayleigh’s principle furnishes a method of approximating the least 

characteristic number of the non-negative linear integral operator H. 

On setting 

. -(Lklk) 

(Pklk) 

we obtain an approximation to Xi which is too large by the amount 

1 — -f- (pk|k). Here the numbers v^ are the Fourier 
Xp/ 

coefficients of h, where k = Gh. We can use pk as a new h and 

thus obtain a new approximation which is better than the original one. 

To see this set ki = Ghi = G(pu) = p“"^Hv; k2 = Gh2 = G(pki) == 

p~^H(p^i) = p^^H^v. Then H^v has the uniformly convergent 

Fourier series 

so that 
so 

(Hv|H^) = = (k*|Gh,) = -(Lk,lk*); 

(H*viH»v) = I) ^ = (Ak*|k,). 
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The error in the approximation to Xi obtained by applying Rayleigh 

principle using the function-vector k2 is 

The error when we used ki was 

and on subtracting the former of these expressions from the latter we 

obtain a positive result. (Show this.) 

Example 1. The uniform vibrating siring 

The differential equation governing the transverse vibrations of a 
tightly stretched uniform vibrating string is 

1 
Vxx — .. yih 

where c = y-y is a constant. In our first discussion of this problem 

we separated the variables x and t by making the substitution y = 

and we found that the characteristic numbers were Xn = Vn^ 
nV 

= 71 = 1, 2, • • • , Z being the length of the string. In order to 

be able to compare the solution of the problem of the uniform vibrating 
string with that of a non-uniform vibrating string we now separate the 
variables x and t by making the substitution y = (gQ 

^ = VlY)<i and we write our differential equation in the form w** 
+ \pu = 0, \ = instead of u^x + Xw = 0 as in the first discussion. 

The new characteristic numbers are, then, the quotients of the original 
characteristic numbers by p: 

X. = 71 = 1, 2, 

T\ 

The smallest characteristic number is —> and we wish to see how good 

an approximation to this number Kayleigh^s principle furnishes. 
Starting with u{x) = 1, hi^x) = p, k is determined by means of the 

equation IJt = — p. Since Rayleigh’s principle furnishes the desired 
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approximation to Xi as the quotient of two homogeneous quadratic 
forms in k we may multiply k by any convenient (constant) factor. 
Setting, then, h{x) = 1 rather than h{x) — p we have D% = —1, 

k{x) = + cix + C2. Since k(x) =0 when a; = — ^ and when 

X = - we obtain k(x) 

= —a: so 

r 

= i (Verify this.) Hence T>k{x) Jl/2 73 

{Dky dx = Also 
-1/2 

pl^ 
pk^ dx = • 

120 
-b-2 

(Check this.) Thus the approximation to Xi 

pV^ 
- furnished by Rayleigh’s principle (using h 1) is Since 

pP 
TT^ = 9.8090 the approximation is extraordinarily good (the error being 
less than 1^%). 

To obtain a better approximation we set h2: P — so that D%2: 4a;* 
x^ Px^ I 

— /*; ki,{x) = -- + cix + C2. Since k2(x) =0 at x = ± -f 

, x^ Px^ 5P 
Cl = 0, and we obtain A;2(a;) = *;--^ + —• 

3 2 48 

/ 
Hence Dk2: -a;® — Px, 

3 
1/2 .. y77 

(DA;2) 2 da; = — • (Check this.) 
1/2 315 70(92) 

Jl/2 

(Check 

this.) Hence the approximation to Xi = — furnished by Rayleigh’s 
pP 

principle, using h: — 4^*, is 
306 9.871 

31 p^* pP 
true value by less than one fiftieth of one per cent. 

This is in excess of the 

Example 2. The vibrating beam 

The differential equation governing the transverse vibrations of a 
beam is 

1 El 
+ ~yu ^ 0; c* = —I 

p 

where D denotes differentiation with respect to x, E is Young’s 
modulus, I is the moment of inertia of a cross section of the beam about 

its central axis, and p is the volume density. On setting y = 
(on the assumption that El is a constant) we obtain the equation 

Lw + Xpw = 0; X == p*; L = — D^. 
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The kinetic energy of the vibrating beam is 

T ^ J*py,^ dx, 

where A is the cross-sectional area (supposed constant) of the beam. 

Thus 7\ = A Jpytytt dx = —AEl^ytT>^y dx. On integrating by parts 

and assuming that either yt or D*?/ is zero at each end of the beam we 

obtain Tt — J VtxEi^y dx. Again integrating by parts and assum¬ 

ing that either ytx or 'D’^y is zero at each end of the beam we obtain 

r, = -AEiJi yxxiD^y dx. 

If, then, we set 

so that 

= iAEI J (D22/)2 dx 

Ft = AEIJ (D^y)yxxtdx 

we see that T + V = constant so that we term V the 'potential energy 

of the beam (the additive constant being fixed by the fact that V is 

zero when the beam is in its equilibrium position, in which T)^y = 0). 

An integration by parts, coupled with the assumption that either IDy 

or T>^y is zero at each end of the beam, shows that 

iAElj T>yT>^y dx. 

A second integration by parts, coupled with the assumption that either 
y or D^y is zero at each end of the beam, yields 

V = iAElJ yD^y dx. 

Thus we have the following result: 

The kinetic energy of the vibrating beam is T = pyt^dxy and 

the potential energy of the vibrating beam is 

^7 
^7 dx = 

yD^ dx. 
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The same argument as that for the vibrating string (repeat this 
argument) shows that when the beam is executing a normal vibration 

y = the average value of the 

kinetic energy over a cycle is aaAEIp^ J pu^ dx and that the average 

value of the potential energy over a cycle is aoAEI I {D^uy dx. A 

repeated integration by parts (coupled with the assumptions already 
made concerning the values of u, Dw, D^u, and at the ends of the 

beam) shows that the average value of the potential energy of the beam 

over a cycle (of a normal vibration) is aaAEI f uD^u dx. In view 

of the fact that = \pu = p'^pu it follows that Rayleigh’s principle 
is valid for the vibrating beam; 

In a normal vibration the time averages {over a cycle) of the kinetic 

and potential energies of the vibrating beam are equal. 

An equivalent form of statement of this result is as follows: 

In any normal vibration of the beam, associated with a character¬ 

istic number X, we have 

~-(u|Lu)^ 

(u|pu) 

Since —(u|Lu) = (u|Dhi) = (D^ujD^) the characteristic numbers of 
the boundary-value problem of the vibrating beam are all positive. 

Hence the linear integral operator H of the associated integral equation 
is non-negative and so the method of approximation to the least 

characteristic number which has been explained in detail for the 

vibrating string is applicable without any change to the vibrating 

beam. 

We treat by this method the case of a uniform beam which is 

^'built-in” at one end and free at the other. Placing our origin at the 

built-in end the boundary conditions arc u(0) = 0, Du(0) = 0, 

D^u(/) = 0, D*w(0 = 0. The equation which determines the char¬ 

acteristic numbers is easily determined. On setting Xp = n^ we have 

to solve the equation D% = n^u and adjust the solution to the 

boundary conditions. The general solution of the differential equa¬ 

tion is u == Cl cosh nx + C2 sinh nx + cs cos nx + C4 sin nx, and the 

boundary conditions at x = 0 yield Ci + Ca == 0, C2 + C4 = 0 (since 

n 0). (Verify that X = 0 is not a characteristic number.) Hence 

u = Ci(cosh nx — cos nx) + C2(sinh nx — sin nx). The boundary con¬ 

ditions at X = ^ yield the two equations 
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(cosh nl + cos nl)ci + (sinh nl + sin nl)c2 = 0; 

(sinh nl — sin nl)ci + (cosh nl + cos n/)c2 = 0. 

The determinant of these two equations must be zero (why?) and so 

n must be a zero of cosh nl cos nl + 1. The first four positive zeros 

of the function cosh a cos a + 1 are ai — 1.8751, 0:2 = 4.6941, 

az = 7.8548, a4 = 10.9955 (the remaining zeros being furnished to a 

TT 
high degree of accuracy by the formula = (2n — 1) -)* Hence 

the smallest characteristic number of our boundary-value problem is 

^ ^ _ 12.362 

p p/^ p/^ 

We obtain the first approximation to this, by means of Rayleigh’s 

principle, by setting k — Gh, where h(x) ~ 1. Then = 1, 

+ Cl + C2X + C3X^ + The boundary conditions at 

X = 0 yield Ci = 0, C2 = 0. The boundary conditions at x = / yield 
12 I p.^2 ,^4 

Ca = 7? C4 = — r (check this) so that k(x) = —p-T + 77* Hence 
p I ^ px2 

Ca = “? C4 = —7 (check this) so that k{x) — —- 
4 6 4 

76 

-(kjLk) = (klD%) = (pk|k) = p k^dx = - 
40 (9=) 

p/^. Hence the 

approximation furnished by Rayleigh’s principle to Xi = — is 
pl^ 

162 12.462 

ISpl^ pl^ 
which is in excess by less than 1 %. 
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THE CALCULUS OF VARIATIONS 

1. The variation of a line integral 

If 2/ = y{x) is a differentiable function of a single independent variable 

X, any value of x at which dy = y* dx is zero is termed a stationary 

point of 2/ = 2/(^)- Here the stationary point (i.e., the value of the 
independent variable x at which the dependent variable y is stationary) 
is a number. In the calculus of variations we seek for stationary 

points of a dependent variable or function, but the independent vari¬ 

able is no longer a collection of numbers; it is, rather, a collection of 
geometrical entities, e.g., a collection of curves. Attached to each 

“value’’ of the independent variable (for example, to each curve of 

the collection) is a number. Thus the dependent variable is still, as it 
was in elementary differential calculus, a collection of numbers. We 

shall confine our attention at first to the case where the independent 

variable is a collection of curves and where the dependent variable is 
obtained by integrating along the curve a given function of posiiion 

and of direction (the direction at any point of the curve along which 

the given function is being integrated being furnished by the tangent 
vector to the curve); we suppose, then, that each curve of the family 
of curves which constitutes the independent variable is smooth, i.e., 

that each of the coordinates of any point P of the curve possesses a 
continuous derivative with respect to the independent variable, or 
parameter, which names, or identifies, each point of the curve. 

We denote the coordinates of P by (x', a:*, • • • , x”) so that our 

curves, each of which is a “value” of the independent variable, lie 

in a space of n dimensions. We denote the independent variable 
along any curve of our family by r, and we suppose that the various 

members of our family of curves are identified by the values of an 

accessory variable a. In other words the equations of the curve 

Ca of our family are of the form 
305 
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== x^(t, a); j = 1, * * ‘ 

Ab t varies, a remaining fixed, the point Piix^y • * * , x^) traces out 

the curve Ca] when a is changed we obtain a new member of the family 

of curves. We denote the initial point of Ca by -Po and the final point 
byPiSothatPo.’W, • • * , a:o") and Pi: (.rd, • • • , a;i-), where 

Xo^ = X^Xto, a)] xi^ = X?{Tiy a)] i = 1, * * * n. 

The variables r and a are taken io be independent (since r must be 

capable of varying when a is held constant), but this does not prevent 
the possibility that to and ti (the initial 

and final values of the parameterr) may 

vary with a. We assume that the func¬ 

tions — x^(Ty a)yj = ly * • * , n, not 

only possess continuous first derivatives 

with respect to t and a but that the sec¬ 

ond mixed derivatives Xray Xar exist and 
are equal (continuity of these deriva¬ 

tives is sufficient to ensure this). Each 

of the functions .r^(r, a) possesses two 

partial differentials: 

1. dx^ = (x^dr; the vector ds = v(dx\ • * • , dx^) is the vector 

element of arc of the curve Ca obtained by holding a fixed in the equa¬ 
tions x^ = x^{Tf a). 

2. dx^’ — {x^)ada] the vector 5s = t;(5x’, * * * , 5x”) is the vector 

element of arc of the curve obtained by holding r fixed (and regarding 

a as variable) in the equations — ;r^’(r, a), j = 1, • * • , n. 

Note, In the formulas furnishing dx^ and hxP, dr and da are arbitrary 

numbers (since they are differentials of independent variables). 
The coordinates 5a;^, j = 1, • • • , n, of 5s are known as the raria^tons 

of the coordinates x\j = \j • • • , n, of P. In general if /(r, a) is any 

function of r and a we denote by dj the partial differential of / with 
respect to r: 

df = /r dr 

and by 5/the partial differential of/with respect to a, i.e., the variation 
of/: 

df =fada. 

Since the coordinates of the end-points Po and Pi of Ca may involve a, 

not only explicitly but also implicitly through the initial and final 
values To and ti of the parameter t, we have 
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6(xo0 ~ X^rirof a)8To + x^a{To, a) da 

6(xi0 = a)dTi + x^'a(ri, a) da 

Since (^xOr-ro = a;'a(ro, a) da it follows that d{xo^') is not, in general, 
the same as (SojOt-to and, similarly, that 5(a;i0 is not, in general, the 

same as {8x^')„v In other words 
The order of substitution of tq or ti for r and of variation (z.e., of 

differentiation with respect to a) cannot he interchanged. 

Note. The equations xd = a;^(ro, a), j == 1, • • • , n, are those of 

the curve traced out by the end-points Po of the curves Ca of the 

family of curves which constitutes our independent variable. The 

vector 6So = * * * , is the vector element of arc of this 

curve. Similarly the vector 5si = t;(5(xi0, * * * , 5(a:i")) is the vector 
element of arc of the curve traced out by the end-points Pi of the 

various curves Ca. If Po is a fixed point 5So is the zero vector, and if Pi 
is a fixed point 6s i is the zero Vector. 

The dependent variable which we wish to consider is of the form 

where we denote by P(z, Xr) a given function of the n coordinates 

(a:\ * • • , a:”) of P and of the n derivatives (xV, • • • , x\) of these n 

coordinates with respect to r; we take it as granted that P(a:, Xr) 
possesses continuous derivatives with respect to each of the 2n vari¬ 

ables X and Xt. We require that 1(a) be independent of the particular 

parameter r chosen to represent the points P:(x^, * • • , x”) of the 

curve Ca along w^hich P(a:, Xr) is being integrated. The only changes 

of parameter which we permit are those of the form 

T = t(u), 

where is continuous and non-negative over [?/o, Ui] where tq = r(wo), 

Ti = t(wi). When such a change of parameter is made our integral 
1(a) takes the form 

1(a) - I F(x, Xt)tv dUy 
U MO 

and our requirement that 1(a) be the same when the parameter u is 

used as when the parameter r is used implies that 

Xu) du Xr)Tu du. 
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This equality must hold for all intervals [wo, Wi] and so, since each of 
the two integrands is continuous, 

F{X, Xu) = F{X, Xr)Tu 

or, equivalently, 
F(x, kXr) — kF{x, Xr)) k = Tu > 0. 

In other words 
When each of the n derivatives Xr is multiplied by one and the same 

positive number k the function F is multiplied by h 
We express this requirement which must be satisfied by F{x^ Xr) by 

saying that F{x, Xr) must be 'positively homogeneous in the n variables 
X\y * ’ * , X^T» 

Note. If we are given an integral of the form 

where L is not positively homogeneous of degree one in the n variables 
x\ * • • , x^t^ we may bring it under the scoi^e of our discussion by 
regarding not as a mere naming parameter of points on the curve 
Ca, but as one of the coordinates of the point P. Thus the curve Ca is 
now regarded as a curve in a space of n + 1, rather than n, dimensions. 
On writing, as before, t = ^(t), where U > 0, I {a) takes the form 

I F{x, Xr) dr, 
Jto 

where, now, x stands for the n + 1 coordinates {x', ■ ■ ■ ,*“,<) and 

F{x, Xr) = L{x, Xt)lr = L ^ tr. Sincc L ^x, is homogeneous 

of degree zero (why?) in the n + 1 variables (xV, • • • , x\, tr) it is 
clear that F is homogeneous (and, hence, positively homogeneous) of 
degree one in these n + 1 variables. We shall suppose, from now on, 
that this change of integrand from L(x, x,) to F{x, x,) = L{x, x,)tr is 
made (at the expense of increasing by one the dimension of the space 

m which our curves C„, which constitute our independent variable, lie) 
so that our integrand F(x, x,) is always positively homogeneous of 
degree one in the variables Xr, 

Our problem is the determination of the curve C„ which is such that 
the integral I (a) is stationary. In other words SI must be zero for 
arbitrary values of Sx>,= i, . . . , along the curve C„. Be sure 

that you understand precisely what is meant by this and that you 
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appreciate how strict a requirement it is upon the curve Ca. Once the 
family of curves C«: 

= x»(r, a); J = 1, • • • , n 

has been chosen = x^'a da is determined along Ca. We require that 
no matter what is the family of curves into which the particular curve 
we are trying to track down is imbedded’^ the variation 8l of 1(a) 
will be zero. In order to find what conditions are imposed upon the 

curve we are seeking by this requirement %ve must first calculate 5/ 
for any curve of any family which contains the curve. Since a enters 
1(a) in three ways: 

1. through the upper limit ti = Ti(a) of the integral which defines 

/(«); 
2. through the lower limit ro = To(a) of this integral; and 
3. through the integrand F(x, Xr) of this integral, 

8I will be the sum of three parts: 

1. FiSriy where Fi denotes the value of the integrand F(Xf Xr) when 
r = Ti; 

2. ~Fo5to, where Fo denotes the value of this integrand w^hen 
r = To; and 

3. I bF dr. Here 8F must be obtained by the Rule of Composite 
•/ro 

Differentiation since F{x, x-,) involves a through the n variables 
X‘ir, a) and the n derivatives xK(t, a), j = 1, • • • , n, of these vari¬ 

ables. In applying this Rule of Composite Differentiation we regard 
the 2n variables x\ x\j i = 1, • * • , n, as independent variables. 

Warning. Do not have a confused feeling that since both x’Xr, a) 

and x^'t(t, a)f j = 1, • * *71, are functions of only two independent 
variables they must be, in some way, dependent. The Rule of Com¬ 
posite Differentiation brutally ignores this; it says: Proceed as if the 

2n variables x^' and x^r are independent, and you will get the correct 
result. 

It is convenient to condense our notation, and this can be done 

without sacrifice of clarity. According to the Rule of Composite 
Differentiation we have 

dF I 
j-i 

F xibx^ + 

We shall omit the summation signs and the label j attached to x and 
Xr] thus we write simply 
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bF == FM + FzMr. 

Since the symbol x must carry a label before it can be evaluated (for 
you must know which coordinate, of the point P, you are talking about) 
the omission of the label is a clear warning. This omission is equiv¬ 

alent to the instruction: 
Insert every label from 1 to n, and add the results obtained. 
Note. This instruction applies to terms such as F^bx and F^r^Xr 

where the label is omitted in each of two factors occurring in the term. 

Thus Fx^x is 

n 71 

I 
bx^' and Fxr^Xr is / F^h^xK- Whenever a symbol 

such as Fxtj in which the omitted label is only omitted once, appears 
we understand that this implies the whole set of n numbers 
• • • , Fxnr). Thus we shall very sliortly have to consider the vector 

V'Fx. 

We understand by this equation of definition that the n numbers P*,v, 

j — ly * * * , n, are the coordinates of a vector , pn), where 

Pi = Fxir; j = I, ■■■, n. 

The general principle for translating our stenographic notation may be 
stated briefly as follows: If an omitted label occurs twice in a term 
insert the label and sum over all values of the label from 1 to n; if an 
omitted label occurs once in a term insert the label and evaluate, but 
do not add. 

In evaluating the three contributions to bl we start with 3: 

bF dr — bx + FXT ^Xr) dr. 

Since bxr = Xra da = Xar da (why?) = {bx)T (since da is independent of 

t) the term I {Fxr^Xr) dr may be integrated by parts. On introduc- 
Jro 

ing the notation 

P = Fxr 

we 
r^i |r, /*ri 

(pbXr) dr = I p(5x)t dr — pbx\ — j p^bx dr. Hence 

I {Fx — pT)8xdT. 

*/T0 

the contribution 3 to bl is 



EXERCISES 

1. Show that F{x, Xt) “ |(iCr)* + (^r)* 4- (Zr)*)^ is positively homogeneous of 
degree one in Xr *= {Xr, Vt, 2t). Show, further, that it is not homogeneous of 
degree one in the variables (av, 2/t, 2t). Calculate the vector p = v(px, p», p») 

=* v(Fxri Fyry F»r\ and verify that F — pxr = p»Xr + p^tjr + 
2. Show that the coordinates of the vector p of Exercise 1 are subject to the 

relation s p,* + 4 p,* — 1 * 0. 
3. Denoting the (three) dependent variables (a;', x*, x’) by (r, By tfi) repeat Exer¬ 

cise 1 for the function 

F ■= IW’ + r‘(9r)* + r* sin* e 

^ Tr r^0T sin* $ <t>r 
Answer, pr =- j,; pe = -y; p« * --. 

4. Show that the coordinates of the vector p of PJxercise 3 are subject to the 

relation <^(x, p) s p,* 4 4 4 - "7; p^* - 1 = 0. 
r* r* sin* B 

5. Show that each coordinate Fxt of the vector p is positively homogeneous 
of degree zero in the n variables x. Hint. Differentiate with respect to Xt the 
relation 

F(x, kXr) « kF(Xy Xr). 

6. Deduce from the result of Exercise 5 that each coordinate of p: Fxr is a 
function of the n -- 1 ratios xV : • • • ; x”t (it being understood that not all the n 
derivatives Xt are zero). Hint. If xU 0 set A; * l/|xv| in the relation p(x, A:xr) 
- p(x, Xr). 
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2. The Euler-Lagrange equations 

Let C be a curve which is such that 61 = 0, no matter what family of 

curves Ca containing C is used to define 6/, provided only that the end 

points Po and Pi are fixed, i.e., the same for every curve of the family 

of curves Ca- We term C an extremal of the calculus of variations 

problem. Since 6{xq) = 0, 5(xi) = 0 

hi — Pt) 5xj dr. 

In order to determine the extremals C we impose conditions on the 

integrand function F{x, Xr) which are strong enough to ensure that 

Fx and pr are continuous along C. Since pr = Parra^r + Fxrxr^rr we 
suppose that F possesses continuous second derivatives with respect 

to the 2n variables x, Xr and that, along C, the functions x = a:(r, a) 

possess continuous second derivatives with respect to r. The fact 

that Fx — Pt is continuous along C makes it certain that if a single 

one of the n expressions Fxi — {Vi)ry i = ' , n, is different from 
zero at a single point r = say, of C then C is not an extremal. In 

fact Fxi — (Pj)t, being continuous, has the same sign over an interval 

[f — 5, f + 5] centered at and we may set hx^ = 0, k ^ jj 6x^ = 0 at 

any point r not covered by (| — 5, f + 5) while hxj > 0 over the open 

interval (f — 5, f + 5). For any family Ca for which the coordinates 

of 5s = • * • , 3.r”) have these values along C 

61 = {pj)r}dx^ dr 7^ 0 (why?) 

so that C is not an extremal. Thus the following n equations 

Px - Pr = 0 

must be satisfied along C if C is to be an extremal. It is clear that if 

these equations are satisfied C is an extremal since the equations (3n in 
all) 

5(:ro) = 0; 6(a:,) =0; P* — pr == 0 

ensure that 57 = 0. Thus we have the following fundamental result: 
The curve C is an extremal if, and only if, along C 

Px - Pr = 0. 

Note. In these equations x may be regarded as a function of the 
single variable r rather than as a function of the two independent 
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variables r and a, for the particular value of a which picks out C may 
be substituted for a before, rather than after, the differentiations 
with respect to x and t (remember that the variables t and a are 
independent). 

The n equations 
- Pr = 0 

are known as the Euler-Lagrange equations (after L. Euler [1707-1783], 
a Swiss mathematician, and J. L. Lagrange [1736-1813], a French 
mathematician). Since p = Fxr^ (Pi)r = FxiraXT + so that the 
Euler-Lagrange equations are, in general, differential equations of the 
second order for the unknown functions x of the single independent 
variable t. However, when F is a linear function of the variables Xr 

so that FxrxT is the zero n X n matrix, the Euler-Lagrange equations 
reduce to first-order differential equations (unless F is independent 
of the variables x, in which case every curve is an extremal, the Euler- 
Lagrange equations being then trivial since Fx is the zero n X 1 
matrix and Fxrx is the zero n X n matrix). 

EXERCISES 
1. Show that if F is a constant function of then pj is constant along an 

extremal. 
2. Show that (F» — pT)Xr — 0, and deduce that the n Eulcr-1-.agrange equations 

are not independent. Hint Ft — FgXr + FxrXm and, since F = pav, Fr — PrXj 
+ pxrr- Since Fxr = p we have FxX^ — PrXf. 

3. Show that if E = {(xy)* -f- (^t)* + then are constant along 

an extremal. Deduce that dx:dy:dz are constant along an extremal so that the 

r 
extremals are straight lines. Note. Since I F dr is the arc-length integral this 

Jto 

exercise shows that curves of stationary length are straight lines. 

When the variables x are not independent but are connected by one 
or more relations of the form <#>(x) = 0, 0 being a differentiable function 
of the n variables x, the Euler-Lagrange equations take a slightly 
different form. We must now have 

(Fx — pr)8x = 0, 

where the vector = v(Bx^j * • • , 5^”) is any vector tangent to the 
spread <#>(x) = 0; in other words (F* — Pt)Sx = 0 for all vectors 5s 
which satisfy the relation <^x5x = 0. If, then, X is an undetermined 
multiplier we must have, for all such vectors 6s, 
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(F* - Pr + = 0. 

Choosing X so that the coefficient of one of the coordinates of 6s is 

zero the coefficients of the remaining coordinates must also be zero 

since these coordinates may be arbitrarily chosen. If there is more 

than one relation 0 = 0 we choose the corresponding X's so that the 

coefficients of those coordinates of 6s which cannot be assigned arbi¬ 

trary values are all zero. It follows that the coefficients of all the 
coordinates of 5s are zero; hence, when there is only one relation 0 = 0, 

Vt — ^'x + X0x. 

If the coordinates x are subject to two coiistrainis 0 = 0, 0 = 0 we 

have 

Vr = F* + X0a! + fjiypx, 

and so on. These equations are knovm as the Euler-Lagrange equa¬ 

tions for constrained extremals^ and the unknown multipliers X, /x, • • • 

are known as Lagrange^s undetermined multipliers. 

Example. Determine the extremal curves for the arc-length 

integral on the sphere = 0 

Here F = [(XtY + (yr)^ + Choosing as our parameter r 
the arc length 5 along the extremal we have F = 1 along the extremal 

and 

Vr = X.; Vv == Vs; Pz = 

Since F is independent of x, and z the Euler-Lagrange equations are 

Ps ~ X0x; 
i.e., 

x„ = 2Xx; = 2\y; z,, = 2Xz. 

On eliminating the undetermined multiplier X we obtain 

yz,, - zy,, = 0; - xz„ = 0; xy,, - yx»» = 0 
so that 

yZg zy^ = C\] zXg xZg ~ C2; xya — yxa = Cs, 

where Ci, C2, and C3 are constants of integration. Hence CiX + c^y 

-H C3Z = 0 so that the extremal is part of the intersection of the plane 

cix CiV + C3Z = 0 with the sphere x^ + y^ + z^ — ^ 0; in other 
words It is part of an arc of a great circle of the sphere. 

3. The Hamiltonian canonical equations 

The coordinates of the vector piF^^ are homogeneous functions of 

degree zero of the n variables av. Hence (see Exercise 6, p. 311) the 
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n functions p/, i = 1, * • * , are functions of the 7i — 1 ratios 
There is, then, a relation 

<t>{x, p) = 0 

connecting the coordinates of the vector p. This relation is an identity 
in the 2n variables x, and, on differentiating it with respect to these 

variables, we obtain the 2n equations 

4*x “h 4^pVx ” ^pPxt ~ 

Since the coordinates of p are homogeneous functions of degree zero 

of the n variables Xr we have the n equations 

or, equivalently, 

Hence the n X n matrix 

(Pj’)xt^t — 0 

Fxirx^r = 0. 

M = {FxiTzkr) 

is singular. We assume that it is of rank n — 1, i.e., that at least one 

of the elements of its cofactor matrix is different from zero. If, then, 

V = v(v\ • • * , v^) is any vector which is such that Mv = 0 (so that 

V is a characteristic vector of M which is associated with the character¬ 

istic number zero) v is determined as far as direction is concerned, for 

the coordinates of v are proportional to the cofactors of any column 
of ilf. It follows, therefore, from the two (vector) equations 

F zirXrXr — 0 J ^pPxr — 

(since (p/)xr = Fxirxr and since M is symmetric, that the two vectors Xr 
and have the same direction: 

Xx — 

(X being an undetermined multiplier about which the only thing we 

know is that it is a homogeneous function of degree one of the n vari¬ 

ables Xry for </»p is a homogeneous function of degree zero of these 

variables; X will, in general, involve the variables x). 

On using the relation Xr = X<#>p in the relation 4>x + = 0 we 

obtain X<^* + PxPCr = 0. Since pxr = F^ = Fx and so Fx = 
We have, then, the following relations which are identities in the 2n 

independent variables x and Xri 

Xr = X0j>; F* = — X</>». 

Since Pr = F« along an extremal it follows that 
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Along an extremal 

or, equivalently, 
dx dv 
— = —^ = X dr. 
4>p ^<t>x 

These are the famous canonical equations of Hamilton (after W. R. 

Hamilton [1805-1865], an Irish mathematician). They express the 
remarkable fact that if the extremal curves x = x{t) are represented 

in the 2n-dimensional (x, p) space by means of equations 

X = x(r); p = p(t) 

the curves so obtained are extremal curves of the integral 

J*p dx ^ (pXr + Opr) dr 

subject to the constraint <^(x, p) = 0. In fact if we denote by F* the 

linear homogeneous function pXr of the 2n variables (Xr, Pr) we have 

= 0; F\ = X.; FV = p; FV = 0 

so that the equations of the constrained extremals are 

Pt == 0 + X*</>x; 0 = Xr + 

and, on replacing X* by —X, we recover the Hamilton canonical equa¬ 
tions. This result is remarkable since the space in which the extremal 

is represented is 2n-dimensional (rather than 7i-dimensional as in the 

case of the Euler-Lagrange equations); thus the class of “comparison 
curves’^ 

X = x{t, a); p = p(t, a) 

in the 2w-dimensional space is much more extensive than the class of 
comparison carves 

X = x(r, a) 

in the n-dimensional space. Nevertheless the conditions which must 

be satisfied by the extremals in the n-dimensional space (namely, the 

Euler-Lagrange equations) are strong enough to ensure that 5/ = 0 

for the curves in the 2n-dimensional space (the end-points being fixed). 

From the mathematical point of view the essential simplification 

introduced by the use of the Hamilton canonical equations, as opposed 

to the Euler-Lagrange equations, is that the canonical equations 

consist of 2n differential equations of the first order while the Euler- 
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Lagrange equations consist, in general, of n differential equations of the 
second order. 

4. The equations of mechanics; ignorable coordinates 

Let T and V denote, respectively, the kinetic and potential energies 
of a mechanical system. If the mechanical system has n degrees of 

freedom the rectangular Cartesian coordinates of any particle of 

the system are functions of n generalized coordinates • • • , x”) 
and, possibly, of the time. Thus if f denotes one of these Cartesian 

coordinates 

{ = t). 

When the constraints that define the mechanical system are fixed J will 

not involve t explicitly so that 

f will, of course, vary, in general, with t through the fact that the 

generalized coordinates x vary, in general, with i] in other words { 

depends implicitly on t even when it does not depend explicitly on t. 

It follows from the formula 

that the squared velocity of the particle whose rectangular Cartesian 

coordinates are (f, r/, f) is a quadratic function of the coordinate 

velocities Xt, Hence the kinetic energy T is a quadratic function of 

these coordinate velocities: 

T = T2 + Ti + To. 

Here T2 is a homogeneous quadratic function of the coordinate veloci¬ 

ties Xty Ti is a homogeneous linear function of the coordinate velocities, 

and To is a constant function of these coordinate velocities. When the 

constraints which define the mechanical system are fixed the linear 

and constant functions Ti and To are not present, and T = T2 is a 

homogeneous quadratic function of the coordinate velocities 

Using Greek labels to indicate summation from 1 to n we write 

T2 ~ Ti = ha^^tf Opq ~ ffQP* 

For example, for a system with two degrees of freedom, 

T2 = ^[gii{x\y + 2gi2X^tPc^t + g22{x\y]; 

Ti = hix^t + h2X^f 
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The coefficients and hi are, in the general case, functions of the 

generalized coordinates x and of U When the constraints are fixed 

the coefficients gpq do not involve t explicitly; in this case 

T = 7^2= igapx^tx^ty 

where the gpq are functions of the generalized coordinates x, and gqp 

^ gpay P, 9 = 1, 2, • • • n. 

EXERCISES 

1. Show that for a particle of mass m whose generalized coordinates are plan© 

polar coordinates (r, d)y T ^ T2 = — -f 

2. Show that for a particle of mass m whose generalized coordinates are space 
polar coordinates (r, 4>) 

T = Ti = '^ |(r,)» + r»(9<)> + 

The potential energy F of a mechanical system is a function of the 

generalized coordinates x of the system, and it may, possibly, also 

involve the time variable explicitly: 

V - V{x,t). 

In a virtual displacement of the mechanical system the virtual work of 

the forces acting on the system is given by the expression 

-5F = 

We say that a mechanical system is a natural one when the following 

conditions are met: 

1. The constraints which serve to define the mechanical system do 

not involve t explicitly so that 

T = T2 = gpq independent of L 

2. The potential energy V does not involve t explicitly: 

V = F(x). 

The function L = T — F is known as the Lagrangian function of the 
mechanical system. It is a function of the generalized coordinates x, 

the generalized coordinate velocities xi and, if the mechanical system 
is not a natural one, of the time t: 

L = L{x, ty xt). 
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On the other hand if the mechanical system is a natural one L does not 

involve t explicitly: 

L = L{x, Xt). 

The laws governing the motion of our mechanical system may now be 

stated as follows: 

The motion of the mechanical system is such that the curve in the 
n-dimensional generalized-coordinate space: x = x{t) is an extremal 

L dt. 
to 

In order to bring this integral under the scope of our previous discussion 

we regard t as one of the coordinates of the mechanical system; setting 

t » ^Ct), where 4 > 0, we have 

I = F =L(r. 

The (n + 1)-dimensional vector 

p: Ftr) 

is known as the momentum vector. The first n coordinates of p are 

furnished by the formula 

TH “ Fxjr “ Lxjrtr “ LxUt ~ 1> 2, * * * ,71-, 

while the time coordinate of the momentum vector is given by the 

formula 

Pn+l — — Ltrtr + L 

LxtXt “{“ L 

Since L = T — V, Lxt — Txt and since T = T2 + Ti + To we have 

T^xt = 2T2 + Ti 
and so 

= -(T2 - To) - V. 

For a natural mechanical system, then, 

Pn+i = -Ta - y = -T - F. 

The functional relation 4>(x, p) = 0 which connects the (n + 1) 

coordinates (Xy t) and the (n + 1) coordinates (pi, * * • , Pn, Pn+i) of 

the momentum vector p is readily found as follows. Since = T*, 

we have 

Vi - Si-^t + h’, j = 1, ,n. 
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We take it as granted that the matrix Qpg^ (i.e., the matrix of the 

coefficients of the homogeneous quadratic form is non-singular. 
For a natural mechanical system = T is the kinetic energy of the 

system, and the non-singularity of the matrix Qpg^ is assured by the 

fact that T is a 'positive quadratic form in the coordinate velocities 

Xt (in other words T is never negative and is zero only when all the 

coordinate velocities are zero). Let, then, be the matrix which 

is the reciprocal of the matrix Qpg; since the matrix Qpq is symmetric 

so also is the matrix The relations 

gjaX'^t = Pi — hi 

are, accordingly, equivalent to the relations 

= g^^(p0 — h^); ^ = 1, • • • , n. 

On substitution of these expressions in the relation 

Pn4-1 = L — LxtXt = To — T2 — F = To ~ i9a$x^tx^t - V 

we obtain 

Pn+l + - ha)(Pfi ~ + F ~ To = 0. 

Thus the functional relation that connects the 2n + 2 quantities 

VU Pn+l; i = 1, • * • , n, is 

<t){Xy p) = Pn+l 4* ~ ^a)(Pj3 — kf) + V — To = 0. 

The Hamilton canonical equations are, accordingly, since = 1, 

^ ^ _ ^'P - - X dr 
</)j, 1 —<i>x —4>t 

We shall confine our attention from now on to natural mechanical 

systems (which are characterized by the fact that the function <i>{Xy p) 

does not involve t explicitly). The time component p^+i of the momen¬ 

tum vector is constant along an extremal (why?) and since pn+i + T 

+ F = 0 it follows that T + F is constant along an extremal. We 

denote the constant value of T + F by £', and we term E the energy 

of the mechanical system. E may vary from extremal to extremal 

but along any extremal (i.e., for any particular motion of the mechan¬ 

ical system) it is constant. Warning. Be very sure that you under¬ 

stand that the concept of energy is only properly applicable to natural 

mechanical systems. For a non-natural mechanical system you may 

term T the kinetic energy, and F the potential energy, of the system, 

but T + F will not, in general, be constant for any given motion of the 
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system so that there is no particular point in giving names to the 
symbols T and V. 

For a natural mechanical system the function <t> is of the form 

Pn-f-i + H(Xy p) = 0, 

where H = ^g'^^PaPp + V(x). From now on we understand by the 

symbol x the n numbers {x^y * • • , x") and not the (n + 1) numbers 

• • • , x", t); similarly we understand by the symbol p the n 

numbers (pi, • * * , Pn) and not the (n + 1) numbers (pi, * • * , Pn, 

Pn+i)- H is obtained by expressing T + F as a function of the 2n 

variables {x, p), rather than as a function of the 2n variables (x, Xt)y 

and we term H(x, p) the Hamiltonian function (or, simply, the Ham¬ 

iltonian) of the (natural) mechanical system. The function L T 

— F) of the 2n variables (x, x<) is known as the Lagrangian Junction 

(or, simply, as the Lagrangian) of the (natural) mechanical system. 

Along an extremal H(x, p) .has the constant value E and pn+i = — 

The Hamiltonian equations may be written in the form 

dx dp 
- dt'y dpn-fl 0, 

dx dx) 
Since t does not appear in any of the 2n equal ratios —) —— we may 

H p H X 

confine our attention (at the beginning) to the 2n — 1 equations 

dx dp 

ITp ^ 
If we are successful in integrating these, i.e., in obtaining x and p as 

functions of a parameter r (and initial values of x and p), then t may be 

obtained by a quadrature (what does this mean?) from the relation 

Pn+i does not have to be found since pn+i = —E = — H(xo, po). 
When we proceed in this way we say that we have ignored (at the 

beginning of our solution) the time coordinate t, and we refer to t as an 

ignorahle coordinate. It is clear that the same procedure is applicable 

to any coordinate x which does not occur explicitly in the function 

We term any such coordinate of the mechanical system an ignorahle 

coordinate: 
Definition. An ignorahle coordinate of a mechanical system is one 

that does not appear explicitly in the function <#>(x, ty p, pn+i). 
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Associated with each ignorable coordinate a; is a momentum integral; 

by this we mean simply that the corresponding coordinate of the 
momentum vector p is constant along an extremal. (Prove this.) 

Thus 
A natural mechanical system is one for which t is an ignorable 

coordinate; the associated momentum integral is the energy integral 
(the time component of the (n + 1)-dimensional momentum vector 
being the negative of the energy of the system)* 

EXERCISES 

3. Show that for a particle of mass tn, whose generalized coordinates are plane 

polar coordinates (r, 6) and for which F — F(r, 0), =* — I (pr)* + — 
2m [ r* j 

+ V (r, e). 
4. Show that if, in Exercise 3, F * F(r) does not involve d explicitly then $ is 

an ignorable coordiate and pe = mr^Ot is constant along an extremal. 
5. On denoting by h the constant value of pe in Exercise 4 show that the path of 

the particle may be obtained by first solving the equation 

dr dpr 

H%r ^ 

1 A* 
where H* ^ ^ pr* -f r—: + F(r), for pr as a function of r and then integrating 

2m 2mr* 

the equation 
dr de 

Pr/rn hlmr^ 
Note, The result of this exercise shows that the 

procedure of ignoring B is equivalent to the addition of --to the potential energy, 
^mr^ 

i.e., to the addition of a radial force of amount — == mrBt^ to the force acting on 
mr^ 

the particle. This is the explanation of the phenomenon of centrifugal force, 
6. Show that for a particle of mass m, whose generalized coordinates are space 

polar coordinates, the angular coordinate is ignorable if F *= F(r, B) is inde¬ 
pendent of <t>. What is the corresponding momentum integral? 

7 • Show that the motion of the mass particle of Exercise 6 takes place in a plane 
through the origin. Hint, Choose the polar axis so that it lies in the plane con¬ 
taining the initial direction of motion (so that the initial value of 4>t is zero), and 
deduce from the angular-momentum integral p^ =* constant that <t> is constant along 
any extremal. 

5* The determination of the Lagrangian from the Hamilton¬ 
ian; the principle of Maupertuis 

When we are given a problem in the calculus of variations with an 

integrand function F(x, Xr) which is positively homogeneous of degree 

one in the variables Xr we know how to find the function <h{x, p) which 
appears in the Hamilton canonical equations 
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dx dp ^ , 
— = - = X ar 

of the extremals. If the n X n matrix Fx^xt is of rank n — 1 there is 
only one (independent) relation <>(x, p) = 0 connecting the 2n vari¬ 
ables X and p, and this is obtained by eliminating the n — 1 ratios 

x\: • • • :x% from the n functions p of these ratios. The force of 

the parenthetical word independent is simply this: Any function of 0 
which is zero when </> is zero (e.g., <t>^) will do just as well as 0. How¬ 

ever, this merely amounts to a change of the undetermined multiplier 
X; if <#> is replaced by fi<t>), X is replaced by f^\. (Prove this.) For a 
mechanical system where F = L(rc, Xt)lT the relation <i>(x, p) = 0 could 
be solved for in other words we could write ^(x, p) = 0 in the 

form 

Pn+l + H(X, ty Ply • ‘ , pn) = 0, 

and then the function H (the Hamiltonian of the mechanical system, 

natural or not) was unambiguously determinate. The problem we 
wish to solve now is the following: 

Given the Hamiltonian function H determine the Lagrangian function L 

to which it corresponds. 

For the general problem of the calculus of variations this problem 

may be stated as follows: 
Given the function </>(x, p) determine the function F{xy Xr) to which 

4>{Xy p) corresponds {it being understood that the same function F will 

correspond to any differentiable function of (t>). 

In order to solve this problem we make the following hypothesis: 
We assume that the (n + 1) X (n + 1) matrix 

is not singular for every point (x, p) on the 2n — 1 dimensional spread 

4>{x, p) = 0 in the 2n-dimensional coordinate-momentum space (in 
which the coordinates of any point are the 2n numbers x and p). 

To see the force of this hypothesis consider a mechanical system 

(natural or not). Here <t> = pn+i + H(x, t, p) and our coordinate 

space is n -h 1 dimensional; hence our matrix is the (n + 2) X {n + 2) 
matrix 

Hpp 0 Hi 

0 0 1 

.Hp 1 0 _ 
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whose determinant is — det {Hpp), Hence our hypothesis amounts 

to the assumption that the n'Kn matrix Hpp is non-singular or, 

equivalently, that the matrix of the coeflScients of the homogeneous 

quadratic form T2 in the n variables is non-singular. (Prove this.) 

For a natural mechanical system our hypothesis amounts (since 

T2 = T) to the assumption that the matrix of the coefficients of the 

kinetic energy (expressed either as a function of the n coordinate 

velocities or as a function of the n momenta p) is non-singular. 

In the neighborhood, then, of any point (x, p) of the spread <t>{x, p) 

= 0 at which the {n + 1) X (n + 1) matrix 

is non-singular the n + 1 equations 

Mp = Xr; (f>(x, p) = 0 

may be solved, in an unambiguous manner, for p and X as functions of 

Xt provided that X 5*^ 0. In fact the Jacobian matrix of the n + 1 

functions 4>) with respect to the n + I variables p, X is 

/\<t>pp 4>j\ 

\ 0 / 

and the determinant of this matrix is readily found (on dividing the 

first n rows by X and then multiplying the last column by X) to be the 

product of the determinant of the matrix 

<l>p\ 

<t>p 0 J 

by X"“^ Since X is a continuous function of the n variables Xt (the ((t>pp ^ 
) being assumed to be a continuous function of the n 

4>p 0 / 

variables p) and since X cannot be zero, it cannot change sign; we 

agree, merely for the sake of convenience, that X > 0. If the Xr are 

multiplied by a common factor A; (> 0), p and k\ will be a solution 
of the new equations (why?). In view of the unambiguously determi¬ 

nate nature of the solution of the equations for p and X it follows that 

The n functions p of Xr are positively homogeneous of degree zero 
and X is positively homogeneous of degree one in the n variables Xr^ 

We propose to show that the Hamilton canonical equations 
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dx dp 
— = - = A dr 
tPp —ipx 

are the equations (in the 2n-diniensional (x, p)-space) of the extremals 

of the integral 

/ = j F(x, Xr) dr, 
•/TO 

where F — Xrp. To do this we first observe that since the functions p 

are positively homogeneous of degree zero the function F = XrP is 

positively homogeneous of degree one. Furthermore 

= P + ^rPxr = V- 

In fact the relation 0(x, p) = 0 is an identity in the n variables 

Xrj and on differentiating this relation with respect to Xr we obtain* 

since Xt = it follows that XrPxr = 2 x’Api)^ 

y = 1 y «= 1 
= 0. It remains only to show that pr = Fg. or, equivalently, since 

that Fx = — X</),. From the definition of F it follows 

that 

Fx — XrPxy 

and on differentiating the relation <^(x, p) = 0 with respect to x we 

obtain 

“h 4*pPx ~ 

On multiplying this equation by X and replacing 'K<t>p by Xr we obtain 

X0x "b XtPx ~ fl* 

Hence Fx = — X<^>x. This completes the proof of our theorem. The 
procedure to be followed in order to determine F when <l> is given may 

be formulated as follows: 

Solve for p and X the equations X^p = Xr, <#>(x, p) = 0. Then 
F = Xrp. 

Example 1. The general mechanical system 

Here </> = pn+i + H{x, t, p), where H is a quadratic function of 

Ph • • • , Pn: 

1/ = ffi + + ffo + V = isr^PaPfi + A:«p„ + Ho + V, say. 

Hence 

x^r == X//p. = X(sr^'«Pa -f fcO; = X 
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so that xU == Hpi and 

= xU - k^; j = 1, • • • , n. 

Our assumption concerning the non-singularity of the matrix | 

tells us that the matrix is non-singular. Denoting its reciprocal 
n 

by Qpq we have p,- = giaix^t — The function F — pxr = 

(^PV 4>p\ 

<t>p o) 

+ Pi 

n 

'n+l^T ~ tr I ViXh + Pn+iK and since p„+i = —H = —H2 — Hi 

— Ho — F and ^pyx^ = ^^pjHp. — 2H2 + Hi we have 

“ i = i 

F = (H2 - Ho - V)tr 

so that the Lagrangian function is 

L = F tr = H2 - Ho - V, 

For a natural mechanical system H = H2 -h F so that L = H2 — F 
= H - 2F. 

Example 2. The Lagrangian function for a natural mechanical 
system in which the time is ignored 

The canonical equations are 

dx dp 

ITp ^ 

where H = ^g^^PaP» + F(x) and <l> ^ H — E, E = H{xo, po) being 
the energy of the motion. The matrix whose non-singularity must 
be assured is 

(Hpp HA 

\Hp 0 / 

On subtracting from the last column of this matrix the sum of the 
products of the first column by pi, the second by p2, * * • , and the 
wth by pn it is clear that its determinant is the product of the deter¬ 
minant of the matrix g^^ by —g“^PaPp. Assuming, then, that g^^PaP^ 
^ 0 (which will certainly be true if p is not the zero vector since 
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H2 = T is the kinetic energy of the system) we may proceed to deter¬ 

mine F. Our equations are 

= Xr; i = 1, • • • n; 

^g^Papfi + 7 == F. 

From the first n of these equations we obtain 

Pi ~ ^ QiaX^r] J ~ * * ' > 

and on substituting these expressions m our remaining equation we 

find 

9afiX\X^r = 2\%E — V). 

The desired function F is given by the formula 

r, 1 
F = pXr = ~ QafiX^XPr, 

and since 

\ ^ I ga$X\X^ 

l2(F - 7)1 

we obtain 

F = {2(F - V)ga^<^rx^]^, 

This is the mathematical expression of the principle of Maupertuis 

(after P. Maupertuis [1698-1759], a French applied mathematician). 

This principle says that a natural mechanical system moving with 

energy E moves in such a way that the curves x = x(r) are extremals 

of the integral 

{2(F ~ V)}^{g^x\x^\^K 

If we regard the coeflScients gpq of the quadratic form which furnishes 

the kinetic energy of the system as furnishing a method for measuring 

arc lengths in the n-dimensional coordinate (i.e., x-) space we may set 

gafiX^rXK = {SrY, 

where s denotes arc length in the coordinate space; when this is done 

the integral whose extremals describe the motion of the mechanical 

system appears in the form 

- 7)1” 
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If the mechanical system is moving freely, i.e., without being subjected 

to any force field, V is constant, and the integral whose extremals 

furnish the motion of the mechanical system is the arc-length integral 

ds (the constant factor {2(E — F)}^ being without significance). 

When a force field is present we may introduce the parameter r defined 

by the formula 
s, = {2(£-F))'« 

and then the integral whose extremals furnish the motion of the 

mechanical system is 

1 dr. 

The analogy with Fermat^s principle of least time in optics (after 

P. de Fermat [lGOl-1665], a French mathematician) is evident; the 

expression {2(E — F)}^, the reciprocal of Sr, plays the role of the 

index of refraction in optics. This analogy between the dynamics of a 

natural mechanical system and optics has found its culmination in the 

modern theory of wave mechanics. 

6. The action integral; the principle of least action 

Once the extremals of a problem in the calculus of variations have been 

found the integral of F(a;, Xt) along an extremal is an unambiguously 

determined function of the end-points Po and P of the extremal (it 

being understood that P is sufficiently near to Po so that the existence 

and uniqueness theorems of ordinary differential equations may be 

appealed to to assure us that there is one, and only one, extremal 

through the two points Po and P). We shall denote the value of the 

integral of P(x, Xr) along the unique extremal C connecting the points 

Po’ixo^f • • • , xo”) and P:(xb * * * , x”) by the symbol aS(x, xo): 

^(x, Xo) = I P(x, Xr) dr. 
JrvC 

We have already seen that the variation of I {a) reduces, when the 

curve along which F is being integrated is an extremal, to 

and so 
hi = pi5(xi) — po5(xo) 

~ Vf ^*0 ~ Po. 

Since ^(x, p) = 0 it follows that the function S must satisfy the two 

partial differential equations of the first order 
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<l>(xy /Sx) =0; <t>(xoy = 0. 

For a mechanical system the first of these equations takes the form 

St + H(x, t, S^) == 0. 

This is known as the Hamilton-Jacobi equation of the mechanical 

system. When the system is a natural one the Hamilton-Jacobi 

equation simplifies to 

St + H(x, S.) = 0, 

where i/(x, Sx) has the constant value E along an extremal. We may 
proceed one step towards obtaining a solution of the Hamilton-Jacobi 

equation by writing 

S = —E(i — to) + A(Xy Xo), 

where the action function A (x) satisfies the partial differential equation 

H(Xy Ax) = E. 

Since F = pXr and since, for a natural mechanical system, pn+i has the 
constant value — E along an extremal, it is clear that 

and so 

S{Xy Xo) - ^o) 

1 

A{Xy Xo) 

2 f V dt, 
Jto 

Since the variation of I (a) is zero when the curve of integration is 

an extremal and the end-points are fixed we have the following funda¬ 

mental result for natural mechanical systems: 

The motion of a natural mechanical system is furnished by the 
extremals of the action integral 

A(x, Xo) = 2 I T dt 

provided that all comparison curves are traversed with the same energy 
E and that the time of passage h — is the same for all. 

This is known as the principle of least action. 
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7. Liouville’s theorem 

Hamilton’s canonical equations are a special system of ordinary differ¬ 

ential equations of the first order. The general system of ordinary 

differential equations of the first order may be written in the form 

dx^ _ _ __ ^ 

where each of the symbols u\ j = , n, denotes a function 

(which we assume to be differentiable, with continuous derivatives) 

of the n variables {x^j • • * , x“). If the initial point Po of a solution 

curve or path of the differential equations has the coordinates (a:oS 

' ■ * > 2:0’*), the coordinates (o:^, * • * , a;’*) of any point P of the path 

are given by equations of the form 

X = x{t, Xo), 

where a:(T, xa) reduces to a:o when r = tq. Let Vo be any n-dimensional 

region of initial points a;o, and let us consider the following question: 

Does there exist a point-function p = p(x) which is such that the 

integral | pd(x) is independent of t (no matter what is the n-dimen- 
Jv 

sional region Vo): 

Jpd(x) = I /: 
V JVo 

Po d(xo)? 

Here V is the collection of points x obtained by assigning to r a given 

value (the same for all initial points Po: (xo) of Vo). If such a function 

p = p(x) exists we say that the integral I p d{x) is an invariant 
Jv 

• . dx 
integral (7i-dimensional) of the system of differential equations — = dr, 

u 
and we say that the point-function p = p(x) is a density function^ or 

multiplier^ of this system of differential equations. 

NoU, We have tacitly supposed that when Vo is an n-dimensional 

region so also is V. This will be true if the Jacobian matrix is 

non-singular. This Jacobian matrix reduces to the n X n unit matrix 
(x) 

when T = To. Hence —- is non-singular (its determinant being, in 
vXo) 

fact, positive) if r — ro is sufficiently small. We shall suppose that 
this is the case. 
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In order to determine the conditions that must be imposed on the 

integrand p = p{x) of the integral / = I p d{x) in order that I maybe 
Jv 

an invariant integral we must calculate It and set it equal to zero. In 
order to facilitate the differentiation we change the variables of inte¬ 
gration from X to Xa so that the region of integration is transformed 
from V to VqI 

p d(x) = 
'vo I (a;o) 

is the determinant of the Jacobian matrix so that 

(x) 
-—- is positive. Hence 7, is the integral over Fo of the derivative 
(«o) 

(x) 
with respect to r of p -—• Since the determinant of any matrix 

{Xo) 
is the alternating product of the row vectors of the matrix the deriva¬ 

tive of an n-rowed determinant with respect to any variable is the 
sum of n determinants each of which is obtained by replacing one row 
of the matrix, whose determinant we wish to differentiate, by its 

derivative and then taking the determinant of the resulting matrix. 
Thus, if n = 3, and 

dx _ dy ^ dz _ ^ 

u V w ^ 

we have 

Since the determinant of any matrix 

dz 
= — ^ dr, 

w 

{x, y, z) (u, y, z) 
+ 

(x, V, z) 1 {x, y, w) 

[xo, yo, Zo) T (xo, yo, Zo) {xqj yoy 2o) 
“T 

(xo, yo, Zo) 

Since w. have 
(xa, yo, *o) (x, y, Z) {Xo, yo, zo) 

(m, y, g) 

(a;o, yo, Zo) 

(x, y, z) 

(xo, yo, Zo) 

Similarly 
(x, V, z) 

ixo, yo, Zo) 

y jx, y, z) 

" (*0, yo, Zo) 

{x, y, w) 

{xo, yo, Zo) 

(x, y, z) 

(xo, yo, Zo) 



332 THE CALCULUS OF VARIATIONS 

so that 
{x, y, z) 

{xo, yo, zo) 
(m, + »» + Wz) 

{x, y, z) 

iXa, yo, 2o) 

dx' _ dx^ 

Similarly, if 

Hence 

Ir 

Jx) 

(Xo) 
{(m*)x1 + • • • + (W”)*-1 i£l 

(xo) 

b 
[Pr + P| (^0*1 + 

(Xo) 
d{xo). 

Thus the necessary and sufficient condition that I be an invariant 

(n-dimensional) integral is 

pr + p{{u^)xy + • • • + = 0. 

Since pr = p*Xt = p*w this condition may be put in the more compact 

form 
(pw)x = 0. 

(Here we understand, of course, by the symbol (pu)^the sum 

n 

We have, then, the following important result: 
In order that p = p{x) he a density function, or multiplier, of the 

dx 
system of differential equations — = dr it is necessary, and suffi¬ 

cient, that {pu)x — 0. 
It follows at once that any constant function is a density function, or 

multiplier, of the Hamilton canonical equations. In fact the sum 

{pu)z splits, for the canonical equations, into the two sums {p<t>p)z and 
(—P<^x)p, and these cancel each other if p is a constant function of the 
2n -h 2 variables x, t, p, Pn+i- Thus 

The points in the (2n + 2)-dimensional (x, tj p, p„+i)-space which 
represent any mechanical system move in such a way that the integral 

Jdx • ' • dt dpi • • • dpn dpn+i is invariant. 

For natural mechanical systems we obtain in the same way the 

following theorem, known as lAouvilWs theorem (after J. Liouville 
[1809-18821, a French mathematician): 

The points in the 2n-dimensional (x, -space which represent any 
natural mechanical system move in such a way that tto integral 
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• • • dx^dpi • • • dpn is invariant; in other words the points 

move like the particles of an incompressible fluid, the volume of any 
portion of the fluid remaining unchanged during the motion. 

Any point-function /(x) which remains invariant along a solution 

dx 
curve X = x{t, Xo) of the system of differential equations — = dr 

u 
is termed an invariant function or first integral of this system of differ¬ 

ential equations. Since fi = fxU we have the following result: 

The necessary and sufficient condition that / = fix) should be an 

dx 
invariant function of the system of differential equations — = dr is 

u 

that / should satisfy the first-order partial differential equation 

n 

U = = 0. 

For the Hamilton canonical equations the equation uf^ = 0 takes 

the form 

fz^ 4*a^fv^ 4" /« “• 0t/pn+i “ 

If / is a function of {x, Pi, • • * , Pn), so that/p„^, = 0, this reduces to 

n 

+/< = 0. 

For a natural mechanical system the equation ufx = 0 takes the form 

n 

- F../,,) = 0. 

EXERCISES 

1. Show that the quotient of any two density functions is an invariant function. 
n n 

Hint. The equations (pi)r 4- pi ^ (uOzf “ 0, (p2)r + P2 ^ (uOxi = 0 yield 

P2(pi)t — Pi(p2)t ** 0 or, equivalently, “ 0, Pi 0. 
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2. Show that any density function for the Hamilton canonical equations is an 
invariant function for these equations. 

3. Verify that ^(a:, p) is an invariant function for the canonical equations 

dx dp 
- a- - — 

4>p ~-4>x 

4. Verify that H{Xj p) is an invariant function for the canonical equations (of a 

natural mechanical system) ^ 
Up 
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THE OPERATIONAL CALCULUS 

1. The Laplace transformation 

Let f(t) = /i(0 + 1/2(1) be any piecewise-continuous complex-valued 

function of the non-negative real variable t ^ 0. The assumption of 

piecewise continuity assures us that the limits 

f(t + 0) = lim/(i +6); 6>0j t 0 
a-o 

- 0) = lim/(f - 5); 5 > 0; t>0 

exist. We shall denote /(O + 0) simply by /(O); in other words 

We undersiand by the symbol /(O) the limit of f(t) as t tends to zero 
through positive values. 

When convenient we extend the definition of f(t) so that it becomes 

a function of the unrestricted real variable by the convention that 

f(t) = 0 if ^ < 0. 

Let 2o = + iyQ be a value of the complex variable z = x + iy 

'*'^f(t) dt exists. Then the follow- which is such that the integral 

ing fundamental theorem is true: 

The integral J ^*i(t) dt exists for every z for which x > Xo, and 

this integral is an anal3rtic fimction of the complex variable z over the 
half-plane x > Xo. 

If we set Po: (xo, yo), P: (Xy y) we may phrase this theorem as follows: 

The mere existence of the integral f(t) dt at any point Po is 

sufficient to ensure the existence and analyticity of this integral at any 

point P which lies to the right of Po. 

In order to prove this theorem consider the function 
335 



336 THE OPERATIONAL CALCULUS 

g{s) = dt; s ^ 0; 

g{s) is a continuous function of the non-negative variable s, and, being 
defined at 5 = oo, it is bounded (why?). Hence the integral XOO 

dt; X > Xo 

is absolutely convergent; in fact if AT is an upper bound of \g{s)\ we 

have 

r dt ^ M f dt (why?) 
Ja Ja 

M 
_ _ (af—»o)a   g—(af—afo)J>| ^ 

X — Xq 

and this is arbitrarily small if a (and hence 6 > a) is sufficiently large. 
I M 

(Note that if x — a^o ^ 5, I dt < — e so that the 
I Ja 0 
^ 00 

convergence of the integral I dt is uniform, with respect 
Jo 

to z, over any point set for which x — Xo ^ 6.) It follows that the 

integral 

f e-‘^f{i) dt; x > Xo 

is absolutely convergent; in fact on writing e'~^^f{t) dt in the form 
jg-(*-zo)(jg-zo«j(^) dt and integrating by parts we obtain, since c~*®V^(/) dt 

= dg, 
e~^^f(t) dt = (2 — 2o) dt. 

That the function of z defined by the absolutely convergent integral 
^ 00 

I e~‘^f(t) dt is analytic at any point P to the right of Po follows from 
Jo 

^ 00 

the fact that the convergence of the integral I e~^*~*“^gr(0 dt is uniform 
Jo 

with respect to z over any collection of points P for which a; — a;o ^ 5, 
5 being an arbitrary, fixed positive number. In fact each member of 
the sequence of functions 

Gn{z) = f dt; ?i = 1, 2, • • • 
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is everywhere analytic (why?), and this sequence of analytic functions 
converges, uniformly with respect to z over the half-plane x — xo 5, 

to J dt. Hence, by one of the fundamental theorems of 

^ 00 

analytic-function theory, the uniform limit I dt of the 
Jo 

sequence of analytic functions Gniz) is itself analytic over the half¬ 
plane X — Xo 5 or, equivalently, since 5 is arbitrary, over the half¬ 
plane X > Xq, 

We term the function j. */(<) dt the Laplace transform of the 

function /(O, and we denote it by L/. Thus the Laplace transformation 
transforms complex-valued functions (which we take to be piecewise- 
continuous) of the real non-negative variable t into functions of a 
complex variable z which are analytic over a half-plane x > xo. It is 
clear that the Laplace operator L is a linear operator; in other words 

L(c/) = cLf; c any complex constant; 

L(/i+/2) =L/i+L/2. 

(Prove this.) In stating the second relation it is understood that both 
L/i and L/2 are defined at a common point Zo = xo iyo] then the 
relation is valid over the half-plane x > Xo. 

The Laplace transform of fit) is a special case of what is known as the 
Fourier transform of a complex-valued function of the unrestricted real 

variable t. If <^(0 is such a function (w’hich we take to be piecewise- 
continuous) which is absolutely integrable over (— », «) the integral 

(2ir)-'^ J dt 

exists for every y, and the function of y which it defines is termed the 

Fourier transform of *i>it). It follows that if <t>it) is the complex¬ 
valued piecewise-continuous function of the unrestricted real variable t 
which is defined as follows: 

«(«) = (2,r)V*‘/(<); t ^ 0 

=0; < < 0 

then L/ is the Fourier transform of <t>{t) (L/being regarded as a function 
of the unrestricted real variable y by the device of holding x fixed). 
(Prove this.) There is a fundamental theorem on Fourier transforms 

which runs as follows: Let ^{t) be piecewise-continuous and absolutely 
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integrable over (— «, <»), and let be the Fourier transform of 
; then 

4>{t) dt == (27r)-^'" I ^{y) —;-dy 
J-(») ly 

(where the symbol 
J( oo) 

-(oo) 

denotes the limit at o = oo of 
L'-' 

in other 

words I is the Cauchy^ or prindpalj value of the, not necessarily 

convergent, improper integral (what does this mean?)). (what does this mean?)). 

Note. The Fourier integral theorem states that at every point where 
the Fourier series of <t>if) converges to the sum </>(/) the relation 

= (2,r)-« V"' dy 
J~(«o) 

is valid. The theorem we have just stated says that despite the fact 
that the relation which expresses the Fourier integral theorem is not 
necessarily valid even at the points of continuity of the relation 
obtained by integrating, over the interval [0, x], the Fourier integral 
theorem relation (the integration being done on the right under the 

r j-(«) 
sign) is valid for every value of x. 

It follows from this theorem that I <^(0 dt is unambiguously deter- 
Jo 

mined by the Fourier transform ^(2/) of <^(0- Since, at any point of 

continuity of </>(x), <#>(x) is the derivative with respect to x of I 4>{t) dt 
Jo 

we see that 
<t)(t) is unambiguously determined at any point where it is continuous 

hy its Fourier transform 4/{y), 
Since the Laplace transform L/ may be regarded as the Fourier 

transform of </>(0, where 

<t>(t) = (2,r)V*'/(0; t ^ 0 

^(0 =0; < < 0, 
it follows that 

Any piecewise-continuous function J(t) which possesses a Laplace 
transform L/ is unambiguously determined, at its points of continuity, 
by this Laplace transform. 

We symbolize this fundamental uniqueness theorem as follows: 
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/^L/. 

In the work which follows it is necessary not only to crossfrom/ to 
L/, i.e., to determine the Laplace transform of a given function f{t) 

but also to cross’’ from L/ to /, i.e., given a function L/ of z to find 
the function / of which it is the Laplace transform. Our uniqueness 
theorem assures us that the sought for function f{t) is unambiguously 
determinate at any value of t at which it is continuous. 

EXERCISES 

1. Show that the Laplace transform of the urnt function, i.e., the function 

fit) * 1, / ^ 0, is -j a: > 0: 
z 

L(l)=i. x>0. 
z 

2. Show that if L/ * 4>ix), sz > xq, then L(<?«/) « </>(« — c) where R(z — c) 
(i.e., the real part of 2 — c) > a?©. Note, This important result may be phrased 
as follows: 

Multiplication by an exponential function of t is reflected in the complex plane 
by a translation of the origin. 

3. Show that L(e«0 « —-—y R(2 — c) >0. 

4, Show that L(cos a<) « --x > llmal (where Ima denotes the imaginary 
2* + a* 

part of the complex number a). HirU, cos at = ^ie*°^ + e”*®*)- 

5. Show that L(sin at) = —-—» x > llmal. 
2* + a* 

6. Determine L(cosh at) and L(sinh at). 

7. Show that if Rm > 0, L(t*^~^) = x > 0, where r(m) 

> X > Ra . 

fftni. If 2 X > 0, L(i*^q — (Use the substitution xt ~ r.) The 

unambiguously determinate function of 2 which is analytic over the half>plane 
« , , . , , , , r(m) , „. r(m) 

X > 0 and which takes the values-when 2 x > 0 is-- 

1 r‘"> 
8. Show that fit) * r- I (L/) dy where the integration is along any line 

2ir J_(.) 

X “ constant in the half-plane over which L/ is analytic and the relation is valid 
at all points t where the Fourier series of fit), for an interval [a, 6] which covers t, 
converges to fit). Hint. This is merely a restatement of the Fourier integral 
theorem. Note. The result of this exercise furnishes a useful method of “crossing 
back ” from L/ to f, i.e., of determining/ when its Fourier transform is given. The 
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integral which furnishes/(O is known as the Bromwich integral (after T. J. Brom¬ 
wich [1875-1929], an English mathematician). In evaluating the Bromwich 
integral the path of integration may be deformed (by virtue of Cauchy's theorem) 
provided no singular points of L/ appear on the path during the deformation. 

9. Show that multiplication by t is reflected in the complex z-plane by differ¬ 
entiation with respect to z followed by a change in sign: 

L(l!/) = -(L/)*; X > xo. 

Solution. Setting g^s) 

j: 
“*«'/(/) d/we have L/ — (z — Zo) r 

X > Xo. An easy calculation yields 

_ zo) 

and so 

A2 Jo 

"-"■■I 
dt 

r 
- (z - Zo) 

Az 
■ g(i) dt 

-•^Hg{t) dt 

(why?). Upon integrating the second integral on the right by parts we obtain 

(L/)* = - I e-^--^^tgt(t) dt ^ - \ 
Jo Jo 

which proves the result of the exercise. 

-^t/(t) (U 

10. Use the result of Exercise 9 to verify that L(0 — a: > 0. 

11. Show that if p is any positive integer L(«p/) = (— l)^»5p(L/), x > Xo, where 3 
denotes differentiation with respect to z. 

12. Use the result of Exercise 11 to verify that if p is any positive integer L(<p) 
p! 

4.,^ X > 0. gp+i 

13. Show that L(<g**) = 
1 

14* Show that L(( cos aO = 

{z - «)^ 
z2 4- a' 

(z* -h a2)2’ 

X > R(«). 

, X > |lma| and that L(< sin cd) ■ 
2az 

(Z2 4- a2)2 

X > |lma|. 

15. Show that L(i*^) 

result of Exercise 7 and the facts that r(^) = r(^) = 
16. Show that Lf is null at x = <». 
Solution. Since the integral which defines L/ converges absolutely if x > Xo we 

2z-^^^’ X > 0; L(rJ^) = (ir > X > 0. Hint. Use the 

J* 00 

e~*^f(t) dt is arbi- 
T 

trarily small, the choice of 7’ being independent of z provided that x ^ Xo + 3, 
rT ns' r*T 

where 3 is any positive number. On writing | in the form I i 
Jo Jo fcr 3^ 

it becomes 
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clear that the absolute value of dt can be made arbitrarily small by mak- 

I =s e”** ^ 1 so that, if a; > 0, ing X sufficiently large. (Prove this. Hint. 

I r*' 
I dt ^ MS\ where M is the maximum of |/(0| over [0, T]. Over [S', T\, 

< MTe~*^' which is null at a: « «.) Hence so that I e~*^f{t) dt 

Lf 

j; 
dt is null at a? ■» «, Note. The result of this exercise 

has the following important implication: 
Any analytic function of z which is not null at x 

transform of any function of t. 
sin at 

17. Determine the Laplace transform of —^— 

by t is reflected by differentiation with respect to z, followed by a change in sign, 
and since all Laplace transforms are null at a; = <», division by f is reflected (pro¬ 
vided the resulting function has a Laplace transform at all) by integration from 

00 fails to be the Laplace 

Hint. Since multiplication 

2 to a; = 00. Thus L (^)”r dz 

22 4- a2 

2 
— - — Arc tan - = Arc tan 

18. Determine L(cos2 oj t). Hint. Set cos2« t 

Answer. 

■j(l + cos 2<*> i). 
z2 + 2co2 

2(z2 4- 4w2)' 
X > |lm2w|. 

2. Determination of the function whose Laplace transform is 

a given proper rational fraction 

It follows at once from the result of Exercise 16 of the preceding section 
that no improper rational fraction can be the Laplace transform of 
any function of t\ for an improper rational fraction is not null at 2 = oo, 

and, consequently, it is not null at a: = « (why?). On the other hand 

every proper rational fraction is the Laplace transform of a function 
of t) this function is a linear combination of exponential functions of t 
each multiplied by a polynomial function of t. To see this we have 
merely to note that every proper rational fraction may be analyzed 

into simple fractions each of the type 

A, 

and Ari : e®* has 
(z-aY'^. 

as its Laplace transform. In actually determining the func- 
{z - ay 
tion of t which has a given proper rational fraction as its Laplace 

transform it is frequently convenient not to try to analyze the fraction 
completely but to use such known results as that which says that the 

Laplace transform of - sin at is -7-7—-, x > llmal. The following 
" or 

examples will illustrate the method. 
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Example 1. L/ = (^2 4, 0^2)2* ^ ^ 

Denoting differentiation with respect to 2 by 5 we have 

/ g \ _ _1_2g" » _ 2a"_1_ 

^ \g" ~h aV 2" + a" (2" + a")" (2" + a")" 2" + a" 

1 . < 
Hence f(t) = 

Example 2. L/ = ——;—-> x > 0, x > — Ra 
Z{Z + a) 

——-—- = — H-—— On multiplying by z and setting 2 = 0 
2(2 + a) 2 2 + a 

we find A = -; on multiplying by 2 + a and setting 2 = —a we find 
a 

R = — i* Hence (why?) f{t) = - (1 — 
a a 

Example 3. L/ = ^ ^ 

2(2" + a") a"2 a" (2" + ol^) 
Hence/(O = ~ (1 — cos at). 

EXERCISES 

1. Determine the function of which » where R(2 — ^) > |lma| and 

ot 9^ Of is the Laplace transform. Hint. Write --;- in the form 
(z “ /S)2 + a* 

(z - + a* ' (z - /5)* + 
Answer, jcos od — sin a/| • 

2. What is the function whose Iiaplace transform is --; R(z ~ jS) > 0. 
(z - i3)* 

Answer. + ^t). 

3. Determine the function of which ---» where a 0 and R(z — B) 
(z ~ /S)2 + a" 

> llmot|, is the Laplace transform. Answer. — e^* sin at. 
a 

4. Show that if L/ is a proper rational fraction this proper rational fraction has 
near z « 00 the power series development 

r. m . D/(0) . . D»-V(0) . 
W --1-1-h • • • H-—-h • • • , 

z z* 2* 
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where D denotes differentiation with respect to t. 

Solution. The result is evidently true if L/ « ■ ~— for then / = e®* and —^ 

1 
has, near « «= oo, the power series development —I-f- 

2 2* 

^-1 
+ -^ + 

It is also true if L/ 

tp-i 

- a)P 
where p is any positive integer. In fact fit) is then 

ip - 1)! 
so that D*/ = 

(p - 1)! 
(D + Hence r)*/(0) « 0 if 

A: < p — 1 while D**"V(0) = 1, 0^/(0) = pa, Dp+\f(0) = —. ip + l)pa^, and so on. 
A! 

Since - 
(2 - a)p 

has near 2 = « the power series development 

i. , ^ , (p 4- l)pa^ j_ . . . 
zp zp+i 2!2»*+* + ' • • > 

this shows that the statement of the exercise is true when Lf --Since 
(2 - a)P 

any proper rational fraction may be analyzed into a sum of fractions each of the 

where Ap is constant, the statement of the exercise is true for any 
(2 - a)P 

proper rational fraction (why?). 

3. The convolution process 

Let f{t) and g{t) be any two piecewise-continuous functions of the 
non-negative variable t ^ 0. Consider the interval [0, ^1, and form 
the product of the value of f{t) at any point r of this interval by the 
value of g{t) at the complementary’^ point t — r. The integral of 
this product from 0 to f is a function of t which we term the convolution 
of / and g and which we denote by the symbol f *gi 

f *g = - t) dr. 

On replacing the variable of integration r by o* = ^ — t we find that 

f m g = fit - <r)g(<r)(-d<r) = - <r) d<r = g »f. 

Thus 
The process of convolution is commutative: 

f *g == g*f. 

It is easy to see that the convolution process is a smoothing one in 

the following sense: f *g is a, continuous function of t despite the fact 
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that neither / nor g is necessarily continuous (they are assumed to be 

only piecewise-continuous). To prove this we observe that 

A(/ • g) 
rt+u 

-I ^ Sir)Qif' + lu — r) dr + I /(r) LtgiJL — r) dr. j; 
The first of these two integrals is null at = 0 (why?). To see that 

the second integral is also null at A< = 0 we cover the interval [0, t] by 

a net which is such that the points at which g(i — t), regarded as a 

function of r, is discontinuous are interior points of cells of the net. 

Over each of the remaining cells of the net ^tg{t — t) is arbitrarily 

small (uniformly with respect to t), and since the sum of the lengths 

of the cells over which g{t r) is not continuous is arbitrarily small 

it follows that I /(t) Hktgit — r) dr is null at A^ = 0. This proves that 
Jo 

f •g is a continuous function of the non-negative variable t 0. 

Let now / and g be such that L/ and Lg exist at a given point Zq = xo 

+ iyo of the complex plane. Then the following important theorem 

is true: 

L(/ ♦ g) exists at any point P: (x, y) which lies to the right of Pq : (xo, 
yo)i and 

Uf^g) = (L/)(i^). 
In other words 

Convolution is reflected in the complex z-plane by ordinary multiplica¬ 

tion. 

The proof of the existence of L(/ ♦ g) at P is simple in view of the 

absolute convergence of the integrals which define L/ and Lg at P. 

In fact the absolute convergence at P of the integral 

fj 
Jo Jo 

f{r)g{t - t) dr 

nr nt 
is assured if the integral J 6“** dt J \f{r)g{t — t)\ dr is a bounded 

function of T (why?). In view of the piecewise-continuous nature 
of the functions / and g the order of integration may be reversed in the 

integral last written, and when this is done it appears in the form 

JJlml dr jje-^\g(t - t)1 dt. 

On making the substitution t = r + tr this may be written as follows: 

e "|/(t)1 dr c-*'|^(<r)l da, 
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and this is not greater than e~^\g{<r)\ d(r (why?). 

Thus the integral which defines L(/ * ^) converges absolutely at P. 
In order to show that L(f * g) = (L/)(L^) we observe that, in view of 
the absolute convergence of the integral 

X dt - t) dry 

it is legitimate to interchange the order of integration. Indeed if we 
extend the definition of g{t) by setting g{t) = 0 if f < 0 we may write 
the integral last written in the form 

r e 
Jo Jo 

fij)g{t — t) dr 

0 0 

(why?), and it then appears as the sum of the double series 

amn = I dt I f{T)g{t — r) dr. 
Jm Jn 

where 

This series is absolutely convergent (since the integral is absolutely 
convergent) and so we may sum first with respect to m and then with 
respect to n (instead of first with respect to n and then with respect 
to m). This is equivalent to interchanging the order of the integra¬ 
tions with respect to t and t. Thus 

L(/ *g) = f /(^) dr r e-‘^g{t - r) dr, 
Jo Jo 

On making the substitution t = r + a and observing that gicr) = 0 if 
<7 < 0 we obtain 

t) dr J e~*‘^gr(cr) da Uf^g) 

= (L/)(Li;). 

Convolution with the unit function is equivalent to integration over 
the interval [0, t]: 

/•I = 

Since L(l) = ~ we have 
z 
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L (/>,.,) -a. 

In words: 

Integration with respect to t over the interval [0, t] is reflected in 

the complex z-plane by multiplication by the reciprocal function 
z 

If f(t) is differentiable with a piece wise-continuous derivative Dfit), 

we have 

m =/(0) + J^D/(r)dr. 

If, then, D/ possesses at Zo = xq + iyo a Laplace transform we have 

L(D/) .. /(O). um -/(O)! =Lf X > Xo 

or, equivalently, 

L(D/) = zL/~/(0); x>Xo. 

In words: 

Differentiation with respect to t is reflected m the complex z-plane 
by multiplication by z followed by the adjustment ~/(0). In particu¬ 
lar, for those differentiable fimctions for which/(0) = 0, differentiation 
with respect to t is reflected in the complex z-plane by multiplication 
by z. 

If f(i) possesses a second derivative which has at Po:(xoj yo) a 

Laplace transform then 

L(D^/) = zL(D/) - D/(0) 

= z2L/~0/(O) - D/(0); a:>Xo, 

and so on. In general if f{t) possesses a pth order derivative (p = 1, 

2, • • • ) which has at Po: (xo, yo) a Laplace transform then 

L(Dp/) = z^Lf ~ zP-y(O) ~ Dp-V(O); a: > xo. 

EXERCISES 

1. Deduce that L(sin at) == 
22 4- a2 

X > |lma|. Hint, sin at « a(cos at * 1). 

X > |lma|, from the fact that L(cos at) 

22 + ^2 

2. Obtain the function whose Laplace transform is 
1 

(22 + a*)* 
by evaluating 

—- (sin at * sin at). 
/v2 
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3. Show that f * g is linear (what does this mean?) in each of the functions 
/ and g. 

4. Show that convolution is an associative process, i.e., that (f * g) * h ^ 

f * ig *h). Hint, Use the fact that a function is unambiguously determined at 
its points of continuity by its Laplace transform and that ordinary multiplication of 
complex numbers is an associative process. Note. We denote the common value 
of if * g) *h and f * {g *h) simply by / * g *h. 

5. If D/ exists and is piecewise-continuous show that, at any value of t at which 
g is continuous, 

»/(0)fir + (D/*^). 

Hint, m « /(O) + (Df * 1). Hence/ * g = (/(O) * g) + Bf * 1 * g --m(g * 1) 
+ D/ * 17 * 1, Since D/ * g is everywhere continuous and since convolution with 
the unit function is equivalent to integration over the interval [0, <1, it follows (in 
view of the assumed continuity of g) that D(/ ♦ = f(0)g + (D/ * g). 

4. The operational solution of an nth order linear differential 

equation with constant coefficients 

Denoting differentiation with respect to the independent variable t by 

D, the equation we wish to solve is p(D)y — /, where 

p(D) = CoD^* + + • • • + c« 

is a polynomial differential operator with constant coefficients. The 

function f = f{t) is a given piecewise-continuous function which 

possesses (we assume) at some point Zo = Xo + iyo of the complex 

2-plane a Laplace transform. We are only interested in the values of 
/ and 2/ for non-negative values of t and so we agree that if ^ < 0 both 

f(t) and y(t) are zero. We take as granted the existence and unique¬ 

ness theorem of linear differential equations which assures us that 

there is an unambiguously determinate solution which has assigned 

initial values 2/(0), • • * , D”“V(0) for itself and its derivatives up to 
the (n — l)st order, inclusive. In order to determine this solution we 

assume that its nth derivative possesses at some point Zo = Xo + iyo 

of the complex z-plane a Laplace transform, and this point Zo may be 

taken, without loss of generality, to be the same as the point at which/ 
has been granted to possess a Laplace transform (why?). If, then, 

z is any point of the complex 2-plane for which x > Xoj the following 

relations are valid 

L(Dy) = zLy - y(0); 

L(D^y) = z^Ly - zy{0) — D2/(0); 

L(D^y) = z'^'Ly — 2’‘"'^2/(0) • • • — D^^VCO)* 
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On substituting these expressions in the relation L{p(D)2/} = L/, we 

obtain 

p(z)Ly = pr^i{z)y{0) + pr^2{z)T>y(0) + * • * + + L/, 

where the polynomial functions of 2, (j>n^i{z), • • * , po), are furnished 

by the following formulas: 

Pn-i{z) = + CiZ^'^^ + • • • + Cvr^i; 

P7^2{z) = + • * • + Cf^2; 

pi{z) = Coz + Ci; 

po = Co. 

Note, The following observation makes it easy to remember these 

formulas: 
Pn-;, j = 1, 2, • • • , n, is the polynomial part of the quotient of p{z) 

by z\ where p{z) = CoZ'^ + + • • • + c„. 

It is clear from the relation 

p{z)Ly = pn--i(z)y{Qi) -f • • • + poD’^-VCO) + L/ 

that the simplest initial conditions (from the point of view of determin¬ 

ing, by the method we are following, the unambiguously determinate 

solution) are 

2/(0) = 0, D2/(0) - 0, • • • , D-i2/(0) = 0. 

These initial conditions are those for which y(t) simulates as closely as 

possible, near < = 0, the zero constant function. We term the solution 

furnished by these initial conditions the rest solution of the differential 
equation, and we denote this solution by r{t). Thus 

The rest solution r = r{t) of the differential equation p(D)p = f 

is that solution for which r(0), Dr(0), * * * , D"“V(0) are zero. 
It follows (why?) that 

p(2)Lr = L/ 

or, equivalently, that 

Lr = 4TL/: P(2)5^0. 
p(z) 

In order to make sure that the condition p{z) 5*^ 0 is fulfilled we agree 

that the point z ^ x + iy oi the complex z-plane lies to the right of 



THE OPERATIONAL SOLUTION 349 

each zero of the nth degree polynomial p(z). Then —- is a proper 
p{z) 

rational fraction so that there exists a function q = q(J) which has —— 
p(z) 

as its Laplace transform. Hence 

Lr = (Lg)(L/) 

so that 

or, equivalently, 

r = q*f 

r(0 -X' qMfit - r) dr. 

In other words 

The determination of the rest solution r = r(t) ha^ been made to rest 

on the determination of the function q = q{t) whose Laplace transform 

. 1 
%s — 

p{z) 

Once the rest solution r = r{t) has been determined the solution 

y = y{t) for which the initial values of 2/, T>y, * * • , are not 

all zero may be found as follows. We have 

that 

V(zyLy = pn-.i{z)y{Q) + 

^ Vn-i{z) , 

+ PoD>-'p(0) + L/ 

+ D->2/(0) + 
p(«) p(z) 

Vo 
’p(z) 

is a proper rational fraction 

, 5o(0 which are such that 

, Lso — 
Vo . 

p(z) 

Each of the expressions . . . 
p{z) 

and so there exist functions Sn-i(0> 

T . Pn_l(2) 
LSn-l = -—9 • 

p{z) 

These functions are readily expressible in terms of the function 

q = qif). To see this we first observe that q{t) is zero, together with 

its derivatives up to the (n — 2)nd, inclusive, at < = 0. In fact the 

development of near z = 00 is 
p(z) 

J- = J_ Cl ^ 

p(z) Coz^ 

Hence (why?) 
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g(0) = 0, Dg(0) = 0, • • • , D»-=?(0) = 0; 

D—sCO) = D-yCO) = • • • . 
Co Co^ 

Since Lso = = ““ we have So(t) = coQoit), and since Lsi = — 
p{z) piz) p(z) 

we have 

Slit) = CaDqit) + Ciqii) (why?) 

= (coD + ci)g(0. 

Continuing in this way we see that 

Siit) = c^Wqit) + • • • + Cjqii)\ j = 0, 1, • • • , n — 1, 

= (coD^‘ + ciD^“^ + * • ‘ + Cj)qit), 

The desired (general) solution of the differential equation 

Pi^)y=^f 
is 

y = Sn-i2/(0) + • • • + SoD«“i2/(0) + T 

or, equivalently, 

yit) = Sn~i(0y(0) + • • * + So(0D”“V(O) + g */, 
where 

Sn-i(0 = CoD”~ig(0 + • • • + Cn-iqii) 

= (coD’‘-i + CiD~-2 ^ ^ Cn-i)g(0; 

8n^2it) = CoD^~~'^qit) + * • • + Cnr^2qit) 

= (coD"-“2 + ciD’»-‘» + • • • + Cr^2)qit)\ 

Soil) = Coqit). 

It is easy to see that the function q = qit) is a solution of the associated 
homogeneous equation 

piT>)u = 0. 

In fact, since g(0) = 0, Dg(0) = 0, • • • , D’*~*g(0) = 0, D’*""^g(0) = —j 
Co 

we have 
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Lq 
1 

piz)’ 

Hence 

L(D3) = 
p(«)’ 

• , LCD-'g) = 
2;n-l 

pizY 

L(D-g) = 
p(g) 

L{pP)?l = CoL(D«g) + • * • + CnL(g) 

P(g) 

p(g) 
1=0, 

Co 

and, since a continuous function is unambiguously determined by its 

Laplace transform, it follows that p(D)g = 0. Thus 

q = q(t) is that solution of the homogeneous equation p(D)u = 0 

which is zero together with its derivatives up to the (n — 2)nd inclusive 

ati = 0 while its (n — l)st derivative has the value ^ at ^ = 0. 
Co 

Note. The only rest solution of the homogeneous equation, i.e., the 

only solution of the homogeneous equation which vanishes together 

with all its derivatives, up to the (n — l)st, inclusive, at ^ = 0, is the 

zero constant function (why?). Thus q = q(t) may be regarded as 

the solution of the homogeneous equation which is as nearly as possible, 

near ^ = 0, the rest solution (i.e., the dead solution) without being dead 

and which is normalized by the requirement that CoD’*~^g(0) = 1. 

Example 1. (D^ + n^)j/ = f 

Here p(z) = z^ + so that q(t) = - sin if n 0; if n = 0, 
n 

q{t) = t When n 0 we have So(0 = ~ sin nt\ Siif) = cos nt 
n 

since co = 1, Ci = 0. Hence y{t) = cos nt y(0) + - sin nt T>y{0) + 
n 

~ (sin nt*f). If n = 0, So(0 = t, Si(t) = 1 and y(t) = y(0) + tDy(0) 

+ (t *f). 

Example 2. (D^ + n*)p = cos (at 

Here p(z) = z® + n* so that, if n 0, q(t) = - sin nt while, if 
n 

n = 0, q(t) = L We shall treat separately the two cases n 9^ 0 and 

n = 0. 
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Case 1. n 9^ 0. 

Since Co = 1, Ci = 0, C2 == n^y we have 

Si = coDq + Cl = cos nt; So = = - sin ni. 
n 

Furthermore r = cos * - sin n<. r is best obtained from the rela- 
n 

z 
tion Lr = 7-————--; if we obtain, on analyzing Lr 

(z^ + n^)\z^ “h 0)^) 

1 I 2 2 I 1 / XX. into  -- j—— -——-\y r = —-- (cos cot - cos nt). If 
\z^ + 0)^ n“J 

co^ = r = — sin nt. Thus we have the two following subcases: 
^n 

Case la. 9^ n^. 

-(cos (at — cos n^) + (cos nt)y{fi) -f 
(\ . \ 
l - sm nt I 
\n / 

D2/(0). 

Cose 15. = n^. 

V = — sin + (cos nt)y(fi) + 
2n 

D»(0). 

Case 2. n = 0. 

z 1 
Here Lr = --—- = ——-—-• If « 0 we have Lr = 

2^(2'* + W^) 2(2* + ft)'*) 

-'2/ /_i_ 2\ ^ ^ ~ If " = 0, r(0 = i 0)^2 co^{z^ + 2 

Since q{t) = we have Si(^) = 1, So{t) = L We have the two following 

subcases: 

Case 2a. w 5*^ 0. 

= — (1 - cos ojO + 2/(0) + /D2/(0). 

Cose 25. « = 0. 

y = it^ + 2/(0) + ®2/(0). 

Note. This example covers the theory of the forced oscillations 

(including resonance effects) of a simple undamped harmonic oscillator. 
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EXERCISES 

1. Show that each of the functions «o(0, * • * , Sn-i(t) is a solution of the homo¬ 
geneous equation p(D)u = 0. Hint. Since q(t) is a solution of the homogeneous 
equation so also is D»g(0, j == 1, 2, • • • . 

2. Show that s„-i(0) = 1, D8„_i(0) = 0, • • • , ~ 0. Hint. s«_i(0) 
= coL’*”ig(0) = 1; Ds«_i(0) == CoD«g(0) -|-C]D”~ig(0) = 0, since p(D)q * 0; 
D2s„_i(0) “ roD"+ig(0) CiD”g(0) + C2D«“ig(0) — 0, since D{p(D)gJ ~ 0, and 
so on. 

3. Show that Sn-2(0) = 0, D.Sn_2(0) == 1, D2.Sn_2(0) = 0, • • * , I>“lSn-2(0) ~ 0. 
4. Determine the initial values of Sn-,(0, I^Sn-y(0> * * • , D»‘“is„_;(/), j = 3, 4, 

• • • n. 
5. Verify that the initial values of r, Dr, • • • , D’^'V are all zero. Hint. Since 

r q * f, r(0) = 0 (any (convolution being zero at ^ == 0 (why?)). Since g(0) = 0, 
Dr = Dg */ (see Exercise 5, p. 347). Hence Dr(0) = 0 (why?). Similarly 
I)2r(0) ~ 0, • • , D"~ir(0) = 0. QueMion. Is this verification necessary? 

Answer. Yes. 
6. Verify that p(D)r =/. Hini. r ^ q *f; Dr — Dg */; • • • , D“~V = 

Dn-ig D"r = D"~ig(0)/ -f .(D«g */) = — / + (D»»g */). Hence p(D)r - / + 
Co 

(p(D)g */) = / (why?). Question. Is this verification necessary? 
7. Verify that y — «n-i2/(0) -j- . . . -f- 8oD"~i^(0) -}- r is the unambiguously 

determinate solution of p(D)y =/for which y, Dy, • • • , D^~iy have the assigned 
initial values 2/(0), D2/(0), • • • , D"~i2/(0). 

5. The principle of superposition 

The principle of superposition furnishes a method for determining the 
rest solution of the differential equation p{D)y == / from the rest 

solution of the differential equation p{jy)y =1. In other words 

The principle of superposition enables us to determine the rest 
solution of the differential equation ^(D)y = /, where / = f{t) is an 
arbitrary piecewise-continuous “applied impulse” (which possesses 
at some point Zq = Xq + iyo of the complex z-plane a Laplace trans¬ 
form) ^ once we have solved the problem of determining the rest 
solution of the simpler differential equation p{I>)y = 1, where 1 
denotes the unit-applied impulse defined by 1(f) = 1, f ^ 0, 1(f) 
= 0, f < 0. 

Warning. Be very clear from the beginning that the principle of 

superposition applies only to rest solutions. Never attempt to apply 

it to solutions which are not rest solutions. 

We shall denote the rest solution corresponding to the applied unit 

impulse by ri{t) (the subscript 1 may help to focus your attention 

on the fact that it is not the general rest solution but the particular 

rest solution obtained when/(O = 1, f ^ 0). Since L(l) = we have 
z 
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Hence 

Thus (why?) 

i.e., 

Lri = 
zp{z) 

Lr = -^ == (2l/)(Lri) 
p(e) 

= {L(D/) +/(0)I(Lrx). 

r = fiO)rt + T>f*ri; 

r{t) = /(O)ri(O + JjD/(r)rx(« - r) dr. 

This is the principle of superposition which has been variously attrib¬ 

uted to Maxwell, Boltzmann, and others. (J. C. Maxwell [1831-1879] 

was an English applied mathematician; L. Boltzmann [1844-1906] was 

an Austrian applied mathematician). We formulate the principle of 

superposition as follows: 

The rest solution r = r{t) of the equation p{D)y = / may be obtained 
from the rest solution ri = ri{i) of the equation p{J^)y = 1 by the 
formula 

r(0 = /(0)rx«) + £'Dfir)n{t - r) dr. 

EXERCISES 

r 1. Show that ri(0 = I qir) dr. Hint. Lrj 
JO 

= L(l*g) 

1 

zp{z) 
2. Show that r =* D(/ * ri). Hint. Show that r and D(/ * rO have the same 

Laplace transform. Note. The various different formulas 

r^q*f; r »/(On + (D/* n); r « D(/* n) 

are merely different versions of the principle of superposition. 

6. The Heaviside expansion formula 

The determination of the function q = q{t) on which the solution of the 

non-homogeneous equation p(I))y = / has been made to rest involves 

only the analysis of into simple fractions. Similarly the determi¬ 

nation of the rest solution ri == ri(t) of the non-homogeneous equation 
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p(D)y = 1 involves only the analysis of 
1 

zp(z) 
into simple fractions. 

In the case where p{z) has n simple zeros it is easy to derive a simple 
explicit formula for q{t); similarly in the case where p(z) has n simple 
zeros, none of which is zero, it is easy to give a simple explicit formula 
for ri{t). In fact, if we denote the n simple zeros of p{z) by ai, • • • , 

ttn, we have 

+ + 
p{z) Z — ai Z — an 

Since p(aj) = 0, the development of p(z) near z = a/ starts out with 
the term {Sp (ajj}(z — a/), where S indicates differentiation with 
respect to z; the fact that a/ is a simple zero of p(z) assures us that 
Sp (a,) ^ 0. Hence the negative-power part of the Laurent develop¬ 

ment of near its isolated singularity z = a,- is ■:-—77---• 
P(^) ^ {Sp(a,)}(z- 

' Ak 
Since each of the fractions-, k 7*^ j, is analytic at z = a, it follows 

CXk 

that Ay = 

and so 

Sp (a,) 
J = 1, n. Thus 

1 j- = y_ 
p{z) ^{ap (a,)|(« - a,) 

2(0 

n 

Bp (oLj) 

Similarly, provided that none of the zeros ai, 

and so 

n 

j--=_i- + y_ 
zp{z) p(0)2 

1 

, an, of p{z) is zero, 

Bp (ay)) (z - ay) 

- m + Bp (ay) 

This result is known as the Heaviside expansion formula (after O. 
Heaviside [1850-1925], an English electrical engineer). It is possible 
to derive similar (but more complicated) formulas for q(t) in the case 

where p{z) has repeated zeros and for ri(t) in the case where p(z) has 
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repeated zeros or where one or more of the zeros of p{z) are zero; but 

this is not worth while. To determine q{t) or ri{t) in any given problem 

we adopt the following simple rule of procedure: 

To determine q{f) analyze into simple fractions, and read off 
p{z) 

from these the function of t which has —- as its Laplace transform: 
p(z) 

To determine ri{t) either integrate q{t) from 0 to ^ or analyze —— 
zp{z) 

into simple fractions, and read off from these the function of t which 

has ■ \ ■ as its Laplace transform. 
zp(z) 

EXERCISES 

1. Determine the general solution of (D* + 3D + 2)^^ = 0. Hint q{t) 
- e-* - e-", si(t) = (D + 3)^y = 2e~* - So{l) - q{t). 

Answer. u{t) = (2?"^ — 
2. Find the general solution of D(D -f- 1)*?/ = 0. 

Answer. u{t) = w(0) + (2 — 2e“^ — + (1 -- 
2 

3. Find the rest solution of D(D — l)y « Hint L(r) = —;-- 
z*(z - 1) 

Ariswer. r(t) — 2t^ — — 2t — 2. 
4. Find the rest solution of (D® + 1)^/ — t cos 2t Hint The Laplace trans- 

1 8 

"2^+4 (z^ + 4)2* 

Answer. r{t) — —f sin t + -I sin 2t — cos 2i. 
5. Find the rest solution of (D* -f = sin t. 

Answer. r((.) — -^(3 — t^) sin t — cos t. 
6. Find the rest solution of (D^ + = t sin t. 

Answer. r{t) = (3< — sin t — Si* cos t]. 

7. The operational solution of a system of linear differential 

equations with constant coefficients 

The system of linear differential equations may be Avritten in the form 

P(D)y = f, 

where y = , 2/^) is a vector dependent variable, f = v(J^y 
• • • , /*”) is a given vector function of the one independent variable t, 

and P(D) is an m X m matrix whose elements Pr*(D) are given poly¬ 

nomial functions of the differential operator D (which indicates 

differentiation with respect to the independent variable t). If the 

highest-order derivative (i.e., the highest power of D) that appears 

form of t cos 2t 
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amongst the various elements P/(D) of P(D) is the nth we may write 
P(D) in the form 

P(D) = CoD» + + . . . + Cn 

where Co, Ci, • • • , Cn are m X m matrices of which the first, Co, is 
not the zero matrix. At this point an essential difference between the 

theory of the operational solution of a system of m differential equa¬ 

tions for m unknowns (m > 1) and the theory of the operational 
solution of a single differential equation appears. For a single differ¬ 

ential equation Co = Co is a 1 X 1 matrix, i.e., an ordinary number. 

Since Co 7^ 0 it possesses a reciprocal; in other words every 1 X 1 
matrix, other than the zero 1 Xl matrix, is non-singular. Matters 

are very different when m > 1, i.e., when we are considering a system 

of differential equations. Co is still, by hypothesis, not the zero matrix, 

but it may well be singular; in other words its determinant may be zero. 

The particular case that occurs when det Co 0 may be treated in a 

manner that is almost a verbal repetition of the treatment already 

given for the case of a single differential equation. When det Co 0 

we say that the system of differential equations is normal and when 

det Co = 0 we say that the system is abnormal. Thus every system 
for which m = 1, i.e., every system consisting of a single differential 

equation, is normal. 

The Laplace-transform operation may be applied to matrices of 

any number of rows and columns as well as to ordinary complex-valued 

functions (which may be regarded as 1 X 1 matrices). To obtain 

the Laplace transform of a matrix we simply form the Laplace trans¬ 

form of each element of the matrix. In the same way the convolution 
process may be applied to matrices. If, for example, R{t) is an 

m X tn matrix and f(t) an m X 1 matrix (where each element of the 

matrices R(t) and f{t) is a piecewise-continuous function of t which 

assumes the value zero when i < 0) we form P */as follows: We first 

form the matrix product R{t — T)f{T), and then we integrate this 
product with respect to r from 0 to 

* / = j*R{t - r)f{j) dr. 

On replacing the variable r of integration by ^ it is clear that an 

equivalent definition of / is 
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Either of the products Ii(i — t)/(t), R(<T)f{t — c) is an m X 1 matrix, 
and we understand by the integral of either of these matrices the matrix 

obtained by integrating each of its elements. Warning, Do not be 

slipshod concerning the order in which matrix products are formed and 

write / * E instead of jR * /. Since / is an m X 1 matrix and R an 
m X m matrix the product f{T)R{t — r) cannot be formed; even if it 

could, matrix multiplication is not, in general, commutative and so 
convolution of matrices is not, in general, commutative. 

We now proceed to determine the solution of the system of m 

ordinary differential equations 

P(D)y = f 

which satisfies appropriately formulated initial conditions. We 

assume that the vector f and the nth derivative of the vector y possess, 

at a common point Zo = Xo + iyo of the complex 2;-plane, Laplace 

transforms, and we subject the equation P(D)y = f to the Laplace 

transformation. It follows from the definition of the Laplace trans¬ 

form of a vector that 

L(Dy) = zLy - y(0); 

L(D2y) = z^Ly - zy{0) - Dy(0); 

L(D”y) = 2:”Ly — a:”~^y(0) • * • — D”“^y(0), 

and so 

L{P(D)y) =L{CoD-y+ • • • + Cny) 

= P{z)Ly - Pn-iWy(O) PoD«“-^y(0), 

where the m X m matrices Pn-i(2), * * • , Po(2) are polynomial func¬ 
tions of z (each of the degree indicated by its subscript) which are 

furnished by the formulas 

Pn_i(2) = + • • • + Cn-i; 

Pn-%{z) = -j- . • . -J- Cn-2', 

Po{z) = Co. 
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These formulas are easily remembered if you note that Pj{z) is the 
polynomial part of the quotient of P{z) by = 0, 1, • • • ,n~“L 

We have, then, the relation 

P{z)Ly = Pn~.i(z)y(0) + • • • + PoD’*“^y(0) + Lf. The expression 

Pn-i(2J)y(0) + • • • + PoD”~^y(0) is an m X 1 matrix which is a 
polynomial function of z of degree ^ n -■ 1. The coefficient of 

in this polynomial function is Coy(0); the coefficient of z^~^ is Ciy(0) 

+ CoDy(O), and so on. Hence this polynomial function of z will 

vanish identically if, and only if, the initial values of y and its deriva¬ 

tives up to the (n — l)st inclusive are adjusted to the equations 

Coy(O) = 0; 

Ciy(O) -h CoDy(0) = 0; 

Cn-iy(O) -h Cn-2Dy(0) + • • • + CoD«-“^y(0) = 0. 

We shall term any solution of our system of differential equations for 

which the initial values of the solution and of its derivatives are 

adjusted to these equations a rest solutionj and we shall denote such a 

rest solution by r = t(t). It follows that 

P(2)Lr = Lf. 

There is no lack of generality in assuming that the matrix P{z) 

is not singular for every value of z. In fact if we denote by adj P the 

adjoint matrix of P{z)j i.e., the matrix obtained by interchanging the 

rows and columns of the cofactor matrix of P(«), we see, on applying 

to the given differential equation, P(D)y = f, the matrix differential 

operator adj P(D), that 

det P(D)y = (adj P(D))f. 

If, then, det P{z) is independent of z each coordinate of y is furnished 

by a linear algebraic equation so that we have left the province of 

differential equation theory. It may well be that one of the linear 

algebraic equations which furnish the coordinates of y is inconsistent; 

in this case the original system of differential equations is inconsistent. 

On the other hand it may happen that all the equations furnishing the 

coordinates of y are indeterminate; in this case the original system is 

indeterminate (one or more of the differential equations being a linear 
combination of the rest). In any event we take it as granted that 

det P(z) is a polynomial function of z of degree ^ 1 and so P(z) is 
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singular for only a finite number of values of z. Choosing z so that 

the point z = x + iy lies to the right of each of the zeros of det P{z) we 

are assured that P{z) possesses a reciprocal P~^{z), and, then, the 

equation P(z)Lr = Lf is equivalent to the equation 

Lr = P-^iz)U. 

Since a matrix is unambiguously determined by its Laplace transform 

it follows that our system of differential equations does not possess 

more than one rest solution. We can, then, appropriately speak of 

the rest solution of the given system. 

When the system of differential equations is a normal one the rest 

solution is the one which vanishes together with its derivatives up 

to the (n — l)st inclusive at ^ = 0. In fact since Co is non-singular 

the equation Coy(O) = 0 yields y(0) = 0; the next equation CoDy(O) 

+ Ciy(O) = 0 reduces, then, to CoDy(O) = 0, and this yields Dy(0) 

= 0, and so on. Thus 

The rest solution of a normal system of linear differential equations 
is that solution which vanishes, together with its derivatives up to the 
(n — l)st, inclusive, at f = 0. 

We have seen that the Laplace transform of the rest solution of 
our systeni of differential equations (assuming that the nth derivative 

of the rest solution possesses a Laplace transform) is furnished, whether 

the system is normal or abnormal, by the formula 

Lr = l^\z)U. 

If each element of P~'(z) is a proper rational fraction then^ exists an 
m X m matrix Q(jt) whose Laplace transform is F~’(z) and so 

Lr = (L0)(li). 

It follows, since the process of convolution is linear in eacdi of its factors, 

that 
T = Q*f 

(prove this) or, equivalently, that 

r(0 = \Q{t - r)f(r) dr = CciMfit ~ a) da, 
Jo Jo 

It may happen that not every element of P~^{z) is a proper rational 

fraction but that every element of ~ P^^z) is a proper rational fraction. 
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There exists, then, an m X w matrix R{t) whose Laplace transform is 

and 
z 

L(r) = (LR)(zU) = (LR)[h(Df) + f(0)l 

(it being granted that the vector f(0 possesses a piece wise-continuous 

derivative Df which has a Laplace transform). We obtain, then, the 

'principle of superposition for any system of differential equations, 

normal or abnormal, which is such that each element of is a 
z 

proper rational fraction: 

r = Ri{0) + R*Df, 

or, equivalently, 

r(0 = R{t)m + R(t ~ T)Df(r) dr. 

Corresponding to the unit impulse for a single differential equation 

we have sm m X m matrix unit impulse for a system of differential 

equations. The first column of this matrix unit impulse corresponds 

to the situation where we apply a unit impulse to the first equation 

of our system and zero impulses to the other equations. The second 

column corresponds to the situation where w^e apply a unit impulse 
to the second equation of our system and zero impulses to the other 

equations, and so on. Denoting this matrix unit impulse by Em its 

Laplace transform is - Em- Since hR == -R~^{z) it follows that 
z z 

R{t) is the matrix of rest solutions corresponding to the matrix 
unit impulse 1. 

Thus the first column of R{t) is the rest solution of our system of 

differential equations corresponding to the situation where w^e apply 

a unit impulse to the first of our differential equations and zero impulses 

to the rest, and so on. If, then, it happens that not every element of 

is a proper rational fraction we know that there is no set of 
z 

rest solutions of our system of differential equations corresponding to 

the matrix unit impulse. (We may take it as granted from the general 

theory of systems of linear differential equations with constant 

coefficients that every solution of such a system is such that its nth 

derivative possesses a Laplace transform, the applied impulses being 

constant.) 
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Note. We shall assume from now on that our system of differential 

equations is such that each element of -P^^{z) is a proper rational 
z 

fraction. If this is not the case but each element of is a 
z^ 

proper rational fraction we could introduce the m X m matrix S(t) 

whose Laplace transform is 4 and then 

Lr = (LS)(2^Lf). 

If f possesses a second derivative which has a Laplace transform, 

2*Lf = L(D^) + 2f(0) + Df(0), and since 2L>S = L(DS) + ;S(0) we 

obtain 

Lr = (LS)L(D^) + L(DS)f(0) + 5(0)f(0) + (LS)Df(O). 

Since every Laplace transform is null at 2 = » we must have <S(0)f(0) 

= 0 and if this condition is satisfied 

r = DSf(0) + 6’Df(0) + S ♦ D*f, 

or, equivalently, 

r«) = D-S(<)f(0) + S(<)Df(0) + - r)D^(r) dr. 

This formula may be regarded as the extension of the principle of super¬ 

position to those systems for which not every element of - P^\z) is a 
z 

proper rational fraction. Note that <S(0) is not the zero matrix since 

the expansion of 4 i^ear 2; = » starts out with the term 
z 

and we have assumed that not every element of - P~^^{z) is a proper 
z 

rational fraction. Hence the condition ;S(0)f(0) = 0 on the applied 

impulse, which must be satisfied if a rest solution exists, is not vacuous. 

It is easy to verify that the vector function r = r(/) furnished by 

the formula 

r = jRf (0) + * Df 

actually is the unambiguously determinate rest solution of the (vector) 

differential equation P(D)y = f. (We assume from now on that each 

element of the matrix is a proper rational fraction and R{t) is 
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the m X m matrix whose Laplace transform is In fact 
z 

- P^'^{z) has near 2 = oo the development — — ^ + 
D22(0) 

z^ 

z z^ 

so that P~^{z) has near 2 = « the development 

P-\z) - R{Q) + + H-Ta- g;-! 

On multiplying both sides of this equation on the left by the matrix 
P(z) = Coz"^ + CiZ^~^ + ‘ * * + Un and equating coefficients of like 
powers of z we obtain the series of equations 

C^R{0) = 0; 

CoDi^(0) + CiR{0) = 0; 

CoD-iE(O) + • * • + Cn-.i/e(0) = 0. 
Thus 

Each column vector of the m X m matrix R{t) satisfies the initial 
conditions appropriate to a rest solution of the equation P(D)y = f. In 
particular, when the differential equation is normal, each column vector 
of R(t) vanishes together with its derivatives up to the {n — l)st, inclusive, 
att = 0. 

This fact, combined with the relation P(D)-B = Em (which is a 
E 

consequence of the relation L{P(D)E} = — (why?)), assures us that 
z 

r is the rest solution of P(D)y = f. In fact 

Dr = DPf(O) + P(0)Df + DP * Df 

(see Exercise 5$ p. 347); 

D^r = D=‘Pf(0) + DP(0)Df + P(0)D®f + D®P * Df, 

and so on. Hence 

P(D)r = P(D)Pf(0) + (P(D)P * Df) 

+ (CoD«-‘ + • • • + C„_,)P(0)Df + • • ■ + C«P(0)D»f 

= f(0) + (E« * Df) 

» f(0) + dr = {(t). 
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Thus r = r(0 is a solution of the differential equation. Since every 

convolution is zero at ^ = 0 we have 

r(0) = R{0)m; 

Dr(0) = DJ?(0)f(0) + i^(0)Df(0); 

D2r(0) = D2J?(0)f(0) + D/^(0)Df(0) + R(0)m(0), 

and so on. Hence r = r(0 satisfies the initial conditions appropriate 

to the rest solution. (Prove this.) We may summarize as follows the 

principle of superposition for a system of differential equations or, what 

is the same thing, for a vector differential equation: 

Under the hypothesis that each element of is a proper 
z 

rational fraction the vector differential equation 

P(D)y = f 

possesses an unambiguously determinate rest solution r = T{t) which 
is furnished by the formula 

T(t) = R{t)i{0) + j‘R{.t - r)r)f(r) dr 

(it being assumed that f possesses a piecewise-continuous derivative 
which has at some point of the complex z-plane a Laplace transform). 

Here R(t) is the m X m matrix whose Laplace transform is 
z 

it satisfies the matrix differential equation 

Pijy)R = E., 
and each colunm vector of R satisfies the initial conditions appropriate 
to a rest solution of the equation P(D)y = f. 

It remains only to find the solution of the vector differential equa¬ 

tion P(D)y = f which, together with its derivatives up to the (n — l)st, 

inclusive, assumes appropriately assigned initial values. When our 

vector differential equation is normal these initial values may be 

assigned arbitrarily, but when it is abnormal this is not the case. In 

fact if we multiply the equation 

P-Kz) = p(0) + 
DP(0) . D^-^P(O) . 

+ —-r on the right 

by P{z) and equate coefficients of like powers of z we obtain the follow¬ 

ing relations: 
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R(0)Co = 0; 

DE(0)Co + R{0)Ci = 0; 

D«-^E(0)Uo + • • • + fi(0)Cn-i = 0; 

D-R(0)Co + * * • + R{0)Cn = 

D«+ii^(0)Co + • * • + DR{0)Cn = 0; 

If, then, we multiply the equation P(D)y = f on the left by P(0) we see 

that any solution of this equation must satisfy the following vector 

differential equation of order n — 1: 

P(0){CiD»-i + • ‘ • + Cn}y = P(0)f. 

Hence the initial values of y and of its derivatives up to the (n — l)st, 

inclusive, must satisfy the relation 

R{0){CiD--^y{0) + • • • + C„y(0)l = P(0)f(0). 

(When the system of differential equations is normal this relation is 
vacuous since R{0) is, then, the zero m X matrix.) When n > I 

further such relations connecting y(0), • • • , D”“^y(0) may be obtained 

as follows: On differentiating the equation of order n — 1 obtained 

above with respect to t and adding the result to the product of the 

original (vector) differential equation by DP(0) we obtain, by virtue 

of the relation DP(0)Co + R(P)Ci = 0, 

{DP(0)Ci + P(0)C2}D--iy + • • • + D/e(0)Cny 

Hence 

DP(0)f + P(0)Df. 

{DP(0)Ci + P(0)C2}D«~^y(0) + • • • + DP(0)C„y(0) 

= DP(0)f(0) + P(0)Df(0). 

(When our vector differential equation is normal this relation is vacu¬ 

ous (why?)). We shall not write down the various relations connect- 
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ing y(0), • • • , D''~^y(0) which may be obtained in this way since the 
manner of deriving them is clear. 

We assume that the initial values of y, • • * , D**~^y have been 
properly assigned if the differential equation is abnormal and arbitrarily 
assigned if the differential equation is normal, and we wish to determine 
the solution of P(D)y = f which satisfies these initial conditions. We 
observe that the matrix Q{t) = D/2(0 satisfies the matrix differential 
equation 

P(D)Q - 0. 
In other words 

Each column vector of the matrix Q{t) is a solution of the homogeneous 
vector differential equation 

P(D)u = 0. 

To prove this it suffices to show (why?) that the Laplace transform 
of P(D)Q is the zero matrix. We have 

L{P(D)Q) = L{P(D)DE} 

= L[D1P(D)P}] = zL{P(D)P} - P(D)P(0). 

Since P(D)i? = E„ we have L[P(D)R] = - E„ and P(D)fi(0) = E„ 
z 

(why?). Hence L{P(D)Q) =0. 

EXERCISES 

1. Show that r =» J2(0)f + Q * f. 

f' SoltUion, On writing i? * f in the form I /2(r)f(< — t) dr we obtain 
Jo 

D(ie ’f) - m)f(0) + J^iJ(r)Df(< - r) dr 

m)U0) + B * Df - r. 

On rewriting J? * f in the form t) dr we obtain j^B« -T)f(T) 

D{B * f) - fl(0)f(0 + DR(t - T)f(T) dr 

R(0)m + DB • f 

B(0)f + Q • f. 

2. Show that when the vector differential equation is normal r ^ Q * t. Hint. 
R(0) - 0. 
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Since Q{t) is a solution of the homogeneous matrix differential 
equation 

P(D)U = 0 

so also are the various matrices DQ, • • • . In fact 

P(D)(D(2) = D{P{D)Q} =0, 

and so on. Hence the matrix 

+ D-2QCi + • • • + 

is a solution of the matrix differential equation 

P{D)U = 0. 

In other words each column vector of the matrix Sn-i is a solution of 

the homogeneous vector differential equation 

Furthermore 

P(D)u = 0. 

= D«P(0)Co + • • • + DP(0)C«-i 
= - P(0)Cn, 

and D^n~i(0) = -DP(0)Cn; D^Sn^iiO) = -D2P(0)Cn, and so on. 
Similarly the matrix 

^.^2 = D^-^QCo + • * • + QCn-2 

is a solution of the homogeneous matrix differential equation 

P{D)U = 0, 

and Sn-2i0) = -P(0)(7n-1, D5„_2(0) = Em - R{0)Cn - DP(0)Cn-l, 
D^;Sn-2(0) = --DP(0)Cn — D^R{0)Cn-if and so forth. Proceeding in 
this way we construct the matrices A; = n — 1, • • • , 0, ending 

with So where So = QCo, and we set up the vector 

y = r + ASn-iy(O) + 5n-2Dy(0) + • • • + /SoD»*-iy(0), 

where r is the rest solution of the vector differential equation 

P(D)y = f. 

Each of the vectors /Sn-iy(O), *Sn-2Dy(0), • * • , /SoD’^^y(O) is a solu¬ 

tion of the homogeneous vector differential equation 
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P(D)u = 0 

(why?) and so y is a solution of the vector differential equation 

P(D)y = f 

(why?). Since r = i^f(O) + /^ * Df we have r(0) = R{0)f(0) and so 

the value of y at ^ = 0 is 

R(0)m + y(0) - E(0)C„y(0) - R(0)Cn^iDy(0) - ... - 

fl(0)CiD’‘“^y(0) = y(0) (since the initial values of y, * ■ • , D"~^y 

are assumed to have been properly assigned). Furthermore 

Dr = BRfiO) + I)R*jyf + R{0)Bf 

so that Dr(0) = D-R(0)f(0) + J?(0)Df(0). Hence the value at < = 0 
of Dy is 

Die(0)f(0) + 72(0)Df(0) - T>R{0)Cny{0) + Dy(0) - {R(0)Cn + 
BR(0)Cn-i\Dy(0) - • • • ~ {72(0)02 + D/iJ(0)Ci}D-~iy(0) = Dy(0). 

Continuing the argument we see that, whether the vector differential 

equation 

P(D)y - f 

is normal or abnormal, the solution which takes on arbitrarily assigned, 

or properly assigned, initial values, as the case may be, is 

y = r + ^„_iy(0) + >S„-2Dy(0) + • • • + >SoD«“iy(0), 

where 

r = 72f(0) + R* Df; 

Sn-i = D-iQOo + + ' • • + QCn-i; 

Sn-2 = D»-2QCo + • • • QCn-2; 

So — QCq, 

Note. For a normal vector differential equation the initial values of 

R and of its derivatives up to the (n — l)st, inclusive, are zero while 

the initial value of D”i2 is Hence the initial values of Q = D72 

and of its derivatives up to the (n — 2)nd, inclusive, are zero while the 
initial value of is Thus 
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Sn.i(P) = Sn_i(0) = 0, • • • , D“-*5,_i(0) = 0; 

-S„_s(0) = 0, DS„_2(0) = , D»-‘S„_2(0) = 0; 

369 

So(0) = 0, • • • • • • , D'-‘S„(0) = E„. 

Furthermore since 72(0) = 0, L(Q) = L(Di2) = 2L(72) = P-'{z). Since 

the general formula for y is fairly complicated we think it well to 

reformulate the result in the important special cases n = 1 and n = 2. 

Case 1. n = 1. This is the case of & first-order vector differential 
equation. The solution is 

y(t) = r(0 + QCoy(O). 

In the normal case the vector y(0) may be assigned arbitrarily while 

in the abnormal case we must have 

72(0)Ciy(0) = 72(0)f(0). 

Furthermore Q(0)C'o = E„ — 72(0)C'i. 
Case 2. n = 2. This is the case of a second-order vector differen¬ 

tial equation. It is of fundamental importance in the theory of the 

vibrations of mechanical and electric systems. The solution is 

y(<) = r(<) H- (DQCo + QCi)y(0) -h QCoDy(O). 

In the normal case the vectors y(0) and Dy(0) may be assigned arbi¬ 

trarily while in the abnormal case they are subject to the relations 

TJCOjlUiDyCO) -h CjyCO)} = 72(0)f(0); 

{D72(0)Ci -I- 72(0)Cj}Dy(0) -}- D72(0)C2y(0) 
= D72(0)f(0) -b 72(0)Df(0) 

which may be written in the equivalent form 

-DTJCOjCoDyCO) -b i2(0)Cjy(0) = 72(0)f(0); 

Dy(0) - D*72(0)CoDy(0) -b DR{0)Cty{0) = D72(0)f(0) -b i2(0)Df(0). 

Example 1 

(D - l)x - 2y = t; 

-2x -b (D - l)y = <. 
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Here n = 1 and Ce -Ct) • Thus the vector differential equation 

is normal, and a;(0), y(0) may be assigned arbitrarily. Let us set 
a;(0) = 2, 2/(0) = 4. We have 

det P(z) = _ 22 — 3 = (2; — 3)(2; + 1) 

so that 

P-Kz) = 

g ~ 1 2 

(g~3)(2+ 1) (g-3)(g+l) 

_^_ g - 1 

_(g — 3)(2 -f- 1) (g — 3)(g -f- 1)_ 

—l-1-— —!-!— 
2(2-3) 2(0+1) 2(2-3) 2(2+1) 

1.2(2-3) 2(2+1) 2(2-3) 2(2+1) J 

Since L(Q) == P^^g) (why?) we have 

Since f = v(tf t) we have Q{t — T)f(T) = v(e*(*"^V, so that 

r = Q*f = £Qit-r)f{T)dT 

(f!! _ 1 _ 1,1 «_ * _ lY 
*' \ 9 3 9' 9 ® 3 9/ 

Since Co = Ez the desired solution is obtained by adding to r the result 
of operating on v(2, 4) by Q(0, namely, v(3e®* — e“*, 3e®* + e~*)- 
Hence 

28e8< 
* = —-e- 

, t 1 28e" , , < 1 

3 9'^ 9 3 9 

Example 2 
(2D - l)x + (3D - 2)y = te^\ 
(2D + l)x + (3D + 2)y = te^K 
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This is an abnormal first-order vector differential equation since the 

- 1 3z - 2N 
matrix Co 

3\ . 

\2 3/’^®' 
singular. Since P{z) 

have det P{z) = 2z and so 

/22 ~ 1 32? ~ 2\ 

\2z +1 32; + 2/ 
we 

Hence 

so that 

P-Kz) 

UR) = 

p-\z) 

z 

--1- ~ 
2z z^ 2z z^ 

_ 1 _ jL 1 _ JL 
z 2z^ z 2z^ 

Rif) 

Hence QH) = 
1 

/# + < — f + A 

i-i</ 

/-3 -6\ 
we have i2(0)Ci = ( ) so that the initial values x(0), y(f)) of 

\ 2 4/ 

X and y must satisfy the relation — 3a;(0) — 6t/(0) = 0, or, equivalently, 

x(0) + 22/(0) = 0. Since Q(t — r)f{T) = r(T(e’’ + + e^O) 

we have Q * f = t^(|- + e^{t — 1) + \e^^{2t — 1), — — ^e^it — 1) 
- ^2/(2^ _ 1)). Hence r = i2(0)f + Q * f - t;(f + ^e\5t - 2) - 

+1), - f - - 1) + ie«(6« + 1)). Since Q{t)Co = 

/ 4 6\ 
{ ) the general solution is obtained by adding f;(4x(0) + 62/(0), 
\~2 — 3/ 

— 2a;(0) — 32/(0)) to r{t). Taking into account the relation connecting 

x(0) and y{0) we find 

x = i + i^(5t - 2) - + 1) + x(0); 
y==-i - 1) + + 1) + 2/(0). 
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Note. In this example f(0) = 0 so that, even though i?(0) 5^ 0, 
r(0) = 0 since r(0) = i2(0)f(0) (why?). Hence y is found by adding 
»(x(0), y(0)) to r. 

Example 3 

(2D2 - D + 9)jc - (D^ + D + 3)y = 0; 
(20^ + D + 7)x - (D* - D + B)y = 0. 

/2 -1\ 
Here Co = ( ) so that the second-order vector differential equa- 

\2 -1/ 
/2z^-z + 9 -(g^-he + 3)\ 

tion is abnormal. P(z) = I I, det P(z) 
\22* -h z -f- 7 —(z^ — z + 5)/ 

= 62» - 62^ -f 242 - 24 = 6(2 - 1)(2* -I- 4). Hence 

'-(2^ -2 + 5) 2^ 4- 2 -b 3 

1 (2 - 1)(2^ + 4) (2 - 1)(2^ + 4) 

6 -(22»-b2 + 7) 22» - 2 + 9 

(2 — 1)(2* 4-4) (2 - l)(z‘ + 4) 

_i-L_ + 
2* 4-4 2 — 1 2* 4-4 2-1 

_1_2__, _2_ ’ 
2*4-4 2-1 2*4-4'^2-1. 

Since each element of P~\z) is a proper rational fraction we have 

E(0) = 0 (since P-^z) = E(0) 4- ' 
z 

P~^(2) (why?). Hence (4 sin — e* 4 sin 2^ + 6*^ 

— ^ sin 2t — 2e* — i sin 2t + 2ey 

) and BO L(Q) = 

and so 

n{t) - 

Since DP(0) = Q(0) 

-jCcos 2i — 1) — (e^ — 1) — ^(cos 2i — 1) + e* — 1 \ 

^ i(cos 2« ~ 1) - 2(e‘ - 1) i(cos 2< - 1) + 2(e* - 1)/ 

■c: 5--r: >■<:;) 

•i-(cos 2i — 1) + e* — 

J(cos 2< — 1) + 2(e* 
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■ - C !)■ - (i! i!) Hence x{0), we have DjR(0)C 

2/(0), Dx(0), Dy(0) are connected by the relation 

-2x(0) - 22/(0) + 2D:c(0) + 2Dy(0) = 0 

or, equivalently, 

x(0) + 2/(0) ~ D:c(0) - T>y{0) - 0. 

Since f is the zero vector, r(/) is the zero vector (why?). Again 

sin 2t — sin 

sin 2t sm 

cos 2t — cos 2t -f 

cos 2t — 2c* — cos 2t + 2c*y 

cos 2t —2 cos 2/^ 

cos 2t 2 cos 2t} 

QCo 

DQ 

DQCa 

so that 

DQCo + QC 

/ 4 c. 

\-4 c 

sin 2/\ 

sin 2t)' 

V 
267 

'\ /2c* 2c*\ 

") 2c*/ 

2 cos 2/ + ^ — cos 2/ + 

2 cos 2/ + 2e* cos 2i + 

Hence 

(2 cos 2i + c*)a;(0) + (c* ~ cos 2t)y{0)} 
+ -^{2 sin 2/Dx(0) - sin 2tl^y(0)); 

2/(0 = (2e* — 2 cos 2/)a;(0) + (2c* + cos 202/(0)} 
+ ^{ -2 sin 2tDx{0) + sin 2tBy{0)}, 

EXERCISES 

3. (D* ~ 3D + 2)x + (D - l)y - 0; -(D - l)x + (D* - 5D + 4)y = 0; 
x{0) « 0, Dx(0) - 0; 2/(0) « 1, Dy(0) « 0. 

4. Solve the homogeneous equations 

(D* + l)x + (D* - 2T>)y » 0; 

(D* + T>)x + D*2/ “ 0. 

5. Find the rest solution of the equations 

(3D + 2)x + Dy « 1; 

Da; + (4D + Z)y » 0. 

6. Find the solution of the homogeneous equations 
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(3D 4- 2)af -f- Dy =» 0; 

Bx 4- (4D 4- 3)y - 0 

having assigned initial values a;(0), y(0). 

8. The determination of functions from their Laplace trans¬ 

forms 

When we are given a function of the complex variable z which is a 

proper rational fraction we have seen how to determine the function of 

which it is the Laplace transform by analyzing the given proper rational 

fraction into simple fractions. We have seen also that the develop¬ 
ment, near z = oo, of the proper rational fraction is 

. ... . 5!:* . 
5? ^ 

where / = /(/) is the function of which the given proper rational frac¬ 

tion is the Laplace transform. We now proceed to prove a general 

theorem of which this result is a special case. 

Let 4>(z) be a function of the complex variable, and let a be a com¬ 
plex number whose real part is positive which is such that is 
analytic at z = » so that, near z = », 

<f)(z) = 

Then the power series / converges for every t, and the 
(n 4- a) 

function 

m = 

Cn 

z^r(n + a) 
0 

r; O 0 

has 0(z) as its Laplace transform at points z whose real part x is 
sufficiently large. 

Note. The case where <t>{z) is a proper rational fraction is cared 

for by the particular case of this theorem which occurs when a == 1. 

The proper rational fraction has, near z = w, a development 

<l>(z) = 
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and the function /(<) of which it is the Laplace transform is 

Z/r(n+ 1) Z^n! 

The series whose sum is/(0 converges for every t and c„ = D”/(0). 
In order to prove our theorem we first observe that we are granted 

ries / — 
Z-/2" 

that the series / — converges if \z\ is sufficiently large. Hence if 

xo > 0 is a sufficiently large positive real number the series Xfe) 

converges. Since the terms of any convergent series constitute a 
bounded variable we know that there exists a positive number 
independent of n, such that 

|Cn| ^ MXo'^. 

Y(n -|- a) 
Since ———;—: == n ~ 1 + a it follows from the ratio test that 

r(n + 1 + a) 
the series 

Zvr(n 4- a) 
0 

is convergent for every value of t. Hence, by the comparison test, the 

fTin + a) 

is convergent for every value of L We consider the function/(O which 
is defined as follows: 

f(t) = 

00 90 

Xr(a + a) ~ Xr(n + a) ^ ^ 

0: if < < 0, 

and we propose to show that the Laplace transform of f{t) is 0(2). 
Note. If the real part of a ^ I, /(O) = 0 while if the real part of a 
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lies between 0 and 1, /(O) is not defined (/(O being not bounded at 

^ 0). Nevertheless the Laplace transform of f{t) exists in the 

following sense: 

L(/) = f dt = lim | dt; 8 > 0. 
J+o 

In order to show that f{t) possesses a Laplace transform and that 

this Laplace transform is <l>(z) we consider the integral 

,i,. jy ■I-*-') -i>. X > Xq, 

Since power series permit term-by-term integration over any (finite) 

subinterval of their interval of convergence (this process of term-by- 

term integration remaining valid if the series is multiplied by any 

continuous function) we have 

0 
‘/(<) dt = v 

JL(V{n + 

rr 

+ a) Jo 

-e^n+a~l 

Xr(n + a) IX'-X 
Now the infinite series . V 

IPS > - 

L(V{n + 
-- I p—1 £!!L, 
+ a) Jo ' 

con¬ 

verges (why?). Hence the infinite series 

00 

Xlr(n + 
0 

dt 
+ Ot)jT 

converges with the lin.it 

ao 

If, then, we can show that 

dt 
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has at T = 00 the limit zero we shall have proved the existence of the 

other (improper) integral I dt with the value / —In 
Jo 

0 

words we shall have proved the equality of the two functions L(/) 
00 

= J dt and <t>(z) — of ^ points x of the real axis 

0 

which lie to the right of Xq. This implies (why?) that the Laplace 

transform of / is <t>{z) at all points z to the right of Xo. 

Let us apply repeated integration by parts to the integral 

When n = 1 we obtain 

r - a C 
dt -- + - 

JT X XJT 

^-xTrpa ^ 
+ - dt 

X XJT 

T(a + l)e-^^r«-i 

(F(fTT) + 4 

where p = 

r* - X I e • 
JT 

dt 

r(a)e“*^!r«“i 
When n = 2 we obtain 

X g-xTTPo+l 
^-xtla+1 fll —- 

T X 
^ fv 

X JT 
H” dt 

r(a + / (xT)^ 
+ 

xT 

and, generally, 

X g-ztln+a-l = 
r(a + n)e-^^r° 

yn-4-1 

r(a + 2) r(a + 1) 

{XTY 

T{a + 7 
+ 

+ 

n) T{a + n - 1) 

xT 
+ 

r(a + 1) 

If we denote by r„ the remainder after n terms of the convergent series 

~ we have to examine the behavior at T = oo of the series 
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e—[ (r„ - + ^(r, - _ ,) 

+ ■ ■ ■ +F(fTl) + '')} 
00 

where n = 7 —• The sum of p terms of the infinite series which 

0 
multiplies is 

(ro - ri)^ + (ri - r^) + ^| + 

+ (^P-i - ^p) r(a + p — 1) 

" lr(a + p - 1) 

xT 
• +i>+T) + ^l 

T(a + p - 1) 

xT 

^ ■ ■ +ivTTj'^^ 

xT 
The series & + : + * * * + ^77—7-77 + * ‘ * is con- r(a + 1) r(« + n — 1) 
vergent for every value of T (prove this by means of the ratio test), and 
lim Tj, = 0 (why?). Hence the sum of the series 

The series ^ + r(a + 1} 

ro» + y (r, - r„_x) ( + • • • + 
(r(a + n) r(a!+l) I 

1 

00 
(xT)^~^ 

is the same as the sum of the series ro/9 + / rn_i --- Let 
Zv r(a + n — 1) 

2 
e be any assigned positiA e number, and determine the positive integer 
N such that |rn| ^ € is n ^ JV. Since {r„,) is a null sequence it is 
bounded; in other Avords there exists a fixed number C such that 

00 JV W 

r(a + n. - 1) 

r„| < C for every n. Writing we obtain 

00 

+ n - 1) '4|r(a + 7i- 1)1 ■'■*Z/|r(a 

(xT)"-' 

+ n — 1.) 
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Since lira == 0, every it will follow that 
r- 00 

2 

{xTY-^ 
Tn-i: can be made arbitrarily small (by making T sufficiently 

r(a! + n~ 1) 
00 X(x7’)»-i 

—^- jg bounded at 
jr(a 4- n - 1)1 

JV-fl 

T = <x>, uniformly with respect to A. To show this we observe that 

^ _ (xTY , {xTY+^ 

r{a + n - 1)1 |r(a + N)\ lr(a + JV + 1)1 

xT 
+ 

x^T^ . 

|T(a+l)|^|r(a + 2)| + 

xT 

|r(a)| I \a {a + })a 

x2T2 
+ 

that 
r(Q: + 71 — 

iV4-l 
1) ^r(a)| I a a{a + 1)| + 

• • • j. Denote xT by f and Ra by ai (so that ai > 0). Then 
|a| ^ ai, |a + l| > ai + 1, and SO on, and |a:T|“ = {xTY\ 
= (xTY^-^^^ and so on. Hence 

V 
r(a + 7't — 1) ^ ^|r(a) \ a. ^ai i|r(a)| \ai~^ ai(ai + 1) + 

we 
^ai ^at+1 

On denoting by s the sum of the series -—|-h • 
ai ai(ai + 1) 

have .Sf — 5 = and since s is zero when f = 0 it follows that 

<;; e^r(ai) (why?). Hence 

V ^ o ^ 

-d' 

e-^rra-iV_ 
Z/r(a + n - 1) 

AT + l 

r(ai) 
*“'-'lr(a)l’ 

AT = 1, 2, • • • , r an arbitrary positive number. Hence, since 
g-xrj-a-ijg _» 0 as r 00, 
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Um e-«T- [(r„ - + ^(r. - r.+x) + 

or, equivalently, 

+ i8 )J 
0, 

lim y ^ 
T- « ^T(a + n) 

0 
/; g-*«^n+a-l = 0. 

This proves our main theorem: 

The function <t>(z) 
-h 

is the Laplace transform of the sum f{t) 

of the everywhere-corwergent infinite series 

00 Xc„ 

r(n + a 
in+a-l^ 

understood that the series defining <i>{z) converges if \z\ is sufficiently large 
and that the real part of the complex number a is positive. 

Example 1 

1 -1 V(--i)” 1 
Set 0(2) = - e * = / -;-r:* The function of which 4>(z) is 

0 
the Laplace transform is the sum f{f) of the everywhere-convergent 

V(-l)» /t\2 
series t^. On setting ^ ~ I 2/ 

m = X (^l)n^2n 

n\n\ 2^" (22) (42) 

In other words/(O = Hence 

_ 1 

L{Jo(2f^)) = -— 3 a; > 0 (why?). 
z 

Jo(t). 

Example 2 

1-1 
Set 0(2) = — e *, where the real part of a is positive. Then the 

2“ 

function of which <t>(z) is the Laplace transform is the sum /(<) of the 
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everywhere convergent series / ( — 1)" 
n!r(n + a) 

(n+a-i Qjj getting 

we have '-(i) 

= © Ja-x{r). 

In other words \j[i ^ tt(ct) > 0, a? > 0. 

Example 3 

On setting a = -J- in our general theorem we have the following 
important special case of this theorem: 

1 / Cl \ 
The function of which -rz I Co H-h • • • H-: + • • I is the 

\ Z / 
Laplace transform is the sum/(f) of the everywhere-convergent series 

Cxt , Cxfi , 
Co —r 1—9 + 1 

x«)-” jco + Y (20 + ^ (20* + • • • . 

If we choose the coefficients co, ci, C2, 

parentheses is cosh i.e., if we set Co = 1, Ci == 

(1)(3) 

so that the expression in 
1 1 

1 
Cs = 

(201 
1 

;» C2 

+ 

(2^)2! 

-f 
(2«)3!' ^ " -- ‘ {2^)z ■ (2^)2!z2 

X u TT ^/coshf^\ r(^) ^ r 
• • • ) turns out to be Hence L I——I = = I - ) e*‘. 

EXERCISES 

- 
1, Show that L(sinh i^) * e^. 
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2. Show that L {./o(0} = (1 + Write (1 + as 

. 1 _ J_ m W 1 _ 
■ z 2z* (2)(4) z® 

3. Show that L ^ > 0. 

—L 
4. Show that L (sin ^ e x > 0. 

5. Show that 
z(l 4- 2*)^^ 

= L(erf t^^), X > 0, where erf x is the error function 

defined by erf x = —^ ^ e~t^ di. Hint. « = § and T 

REVIEW EXERCISES 

In each of the following cxt^rcises where you have to determine a Laplace trans¬ 

form indicate the values of z for which the nisult is valid. 

2a£® 
1. Show that li(sin at ~ at cos at) — 7—- --— • 

(z* + a2)2 

Z3 

2. Show that L(cos at cosh at) — —-—• 
+ 4a* 

2a’ 
3. Show that Lfsinh at — sin at) ~ —--• 

Z* — a* 

4. Show that a particular solution of the differential equation (D* — n^)x — f{t) 

1 
is a: - I /(t) sinh n{t — r) dr. 

n Jo 

5. Determine the particular solution of the differential equation of Lxercise 4 

which is zero when a; = 0 and when x = 1. 

6. Show that L{/i(0} — 1 —~—r<* Hint. Ji(t) = D/o(0 and 
(1 — z^)'- 

L{,/o(OI = (1 + (see Exercise 2, at top of page). 
7. Show that L{</i(0} = (1 + z^)-^'\ 

8. Determine the rest solution of (D* + aD)x « te~*. 

9. Determine the rest solution of (D"* + n^)x = a sin nt. 

10. Determine the rest solution of (D* + = sin t. 

11. Determine the rest sedation of the vector differential equation 

(D2 - 4)x - (D + 2)y + (D - 2)z = sin 2<; 

2Da; - (D’ - Z)y + (D* - 4)z = 0; 

(D - 2)a; - y + (D’ - 4)z = 0. 

12. Determine the solution of the homogeneous vector differential equation 

(D* - 3D + 2)a: + (D - \)y = 0; 

-(D - l)a: + (D* - 5D 4- 4)y - 0; 
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for which a;(0) = 0, y(0) = 1, Da;(0) - 0, ByiO) = 0. 

13. Show that L{/o(<)l (1 + 2^)“^ by applying the Laplace transformation 
to the equation tDHi + Dw -f = 0. Note. Any linear differential equation 
whose coefficients are linear functions of the independent variable transforms, 
under the Laplace transformation, into a first-order differential equation. The 
solutions of the original differential equation which are “lost’' on applying the 
Laplace transformation are those which do not possess a Laplace transform (e.g., 
Ko{t) in the case of Bessel’s equation of zero order). 
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Curvilinear coordinate lines, 94 
Curvilinear coordinate reference frame, 
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Direction cosines, 1 
Directional derivative, 24, 28 
Displacement vector, 115 
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49 
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139 
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Electrostatic field, 114 
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Hamiltonian function, 321 
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Hermitian integral equation, 268 
Hermitian liiniar integral operator, 84, 

268 
Hermitian liiusar vector function, 46, 51 
Ililbert-Schniidt solution, 288 
Homogeneous boundary-value problem, 

210 
Homogeneous fuiicdions, 132 
Homogeneous linear integral (Kpiation, 

84, 246 
Hyperbolic differential operator, 241 

Identity linear vector function, 46 
Ignorable coordinate, 321 
Image, 124, 154 
Image point, 124 
Index of r(*fraction, 328 
Induced potential, 123 
Inducing potential, 123 
Integral ecpmtion, 228 
Integral operator, 80 
Interlacing zeros, 201 
Internal harmonic, 132 
Intrinsic property, 60 
Invariant function, 333 
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Invariant integral, 330 
Invariants of a linear vector function, 

56 
Inverse, 142, 146 
Inverse points, 144 
Inversion, 141 

Jacobian determinant, 88 
Jacobian matrix, 88 

Kernel, 228 
Kinetic energy of vibrating string, 295 

Lagrange’s undetermined multipliers, 
314 

Lagrangian, 321 
Lagrangiaii function, 318, 321 
Laplace operator, 337 
Laplace series, 184 
Laplace transform, 337 
T-iaplace transformation, 337 
Laplace’s equation, 116 
Laplacian, 27, 30 

of a vector field, 113 
Legendre polynomials, 70, 170 
Legendre’s associated equation, 133,181 
Legendre’s boundary-value problem, 

235 
Legendre’s equation, 133, 166 
Level curve, 24 
Level surface, 28 
Line charge;, 137 
Line vector, 115 
Linear combination, 12, 38 
Linear dependence, 68 
linear differential operator, 205 
Linear independence, 68 
Linear integral equation, 247 
Linear int<;gral operator, 80 
Linear vector function, 44 
Linearly dependent vectors, 11, 19, 38 
Linearly independent vectors, 11, 38 
Liouville’s theorem, 332 
Logarithmic potential, 137 

Magnitude of a vector, 2, 6 
Matrix addition, 34 
Matrix of rest solutions, 361 
Matrix unit impulse, 361 

Maupertuis’ principle, 327 
Momentum integral, 322 
Momentum vector, 319 
Multiplicity, 256, 260 
Multiplier, 330 

Natural mechanical system, 318 
Nearly diagonal, 62 
Nearly triangular, 62 
Negatively definite, 241 
Negatively oriented, 19 
Neumann solution, 273 
Node, 211 
Non-homogcncous integral equation, 

246 
Non-negative Hermitian operator, 289 
Non-trivial linear combination, 12, 19 
Normal linear vector function, 60 
Normal vector differential equation, 357 
Normal vibration, 296, 303 
Normalized characteristic vector, 54 

Oblate spheroid, 162 
Operational solution, 347 
Operator, 44 
Oriented surface, 29 
Orthogonal curvilinear coordinates, 94, 

104 
Orthogonal vectors, 35 
Orthogonalization process, 59, 69 
Orthonormal set, 68 

Parallel plate condenser, 127 
Parseval identity, 72 
Phase factor, 54 
Plane polar coordinates, 87 
Plane waves, 134 
Point charge, 122 
Poisson’s equation, 116 
Polar axes, 104 
Polar coordinate lines, 87 
Polar-coordinate reference frame, 89 
Polar coordinates, 89 
Polar factorization, 63 
Polar form, 63 
Position vector, 7 
Positive Hermitian operator, 289 
Positive linear integral operator, 84 
Positive linear vector function, 62 
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P6sitive quadratic form, 320 
Positive sense, 26 
Positively definite, 241 
Positively homogeneous, 308 
Positively oriented, 19 
Potential, 14 
Potential energy, of a vibrating beam, 

302 
of a vibrating string, 296 

Power function-vectors, 69 
Powers of a linear integral operator, 82 
Principal value, 338 
Principle, of least action, 329 

of Maupertuis, 327 
of superposition, 353, 361 

Product, of a vector by a scalar, 8 
of two linear vector functions, 45 
of two matrices, 33 

Prolate spheroid, 162 
Pure deformation, 64 

Quadratic form, 43, 83 
Quantized, 130, 180 

Rayleigh’s principle, 298 
Reciprocal sets of vectors, 40 
Recurrence relations for Bessel func¬ 

tions, 195 
Regular boundary-value problem, 213, 

236, 240 
Regular point, 167 
Relative derivative of a vector, 42 
Relative differential, 92 
Representation of a vector, 2 
Resolving kernel, 260 
Resolving operator, 260 
Rest solution, 348, 359 
Right-handed reference frame, 13 
Rotation matrix, 45, 95 

Scsdar, 5, 66 
Scalar field, 21, 28 
Scalar product, 9, 16, 35, 65 
Schmidt orthogonalization process, 59 
Schwarz’s inequality, 36, 67 
Screening effect, 118 
Self-adjoint differential operator, 208, 

238 
Self-adjoint integral operator, 84 

Self-adjoint linear vector function, 51 
Self-reciprocal set of vectors, 41 
Separable kernel, 277 
Separable linear integral operator, 86, 

276 
Separation of variables, 126 
Simple Fredholm minor, 254 
Simple pole, 186 
Simply connected, 27 
Singular linear vector function, 52 
Singular point, 87, 101, 186, 233 
SkewHsymmetric linear vector function, 

47 
Solid angle, 178 
Space polar coordinates, 103 
Space vectors, 13 
Specific inductive capacity, 128 
Sphere of inversion, 142 
Spherical waves, 135 
Square root of a positive linear vector 

function, 63 
Stokes’s theorem, 27, 30 
Strain tensor, 64, 112 
Sum, of two vectors, 8 

of two linear vector functions, 44 
Surface density, 115 
Surface harmonic, 132, 175 
Surface vector, 115 
Symbolic vector, 23 
Symmetric linear vector function, 46 

Table of direction cosines, 3, 14 
Three-dimensional, 20 
Tightly stretched string, 294 
Time component of the momentum 

vector, 320 
Trace, 49, 238 
Triangle construction, 8 
Triangle inequality, 67 
Triangular matrix, 57 
Trivial (linear combination), 12, 38 
Trivial solution, 209 
Two-dimensional, 1, 136 

Unimodular matrix, 37 
Uniqueness theorem, 117 
Unit applied impulse, 353 
Unit function, 339 
Unit vector, 6, 65 
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Unitary linear vector function, 52 
Unitary matrix, 35 
Unmixed boundary-value problem, 212 

Variation, 306 
Vector, 2, 4 
Vector element, of arc, 23, 29 

of area, 29 
Vector field, 23 
Vector product, 17, 39 
Vector triple product, 21 
Velocity of propagation, 134 
Vibrating string, 219 
Virtual displacement, 318 

Virtual work, 318 
Voltage, 119, 137 
Volume density, 115 

Wave equation, 134 
Wave mechanics, 328 
Weierstrass approximation theorem, 77 

Zero linear vector function, 46 
Zero operator, 81 
Zero vector, 5, 66 
Zeros of 199 
Zonal harmonics, 134 
Zonal surface harmonics, 179 
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