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PREFACE 

It is probably unfortunate that physics and chemistry ever were 

separated. Chemistry is the science of atoms and of the way the^y com¬ 

bine. Physics deals with the interatomic forces and with the large-scale 

properties of matter resulting from those forces. So long as chemistry 

was largely empirical and nonmathematical, and physics had not learned 

how to treat small-scale atomic forces, the two sciences se(imed widely 

separated. But with statistical mechanics and the kinetic theory on the 

one hand and physical chemistry on the other, the two sciences began to 

come together. Now that statistical mechanics has led to quantum theory 

and wave mechanics, with its explanations of atomic interactions, there is 

r(;ally nothing separating them any more. A few years ago, though their 

ideas were close together, their experimental methods were still quite 

different: chemists dealt with things in test tubes, making solutions, pre¬ 

cipitating and filtering and evaporating, while physicists measured every¬ 

thing with galvanometers and spectroscopes. But even this distinction 

has disappeared, with more and more physical apparatus finding its way 

into chemical laboratories. 

A wide range of study is common to both subjects. The sooner we 

realize this the better. For want of a better name, since Physical 

Chemistry is already preempted, we may call this common field Chemical 

Physics. It is an overla^^mng fieldir^* '^diich both physicists and chemists 

should be trained. Thei i^seems no vtind reason why their training in it 

should iffer. This book is an attempt to incorporate some of the 

material of this common field in a unified presentation. 

What should be included in a discussion of chemical physics? Logi¬ 

cally, we should start with fundamental principles. We should begin 

with mechanics, then present electromagnetic theory, and should work 

up to wave mechanics and quantum theory. By means of these we 

should study the structure of atoms and molecules. Then we should 

introduce thermodynamics and statistical mechanics, so as to handle 

large collections of molecules. With all this fundamental material we 

could proceed to a discussion of different types of matter, in the solid, 

liquid, and gaseous phases, and to an explanation of its physical and 

chemical properties in terms of first principles. But if we tried to do all 

this, we should, in the first place, be writing several volumes which would 

include almost all of theoretical physics and chemistry; and in the 

second place no one but an experienced mathematician could handle the 
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theory. For both of these reavsons the author has compromised greatly 
in the present volume, so as to bring the material into reasonable com¬ 
pass and to make it intelligible to a reader with a knowledges of calculus 
and differential equations, but unfamiliar with the more difficult branches 
of mathematical physics. 

In the matter of scope, most of the theoretical physics which forms a 
background to our subject has been omitted. Mucli of this is considesred 
in the companion volume, '^Introduction to Thcorc'tical Physics/’ by 
Slater and Frank. The effort has been made in the present work to pro¬ 
duce a book which is intelligible without studying tlu'oretical physics 
first. This has been done principally for tla^ Ix^nefit of chcmiists and 
others who wish to obtain the maximum, knowledge of chemical i)hysics 
with the minimum of theory. In th(^ treatment of statistical m(M3hanics 
only the most elementary use of mechanics is involved. For that reason 
it has not been possible to give a complete discussion, although the parts 
used in the calculations have be(*n considered. Statistical m(K*.hariics has 
been introduced from the standpoint more of the quantum theory than of 
classical theory, but the quantum theory that is us(‘d is of a very elemen¬ 
tary sort. It has seennid desirable to omit wave mechanics, which . 
demands more advanced mathematical methods. In discussing atomic 
and molecular structurcj and the nature of interatomic forces, descriptive 
use has been made of the quantum theory, but again no dcitailed use of it. 
Thus it is hoped that the reader with only a superficial accpiaintance with 
modern atomic theory will be able to read the book without great diflS- 
culty, although, of course, the reader with a knowledge of quantum 
theory and wave mechanics will have a great advantage. 

Finally in the matter of arrangement the author has departed from 
the logical order in the interest of easy presentation. Logically one 
should probably begin with the structure of atoms and molecules, crystals 
and liquids and gases; then introduce the statistical principles that 
govern molecules in large numbers, and finally thermodynamics, which 
follows logically from statistics. Actually almost exactly the opposite 
order has been chosen. Thermodynamics and statistical mechanics come 
first. Then gases, solids, and liquids arc treated on the basis of thermo¬ 
dynamics and statistics, with a minimum amount of use of a model. 
Finally atomic and molecular structure are introduced, together with a 
discussion of different types of substances, explaining their interatomic 
forces from quantum theory and their thermal and elastic behavior from 
our thermodynamic and statistical methods. In this way, the historical 
order is followed roughly, and, at least for chemists, it proceeds from 
what are probably the more familiar to the less familiar methods. 

It is customary to write books either on thermodynamics or on 
statistical mechanics; this one combines both. It seems hardly necessary 
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to apologize for this. Both have their places, and both are necessary in a 

complete presentation of chemical physics. An effort has been made to 

keep them separate, so that at any time the reader will be clear as to 

which method is being used. In connection with thermodynamics, the 

method of Bridgman, which seems by far the most convenient for prac¬ 

tical application, has been used. 

There is one question connected with thermodynamics, that of 

notation. The continental notation and the American chemical notation 

of Lewis and Randall are quite different. Each has its drawbacks. The 

author has chosen the compromise notation of the Joint Committee of 

the Cliemical Society, the Faraday Society, and the Physical Society (all 

of England), which preserves the best points of both. It is hoped that 

this notation, which has a certain amount of international sanction, may 

become general among both physicists and chemists, whose poblems are 

similar enough so that they surely can use the same language. 

In a book like this, containing a number of different types of material, 

it is likely that some read(U’s and teaclu^rs will want to use some parts, 

others to use other parts. Ap atbanpt has been made to facilitate such 

use by making chapters and sections independent of each other as far as 

possible. The book has been divided into three parts: Part I, Thermo¬ 

dynamics, Statistical Mechanics, and Kinetic Theory; Part II, Gases, 

Liquids, and Solids; Part III, Atoms, Molecules, and the Structure of 

Matter. The first part alone forms an adequate treatment of thermo¬ 

dynamics and statistical theory, and could be used by itself. Certain of 

its chapters, as Chap. V on the Fermi-Dirac and Einstein-Bose Statistics, 

Chap. VI on the Kinetic Method and the Approach to Thermal Equilib¬ 

rium, and Chap. VII on Fluctuations, can be omitted without causing 

much difficulty in reading the following parts of the book (except for the 

chapters on metals, which depend on the Fermi-Dirac statistics). In 

Part II, most of Chap. IX on the Molecular Structure and Specific Heat 

of Polyatomic Gases, Chap. X on Chemical Equilibrium in Gases, parts 

of Chap. XII on Van der Waals^ Equation and Chap. XIII on the 

Equation of State of Solids, Chap. XV on The Specific Heat of Com¬ 

pounds, Chap. XVII on Phase Equilibrium in Binary Systems, and 

Chap. XVIII on Phase Changes of the Second Order are not necessary 

for what follows. In Part III, Chap. XIX on Radiation and Matter, 

Chap. XX on Ionization and Excitation of Atoms, and Chap. XXI on 

Atoms and the Periodic Table will be familiar to many readers. Much 

of the rest of this part is descriptive; one chapter does not depend on 

another, so that many readers may choose to omit a considerable portion 

or all, of this material. It will be seen from this brief enumeration that 

selections from the book may be used in a variety of ways to serve the 

needs of courses less extensive than the whole book. 
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The author hopes that t-his book may servo in a minor way to fill the 

gap that has grown betwoc^n physios and ohornistry. This ga]) is a 

result of tradition and training, not of subject mattcu*. Physicists and 

chemists are given quite different cours(\s of instruction; the result is 

that almost no one is r(‘ally com{)et(‘nt in all the branches of chemical 

physi(^s. If the coming g(aieration of chemists or physicists could recanve 

training, in the first })lace, in empirical cluanistry, in ])hysical ch(anistry, 

in metallurgy, and in crystal structure, and, in the sc'cond place, in 

theoretical physics, including mechanics and electromagn(‘tic tlu'ory, and 

in particular in quantum theory, wave mechanics, and the structures of 

atoms and molecules, and finally in tlu'rmodynamics, statistical 

mechanics, and what we liave^ calleHl clnanieail ])hysics, tln'y would be 

far better scientists than those receiving tlie })res(mt training in either 

chemistry or physics alone. 

The author wishes to indicate his ind(d)tedness to several of his 

colleagues, particularly Professors B. bk Warren and W. B. Nottingham, 

who have n^ad parts of the^ manuscript and mad(‘ valuable comments. 

His indebtedness to books is naturally very gn'at, ])ut most of them are 

mentioned in tlie list of suggesii^l nderenccss at the end of this volume. 

J. C. Slater. 
CaMBRIDOE, MASSACIIUSEnTS, 

September^ 1939. 
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CHAPTER I 

HEAT AS A MODE OF MOTION 

Most of modern physics and chemistry is based on three fundamental 

ideas: first, matter is made of atoms and molecules, very small and very 

numerous; second, it is impossible in principle to observe details of atomic 

and molecular motions below a certain scale of smallness; and third, 

heat is mechanical motion of the atoms and molecules, on such a small 

scale that it cannot be completely observed. The first and third of these 

ideas are products of the last century, but the second, the uncertainty 

principle, the most characteristic result of the quantum theory, has arisen 

sinc(^ 1900. By combining these three principles, we have the theoretical 

foundation for studying tlu^ branches of physics dealing with matter and 

chemical problems. 

1. The Conservation of Energy.—From Newton\s second law of 

motion, one can prove immediately that the work done by an external 

force on a system during any motion equals the increase of kinetic energy 

of the system. This can be stated in the form 

KE2 - KEi = j^dW, (1.1) 

where KE stands for the kinetic energy, dW the infinitesimal element of 

work done on the system. Certain forces are called conservative; they 

have the property that the work done by them when the system goes from 

an initial to a final state depends only on the initial and final state, not on 

the details of the motion from one state to the other. Stated technically, 

we say that the work done between two end points depends only on the 

end points, not on the path. A typical example of a conservative force 

is gravitation; a typical nonconservative force is friction, in which the 

longer the path, the greater the work done. For a conservative force, 

we define the potential energy as 

P£i = (1.2) 

This gives the potential energy at point 1, as the negative of the work done 

in bringing the system from a certain state 0 where the potential energy 

is zero to the state 1, an amount of work which depends only on the points 

1 and 0, not on the path. Then we have 

£dW = -PE2 + PEx, 

3 

(1.3) 
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and, combining with Eq, (1.1), 

KEi + PE I = KE2 + PE2 = E, (1.4) 

where, since 1 and 2 are arbitrary points along the path and KE + PE 
is the same at both these points, we must assume that KE + PEJ remains 

constant, and may set it equal to a constant E, the total energy. This is 

the law of conservation of energy. 

To avoid confusion, it is worth while to consider two points connected 

with the potential energy: the negative sign which appears in the defi¬ 

nition (1.2), and the choice of the point where the potential energy is 

zero. Both points can be illustrated simply by the case of gravity acting 

on bodies near tlici (^arth. Gravity acts down. We may balance its 

action on a given body by an equal and opposite upward force, as by 

supporting the body by the hand. We may then define the potential 

energy of the body at height h as the work done by this balancing force 

in raising the body through this height. Thus if the mass of tlu* body is 

m, and the acceleration of gravity g, the force of gravity is —mg (positive 

directions being upward), the balancing force is +mg, and the work done 

by the hand in raising the mass through height h is mgh, which we define 

as the potential eru^rgy. The m^gative sign, then, comes because the 

potential eiKjrgy is defined, not as the work done by the force we are 

interested in, biit the w^ork done by an equal and opposite balancing 

force. As for the arbitrary position where we choose the potential energy 

to be zero, that appears in this example because w^e can measure our 

height h from any level we choose. It is important to notice that the 

same arbitrary constant appears essentially in the energy E. Thus, in 

Eq. (1.4), if we chose to redefine our zero of potential energy, we should 

have to add a constant to the total energy at each point of the path. 

Anotheu' way of stating this is that it is only the difference E — PE whose 

magnitude is determined, neither the total energy nor the potential energy 

separately. For E — PE is the kinetic energy, which alone can be deter¬ 

mined by direct experiment, from a measurement of velocities. 

Most actual forces are not coiLservative; for in almost all practical 

cases there is friction of one sort or another. And yet the last century 

has seen the conservation of energy built up so that it is now regarded as 

the most important principle of physics. The first step in this develop¬ 

ment was the mechanical theory of heat, the sciences of thermodynamics 

and statistical mechanics. Heat had for many years been considered as a 

fluid, sometimes called by the name caloric, which was abundant in hot 

bodies and lacking in cold ones. This theory is adequate to explain 

calorimetry, the science predicting the final temperature if substances of 

different initial temperatures are mixed. Mixing a cold body, lacking in 

caloric, with a hot one, rich in it, leaves the mixture with a medium 
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amount of heat, sufficient to raise it to an intermediate temperature. 

But early in the nineteenth century, difficulties with the theory began to 

appear. As we look back, we can see that these troubles came from the 

implied assumption that the caloric, or heat, was conserved. In a 

calorimetric problem, some of the caloric from the hot body flows to the 

cold one, leaving both at an intermediate temperature, but no caloric is 

lost. It was naturally supposed that this conservation was universal. 

The difficulty with this assumption may be seen as clearly as anywhere in 

Rumford’s famous observation on the boring of cannon. Rumford 

noticed that a great deal of heat was given off in the process of boring. 

The current explanation of this was that the chips of metal had their heat 

capacity rcKluced by the process of boring, so that the heat which was 

originally present in them was able to raise them to a higher temperature. 

Rumford doubted this, and to demonstrate it he used a very blunt tool, 

which hardly removed any chips at all and yet i)roduced even more heat 

than a sharp tool. He showed by his experiments beyond any doubt 

that heat could be produced continuously and in apparently unlimited 

quantity, by the friction. Surely this was impossible if heat, or caloric, 

werci a fluid which was conserved. And his conclusion stated essentially 

our modern view, that heat is really a form of energy, convertible into 

energy. In his words 

What is Heat? Is there any such thing as an igneous fluid? Is tliere any 
thing that can with propriety be called caloric? . . . In reasoning on this subject, 

we must not forget to consider that most remarkable circumstance, that the source 
of Heat generated by friction, in these Experiments, appeared evidently to be 

inexhaustible. 
It is hardly necessary to add, that any thing which any insulated body, or 

system of bodies, can continue to furnish without limitation, cannot possibly he 
a material substance; and it appears to me to be extremely difficult, if not quite 
impossible, to form any distinct idea of any thing, capable of being excited and 
communicated, in the manner the Heat was excited and communicated in these 

experiments, except it be MOTION. 

From this example, it is clear that both conservation laws broke down 

at once. In a process involving friction, energy is not conserved, but 

rather disappears continually. At the same time, however, heat is not 

conserved, but appears continually. Rumford essentially suggested that 

the heat which appeared was really simply the energy which had dis¬ 

appeared, observable in a different form. This hypothesis was not really 

proved for a good many years, however, until Joule made his experiments 

on the mechanical equivalent of heat, showing that when a certain 

amount of work or mechanical energy disappears, the amount of heat 

^ Quoted from W. P\ Magic, Source Book in Physics,’^ pp. 160-161, McGraw- 
Hill Book Company, Inc., 1935. 
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appearing is always the same, no matter what the process of trans¬ 

formation may be. The calorie, formerly considered as a unit for 

measuring the amount of caloric present, was seen to be really a unit of 

energy, convertible into ergs, the ordinary units of energy. And it 

b^>came plain that in a process involving friction, there really was no loss 

of energy. The mechanical energy, it is true, dt^crcased, but there was 

an equal increase in what we might call thermal energy, or heat energy, 

so that the total energy, if properly defined, remained constant. This 

generalization was what really established the conservation of energy as a 

great and important principle. Having identified heat as a form of 

energy, it was only natural for the dynamical theory of heat to be 

developed, in which heat was regarded as a mode of motion of the mole¬ 

cules, on such a small scale that it could not be observed in an ordinary 

mechanical way. The extra kinetic and potential energy of the molcules 

on account of this thermal motion was identified with the energy which 

had disappeared from view, but had reappeared to bo measured as heat. 

With the development of thermodynamics and kinetic theory, conser¬ 

vation of energy took its place as the leading principle of physics, which 

it has held ever since. 

2. Internal Energy, External Work, and Heat Flow.—Wo have seen 

that the theory of heat is based on the idea of conservation of energy, 

on the assumption that the total energy of the universe is conserved, if 

we include not only mechanical energy but also the mechanical equivalent 

of the heat energy. It is not very convenient to talk about the whok^ 

universe every time we wish to work a problem, however. Ordinarily, 

thermodynamics deals with a finite system, isolated from its neighbors 

by an imaginary closed surface. Everything within the surface belongs 

to the system, eveiything outside is excluded. Usually, though not 

always, a fixed amount of matter belongs to the system during the 

thermodynamic processes we consider, no matter crossing the boundary. 

Very often, however, we assume that energy, in the form of mechanical 

or thermal energy, or in some other form, crosses the boundary, so that 

the energy of the system changes. The principle of conservation, which 

then becomes equivalent to the first law of thermodynamics, simply 

states that the net increase of energy in the system, in any process, 

equals the energy which has flowed in over the boundary, so that no 

energy is created within the system. To make this a precise law, we 

must consider the energy of the body and its change on account of flow 

over the boundary of the system. 

The total energy of all sorts contained within the boundary of the 

system is called the internal energy of the system, and is denoted by U. 
From an atomic point of view, the internal energy consists of kinetic 

and potential energies of all the atoms of the system, or carrying it 
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further, of all electrons and nuclei constituting the system. Since 

potential energies always contain arbitrary additive constants, the 

internal energy U is not determined in absolute value, only differences of 

internal energy having a significance, unless some convention is made 

about the state of zero internal energy. Macroscopically (that is, viewing 

the atomic processes on a large scale, so that we cannot see what indi¬ 

vidual atoms are doing), we do not know the kinetic and potential energies 

of the atoms, and we can only find the change of internal energy by 

observing the amounts of energy added to the system across the boundary, 

and by making use of the law of conservation of energy. Thermo¬ 

dynamics, which is a macroscopic science, makes no attempt to analyze 

internal energy into its parts, ?ls for example mechanical energy and heat 

energy. It simply deals with the total internal energy and with its 

changes. 
Energy can enter the system in many ways, but most methods can be 

classified easily and in an obvious way into mechanical work and heat. 

Familiar examples of (external mechanical work are work done by pistons, 

shafts, belts and \ ulleys, etc., and work done by external forces acting at a 

distance, as gravitational work done on bodies within the system on 

account of gravitational attraction by external bodies. A familiar 

example of heat flow is heat conduction across the surface. Convection 

of heat into the system is a possible fornd of energy interchange if atoms 

and molecules are allowed to cross the surface, but not otherwise. Elec¬ 

tric and magnetic work done by forces bc^tween bodies within the system 

and bodies outside is classified as external work; but if the electro¬ 

magnetic energy enters in the form of radiation from a hot body, it is 

classified as heat. There are cases where the distinction between the 

two forms of transfer of energy is not clear and obvious, and electro¬ 

magnetic radiation is one of them. In ambiguous cases, a definite 

classification can be obtained from the atomic point of view, by means of 

statistical mechanics. 

In an infinitesimal change of the system, the energy which has 

entered the system as heat flow is called dQ, and the energy which has 

left the system as mechanical work is called dW (so that the energy which 

has entered as mechanical work is called —dW), The reason for choosing 

this sign for dW is simply convention; thermodynamics is very often 

used in the theory of heat engines, which produce work, so that the 

important case is that in which energy leaves the system as mechanical 

work, or when dW in our definition is positive. We see then that the 

total energy which enters the system in an infinitesimal change is 

dQ — dW. By the law of conservation of energy, the increase in internal 

energy in a process equals the energy which has entered the system: 

dU == dQ ^ dW. (2.1) 



8 INTRODUCTION TO CHEMICAL PHYSICS [Chap. I 

Equation (2.1) is the mathematical statement of the first law of thermo¬ 

dynamics. It is to be noted that both sides of the equation should be 

expressed in the same units. Thus if internal energy and mechanical 

work are expressed in ergs, the heat absorbed must be converted to ergs 

by use of the mechanical equivalent of heat, 

1 calorie = 4.185 X 10^ ergs — 4.185 joules. 

Or if the heat absorbed is to be measured in calories, the work and 

internal energy should be converted into that unit. 

It is of the utmost importance to realize that the distinction between 

heat flow and mechanical work, which we have made in talking about 

energy in transit into a system, does not apply to the energy once it is in 

the system. It is completely fallacious to try to break down the state¬ 

ment of Eq. (2.1) into two statenauits: ^^The increase of heat energy of a 

body equals the heat which has flowed in,’’ and ^^The decrease of mechan¬ 

ical energy of a body equals the work done by the body on its surround¬ 

ings.” For these statements would correspond just to separate 

conservation laws for heat and mechanical energy, and we have seen in 

the last section that such separate laws do not exist. To return to the 

last section, Rumford put a great deal of mechanical work into his 

cannon, produced no mechanical results on it, but succeeded in raising 

its temperature greatly. As we have stated before, the energy of a 

system cannot be differentiat'd or separatui into a mechanical and a 

thermal part, by any method of thermodynamics. The distinction 

between heat and work is made in discussing energy in transit, and 

only there. 

The internal energy of a system depends only on the state of the 

system; that is, on pressure, volume, temperature, or whatever variables 

are used to describe the system uniquely. Thus, the change in internal 

energy between two states 1 and 2 depends only on these states. This 

change of internal energy is an integral, 

u, - V, = = f '^dQ - f^^dW. (2.2) 

Since this integral depends only on the end points, it is independent of the 

path used in going from state 1 to state 2. But the separate integrals 

and 

representing the total heat absorbed and the total work done in going 

from state 1 to 2, are not independent of the path, but may be entirely 

different for different processes, only their difference being independent 

of path. Since these integrals are not independent of the path, they 

cannot be written as differences of functions Q and W at the end points, 

as / can be written as the difference of the C7’s at the end points. 
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Such functions Q and W do not exist in any unique way, and we are not 
allowed to use them. W would correspond essentially to the negative of 
the potential energy, but ordinarily a ])()tential energy function does not 
exist. Similarly Q would correspond to the amount of heat in the body, 
but we have seen that this function also does not exist. The fact that 
functions Q and W do not exist, or that / dQ and J dW are not independent 
of path, really is only another way of saying that mecJianical and heat 
energy are interchangeable, and that the internal energy cannot be 
divided into a mechanical and a thermal part by thermodynamics. 

At first sight, it seems too bad that / dQ is not independent of path, 
for some such quantity would b(^ useful. It would be pleasant to be able 
to say, in a given state of the system, that the system had so and so much 
heat energy. Starting from the absolute zero of temperature, where we 
could say that the heat energy was zero, we could heat the body up to the 
state we were interested in, find / dQ from absolute zero up to this state, 
and call that the heat (mergy. But the stubborn fact remains that 
we should get different answers if we luxated it up in different ways. For 
instance, we might heat it at an arbitrary constant pressure until we 
reached the desircKi temperature, then adjust the pn'ssure at constant 
temperature to the desired value; or we might raises it first to the desired 
pressure, then heat it at that pressure to the final temi>eratur(‘; or many 
other equally simple processes. Each would give a different answer, 
as we can easily verify. There is nothing to do about it. 

It is to avoid this difficulty, and obtain something resembling the 
^‘amount of heat in a body,^’ which yet has a unique meaning, that we 
introduce the entropy. If T is the absolute temperature, and if the heat 
dQ is absorbed at temperature T in a reversible way, then / dQ/T proves 
to be an integral independ(‘nt of path, which evidently increases as the 
body is heated; that is, as heat flows into it. This integral, from a fixed 
zero point (usually taken to be the absolute zero of temperature), is 
called the entropy. Like the internal energy, it is determined by the 
state of the system, but unlike the internal energy it measures in a 
certain way only heat energy, not mechanical energy. We next take up 
the study of entropy, and of the related second law of thermodynamics. 

3. The Entropy and Irreversible Processes.—Unlike the internal 
energy and the first law of thermodynamics, the entropy and the second 
law are relatively unfamiliar. Like them, however, their best inter¬ 
pretation comes from the atomic point of view, as carried out in statistical 
mechanics. For this reason, we shall start with a qualitative description 
of the nature of the entropy, rather than with quantitative definitions 
and methods of measurement. 

The entropy is a quantity characteristic of the state of a system, 
measuring the randomness or disorder in the atomic arrangement of that 
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state. It increases when a body is iu^ated, for then the random atomic 

motion increas(\s. But it also increas(;s wIkui a regular, orderly motion is 

converted into a random motion. Thus, consider an enclosure containing 

a small piece of crystalline solid at the absolute zero of tempera!,un^, in 

a vacuum. The atoms of the crystal an^ n'gularly arranged and at rest; 

its entropy is zero. Heat the crystal until it vaporizes. The molecules 

are now located in random positions throughout the enclosure and have 

velocities distributed at random. Both types of disorder, in tlu^ coordi¬ 

nates and in the velocities, contribiitx^ to the entropy, whi(*h is now 

large. But we could have reached th(‘ same final state in a diffeixmt way, 

not involving the absorption of heat by the syshmi. W(' could have 

accelerated the crystal at the absolute zero, treating it as a ])r()jectil(‘ and 

doing mechanical work, but Avithout heat flow. We could arranges a 

target, so that the projectile would automaticaally strike tlui target, 

without external action. If the mcK'hanical work which we did on the 

system were equivalent to the lu^at absorbed in the otluT expc^rinunit, 

the final internal energy would be the same in each case. In our second 

experiment, then, when th(' projectile struck the targed. it would be heated 

so hot as to vaporize, filling the enclosure with vapor, and tli(^ final state 

would be just the same as if the vaporization were pro(lu(*ed directly. 

Th(i increase of entropy must then be the sam(% for by hypoth(\sis the 

entropy depends only on the state of the syskun, not on th(‘ path by 

which it has reached that state. In the second cas(^, though the entropy 

has increased, no heat has been absorl)ed. liather, ordered mc^chanical 

energy (the kinetic energy of the i)rojectile as a whole, in which each 

molecule was traveling at the same velocity as every otluir) has been 

converted by the collision into random, disordenal energy. Just this 

change results in an increase of entroi)y. It is i)lain that entropy cannot 

be conserved, in the same sense that matter, energy, and momentum are. 

For here entropy has been produced or created, just by a process of 

changing ordered motion into disorder. 

Many other examples of the two ways of changing entropy could 

be given, but the one we have mentioned illustrates them sufficiently. 

We have considered the increase of entropy of the system; let us now ask 

if the processes can be reversed, and if the entropy can be decreased again. 

Consider the first process, where the solid was heated gradually. Let us 

be more precise, and assume that it was heated by conduction from a hot 

body outside; and further that the hot body was of an adjustable temper¬ 

ature^ and was always kept very nearly at the same temperature as the 

systen^L.we were interested in. If it were just at the same temperature, 

heat wi)Uld not flow, but if it were always kept a small fraction of a degree 

warmer, heat would flow from it into the system. But that process can 

be effectively reversed. Instead of having the outside body a fraction 
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of a degree warmer than the system, we let it be a fraction of a degree 

cooler, so that heat will flow out instead of in. Them things will cool 

down, until finally the system will r(.*turn to the absolutes zero, and every¬ 

thing will be as before. In the direct process heat flows into the system; 

in the inverse process it flows out, an ecpial amount is returned, and when 

everything is finished all })arts of th(^ sysb'in and the exterior are in 

essentially the same state they were at the beginning. But now try to 

reverse tlu^ second ])rocess, in which the solid at absolute zero was 

accelerat(^d, by means of external work, then collided with a target, and 

vaporiz('d. The last steps were taken without external action. To 

reverse it, we should have the molecules of the vapor condense to form a 

proj(U*til(i, all their energy going into ordered kinetics energy. It would 

have to be as shown in a motion pi{*.ture of the collision run backward, 

all the fragments coak^scing into an unbroken bullet. Then we could 

apply a m(;chanical brake to the projectile as it receded from the target, 

and g('t our mechanical energy out again, with nwcTsal of the process. 

But such things do not ha])p(m in nature. The collision of a projectile 

with a target is essentially an irreversible process, which never happens 

backward, and a reversed motion picture of such an event is inherently 

ridiculous and impossible. The statement that sucli events cannot bo 

reversed is one of the (\ss(‘ntial parts of the second law of thermodynamics. 

If we look at the process from an atomic point of view, it is clear why it 

cannot revers(\ The change from ordered to disordered motion is an 

inherently likely change, which can be brought about in countless ways; 

whereas the change from disorder to order is inherently very unlikely, 

almost sure not to happen by c.hance. Consider a jigsaw puzzle, which 

can b(^ put together corrc'ctly in only ont) way. If we start with it put 

together, then remove each piece and put it in a different place on the 

table, we shall certainly disarrange it, and we can do it in almost countless 

ways; while if we start with it taken apart, and remove each piece and 

put it in a different place on the table, it is true that we may happen to 

put it togethc'r in the process, but the chances are enormously against it. 

The real essence of irreversibility, however, is not merely the strong 

probability against the occurrence of a process. It is something deeper, 

coming from the principle of uncertainty. This principle, as we shall 

see later, puts a limit on the accuracy with which we can regulate or 

prescribe the coordinates and velocities of a system. It states that any 

attempt to regulate them with more than a certain amount of precision 

defeats its own purpose: it automatically introduces unpredictable pertur¬ 

bations which disturb the system, and prevent the coordinates and 

velocities from taking on the values we desire, forcing them to deviate 

from these values in an unpredictable way. But this just prevents us 

from being able experimentally to reverse a system, once the randomness 
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has reached the small scale at which the principle of uncertainty operates. 

To make a complicated process like a collision reverse, the molecules 

would have to be given v(}ry definitely determined positions and velocities, 

so that they would just cooperate in such a way as to coalesce and become 

unbroken again; any errors in determining these conditions would spoil 

the whole thing. But we cannot avoid these errors. It is true that by 

chance they may happen to fall into line, tiiough the chance is minute. 

But the important point is that we cannot do anything about it. 

From the preceding (examples, it is clear that we must consider two 

types of processes: reversible and irreversible. The essential feature of 

reversible processes is that things are almost balanced, almost in equilib¬ 

rium, at every stage, so that an infinitc'simal change will swing the motion 

from one direction to the other. Irreversible processes, on the other 

hand, involve complete departure from equilibrium, as in a collision. It 

will be worth while to enumerate a few other common examj)les of 

irreversibhi j)rocesses. Heat flow from a hot body to a cold body at more 

than an infinitesimal difference of temperature is irreversible, for the h(‘at 

never flows from the cold to the hot body. Another example is viscosity, 

in which regular motion of a fluid is converted into random molecular 

motion, or heat. Still another is diffusion, in which originally unmixed 

substances mix with other, so that they cannot be unrnixed again without 

external action. In all these cases, it is possible of course to bring the 

system itself back to its original state. Even the projectile which has 

been vaporized can be reconstructed, by cooling and condensing the 

vapor and by recasting the material into a new projectile. But the 

surroundings of the system would have undergone a permanent change; 

the energy that was originally given the system as mechanical energy, to 

accelerate the bullet, is taken out again as heat, in cooling the vapor, so 

that the net result is a conversion of mechanical energy into heat in the 

surroundings of the system. Such a conversion of mechanical energy 

into heat is often called degradation of energy, and it is characteristic of 

irreversible processes. A reversible process is one which can be reversed 

in such a way that the system itself and its surroundings both return to 

their original condition; while an irreversible process is one such that the 

system cannot be brought back to its original condition without requir¬ 

ing a conversion or degradation of some external mechanical energy into 

heat. 

4. The Second Law of Thermodynamics.—We are now ready to give 

a statement of the second law of thermodynamics, in one of its many 

forms: The entropy, a function only of the state of a system, increases in a 

reversible process by an amount equal to dQ/T (where dQ is the heat 

absorbed, T the absolute temperature at which it is absorbed) and 

increases by a larger amount than dQ/T in an irreversible process. 
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This statement involves a number of featurOvS. First, it gives a way 

of calculating entropy. By sufficient ingenuity, it is always possible to 

find reversible ways of getting from any initial to any final state, pro¬ 

vided both ar(i equilibrium states. Then we can calculate / dQ/T for 

such a reversible path, and the result will be the change of entropy 

between the two states, an integral independent of path. We can then 

measure entropy in a unique way. If we now go from the same initial to 

the same final state by an irreversible path, the change' of entropy must 

still be the same, though now / dQ/T must necessarily be smaller than 

before, and hence smaller than the change in entropy. We see that 

the heat absorbed in an irreversible path must be less than in a reversible 

path between the same end points. Since the change in internal energy 

must be the samc^ in either case, the first law then tells us that the external 

work done by the system is less for the irnwersible path than for the 

reversible one. If our system is a heat engine, whose object is to absorb 

heat and do mechanical work, we see that th(i mechanical work accom¬ 

plished will be less for an irreversible engine than for a n^versible one, 

operating between the same end points. 

It is interesting to consider the limiting cas(^ of adiabatic processes, 

process(\s in which the system interchanges no hc'at with the surroundings, 

the only changes in internal energy coming from mec^hanical work. Wo 

see that in a reversible adiabatic process th(' entropy does not change 

(a convemient way of describing such process(‘s). In an irreversible 

adiabatic process the entropy increases. In i)articular, for a system 

entirely isolated from its surroundings, the entropy increases whenever 

irreversible processes occur within it. An isolated systcmi in which 

irreversible processes can occur is surely not in a steady, equilibrium state; 

the various examples which we have considered an' the rapidly moving 

projectile, a body with different temperatures at different parts (to allow 

heat conduction), a fluid with mass motion (to allow viscous friction), 

a body containing two different materials not separated by an impervious 

wall (to allow diffusion). All these systems have less entropy than the 

state of thermal equilibrium corresponding t-o the same internal energy, 

which can be reached from the original state by irreversible proc(vsses 

without interaction with the outside. This state of thermal equilibrium 

is one in which the temperature is everywhere constant, there is no mass 

motion, and where substances are mixed in such a way that there is no 

tendency to diffusion or flow of any sort. A condition for thermal 

equilibrium, which is often applied in statistical mechanics, is that the 

equilibrium state is that of highest entropy consistent with the given 

internal energy and volume. 

These statements concerning adiabatic changes, in which the entropy 

can only increase, should not cause one to forget that in ordinary changes, 
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in which heat can be absorbed or rejected by the system, the entropy 

can either increase or decrease. In most thermodynamic problems, we 

confine ourselves to reversible changes, in which the only way for the 

entropy to change is by heat transfer. 

We shall now state the second law in a mathematical form which is 

very commonly used. We let S denob', the (‘iitropy. Our previous 

statement is then dS ^ dQ/T, or T dS ^ dQ, tlu^ equality sign holding 

for the reversible, the im^quality for irreversible, processes. But now we 

use the first law, Eq. (2,1), to express dQ in terms of dlJ and dW. The 

inequality becomes at onc(i 

TdS ^ dU + dW, (4.1) 

the mathematical formulation of the second law. For reversible })roc- 

esses, which we ordinarily consider, the equality sign is to be us(»d. 

The second law may be considered as a postulate. We shall see in 

Chap. II that definite consequences can be drawn from it, and they 

prove to be ahvays in agreement with experiment. We notice' that 

in stating it, we have introduced the temperature without apology, for 

the first tinier This again can be justified by its coovsequerices: the 

temperature so defined proves to agree with the temperataire of ordinary 

experience, as defined for example by the gas thermometer. Thc'rmo- 

dynamics is the science that simply starts by assuming the first and 

second laws, and deriving mathematical results from them. Both laws 

are simple and geiu^ral, applying as far as we know to all sorts of processes. 

As a result, w(^ can derive simple, general, and fundamental results from 

thermodynamics, wdiich should be ind(^pendeiit of any particular assump¬ 

tions about atomic and molecular structure, or such things. Thermo¬ 

dynamics has its drawbacks, however, in spite of its simplicity and 

generality. In the first place, there are many problems which it simply 

cannot answer. These are detailed problems relating, for instance, to 

the equation of state and specific heat of particular types of substance's. 

Thermodynamics must assume that these quantities are deU'rmined by 

experiment; once they are known, it can predict certain relationships 

between observed quantities, but it is unable to say what values the 

quantities must have. In addition to this, thermodynamics is limited 

to the discussion of problems in equilibrium. This is on account of the 

form of the second law, which can give only qualitative, and not quanti¬ 

tative, information about processes out of equilibrium. 

Statistical mechanics is a much more detailed science than thermo¬ 

dynamic^ and for that reason is in some w^ays more complicated. It 

undertakes to answer the questions, how is each atom or molecule of the 

substance moving, on the average, and how do these motions lead to 

observable large scale phenomena? For instance, how do the motions ; 
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of the molecules of a gas lead to collisions with a wall which we interpret 

as pressure? Fortunately it is j)ossible to derive some very beautiful 

general tlK'orems from statistical mechanics. In fact^ one can give 

proofs of the first and second laws of thcrmodynamicis, as direct conse- 

quenc^es of the princij)les of statistical mechanics, so that all the results 

of thermodynamics can be considen^d to follow from its methods. But 

it can go much further. It can start with detail(Kl models of matter 

and work through from them to predict the results of large scale experi¬ 

ments on tlu' ma>t t('r. Statistical mechanics thus is much more powerful 

than tliermodyriarnics, and it is essentially just as general. It is some¬ 

what more (a)mplicated, how(‘ver, and somewhat mor(' dependent on the 

(‘xact mod(‘l of tlu' structun' of the material wliich we use. Like thermo- 

dynami(^s, it. is limited to treating })roblems in (equilibrium. 

Kin(‘tic th(eory is a study of tlu; rates of atomic and molecular proc- 

(\sses, tnuib'd by fairly direct methods, without much benefit of general 

})rinciples. If handled properly, it is an (uiormously complicated subject, 

though simple approximations can be made in particular cases. It is 

superior to statistical mc'chanics and thermodynamics in just two respects. 

In the first place, it mak(\s use only of well-known and ekementary 

methods, and for that reason is somewhat more (‘.omprehensible at first 

sight than statistical mechanics, with its more advanced laws. In the 

second place, it can handle problems out of equilibrium, such as the rates 

of (diemical r(^a(?tions and other processes, which cannot be treated by 

thermodynamics or stat.isti(;al mechanics. 

We s(‘(i that each of our three sciem^es of heat has its own advantages. 

A properly trained physicist or chemist should know all three, to be able 

to use whichever is most suitable in a given situation. We start with 

thermodynamics, since it is the most general and fundamental method, 

taking up thermodynamic calculations in the next chapter. Following 

that we treat statistical mechanics, and still later kinetic theory. Only 

then shall we be^ prepared to make a real study of the nature of matter. 



CHAPTER II 

THERMODYNAMICS 

In the last chapter, wo became acquainted with the two laws of 

thermodynamics, but we have not sexui how to use them. In this 

chapter, we shall k'arn the rules of operation of thermodynamics, though 

we shall postpone actual applications until later. It has already been 

mentioned that thermodynamics can give only qualitative information 

for irreversible proc(\sses. Thus, for instance, th(i second law may be 

stated 

dW ZTdS - (W, (1) 

giving an uy)per limit to the work doiu^ in an irreversil)l(‘ process, but not 

predicting its (‘xact amount. Only for rev(u‘sible processes, where the 

equality sign may b(^ used, can thermodynamics make d(^finite predictions 

of a quantitative sort. Consequently almost all our work in this chapter 

will deal with reversible systems. We shall find a number of differential 

expressions similar to Eq, (1), and by proper treatment we can convert 

these into equations relating one or more i)artial derivatives of one 

thermodynamic variable with respect to another. Such equations, 

called thermodynamic formulas, often relate diff(^rent quantitk's all of 

which can be experimentally measured, and hence furnish a check on the 

accuracy of the (experiment. In cases where one of the quantities is 

difficult to measure, they can be used to compute one of the quantities 

from the others, avoiding the necessity of making the experiment at all. 

There are a very great many thermodynamic formulas, and it would be 

hopeless to find all of them. But we shall go into general methods of 

computing them, and shall set up a convenient scheme for obtaining any 

one which we may wish, with a minimum of computation. 

Before starting the calculating of the formulas, we shall introduce 

several new variables, combinations of other quantities which prove to be 

useful for one reason or another. As a matter of fact, we shall work with 

quite a number of variables, some of which can be taken to be inde¬ 

pendent, others dependent, and it is necessary to recognize at the outset 

the nature of the relations between them. In the next section we consider 

the equation of state, the empirical relation connecting certain thermo¬ 

dynamic variables. 

1. The Equation of State,—In considering the properties of matter, 

our system is ordinarily a piece of material enclosed in a container and 
16 
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subject to a certain hydrostatic pressure. This of course is a limited type 

of system, for it is not unusual to have other types of stresses acting, such 

as slK^aring stresses, unilateral tensions, and so on. Thermodynamics 

applies to as general a system as we pl(;ase, but for simplicity we shall limit 

our tnuifmcuit to the (H)nventional case where the only external work is 

done by a change of volumci, acting against a hydrostatic pressure. That 

is, if P is the pr(‘ssure and V the volume of the system, we shall have 

dW = PdV. (1.1) 

In any ca.s(', (‘ven with much more complicated systems, the work done 

will have an analogous form; for K(p (1.1) is simply a force (P) times a 

displaccjment (c/F), and we know that work can always be put in such 

a form. If then', is oc(;asion to set up the thermodynamic formulas for a 

more geiu^ral typ(', of force than a i)ressure, we simply set up dW in a form 

corresj)onding to Eq. (1.1), and proceed by analogy with the derivations 

wliich we shall give here. 

We now have a number of variables :P, E, P, U, and S. How many 

of th(\se, w(' may ask, are independent? The answer is, any two. For 

('xample, with a given system, we may fix the pressure and temperature. 

TIk'u in general the volume is determined, as we can find experimentally. 

The exp(u*im(.uital relation giving volume as a function of pressure' and 

teunperatun' is called the (equation of state. Ordinarily, of course, it is 

not a simple analytical (equation, though in special cases like^ a perfect gas 

it may be;. Inste;ad of expr(;ssing volume as a function of pressure anel 

te'm])erat.ure;, we may simply say that the equation of state e>xpresses a 

rolatie)n betwT;en these three variables, whiedi may eepially we;ll give pres¬ 

sure; as a function of temx)erature and volume, e)r temi)erature as a 

functie)!! of volume; and j)ressure. Of these three variables, two are inde- 

peiielent, one elependent, and it is immaterial which is chosen as the 

d(;pe;ndent variable. 

The eepiation of state does not include all the experimental informa¬ 

tion which we must have about a system or substance. We need to know 

also its heat cay^acity or specific heat*^, as a function of temperature. Sup¬ 

pose, for instance, that we know the specific heat at constant pressure 

Cp as a function of temperature at a particular j)ressure. Then we can 

find the difference of internal energy, or of entroi)y, between any two 

states. From the first state, we can go adiabati(;ally to the pressure at 

which we know Cp. In this process, since no heat is absorbed, the change 

of internal energy equals the work done, which we can compute from the 

equation of state. Then we absorb heat at constant x>ressure, until we 

reach the point from which another adiabatic process will carry us to the 

desired end point. The change of internal energy can be found for the 

process at constant pressure, since there we know Cp, from which we can 
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find the heat absorbed, and since the equation of state will tell us the 

work done; for the final adiabatic process we can likewise find the work 

done and hence the change of internal energy. Similarly we can find the 

change in entropy between initial and final state. In our part icular case, 

assuming the process to be carried out r(‘V('rsibly, th(‘ entropy will not 

change along the adiabatics, but tll(^ (‘haiige of entroj^y will be 

dQ ^ Cp dT 
T 

in the process at constant, pressure. We se(‘, in other w^ords, that the 

difference of internal energy or of (uitropy between any two states can 

be found if we know equation of state and s])eeific heat, and since both 

these quantities have arbitrary additive constants, this is all the informa¬ 

tion whi(ih we can (^xpect to obtain about them anyway. 

Given the equation of states and si)ecific heat, we sf'(^ that we can 

obtain all but two of tlu' quantities P, F, 7', P, provided those two an^ 

known. We have shown this if two of the thn'o cjuantities P, F, T are 

known; but if U and >8 are determined by these quantities, that means 

simply that two out of the fiv(‘ quantities are independent, the rest 

dependent. It is then possible to use any two as independent variabk's. 

For instance, in th(n'modynami(*s it is not unusual to use T and /S, or F 

and >S, as indepc'iident variables, expressing eveuything (ds(^ as functions 

of them. 

2. The Elementary Partial Derivatives.—We can set up a number of 

familiar partial dc^rivatives and thermodynami(*. formulas, from the 

information which we alr(*ady have. We havci five variables, of which 

any two are indej)endent, thc^, rest depend('nt. We can then set up the 

partial derivative of any dependent variable with respect to any inde¬ 

pendent variable, keeping the other independent variable constant. A 

notation is necessary showing in each case what are the two independent 

variables. This is a need not ordinarily appreciated in mathematical 

treatments of partial differentiation, for there the independent variables 

are usually determined in advance and describ('d in words, so that there 

is no ambiguity about them. Thus, a notation, peculiar to thermody¬ 

namics, has been adopted. In any partial derivative, it is obvious that 

the quantity bedng differentiated is one of the dependent variables, and 

the quantity with respect to which it is differentiated is one of the inde¬ 

pendent variables. It is only necessary to specify the other independent 

variable, the one which is held constant in the differentiation, and the 

convention is to indicate this by a subscript. Thus (d>8/dT')p, which is 

ordinarily read as the partial of S with respect to T at constant P, is the 

derivative of S in which pressure and temperature are. independent vari¬ 

ables. This derivative would mean an entirely different thing from the 

derivative of S with respect to T at constant F, for instance. 
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There arc a number of partial derivatives which have elementary 

meanings. Thus, consider the thermal expansion. This is the fractional 

increase of volume per unit rise of temperature, at constant jjressure: 

Th('rmal expansion 
JL/dlA 
V\dtjr 

(2.1) 

Similarly, the isothermal compn^ssibility is tlu^ fractional decrease of 

volume per unit increase of j)ressur(', at constant temperature: 

Isothermal compressibility = (2.2) 

This is the compressibility usually (mi])loyed; sometimt*s, as in considering 

sound waves, we require the adiabatic compressibility, the fractional 

decrease of volume' p('r unit in(a'(*ase of pressure, wh(‘n no heat flows in or 

out. If there is no heat flow, the entropy is unchanged, in a reversible 

process, so that an adiabatic process is one at constant entropy. Then 

we have 

Adiabatic com|)ressibility (2.3) 

The specific heats have simple' fe)rmulas. At constant volume, the heat 

absorbeKl equals the' increases e)f internal energy, since no we)rk is done. 

Since the he^at absorbed also equals the t-emj)erature times the^ ediange of 

entropy, for a reversible proce).ss, anei since', the heat capac'ity at constant 

volume Cv is the heat absorbed per unit change of temi)erature; at constant 

volume, we have the altc'riiative formulas 

Gv = (2.4) 

To find the heat capacity at constant pressure Cp, we first write the form¬ 

ula for the first and second laws, in the case we are working with, where 

the external work comes from hydrostatic pressure and where all processes 

are reversible: 

dU = TdS - P dV, 
or 

TdS - dU + PdV, (2.5) 

From the second form of Eq. (2.5), we can find the heat absorbed, or 

T dS, Now Cp is the heat absorbed, divided by the change of tempera¬ 

ture, at constant pressure. To find this, we divide Eq. (2.5) by dT, 

indicate that the process is at constant P, and we have 

(2.6) 
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Here, and throughout the book, we shall ordinarily mean by Cr and Cf 
not the specific heats (heat capacities per gram), but the heat capacities 

of the mass of material with which we are working; though oftcui, wla^re 

no confusion will arise, we shall refer to them as the specific luuits. 

From the first and second laws, Plq. (2.5), we can obtain a number of 

other formulas irnrnediatc'ly. Thus, consider the' first form of the* (equa¬ 

tion, dU = T dS — P dV. From this we can at once keep the volume 

constant (set dV = 0), and divide by dS, obtaining 

Similarly, keceping entropy c(3nstant, so that we have an adiabatic proc¬ 

ess, we have 

(a= 
But we could equally well have used thee seciond form of Eq. (2.5), obtain- 

{_ 1 ^ ^ 
\du)v t’ \dv/u ¥ 

From these examples, it will be clear how formulas involving j)artial 

derivatives can be found from differential expressions like p]q. (2.5). 

3. The Enthalpy, and Helmholtz and Gibbs Free Energies.—W(^ 
notice that Eq. (2.6) for the specific heat at constant pressure is rather 

complicated. We may, however, rewrite it 

d(U +PV) 
df 

[d{PV)~\ (dV\ 
^^ P is held constant in the differentiation. 

The quantity U + PV comes in sufficiently often so that it is worth giving 

it a symbol and a name. We shall call it the enthalpy, and denote it by 

H. Thus we have 

H == i7 + PF, 

dll dU +PdV + VdP 
TdS + VdP, (3.2) 

using Eq. (2.5). From Eq. (3.2), we see that if dP = 0, or if the process 

is taking place at constant pressure, the change of the enthalpy equals the 

heat absorbed. This is the feature that makes the enthalpy a useful 

quantity. Most actual processes are carried on experimentally at con- 
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stant pr(\ssuro, and if we havc^ t he enthalpy tabiilal^HL^r 

we can very easily find the lu^at absorbed. We see at onee that 

a sim})ler formula than Eq. (2.6). As a matter of fact, the enthalpy fills 

esscaitially the rol(> for processes at constant pressure which the internal 

en(;rf^y does for proc(\sscs at constant voluiiKi. Thus the first form of 

Eq. (2.5), (ill = T dS — P dV, shows that the heat absor})ed at constant 

volume (uiuals the increase of inb^rnal energy, just as Eq. (3.2) shows that 

tlui heat absorbed at constant i)r(‘ssure (equals tlu^ increase of the enthalpy. 

In introducing the entropy, in the last chai.)ter, we stn^sscnl the idea 

that it measured in some way the part of the energy of the body bound up 

in heat, thougli that statcmcnit (jould not lx? mad(' without qualification. 

The entropy its(df, of course, has not iho dimensions of energy, but the 

product TS has. This quantity TS is sonKjtiines called the bound energy, 

and in a somewhat closer way it represents tlu^ (UK'rgy bound as heat. In 

any process, t\u) change in TS is given by T dS + S dT. If now the 

process is reversible and isothermal (as for instances the absorption of 

heat by a mixture of liquid and solid at the melting point, where heat can 

be absorlx'cl without change of temperatun^ iiKToly melting mon^ of the 

solid), = 0, so that ^(TaS) == T dS = dQ. Thus tlnuncrease of bound 

eiK'rgy for a reversible isothermal i)roccss really equals the heat absorbed. 

This is as far as the bound energy can be takcui to represent the energy 

bound as heat; for a nonisothermal process the change of bound energy 

no longer ecpials the heat absorbed, and as we have seen, no quantity 

which is a function of the state alone can represent the total heat absorbed 

from the absolute zero. 

If tlui })ound energy TS represents in a sense the energy bound as 

heat, the remaining part of the internal energy, U — TS, should be in 

t he same sense the mechanical part of the energy, which is available to do 

mec.hanical work. We shall call this part of the energy the Helmholtz 

fr(‘e energy, and denote it by A. Let us consider the (diange of the Helm¬ 

holtz free energy in any process. We have 

By Eq. (1) this is 

or 

A = U - TS, 
dA = dU - TdS - S dT, (3.4) 

dA ^ -dW - S d±o 

-dA ^ dW + SdT. (3.5) 
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For a system at constant temperature, this tells us that the work done 

is less than or equal to the decrease in th(^ Helmholtz free energy. The 

Helmholtz free energy then measur(\s the maximum work which can be 

done by the system in an isothermal change. For a process at constant 

temperature, in which at th(i same time no mechanical work is done, the 

right side of Eq. 0.5) is zero, and we se(^ that in such a proc(\ss the Helm¬ 

holtz free energy is constant for a reversible' i)rocess, but decreases for an 

irreversible process. The Helmholtz free energy will decrease until the 

system reaches an equilibrium state, wluui it will have reached the mini¬ 

mum value consistent with the temperature and with the fact that no 

external work can be done. 

For a system in equilibrium under hydrostatic pressure, w(^ may 

rewrite Eq. (3.5) as 

dA = -P dV - S dl\ (3.6) 

suggesting that the convenient variables in which to express the Helm¬ 

holtz free energy art' the volunit^ and the temjx'rature. In tht' cast' of 

equilibrium, we find from Eq. (3.6) the important rt'lations 

The first of these shows that, at constant temperature, the Helmholtz 

free energy has somt^ of the properties of a potential energy, in that its 

negative derivative with respect to a coordinate (the volume) gives the 

force (the pressure). If A is known as a function of V and Ty the first 

Eq. (3.7) gives a relation between P, F, and T, or the equation of state. 

From the second, we know entropy in terms of bmiperature and volume, 

and differentiating with respect to temperature at constant volume, using 

Eq. (2.4), we can find the specific heat. Thus a knowledge of the Helm¬ 

holtz free energy as a function of volume and tc'miperaturc gives both the 

equation of state and specific heat, or complete information about the 

system. 

Instead of using volume and temperature as independent variables, 

however, we more often wish to use pressure and temperature. In this 

case, instead of using the Helmholtz free energy, it is more convenient to 

use the Gibbs free energy G, defined by the equations 

G = H - TS == U +PV - TS -- A +PV. (3.8) 

It will be seen that this function stands in the same relation to the 

enthalpy that the Helmholtz free energy does to the internal energy. We 

can now find the change of the Gibbs free energy G in any process. By 

definition, we have dG = dH T dS — SdT. Using Eq. (3.2), this is 

dG ^ dU + P dV + V dP - T dS - S dTy and by Eq. (1) this is 

dG:^VdP - S dT. (3.9) 
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For a system at constant pressure and temperature, we see that the Gibbs 

free emu’gy is constant for a reversi})le process but decreases for an irrever¬ 

sible process, reaching a minimum valuii consistent with the pressure and 

temperature for the equilibrium state; just as for a system at constant 

volume the Helmholtz free energy is constant for a reversible process but 

d(H!reas(\s for an irnn^ersible process. As with A, we can get the (upiation 

of state and specific luuit from the derivatives of G, in equilibrium. We 

have 

the first of th(\se giving the volume as a fuiK^tion of ]:)ressure and tempera¬ 

ture, the scicond the (uilropy as a function of pressure and temperature, 

from which we can find Cp by means of Ff}. (2.6). 

The Gibbs free energy G is particularly important on account of actual 

physi(^al processes that occur at (‘onstant pn^ssure and temperature. The 

most important of th('se proc(^sses is a change of phase, as the melting of a 

solid or the vaporization of a li(iuid. If unit mass of a substance changes 

phas(i nna'rsibly at constant ])ressure and tennperature, the total Gibbs 

fn^e eiK^rgy must b(' unchanged. That is, in equilibrium, the Gibbs free 

('nergy per unit mass must b(^ the same for both j^hases. On tho other 

hand, at a temperature and j)ressure which do not correspond to equilib¬ 

rium b(A.ween two phase's, the Gibbs free energie's j)er unit mass will be 

different for the two phases. Then the stable phase under these condi¬ 

tions must be that which has the lower Gibbs free energy. If the systeun 

is actually found in the j^hase of higher Gibbs free energy, it will be 

unstable and will irrevc'rsibly change to the other phase. Thus for 

instance, the Gibbs free eiuTgies of liquid and solid as functions of the 

temperature at atmosphc^ric pre.ssure are r{'])resented by curves which 

cross at the melting point. Below the iiadting point the solid has th(^ 

lower Gibbs free energy. It is possible to have the liquid below the 

melting point; it is in the condition known as supercooling. But any 

slight disturbance is enough to produce a sudden and irreversible solidi¬ 

fication, with reduction of Gibbs free energy, the final stable state being 

the solid. It is evident from these examples that the Gibbs free energy is 

of great importance in discussing phy.sical and chemical processes. The 

Helmholtz free energy does not have any such importance. We shall see 

later, however, that the methods of statistical mechanics lead particularly 

simply to a calculation of the Helmholtz free energy, and its principal 

value comes about in this way. 

4. Methods of Deriving Thermod3mamic Formulas.—We have now 

introduced all the thermodynamic variables that we shall meet: P, F, 

T, S, UyH, Ay G, The number of partial derivatives which can be formed 
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from these is 8 X 7 X 6 = 336, since each partial derivative involves one 

dependent and two independent variables, which must all be diff(n-ent. A 

few of tluise are familiar quantities, as we have seen in Sec. 2, but the great 

majority are unfamiliar. It can be shown,^ however, that a rc'lation can 

be found bet ween any four of these derivatives, and certain of the thermo¬ 

dynamic variables. These relations are the thermodynamic formulas. 

Since there an^ 336 first derivatives, there are 336 X 335 X 334 X 333 

ways of picking out four of these, so that the numbtu* of indepcmdent refla¬ 

tions is this number divided by 4!, or 521,631,180 separate formulas. No 

other branch of physics is so rich in mathematical formulas, and som(^ 

systematic method must be used to bring order into th(' situation. No 

one can be expected to derive any considerable numlx'r of the formulas or 

to keep them in mind. There are four princii)al methods of mathematical 

procedure used to derive these formulas, and in the })r(\s(uit section we 

shall discniss them. Then in the next section we shall d('S(u*ib(^ a sysUun- 

atic procedure for finding any particular formula that wo may wish. The 

four mathematical nudhods of finding formulas are 

1. We have already seen that th(‘re are a number of diffcTcntial refla¬ 

tions of the form 

dx = K dy + L dz^ (4.1) 

where K and L are functions of the variables. The most important rela¬ 

tions of this sort which we have met arc found in Eqs. (2.5), (3.2), (3.6), 

and (3.9), and are 

dU = -PdV + TdS, 
dH ^ VdP +T dS, 
dA = -PdV - S dr, 
dG == VdP-SdT. (4.2) 

We have already seen in Eq. (2,6) how we-can obtain formulas from such 

an expression. We can divide by the differential of one variable, say 

du, and indicate that the process is at constant value of another, say w. 
Thus we have 

In doing this, we must be sure that dx is the differential of a function 

of the state of the system, for only in that case is it proper to write a par¬ 

tial derivative like (dx/du)u;. Thus in particular we cannot proceed in 

this way with expressions for dW and dQ, though superficially they look 

^ For the method of classifying thermodynamic formulas presented in Secs. 4 and 

5, see P. W, Bridgman, Condensed Collection of Thermodynamic Formulas,’^ 
Harvard University Press. 
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like Eq. (4.1). Using the method of Eq. (4.3), a very large number of 

formulas can be formed. A special cas(^ has been seen, for instance, in the 

Eqs. (2.7) and (2.8). This is the case in which u is one of the variables 

y or 2, and w is the other. Thus, suppose u ~ y, w = z. Then we have 

(1). = ^’ and similarly (4.4) 

It is to be noted that, using Eq. (4.4), we may rewrite Eq. (4.1) in the 

form 

dx ~ K dy + L dz 

" di''*' + (S),*' 
a form in which it becomes simply the' familiar matliematical equation 

expressing a total dififerential in terms of partial derivative's. 

2. Suppose we have two derivatives such as {dx/du)z, {dy/du)z, taken 

with respect to the same variable and with the' same variable held con¬ 

stant. Since z is held fixed in both cases, they act like ordinary deriva¬ 

tives with respect to the variable But for ordinary dc'rivatives we 

should have Thus, in this case we have 
dy/du dy 

(ii 
d). 

We shall find that the relation in Eq* (4.6) is of great service in our sys¬ 

tematic tabulation of formulas in the next section. For to find all partial 

derivatives holding a particular z constant, we need merely tabulate the 

six derivatives of the variables with respect to a particular u, holding this 

z constant. Then we can find any derivative of this type by Eq. (4.6). 

3. Let us consider Eq. (4.5), and set x constant, or dx = 0. Then 

we may solve for dy/dz^ and since x is constant, this will be {dy/dz)x- 
Doing this, we have 

(4.7) 
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Using Eq. (4.6), we can rewrite Eq. (4.7) in either of the two forms 

(dj\ 

\dz/x / ’ 

\dx)y 

(S).(i!).(s). = - 
The reader should note carefully the difference between Eq. (4.8) and 

Eq. (4.6). At first glance they resemble each other, except for the differ¬ 

ence of sign; but it will be noted that in Eq. (4.6) each of the three deriva¬ 

tives has the same variable held constant, while in Eq. (4.8) each one has a 

different variable held constant. 

4. We start with Eq. (4.4). Then we use the fundamental theorem 

regarding second partial derivatives: 

[i(S).I - [Ml 
Substituting from Eq. (4.4), this gives us 

(a=(!).■ 

In Eq. (4.10), it is essential that x be a function of the state of the syst('m, 

or of y and z. Four important relations result from applying Eq. (4.11) 

to the differential expressions (4.2). These are 

\dS)y \dV)s 

(S) = (S) ■ \oo/p \or / s 

\dTjy \dVjT 

The Eqs. (4.12) are generally called MaxwelFs relations. 

We have now considered the four processes used in deriving thermo¬ 

dynamic formulas. By combinations of them, any desired relation 

connecting first derivatives can be obtained. In the next section we 

consider the classification of these formulas. 

(4.8) 

(4.9) 
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6. General Classification of Thermodynamic Formulas.—Bridgman^ 

has suggested a vc^ry convenient method of classifying all the thermody¬ 

namic formulas involving first derivatives. As we have pointed out, a 

relation can be found between any four of the dc^rivatives. Bridgman\s 

method is then to write each derivative in terms of three standard deriva¬ 

tives, for which he chooses {dV/dT)p, (f9F/(9P)r, and Ci> = {dH/dT)p, 

These are chosen because they can be found immediately from experi¬ 

ment, the first two being closely related to thermal expansion and 

compressibility [see Eqs. (2.1) and (2.2)]. If now wa wish a relation 

between two derivatives, we can write each in terms of these standard 

derivatives, and the relations will irnmcidiately become plain. Our task, 

then, is to find all but these three of the 336 first partial derivatives, in 

terms of these three. As a matter of fact, we do not have to tabulate 

nearly all of these, on account of the usefulness of Eq. (4.6). We shall 

tabulate all derivatives of the form {dx/dT)pj (dx/dP)T) {dx/dT)v, and 

{dx/dT)^. Then by application of Eq, (4.6), we can at once find any 

derivative whatevc'r at constant P, constant T, constant F, or constant 

S. We could (jontiniK^ tlui same thing for finding derivatives holding the 

other quantities fixed; but we shall not need such derivatives very often, 

and they are very easily found by apjdication of methods (2) and (3) of 

the preceding section, and by the use of our tables. We siiall now tabulate 

these derivatives, later indicating the derivations of the only ones that 

are at all involved, and giving examples of tlu'ir api^lication. We shall 

be slightly more gcuural than Bridgman, in that alternative forms are 

given for some of the equations in terms either of Cp or CV. 

Table I-l.—Table of TiiEitMODYNAMic Relations 

\dT/p \0TJp 

/ds\ _ Cp 

\yfjp “ T 

(fX-' 

^ See reference under Sec. 4. 
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Table I-l.—Table of Thermodynamic Relations {Continued) 
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Table I-l.—Table of Thermodynamic Relations (Continued) 

The formulas of Table 1-1 all follow in very obvious ways from the 

methods of Sec. 4, except jierhaps the relation betwc'cn Cv and Cf, used 

in the derivatives at constant V and constant S. To prove the relation 

between these two specific heats, we proceed as follows. We have 

“ <*•') 

We subtract the first of Eqs. (5.1) from the second, and set dV = 0, 

obtaining 

(Cp - Cv)dT = ri^^ dP. 
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Dividing by dT^ this is 

the result used in the formulas of Table I-l. The result of Eq. (5.2) is 

an important formula, and is the generalization holding for all substances 

of the familiar formula Cp — Cv — riR holding for ])erfect gas(\s. It 

serves in any case to find Cp — Cv from th(^ ecpiation of state. Since 

(dV/dP)T is always negative, we see that Cp is always greater than Cv. 
6. Comparison of Thermodynamic and Gas Scales of Temperature.— 

In Chap. I, Sec. 4, we have discussed the thermodynamic temperature, 

introduced in the statement of the sec.ond law of thermodynamics, and we 

have mentioned that it can be proved that this is the same temperature 

that is measured by a gas thermometer. We are now in position to prove 

this fact. First, we must define a perfect gas in a way that could be 

applied experimentally without knowing any temperature scale except 

that furnished by the gas itself. We can define it as a gas which in the 

first place obeys Boyle’s law: PF = constant at constant temperature, or 

PV = f(T), where T is the thermodynamic temperature, and / is a func¬ 

tion as yet unknown. Secondly, it obeys what is called Joule’s law: the 

internal energy U is independent of the volume at constant temperature. 

These assumptions can both be proved by direct experiment. We can 

certainly observe constancy of temperature without a temperature scale, 

so that we can verify Boyle’s law. To check Joule’s law, we may consider 

the free expansion of the gas. We let the gas expand irreversibly into 

a vacuum. It is assumed that the process is carried out adiabatically, 

and since there is no external work done, the internal energy is unchanged 

in the process. We allow the gas to come to equilibrium at its new 

volume, and observe whether the temperature is the same that it was 

originally, or different. If it is the same, then the gas is said to obey 

Joule’s law. To check the mathematical formulation of this law, we note 

that the experiment of free expansion tells us directly that the tempera¬ 

ture is independent of volume, at constant internal energy: {dT/dV)u = 0. 

But by Eq. (4.9), we have 

Equation (6.1) states that the internal energy is independent of volume 

at constant temperature, the usual statement of Joule’s law. 

Without further assumption about the gas, we can now prove that 

f{T) = constant X T, so that the pressure of a perfect gas at constant 
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volume is proportional to the thermodynamic temperature, and if we use 

proper units, the gas scale of temperature is identical with the thermo¬ 

dynamic scale. Using Table I-l we have the important general relation 

giving the change of internal energy with volume of any substance at 

constant temperature'. We set this equal to zero, on account of Joule^s 

law. F'rom the equation of state. 

dTjy y ' 7(T)' (6.3) 

Substituting Eq. (6.3) in Eq. (6.2), and canceling out a factor P, we have 

or 

T 
f'iT) ^ . 
fifj 

d In/ = d In T, In f{T) = In T + const., 

f{T) = const. X P, (6.4) 

which was to be proved. 

Instead of defining a perfect gas as we have done, by Boyle^s law and 

Joule’s law, we may pn'h'r to assume that a thermodynamic temperature 

scale is known, and that the perfect gas satisfies the general gas law 

PV = const. X T. Then we can at once use the relation (6.2) to calcu¬ 

late the change of internal energy with volume at constant temperature, 

and find it to be zero. That is, we show directly by thermodynamics that 

Joule’s law follows from the gas law, if that is stated in terms of the 

thermodynamic temperature. 



CHAPTER III 

STATISTICAL MECHANICS 

Thermodynamics is a simple, gcaieral, loj2;ical science, based on two 

postulates, the first and second laws of thermodynamics. We have seen 

in the last chapter how to deriv(‘ r(‘sults from these laws, though we have 

not used them yet in our applications. But we have seen that they are 

limited. Typical results are like Eq. (5.2) in Chap. II, giving the differ¬ 

ence of specific heats of any sul)stanc(', Cp — Cr, in terms of dcuivatives 

which (^an be found from th(‘ ecpiatk)!! of state. Thermodynamics can 

give relations, but it cannot deprive the spc^cific heat or equation of state 

directly. To do that, w(^ must go to tlu‘ statistical or kinetic methods. 

Even the second law is simply a i)ostulat(\ verified bt'cause it leads to 

correct results, but not derived from sim])l(‘r mechanical priiuaples as far 

as thermodynami(*s is concerned. We shall now take up the statistical 

method, showing how it can h^ad not only to the equation of state and 

specific heat, but to an understanding of the sec.ond law as well. 

1. Statistical Assemblies and the Entropy.—To apply statistics to 

any problem, we must have a great many individuals whose average 

properties we are interested in. We may ask, what are the individuals to 

which we apply statistics, in statistical mechanics? The answer is, they 

are a great many repc^titions of the same experiment, or replicas of the 

same system, identical as far as all large-scale, or macroscopic, properties 

are (ioncernc^d, but differing in the small-scale, or microscopic, properties 

which we cannot directly observe. A collection of such replicas of the 

same system is called a statistical assembly (or, following Gibbs, an 

ensemble). Our guiding principle in setting up an assembly is to arrange 

it so that the fluctuation of microscopic properties from one system to 

another of the assembly agrees with the amount of such fluctuation which 

would actually occur from one repetition to another of the same 

experiment. 

Let us ask wdiat the randomness that we associated with entropy in 

Chap. I means in terms of the assembly. A random system, or one of 

large entropy, is one in which the microscopic properties may be arranged 

in a great many different ways, all consistent with the same large-scale 

behavior. Many different assignments of velocity to individual mole¬ 

cules, for instance, can be consistent with the picture of a gas at high 

temperatures, while in contrast the assignment of velocity to molecules 

at the absolute zero is definitely fixed: all the molecules are at rest. Then 
32 
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to re})resent a random state we must have an assembly which is dis¬ 

tributed over many microscopic states, the randomness being measured 

by the wideness of the distribution. We can make this idea more precise. 

Following Planck, we may to a particular microscopic state of the 

system as a complexion. We may describe an assembly l)y stating whaf 

fraction of the systems of the asseunbly is found in each possible com¬ 

plexion. We shall call this fraction, for the fth complexion, /y, and shall 

refer to the se't of//s as th(' distribution function d(^scril)ing the assembly. 

Plainly, since all systtuns must be in one com])lexion or another, 

= c (1.1) 
i 

Then in a random assembly, d(‘scribing a system of large entropy, there 

will l)e systems of the asscunbly distribut(^d ov(‘r a great many complex¬ 

ions, so that many//s will be different from zero, each oiK' of these frac¬ 

tions being necessarily small. On the oth(T hand, in ati assembly of low 

(aitropy, systems will be distributed over only a small number of com¬ 

plexions, so that only a few//s will be diffenait from zero, and these will 

be comparativ(‘ly large. 

We shall now postulate a mathematical definition of entropy, in terms 

of the//s, which is large in the case of a random distribution, small other¬ 

wise. This definition is 

S=-h'^i\xiU (1.2) 
i 

Here k is a constant, called Boltzmann^s constant, which will appear fre¬ 

quently in our statistical work. It has the same dimensions as entropy, 

or specific heat, that is, eiu'rgy divided by temperature. Its value in 

absolute units is 1.379 X 10~’® erg per degree. This value is derived 

indirectly; using Eq. (1.2), for the entropy, one can derive the perfect 

gas law and the gas constant, in terms of /c, thereby determining k from 

experiment. 

It is easy to see that Eq. (1.2) has the required property of being 

large for a randomly arranged system, small for one with no randomness. 

If there is no randomness at all, all values of fi will be zero, except one, 

which will be unity. But the function / In / is zero when / is either zero or 

unity, so that the entropy in this case will be zero, its lowest possible 

value. On the other hand, if the system is a random one, many com¬ 

plexions will have fi diffe^rent from zero, equal to small fractions, so that 

their logarithms will be large negative quantities, and the entropy will be 

large and positive. We can see this more clearly if we take a simple 

case: suppose the assembly is distributed through W complexions, with 
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equal fractions in each. The value of each fi in these complexions is 
1/Wj while for other complexions fi is zero. Then we have 

S = -kwL In w 
kin W, 

JL^ 
W 

(1.3) 

The entropy, in such a case, is i)roportional to the logarithm of the numlx^r 
of complexions in which systems of the assembly can be found. As this 
number of complexions incn^ases, the distribution becomes more random 
or diffuse, and the (mtropy increase's. 

Boltzmann^ based his tlu'ory of the rcdatioii of probability to (aitropy 
on Eq. (1.3), rather than using the more general relation (1.2). He called 
W the thermodynamic probability of a state, arguing much as we have 
that a random state, which is inherently likely to be realizc^d, will have a 
large value of W. Planck^ has shown by th(' following simple argument 
that the logarithmic form of Kq. (1.3) is reasonable. Suppose the system 
consists of two parts, as for instance two diffc'rent massevs of gas, not con¬ 
nected with each other. In a given state, represented by a given assem¬ 
bly, let there be Wi complexions of the first part of the system consistent 
with the macroscopic description of tlu* state, and W2 complexions of the 
second part. Then, since the two parts of th(' syst(un are independent of 
each other, there must be W1W2 complexions of the combincid syst(‘m, 
since each complexion of the first part can b(^ joimxl to any one of ihi) 
complexions of the se(K)nd part to give a complexion of the combined 
system. We shall then find for the entropy of the combined system 

S = k In W1W2 

= kill Wi +kin W2. (1.4) 

But if we considered the first part of the system by itself, it would have 
an entropy = A; In TEi, and the second part by itself would have an 
entropy S2 = k In TP2. Thus, on account of the relation (1.3), we have 

S = Si + S2. (1.5) 

But surely this relation must be true; in thermodynamics, the entropy 
of two separated systems is the sum of the entropies of the parts, as we 
can see directly from the second law, since the changes of entropy, dQjT, 
in a reversible process, are additive. Then we can reverse the argument 
above. Equation (1.5) must be true, and if the entropy is a function of 
Wj it can be shown that the only possible function consistent with the 
additivity of the entropy is the logarithmic function of Eq. (1.3). 

^See for example, L. Boltzmann, “Vorlesungen i'lber Gastheorie,’^ Sec. 6, J, A. 
Barth. 

®See for example, M. Planck, ^‘Heat Radiation,Sec. 119, P. Blakiston^s Sons & 
Company. 
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Going back to our more general formula (1.2), we can show that if 

the assembly is distributed through W complexions, the entropy will have 

its maximum value when the//s are of equal magnitude, and is reduced 

by any fluctuation in/i from cell to cell, verifying that any concentration 

of systems in particular complexions reduces the entropy. Taking tlu* 

formula (1.2) for entropy, w(i find how it changes when the//s are varied. 

Differentiating, we havci at once 

dS ^ +\xvj,)dfi. (].6) 
i 

But we know from Eq. (1.1) that “ b from which at once 
i 

Xdfi = 0. (1.7) 
i 

Thus the first term of Eq. (1.6) vatiishes; and if we assume that the 

density is uniform, so that In /,; is really indej)end(mt of we can take it 

out of the summation in Eq. (1.6) as a common factor, and the remaining 

term will vanish too, giving dS = 0. That is, for uniform density, the 

variation of the entropy for small variations of the assembly vanishes, a 

necc^ssary condition for a maximum of the entropy. A little further 

investigation would convince us that this really gives a maximum, not a 

minimum, of entropy, and that in fact Fa\. (1.3) gives the absolute maxi¬ 

mum, the highest value of which S is capable, so long as only W complex¬ 

ions are represented in the assembly. The only way to get a still greater 

value of S would be to have more terms in the summation, so that each 

individual fi could be even less. 

We have postulated a formula for the entropy. How can we expect 

to x^rove that it is correct? We can do this only by going back to the 

second law of thermodynamics, showing that our eiitroi>y has the i)rox>- 

erties dt^manded by that law, and that in terms of it the law is satisfied. 

We have already shown that our formula for the entropy has one of the 

I)roperties demanded of the entropy: it is determined by the state of the 

system. In statistical mechanics, the only thing we can mean by the 

state of the system is the statistical assembly, since this determines 

average or observable properties of all sorts, and our formula (1.2) for 

entropy is determined by the statistical assembly. Next we must show 

that our formula represents a quantity that increases in an irreversible 

process. This will be done by qualitative but valid reasoning in a later 

section. It will then remain to consider thermal equilibrium and reversi¬ 

ble processes, and to show that in such processes the change of entropy is 

dQ/T, 
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2. Complexions and the Phase Space.—We wish to find how our 

formula for the entropy changes in an irreversible process. To do this, 

we must find how the fiS change with time, or how systems of the assem¬ 

bly, as time goes on, change from one complexion to another. This is a 

problem in kineti(^s, and we shall not take it up quantitatively until the 

chapter on kinetic methods. For the present we shall be content with 

qualitative discussions. The first thing that we must do is to get a more 

precise definition of a com})kixioii. We have a (un*tain amount of informa¬ 

tion to guide us in making this definition. We are trying to make our 

definition of entropy agree with ('.xperience, and in particular we want the 

state of maximum entropy to be the stable, equilibrium state. But we 

have just seen that for an assembly distributed through W complexions, 

the state of maximum entropy is that in which equal numbers of systems 

are found in each complexion. This is commonly expressed by saying 

that complexions have eepial a priori probability; that is, if we have no 

specific information to t lu^ contrary, we are as likely to find a system of an 

assembly in one cornph'xion as in another, in eepiilibrium. Our definition 

of a complexion, then, must be consistent with this situation. 

The mc'thod of defining complexions depends on whether we are treat¬ 

ing our systems by classical, Newtonian nu^chanics or by quantum tluiory. 

First we shall take up classical mechanics, for that is more familiar. But 

later, when we describe the methods of e(uant\im theory, we shall observe 

that that theory is more correct and more fundamental for statistical 

purposes. In classical mechanics, a system is described by giving the 

coordinates and velocities of all its partichis. Instead of the velociti(\s, 

it proves to be more desirable to use the momenta. With rectangular 

coordinates, the momentum associated with each coordinate is simply the 

mass of the particle times the (corresponding component of velocity; with 

angular coordinate's a momentum is an angular momentum; and so on. If 

there are N coordinates and N momenta (as for instance the rectangular 

coordinates of iV/3 particles, with tludr momenta), we can then visualize 

the situation by setting up a 2N dimensional space, called a phase space, 

in which the coordinates and momenta are plotted as variables, and a 

single point, called a representative point, gives complete information 

about the systc^m. An assembly of systems corresponds to a collection of 

representative points, and we shall generally assume that there are so 

many systems in the assembly that the distribution of representative 

points is practically continuous in the phase space. Now a complexion, 

or microscopic state, of the system must correspond to a particular point, 

or small region, of the phase space; to be more precise, it should corre- i 

spond to a small volume of the phase space. We subdivide the whole 

phase space into small volume elements and call each volume element a 
complexion, saying that /i, the fraction of systems of the assembly in a 
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particular complexion, simply equals the fraction of all representative 

points in the corresponding volume element. The only question that 

arises, then, is the shape and size of volume elements representing 

complexions. 

To answer this question, we must consider* how points move in the 

j>hase spacer. We must know the time rates of change of all coordinates 

and momcuita, in terms of the coordmat(\s and momc'iita themselves. 

Newton\s second law gives us the time rate of change of each momentum, 

stating that it equals the corresponding component of force, which is a 

function of the coordinates in a conservative system. The time rate of 

change of each coordinate is simply the corn^sponding velocity com¬ 

ponent, which can be found at once from the momentum. Thus we can 

find what is essentially the 2N dimensional velocity vc^ctor of each repre¬ 

sentative point. This velocity vector is determined at each point of 

phase space and defines a rate of flow, the reju'esentative points streaming 

through the phase space as a fluid would stream through ordinaiy space. 

We are thus in a position to find how many points enter or leave each 

elem(‘nt of volume, or each complexion, per unit time, and therefore to 

find the rate at which the fraction of systems in that complexion changes 

with time. It is now easy to prove, from the eciuations of motion, a 

general theorem calk'd Liouville’s theorem.^ This theorem states, in 

mathematical language, the following fact: the swarm of points moves in 

suclva way that the density of points, as we follow along with the swarm, 

newer changes. The flow is like a streamline flow of an incompressible 

fluid, each particle of fluid always prese^rving its own density. This does 

not mean that the density at a given point of spae^e does not change with 

time; in general it does, for in the course of the flow, first a demse part of 

the swarm, then a less dense one, may w(dl be swept by the point in 

question, as if we had an incompressible fluid, but one whose density 

changed from point to point. It does mean, however, that we can find a 

very simple condition which is necessary and sufficient for the density 

at a given point of space to be independent of time: the density of points 

must be constant all along each streamline, or tube of flow, of the points. 

For then, no matter how long the flow continues, the portions of the 

swarm succcvssively brought up to the point in question all have the same 

density, so that the density there can never change. 

To find the condition for equilibrium, then, we must investigate 

the nature of the streamlines. For a periodic motion, a streamline will be 

closed, the system returning to its original state after a single period. 

This is a very special case, however; most motions of many particles are 

not periodic and their streamlines never close. Rather, they wind around 

^ For proof, see for example, Slater and Frank, Introduction to Theoretical 

Physics,'^ pp, 305-366, McGraw-Hill Book Company, Inc., 1933, 
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in a very complicated way, coming in the course of time arbitrarily close 

to (^very point of phase space corresponding to the same total energy (of 

course the energy cannot change with time, so that the representative 

point must stay in a region of constant energy in the phase space). Such 

a motion is called quasi-ergodic, and it can be shown to be the general 

type of motion, periodic motions being a rare exception. Then, from the 

statement in the last paragraph, we see that to have a distribution inde¬ 

pendent of time, we must have a d(aisity of points in phase space which 

is constant for all regions of the same energy. But on the other hand 

thermal equilibrium must correspond to a distribution independent of 

time, and we have seen that the state of maximum entropy is one in which 

all complexions have tlu^ same number of systems. These two state¬ 

ments arc only com])atible if each complexion (jorresponds to the same 

volume of phase sj)ace. For then a constant volume density of points, 

which by Liouville\s th(H)rem corrc'sponds to a distribution independent 

of time, will at th(' same time correspond to a maximum entropy. We 

thus draw the important conclusion that regions of ecjual volume ini)hase 

space have equal a ]:)riori probability, or that a complexion corresponds 

to a quite definite volume of phase space. Classical mechanics, however, 

does not lead to any way of saying how large this volume is. Thus it 

cannot lead to any unique definition of the entropy; for the/t\s depend on 

how large a volume each complexion corresponds to, and they in turn 

determiiK' the entropy. 

3. Cells in the Phase Space and the Quantum Theory.—Quantum 

mechanics starts out quite differently from classical mechanics. It does 

not undertake to say how the coordinates and momenta of the particles 

change as time goes on. Rather, it is a statistical theory from the begin¬ 

ning: it sets up a statistical assembly, and tells us directly how that 

assembly changes with time, without th(} intermediate step of solving for 

the motion of individual systems by Newton^s laws of motion. And it 

describes the assembly, from the outset, in terms of definite complexions, 

so that the problem of defining the complexions is answered as one of the 

postulates of the theoiy. It sets up quantum states, of equal a priori 

probability, and describes an assembly by giving the fraction of all sys¬ 

tems in each quantum state. Instead of giving laws of motion, like 

Newton^s second law, its fundamental equation is one telling how many 

systems enter or leave each quantum state per second. In particular, if 

equal fractions of the systems are found in all quantum states associated 

with the same energy, we learn that these fractions will not change with 

time; that is, in a steady or equilibrium state all the quantum states are 

equally occupied, or have equal a priori probabilities. We are then 

entirely justified in identifying these quantum states with the complex¬ 

ions which we have mentioned. When we deal with quantum statistics. 
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fi will refer to the fraction of all systems in the ^th quantum state. This 

gives a d(^firiite meaning to the complexions, and leads to a definite numer¬ 

ical value for the entropy. 

Quantum theory i)rovides no unique way of s(‘tting up the quantum 

states, or the comidexions. We can understand this much b(‘tter 

considering the phas(‘ spacer. Many features of the quantum theory can 

b(^ described by dividing the phase sj)ace into cells of equal volume, and 

associating eacdi cell with a quantum state. The volume of these cells is 

uniquely fixed by the (juantum theory, but not tlarir shape. We can, for 

(example, take simply rectangular cells, of dimensions Aqi along the axis 

representing the first coordinate, Ag2 for the second coordinate, and so on 

up to for the A^th coordinate, and Api to Aps for the corresponding 

momenta. Then thc're is a very simi)le rule giving the volume of such a 

cell: we have 

AffiApi ~ h, (3.1) 

where h is Flanck\s constant, ecpial numerically to 6.61 X 10“^^ absolute 

units. Thus, with N coordinates, the 2A'-dimensional volume of a cell 

is h^. 
We can equally well take otlu^r shapes of cc'lls. A method which is 

often useful can Ix' illustratc'd with a ))roblem having but one coordinate q 
and one momentum p. Then in our two-dimensional phase spacx^ we can 

draw a curve of constant enc^rgy. Thus for instance consider a parti(ile 

of mass m held to a ])Osition of equilibrium by a restoring force propor¬ 

tional to the displacemcmt, so that its energy is 

£ = ^ (3.2) 2m 

where v is the frequency with which it would oscillate in classical 

mechanics. The curves of constant energy are then ellipses in the p-q 
space, as we see by writing the equation in the form 

__ HL _ +__^ ] (3 3) 

(\/2mEy (rs/Yl’lv'^mv^y 

the standard form for the equation of an ellipse of semiaxes ■\/2mE and 

y/EJ^tt^ mv^. Such an ellipse is shown in Fig. III-l. Then we can choose 

cells bounded by such curves of constant energy, such as those indicated 

in Fig. III-l. Since the area between curves must be h, it is plain that the 

nth ellipse must have an area nA, where n is an integer. The area of an 

ellipse of semiaxes a and h is rob; thus in this case we have an area of 

Tr\/2mE\/'EJ2Tr^mv^ = E/v^ so that the energy of the ellipse connected 
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with a given integer n is given by 

En = nhv. (3.4) 

Another illustration of this method is provided by a freely rotating wheel 

of moment of iiun-tia I. Tlu^ natural coordinate tn use to describe it is 

the angle d, and tlu' (a)rr(^sponding momentum pe is the angular momen- 

Fig. III-l.—Colls in phase space, for the linear oscillator. The shaded area, between 
two ellipses of constant energy, has an area h in the quantum theory. 

turn, 7co, where cn = dd/dt is the angular velocity. If no torques act, the 

energy is wholly kinetic, equal to 

K == = Vey2L (3.5) 

Then, as shown in Fig. TII-2, lines of constant energy are straight lines at 

constant value of pe. Since? 0 goes from zero to 27r, and then the motion 

ve 

4h/2ir 

3h/^7r 

Ih/ZK 

h/lTT 

r(‘p(\ats, w'e use only values of th(? coordinate 

in this rang(b Then, if the cells are set up so 

that th(' area of (^ach is h, we must have them 

bounded by the lines 

Ve 
nh 

(3.6) 

so that 

line is 

th(' energy associated with the nth 

e 
0 2ir 

Fig. III-2.— Cells in phase 
space, for the rotator. The 
shaded area has an area of h 
in the quantum theory. 

Er. 
71%^ 

(3.7) 

In terms of these cells, we can now under¬ 

stand one of the most fundamental statements 

of the quantum theory, the principle of uncjer- 

tainty: it is impossible to regulate the coordinates and momenta of a system 

more accurately than to require that they lie somewhere within a given cell. 

Any attempt to be more precise, on account of the necessary clumsiness 

of nature, will result in a disturbance of the system just great enough to 
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shift the representative points in an unpredictable way from one part of 

the cell to another. The best we can do in sotting uj) an assembly, in 

other words, is to specify what fraction of the systems will be found in 

each quantum state or compkixion, or to give th(^ //s. This does not 

imply by any means, howev('r, that it do(\s not mak(^ sense to talk about 

the coordinate's and momemta of particles with more accuracy than to 

locate the represeaitative point in a given c('ll. Th('re is nothing inher¬ 

ently imjjossibk^ in knowing th(i coordinate's and raomeuita of a system as 

accurately as we ple'ase; the re^striction is only that we cannot pre'pare a 

system, or an assembly of systems, with as preicisely determined coordi¬ 

nates and momenta as we might please. 

Since we may be^ interested in ])recise‘ values of the^ mome^nta and 

e*(joreiinate‘s of a system, tluTe must be something in tlie mathematical 

framework of the the^ory to de\scribe them. We must be‘ al^k' to answer 

quc'stions of this sort: givem, that an assembly has a give'n fraction of its 

systems in e‘ae‘h e^ell of phase space, what is the probability that a certain 

quantity, sue^h as one of the coordinate's, lie^s wdthin a ce*rtain infinitesimal 

range' of values? Put in another way, if wa know^ that a system is in a 

giveni ce'll, what is the' probability that its ce>ordinate'S and momenta lie 

in definite range's? The quantum the^ory, and si)ecifically the wave 

me'chanie's, can answer such quc'stions; and bc'cause it can, we are' justified 

in re'gareling it as an essentially statistical theory. By c'xperimental 

methoels, we can insure that a systean lie's in a given coll of phase space. 

That is, we' can prepare an assembly alU)f whose) repre'sentative' pefints lie^ 

in this singles cell, but this is the nearc'st we can cemie te> seating up a sys- 

te'iii of quite definite coordinate's anel mome'iita. Having pre'pareel such 

an assembly, howe^ver, epiantum the^ory says that the coordinates and 

mome'iita will be distributed in phase space in a definite' way, epute inde¬ 

pendent e)f the way we prepared the assembly, and therefore epiite unpre¬ 

dictable from the previous history of the) system. In other words, all 

that the theory can do is to give us statistical information about a system, 

not detailed knowleeige of e^xactly what it will do. This is in striking 

contrast to the classical mechanics, which allows precise prediction of the 

future of a system if we know its past history. 

Tlie cc'lls of the type described in Figs. Ill-l and III-2 have a special 

property: all the systems in such a quantum state have the same energy. 

The momenta and coordinates vary from system to system, roughly as if 

systems were distributed uniformly through the cell, as for example 

through the shaded area of either figure, though as a matter of fact the 

real distribution is much more complicated than this. But the energy is 

fixed, the same for all systems, and is referred to as an energy level. It is 

equal to some intermediate energy value within the cell in phase space, as 

computed classically. Thus for the oscillator, as a matter of fact, the 
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energy levels are 

which, as we see from Kq. (3.4), is the energy value in the middle of the 

cell, and for a rotator the (aiergy value is 

En = nin + (3.9) 

approximately the mean value through the cell. The integer 7i is called 

the quantum number. The distribution of points in a (luantiim state of 

fixed energy is indepeaKhait of time, and for tliat rc'ason the stat(^ is called 

a stationary state. This is in contrast to otluT ways of seating up cells. 

For instance, with rectangular cells, we fiiid in general that the systems in 

one state have a distribution of energi('.s, and as tinu' goes on systems jump 

at a certain rate from one states to another, having what are called quan¬ 

tum transitions, so that the number of systems in each state changes with 

time. OiK^ can draw a certain parallel, or corres])ondence, between the 

jumping of systems from one quantum state to another, and the uniform 

flow of representative points in the phas(‘ space in classical mechanics. 

Sui)pose we have a (4assical assembly whose density in the phase space 

changes very slowly from point to point, changing by only a small amount 

in going from what would be one quantum cell to another. Then we can 

set up a quantum assembly, the fraction of systems in each quantum state 

being given by the fraction of the classical systems in the corresponding 

cell of phase space. And the time rate of change of the fraction of sys¬ 

tems in each quantum state will be given, to a good approximation, by 

the corresponding classical value. This correspondence breaks down, 

however, as soon as the density of the classical assembly changes greatly 

from cell to cell. In that case, if we set up a ciuantum assembly as before, 

we shall find that its time variation docs not agree at all accurately with 

what we should get by use of our classical analogy. 

Actual atomic systems obey the quantum theory, not classical 

mechanics, so that we shall be concerned with quantum statistics. The 

only cases in which we can use classical theory as an approximation are 

those in which the density in phase varies only a little from state to state, 

—the case we have mentioned in the last paragraph. As a matter of fact, 

as we shall see later, this corresponds roughly to the limit of high tempera¬ 

ture. Thus, we shall often find that classical results are correct at high 

temperatures but break down at low temperature. A typical example of 

this is the theory of specific heat; we shall find others as we go on. We 

now understand the qualitative features of quantum statistics well enough 

so that in the next section we can go on to our task of understanding the 
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nature of irreversible processes and the way in which the entropy increases 

with time in such processes. 

4. Irreversible Processes.—We shall start our discussion of irreversi¬ 

ble processes using classical mechanics and Liouville^s theorem. Let us 

try to form a picture of what happens wluai we start with a system out of 

equilibrium, with constant eiKTgy and volume, follow its irreversible 

change into equilibrium, and examine its final stc^ady state. To have a 

spe(afic example, consider th(‘ ap})roach to eciuilibrium of a perfect gas 

having a distribution of velocities which originally does not correspond 

to thermal equilibrium. Assume that at th(^ start of an experiment, a 

mass of gas is rushing in one direction with a large velocity, as if it had just 

been shot into a contaiiu'T from a jet. This is far from an equilibrium 

distribution. The random kinetic energy of the molecules, which we 

should interpret as heat motion, may be very small and the temperature 

low, and yet th(‘y have a lot of kiiu^tic (mergy on a(a*ount of their motion 

in the jet. In the phas(^ s])ace, the dimsity function will be large only in 

the very restricted region wIku-c all molecules have almost the same 

velocity, the velocity of the jet (that is, the (equations 

in 1 m2 
Vxy etc., 

where Vx is the x component of velocity of the jet, are almost satisfied by 

all points in the assembly), and all haxo coordinates near the coordinate 

of the center of gravity of the rushing mass of gas (that is, the equations 

Xi = X2 = • • • = X, where A" is the x coordinate of the center of gravity 

of the gas, are also approximately satisfied). We see, then, that the 

entropy, as defined by \nfi, will be small under these conditions. 

i 
But as time goes on, the distribution will change. The jet of molecules 

will strike the opposite wall of the container, and after bouncing back 

and forth a few times, will become more and more dis.sipated, with irregu¬ 

lar currents and turbulence sc^tting in. At first we shall describe these 

things by hydrodynamics or aerodynamics, but we shall find that the 

description of the flow gets more and more complicated with irregularities 

on a smaller and smaller scale. Finally, with the molecules colliding 

with the walls and with each other, things will be(‘ome extremely involved, 

some molecules being slowed down, some speeded up, the directions 

changed, so that instead of having most of the molecules moving with 

almost the same velocity and located at almost the same point of space, 

there will be a whole distribution of momentum, both in direction and 

magnitude, and the mass will cease its concentration in space and will be 

uniformly distributed over the container. There will now be a great 



44 INTRODUCTION TO CHEMICAL PHYSICS [Chap. Ill 

many points of phase space representing states of the system which could 

equally well be this final state, so that the entropy will be large. And the 

increase of entropy has come about at the stage of the process where we 

cease to regard the complication in the motion as large-scale turbulence, 

and begin to classify it as randomness on a microscopic or atomic scale. 

Finally the gas will come to an equilibrium state, in which it no longer 

changes appreciably with time, and in this state it will have reached its 

maximum entropy consistcait with its total energy. 

This qualitative argument shows what we understand by an irreversi¬ 

ble process and an increase of entropy: an assembly, originally concen¬ 

trated in phase spac(', chango^s on account of the motion of the system in 

such a way that the points of the assembly gradually move apart, filling 

up larger and larger regions of phase space. This is likely, for there are 

many ways in which it can happen; whihi the reverses process, a concentra¬ 

tion of points, is very unlikely, and we can for practical purposes say that 

it does not happen. 

The statement w(^ have just made seems at first to be directly con¬ 

trary to Liouville^s theorem, for w^e have just said that points originally 

concentrated become dispersed, while Liouville^s theorem states that as 

we follow along with a i^oint, the density never changes at all. We can 

give an exami)le used by Gibbs^ in discussing this point. Suppose we 

have a bottle of fluid consisting of two different liquids, one black and 

one white, which do not mix with each other. We start with one black 

drop in the midst of the white liquid, corresponding to our conccnitrated 

assembly. Now we shake or stir the liquid. The black drop will become 

shaken into smalh^r drops, or be drawn out into thin filaments, which will 

become dispersed through the white liquid, finally forming something like 

an emulsion. Each microscopic black drop or filament is as black as 

ever, corresponding to the fact that the density of points cannot change in 

the assembly. But eventually the drops will become small enough and 

uniformly enough dispersed so that each volume element within the bottle 

will seem uniformly gray. This is something like what happens in the 

irreversible mixing of the points of an assembly. Just as a droplet of 

black fluid can break up into two smaller droplets, its parts traveling in 

different directions, so it can happen that two systems represented by 

adjacent representative points can separate and have quite different 

histories; one may be in position for certain molecules to collide, while the 

other may be just different enough so that these molecules do not collide 

at all, for example. Such chance events will result in very different 

detailed histories for the various systems of an assembly, even if the 

original systems of the assembly were quite similar. That is, they will 

1J. W. Gibbs, ^'Elementary Principles in Statistical Mechanics,” Chap. XII, 

Longmans, Green & Company. 
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result ill representative points which were originally close together in 

phase space moving far apart from each other. 

From the (example and the analogy wx‘ have used, we see that in an 

irreversible process the points of the original compact and orderly assem¬ 

bly gradually get dissipated and mixed up, with consequent incn^ase of 

entropy. Now let us see how the situation is affi^ctinl when we consider 

the quantum theory and the finite size of cells in phase space. Our 

description of the process will depend a good deal on the scale of the 

mixing involved in the irreversible process. So long as the mixing is on a 

large scale, by Jdouville’s thcwem, the i)oints that originally were in one 

cc'll will simply be moved bodily to another cell, so that the contribution 

of these points to In fi wall be the same as in the original distribu¬ 

tion, and the entropy will be unchanged. The situation is very different, 

howT.ver, when the distribution as wo should describe it by classical 

mechanics involves a set of filaments, of different densitic^s, on a scale 

small c,ompared to a cell. Them the quantum/,, ratlier than equaling the 

classical value, will be more', nearly the average of the classical values 

‘through the cell, heading to an increase of entropy, at the same time that 

the average or quantum dcaisity begins to disobey Liouville\s theorem. 

It is at this same stage of the y)rocess that it becomes really impossible 

to reverse tbe motion. It is a wmll-knowui r(\sult of NewtoiFs lawvs that 

if, at a given instant, all the j)Ositions of all ])articles are left unchanged, 

but all velocities arc' revc'rsed in direction, thc^ wdiolc^ motion wall reverse, 

and go back over its past history. Thus every motion is, in theory, rever¬ 

sible. What is it that in practice makes some motions revcmsible, others 

irreversible? It is simply the practicability of setting u]) the system wdth 

revc*rsed velocities. If the distribution of velocities is on a scale large 

enough to see and work wdth, there is notliing making a reversal of the 

velocities particularly hard to set up. With our gas, we could suddenly 

interpose perfectly reflecting surfaces normal to the various parts of the 

jet of gas, reversing thc^ vc^locities on collision, or could adopt some such 

device. But if the distribution of velocities is on too small a scale to see 

and work with, we have no hope of reversing the velocities experimentally. 

Considc'ring our emulsion of black and white fluid, which we have pro¬ 

duced by shaking, there is no mechanical reason w^hy the fluid could not 

be unshaken, by exactly reversing all the motions that occurred in shaking 

it. But nobody would be advised to try the experiment. 

It used to be considered possible to imagine a being of finer and more 

detailed powers of observation than ours, who (^ould regulate systems on a 

smaller scale than we could. Such a being could reverse processes that 

we could not; to him, the definition of a reversible process would be differ¬ 

ent from what it is to us. Such a being was discussed by Maxwell and is 

often called Maxwell's Demon.'' Is it possible, we may well ask, to 
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imagine demons of any desired degree of refinement? If it is, we can 

make any arbitrary process reversible, k('ep its entropy from increasing, 

and the second law of thermodynamics will cease to have any signifi¬ 

cance. The answer to this question given by the quantum theory is 

No. An improvement in technique can carry us only a certain distance, 

a distance practically reached in plenty of modern expc'rinnmts with 

single atoms and electrons, and no conceival)k^ demon, operating accord¬ 

ing to the laws of nature, could carry us further. The quantum theory 

gives us a fundamental size of c(dl in the phase space, such that we cannot 

regulate the initial conditions of an assembly on any smaller scale. And 

this fundamental cell furnishes us with a uni(iue way of defining (mtropy 

and of judging wh(‘ther a given process is reversible or irreversible. 

5. The Canonical Assembly.—In the precc^ding section, we have 

shown that our entropy, as defined in E(i. (1.2), has one of the properties 

of the physical entropy: it increases in an irreversible process, for it 

increases whenever the assembly becomes diffused or scattcTcal, and this 

happens in irreversible process(\s. We must next take uy) thermal equilib- 

ium, finding first the correct assembly to desitribe the density function in 

thermal equilibrium, and then y}roving, from this density function, that 

our entropy satisfies the condition dS = dQ/T for a reversible process. 

From Liouville\s theorem, we have one piece of information about the 

assembly; in order that it may be ind(q)endent of time, the quantity/t 

must be a function only of the energy of the system. We let Ei be the 

energy of a system in the ith c(‘ll, choosing for this purpose the type of 

quantum cells representing stationary states or energy levels. Then wo 
wish to have/i a function of Ei, but we do not yet see how to determine 

this function. 

The essential method which we use is the following: We have seen that 

in an irreversible process, the entropy tends to increase to a maximum, for 

an assembly of isolated systems. If all systems of the assembly have the 

same energy, then the only cells of phase space to which systems can 

travel in the course of the irreversible process are cells of this same energy, 

—a finite number. The distribution of largest entropy in such a case, as 

we have seen in Sec. 1, is that in which systems are distributed with 

uniform density through all the available cells. This assembly is called 

the microcanonical assembly, and it satisfies our condition that the 

density be a function of the energy only: all the fiS of the particular 

energy represented in the assembly are equal, and all other //s are zero. 

But it is too specialized for our purposes. For thermal equilibrium, we 

do not demand that the energy be precisely determined. We demand 

rather that the temperature of all systems of the assembly be the same. 

This can be interpreted most properly in the following way. We allow 

each system of the assembly to be in contact with a temperature bath of 
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tho required temperature, a body of very large heat capacity held at the 

desired temperature. The systems of the assembly are then not isolated. 

Rather, they can change their energy by interaction with the temperature 

bath. Thus, even if we start(‘d out with an assembly of systems all of the 

same energy, some would have their energies increased, some decreased, 

by interaction with the bath, and th(^ final stable assembly would have a 

wholes distribution of eruTgies. There wx)uld certainly be a definite^ aver¬ 

age energy of the assembly, liowever; with a bath of a given temperature, 

it is obvious that systems of abnormally low energy wdll tend to gain 

energy, those of abnormally high energy to lose energy, by the interaction. 

To find the final equilibrium state, then, we may ask this question: what 

is the assembly of systems which has the maximum (uitropy, subject only 

to the condition that its mean enc^rgy hav(^ a given value? It seems most 

reasonable that this will be the assembly which will be the final result of 

the irreversible contact of any group of systems with a large temperature 

bath. 

The assembly that results from these conditions is called the canonical 

assembly. Let us formulate the conditions which it must satisfy. It 

must b(^ tlu^ assembly for which S — hi/, is a maximum, subject 

i 
to a constant mean eru'rgy. But we can find the nu'an energy immedi¬ 

ately in t(n*ms of our distribution function/,. In the fth cell, a system has 

energy The fraction ft of all systems will l)e found in this cell. Hence 

the weighted mean of the energies of all systems is 

u = 
i 

(5.1) 

This quantity must be held (instant in varying the f/n. Also, as we saw 

in Eq. (1.1), the quantity 2/, equals unity. This must always be satis- 

i 
fied, no matter how th(^ /,’s vary. We can restate the conditions, by 

finding dS and dU: v/c mu.st have 

dS^O^ -k'^^dfi (In/i -b 1), 

i 
(5.2) 

for all sets of dfi^ for which simultaneously 

du = 0 = X^lfiEu 
i 

(5.3) 

and 

0 = 2«(^- (5.4) 
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On account of Eq. (5.4), we can rewrite Eq. (5.2) in the form 

dS = Q = -kY^dSi\nfi. (5.5) 

i 

The set of simultaneous equations (5.3), (5.4), (5.5) can be handled by the 

method calk'd undetermiiu'd multipliers: the most g(meral value which 

In/i can have, in order that dS slundd be zero for any set of dfi^ for which 

Eqs. (5.3) and (5.4) are satisfied, is a linear combination of the coeffi¬ 

cients of dfi in Eqs. (5.3) and (5.4), with arbitrary coefficients: 

In/,; = a + hEi. (5.6) 

For if Eq, (5.6) is satisfied, Eq. (5.5) becomes 

dS = - k'^dfiia + hEi) 
i 

= -ka^dfi - kb^dfiEi, (5.7) 

i i 

which is zero for any values of dfi for which Eqs. (5.3) and (5.4) are satis¬ 

fied. 

The values of fi for the canonical assembly jire determined by Eq. 

(5.6). It may be rewrittcai 

fi = (5.8) 

Clearly b must be negative; for ordinary systems have possible states of 

infinite energy, though not of negatively infinite (mc'rgy, and if b were 

positive, fi would become infinite for the states of infinite energy, an 

impossible situation. We may easily evaluate the constant a in t('Tms of 

5, from the condition This gives at once 

1 

y 

so that 

(5.9) 

If the aKSsembly (5.9) represents thermal equilibrium, the change of 

entropy when a certain amount of heat is absorbed in a reversible process 
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should be dQjT. The change of entropy in any process in thermal 

equilibrium, by Eqs. (5.5) and (5.9), is 

d& = -'k'^dU Infi = -k'^dUbEi - In 

i i j 

= -kb'^dfiEi, (5.10) 

i 

using Eq. (5.4). Now consider the change of internal energy. This is 

dU ^ ^(Eidfi+fidEi). (5.11) 
i 

The first term in Eq. (5.11) arises when the external forces stay constant, 

resulting in constant values of Ei, but there is a change in the assembly, 

meaning a shift of molecules from one position and velocity to another. 

This change of course is different from that considered in Eq. (5.3), for 

that referred to an irreversible approach to equilibrium, while this refers 

to a change from one equilibrium state to another of different energy. 

Such a change of molecules on a molecular scale is to be interpreted as an 

absorption of heat. The second term, however, comes about when the 

//s and the entropy do not change, but the eiKU’gies of the cells themselves 

change, on account of changes in external forces and in the x^otential 

energy. This is to be interpreted as extc^rnal work done on the system, or 

the negative of the work done by the system. Thus we have 

dQ = %EidU dW = -'^fidEi. (5.12) 

i i 

Combining Eq. (5.12) with Eq. (5.11) gives us the first law, 

dU = dQ ~ dW. 

Combining with Eq. (5.10), we have 

dS = -kbdQ. (5.13) 

Equation (5.13), stating the pro[)ortionality of dS and dQ for a reversible 

process, is a statement of the second law of thermodynamics for a reversi¬ 

ble proc(iss, if we have 

-M, = 6 = -A. (5.14) 

Using Eq. (5.14), we can identify the constants in Eq. (5.9), obtain¬ 

ing as the representation of the canonical assembly 

^—Kx/kT 

2^ 

~Bi/kT 

(5.15) 
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It is now mtercRting to compute the Helmholtz free energy 4 

This, using Eqs. (5.1) and (5.15), is 

A = In 

= (5.16) 

or 

= Z = (5.17) 

Using Eq. (5.17), we may rewrite the formula (5.15) as 

(A-E.) 

fi = c . (5.18) 

The result of Eq. (5.17) is, for practical purposes, the most important 

result of statistical mechanics. For it gives a perfectly direct and 

straightforward way of deriving the Helmholtz free energy, and hence 

the equation of state and specific heat, of any system, if wc know its 

energy as a function of coordinates and momenta. The sum of Eq. 

(5.17), which we have denoted by Z, is often called the partition function. 

Often it is useful to be abl(‘ to derive the entropy, internal energy, and 

specific heat directly from the j^artition function, without separately 

computing the H(dmholtz free energy. For the entropy, using 

we have 

S = {^(tTtoZ)}^.MnZ+^(|f)^ (5.19) 

For the internal energy, U = A + TS, we have 

U = -/crinZ + fc7’lnZ + 

kT^fdZ\ 
Z \dT)v 
/din Z \ 

(5.20) 

where the last form is often useful. For the specific heat at constant 
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volume, we may use either Cv - {dV/dT)v or Cv = T{dS/dT)v. From 

the latter, we have 

W(^ have stated our definitions of entropy, partition function, and 

other quantities entirely in terms of summations. Often, however, the 

quantity/i changes only slowly from cell to cell; in this case it is con¬ 

venient to replace the summations by integrations over the phase space. 

We recall that all cells are of th(^ same volume^, /i”, if there are n coordi¬ 

nates and n momenta in th(' phase space. Thus the number of cells in a 

volume element d(ji . . . dqn dpi . . . dpy, of phase space is 

(iqj, . . . dpn 

Then tlu^ partition function txH’omes 

^ = (^.)J . • • . . . <lp„, (5.22) 

a very convenient form for such problenifs as finding the i)artition function 

of a perfect gas. 



CHAPTER IV 

THE MAXWELL-BOLTZMANN DISTRIBUTION LAW 

In most physical applications of statistical mechanics, wc' deal with a 

system composed of a great number of identical atoms or molecules, and 

are interested in the distribution of energy between these molecules. The 

simplest case, which we shall take up in this chapter, is that of the jX'rfect 

gas, in which the molecmles exert no forces on each other. We shall be 

led to the MaxwcdbBoltzmann distribution law, and later to the two forms 

of quantum statistics of perfect gases, the Fermi-Dirac and Einstein-Bose 

statistics. 

1. The Canonical Assembly and the Maxwell-Boltzmann Distribu¬ 
tion.—Let us assume a gas of N id(uitical molecules, and let each mol(‘cule 

have n degree's of freedom. That is, 7i quantiti(is are rlec(^ssary to spf^cify 

the configuration completely. Ordinarily, three coordinates are needcid 

to locate each atom of the molecule, so that n is three times th(^ number 

of atoms in a molecule. In all, then, Nn coordinates are necessary to 

describe the system, so that the classical phase space has 2Nn dimen¬ 

sions. It is conv('nient to think of this phase space as consisting of N 
subspaces each of 2n dimensions, a subspace giving just the variabh^s 

required to describe a particular molecule completely. Using the quan¬ 

tum theory, each subspaee can be divided into cells of volume and a 

state of the whole system is described by spcjcifying which quantum state 

each molecule is in, in its own subspace. The energy of the whole system 

is the sum of the energies of the N molecules, since for a perfect gas there 

are no fonies between molecuh's, or terms in the energy depending on 

more than a single molecule. Thus we have 

N 

E = (1-1) 

where is the energy of the zth molecule. If the ith molecule is in the 

kith cell of its subspace, let its energy be Then we can describe 

the energy of the whole system by the set of ki8. Now, in the canonical 

assembly, the fraction of all systems for which each particular molecule, as 

the ith, is in a particular state, as the ft^th, is 
62 
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e 

SS' 
ki ■ ks 

^—tWki/kT 

^g-eCD^i/ArT* 

ki 

It is now interesting to find the fraction of all systems in which a particu¬ 

lar molecule, say the ith, is in the k^{h state, independent of what other 

rnok^cules may be doing. To find this, we merely sum the quantity (1.2) 

over all possibles values of the k's of other molecules. The numerator of 

each separate fraction in Eq. (1.2), when summed, will then equal the 

denominator and will cancel, leaving only 

-e(N)/c^/kT 

-e(N)kff/kT 
(1.2) 

-t<Ok,/kT 
(1.3) 

as the fraction of all systems of the assembly in which the ith molecule is 

in the fctth state, or as the probability of finding the zth molecule in the 

A)ith state. Since all molecules are alike, we may drop the subscript i 
in p]q. (1.3), saying that the probability of finding any particular molecule 

in the A;th state is 

e 
fk 

kf 
Jk 

kf 

k 

(1.4) 

Equation (1.4) expresses what is called the Maxwell-Boltzmann distribu¬ 

tion law. If Eq. (1.4) gives the probability of finding any particular 

molecule in the fcth state, it is clear that it also gives the fraction of all 

molecules to be found in that state, averaged through the assembly. 

The Maxwell-Boltzmann distribution law can be used for many 

calculations regarding gases; in a later chapter we shall take up its appli¬ 

cation to the rotational and vibrational levels of molecules. For the 

present, we shall describe only its use for monatomic gases, in which there 

is only translational energy of the molecules, no rotation or vibration. In 

this case, as we shall show in the next paragraph, the energy levels €* of a 

single molecule are so closely spaced that we can regard them as continu¬ 

ous and can replace our summations by integrals. We shall have three 

coordinates of space describing the position of the molecule, and three 

momenta, px, Py, equal to the mass m times the components of velocity, 

Vy, Vt. The energy will be the sum of the kinetic energy, ~ pV2w, 
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and the potential energy, which we shall denote by </>(x, z) and which 

may come from external gravitational, electrostatic, or other types of 

force field. Then the fraction of molecules in the range of coordinates 

and momenta dx dy dz dp^ dpy dp^ will be 

(pV2m + 0) 

e dx dy dz dpx dpy dp^ 
■_ . .. * ^ ^ 

dx dy dz dpx dpy dp. 

In the next section we shall derive some simple consequences from this 

form of the Maxwell-Boltzmann distribution for perfect monatomic 

gases. 

In the last paragraph we have used the fact that the translational 

energy levels of a perfect monatomic gas are very closely spa(;ed, accord¬ 

ing to the quantum theory. We can s(Hi this as follows, limiting ourselves 

to a gas in the absence of an ext(irnal force field. Each molecule will have 

a six-dimensional phase space. Consider one pair of variables, as x and 

Px. Since no forces act on a molecule, the momentum px stays constant 

during its motion, which must take place in a range X along the x axis, 

if the gas is confined to a box of sides X^ Y, Z along the three coordinates. 

Thus the area enclosed by tlu^ path of th(^ particle in the x -- px section of 

phase space is PxXy which must be equal to an integer Ux times h. Then 

we have 

rixh Uyh 

Px — Pv ~Y ’ (1.6) 

where the n’s are integers, wdiich in this case can be positive or negative 

(since momenta can be positive or negative). The energy of a molecule 

is then 

^ h^(^ 
2m 2m\X^ 72 zy (1.7) 

To get an idea of the spacing of energy levels, let us see how many levels 

are found below a given energy €. We may set up a momentum space, in 

which Px, Py, Pz are plotted as variables. Then Eq. (1.6) states that a 

lattice of points can be set up in this space, one to a volume 

where V = XFZ is the volume of the container, each point corresponding 

to an energy level. The equation 

vL = + pg 4- pf) ^ ^ 
2m 2m 
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is the equation of a sphere of radius p = y/^me in this space, and the 

number of states with energy less than e equals the number of points 

within the sphere, or its volume, ^{2meY\ times the number of points 

per unit volume, or V/h^. Thus the number of states with energy h;ss 

than € is 

(1.9) 

and the number of states between c and e + r/e, differentiating, is 

27r(2m)'^“^e''^ de, (1.10) 

The average energy between succc^ssive stat(‘s is th(' n^eiproeal of Kq. 

(1.10), or 

_ 

Let us see what this is numerically, in a reasonable ease. We take a 

helium atom, with mass 6.63 X 10“-'^ gm., in a volume of 1 cc., with an 

energy of ^ = 1.379 X 10"^^ erg, which it would have at a fraction of a 

de^gree absolute. Using h — 6.61 X 10~"^, this gives for the energy 

difference between successive states the quantity 8.1 X 10 erg, a com¬ 

pletely negligible energy difference. Thus we have justified our state- 

m(uit that the eiKTgy levels for translational energy of a perfect gas are so 

closely spaced as to be esscuitially continuous. 

2. Maxwell’s Distribution of Velocities.—Returning to our distribu¬ 

tion law (1.5), let us first consider the case wln^rt^ there is no potential 

energy, so that the distribution is ind('pendent of i)osition in space. Then 

the fraction of all molecules for which the momenta lie in dpx dpy dpe is 

_ 
e dpx dpy dpj_^ ^2 1) 

JJJc dp,^ dpy.dpz 

where p^ stands for pi + pi + p\> The integral in the denominator can 

be factored, and written in the form 

2rnkT 
Pv 

2mkT dp,. (2.2) 

/oo ][ 

where a = ^^7* 

meet many integrals of this type before we ere through, and 

We shall 

we may as 
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well give the formulas for them here. We have 

^ du = 

P for n 
1 a 

= 0 — for n — 
2a 

/^Torn - 2 ^ for n = 
2a^ 

/--- for n = 4 ~ for 71 — (2.3) 

Starting with du, for the even powers of u, or with J^/e" du for tlic 

odd powers, each integral (^an he found from the oik^ abov(' it by diff(;ren- 

tiatiori with respect to —a, by means of whi(*h the tabh' can hi) extended. 

To g(it the integral from — oo to tlu^ result with the even powers is 

twice the integral from 0 to and for the odd powt^rs of course it is 

zero. 

Using the integrals (2.3), the (piantity (2.2) becomes {2Tr7nkT)'^'K 

Thus we may n^write Eq. (2.1) as follows: the fraction of molecules with 

momentum in the rang(j dpx dpv dpz is 

{2TrmkT) dpx dpy dp^- (2-4) 

Equation (2.4) is one form of the famous Maxwell distribution of 

velocities. 

Often it is useful to know, not the fraction of molecules whose vector 

velocity is within certain limits, but the fraction for which the magnitude 

of the velocity is within certain limits. Thus let v be the magnitude of 

the velocity: 

V 
= V^t pf+Pl. 

rn 
(2.5) 

Then we may ask, what fracition of the molecules have a speed between 

V and V + dv, independent of direction? To answer this question we 

consider the distribution of points in momentum space. The volume of 

momentum space corresponding to velocities between v and v + dv is 

the volume of a spherical shell, of radii mv and m{v + dv). Thus it is 

Arimv)'^ d(mv). We must substitute this volume for the volume dp^ dpy 

dpz of Eq. (2.4). Then we find that the fraction of molecules for which 

the magnitude of the velocity is between v and v + dvj is 

^\2^kf) ^2.6) 

This is the more familiar form of MaxwelEs distribution law. We give a 
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graph of the function (2.6) in Fig. IV-1. On account of the factor the 

function is zero for zero speed; and on account of the exponential it is 

zero for infinite speed. In between, there is a maximum, which is easily 

found by differentiation and comes at v = \/2kT/m, That is, the maxi¬ 

mum, and in fact the whole curve, shifts outward to larger velocities as 

the temperature increases. 

From Maxwelhs distribution of velocities, either in the form (2.4) or 

(2.6), we can easily find the mean kiiu^tic energy of a molecule at tem¬ 

perature T, To find this, we multiply the kinetic energy p'^/2m by the 

fraction of molecules in a given ranges dpx dpy dpz, and integrate over all 

values of momenta, to get the weighted mean. Thus we have 

Mean kinetic energy = (2TrmkT) 

= (2TrmkT) 

ills 
ii: 

dpx dpy dpz 

2 

2m^ dpx{2TrmkT) 

+ similar terms in pj, 

{2TTmkT)~HikT) {2Trnik T) 

IkT, (2.7) 

The formula (2.7) for th(^ kinetic energy of a molecule of a perfect gas 

leads to a result called the (Hpiipartition of energy. Each molecule has 

three coordinates, or three degn^es of 

freedom. On the average, each of 

these will have one-third of th(5 total 

kinetic energy, as we can see if we find 

the average, not of {pi + pi + pD/2m, 

but of the part pi 12m associated with 

the X coordinate. Thus each of these 

degrees of freedom has on the average 

the energy j^kT, The energy, in other 

words, is equally distributed between 

these coordinates, each one having the 

same average energy, and this is called 

the equipartition of energy. Mathe- 
Fio. IV-l. 

m 
2kT 

. . . -- -Maxwell’s distribution of 
matically, as an examination of our velocities, giving the fraction of molecules 

proof shows, equipartition is a result whose velocity is between » and »+in 
, . a gas at temperature T. 

of the fact that the kinetic energy 

associated with each degree of freedom is proportional to the square 

of the corresponding momentum. Any momentum, or coordinate, 

which is found in the energy only as a square, will be found to have a 

mean energy of ifcjT, provided the energy levels are continuously 
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distributed, so that summations can be replaced by integrations. This 

applies not only to the momenta associated with translation of a single 

atom, but to such quantities as the angular momentum of a rotating 

molecule (whose kinetic; energy is pV2/), if the rotational levels are spacc'd 

closely. It applies as well to the coordinate, in the case of a linear oscilla¬ 

tor, whose restoring force is — kXj and potential energy kx^l2; the mean 

potential energy of such an oscillator is^k7\ if the levels are spaced closc’sly 

enough, though in many physical cases which we shall meet tlu' spacing is 
not close enough to replace summations by 

U - - —px/m- -^ intentions. 
nr The Equation of State and Specific Heat 
/'s<^.r/77. of Perfect Monatomic Gases.—Having found 

! the distribution of molecular velocities, we can 

(;alculate the equation of state and sj^ecific 

heat of perfect monatomic gases by elementary 

methods, postponing until a later chapter the 

^ „ .y . direct statistical calculation by m(;ans of the 

illustrate collisions of mole- partition function. We shall again limit our- 
ouies with 1 sq. cm. of surface special case where there is no 

potential energy and where the distribution 

function is independent of position. This is the only case where we 

should expect the pressure to b(; constant throughout the container. We 

shall find the pressure by calculating the momentum carried to the wall 

per second by molecules colliding with it. The momentum transf(;rr('d 

to 1 sq. cm. of wall per second is the force acting on the wall, or the 

j-«--Px/m" 

cules with 1 sq. cm. of surface 
of wall. 

pressure. 

For convenience, let us choose the x axis perpendicular to the square 

centimeter of wall considered, as in Fig. IV-2. A molecule of velocity 

V = p/m close to the wall will strike the wall if Px is positive, and will 

transfer its momentum to the wall. When it is reflected, it will in general 

have a different momentum from what it originally had, and will come 

away with momentum p', the component p' being negative. After 

collision, in other words, it will again belong to the group of molecules 

near the wall, but now corresponding to negative Px, and it will have 

taken away from the wall the momentum p', or will have given the wall 

the negative of this momentum. We can, then, get all the momentum 

transferred to the wall by considering all molecules, both with positive 

and negative p^j's. Consider those molecules contained in the element 

dpxdpydpz in momentum space, and lying in the prism drawn in Fig. 

IV-2. Each of these molecules, and no others, will strike the square 

centimeter of wall in time dt. The volume of the prism is Px/m di. The 

average number of molecules per unit volume in the momentum element 

dpx dpy dpx, averaged through the assembly, will be denoted by/m dpx dpy 
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dpz. For Maxwell’s distribution law, we have 

U = (3.1) 

uwiiig Eq. (2.4), where N/V is the number of molecules of all velocities 
per unit volume. We shall not explicitly use this form for fm at the 
moment, however, for our derivation is more general than MaxwelFs 
distribution law, and holds as well for the Fermi-Dirac and p]instein-Bose 
distributions, which we shall take up in later sections. Using the func¬ 
tion f„„ the average number of molecuhis of the desired momentum, in 
the prism, is Px/rnfm dpx dpy dpz. Each such molecule takes momentum 
of components p^^, Py, Pz to the surface. Hence the total momentum given 
the surface in time dt by all molecules is the integral over momenta of the 
quantity with components {plfm^ pz^py/rrij PxPz/'fn)dtfmdpxdpydpz. 
Dividing hy dt^ we have the force exerted on the square centimeter of 
surface, which has components 

X component of force = 

y component of force = 

(H)mponent of force = 

pi 

dpx dpy dp„ 

J*/ 
I*//“m (3.2) 

Now we shall limit our distribution function. We shall avssume that 
a molecule with a given value of px is equally likely to have positive or 
negative values of py and so that /m(Px, Py) fm(Px, ^Py)^ etc. 
Plainly the Maxwell law (3.1), satisfies this condition. Then the second 
and third integrals of Eq. (3.2) will be zero, since the integrands with a 
given Pxj Py will have opposite sign to the integrands at p®, —pyj and will 
cancel each other. The force on the unit area, in other words, is along the 
normal, or corresponds to a pure pressure, without tangential forces. 
Thus we finally have 

■ P = J J J^/«. dp. dpy dp.. (3.3) 

Now fm dpx dpy dpz is the number of molecules per unit volume in the 
range dpx dpy dpz. Multiplying by pl/m and integrating, we have simply 
the sum of pl/m for all molecules in unit volume. This is simply the sum 
of pl/m for all molecules of the gas, divided by V, Let us assume that the 
distribution function is one for which all directions in space are equivalent. 
This is the case with the Maxwell distribution, Eq. (3.1), for this depends 
only on the magnitude of p, not on its direction. Then the sum of pl/m 
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equals that of pl/m or pl/m. We have, moreover, 

P? + + P' = ^ = 2 X kinetic cnicrgy. (3.4) rn m m m o*/ v / 

Hence, the sum of pl/m is two-thirds the total kinetic energy, and since 

there is no potential energy, this is two-thirds the internal energy. 

Finally, then, we have 

or 

PV =ff/. (3.5) 

Equation (3.5) gives the relation predicted by kinetic theory for the 

pressure of a perfect monatomic gas, in terms of its internal energy and 

volume. 

We can now combine Kep (3.5), and E(p (2.7), giving the mean kinetic 

energy of a inonatoinic gas, to find the eciuation of state. From Eq. 

(2.7), we have at once for N molecules 

U = INkT, (3.6) 

Combined with Eq. (3.5), this giv(‘s at once 

PV = NkT, (3.7) 

as the equation of state of a perfect gas, as derived by elementary meth¬ 

ods. We should compare Eq. (3.7) with the gas law as ordinarily set up 

from experimental measurements. Let us supposi^ that we have n moles 

of our gas. That is, the mass of gas we are dealing with is riM, where M 
is the molecular weight. Then the usual law is 

PV - uRT, (3.8) 

where the gas constant per mole, is given alternatively by th(^ numerical 
values 

R — 8.314 X 10^ ergs per degree • 

= 0.08205 l.-atm. per degree 

(8 314 V loA 
4T85 “>007 "" degree. (3.9) 

The law (3.8) expresses not only Boyle\s and Charles\s laws, but also 

Avogadro’s law, stating that equal numbers of moles of any two perfect 

gases at the same pressure and temperature occupy the same volume. 

Now let No he the number of molecules in a gram molecular weight, a 

universal constant. This is ordinarily called Avogadro^s number and is 
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given approximately by 

iVo = 6.03 X 10^^ (3.10) 

by methods based on measurement of tiic charge on the electron. Then 

we have 

N = nAT, 0, 

so that Eq. (3.8) is replaced by 

R pv = N^r. 

(3.11) 

(3.12) 

I^]quation (3.12) agrees with Eq. (3.7) if 

k — -^-7 

No 
so that 

k = 

or R — Nok, 

8.314 X 10" 

6.03 X lO’*' 

= 1.379 X 10erg per degree^ (3.13) 

as was stated in Chap. Ill, Sec. 1. 

From the internal energy (3.6) we can also calculate the specific heat. 

We have 

\dtjy 
InR. (3.14) 

The expression (3.14), as we have mentioned before, gives the heat capac¬ 

ity of 71 moles of gas. The specific heat is the heat (capacity of 1 gm., or 

1/M moles, if M is the molecular weight. Thus it is 

3 R 
Specific heat per gram — ^'M (3.15) 

Very often one also considers the molecular heat, the heat capacity per 

mole. This is 

Molecular heat, per mole = f/? — 2.987 cal. per mole. (3.16) 

To find the specific heat at constant pressure, we may use Eq. (5.2), 

Chap. II. This is 

rr\dT/, Cp = Cy 

\dP/T 

(3.17) 

which holds for any amount of material. Substituting F = nRT/P, we 

have idV/dT)p = nR/P, {dV/dP)T = -nRT/P\ so that 

Cp — Cv + nR = ^nR — 4.968 cal. per mole, (3.18) 
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and 

^ = 7=1 = 1.667. (3.19) 

The Insults (3.14), (3.18), and (3.19) hold theoretically for monatomic 

perfect gases, and actually they are approximately true for real monatomic 

gases. 

4. The Perfect Gas in a Force Field.—For two sections we have becui 

considering the distribution of velocities included in the Maxwell-Boltz- 

mann distribution law. Next, we shall take up the distribution of coordi¬ 

nates in cases where there is an (ixternal held of force. First, we should 

observe that on account of the form of Eqs. (1.4) and (1.5), the distribu¬ 

tions of coordinates and velocities are independent of each other. These 
_ 

equations show that the distribution function contains one factor e 
_5^ 

depending on velocities, another factor e depending on coordinat(?s. 

This has important implications. The Maxwell distribution of velocities, 

which we have discussed, is the same at any point of a gas, even in an 

external field; and the variation of density with position is the same for 

the whole density, or for the particular class of molecules having any 

chosen velocity. We wish, then, to discuss the variation of density com- 

ing from the factor e The most familiar example of this formula is 

found in the decrease of density of the atmosphere as we go to higher 

altitudes. The potential energy of a molecule of mass m at height h 
above the earth is mghj where g is the acceleration of gravity. Then the 

density of gas at height /i, assuming constant temperature throughout 

(which is not a good assumption for the actual atmosphere), is given by 

mgh 

Density proportional to e . (4.1) 

Formula (4.1) is often called the barometer formula, since it gives the 

variation of barometric pressure with altitude. It indicates a gradual 

decrease of pressure with altitude, going exponentially to zero at infinite 

height. 

The barometer formula can be derived by elementary methods, thus 

checking this part of the Maxwell-Boltzmann distribution law. Con¬ 

sider a column of atmosphere 1 sq. cm. in cross section, and take a section 

of this column bounded by horizontal planes at heights h and h + dh. 
Let the pressure in this section be P; we are interested in the variation of 

P with h. Now it is just the fact that the pressure is greater on the lower 

face of the section than on the upper one which holds the gas up against 

gravity. That is, if P is the upward pressure on the lower face, P + dP 
the downward pressure on the upper face, the net downward force is dP, 
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the net upward force —dP^ and this must equal the force of gravity on the 

mat(irial in the section. The latter is the mass of the gas, times g. 
Th(^ mass of the gas in the section is the number of molecules per unit 

volum(?, times the volume dh, times the mass m of a molecule. The num¬ 

ber of molecuh^s per unit volume can be found from the gas law, which 

can b(i written in the form 

P = ~kT, (4.2) 

where {N/V) is the number of molecules per unit volume. Then we find 

that tlie mass of gas in the volume dh is {P/hT)m dh. The differential 

equation for prcissure is then 

P 
-dP = -^,mg dh, 

d In P = -^dh, 

In P = const. — 1 (4.3) 

from which, remembering that at constant temperature the pressure is 

j)roportional to the density, we have the barometer formula (4.1). 

It is possible not only to derive the barometer formula, but the whole 

Maxw(41-Boltzmaun distribution law, by an extension of this method, 

though we shall not do it.^ One additional assumption must be made, 

which we have treated as a consequence of the distribution law rather than 

as an independent hypothesis: that the mean kinetic energy of a molecule 

is IkT, independent of where it may be found. Assuming it and con¬ 

sidering the distribution of velocities in a gravitational field, w() seem at 

first to meet a paradox. Consider the molecules that are found low in 

the atmosphere, with a certain velocity distribution. As any one of 

these moh^cules rises, it is slowed down by the earth’s gravitational field, 

the increase in its potential energy just equaling the decrease in kinetic 

energy. Why, then, do not the molecules at a great altitude have lower 

average kinetic energy than those at low altitudes? The reason is not 

difficult to find. The slower molecules at low altitude never reach the 

high altitude at all. They follow parabolic paths, whose turning points 

come at fairly low' heights. Thus only the fast ones of the low molecules 

penetrate to the high regions; and while they are slowed down, they slow 

down just enough so that their original excessive velocities are reduced 

to the proper averages value, so that the average velocity at high altitudes 

equals that at low, but the density is much lower. Now this explanation 

^ See for instance, K. F. Herzfeld, ^^Kinetische Theorie der W&rme,” p. 20, 
Vieweg, 1929. 
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puts a very definite restriction on the distribution of velocities. By the 

barometer formula, we know tho way in which the density decreases from 

h to h dh. But the molecules found at height h, and not at height 

h + dh, are just those which come to the turning point of their paths 

between these two heights. This in turn tells us the vertical components 

of their velocities at any height. The gravitational field, in other words, 

acts to spread out molecules according to the vertical component of their 

velocities. And a simi)le calculation bascid on this idea proves to l(‘ad 

to the Maxwell distribution, as far as the vertical compoiumt of velocities 

is concerned. No other distribution, in other words, would have this 

special property of giving the same distribution of velociticss at any 

height. 

The d(!rivation which we have given for the barometer formula in 

Eq. (4.3) can be easily extended to a general potential energy. Let the 

potential energy of a molecule be <j>. Then the force acting on it is d<j>/dis, 
where ds is a displacement opposite to th<^ direction in which the force 

acts. Take a unit cross section of ludght ds in this direction. Then, as 

before, wo have 

p 

In P = const. — 
<f> 

kf 
(4.4) 

the general formula for pressure, or density, as it depends on potential 

energy. 



CPIAPTER V 

THE FERMI-DIRAC AND EINSTEIN-BOSE STATISTICS 

The Maxw('ll-Boltzinann distribution law, whi(di we have derived 

and discussed in tlu^ last (‘ha])ter, seems like a pc'rfectly straightforward 

application of our statistical metliods. Nev(U*theless, when we come to 

examira^ it a littlf^ inor(^ closcdy, we find unexpected complications, arising 

from the ([lU'stion of wlndher there really is any way of telling the mole¬ 

cules of tin; gas a])art or not. We shall analyze these qu(\stions in the 

])resent chapter, and shall find that on ac(*ount of the quantum theory, the 

Maxw(‘ll-Boltzmann distribution law is really only an approximation 

valid for gases at c.omparatively low density, a limiting case of two other 

distributions, known by the name's of the Fermi-Dirac and the Iilinstein- 

Bose statistics. Reval gases obey one or the other of these latter forms of 

statistics, some being governed by oru^, some by the other. As a matter 

of fact, for all re^al gases the corrections to th(^ Maxwell-Boltzrnann dis¬ 

tribution law whiedi result from the cpiantiim statistics are negligibly 

small excej)t at the very lowerst temix.Tatures, and helium is the only gas 

remaining in the vapor state at low enough temperature for the correc¬ 

tions to be imj)ortant. Thus the reader who is interested only in molecu¬ 

lar gases may wadi f(Hd that these forms of quantum statistics are 

unnecessary. There' is one respect in which this feeling is not justified: 

we shall find that in the calculation of the entropy, it is definitely wrong 

not to take account of the identity of molecules. But the real importance 

of the quantum forms of statistics comes from the fact that the electrons 

in solids satisfy the Fermi-Dirac statistics, and for them the numerical 

ciuantities are such that the behavior is completely different from what 

would be predicted by the Maxw^ell-Boltzmann distribution law. The 

Einstein-Bose statistics, though it has applications to black-body radia¬ 

tion, does not have the general importance of the Fermi-Dirac statistics. 

1. The Molecular Phase Space.—In the last chapter, we pointed out 

that for a gas of N identical molecules, each of n degrees of freedom, the 

phase space of 2Nn dimensions could be subdivided into N subspaces, 

each of 2n dimensions. We shall now consider a different way of describ¬ 

ing our assembly. We take simply a 2n-dimensional space, like one of our 

previous subspaces, and call it a molecular phase space, since a point 

in it gives information about a single molecule. This molecular phase 

space will be divided, according to the quantum theory, into cells of 

volume h^. A given quantum state, or complexion, of the whole gas of N 
65 
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molecules, then corresponds to an arrangement of N points representing 

the molecules, at definite positions, or in definite cells, of the molecular 

phase space. But now we meet immediately the question of the identity 

of the molecules. Are two complexions to be counted as the same, or as 

different, if they differ only in the interchange of two identical mole(‘ules 

between cells of the molecular phase space? Surely, sirujo two su(*h 

complexions cannot be told apart by any physical means, they should 

not be counted as different in our enumeration of complexions. Yet they 

correspond to different cells of our general phase spa(u^ of 2Nn dimen¬ 

sions. In one, for example, molecule 1 may be in cell a of the mol(H*ular 

phase space, molecule 2 in cell 6, while in the other mohnnih^ 1 is in cell 

6, molecule 2 in cell a. Thus in a system of identical molecules, it is 

incorrect to assume that every comph^xion that we can set u}) in the 

general phase space, by assigning each molecule to a particular cell of 

its subspace, is distinct from every other, as we tacitly assumed in Chap. 

IV. 

By considering the molecular phase space, we can see how many 

apparently different complexions really are to bo groujxid together as 

one. Let us describe a complexion by numbers Ni, representing the 

number of molecules in the ith cell of the molecular phase spac(*. Tliis 

is a really valid way of describing the complexion; intercdiange of identical 

molecules will not change the NiS. How many ways, we ask, arc^ there 

of setting up complexions in the general phase space which l(\ad to a given 

set of NiS? We can understand the qu(\stion b('tter by taking a simple 

example. Let us suppose that there are three cells in tlu^ molecular phase 

space and three molecules, and that we are assuming Ni = 1, N2 =2, 

Table V-1 

Cell 1 2 3 

Ni = 1 2 0 

Complexion 

2 3 
a 

h 3 2 

2 1 3 
0 

(2 3 1 

is 1 2 
c 

/3 2 1 

Nz = 0, meaning that one molecule is in the first cell, two in the second, 

and none in the third. Then, as we see in Table V-1, there are three 

apparently different complexions leading to this same set of NiS. In 

complexion a, molecule 1 is in cell 1, and 2 and 3 are in cell 2; etc. We 
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Hoo from this example how to find the number of complexions. First, we 

find the total number of i)ermutations of N objects (the N molecules). 

This, as is well known, is N\; for any one of the N objects can come first, 

any one of the remaining (N — 1) second, and so on, so that the number 

of permutations is NiN — 1){N — 2) . . . 2.1 = Nl In the case of 

Table V-1, there are 3! = 6 permutations. But some of these do not 

represent diff(a-('.nt complexions, even in the general phase space, as 

we show by oui* l)rackets; as for example the arrangements 1,23 and 1,3 2 

groupcnl under the complexion (a). For they both lead to exactly the 

same assignment of mol(^cul(\s to cells. In fact, if any Ni is greater than 

unity, Nil (in our case 2! = 2) different permutations of the N objects 

will correspond to the same complexion. And in geiuTal, the number of 

(*{)Tn])lexions in the general phase space which lead to the same A^/s, and 

h(m(‘e are really identical, will b(^ 

_N\_ 
n\inVi (1.1) 

R(‘mem])ering that 0! == 1! = 1, we see that in our example we have 

3!/l!2!0! - I - 3. 

If tlu'n we wished to find the partition function for a perfect gas, using 

the g(‘neral })hase space, Ave should have to proceed as follows. We 

could s(d/ up cells in phase spac(', each of volume but we could not 

assume tliat each of those represented a different complexion, or that we 

were to sum over all these cells in computing the partition function. 

Rather, (‘ach c(‘ll would be one of WI/Wj W2! . . . similar cells, all taken 

together to represent (me single complexion. We could handle this, if 

we chose, by summing, or in the case of continuous energy levels by 

integrating, over all cells, but dividing the contribution of each cell by 

the number (1.1), computed for that cell. Since this number can change 

from (udl to cell, this is a very inconvenient procedure and cannot be 

carried out without rather complicated mathematical methods. There 

is a special case, however, in which it is very simple. This is the case 

where the gas is so rare t hat we are very unlikely, in our assembly, to find 

any appreciable number of systems with more than a single molecule in 

any cell. In this case, each of the NiS in the denominator of formula 

(1.1) will be 0 or 1, each of the NiVs will be 1, and the number (1.1) 

becomes simply N!. Thus, in this case, we can find the partition function 

by carrying out the summation or integration in the general phase space 

in the usual way, but dividing the result by N\, and using the final value 

to find the Helmholtz free energy and other thermodynamic quantities. 

This method leads to the Maxwell-Boltzmann distribution law, and it is 

the method which we shall use later in Chap. VIII, dealing with thermo¬ 

dynamic and statistical properties of ordinary perfect gases. When we 
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are lik-ely to find iV/s greater than unity, however, this method is imprac¬ 

ticable, and we must adopt an alternative method based directly on the 

use of the molecular phase space. 

2. Assemblies in the Molecular Phase Space.—When we describe a 

system by giving the A^/s, tlie numbers of molecules in each cell of the 

molecular phase space, we automatically avoid th(^ difficulties desciribed 

in the last section relating to the identity of molecul(.\s. We now meet 

immediately the distinction between the Ferrni-Dirac, t he Einstein-Bose, 

and the classical or Boltzmann statistics. In the Einsteiii-Bos(^ statistics, 

the simplest form in theory, w(^ set u]) a compl(*xion by giving a set of 

Ni^y and we say that any possible set of AT/s, subjetd only to the obvious 

restriction 

= N, (2.1) 

represents a possible complexion, all complexions having equal a priori 

probability. The Eermi-Dirac staUsti(%s diffi'rs from tlu^ Punstein-Bose 

in that there is an additional principles, called the exclusion prin(*ipl(i, 

superposed on the princijde^ of identity of molecules. The exclusion 

principle states that no two molecules may be in the same ccdl of the 

molecular phase space at the same time; that is, no one of the Nmay 

be greater than unity. This principle gains its imj)ortancc from the fact 

that electrons are found experimentally to obey it. It is a principle 

which, as we shall see later, is at the foundation of the structure of the 

atoms and the periodic table of the elements, as well as having the greatest 

importance in all problems involving electrons. In the Ferrni-Dirac 

statistics, then, any possible set of A^/s, subject to Eq. (2.1) and to the 

additional restriction that each Ni must equal zero or unity, forms a 

possible complexion of the system. Finally the Boltzmann statistics is 

the limiting case of either of the other types, in the limit of low density, 

where so few molecules arc distributed among so many cells that the 

chance of finding two in the same cell is negligible anyway, and the differ¬ 

ence between the Fermi-Dirac and the p]instein-Bose statistics disappears. 

Let us consider a single complexion, represent(^d by a set of A^/s, in 

the molecular phase space. We see that the iV/s are likely to fluctuate 

greatly from cell to cell. For instance, in the limiting case of the Boltz¬ 

mann statistics, where there are many fewer molecules than cells, we shall 

find most of the NiB equal to zero, a few equal to unity, and almost none 

greater than unity. It is possible in principle, according to the principle 

of uncertainty, to know all the Nib definitely, or to prepare an assembly 

of systems all having the same AT/s. But for most practical purposes 

this is far more detailed information than we require, or can ordinarily 

give. We have found, for instance, that the translational energy levels 
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of an ordinary gas are spaced extremely close together, and while .there is 

nothing impossible in principle about knowing which levels contain 

molecules and which do not, still practically we cannot tell whether 

a molecule is in one level or a neighboring one. In other words, for 

this case, for all i)racti(^al puri)oses the scale of our observation is much 

coarser than tlu^ limit set by the principle of uncertainty. Let us, then, 

try to set up an assembly of systems reflecting in some way the actual 

(iiTors that we are likely to make in observing molecular distributions. 

Let us suppose that rt^ally we cannot detect anything smaller than a 

group of G c(‘lls, wh('re G is a rather large number, containing a rather 

large number of molecules in all the systcmis of our assembly. And let us 

assume^ that in our asscanbly the av('rag(^ number of mol(‘cules in the iih. 
c(dl, one of our group of L", is Ni, a quantity that ordinarily will be a frac¬ 

tion ratin'!* tlian an inU^gc'r. In the particular case of the Boltzmann 

statistics, Ni will be a fraction much less than unity; in the Fermi-Dirac 

statistics it will be less than unity, but not luaiessarily much less; while in 

the Einstein-Bose stat istics it can have any value. We shall now try to 

set up an assembly h'ading to these postulated values of the iV/s. To do 

this, we shall find all the comph'xions that lead to the postulated Wt^s, in 

the sense of having N,G molecules in the group of G cells, and we shall 

assume that these compk'xions, and these only, are represented in the 

assembly and with ocjual wx'ights. Our probhan, tlaai, is to calculate the 

number of complexions consistent- w’ith a given s(d; of A/s, or the thermo¬ 

dynamic probability W of the distribution, in Boltzmann’s sense, as 

described in Chap. Ill, Sec. 1. Having found the thermodynamic prob¬ 

ability, w^e can computer the entropy of the assembly by the fundamental 

relation (1.3) of Chap. Ill, or 

S - k In W. (2.2) 

For actually calculating the thermodynamic probability, we must 

distinguish betwa^en the Fermi-Dirac and the Einst(‘in-Bose statistics. 

First we consider the F('rmi-Dirac. case. We wdsh the number of ways of 

arranging N^G molecules in G cells, in such a way that we never have 

more than one molecule to a cell. To find this number, imagine G coun¬ 

ters, of which NiG are labc'led 1 (standing for 1 molecule), and the remain¬ 

ing (1 — Ni)G are lab(3led 0 (standing for no molecules). If’we put one 

counter in each of the G cells, we can say that the cells which have a 

counter labeled 1 in them contain a molecule, the others do not. Now 

there are G! ways of arranging G counters in G cells, one to a cell, as we 

have seen in the last section. Not all of these Gl ways of arranging the 

counters lead to different arrangements of the molecules in the cells, 

however, for the NtG counters labeled 1 are identical with each other, and 
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those labeled 0 are identical with each other. For a given assignment of 

molecules to cells, there will be (NtG)! ways of rearranging the countc^rs 

labelled 1, and [(1 — iV'iOG]! ways of rearranging those labeled zero, or 

— iVr)fj]! arrangements in all, all of which lead to only one 

complexion. Thus to get the total number of complexions, we must 

divide G\ by this quantity, finding 

Gl 
Number of complexions of NtG atoms m G cells == - _ - —^ 

(A^/;)![(l - Ni)G]l 
(2.3) 

We shall now rewrite Eq. (2.3), using Stirhng^s theorem. This staters 

that, for a large value of N, 

N\ = V2irN(~y- (2.4) 

Stirling's formula is fairly accurate for values of N greater than lO; for 

still larger iV’s, where A^! and {N/e)^' are very large numbers, the factor 

\/'2tN is so near unity in proportion that it can be omitted for most 

purposes, so that we can write N\ simply as {N/e)^. Adopting this 

approximation, we can rewrite Eq. (2.3) as 

Number of complexions of N atoms in G cells 

Equation (2.5) is of an interesting form: being a quantity independent 

of Gy raised to the G power, we may interpret it as a product of terms, one 

for each cell of the molecular phase space. Now to get the whole number 

of complexions for the system, we should multiply quantities like (2.5), for 

each group of G cells in the whole molecular phase space. Plainly this 

will give us something independent of the exact way wc divide up the 

cells into groups, or independent of G, and we find 

1 (2.6) 

where JJ indicates a product over all cells of the molecular phase space. 
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Using Eq. (2.2), wo then have 

S = In Ni + (1 - Nd In (1 - JVi)] (2.7) 

as the fexpression for entropy in the Fermi-Dirac statistics in terms of the 

avterage nuinl)er TV/ of molecules in each cell. 

For the ]^]inst.(4n-Bos(e statistics, we wish the number of ways of 

arranging TV// mohnailfes in G cells, allowing as many molecules as wc 

please in a C(‘1I. Tliis number can be shown to be 

NuiuIkt of complexions of NiG atoms in G cells 

(2 8) 
(j9,e)U(.' - 1)! 

We can easily make Eq. (2.8) plausible,^ though without really proving 

it, l)y an example. Let us take NiG = 2, G ~ 3, and make a table, as 

Table V-2, showing the possi])le arrangements: 

Table V-2 

(VII 1 2 3 

11 0 0 1 1 0 0 

1 1 0 1 0 ] 0 

1 0 1 1 0 0 1 

0 n 0 0 1 1 0 

0 1 ! 1 0 1 0 1 

” i 0 ] 1 0 0 1 
1 

1 

In the first three columns of Table V~2, we indicate the three cells, and 

indicate each of the two molecules by a figure 1, showing the six possible 

arrangements 6 = - ; following that, we give a scheme with 
(2 + 3 - 1)! 

^ 2!(3 -1)! 

four columns (4 = TV,</ + (? — 1 = 2 + 3 — 1) in which we give all the 

I)ossible arrangements of the two Fs, two O’s, with one in each column 

(2 — TV//, 2 == G — 1). In the general case, the number of such arrange- 

UK'nts is given just by Eq. (2.8), as we can see by arguments similar to 

those used in deriving formula (1.1). But the four-column arrangement 

of Table V-2 corresponds exactly with the three-column one, if we adopt 

the convention that two successive Fs in the four-column scheme belong 

in the same cell. It is not hard to show that the same sort of correspond¬ 

ence holds in the general case and thus to justify Eq. (2.8). 

Applying Stirling's theorem to Eq. (2.8) and neglecting unity com¬ 

pared to G, we now have 

* For proof, as well as other points connected with-quantum statistics, see L, 

Brillouin, “Die Quanteiistati.stik,'^ pp. 129 ff., Julius Springer, 1931. 
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Number of complexions of NiG atoms in (I (^ells 

[Chap. V 

(Ni + 

ww 
(1 + N,)tKv'. 

. 
(2.9) 

As with the Fermi-Dirac statistics, this is a product of terms, one for 

each of the G cells; to find the whole number of complexions, or 

the thermodynamic probability, we hav(^ 

and 

W = JJ(I + Ad'+'''-^ (2.10) 

S = -k'^[Niln Ni - Ci + A’,) In (1 + A,)]. (2.11) 
i 

In Eqs. (2.7) and (2.11), we have foniid the general expressions for 

the entropy in the Fermi-Dirac and Einstein-Bose st atistics. From either 

one, we can find the entropy in the Boltzmann statistics by passing to the 

limit in which all NiS are very small compared to unity. For small 

Ni, In (1 ± Ni) approaches ±Ni, and (1 ± Ni) can be replaced by unity. 

Thus either Eq. (2.7) or (2.11) api)roaches 

s = -k'^iNi In Ni - Ni). (2.12) 
i 

Equation (2.12) expresses tlu^ form of the entropy for the Boltzmann 

statistics. 

3. The Fermi-Dirac Distribution Function.—In the preceding section, 

we have set up assemblies of systems satisfying either the F(Tmi-Dirac 

or the Einstein-Bose statistics and having an ar])itrary average number of 

molecules Ni in the fth cell of molecular phase space. We have found the 

thermodynamic probability and the entropy of sucdi an assembly. These 

assemblies, of course, do not correspond to thermal equilibrium and, as 

time goes on, the effect of collisions of molecules will be to change the 

numbers Ni gradually, with an approach to a steady state. In the next 

chapter we shall consider this process specifically, really following in 

detail the irreversible approach to a steady state. We shall verify then, 

as we could assume from our general knowledge, that during the irreversi¬ 

ble process the entropy will gradually increase, until finally in equilibrium 

it reaches the maximum value consistent with a constant value of the 
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t;Otal energy. But, for the moment, we can assume this final condition 

and use it to find the equilibrium distribution. Wc ask, in other words, 

what set of iV/s will give the maximum entropy, subject to a constant 

internal energy? We can solve this problem, as we solved a similar one in 

Chap. Ill, Sec. 5, by tlie method of undetermined multipliers. 

For the Ferrni-Dirac statistics, we wish to make the entropy (2.7) a 

maximum, subject to a constant value of the energy. Rather than 

impose just this condition, wc employ the thermodynamically equivalent 

one of making the function A = U — TS el minimum for changes at 

constant temperature, as discussed in Chap. II, Sec. 3. This is essentially 

a form of the method of uruh^termined multipliers, the constants multiply¬ 

ing U and S Ixang respectively unity and — 7\ As in Chap. IV, Sec. 1, we 

let the ('iiergy of a molecule in the ith state be ei. Then the average 

energy over the assembly is clearly 

V = 

I 

the summation being over the cells of the molecular phase space. Using 

Eq. (2.7) for th(^ entropy, we then have 

A = ~ (3-1) 
i 

Now we find the changes of A, when the iV/s are varied, keeping tem¬ 

perature and the €i\s fixed. We find at once 

dA = 0 = 

as the condition for equilibrium. This must be satisfied, subject only 

to the condition 

%dN, = 0, (3.3) 

expressing the fact that the changes of the iV/s are such that the total 

number of molecules remains fixed. The only way to satisfy Eq. (3.2), 

subject to Eq. (3.3), is to have 

€i + kT In —= €0 = const., (3.4) 
1 ~ 

independent of i. For then the bracket in Eq. (3.2) can be taken outside 

the summation sign, and Eq. (3.3) immediately makes the whole expres¬ 

sion vanish. 
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Using Eq. (3.4), wo can immodiaiely solve for Ni. We have 

Ni 

nI 

(«—«•) 

1 - Ni 
(«fl —«i)\ (eo —ei) 

Ml + e kr ] = ,. kT 

Ni 

(<K) —tt) 

0 kT ] 
(_<o — <i) 

1 + e 
(c» — eo) 

kf 

(3.5) 

+ 1 

Equation (3.5) expresses the Fermi distribution law, whieli we shall now 

pro(^(H)d to discuss. 

First, let us see that the Fermi-l)ira(* distribution law redue.(\s to the 

Maxwell-Boltzmann law in the limit when the A^/s are small. In that 

(;ase, it must be that the dcmominator in E(p (3.5) is large eoinpanal to 
— <o) 

the numerator. But if e +*1 is large eomi)ared to 1, tlu' numera¬ 

tor, it must be that .1 can be neglected (compared to the exponential. 

Thus, in this limit, we can write 

Ni = , (3.6) 

which is the Maxwell-Boltzmann law, Eq. (1.4) of Chap. IV, if eo is prop¬ 

erly chosen. We notice that even if the temperature is low, so that some 

NiS are not small, still the states of high energy will have large values of 

Thus the argument wo have just used will apply to these states, 

and for them the Maxwell-Boltzmann distribution will be correct, even 

though it is not for states of low^ energy. 

The quantity co is to be determined by the condition that the total 

number of particles is N. Thus we have 

i ,• C + 1 

Since the eis are determined, feq. (3.7) can be satisfied by a proper choice 

of €o. Unfortunately, Eq. (3.7) cannot be solved directly for eo, and it is a 

matter of considerable difficulty to evaluate this important quantity. It 

is not hard, however, to see how Ni behaves as a function of €», particu¬ 

larly for low temperatures. When €» — €o is negative, or for energies 

below Co, the exponential in Eq. (3.5) is less than unity, becoming rapidly 

very small as the temperature decreases. Thus for these energies the 

denominator is only slightly greater than unity, and Ni only slightly less 

than unity. On the other hand, when Ct — co is positive, for energies 

above co, the exponential is greater than unity, becoming rapidly large as 
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the temperature decreases. In this case we can almost neglect unity 

compared to the exponential, and we have the case of the last paragraph, 

whore the Boltzmann distribution is approximately correct, in the form 

(3.6). In Fig. V-1 we show the function ^ J — as a function of e, 

e “hi 

for sev(‘ral temperatures. At T = 0, tlu^ function drops from unity to 

zero sharply when e = eo, while at higher temp(n*atures it falls off 

smoothly. For large values of €, it approximates the exponential falling 

off of th(^ Boltzmann distribution. 

-7 -6 “5 “4 -3 -2 “1 0 1 2 3 4 5 6 7 

Fio. V-].—Formi distribution function, as function of energy, for several temperatures. 
Curve a, kT = 0; 6, kT = 1; c, kT = 2.5. 

One important feature of the futjction (3.5) is the following: 

I - Ni = 

(^1 — ^0 

e 1 — 
(e» — to) 

+ 1 

1 

1 
- (<* — «o) 

e + 1 

(3.8) 

That is, in Fig. V-1, the distribution function at any point to the right 

of eo is equal to the difference between th(^ function and unity, the same 

distance to the left of eo, and vice versa. The curve, in other words, is 

symmetrical with change of sign about th^ point e = eo and ordinate 

From this it follows that eo is approximately constant, for small tempera¬ 

tures at least. For the summation in Eq. (3.7), which must give N 
independent of temperature, is found as follow\s. Along the axis of 

abscissae in Fig. V-1, we mark the various energy levels of the problem. 

At each energy level we erect a line, extending up to the distribution 

curve. The sum of the lengths of all these lines is the summation desired. 

We must now adjust €o, moving the curve to the left or right, so that the 

sum equals N. At the absolute zero this is perfectly simple: we simply 

count up to the Vth energy level from the bottom, and put eo somewhere 

between the ATth and the (N + l)st levels. At a higher temperature, 
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suppose we try the same value of eo and sec if it is correct. Then the sum¬ 

mation will change by subtraction of the part of the lines above the distri¬ 

bution curve to the h^ft of €o and by addition of those below the distribution 

curve to the right. These areas are equal by the result w(^ have just found. 

Thus, if levels come with the same density to the left and to the right of 

€o, the summation will again be N, and the same value of eo will be correct. 

In the next section we find how much eo will change with temperatures if 

the density of levels changes with the energy, as of course it will to some 

extent. 

4. Thermodynamic Functions in the Fermi Statistics.—Having 

derived the Fermi-Dirac distribution law, we shall go on to find some of 

its properties in th(i case of low tempe^ratures, the important case in the 

practical applications to electrons in metals, wh('re for the present pur¬ 

poses temperatures even of several thousand degr(K\s can be regarded as 

low. The distribution function, as we see in Fig. V-1, changes with 

temperature mostly in the immediate neighborhood of the energy eo. If, 

then, wo know the distribution of energy levels in the neighborhood of 

€o, we can find the variation of the thermodynamic functions with tem¬ 

perature. We carry out that analysis in the present section, assuming 

that the energy levels are distributed continuously in energy, an approxi¬ 

mately correct assumption in the cases with which we shall deal. 

Let th(i value of €o at the absolute zero of temperature be eoo. We 

know how to find it from Sec. 3, simply by counting ui.) N levels from the 

lowest level. First we shall try to find how eo depends on temperature. 

We shall assume that the number of energy levels between e and e + de is 

=[(f).+(If).<■ - +• • • ]*- 
a Taylor’s expansion of the function dN/de about the point e = eoo, at 

which the derivatives {dN/de)o and (dW/de2)o are evaluated. With this 

assumption, all our summations can be converted into integrations. We 

write the summation of Eq. (3.7) in the form of an integration; instead of 

using just this form, we find the difference between the summation and 

that at the absolute zero, which should give a difference of zero. Thus 

we have 

The term —1 in the first integral takes care of the summation at the 

absolute zero, where the Fermi function is unity for energies less than €oo, 
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zero for higher energies. In the finst integral, we use Eq. (3.8). Then in 

the first we make the cliange of variables = — (e — €o), and in the 

second u == (e — eo). The two integrals then combine. We retain only 

the terms necessary for a first approximation; this means, it is found, 

that in the term (dW/de^)o we can nc^glect the distinction between €o and 

eoo, though this distinction is essential in the t(‘rm in (dAVde)o. In this 

way we find 

0 = 
Ojeoo-eo 

+ 1 

7 

* + \ - 
/ ^,kf I 

(4.3) 

In the first integral, through the very small range from eoo — eo to eo — coo, 

w(} can noplace the integrand by its value when u = 0, or Thus the 

first term becomes (dN/de)o(eQ — coo). To reduce the second integral 
u 

to a familiar form, we let x = e = —kT In x, du == —kTdx/x, 
The integral then becomes 

r^^du = -(roT j 
Jo ^rr + i J 

‘ (4.4) 

the integral in Eq. (4.4) b(‘ing tabulated for instance in B. O. Peirce’s 

^^Short Table of Integrals.” Then Eq. (4.3) becomes 

Equation (4.5) represents cn by the first two terms of a power series in the 

temperature, and the approximations we have made give the term in 

correctly, though we should have to be more careful to get higher 

terms. We see, as wc should expect from the last section, that if 

(dW/de‘^)o = 0, so that the distribution of energy levels is uniform at 

Co, €o will be independent of temperature to the approximation we are 

using. 

Next, let us find the internal energy in the same sort of way. Written 

as a summation, it is 

U 
€i 

^ kT + 1 

(4.6) 
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Here again, in converting to an integration, we Hhall find, not U, but 

U — r/o, where Uo is the value at the absolute zero. Then we find at 

once that the integral expression for it is exactly like the integral in Eq. 

(4.2), only with an additional factor e in 1-he integrand of each int(‘.gral. 

The leading term hcire, however, comes from tlie t(U’m {dN/d€)o, and we 

can negl(‘ct the terms in (d‘^N/de^)o. Furthermore, in th(^ integrals we 

retain, we can neglect th(' difference betwc'en to and too. Then we have 

again correct to terms in T-, From the internal energy w(i can find the 

heat capacity Cv, by the equation 

Cv 

(4.8) 

We notice that at low temperatures the spc^cific heat of a system with 

continuous energy levels, obeying the Fermi statistics, is proportional 

to the temperature. We shall later see that this formula has applications 

in the theory of metals. 

Let us next find the entropy. We can g(d. a general formula from 

Eq. (2.7). This can be rewritten 

5 = -k^Ni In ^ In (1 - Ni) 
i * i 

= +*2 +1) 

= f + *2 In +1), (4.9) 

where we have used the Fermi distribution law. Replacing the summa¬ 

tion in Eq. (4.9) by an integration and using Eqs. (4.5) and (4.7) for €o 

and [7, we can compute S, The calculation is a little involved, howewer, 

and it is easier to use the relation 
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from which 

(4.10) 

In tho integration leading to Eq. (4.10), we have used the fact that S = 0 

at the absolute zero. This follows din^ctly from Eq. (2.7) for the entropy. 

For (‘aeh term in the entropy is of the form iV In iV or (1 — N) In (1 — iV), 
and at the absolutes zero each value of N is either 1 or 0, so that each of 

lh(\se t(*rms is 1 In 1 or 0 In 0, either of which is zero. 

From th(^ intcTiial encn’gy and tln^ entropy w(^ can find the H(‘lmholtz 

friH' energy 

where Eq. (4.11) is derived from Eq. (4.9), and Eq. (4.12) from Eqs. (4.7) 

and (4.10). By differcaitiating the function A with respect to tempera¬ 

ture at constant volume, we get the negative of the entropy, as we should. 

By differentiating with respect to the volume at constant temperature, we 

g(‘t the negative' of tlu^ pn'ssure, and luaice can find the equation of state. 

So far, w(i have not meidioned the dependence of any of our functions on 

the volume. Surely, however, the stationary states and energy levels of 

th(' particles will (hqxmd on the volume, though not explicitly on the 

temperature. Hence ffo and ((iN/(h)i) arc to be regarded as functions of 

the volume. The functional dependence, of course, cannot b(i given in a 

general discaission, applicable to all systems, such as the present one. 

Using this fact, then, wci have 

The fi^rst term, the leading one ordinarily, is independent of temperature, 
and the second, a small additional one which can be of either sign, is 
proportional to the square of the temperature. Thus, the equation of 
state is very different from that of a perfect gas on Boltzmann statistics. 
It is to be borne in mind, however, that this formula, like all those of the 
present section, applies only at low temperatures and is only the beginning 
of a power series. At high temperatures the statistics reduce to the 
Boltzmann statistics, as we have seen, and the equation of state of a Fermi 
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system and the corresponding system obeying Boltzmann statistics must 

approach each other at high temperature. 

6. The Perfect Gas in the Fermi Statistics.—As an example of the 

application of the Fermi statistics, we can consider the perfect gas. In 

Chap. IV, Sec. 1, we have found tlu^ number of energy levels for a mole¬ 

cule of a perfect gas, in the energy range de. Rewriting Eq. (1.10) of that 

chapter, we have at once 

and 

dN 
de 

27rV 
(5.1) 

7r\ 
(5.2) 

If we substitute eoo for e in Eqs. (5.1) and (5.2), wo have the quantities 

(dN/d€)o and (d'^N/de“)o of the pnwious sen*lion. To find €oo, we note 

that from Eq. (1.9), Chap. IV, the number of staters with energy less than 

€ is (47rV/3/?-'0(2wc)'^‘. Remembering that there are just N states with 

energy less than eoo, this gives 

We notice, as is natural, that €oo, th(‘ highest occupied energy level at the 

absolute zero, increases as the numlxT of particles N increases. It is 

important to notice, however, that it is tlu^ density of particles, N/V^ that 

is significant, not the absolute number of particles in the syst(‘m. In a 

gas obeying the Fermi statistics, the partichss cannot all have zero energy 

at the absolute zero, as they would in the Boltzmann statistics; but since 

there can be only one particle in each stationary state, tln^re is an energy 

distribution up to the maximum energy eoo. Bet us see how large this 

is, in actual magnitude. We can hardly be interested in cases where 

N/V reprcvsents a density much greater than the number of atoms of a 

solid per unit volume. Thus for examine let N/V be one in a cube of 

3 X 10""^ cm. on a side, or let it equal -^V X lO^^. Let us make the 

calculation in kilogram calories per gram mole (1 kg.-cal. equals 1000 cal. 

or 4.185 X 10^^ ergs, one mole contains 6.03 X lO^'"^ molecules), and let 

us do it first for an atom of unit molecular weight, for which one molecule 

weighs 1.66 X lO''^^ gm. Then we have 

3 X (6.61 X 10-27)31^ 

47r X 27 X 10-24 J 

= 0.081 kg.-cal. per gram mole. (5.4) 

There do not seem to be any ordinary gases in which the energy calculated 

from Eq. (5.4) is appreciable. Hydrogen H2 and helium He both satisfy 

6.03 X 1023 1 

4.185 X’ iO'^^ 2 X 1.66 X 10“24 
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the ICinstein~Bose statistics instead of tlie Fermi, and so are not suitable 

examples. With any heavier gas, the mass that comes in the denominator 

of Eq. (5.3) would reduce the value to a few gram calories per mole, a 

value small comparc'd to the internal energy whi(;h the gas would acquire 

in even a few degrees with normal specific heat as given by the Boltzmann 

statistics, in Chap. IV, Sec. 3. The one case where the Fermi statistics 

is of great importance is with the ekictron gas, on account of the very 

small mass of the electron. The atomic weight of the electron can be 

taken to be T8-iir- Then to get eoo for an electron gas of the density 

mentioned above, we multiply the figure of Eq. (5.4) by 1813, obtaining 

€oo = 148 kg.-cal. per gram mole = 6.4 electron volts. (5.5) 

The value (5.5), insUmI of bcang small in comparison with thermal magni¬ 

tudes like (5.4), is of the order of magnitude of large heats of dissociation 

or ionization potentials, and enormously large compared with thermal 

energies at ordinary temperatures. 111118 in an electron gas at high den¬ 

sity, the fastest eled.rons, even at tli(‘ absolute zero, will be moving with 

very high velocities and very large (UKUgies. 

We can next use Eq. (4.5) to find €0 at other teinpe^ratures. We have 

at once 

_ 7^ (fcT)2 
12 €00 

(5.6) 

From Eq. (5.6) we note that in ordinary gases, where eoo is of the order 

of magnitude of kT for a low temp(*rature, the term in will be large, 

showing that the series converges slowly. On the other hand, in an elec¬ 

tron gas, where eoo is very largi^ compared to fcT, the series converges 

rapidly at ordinary temperatures, and eo is approximately independent of 

temperature, decreasing slightly with increasing temperature. 

The quantity f/o, the internal energy at the absolute zero, is easily 

found, from the equation 

■ J. ‘ST* = 
~ fiVcoo, (5.7) 

using Eq. (5.1). Thus the mean energy of a particle at the absolute zero 

is three-fifths of the maximum energy. From Eq. (4.7) we can then find 

the internal energy at any temperature, finding 

U 
3 , wHkTy 
■^€00 -r -T- 
5 4 €00 , 

(5.8) 
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The heat capacity is given by 

Cv — Nk-^ — (5*9) 
^ ^00 

For an electron gas at ordinary temperature, this is a small quantity. An 

ordinary gas would have a heat capacity ^Nk. This value is the ordinary 

value, multiplied by {Tr^/S){kT/eoo). Now at 1000° abs., for instance, a 

fairly high temperature, kT is about 2 kg.-cal. per gram mole, whereas we 

have seen in Eq. (5.5) that eoo is of the order of 148 kg.-cal. per gram mole. 

Since t^/3 is about 3, this means that tlu^ electronics specific heat at 1000° 

abs. is about four per cent of that of a perfect gas on the Boltzmann 

statistics, while at room temperature it would be only a little over 1 per 

cent. 

The other thermal quantities are c^asily found. As we sec from 

Eqs. (4.8) and (4.10), the entropy equals the spc^cific heat, up to terms 

linear in the temperature, so that the entropy of the pc^rfect gas is given 

by Eq. (5.9) at low temperatures. And the function A, using Eq. (4.12), 

is 
.3 TpS kT 

A = ~iV€oo - Nkr^—- (5.10) 
5 4 €(,0 ^ ^ 

To find the pressure, we wish to know A explicitly as a function of volume. 

Substituting for €oo from Eq. (5.3), we have 

- is;i(0 rS - (6.U) 

We can now differentiate to get the pressure: 

2 U 
= 3^. , (5.12) 

as we can see by substituting for €oo in Eq. fS.S). Equation (5.12), stating 

that PV = f (7, is the equation found in Eq. (3.5), Chap. IV, by a kinetic 

method, without making any assumptions about the distribution of 

velocities. It must therefore hold for the Fermi distribution as well as 

for the Boltzmann distribution, and it was really not necessary to make a 

special calculation of the equation of state at all. It is obvious, however, 

that the final equation of state is very different from that of the perfect 

gas on the Boltzmann statistics, on account of the very different relation 

which we have here between internal energy and temperature. Since 
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the internal energy is very large at the absolute zero, but increases only 

slowly with rising temperature, with a term proportional to the same 

is true here of PV. Thus, in the example used above, the pressure is 

149,000 atm. at the absolute zero. We note that, in contrast to the 

Boltzmann statistics, the internal energy here depends strongly on the 

volume, as Eqs. (5.8) and (5.3) show; thus the gas does not obey Boyle\s 

law. This dependence of internal energy on volume is an interesting 

thing, for it does not indicate in any way the existence of forces between 

the particles, which we are neglecting here just as in the Boltzmann theory 

of a perfect gas. The kinetic energy is what depends on the volume, on 

accoyjit of the dependence of €oo on volume. 

The Einstein-Bose Distribution Law.—We can find the Einstein- 

Bose distribution law, proceeding by exact analogy with the methods of 

Sec. 3 but using the expression (2.11) for the entropy. Thus for the 

function A we have 

A = + kTNi In Ni - kTil + Ni) In (1 + (e.i) 

i 

Varying the Nii^ and requiring that A be a minimum for equilibrium, we 

have 

= 0 = (6-2) 

t 

As in Sec. 3, Eq. (6.2) must be satisfied, subject to the condition 

XdNi = 0, 

leading to the relation 

+ kT In = eo = const. (6.3) 

Solving for Ni, as in the derivation of Eq. (3.5), we have 

Ni (6.4) 
e kT ^ I 

Equation (6.4) expresses the Einstein-Bose distribution law. As with 

the Fermi-Dirac law, the constant 6o is to be determined by the condition 

N 
1 

(« - eo) 
, kT 

- 1 
(6.5) 
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We can show, as we did with the Ferrni-Dirac statistics, that the 
distribution (6.5) approaches the Maxwell-Boltzmarm distribution law at 
high temperatures. It is no easier to make dcdaik^d calculations with the 
Einstein-Bose law than with the fiernii-Dirac distribution, and on account 
of its smaller practic^al importance w(^ shall not carry through a detailed 

kT 

Fig. V-2.—Distribution functions for Fermi-Dirac statistics (a); Maxwell-Jioltzmann 
statistics {h); and Einstein-Bose statistics (c). 

discussion. It is inten^stiiig, howc^ver, to comi^art^ the three distribution 

laws. This is dqne in Fig. V-2, where wo jdot the function ~ * 
e kT ^ I 

(f ~ «o) 

representing the Einstein-Bose law, l/e representing the Maxwell- 

Boltzmann, and -representing the Fermi-Dirac, all as functions 

6 “h 1 
of €. We observe that the curve for the Einstein-Bose distribution 
becomes asymptotically infinite as € ai)proaches eo. From this and from 
Eq. (6.5), it follows that eo must lie lower than any of the energy levels of a 
system, in contrast to the case of the Fermi-Dirac distribution. We see 
that the Maxwell-Boltzmann distribution forms in a certain sense an 
intermediate case between the two other distributions. The Fermi-Dirac 
statistics tends to concentrate the molecules more in the higher energies, 
having fewer molecules in proportion in the lower energies than in the 
Maxwell-Boltzmann statistics. On the contrary, the Einstein-Bose 
statistics tends to have more molecules in the lower energies. As a mat¬ 
ter of fact, more elaborate study of the Einstein-Bose distribution law 
shows that the concentration of molecules in the low states is so extreme 
that at low enough temperatures a pl^enomenon of condensation sets 
in, somewhat analogous to ordinary changes of phase of a real gas. From 
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these properties of the distribution laws, we can see that in some super¬ 

ficial ways the effect of the Fenni-Dirac statistics is similar to that of 

repulsive forces between tlie molecules, leading to a large pressure even 

at the absolute zero, while the effect of the Einstein-Bose statistics is 

similar to that of attractive forces, leading to condensation into a phase 

resembling a liquid. 

The real gases hydrogen and helium obey the Einstein-Bose statistics, 

and there an^ indications that at tern})eratures of a few degrees absolute 

the departures from the Maxwell-Boltzinann statistics are appreciable. 

Of cours(i, the moh^cules have real attractive forceps, but the effect of the 
statistics is to help tliese forces along, ])roducing condensation at some¬ 

what higlu^r temp(^rature than would otherwise be expected. The sugges¬ 

tion has even been made that the anomalous coiuhmsed phase He II, a 

liquid persisting to the absolute zero at ordinary pressures and showing 

ext raordinarily low viscosity, may be the condensed phase of the Einstein- 

Bose statistics. For other gases than hydrogen and helium, th(i inter- 

molecular attractions are so much great.er than the effect of the 

Einstein-Bose statistics that they lifiuefy at temperatures too high to 

detect dej)artures from the Maxwell-Boltzmann law. Aside from these 

gases, the only important application of the Einstein-Bose statistics 

comes in the theory of black-body radiation, in wdiich it is found that 

photons, or corpuscles of radiant energy, obey the Einstein-Bose statistics, 

leading to a simple connection betweem the Einstein-Bose distribution 

law and the Planck law of black-body radiation, which we shall discuss 

in a lat(^r chapter. 



CHAPTER VI 

THE KINETIC METHOD AND THE APPROACH TO THERMAL 
EQUILIBRIUM 

In the preceding chapters, we have taken up in a very general way 
thermodynamics and statistical mechanics, including some applications 
to perfect gases. Both, as we have seen, are very general and powerful 
methods, but both are limited, as far as quantitative predictions are 
concerned, to systems in thermal equilibrium. The kinetic theory, some 
of whose methods we shall use in this chapter, is not so limited. It can 
handle the rates of molecular processes and incidentally treats thermal 
equilibrium by looking for a steady state, in which the rate of change of 
any quantity is zero. But it has disadvantages compensating this great 
advantage: it is much more complicated and much less general than 
thermodynamics and statistical mechanics. For this reason we shall not 
pretend to give any methods of handling an arbitrary problem by kinetic 
theory. We limit ourselves to a very special case, the p)erfect monatomic 
gas, and we shall not even make any quantitative calculations for it. 
Later on, in various parts of the book, we shall handle other special 
problems by the kinetic method. Always, we shall find that an actual 
calculation of the rate of a process gives us a better physical insight into 
what is going on than the more general methods of statistical mechanics. 
But generally we shall find that the kinetic methods do not go so far, and 
always they are more complicated. Our problem in this chapter is to 
investigate thermal equilibrium in a perfect monatomic gas by the kinetic 
method. We set up an arbitrary state of a gas and investigate how it 
changes as time goes on. We compute its entropy at each stage of the 
process, showing that in fact the entropy increases in the irreversible 
process by which the arbitrary distribution changes over to thermal 
equilibrium, and we can actually find how fast it increases, which we 
could not do by our previous methods. Finally by looking for the final 
state, in which the entropy can no longer increase, we get the condition 
for thermal equilibrium and show that it agrees with the condition derived 
from statistical mechanics and the canonical assembly. 

1. The Effect of Molecular Collisions on the Distribution Function 
in the Boltzmann Statistics.—^Let us set up a distribution in the molecular 
phase space, as described in Chap. V, Sec. 1. We consider, not a single 
state of the gas, but an assembly of states, as set up in Sec. 2 of that same 

86 
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chapter, defined by the average number of molecules in the ^'th cell 
of the molecular phase space, and having the entropy given in Eq. (2.7), 
(2.11), or (2.12) of Chap. V. We start with an arbitrary set of Wt^s, and 
ask how they change as time goes on. The changes of NiS arise in two 
ways. First, there are those changes that would be present even if there 
were no collisions between molecules. A molecule with a certain velocity 
moves from point to point, and hence from cell to cell, on account of 
that vcilocity. And if the molecule is acted on by an external force 
field, which changes its momentum, it goes from cell to cell for that 
reason too. These changes are in the natures of streamline flows of the 
representative points of the molecules in the molecular phase space. We 
shall discuss them later and shall show that they do not result in any 
change of entropy. Secondly, there are changes of Ni^ on account of 
collisions between molecules. These are the changes resulting in irrever¬ 
sible approach to a random distribution and in an increase of entropy. 
Since they are for our present purposes the most interesting changes, we 
consider them first. 

Consider two molecules, one in the ?'th cell, one in the jth, of molecular 
phase space. If these cells happen to correspond to the same value of the 
coordinates, though to different valu(\s of the momenta, there is a chance 
that the molecukvs may collide. In the process of collision, the represen¬ 
tative points of the molecules will suddenly shift to two other colls, say 
the fcth and Zth, having practically the same coordinates but entirely 
different momenta. The momenta will be related to the initial values; for 
the collision will satisfy the conditions of conservation of energy and 
conservation of momentum. These relations give four equations relating 
the final momenta to the initial momenta, but since there are six com¬ 
ponents of the final momenta for the two particles, the four equations 
(conservation of energy and conservation of three components of momen¬ 
tum) will still leave two quantities undetermined. For instance, we may 
consider that the direction of one of the particles after collision is undeter¬ 
mined, the other quantities being fixed by the conditions of conservation. 

We now ask, how many collisions per second are there in which mole¬ 
cules in the ith and jth cells disappear and reappear in the A^th and Zth 
cells? We can be sure that this number of collisions will be proportional 
both to the number of molecules in the zth and to the number of molecules 
in the jth cell. This is plain, since doubling the number of either type of 
molecule will give twice as many of the desired sort that can collide, and 
so will double the number of collisions per unit time. In the case of the 
Boltzmann statistics, which we first consider, the number of collisions will 
be independent of the number of molecules in the fcth and Zth cells, though 
we shall find later that this is not the case with the Fermi-Dirac and 
Einstein-Bose statistics. We can then write the number of collisions of 
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the desired typo in unit time, averaged over the assembly, as 

AViNiNj. (1.1) 

The coefficient Aj.} will of course depend on the momenta associated with 
all four cells, and in particular will be zero if tliese momenta do not satisfy 
the conditions of conservation. It will also dc^pcaul on the properties 
of the atom. For instance, it is obvious that the larger the moh^cules 
are, the more likely they are to collide, and the larger the A’s will be. We 
do not have to go more into details of the A^s for our present purposes, 
however. 

In addition to these collisicms, we shall have to cf)nsider what we shall 
call an inverse collision. This is one in which the molecules befon^ (iolli- 
sion are in the cells k and Z, and afbu* collision are in cells i and j. The 
number of such collisions per unit time, by the same argument as before, 
will be 

A^lN,Ni, (1.2) 

Now we ask, what relation, if any, is there between the two coefficients 
Aii and A!^f of the direct and inverse collisions? The answer to this 
question is simple but not very easy to justify. It is this: if the cells are 
all of the same size, as we are assuming, we have simply 

AU - Atl^ (1.3) 

In case the collision takes place according to Newtonian mechanics, the 
relation (1.3) can be proved by means of Liouville’s theorem. In quan¬ 
tum mechanics, Eq. (1.3) is practically one of t he postulates of the theory, 
following directly from quantum iiKichanical calculations of transition 
probabilities from one state to another. For our pres(ait puipose, con¬ 
sidering that this is an elementary discussion, we shall simply assume the 
correctness of relation (1.3). This relation is sometimes called the prin¬ 
ciple of microscopic reversibility. 

We are now in position to find how our distribution function changes 
on account of collisions. Let us consider a certain cell f, and ask how the 
average number Ni of molecules in this cell changes with time, on account 
of collisions. In the first place, whenever a molecule in the cell collides 
with another molecule in any other cell, the first molecule will be removed 
from the fth cell, and the number of molecules in this cell will be dimin¬ 
ished by one. But the whole number of collisions of a molecule in cell 
ij with all other molecules, per second, is 

(1.4) 
jU 

where we are summing over all other types of molecule j with which the 
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original molecule can collide, and over all possible states k and I into which 
the molecules can be sent by collision. On the other hand, it is possible 
to have a collision of two molecules having quite different momenta, such 
that one of the molecules after collision would be in cell i. This would 
result in an increase of unity in the number of molecules in the cell i. The 
inimber of such collisions jK^r second is 

'^Af,N,Ni = (1.5) 
jkl jid 

where we have used the result of Eq. (1.3). Thus the total change in Ni 
per second is given by 

jkl jkl 

= ^Ai{{N,Ni - N,Ni). (1.6) 
jkl 

2. The Effect of Collisions on the Entropy.—Equation (1.6) represents 
the first part of our derivation of the effect of collisions in producing an 
irreversible change in the dist ribution and hence in increasing the entropy. 
Now we must go back to the definition of the entropy in Eq. (2.12) in 
Chap. V, and find how much S changes per unit time on account of the 
collisions. Differentiating that equation with respect to the time, we 
have at once 

dt 
Nj dNi 
Ni dt dt) 

Substituting from P^q. (1.6), this becomes 

^ = k^AV, In NiiNSi - N^Ni). 
tjH 

(2.1) 

(2.2) 

We notice that the fourfold summation over z, j, k, I is perfectly sym¬ 
metrical in i andj; they are simply the indices of the two colliding particles 
before collision. We could interchange their names, and could equally 
well write 

~ == k^Aii In NANiNi - N,Ni). 

ijkl 

(2.3) 
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By Eq. (1.3), this could also be written 

^ In NtiNiR,- - MO. (2.4) 

ijkl 

But in Eq. (2.4), we can interchange t he names of ?*, j with k, Z, obtaining 

^ .'li) In N,{N,N, - NiNj) 
ijkl 

= In N,{NSi - i^kNi). (2.5) 
ijkl 

Finally, interchanging the role of the A:th and /th atoms, we have 

^ In NtiNSi - N„Ni). (2.6) 

ijkl 

Wo now have, in Eqs. (2.2), (2.3), (2.5), and (2.6), four equivalent 
ways of writing dS/dt. We add these equations and divide by 4, obtain¬ 
ing the final form 

Tt ^ -InN,- In - N,Ni) 
m 

= j2^*5(ln NiNi - In N,N,)iNiNi - N,Ni). (2.7) 

ijkl 

The result of P]q. (2.7) is a very remarkable one. Each term of the 
summation is a product of a coc^fficient A (which is necessarily positive), 
and a factor of the form 

(In X - In y){x - y), (2.8) 

where x == NiNj, y == NkNi, But the factor (2.8) is necessarily positive. 
If x > y, so that x — y m positive, then In x > In y, so that the other 
factor In a; — In ^ is positive as well. On the other hand, \i x < y, so 
that x — 2/ is negative, In x — \n y is also negative, so that the product 
of the two factors is again positive. Thus, ev(iry term of the summation 
(2.7) is positive, and as a result the summation is positive. The only 
way to avoid this is to have each separate term equal to zero; then the 
whole summation is zero. But if the summation is positive, this means 
that the entropy S is increasing with time. Thus we have proved Boltz- 
mann^s famous theorem (often called the H theorem, because he called 
the summation of Eq. (2.12), Chap. V, by the symbol H, setting 
S «= ^kH): the entropy S continually increases, on account of collisions, 
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unless it has already reached a steady state, for which the condition is 

NSi - NkNi = 0 (2.9) 

for cwery set of cells j, /c, I b(^tw(‘en which a collision is possible (that 
is, for which Ai{ ^ 0). 

By comparison with Eq. (1.6), we see that Eq. (2.9) leads to the 
condition that dNi/dt should be zero, by dcanandinj^ that each separate 
term of Eq. (1.6) should be zero. That is, in equilibrium, the collision 
in which atoms i and j cf)]lide to give atoms k Jind together with the 
inverse to this type of collision, by thcnnscilves give no net change in the 
numbers of atoms in the various states, the number of direct collisions 
just balancing the num})cr of inverse collisions. This condition is called 
the condition of d(‘tail(ui balancing. It is a general characteristic of 
thermal equilibrium that this detaihal balancing should hold and, as we 
have seen, it follows directly from the second law in its statistical form. 

We may now rewrite Eq. (2.9) in the form 

= NuNi, 
or 

111 Ni + In Nj = In N, + In Ni. (2.10) 

This holds for every transition for which Aih 9^ 0; that is, for every colli¬ 
sion satisfying the laws of conservation of (uiergy and momentum. Using 
the notation of Sec. 3 in (diap. IV, we can let the average number of 
molecules in an element dx dy dz dpr dpy dpz of the molecular phase space 
be/n* dx dy dz dpx dpy dpz. According to Chap. Ill, Sec. 3, the volume of 
molecular phase spacer associated with one cell is h^. Then we have the 
relation 

N, - (2.11) 

where/m is to be computed in the ?Ih cell. We now substitute Eq. (2.11) 
in Eq. (2.10), writing that equation in terms of the/,n^s. Since all four of 
our cells must refer to the same point of coordinate space, since molecules 
cannot collide unless they are in contact, we write fm merely as 
fmiPxPvPz), OT f(p) for short. Then we have 

In f(Pi) + In /(p/) = In f{p,) + In /(p,). (2.12) 

Equation (2.12) states that there is a certain function In / of the momen¬ 
tum of a molecule, such that the sum of the functions of the two molecules 
before collision equals the sum of the functions of the two after collision. 
That is, the total amount of this function is conserved on collision. But 
there are just four quantities that have this property: the energy and the 
three components of momentum. Any linear function of these four 
quantities will also be conserved, and it can be proved that this is the most 
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general function which has this propcirty. Thus we may conclude that 

In fip) = + -KPx + Cpy + Dp^ + E, (2.13) 

where A, B, C, D, E are arbitrary constants. Substitution of Eq. (2.13) 
in Eq. (2.12) shows at once that Eq. (2.12) is satisfied. We have been 
able, in other words, to get a general solution of the j)roblem of the dis¬ 
tribution function in equilibrium. 

The linear combination of Eq. (2.13) can bo roAvritten in the form 

ln/(p) = 2m^f - Pvo}- + (Pz - p.o)='] + In/u 

^ , _PxPiO , PjP„(, , PzPzO_ 
Icf \ 2m ) ^ mkT mkf 

2’;: 

where T (later to be identified with the tem])erature), Vzih /o are 
arbitrary constants, whose relation to the constants of Eq. (2.13) is evi¬ 
dent from Eq. (2.14). Thus we have 

/(p) =:/oC - -2m'kf - ■ (2.15) 

3, The Constants in the Distribution Function.—In Eq. (2.15), we 
have found a distribution function satisfying the condition of thermal 
equilibrium and containing five arbitrary constants, 74o, PzOj fa. 
Since our calculation has been entirely for a single point of ordinary space, 
these five quantities, for all we knoAv, may vary from point to point or be 
functions of position. Shortly we shall find how the quantities must vary 
with position in order to have thermal equilibrium. We may anticipate 
by stating the results which we shall find and giving their physical 
interpretation. 

In the first place, we shall find that the four quantities 1\ p^o, Pzo 
must be constant at all points of space, for equilibrium. By comparison 
Avith Eq. (2.4) of Chap. IV, the formula for the Maxwell distribution of 
velocities, we see that T must be identified with the temperature, which 
must not vary from point to point in thermal equilibrium. The quan¬ 
tities Pxo, Pyo, Pzo are the components of a vector representing the mean 
momentum of all the molecules. If they are zero, the distribution (2.15) 
agrees exactly Avith Eq. (2.4) of Chap. IV. If they are not zero, however, 
Eq. (2.15) represents the distribution of velocities in a gas with a certain 
velocity of mass motion, of components Pxo/w^, Pyolm^ Pz(slrn. The quan¬ 
tities Px — Pxo, etc,, represent components of momentum relative to this 
momentum of mass motion, and the relative distribution of velocities is as 
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in MaxwelFs distribution. Since ordinarily we deal with gas without 
mass motion, we ordinarily set p*/o, and p^o equal to zero. In general, 
we shall not have thermal equilibrium unless the velocity of mass motion 
is independent of position; otherwise, as we can see physically, there 
would be the possibility of viscous effects between different parts of the 
gas. We have now considered the variation of 1\ p^^o, P7/0, Pzo with posi¬ 
tion and have shown that they are constants. Finally we consider /o. 
Our analysis will show that if the potential energy of a molecule is </>, a 
function of position, we must have 

/o = const. X (3-1) 

Equation (3.1) shows that the density varies with position just as 
described in Chap. IV, Sec. 4. Thus, with these interpretations of the 
constants, we see that Eq, (2.15), representing th(^ distribution function 
which we find liy the kinetic method for the steady state distribution, is 
exactly the same that we found previously, in Chap. IV, by statistical 
methods. 

We shall now' prove the results that w^o have mentioned above, regard¬ 
ing the variation of 7', pxo, Pj/o, p^o,/o with position. We stated in Sec. 1 

that a molecule could shift from point to point in phase space not only on 
account of collisions, w'hich w^e have considered, but also on account of the 
velocity and of external force fields, and that these shifts were in the 
nature of streamline flows in the phase space and did not correspond to 
changos of entropy. We must now analyze these motions of the mole¬ 
cules. We shall assume classical mechanics for this purpose; the energy 
levels of a perfect gas, as w^e have seen in Chap. IV, Sec. 1, are spaced so 
closely together that the cells in phase space can be treated as continuous. 
Let us, then, take a volume element dx dy dz dpx dp„ dp^ in molecular 
phase space, and find the time rate of change of fm dx dy dz dpx dpy dpz, 
the number of molecules in the volume element, for all reasons except 
collisions. First, we consider the number of molecules entering the 
element over the surface perpendicular to the x axis, whose (five-dimen¬ 
sional) area is dy dz dpx dpy dpz. The component of velocity of each 
molecule along the x axis is Px/m. Then, using an argument similar 
to that of Chap. IV, Sec. 3, the number of molecules entering the element 
over this surface per second is the number contained in a prism of base 
dy dzdpxdpydpz and altitude Px/m, This is the vohime of the prism 
{{px/m)dy dz dpx dpy d>pz] times the number of molecules per unit volume 
in phase space, or Hence the required number is 
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But a similar number of mok^culcs will leave over the face at x + dx. 

The only difference will be that in computing this number we must use 
fm cornputtid at x + dx, or must use 

fm{x + dx, yZp^VvVz) = ffn(xyZP:cPuJ)z) + dx~(xyZp:,PyP,) + • • • , 

the first two terms of a Taylor’s (‘xpansion. Tims the net number enter¬ 
ing over the two parallel faces })erpendicular to x is 

— — ^^dx dy dz dp^ dpy dp^, m dx r r^y [ 1 

and for the three sets of fae(\s peri)endi(*iilar to x, y, z, we have the net 
number 

/ Px dfirt 

\m dx 
+ Vudfm 

rn dy 
+ & ^(’^)dx 

7/1 dz / 
dy dz dpx dpy dpz (3.2) 

In a similar way we can consider the face perpendicular to the Px axis in 
the phase spacer Th(‘ comi)onent of velocity of a reprchsentative point 
along the px axis in this si)ace is by definition simply the time rate of 
change of px] that is, by Newton\s second law, it is the x component of 
force acting on a molecule. If the potential energy of a molecuh^ is <^, 
this component of force is —d<t>/dx. Thus, the number of molecules 
entering over the face perpendicular to the px axis is 

dx dy dz dpy dpz 

and the net number entering over tiie faces at px and at px + dpx is 

to ^&p^^ 

We have three such terms for the three components of momentum, and 
combining with Eq. (3.2), we have for the total change of the number of 
molecules in the volume element per second the relation 

dt 
"dx dy dz dpx dpy dpz = ^ 

. ^ dfjn I 

to dpx 

Px 'Pv df rn Pz dfm 

m dx m dy m dz 

d<^ dfm 

dy dpy 
, ^ dfn\ 

dz dpzj 
dx dy dz dpx dpy dpz. (3.3) 

Having found the change in the distribution function, in Eq. (3.3), we 
shall first show that it involves no change of entropy. The physical 
reason is that it corresponds to a streamline motion in phase space, result¬ 
ing in no increase of randomness. We use Eq. (2.1) for the change of 
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entropy v^th time, Eq. (2.11) for the relation between Mi and/m, and 
Eq. (3.3) for dfrnl^t. Then we have 

dS 

dt 
Vx df m 
m dx 

(3.4) 

Each of the integrals over the coordinates is to be carric'd to a point out¬ 
side the container holding the gas, each integral over momenta to infinity. 
In Eq. (3.4), each term can be int(‘grated with respect to one of the vari¬ 
ables. Thus the first term, as far as the integration with respect to x is 
concerned, can be transformed by the relation 

J ln/„,^V/:r = J \nfr,,dfrn = (fm hi fm —/m). (3.5) 

At both limits of integration, fm = 0, sinc(' the limits lie outside the con¬ 
tainer, so that the intc^gral vaiiishes. A similar transformation can be 
made on each term, leading to the result that th(' (*.hanges of/m we are now 
considering result in no change of entropy. This justifies our analysis of 
Sec. 2, in which we treated the change of entropy as arising entirely from 
collisions. 

Now we can use our condition (3.3) to find the variation of our quanti¬ 
ties/o, T, pxQ, Puo, Pzo of Sec, 2 with position. In thermal equilibrium, we 
must have dfm/dt = 0. Thus Eq. (3.3) gives us a relation involving the 
various derivatives of/m. W(^ substitute for/m from Eq. (2.15), treating 
the quantities just mentioned as functions of position. Then Eq. (3.3) 
becomes, canceling the exponential. 

0 = Px^ _ Py ^ 
m dx m dy 

m^kT 

+ Py 

Pj 
m dz 

(Px + (Px P*'") Sx dx 
dPxQ I ^ ^ \dpt(j 

+ p> 

(Px - Pso)-qJ + ip« - Puo)^§y~ + (px - 

(Px - P^o)^~ + {Py - Pxo)^” + {pz - Pzo) 
dpzo 
dz 

P®o)^ + {py Pyo)^ + {pz 

(px 

Pxo)“] 

dT , dT , 

dx dy 

dT\ 

P‘Tz) 

(3.6) 

Equation (3.6) must be satisfied for any arbitrary values of the momenta. 
Since it is a polynomial in p*, py, p., involving terms of all'degrees up to 
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the third, and since a polynomial cannot be zero for all values of its 
argument unless the coefficient of each term is zero, we can conclude that 
the coefficient of each power of each of the p\s in Eq. (3.6) must be zero. 
From the third powers we see at once that 

dx 
0, 

dy 
= 0, (3.7) 

or the temperature is independent of ])osition. P>om the second powers 
we then see that the derivatives of the form dpxo/dx must all l)e zero, or 
the average momentum is independent of position. We are left with only 
the first and zero powers. From the zero powers, we see that either 

or 

Pxo = PyO = PzO = 0, 

d<l) _ dcj) __ d(j> _ 

dx dy dz 
(3.8) 

That is, if there is an external force field, there can be no mass motion of 
the gas, for in this case the external field would do work on the gas and its 
energy could not be constant. Then we are left with the first power 
terms. The coefficient of pxj for instance, gives 

I ^ ^_L ^ 
fodx kT dx^ 

(3.9) 

with similar relations for the y and z components. Equation (3.9) can 
be rewritten 

aln/o ^ \kT) 

dx dx ^ 

In/o == + const., 

-4> 

/o = const, 

or Eq. (3.1). Thus we have proved all the results regarding our distribu¬ 
tion function that we have mentioned earlier in the section, and have 
completed the proof that the Maxwcll-Boltzmann distribution law is the 
only one that will not be affected by collisions or the natural motions of 
the molecules and, therefore, must correspond to thermal equilibrium. 

4. The Blinetic Method for Fermi-Dirac and Einstein-Bose Statistics. 
The arguments of the preceding sections must be modified in only two 
ways to change from the Boltzmann statistics to the Fermi-Dirac or 
Einstein-Bose statistics. In the first place, the law giving the number 
of collisions per unit time, Eq. (1.1), must be changed. Secondly, as 
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we should naturally expect, wo must use the appropriate formula for 
entropy with each type of statistics. First, we consider the substitute 
for the law of collisions. Clearly the law (1.1), giving AijNiNj collisions 
per second in which moh^ciiles in states i and j collide to give molecules in 
states k and I cannot be correct for Fermi-Dirac statistics. For the 
fundamental feature of Fermi-Dirac statistics is that if the A’th or Ith 
stationary states happen to be already occupied by a particle, there is no 
chance of another particle going into tluan. Thus our probability must 
depend in some way on the numbcir of partich^s in tlu^ A‘t,h and lih states, 
as well as the ith and jth. Of cours(‘, the Ath state can have either no 
particles in it, or onc^; never more. Thus in one example of our system, 
chosen from the statistical assembly, Nk may l)e zero or unity. If it is 
zero, there is no objection to another particle enb^ring it. If it is unity, 
there is no possibility that anuth(‘r particle can enter it. Averaging over 
the ass(‘mbly, the probal)ility of having a collision in which a particle 
is knock(‘d into the Ath state must clearly have an additional factor equal 
to the fraction of all examph^s of the assembly in which the Ath state is 
unoccupied. Now Nk is the mean number of particles in the Ath state. 
Sinc(i the number of particles is always z(U’o or oikj, this means that Nk 

is just the fraction of examples in which the Ath state is occupie>d. Then 
1 — Nk is the fraction of exam})les in which it is unoccupied, and this is 
just the facjtor we were looking for. Similarly we want a factor 1 — Ni 

to represent the probability that the Zth state will be unoccaipied and 
available for a particle to enter it. Then, finally, wo have for the number 
of collisions per second in which particles in the fth and jih cells are 
knocked into the Ath and ith cells, the formula 

AUNMl - Nk)a - Ni), (4.1) 

In the Einstein-Bose statistics, there is no such clear physical way 
to find the revised law of collisions as in the Fermi-Dirac statistics. The 
law can be derived from the quantum tlu^ory but not in a simple enough 
way to describe here. In contrast to the Fermi-Dirac statistics, in which 
the presence of one molecule in a cell prevents another from entering the 
same cell, the situation with the Einstein-Bose statistics is that the 
presence of a molecule in a cell increases the probability that another 
one should enter the same cell. In fact, the number of molecules going 
into the Ath cell per second turns out to have a factor (1 + increasing 
linearly with the mean number Nk of molecules in that cell. Thus, the 
law of collisions for the Einstein-Bose statistics is just like Eq. (4.1), only 
with + signs replacing the — signs. In fact, we may write the law of 
collisions for both forms of statistics in the form 

AiiNMl ± Nk)il ± (4.2) 
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where the upper sign refers to the Einstein-Bose statistics, the lower to 
the Fermi-Dirac. 

Next, we must consider the change of the mean number of molecules 
in the fth state, with time. Using the law of collisions (4.2) and proceed¬ 
ing as in the derivation of Eq. (1.6), we have at once 

^ ± ± ± ± (4-3) 
jkl 

Having found the number of collisions, we can find the change in ('iitropy 
per unit time. Using the formulas (2.7) and (2.11) of Chap. V for tlu^ 
entropy in the case of Fermi-Dirac and Einstein-Bose statistics, we find at 
once that 

i 

where again the upper sign refers to Einstein-Bose statistics, tlm lower 
one to Fermi-Dirac statistics. Substituting from Eq. (4.3), we have 

^ - In (1 ± Ni)]lN,Ni{l ± N,){1 ± A,) 

ijkl 

- N^l ± N,){1 ± Ni)l (4.5) 

As in Sec. 2, we can write four expressions equivalent to Eq. (4.5), by 
interchanging the various indices f, j, I, Adding these four and divid- 
ing by four, we obtain 

^ ± ± ~ ± Nk) 
ijkl ^ ^ 

(1 ± A0]}[A,Az(l ± Ai)(l ± Nd - NSj{l ± Nk){l ± Ni)], (4.6) 

But, as in Sec. 2, this expression cannot be zero as it must be for a steady 
state, unless 

± Nd(l ± Nj) = M(1 ± i^,)(l ± i^z), (4.7) 

and if it is not zero, it must necessarily be positive. Thus we have demon¬ 
strated that the entropy increases in an irreversible process, and have 
found the condition for thermal equilibrium. 

From Eq. (4.7) we can find the distribution functions for the Einstein- 
Bose and Fermi-Dirac statistics. We rewrite the equation in the form 

^ Ml 

(1 ± (1 ± i?,) (1 ± (1 ± 
(4.8) 
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or 

In 
Ni 

1 + Ni 
+ ln 

1 ± Ni 
= In 

N, 

1 + Nic 
+ ln 

__N^ . 

1 Ni 
(4.9) 

As in Sec. 2, we may now conclude tliat the quantity In -— naust he 
(1 ± iV) 

a function which is conserved on collision, .since the sum for the two par¬ 
ticles before and after collision is constant. And as in that section, this 
quantity must be a linear combination of the kinetic eruirgy and the 
momentum, the coefficients in general depending on position. Also, as 
in t.hat .section, the momentum really contributes nothing to the result, 
impl3ang merely the possibility of choo.sing an arbitrary average velocity 
for the particles. Neglecting this, we then have 

Ni 

± Ni 
= a -b 66h„, (4.9) 

where a and h are (K)nstauts, ek„. is the kinetic energy of a molecule in the 
fth cell. That is, we have 

Ni 

'\±'Ni 

Ni = 
+ 1 

(4.10) 

As we see by comparison with tbo formulas (3.5) and (6.4) of Chap. V, 
the quantity h is to be identified with —l/kT. Thus wo have 

Ni = - . (4.11) 
_ km 

c + 1 

In formula (4.11), as in (2.15), there are certain quantities a and T 

which are constant as far as the momenta are concerned, but which might 
vary from point to point of space. We can investigate their variation 
just as we did for the Boltzmann statistics in Sec. 3. The formula (3.3) 
for the change of the distribution function with time on account of the 
action of external forces holds for the Einstein-Bose and Fermi-Dirac 
statistics just as for the Boltzmann statistics, and leads to a formula very 
similar to Eq. (3.6) w^hich must be satisfied for equilibrium. The only 
difference comes on account of the different form in which we have 
expressed the constants in Eq. (4.11). Demanding as before that the 
relation like (3.6) must hold independent of momenta, we find that the 
temperature must be independent of position, and that the constant a 
of Eq. (4.11) must be given by 
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a — 
«0 — 

kT~’ 
(4.12) 

whore to is a constant, (t> is the potential energy of molecule. Thus, 

finally, we have 

S, = . (4.13) 

r + 1 

where €i is the total energy, kinetic and })otential, of a molecule in the 

fth cell, in agreement with Eqs. (3.5) and (6.4) of Chap. V. 



CHAPTER VII 

FLUCTUATIONS 

A statistical assembly coiitaiiis many rei)licas of the same system, 
agreeing in large-scale propertic^s but varying in small-scale properties. 
Sometimc's thcise variations, or fliictiiations, ar(‘ important. Thus, two 
repetitions of the saim^ (experiment may disclose diffcerent densities of a 
gas at a givcen point, though tlue avcerage d(ensity through a large volume 
may be the same in each case. Such fluctuations of density can be of 
experimental importamae in such probI(‘ms as Hue sceattering of light, which 
is produced by irn^gularities of d(‘nsity. Again, in the emission of elec¬ 
trons from a hot filament, tluTe are fluctuations of current, which are 
observable as the shot effect and which are of grceat praceticeal importance 
in the d('sign of amplifying circuils. We shall take up some of the simpler 
sorts of fluctuations in this chapter. We begin by considering the fluc¬ 
tuations of (mergy in a caTu.)ni(‘al assembly. We recall, from the argu¬ 
ments of Chap. Ill, Sec. 5, that an assembly of systems in equilibrium 
with a temperature })ath must bo assumed to have a variety of (uiergies, 
since th(‘y can interchange energy with the bath. We can now show, 
however, that actually the great majority of the systems have an energy 
extremely close to a certain mc^an value and that deviations from this 
mean are extrem(;ly small in comparison with th(^ total energy. This can 
be shown by a perfectly straightforward application of the distribution 
function for the canonical assembly, in the case where our system is a 
sample of perfect gas obeying the Boltzmann statistics, and we start with 
that example. 

1. Energy Fluctuations in the Canonical Assembly.—^Let E be the 
en(?rgy of a particular system in the canonical assembly, U being the 
average energy over the assembly, or the internal energy. We are now 
interested in finding how much the energies E of the individual systems 
fluctuate from their average value. The easiest way to find this is to 
compute the mean square deviation of the energy from its mean, or 

(E — Uy, This can be found by elementary methods from the Maxwell- 
Boltzmann distribution law. Referring to Eq. (1.1) of Chap. IV, we 
can write the energy as 

JN 

E = 2*'^ 

101 

(1.1) 
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where is the energy of the ith molecule, and 

N 

(1.2) 
i- 1 

where is the average energy of the fth molecule over the assembly. 
Thus we have 

N 

(i; - t/) = (e<‘> - ?«>), (1.3) 
t = 1 

and 
N N 

{E^-Vy^ = ^ (1.4) 

We must now perforin the averaging in Eq. (1.4). We note that 
there are two sorts of terms: first, those for which i ~ j; secondly, those 
for which i 7^ j. We shall now show that the terms of the second sort, 
average to zero. The reason is the statistical independence of two mohj- 
cules i and y in the Boltzmann distribution. To find the average of such 
a term, we multiply by the fraction of all systems of the assembly in which 
the fth and jili molecules have the particular energies and wlu^re 

ki and kj are indices referring to particular cells in phase space, and sum 
over all states of the assembly. From Eq. (1.2) of Chap. IV, giving the 
fraction of all systems of the assembly in which each particular molecule, 
as the fth, is in a particular state, as the fc^th, we see that this average is 

(^(i) - g(;)) 

ki 

ki kj 

= =: (,-(0 _ e(‘>)(€^^’^ - eC)) = 0. (1.5) 

Having eliminated the terms of Eq. (1.4) for which i 9^ j, we have left only 

N 

"(W^-Dyi = (1.6) 
1 = 1 

That is, the mean square deviation of the energy from its mean equals 
the sum of the mean square deviation of the energies of the separate 
molecules from their means. Each molecule on the average is like every 
other, so that the terms in the summation (1.6) are all equal, and we may 
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write 
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{E - uy = N{e - 6)2, (1.7) 

where e represents the energy of a single molecule, I its mean value. 
We can understand Kq. (1.7) better by putting it in a slightly different 

form. We divid(i the equation by so that it represents the fractional 
deviation of the energy from the moan, squared, and averaged. In 
computing this, wo use Eq. (1.2) but note that the mean energy of each 
molecule is equal, so that Eq. (1.2) becomes 

u = m. (1.8) 

Using I]q. (1.8), we then have 

(1.9) 

Equation (1.9) is a very significant result. It states that the fractional 
mean square deviation of energy for N molecules is that for a 
single molecule, in Boltzmann statistics. The greater the number of 
molecules, in other words, the less in proportion are the fluctuations of 
energy from the mean value. The fractional deviation of energy of a 
single molecule from its mean is of the ordcT of magnitude of its total 
energy, as we can see from the wide divergence of energies of different 
molecules to be observed in the Maxwell distribution of velocities and as 
we shall prove in the next paragraph. Thus the right side oi Eq. (1.9) 
is of the order of magnitude of 1/iV. If iV' is of the order of magnitude of 
102^, as with a large scale sample of gas, this means that practically all 
systems of the assembly have energies departing from the mean by some¬ 
thing whose square is of the order of lO”^^ of the total energy, so that the 
average deviation is of the order of lO"^^ of the total energy. In other 
words, the fluctuations of energy in a canonical assembly are so small 
as to be completely negligible, so long as we are dealing with a sample of 
macroscopic size. 

To evaluate the fluctuations of Eq. (1.9) exactly, we must find the 
fluctuations of energy of a single molecule. We have 

(e — 6)2 = C2 — 266 ■+- (6)2 

- ^2 ~ (e)2, (1.10) 

a relation which is often useful. We must find the mean square energy of 
a single molecule. Using the distribution function (2.4) or (2.6) of Chap. 

IV, we find easily that 

i2 = ^{kT)\ (1.11) 
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Remembering that 

c - ikT, (1.12) 

as shown in Kq. (2.7) of Chap. IV, this gives 

= (¥ - - UkTY. (1.13) 

from which Eq. (1.9) b(K;omcs 

fixing the numerical value of the relative mean square deviation of the 
energy. 

2. Distribution Functions for Fluctuations.—In the preceding section 
we have given an elementary derivation of the energy fluctuations in 
Boltzmann statistics. The derivation we have used is not applicable to 
many interesting fluctuation probhnns, and in the ])res(ait section we shall 
develop a much more general method. Supi)ose we have a quantity 

in whose fluctuations from the mean we are interested. This may be 
the energy, as in tlie last section, or many other possil)le quantities. Our 
method vdll be to set up a distribution function /(:r), su(di that f(x)clx 

gives the fraction of all systems of the assembly for which x lies in the 
range dx. Then it is a simple matter of integration to find the mean of 
any function of x, and in particular to find the mean square deviation, for 
which the formula is 

{x — xY — J{x — xyf{x)dx. (2.1) 

We shall assume that the energy levels of the problem are so closely 
spaced that they can be treated as a continuous distribution. For each 
of the energy levels, or states of the system, there will be a certain value 
of our quantity x. We shall now arrange the energy levels according to 
the values of x and shall set up a density function, wliich we shall write 

in the form e * , such that 

£(£) 
e * dx (2.2) 

is the number of energy levels for which x is in the range dx. We shall 
see later why it is convenient to write our density function in the form 
(2.2). Now we know, from the canonical assembly, as given in formula 
(5.15) of Chap. Ill, that the fraction of all systems of the assembly in a 

^ E 

given energy level is proportional to e Thus, multiplying by the 
number (2.2) of levels in dx, we find that the fraction of systems in the 
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range dx is given by 
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_[E(x) - Ts(x)} 

J{x)dx — const, e dx, (2.3) 

where E{x) is the energy corresponding to the levels in dx. We may 
immediately evaluate the constant, from the conditicm that the integral 
of f{x) over all values of x must be unity, and have 

kT 

\K{x) - 

kT dx 

(2.4) 

In the problems we shall Ix^ considering, /(.r) has a very sharp and 
narrow maximum at a, captain valium rro, rapidly falling })ractjcal]y to zero 
on both sides of the maximum. This corn'sponcls to the fact that x 

fluctuates only sliglitly from xo in the systems of the assembly. The 
reason for this is simple. The function E{x) — Ts{x) must have a mini¬ 
mum at :ro, in order that/(a*) may have a maximum there. The function 
f{x) will then be rediic(‘d to l./e of its maximum value wfuai E(x) — Ts{x) 

is great(*r than its minimum by only kT. But E is the energy of the whole 
system, of the order of magnitude of NkT, if there are iV atoms or mole¬ 
cules in th(‘ system, and we shall find likewise that Ts(x) is of this same 
order of magnitude. Thus an exceedingly small jx^rcentage chang(i in x 

will be enough to increase? the function E(x) — Ts{x) by kT or much 
more. 

We can get a very us(‘ful expression for/(x) by assuming that 

E{x) ^ IXx) 

can be approximated by a parabola through the very narrow range in 
which f(x) is appreciable. Let us expand E{x) — Ts{x) in Taylor^s 
series about xq. Remembering that the function has a minimum at 
Xo, so that its first derivative is zero there, we have 
E(x) - Ts(x) = E(xo) - Ts(xo) 

+ 2\dx^ rfxVo^ 
Xo)“ + (2.5) 

The second derivatives in Eq. (2.5) are to be computed at x = Xo. Then 
the numerator of Eq. (2.4) becomes 

lE(n)-T»{n)] 
kT (2.6) 

where 



106 INTRODUCTION TO CHEMICAL PHYSICS [Chap. VII 

The function called a Gauss error curve, having been used 
by Gauss to dt^scribe distribution functions similar to our f{x) in the 
theory of errors. It equals unity when x = oto, and falls off on both sides 
of this point symmetrically, being reduced to 1 /e when 

X — Xo = ± 1/a/ cl. 

Using formulas (2.6) and (2.7), and the integrals (2.3) of Chap. IV, we 
can at once compute the denominator of E(]. (2.4) and find 

fix) = (2.8) 

Formula (2.8) is an obviously convenient exprcvssion for the distribution 
function. From it one can find the mean square deviation of Xo. Obvi¬ 
ously the mean value of x is Xoy from the symmetry of Eq. (2.8). Then, 
using Eq. (2.1), we have 

(^-x„r = L. (2.9) 
Zi(X 

In Eq. (2.9), we have a geiK^al expression for mean square fluctua¬ 
tions, if only we can express E — Ts as a function of x. This ordinarily 
can be done conveniently for the internal energy E. We shall now show 
that, to a very good approximation, s (equals the entropy so that it 
also can be expressed in terms of the parameU'r x, by ordinary thermo¬ 
dynamic means. To do this, we shall compute the partition function Z 

of our assembly and from it the entropy. To find the partition function, 
~E 

as in Eq. (5.17) of Chap. Ill, we must sum over all stationary states. 
Converting this into an intc^gral over x and nunembering that Eq. (2.2) 
gives the number of stationary states in dx, we have 

_ (E-Tft) 

z =dx 
[E{xo)-T80o)] 

Then, using Eq. (5.16) of Chap. Ill, we have 

A = U - TS = ~kT In Z 

= E{x„) - Ts{xo) - kT In (2.12) 

Now if the peak of fix) is narrow, Eix<,) will be practically equal to U, the 
mean value of E, which is used in thermodynamic expressions like Eq. 

(2.10) 

(2.11) 
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(2.12). It and TS arc proportional to the number of molecules in the 
system, as we have mentioned before. But a, as we see from Eq. (2.7)^ 
is of the order of magnitude of the number of molecules in the system, so 
that the last term in Eq. (2.12) is of the order of the logarithm of the 
number of molecules, a quantity of enormously smaller magnitude than 
the number of molecules itself (In 10^^ = 23 In 10 = 53). Hence we can 
perfectly legitimately neglect the last term in Eq. (2.12) entirely. We 
then have at once 

s{xis) = s. (2.13) 

This expression, relating the entropy to the density of energy levels by 
use of Eq. (2.2), is a slight generalization of what is ordinarily called 
Gibbs’s third analogy to entropy [his first analogy w'as tlu^ expression 
—/cS/iln/t, his second was closely related to Eq. (2.13)]. Using Eq. (2.13), 
we can then write th(‘ highly useful formula 

{x - Xo)^^ 
kT 

'd^E _ 
j)x'^ dx“)o 

(2.14) 

3. Fluctuations of Energy and Density.—Using the general formula 
(2.14), we can find fluctuations in many quantities. Let us first find the 
fluctuation in the total energy of the system, getting a general result whose 
special case for the perfect gas in Boltzmann statistics was discussed in 
Sec. 1. In this case x equals Ey so that d'^E/dx^ = 0. Th(i derivative 
of S with respect to E is to be taken at constant volume, for all the states 
represented in the canonical assembly are computed for the same volume 
of the system. Then wc^ have, using the thermodynamic formulas of 
Chap. II, Sec. 5, 

Substituting in Eq. (2.14), we find for tin* fluctuation of energy 

(£;"- uy^ = kT-Cv. (3.2) 

We can immediately see that this leads to the value we have already 
found for the pei-fect gas in the Boltzmann statistics. For the perfect 
gas, we have Cv == ^Nk, so that 

{E - Uy = %N{kTy, (3.3) 

agreeing with the value found from Eqs. (1.6) and (1.13). The formula 
(3.2), however, is quite general, holding for any type of system. Since 
Cv is of the same order of magnitude for any system containing N atoms 
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that it is for a perfect gas of the same number of atoms, we see that the 
energy fluctuations of any type of system, in the canonical assembly, aro 
negligibly small. The heat capacity Cv is proportional to the number 
of atoms in the system, so that the mean square deviation of energy from 
the mean is proportional to the number of atoms, and the fractional mean 
square deviation of energy for N atoms is proportional to 1/Nj as in 
Eq. (1.9). 

As a second illustration of the use of the general formula (2.14), we 
take a perfect gas and consider the fluct uations of the number of mol(‘Cules 
in a group of G cells in the molecular phase space. Two important 
physical problems are special cases of this. In the first place, the G 

cells may include all those, irrespective of momentum, which lie in a 
certain region of coordinate space. Then the fluctuation is that of th(^ 
number of molecules in a certain volume, leading immediately to the 
fluctuation in density. Or in the second place, we may be considering 
the number of molecules striking a certain surface per second and the 
fluctuation of this number. In this case, tlie G cells include all those 
whose molecules will strike the surface in a second, as for example the cells 
contained in prisms similar to those shown in Fig. lV-2. Su(‘h a fluctua¬ 
tion is important in the thc^ory of the shot effect, or tlie fluctuation of the 
number of eh'ctrons emitted thermionically from an elennuit of surface 
of a heat(‘.d conductor, per second; we assume that the number emitted 
can be computed from the number striking the surface from inside the 
rnctal. 

To take up this problem matlumiatically, we express the energy and 
the entropy in terms of the iV/s, the average numbers of molecules in 
the various cells. The energy is 

U = (3.4) 
i # 

where Ci is the energy of a molecule in the fth cell of the molecular phase 
space. For the entropy, combining Eqs. (2.7) and (2.11) of Chap. Y, we 
have 

S = -k^[Ni In Ni+ (1 ± Ni) In (1 + Ni)], (3.5) 
i 

where the upper sign refers to Einstein-Bose statistics, the lower to Fermi- 
Dirac, and where we shall handle the Boltzmann statistics as the limiting 
case of low density. In this case, the quantity x is the number of mole¬ 
cules in the particular G cells we have chosen, which we shall call Noy so 
that 

N, = x/G = No/G, (3.6) 
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where is the average number of molecuiles in one of the cells of our 
group of Gy which we assume are so close together that the numbers 
and energies ei are practically the same for all G cells. In terms of this 
notation, we have 

and 

U — Nati + terms indeiKuident of Nq, 

No 
a) In (l + 

+ t('rm.s independent of Na- 

S = -kNo In ~ ± k{G ± N, 
It 

Then we have 

dr 
dx 

dHJ 
dx^- - 0, 

and 

dx 
dVS 
dx- 

-k 

-k\ 

In ~ - 111 
Cr 

1 _ 1 

6 
Ao 

(' -1)]' 

<■ 
= -k- 

N, 
•(' * 

Substituting in Eq. (2.14), we have 

(No - "Noof = Noo(l + ~r), 

JNoj- N^Y ^ i a , 
V A^OO J NoA - G )’ 

and 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

in which we remember that the upper sign refers to the Einstein-Bose 
statistics, the lower to the Fermi-Eirac, and where we find the Boltzmann 
statisti(;s in the limit where Nao/G approaches zero, so that the right side 
becomes merely 1/A^go. Thus, we see that in the Boltzmann statistics 
the absolute mean square fluctuation of the number of molecules in a 
volume of phase space equals the mean number in the volume, and the 
relative fluctuation is the reciprocal of the mean number, becoming very 
small if the number of molecules is large. These are important results, 
often used in many applications. We also see that the fluctuations in 
Einstein-Bose statistics are greater than in Boltzmann statistics, while in 
Fermi-Dirac statistics they are less, becoming zero in the limit 

Nao/G = = 1, 
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since in that limit all cells in the group of G are filled and no fluctuation is 

possible. 

As a third and final illustration of Eq. (2.14), we consider the fluctua¬ 

tion of the density of an arbitrary substance, really a generalization of the 

result we have just obtained. Instead of the fluctuation of the density 

itself, we find that of the volume occupied by a certain group of molecules; 

the relative fluctuations will be the same in either case, since a given 

proportional increase in volume will give an equal proportional decreases 

in density. In this case, then, the quantity x is the volume F of a small 

mass of material selected from the whole mass. The derivatives in Eq. 

(2.14) are those of the whole int(‘rnal energy and entropy of the system, as 

the volume of the small mass is changed. Since the part of tlu‘ systcmi 

exterior to the small mass is hardly changed by a change of its volume, we 

can assume that only the internal energy and entropy of the small mass 

itself are concerned in Eq. (2.14). Furthermore, we are interestcHl nu^rely 

in the fluctuation in density, neglecting any C()rrosj)onding fluctuation in 

temperature, so that the derivatives of Eq. (2.14) ani to be computed at 

constant temperature. Then we can rewrite Eq. (2.14) as 

(F - Fc)^ (3.12) 

where A = U — TS. Using the thermodynamic formulas of Chap. II, 

we have 

= _P ^ _(dj^\ 
KdVjr ’ VdFVr V^F/r’ 

SO that 

and 

= -kT\ 
\dP }t 

The quantity in brackets is the isothermal compressibility, which is inde¬ 

pendent of Fo. We see, then, that the relative mean square fluctuation 

of the volume is inversely as the volume itself, becoming small for large 

volumes. This is in accordance with the behavior of the other fluctua¬ 

tions we have found. 

Let us check Eq. (3.13) by application to the perfect gas in the Boltz¬ 

mann statistics. Using PF = NkT, we have ( —l/Fo)(dF/dP)T = 1/P. 
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Thus 

whore Na is the mean number of molecules in To- This value checks 

Eq. (3.11), for the case of the Boltzmann statistics, giving the same 

value for the relative fluctuation of volume which we have aln^ady found 

for the fluctuation of the number of molc'cules in a given volunui, as wc 

have seen should be the case. For substances other than pcudect gases, 

the compressibility is ordinarily less than for a perfect gas, so that Eq. 

(3.13) predicts smalh^r relative fluctuations of density; a perfectly incom- 

pressibl(5 solid would have no density fluctuations. On the other hand, in 

some cases the compressibility can be greater than for a perfect gas. An 

example is an imperfect gas near the critical point, where the compressi¬ 

bility approaches infinity, a finite change in volume being associated with 

no change of pressure; here the density fluctuations are abnormally great, 

b(dng visible in the phenomenon of opalescense, the irn^gular scattering 

of light, giving the material a milky appearanci^. Below the critical 

point, in th(‘ region when' liquid and gas can coexist, it is well known that 

the material maintains the same pressure, tlu' vapor pn'ssun^, through the 

whole range of volume from th(^ volume of th(‘ liquid to that of the gas. 

Thus here again the compressibility is infinite. Formula (3.13) cannot be 

strictly applied in this case, but the fluctuations of density which it would 

indicates are easily understood physically. A givcai volume in this case 

can happcni to contain vapor, or liquid drops, or both, and the fluctuation 

of density is such that the density can be anywhere between that of the 

liquid and the vapor. Such problems an' hardly suitable for a fluctuation 

theory, however; we shall be able to handle them better when we take up 

equilibrium between phases of the same substance. 





PART II 

GASES, LIQUIDS, AND SOLIDS 





CHAPTER VIII 

THERMODYNAMIC AND STATISTICAL TREATMENT OF THE 
PERFECT GAS AND MIXTURES OF GASES 

In Chap. IV, w(‘ It^arnod some of tho siinph^ j)ropertios of perfect gases 
obeying th(‘ Boltzmann statistics, using simple kirudic methods. We 
can go a good deal further, howc^ver, and in th(' present chapter we apply 
thermodynamics and statistical incuihanics to the problem, seeing how far 
each can carry us. Tlie results may secan rather formal and uninteresting 
to the reader. But we ar(‘ laying the groundwork for a great many 
applications later on, and it will f)e found very much worth while to under¬ 
stand the fundamentals thoroughly bedore^ we‘ be^gin to apply them to such 
problems as the specific heatts e)f gases, the^ natures of imperfect gase^s, 
vaper pre^ssure, chernietal equilibrium, thermionic emission, electronic 
I)henomena, and many ot her subjee*ts depending directly eui the properties 
of gases. For generality, we shall includes a treatment of mixturevs of 
perfect gases, a subjeu^t. needed partiemlarly in eliseussing editunical equilib¬ 
rium. We be'gin by seerng he)w much information thermodynamics alone, 
plus the definition of a perfect gas, will give us, and later introduce a 

model of the gas and statistical methods, obtaining by statistical 
mechanics some e)f the results femnel by kinetic theory in Chap. IV. 

1. Thermodynamics of a Perfect Gas.-~ By definition, a perfect gas 
in the Boltzmann statistics is one whose (equation of state is 

PV = nPT, (1.1) 

which has already been discusse^d in Sec. 3 of Chap. IV. Furthe^rmore, 
from the perfe^ct gas law, using Eq. (6.2) of Chap. II, we can prove that a 
perfect gas obeys Joule’s law that the internal energy is independent of 
the volume at constant temperature. For we have 

This is a reversal of the argument of Chap. II, Sec. 6, where we used 
Joule’s law as an experimental fact to prove that the gas scale of tempera¬ 
ture was identical with the thermodynamic temp)orature. Here instead 
we assume the temperature T in Eq. (1.1) to be the thermodynamic 
temperature, and then Joule’s law follows as a thermodynamic conse¬ 

quence of the equation of state. 
116 
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No assumption is made thermodynamically about the specific heat of 
a perfect gas. Some results concerning it follow from thermodynamics 
and the equation of state, however. We have already seen that 

Cp - Cv = TlRy (1*3) 

where Cp and Cv are the heat capaciti(\s of n moles of gas, at constant 
pressure and volume respectively. Furthermore, we can find thermo¬ 
dynamically how Cp changes with pressure, or Cv with volume, at con¬ 
stant temperature. We have 

WdT 
dH{_ 

dfdP 

(1.4) 

But from the Table of Thermodynamic Relations in Chap. II we have 

By an exactly analogous proof, substituting IJ for //, V for P, we can prove 

(1.7) 

Substituting the perfect gas law in Eqs. (1.6) and (1.7), we find at once 

for a perfect gas. That is, both specific heats are independent of pressure, 
or volume, at constant temperature, meaning that they are functions of 
the temperature only. 

Thermodynamics can state nothing regarding the variation of specific 
heat with temperature. It actually happens, however, that the heat 
capacities of all gases approach the values that we have found theoret¬ 
ically for monatomic gases in Eq. (3.18), Chap. IV, namely. 

Cv = InP, Cp = fnP, (1.9) 
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at low enough temperatures. This })art of the heat capacity, as we know 

from Chap. IV, arises from the translational motion of the molecules. 

The nunainirig heat capacity arises from rotations and vibrations of the 

molecules, electronic excitation, and in general from internal motions, and 

it falls to zero as the tf'mi)erature approaches the absolute zero, on account 

of applications of the quantum theory which we shall make in later 

chapters. Sometim(‘s it is useful to indi(^ate this intc^rnal heat capacity 

per mole as Ci, so that we write 

Cv = + nCi, Cp = ^nR + nCi, (1.10) 
where experimentally Ci goes to zero at the absolute zero. Equation 

(I.IO) may be taken as a definition of Ci. 

Next we take up the internal (uiergy, entroj:>y, Helmholtz free energy, 

and Gibbs free energy of a p(‘rfect gas. From Joule’s law, tlie internal 

en(irgy is a function of the temperatun^ alone, ind(q)endent of volume. 

We let Uo be the internal en(irgy per mole at the absolute zero, a quantity 

which cannot be detc^rmined unicimJy since there is always an arbitrary 

additive constant in the energy, as we have pointc^d out in Chap. I, S(m\ 1. 

Then the change of internal (uiergy from the absolute z(to to temperature 

T is determined from the specific heat, and we have 

U = nU„ + fJCv (JT 

= n(t/o + ¥iT + fjc, dry (1.11) 

We find the entropy fij'st as a function of temperature and pressure, 

using the relations, following at once from the Table of Thermodynamic 

Relations of Chap. II, and the ecpiation of state, 

Substituting for Cr from Eq. (1.10) and integrating, we have 

S = ^nR In T - nR\nP + C— + const. (1.13) 

The constant of integration in Eq. (1.13) cannot be determined by thermo¬ 

dynamics. It is of no practical importance when we are considering the 

gas by itself, for in all cases we have to differentiate the entropy, or take 

differences, in our applications. But when we come to the equilibrium of 

different phases, as in the problem of vapor pressure, and to chemical 

equilibrium, we shall find that the constant in the entropy is of great 

importance. Thus it is worth while devoting a little attention to it here. 

There is one piece of information which we can find about it from thermo- 
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dynamics: we may assume that it is proportional to the number of moles 

of gas. To see this, consider first two separate masses of gas, one of Ui 
moles, the other of 712 moles, both at the same pressure and temperature, 

with a partition between their containers. The total entropy of the two 

masses is certainly the sum of the separate entropies of the two. Now 

remove the partition b(dween them. This is a reversible process, involv¬ 

ing no heat flow, and hence no change of entropy, so long as the gases on 

the two sides of tlu^ l)artition are made of idcuitical molecules; if there 

had been different gases on the two sides, of course diffusion would have 

occurred when the partition was removed, resulting in irreversibility. 

Thus th(^ entropy of the combined mass of (rii + 712) moles is the sum of 

the separate entropies of the masses of and n2 moles. But this will be 

true only if the entropy is proportional to the number of moh^s of gas. 

We know that this is true with every term of b]q. (1.13) except the con¬ 

stant, and we see therefore that it must be true of the constant as well. 

Thus the constant is n times a quantity independent of P, T, and 

hence depending only on the type of gas. This constant must have the 

dimensions of R, so that it must be iiR times a numerical factor. For 

reasons which wo shall understand shortly, it is (UHivenient to write it in 

the form n{i + where i is called the ctuunical constant of the gas. 

Thus we have 

S = In r - riR In P + nj^ Cr~ + nR(i + 0- (1.14) 

It is often useful as well to have the entropy as a function of tcanpera- 

ture and volume. We can find this by integrating the equations 

or by substituting for P in terms of T and V from tlu^ perfect gas law in 

Eq. (1.14). The latter has the advantage of showing the connection 

between the arbitrary constants in the two exjuations for (uitropy, in 

terms of T and P, and in terms of T and V, Using this method, we have 

at once 

5- = |njf2 In r + nR In V + + nl^i + ^ - In {nR) j. (1.16) 

From Eq. (1.16) we note that the additive constant in the entropy, in 

the form involving the temperature and volume, has a term —nR In n, 

which is not proportional to the number of moles. This is as we should 

expect, however, as we can see from rewriting Eq. (1.16) in the form 

S^'^nRlnT- nR In ~ + nR{i + | - In i?)- (1.17) 
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In the form (1.17), each term is proportional to n, except the one 

-»«I” (p)- 

This involves the ratio n/F, the num])er of moles per unit volume, which 

is i)roportional to the (hmsity. We thus s{‘e from E(|. (1.17) that if two 

masses of gas of the sanu', temperature and tlu^ same (hmsity an^ put in 

contact, the total entropy is inde])endent of whetlier tlnty have a partition 

b(d.ween them or not. Tliis statement is ('utirely analogous to th(^ previ¬ 

ous one about two masses at the same tcunpt'raliire and j)ressur(\ 

Next we find the Helmholtz free energy A = U — TS as a function 

of temperature and volume. We can find this directly from Eqs. (1.11) 

and (1.16) or (1.17). We havt‘ at once 

A = n r/o 'Ir'F In T - RT 111 t 
2 n 

+ - RT{i + 1 - In R) (1.18) 

The two t(^rms d(‘i)e]]ding on Ct can b(i writtcm in two otluT forms by 

integration by parts. These are 

- T (1.19) 

= -T (1.20) 

To prove Eq. (1.19), we apply the formula /// dv — uv — fv du to the 

right side, setting 

- - I ^ t ni ’ 

JO 1 
du 

C, dT 
- j, > T, dv = dT, 

and Eq. (1.19) follows at once. To prove Eij. (1.20), we integrate the 

expression JCi/T dT on the left side of Eq. (1.19) by parts, .setting 

u = 1/7’, du — —l/T"dT, V = fCidT, dv = CidT, from which Eq. 

(1.20) follows. Thus we have the alternative formulas 

C/o 

Co 

^RT In T - RT In ^ 

- + 1 - 111 R) 

%RT In T - RT In - 
2 n 

- RT^^-^^^y^Ci dT - RT(i + 1 - In 72) 

(1.21) 

(1.22) 



120 INTRODUCTION TO CHEMICAL PHYSICS [Chap. V^III 

Finally, we wish the Gibbs free energy G = U + PV — TS as a 

function of pressure and temperature. Using Eqs. (1.11), (1.14), (1.19), 

and (1.20), this has the alternative forms 

G = n(^U„ ^RT In T + RT In P 
A 

+ fjci (IT - rjjci - RTt^ (1.23) 

= n [7fl - ^RT In r + RT In P 

(1.24) 

\rT In T + RT In P 
Zt 

We see that the term proportional to T in .Kqs, (1.23), (1.24), and (1.25), 

— RTi, has a particularly sinqde form. It is for this reason that the 

additive^ constant in the entropy, 7iR(i + I), in J^'^q. (1.20), is chosen in 

the particular form it is. For practical pur])oses, tlie appearance of this 

quantity in the Gibbs free energy is more important than it is in the 

entropy. 

2. Thermodynamics of a Mixture of Perfect Gases.—Suppose we 

have a mixture of Ui moles of a gas 1, moles of gas 2, and so on, all in a 

container of volume V at temperature 1\ First we define the fractional 

concentration ci of the zth substance as the ratio of the number of moles 

of this substance to the total number of moles of all substances present: 

Ui 

ni + na + • • * 
(2.1) 

We also define the partial pressure Pi of the zth substance as the pressure 

which it would exert if it alone occupied the volume V. That is, since all 

gases arc assumed perfect. 

Pi = (2.2) 

Then the equation of state of the mixture of gases proves experimentally 

to be just what we should calculate by the perfect gas law, using the 

total number of moles, (/ii + ^2 + • * • ); that is, it is 

p = (n, + na + . . . )-^ (2.3) 
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p]qiiation (2.3) may be considered as an experimental fact; it follows, how- 

(jver, at once from our kiiu^tic deprivation of the equation of state in Chap. 

IV, for that goes through without essential change if we have a mixture 

instead of a single gas. Then from Kqs. (2.1), (2.2), and (2.3), we have 

Til + 712 + 
= CiP. 

r ^ a. {llU + ^2 + • • • ) y 

(2.4) 

From Eq. (2.4), in other words, the fractional concentration of one gas 

(pquals the ratio of its partial pressure to tlup total pressure. Plainly as a 

corollary of Eq. (2.4) we have 

and 

' —-P = P 
nV+no + “ ’ 

(2.5) 

Cl + ^2 + ' • • = 1. (2.6) 

Equation (2.5) expresses the fact that the sum of the partial pressures 

equals the total ])r(‘ssur(\ 

We next consid(‘r th(‘ entropy, Helmholtz free energy, and Gibbs free 

energy of the mixtun' of gases. We start with the expression (1.14) for 

the entropy of a single gas. In a mixture of gases, it is now reasonable to 

supposes that the tot al (aitropy is tlup sum of the i)artial entropies of each 

gas, each one being giv(‘n ])y Eq. (1.14) in terms of tlie partial pressure of 

the gas. If we have a mixture of moles of the first gas, 712 of the second, 

and so on, the total entropy is then 

y 

where Cj is the internal heat capacity per mole of the jth gas, ? / its chem¬ 

ical constant. We can express Eq. (2.7) in terms of the total pressure. 

Then we have 

-s = ^ + X - /? In P + + ijR^ 
J 

— In Cj, (2.8) 

J 

In Eq. (2.8), the first summation is the sum of the entropies of the various 

gases, if each one were at the same pressure P, The second summation 

is an additional term, sometimes called the entropy of mixing. Since the 

c/s are necessarily fractional, the logarithms are negative, and the entropy 
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of mixing is positive. It is such an important quantity that we shall 

examine it in more detail. 

Suppose the volume V were divided into compartments, one of size 

CiVj another C2F, etc., and all the gas of the first sort were in the first 

compartment, that of the second sort in the second, and so on. Idien 

(iach gas would have the pressure P, and the entropy of the whole system, 

being surely t he sum of the entropies of the separate samples of gas, would 

be given by the first summation of p]q. (2.8). Now imagiru^ the partitions 

between the compartments to be removed, so that the gases can irreversi¬ 

bly diffuse into each other. This diffusion, being an irreversible' ])rocess, 

must result in an increase of entropy, and the second term of Eq. (2.8), the 

entropy of mixing, rej:>resents just this increase. To verify its corn'ed ness, 

we must find an alternative reversible path for getting from tlu^ initial 

state to the final one, and find / dQ/T for this reversible path. That will 

(C3l) (b) (c) 
Fig. VlII-1.—Reversible mixing of two gases. 

give the change of entropy, whether the acdual path is reversible or not. 

We shall set up this reversible process by means of stuni-permeable mem¬ 

branes, membranes allowing molecules of one gas to pass through them, 

but impervious to the other gas. Such membranes actually exist in a few 

cases, as for instance heated palladium, which allows hydrogem to pass 

through it freely, but holds back all other gases. There is no error 

involved in imagining such membranes in other cases as well. 

We simplify by considering only two gases. Originally let the parti¬ 

tion separating the compartments CiV and C2V be two semipermeable 

membranes in contact, one permeable to molecules of tyi.:)e 1 but not of 

type 2 [membrane (1)], the other permeable to type 2 but not type 1 

[membrane (2)]. The two together will not allow any molecules to pass. 

Each of the membranes will be subjected to a one-sided pressure from the 

molecules that cannot pass through it. Thus, in Fig. VIII-1 (a), mem¬ 

brane (1) is pushed to the left by gas 2, membrane (2) to the right by gas 

1. Each of the membranes then really forms a piston, and if rods are 

attached to them as in Fig. VIII-1, they are capable of transmitting force 

and doing work outside the cylinder. Now let membrane (1) move slowly 

and reversibly to the left, as in (b), doing work on some outside device. 

If the expansion is isothermal, we know that the internal energy of the 

perfect gases is independent of volume, so that heat must flow in just equal 
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to the work done. We can then find the heat flowing in in the process by 

integrating P dV for membrane (1). The pressure exerted on it, when 

the volume to the right of it is F, is n^RT/V, since only the molecules 2 

exert a pressure on it. Thus the work done when the volume increases 

from C2F to F is 

PnJ^dV = n^RT In 
JciV y 

— UTn2 In C2. (2.9) 

This equals the heat flowing in. Since the corresponding increase of 

entropy is the heat divided by the temperature, it is 

— Rn2 In C2. (2.10) 

Now in a similar way we draw the membrane (2) to the right, extracting 

external work reversibly and letting heat flow in to keep the temperature 

constant. By similar arguments, the 

increase of entropy in this ])rocess 

is —Rfi] In Cl. And the total change of 

(iiitropy in this reversible mixing is 

AS == —R(7ii In Cl + 712 In C2), (2.11) 

just the value given for the entropy of 

mixing in Eq. (2.8). 

It is interesting to see how the entropy 

of mixing of two gases depends on the 

con c(uit rations. Let 11 = ni + n2 = the 

total number of moles of gas. Then, 

remembering that Ci + C2 = 1, [Eq. (2.6)], we have 

AS = —nR[c\ In ci + (1 — Ci) In (1 — ci)]. (2.12) 

In Fig. VIII-2 we plot AS from Eq. (2.12), as a function of Ci, which 

can range from zero to unity. We s(^e that the entropy of mixing has its 

maximum value when Ci == i, or with equal numbers of the two types of 

molecules. At this concentration its value is given by 

Fig. VIII-2.—Entropy of mixing of 
two gases. 

— nR{^ In i + -^ In = nR In 2 
= 0.6931ni2 = 1.375 cal. per mole per degree. 

Having found the entropy of a mixture of gasses in Eq. (2.8), it is a sim¬ 

ple thing to find the Gibbs free energy, from the relation 

G U + PV - TS, 
We have 

U = Ui + iRT + fJCi dr), (2.13) 
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so that 

where 

PV = XnjRT, 
3 

G = + PP'Y/n; In Cj, 
3 3 

(2.14) 

(2.15) 

K pT r*T jrn 

Gi = Ui - ZrT In T + Ci (IT - T + RT In P - 
^ Jo Jo J 
5 c'^dT = r/y - ^RT In T - t\ -4 Cj dT + RT In F - ijRT, 
^ Jo Jo 

ijRT 

(2.16) 

In Eqs. (2.15) and (2.16), Uj rei)resents the arbitrary constant in 

energy for the ^‘th ty])e of molocnile, corr(‘Sponding to Uo of Eq. (1.11), 

and the last stop in Eq. (2.16) is made by the same iutc^gration by i)arts 

used in Eqs. (1.19) and (1.20). The quantity Gj represents the Gibbs 

free energy per mole of the jih gas at lemperatun^ T and j^ressure P. 
Thus Eq. (2.15) indicates that the Gibbs free enc^rgy of the mixture is the 

sum of the free eiKjrgies of the constituents, at the final pressure and 

temperature, plus a mixing term which is always lu^gative. 

3. Statistical Mechanics of a Perfect Gas in Boltzmann Statistics. - 

Since the internal energy of a perfect gas is independent of volunui, by 

Joule^s law, it is obvious that there can be no forces acting between the 

molecules, for if there were, they would result in an internal energy 

depending on the volume. Thus the molecular moded of a perfect gas, 

which we make the basis of our statistical treatment, is a coll(H:;tion of 

molecules, each of mass m, exerting no forces on each other. If the gas is 

monatomic, each molecule requinjs only thn^e coordinates, the rectangular 

coordinates of its center of gravity, and the three conjugate momenta, to 

describe it completely, so that the phase space contains ()N dimensions. 

When the gas is polyatomic, additional coordinates ar() necessary to 

describe the orientation and relative.distances of separation of the atoms 

in the molecules. We assume there are s such coordinates, s momenta, so 

that in all there are (3 +• s) coordinates, (3 + s) momenta, for each 

molecule, or (6 + 2s)N dimensions in the general phase space. We shall 

call the coordinates of the jth molecule ^ 

• • • Q»3} 

and the momenta 

PxJPvJPzjPU • • • Pzj- 

Here x^yjZj are the coordinates of the center of gravity, p^j pzj the 

components of total momentum, of the molecule. 
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The first step in applying statistical mechanics to our gas is to compute 

the partition fum^tion Z, given by Eq. (5.17) or (5.22) of Chap. Ill. To 

do this, we must first know the energy of the gas, E, as a function of the 

coordinaic^s and monunita. Since ther(‘ are no forcies between the mole¬ 

cules, tliis is a sum of separate terms, omi for each molecule. Now it is a 

general theorem of iiK^clianics that th(^ (‘iiergy of a structure like a mole¬ 

cule, conii)osc'd of particles exerting forc(‘s on each other but not acted on 

by an external force field, is the sum of the kinc^tic energy of the structure i 

as a wholes, determined by the velocity of the C(mter of gravity, and an 

additional term representing the energy of the internal motions. Thus, 

for the energy of the gas, we have; 

E - + + Plj 
2 m Psi) (3.1) 

In Eq. (3.1), e' r{;presents the energy of internal motions e>f a molecule. 

In evaluating th(' partition function, we must take exp { — E/kT)^ 
wheTo E is given in Eep (3.1), arid int(;grate over all cex)rdinat(;s and 

moiiKuita. We observe' in the' first place that, sine'e E is a sum of terms 

for e;ach mole'cule^, exp { — E/kT) will be; a pre)duet of such terms, and the 

whole; partition function will be a product of N factors, one fre)m each 

nioleeaile, each giving an iele'iitical inte'gral, whie'h we can refer to as the 

partition function of a single molecule. We next observe that the parti¬ 

tion function e)f a single molecule factors into te;rms depending on the 

center of gravity of the molecule and terms depending on the internal 

motion. Thus we have 

Z - 2mkT 

■ je (3.2) 

The integration over x, y, z is to be carried over the volume of the con¬ 

tainer and gives simply a factor E. The integrations ov(;r p- are 

carried from — oo to qo ^ and can be found by Eqs. (2.3) of Chap. IV. The 

integral depending on the internal coordinates and momenta will not be 

further discussed at present; we shall abbreviate it \/ 

(3.3) 
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In Eq. (3.3), Zi is the internal partition function of a single molecule. 

The second way of writing it, in terms of a summation, by analogy with 

Eq. (5.17) of Chap. Ill, refers to a summation over all cells in a 26‘-dimen- 

sional phase space in which q\ • p, are the dimensions. We note, for 

future reference, that the quantity Zi depends on the temperature, but 

not on the volume of the gas. 

Using the methods just described, Eq. (3.2) becomes 

Z = (3.4) 

There is one thing, however, which we have neglected ii\ our derivation, 

and that is the fact that the gas regally is governed by Fermi-Dirac or 

Einstein-Bose statistics, in the limit in which they h^ad to the Boltzmann 

statistics. As we have seen in Chap. Y, Sec. 1, on a(‘count of the identity 

of the molecules, there are really N\ different cells of the general phases 

space corresponding to one stat(i or compkixion of the systcun. The 

reason is that there are N\ different permutations of the mokicules, each 

of which would lead to the same number of molecules in each cell of the 

molecular phase space, and each of which therefore would correspond to 

the same complexion. In other words, by integrating or summing over 

all values of the coordinates and momenta of each molecule, we have 

counted each complexion N\ times, so that the expression (3.4) is N\ 
times as great as it should be, and we must divide by N\ to get the correct 

formula. Using Stirling's formula, 1/N\ — (e/N)^ approximately, and 

multiplying by this factor, our amended partition function is 

(3.5) 

We shall use Eq. (3.5) as the basis for our future work. 

From the partition function (3.5), we can now find the Helmholtz free 

energy, entropy, and Gibbs free energy of our gas. Using the equation 

A = —kT In Z, we have 

A = -^NkT In r - NkT In F - NkT In 

- ATArj^ln + 1 - In (iV*) j- (3.6) 

From A we can find the pressure by the equation P - — {dA/dV)T. We 

have at once 

P = 
NkT 
-T-’ 

or PV = NkT. (3.7) 
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Thus we derive the perfect gas law directly from statistical mechanics. 

Wo can also find the entropy, by the equation S — —{dA/dT)v* Using 

the relation Nk == nRj we have 

S = ^nlt InT + nR In V + nR^XT In Z<) 

+ nR In —^3-——— In (nR) • (3.8) 

From S we can find the specific heat Cv by the equation Cv — T(dS/dT)v^ 
We have 

Cy = ^nR + nRT^^ir In Z<). (3.9) 

The specific heat given in iCq. (3.9) is of the form given in Eq. (1.10); by 

comparison wo see that the internal heat capacity per mole, Ct, is given by 

Ci^ RT^Y^iTlnZd, (3.10) 

similar to Eq. (5.21) of Chap. III. We shall use Eq. (3.10) in the next 

chapter to compute the specific heat of polyatomic gases. For mon¬ 

atomic gases, for which there are no internal coordinates, of course Ci 
is zero. 

Using Eq. (3.10), we can rewrite T In Zi and its temperature deriva¬ 

tives in terms of Ci. First, we consider the behavior of T In Zi and its 

derivatives at the absolute zero. Let there be go cells of the low^est energy 

in the molecular phase space, g\ of the next higher, and so on. It is (*us- 

t/omary to call these g’s the a priori probabilities of the various energy 

levels, meaning merely the number of elementary cells which happen to 

have the same energy. Then we have, from Eq. (3.3), 

Zi = + gie~^ + . . . = g,e~^ as 0. (3.11) 

Hence T In Zi approaches T In gro — ^ as T approaches zero. In the 

derivative of T In Zi with respect to temperature, the only term which 

does not approach zero with an exponential variation is the term In ga. 
Using these values, then, we have 

^(r In Zi) = In (70 + ’ (3-12) 

(3.13) 
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Using E^q. (3.13), we can rewrite Eq. (3.6) as 

A = n|^ t/o - In T - RT In 

?: + 1 - In R) 

where 

and 

Uo = = Noe'„ 

, <7()(27rm)'^'" 
I = In -, 

h’^ 

(3.14) 

(3.15) 

(3.16) 

No being Avogadro’s number, the number of molecules in a mole, given 

in Eq. (3.10) of Chap. IV. We observe that Eq. (3.14) is (exactly th(^ 

same as (1.21), det(^rmined by thermodynamics, except that now we have 

found the quantities f/o, the arbitrary constant in the energy, and i, the 

chemical constant, in terms of atomic constants. Similarly, we can show 

that all the other formulas of Sec. 1 follow from our statistical mechanical 

methods, using Eqs. (3.15) and (3.16) for the constants which could not b(^ 

evaluated from thermodynamics. 

If wo have a mixture of Ni molecules of one gas, of another, and 

so on, the general phase space will first contain a group of coordinates 

and momenta for the molecules of the first gas, then a group for the 

second, and so on. The partition function will then be a product of terms 

like Eq. (3.5), one for each type of gas. The entropy will bo a sum of 

terms like Eq. (1.14), with rii in place of n, and Pi, the partial pressure, in 

place of P, But this is just the same expression for entropy in a mixture 

of gases which we have assumed thermodynamically in Eq. (2.7). Thus 

the results of Sec. 2 regarding the thermodynamic functions of a mixture 

of gases follow also from statistical mechanics. 

It is worth noting that if we had not made the correction to our parti¬ 

tion function on account of the identity of particles and had used the 

incorrect function (3.4) instead of the correct one (3.5), we should not 

have found the entropy to be proportional to the number of molecules. 

We should then have found an entropy of mixing for two samples of the 

same kind of gas: the entropy of {ni -f 712) moles would be greater than 

the sum of the entropies of rii moles and 712 moles. It is not hard to show 

that the resulting entropy of mixing would be just the value found in 

Eq. (2.8) for the mixing of unlike gases. This is natural; if we forgot 

that the molecules were really alike, we should think that the diffusion 

of one sample of gas into another was really irreversible, since surely we 

cannot separate the gas again into two samples containing the identical 
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molecules with which we started. But the molecules really are identical, 

and it is meaningless to ask whether the molecules we find in the final 

samples are the same ones we started with or not. Thus mixing two 

samples of unlike gases incT(^as(\s the entropy, while mixing two samples of 

like gases does not. It might seem paradoxical that these two results 

could be simultaneously triHi. For consider the mixing of two unlike 

gases, with incnaisc* of ent ropy, and then let the molecuhiS of the two kinds 

of gas gradually ap])r()a(ii (Uich otlu^r in i)roperties. When do they 

become suffi(;i(uitly similar so that th(^ process is no longer irreversible, and 

th(U‘e no longer is an incn^ase of (uitropy on mixing? This paradox is 

known as Gibbs’s paradox, and it is removc^d by modern ideas of the struc¬ 

ture of atoms and molecul(\s, bas(‘d on the quantum theory. In the 

quantum theory, there is a perfe(dly clear-cut distinction: either two 

particles are ideal ticjal or th(‘y are not. Then; is no such thing as a gradual 

change; from oiu; to the otheu’, for ideaitical particles an; things like elec¬ 

trons, of fixed })roi)(;rties, w^hich w^(; cannot change gradually at will. 

With this clear-cut distinction, it is no long(;r paradoxical that identical 

particles are to be handled diff(;rently in statistics from unlike particles* 



CHAPTER IX 

THE MOLECULAR STRUCTURE AND SPECIFIC HEAT 
OF POLYATOMIC GASES 

We have seen in the preceding chapter that tlu^ (equation of state of a 

perfect gas is independent of the nature of the molc'ciile. Tliis is not 

true, however, of the specific heat; the quantity (7,, which we (‘alhnl the 

internal specific heat, results from molecular rotations and vibrations and 

is different for different gas(\s. For monatomic gascss, wIu'H' Ci is z(^ro, 

we have found Cv == Cp = inH. Using the valiu' R = 1.987 (*al. 

per degree per mole, from Eq. (3.9) of Chap. IV, we liave found the 

numerical values to be Cv = 2.980 cal. p(‘r degree ]K‘r mol(\ and 

Cp = 4.968 cal., values which are correct within the limits of expcTimental 

error for the specific heats of He, Ne, A, Kr, Xe, and of monatomic vapors 

of metals, when extrapolated to zero pressure', so that tliey ob('y tlu^ 

perfect gas law. But for gases which are not monatomic, the additional 

term Ci in the specific heat can only Ixi found from a rather careful study 

of the structure of the molecule. This study, which we shall niake^ in 

the present chapter, is useful in two ways, as many topics in this book will 

be. In the first place, it throws light on the spi'cific problem of th(^ heat 

capacity of gases. But in the s(^cond pla(a^, it leads to genfual and valu¬ 

able information about molecular structure and to th(M)ri('s which can be 

checked from the experimentally determined heat capacities. 

1. The Structure of Diatomic Molecules.—Many of tin' most impor¬ 

tant molecules are diatomic and furnish a natural bc^ginning for our study. 

The atoms of a molecule are acted on by two types of forces, fundamen¬ 

tally electrical in origin, though too complicated for us to understand in 

detail without a wide knowledge of quantum theory. First, there ari' 

forces of attraction, the forces which are concerned in chemical binding, 

often called valence forces. We shall look into tlnur natun* much more 

closely in later chapters. These forces fall off rapidly as the distance r 

between the atoms increases, increase rapidly with decreasing r. Being 

attractions, they are negative forces, as shown in Fig. IX-1 (a), curve I. 

Secondly, there are repulsive forces, quite negligible at large distances, but 

increasing even more rapidly than the attraction at small distances. 

These repulsions are just the mathematical formulation of the impene¬ 

trability of matter. If two atoms are pushed too closely into contact, 

they resist the push. The repulsion, a force of positive sign, is shown in 
130 
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Curve II, Fig. IX>1 (a). If the atoms were rigid spheres, this repulsion 

would be zero if r w(U’e greater than the sum of the radii of the spheres, 

and would becomes infinite as r ]>ecame less than this sum of radii. The 

fact that it risfjs smootlily, not discontinuously, shows that the atoms do 

not really have sharp, hard boundaries; they begin to bump into each 

other gradually, though quite rapidly. Now when we add the attractive 

and repulsive forces, w(' get a curve Iik(‘ III of our figure. This represents 

a n('gativ(‘, attractive force at large distances, changing sign and becoming 

}X)sitiv(‘ at sjnall distance's, as the repulsion begins to outweigh the attrac¬ 

tion. At the distance' r,., whc're the force changes sign, there is a pe)sition 

e)f (H|uilibrium. The att raetie)n anei repulsion just balance, and the atoms 

can n'lnain at tliat distanct' apart indefinitely. This, then, is the normal 

dist ance e)f se*])aration e)f t he' atoms in the molecuh'. For small dc^viatiems 

(a) Cb) 
Fig. IX*1.—Force (a) and energy {}>) of interaction of two atoms in a molecule, 

1, attractive term, II, repulsive terra, III, resultant curve. 

of r from the curve of force? against distance can be approximated by a 

straight line: the force is given by — constant (r — r^.), a force propor¬ 

tional to the displacement-, the sort found in elastic distortion, and leading 

to simple harmonic motion. Under some circumstances, the atoms 

vibrate' back and forth through this position of equilibrium, the amplitude 

in(;reasing with temperature. At the same time, the molecule as a whole 

rotatt's about its center of gravity, with an angular velocity increasing 

with temperature, and of course finally it moves as a whole, the motion 

of the center of gravity being just as with a single particle. 

Rather than using the force, as shown in Fig. IX-1 (a), we more 

often need tlu? potential energy of interaction, as shown in (6) of the same 

figure. H(?re we have shown the potential energy of the attractive force 

by I, that of the repulsive force by II, and the total potential energy by 

III. At the distance r^, where the force is zero, the potential energy has a 

minimum; for we remember that the slope of the potential energy curved 

equals the negative of the force. The potential energy rises like a parab- 
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ola on both sides of the minimum; if the force is —k(r — r,,), then the 

potential energy is ~^where k is a constant. It (jontinues to rise 

indefinitely as r decreases toward zero, since it requires infinite work to 

force the atoms into contact. At large values of r, howevtn-, it approacdies 

an asymptotic value; it requires only a finite amount of work to i)ull tlu^ 

atoms entirely apart from each otlnu*. llus amount of work, indicat(‘d 

by D on the figure, is the work nKpiired to dissociate th(^ mokaaile, and is 

important in thermodynamic appli(‘ations. 

In Table IX-l we list vahu^s of and D for a number of important 

diatomic molecules. A few of these, as tin? hydrides of carbon, nitrogen, 

Table IX-1.—(Constants of Diatomic Moleihtles 

Substance 
1) 

(kg.-cal.) 
i ^ 
i(el(M*lron volts) 
i 

rr, A a, 

Ha. 103 4.454 0.75 1.94 
CH. 81 3.5 1.12 1.99 
NH. 97 4.2 1.08 1.96 
OH. 102 4. 1 0.96 2.34 
HCl. 102 4.40 1 .27 1 .91 
NO. 123 5.3 1.15 3.06 
Oa. 117 5.09 J .20 2.(i8 
Na. 170 7.35 1.09 1 3.11 
CO. 223 9.6 1.13 2.48 
Ca. 128 5.6 1 1.31 j 2.32 
CI2. 57 2.47 1.98 2.05 
Bra. 46 1.96 2.28 1.97 
la. 36 1.53 2.66 1.86 

26 1.14 2.67 0.83 
Naa. 18 0.76 3.07 0.84 
Ka. 12 0.51 3.91 0.78 

The data are taken from Spoiier, “ Molekiilspoktren iind ihre Anwcndungen auf chemische Frob- 

leme,” Springer, Berlin, 1935, which tabulates D in electron volts, rr, and vibrational fretiuencies. The 

values of a in the table above are computed UHing Eq. (4.5) of the present chapter, solved for a in terms 

of the vibrational frequency and D, aa tabulated by Sponer. Thus a'calculation of the vibrational 

frequency from data of the present table, using Eq. (4.5), will automatically give the right value. 

Sponer’s data are taken from band spectra. 

a<nd oxygen, do not ordinarily occut in chemistry, but they are formed in 

discharge tubes and are stable molec.ules. The values of Ve arc given in* 

angstrom units (abbreviated A), equal to 10^® cm. The values of D are 

given in kilogram-calories per gram mole, where we remember that 

1 kg.-cal. is 1000 cal., or 4.185 X 10^^ ergs. We also give D in electron 

volts. One electron volt by definition is the energy acquired by an 

electron in falling through a difference of potential of one volt. This is 

the charge on the electron, 4.80 X c.s.u., times one volt, or e.s.u. 
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Thus one electron volt is 4.80 X 10~^V300 = 1.60 X 10”^^ erg. To 

compare with the oth(*r unit, we note that the value of D in kilogram- 

calorics is comput(xi for a gram mole, that in electron volts for a single 

mol(?cule. Thus we have 

1 electron volt per molecule — 1.60 X 10“^^ erg per molcHiule 

= 1.60 X 10^^- X 6.03 X 10“^ ergs per moki 

_ 1.60 X 10“'- X 6.03 X 102'' 

4.185 X 10 ' '' 

— 23.05 kg.-cal. pea* mole. 

kg.-cal. per mole 

(1.1) 

A very useful (‘inpirical af)proxiinatlon to the curves of Fig. IX-1 has 

been given by Morse, and it is oftcuj calknl a Moi*se curve. As a matter of 

fact, Fig. lX-1 was drawn from Alorse’s equation. This approximation is 

Force == 2aD{e~ 2a{r~rc) _ (r-air—u)'^^ 

Energy - C + i>(c-2a(r-re) _ (1.2) 

Here C is a constant fixing the zero on the scak' of ordinates and therefore 

arbitrary, since th(‘re is always an arbitrary additive constant in the 

energy. D is Ihe eiu'rgy of dissociation tabulated in Table lX-1, and 

finally a is a constant determining the curvature about the minimum of 

th(^ curve, given in the last column of Table IX-1. Thus from the data 

given in Tabk' IX-1 and the function (1.2), calculations can be made for 

the intcu’atornic energy or force. In Eep (1.2), the first term, the positive 

one, represciits the re])ulsive part of the potential energy between the 

two particles, im})ortant at small distance's, whik' the s('cond, negative 

term rc'presc'iits th(^ attraction at larger distances. While the Morse 

curve has no direct theoretical justification, still it proves to represent 

fairly accuratedy the curves which have been calculated in a few cases 

from quantum mechanic’s. Such caknilations have sliown that it is 

possible to explain in dcdail the intc'ratomic energy curves, the magni¬ 

tudes of D, Tcj etc. Nevc^rthcdcss, the explanations are so complicated 

that it is bet ter simply to treat the constants of Table IX-1 as empirical 

constants, without trying to understand why some molecules have greater 

jD^s, some less, etc., in terms of any model. For future reference, how¬ 

ever, it is worth while y^ointing out that the smaller D is, the less energy 

is required to dissociate the molecule, and therefore the lower the tem¬ 

perature needed for dissociation. We shall later talk about thermal 

dissociation of molecules; from the table it is clear that the best molecules 

to use as examples, the ones which will dissociate at lowest temperatures, 

will be iodine and the alkali metals lithium, sodium, and potassium. 

Conversely, N2 and CO require such a high energy for their dissociation 

that they do not dissociate under ordinary circumstances. 
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2. The Rotations of Diatomic Molecules.—If moloeiilos wore governed 

by classical mechanics, the motions of their atoms would have th(^ follow¬ 

ing nature. First, the molecules as a whole would hav(i a uniform motion 

of translation, the mean kinetic energy being on acca)unt of tlui 

equipartition of energy, discussed in Chap. IV, See. 2. Secondly, th(i 

molecules would rotate with uniform angular moment um about an arbi¬ 

trary axis passing through the center of gravity. Two coordinates are 

necessary to specify the rotation of the molecuk'; for instance, the latitude' 

and longitude angles of the line joining the cemters of the atoms, ddius, 

from equipartition, the mean kinetic emu’gy of rotation would hi) 

{■^)kT == kl\ Finally, the atoms would vibrate back and forth along 

the line joining them. One coordinate, the intc^ratomic distance r, (hder- 

mines this vibration. Thus, from equipartition the mean kinetic energy 

of vibration would be ^kT. At the same' time, in simple harmonica motion, 

there is a mean potential energy equal to tlu^ nu^an kinchic (HK'rgy and 

hence equal also to ik/I\ so that the oscillation as a whole would con¬ 

tribute kT to the energy. We should then find a mean (au'rgy of roialjoii 

and vibration of 2kTy with a contribution to the lu'at capacity per inolo 

of 2Nok = 2R cal. por degree. This would be the value of Cb, tlu' heat 

capacity of internal motions mentioned in C'hap. VUI, S(h*. 1, if th(^ gas 

obeyed classical mechanics. Actually, the observed values ar(‘ k^ss than 

this, increasing from small values at low temperatures to somedhing 

approaching 2R at very high temperatures, and the discrc'pancie^s come 

from the fact that the quantum theory, rather than the clasvsicjal th(H)ry, 

must be used. 

We have seen in Chap. IV, Sec. 2, that equipartition of energy is found 

only when a distribution of energy levels is so closely spacer! as to be 

practically continuous. The translational k'vc'ls of a gas art^ spaccrl as 

closely as this, as we have seen in Chap. IV, S(‘(;. 1, so that we are per¬ 

fectly justified in assuming equipartition for the translational motion, 

resulting in the heat capacity Cv = %nR. But tlui rotational and vibra¬ 

tional levels are not so closely spaced, and we must use the quantum 

theory to get even an approximately correct value for this part of the 

specific heat. Our first problem, then, is to find what tlui energy levels 

of a diatomic molecule really are. This can be done fairly accurately by 

quite elementary methods. To a good approximation we can treat the 

rotation and vibration separately, assuming that the total energy is 

the sum of a rotational and a vibrational term. We can treat the vibra¬ 

tion as if the molecule were not rotating, and the rotation as if it were not 

vibrating, but as if the atoms were fixed at the interatomic distance r«. 

Let us consider the rotation first. In Chap. Ill, Sec. 3, we have 

found that the energy of a rotating body of moment of inertia /, angular 

momentum is which is equal to the familiar expression 
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where oj is the angular velocity. Furthermore, we have found that in 

the quantum theory the angular momentum is quantized: that is, it can 

take on only certain discrete valuers, pe == nh/2Tr^ where n is an integer. 

Thus, the (mergy according to elementary methods can have only the 

values Ey, — Sir'll, as in Kq. (3.7), Chap. III. As a matter of fact, 

as w(^ saw in Kq. (3.9), Chap. Ill, we must modify this formula slightly. 

To agree with the usual notation used for molecular energy levels, we 

shall denote th(^ quantum number by A", rather than n. Then it turns 

out that the energy, instead of being given by is given by the 

slightly different formula 

2?.„, = (2.1) 

where K can lake on the valu(\s 0, 1, 2, ... To evaluate these rotational 

eiH'rgy hovels, w(' need the moment of inertia /, in terms of quantities that 

we know. This is the monnait of inertia for rotation about the center of 

gravity of the mohaaik^ l^et th(' masses of the two atoms be mi, m2, and 

led ])e at a distance Vi from the center of gravity, m2 at a distance r2. 

Then we have 

+ r2 = n,, 

miri = m2r2. 

Using Eq. (2.2), we find at once 

Ti = 
m2 

■ ,.r VII + m2 
r2 

nil 
nil + m2 

But we have I — = mp’f + m^rf. Thus 

where 

I - 
(ma + m2)" 

m,] + vi2 

(mim^ + m2in\)rl 

= 

mi m2 

nil + m2 
or 

M mi m2 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

That is, the moment of inertia is that of a mass /x (sometimes called the 

reduced mass) at a distance r. from the axis. 

Having found the rotational energy levels, we -wish first to find how 

closely spaced they arc, to see whether we can use the classical theory to 

compute the specific heat. The thing we are really interested in is the 

spacing of adjacent lev(ds as compared with fcT; if the spacing is small 

compared with kT, the summation in the partition function can be 
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replaced by an integration and equipartition will hold. Let us consider 

the two lowest states, for K ~ 1 and 0, and find the (iiiergy difference 

between them. We have 

E, - jB'o - (1 X 2 - 0 X 

" 47Uf 
(2.6) 

We wish to compare this quantity with kT; it is more convcMiient to define* 

a quantity which we can call a characteristic temperature Grot, by the* 

equation 

0 io» 
4:wMk 

(2,7) 

and then our condition for the applicahility of the inte-gration is T ^ 0,,„. 
We now give, in Table IX-2, values for the characteristic t(!mporatur(‘S 

Table IX-2.—Characteristic Temtehathrb for Rotation, Diatomic Molecules 

^rotr, 

Substance °al)s. 
Hs. 171 
CH. 41.4 
NH. 44.1 
OH. 65.0 
HCl. 30.5 
NO. 4.93 
O2. 4.17 
Nj... 5.78 
CO. 5.53 
C2. 4.70 
Cb. 0.693 
Brj. 0.233 
I2. 0.108 
Lb. 1.96 
Naj. 0.447 
Ks. 0.162 

By Eq. (2.7), we have defined Oroi by the relation that Ai0,ot equals the eneigy difference between 

the two lowest rotational energy levels of the molecule. The method of calculation from the value of 

rc in Table IX-1 is illustrated in the text. 

for the same diatomic molecules listed in Table IX-l. These values are 

calculated, using Eq. (2.7), from the masses of the atoms, known from 

the atomic weights and Avogadro^s number, and the values of in Table 

IX-1. Thus, for instance, for H2 we find 

_(6.61 X 10-^0^6.03 X 102'^)_ 

4^2^k^^?^(0.75 X 10-*)2(1.379 X 10-i«) 

171° abs. 
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1.008 

Here /i = ^ = 6 03"^ ^ ^ 

From Table IX-2, w(^ .s(!e that, the gases arc tlivided distinctly into 

three types. In the first place, hydrogen stands entirely by itself, on 

account of its small mass. Th(i characteristic temperature Brot, having 

the value 171® abs., is the only one at all comparable with room tempera¬ 

ture. N(^xt are the hydrides, with characteristic temperatures between 

20 and 60® abs. Finally, the characteristic temperatures of all gases 

not containing hydrogcai lie below 6® abs. Now it is not easy to calculates 

the speedfic heat of a rotating molecule in the quantum theory on account 

of mathematical difficulties, l)ut the result is qualitatively simple. The 

s})ecific heat rises from zero at low temperatures, corners to the classical 

valuer at high temperature^s, and thei range of temperature in which it is 

rising is in the neighborhood of the characteristic tempe^rature 0,ot which 

we have^ tabulateel in Table TX-2. We may then infer from Table IX-2 

that for molecules not ce)ntaining hyelre)gen, the rotatie)nal specific heat will 

have attained its classie*al value at a veiy low teunperature', so that we 

are entirely justified in using tlie classical value in our calculations. As 

an illustration, we give value's computed fe)r the specific heat of NO at low 

temperatures. We reunembe^r that the translatie)nal i)art of CV is 

= 4.97 cal., whereas if the rotational specific heat is aelded we have 

= 6.96 cal. The specific heat is actually computed^ to be 4.97 at 

0.5® abs., 5.12 at 1.0®, 6.91 at 5.0®, and 6.95 at 10®. Of course, NO at 

atmospheric pressure liquefiejs at a higher lemi)erature than this, but at 

sufficiently reduced pnxssure the boiling point can be reduced as far as 

desired, so that there is nothing imi)Ossible about having the vapor at a 

temperature as low as desired. 

The hydrides have a decidedly higher temperature range in which 

the rotational specific heat is less than the classic^al value. And for hydro¬ 

gen, the quantum theory value is appreciably less than the classical value 

even at room temperature. Thus, at 92® abs., we have the value 5.28 for 

Cp] at 197®, 6.30; at 288°, 6.78. The spcjcific lieat of hydrogen presents 

complications not occurring with any other substance. It turns out, for 

reasons which are too complicated to go into her(^, that in the energy levels 

of hydrogen and of other diatomic molecules made of two like atoms, we 

can make a rather sharp separation between the energy levels 

Erot — 
K(JC + IJ^ 

- 3^2/ " 

^ For these values, and much other data relating to thermal properties of gases, see 
Landolt-Bornstein, ^‘Physikalisch-chemische Tabellen,’^ Dritter Erganzungsband, 

Dritter Teil, pp. 2315-2364, Springer, 1936. 
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in which K is even, and those in which K is odd. As a matter of fact, if a 

molecule is in a state with K even, for instance, almost no physical agency, 

such as collisions with other molecules, seems to have any teiid(uicy to 

transfer it to a state with K odd. It is almost as if the gas were a mixture 

of two gase\s, one with K even, the other with K odd. Actually names 

have been given to these gases, the case of K even b(dng called parahydro- 

gen, that of K odd being called orthohydrogen. At high temperatures, 

such as we ordinarily have, we have molecules of both types in th(U’mal 

equilibrium. At first sight we should expect that there would be about 

equal numbers of molecules of both sorts, but an additionally complicating 

feature concerning the a priori probabilities of the state's re'siilts in thc're' 

being three times as many molecules of orthohydroge^n as of ])arahydrogen 

at high temperatures. When specific heat rneasure'me'nts are made at 

low temperatures, it has always been the practice to start with hydrogen 

at room temperature, and cool it down. On a(‘Count of the slow ratc^ of 

conversion of one type of hydrogen into the other, the t wo types of hydro¬ 

gen appear in the same ratio of three to one when the low tenqx'rature 

measurements are made. This is not the equilibrium distribution cor¬ 

responding to low temperature. At the very low(^st t(‘m])('rature, we 

should expect all the molecules to be in the lowT^st possible state', that of 

if = 0, a state of parahydrogen. Thus to conq)ut(i thc^ observed spc'cific 

heat, we must assume a mixture of ortho- and parahydroge'ii in the ratio 

of three to one, find the specific heat of eacli separately, and add. Wh('n 

this is done, the result agrees with experiment. To g('t the true ('Cjuilib- 

rium mixture at low temperature, we must edther wait a period of a 

number of days, or employ certain catalysts, which speed up tlui trans¬ 

formation from one form of hydrogen to the other. 

3. The Partition Function for Rotation.—Though we shall not be 

able to find the rotational specific heat on account of mathematical 

difficulties, still it is wurth while setting up the partition func;tion for 

rotation and showing the limiting value which it approaches at high 

temperatures. To do this, we must sum exp { — Erot/kT)^ where E^ot is 

given in Eq. (2.1), for all values of K, There is one point, however, which 

we have not yet considered. That is the fact that the energy levels are 

what is called degenerate: each level really consists of several stationary 

states and several cells in the phase space. The reason for this is what is 

called space quantization. We merely describe it, without giving th(^ 

justification in terms of the quantum theory. It is natural that the 

angular momentum, Kh/27Cj of the rotating molecule can be oriented in 

different directions in space. As a matter of fact, it turns out that in 

quantum theory there are just (2if + 1) allowed orientations, each 

corresponding to a different stationary state and a different cell. One 

simple way of describing these orientations is in terms of a vector model, 
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as shown in Fig. IX-2. Here we have a vector of length Khf2'7r. Then 

it can be shown that the projection of this vector along a fixed direction 

is allowed to have just the values Mh/2Tr, whc‘re M is an integer, cor- 

nvsponding to the various orientations shown in the figures. Obviously, 

the maximum value of M is K, coming when the angular momentum is 

oriented along the fixed dir(‘ction, and the minimum is — Tkf when it is 

o})i)osite. But there arc^ just (2K + 1) integers in tlu' group K, K — ly 

K — 2y • • * — (A^ — .1), —A, justifying us in our statement that there 

an' (2A + 1) allowed orientations. One says that the 

state is {2K + l)-fold degeiuirate. 

Considering this degeneracy, we see' that the term in 

th(‘ partition function corre^sponding to a given K must 

r(‘ally be countc'd (2A + 1) times, since all these stationary 

state's, corresponding m(‘r(‘ly to different oric'ntations in 

space, obviously have' the same' e'lu'rgy. Thus, we' have' 

X— K [K -f- ] )h'^ 

(2A -f- i )c Hv^IkT ^ (3.1) 
K 

where Zmi is the factor in the partitie)n function of a 

single molecule, Z, e)f Eep (3.3) of Chap. VIII, coming fre)m 

re)tatie)n. It is this sumniatie)n which unfe)rtunately can- 

ne^t be evaluated analytie'ally. But wei can handle it in 

the' limit of high temperature, for then the terms ce)rre- 

sponeiing to successive A's will differ se) little that the 

summation can be replace'd by an inte'gration. We the'n have 

Xgo ~K(K-\-l)h‘ 

{2K + l)e—Sn-ikT dK. (3.2) 
T »0rot 

The bulk of the integral in Eq. (3.2) will come frone^high quantum num¬ 

bers or high values of A. For these, we can neglect unity compared to 

A, obtaining 
^00 —K^h^ 

lim Z,„, = Jq 2Ke~S^wdK (3.3) 
T »erot 

(3.4) 
~ W ’ 

Ficj. IX-2.— 
Diagram illus¬ 
trating space 
quantization of 
vector with K = 
4, M = 4, 3, 2, 
1, 0, -1, -2, 
-3, -4. 

using the integrals (2.3) of Chap. IV. 
From the expression (3.4), we can in the first place find the rotational 

heat capacity, using Eq. (5.21) of Chap. III. This may be written 

NoT\ 
(d^{kT In 

(3.5) 
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where we must multiply by iV^o because our quantity Zrot refers to a single 

molecule. Thus we have, substituting Eq. (3.4) in Eq. (3.5), 

Cro. = Nok, (3.6) 

in accordance with equipartition. It is also interesting to compute the 

contribution of the rotation to the entro])y, as givcni in ICq. (3.8) of Chap. 

VIII. From that equation, the contribution is 

n/e^j,(7’ In Z.„.) = nR(ln + 1 + In 7’^ (3.7) 

Thus, using Eq. (3.8) of Chap. VIII, the entropy in llie temperature range 

where the rotation can l)e treated classically, but wher(‘ the vibration is 

not excited enough to contribute ai)preciably to tlu^ entropy, is 

>8 = inR In T + nR In V + nRli' + i - In (riR)], (3.8) 

where 

= In (3.9) 

The quantity ?*' of Eq. (3.9) can be consid(u*ed as the chemical constant 

of a diatomic gas, in connection with the formula (3.8) for the entro})y. 

We must remember, however, that Eq. (3.8) holds only in a restricted 

temperature range, as stated above; with some gases, the vibration begins 

to contribute to the (entropy even at room temperature, as we sliall set' 

in the next section. It is sometimes useful to liave the formula for Gibbs 

free energy of a diatomic gas in the range where Eq. (3.8) is correct. This 

is easily found to be 

G = n(Uo - iRT InT + RT In P - A?7V), (3.10) 

where %' is given in Eq. (3.9). 

4. The Vibratiorf of Diatomic Molecules.—In addition to their 

rotation, we have seen that diatomic molecules can vibrate mth simple 

harmonic motion if the amplitude is small enough. We shall use only 

this approximation of small amplitude, and our first step will be to calcu¬ 

late the frequency of vibration. To do this, we must first find the linear 

restoring force when the interatomic distance is displaced slightly from its 

equilibrium value We can get this from Eq. (1.2) by expanding the 

force in Taylor^s series in (r — r«,). We have 

Force = 2aZ>[l — 2a(r — r^) * • • — 1 + a(r — re) • • • ] 

= -2a2D(r - r^), (4.1) 

neglecting higher terms. Now we can find the equations of motion for 

the two particles of mass mi and m2, at distances ri and t% from the center 
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of gravity, where n + — r, under the action of the force (4.1). 

are 

= —2aW{ri + r2 - r,), 

== -2a.2D(ri + - r,). 

These 

(4.2) 

We divide the first of tln^so (equations by mi, the second by m2, and add, 

obtaining 

or 

dt'^ 
— 2a^D{ri + 

d^r 

^dt^ 
— 2a^D{r ~ r«), (4.3) 

where fi is given by Eq. (2.5). The vibration, then, is like that of a 

particle of mass /x, with a force constant --2a-Z). By elementary mechan¬ 

ics, we know that a particle of mass /u, acted on by a linear restoring force 

— kx^ vibrates with a frequency 

Thus the frequency of oscillation of the diatomic molecule is 

1 /2a-D 

" 2W M '■ 
(4.5) 

We have found in Eq. (3.8), Chap. Ill, that the energy levels of an 

oscillator of frequency v, in the quantum llu^ory, are given by 

i^'vib = {v -f l)hv, (4.6) 
\ 

where v is an integer (calhal n in Chap. III). The spacing of successive 

levels is hv. We may tlien expect, as with the case of rotation, that for 

temperatures T for which hv/kT is small, or temperatures large compared 

with a characteristic temperature 

k 2xfc \ /X 
(4.7) 

the classical theory of specific heats, based on the use of the integration 

to find the partition function, is applicable, while for temperatures small 

compared with Bvib we must use the quantum theory. To investigate 

this, we give in Table IX-3 the characteristic vibrational temperatures 

of the molecules we have been considering. The values of Table IX-3 
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can be found from D and a as tabulated in Table IX-1. Thus for H2 wc 

have 

6^61 X 10"^^ /2(1.95 X 10«)^(103)(4.185 X 10'") 

27r(1.379 X /.. “ 1.008 

V " 2 ■ 
= 6140° abs. (4.8) 

We see from Table IX-3 that for practically all the moh'cuh^'^ tlu' charac¬ 

teristic temperature i.s large compared to room t(‘mi>erat ur(>, so that iit all 

ordinary temperatures we must use the {luaiitum theory of specitie luuxt. 

We also note that in every cast! the characteristic temperature for vibra- 

Table IX-3.—CnAUACTEHLSTic Tkmper.atuke eou Vibration’, Dia'iomk’ Moi.ecules 

Sul).sl)UlC(‘ ttvil.. ‘ iih.s. 

H,. ()I40 
CH. 4100 
NH.44(K) 
OH. 5300 
HCl. 4300 
NO. 2740 
O2. 2260 
Nb. 3380 
CO. 3120 
C,.■. 2370 
Cb..-. 810 
Brs. 470 
Is. 310 
Lis. .500 
Nas. 230 
Ks. 140 

These values are calculatttd as in Eq. (4.8). 

tion Is very large compared to that of rotation. That is, thc^ rotational 

energy levels are much mon^ closely spaced than the vibrational levels. 

This is a characteristic feature of molecular energy levels, which is of 

great importance in the study of band spectra, the spectra of molecules. 

6. The Partition Function for Vibration.—First, we shall calculates 

the partition function and specific heat of our vibrating molecule by classi¬ 

cal tln^ory, though we know that this is not correct for ordinary tempera¬ 

tures. Using the expression (4.1) for the force, we have the potential 

energy given by 

€pot == a^D{r — 

and the kinetic energy is 

. (5.1) 
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where Pr is the momentum associated with r, equal to m dr/dt. Then, by 

analogy with Eq. (5.22) of Chap. Ill, the vibrational partition function 

Zvib can be computed classically as an integral, 

w a*D{r — rt)® p « p^r 

e dr I e dpr. (5.3) 

In the integral over r, we can approximately r(‘place by an integral from 

— oc to for th(' exponential in the integrand is practically zero for 

negatives values of r. If we do this, w(i have 

irkT [2ix' ^ 
hv' 

(5.4) 

The use of an equation analogous to Rq. (3.5) gives the value R for the 

vibrational contribution to the specific lumt, as mentioned at the begin¬ 

ning of Sec. 2. 

Next we calculate the specific heat in the quantum theory. The 

partition function is 

= fr2i“j'(l + f + 

_ f 
= r^'[i + c + • 

hv 2hp \ 

_i_ ,r w 4- . . . j 

hp 
'2kT 

1 ~ C 

using the formula for the sum of a g(‘ometric series, 

1 + 2- + j:- + 
1 _ 

i — X 

(5.5) 

(5.6) 

We note that at high temperatures, the numerator of Eq. (5.5) can be set 

kT ' ' ' )\ kT' 
so that the partition function reduces to kTjhv^ in agreement with the 

classical value (5.4). Using Eqs. (5.5) and (3.5), we have for the vibra¬ 

tional specific heat per mole the value 

equal to unity, the denominator becomes 1 — ^ 

h,v 



INTRODUCTION TO CHEMICAL PHYSICS [Chap. IX 

result was first obtained by Einstein and is often called an Einstein 

function. Introducing the characteristic temperature from Eq. (4.7), we 

have 

\ f ) / £) 

0vib 

p r 
/ \ 2 

^ -1) 
(5.8) 

It is also interesting to find the internal energy associated with the vibra¬ 

tion; proceeding as in Eq. (5.20) of 

Chap. Ill, we s(‘e this at once to be 

Nhv 
(5.9) 

ekr _ 1 

Nhi/ 

R 

The average (Miergy and heat capacity 

per oscillator, from Eqs. (5.9) and (5.8), 

are plotted as functions of temperature 

in Fig. IX-3. It will be seen that the 

eruu-gy is \hv at the absolute zero and 

increases from this value (piite slowly. 

The slow rise, vith horizontal tangent 

of th(i energy curve at the absolute zero, 

is what leads to the vanishing specific 

h(‘at at the absolute zero. At higher 

temperatures, however, the energy 

approaches the classical equipartition 

value and the heat capacity ap¬ 

proaches the classical value k. 
As an example of the application of 

Fig. IX-3.—Average energy and Eq. (5.8), we compute the vibratioiial 
heat capacity of an oscillator, according specific heat for CO, in Table IX-4, 
to the quantum theory. ^ ^ ^ 

then find the total specific heat by 

adding the vibrational heat to = 6.96 cal., which is the sum of 

for translation, R for rotation, and compare with the correct value. 

The agreement between our calculations and the “correct’^ values of 

Cp in Table IX-4 is good but not perfect. More accurate calculation 

agrees practically perfectly with experiment; in fact, .calculation is in 

general a more accurate method than the best experiments for finding the 

specific heat of a gas, and the ‘^correct” values of Table IX-4 are really 

simply the results of more exact and careful calculation than we have 

made. It is worth while discussing the errors in our calculation. In the 

first place, the frequency v which we have found from the constants of 

the Morse curve is correct, for as a matter of fact the constants a in 

Table IX-1 were computed from the frequencies and values of D observed 
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from band spectra, using Eq. (4.5) solved for a. But the Einstein specific 

heat formula (5.7) is not exactly corrwt in this case, for the actual inter¬ 

atomic potential is not simply a linear restoring force, as we have assumed 

when we use the theory of the linear oscillator. Not only that, but as we 

have mentioned there is interaction between the viV^ration and the rota¬ 

tion of the molecule. These efb^cts make a small correction, which can 

be calculated and which accounts for part of the discrepancy between the 

last two columns in Talde IX-4. They do not account, however, for the 

Takle IX-4.—Computed 8pe(!IFIC Heat op CO 

Tj '' al)s. 
Vibrational | Total specific Cp 

Kpocific hofit 1 heat Cp correct 

500 0.18 7.14 7.12 

H)00 0.94 7.90 1 7.94 

2000 1.63 8.59 8.67 
3000 1 .81 1 8.77 8.90 
4000 1.89 ! 8.85 9.02 

5000 1.92 1 8.88 9.10 

Cp is givoM in c p<M' mole. The calculation i s made by Eip (5.8). Values tabulated in last 

column, “CV correct,” are fioni Tjandolt-Bornatcin, “ IMiysikalisch-chemiscdio Tabelleii,” Dritter 

ErgaiiziinRsbaiK], Dritter Teil, p. 2324, Springer, 193G. 

fact that the correct specific heat rises above the value = 8.94 cal., 

for the quantum vibrational spt^cific heat never ris(\s above the classical 

value. This ciffect comes in on account of a new feature, electronic 

excitation, which enters only at very high tem])eratur(\ We can explain 

it bri(‘fly by stating that ele(;trons, as well as lint'ar oscillators, can exist 

in various stationary states, as a result of which they contribute to the 

specific heat. Their specific heat curves are somewhat similar to an Ein- 

skiin curve, but with extremely high characteristic temperatures, so that 

even at 5000° they are at the very low part of the curves and contribute 

only slightly to the specific heat. When these small contributions are 

computed and added to the values found from rotation and vibration, the 

final results agree very accurately with observation. 

6. The Specific Heats of Polyatomic Gases.—We shall now discuss 

the specific heats of polyatomic gases, without going into nearly the detail 

we have used for diatomic molecules. In the first place, the rotational 

kinetic energy is different from that in diatomic molecules. It requires 

three, rather than two, coordinates to describe the orientation of a poly¬ 

atomic molecule in space. Thus, imagine an axis rigidly fastened to the 

molecule. Two coordinates, say latitude and longitude angles, are 

enough to fix the orientation of this axis in space. But the molecule can 

still rotate about this axis, and an additional angle must be specified to 

determine the amount which it has rotated about the axis. These three 
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coordinates all have their momenta and th('ir terms in the kinetic energy. 

And when we find the mean kinetic energy of rotation, the new variable 

contributes its according to equipartition. 'I'hus the (energy, trans¬ 

lational and rotational, amounts to 3kT per molecule, or SnRT for n moles, 

and the translational and rotational heat capacity is Cf = 3nR = 5.96 

cal. per degree per mole, Cp ~ 4nR = 7.95 cal. p(‘r degree per mole. In 

addition to translational and rotational energy, the ])olyatomic molecules 

like the diatomic ones can have vibrational energy. As a matter of fa(’t, 

they can have considerably more vibrational (mergy than a diatomic 

molecule, for they have more vibrational degrees of fre(‘dom. A diatomic 

molecule has only one mode of vibration, but a triatomic molecule has 

three. Thus the water molecule can vibrate in ilu^ three ways indicated 

(a) 5170° Abs 
Fig, IX-4.—Modes of vibration of the HjO molecule. The arrows indicate the direc¬ 

tion of viluration of each atom, for the normal mode whose' characteristic temperature is 
indicated. For similar inforraartion on a variety of molecules, see H. Sponer, “ Mofekulspek- 
treii und ihre Anwendungeri auf chemische Probieme,” Si)ringer, Berlin, 1935. 

by the arrows of Fig. IX-4. The arrows show the directions of displace¬ 

ment of the three atoms in the vibration. In general, to find the number 

of vibrational degrees of freedom, it can be shown that one takes all the 

degrees of freedom of the atoms of the mokKnile, regarded as free. This is 

SNj if there are N atoms, each having three rectangular coordinates. 

Then one subtracts from this total the number of other degre(\s of free¬ 

dom: the translational degrees of freedom of the molecule as a whole, 

three, and the rotational degrees of freedom (none when A == 1, two when 

A ~ 2, three when A ^ 3). Thus the number of vibrational degrees of 

freedom is 

3(1)—3 — 0 = 0 for a monatomic gas, 

3(2) — 3 — 2 = 1 for a diatomic gas, 

3(3) — 3 — 3 = 3 for a triatomic gas, and in general 

3N-6forA>3. (6.1) 

Each of the vibrational degrees of freedom given by Eq, (6.1) would 
have a mean kinetic and potential energy of kT, according to equiparti¬ 
tion, and would contribute an amount R to the specific heat. As with 
diatomic molecules, however, the quantum theory tells us, and we find 
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expe^rimentally, that the vibrational specific heat is practically zero at 

low temperatures. We give a single example, the specific heat of watc^r 

vapor, which will show what actually happens. Since this is a triatomic 

molecule, the specific heat should be Cp = 4nK = 7.95 cal. per degree per 

mole for translation and rotation, plus three Einstenn terms, as given by 

Eq. (5.8), for characteristic temperatures which are 5170"^ abs., 5400® abs., 

and 2290® abs,, for the modes of vibration (a), (I)), and (c) respectively 

in Fig, IX-4.^ Calculations are giv(‘n in Table lX-5, where the columns 

Table IX-5.—(Computed 8pe(;ifi(: Heat of Water Vapor 

T, “ ahs. (a) (.1) (c) 

1- 

Cp, 
calciilatod correct 

300 0.00 0.00 0.10 8.05 8.00 
400 0 00 0.00 0.25 8.20 8.10 
500 i 0.00 0.00 ! 0.40 8.35 8.38 
000 0.02 0.02 0.00 8.03 1 8.04 
800 , 0.10 0. 15 1 .05 9.31 9.20 

JOOO 0.31 0.30 1 .30 9.80 9.80 
1500 0.80 0.78 1 .05 11 18 11.15 
2(X)0 1.18 I . 15 1.79 12.07 12.09 
3000 1.58 1 .52 1.90 12.90 

1 
13.10 

Se(‘ comments under Table lX-4. 

headed (a), (b), (c) are the vibrational heat capacities for the three modes 

of vibration, the next column gives the calculated CV, and the last one the 

correct Cp, found from more accurate calculation and agreeing well with 

expcrinKUit. As with CO, the slight discrepancic^s remaining between our 

calculation and the correct values can be rernovc^d by more elaborate 

methods, including the interaction between vibration and rotation, and 

electronic excitation. 

The calculation we have just made is based on the assumption that 

the vibrations of the molecule are simple harmonic, the force being pro¬ 

portional to the displacement and the potential energy to the square of 

the displacement. Ordinarily this is a fairly good approximation for the 

amplitudes of vibration met at ordinary temp(^ratures, but there are some 

important cases where this is not true. An example is found in the 

so-called phenomenon of hindered rotation. There are some molecules, of 

which ethane CHs-CHa, shown in Fig. IX-5, is an example, in which one 

part of the molecule is almost free to rotate with respect to another part. 

Thus, in this case, one CHs group can rotate with respect to the other 

about the line joining the carbons as an axis. The rotation would be 

^ See Sponer, ^^Molektilapektren und ihre Anwendungen auf chemische Probleme,*’ 
Vol. I, Springer, 1935, for vibrational frequencies of this and other molecules. 



148 INTRODUCTION TO CHEMICAL PHYSICS [Chap. IX 

perfectly free if the potential energy were independent of the angle of 

rotation so that there were no torques. Then as far as tliis degi-eti of 

freedom was concerned, there would be no i)otential energy, so that the 

mean energy on the classical theory would be the kinetic energy, 

rather than kT^ the sum of the kinetic and potential energies, as in ati 

oscillator. Actually in such cases, however, tlua-e ar(^ slight torqin^s, with 

a periodicity in the case of ethane of 120° in 9. Tlies(' arise presumably 

from repulsions between the hydrogcm atoms of the two methyl groups, 

suggesting that the potential energy might liave a maximum value when 

the hydrogens in the two groups were opposite each other, and a minimum 

when the hydrogens of one group were opposite tla^ spac(‘s lad w(‘(‘n hydro¬ 

gens in the other. In such a case, for small (uun-gies, tlu^ motion would 

be an oscillation about one of the minima of the ])ot(mtial (uuu'gy curve', 

while for larger energies, greater than th(' maximum of thc' pot(aitial 

energy curve, the motion would be a rotation, but not with uniform angu¬ 

lar velocity. In such a case, in the classical theory, the mean kinetic 

energy would equal ikT in any cavse. The memi potential (uiergy, how¬ 

ever, would increase as ^kT for low temperatures, where the motion was 

oscillatory, but would approach a limiting value, equal to the mean 

potential energy over all angles, which it would practically reach at the 

temperatures at which most of the molecules were rotating rather than 

oscillating. Thus the heat capacity per molecule connected with this 

degree of freedom would be k at low temperatures, but would fall to 

ik at higher temperatures where the rotation became more nearly free. 

With the quantum theory, of course the heat capacity would resemble 

that of an oscillator at low temperatures, starting from zero at the abso¬ 

lute zero, then rising to the neighborhood of A), but falling to ^k at high 

temperatures as in the classical case. Measurements and calculations of 

specific heat and entropy of molecules which might be expected to show 

free rotation of one part with respect to another generally seem to indicate 
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tluat at ordinary temperatures t he rotations are really hindered by periodic 

torques in this way, the heat capacity being more like that of an oscillator 

than that of a rotator. It is clear that from measurements of the specific 

heat one (;an work backward and find useful information al)Out the magni¬ 

tude of the torques hiiuhaing the rotations, and hence about the inter¬ 

atomic forces. 



CHAPTER X 

. CHEMICAL EQUILIBRIUM IN GASES 

In Chap. VHI wo treated mixtures of g;as('s in which the concentra¬ 

tions were determined. Now we take up chemical equilibrium, or the 

problem of mixtures of gases whicdi can rea(‘l with each other, so that the 

main problem is to determine the conc(uitrations of the various gases in 

equilibrium. In this problem, as in all cases of chemical redactions, there 

are two types of question that we may ask. In the first, ])lace, t Ikm-o is t h(d 

rate of reaction. Given two gasc's capable of reacting and mix(‘d together, 

how fast will the reaction occur and how will this rate dc'pend on pressure 

and temperature? In the sc^'cnd places there is the question of equilib¬ 

rium. To every reaction there is a reverse reaction, so that tlu' final 

state of equilibrium will represent a balance })etvve(^ji the direct and the 

reverse reactions, with definite proportions of all the substaiun^s in the 

equilibrium mixture. We may wish to know what thes(‘ pro})ortions an^ 

The first type of problem, the rate of reaction, can be answered only by 

kinetic methods. Gas reactions take place only when the i(‘acting mole¬ 

cules are in collision with each other, and only wlum the colliding mole¬ 

cules happen to have a good d(.‘al more than th(d averages (uiergy. Thus 

to fiii'd the rate of reaction we must investigate^ collisions in detail and 

must'know a great deal about the exact properties of the molecules. In 

almost no case do we know enough to calculate a rat(^ of r(‘action directly 

from theory. We can, however, find how the rati^ of reaction depends 

on the concentrations of the various substances present in the gas, and 

even this small amount of information is useful. It allows us to use the 

kinetic method to find the concentration of substances in equilibrium, for 

we can simply apply the condition that the concentrations are such that 

they do not change with time, and this gives us equations leading to the 

so-called mass action law. The results we find in this way, however, are 

incomplete. They do not tell us how the equilibrium changCvS with tem¬ 

perature, a very important part of the problem. Fortunately, these 

questions of equilibrium can be answered completely by the method of 

thermodynamics and statistical mechanics. For in equilibrium, the 

Gibbs free energy of the mixed gas must have the minimum value possible, 

and this condition leads not merely to the mass action law but to complete 

information about the variation of the equilibrium With temperature. As 

usual, thermodynamics gives us more complete and satisfactory informa- 
ifin 
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tioii, but about a more restricted problem, that of thermal equilibrium. 

In our discussion to follow, we shall start with the kinetic method, speak¬ 

ing about the mechanism of gas reactions and carrying the method as 

far as we can. Then we shall take up the thermodynamic treatment, 

deriving the conditions of equilibrium, and finding the interesting fact 

that the chemical constants of gases, introdiic(Hl previously in connection 

with the entropy, are fundamental in the study of chemical reactions. 

1. Rates of Reaction and the Mass Action Law.—Let us write a simple 

chemical equation; for instance*, 

2H2 + ()2^2H2(), (1.1) 

describing the combination of hydrogen and oxygen to form wate^r, and 

the reverse, the dissociation of watf‘r into hydrogcin and oxygen. The 

equation expresses the^ fact that, when two molecules of H2 and one of O2 

disappear, tw^o of H2O appear; or vice V(‘rsa. Now let us form the sim- 

I)lest kinetic picture* of the reaction that we can. For the combination of 

two hydrogens and an e)xygeu to fe)rm two w^ater molecule*s, we suppose in 

the? first plae*e that a triple collision e^f the? two hydre)ge‘ns and the one 

oxygen me)le?cule is nece?ssary; w'e sup}K)se further that in a certain fraction 

of sue?h collisions, a fraction wliich may depend on the temperature, the 

three molecules redact. Thus the number of sets of molecules reacting 

per unit time will be proportional to the number of triple collisions per 

unit time. This number of collisions in turn will be proportional to the 

number of oxygen mol(‘cul(\s per unit volunn* and td the square of 

the number of hydrogens p(‘r unit volume. For jiainly if w^e double the 

number of oxygens, w^e double the chance that one will be found at the 

point where the collision will take place; while if w^e double the number 

of hydrogens, we double the chance that one hydrogen will be found at 

the location of the collision, and furthermore w^e double the chance that, 

if one is there, another will also be found on hand. Since, at a given 

temperature, the number of molecules per unit volume is proportional to 

the pressure, we find for the number of sets of molecules that react per 

second 

C(T)PlPo., (1.2) 

Here C(T) is a coefficient depending on the size of the molecules, their 

velocities, the probability that if they collide they will react, etc. The 

quantities Phj and P02 are the partial pressures of H2 and O2; that is, 

they are the pressures which these gases would exert by themselves, if 

their molecules only were occupying the volume. It is the evaluation of 

C(T) as a function of temperature which, as wx have previously suggested, 

is almost prohibitively difficult by purely theoretical methods. 
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At the same time that direct reactions are taking place, there will be 

reverse reactions, dissociations of water molecules to produce) hydrogens 

and oxygens. From the chemical equation (1.1) we see tliat two water 

molecules must be present in order to furnish the necessary atoms to break 

up into hydrogen and oxygen molecules. Thus, by the type of argumeut 

wc have just used, the rate of the reverse reaction must be proi)ortional to 

the square of the number of water molecules per unit volume oi* to the 

square of the partial pressure of wateu*; we may write it as 

(1.3) 

Suppose we start with only hydrogen and oxygen in the contaiiun*, with 

no water vapor. Reactions will occur at a rate givcm by Kep (1.2), 

producing water. As this happems, the oxygen and hydrog('n will be 

gradually used up, so that tluar ])artial ])ressur('s will decrease and the 

number of molecules reacting per unit time will diminish. At the same 

time, molecules of water will appear, so that the partial ))ressure of water- 

will build up and with it the number of disso(*iation rc'actions given by 

Eq. (1.3), in which water dissociates into hydrogen and oxygen. This 

will tend to diminish the amount of water and increase the amount of 

hydrogen and oxygen, until finally an equilibrium will oc(‘ur, with sta¬ 

tionary amounts of the various gases, though individual molecules are 

reacting, changing from water vapor to oxygrm and hydrog(‘n and back 

again with great rapidity. In equilibrium, the number of reactions of 

type (1.2) must just equal the number of type (1.3) per unit tim(‘. Thus 

we must have 

or 

C{T)P,lPo. = C'(T)P,u 

PHiO 

C'^) 
C{T) (1.4) 

where Kr{T) is a function of temperature, the subscript P indicating the 

fact that Eq. (1.4) is stated in terms of partial pressures (we shall pres¬ 

ently state it in a slightly different way). Eq. (1.4) expresses the law of 

mass action for the particular reaction in question. 

From Eq. (1.4) we can derive information about the effect of adding 

hydrogen or oxygen on the equilibrium. Thus suppose at a given tem¬ 

perature there is a certain amount of water vapor in equilibrium with a 

certain amount of hydrogen and oxygen. Now wc add more hydrogen 

and ask what happens. In spite of adding hydrogen, the left side of 

Eq. (1.4) must stay constant. If the hydrogen did not combine with 

oxygen to form water, Piu would increase, the other P’s would stay con¬ 

stant and the expression (1.4) would increase. The only way to prevent 

this is for some of the added hydrogen to combine with some of the 
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oxygen already present to form some additional water. This will decrease 

both terms in the numerator of Kq. (1.4), increase the denominator, and 

so bring back the expression to its original value. Information of this 

type, then, can be found direcdly from our kinetic derivation of the mass 

action law. But we should know a great deal more if we could calculate 

Kp{T)y for then we could find the actual amount of dissociation and its 

variation with pressure and temperature. 

It is easy to formulate the mass action law in the general case, by 

analogy with what we l)avo done for our illustrative reaction. In the 

first place, let us write our chemical ecjuations in a standard form. 

Instead of Eq. (1.1), we write 

2H2 + O2 - 2H2O - 0. (1.5) 

We understand Eq. (1.5) to mean that two molecul(\s (or moles) of hydro¬ 

gen, one of oxyg(m, appear in the reaction, while two molecul(\s (or moles) 

of water disappear. The nwerse reaction, according to this convention, 

would be written with o])posite sign. We write our general chemical 

equation by analogy with Eq. (1.5), each symbol having an integral 

coefficient r, giving the number of molecules (or mol(js) of the correspond¬ 

ing substance appearing in the reaction, negative r\s corresponding to 

tlui disappearance of a substance. there be a number of substances, 

denoted by 1, 2, . . . (as H2, O2, H2O in the example), with correspond¬ 

ing ri, ^2, . . . , and partial pressures Pi, P2, . . . Then it is clear by 

analogy with our example that the general mass action law can be stated 

. . . = Kp{T). (1.6) 

Here the terms with negative r’s automatically appear in the denomina¬ 

tor, as they should from Eq. (1.4). 

It is often convenient to restate Eq. (1.6), not in terms of partial 

pressures, but in t(‘i-ms of the number of moles of each substance present, 

or in terms of fractional concentrations. Thus let there be Ui moles 

of the first substance, 712 of the second, etc. Then we have 

^ RT RT ^ _ 
Pi = 12 = n2-y-y etc., (1.7) 

by the perfect gas law, where V is the volume occupied by the mixture of 

gases. Substituting in Eq. (1.6), wo have 

711-712- • • • = (1.8) 

Equation (1.8) is convenient for finding the effect of a change of volume 

on the equilibrium. For example, in our case of water, from Eq. (1.5), 

+ I'a + • * • = J'Hso = 2 + 1—2 = 1. Thus we Iiave 
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nijjio, ^ KpCOy 
n,lo liT 

(1.9) 

a quantity proportional to tho volunui. Now lot the volume be changed 

at constant temp(‘rature. If f voIuni(‘ increases, the numerator must 

increase, showing that there must. Ix^ dissociation of watca* into hydrogen 

and oxygen. On the other hand, decrease of th(' volumes produces recom¬ 

bination. This is a sj)(H‘ial east* of the geiu'ral I'ule which is seen to follow 

from Eq. (1.8): decrease of volume mak(\s the reaction run in the direction 

to reduce the total numbea* of mol(\s of gas of all sorts. In our special 

case, if two moles of hydrogt'n and one of oxyg(m combine' to give two 

moles of water vapor, then' is one mole of gas less tifte'r th(' y3roc('ss than 

before. It secmis reasonable that decrease? of ve)lume' should fe)rce the 

equilibrium in this direction. 

It is alse) use?ful to write the mass actiem law in terms of the relative 

concentrations of the gase's. From Eq. (l.G), using Eq. (2.4) e)f Chap. 

Vm, or Pi = CiPj whe'H'd is the' relative' coiK'entration of the fth gas, we 

have 

• • • = = KiP, T). (1.10) 

Equation (1.10) is convenient for finding the effect of pressure on the 

equilibrium, as Eq. (1.8) was for finding the effe'ct of volume. Thus in 

the case of the dissociation of wate'r vapor, we have 

4,Co, ^ 
P ' (1.11) 

showing that increasing pressure incre*ases the concentration of water 

vapor. Of course, this is only a different form of stating the result (1.9), 

but is generally more useful. 

2, The Equilibrium Constant, and Van’t Hoff’s Equation.—In the 

preceding section we derived the mass action law, but have not evaluated 

the equilibrium constant Kp{T) or K{P, T), Now we shall carry out 

our thermodynamic discussion, leading to a derivation of this constant. 

The method is clear: we lemember from Chap. II, Sec. 3, that the Gibbs 

free energy is a minimum for a system at constant pressure and tempera¬ 

ture. Then we find the Gibbs free energy G of tin? mixture of gases, and 

vary the concentrations to make it a minimum. From Eq. (2.15) of 

Chap. VIII, we have 

G = ^n-jGj + hi Cj. (2.1) 

j j 

For equilibrium, we must find the change of G when the numbers of moles 

of the various substances change, and set this change equal to zero. 



Sec. 2] CHEMICAL EQUILIBRIUM IN OASES 

Using Eq. (2.1), we have 

156 

dG = '^{Gj + RT In Ci)dni + d{Gi + RT In c,) = 0. (2.2) 

j J 

The second sum is zero. In the first place, th(‘ G/s do not depend on the 

n/s, so that they do not change when the //y’s are vari(‘d. For the con- 

concentrations, we have d In Cj = dcj/cj. Hence the last term becomes 

^RT{nj/ci)dc,-. But by Eq. (2.1), Chap. VIII, = n, + + • • • , 

J 
ind(^pendent of j, so that the summation is really 

RT{n, + 712 + • • * )'^dcj. 

Furtlu'rmore, by Eq. (2.6), ('hap. Vlll, = 1, so that 

d^cj = ^ dci = 0, 

being the change in a (*-onstant. Hence, we have finally 

dG = + RT In Ci)dn; = 0 (2.3) 

j 

as the condition of equilibrium. But from tlu^ chemical equation we 

know that the nuinlxu- of molecules of the jth type ap])earing in an actual 

reaction must be j)roportional to vj, tla^ (‘o('ffici<Mit appearing in the 

chemical equation. H('U(!e the dn/^ must l)e i)ro})ortional to the u/sj and 

we may rewrite Eq. (2.3) as 

J^v,(Gj + RT hi cj) = 0. (2.4) 

J 

Taking the exponential and jnitting all tcnans involving the c’s on the left, 

the others on the right, we have 

(c0-(c2)-^ • * • ATH, T), where 

lnA^(P, T) = (2-5) 

3 

In F]q. (2.5) we have found the same mass action law as in Eq. (1.10), 

but with a complete evaluation of the e(|uilibrium constant A. Using 

Eq. (2.16), Chap. VIII, for Gy, we verify at once that A(P, T) varies with 

P as in Eq. (1.10), and wg find 

In - - 2 -(s). - i to r - V, dT - (2.6) 
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In Eq. (2.6), Uj is the arbitrary additive constant giving the energy of 

the jth gas per mole at the absolute zero, Cj is the heat capacity per mole 

of the Jth gas coming from rotations and vibrations, and ij is the chemical 

constant of the jth gas. 

Th(ire is an important relation coniu^cting the change of either K 
or Kp with temperature and a quantity called tlu^ heat of reaction. By 

definition, the heat of reaction is the heat absorbed, or the increase of 

enthalpy A//, when the reaction proceeds revc^rsibly so that pi moles of 

the first type of mohMUile are produced, V2 of the s(HH)nd, etc., at constant 

pressure and temperature. From Eqs. (2,13), (2.14) of Chap. VIII, this 

is at once seen to be 

A// = Xvl ih + wr + dr). (2.7) 
j 

Now let us find the change of In K(P, T) or In Kp{T) with temperature. 

Differentiating Eq. (2.6), we have 

/a In Kp{T)\ { Ui 

\ dT ), 2j "\Rr^ 

^ AH (2.8) 

Equation (2.8) is called Van^t Hoff’s equation and is a very important 

one in physical chemistry. It can be shown at once that the same equa¬ 

tion holds for K{P, T). 
Van’t Hoff’s equation can be used in either of two ways. First, we 

may know the heat of reaction, from thermal measunments, and we may 

then use that to find the slope of the curve giving K{P, T) against tem¬ 

perature. Let us see whi(*h way this predicts that the equilibrium should 

be displac^ed by increasing temperature. Supi)ose that heat is absorbed 

in the chemical reaction, so that AH is positive. Then the constant 

K{P, T) will increase wdth temperature. That means that at high 

temperatures more of the material is in the form that requires heat to 

produce it. For instance, to dissociate water vapor into hydrogen and 

oxygen requires heat. Therefore increase of temperature increases the 

amount of dissociation. In the second place, we may use Van’t Hoff’s 

equation to find the heat of reaction, if the change of equilibrium constant 

with temperature is known. This, as a matter of fact, is one of the com¬ 

monest ways of m(iasuring heats of reaction in physical chemistry. 

The heat of reaction at the absolute zero, from Eq. (2.7), is 

AHo = 

i 
(2.9) 
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It is interesting to see that this can be calculated from the quantities D 
of Sec. 1, Chap. IX. From Table IX-1 we know the value of i), the 

energy required to dissociate various diatomic molecules, and similar 

values can be given for polyatomic molecules. Thus let us consider our 

case of the dissociation of water vapor. To remove one hydrogen atom 

from an H2O molecule recpiires 118 kg.-cal. per moh^ (not given in the 

table), and to remove the sec’ond hydrogen from tlie remaining OH 

molecule requires 102, a total of 220 kg.-cal. In our reaction, there are 

two H2O molecules, requiring 440 kg.-cal. to dissociate.* them into atoms. 

That is, 440 kg.-cal. are absorbed in this process. But now imagine the 

four resulting hydrogeai atoms to combine to form two H2 molecules and 

the two oxygens to combine* to form O2. Each pair of hydrogens liberates 

103 kg.-cal. in recombining, a total of 206 kg.-cal., anel the two oxygems 

liberate 117 kg.-cal., so that 206 + 117 = 323 kg.-cal. are liberale^.d in this 

part of the process. The net result is an absorption of 440 — 323 = 117 

kg.-cal., so that A//o is 117 kg.-cal. This is in fairly ge)od agreement 

with the experimental value of about 113 kg.-cal. It is interesting to 

notice that the final result is the difference of two fairly large quantities, 

so that rc'latively small errors in the Z>^s can result in a rather large error 

in the heat of reaction. 

The calculation which we have just made for A//o does not follow 

exactly the pattern of Kq. (2.9). To see just how that equation is to be 

interpreted, we must give values to the various f7/^s. In general, since 

there is an undetermined constant in any potential energy, we can assign 

the j7/s at will. But there is a single reflation between them, on account 

of the possibility of formation of water from hydrogen and oxygen. Let 

Ujii be the energy per mole of hydrogen at the absolute zero, U02 of 

oxygen, Uiuo of water, all of course in the vapor state. Then from the 

last paragraph we know that th(^ energy of two moles of hydrogen, plus 

that of one mole of oxygen, is 117 kg.-cal. greater than the energy of two 

moles of water vapor. That is, 

2(+, + Uo. = 2lhuo + 117 kg.-cal. (2.10) 

Statements like Eq. (2.10) are sometimes written in combination with 

the chemical equation, in a form like 

2H2 + 02 = 2H2O + 117 kg.-cal. (2.11) 

Aside from Eq. (2.10), the U/s can be chosen freely; that is, any two of 

them can be chOvsen at will and then the third is determined. Now let 

us compute AHoj using Eqs. (2.9) and (2,10). It is 

A//o = 2Un. + Uo. - 2Uh^ 
= 2Uu20 + 117 kg.-cal. — 2Umo 
= 117 kg.-cal., (2.12) 
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in agreement with our previous value. From this example it is clear 

that all the undetermined constants among tlu^ cancel from the sum 

in Eq. (2.9), leaving a uniciuely determined value of A//o. 

We have just seen that a knowledge of the heats of dissociation, or 

constants Z), of the various molecules concerned in a reaction allows us to 

find AHoy the heat of reaction at the al)solu1(‘ zero. A furthc'r knowh^lge 

of the specific h(\ats of the molecules gives us all the information w(^ ruK^d 

to find the {equilibrium (constant Kp(T), according to Illcp (2.6), (‘xcept for 

the final constant In otlua* words, this knowledge is (uiough to find 

the rate of change of In Ki>(T) with t(emj)eratur(e, ac(*()rding to Eq. (2.8), 

but not enough to determine the constant of iiib'.gration of tlu' inpegrated 

equation (2.6), But \vc have seen in Cha]). V^lII how to find the con¬ 

stants i theoretically, and later shall se(‘ how to find them ('X])erimen- 

tally from vapor pressure' m(‘asur(‘jnents. Wt' now sen' why tlH'se' 

constants are so imjmrtant and why they ai(^ calhal (du'mical constants: 

they determine the constants of inP'gration for pro])l('ms of ch('nii{*al 

equilibrium. For this re'ason, a givat deal of attc'ntion has gone to finding 

accurate values for thcmi. 

3. Energies of Activation and the Kinetics of Reactions. - A ( urious 

fact may have struck the reader in connection with tlu' (exaini)le which 

we have used, the equilibrium betwi'en watca- vapor and hydrogen and 

oxygen. Calculating the equilibrium, we find that at room temperature 

the amount of hydrogcai and ox3^g(‘u in ('quilibrium with water vapor is 

entirely lUigligible; even at sc'veral thousand d(‘gr(*es only a few per {‘c^nt 

of the water vapor is dissc^ciated. This certainly ac(a)rds with our usual 

experience i\dth steam, which does not dissociate into hydrogen and 

oxygen in steam engines. And yc't if h^^drogen and oxygtm gases are 

rnixe^d together in a container at room temperature', th(}y will remain 

indefinitely without anything happening. A spark or other such dis¬ 

turbance is requirc'd to ignite them; as a result of ignition, of course, a 

violent explosion results, th(^ hydrogen and oxygen being practically 

instantaneously converted into water vapor. The lu'at of combustion, 

which is the same thing as the heat of reaction of 117 kg.-cal. which we 

have just computed, is a very large one (one of the largest for any common 

reaction); since an explosion is an adiabatic process, this heat cannot 

escape, but will go into raising the temperature, and consequently the 

pressure, of the resulting water vapor enormously. It is this sudden 

rise of pressure and temperature that constitute the explosion. But now 

we ask, why was the spark necessary? Why do not the hydrogen and 

oxygen combine immediately when they are placed in contact? 

Our first supposition might be that the triple collisions of two hydro¬ 

gen mojecules and one oxygen, which we have postulated as being neces¬ 

sary for the reaction, were rare events. But this is not the case. 
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Calculation, taking into account the cross section of th(^ molecules, shows 
that at ordinary temfxa'atures and pressures tlu^re will bo a tremendous 
jiumber of such collisions pc^r unit time. The only remaining hypothesis 
is that ev(ai when two hydrogen molecules and an oxygen are in the 
intimate contact of a collision, still it is such a rare thing for their atoms 
to rearranges themselves to form two water mol(‘(ailos that for all practical 
j)urposes it never happens. This is indexed the case;. Tlui proportion of 
all such triple collisions in which a re^aedion takes place is excessively 
small, at ordinary bailperatiires, thougli it is finite; if we waited long 
enough, equilibrium would be attaiiu^d, ])ut it might take thousands of 
years. But the probability of a naicting collision iniTeases enormously 
with the t(‘mperatur(i, which is the naison why a spark, a localized region 
of exceedingly high teanpea-atun^, can start the redaction. Once it is 
started, the luait liberatiHi by the reaction lu'ar th(‘ spark raises the gas in 
the neighborhood to such a high temiKa-ature lliat it in turn can react, 
liberating more lu^at and allowing gas still further away to react, and so 
on. In this way a sort of wav(' or front of ri^aidion is propagated through 
the gas, with a v(uy high velocity, and tliis is characteristic of explosion 
reactions. 

It is true in geiK'.ral that, given a collision of the suitable molecules 
for a nvaction, the probability of reaction increases enormously rapidly 
with the temperature. When iiK^asurenKnits of rates of reaction are 
made, it is found that the probability of reaction can be (expressed approxi¬ 
mately by th(^ formula 

Probability of reaction — const. X c (3.1) 

where Q\ is a constant of tlie dimensions of an energy. Equation (3.1) 
suggests the following interjiretation: suppose' that out of all the collisions, 
only those in which the colliding molecules taken together have an 
energy (translational, rotational, and vibrational) of Qi or more can 
produce a reaction. By the Maxwell-Boltzmann distribution, the frac- 

Qi 
tion of molecules having this energy will contain the factor e (The 
fraction having an energy greater than Qi can be shown to contain this 
factor, as wqll as the fraction having an imergy betwi^en Qi and Qi + dQi, 
which is what we usually consider.) Thus we can understand the varia¬ 
tion of rate of reaction with temperature. We must next ask, why do the 
molecules need the extra energy Qi, in order to react? This energy is 
ordinarily called the energy of activation, and w^e say that only the 
activated molecules, those which have an energy at least of this amount, 
can react. 

To understand why an energy of activation is required for a reaction, 
we may think about a hypothetical mechanism for the reaction. In our 
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particular case of hydrogen and oxygen combining to form water, we 

imagine a collision in which two hydrogen molecules hit an oxygen 

molecule (this will be the way the collision will app('ar, for on account of 

their light mass the hydrogens will be traveling much faster than the 

oxygen in thermal equilibrium). During the collision, the atoms rear¬ 

range themselves to form two water molecules, which then fly apart with 

very great energy (on account of the heat of reaction). Now, obviously, 

those particular collisions will be favored for reaction in which the atoms 

need the minimum rearrangement in the reaction, and a little n^flection 

shows that the most favorable configufatioii is that shown in Fig. X-1 

(a), in which the velocities of the various atoms are shown by arrows. As 

we follow th(^ successive sketches of Fig. X-1 sliowing the progress of the 

collision, we see that the hydrogens approach the oxygens, attaining in (c) 

a shape very much like two water molecules. In the first part of the 

collision, (a) and (6), the hydrogens have most of the kinetics energy. For 

a favorable reaction, however, th(^ relations Ix^ween the v('lociti(iS of 

hydrogens and oxygens on collision must be such that the hydrogen gives 

up most of its kinetic eiKTgy to the oxygen. The condition for this 

can be found from elementary considerations of conservation of momen¬ 

tum and kinetic emu’gy on collision, and d(miands that the oxygen atoms 

be moving in the same direction as the hydrogens on collision but with 

considerably smaller vc'locity. That is, the oxygen molecule must have 

had considerable vibrational kinetic energy and the correct phase of 

vibration, while the hydrogens must have had large translational kinetic 

energy. Now in the second part of the collision, (d), (c), (/), and (g), the 

oxygens have most of the kinetic energy. They fly apart, carrying the 

hydrogens with them, and form the atoms into two water molecules. The 

hydrogens end up bound to the oxygens, but with some vibrational 

kinetic energy in the mode of vibration indicated by {g). 

We can now follow tlui energy relations in the reaction by drawing a 

suitable potential energy curve. The potential energy of the whole 

system, of course, depends on the positions of all the atoms and would 

have to be plotted as a function of many coordinates. We can simplify, 

however, by considering it as a function only of the distance r between 

the oxygen atoms. For each value of r, there will be a particular position 

for the hydrogen atoms that wdll correspond to a minimum of energy. 

Thus in (a), where the oxygen atoms are forming an oxygen molecule, the 

hydrogen molecules and the oxygen molecule will attract each other 

slightly, provided the oxygen-hydrogen distance is considerable, but will 

repel provided they come too close together, as we shall learn later when 

we consider intermolecular forces in imperfect gases. There will be a 

position of equilibrium, with the hydrogens a considerable distance—three 

or four angstroms—away from the oxygen, and with an energy of perhaps 
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a fraction of a kilogram calorie lower than the energy at infinite separation 

of hydrogen from oxygen. Similarly in {g) th(^ atoms are formed into two 

water molecules, and the minimum of emu’gy of the hydrogems comers 

when they are at the distances and angles with respect to the oxygen 

which we find in a water rnoleciih^ We now show, in Fig. X-2, a sk(rt(*h 

of the potential energy of the whole system, when the oxygens are at 

distance r, and the hydrogems are in thear positions of minimum energy 

for each value of r. 

First, we ask how’ Fig. X-2 was constructcal. Wlum the oxygens are^ 

close together forming an oxygen molecuh', tlie energy of th(' hydrogens, 

being only intermolecular attraction, is small and the curve is practically 

Fig. X-2.—Potential energy of 4H -j- 20, as function of 0-0 distance r. 

the interatomic energy for tlie oxygen molecule. This is the curve (a) 

of Fig. X-2, going to an energy at infinite sc^paration whi(‘h is greater by 

Z>(= 117 kg.-cal.) than at the minimum, which comes at 1.20 A. On 

the other hand, w^hen the oxygens are far apart they form two wmter 

molecules. At infinite separation of these two molecules, the energy of 

the whole system is less by 117 kg.-cal. (— A//o, w hich only happens to 

be equal to the D of the oxygen molecule by a coincidence), than when 

two hydrogen and one oxygen molecule are formed. The curve (Jb) 

shows the interaction betwmen these water mohicules. Starting with the 

asymptotic energy just mentioned, the curve rises with decreasing dis¬ 

tance, because the two water molecules, set with their negative oxygen 

ions facing each other, repel each other on account of electrostatic repul¬ 

sion of like charges. As the distance decreases, to something of the order 

of three angstroms, the molecules begin to hit each other, causing the 

curve (6) to rise steeply. Curves (a) and (6) both form limiting cases. 

For small r^s, curve (a) must be correct, and for larger r\s curve (6). The 
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full line in Fig. X-2 represents a sketch of the way the actual curve may 

look, reducing to these two limiting curvets. It will be noted that at 

intermediate distances the actual curve lies below either curve (a) or 

(6). Essentially, the reason is as follows: When we have quite separated 

mohicuhis, as the two water molecules at large distances, eacli atom of one 

molecule repels each atom of the other. But as they aj)y)roach, as in 

configuration (c) of Fig. X-l, there is a little uncertainty as to whether 

they form two water molecules, or two liydrogens and an oxygen. As a 

consequeiu^e, the oxygen atoms make a (H)mpromis(^ Ix'tweeri repelling 

each other, as they would in two watcu' molecules, and attracting, as they 

would in an oxygen molecule. That is, the repulsion which causes the 

rise in curve (6), Fig. X-2, is diminished and the actual curve does not 

continue to rise as curve (b) does. 

Now that vv(^ have th(‘ curve of Fig. X-2, we can apply it to the reac¬ 

tion as shown in Fig. X-1. The first part of the reaction, diagrams (a), 

(?>), and (c) of Fig. X-1, cannot be represented directly on Fig. X-2, for 

in it till' hydrogen molecul(‘s have a great deal of kinetic energy and are 

by no means in the })osition of minimum potential energy. But by (c) 

of Fig. X-1 the hydrogen atoms have giv(^n up most of their kinetic 

energy to the oxygens, and during the rest of the process the curve of 

Fig. X-2 applies fairly accurately. As far as the first part of the process 

is concerned, we can int('rpr(‘t it as a process in which the oxygens had 

their vibrational em^rgy in(*r(‘ased from such a value as E] in Fig. X-2 to 

E2, symbolized by the arrow in the figure. Wlien they had the eiKTgy Ei 

they simply vibrated back and forth for a short range about the distance 

Vc of minimum energy. But with the energy E2 the motion changes 

entir('ly: the oxygems fly apart, carrying th(^ hydrogens with them to form 

water molecules and ending up with infinite separation of the molecules 

and a very high kinetic energy. And now we see the need of the energy 

of activation. From Fig. X-2 we see that there is a maximum of potential 

energy bc'tween the minimum at Vc and the still lower value at infinite 

se]>aration. For the water molecules to separate, the energy E2 must 

lie higheu’ than this maximum. But this energy is supplied, as we have 

seen, by the combined energy of all the colliding molecules before collision. 

We thus see that the energy of activation Qi is to be interpreted as the 

height of this maximum above the minimum at r,,. 

A minimum of potential energy such as that at Ve in Fig. X-2, separated 

by a maximum from a still lower region, is oftiui met in atomic and 

molecular problems and is called a position of metastable equilibrium, or 

a metastable state. It is stable as far as small displacements are con¬ 

cerned, but a large displacement can push the system over the maximum, 

after which it does not return to the original position but to the entirely 

different configuration of really lowest potential energy. In all such 
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cases, the rate of transition from the metastable to the really stable con¬ 

figuration, at temperature T, depends on a factor exp { — Qx/kT), where 

Qi is the energy of activation, or height of the maximum above the mini¬ 

mum, for in all such cases it is only the molecules with energy greater than 

Q\ that can react. Let us see how rapidly such a factor can depend on 

temperature. From Fig. X-2 it seems reasonable that in that case Qx 
could be of the order of magnitude of 40 kg.-cal. Then the factor 

exp (-QiAT) will become exp (-40,000//^/’) = exp (-40,000/1.98T) = 

exp ( — 20,000/70 approximately. For T — 300° abs., this factor is 

exp ( — 66.7) = 10"-® approximately, while for T ~ 3000° abs. it is 

exp ( — 6.67) = 10“^^ approximately. Thus an increase of temperature 

from room temperature at 3000° abs., which could (easily be attained in a 

spark, might make a diffenmce of 10-^ in the rate of n^action. A process 

that would take 10~^® sec. at the high temperature might take 10^® sec., or 

3 X 10^ yrs., at the low temperature, and would for all practic^al purposes 

never happen at all. This is an extreme but by no means an unreasonable 

example. 

We are now in position to see why, though the energy of activation 

enters into the rate of reaction in such an important way, it does not affect 

the final equilibrium. The factor C(T), in Eq. (1.2), determining the 

rate of combination of hydrogcm and oxygen molecul(\s to form water, will 

contain a factor exp { — Qx/kT), as we have seen. But a glance at Fig. 

X-2 shows that in the reverse reaction, in which two water molecules 

combine to form hydrogen and oxygen, the water molecules must have 

an energy at least equal to Qx + A//o, so that they can climb over the 

maximum of potential energy and approach closely enough to form an oxy¬ 

gen molecule. Thus the probability of the reverse collision, given by Eq. 

(1.3), contains the factor C'(T) with the exponential exp [ — (Qi+A//o)/A;T]. 

Finally in the coefficient Kp{T)y given by Piq. (1.4), we must have 

CUT') 
with the factor exp {[—(Qi + A77o) + QJ/^T}, which equals 

exp [ —(A//o//bT)], in agreement with Eqs. (2.6) and (2.9), the energy of 

activation canceling out. Of course, in this' simple argument we have 

neglected such things as specific heats, so that we have not reproduced 

the whole form of Eq. (2.6) from a kinetic point of view, but this could 

be done if sufficient care were taken. 

There is one point about a reaction like the combination of two water 

molecules to form oxygen and hydrogen, which we have just mentioned, 

that is worth discussion. From Fig. X-2, if the molecules approach with 

energy E2 sufficient to pass over the maximum of potential, they will not 

be trapped to form oxygen and hydrogen molecules unless the energy of 

the oxygens drops from E2 to some value like Ei during the collisions. 

This of course can happen by giving the excess energy to the hydrogen 
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atoms, sending them shooting off as hydrogen molecules. But there are 

sometimes other reactions in which this cannot happen. For instance, 

consider the simple recombination reaction of two oxygen atoms to form 

an oxygen molecule, shown in Fig. X-3. Here if the atoms approach with 

Fig. Recombination of atoms to form a molecule. 

energy E2j there is nothing within the system itself abl(^ to absorb the 

necessary eni'Tgy to make them fall down to tln^ eiHU’gy Ei, and be bound 

to form a molecule. Such a r(H‘ombination of two atoms can only occur 

if they happen to be in collision with a third body, atom or molecule, at 

the same time, which (^an absorb the exc(iss energy and Ic^ave the scene of 

collision with high velocity. 



CHAPTER XI 

THE EQUILIBRIUM OF SOLIDS, LIQUIDS, AND GASES 

We have so far studied only perfect gases and have not. taken up 

imperfect gases, liquids, and solids. Before we treat them, it is really 

necessary to understand what happens vvh(‘n two or more phas(\s are in 

equilibrium with each other, and the familiar plu'nomena of meriting, boil¬ 

ing, and the critical point and the continuity of the liquid and gaseous 

states. We shall now' proceed to find the thermodynamic condition for 

the coexistence of tw^o phases and shall apply it to a genei'al discussion 

of the forms of the various thermodynamic functions for matter in all 

three states. 

1. The Coexistence of Phases.—It is a matter of common knowledge 

that at the nndting point, a solid and a liquid can exist in equilibrium with 

each other in any proportions, as (‘an a liquid and vapor at the boiling 

point. There is no tendency for the r(dati\(‘ proportions of the two 

phases, as they are calked, to change with time. Oi) the othm- hand, if 

we are not at the melting or boiling point, there is no such e(|uilibiium. 

At lOO^^C., for instance, water vapor above atmospheric pressure will 

immediately start to condense, enough liquid forming so that the remain¬ 

ing vapor and the liquid will come to atmospheric pressur(‘; while if winter 

at this temperature is bc^low^ atmosplunic pressure, enough liquid will 

evaporate or boil away to raise the pressure to one atmos})her(‘, so that 

only at atmospheric pressure can the tw^o coexist at 100°C. in arbitrary 

proportions. For (^ach temperature the equilibrium takes place at a 

definite pressure; that is, w(‘ can give a curve, called the vapor pre^ssure 

curve or in general the equilibrium curve, in the P-T plane, along which 

equilibrium occurs. This curve separates thovsc parts of the P-T plane 

where just one, or just the other, of the phases can exist. Thus in gen¬ 

eral, wh()re a number of phasc^s occur in different nigions of the P-T plane, 

equilibrium lines separate the regions where each phase occurs separately. 

Along a line two phases exist; where three lines join at a point, thrt^e 

phases can c^xist, and such a point is calkid a triple point. 

The resulting diagram is called a phase diagram. In the figures 
below, such a diagram is drawm for water, a familiar and in some ways a 
remarkable example. Figure XI-1 shows the diagram for a scale of 
pressures on which the critical point is represented by a reasonable value. 
The ordinary melting and boiling points, at 1 atm. and at O'^C., and 
100°C., respectively, are easily found. We see that the boiling point 

166 
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rises rapidly to higher temperatures as the pressure is raised, until finally 

the critical point is reached, above which there is no longer discontinuity 

between the phases. The melting point, on the other hand, is almost 

indep(indent of pressure, decreasing as a matter of fact very slightly with 

increasing prcissiire. 

Figure XI-2 gives a different pressure scale, on which small fractions 

of an atmosphere (ian be notcKl. The tri})le point is immediately observed, 

corresponding to a low pressure and a temperature almost at 0°C., at 

which ice, water, and watei* vapor can exist at the same time, so that if a 

dish of water is cooh'd to this t(un])eratur(‘ in a suitable vacuum, a coating 

of ice will form and steam will bubble up from below the ice. Below this 

temperature, liquid water does not occur, but as we can s(‘e an equilibrium 

is possible bc^twenai solid and gas. If the solid is reduced below the 

Fig. XI-1.- -Phase diagram of 
water. Critical point: Pc - 218 
atm., Tc = 374°C. 

Fig. XT-2.—Low-pressure 
phase diagram of water. Triple 
point: P =4.58 mm., T — 
0.0075'*C. 

pressure corresponding to equilibrium, it will (evaporate directly into 

water vapor. This is the way snow and ice disappear in weather below 

freezing; and it is a familiar fact that solid carbon dioxide, whose triple 

point lies at a pressure greater than atmospheric, evaporates by this 

method without passing through the liquid phase. 

In Fig. XI-3, the pressure scale is changed in the other direction, so 

that we show up to 12,000 atm. Here the gaseoui^ phase, which exists 

for pressures only up to a few hundred atmospheres, cannot be shown on 

account of the scale. On the other hand, a great deal of detail has 

appeared in the n^gion of the solid. It appears that, in addition to the 

familiar form of ice, there arc at least five other forms (the fifth exists at 

higher pressures than those shown in the figure). These forms, called 

polymorphic forms, presumably differ in crystal structure and in all 

their physical properties, as density, specific heat, etc. The regions 

where these phases exist separately are divided by equilibrium linos, on 
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which two of them can coexist in equilibrium, and a number of triple 

points are shown. Transitions from one phase to another along an 

equilibrium line are calhxl polymorphic transitions. There has never 

been found any suggestion of a critical i)oint, or termination of an equilib¬ 

rium liiKi with gradual coah^scence of the two phasfvs in properties, for 

any equilibrium between licpiid and solid or b(d.ween two solid phases. 

Critical points appear to (‘xist only in the licpiid-vapor transition. 

2. The Equation of State.—The three figures tliat we have drawn 

give only part of the information about th(^ phase equilibrium; for greater 

completeness, we should show the whole equation of state, the relation 

between pressure, temperature, and voIuiik'. This is done in Figs. XI-4 

and XI-5, where F-V-T surfaces are shown in perspective, for the case of 

the liquid-vapor equilibrium and for the polymorphic forms in equilibrium 

with the liquid. A number of isothermals, lines of constant temperature, 

are drawn on each surface to make them easier to interpret. Some simple 

facts are immediately obvious from tlu^se surfaces. For instance, water 

is exceptional in that the solid, ice, has a larger volume than the liquid. 

As we see, this is true of ice I, the phase existing at low pressure, but it is 

not true of the other phases II, III, V, VI, all of which have smaller 

volumes than water at the corresponding pressure. Furthermore, we see 

that though water seems quite incompressible as far as the low pressure 
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surface in the first figure is concerned, the second figure shows that a 

pressure of 12,000 atm. produces a diminution of volume of about 20 per 

cent. Again, th(^ melting point of ice I is hardly affected by the pressures 

indicated in the low pressure surfaces, but the otlnu’ surface shows that a 

pressure of about 2000 atm. lowei's ilio melting point by mon? than 20°C. 

One interesting fact to notice is that a vertical line cutting either of the 

surfaces will cut it in just one point; that is, for a given volume and tem- 

‘ i)erature, th(‘ pressure is uniquely d(^termined. We shall see shortly 

that this can be shown to be true (]iiite generally. 

As we s(H% the P-V-T surfaeevs are divided into a number of different 

regions with sharp cadges separating them. In some of these n^gions one 

phas(^ aloiu^ can (Lxist, while in others two })hases can coexist. Th(' regions 

of the second type, when proj(‘et(‘d onto the P-T surfac(‘, bc'come the 

equilibrium line's that w(^ have previously mentioned; thus they an' ruled 

surfaces, the rulings being ])arall('l to the volume axis. At a given pres¬ 

sure and temperature on an equilibrium line, in other words, the volume 

can ha^'e any A^alue between two limiting values, tlie volumes of the two 

phases in question. The nK'aning of this is that there is a mixtun^ of the 

two phas(\s, so tliat the volume of the mixture depends on the relatives 

concentrations of the two and is not really a property of either phase, but 

is a measure of the relative coma'iitrations. 

3. Entropy and Gibbs Free Energy.—The equation of state do(\s not 

alone di^termine the thermodynamic behavior of a substance; we must 

also know its specific heat, or its entropy or Gibbs free enta-gy. We shall 

first give the entropy as a function of pressure and temperatures. This 

can of course be de^termiiu'd entirely by (experiment. We start with the 

solid at the absolute zero. Tlu're, according to the quantum theory, as 

we hav(' seen in Chap. Ill, thee entropy is zero. The entropy of the solid 

at a highcer temperature can be found from the specific heat, for at con¬ 

stant pressure we have 

Since, according to the quantum theory, the specific heat goes to zero at 

the absolute zero, the integral in Eq. (3.1) behaves properly at the abso¬ 

lute zero. By means of Eq. (3.1), we find the entropy of the solid at any 

temperature, at a given pressure; since the specific heat depends only 

slightly on pressure, this nu'ans practically that the entropy of the solid 

is a function only of temperature, not of pressure, on the scales used in 

Figs. XI-1 and XI-2, though not in Fig. XI-3. Next, we wish the 

entropy of the licjuid and vapor. If the pressure is below that at the 

triple point, a horizontal line, or line of constant pressure, in the phase 

diagram will carry us from the region of solid into that of vapor. There 



Sec. 3] THE EQUILIBRIUM OF SOLIDS 171 

is a discontinuous change of entropy as we cross the line, equal to the heat 

absorbed (the latent heat of vaporization) divided by the tempcirature 

(the temperature of sublimation for the pressure in question). This 

change of entropy, which we may call the entropy of vaporization and 

denote by ASv, is 

(3.2) 
* V 

where Lvj Tv are the latent heat and t('mperature of vaporization at the 

giveni pressure. Adding this change of entropy to the entropy of the solid 

(3.1) just below the sublimation point, we have th(‘ entropy of tlie vapor 

just above this point. Then, applying Kq. (3.1) to the vapor rather than 

the solid, we can follow to higher temperature's at constant pressure and 

find the entropy of Urn gas, as 

= jo 

In Eq. (3.3), the first term i’e})r(‘sents the enti*opy of the solid at the 

vSublimation point, the second the increase of (aitropy on vaporizing, and 

the third the further increase of entropy from the sublimation point up to 

the desired temperatures. 

If the pressure is above the triple j)oint, the solid will first melt, then 

vaporize. In this case, we can ])ro(*(‘('d in a similar way. On melting, 

the entropy increases by the entropy of fusion, determined from th(^ latcait 

heat of fusion and temiierature of fusion by the n'lation 

analogous to Eq. (3.2). Then the entropy of the licpud at any tempera¬ 

ture is 

-s, = J+ ^r + ^,pdT. (3.5) 

As the temperature risers further, the liquid will vaporize and the entropy 

will increase by the entropy of vaporization. The gas above this tem¬ 

perature will then have the entropy 

S, . + £pT. (3.6) 

It is interesting to note that a relation between the latent heat of vapori¬ 

zation of the solid, the heat of fusion, and the heat of vaporization of the 

liquid, at the triple point, arises from the fact that Eqs. (3.3) and (3.6) 

must give identical values for the entropy of the gas at the triple point. 
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Since in this case Tf = Tv = T, the integrals involving the specific heats 

of the liquid and gas drop out, and w(! have at onc(^ the relation 

Jjv of solid + Lv of liquid, at the triple point. (3.7) 

In Fig. XI-6 we show th(‘ entropy of water in its three phases, as a 

function of pressure and t('mperature, compiihMl as we have described 

above. We are struck by the rescunblance of this figure to that giving 

the volume, Fig. XI-4; the entropy, like the volume, increases with 

increase of temperature or decrease of pnvssure. Lines of constant pr(\s- 

1-1-1-^-r 
10 20 30 40 50 
Ca\ per Mole Degree 

Fio. XI-6.—Entropy of water as function ol pressure and temperature. 

sure are drawn in Fig. XI-6. The regions of coexistence of phases are 

shown in Fig. XI-6 as in Fig. XI-4, and the latent heat is given by the 

length of the horizontal line lying in the region of coexistence, multiplied 

by the temperature. Graphs of the form of Fig. XI-6 (generally pro¬ 

jected onto the T-S plane) are of considerable practical importance in 

problems involving thermodynamic cychvs, as heat engines and refrigera¬ 

tors, on account of the fact that the isothermals are represented by lines 

of constant T and adiabatics by lines of constant >S, so that the diagram 

of a Carnot cycle in such a plot is simply a rectangle. Furthermore, the 

area of a closed curve representing a cycle in the T-R diagram gives 

directly the work done in the cycle, just as it does in the P-F diagram. 
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This is seen at once from the first and second laws in the form 

T dS = diJ + P dV. 

Integrating around a closed cycde, we must have ^ dU = 0, sincc^ U is a 

function of the state of th(^ S3^stem. Hence 

§TdS = §P dV, (3.8) 

whtire ^ indif;!it(!H an integral taken about a comploto cycle, and since 

d V equals the work done, dS must equal it also. 

1 2 3 4 6 e 7 8 9 10 11 12 

“G (Kg.co(!/mole) 

Fig. XI-7. —Gibbs free energy of water, as fiinetion of pressure and temperature. 

The Gibbs free energy G as a function of i)ressure and temperature is 

sketched in Fig. XI-7. It can also be found directly from experiment. 

At constant pressure, we have S = —{dG/dP)pj or C? = —jSdT^ and 

since V ~ {dG/dP)r, we have G — /F dP at constant temperature, from 

a combination of which the Gibbs free energy can be found from equation 

of state and specific heat. The surface of Fig. XI-7 looks quite different 

from those for volume and entropy; for while the volume and entropy 

change discontinuously with a change of phase, resulting in the ruled 

surfaces indicating coexistence of phases which are so characteristic of 

Figs. XI-4, XI-5, and XI-6, the Gibbs free energy must be equal for the 

two phases in equilibrium. This has already been discussed in Sec. 3, 

Chap. II and follows from the fundamental property of the Gibbs free 

energy, that its value must be a minimum for equilibrium at given pres- 
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sure and temperature. Thus, if there is equilibrium between two phasCvS 

at a given pressure and temperature, a transfer of some material from 

one phase to the other cannot change the Gibbs free energy, so that the 

value of G must be the same for both phas(\s. As we observe from Fig. 

XI-7, (iach phas(; has a different surface for G as a function of P and T, 
and the intersection of two of these surfaces gives the condition for 

equilibrium. It is interesting to notice the behaA^ior of the surface near 

the critical point: the lines of constant pressure, which are drawn on the 

surface, have discontinuities of slopes below the critical point but merely 

continuous changes of slope above this point. We shall see in a later 

chapter how such lines can come about mathematically. 

4. The Latent Heats and Clapeyron’s Equation.—There is a very 

important thermodynamic relation concerning the equilibrium between 

phases, called Clap(^yron’s equation, or sometirm^s the Clapeyron-Clausius 

equation. By way of illustration, let us consider the vai)orization of 

water at constant temperature and pressure. On our P-F-T surfa(‘(‘, tlie 

process we considc^r is that in which the system is carried along an iso¬ 

thermal on the ruled part of the surface, from the state where it is all 

liquid, with volume Vi, to the state where it is all gas, with volume F,,. 

As we go along this path, we wish to find the amount of hc^at absorbed. 

We can find this from one of Maxwell^s relations, Eq. (4.12), Chap. 11: 

The path is one of constant t('mi)eratun‘, so that if we multij)ly by T 
this ndation gives the amount of heat absorb(‘d pc'r unit increases of 

volume. But on account of the nature of the surface, {dP/dT)v is the 

same for any point corresponding to the same tempcirature, no matter 

what the volume is; it is simply the slope of the equilibrium curve on the 

P-T diagram, which is oft(‘n denoted simply by dP/dT (since in the P-7' 

diagram there is only one independent variable, and we do not need 

partial derivatives). Then we can integrate and have the latent heat L 
given by 

L = 

or 

L = - Vi), (4.2) 

which is Clapeyron’s equation. It is often written 

dP _ L 
dT T{V, - FT)’ 
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or 

dT _ T(V„ - Vd_ . 
dP-L 

# 

Clapeyron^s equation holds, as we ean see from its method of derivation, 

for any equilibrium between i)hases. In tln^ general case, the difference 

of volum(\s on the right side of the equation is the volume after absorbing 

the latent heat L, minus the volume before absorbing it. 

There is another derivation of Claix^yron's equation which is very 

instructive. This is based on the use of the Gibbs free energy G. In tlu? 

last section we have seen that this quantity must be equal for two phases 

in ecjuilibrium at the same pn'ssun^ and temperature, and that if one 

phasfi has a lower value of G than another at given prc'ssure and tempera¬ 

ture, it is the stable phase and the other one is unstable. We can verify 

these results in an (dcmientary way. We know that in going from liquid 

to vapor, the latent heat L is the diffennjce in enthalpy Ixdween gas and 

liquid, or L — II^ — Hi. But if the (*hange is carried out in equilibrium, 

the heat absorbed will also equal T dS, so that the latent hf^at will be 

T{Su — Si). Equating tlu^se valu(\s of the Iat(‘nt hc^at, we have 

H, - Hi = L == T{S, - .SO, 

or 

H, - TS, - III - TSi, G, = Gi, (4.4) 

or our previous condition that the Gibbs free enc'rgy should be the same 

for the two phases in equilibrium. Sinc(‘ this must be true at each point 

of the*, vapor ])ressure line in the P-T plane, we can find the slope of the 

vapor pressure curve from the condition that, as P and T change in th(^ 

same way for both phases, G^ and Gi must undergo equal changes. That 

is to say, w(^ set 

d{G, - (7j) = 0 = 

= -(s„ - s,)dr + (F„ - v,)dP 

= -L^ + (F, - Vt)dP, 

dP ^ L 
dT (Fr-'Fi)F’ 

(4.5) 

which is Clapeyron's equation. In deriving Eq. (4.5), we used the rela¬ 

tions (dG/dT)p == 5^, (dG/dP)T = F, from Chap. II. 

Clapeyron^s equation, as an exact result of thermodynamics, is useful 

in several ways. In the first place, we may have measurements of the 

equation of state but not of the latent lukt. Then we (;an compute the 

latent heat. This is particularly useful for instance at high pressures. 
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where nneasureinents of volume and tempei'ature are fairly easy, but 

where calorimetric measiircaneiits such as w(3uld be required to find the 

latent heat are very difficult. Or, in the second place, w(^ may know the 

latent heat and tlftai w(' can find the slope of the*, equilibrium curve, and by 

integration we may find tlu^ whole (*urve. We shall discuss the applica¬ 

tion of this method to the vapor pn\ssure curves in the next sections. 

Finally, we may have m(^asurem(mts of both the latent heat and the 

equilibrium curve, but may not be sure of their accuracy. We can test 

them, and perhaps improve them, t)y scafing whether the experimental 

values satisfy Clapeyron's equation exactly. If they do not, it is ca^rtain 

evidence that they are in error. 

6. The Integration of Clapeyron’s Equation and the Vapor Pressure 
Curve.—The integration of Clapeyron\s equation to get the vapor pres¬ 

sure curve over a liquid or solid from a measin-enKmt of the latent heat is 

one of its principal us6)s. We may write the integral of E(p (4.3) in the 

form 

This can be evaluated exactly if we know th(‘ latcait heat L, the volume 

of the gas, and the volume of the solid, as f\jnctions of tmnporature. In 

many actual cases we know these only approximately, l)ut we can use 

them to get an approximate vapor pressure cur\('. For instance, the 

simplest approximation is to avssume that the latent heat is a constant, 

independent of temperature. Furthermore, in the case of low tempera¬ 

ture, where the volume of the gas will be very larger compared with the 

volume of the solid or liquid, we may negkaa the lattca* and furth(‘rmore 

assume that the gas obeys the perfect gas law. Then — Vs == uRTIPj 
approximately, and Eq. (4.3) becomes 

dT ~ nRT^' 
1 dP ^ L 
P dT nRT^' (5.2) 

Equation (5.2) holds whether L is constant or not. Assuming it to be 

constant, we can integrate and find 

or 
_^ 

P const, e (5.3) 

Equation (5.3) giving P in terms of T gives a first approximation to a 
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vapor pressure curve. Plainly it approaches = 0 at low tempera¬ 

ture, while as the tempcu'ature increases the pr(\ssure rapidly increases, 

agreeing with the observed form of the curve. By making more elaborate 

assumptions, taking account of th(^ variation of L with pnissure and 

temperature and the deviation of the volume of the gas from that for a 

perfect gas, the equation of the vapor pressure curve can be obtained as 

accurately as we p](‘ase. Tlie formula (5.3) in particular Ix'comes 

entirely unreliable near the critical point. Sinc(^ the latent heat 

approach(\s zero as we approach tlui critical point, and the volumes of 

liquid and gas approacli each other at the same place, the ratio dP/dT 
becomes indeterminate^ and more aceairate work is necessary to find just 

what th(^ slopr‘ of the vapor pressure' curve is. In spite of this difficulty, 

the formula (5.3) is a vc'ry useful one at temperatures well Ixdow the 

critical point. TIk' constant factor, of coui'se, must ))(' o])tain('d as far as 

thermodynamics is concerned from a nu'asure'nuait of vapor pressure at 

one particular temperature'. 

To fine! the ce)n*ect vapor pressure equation, we shall determine the 

variation ejf latent he'at with tempe'ratui-e. In inti’oducing the' enthalpy 

// = t/ + PV in Chap. II, we saw that the' e*Iiange in enthalpy in any 

proe;ess equalled the heat absorbed at e*onstant ]u*essure'. Ne)w^ thei latent 

heat is absorbed at ce)nst-ant prevssure; the'refore it equals the change of 

the enthalpy bed-we'en se)lid and gas. That is, 

L = H, - //«. (5.4) 

Now we can find the change in L, for an arbitrary change of pressure 

and temperature. We have^ 

- [ F. - F. - + (C,. - C,.)dT, (5.5) 

where w^e have used thermodynamic relations from the table in Chap. II. 

Now we assume as in the last paragraph that the volume of the solid can 

be neglect(^d and that the gas obeys the perfect gas law. The gas law 

gives at once Vg — I\dVy/dT)p = 0. Thus the first bracket is zero, and 

we have 

In Chap. VIII we have expressed the specific heat of a gas as 

C/>, == |njR + nCi. (5.7) 
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Introducing this value into Eq. (5.6) and working with one mole, we can 

integrate Eq. (5.6) to get the latent lieatL, in i(u-ms of Loy the latent lu^at 

of vaporization at the absolute zero: 

L = Lo + IRT + JJ(Ci - Cp.yiT. (5.8) 

Dividing by RT~ and iiitogiating with rosjxvt to 7', wo have from I^(}. 

(5.2) 

In P = -P, + 2 hi 7’ - - CddT + const . (5.9) 

This expression, or tlu^ corresponding one 

P 
-if" 

const. T e 
(Cr., - (\)dr 

(5.10) 

is the cornpk'te formula for a vapor pressure' curve, as obtained from 

thermodynamics, in the region when^ the vapoi- bf'haves lik(^ a perfect 

gas. We shall see in the next se'ction that statistical mec'hanie's can 

supply the one missing feature of E(}s. (5.9) and (5.10): it can givej the 

explicit value of th(‘ undetermined constant. 

It is interi'sting to note the behavior of the latent heat of vaporization, 

as given by Eq. (5,8), through wide tmnperature ranges. At low temi)era“ 

lures, since Cp, and Ci both are very small, the latent heat incrc'ases with 

tempe^rature. This tcmdency is reversed, howevcT, as the specific heat 

of the solid becomes gn'ater than that of the gas, which it always does. 

The latent hc'at th('n begins to fall again. At the triples point, as we have 

stated, the latent heat of vaporization of tlu^ solid just below the triple 

point equals the sum of the latent heat of fusion and th(^ latent heat of 

vaporization of the liquid, directly above the triple point. Above this 

temperature, Eq. (5.8) is to be replaced by one in which Cp of the liquid 

appears rather than that of th(^ solid. This allows us to use the same 

sort of method for finding the vapor piossure over a liquid. Finally, as 

the temperature approaches the critical point, it is no longer correct to 

approximate the vapor by a perfect gas, so that neither Eq. (5.2) nor 

(5.8) is applicable, though we already know that the latent heat 

approaches zero at the critical point, and of course CIapeyron\s equation 

can be applied here as well as elsewhere. 

6. Statistical Mechanics and the Vapor Pressure Curve.—From 

statistical mechanics, we know how to write down the Gibbs free energy 

of the solid and perfect gas explicitly. All we need do, then, to find the 

complete equation of the vapor pressure curve is to equate these quanti¬ 

ties. Thus, remembering that {dG/dT)p == —S', we can write the Gibbs 
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free energy of the solid 

O. = f/o - 

Uo - 

X 
T 

8 dr 

(6.1) 

Using Eqs. (1.19) and (1.20) of Chap. VIII, this can he; rewritte?i 

(It 
rrjT FT ■'X wX (6.2) 

Hero (/o is the internal (‘lu'rgy, or fr(H‘ energy, at absolute z(‘ro, afiinetion 

of i)ressure only. Ni^xt we wish th(‘ Gibbs fr(M‘ (‘nergy of the gas. We 

use Eq. (1.25) of Chap. Vlll. We note, how(‘V(‘r, that Vo is usiul in that 

equation in a different sense from what it has been here; for there it 

rneaiivS the internal potential energy of the gas at absolute zero, while 

h(‘re we have used it for th(‘ internal (^juu’gy of the solid at absolute^ zero. 

It is plain that the (*n(‘rgy of th(‘ gas at absolute^ zfuo must be greater than 

that of the solid by just the latent h(‘at of vaj)oi*izat ion at th(^ absolute zero, 

orLo. Using this fact, w(‘ hav(' 

a„ = f/„ + U - piT In T + RT In R 

dT 
- K'!' IL t', dT - iRT. 

Jo HI-JO 

Equating Eqs. (6.2) and (6.3), vve have 

In P = 
Lo 

RT + ^ In 7- - C.)(/7’ + i. 

(6.3) 

(6.4) 

Equation (6.4) is the general one for vapor pressure, and it shows that the 

undetermined constant in In P, in Eq. (5.9), is just) the chemical constant 

that we have already determined in Eq. (3.16) of ('hap. VlII. The 

simplest experimental method of finding the chemical constants is based 

on Eq. (6.4): one measures the vajmr pressure as a function of the tem- 

IKirature, finds the spcndfic heats of solid and gas, so that one can calculate 

the term in the specific heats, and computes the quantity 

In P - I In T + (Cp. - C;)dT 

as a function of temperatun'. Plotting as a function of 1/P, Eq. (6.4) 

says that the result should be a straight line, whose slope is —Lo and 

whose intercept on the axis 1/7' = 0 should be the chemical constant i. 
This gives a very nice experimental way of checking our whole theory of 

vapor pressure and chemical equilibrium: the same chemical constants 

obtained from vapor pressure measurements should correctly predict the 
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results of chemical equilibrium experiments. It is found that in fact they 

do, within the error of experiment. 

7. Polymorphic Phases of Solids.—li^xperimentally, polymorphism 

at high pressures is ordinarily observed by discontinuous changes of 

volume. As the pressure is changed at constant t('mx)ej-ature, the volume 

changes smoothly as long as we are dealing with one j)hase only. At the 

equilibrium pressures, however, th(i volumes suddenly changes discontinu-’ 

ously to another value, which of course is always smaller for the high 

pressure modification. Then another smooth change^ (‘oiitiniKss from the 

transition pressure. The measurement thus gives not only the pressure 

and temperature of a point on the eciuilibi-iiim line, but the change of 

volume as w(dl. Clapeyron\s equation of (*ourse appli(vs to equilibrium 

lines between solids, and that means that from th(' observed slope of the 

transition line and the observc'd change of volume, we can find the latent 

heat of the transition, even though a direct tlun-mal measurement of this 

latent heat might be v(ny difficult. Thus we can find energy and entropy 

differences between phases. 

It is very hard to say anything of valium thc'oretically about polymor¬ 

phic transitions. The changes of inbu-nal eruu'gy and entropy betw(MUi 

phases are ordinarily quite small. Any calculation that we should try to 

make of the thermodynamic properties of ea(;h phase separately would 

have errors in both th(\se (quantities, at lii^ist of tlu^ order of magnitude 

of the diffcirence which is Ixnng sought. Thus it is almost impossible to 

predict theoretically which of tAvo phas(^s should be stable under given 

conditions, or wh(‘re the equilibrium line b('tw(ien them should lie. 

Nature apparently is faced with essentially the same problem, for in many 

cases polymorphism seems to be a haphazard phe nomenon. It has been 

impossible to make any generalizations or predi(*tions as to what sub¬ 

stances should be polymorphic and what should not, and in many cases 

substances that are similar chemically show quite different behavior as to 

polymorphism. We can, however, say a little from thermodynamics as 

to the stability of phases and the nature of equilibrium lines. 

We can .think of two limiting sorts of transitions: one in which the 

transition always occurs at the same temperature independent of pres¬ 

sure, the other where it is always at the same pressure independent of 

temperature. These would correspond to vertical and horizontal lines 

respectively in Fig. XI-3. In Clapeyron^s equation dP/dT = L/TAVj 
these correspond to the case dP/dT = oo or 0 respectively. Thus in the 

first case we must have AF = 0, or the two phases have the same volume, 

in which case pressure does not affect the transition. And in the second 

case L = 0, or AS = 0, there is no latent heat, or the two phases have 

the same entropy, in which case temperature does not affect the transition. 

Put differently, increase of pressure tends to favor the phase of small 

volume, increase of temperature favors the phase of large entropy. 
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Of course, in actual cases wc do not ordinarily find two phases with 

just the same volume or just the same entropy. On account of the 

parallelism betwcHui the entropy and the volume, there is a tendency for a 

phase of larger volume also to have a larger entropy. Thus the tendency 

is for the latent h(\at and the change of volumes to have the same sign, so 

that by Clapeyron^s equation dP/dT lends to be positive, or the equilib¬ 

rium lines tend to slo])e upward to the right in tlui ])hase diagram. A 

statistical study of the p}ias(^ diagrams of many substance's shows that in 

fact this is the^ case, though of course there are many exceptions. In 

fact, tlKU'e is even a t(;nd(m(;y toward a fairly definite slopes dP/dT charac¬ 

teristic of many substances, which according to Bridgman^ is a change of 

somc^thing less than 12,000 atm. for a temperature range of 200°. 

In each re^gion of tlu' P-T diagram the'n^ is only one stable phase, 

except on (‘quilibrium lines or at trijde ])oints where there are two or three 

respectively. But a phenomenon analogous to siip(‘rcooling is very 

widespread in transitions Ix'tweiai solids. Particularly at temperatures 

well below the melting point, transitions occur very slowly. A stable 

phase can often b(^ carric'd into a n^gion where it is unstable, by change of 

pressure or tempei’ature, and it may takci a v(uy long time to change over 

to the phase stable' at that pressure and temperature. This makes it 

very hard in many cases to determine (H]uilibrium lines with great accu¬ 

racy, for near equilibrium the transitions tend to be slower than far from 

equilibrium. It also makc'S it hard to continue investigations of poly¬ 

morphism to low tempe^ratures. In Fig. XI-8, for instance, the lines are 

continued about as far toward low temperatures as it is practicable to go. 

Sometimes these slow transitions can be of practical valium, as in the case 

of alloys. It oftcai happens that a modification stable at high tempera¬ 

ture, but unstable at room t('mp(U’ature, has properties that are desirable 

for ordinary us(^ In such a case the material can often be quenched and 

cooled very rapidly from the high temperatui*e at which the desired modi¬ 

fication is stable. The material is almost instantly cooled so far down 

below its melting point that the transition to the phase stable at room 

temperature is so slow as to be negligible for practical purposes. Thus 

the desired phase is made practically permanent at room temperature, 

though it may not be thermodynamically stable. The ordinary process 

of hardening or tempering steel by quenching is an example of this 

process. In some cases such unstable phases change over to the stable 

form in a period of years, but in the really valuable cases the rate is so 

slow that it can be disregarded even for many years. A moderate heat¬ 

ing, however, can accelerate the process so much as to change the prop¬ 

erties entirely, as a moderate heating can destroy the temper or hardness 

of steel. 

^ P. W. Bridgman, Proc. Am, Acad.f 72, 45 (1937); see p. 129. 



CHAPTER XII 

VAN DER WAALS’ EQUATION 

Real gases do not satisfy Ihe ptn’fect gas law PV — iiRT., though they 

approach'it more and mon^ closcdy as tlu^y become less and less dense. 

There is no simple suhsiitute equation which des(‘ribes them accuratc^ly. 

There is, however, an approximate equation called Van der Waals’ 

equation, which holds fairly accurately for many gases and which is so 

simple and reasonable that it is us(h1 a great d('al. This equation is not 

really one that can be exactly deriv(^d 1h(‘or(‘tically at all. Van der 

Waals, when h(^ workcal it out, thought he was giving a vtay general and 

correct deduction, but it has since Ix^en sc'cn that his arguments were not 

conclusive. Nevertheless it is a plausible (equation physically, and it is 

so simple and convenient that it. is very valuable just as an empirical 

formula. We shall give, first, simply a qualitative arguriKuR for justify¬ 

ing the equation, then show to what extent it regally follows from statistical 

mee^hanics. Being an ecpiation of state, thermodynami(*s by itself can 

giv(^ no information about it; we remember that, equations of state have 

to be introduced into thermodynamics as separate postulates. Only 

statistical mechanics can b(‘ of help in deriving it. 

1. Van der Waals’ Equation.—Van der Waals argued that the perfect 

gas law needed revision for real gases on two accounts. In the first place, 

he considered that the inol(*cules of n^al gases must attract each other, 

exerting forces on each other which are rn^glected in dei’iving the perfect 

gas law. The fact that gases condense to form liquids and solids shows 

this. Surely the only thing that could hold a liquid or solid together 

would be intermolecular attractions. These attractions he considered 

as pulling the gas together, just as an external pressure would push it 

together. There is, in other words, an internal pressure which can assist 

the external pressure. In a liquid or solid, the internal pressure is great 

enough so that even with no external pressure at all it can hold the 

material together in a compact form. In a gas the effect is not so great 

as this, but still it can decrease the volume compared to the corresponding 

volume of a perfect gas. To find the way in which this internal pressure 

depends on the volume, Van der Waals argued in the following way. 

Consider a square centimeter of surface of the gas. The molecules near 

the surface will be pulled in toward the gas by the attractions of their 

neighbors. For, as we see in Fig. XII-1, them surface molecules are 

subjected to unbalanced attractions, while a molecule in the interior will 
382 
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have balanced forces from the molecules on all sides. Now the range of 

action of these intermolecular forcjos is found to b(^ very small. Thus 

only the immediate neighbors will b(^ pulling a given molecule to any 

extent. To indicate this, we have drawn a thin layer of gas near the 

surface, including all the molecules exerting appn'ciabki forres on tlie 

surface moh'cules. Now the total fona' on oiu^ surfact' molecule will be 

proportional to the numb(u‘ of mole(*ul('s that pull it. That is, it will be 

proportional to the number of mol(H*ul(\s 

per unit volume, times the volum(‘ close 

enough to the molecule to contribute 

appreciably to the at t raction. ddi(‘ total 

fonai on all the molecules in a square 

(*entim(‘ter of the surfac(^ lay(U' will be 

proiKjrtional to the number of molecules 

in this square centimetc'r times th(‘ force Fk;. xii-i. intermoler*iilar attrar- 

on each, so that it will be proportional 

to the square of th(‘ number of moh'cuh^s }K‘r unit volume, or to {N/V)'^, if 

there are N mokaailes in the volume F, or to (/?/F)“, when' n is th(^ num¬ 

ber of moles. But the force on the mokaaikss in a scpiare centimeter of 

surface area is just the iiib'rnal pressure, so that 

Intc'rnal pressures — a\ 0.1) 

whore a is a constant charact(u‘istic of the gas. 

The second corr(‘ction which Van d('r Waals made was on account of 

the finite volume of the mokaailes. Sup])os(' the actual molecules of a gas 

were rather large and that the demsity was such tliat th(\y filled up a good 

part of the total volume. Then a single one of the molecules which we 

might consider, batting around among the otlier mok'cules, would really 

not have so large a space to move in as if the other molecuk's w(U'e not 

there. Instead of having the whole volume V at its disposal, it would 

move much more as if it were in a smalku* volume. If there are n moles 

of molecules present, and the reduction in effective volume is b per mole, 

then it acts as if its effective volume were 

Effective volume — V — nh, (1.2) 

If the volume were reduced by this amount, the pressure would be cor¬ 

respondingly increased, since the molecule would collide with any element 

of surface more often. 

Making both these corrections, then. Van der Waals assumed that 

the equation of state of an imperfect gas was 

+ a^~y (V - nb) = nRT. (1.3) 
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This is Van der Waals’ equation. We shall later coiik' to the question 

of how far it can be justified theoretically by statistical m(K*haiucs. First, 

however, we shall study its properties as an equation of state and see how 

useful it is in describing the equilibrium of phases. 

2. Isothermals of Van der Waals’ Equation.—In Fig. XI1-2 we give 

isothermals as computed by Van der Waals^ equation. At fii*st glance, 

they are entin^ly different from the actual isothermals of a gas, as shown in 

perspective in Fig. XI-4, because for low temperatures the isothermals 

show a maximum and minimum, the minimum corresponding in some 

eases to a negative prevssure. But a little reflection shows that this 

situation is not alarming. We note that there is one isothermal at which 

the maximum and minimum coincide, so that there is a point of inflection 

Fig. XII-2,—Isothermals of Van dor Waals' equation. 

of the curve here. This is the point marked C on Fig. XlI-2. At ev(‘ry 

lower temperature, there are three separate volumes corresponding to 

pressures lying between the minimum and maximum of the isothermal. 

This is indicated by a horizontal line, corresponding to constant pressure, 

which is drawn in the figure and which intersects one of the isothermals at 

Fi, F2, and F3. We may now ask, given the pressure and temperature 

as determined by this horizontal lim^ and this isothermal respectively, 

which of the three volumes will the substanccj really have? This is a 

question to which there is a perfectly de^nite answer. Thermodynamics 

directs us to compute the Gibbs free energy of the material in each of 

the three possible states, and tells us that the one with the lowest 

Gibbs free energy will be the stable state. The material in one of the 

other states, if it existed, would change irreversibly to this stable state. 

We shall actually compute the free energy in the next section, and shall 

find which state has the lowest value. The situation proves to be the 
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following. Suppose we go along an isothermal, increasing the volume at 

constant temperature, and suppose the isothermal lies below the tempera¬ 

ture (iorresponding to C, Then at first, the smallest volume Vi has the 

smallest Gibbs free (3n(U'gy. A pr(\ssure is reached, however, at which 

volumes Vi and F3 correspond to the same free eiuu-gy. At still lower 

pressures, Yz corresponds to the Iow(ist fn^e energy. The state V2 has a 

higher free energy than either Ki or F3 uudfT all conditions, so that it is 

neuter stable. We see, then, that above a certain pressure (below a certain 

volume) the state of smalh^st volume is stable, at a definite pressure this 

state and that of larg(\st volume^ can exist together in equilibrium, and 

below this pressure only th(^ phase of largest volume can exist. But this 

is exacitly the bfOiavior to be expected from (experience with actual changes 

of j;)hase. 

The isothermals of Van der Waals’ ecpiation, then, corn^spond over 

part of their length to states that are not thermodynamically stable, in 

Fig. XII-3.—Isothermals of Van der Waals’ equation, showing equilibrium of liquid and 
gas. 

the sense that their free energy is greater than that of other states, also 

described ])y the same equation, at th(^ same pressure and temperature. 

In Fig. XII-3 we give revised isothermals, taking this change of phase into 

account. In this figure, corresponding to each pressure and temperature, 

only the stable phase is shown. In th(i region where two phases are in 

equilibrium, we draw horizontal lines, as usual in such diagrams, indicat¬ 

ing that the pressure and temperature are constant over the whole range 

of volumes between the two phases in which the stable state of the system 

is a mixture of phases. The isothermals of Fig. XII-3 are plainly very 

similar to those of actual gases and liquids. 

From Fig. XII-3, it is plain that the critical point is the point C of 

Fig. XII-2, at which the maximum and the minimum of the isothermal 

coincide. We can easily find the pressure, volume, and temperature of 

the critical point in terms of the constants a and 6, from this condition. 

The most convenient way to state the condition analytically is to demand 

that the first and second derivatives of P with respect to V for an iso¬ 

thermal vanish simultaneously at the critical point. Thus, denoting the 
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critical pressure, volume, and temperature by Pc, Vc, Tc, we have 

Pc 
nRTc iPa 

Vc - nb ~ Tl’ 

(dP\ {nRTc) I 2n2a 
\dV)r ' {Vc- nb)^ ~VI ’ 

2nRTc 6w-a 
dVyr~ ’ (Fo- n7))» FJ ’ 

(2.1) 

nR7\ _ 2rFo 

W^- nbj^ - Ff’ 

2nRTc _ 

(Fc “ ' Vf 

(2.2) 

(2.3) 

We can solve Eqs. (2.1), (2.2), (2.3) simultaneously f<w P,, 'Tc, and Vc. 
Dividing Eq. (2.3) by Eq. (2.2) we at once find Vc. Sub.s) ituting this in 

Eq. (2.2), w(' can solve for Substituting both in Eq. (2.J), wi' find 

Pc. In this way we obtain 

Pc _ ^ ^ 
- ‘27 ¥' 

Vc = 3n6, RTc 
8 a 

27 b 
(2.4) 

Equations (2.4) give the critical point in terms of a and b. Con¬ 

versely, from any two of the E(}s. (2.4) we can solve for a and b in terms 

of the critical quantiti(«. Thus, from the first and third, we liave 

^ ^ (RTc)^ 1 PPe 
64 ^"Pc ’ ^8 ~Pc ' 

(2.5) 

These equations allow us to make a calculation of the critic^al voltimi': 

Vc (Van der Waals) = 3n6 = ^ (2.6) 
O jL c 

If Van der Waals’ equation were satisfied exactly by the gas, the critical 

volume determined in this way from the critical pressure and tempei'ature 

should agree with the experimentally determined critical voIuitk^ That 

this is not the case will be shown in a later chapter. The real criti(^al 

volume and 
3 nm\ 

8 Pc 
" are not far different, but the latter is larger. This is 

one of the simplest ways of checking the equation and seeing that it really 

does not hold accurately, though it is qualitatively reasonable. « 

Using the values of P^, Fc, and Tc from Eq. (2.4), we can easily write 

Van der Waals’ equation with a little manipulatioq in the form 

(2.7) 

This form of the equation is expressed in terms of the ratios P/Pc, V/Vc, 
T/Tcf showing that if the scales of pressure, volume, and temperature are 

adjusted to bring the critical points into coincidence, the Van der Waals’ 
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equations for any two gases will agree. This is called the law of cor¬ 

responding states. Real gases do not actually satisfy this condition at all 

accurately, so that this is another reason to doubt the accuracy of Van 

dcr Waals^ equation. 

3. Gibbs Free Energy and the Equilibrium of Phases for a Van der 
Waals Gas.—We have seen that the equilibrium between the liquid and 

vapor phase is determined by setting the Gibbs free energy equal for the 

two phases. Let us carry out this calculation for Van der Waals^ equa¬ 

tion. From Eq. (4.2), Chap. II, we have dG = F dP — SdT, Thus 

we can calculate the Gibbs free energy by integrating this expression. We 

are interested only in comparing free energies at various points along an 

isotluu'inal, howevcir, and for constant temperatures we can set the last 

term equal to zero, so that dG ~ V dP along an isotluumial. This is not 

a convenient form for calculation, unfortunately, for Van der Waals^ 

equation cannot be solved for the volume in terms of tlu^ pressure con- 

veni(aitly. It involves the solution of a cubic equation, and this can 

usually be avoided by some means or other. To avoid this difficulty, we 

shall instc^ad compute the Helmholtz free energy A = G — PV, and then 

find the Gibbs free eiun-gy from it. We have 

dA = -PdF - SdT = -PdF 

for an isothermal process. Thus 

A = —/PdF -1- function of temperature 

)dF + function of temperature 
= _ C( nRT _ n^a\ 

J VF - nh F2/ 

- -iiRT In (F - nh) -h function of temperature, (3.1) 

and for the Gibbs free energy we hav(i 

G = A + PV 

= PF —nRlAxi (F — nb)-y- + function of temperature 

= — nRT In (F ~ nb) + function of temperature. 
V — nb V 

(3.2) 

Equation (3.2) expresses G as a function of volume and temperature. We 

wish it as a function of pressure and temperature, and it (;annot con¬ 

veniently be put in this form in an analytic way, on account of the 

difficulty of solving Van der Waals^ equation for the volume. It is an 

easy matter to compute a table of values, however. We plot curves, like 

Fig. XII-3, for pressure as a function of volume in Van der Waals^ 

equation, compute values of G from Eq. (3.2) for a number of values of the 
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volume, and read off the corresponding pressures from the curves of 

pressure against volumes In this way the curve of Fig. XII-4 was 

obtained. In this, the Gibbs free energy is plotted as a function of pres¬ 

sure, for a particular temperature {T = 0.957’c in this particular case). 

It is seen that for a range of pressures, which in this ease? runs from about 

P = 0.74Pc to P = 0.84Pc, there are three values of G for eacdi pressures, of 

which the lowest one represents the stable state. The lowest curves cross 

at about P — 0.82Pc, which therefoi-e repi'esents the va})or pressure or 

point of equilibrium between tlu^, phases, at this t(mj)erat,ure. Compari¬ 

son with Fig. XI-7 shows that Fig. XII-4 really represents th(‘ c^orrect 

form of this function; it coiT(\s})onds to a section of the solid shown in 

Fig. XI-7 cut at constant temperature with suitabki rotation of axes. 

Fig. XII-4.—Gibbs free energy 
vs. pressure, at constant tempera¬ 
ture, for Van der Waals' equation, at 

T = 0.95 To. 

0.6 0.7 0.8 0.9 1.0 
T/Tc 

Fig. XlI-5.—Vapor pressure })y 
Van der Waals’ equation compared 
with values for H2O, CO2. 

We rem(imb(T that dG = F dP at constant temperature. That is, 

(dG/dP)T ~ F, or the slope of the curve in Fig. XII-4 mc^asun^s the 

volume. Clearly at smaller pressure the stable state is that with greater 

slope or greater volume, while the state of smallest volume is stable at the 

high pressures. The figure makes it clear why the phase of intermediate 

volume (F2 on Fig. XII-2) is not stable at any pressure, since its free 

energy is never lower than that of the other two phases. The discon¬ 

tinuity in slope of the Gibbs free energy at the point of equilibrium 

between phases measures the change of volume in vaporization. This 

discontinuity becomes less and less as the temperature approaches the 

critical point, and the small pointed loop in the G curve diminishes, until 

finally at the critical point it disappears entirely, and the curve becomes 

smooth. 

In the way we have just described, we can find the Gibbs free energy 

for each temperature and determine the vapor pressure, and hence the 
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oorroct horizontal line to draw on Fig. XII-2. This gives us the vapor 

pressure eurve, and we show this direetly in Fig. XlI-5. For comparison, 

we have plotted on a redu(*ed scale the vapor pressures of water and 

carbon dioxide. We see that while the 

gejK^ral form of the curve predict,(k1 by 

Van der Waals’ (Hpiation agrees with tlu' 

observed curves, the a(‘tual gases show a 

vapor pressure which dimiriislu's a good ^ 

deal more rapidly with dc^creasing i)r(‘s- "o 

•sure than tlui Van d(u’ Waals gas. ^ 

Our methods also allow us to calculate 

the latent h(^at of vaporization from Van 

der Waals’ ecjuatiori. Wt* have 

L = //„ - Hi = V, - Vi+P{V, - TO). 

Furtherm()r(‘, w(' can s(H' ])y int(‘grating 

the (apiation 

Fkj. Xll-G.—Latent heat as func¬ 
tion of temperature, Van der Waals gas 
and I{4) and C()». 

- P 

that U = —arr/V + function of tem])erature for a Van der Waals gas. 

Thus 

L + P(T0 - TO). (3.3) 

All the quantities of Eq. (3.3) (‘an b(‘ found when we have carried out the 

cahnilation above, for that gives us the volumes of gas and liquid. Thus 

we can cominite the latent heat as function of temperature. To express 

it in terms of dimensionless (luantities, we can write Eq. (3.3) in terms of 

P/Pcj etc., and find 

L 
na 
h 

(3.4) 

showing that the latent heats of two gases at corresponding temperatures 

should be in the proportion of a/b to (mch other. In Fig. XlI-6 we plot 

the latent heat L/(a/b), as a function of temi)erature, as derived from Van 

der Waals’ equation. For comparison we give the latent heats of water 

and carbon dioxide. Both Van der Waals’ ec^uation and experiment 

agree in showing that the latent heat decreases to zero at the critical point 

and the curves are of similar shape. However, the scale is quite different, 

Van der Waals’ equation predicting much too small a value for the latent 

heat. 
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We have now examined Van der Waals^ equation enough to see that 

it is very useful as an empirical equation, even if it has no theoretical 

justification at all. As a matter of fact, it can be justified from statistical 

mechanics as a first approximation, though no further. In the next 

sections we shall take up this justification, considering the problem of 

the equation of state of a gas whose molecules attract each other at large 

distances but have a finite size, so that they repel each other if they are 

pushed too closely into contact. We begin by taking up by statistical 

mechanics the general case of a gas with arbitrary intermolecular forces, 

then specializing to agree with Van der Waals^ assumptions about the 

nature of the forces. 

4. Statistical Mechanics and the Second Virial Coefficient.—The way 

to derive the thermodynamic properties of an imperfect gas theoretically 

is clear: we find the energy in terms of the coordinates and momenta, 

compute the partition function, and derive the equation of state and 

specific heat from it. The only trouble is that th(‘ calculation is almost 

impossibly difficult, be^yond a first approximation. In this section we 

shall just derive that first approximation, which can be carried through 

without a great deal of trouble. To understand the nature of the approxi¬ 

mation, we write the equation of state in a series form which is often us(‘-ful 

experimentally. At infinite volume, we know that the gas will approach 

a perfect gas, with an equation of state PV == nRl\ or PV/nRT = 1. 

At smaller volumcis, the equation will begin to deviate from this. That 

is, we can expand the quantity PV/nRT in series in 1/F; the term inde¬ 

pendent of \/V will be unity, but the other teams, which are different 

from zero for imperfect gases, will be functions of the* temperature. Thus 

we can write 

^ . 1 + B(7')(-”) + C(7')(;y + . . ■ (4.1) 

Here the quantity PV/nRT is often called the virial; and the quantities 

1, B{T), C(T'), etc., the coefficients of its expansion in inverse powers of 

the volume per mole, V/n, are called the virial coefficients, so that B{T) 
is called the second virial coefficient, C{T) the third, etc. The e^xperi- 

mental results for equations of state of imperfect gases are usually stated 

by giving -B(T), C(T), etc., as tables of values or as power series in the 

temperature. It now proves possible to derive the second virial coeffi¬ 

cient B{T) fairly simply from statistical mechanics. 

The first thing we must know is the energy of the gas as a function 

of its coordinates and momenta. We use the same coordinates and 

momenta as in Chap. VIII, Sec. 3: the coordinates of the center of gravity 

of each molecule and other coordinates determining the orientation and 

vibration of the molecule. The difference between our present problem 
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and the previous one of the perfect gas is that now we must add a term in 

the potential energy depending on the relative positions of the molecules, 

coming from intermolecular attractions and repulsions. Strictly speak¬ 

ing, these forces depend on the orientations of the molecules as well as on 

their distances apart, as is at once obvious if the molecules are very 

unsymnK'trical in shape, but we shall neglect that (effect in our approxi¬ 

mate tniatrnent here. That allows us to write the energy, as before, as a 

sum of terms, the first depending only on the coordinates of the centers of 

gravity (the kinetic energy of the molecules as a whole, and the potential 

energy of intermolecular forces), and the second depending only on orien¬ 

tations and vibrations. Then the partition function will factor, the part 

connect(‘d with int('rnal motions separating off as before and, since it is 

independent of volume, contributing only to the internal specific heat, and 

not affc^cting the equation of state. For our present purposes, then, we 

can negk'ct these internal motions, treating the gas as if it were mon¬ 

atomic and simply adding on the internal specific heat at the end, using 

the value computed for the perfect gas. We must remember, howtwer, 

that this is only an approximation, neglecting the effect of orientation on 

int(n-inoleciilar forces. 

Neglecting orientation effects, then, we deal only with the centers of 

gravity of the molecules. We must now ask, how does the potential 

(Miergy depend on these centers of gravity? We have seen the general 

natiin^ of Van der Waals’s answer to this question. For the moment, let 

us simply write the total potential energy of interaction between two 

molecuh^s i and j, at a distance apart, as Then we may reason¬ 

ably assume that the whole potential energy of the gas is 

X (4.2) 
pairs i,j 

We now adopt Eq. (5.22), Chap. Ill, for the partition function, but 

remember that, as in Sec. 3, Chap. VIII, we must multiply by 1/iV!, or 

approximately by {e/NY, order to take account of the identity of 

molecules. We then have 

^ = fe)"/ ■ J 
The energy E is like that of Eq. (3.1) of Chap. VIII, except that for 

simplicity we are leaving the internal part of the energy out of account, 

and we have our potential energy Eq. (4.2). The integral (4.3) still 

factors into a part depending on the momenta and another on the coor¬ 

dinates, however, and the part depending on the momenta is exactly as 

with a perfect gas and leads to the same result found in Chap. VIII. 



192 INTRODUCTION TO CHEMICAL PHYSICS [Chap. XII 

Thus we have 

Z = 
epirnikT)^ 

dqi • • • (4.4) 

The integral over coordinates is the one that simply reduced to in 

the case of the perfect gas. The variables c/qi . . , can be written more 

explicitly as dxi dy^ dzi . . . dx^ dyx dz^. 
The integration over the coordiiiat(‘s can b(? carried out in steps. 

First, we integrates over the coordinate's of the Nth molecule. The 

quantity e can be factoreei; it is equal to 

c 

kT 
<i>irtN) 

i^N (4.5) 

where represents all those pairs that do not includes the iVth molecule. 

The first factor then does not depend on the coordinates of the^ A^th 

molecule and may be taken outside the integration over its coordinates, 

leaving 
.y* 0(r»jv) 

~ ~ kT 

fife ' dxN dyx dzx- (4.6) 

We rewrite thi.s as 

fff dxN dys dzs - ml \ — e )dxx dyx dzx = F — TF, (4.7) 

where the first term is simply the volume, the second an integral to be 

evaluated, which vanishes for a perfect gas. To investigate TF, imagine 

all the molecules excej)t the A^th to be in definite positions. If the gas is 

rare, the chances are that they will be well separated from each other. 

Now if the point XnVnZn is far from any of these molecules, the interatomic 

potentials will all be small, and the integrand will be practically 

1 — c® = 0. Thus we have contributions to this integral only from the 

immediate neighborhood of each molecule. Each of these will be equal to 

/ ^irtN)\ 

^ ~ JJ/\1 ^ )dx dy dz. (4.8) 

For simplicity we put the fth molecule at the origin of coordinates and 

integrate to infinity instead of just through the container; the integrand 

becomes small so rapidly that this makes no difference in the answer. 

Then we have 

^ Jo “■ ^ )dr. (4.9) 

In terms of this, we then have 

IF = (AT - l)w. (4.10) 
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Now when we integrate over the coordinates of the {N — l)st mole¬ 

cule, we have the same situation over again, except that there are only 

{N — 2) remaining molecules, and so on. Thus finally we have for the 

integral over coordinates in Eq. (4.4) 

[V - (N - l)w]lV - (N - 2)w] • • • F. (4.11) 

To evaluate the quantity (4.11), we can most easily take its logarithm; 

that is, 
N-l 

In F + 2 In (l - (4.12) 

«=o 

Replacing the sum over s by an integral, this becomes 

NlnV+ j^^In (^1 - y'^ds 

(i - f)</(i - f) 
= ArinF-^(l-^'?)ln(l-^)-Ar. (4.13) 

Our assumptions are only accurate if Nw/V is small; for it is only in this 

case that we can assume that all molecules are well separated from each 

other. In this limit, we can expand the logarithm as 

, / Nw\ Nw 1(Nw\ fA^A\ 
1'>(1-tt) " —r-2(-r) ■ ■ • 

Substituting in Eq. (4.13) and retaining only the leading term, we have 

NlnV■ ■ ■ (4.15) 

The quantity (4.15) for the logarithm of the integral over coordinates 
in Eq. (4.4) can now be substituted in the expression for Helmholtz free 
energy, giving at once 

A = -kr In Z 

= -^NkT In T - NkT In F + 

- NkT In + 1 - In (Nk) j- (4.16) 

Equation (4.16) agrees exactly with Eq. (3.6), Chap. VIII, except for the 
internal partition function Zi, which we are here neglecting for simplicity, 
and for the extra term N%Tw/2V. This represents the effect of inter- 
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atomic forces and is characteristic of the imperfect gas. Differentiating 

A with respect to volume, we at once have for the equation of state 

(4.17) 

or, substituting Nk = nR, N = nNo, 

py 
nRT 

(4.18) 

Equation (4.18) is in the form of Eq. (4.1) and shows that the second virial 

coefficient is given by 

B{T) = 
A^ow 

2“’ 

(4.19) 

where w is given by Eq. (4.9). This deduction of the second virial coeffi¬ 

cient is exact, in spite of the approximations we have made; if further 

terms are retained, they prove to affect only the third and higher virial 

coefficients. But the calculation of these higher coefficients is much 

harder than the treatment we have given here. 

6. The Assumptions of Van der Waals’ Equation.—Th(i formula 

(4.19) for the second virial coefficient, together with Eq. (4.9), furnishes 

a method for deriving this quantity directly from any assumed inter- 

molecular potential function, though generally the integration is so diffi¬ 

cult that it must be carried out numerically. With the assum})tions of 

Van der Waals^ equation, however, the problem is simplified enough so 

that we can treat Eq. (4.9) analytically at high temperatur(‘s. W(i 

assume that the molecules attract each otlnu’ with a force increasing 

rapidly as the distance decreases, so long as they are not too close together. 

We assume, however, that the molecules act like rigid spheres of diameter 

To, so that if the intermolecular distance is greater than ro the attraction 

is felt, but if the distance r is equal to ro a repulsion sets in, which becomes 
_0 

infinitely great if the distance becomes less than ro. Then e is zero, if 

r is less than ro, so that Eq. (4.9) becomes 

V) = n^4:7rr^ dr + f 47rr^(l — e (5.1) 
•/O m/ro 

The first term is simply |irrj, the volume of a sphere of radius ro, or eight 

times the volume of the sphere of diameter ro which represents a molecule. 

In the second integral, we may expand in power series, since 0 is relatively 



Sec. 5] VAN DER WAALS^ EQUATION 195 

small. The bracket is A. 
kT 

Thus the term is 

ATrr^<f> dr + • • • 

Theti for the second virial coefficient we have 

am- ^d"!) + JH-X *■ ».2) 

We may write this 

BiT) = 

where 

h = ~ ’ 

a = (^")J ^r^{-4>)dr. (5.3) 

Here h is four times the volume of No spheres of radius ro/2, or four times 

th(' volume of all the mok'cules in a gram mole. Since the force repre- 

s(‘nted by tlie j)otential 0 is attractive^, 4) is negative and the quantity a 
is positive and measure's the strength of the intermolecular attractions. 

It is found ex])erimentally that the formula (5.3) for the second virial 

e*e>efficient is fairly well obe*yed for real gases, showing that the assump¬ 

tions of Van der Waals are not greatly in error. This formula leads to the 

equation of state 

Equation (5.4) indicates that for high temperatures (where afRT is less 

than h) the pressure should be greater than that calculated for a perfect 

gas, while at low temperatures {a/RT greatcir than h) the pressure should 

be l(‘ss than for a perfect gas. The temperature 

T. - (5.5) 

at which the second virial coefficient is zero, so that Boyle^s law is satisfied 

exactly as far as terms in 1/F are concerned, is called the Boyle tempera¬ 

ture. 

We can now take Van der Waals’ equation (1.3), expand it in the form 

of Eq (4,1), and see if the second virial coefficient agrees with the value 
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given in Eq. (5.4). We have 

nRT / T nRT/ nh\~~^ 
la> “(f) ~^y~v) ~“(f) 

(-fr)(-v) +4y+---. 
agreeing with Eq. (5.4) as far as the second virial coefficient. In our 

theoretical deduction, we have not found the third virial coefficient, but 

this can be done by a good deal more elaborate methods than we have 

used. When this is done, it is found that it does not agree with the cor¬ 

responding quantity in Eq. (5.6). In other words, Van de^r Waals’ 

equation is correct as far as the second virial coefficient is concerned but 

no further, as a theoretical equation of state for a gas whose molecules act 

on each othcir according to Van der Waals^ assumptions. 

6. The Joule-Thomson Effect and Deviations from the Perfect Gas 
Law.—The deviations from the perfect gas law are rather hard to measure 

experimentally, since they represent small fractions of the total pressure 

at a given temperature and volume. For this reason, another method of 

detecting the departure from the perfect gas law, called the Joule-Thom- 

son effect, is of a good deal of experimental importance. This (effect is a 

slight variation on the Joule experiment. That experiment, it will be 

recalled, is one in which a gas, originally confined in a given volume, is 

allowed to expand irreversibly into a larger evacuated volume. If the 

gas is perfect, the final temperature of the expanded gas will equal the 

initial temperature, while if it is imperfect there will be slight heating or 

cooling. This experiment is almost impossible to carry out accurately, for 

during the expansion there are irreversible cooling effects, which com¬ 

plicate the process. The Joule-Thomson effect is a variation of the 

experiment which gives a continuous effect, and a steady state. 

Gas at a relatively high pressure is allowed to stream through some 

sort of throttling valve into a region of lower pressure in a continuous 

stream. The expansion through the throttling valve is irreversible, as in 

the Joule experiment, and the gas after emerging from the valve is in a 

state of turbulent flow. It soon comes to an equilibrium state at the 

lower pressure, however, and then it is found to have changed its tempera¬ 

ture slightly. To make the approach to equilibrium as rapid as possible, 

the valve is usually replaced by some sort of porous plug, as a plug of 

glass wool, which removes all irregular currents from the gas before it 

emerges. Then all one has to do is to get a steady flow and measure the 

difference of pressure and the difference of temperature, on the two sides 

of the plug. If AP is the change of pressure, AT the change of tempera- 
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tiire, on passing through the plug, the Joule-Thomson coefficient is defined 

to be AT/AP. It is zero for a perfect gas and can be either positive or 

negative for a real gas. We shall now evaluate the Joule-Thonotson 

coefficient in t(^rms of the equation of state. 

It is easy to show that the t^nthalpy of unit mass of gas is unchanged 

as it flows through the plug. Let a volume V\ of gas be pushed into the 

pipe at pressure Pi; thcui, since P] is (constant through this pipe, work 

JPi^fFi = P\Vi is done on this sample of gas. After passing through 

the plug, the same mass has a volume F2, and does work P2F2 in passing 

out of the pip(^ Thus the external work done by the gas in the process is 

P2F2 — PiFi. It is assumed that no h(‘at is absorbed, so that if I/i i§ the 

internal energy when the gas enters, IJ2 when it leaves, the first law gives 

{/2 - = -(P2F2 - PlFi), 

or 

t/i + PiFi = t/2 + P2F2, Ih = ^2. (6.1) 

Thus the change is at constant JT, and the Joule-Thomson coefficient is 

(d7VdP)f/. But this can b(^ evaluated easily from our Table of Thermo¬ 

dynamic Relations in Chap. II. It is 

(aiA 
(dT\ ^ \dP)T 

\dPjn /dH\ 

W/p 

From Eq. (6.2), we see that for a perfect gas, for which F is proportional 

to T at constant P, the Joule-Thomsoii coefficient is zero. For an imper¬ 

fect gas, we assume the equation of state (5.4). We have 

(6.3) 
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where we have regarded as a small quantity (compared 

with unity, neglecting its square. Substituting, we then have 

(6.4) 

From Eq. (6.4), we see that the Joule-Thomson coefficient gives 

immediate information about a and 6. If we measure the coefficient and 

know Cpy so that we can calculate the quantity {Cr/n){dT/dP)uy we can 

plot the resulting function as a function of i/T and should get a straight 

line,* with intercept —6, and slope 2a/Ry so that both b and a can be 

found from measurements of the Joule-Thomson effect as a function of 

temperature. We notice that at high temperatures the coefficient is 

negative, at low temperatures positive. That is, since AI^ is negative in 

the experiment, corresponding to a decrc^ase of pressure, the change 

of temperature is positive at high temperatures, leading to a heating of 

the gas, while it is negative at low temperatures, cooling the gas. The 

temperature 2a/Rby where the effect is zero, is called the' t(‘mperature of 

inversion; we see by comparison with Eq. (5.5) that, if our simple assump¬ 

tions are correct, this should be twice the Boyle temperatun'. The Joule- 

Thomson effect is used practically in the Linde i)rocess for th(^ liquefaction 

of gases. In this process, the gas is first cooked by sonn^ method below 

the temperature of inversion and then is allowed to (‘xpand through a 

throttling valve. The Joule-Thomson effect cools it further, and by a 

repetition of the^process it can be cooled enough to liquefy it. 



CHAPTER XIII 

THE EQUATION OF STATE OF SOLIDS 

Next to jx'rfeot gas(‘s, rogular crystalline solids are the simplest form 

of matter to niulerstaiid, being less complicated than imperfect gases near 
th(‘ critical! point, or liquids. Unlike perfect gases, there is no simple 
analytic fapiation of states which always holds; we are forced either to use 
tables of values or gra])hs to represent the equation of state, or to expand 
in })Ower series. But the thc'ory is far enough advanced so that we can 
undca-stand the siinpha* solids fairly completely. As with gases, we shall 
start our discussion from a thermodynamic standpoint, asking how one 
(^an find information from experiment, and then latc^r shall go on to the 
theory, scMung how far one can go by statistical mechanics in setting up a 
mod(‘l of a solid and pr(‘dicting its properties. Of course, it is obvious 
that in on(‘ resiiect the subjc^ct of solids is a much wider one than that of 
gasc's: there is treanendous variety among solids, whereas all gases act 
veay much alike. This comes from the different typies of forces holding 
the atoms togc^tlua* and th(' different crystal structures. We shall put off 
most of the discnission of the different types of solids until later in the 
book, wluai we take up chemical substances and their properties. When 
w(‘ come to that, we shall see to what a large extent the fundamental 
atomic and molecular properties of a solid are brought out in the behavior 
of its solid state. 

1. Equation of State and Specific Heat of Solids.—To know the 
equation of state of a solid, we should have its pressure as a function of 
volume and temperature. Really wo should know more than this: a 
solid can support a more complicated stress than a pressure, and can have 
a more complicated strain than a mere change of volume. Thus for 
instance it can be sheared. And in general the ‘‘equation of stateis a 
set of relations giving the stress at every point of the solid, as a function 
of th(^ strains and the temperature. But we shall not concern ourselves 
with these general stresses and strains, though they are of great impor¬ 
tance both practically and theoretically; we limit ourselves instead to the 
case of hydrostatic pressure, in which the volume and temperature arc 
adequate independent variables. Let us consider what we find from 
experiment on the compression of solids to high pressures. At zero pres¬ 
sure, the volume of a solid is finite, unlike a gas, and it changes with 
temperature, generally increasing as the temperature increases, as given 
by the thermal expansion. As the pressure is increased at a given tem- 

199 
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perature, the volume deereases, as given by the compressibility. Com¬ 
bining these pieces of information, we have a set of curves of constant 
temperature, or isothermals, as given in Fig. XIII-1. These are plainly 
very different from the isothermals of a perfect gas, which are hyperbolas, 
the pressure being inversely proportional to the volume. If we knew 
nothing experimentally but the thermal expansion and the compressi¬ 
bility, we should have to draw the lines as straight lines, with equal spac¬ 
ing for equal temperature changes. Fortunately the measurements are 
more extensive. The pressure is known as a function of volume over a 
wide pressure range, enough in most solids to change the volume by a 
per cent, and with very compressible solids by many per cent, and the 
volume is known as a function of temperature for wide ranges of tempera¬ 
ture. The curves must stop experim(;ntally at zero pressure, but we can 

Fig. XIII-1.—Isothermals for a solid (sodium) giving pressure as a function of volume at 
constant temperature. 

imagine that they could be extrapolated to negative pressures, as indi¬ 
cated by the dotted lines in the figure. 

To carry out any calculations with the equation of state, we wish to 
approximate it in some analytic way. First, let us consider the most 
convenient variables to use. The results of experiment are usually 
expressed by giving the volume as a function of pressure and temperature. 
Thus the thermal expansion is investigated as a function of temperature 
at atmospheric pressure, and in measurements of compressibility the 
volume is found as a function of pressure at certain fixed temperatures. 
On the other hand, for deriving results from statistical mechanics, it is 
convenient to find the Helmholtz free energy, and hence the pressure, as a 
function of volume and temperature. We shall express the equation of 
state in both forms, and shall find the relation between the two. We let 
Fo be the volume of our solid at no pressure and at the absolute zero of 
temperature. Then we shall assume 

V - 7o(l + ao(T) - ai(T)P + (1.1) 
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where ao, ai, etc., are functions of temperature, the signs being chosen 

so that they are positive for normal materials. The moaning of the a's 

is easily found. Thus, first at zero pressure (which for practical purposes 

is identical with atmospheric pressure, since the volume of a solid changes 

so slowly with i)ressure) the volume is Fo[l + ao{T)], The coeflScient 

of thermal expansion at zcu'o pressure is then 

. = r+lt~odT = df (1.2) 

If the material has a constant thermal expansion, so that the change in 

volume is proportional to temperature, we should have approximately 

dao/df — a, where ex is constant, leading to ai)(T) — aT. This is a 

special case, however; it is found that for real mat(^rials the coefficient* 

of thermal expansion becomes smaller at low temperatures, approaching 

zero at the absolute zero; for this reason we prefer to leave ao{T) as an 

undetermined function of the temp(‘rature, remembering only that it 

reduces to zero at the absolute zc^ro (by th(i definition of Fo), and that it 

is very small compared to unity, sim^e the temperature expansion of a 

solid is only a small fraction of its whole volume. 

The meaning of ai is simple: it is almost exactly equal to the com¬ 

pressibility at zero pressure. The compressibility x ordinarily defined 

as — (l/F)((9F/(9P)r, to be computed at zero pressure. From Eq. (1.1), 
remembering that the volume at zero pressure is given by Fo[l + ao(7')], 

we have 

^ == approximately, (1.3) 

where in the last form we have again neglected Uo compared to unity. 

The compressibility ordinarily increases with increasing temperature, so 

that ai{T) must increase with temperature, enough to produce a net 

increase in spite of the increase of the factor 1 + ao in the denominator of 

Eq. (1.3). The increase is not very great, however; most compressi¬ 

bilities do not change by more than 10 per cent or so between absolute 

zero and high temperatures. The quantity a2 measures essentially the 

change of compressibility with pressure. Little is known experimentally 

about its temperature variation, though it presumably increases with 

temperature in some such way as ai docs. The terms of the series in 

P written down in Eq. (1.1) represent all that are required for most 

materials and the available pressure range. Most measurements of 

solids at high pressures have been carried out by Bridgman,^ who has 

measured changes of volume up to pressures of 12,000 atm. with many 

^ See P. W. Bridgman, Physics of High Pressures,’^ Chap. VT, The Macmillan 

Company, 1931, and later papers. 
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solids and to 45,000 atm. with a few solids. At these highest pressures, 

the most compressible solid, Cs, caesium, has its volume reduced to less 

than half the volume at atmospheric pressun^, and the otln^r alkali metals, 

Li, lithium, Na, sodium, K, potassium, and Rb, rubidium, hav(^ reductions 

in volume of from 20 to 50 per cent. To represent these large changes of 

volume accurately requires a considerable number of terms of such a 

series as (1). These are ('xtremc^ easels, howevc'r; most solids are imudi 

less compressible, and changes of volume of only a few pei- cent c<‘iii be 

produced with the available pressure, so that we can approximates quite' 

accurately by a quadratic function of presssure, as in Eq. (1.1). The' 

experimental results are usually state^d by giving the' relatives change of 

volume as a power series in the pressure. That is, in our notation, wo 

♦have 

7o(l_+ ao) — V ^ QiP __ «_2_p2 /j a'k 

Voii + ao) ~ 1 + ao T'+^ ^ 

The constants ai/(l + ao) and a2/(l + ao) are given as the result of 

experiments on compressibility. If ao is known from mesasurements of 

thermal expansie)n, we can then find aj and directly from (experiment. 

The equation of state (1.1) is (sxpresssed in terms of prc'ssure and 

temperature as independent variables. We shall lu'xt (sxpress it in terms 

of volume and tc'mperature. We shall do this in tins form 

P = P„(7’) + 

Here P^iT), Pi(T), andP2(T) are functions of tempesrature, again chos(sn 

to be positive. The mc'aning of Po is simple: it is the pressure that must 

be applied to the solid to reduce its volumes to Fo, the volume which it 

would have at the absolute zero under no pressure. Obviously Po goes 

to zero at the absolute zero. At ordinary temperatures, while it repre¬ 

sents a very considerable presssure, still it is small compared to the quan¬ 

tities Pi and P2, so that it can be treated as a small quantity in our 

calculations and its square can be negleckid. We shall see in a moment 

that Pi is approximately the reciprocal of the comprcjssibility, or equals 

the pressure required to reduce the volume to zero, if the volume decreased 

linearly with increasing pressure (which of course it does not). Obvi¬ 

ously this is much greater than the pressure required to reduce the volume 

to Fo. 

We shall now find the relations between the a\s of Eq. (1.1) and the 

quantiti(58 Po, Pi, P2 of Eq. (1.5), assuming that we can neglect the squarcjs 

and higher powers of ao and Po. To do this, we write Eq. (1.1) in the form 

= -ao(r) + ai(r)P - a2(r)P* • • • , (1.6) 
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subniitute in Eq. (1.5), and equate the coefficients of different powers of 

P. We have 

p = Po + E](-ao + aiP - a2E“ * * * ) 
+ p2{ — 2a()a^P + 2aott2E^ + ‘ * * )> (1*7) 

where we hav(^ neglected a^. Equating coefficients, we have the equations 

0 = Po — P]^0 

1 ~ P \(1.1 — 2P 2(lo(l\ 
0 = —Pja2 + 2P2aoa2 + P2ai. (1.8) 

Solving for the a^s, we have 

Uo 

tti 

02 

Similarly solving for tlu^ P^s we have 

Pi 
1 

P1 — 2P2(Io 

Poa^i 
P1 — 2P 2U0 

=A( >+^ 

(1.9) 

(1.10) 

Since we know how to find the a\s from experiment, Eqs. (1.10) tell us 

how to find the P\s. We observe from Eqs. (1.10) that, as mentioned 

before, Pi is equal, apart from small terms proportional to ao, to the 

reciprocal of the compressibility given in Eq. (1.3). 

In addition to the equation of state, we must find the specific heat 

from experiment. Ordinarily one finds the specific heat at constant 

pressure, Cp, at atmospheric pressure, or practically at zero pressure. We 

shall call this Cp, to distinguish it from the general value of Cp, which 

can depend on pressure. Let us find the dependence on pressure. From 

Eq. (1.6), Chap. VIII, we have 

Substituting for V from Eq. (1.1) and integrating with respect to pressure 
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from P = 0 to P, wc have 

- ‘'-K: 
d^ao 

dT^ 
P - 

1 (f-aj 
2 dT^ 

P2 + 2 P’a2p, 
3 dT^ )■ 

(3.11) 

In case ao, ai, and can be approximated by liiiear functions of tempera¬ 
ture, as we considered earlier for Oo, the second derivatives in Eq. (1.11) 
will be zero and Cp will be independent of pressure. Since da^^/dT is 
essentially the coefficient of thermal expansion, we see that the term in 
Kq. (1.11) linear in the pnsssure depends on the change of thermal expan¬ 
sion with the temperature. We have mentioned that the thermal 
expansion is zero at the absolute zero, increasing with temperature to an 
asymptotic value. Thus we may expect d'^a^jdT- to be positive, falling 
off to z('ro at high temperatures, so that from Eq. (1.11) the specific heat 
will d('crease with iiicn^asing pressure, particularly at low temperature. 

For theoretical purposes, it is bet ter to use the specific heat at constant 
volume, Cv', comput(‘d for the volume Vq which the solid has at zero pres¬ 
sure and temperature. \V(^ shall call this Cy. Cv will depend on the 
volume as indicated by Eq. (1.7) of Chap. VTII: 

Using Flq. (l.t'i) for the pressure, we obtain 

Cv = - 
/ 2 dTA. V7 / 

I d-pJVn - vV 
■^3 dT'^y F„ / ♦ 

(1.12) 

From PJq. (1.9), Po is proportional to ao, so that its second derivative will 
likewise be positive, and we find that Cv will decrease with decreasing 
volume or increasing pressure, just as we found for Cp, 

Since it is impracticable to find Cr, or CJ., fi*om direct experiment, it is 
important to be able to find these quantities from Cp, From P]q. (5.2), 
Chap. II, we know how to find Cp — Cv: it is given by the formula 
T{dV/dT)p(dP/dT)v. This gives the difference of specific heats at a 
given pressure and temperature. We are more interested, however, in 
the difference Cp — C%j in which is computed at zero pressure, CJ. at 
the volume Fo. To find this difference, let us carry out a calculation of 
Cv at zero pressure, from Eq. (1,12). Here we have Fo — F == — Fotto, 

fromEq. (1.1). ThenEq. (1.12) gives us Cf = C^y + VoTaY^' Using 

this value and the equation for Cp ~ Cvj which we calculate for zero 
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pressure, we have 

C^V 

Co ^ no 
P ^ V 

V,Ta. 

F„7l 

d'^Po 
= F„7' 

ai 
/ (/aoV 

\dTj 
+ «0 

.,dao dPo 
df lif' 

d-ao\ 
dT^ 

V,T d^{al) 
2aI (ir^ ‘ 

(1.13) 

In the derivation of Eq. (1.13), we have neglected the variation of ai 
with t(nTi})erature. In ease the th(‘rmal expansion is constant, so that 
tto = otT, and the specific heat is independent of volume or pressure, Eq. 
(1.13) takes the simple form 

c?. - c;’- = (1.14) 
ai 

where we remember that a is the coefficient of th(‘rmal expansion, the 
compressibility, to a good aj^proximation. When numerical values arc^ 
substitiit(Hl in Eq. (1.14), it is found that the difference of specific heats 
for a solid is much less than for a gas, so that no great ('rror is committed 
if we use one in place of the other. This can be seen from the fact that 
the difference of spcadfic heats def)ends on af,, as we see in Eq. (1.13), 
whereas elsewhere we have considen^d ao as being so small that its square 
could be neglected. 

We have now discussed all features of the specific heats, except for 
the dependence of Cp or Cy themselves on temperature. Experimentally 
it is found that the specific heat is zero at the absolute zero and rises to an 
asymptotic value at high temperatures, much like the specific heat of an 
oscillator, as shown in Fig. IX-3. We shall see latter that the thermal 
energy of a solid comes from the oscillations of th(^ moh^cules, so that there 
is a fundamental reason for this behavior of the specific h(\at. Wo shall 
also find theoretical formulas later which expi’ess the specific heat with 
fairly good accuracy as a function of the temp(u’atiire, formulas that differ 
in some essential respects from Ecp (5.8), Chap. IX, from which Fig. IX-3 
Was drawn. For the present, however, where we are discussing thermo¬ 
dynamics, we must simply assume that the specific heat is given by 
experiment and shall treat Cp and Cy as unknown functions of the tem¬ 
perature, which however always reduce to zero at the absolute zero of 
temperature. 

2. Thermodynamic Functions for Solids.—In the preceding section 
we have seen how to express the equation of state and specific heat of a 
solid as functions of pressure, or volume, and temperature. Now we shall 
investigate the other thermodynamic functions, the internal emu’gy, 
entropy, Helmholtz free energy, and Gibbs free energy. For the internal 
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energy as a function of volume and temperature^ we have the relations 
{dU/dT)v = Cy, {dU/dy)T = T(dP/dT)r - P- Let the energy of the 
solid at volume Fo and zero temperature be Loo. Then we find the 
energy at any temperature and volume by starling at Fo at the absolute 
zero, raising the temperature at volume Fo to the desired temperature, 
and then changing the volume at this tempcn’ature. Using Eq. (1.5), we 
find at once 

(2.1) 

The internal energy of metallic sodium is shown as a function of volunui in 
Fig. XIII-2, as an illustration. On account of the larg(^ compression 
that can be attaiuc^d with sodium, more t(a*ms of the i)ower sei*ies must 
be retained than are given in Eq. (2.1), but it is easic'r to show the prop¬ 
erties of this metal than of a less compressible^ one. Let us consider the 
behavior of the internal energy as a function of voJuiik^ at fixed tenqxu’a- 
ture. If the thermal (expansion is independent of t emp('rature, so that Pq 

is proportional to^ tlie tempc'rat ure and 
dPo/dT is a constant, the co(dficient of 
the term in (Fn — F) in Eq. (2.1) is 
zero and the term in (Fo — F)"' is the 
principal term in U, In this tiirrn, Pi, 
which is the recipi’ocal of tlie (*ompressi- 
bility, is large compared to T dP\/dT, so 
that th(i coefficient of (Fo —* F)’-^ is posi¬ 
tive and the internal energy has a mini¬ 
mum at Fo, just as it does at the absolute 
zero. If the thermal expansion depends 

0.8 0.9 1.0 
V/Vo 

1.1 1.2 on teraperatun^, the term in (Fo — F) 

, will have a small coefficient diff(ueiit 
tiG. XIII-2.—Internal energy of a . . i- i., 

solid (sodium) as function of volume from zcro, shifting tlic minimum slightly, 
for various temperatures. The dotted ordinarily to smaller volumes. There 
line connects points at zero pressure. . . , ’ . 

IS an interesting consequence of the 
fact that the minimum of U is approximately at Fo. At ordinary 
temperatures, the volume of the solid at zero pressure, which as we have 
seen is Fo(l + ao), will be greater than Fo. Then on compressing the 
solid, its internal energy will decrease until we have reduced its volume 
approximately to Fo, when it will begin to increase again. Of course, 
work is constantly being done on the solid during the compression, but 
so much heat flows out to maintain the temperature constant that the 
total energy decreases, with moderate compressions. The internal 
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energy of course increases as the temperature is raised at constant volume, 
as we see from the obvious relation (dU/dT)v — Cv, so that the curves 
corresponding to high temperatures lie above those for low temperature. 
Furth(',rmor(^, since the specific heat is high(‘r at large volume, as we saw 
from Eq. (1.12), the spacing of the curves is greater at large volume, 
n'sulting in tlie slight shift of the minimum to smaller volume with 
increasing tempc'ratun^. 

The entro})y is most easily determined as a function of volume and 
t(anperatur(^ from the equation (dS/dT)v = Cy/T. At the absolute zero 
of tempcu'atui-e, the entropy of a solid is zero independent of its volume or 
pr(^ssur(\ The reason go(‘s back to our fundam(uital definition of entropy 

in ('hap. Ill, S == —k^fi In /i, where/, represents the fraction of all 
i 

systems of the assembly in the ith state. At the absolute zero, according 
to the canonical assembly, all the systems will be in the state of lowest 
energy, which will tluai have / = 1, all ollua’ states having / = 0. Thus 
automatically S ~ 0. We can tlaai find the (aitropy at any temperature 
and volumes as follows. First., at absolute zero, we change the volume 
to th(^ n^quired value, with no (diange of ent ropy. Then, at this constant 
volume, wo raises th(‘ t(an])eratur(^, computing the change of entropy from 
jCv/T dT, We can use Eq. (1.12) for the specific heat at arbitrary 
volumes Ckirrying out the intc^gration from that equation, wo have at 
once 

The entropy of sodium, as computed from Eq. (2.2), is plotted in Fig. 
XIII-3 as a function of temi)erature, for s(W(u’al volumes. Starting from 
zero at the absolute zero, the entropy first rises slowly, since its slope, 
Cr/T, goes strongly to zero at the absolute zero. As the temperature 
rises, the curve goes over into something mon^ like the logarithmic form 
which it must have at high temperatures, where Cv becomes constant, and 
S = JCvdT/T = Cv In T + const. From the e*urves, it is plain that 
the entropy increases with increasing volume, at constant temperature. 
This can be seen from Eq. (2.2), in which the leading term in the variation 

dP 
with volume can be written — Co), where from hlq. (1.10) we see 

, dPa 
that is approximately the thermal expansion eiivideiei by the com¬ 

pressibility. It can also be seen from the thermodynamic relation 
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which is seen, if we multiply and divide by 1 /V, to be exactly the thermal 
expansion divided by the compressibility. The reason for the increase of 
entropy with increasing volume is sim})le: if the volume increased, or the 
pressure decreased, adiabati(*ally, tlK'. material would c-ool; to keep the 
temperature constant heat must flow in, in(u*easing the entropy. 

The Helmholtz free energy A — U ~ TS can be found from Eqs. 
(2.1) and (2.2) for U and or can be found by integration of the equations 

_I_^_I_\_I 
0 100 200 300 

Deg. Abs. 
Fig. XIII-3.—Entropy of a solid (sodium) as fun(;tion of the temperature at constant 

volume. 

{dA/d7')v = —S, {dA/dV)T = The latter method is perhaps a 
little more convenient. At the absolute zero and volume To, the Helm¬ 
holtz free energy equals the internal energy and is given by f/oo, as in Eq. 
(2.1). From that point we increase the temperature at volume Fo to 
the dfisired temperature, and then change the volume at this temperature. 
We find at once 

4 = c/oo - Cy ^')dT 

In Fig, XIII-4 we show A as a function of volume for a number of tem¬ 
peratures. At the absolute zero, as we have mentioned above, the 
Helmholtz free energy equals the internal energy, as given in Fig. XIII-2. 
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From the equation (dA /dV)T = —P, we see that the negative slope of the 

Helmholtz free energy curve is the pressure, and the change of Helmholtz 

free energy between two volumes at constant temperature gives the 

('xtc^rnal work done in changing the volume. It is for this reason, of 

course, that it is called the free energy. Thus the minimum of each curve 

corr(^s]:)onds to the volume where the pressure is zero. It is obvious from 

th(' graph that this minimum moves outward to larger volumes with 

increase of temperature; this represents 

the thermal (expansion. In particular, 

it is })lain that this shift of the mini¬ 

mum is v(‘ry small for low ternpcu’atures, o.5 

corresponding to the small thermal 

(‘xpansion at low temperatures. Since ^ 

the slo})e of the free energy curve gives ^ 

the iKjgative pressure, it is only the part | 

of the curve to the kift of the minimum t-"0.5 
O) 

that corn^sponds to positive pressure ^ 

and has physical significance. S_jq 

Finally, we consider the Gibbs free ^ 

(Miergy, < 

a = u + PV - TS = .4 + PF, 

as a function of pressure and temper- ~2.0 

ature. This is most con veniently found 

from the relations {dG/dP)r — F, 0-6 0.9 10 1.1 1.2 

{dG/dT)p — —S. Starting at the abso- vttt ir i u f 
^ ^ ^ Fig. XIII-4.—Helmholtz free energy 
lute zero and zero pressure, where the of a solid (sodium) as function of the 

value of G i.s f/oo, we first incrca.se the tcmporaturo. 

temperature at zero pressure, then increase the pressure at constant 

temperature, finding 

+ PVoil + Oo) - ^oiF„P2 (2.4) 

In Fig. XIII-5, we plot G as a function of pressure, for a number of tem¬ 

peratures. The term PFo(l + Uo) is by far the largest one in (7, resulting 

approximately in straight lines proportional to P. The spacing of the 

curves is determined by the entropy: {dG/dT)p = —>S, showing that G 

decreases with increasing temperature at constant pressure and that the 

decrease is greater at low pressure (large volume) than at high pressure. 

These details of the change of the Gibbs free energy with temperature 

are not well shown in Fig. XIII-5, however, on account of scale, and 



210 INTRODUCTION TO CHEMICAL PHYSICS [Chap. XITI 

this sort of plot does not give a great deal of useful information. Before 

leaving it, it is worth while i)ointing out the rescunblanee to Fig. XII-4, 

where we plotted fr as a function of pressun^ for a licpiid and gas in equilib¬ 

rium, as given by Van der Waals^ equation, and found again almost 

straight lines. 

The more useful way to give G graphically is to plot it as a function of 

temperature for constant pressure, as we do in Fig. XlII-6. The slope of 

these curves, being — aS, is zero at the absolute zero, lu'gative at all higher 

temperatures, so that the curves slope down. The Gibbs free encTgy 

decreases more slowly with temperature at high })ressure, where th(i 

entropy is lower, lhan at zero pressure. At zcu’o j)ressurc, the term PV 

Fig. XIII-5.—Gibba free energy of a solid (sodium) as function of the pressure at constant 
temperature. 

is zero, so that the Gibbs free energy G equals the Helmholtz free energy 

A. The difference between the two functions is small at low pressures, so 

that at pressures of a few atmospheres the two functions can be used 

interchangeably for solids. This of course does not hold for gases, for 

which the volume V is much greater, and the term PF is very large even 

at small pressures. As we can see from Chap. XI, Secs. 3 and 4, this 

diagram, of G as a function of T, is the important one in discussing the 

equilibrium of phases, since the condition of equilibrium is that the two 

phases should have the same Gibbs free energy at the same pressure and 

temperature. Thus if we draw G for each phase, as a function of tem¬ 

perature, for the pressure at which the experiment is carried out, the point 

of intersection will give the equilibrium temperature of the two phases at 

the pressure in question. 
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We have already shown, in Figs. XI-4, XI-5, XI~6, and XI-7, the 

equation of state, entropy, and Gibbs free energy of a substance in all of 

its three phases. Examination of the parts of those figuixis dealing with 

solids will show the similarity of those cuiwes to the ones found in the 

present section in a more explicit and detailed way. 

3. The Statistical Mechanics of Solids.—The first st(q3 in discussing 

a solid acK'ording to statistical mechanics is to set up a model, describing 

its coordinates and momenta, finding its <'.nei‘gy levels according to th(^ 

quantum theory, and com{)uting the partition function. This represents 

an extensive program, of which only the oiilliiui can be given in the 

present chapter. TIh^ typical solid is a crystal, a regular repeating 

Fig. XIII-G.—Gibbs free energy <>f solid (sodium) as function f)f temperature at constant 
l)rossure. 

structure composed of molecules, atoms, or ions. Tlu' repeating unit is 

called the unit cell. The crystal is held together by forces between the 

molecules, atoms, or ions—forces that resemble those between atoms in 

diatomic molecules, as discussed in Chaj). IX, in that they lead to attrac¬ 

tion at largo distances, repulsion at small distances, with equilibrium 

between. The interplay of the attractive and repulsive forc(iS of all 

atoms of the crystal leads to a state of equilibrium in which each atom 

has a definite position, in which no forces act on it. At the absolute zero 

of temperature, the atoms will be found just in these positions of equilib¬ 

rium. At higher temperatures, however, they will vibrate about the 

positions of equilibrium, to which they are held by forces proportional to 

the displacement, if the displacements are small. We shall divide our 

discussion of the moded into two parts: first, the crystal at the absolute 
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zero with its atoms at rest in their equilibrium positions; secondly, the 

thermal vibrations of the atoms about these positions. 

Let us first consider the crystal at the absolute zero. The energy 

will depend on the state of strain of the crystal; as was mentioned in 

Sec. 1, we omit discussion of shearing strains and types of deformation 

other than change of volume. Thus we are intenisted simply in the 

dependence of energy on volume. As the volume is changed, of course 

each unit cell changes in the same proportion and the atoms change their 

positions in the crystal. The interatomic energies also change, and the 

change in energy of the whole crystal is simply the sum of the changes 

of the energies of interaction of the various atoms. We cannot say 

anything further about the energy as a function of volume, without 

investigating specific examples, as we shall do in later chapters. But at 

least we may assume that the energy of interaction of two atoms is most 

conveniently expressed as a function of the distance of separation, and if 

the whole energy is a sum of these energies of interaction, it also may be 

expected to be particularly simple when regarded as a function of a linear 

dimension of the crystal, rather than as a function of the volume. We 

shall, ther(‘fore, express the energy of the crystal at the absolute zero as a 

function of a quantity r, which may be a distance between atoms, a side of 

a unit cell, or some other linear dimension of the crystal, and shall find 

results that will later be useful to us, when we know more about the nature 

of the int(U’atomic forces. 

Consider a crystal of volume V, containing N atoms or molecules. 

(We purposely leave the description slightly vague, so as to allow more 

generality in the result.) Then V/N is the volume per atom or rnolecuk*, 

a quantity which of course can be changed by application of external 

pressure. We shall limit the present discussion to cubic crystals, in 

which only the volume, and not the shape, changes under pressure; many 

crystals do not have‘this property, but the ones that we shall discuss 

quantitatively happen to be cubic. Then V/N will be a numerical 

constant times r*^, the volume of a cube of side r, since in a uniform com¬ 

pression the whole volume and the volume will change in proportion. 

Thus let 

where c will be a definite number for each structure, which we can easily 

evaluate. We define a quantity ro in terms of To, the values respectively 

of r and V when the crystal is under no pressure at the absolute zero. 

Thus we have 

(3.2) 
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We now take the expression (2.1) for the internal energy as a function 

of volume, set the temperature equal to zero, and use Eq. (3.2), finding 

the internal energy at absolute zero as a function of the linear dimensions. 

Calling this quantity f/o, we have 

Uo = Uoo + Eo (3.3) 

where PJ, P2 are the values of the quantities Pj, P2 of p]q. (2.1) at the 

absolute zero of temperature. (We note that Po = 0 at the absolute 

z(‘ro.) Substituting from I]q. (3.2) and retaining terms only up to the 

third, we have 

Uo = Uoo + Ncrll (3.4) 

Equation (3.4) will later prove to be convenient, in cases where we have 

a theoretical way of calculating Uo from assumed interatomic forces. 

In these cases, PJ and P2 can be found directly from the theory, using 

Eq. (3.4). 

Our next task is to consider the solid at a higher temperature than 

the absolute zero. The molecules and atoms will have kinetic energy and 

will vibrate. We can get a simple, but incorrect, picture of the vibrations 

by thinking of all the atoms but one as being fixed and asking how that 

one would m.ove. It is in a position of stable equilibrium at the absolute 

zero, being held by its interactions with its neighbors in su(;h a way that 

it is pushed back to its position of equilibrium with a force proportional 

to the displacement. Thus it will execute simple harmonic motion, with 

a certain frequency v. To discuss the heat capacity of this oscillation, 

we may proceed exactly as in Chap. IX, Sec. 5, where we were talking 

about the heat capacity of molecular vibrations. P]ach atom (tan vibrate 

in any direction, so that its at, and z coordinates, separately can execute 

simple harmonic motion. It is then found easily that the classical 

partition function for vibration for a single atom is {kT/hvY, similar to 

Eq. (5.4), Chap. IX, but cubed on account of the three dimensions. This 

corrctsponds to a heat capacity of 3At per atom, or 3P per mole, if the 

material happens to be monatomic, with corresponding values for poly¬ 

atomic substances. This law, that the heat capacity of a monatomic 

substance should be 3JB or 5.96 cal. per mole, at constant volume, is called 

the law of Dulong and Petit. It is a law that holds fairly accurately at 

rpom temperature for a great many solids and has been known for over a 

hundred years. It was first found as an empirical law by Dulong and 

Petit. At lower temperatures, however, the specific heats of actual solids 

are less than the classical value, and decrease gradually to zero at the 

absolute zero. 
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It was to explain these deviations from the law of Dulong and 

Petit that Einstein developed his theory of specific heats. He treated the 

vibrations of the separate atoms by quantum theory, just as we did in 

Sec. 5, Chap. IX, and derived the formula 

(3.5) 

(3.6) 

Equation (3.5) is analogous to Eq. (5.7), Chap. IX, but is multiplied by 

3 on account of the three degrees of freedom. As w(i have seen in Fig. 

IX-3, this gives a specific heat rising from z(to at the absolute zero to the 

classical value 3i^ at high tcimperatures. It is found that values of tlu^ 

frequency p, or of the corresponding characteristic temperature 0, of 

Eq. (3.6), can be found, such that the Einstein specifics hc^at formula (3.5) 

gives a fairly good approximation to the observcnl specific lu^ats, except at 

very low temperatures. Close to the absolute zero, the Einstein formula 

predicts a specific heat falling very sharply to zero. The actual specific 

heats do not fall off so rapidly, but instead are a})proximately propor¬ 

tional to at low temperatures. Thus, while Einstein’s formula is 

certainly a step in the right direction, we cannot consider it to be correct. 

The feature that we must correct is the one in which we have already 

noted that this treatment is inadequate: the atoms are not really h(4d to 

positions of equilibrium but merely to each other. In other words, we 

must treat the solid as a system of many atoms coupled to each other, and 

we must find the vibrations of these atoms. This is a complicated prob¬ 

lem in vibration theory, something like the problems met in the vibrations 

of polyatomic molecules. We shall not take it up until the next chapter. 

In the meantime, however, there are certain general results that we can 

find regarding such vibrations, which are enough to allow us to make 

considerable progress toward understanding the equation of state of 

solids. 

A system of N particles, held together by elastic forces, has in generqj 

3A^-6 vibrational degrees of freedom, as we saw in Eq. (6.1), Chap. IX, 

where we were talking about polyatomic molecules. Really a whole 

crystal, or solid, can be regarded as an enormous molecule, and for large 

values of N we can neglect the 6, saying merely that there are ZN vibra- 
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tiorial degrees of freedom. In general, there will then be different 

normal modes of vibration, as they are called. Each normal mode 

consists of a vibration of all the atoms of the crystal, each with its own 

amplitude, direction, and phase, but all with the same frequency. Each 

atom then finds itself surrounded, not by a stationary group of neighbors, 

but by neighbors wliich are oscillating with the same frequency as its own 

motion. At each point of its path, it will always find the neighbors in 

definite locations, so that the forces exerted on it by its neighbors will 

depend only on its position; but the forces will not be the same as if the 

neighbors remained at rest, for the positions will be different. Thus the 

frequency will not be the same as assumed in Einstein\s theory. Our 

problem in the next chapter will be to consider these SN modes of vibra¬ 

tion and to find their frequencies, which in general will all be different. 

For the present, however, we may simply assume the frequencies to be 

known, and equal to The most geiu'ral motion of the 

atoms, of course, is not one of these normal modes but a superposition of 

all of them, with appropriate amplitudes. This has a simple and in fact 

a very fundamental analogy in the theory of sound. The normal modes 

of a vibrating string or other musical instrument are simply the diffc^rent 

harmonic overtones in which it can vibrate. Each one consists of a purely 

sinusoidal vibration, in which the string is divided up by nod(^s into cer¬ 

tain vibrating segments. The simplest type of vibration of the string is 

an excitation of only oiu^ of th(\se ov(^rtones, so that it vibrates with a 

pure musical tone. But the more gerjeral and common type of vibration 

is a superposition of many overtones, each with an appropriate amplitude 

and phase; it is such a superposition which gives a sound of interesting 

musical quality. As a matter of fact, if we ask about the 3A^ vibrations 

of a piece of matter, foi’ studying its specific heat, we find that the vibra¬ 

tions of low frequency are exactly those acoustical vibrations which are 

considered in the theory of sound. As we go to higher and higher fre¬ 

quencies and shorter and shorten’ wave lengths, however, the vibrations 

begin to depart from the simple ones predicted by the ordinary theory of 

sound, and finally when the wave length begins to be comparable with the 

interatomic distance, the departure is very great. We shall investigate 

the nature of these vibrations, as well as their freciuencies, in the next 

chapter. 

4. Statistical Mechanics of a System of Oscillators.—Dynamically, 

we have seen that a crystal can be approximated by a set of SN vibra¬ 

tions, if there are N atoms in the crystal. These vibrations have fre¬ 

quencies which we may label vi . . . vsjsr, varying through a wide range of 

frequencies. To the approximation to which the restoring forces can be 

treated as linear, these oscillations are independent of each other, each one 

corresponding to a simple harmonic oscillation whose frequency is inde- 
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pendent of its own amplitude or of the amplitudes of other harmonics. 

This is only an approximation, but it is sufficient for most purposes. 

Then the energy is the sum of th(i energies of the various oscillators, and 

each of these is quantized. That is, the energy of the jth oscillator 

can take on the values (rij + i)hpjy where ny, an integer, is the quantum 

number associated with this oscillator. We see that SiV quantum num¬ 

bers are necessary to describe the total energy and to define a st ationary 

state. All these quantum numbers should then appear as subscripts of 

the energy, and we have the relation 

3V 

•••"» = + U'o, (4.1) 
y==i 

where Uq is the energy which the lattice would have if the amplitudes 

of all oscillations were zero. Actually, even at the absolute z(n-o of 

temperature, however each oscillation has a half quantum of energy. 

Thus we may write 

where 

3Jsr 

~ “f” JJQ, 

•SN 

C/o = t/J + 

(4.2) 

(4.3) 

The quantity Uo is the same as that given in Eq. (3.3), representing the 

energy of the lattice, as a function of volume, at the absolute zero of tem¬ 

perature. The subscripts rq . . . n^N take the place of the single index ^ 

which we ordinarily use in defining the partition function. Thus we find 

for the partition function 

Z = 
— Uo 

jW(>TT 

nzN 
(4.4) 

We can write the exponential as a product of terms each coming from a 

single value of and can carry out the summations separately, obtaining 

— Uo —nihvi — 

z = (4.5) 

ni najv 

Each of the summations in Eq. (4.5) is of the form already evaluated in 

Sec. 5, Chap. IX. Thus we have 

Z = o icT JJ 
i-U 

1 

ekT 
(4.6) 
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f,. = Ih + 2 (4.9) 

3 — 1 

By differentiating Eq. (4.9), we find the specific heat in agreement with 

tiie value previously found, Eq. (3.5), for the special case where all ZN 
frequencies arc ecpial. 

Having found the Helmholtz free energy (4.7), we can find the pressure 

by differentiating with respect to volume. We have 

The first two terms in Eq. (4.10) are the pressure at the absolute zero of 

temperature, which we have already discussed. The summation repre- 

s(mts the thermal pressure. It is different from zero only because the 

t/h are different from zero; that is, because the vibrational frequencies 

depend on volume. We naturally expect this dependence; as the crystal 

is compressed it becomes harder, the restoring forces bcujome greater, and 

vibrational frequencies increase, so that the i^y’s increase with decreasing 

volume and the 7/’s are positive. If we consider the 7/s to be inde¬ 

pendent of temperature, each term of the summation in Eq. (4.10) is 

proportional to the energy of the corrcvsponding oscillator as a function of 

temperature, given by Eq. (4.9), divided by the volume E. 

At high temperatures, we know that the quantum expression for the 

energy of an oscillator, ^hvj + 
f.kT _ 1 

approaches the classical value 
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kT. Thus, at high temperaturo the thcirmal pressure approaches 

T 2 ~ ?2 
j j 

The first term is an ex])i*essio]i similar to the prc'ssure of a perfect gas, 

NkT/Vj except that the constant of proi)ortionality is now ^^7; instead of 

J 

N, the number of molecules. We shall find that the 7/s are generally 

between 1 and 2, so that, siina^ tluac^ an^ SN terms in the summation 

overj, where is the number of atoms, the tlua-mal pressure as indicated 

by Eq. (4.12) has a term which is from three to six tinuhs as great as the 

corresponding pressures of a p(a*f(‘ct gas of tlu' same number of atoms, at 

the same tempo-ature and volume as the solid. The S('cond t(‘rm of 

Eq. (4.12), coming from th(' z(‘ro })oint (ai(a*gy, gives a d('creas(' of thermal 

pressun^ compared to this gas prc'ssure which is indep(aid('nt of t(anp(‘ra- 

ture, until we go down to low temperatures. There the thermal pr(\ssuro 

does not decrease so rapidly with (h'cn^asing t(anperatur(i as w(^ should 

estimate from the gas law, but instead falls to the value zca'o at the 

absolute zero. The chang(' of tluaTiial pn'ssure with temperature, involv¬ 

ing the derivative of Eq. (4.10), a])proa(4i(.‘s z(‘ro very strongly at th() 

absolute zero, just as tln^ specific lu‘at does, and since this derivative 

entejrs the formula for th(u*mal ('X})ansion, this (|uantity goes to zero at 

the absolute zero. In fact, as we shall s(H‘ in the next paragraph, there is a 

close connection between the thermal expansion and tlie specific heat. 

To get a comph'tc^ ecpiation of state from statistics, we need only 

take the expression (4.10) for P and expand ilu) summation, the thermal 

pressure, as a power s('ries in (Eo — E)/Fo. This can be doin^ if we can 

find the dep(anlenc(^ of th(' on volumes, from the theory. Then we can 

identify the resulting equation with hlq. (1.5), equating coefficients, and 

find Po, Pi, and P2, which determine the pressure, in terms of the structure 

of the crystal. Knowing the meaning of Po, Pi, and P2 from our earlier 

discussion, this allows us to find the thermal expansion, compressibility, 

and change of compressibility with pressure, as functions of temperature. 

Since very few experiments are available dealing with the changes of these 

quantities with temperature, we shall confine our attention to the thermal 

expansion at zero pressure. From Eq. (1.2), this is approximately 

dao/dTj where from Eq. (1.9) we have ao = Po/Pi. Comparing with 

Eq. (4.10) above, we see that Po is the value of the summation when 

F = Fo. The quantity Pi, which we have seen to be the reciprocal of 

the compressibility, equals PJ plus a small term coming from the summa¬ 

tion, which we can neglect for a very rough discussion, though of course it 

would have to be considered for accurate work. Since PJ is independent 
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whore X th(‘ comprossibility. Comparison of Eq. (4.13) with the 

formula for heat oa]>aoity of linear oscillators, for example ii)q. (3.5), 

shows at once the elos(‘ relation hetw(*en th(‘ heat (‘a])aeity and the thermal 

exi)ansion. EaeJi team in Eq. (4.13) is pro])ortional to the term in the 

heat (capacity arising from the sam(‘ oscillator, so that thc' thermal expan¬ 

sion shows qualitativ(4y the same' sort of hcdiavior, Ix'eorning constant at 

high t(‘mp('ratur(\s but rcaliicing to zero as the tcanperature approaches 

the absolutci zero. While’; (‘Xpca'imcaital data for tluTiiial expansions are 

not iKiirly so exicaisive as those for specific li(‘ats, still they arc^ sufficient 

to show that this is actually th(‘ obsca-vcal b(4ia\'ior. 

To allow the constriKdion of a simjdc' tlu^ory of thermal expansions, 

Griineisen assumed that the (juantities jj were all equal to each other and 

to a constant y, which h(' rc'garded as an (‘inpiricad constant. To see the 

meaning of 7, w(‘ assume that th(^ fr(‘quenci(\s p.j are given in terms of the 

volume by the relation 

(4.14) 

where Cj is a constant, so that th(‘ fn^quencies are inversely proportional 

to the 7 power of the volume. Since surely tlu' r/s increase with decreas¬ 

ing volume, this is a reasonahk' form of depeiidcuice to assume. Then we 

find at oiuh' that 

d In vj 
<1 iViT “ (4.15) 

SO that the 7 defined in Eep (4.14) is the same as the yj of Eq. (4.11). 

We see that 7 = 1 or 7 = 2 respectively corr(‘s[)onds to th(^ frequencies 

being inversely proportional to the volunu‘ oi* to th(‘ scpiare of the volume. 

If we assume with Gruneisen that 7/ = 7, we thcai have from Eq. (4.13) 

Tluuanal (expansion 
yxCv 

“To ’ 
(4.16) 

Equation (4.16) is a relation between the thermal expansion, compressi¬ 

bility, specific heat, volume, and the paramcdcu' 7. If we have an inde¬ 

pendent theoretical way of finding 7, we can use it to compute the thermal 

expansion. Otherwise, we can use measured values of thermal expansion, 

compressibility, specific heat, and voliumi, to find empirical values of 7. 

Both types of discussion will be given in later chapters, where we discuss 
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specific types of solids. We shall find that the agreement between the 

various methods of finding y is rather good, and that values for most 

ordinary mat('rials are between 1 and 3, generally in the neighborhood 

of 2. 

6. Polymorphic Transitions.—It has been mentioned in Chap. XI, 

Sec. 7, that the transition lines in the diagram b(dAveen polymoriihic 

phases of the same substance tend to have positive slope, a change of 

pressure of somet hing l(\ss than 12,000 atm. corresponding to a change of 

temperatur(‘ of about 200°. With our present knowledge of the equation 

of state of solids, we can attempt a theoretical explanation of this relation. 

To work out th(‘ slope, we note that Clapc'yron^s equation can be writ ten 

dP/dT = A^S/AF, wlu're AS is the differences of entropy betwenui one 

phase and the othc^r, AF the diffeu'emce of volume. We have se^en in the 

present chapter that th(‘ entropy of a single j)has(^ inen^ase^s wluui its vol¬ 

ume increases, and we have found quantitative methods of calculating the 

amount of change. Let us, tlKui, tentatively assume that the relation 

of change of entropy to change of volume in going from one phas() to 

another is about the same as when we change the volume of a single 

phase. This is certainly a very crude assumption, but we shall find that 

it gives results of the I’ight order of magnitude. Tiu^ assumption \wi) have 

just made amounts to replacing A/S/AF by dS/dV, computed for a single 

phase. Now from Eq. (4.8) we can write the entropy of a substance? per 

gram atom as 

S = - Ill (l - e kl) + 
hv/kT 

_ 1 

(5.1) 

where Wo is Avogadro’s number, and we assume for simplicity that all 

frequencies Vi are the same. We then have 

dS dS dv V dS . 

where y has the same significance as in the last section. 

Eq. (5.1), this leads to 
hv 

hv\^ __ yCv dS ^ 3W0/C7/ 

dV V \ 

Differentiating 

(5.3) 

Now Cf is about ZR per gram atom, and from the preceding section we see 

that 7 is about 2 for most substances. Furthermore, examination of 

experimental values shows that F is of the order of magnitude of 10 cc. 

per gram atom, for most substances. Putting in these values and putting 

proper units in Eq. (5.3), we find that dS/dV is approximately 50 atm. per 

degree, or 10,000 atm. for 200 degrees, just about the value that Bridgman 
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finds to be most common experimentally. The fact that this calculation 

agrees so w(dl with the average behavior of many materials is some justi¬ 

fication for thinking that the major part of the entropy change from one 

polymorphic phase to another is simply that associated with the change of 

volume. The individual variations are so great, however, that no great 

claim for accuracy can be made for such a calculation as we have just 

made. 

In the present chapter, we have laid the foundations for a statistical 

study of th(i equation of state of solids, though we liave not made any use 

of a mod('l, and hence hav(' not been al)le to comj)ute tlie thermodynamic 

quantities we hav(^ l)(‘en talking about. W(i proceed in the next chapter 

to a discussion of atomics vibrations in solids, with a view to finding more 

atanirate information about, specific heats and tliermal expansion. Later, 

when w(‘ study difftnxait tyjx^s of solids moi’e in detail, we shall make 

comparisons with (ixp(irim(Mit for many spcxdal ceases. 



CHAPTER XIV 

DEBYE’S THEORY OF SPECIFIC HEATS 

We have seen in ( li(‘ Iasi ehapP'i* that ilu' (‘ss(MitiaI stf^p in invest igatin^z; 

the specific, heat and tlua’inal (wpansion of solids is to find the fi‘(H|U(aicies 

of the normal modes of (dastic* vibration. We shall tak(' this prohhan 

up, in its simpl(\st form, in the ]ir(‘S(ait chaptca*. The vibrations of a solid 

are generally of two sorts: vibrations of th(‘ mol(‘(*ul(\s as a whole and 

internal vibrations Avithin a mol(‘(*ul(‘. This distinction of course cnu be 

found only in molecular crystals and is lacking in a crystal, lik(^ that of 

a metal, wIhu'c all the atoms ar(‘ of tin' sarm^ sort. For this reason solids 

of the elements have sinipl(U’ s})ecific h(\ats than compounds, and we take 

them up first, postponing discussion of compounds to the next chapter. 

At first sight, on acc,ount of tlie large iiumlx'r of atoms in a (uystal, it 

might seem to be imjjossibly hai’d to solve the problem of their elastic 

vibrations, but as a matt(‘r of fact it is just th(‘ large number of atoms 

that makes it possibh* to ha,ndl(‘ tin* problem. For th(^ vibrations of a 

finite continuous pieces of matter can be handhal l)y the tlu'ory of (elas¬ 

ticity, and for waves long (‘om])ar(‘d to atomic dimensions this theory is 

correct. We start th(‘refor(^ by consid(ering the elastic, vibrations of a 

continuous solid, and later ask liow th(e vibrations are affected by the 

fact that the solid is really mad(^ of atoms. We have aln^ady mentioned 

briefly in Chap. XIII, Sec. 3, tin' clos(‘ ndation between the normal modes 

of vibration of a solid composed of atoms and the harmonic or overtone 

vibrations of acoustics. 

1. Elastic Vibrations of a Continuous Solid.—It is well known that 

elastic waves can b(^ proj)agated through a solid. The waves are of two 

sorts, longitudinal and transv(U’se, having different velocities of propaga¬ 

tion. The longitudinal wav(\s are analogous to the sound waves in a fluid, 

while the transverse waves, which cannot exist in a fluid, also have many 

properticjs similar to sound waves and are ordinarily treated as a branch 

of acoustics. The velocities of both sorts of waves are determined by the 

elastic constants of the material and are independent of the frequency, or 

wave length, of the waves, within wide limits. The waves with which we 

are familiar have frequencies in the audible range, less than 10,000 or 

15,000 cycles per second. Tlie velocities of elastic waves in solids are of 

the order of magnitude of several thousand meters per second (something 

like ten times the velocity in air). Since we have 
222 
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\v = (1.1) 

where X is the wave ](;ngth, v th(^ fn^queney or number of vibrations per 

s(‘eond, and v the velocity, tlu' short(‘st sound wavers with which we are 

familiar have a wave length of the ord<u* of magnitude of 

(5 X 10*>) 
Kb 

50 cm., 

taking tlu' velocity to be 5000 m. i)er second, tlu* frequency 10,000 cycles. 

By methods of sui)ersojucs, fnapiencic's u}> t o 100,000 ffyci(\s or more can 

be investigabnl, correspondiTig to waves of soiiK'lhing like 5 cm. length. 

There is every reason to su])])os(‘, however, that this is not the limit for 

elastic waves. In facd,, w(^ have every reason to btilic've that waves of 

shorter and shorter wave length, and higli(u- and higlun’ frecpnuKjy, are 

possible, up to the limit in which the wave length is (‘ompai’abki with the 

distance betwcKui atoms. It is obvious that the wave length cannot be 

appreciably shorter than iriKa'atomic distances. In fact, if the wave 

length were just th(i interatomic distam^e, su(*cessive atoms would be in 

the same phas(‘ of the vibration, and tlua-e would not n^ally be a vibration 

of one atom with respect to another at all. Th(' shortest wave which 

we can really have conic's when succ(\ssiv(‘ atoms vibrat(^ opi)osite to each 

other, so that tlu^ wave length is twic(‘ the distance betwe^en atoms. It is 

interesting to find the corresiKniding orden* of magnitude of the frequency 

of vibration. If w(‘ set X = 5 X K) of th<^ ord(‘r of magnitude of twice 

an interatomic distance in a iiKUal, w(‘ hav(^ 

(5 X Kb) ,,,,, , , 
= (5 x-i()-s) = p''*’ 

This is a frequinicy of an order of magnit ude of thos(^ found in the infrared 

vibrations of light waves. Tlnnx^ is good experimental evidence that 

such frequenci('s really represent the maximum possible frequencies of 

acoustical vibrations. 

The situation, then, is that there is a natural uppeu- limit set to fre¬ 

quencies, and low(a’ limit to wav(^ lengt hs, of elast ic wavcis, by the atomic 

nature of matter. It can be shown tlu^oretically that as this limit is 

approached, the velocity of the waves no longer is independent of wave 

length. However, the change is not great; it changes by something not 

more than a factor of two. This change is the only important difference 

between a vibration theory based on thi^ theory of elasticity and a theory 

based directly on interatomic forces, provided only that we recognize the 

lower limit to wave lengths. Our first approach to a theory, the one made 

by Debye, takes account of the lower limit of wave lengths but neglects 

the change of velocity with frequency. 
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In a finite piece of solid, such for instance as a rod, standing waves 

arc set up. These arise of course from constructive interference between 

direct ajid reflected waves, and they exist only when the wave length and 

the dimensions of the solid have certain relations to (\ach other. For the 

transvers(i vibrations of a string, these relations are veay familiar: the 

length of the string must, be a whole numlxa* of half wave lengths. For 

other shapes of solid, the relations are similar though not so simple. 

Arranging the standing waves in ord('r of d(H*Teasing wave length or 

increasing frequency, we have a series of frequencies of vibration, often 

called characteristic frequencies, or harmonic,s. For tlu^ string, these 

are simply a fundamental frequency and any integral multiple of this 

fundamental. The resulting harmonics or overtoiuvs form the basis of 

musical scales and chords. For other shapes of solids, tlu^ i-elations are 

not simpk', and the overtones do not form pleasing musi(*al relations 

with the fundamental. Now for all one knows in ordinary acoustical 

th('ory, the number of possible ovei‘ton(\s is infiiiite, though of course few 

of them can be h(^ard on account of the limitations of tli(‘ ear. Thus if we 

have a string, with frequencies which are int(^gral multipl(^s of a funda¬ 

mental, there seems no reason why the integer cannot be as large as we 

please. This no longer holds, as we can imincHliately se(^, when we con¬ 

sider the atomic natui’e of th(.‘ solid. For we hav{? just mentioned that 

there is an upper limit to }>ossible fr(Hiu(‘nci('S, or a lower limit to possibles 

wave lengths, set by interatomic distances. The highest possible over¬ 

tone will liave a frecpiency of the order of this limiting frcaiueiK^y. That 

means that the solid has a finite number of possibles ov(Ttone vibrations. 

And now we see the relation b<*tw(^en our acoustical treatment and the 

vibration problem we started with: tlu'se overtone vibrations an^ just tlui 

normal modes of vil)ration of the atoms in the crystal, which we wanted to 

investigate. If there are N atoms, with SN degrees of freedom, we have 

mentioned in Chap. XIII that we should expect SN modes of oscillation; 

when we work out the number of overtones, we find in fact that there are 

just SN allowed vibrations. 

The most general vibrational motion of our solid is one in which 

each overtone vibrates simultaneously, with an arbitrary amplitude and 

phase. But in thermal equilibrium at temperature T, the various vibra¬ 

tions will be excited to quite definite extents. It proves to be mathe¬ 

matically the case that each of the overtones behaves just like an 

independent oscillator, whose frequency is the acoustical frequency of the 

overtone. Thus we can make immediate connections with the theory of 

the specific heats of oscillators, as we have done in Chap. XIII, Sec. 4. If 

the atoms vibrated according to the classical theory, then we should have 

equipartition, and at temperature T each oscillation would have the mean 

energy kT, This means that each of the N overtones would have equal 
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oTU'rgy, on the average, so that the (niergy of all of them put together 

would be 3Nkl\ just as wo found in Chap. XIII, Sec. 3, by considering 

uncoupled oscillators. The fundam(uital and first few harmonics, which 

are in the audible range, would have the avi'rage (uiergy kT, just like the 

harmonics of highcn* fn^quency. This does not mi^an that we should be 

able to lu^ar the rod in thc'rmal ecpiilibrium, iK^cause kT is such a small 

energy that the amplitudes of (‘ach ovoIoihs would l)e quite inappreciable. 

Of tins 3A^ harmonics, by far the largest number come at csxtremely high 

fr(‘quenci(ss, and it is here that the thermal energy is conctsntratesd. The 

supesrposition of tlusse high fr(H{U(sncy overtone vibratJons, each with 

energy proportional to tlu' teanpesrature, is just what we mesan by tem¬ 

peratures vibration, and the' enen-gy is the ordinary intesrnal energy of the 

crystal. Actually the oscillations take' place according to the quantum 

theory rathe'r than the' classiesal these)ry, and we haves seen in Chap. XIII, 

Sec. 4, how te) hanelles the'in. Eaedi fre'ejue'ncy Vj can have a characteristic 

te'rnpesrature 0; associatesd with it, aese'ording to the equation 

'fhen the heat capacity is 

(1.3) 

so that the heat capae*ity asse)esiate'd with esach e>sesillator will be zesro at 

temperatures much below 0,, rising to the classical value at temperatures 

considerably above 0y. For the le)wer harmonie's, the' characteristic 

tempesratures ares extremely Je)w, so that these vibratie)ns are exesited in a 

classical mannesr at any reasonable temperature. Thes highesst harmonics, 

however, have valuess of 0/ in the neighborhood of room te'inperature, and 

since many of the harmonics come in this range', the spescific heat does not 

attain its classical value until temperatures somewhat above room 

temperatures are reached. 

2. Vibrational Frequency Spectrum of a Continuous Solid.—To find 

tln^ specifier* heat, on ihe quantum theory, we must superpose Einstein 

specific heat curves for ea(di natural frequency vj, as in Eq. (1.3). Before 

we can do this, we must find just what frequencies of vibration are 

allowed. Let us assume that our solid is of rectangular shape, bounded by 

the surfaces x — 0, x = X, t/ = 0, y = Yy 2 = 0, z Z, The fre¬ 

quencies will depend on the shape and size of the solid, but this does not 

really affect the specific heat, for it is only the low frequencies that are 

very sensitive to the geometry of the solid. As a first step in investigating 

the vibrations, let us consider those particular waves that are propagated 

along the x axis. 
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It is a familiar fact that there are two sorts of waves, traveling and 

standing waves, and that a standing wave can be built up by superposing 

traveling waves in different directions. We start with a traveling wave 

propagated along the x axis. Let us suppose that the point which was 

located at Xy z in the unstrained medium is displaced by the wave to 

the point 3; + f, ?/ + ry, 2 + t, so that rj, f an' the coinpoiKuits of dis¬ 

placement. To describe the wave, we must know ry, f as functions of 

X, Uy Zj t. For a wave propagated along the x axis, f nipresents a longi¬ 

tudinal displacement, rj and ^ transverse displacements. For the sake of 

definiteness let us consid(‘r a longitudinal wave. Then the general (expres¬ 

sion for a longitudinal wave traveling along the x axis, with velocity v, 
frequency p, amplitude Ay and jihase a, is 

A sin 27r a (2.1) 

Rather than using the phase constant a, it is often convenicent to us(» both 

sine and cosine t(u-ms, with independent amplituches A and B, obtaining 

A cos 27r + B sin 27rp (2.2) 

an expression equivahmt to Fq. (2.1) if the constants A and B of Ecp (2.2) 

have the proper relation to the A and a of Eq. (2.1). Still anolluer 

way to write such a wave, this time using complex notation, is 

^ = (2.3) 

where the A of Eq. (2.3) is still another constant, which may be compk'x 

and so take care of the phase. In Eq. (2.3) it is to be understood that 

the real part of the complex expression is the value to be used. 

By writing expressions in analogous to Eqs. (2.1), (2.2), 

and (2.3), we get waves propagated along the negative x axis. Adding 

such a wave to the one along the positive x axis, we have a standing 

wave. As a simple example, we take the case of Eq. (2.2) and let R = 0. 

Then we have 

{ = A cos + a cos 27rp(^ + ^ 

= A I cos 2irvt cos —-f- sin 27rpt sin — — 
\ V V 

+ cos 2iryt cos •— sin 2irpt 

2A cos 27rvt cos 
2'kvx 

. 2^vi\ 
sin-I 

^ ) 
(2.4) 

V 
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By using different combinations of functions, wo can get standing waves 

of the form cos 2'Kvt sin sin 2Trvt cos and sin 2Trvt sin —as 
V V V 

well. The particular characteristic of a standing wave is that the dis~ 

placem(‘nt is the i)roduct of a function of th(^ time and a function of the 

position X. As a result of this, the shapes, given by the function of x, is 

th(^ same at any instant of time, only the magnitude of the displacement 

varying from instant to instant. 

Certain boundary conditions must b(^ satisfied at the surfaces of the 

solid. For instance, the surface may be held rigidly so that it cannot 

vibrate, or it may b(i in contact with the air so that it cannot develop a 

pressure at the surface. Th<^ allowed oveatones will depcaid on the 

particular (‘onditioris we assumes, but again this is im})ortant only for the 

low ov('rton(\s and is immaba-ial for the high frequencies. To be specific, 

th(ai, let us assume that the surface is held rigidly, so that the displace¬ 

ment ^ is z(*ro on the surfa(*(', or when x 0, x = X. The first con¬ 

dition can Ik‘. satisfi(al l)y using a standing wave containing the factor 

sin rather than cos sinc(i sin 0 = 0. Then for the second condi- 
V V 

tion we must have 

2TrvX „ 
sin- = 0. (2.5) 

Condition (2.5) can be satisfied in many ways, for we know that the 

sine of any integer times tt is zero. Thus we satisfy our boundary condi¬ 

tion if we make 

= 0, 1, 2, • • • = s, (2.6) 

where s is an integer. Using the relation v/v = 1/X, this can be written 

2T 
or 

^‘X _ 

"2 “ (2.7) 

showing that a whole number of half wave lengths must be contained 

in the length of the solid. Equation (2.6) or (2.7) solves entirely the 

problem of the allowed vibrations of a continuous solid, so long as we 

limit ourselves to longitudinal waves propagated along the x direction. 

If we introduce the additional condition, demanded by the atomic nature 

of the medium, that the minimum wave length is twice the distance 

between atoms, we can immediately find the number of such possible 

overtones. Let there be A'o atoms in a row in the length X, Then the 

distance between atoms, along the x axis, is X/No-. Our condition for 

the maximum possible overtone is then X/2 = X/No^ or A'^oX/2 = X, 

showing that there are just No overtones corresponding to propagation 



228 INTRODUCTION TO CHEMICAL PHYSICS [Chap. XIV 

along the x axis. If wo investigate transverse vibrations, but propagation 

along the x axis, we obtain exactly analogous results, but with ?? or f 

substituted for The allowed wav(.> huigths for transverse vibrations 

are the same as for longitudinal ones, but on account of the fact that 

the velocity of transver.se wav(\s is different from that of longitudinal 

waves, the frequencies are different. Tlu^n^ are No possible vibrations 

for each of th(' two directions of transv('rse vibration, giving SiVo vibra¬ 

tions in all corresponding to propagation along the x axis. 

We can now use the results that we have obtaiiu'd as a guide to tlie 

general probkan of waves propagated in an arbitrary direction. To 

describe the din^dion of ])ropagation, imagine a unit vector along the 

wave normal. Let the x, //, and 2: compoiuaits of this unit Vector be 

Z, irij n. These quantities are often calkal direction cosin(\s, for it is 

obvious that they are t‘qual resp(a*tiv(‘ly to the co.sines of the angles 

between the direction of the wave normal and tlu' x, ?/, c axess. Then in 

place of the quantity .sin 27rr or .similar ^^xpr(^s.sion.s, appc'aring in 

Eqs. (2.1), (2.2), and (2.3), we must use the expression 

sin 2t (2.8) 

Let us verify the fact that Eq. (2.8) n^prescaits the de.sired plane wave. 

At time t, the (expression (2.8) is zero when 

^ lx + my -f nz\ ^. . . 
27rAi — -——— j = tt X an integer, 

or 

lx + my + nz = — X + vL (2.9) 

Now 

lx + my + nz = a (2.10) 

is the equation of a plane who.se normal is a vector with components 

proportional to Z, m, n, and whose perpendicular distance from the origin, 

measured along the normal drawn through the origin, is a. Thus the 

surfaces given, by putting different integers in Eq. (2.9), are a series of 

equidistant parallel planes with normal Z, m, n, the distance apart being 

iv/pj and the distance from the origin increasing linearly with the time, 

with velocity v. This is what we should expect for the zeros of a traveling 

wave of wave length \ — v/v, so that the zeros come half a wave length 

apart. 

By superposing traveling waves of the nature of Eq, (2.8), w^e can set 

up the standing waves that we wish. We must superpose eight waves, 
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having all eight possible combinations of ± signs for the thre<i terms 

lx, rny, nz. One of the many types of standing waves which we can set 

up in this way has th(i form 

. . . ^TTvlx . 2Tr vni'U . 27r vnz 
A sin Zirvt sin-- sin-sin-? 

V V V 
(2.11) 

and this proves to })e th(‘ one that we need. W(^ impose the boundary 

condition that the disjilacc'ment lie zero wlu'n j = 0, x = A', y = 0, 
y — V, z = 0, z ~ Z. Tlie conditions at x = 0, y ~ 0, z — 0, are auto¬ 

matically satisfunl by the func-tion we have chosen in Eq. (2.11). To 

satisfy those at x — A", y — Y, z — Z, we must make 

2vlX __ 2pmY _ 2v'nZ _ 
S,, —- .v„, 

where s*, Sy, are integ(‘rs. From Ecp (2.12), we have 

/ = rn = '// = where X = -• 

(2.12) 

(2.13) 

Sinc(‘ /, m, n are the components of unit vector, we must have 

Z“ + nC + 71- = 1, 

or 

(s')’ + (r)” + (2)’]©’ - *■ 
Equation (2.14) can Ix' us(hI to find the allowed wave lengths, in terms 

of the integers Sx, Sy, 

or 

(2.15) 

(2.16) 

We can now introduce the condition demanded by the atomic nature 

of the medium. We shall do this only for the simplest case of a simple 

cubic lattice, but similar results hold in general. Let the atoms be spaced 

with lattice spacing d, such that X == Nxdj Y = Nyd, Z == Ngd, and 

NxNyN^ = N (2.17) 

is the total number of atoms in the crystal. We assume as the condition 
for the maximum overtone that the minimum distance between nodes, 
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along any one of the three axes, is d. That is, considering for instance the 

X direction and referring to Eq. (2.11), we assume tliat increasing x by the 

amount d increases the argument of the sine, or 2xpZ;r/?;, by t. Expressed 

otherwise, this states that for the maximum ov(‘rton(^ wi) must have 

Sx = X/dy and similarly Sy = F/c?, Sz = Z/d. This means that all valuers 

of Sx, Sj/, Sz are possible up to the values Sx == Nx, Sy = A^y, Sz = Nz. We 

can visualize the situation most easily by consid('ring a thr(H‘-dimensional 

space in which Sx, Sy, Sz are plotted as three rectangular coordinates. 

Then the integral values of Sxy Syy Szy which repr(\sent oven-tones, form a 

lattice of points, one per unit volume of tlu^ spacer The overtoiu^s 

allowed for an atomic crystal are repr(\sented by the points lying b(‘tw(M‘n 

Sx — 0, Sx — Nx, Sy = 0, Sy = Nyj Sz = 0, Sz — N'z- Th(' volume of space 

filled with allowed points is thus NxNyNz = N, and since there is one 

point per unit volume th(‘re an^ N allowed overtonevs. In place' of using 

this three-dimensional space, it is often more convemient to use what is 

called a reciprocal space. This is one in which Sx/X, Sy/Y, Sz/Z are^ 

plotted. The allowe'd pe)ints in the^ reciprocal space them form a lattie*e 

with spaedngs l/X, 1/F, 1/Z, so that tlien-e is one' point in volume 

IjXYZ — 1/F, if V = XYZ is the volume of the crystal. Fe)r the maxi¬ 

mum overtone we have Sx/X = Sy/Y — Sz/Z = 1/e/, se) that the', allowe'el 

overtones fill a cube of volume l/d^, or the renaprocal of the volume' of unit 

cell in the crystal. The number of allowed overtones, giveai by the 

volume (l/d^) divided by the volume (1/F) per allowed overtone, is 

V/d^ = Ny as be^fore. It is plain why this spacer is called a reciprocal 

space, since distances, volumes, etc., in it are re.'ciprocals of the cor¬ 

responding quantities in ordinary space. 

We have so far omitted discussion of the fact that we have both longi¬ 

tudinal and transverse vibrations. For a single travc'ling wave lik(^ 

Eq. (2.8), there are of course three possible modes of vibration, one 

longitudinal along the direction Z, m, n, and two transverse in two direc¬ 

tions at right angles to this direction. The longitudinal wave will travel 

with velocity Vi, the transverse ones with velocity Vt. We can supc'rpose 

eight longitudinal progressive waves to form a longitudinal standing 

wave, and by superposing transverse progressive waves we can form two 

transverse standing waves. Three standing wav(.'S can be set up in this 

way for each set of integers Sx, Sy^ Sz. These three waves will all corre¬ 

spond to the same wave length, according to Eq. (2.16), but to different 

frequencies, according to Eq. (1.1). Considering the three modes of 

vibration, there will be in all 3N allowed overtones, just the same as in 

the theories of Dulong-Petit and Einstein, discussed in Chap. XIII, 
Sec, 3. 

From Eqs. (1.1) and (2.16), we can now set up the frequency distribu¬ 
tion, or spectrum, as it is often called from the optical analogy, of our 
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oscillations. We have at once 
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(2.18) 

In our reciprocal space, whore .Sx/A', Sy/Y, s^/Z are the three coordinates, 

the (juantity V{sjxy -f {sy]Yy + {sJZY is simply th(> radius vector, 

which we may call r. Thus we have 

V (2.19) 

the frequency being x)roportional to the distance from the center. Now 

we can easily find the numlx^r of overtones whose frequencies lie in the 

range dv of frequencies. For the points in the reciprocal space represent¬ 

ing them must lie in the shell between r and r + dr, where r is given by 

Eq. (2.19). This shell has the volume Airr'^ dr, or ^2Trv‘^ dv/v^. Only 

ix)sitive vjilues of the integers ,sv, Sy, are to be used, however, so that we 

have overtones only in the octant corresponding to all coordinates being 

X)ositive. This means that the jmrt of the shell containing allowed 

overtones is one eighth of the value above or dv/v^. We have seen 

that the number of ov(‘rtones p(‘r unit volume in the reciprocal sp)ace is 

F. Thus th(^ number of allowed overtones in dv, for one direction of 

vibration, is 

im = V. (2.20) 

Considering the three directions of vibration, the number of allowed 

overtones in dv is 

= + (2.21) 

Formulas (2.20) and (2.21) hold only when Sx/X, Sy/Y, s^/Z are less than 

1 /d; that is, when the spherical shell lies entirely inside the cube extending 

out to Sx/X = ± 1/d, etc. For larger values of the frequency, the shell 

lies partly outside the cube, so that only part of it corresponds to allowed 

vibrations. It is a problem in solid geometry, which we shall not go into, 

to determine the fraction of the shell lying inside the cube. When this 

fraction is determined, we must multiply the formula (2.20) by the 

fraction to get the actual number of allowed states per unit frequency 

range. In Fig. XIV-1 we plot the quantity number of 

vibrations per unit volume per unit frequency range, computed in this 

way, for one direction of vibration. The curve starts up as a parabola, 
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(OS=(tY “ 
starts down wlnai v = v/2dj the point where the 

sphere is inscribed in the cube, and reach(\s zero at v = \/3r/2d, where 

the sphere is circums(*rib<'d about the cube. TIk' area under the curve of 

Fig. XIV-1 of course is N/Vy wh<u’e N is tlie total numl^er of atoms. 

When we consider both tyi)es of vibration, the longitudinal and tlu^ 

transverse, we must sup('rpose two curv('s like Fig. XIV-1, with different 

scales on account of the difference between vi and Vt.. This results in a 

curve similar to Fig. XIV-2, having two p(‘aks, the one at lower fre¬ 

quencies corresponding to the transverse vibration, which has a lower 

velocity than tlie longitudinal vibration. 

In Fig. XIV-2 we have a representation of the frequencies of vibration 

of an (dastic solid, under the assumption that the waves an' propagatcal 

as in an isotropic solid, the velocity of j)ropagation being indepcmdent 

05 10 1.5 
(2d/V)ir 

Fig. XIV-1.—Number of vibrations of one direetion of pohirizatioii, per unit- frequency 
range, in a simple cubic lattice with lattice spacing d, and cf>nstant velocity of propagation v. 

of direction and w'ave length, but the numIxT of overtones being limited 

by the conditions that the maximum values of Sy/Yy s^/Z are 1/d, 

where d is the interatomic spacing. This is the condition appropriate to 

a simple cubic arrangement of atoms, an arrangement whitdi does not 

actually exist in the real crystals of elements. It is not hard to make 

the changes in the conditions that are necessary for other typcis of struc¬ 

ture, such as body-cent(n’(^d cubic, face-centered cubic, and h(‘xagonal 

close-packed structures, which will be discussed in a later chapter. The 

general situation is not greatly changed. We can still describe a wave by 

the three integers .Sj., Sy, and the frequency is still given by Eq. (2.19), 

in terms of the radius vector in the reciprocal space. Thus the number of 

overtones in dv is still given by Eq. (2.20) or (2.21), provided the fre¬ 

quency is small enough so that the spherical shell lies entirely within the 

allowed region in the reciprocal space. The only difference comes in the 

shape of this allowed region. Instead of being a cube, it can be shown 

that the region takes the form of various regular polyhedra, depending 
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on the crystal structure. These polyhedra, which are often called zones 

or Brillouin zones, are important in the theory of electronic conduction 

in metals as well as in elastic vibrations. Tlie volum(\s of these zones in 

each (^ase are such that thc'y allow just N vibrations of each polarization. 

The zoiK's for the thrcH^ crystal structures mentioiu'd n^semble each other 

in that they are more nearly like a sphere than th('- cubical zone of the 

simple cubic; structunn That is, the radii of the inscribed and circum¬ 

scribed spheres are more nearly ecpial than for a cube. That means that 

the region in which the curve; of is falling from its maximum to 

Fig. XIV-2.—Numher of vibrations per unit fre<iuen<*y range, in a simple cubic: lattice 
with constant velocity of propagation. It is assumed that the velocity of the longitudinal 
wave is twif;e that of the transverse waves. Dotted curve indicates Debye’s assumption. 

zero is more concentrated than in Fig. XIV-1, and corresponds to a higher 

maximum and more precipitate fall. If tin; zone were a si)her(; instead of 

a polyhedron, the fall would be perfectly sharp, as shown by the dotted 

line in Fig. XIV-2, the-distribution being given by a parabola below a 

certain limiting frequemey and falling to zero above this frequency. 

The calculation which we have carried out in this section has been 

limited in accuracy by our assumption that the velocity of propagation of 

the elastic waves was independent of direction and of wave length. 

Actually neither of these assumptions is correct for a crystal. Even for 

a cubic crystal, the elastic properties are more complicated than for an 

isotropic solid and the velocity of propagation depends on direction. 
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And we have stated that on account of the atomic nature of the material 

tlie velocity depends on wave length, when the wav(' huigth becomes of 

atomic dimensions. These limitations im^an that the fn^iuency siK^ctrum 

which we have so far found is not very close to th(^ truth. Nevc'rtheless, 

our model is good enough so that valuable results can be obtained from 

it, and w(‘ go on now to describe tlu^ approximations made by J)eby(‘, 

leading to the specific heat curve known by his name. 

3. Debye’s Theory of Specific Heats.—Debye’s approximation con¬ 

sists in replacing the actual spectral distribution of vibrations by th(‘ 

dotted line in Fig. XlV-2. That is, he assumed that dN is givcai by E(p 

(2.21) as long as v is less than a certain Cxnax, and is zero for greater vs. It 

is obvious that this is not a very good appi’oximation. Neverthel(‘ss, it 

reproduces the form of the correct distribution curve at low fn^pHuicies 

and has the correct behavior of predicting no vibrations above a c(u-tain 

limit. To find the j)roper U) use, Ih'bye simply applic'd the (*ondi- 

tion that the area under his dotted curv(‘, giving the total numbej* of 

allowed ov(ulones, must b(^ SN to agn^e with tlie correct curve. That is, 

he assumed 

from which 

^lUHX 

'9 N 1 \ 

4t V \ \ 2 ) . vf vy 

(3.1) 

In terms of the assum(‘d fn^qinuicy distribution and the formula (1.3), 

we can now at once writ(^ down a formula for the specific heat. This is 

Cy = (3.2) 

The integration in Eq. (3.2) (*annot b(i performed analytically. It is 

worth while, however, to rewrite the expression in terms of a variable 

We then have 

with _ ^ ^max 

kY' 

Cv 
{e^ — 1) 

idx. 

(3.3) 

(3.4) 
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It is customary to define a so-called Debyes temperature Od by the 

equation 

(3.5) 

Then we have 

1 = 

:ro B,/ 
(3.6) 

SO tliat Eq. (3.4) gives the sp(‘(*ifi(‘ In^at in terms of T/Oy,, the ratio of the 

actual t(mq)erature to th(‘ J)(4)ye temperal lire. That means that the 

specific heat curve should Ix^ the same for all substances, at tempi^ratun^s 

which are the same fraction of the corri'sixinding I)(‘])ye timiperatures. 

Wh(ai integrated numerically, the function (3.4) proviss to be not 

unlike an Itlinstinn sjx‘cific tieat curve, except at low temperaturiis. To 

facilitate calculations with Ihe D(‘bye function, we give in Table XIV-1 

Table XIV-J.—Spec ifk; Heat as a Fcnotion of xo — According to 

Debye’s Theory 

Xo Cv 
0 5.955 
1 5.670 
2 4.918 
3 3.948 
4 2.996 
5 2.197 
i\ 1.582 
7 1.137 
8 0.823 
9 0.604 

10 0.452 
11 0.345 
12 0.267 
13 0.211 
14 0.169 
15 0.137 
16 0.113 
17 0.0945 
18 0.0796 
19 0.0677 
20 0.0581 

A more extended table will be found in Nernst, '* Die Oruudlageu dt's nexicu Wiirmesatzes.” 

the specific heat per mole, calculated by Debye’s theory, as a function of 
Xo. We also give in Fig. XIV-3 a graph of the Debye specific heat curve 
as a function of temperature. W'e can easily investigate the limit of low 
temperatures analytically. If T" < < 0«, wo have xo > > 1. Then, 
approximately, we can carry the integration in Eq. (3.4) from 0 to w, 
since the integrand becomes very small for large values of x anyway. It 
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can be shown ^ that 

Then we have, for low tem}K‘ratures, 

Cy = (3.8) 

From Eq. (3.8), we s(H' that thc^ specific lieat should be proportional to 

Fig. XIV-3.—Spocifin heat of a solid as a function of the temperature, according to Debye’s 

theory. 

the third power of the absolute temperatun‘, foi‘ low temperatures. This 

feature of Debye\s theory proves to b(^ true for a variety of substances. 

Table XTV-2.—Observed Specific Heat of Alumincim, CoMPAiiED with Debye’s 

Theory 

T, °abs. Cp observed C T' observed Cv, Debye 

54.8 1.129 1.127 1.11 
70.0 1.856 1.851 1.88 
84.0 2.457 2.446 2.51 

112.4 3.533 3.502 3.54 
141.0 4.239 4.183 4.23 
186.2 4.932 1 4.833 4.87 
257.5 5.558 5.382 5.35 
278.9 5.698 5.499 5.42 
296.3 5.741 5.526 5.48 

Data for this table are taken from the article by Eucken, in “Handbuch der ExperimentalphyBik,’' 
Vol. 8, a useful reference for the theory and experimental discussion of specific heats. 

^ See Debye, Ann. Physik, 39, 789 (1912). 
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Considering the crudeness of the assumptions, Debye's theory works 

surprisingly well for a consid(irable number of elements. Thus we give 

in Tables XIV-2 the observed specific heat of aluminum, and the values 

calculatcKl from Debye’s tln^ory, using ()/> = 385° abs. In Table XIV-2, 

specifics h(‘ats are givcai in calori(\s per mohi. The value of CV observed is 

computed from Cp obs(‘rved by the use of Eq. (1.14) of Chap. XIII. It 

is interesting to note liow much less the difference Cp ~ Cv is for such a 

solid than th(‘ value R = 1.98 cal. p(‘r mole for a gas. (.Calculations for 

many other substances show agrfHUinait with experimrait of about the 

accuracy of Talde XI\'-2. We have already pointed out the shortcom¬ 

ings of D(‘bye’s tr(‘at inent, and the remarkable thing is that it agre(\s as 

well with exp(;rim(‘nt as it do(‘S. 

Tahlk XIV-3.- Debye Temperatures for Klements 

j 

Substance 
Oy>, high teni- 

Oi, {'!'■') ()/; cah*,idat(Ml 
p(‘ra,tur(!, °abs. 

C ((liaiiioiid). 1840 2230 

Na. 159 

A1. 398 385 399 

K. 99 

Fe. 420 428 407 

Cu. 315 321 329 

Zn. 235 205 

Mo.i 379 379 

Ag. 1 215 212 

Cd.! 100 129 108 

8n.1 100 i 127 

Ft.I 225 1 220 

Au.' 180 1 1 102 

.I 88 ! 72 

Data for thin talkie, a« for Table XIV-2 , are from Eucken’s article in Vol. 8 of the “Handbuch der 
Expfrini('ntulphysik.” 

In Table XIV-3, we giv(‘ D(‘by(^ temj)eratures for a number of elements 

for whi(‘h the specifics heat has been accurab'ly determined. We give 

thre(^ columns, and the agreement of these three is a fair indication of 

the ac(un*acy of Di^bye's theory. The first column, On (high tempera¬ 

ture), gives.temperatures determined empirically from the specific heat, so 

as to make the agreement between theory and experiment as good as 

possible through the temperature range in the neighborhood of 0/)/2, 

where the specific heat is fairly large. The second column, O/>(7’'0, is a 

Debye temperature determined to make the part of the curve, at very 

low temperatures, fit as accurately as possible. If the Debye curve 

agreed perfectly with experiment, these two temperatures would of course 

be equal. Finally, in the third column we give Od (calc.), calculated 
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from the elastic constants. To find these, Eq. (3.1) is used to find Pn.ax 

in terms of the velocity of propagation of longitudinal and transverse 

wavers, and Eq. (3.5) to find Hd in terms of p,„ax. W(^ shall not go into 

the theory of elasticity to find the velocity of propagation in terms of th(^ 

elastic constants, but shall merely state the results, in terms of x the vol¬ 

ume compressibility, cr Poisson^s ratio, and p the d(uisity. In terms of 

these quantities, it can hi) showiP that 

3(1 -j^) 

Xp(l + or)’ 

/ 3 (r - 2(7) ^ 

' 2xp(l + a) 

Using Eq. (3.9), the vcdocity can b(^ found in terms of tabulated quantities. 

The agreement between the columns in Tabh' XlV-3 is good enough so 

that it is plain that Debye’s theory is a good approximation, but far from 

perfect. It is interc'sting to note from the table the inverse relation 

between compressibility and D(‘bye t('mj)eratur(^, which can be seen 

analytically from Eqs. (3.1), (3.5), and (3.9). Thus diamond, a substance 

with extremely low comprt'ssibility, has a very high Debye temperature, 

while lead, with very high compr(\ssibility, has a very low Dc^bye tempera¬ 

ture. This means that at room temptuature the specific heat of diamond 

is far below" the Dulong-Petit value, while that of lead has almost exactly 

the classical value. 

4. Debye’s Theory and the Parameter y.—Debye’s theory furnishes 

us with an approximation to tho frequency spectrum of a solid, and we 

can use this approximation to find how the frequencies change with 

volume, and hence to find the parameter y which is important 

in the thc'ory of thermal expansion, as we saw in Chap. XIII, Sec. 4. 

According to Debye’s tlu'ory, the frequency spc^ctrum is entirely deter¬ 

mined by the limiting fn'quency ?/,nax, and if this frequency changes, all 

other oscillations change their frequencies in the same ratio. Thus 

Grtineisen’s assumption that y is the same for all frequencies is justified, 

and wc can set 

d In ^max 

d In V (4.1) 

From Eq. (3.1) we see that the Debye frequency Vtxmx varies proportion¬ 

ally to the velocity of elastic waves, divided by the cube root of the 

volume, and from Eq. (3.9) we see that the velocity of either longitudinal 

or transverse waves varies inversely as the square root of the compressi¬ 

bility times the density, if we assume that Poisson’s ratio is independent 

of the volume. As we shall see later, this assumption can hardly be 

^ For a derivation, see for instance, Slater and Frank, “Introduction to Theoretical 
Physics,'^ McGraw-Hill Book Company, Inc., 1933. Combine results of paragraphs 
109, 110 with result of Prob. 3, p. 183. 
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justified; Poisson^s ratio presumably increases as th(^ volume increases. 

But for the moment we shall assume' it to be constant. Then we have 

1 

V'Wx~P 
(4.2) 

On the other hand, the density is inversely proportional to the volume, so 

that w(' have 

^inax X > 

In Vrnax = (T hi V — ^ 111 % + ooiist.. 

7 = ^ 4_ ^ 
6 2 d in V (4.3) 

The compressibility concerned in Eq. (3.9) is that computed for the' 

actual volumes of solid considen'd; that is, it is If in 
V\dpjr' 

rht'rt' V is 

the actual volume, rather than the volume' at zero jiressurc'. Thus 

In Y = ~ In V — In + const.. 

and 

7 = + ' 
^ 6 ^ 21 

/dP\ 
\d V) 7 

- (st),) 

(4.4) 

d In V 

1 ''(fF=). (4.5) 

To evaluate the derivative in Eq. (4,5), w(' express P as a function of V 
according to Eq. (1.5), Cdiap. XIII: 

{dP\ ^ _P. _ 2PJV, - V\ 
\dV/T Vo V«\ Fo /’ 

('d^p\ ^ Wi 
\dvyr Ff’ 

from which, com])u1:ing for F = Fn, 

2 , P2 {i\ 
7 = -3 + p;- (4.6) 

This simple formula will be compared with experiment in later chapters, 

computing Pi and P2 both by theory from atomic models, and by experi¬ 

ment from measurements of compressibility. We may anticipate by 

saying that in general the agreement is fairly good, certainly as good as we 
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could cxp(‘ct from the crudity of th(‘ api)roxi mat ions made in deriving 

the equation. 

In th(' calculations we hav(' just made, we have assumed that Poisson\s 

ratio was indej^endent of volume. We have mentioiu'd, howev(‘r, that, 

actually Poissoids ratio increases with the volume. We recall the mean¬ 

ing of Poisson's ratio: it is tlu^ ratio of the relative contraction in diamet('r 

of a wire, to tlie ri'lative inc]‘eas(' in length wlnai it is str(d(*h(‘d. For most 

solids, it is of the order of magnitude of For a liejuid, however, it 

(equals -J-. ()ne cannot see t his dire(‘tly, siiu^e a wire cannot be made out of 

a liquid, but the value ^ indicates that a wire has no change of volume 

when it is sti'etclKal, and this is the situation approached by a solid as it 

becoiiK's mor(^ and more nearly like a liquid. Now as the volume of a 

solid increases, eithca- on account of heating or any other ag('ncy, it 

becomes more and more like a liquid, th(‘ atoms moving fartlun* apart so 

that they (*.an flow past each otlun* mor(‘ readily. Thus we may infer tlnit 

Poisson’s ratio increases, and (‘xperiimuits on the variation of Poisson’s 

ratio with tcanperature indicate that this is in fact the (^ase. If we look 

at Eq. (3.9), we see that an increase of Poisson’s ratio dc'creases the 

velocities of both longitudinal and transverse^ waves. In fact, the change 

of Vl is so gre^at that for a liquid, for which a = ^, the velocity of transverse 

wave's becomes zero, in agree'ment with our usual assumption that trans¬ 

verse waves cannot be ])ropagated thremgh a liepiiel. Thus, whe'n w(: 

cemside'r Poisson’s ratio, we find that it presides an additional re'ason why 

the velocity of e'lastic wave's and the' Debye frequency should decrease' 

with increasing volume'. In other words, it temds to increase' y over the^ 

value found in Eq. (4.3). The e'xact amount of increase is inipe)ssible to 

calculate, since the available theorie^s do not predict he)w Poisson’s raiie) 

shoulel vary with volume, anel there are not enough experimental data 

available to compute the variation from experiment. 

In consieiering thermal expansion, we must rejnernber that Debye’s 

the'ory is but a rough approximation, and that really the eiastic spectrum 

has a complicated form, as indicated in Fig. XIV-2. If it were not for 

the variation of Poisson’s ratio with volume, our discussion would still 

indicate that the whole spectrum should shift, together to higlu'.r fre¬ 

quencies with decrease of volume, since the vc'locities of both transvei’se 

and longitudinal waves would then vary in the same way with volume, 

according to Eq. (3.9). When we consider the Poisson ratio, however, we 

sec that the velocity of the transverse waves should increase more rapidly 

than that of the longitudinal waves with decreasing volume, so that thc^ 

shape of the spectrum would change. Thus Griineisen’s assumption, that 

the 7’s should be the same for all frequencies, is not really justified, and 

we cannot expect a very satisfactory check between his theory and 

experiment. 



CHAPTER XV 

THE SPECIFIC HEAT OF COMPOUNDS 

In the preceding chapter, where we have been considc^ring the specific 

heat of elements, tliere was no need to speak of internal vibrations within 

a molecule. In consid(^ring compounds, however, this is essential. A 

real treatment of the mathematical problem of the vibrations is far bc^yond 

the scope of this book. Nev(uihel(\ss, we can take up a simple one- 

dimensional model of a molecular crystal, which can furnish a guide to 

the real situation. Suppose w(^ have a one-dimensional chain of diatomic 

molecules. That is, we have an alternalion of two sorts of atoms, with 

alternating spacings and restoring forc(*s. The vibrations, transverse 

or longitudinal, of such a chain have analogic^s to the vibrations in a 

mol(K*ular crystal, and yet they form a simple enough problem so t hat we 

can carry it through completely. As a preliminary, we take up the 

simpler case of a chain of like atoms, equally spaced, analogous to the case 

of an elementary crystal. This preliminary problem in addition will give 

justification for the discussion of the preceding chapter, in which we have 

arbitrarily broken off the vibrations of a continuum at a given wave 

length and have said that that r(\sulted from the atomic nature of the 

medium. Also it will allow us to investigate the change of velocity of 

propagation with wave length, which we have mentioiud before but have 

not been able to discuss mathematically. 

1. Wave Propagation in a One-dimensional Crystal Lattice,—Let 

us consider N atoms, each of mass equally spaced along a line, with 

distance d between neighbors. Let the x axis be along the line of atoms. 

We may conveniently take the positions of the atoms to be at x = d, 

2d, 3d, . . . Nd, with y = 0^ z ~ 0 for all atoms. These are the equilib¬ 

rium positions of the atoms. To study vibrations, we must assume that 

each atom is displaced from its position of equilibrium. Consider the 

jth atom, which normally has coordinates x = jd^ y = z ^ 0, and assume 

that it is displaced to the position x = jd + f,-, y = rjj, z = fso that 

-qj^ fy are the three components of the displacement of the atom. If 

the neighboring atoms, the (j — l)st and the (j + l)st, are undisplaced, 

we assume that the force acting on the jth atom has the components 

Fx = —afy, Fy = —5)7y, Fg = ~6fy, (1.1) 

each component being proportional to the displacement in that direction 
241 
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and opposite to the displacement. We assume that the force constant a 

for displacement lonp;itiidinaIly, or along the line of atoms, is different 

from the const ant h for disj)lacem(nit transversely, or at right angles to 

the line of atoms. This can well haj)p(‘n, for in a longitudinal displace¬ 

ment the ^‘th atom changes its distance from its ntaghbors considerably, 

while in a transverse displaccanent it moves at right angh'S to the lines 

joining it to its neighbors and stays at an almost constant distance from 

th(^ neighbors. 

Instead of assuming that the force (1.1) depcuids only on the position 

of thejth particle, we now assumci that it is really the sum of two forc(‘S, 

exerted on the jih atom by its neighbors the (j — l)st and (j + l)st 

atoms. The force exerted by the (j — l)st on thcjth, wdum th(‘ (j ~ l)st 

is at its position of equilibrium, has components (~a/2)^j, ( — h/2)r)j, 
{~h/2)’Cj‘ But w'e must suppose that this force depends only on the 

relative positions of the tw^o atoms in qu(‘stion, not on their absolute 

positions in space. Thus it must depend on the differc'nces of coordinates 

of the yth and (j — 1 )st atoms, so that tlu^ gen(‘ral expression for the force 

has components (~a/2)(t; - (-h/2)(r]j - (-6/2)(fy 

Similarly, the force exerted on the^th atom by the (j + l)st must have 

components (-a/2)(^j - ^,>1), (-b/2)(vj - vj-hi), 
Combining, the total force acting on the jih atom is 

Fx = —a^j + + f/fi), 

Fy = —hrjj + + 7//+1), 

= -?>fy (1-2) 

Using the expressions (1.2) for the force, we can set up the equations 

of motion for tlu^ i)articles, using Newtoids law^ that the force equals the 

mass times the acceleration. Thus we have 

= —a^/ + 

mrij = —brjj + + Vi+i), 

mfj = —+ ^(f/-i + fj+i), (1-3) 

where indicates the second time derivative of f,-. We now inquire 

whether we can solv(‘ the equations (1.3) by assuming that the displace¬ 

ments form a standing wave of the sort discussc^d in the preceding chapter. 

Let us consider a longitudinal vibration, for which { is different from 
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zero, 7j and f equal to zero, so that only the first equation of (1.3) is 

significant, and let us assume 

^ — A sin 27rd sin (1*4) 
A 

by analogy to the standing waves in a continuous medium. In particular, 

for the Jth particle, whose undisplaccid position x is ecpial to jd, we assume 

— A sin 2Trvt sin 

Then we have 

= A sin 2Trvt sin 2Tr(j ± 1)- 

A • o n * ^T^jd 2ml 
A sin Zirvli sin ——- cos --- 

V A A 

2Tjd. . 2'wd 
± cos ^ sill -~- 

A A 

ii-i + i-. 
A • o J^ - 271-jd 27rd\ 
A sin 27ri^d 2 sin cos )' 

Substituting K(is. (1.5) and (1.6) in Kq. (1.3), we find that tlu' factor 

A sin 27rpt sin is common to (aich term. C'anc(‘ling this common 
A 

factor, we hav(' 

. .> o , « o — 4,Tj;--p-ni = eos - 
Z A 

2Trvy = --( 
m\ 

1 — cos 
2a . wd 

= —- sin- 
in A 

1 f2a 

If the frequency v and the wave length X are related by Eq. (1.7), the 

values of in Eq. (1.5) will satisfy the e(iuations (1.3). If the velocity 

were constant, w(^ should have v = v/X, the frequency being inversely 

proportional to the wave length. From I'^q. (1.7) we can see that this is 

the cas(^ for long waves, or low frcHpiencic^s, whore we can approximate the 

sine by the angle. In that limit we have 

_ 1 /2a ird^ 

^ 2w'\ m X 

V — \v 

a value that can easily be shown to agree with what we should find by 
elasticity theory. For higher frequencies, however, since sin vd/\ is 
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less than Trd/\, we see that the velocity of propagation must be less than 

the value (1.8). This is the dependence of velocity on wave length which 

was mentioned in the preceding chapter. 

N(‘xt, we must impose boundary conditions on our chain of atoms as 

we did with the continuous solid. We are assuming N atoms, with 

undisplaced positions at x — d, 2d, . . . Nd, We shall assumes that the 

chain is ludd at the ends, and to be precise we assume hypothetical atoms 

at X — Oy X — (N + l)d, which are held fast. As with the continuous 

solid, the precise nature of the boundary conditions is without effect on 

the higher harmonics. In Eq. (1.3), then, we assuin(' that the equations 

can be extended to include terms and but with the subsidiary 

conditions 

= tv+i = 0. (1.9) 

Th(^ first of these is automatic^ally satisfied by tlu^ assumption (1.5), 

setting j = 0. For the second, we have the additional condition 

sin 2t(N + 1)^ = 0. (1.10) 
A 

Since sin irs = 0, where s is any integer, Eq. (1.10) can be satisfied by 

d 
2(N + 1)“ = s, where s is an int(3ger. (1.11) 

A 

The significance of cS* is the same as in Eq. (2.7), Chap. XIV: s = 1 corre¬ 

sponds to the fundamental vibration, .v == 2 to the first harmonic, etc. 

Introducing the condition (1.11), we may rewrite Eqs. (1.5) and (1.7) for 

displacement and frequency. For the vibration described by the integer 

s, we introduce a subscript s, obtaining 

= A„ sill 2Trv^t sin 

1 . TTS /i 

2^ylm 2lN + l)' 

On examining Eq. (1.12), we see that both f,-, and v, are periodic in 
s. Aside from a question of sign, which is trivial, repeats itself when s 
increases by (iV + 1) or any integral multiple of that quantity, and v, 
similarly repeats itself. That is, all the essentially different solutions are 
found in the range between s = 0 and s = A + 1. These two limiting 
values, by Eq. (1.12), correspond to all f’s equal to zero, so that they are 
not really modes of vibration at all. The essentially different values then 
correspond to s = 1, 2, ... A”, just N possible overtones. This verifies 
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the stat(^m(nit of thcj previous chapter that the number of allowed over¬ 

tones, for one direction of vibration, (equals the number of atoms in the 

crystal. It is int('r(\sting to consider the periodicity in connection with 

the reciprocal spac(‘ of S('c. 2, Chaj). XIV. In that section, we imagined 

s/X to be plotted as an independent variable. Here, since A^, the length 

s 2 
of the chain of atoms, equals (N + l)d, we should plot “ X 

as variable. Rather than plotting Vs as a function of this quantity, we 

prefer to plot its square, z/f. This is done in Fig. XV-1, where the perio¬ 

dicity is clearly sliown. We see, furthermore, that the region from 

2/X == 0 to 2/X = i/d includes all possible values of v^. This funda¬ 

mental region corresponds to those dc^scribed in Sec. 2, Chap. XIV. In 

addition to the sinusoidal curve giving we plot a parabola 

where v is the velocity of prof)agation for long wav('s. This parabola is 

the curve which we should find if there w('re no dependence of velocity 

on wave length or no dispersion of the waves. W(' see from Fig. XV-1 

that the effect of dispersion is to reduce the frequencies of the highest 

overtones, compared to the values which we should find from the theory 

of vibrations of a continuum. While we cannot at once apply this result 

to the three-dimensional case, it is natural to suppose that, for instance in 

Fig. XIV-1 of the previous chapter, the effect will be to shift the peak of 

y the number of overtones per unit frequency range, to lower 

frequencies, and at the same time to make the peak higher, so as to keep 

the number of overtones the same. This is a type of change that makes 

the curve resemble Debye's assumption (the dotted curve of Fig. XIV-2) 

more closely than before. Very few actual calculations of specific heat 

have yet been made using the more exact frequency spectrum that we 

have found. 
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In Fig. XV-1 we have seen graphically the way in which the square 

of the frequency, is pcu-iodic in the rc'ciprocal space. It is informing 

to see as well how the act ual displacn^ments rept^at themselves. From 

Eq. (1.12) wo see that contains the factor sin Trjii/{N + 1). This of 

course equals zero for s — N + 1, and t,wo values of s whicdi are greater 

than iV + 1 and less than iV + 1 by the same amount respectively 

will have equal and oj^posite values of the situ^ In other words, the* 

values of th(‘ siiu^ whie^h wo have wlnai s go(\s from 0 to iV + 1 r(‘peat each 

(c) s olmost N + l 

^VVVAAAAAA/^ 
(d) S slightly greater thanN+1. Displacements as in 

(c) with opposite sign 

vyvvwvwvvv 
(e) S=*2 (N+1).Displacements as in (b), with opposite sign 

(f) s almost 2(N+1), Displacements as in (a), with opposite sign 

Fig. XV-2.—Displacements of atoms, for different overtones. 

other in opposite order as s goes from iV + 1 to 2(7V + 1). "^As far as we 

can tell from the displacements of the particles, a value of s/X greater 

than 1/d, in other words, does not correspond to a shorter value of wave 

length than 2d but to a longer wave length, and when s/X equals 2/d the 

actual wave length is not d but infinity, corresponding to no wave at all. 

These paradoxical results are illustrated in Fig. XV-2, where we show 

curves of sin indicated as functions of a continuous variable 
(A + 1) 
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j, with the integral values of j shown by dots, for several values of s. It is 

clear from the figure tliat iiicrc^ase of s does not always mean decrc^ase of 

th(^ actual wave length, but that there is a dc^finite minimum wave' length 

for the actual disturbance, equal as we hav(‘ pi-eviously stated to twi(*(^ the 

interatomic spacing. From the fact which wv have })ointed out that th(^ 

range of s/X from 1 /d to 2/d repeats the range from 0 to l/d in oj)posit(‘ 

ord(T, we understand why the curve of vs. s/X, in Fig. XV-1, has a 

maximum for s/X = 1/r/, falling to zta*o again for 2/d, 

2. Waves in a One-dimensional Diatomic Crystal.- In the preceding 

section we have stum that tin; atomic iiiitun^ of a oiK‘-dimensional mon¬ 

atomic crystal lattice leads to a d(‘j)('ii(I(ai(*(' of th(‘ velocity of elastic 

waves on wave haigth arid to a limitation of tlu‘ ijuml^cT* of allowed ov(n- 

toiH's to the number of atoms in the crystal. Now w(‘ attack our real 

j)roblem, the vibrations of a diatomic one-dimensional crystal, using 

analogous methods. We assume each mohaaile to have two atoms, one 

of mass m, the other of nunss m\ Let tlna-e b(‘ N moh'cules, and in 

(‘quilibrium let the atoms of mass m be at the positions .r = d, 2d, • • • 

Nd, and thos(‘ of mass m' at x = d d', 2d + d', • • • Nd + d\ where 

r/' is less than d. We formulate only the pro})lem of longitudinal vibra¬ 

tions, understanding that the transvei'se viln'ations can be handled in a 

similar way. By analogy with Sec. 1, \v(‘ assum(‘ that thc‘ forc(‘s on ea(4i 

atom come from its two neighboring atoms. Th(‘S(' luaghboring atoms 

are both of ihv, oi)posito type to the one we are consichaing, but an^ at 

K--- 

m 

-d -- 

ni' 

-H 

m m' 
n O 

m m 

’‘J-' ^'j-> 

t7- 

xjo j+i 

Flu. XV-3.—Arrangement of atoms in one-diinensionui diatomic molecular lattice. 

diffenait distances, one being at distance d' (in the same molecule) the 

oth(‘r at distance d — d' (in an adjacent mokaaih'). Tlu' arrangement of 

atoms will be clearer from Fig. XY-3. We assumes two force constants: 

a for the interaction between atoms in different mohicules, a' for inter¬ 

action between atoms in the same molecule. Thus the equations of 

motion are 

ml = -a(^y - - a'i^j - 

= -aUy- - a'(^' ^ ^y), (2.1) 

where fy, fy represent th(' displacem(mt of the atoms of mass m and m' 

respectively in the jth mohnnih*. 

To solve Eq. (2.1), we assume sinusoidal standing waves for both types 

of atoms, but with different phases: 
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fy — A sin 2Trvt sin 
A 

= A' sin 2Trvt sin + B' sin 2Trvt cos 
A A 

(2.2) 

Substituting Ec^. (2.2) in Eq. (2.1), wo find that the factor sin 2Trvt canccds 

from all t(n-ms. The r(‘maining equations are 

[ — Aw^vhn + {a + a^)]A sin = A' 

+ (tt + 

+ ir 

2Trjd 

a sin 2Tr(j — 1)^^ + a' sin 
A A 

a cos 27r(j — 1)^^ + (^‘os 
A A 

„ 1 U' sin -h B cos — - 
A A 

= A a sin 2Tr{j + \)^! + a' sin — 
A A 

(2.3) 

In Eq.s. (2.3) we expand the sines of 27r(,/ ± by tlie formulas for tin; 
A 

sines 3S of sums and difference's of angles and colh'ct terms in sin and 
A 

cos --i-' Th(>n Eqs. (2.3) become 
A 

sin —+ (a + «')] — .4'^a cos 

B ,( . 27ro!V 
X”)/ 

+ coi 
2Trjd\ .,/ . 27rfA 2Trd ,\ 

= 0, 

in —47r“p‘‘^m' + (a + a')] — A^ cos 

+ cos —47r^p2m' + (a + a')] ~ A^ sin J (2.4) 

If our assumptions (2.2) are to furnish solutions of Eq. (2.1), we must 

have Eqs. (2.4) satisfied independent of j; that is, for each atom in the 

chain. The only way to do this is for each of the four coefficients of sin 

or cos in Eq. (2.4) equal to zero. We thus have four simul- 
A A 

taneous equations for the four unknowns Aj A\ B\ and v. Really there 

are only three unknowns, however, for we can determine only the ratios 

A'/A^ By Ay and not the absolute values of the three amplitudes A, 4', 
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B'. Thus we should not expect to find solutions for our equations, since 

tliere are more ecpiations than unknowns, but it turns out that the ecpia- 

tions are just so set up that they have solutions. We have the four 

equations 

A[ — ^Tr‘^v-m + (a + a')] — A'(^ cos sin 

. 27rd\ 27rd A 
^4 (a sin J “ I « cos " ^ + j 

A^[ — 4:Tr-vhrF + (a + a')] — cos 

B'[ — 4T-vhn' + (a + a')] 
.. . 2Trd\ 
11 a sin j 1 sir 

= 0 

= 0, 

= 0, 

= 0. 

(2.5) 

To solve them, we first determine B' in terms of .4' from the second. Sub¬ 

stituting in the other thnn', we hav(‘ equations rc'lating A and A'. We 

find, however, that the* third and fourth ecpiations lead to the same result, 

so that there tire only two indepraident (‘quations for A in terms of A'. 

It is this which makers solution possible. These two equations are at 

once found to be 

A[ — 47r'^v‘^m + (a + a')] — -4' 
/ 2Td , A 
la cos - - - + a j 

+ 

. ( 2Trd , A 
LI a cos —h a j 

( . 2irdV 

27rr/ f 

a cos --h a 
A 

^'[-47rW?/ + (a + a')] = 0. 

0, 

(2.6) 

From each of Eqs. (2.6) we can solve for the ratio AjA', Equating these 

ratios we get an equation for the frequency: 

1 
— + (a + a') 

2‘v:d , , , 
a cos —|- a + 

A 

( . 27rrfV 

2Trd , , 
a cos --h CL 

A 

_ ‘-Air^vhn' + (a + a')^ 

27rd . , 
a cos —h o 

A 

(2.7) 
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From Eq. (2.7) we have at once 

[47r‘^p^m — (a + a')][47r2p^m' —• (a + a')] 

I 2ird , 
= I a cos —h 

y'( . 2^dY 
a j +1 a SI"' ' r) 

= a- + a'2 + 2aa' cos 
2^(1 

= (a + a')“ ~ 2aa'^l — cos 

(a + a')‘^ — 4aa' sin 
, ird 

(2.8) 

Expanding the left side of Eq. (2.8), 

(27rp)^mm' — {2wv)-(m + m')(a + a') + (a + a')^ 

= (a + a0“ ~ 4aa' sin^ (2.9) 
A 

Equation (2.9) is a quadratic in (27rp)^. Solving it, we have 

m + m\ 

rnni 

+ 

V 2 - ) -yJi mm' \ 2 ) 

4aa' . Td 
-, sin‘ --- 

J mm X 

(2.10) 

_ m + m'j 

mm' 

(a + 

k 2 
(2.11) 

where 
4aa' 4mm' 

(2.-12) 
^ (a + a')2 (m + m')^ 

Equation (2.11) is the desired equation giving frequency in terms of wave 

length, for longitudinal vibrations of a chain of diatomic molecules. 

As in Eq. (1.7), we see that the frequency depends on the quantity 

sin so that we go through all possible values when ^ goes from zero 
A A 

to l/2d. Thus there is the same sort of periodicity seen in Fig. XV-1. 

Furthermore, when we introduce boundary conditions for a crystal of N 

molecules, we find as before that there are N allowed overtones in this 

fundamental region of reciprocal space. In the present case, however, 

Eq. (2.11) has two solutions for each value of 1/X, coming from the ± 

sign. That is, there are two branches to the curve, two allowed types of 

vibration for each wave length, and consequently 2N vibrations in all. 

This is natural, for while there are just N molecules, each of these has 

two atoms, so that there are 2N atoms and 2N degrees of freedom for 

longitudinal vibration. In Fig. XV-4 we give curves of vs. 2/X, for 

several different values of the constant k. From Eq. (2.11) we see that 
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except for scale the curve depends on only one constant k. This constant 

equals unity when a — a'^ m — m'. Under all other circumstances it is 

easy to show from its definition that it is less than unity; when a is very 

different from a', or m very different from m', or both, it is very small, 

''fhus the limit k = 0 corresponds to very unlike atoms in the molecule, 

with very unlike forces between the atoms in the molecule and atoms in 

adjacent moh^cules. This is the case of strong molecular binding, with 

W(‘ak interatomic forces. The limit k = I corresponds to the case where 

the atoms are similar and the binding within 

the molecule is almost the same as that between 

molecules. This limit, for instance, would be 

foimd approximately in the case of an ionic 

crystal like the alkali halides, where there is 

no molecular structure in the proper sense and 

wlu're the two types of atom have a})proxi- 

mately the sarnci mass. In (a), Fig. XV-4, 

we have the^ case of st rong molecular binding. 

H(n*e one branch of the curve corresponds to 

low frecpiency vibrations, going to zero fre¬ 

quency in the limit of infinite wave length. 

Tlu'se vibrations are those in which the mole¬ 

cules as a whole vibrate, and they are acous¬ 

tical vibrations of the same sort we have 

discussed in the preceding chapter. The other ^ 

branch, however, corresponds to a much higher / \/ \/ j \ 

freciuency, even at infinite wave length. \ /\ ' / 

Th(‘se vibrations are vibrations of the two O^i/d 2/bl 2/\ 

atoms in the molecule with respect to each (c) fc SI Less Thorn UnHy 

other, almost exactly as the vibrations would 

occur in the isolated molecule. These are 

Fig. XV-4.—1^2 vs. 2/X, for dia¬ 

tomic molecular lattice. 

often called optical vibrations, for as we shall see later they can be 

obs(n’V(‘d in certain optical absorptions in the infrared. 

In (6), Fig. XV-4, there is an intermediate case between strong and 

weak binding. The forces between molecules are here not much greater 

than those within a molecule, and the result is that the optical branch 

of the spectrum is not at much greater frequency than the acoustical 

branch. Finally in (c) we show almost the limiting case of equal atoms 

and (iqual binding. The exactly equal case would correspond to a crystal 

with 2N equal atoms with a spacing of d/2, This is the case of Sec. 1, and 

we should expect the curve of against 2/X to correspond to Fig. XV-1, 

except that the first maximum of the curve should come at 2/d instead of 

1/d, on account of the spacing of d/2, In Fig. XV-4 it is shown how 

this limit is apprp^ohed. We have already pointed out that on account 
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of periodicity we repeat all the overtones found Ixdween 2/X = 0 and 

2/A == 3in the next period, from l/d to 2/d. Let us then take the 

lower branch of the curve in the range 0 to 3 /d, and the u])per branch from 

3 /d to 2/d, as shown by the heavy line in (c), Fig. XV-4. If k wer(5 exactly 

unity, these two branches would join smoothly, and would give exactly 

the curve we expect. When k is slightly less lhan unity, so that the two 

types of atom are slightly different from each other or tlu^re is a slight 

tendency to form diatomic molecules, there is a slight discontinuity in 

the curve at 1/d, as shown in the figure, but still it is better to n^gard 

them as both parts of a single curve. It is clear from this discussion how 

the (arse of the j)resent section reduces to (hat of Sec. 1 as the molecular 

lattice reduc(\s to an atomic lattice. 

3. Vibration Spectra and Specific Heats of Polyatomic Crystals.— 
The simplified on(;-dimensional model whi(‘h w(' have tnken up in the last 

two sections is enough so that we can readily und(ast and what hai)])ens in 

the case of real crystals. First, we consider d(‘fiiiit(dy niolc^cular crystals, 

with strong binding within the molecules, and relatively weak inter- 

molecular force's. The vibration s])ectrum in this case breaks up 

definitely into two parts. First there is the acoustic s])ectrum, connee!teel 

with vibrations of the' medecules as a wliole. 'Idiis reeluces to the oreiinary 

(dastic vibrations at ve'iy low fre'e^uencies, and extends to a high enenigh 

fre(|uency in the infrareel to incluele^ 3A^ models of oscillation, where there^ 

aitlj N mole'cules in the crystal. If the^ intermoleeailar force;s are weak, so 

that the compressibility of the crystal is large, this limiting frequency will 

be^ low, in the far infraiad. Then there is the optical spectrum, coniKHded 

with vibrations within the molecule's. As we see from Fig. XV-4 (a), 

these vibrations in diffe^rent mole'cules are coupled together to some 

extent, so that their frequemcies deipeuid on the particular way in which 

the vibrations combine to form a standing wave in the crystal. Never¬ 

theless, this dependence of freKiucmcy on wave length is relatively small, as 

the upper branch of Fig. Xy-4 (a) shows. The important point is that 

the optical vibrations in molecular crystals come at a good deal higher 

frequency than the acoustical vibrations, lying in the part of the infrared 

near the visible. And these optical frequencies arc only slightly different 

from what they would be in isolated molecules. This can be seen from 

our simple model. Thus in Eq. (2.12) let o/, the force constant for 

molecular vibration, be large compared to a, the force constant between 

molecules. Then k will be very small, and if we neglect a compared to a' 

we have i2Trvy^ = [(m + m')/mm']a', just the value for a diatomic mole¬ 

cule. We may see this, for instance, from Ghap. IX, Eqs. (2.5) and 

(4.4), where we obtained the same result. Of course, with complicated 

molecules, there will be many optical vibration frequencies of the isolated 

molecule, and all of these will appear in the spectrum of the crystal with 

slight distortions on account of molecular interaction. 
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With a s})(H*inim of this sort, it is ck^ar how i.o haiuUe th(‘ specific heat 

of such a rnok‘Cular crystal. The acoustical vibrations (^an be haridk^d 

by a ])eby(' curve, using the elastic constants, or an eiripii*ical charac¬ 

teristic temp('rature, and using the number of mok'cukvs as N. Tlnai wo 

add a number of Einstein terms to lake car(' of lh(' mok'cular vibrations. 

Idiese again can be found empirically, or th(‘y (‘an bt‘ deduced from 

vibration frequeruac^s observcal in the S])ectrum. "Jlies(‘ frequencies 

would Ik" expected to be approximately the sam(‘ as in th(‘ nio]e(*uk‘s, so 

that this part of thc^ specific heat should agree with the vibrational part 

of th(‘ specific luait of th(‘ corres])onding gas. In sonu‘ cas(‘s, as w(‘ shall 

mention later, the vi})ration fixapiencic^s can be found din^ctly by optical 

inv('stigation of the solid. In addition to the in()I(‘cular vibrations, 

(‘orn'sponding to th(^ khnst(‘in t(‘rms, and th(‘ mol(M*ular translation, cor¬ 

responding to the r)(‘by(‘ terms, in tlu^ sp(‘cific luait (jf the crystal, there 

must be something corr(*s])onding to the mok'cular rotation. In most 

solids, the mok'cul(\s cannot rotate but arc' only free' to change tlufir 

()ri(aitation through a small angle, b(‘ing held to a i)articular (orientation by 

linear ivstoring force's. In tludr vibration sp(‘(‘trum, this will k'.ad to 

vibrational terms lik(' the uppc'i* branch of Fig. XV-4 (a), and there will 

be additional Einsbnn terms in the s])ecific heat coming from this hindered 

rotation. Th('S(^ t('rms of (course cannot be i)redieted from th(' propertitvs 

of the separate' molecule's, but ordinailly must be' found ennpirically to fit 

the observed spe'cific heat euirves. Thc're are certain case's, on the other 

hand, in wliich the mok'cules at high te'mpe'ratures really can rotate in 

crystals, though at low tempe'rature's thc'y cannot. In such a case, at 

high te'inperature^, there would be a tc'rm in the specific heat of the' solid 

much like the rotational term in a gas. At low te'mpeiratures where the 

rotation changes to vibration, the transition is more complicated than any 

that we have taken u}) so far and is really more like a change of ])hase. 

A crystal such as those of the alkali halide's, forme^l from a succession 

of (equally spacc'd ions of alternating sign, is quite different from the 

molecular crystals. The spectrum, as indicated in Fig. XV-4 (c), is much 

more like that of an element, the distinction between! the two types of 

ions benng unimportant. Thus we can treat it by methods of the preced¬ 

ing chapter, using only a Debye curve, but taking N to be the total 

number of atoms, not the total number of molecules. This is commonly 

done for the alkali halides, and it is found that one gets as good agreement 

be^tween theory and experiment as for the metals. For more complicated 

ionic crystals, such as carbonates or nitrates, which are formed of positive 

metallic ions and negative carbonate or nitrate radicals, the situation is 

midway between the ionic and molecular cases. In CaCOs, for instance, 

we should expect a Debye curve coming from vibrations of the Ca"^ and 

CO3 ions as a whole, and also Einstein terms from the internal vibrations 

of the carbonate ions. 
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4. Infrared Optical Spectra of Crystals.—Though wo have said 

nothing about the interaction of molecules and light, we may mention 

the infrared optical spectra of crystals, related to their optical vibrations. 

Light can be emitted or absorbed by an oscillating dipole; that is, by two 

particles of opposite charge oscillating with respect to each other. We 

should then expect that such vibrations as involved the relative motion 

of different charges could be observed in the spectrum. This is never 

the case with the acoustic branch of the vibration spectrum, for there 

we have molecuh^s vibrating as a whole, and they are necessarily 

uncharg('d. But in the optical branches, for instance with tlu' alkali 

halides, we have just the necessary circumstances. The casc^ 1/X = 0, in 

the optical branch of an alkali halide, corresponds to a rigid vibration 

of all the positive ions with respect to all the negative ions, so that ea(*h 

pair of positive and negative ions in the crystal can radiate light, and all 

these sources of radiation are in phase with (iach oth(u*. If such an 

oscillation were excited, then, the crystal would emit infrared j’adiation of 

the frequency of the vibration. Only the case 1/X == 0 (*orn\sponds 

to radiation, for if 1/X were different from zero, different ])arts of the 

crystal would be vibrating in different phases and th(^ emitted radiation 

from the various atoms would cancel by interference. Ordinarily th(^ 

radiation is not observed in (^mission but in absolution, for there is no 

available way to excite this type of vibration strongly. Then' is a general 

law of optics, however, stating that any fn^quency that can be emitted by 

a system can also be absorbed by the same system. Thus light of this 

particular infrared wave length can be absorbed by an alkali halide 

crystal. A still further optical fact is that light of a frciquem^y which is 

very strongly absorbed is also strongly reflected. Hence alkali halide 

crystals have abnormally high reflecting power for this particular wave* 

length. This is observed in the experiment to measure residual rays, or 

‘^Reststrahlen.^^ In this experiment, infrared light with a continuous 

distribution of frequencies, as from a hot body, is reflected many times 

from the surfaces of alkali halide crystals. For most frequencies, the 

reflection coefficient is so low that practically all the light is lost after 

the multiple reflection. The characteristic frequencies have such high 

reflecting power, however, that a good deal of the light of these wave 

lengths is reflected, and the emergent beam is almost monochromatic, 

corresponding to the absorption frequency. These beams which are left 

over, called residual rays, form a convenient way of getting approxi¬ 

mately monochromatic light in the far infrared. 

By measurement of the wave length of the residual rays, for instance 

with a diffraction grating, it is possible to get a direct measurement of the 

maximum frequency in the optical band of the vibration spectrum of an 

alkali halide. If we treat the spectrum by the Debye method, regarding 
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the crystal as an atomic rather than a molecular crystal, this frequency 
should agree approximately with the Debye characteristic frequency, 
which can be found from the characteristic t(!mporature 0». Such an 
agreement is in fact found fairly accurately, as will be shown in a later 
chapter on ionic crystals, in which we shall make comparison with experi¬ 
ment. For molecular lattices, it is also possible to get residual ray 
frequencies, in case the moleeniles contain ions which can vibrate with 
respect to each others. These frequencies have no connection with the 
Debye frequencies, however, and they have been much less studi(;d than 
in the case of ionic crystals. 



CHAPTER XVI 

THE LIQUID STATE AND FUSION 

For several chapters we have l)een taking up the ])roi)(U’ties of solids. 

Earlier, in Cdiap. XI, we discussed th(' (aiuilibrium of solids, liquids, and 

gases in a geiua'al way but without using much information about the 

liquid or solid states. In Chap. XU, discussing ini]K'rf(a*t gases and Van 

d('r VVaals^ equation, we again touched on the jiroperties of liquids but 

again without much di'taih'd study of them. Now that we umhu-stand 

solids better, we can again take up the probhun of licpiids and of melting. 

The liquid phase forms a sort of bridge b(d.w(ien the solid and tlu^ gaseous 

phases. It is hard to treat, because it has no ch^ar-cut limiting cases, such 

as the crystalline phase of the solid at the absolute zero and the perfect 

gas as a limiting case of tlu^ real gas. The best we can do is to handle it 

as an approximation to a gas or an a])proximation to a crystalline solid. 

The first is essentially th(^ approach made in Van der Waals^ equation, 

which we hav(^ alix'ady discussed. Tlu^ second, the approach througli th(i 

solid phase and through fusion, is the subjc'ct of the presf'iit chapter. 

1, The Liquid Phase.—We ordinarily d(;al with liquids at tem¬ 

peratures and pressures wc'll below the critical point, and it is here that 

they resemble solids. When studic'd by x-ray diffraction methods, it is 

found that the immediate neighbors of a given atom or molecule in a 

liquid are arranged v('ry much as tlu^y an^ in the crystal, but more distant 

neighbors do not have the same regular arrang(un(mt. We shall meet a 

particularly clear case of this later, in discussing glass. A glass is simply 

a supercooled liquid of a silicate, or other similar mat(;rial, held together 

by bonds extending throughout the structure, just as in the crystalline 

form of the same substance. These materials supercool particularly 

easily, presumably because the atoms or ions of the liquid are so tightly 

bound together that they do not rearrange themselves easily to the 

positions suitable for the crystal. Thus we can observe their liquid 

phases at temperatures low enough so that they take on most of the 

clastic properties of solids. They acquire rigidity, resistance to torque. 

Nevertheless they never lose entirely their properties of fluidity. A rod 

of glass at room temperature, subjected to a continuous stress which is not 

great enough to break it, will gradually deform or flow over long periods of 

time. The study of materials which behave in this way, showing both 

fluidity and elasticity, is called rheology, and it shows that such a com- 
256 
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bination of properties is very widespread. The fluidity of the glasses 

is a result of the fact that there is no unique arrangement of the atoms, as 

there is in a perfect crystal. Certain atoms may be in a situation where 

there are two possible positions of etiuilibrium, near to each other. That 

is, the atom is free to mov(^ from the position whore it is to an adjacent 

hole in the structure, witli only a small expenditure of energy. The 

maximum of potential enej*gy bc^tween the minima is closely analogous 

to the energy of activation in chemical reactions, mentioned in Chap. X, 

Sec. 3. In Fig. XVI-1 (a) we show schematically how the potential 

energy acting on this atom might appear, as we pass from one position of 

equilibrium to the other. There will ordinarily not be much tendency 

for the atom to go from one position to the other. But if the material is 

under stress and one of the positions tends to relieve the stress, the other 

(o») 
Fig. XVI-1.—Schematic potential energy acting on an atom in a glass, (a) Unstressed 

material, (h) material under stress. 

not, the energy ix'latioiis will be shiftc'd so that the position which relieves 

the stress, as shown in (16), Fig. XVI-1, will have lower energy than (26), 

which does not. Then if the atom is in position (2), it will have a good 

chance of acquiring the energy €2, enough to pass over the potential hill 

and fall to the position (1), simply by thermal agitation. By the Max- 

well-Boltzmann relation, we should expect the probability of finding 

an atom with this energy to be proportional to the quantity exp { — €2/kT)y 

increasing rapidly with increasing temperature. On the other hand, the 

probability that an atom in (1) should have the energy ei necessary to 

pass over the hill to position (2) would contain the much smaller factor 

exp { — €i/kT), The net result would be that atoms in positions like (2) 

would move to positions like (1), relieving the stress, but the opposite 

type of transition would not occur. This would amount to a flow of 

the material, if many such transitions took place. Furthermore, the rate 

of the process would be proportional to exp ( — €2/kT)y and this would 

be expected to be proportional to the rate of flow under fixed stress, or to 

the coefficient of viscosity. The actual viscosities of glasses show a 

dependence on temperature of this general nature, the flow becoming 

very slow at low temperatures, so slow that it is ordinarily not observed 

at all. But there is no sudden change between a fluid and a solid state. 
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The glasses are particularly informing fluids, bocauso we can observe 

them over such wide temperature rang(\s. Otlier types of liciuids do not 

supercool to any such extent, so that ordinarily tiu'y caniioi- be obs(u*ved 

at temperatures low enough so that tlu'y have begun to lose tlieir charac¬ 

teristically fluid properties. We may inf(T, however*, that th(' pr*oc(‘ss of 

flow in all liquids is similar to what we have d(‘scribed in the glass('s. 

That is, the atoms surrounding a given atom are a])proximately in th(^ 

arrangement correct for a crystal, but there are so many fhiws in the 

structure that there are many atoms which can move almost fnn'ly from 

the position where they happen to be, to a nearby vaca-nt ])lace when^ 

they would fit into the structure almost as well. Onc^ I’athei* informing 

approximation to the liquid state treats it straightforvvai’dly as a mixtui’e 

of atoms and holes, the holes simply representing atoms missing fi'om th(^ 

structure, and it treats flow as the motion of atoms m'xt the holcvs into th(^ 

holes, leaving in turn eirijity hok‘s from which the^y movc\ TIk^ essential 

point is that the structure is something like the solid, but like^ an extrtnnely 

imixnfect, disordered solid. And it is this disorden* that giv<‘,s tlu' possi¬ 

bility of flow. A perfect crystal cannot flow, without b(Ma>ming deformed 

and imperfe^ct in the very process of flow. 

2. The Latent Heat of Melting.—With this general pictures of the 

liquid state, let us ask what we expect to find for the thermodynamic, 

properties of liquids. We shall conshhu* two thermodynamic functions, 

the internal energy and the entropy, and shall ask how we expc^ct. theses 

quantities to differ from the corres[)onding quantiti(‘s for the solitl. This 

information can be found experimentally from tJu^ latent heat e)f fusion 

Lm, which gives directly the changes in internal enei’gy betwe^eai t he two 

phases (for solids and lie^uids the small quantity P{Vi — by whie;h 

this should be corrected is ne^gligible^), and fre)m the me'lting point 7h„, fe)r 

the entropy of fusion is given by As a matter e)f genea*al orienta¬ 

tion, we first give in Table XVI-1 the nece^ssary information about a 

number of materials. In the first column we give the latent heat of 

fusion. We shall find it interesting to compare it with the latent heat of 

vaporization; therefore we give that quantity in the rn^xt column, and the 

ratio of heat of fusion to heat of vaporization in the third. Nt^xt we 

tabulate the melting point and finally the entropy of fusion. 

Referring to Table XVI-1, let us first couvsider the latent heat of fusion. 

We observe that in practically every case it is but a small fraction of the 

heat of vaporization. That is, the atoms or molecules are pulled apart 

only slightly in the liquid state compared with the solid, whihi in the 

vapor they are completely separated. Of course, this holds only for 

pressures low compared to the critical pressure; near the critical point, the 

heat of vaporization reduces to zero. To be more specific, we notice 

that in the metals the heat of fusion is generally three or four per cent of 
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Table XVl-1.—Data Regarding Melting Point 
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Lm, kg.-cal. 
per mole Lv 

Lm 
Lv 

Tm, ® abs. 

Metals: 
Nil . 0.G3 26.2 0.024 371 
Mg. 1.16 34.4 0,034 923 
A1. 2.55 67.6 0.038 932 

K. 0.58 21.9 0.026 336 

Cr. 3.93 89.4 0.044 1823 
Mn. 3.45 69.7 0.050 1493 
Te . 3.5(> 96.6 0.037 1802 
(^o . 3 . ()(> 1763 
Ni. 4.20 98.1 0 043 1725 
Cu. 3 11 81.7 0 038 1357 
Zti . 1.60 31.4 0.051 692 

1.34 303 

Se. 1.22 490 

Kb. 0.53 20.6 0.026 312 

\g . 2.70 69.4 0 039 1234 
(M. 1.46 27.0 0,054 594 
In. 0.78 429 
Sn . 1.72 68.0 0.025 505 
Sb. 4.77 64.4 0 088 903 

(’h. 0.50 18.7 0 027 302 

Pt . 5.33 125. 0 043 2028 
. 3.03 90.7 0,033 1336 
Hg. 0.58 15 5 0.037 234 
Tl . 0.76 43.0 0 018 676 
Pb. 1 22 46.7 0.026 601 
Hi. 2 51 47.8 0.053 644 

lojuc sLib.s(,aiice.s; 
NuF. . 7 81 213 0.037 1265 
NaC^l. 7 22 183 0 039 1073 

KF . (» 28 190 0 033 1133 
K(^l . 6 41 165 0.039 1043 
IvHr . 2.84 159 0,018 611 

AgCl . 
\ <r Rr 

3.15 728 
2.18 703 

TK '1 4 26 700 
'riPr 5.99 733 
LiNO.i 6 06 523 
NaNOi 3 76 583 
KNOa . 2 57 581 
AgNO'f 2.76 481 
NaCldj 5.29 528 
NaOn , . 1. (>0 591 
KOH 1.61 633 

8.77 671 
BaCIa 5.75 1232 
Ca(3'.! . 6.03 1047 
PbC32 . 5,65 771 
PbBr^ . 4.29 761 
Pbl- . 5.18 648 
HgHr> . 4.62 608 
llgP . . 4.60 523 

Molecular .subsUiuccH; 
Hi . 0.028 0.22 0.13 14 
NO . 0.651 1 3.82 0.14 no 
HiO. 1.43 11.3 0.13 273 
Oz. 0.096 2.08 0.05 54 
A. 0.280 1.88 0.15 83 
NHa. 1.84 7.14 0.26 198 
N-i. 0.218 1.69 0.13 03 
CO . 0.200 1.90 0.11 68 
HCl. 0.606 4.85 0.10 159 
COi. 1.99 6.44 0.31 217 
CH,. 0.224 2.33 0.10 90 
HBr. 0.620 1 5.79 0.11 j 187 
Cl .. 1.63 7.43 0.22 170 
CCl4. 0.577 ■ 8.0 0.07 260 
CHsOH. 0.626 9.2 0.06 176 
CalliOH. 1.10 10.4 1 0.11 156 
CHaCOOH. 2.64 20.3 0.13 290 
Calle. 2.36 8.3 0.28 278 

ASm, cal. per 
degree 

1.70 
1.26 
2.73 
1.72 
2.15 
2.31 
1.97 
2.08 
2.44 
2.29 
2.32 
4.42 
2.49 
1.70 
2.19 
2.46 
1.82 
3.40 
5.29 
1.66 
2.63 
2.27 
2.48 
1.32 
2.03 
4.61 

6.19 
6.72 
5.53 
6.16 
4.65 
4.33 
3.10 
6.09 
8.18 

11.6 
6.45 
4.42 
5.72 
9.90 
2.71 
2.54 

13.07 
4.66 
6.77 
7.32 
5.63 
8.00 
9.09 
8.60 

2.0 
6.02 
5.26 
1.78 
3.38 
9.30 
3.46 
2.94 
3.20 
9.16 
2.49 
3.31 
9.69 
2.30 
2.08 
7.10 
9.21 
8.46 

Data are from Laiidolt's Tables. The heats of vaporisation tabulated for alkali halides are the 
energies required to break the crystal up into ions, rather than into atoms. 
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the heat of vaporization. This receives a ready explanation in terms of 

our model of a liquid as a crude ap})roximaiion to a solid but with many 

holes or vacant plac(\s. Suppose there are three or four chances out of a 

hundred that there will be a vacant spacer instead of an atom at a given 

point in the impcu’fect lattice. Then the energy of the substance will be 

a corresponding amount k'ss than if all points were oeaaipied, for ('ach 

atom will have a correspondingly smaller numbc'r of neighbors on th(^ 

average, and the energy of the crystal (‘om(\s from the attraction of neigh¬ 

boring atoms for each other. This is about tlu' right order of magnitude 

to account for the latent heat of fusion, then, and at the same time it 

indicates a density three or four per cent less for the liquid than for the 

solid, which is about the right onh'r of magnitiuh^ From Table X\T-1 

we sec that the situation is about the same for the alkali lialides (and 

prt^sumably for other ionic crystals) as for the mentals, if we understand l)y 

the latent heat of vaporization the energy nHiuin^d to break up tlie sub¬ 

stance into a gas of ions. 

In the case of molecular substances, the latent heat of fusion is a 

larger fraction of th(‘ latcnit lu^at. of vaporization, from 10 to 20 per cent 

or even higher, so that it seems clear that th(' liquid differs from tlie solid 

mon^ in these cases than with metals and ioni(^ substanec^s. In many of 

the molecular crystals, the molecules an^ fitted tog(ither in a n'gular 

arrangenKiiit, wher(\‘is in the* li(|uid there is presumably mor(^ tendency to 

rotation of the molecules, and they do not fit so j)erfectly. This tendcuicy 

would mak(i considerabh' change in the eiuu’gy and in the volume, and 

would repres(uit a feature which is absent with medals, where the atoms 

are effectively spherical. For example, in i(?e, as we shall se^.e later, the 

triangular water molecules are arranged in a d('finite structure, each 

oxygen being surrounded by four others, with the hydrogens in such an 

arrangement that the dipoles of adjacent molecule's attract each other. 

In liquid water, on the other hand, the arrangement is far less perfect 

and precise, the molecules are farther apart on centers, and one can 

understand the latent hc'at of fusion simply as th(^ work necessary to 

increase the average distance between the dipoles, against their attrac¬ 

tions. Presumably in all the molecular substances, it is more accurate to 

think simply of the increascKl interatomic distance as leading to the 

heat of fusion, rather than postulating holes in the structure as definitely 

as one does with a metal. However one looks at it, the liquid is a more 

open, less well-ordered structure than the solid, and the latent heat 

represents the work necessary to pull the atoms or molecules apart to this 

open structure. 

3. The Entropy of Melting.—When we look at the entropies of 

melting, in Table XVI-1, we see that there is a certain amount of regu¬ 

larity in the table. For most of the metals, the entropy of fusion is 



Sec. 3] THE LIQUID STATE AND FUSION 261 

between two and three calories. For the diatomic ionic crystals it is 

about twice as much, so that if we figure tlie (uitropy per atom instead of 

per molecmle it is about the saim^ as for the metals. As a first step toward 

understanding tlui enti'opy of melting, we might us(^ a rough argument 

similar to that of Chap. XIII, Sec. 5, where we dis(‘uss(3d the entropy 

changes in polymorphic transitions. We were th('ro interested in the 

slope of the transition curves ])(d.ween phas(‘s, but the (*alc!ulation we made 

was one of AaS/AF, the change of entropy betwecui two phases divided by 

the change of voliiuK'., and we assumed that the change of entropy with 

volume in going from one phase to another was the same as in changing 

the volume of a single phase. In this (\ase, using the thermodynamic 

relation 

we have 

^ AS _ thermal (\x})ansion 

AF compressibility 

(3.1) 

(3.2) 

From the relation (3.2), and the obser\'ed change of volume^ on melting, 

we can com|)ute the change of ('ntr()])y. In Table XVI-2 we giv(i values 

of volume of the solid pc'r mole ((extrapolated from room tc'inper'ature to 

the melting point by usc^ of th(‘ thermal expansion), volume of the liquid 

Table X\T-2.“ Calc'Clation of Entropy of Melting 

Molecular 

volume of 

solid, cc. 

Molecular 

volume of 

liquid 

aV 
Thermal 

exjiansioii 

A,S,„ 

computed observed 

Na 24.2 24.6 0.4 21 .6 X 10"'* 0,13 1.70 
Mg 14.6 15.2 0.6 7.5 0.36 1.26 
A1 10.6 11 .0 0.4 6.8 0.49 2.73 
K 46.3 47.2 0.9 25.0 0.15 1.72 
Fe 7.50 8.12 0.6 3.36 1 0.86 1.97 
Ag 10.8 11.3 0.5 5.7 0.69 2.19 
Cd 13.4 14.0 0.6 9.3 1 0.93 2.46 
NaCl 29.6 37.7 8.1 12.1 5.6 6.72 
KCl 40.5 48.8 8.3 11.4 i 4.0 6.15 
KBr 45.0 56.0 11.0 12.6 4.9 4.65 
AgCl 27.0 29.6 2.6 9.9 2.6 4.33 
AgBr 30.4 33.6 3.2 10.4 3.2 3.10 

Molecular volumes of the solid are calculated from observed densities at room temperature (os 
tabulated in Landolt’s Tables), extrapolated to the melting point by using the thermal expansion. For 
the ionic cr^'^stals, data on densities of liquids and solids are taken from Lorenz and Herz, Z. anorg. 

allgem, Chem., 145) 88 (1925). 
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at the melting point per mole, change of volume, thermal expansion, and 

A5 as computed from them by Eq. (3.2), for a iiumlxa* of solids for which 

the required quantities are known, and we compare with the values of 

as tabulated in Table XVI-1, which we rept'at for convenience. We 

see that the calculated entropies of melting are of the right order of 

magnitude, but that in most cases they are d(‘cid(‘dly smaller than th(^ 

observed ones. In other words, we must assume tbat the entroj)y a(du- 

ally increases in melting more than we should assume simply from tli(‘ 

change of volume, though as a first approximation that giv(‘s a usc'ful and 

partially correct picture of what happens. Tlu^ fact that tin' ratio of 

change of entropy to change of volume is approximately givcm by this 

simple picture shows that the cahuilation of Chap. XIII, S('c. 5, on th(^ 

slope of transition lines, will ap])ly roughly to th(' slope' of tlu' mc'lting 

curves, and this is found to be true experimentally. Of course', as with 

transitions bet-wenm soliels, there is gre^at variatie)n from one' mate'iial to 

another, anel occasional materials, e)f which water is the' most e*ojisj)ie*uous 

e>xample, actually have a dex^re^ase of vedume on me'lting, tliough thear 

entropy increases, so that in such cases redat ion (3.2) is ed)vie)usly entire'ly 

incorrect. ^ 

The simple argument we have given so far doe's not give' a yevy ade¬ 

quate interpretation of the entropy of me'lting, anel as a matte'r of fae*t no 

very complete theory is available. We can analyze' the problem a little' 

better, however, by considering it more in detail. We can imagine' that 

the entropy of the liquid should be greater than that of the se>lid for two 

reasons. First, at the absolute zeu'o, the solid has ze'ro e'ntropy. If we 

could carry the liquid to the absolute zero by sui)ere*e)oling, he)wever, we 

should imagine, at least by elementary arguments, that, its enti opy wejuld 

be greater than zero. The reason is that tin; atoms or mok'cudes of the 

liquid are arranged in a much more i-andom way than in the crystal, and 

since entropy measures randomness, this must lead to a positive entropy 

for the liquid. We shall be able to estimate this contribution to the 

entropy in the next paragraph and shall see that while it is apy)reciable, it 

is not great enough to account for iK'arly all of the entropy of fusion. 

‘ Secondly, there are good reasons for thinking that the specific heat of the 

liquid, at temperatures between the absolute zero and the melting point, 

would be greater than that of the solid. Thus the integral 
"Vp 

dT 

measuring the difference of entropy between absolute zero aiid the melting 

point will be greater for the liquid than for the solid, giving an additional 

reason why the entropy of the liquid should be greater than that of the 

solid. It is reasonable to think that this effect is fairly large, and the 

whole entropy of fusion can be regarded as a combination of the two 

effects we have lueutipaed. 
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Let us try first to estimate the contribution to the entropy of fusion on 

account of the randomiK'ss of arrangement of the atoms in a liquid. This 

calculation (;an be carri(Hi out at the absolute zero, and we can get some- 

thing of th(^ right order of magnitude by taking our simple picture of the 

li(piid as a mixture of atoms and holes. Let us assume N atoms and No. 
holes, wlien' a is a small fraction of unity. We may consider that these 

form a lattic(‘ of A^(l + a) points and may say very crudely that any 

ai*j’ang(‘m(ait of the N atoms and the Na holes on these W(1 + a) points 

will constitute a possi})l(^ ai*rangement of the substance having the same, 

low(\st energy Fn. By (dc^mentary probability theory, the number of 

ways of arranging N things of one sort, and Na of another, in N(1 + a) 

spa(*es, one to a spac(i, is 

W 
INp +a)]\ 

N\(Na)\ 
(3.3) 

Using Stirling’s formula, N\ = approximately, the expression 

(3.3) b(‘(*.omes 

W = (3.4) 

the powers of N and e (*anceling in numerator and denominator. Now 

we cai» calculate the (aitropy by Boltzmann’s relation S == k In TF, of 

Eq. (1.3), (3ia})ter HI. We have immediately 

S == A’^/r[(l -j- a) In (1 a) — a In a], (3.5) 

In th(‘ exi)ression (3.5) led us put a = 0.04, the value which w^e roughly 

('stimated from the lat(mt heat. Then calculation gives us at once 

>S = O.IGSA^A: = 0.33 cal. per degree per mole. (3.6) 

Th(‘ value (3.6), while appreciable compared with the values of Table 

XVl-1, which are of the order of magnitude of two or more calories 

p(U' d('gi e(', is d(‘finitely kiss, so much less that it cannot possibly account 

for the whole entropy of fusion. I.et us see what value of a we should 

have to take to g('t tlui whole entropy of fusion from this term. If we set 

a = 1, for instance, we have 

S = l.SSWA: = 2.75 cals, per degree per mole, (3.7) 

about the right value. But this would correspond to an equal mixture 

of atoms and holes, a substance with a density only half that of the solid, 

which is clearly impossible. It is imlikely that the crudity of our calcula¬ 

tion could make a very large difference in the result, so that we may 

conclude that the effect of randomness on the entropy of fusion is impor- 
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tant, but not the only significant effect. In this connection it is interest¬ 

ing to note that in one or two cases supercoohnl licpiids liave b(‘en carried 

down practically to the absolute zero and their s])ecific heats measured, so 

that the entropy could be detcnmined at the absolute zero. To within 

an error of a few tenths of a unit, the entropy was found to be zero. This 

would not exclude' an entropy at 1h(' absolute zero of tlie order of magni¬ 

tude of Kq. (3.5), whi(*h seems possible, but it de'finitely vv’^ould show that 

the entroj)y difien'nce' between solid and liquid comes mostly at tempera¬ 

tures above' the absolute ze're). 

It appears from the ju'evious paragraph tliat the* larger part of the 

entropy of fusion must arise because the lieiuiel lias a larger specific heat 

than the' solid in the hype)thetical state of supeivexiling, so that its entropy 

difference betweeni a])solute ze'ro an el the' me'lting ])oiiit is greater than for 

the solid. An indication as te) why this shenild be‘ true is seen in the 

preceding })aragrai)hs eif tlie pre'se'iit section, where we^ have' discussed 

the change of entreij^y with vedume. 'I'his is repre'se'nted graphically in 

Fig. XIII-3, where the entropy is she)wn as a functiem e)f te'mpei*ature, foi’ 

several volume's. At large'r ve)lumes (as V = Vo in Fig. XIlI-3), the 

natural frequencie's eif molecular vibration are leiwer, se) that the spe'cific 

heat rises to its classical value at lower temperature's, and the si)ecific 

heat, and consequently the entropy, ai*e gremter than at the smaller 

volume (V — 0.7Fo in the figure, for instance). In the particular case 

shown in the figure, the entropy differeiu'e^ between tlie two volumes 

showm, which differ by 30 pe'r cent, amounts to about three entropy units 

at temperatures above 300° abs. Something of the same effect, though on 

a smaller scale, would be expected in comparing solids and liquids, as we 

have mentioned at the beginning of this section. The liquid is a more 

open structure, having tlierefore lowin’ frequencies of molecular vibration 

and a more nearly (*lassical spc'cific heat at low temperatures. Thus its 

entropy diffenmee between th(^ absolute zero and the melting point, if 

the liquid really could b(^ carried to absolute zero, would be gn^ater than 

for the solid. By itself, however, as we can judge from Table XVI-2, it 

seems unlikely that this effect would be larg(^ enough. If 30 per cent 

difference in volume amounts to three entropy units, w(‘ should need 

something like 15 per cent difference in volume to account for the approxi¬ 

mately 1.5 entropy units needed, when we take account of possible 

entropy of the liquid coming from randomness. And this is more than 

the actual difference in volume, in most cases. Nevertheless, there is an 

additional feature of difference between the liquid and solid»that might 

lead to still higher specific heat and entropy for the liquid. In Fig. XVI-1 

we have seen the type of potential to be expected for an appreciable 

number of atoms, those that are capable of shifting to a near-by position 

of equilibrium with small expenditure of energy. This is so far from the 
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potential of a linear restoring force that our whole discussion of specific 

heats, which rests on simple harmonic motion, does not apply to it. As a 

matter of fact, the energy levels in a potential of the type shown in Fig. 

XVI-1 lie closer togc^ther than we should suppose from our study of linear 

rc'storing forces. But in general, the closer together the energy levels of 

any problem are, the lower the temperature at which its specific heat 

becomes api)roximately classical. This reason to expect a high specific 

heat for a supercooled liquid, in addition to those alrc.uidy discussed, is 

probably enough to account for the entroi)y diffc'nautc^ Ixdween the liquid 

and th(' solid. It is vovy hard to get a satisfactory way of calcuilating the 

magnitude of this entropy difference, how(‘ver, and w(i must remain (con¬ 

tent with a qualitative explanation of the A^ahu^s of Table XVI-l. One 

thing is cT‘ar from our discussion: it will hardly be possible to understand 

fusion without studying the licpiid state as woll as the solid state from 

the standpoint of thc^ quantum th(‘ory, and this is a field that has hardly 

becm (explored at all. No treatment based ])urely on (classical theory can 

be expended to l)e v(uy good. 

4. Statistical Mechanics and Melting.Objendion might be made to 

our argument of the pr(n*eding section, in whicli we considennl a hypo¬ 

thetical supercooled state of the liquid down to th(^ absolute zero, on the 

ground that that state is not one of thermal equilibi’ium and that we can¬ 

not properly consider it by itself at all. A correct statistical treatment 

should yield the equilibrium state at any temperatui’e; that is, below 

the melting point it should give the solid, above the melting point the 

liquid, with a discontinuous change in prop(ndi(\s at that point. We 

shall now show by a simple example that the statistical treatment really 

wdll give such a discontinuous change, but that neverthedess our method 

of treatment was entirely justified. We shall calculate the partition 

function, and from it the free energy, of a simple mod(‘l of solid and liquid, 

and shall show that the free (uiergy as a function of temperature is a 

function with practically a discontinuous slope at a given ternpe^rature, the 

melting point, below which one phase, the solid, is stable, and above 

which another, the liquid, is the stable phase. 

To describe our model, wc shall give its energy levels, so that we can 

calculate the partition function directly. The simplest model that shows 

the properties we wish is the following. We assume a single level, at 

energy NEgj where N is the number of atoms, corresponding to the solid. 

At a higher energy, NEi^ we assume a multiple level corresponding to the 

liquid. The energy is higher on account for example of the greater 

interatomic distance in liquids. The multiplicity of the level arises, for 

example, on account of the randomness of molecular arrangement. We 

assume that the multiple energy level at NEi really consists of coin¬ 

cident levels, where tc is a constant. Then the partition function is 
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_NE, 

z == ( + kT ^ (4,1) 

and the Helmholtz iwo ('iiergy, which is ecinal to tin' Gibbs free energy 

in this case where there is no pressure, is 

/ __NE. NEi\ 

a =r. -kT In \r (4.2) 

If we had only th(' solid, or only the single at NE^^, the partition 

function would have contained only the first t(‘rm in lilcp (4.2), and the 

free (‘iiergy would have been 

G', = NE... (4.3) 

If w(‘ had only the licpiid, or the multipl(‘ lev(‘l at NEi, w(‘ should hav(‘ had 

only the second t('rm in Eq. (4.2), aiid the fnn' (niergy would hav(‘ becai 

G, = NEi ~ (Nk\nw)T, (4.4) 

in which the first term, NEi, is th(^ internal (uu'rgy, and Nk In w’ is tlu^ 

entropy, exactly analogous to Eq. (E3), Chap. Ill (the number of state's 

Fig. XVI-2.-—Crihbs free energy as function of temporaturo, for sim]>Iified model of solid 
and liquid, illustrating change of phase on melting. 

is here so that the entropy should be k In (w^') — Nk In w). For free 

energy as a function of tempc'rature we should then hav(i the two straight 

lines of Fig. XVI-2, the horizontal one representing the solid, the sloping 

one the liquid. The slope of the curve measures the negative of the 

entropy, as we see at once from Eqs. (4.3) and (4.4), where the solid has 

zero entropy, the liquid the positive entropy Nk In w. This accords at 

once with the thermodynamic relation S = '—(dA/dT)v = —{dG/dT)p. 
From Fig. XVI-2, we see that the solid has the lower free energy at tem¬ 

peratures below the intersection, on account of its lower internal energy, 

while the liquid has lower free energy above the intersection, its greater 

entropy resulting in a downward slope which counteracts its greater 

internal energy. The melting point comes at the intersection, at the 
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temperature where = (?/, or at 
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El ~ E. ^ L,. 
k 111 w ASr,, 

(4.5) 

wh(^re tJie latent heat of nutting, Lmj equals N(Ei — E^) and the entropy 

of melting, equals Nk In w. 
The calculation we have just made, considei'ing the solid and liquid 

separately, drawing a free energy curve for (‘ach, for all temperatures, 

whether tln^y are stable or not, and finding which free (‘lua'gy curve is 

lower at any givcm temperature', is analogous to the method used in 

this chapt(‘r to discuss fusion and also to tlu^ medbod used in Chap. XII, 

for (‘xamj)le in Fig. XlI-4, in discussing vaporization by Van de^r Waals’ 

('(piation. Propf'rly, howevc'r, we should have^ used directly the single 

free energy formula (4.2), and plotte'd it as a function of temperature. 

This almost pi-ecTse^ly equals the function wheai T < Tm, and Gi when 

T > Tm- For if T << the first term in the bracket of Eq. (4.2) 

is much larg('r than tlu^ scK^ond, and Eq. (4.3) is a good approximation to 

Eq. (4.2), while if T > > Tt,, the second term is much larger than the 

first, and Eq, (4.4) is th(' corn'ct approximation. The formula (4.2), 

however, rcpres('nts a curve which joins thesv' two straight lines con¬ 

tinuously, bending sharply but not discontinuously through a small range 

of t(imperatur(‘s, in which the two terms of J^]q. (4.2) are of thc^ same 

order of magnitude. For practical purposes, this range of temperatures is 

so small that it can b(^ neglected. Let us com])ute it, by finding the 

temp(a*atur(‘ T at whic^h the second term in the bracket of Eq. (4.2) has 

a certain ratio, say c, to the first term. That is, we have 

using Eq. (4.5). 

-NEi 

w^e 
" - NE. * 

e 

In c = iV In w — 
N(Ei ~ E,) 

kT 

- JV In 

Thus we have 

(4.6) 

T - T„, ^ In c 

T N In w 
(4.7) 

Here In is of the order of magnitude of unity. If we ask for the tem¬ 

perature when the second term of Eq. (4.2) is, say, ten times the first, or 
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one tenth the first, we have c equal respectively to 10 or that In c 
is of the ord(‘r of magnitude of unity, and positive or negative as the case 

may be. Thus (T — Tr,i)/T is of the order of 1/Nj showing that the 

range of temperature in which the correct free energy departs from the 

lower of the two straight lines in Fig. XVI-2 is of the order of 1/iV of 

the melting tempcn'aturt^, a wholly negligible range if N is of the order of 

the number of molecules in an ordinary samph'. Thus, our procedure 

of finding the intersection of the two curves is c'ntirely justified. 

The real situation, of course, is much more complicated than this. 

Theri^ are many stationary states for the solid, correK^onding to different 

amounts of ('xcitation of vibrational energy; when we compute the parti¬ 

tion function considcndng all these states, and from it the free energy, we 

get a curve like those of Fig, XIIl-6, curving down as the temi)erature 

increases to indicate an increasing entroj)y and spc‘cific heat. Similarly 

the licpiid will have not merely one multiph^ level but a distribution of 

stationary states. There is even good n^ason, on the quantum theory, to 

doubt that the lowest h'vel of the liquid will be multiple at all; it is much 

more likely that it will be sjm'ad out into a group of closely spa(urd, but 

not exactly coincidcait-, kwels, so that the entropy will really be zero at 

the absolute zero, but will rapidly increase to the valiKi characteristics 

of tins random arrangement as the temperature rises above absolute zero. 

However this may be, tlnn-e will surely be a great many more levcds for 

the liquid than for the solid, in a given range of energies, and the liquid 

levels will li(' at definitely higher energies than those of the solid. This is 

all we need to have a partition function, like Eq. (4.1), consisting of two 

definite parts: a set of low-lying levels, which are alone of importance at 

low temperature's, and a very much larger set of higher hsvels, which are 

negligible; at low temperatures on account of the small exponential Befitz- 

mann factor but which become much more important than the others at 

high temperature, on account of their great number. In turn this will 

lead to a free energy curve of two separate segments, joined almost with 

discontinuous slope at the melting point. 

It is not impossible, as a matter of fact, to imagine that the two 

groups of levels, those for the solid and for the liquid, should merge 

partly continuously into each other. An intermediate state between solid 

and liquid would be a lieiuid with a great many extremely small particles 

of crystal in it, or a solid with many amorphous flaws in it that simulated 

the properties of the liquid. Such states are dynamically possible and 

would give a continuous series of energy levels between solid and liquid. 

If there were enough of these, they could affect our conclusions, in the 

direction of rounding off the curve more than we should otherwise expect, 

so that the melting would not be perfectly sharp. We can estimate 

very crudely the temperature range in which such a hypothetical gradual 
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change might take place, from our formula (4.7). Suppose that instead 

of considering the melting of a large crystal, we consider an extrcimely 

small crystal containing only a few hundred atoms. Then, by Eq. (4.7), 

the temperature range in which the gradual chang(^ was taking place 

might be of the order of a fraction of a pc^r (^ent of tlu^ melting tcunperature, 

or a degree or so. Crystals of this size, in oih(U’ words, would not havc^ a 

I)erfectly sharp melting point, and if the material bn^aks up into as fine¬ 

grained a structure as this around the melting point, even a large crystal 

might melt smoothly instead of discontinuously. Tlu^ fact, how(^v('r, that 

observed mcdting points of pure materials are as sharp as tlu^y are, shows 

that this effect cannot be very important in a large way. In any cas(', it 

cannot affect the fundamental validity of the sort of calculation which 

we have made, finding the melting point by intersection of free energy 

curves for the two phases; for mathematically it simi)ly amounts to an 

extremely small rounding off of the inters(‘ction. We shall come back to 

such questions later, in (Tap. XVHI, wlu^re we shall show that in ccTtain 

cases there can b(^ a large rounding off of such iniers(M‘tions, with (a)rre- 

sponding continuous change in entropy. This is not a situation to be 

expected to any extcmt, however, in the simple' j)roblem of melting. 



CHArTER XVII 

PHASE EQUILIBRIUM IN BINARY SYSTEMS 

In the precedinp^ chapter we have been considering- tlie equilibrium 

of two phas(\s of tlu' saim^ substances Some^ of the most iin})oi‘tant cases 

of equilibrium com(% howewer, in l)inarv systeuns, syste'ms of two com¬ 

ponents, and we shall take them up in this chaptcT. We can best, under¬ 

stand what is mc'ant by this by some (sxamples. The two c.ompoiKUjts 

mean simply two substances, which may b(^ atomic or molecular and 

which may mix with (iach other. For instance, the^y may be substances 

like sugar and water, one' of whi(*h is soluble' in the' e)the'r. The>n the' study 

of phase eepiilibrium becomes the study e)f solubility, the limits of se>lu- 

bility, the effeed, of the solute on the^ va])or pre'ssure, boiling point, me'lting 

point, e'tc., of the solvent. Or the components may be metals, like co])per 

and zinc, for instance. Them we^ me'e't the study ejf alloys and the^ whedei 

field of metalliii'gy. Of emurse', in med-allurgy one e:)fte'n has to deal with 

alloys with more than two components—ternary alloys, for instance, with 

three compone'iits—but they are considei'ably mo?-e complicateKl, and wo 

shall not deal with them. 

Binary systems can ordinarily exist in a number of phase^s. For 

instance, the^ sugar-wate'r systeun (*an exist in the vapor phases (praed.ie^ally 

pure wat<;r vapor), the liepiid phase (the solution), and two solid phases 

(pure solid sugar and ice^. The^ copper-zinc system (the alloys that form 

brasses of various compositions), can exist in vai)or, liquid, and five or 

more solid phases, each of which can exist over a range of compositions. 

Our problom will be to inv(\stigate the (equilibrium bcetween thesce phases. 

We notice in the first place tiiat we now have three independent variables 

instead of the two, which w(^ have ordinarily had before. In addition to 

pressure and temperature, we have a third variabh^ measuring the com¬ 

position. We ordinarily take this to be the relative concentration of one 

or the other of the compommts, Ni/{Ni + N2) or N2/(Ni + V’2), as 

employed in Chap. VIII, Sec. 2; since thefse two quantities add to unity, 

only one of them is independent. Then we can express any thermo¬ 

dynamic function, as in particular the Gibbs free energy, as a function 

of the three independent variables pressure, temperature, and composi¬ 

tion. We shall now ask, for any values of pressure, temperature, and 

composition, which phase is the stable one; that is, which phase has the 

smallest Gibbs free energy. In some cases we shall find that a single 
270 
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phase is stable, while in other cases a mixture of two phases is more stable 

than any single phase. Most phases are stable over only a limited range 

of compositions, as w(‘ll as of i)r(\ssure and tcanperature. For instance, in 

th(? sugar and water solution, the liquid is stable at a given temperature, 

only up to a cei*tain maximum concentration of sugar. /Vbove this 

(;onc(aitration, the sta})le form is a mixtun^ of saturatc^d solution and 

solid sugar. The solid phas(\s in this case, solid sugar and solid ice, are 

stable only for quite definite' compositions; for any other composition, 

that is foi‘ any mixture of sugar and water, the stable form of the solid is a 

mixture' e)f sugar and ice. On the' othe'r hand, we have stated that the 

solid phases of brass are stabler over a considerable range of compositions, 

tlie)ugh for inteu*me'diate ce)mposit ions mixture's of two solid phases are 

stable. In stuelying tlie^se^ siibje'e*ts, the first thing is to get a epialitative 

idea of the varieais sorts efi’ jfiiases that exist, and we proceed to that in 

the folle)wing section. 

1. Types of Phases in Binary Systems.—A two-component system, 

like a system with a singk' compoiH'iit, can exist in solid, liquid, and 

gas(H)us phases. The gas [)hase, of course, is perfectly simple: it is simply 

a mixtun^ of th(' gas phase's of the' two comi)onents. Our treatment of 

chemical equilibrium in gases, in Chap. X, includes this as a special 

case. Any two gases can mix in any proportions in a stable way, so long 

as they cannot rea(*t ch('mi(*ally, and w(^ shall assume on^ the simple case 

where^ th('- two com])onents do not react in the gaseous phase. 

The liepjid phase' e)f a two-component system is an ordinary se)lution. 

The familiar solutions, like that of sugar in water, exist only when a 

relatively small ameaint of one of the components, call eel the solute (sugar 

in this case') is mixed with a relative'ly larger amount of the' other, the 

solveuit. But this is the^ case' mostly with components of very different 

physical prope'rties, like sugar and water. Two similar components often 

form a liquid ])hase stabler over large ranges of composition, or even for all 

ce)mpositions. Thus water and ethyl alerohol will form a solution in any 

pro])ortion, from pure wate'r to pure alcohol. And at suitable tempera¬ 

tures, almost any two metals will form a liquid mixture stable at any 

composition. A liquid solution is similar in physical pre)perties to any 

other liquid. We^ have seen that an atom or molecule in an ordinary 

liquid is surrounded by neighboring atoms or molecules much as it would 

be in a solid, but the ordered arrangement does not extend beyond nearcist 

neighbors. When we have a mixture of components, it is obvious that 

each atom or molecule will be surrounded by some others of the same 

component but some of the other component. If an atom or molecule of 

one sort attracts an unlike neighbor about as well as a like neighbor, and 

if atoms or molecules of both kinds fit together well, the solution may well 

have an energy as low as the liquids of the individual components. In 
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addition, a solution, like a mixture of f!;ases, has an entropy of mixing, so 

that the entropy of the solution will greater than that of the com¬ 

ponents. In such a (‘ase, then, the Gibbs free energy of the solution will 

be lower than for the pure licpiids and it will be the stable phase. On 

the otlier hand, if t he atoms or mol(H*ules of the two sorts fit t ogether badly 

or do not atti'act each other, tlie energy of the solution may well be greater 

than that of the j)ure licpiids, (mough greater to make the^ free energy 

greater in sjnte of the entropy of mixing, so that the stable situation will 

be a mixi ure of the pure licpiids, or a liquid and solid, depcaiding on the 

temperature. Thus oil and water do not dissolve in each other to any 

extent. Tlu^ir molecules are of v(ay different sorts, and the energy is 

lower if water molecules are all close togetlKU’ and if the oil molecules 

are congregatcHi tog('ther in another rcigion. That is, the staTle situation 

will l)e a mixture of th(' two phases, forming separate^ drops of oil and 

water, or an (anulsion or suspcaision. A veny little oil will pr(\sumably be 

really dissolved in the water and a very litt le water in the oil, but the drops 

will be almost pur(‘. 

As we hav(' just seen, the condition for the existence of a liquid phase 

stable for a wide range of concentrations (that is, for a large; solubility 

of one substance in another), is that tlie forces acting betw(;en atoms or 

molecules of one component and those of the other should be of the same 

order of magnitifde as the for(*es between pairs of atoms or molecules of 

either comf)onent, so that the internal energy of the solution will be at 

least as low as that of the mixture, and the entropy of mixing will make 

the free energy lower for the solution. Let us consider a few specific 

cases of high solubility. In the first place, we are all familiar with the 

large solubility of many ionic salts in water. The crystals break up into 

ions in solution, and these ions, being charged, orient the electrical 

dipoles of the water around them, a positive ion pulling the n(;gativoly 

charg(‘d oxygen end of the water molecule toward it, a negative ion pulling 

tlu; positively charged hydrogem. This leads to a large; electrical attrac¬ 

tion, and a low energy and free energy. The resulting free energy will be 

lower than for the mixture of the solid salt and water, unless the salt is 

very strongly bound. Water is not the only solvent that can form ionic 

solutions in this way. Liquid ammonia, for instance, has a large dipole 

moment and a good many of the same properties, and the alcohols, also 

with considerable dipole moments, are fairly good solvents for some ionic 

crystals. 

Different dipole liquids, similarly, attract each others^ molecules by 

suitable orientation of the dipoles and form stable solutions. We have 

already mentioned the case of alcohol and water. In ammonia and 

water, the interaction between neighboring ammonia and water molecules 

is so strong that they form the ammonium complex, leading to NH4OH 



Sec. 1] PHASE EQUILIBRIUM IN BINARY SYSTEMS 273 

if tho romposition is correct, and a solution of NH4OH in either water or 

aniinonia if there is (excess of either compoiKuit. The substance NH4OH 
is ^i;('nerally considered a chemical compound; but it is probably more 

corr(>(‘t sim]>ly to recognize that a maghboring water and ammonia mole- 

cul(' will organize thems(‘lvf\s, whatever may be th(i composition of the 

solutioTi, in such a way that one of the hydrogens from the water and 

th(‘ t]ii(H^ hydrogens from th(^ ammonia form a fairly regular tetrahedral 

arrangennent about the nitrogcai, as in the ammonium ion. There are no 

])rop(‘rti(^s of th(‘ ammonia-waUu* system which behave strikingly differ¬ 

ently at the compositioji NH4t)H from what they do at neighboring 

con(*(‘ntj-ations. 

Solutions of organic siibstanc(\s are almost invariably made in organic 

solvc'iit-s, simply b(‘caus(‘ h(‘re again the attractive forces })etween two 

differemt ty})(\s of molecuki are likely to be large if the molecules are 

similar. Diffeu’ent hydrocar])ons, for instance', mix in all proportions, as 

one is familiar with in th<^ mix! unss forming kerosene, gasoline, etc. The 

force's betwc'e'n an organic sedvent anel its sejlute', as between the molecule^s 

of an e)rganic liepiid, are^ largely Van der Wauls fe)rc(\s, though in some 

e'ase^s, as the ale*()he)]s, there are dipede forceis as well. 

In the' me'tals, the samei type^ of irite^ratomic force acts between atoms 

of diffe'H'ut metals that acts between atoms e)f a single elemiemt. We have 

already stateal that fe)r this reiason liejuid solutions e)f many me'tals with 

e\ae^h e)the'r exist in wide ranges of composition. There are many other 

cases in which two substances ordinarily se)liel at room tempen-ature are 

soluble in e'ach other when liquefieel. Thus, a gre'at variety of molten 

iemic crystals are soluble in e'.ach other. And among the silicates and 

other subst ances hedd by vale'ncc bonds, the liquid phase permits a wide 

range' of comi)ositions. This is familiar from the glasses, which can have 

a continuous variability of composition and which can then supercool to 

essentially solid form, still with quite arbitrary compositions, and yet 

pc'rfectly homogeneous structure. 

Solid phase's of Innary systems, like the liquid phases, are very com¬ 

monly of variable composition. Here, as with the liquid, the stable range 

of composition is larger, the more similar the two components arc. This 

of course is quite contrary to the chemists^ notion of definite chemical 

composition, definite structural formulas, etc., but those notions are 

really of extremely limited application. It happens that the solid phases 

in the system water—ionic compound are often of rather definite com¬ 

position, and it is largely from this rather special case that the idea of 

definite compositions in solids has become so firmly rooted. In such a 

system, there are normally two solid phases: ice and the crystalline ionic 

compound. Ice can take up practically none of any ionic compound, so 

that it has practically no rangeiof compositions. And many ionic crystals 
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take up practically no water in their crystalline form. But there are 

many ionic crystals which are said to have water of crystallization. 

Water molecules form definitely a part of the strindure. And in some of 

these the proportion of water is not definitely fixed, so that they form 

mixed phases of vamable composition. 

Water and ionic compounds are v(ay diff('rent types of substances, and 

it is not unnatural that they do not form solids of variable composition. 

The reason why water solutions of ionic substance's exist is that the water 

molecules can rotate so as to be attracted to the ions; this is not allowed 

in the solid, whei*e the ice structure demands a fairly definite orientation 

of the molecule. But as soon as we think about solid phases of a mixture 

of similar components, we find that almost all th(' solid phases exist ov('r 

quite a range. Such i)hases are often called ])y the ch(‘mists solid solu¬ 

tions, to distinguish them from cln'inical compounds. This distinction 

is valid if we mean by a cln'inical (‘ompound a phase' which really exists 

at only a quite definite (composition. But the (‘hc'mists, and particularly 

the metallurgists, are not always caneful about making this distiiuction; for 

this reason the notation is misleading, and we shall not often use it. 

Solid phases of variable composition exist in the same cases that we 

have already discussed in connection with licpiids. Thus mixture's (^f 

ionic substances can often form crystals with a range of (composition. 

The conditions under which this range of composition is largce are what we 

should naturally suppose: the' ions of the two (components should b(; of 

about the same size and valencec, and the two components should be 

capable of existing in the samec crystal structure. We shall meet many 

examples of such solids of variable composition later, wlucn we come' to 

study different types of materials. The best-explored range of solid 

compounds of variable composition comes in m(ctallurgy. Here an atom 

can replace another of the same size quite freely but not another of rather 

different size. Thus the copper and nickel atoms have about the same 

size; they form a phase stable in all proportions. On the otlucr hand, 

calcium and magnesium have atoms of quite different sizes, normally 

existing in different crystal strmetures, and they cannot be expected to 

substitute for each other in a lattice. They form, as a matter of fact, as 

close an approach to phases of definite chemical composition as we find 

among the metals. They form three solid phases; pure magnesium, pure 

calcium, and a compound Ca3Mg4, and no one of these is soluble to any 

extent in any of the others; that is, each exists with almost precisely fixed 

composition. Most pairs of elements are intermediate between these. 

They form several phases, each stable for a certain range of compositions, 

and often each will be centered definitely enough about some simple 

chemical composition so that it has b(3en customary to consider them as 

being chemical compounds, though this ii not really justified except in 
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such a definite case as Ca3Mg4. ^ Each of the phases in general has a 

different crystal structure. Of course, the crystal cannot be perfect, for 

ordinarily it contains atoms of the two components arranged at random 

positions on the lattice. It is the lattice that determines the phase, not 

the positions of the metallic atoms in it. But if the two types of atom in 

the lattice are very similar, tliey will not distort it much, so that it will 

be practically perfect. For compositions intermediate; betweeji those in 

which one of the phases can (;xist, the stable; situation will be a mixture of 

the two phases. This oceairs, in the solid, e)rdinarily as a mixture of tiny 

crystals e)f the; two phases, (;ommonly of microscopic size, with arbitrary 

arrang(;ments and size‘s. It is obvious that the pre)perties of such a 

mixture will depend a groat deal on the size' and orientation of the crystal 

grains; the;se are things not cemsielered in the thermodynamical theory at 

all. 

2. Energy and Entropy of Phases of Variable Composition.—The; 

remarks we have just made about mixtures of crystalline phases raise the 

question, what is a single' ])hase anyway? We have not so far answered 

this que'stion, pre;ferring to wait until we had some' example;s to consider. 

A single phase is a mixture; that is he)me>gen('e)us right down to ate)mic 

dimensions. If it has an arbitrary compe)siti(m, it is o})vious that really 

on the; atomic scale it cannot be he)mogeneous, but if it is a single phase 

we assume that thei'e is no tendency for the two types e)f atom to segregate 

ird/O diffe'r(;nt patches, e've'n pate'he's e)f only a few atoms acTOSs. On the 

other hand, a mixture of phase's is suppe)se'd to be one; in which the two 

types of atoms segregate into patches of microscopic or larger size. These 

two types of substan(.;e have epiite different thermodynamic b(;havior, 

both as to internal energy and as to entre)py. We shall consider this 

distinction, particularly for a metallic solid, but in a way which applies 

equally we;ll to a liquid or other type of solid. 

Suppose our substance is made of constituents a and 6. Let the 

relative concentration of a be Ca = x; of 6, = 1 — x. Assume the 

atoms are arranged on a lattice in such a way that each atom has s neigh¬ 

bors (s = 8 for the; body-centered cubic structure, 12 for face-centered 

cubic and hexagonal close packed, etc.). In a real solid solution, or 

homogeneous phase, there will be a chance x of finding an atom a at any 

lattice point, a chance 1 — a: of finding an atom b. We assume a really 

random arrangement, so that the chance of finding an atom at a given 

lattice point is independent of what happens to be at the neighboring 

points. This assumption will be examined more closely in the next chap¬ 

ter, where we take up questions of order and disorder in lattices. Then 

out of the s neighbors of any atom, on the average sx will be of type a, 

s(l — x) of type b. If we consider all the pairs of neighbors in the crystal, 

we shall have 
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"N 
—pairs of typo aa 

Ns(i - xy . ,, 
-~ type 00 

Nsx(\ — x) pairs of typo ah. (2.1) 

Hero N is th(i total number of atoms of both sorts. The factors ^ in 

Eq. (2.1) arise because (^ach i)air must be counted only once, not twice 

as we should if we said that the number of ])airs of type aa ('quah'd th(^ 

number of atoms of type a (Nx) times the number of neiG;hbors of type a 

which each one had (,s.r). Now we make a sirnph' assumi)tion rc'garding 

the energy of the crystal at the absolute zero. We assunu^ that tlu^ total 

energy can be writt(ui as a sum of terms, one for each pair of lu'arest lungh- 

bors. We shall be intej*ested in this ema-gy only at th(' normal distance 

of separation of atoms. At this distance, we shall assume that the (‘inu-gy 

of a pair aa is Eaa, of a pair hb is Em,, and of a pair ah, Eah> All these 

quantities will be negative, if we assume the zero state of energy is th(i 

state of infinite separation of the atoms (the most convenient assumption 

for the present purpose) and if all x)airs of atoms attra(;t each other. 

Then the total energy of the crystal, at the absolute' zero, will be 

Nsx^ 

~T~ 
Eaa + + Arsj:(i _ ;r)J5,U 

Ns 

2 
xEaa + (1 “ x)Ebh + 2a:(l — x) 

Eaa + Eb\ 

■ Jy (2.2) 

According to our assumptions, the energy of a crystal wholly of a is 

{Ns/2)Eaay and wholly of h is {Ns/2)Ebb^ Thus the first two terms on the 

right side of Eq. (2.2) give the sum of the energies of a fraedion x of 

the substance a, and a fraction (1 — x) of h. The^se two would give tlu^ 

whole energy in case we simply had a mixture of crystals of a and h. But 

the third term, involving x(l — x), is an additional term arising from the 

mutual interactions of the two types of atoms. The function x(l — x) is 

always positive for values of x between 0 and 1, being a parabolic function 

with maximum of i when x — and going to zero at x = 0 or 1. Thus 

this last term has a sign which is the same as that of Eab — {Eaa + Ebb)/2. 

If Eah is more positive than the mean of Eaa and Ebb (that is, if atoms a 

and h attract each other less strongly than they attract atoms of their own 

kind), then the term is positive. In this case, the solution will have 

higher energy than the mixture of crystals, and if the entropy term in 

the free energy does not interfere, the mixture of crystals will be the more 

stable. On the other hand, if Eab is more negative than the mean of Eaa 

and Ehbj so that atoms of the opposite sort attract more strongly than 

either one attracts its own kind, the term will be negative and the solution 
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will hav(^ the lower energy. In order to get the actual internal energy at 

any tempcn’ature, of course we must add a sp(‘.cific. heat tcu'm. We shall 

ado])t the crude hypothesis that the specific heat is ind('pendent of 

composition. This will be approximately triu^ with systc^ms made of two 

similar components. Then in general we sliould hav(» 

+ (1 - x)E,, + 2:r(l 
Eaa + Eb^ 

(2.3) 

Next, let us consider the entropy of the homogeneous phase and 

compare it with the entropy of a mixtun' of two pure components. The 

(‘ntroi)y of th(^ pure c.omporuaits will be just the pai-t determined from the 

specific heat, or I 7,7 dT, But in the solution t here will be an additional 
Jo 1 

term, th(^ enti’opy of mixing. This, as a matber of fact, is just the same 

term found for gases in Eep (2.12), (diap. VIII: it is 

AS — —Nk[x In .r + (1 — x) In (1 — a*)], 

in the notation of the present chapter. We can, however, justify it 

directly without appealing to the theory of gases, w^hich certainly cannot 

b(' (‘xpected to ai)ply directly to the present case. We use a method like 

that used in deiiving Eq. (3.5), Chap. XYI. We have a lattice with 

N points, acc'omodating Nx atoms of one sort, N{\ — :r) of another sort. 

There are then 

^ (iV^) !(V(r-3-)]! 

w^ays of arranging the atoms on the lattice points, almost all of w^hich 

have approximately the same energy. Using Stirling’s formula, this 

becomes 

W 
x''{i — 

(2.5) 

By Boltzmann’s relation = A: In W, this gives for the entropy of mixing 

AS = *-N/c[x In X + (1 — x) In (1 — :r)]. (2.6) 

The other thermodynamic functions arc also easily found. If we confine 

, ourselves to low pressures, of the order of atmospheric pressure, we can 

neglect the term PV in the Gibbs free energy of liquid or solid. Then the 

Helmholtz and Gibbs free energies are approximately equal and are given 

by 
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U + NkT[x \nx + (I - x) In (1 - T 
Jo T 

(b)Ec,b- 

where U is given in Eq. (2.3). 

We have now found approximate values for the thermodynamic 

functions of our homogeiK^ous j^hase. The entropy is greater tlian that 

of the mixture by the term (2.6), and th(‘ internal energy is either 

greater or smaller, as we have seen. To illustrate our results, we give 

in Fig. XVII-1 a sketch of G as a function of x, for three cases: 

(a) Ea, - {E^.a + E,,)/2 > 0; {h) E^t - (Eaa + E,,)/2 = 0; (e) E., - 
_ (Eaa + Ebh)/2 <0. We observe that in 

('ach case the free entn-gy begins to 

_decrease sharply as x iiicreas(\s from 

I zero or dc^creases from unity. This is 

Ox, 0.5 ^2 J ^ account of the logarithmic function 

(q) ^ 0 in the entropy of mixing (2.6). But in 

-n case (a), wh(u-e the atoms ])refer to 

_ _”"”7 .segregate rather than forming a homo- 

\ X g(meous phase, the fr(H^ eiK'rgy then ris('s 

for intermediate concentrations, while in 

I__ case (6), where the atoms arc^ indilf(‘rent 

^ E ^ + E ^ ^ to their neighbors, or in (c) w]j(a‘(^ they 
(b)Eo,b ^ = 0 definitely prefer unlike neighbors, the Ofree energy falls for internualiate con¬ 

centrations, more strongly in case (c). 

In each case we have drawn a dotted line 

connecting the points x = 0 and x = 1. 

This repre^sents the free energy of the 

mixture of crystals of the pure compo¬ 

nents. We see that in cases (b) and (c) 

the solution always has a lower free 

Q Q 5 eiK^rgy than the mixture of crystals, but 

(c) in (a) there is a range where it does not. 

ri«. XVII-I.-Gibbs free energy of Howiiver, W(! shall SCO 111 tlic iicxt Section 
a binary eystem, as function of that we iniist look a little more carefully 
concentration. situation before being sure what 

forms the stable state of the system. 

3. The Condition for Equilibrium between Phases.—Suppose we 

have two homogeneous phases, one with composition Xi and free energy 

Gij the other with composition X2 and free energy Gz, By mixing these 

two phases in suitable proportions, the resulting mixture can have a 

composition anywhere between Xi and X2. And the free energy, being 

simply the suitably weighted sum of the free energies of the two phases, is 

given on a vs. x plot simply as a straight line joining the points (?i, Xi 

(c)E^b- 
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and G2, That is, for an intermediate composition corresponding to a 

mixture, the fn^e energy has a proportional intermediate value between 

the free energies of the two phases Inmig mixed. We saw a special cas(^ 

of this in Fig. XVII-1, where the dotted line represents the free energy 

of a mixture of the two phases with a: = 0, a: = 1 respectively. 

Now suppose we take th(^ curve of Fig. XVII-1 (a) and ask whether 

by mixing two phases represented by different points on this curve, we 

can perhaps get a lower Gibbs fr(K3 ein^rgy than for the homogeneous 

l)has(;. It is obvious that we can and that the lowest possible line 

connecting two points on the curve is the mutual tangent to the two 

minima of the curve, shown by G]G2 in Fig. XA^II-1 (a). The point Gi 

r(3pr(3S(‘nts the fn^e energy of a homogeneous phase of composition X] and 

the point G2 of composition .r2. Between these compositions, a mixture 

of these two homogeneous ])hases n'pn^scnited by the dotted line will 

have lower Gibbs free energy than the homog(3n(‘ous phase, and will 

repres(int the stabler situation. For x less than Xi, or greater than X2j the 

straight line is meaningless; for it would represent a mixture with more 

than 100 per cent of one phas(‘, l(‘ss than z(U'0 of the other. Thus for x 

less than Xi, or greater than .T2, the homogeneous phase is the stable 

oiK^. In otlnn* words, we have a case of a system that has only two 

restricted ranges of composition in which a single phase is stable, while 

between these ranges we can only have a mixture of i)has(3S. 

We can now ai)ply the conditions just illustrated to some actual 

examples. Ordinarily we have two separates curves of G against x, to 

r(3present the two phases; Fig. XVll-1 (a) was a special case in that a 

single curve had two minima. And in a region where a common tangent 

to the curve lies lower than either curve between the points of tangency, 

the mixture of the two phases represented by th(3 points of tangency will 

be the stable phase. First we consider the equilibrium between liquid 

and solid, in a case where the components are soluble in all proportions, 

both in solid and liquid phases. For instance, we can take the case of 

melting of a copper-nickel alloy. To fix our ideas, let copper be consti¬ 

tuent a, nickel constituent 6, so that a: = 0 corresponds to pure nickel, 

a: == 1 to pure copper. We shall assume that in both liquid and solid the 

fre(3 energy has the form of Fig. XVII-1 (6), in which the bond between a 

copper and a nickel atom is just the mean of that between two coppers 

and two nickels. This represents properly the case with two such similar 

atoms. Such a curve departs from a straight line only by the entropy of 

mixing, which is definitely known, the same in liquid and solid. Thus it 

is determined if we know the free energy of liquid and solid copper and 

nickel, as functions of temperature. From our earlier work we know how 

to determine these, both experimentally and theoretically. In particular, 

we know that the free energy for liquid nickel is above that for solid 
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nickel at temperatures below the melting point, 1702° abs. but below at 

temperatures above the melting point, and that similar relations hold for 

copper with melting point 1356° abs. We further know that, the rate of 

change of the difference between the free (uiergy of liquid and solid ni(^kel, 

wdth temperature, is the diffenmce of their entroj)ies, or T times the latent 

heat of fusion. Thus we have enough inforTuation to draw at least 

approximately a set of curves like those shown in Fig. XYn-2. H(a*e 

Fig. XVII-2.—Gibbs free energy for solid and liquid as function of concentration, for 
different temperatures, Ni>Cu system. 

we give G for the solid, G' for the liquid phase, as functions of composition, 

for five temperatures: Ti below 1356°, T2 at 1356°, T3 between 1356 and 

1702°, T4, at 1702°, and above 1702°. Below 1356°, the free energy 

for the solid is everywhere below that for the liquid, so that the former 

is the stable phase at any composition. At 1356°, the liquid curve 

touches the solid one, at 100 per cent copper, and above this temperature 

the curves cross, the solid curve lying below in systems rich in nickel, 

the liquid curve below in systems rich in copper. In this case, Ts in the 

figure, we can draw a common tangent to the curves, from Gi to G2 at 
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concentratioiLs x\ and In this range, then, for concentrations of 

copper below xj, a solid solution is stable; above ^2, a liquid solution is 

stable; while b(d-we(ui Ji and X2 there is a mixture of solid of composition 

0*1 and liquid of composition ^2. These two phases, in other words, are 

in equilibrium with ea(;h otlier in any proportions. At 1702°, the range 

in which the liquid is stal^le has extended to the whole range of com¬ 

positions, the curve of (I for tlu^ liquid lying low(u’ for all higher 

temperatures. 

The stability of the phase's can be showm in a diagram like Fig. XVII-3, 

called a phase diagram. In this, temperature is plottCHl as ordinate, 

composition as abscissa, and lines separates the regions in which various 

phases are stable'. Thus, at, high temj)e'rat ure‘, t he' liquid is stable for all 

compositions. Running from 1702° to 1356° are two curves, one called 

the liquidus (the upj)er one') and _ 

the other called the se)lidus. For 

any T-x })oint lying be'twe^'n the 

liquidus and solielus, the stable leoo ~ 

state is a mixture of liquid and se)lid. w So//yus\^ 

Moreover, we can reael e)lf from the < _ ^ \ X2 

diagram the^ compositions e)f the ^ \ 

liquid and sediel in equilibrium at h - 

any temperature. The? horizontal 1400 ” 

line drawn in Fig. XVII-3, at tern- __ 

perature Tz (see Fig. XVH-2), Nl Cu x 

cuts the solidus at composition x, 

and the liquielus at x^, agreeing with 
the compe)sitions for Tz in Fig. XVII-2. Then X\ represents the 

composition of the solid, x^ of the liquid, in equilibrium with each other at 

this temp<^rature. Finally, below the solidus the stable phase is always 

the solid. 
From the phase diagram we can draw^ information not only about 

equilibrium but about the process of solidification or melting. Suppose 

we have a melt of composition 0*2, at a temperature above the liquidus, and 

suppose we gradually cool the material. The composition of course 

will not change until we reach the liquidus, and solid begins to freeze 

out. But now the solid in equilibrium with liquid of composition x^ has 

the composition xi, much richer in nickel than the liquid. This will be 

frozen out, and as a result the remaining liquid will be deprived of nickel 

and will become richer in copper. Its concentration will then lie farther 

Nl 
Fig. XVII-3.- 

Cu X 
-Phase diagram for Ni-Cu 

system. 

to the right in the diagram, so that it will intersect the liquidus at a lower 

temperature. As the temperature is decreased, then, some of this liquid, 

perhaps of composition Xj, will have solid of composition x{ freeze from 

it, further enriching the liquid in copper. This process continues, more 
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and more liquid freezing out until the temperature reaches 1356°, when 

the last portion of the liquid will freeze out as pure copp(ir. There are 

two interesting r(\sults of this })ro(H>ss. In th(‘ first place^ the freezing 

point is not definite; material frc^ezes out through a range of t.emp(u'atures, 

all the way from the tenii)erature corresponding to the point X2 on the 

graph to the freezing j)oint of pure (*opper. In th('. se(‘()nd place, the 

material which has froz('n out is by no means liomogeneous. Ordinarily 

it will freeze oul in tiny crystal grains. And vv(‘ shall obsfu’ve that the 

first grains freezing out are ri(‘h in nickel, wliih^ successive grains are 

more and mon^ rich in copper, until the last material frozen is pure copper. 

The over-all conii)osition of the solid finally left is of course tlu^ same 

as that of the original licpiid, but it is not of homogc'iu'ous composition 

and hence is not a stabhi material. (^an s('e this from Fig. XVTI-2, 

where the curves of G vs. composition for the solid are convex downward. 

With such a (*urv(% the G at a d(‘finite composition is nec(\ssarily lower 

than the average (7^s of two com]X)sitions, one ri(*her and the other poorer 

in copper, which would contain tlu^ same total amount of each element. 

By an extension of this arguiiKuit, th(^ inhomogcmeous material frec'zing 

out of the melt must have a higher fna^ (mergy than homogeneous material 

of the same net composition, and on a(*count of its thermodynamic insta¬ 

bility it will gradually changes oven* to tho homogeneous form. This 

change can be greatly acc.el(n‘at(‘d by raising the Uunpcu’atun', since as 

mentioned in Sec. 1, Chap. XVI, the rate of such a jmx^ess, involving the 

changing place of atoms, dc'pends on a factor c^xp ( — e/kT)y increasing 

rapidly with temperature. Accordingly, material of this kind is often 

annealed, held at a tempcwatiiix' slightly below the melting point for a 

considerable time, to allow tlKuanodynamic equilibrium to take place 

and at the same time to allow mi'chanical strains to be removed. 

The reverse process of fusion can be discussed much as we have con¬ 

sidered solidification. Of course, if wo take the solid just as it has solidi¬ 

fied, without aniKjaling, tluu’e will be crystal grains in it of man}^ different 

compositions, which will melt at different temperatures, the liquids 

mixing. But if w(^ start with the ecjuilibrium solid, of a definite composi¬ 

tion, it will begin to melt at a definite temperature. The liquid melting 

out will have a higher concentration of copper than the solid, however, 

leaving a nickel-rich material of higher melting point. The last solid to 

melt will be rich in nickel, of such a com})osition as to be in equilibrium 

with the liquid. It is interesting to notice that the process of melting 

which we have just described is not the exact reverse for solidification. 

This is natural when we recall that the solid produced directly in solidi¬ 

fication is not in thermodynamic equilibrium, so that when the proc¬ 

ess is carried on with ordinary, finite velocity it not a reversible 

process. 
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4. Phase Equilibrium between Mutually Insoluble Solids.—In the 

preceding section we have (considered phase (c(|uilibrium between solid and 

licjuid, in the case whccre the comporucnts wercc soluble in each other in any 

proportions, in both licpiid and solid. Now w(‘ shall consider the case 

where there is practically no solubility of oiu' solid in the other; that is, 

there are two solid phases, (each oiue stable in only a very narrow range of 

Fig. XVll-4.—Gibbs froe oiiorgy for solids and liquid as function of conccuitration, for 
different temperatures, in a system with almost mutually insoluble solids. 

• 

concentration about x = 0 or x = 1. The free energy for the solid will 

have much the form given in Fig. XVII-1 (a). But w(c shall assume that 

the minima of the curve are extixcnudy sharp and we shall not assume that 

both minima belong to the same curve. In a case like this, it is most 

likely that the pure phase of one component will have differemt crystal 

structure and other properties from the pure ])hase of the other, and there 

will be no sc)rt of continuity between the phasfis, as in Fig. XVII-1 (a). 

For the liquid we shall again asvsume the form of Fig. XVII-1 (6). Then 

we give in Fig. XVII-4 a series of curves for G against x at increasing 

temperatures, and in Fig. XVlI-5 the corresponding phase diagram. ’The 
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method of construction will be plain by comparison with the methods 

used in Figs. XVII-2 and XVII--3. At low temperatures like there is 

a very small range of compositions from 0 to xi, in which phase a is stable, 

and another small range, from 0:2 to 1, in which phase is stable. Here 

we have given the name a to the phase composed of pure a with a little 

h dissolved in it, and to pure b with a little a dissolved in it. If the 

substaiic(is a and b are really mutually insoluble in the solid, the two 

curves repr(\senting G vs. x for solids a and will have infinitely sharp 

minima in Fig. XVII-4, rising to great heights for x infinitesimally greater 

than zero, or infinitesimally less than 1. For the wholes range of composi¬ 

tions between Xi and X2, at these low temperatures, the stable form will 

be a nKichanical mixture of crystals of a 

and 13. 

At a somewhat higher temperature, 

between Ti and T2, the G curve for the 

liquid will fall low enough to be tangent 

to the straight lino reprosenitiiig the mix¬ 

ture of Xi and X2- This is for the com¬ 

position denoted by :reut«ctic in Fig. XVII-5 

and will be discussed later. At higher 

temperatures, as T27 there is a range of 

compositions from X2 to Xsy in which the 

liquid is the stable phase, while for com¬ 

positions from Xi to 0*2 the stable form is 

a mixture of liquid and phase a, and from 

X3 to X4 it is a mixture of liquid and phase 

As the temperature rises to the 

melting point of pure material 6, the 

phase jS disappears, and at the melting point of pure a, the phase 

a disappears, leaving only the liquid as the stable phase above this 

temperature. 

The process of freezing is similar to the previous case of Fig. XVII-3. 

Suppose the liquid has^a composition between x = 0 and o^eut^ctio. Then 

as it is cooled, it will follow along a line like the dotted line in Fig. XVII-5, 

which intersects the line marked :r2 in the figure at temperature At 

this temperature it will begin to freeze, but the material freezing out will 

be phase a with the composition x\ appropriate to that temperature, very 

rich in component a. The liquid becomes enriched in 6, so that it has a 

lower melting point, and we may say that the point representing the 

concentration and temperature of the liquid on Fig. XVII-5 follows down 

along the curve X2. When the composition reaches the eutectic composi¬ 

tion and the temperature is still further reduced, a liquid phase is no 
longer possible, and the remaining liquid freezes at a definite temperature 

Fig. XVII-5.—Phase eciui librium 

diagram for a system with almost 

mutually insoluble solids, as given in 

Fig. XVII-4. 
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and composition. It is to be noticed, however, that the resulting solid is 

still a mixture of phases a and /?. With the usual methods of freezing, the 

two phas(vs freeze out as alternating layers of platelike crystals. Such a 

solid is called a eutectic and is of importance in metallurgy. It is inter¬ 

esting to observe that if the composition of the original liquid is just the 

eutectic composition, it will all freeze at a single temperature, which 

will be the lowest possible freezing point for any mixture of a and 6. If 

the original composition is between x^ui^euo and x = ly the situation will 

be similar to what we have described, only now the point representing 

the liquid will mov(^ down curve Xs to the eutectic composition, and the 

solid fixH^zing out will be phase and the liquid will become enriched in 

component a until it n^aches the eutectic composition, when it will all 

fre(^ze as the eutectic mixture of a and /?. The temperature where this 

freezing of the eutectic occurs, we notice, nqiresents a triple point: phases 

a, /?, and the liciuid are all stable at this temperature in any proportions, 

corresponding to the fact tliat a single tang(‘nt can be drawn in. the G-x 

diagram to the curv(^s representing all tiiree })has(\s. For (‘V(uy pressure, 

there is a tem])erature at whi(^h th(a*e is such a triple point, in contrast 

to the situation with a on(v(‘omponent system, where triple points exist 

only for certain definite combinations of pressure and temperature. The 

difference arises because there are more independent variablcis, the 

composition as well as pressures and temperature. 

Familiar example's of the situation we have' just, described are found in 

the solubility erf substances in water and othe'r solvents. Thus in Fig. 

XVII-6 we give the phases diagram for the familiar system NaCl-water. 

This diagram is not carried to a very high concentration of salt, for them 

the curve corresponding to 0*3 would lise to suedi high temperatures that 

we should be involved with the vaporizatiem of the water, which we have 

not wished to discuss. In this syste'm, as we have already mentioned, the 

solid phases are practically ce)mpleteiy insoluble in each other, the phase 

corresponding to a benng pure iea^, ^ being pure solid NaCl, combined with 

the water of crystallization at low tcunperature. Thus the curves Xi and 

X4 of Fig. XVIl-5 do not appear in Fig. XVII-6 at all, coinciding prac¬ 

tically with the lines x ~ 0 and x = 1, We can now find a number of 

interesting interpretations of Fig. XVII-6. In the first place, if water 

with a smaller percentage of salt than the eutectic mixture is cooled 

down, the freezing point will be below 0°C., the freezing point of pure 

water, showing that the dissolved material has lowcued the freezing point. 

We shall calculate the amount of this lowering in the next section. At 

these compositions, the solid freezing out is pure ice. This is familiar 

from the fact that sea water, which has less salt than the eutectic mixture, 

forms ice of pure water without salt. On the other hand, if the liquid 

has a larger percentage of salt than the eutectic mixture, the solid freezing 



286 INTRODUCTION TO CHEMICAL PHYSICS [Chap. XVII 

out as the temperatuni is lo\v('r(‘d is pure salt. Under these circum¬ 

stances we should ordinarily descrilx^ the situation differently. We 

should say that as the temjxu-atun^ was lowered, the solubility of the salt 

in water decn^ased (enough so tiiat salt })recipitat('d out from solution. In 

other words, th(' curve S('parating the liquid n^gion in Fig. XVII-6 from 

the region where licpiid and NaCd are in (‘quilibrium may be interpreted 

as the curve giving the p(‘rcentage of salt in a saturated solution or tho 

solubility as a function of temperature. Th(' ]‘is(' to the right shows that 

the solubility in(*r(‘as('s ra])idly with incn^asing temjx'ratun',. 

Fi<4. XVII-O.—Efiuilibriuin between NaC'l and water. 

From Fig. XVII-6 w(^ can also understand the behavior of freezing 

mixtures of i(!e and salt. 8u])pose ice and salt, both at approximately 

are mixed mediani(tally in a])proximat(*ly the right proportions to 

give the eutectic mixture. We se(t from Fig. XVII-6 that a solid of this 

composition is not in tlu'rmodynamic equilibrium at this temperature; the 

stable phase is the liquid, which has a lowcu* free energy than the mixture 

of solids. Thus the matcaial will spontaru'ously liejuefy, the solid i(;e and 

salt dissolving each oth(U' at their surfaces of contact and forming brine. 

If the process were conducted isoth(‘rmally, W(' should end up with a 

liquid. But in the process a good deal of heat would have to be absorbed, 

the latent heat of fusion of the material. Actually, in using a freezing 

mixture, the process is more nearly adiabatic than isothermal: heat can 

flow into the mixture from the system which is to be cooled, but that 

system has a small enough heat capacity so that its temperature is rapidly 

reduced in the process. In order to g€^t the necessary latent heat, in other 

words, the freezing mixture and external system will all cool down below 

0°C., falling to lower and lower temperatures as more and more of the 

freezing mixture melts. The process can continue, if the proportion of ice 
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to salt is just the eutecjtic proportion, down to the temperature —18®, the 

lowest temperature at which the liquid can exist. 

The most important (‘xamjdes of the j)hase diagrams we have discussed 

are found in metallurgy. Tlua-e, in alloys of two metals with (‘ach other, 

Fia. XVII-7.—Phase ecjuilibrium diagram for the system Cii-Mg, in whieh the two metals 
are inaolulde in eaeh other, forming intermetullic compounds of dcdinito composition. 

Fig. XVII-8.--Phase equilibrium diagram for the system Cu-Zn, in which a number 
of phases of variable composition are formed, mixtures of the phases being stable between 
the regions of stability of the pure phases. The phase a is face centered cubic, as Cu is, 
3 is body centered, 7 is a complicated structure, e and 17 are hexagonal. The transition 
between ^ and (S' is an order-disorder transition, (i being disordered, and /T ordered, as 
discussed in the following chapter. 

we generally find much more complicated cases than those take up so 

far, but still casCvS which can be handled by the same principles. Thus in 

Fig. XVII-7 we show the phase diagram for the system Cu-Mg, two 
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metals that are almost entirely insoluble in each other. In this case 

there are four solid phases, each having its own crystal structure, and 

each stable in only an extremely narrow rang(^, about the compositions 

Cu, MgCu2, Mg2Cu, and Mg. The free energy of each composition will 

then have an extremc'ly sharp minimum, so that the construction neces¬ 

sary to derives the phase diagram will be similar to Fig. XV11-4, but with 

four sharp minima instead of two, so that there are fJir(H> regions, rather 

than one, in which a mixture of two phases is the stable solid, and three 

eutectics. For contrast, we give in Fig. XVH-8 the phase diagram for 

the system Cu-Zn, or brass. In this case there are a number of phas(^s, 

again each with its own crystal structure but ea(;h with a wide range of 

possible compositions. The free energy curves of the various phases in 

this case are then not sharp like the cavsci of Cu-Mg but have rather flat 

^ ^ minima, more as in Fig. XVII-2. We Ui shall not try to follow tlie construction 

of the phase diagram through in detail 

but shall merely state that it can be 

derived from hypotlu^tical free energy 

curves according to the type of reason¬ 

ing already used in this section and the 

preceding one. 

5. Lowering of Melting Points of 
Solutions.—We have just seen that the 

lowering of the melting point of a 

solvent by action of the solute can 

^^ easily be explained in terms of the 

Fig. xvii-9.—Gibbs free energy as phase diagram, and it is an easy matter 
function of concentration, for lowering to find a numerical ValuO for this 
of freeziug point. lowering. 1.1 Fig. XVII-9 we have a 

diagram of G against x, appropriate to this case. The solid solute corre¬ 

sponds to the point with x = 0, and the liquid is given by the curve. 

We wish to find the value of x at which a straight line through a: = 0, 

G — Gs is tangent to the liquid curve. To do this, we must first find the 

equation of the liquid curve. We assume the liquid to correspond to case 

(b) of Fig. XVII-1, the internal energy being a linear function of concen¬ 

tration. Then, if Gh is the free energy of the liquid for a: = 0, Gi^ for 

a; == 1, we have 

Gi = Gu + x(Gi, - Gio) + NkT[x In x + (1 - x) In (1 - a:)], (5.1) 

where Gi is the free energy for the liquid. The desired tangent is now 

determined by the condition 

\dx/:, 
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the geometrical condition that the tangent to the curve Gi at the point 

Gi should pass through the point Gs when 2: = 0. Differentiating Eq. 

(5.1), this gives 

Gu. + NkT In (1 - 0*) - Gs. (5.3) 

We can now find the difference Gi„ — Gs in terms of the latent heat of 

fusion of the solvent. Fj-om fundamental princ^iples we have 

(^{,Glo f^^«) 1 \ /gr 
-— J = —{Si — Ss) = —(5.4) 

where Si is the eni ropy of the liquid, Ss of the solid, and Lm the latent 

heat of fusion. Computed just at the mcdting point, the quantity in 

Eq. (5.4) becomes —Lm/T,u. Now w(^ shall not use the result except for 

temperat,ur(‘s very c^lose to th(^ melting point, so that we may assume that 

(C/o — Gs) can b(^ (expanded as a linear function of t(TOp(a’ature. Just 

at the melting point, by the fundamental principle of equilibrium, it is 

zero. Thus we havc^ 

Gu - G, = - T). (5.5) 

Inserting in l<]q. (5.3), setting 7' = approximately, and writing 

Nk = R, tliis gives us 

- In (1 - x) = - T). (5.6) 

For dilute solutions, to which alone we shall ap)ply our results, x is very 

small, and w(i may write In (1 — a:) = —x. Then we have 

RTV 
T), 

(7\« ~ T) - 
RTl 

-x. (5.7) 

Equation (5.7) gives the lowering of the freezing point, Tm — 7", by 

solution of another substance with relative concentration x. We note 

the important fact that the result is independent of the nature of the 

solute: all its properties have canceled out of the final answer. Thus the 

lowering of the freezing point can be used as a direct method of measuring 

x, the relative number of molecules of solute in solution. This is some¬ 

times a very important thing to know. Suppose one knows the mass of a 

certain solute in solution but does not know its molecular weight. By 

measuring the depression of the freezing point, using Eq. (5.7), we can 

find the number of moles of it in solution. By division, we can find at 

once the mass per mole, or the molecular weight. This method is of 
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practical value in jfinding the molecular weights of complicated substances. 

It is also of importance in cases where tlu^ro is association or dissociation 

of a solute in solution. Some materials form clusters of two, three, or 

more molecules in solution, each cluster travelling around as a single 

moleemle. Each cluster will count as a single mohuaile in the entropy of 

mixing, and consequently in the depression of the^ freezing point. Thus 

really there are fewer molecuh^s than one would suppose from the known 

amount of material in solution and the usual molecular weight, so that the 

depression of the freezing point is smaller than we should sup])ose. On 

the contrary, in some cases substanc(^s have their molecules dissociated in 

solution. The well-known case of this is ionic substanc(\s in water solu¬ 

tion, in which the ions, rather than molecul(\s, form the separate objects 

in the solution. In these cases there are more particles in solution than 

we should suppose, and the freezing point is depn^ssed by an abnormally 

large amount. 

From Eq. (5.7) we can find at once the amount of depression of the 

freezing point of different solvents. Thus for water, 7 ^ = 273"^ abs., 

Lm = 80 X 18 cal. per mole, giving 7'm — 'T — 103° for x — 1. To get 

useful figures, we calculate for what the chemists demote as a normal 

solution, containing 1 mole of solute in 1000 gm. of water, or of a 

mole of solute in 1 mole of water. Thus in a normal solution we expect a 

lowciring of the freezing point of 103 X .018 = 1.86°C., provided the 

solute is neither associated nor dissociated. 



CHAPTER XVIII 

PHASE CHANGES OF THE SECOND ORDER 

In an ordinary change of phase, there is a sharp transition tc^mpera- 

tnre, for a given pr(‘ssure, at which the pro])erties change discontiniiously 

from one phase to a second on(‘. In particular, then^ is a discontinuous 

change of volume and a discontinuous change of (*ntropy, resulting in a 

latent heat and allowing the ap])lication of Clapcyron^s equation to the 

transition. In recent years, a number of eases have been re(*ognized 

in which transitions octnir which in most ways rc^semble real changes of 

phases, but in wdiich the changes of volume and entropy, instead of being 

discontinuous, are merdy very rapid. Volume and (uitropy change 

greatly within a few degr(‘(\s’ temperature range, with the result that there 

is an abnormally larg(i specific heat in this neighborhood, but no latent 

heat. Often the specific heat rises to a peak, then discontiniiously falls 

to a smaller value. To distinguish these transitions from ordinary 

changes of phase, it has become customary to denote ordinary phase 

changes as phase changes of the first order, and th(\se sudden but not dis¬ 

continuous transitions as phase changes of the scK^ond order. Sometimes 

the discontinuity of the sjiecific heat is regarded as the distinguishing 

feature of a phase change of the sec^ond order, but we shall not limit our- 

s(dves to cases having such discontinuities. 

There is one well-known phenomenon which might well be considered 

to be a phase change of the second order, though ordinarily it is not. 

This is the change from liquid to gas, at temperatures and pressures above 

the critical point. In this case, as the temperature is changed at con¬ 

stant pressure, we have a very rapid change of volume from a small 

volume characteristic of a liquidlike state to the larger volume charac¬ 

teristic of a gaslike state, yet there is no discontinuous change as there 

is below the critical point. And there is a very rapid change of entropy, 

from the small value characteristic of the liquid to the large value charac¬ 

teristic of the gas, as we can see from Fig. XI-6, resulting in a very 

abnormally high value of Cf at temperatures and pressures slightly above 

the critical point. At the critical point, where the curve of S vs. T 
becomes vertical, so that {dS/dT)p is infinite, Cp becomes infinite. At 

this temperature and below, wc cannot use the specific heat to find the 

change of entropy, but must use a latent heat instead, representing, so to 

speak, the finite integral under the infinitely high, but infinitely narrow, 

peak in the curve of T(dS/dT)p vs. T, 
291 
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Although the liquid-gas transition above the critical point, as we 

have seen, has the proper characteristics for a phase ebange of the second 

order, that name is ordinarily used only for phase changes in solids. Now 

it seems hardly possible that there could be a continuous transition from 

one solid phase to another one with different crystal structun^ There 

have been some suggestions that such things are possible; that, for 

instance, ordinary equilibrium lines in polymorphic transitions, as shown 

in Fig. XI-3, might terminate in criti(^al points, above which one could 

pass continuously from one phase to another. But no such critical 

points have' been found experimentally, and there is no experimental 

indication, as from a decreasing discontinuity in volume and entropy 

between the two phases as we go to higher pressure and temperature, that 

such critic.al points would be reached if the available ranges of pressure 

and temperature could be inen^ased. Thus it seems that our naive sup¬ 

position that two diff('rent crystal structures are defiiiit/('ly different, and 

that no continuous series of states can b(^ imagined betwcien them, is 

really correct, and that jbase changes of the sin^ond order are impossible 

between phases of different structure and must b(^ looked for only in 

changes within a single crystal structure. 

There are at least three types of change known whi(!h do not involve 

changes of crystal structure and which show the properties of phase 

changes of the second order. The best known one is th(i ferromagnetic 

change, between the magmbized state, for instance of iron or nickel, at 

low tcmiperatures, and the unmagnetized state at high temperatures. 

There is no change of crystal structure avssociated with this transition, at 

least in pure metals, no discontinuous change of volume, and no latent 

heat. The magnetization decreases gradually to zero, instead of changing 

discontinuously, though there is a maximum timiperature, called the 

Curie point, from P. Curie, who investigated it, at which it drops rather 

suddenly to zero. And there is no latent heat, the entropy increasing 

rather rapidly as we approach the Curie point, but nowhere changing 

discontinuously, so that there is an anomalously large specific heat. This 

anomaly in the specific heat is sometimes concentrated in a small enough 

temperature range so that it almost seems like a latent heat to crude 

observation; the metallurgists, who are accustomed to determining phase 

changes by cooling curves, which essentially measure discontinuities or 

rapid changes in entropy, have sometimes classified these ferromagnetic 

changes as real phase changes. As a matter of fact, mathematical analy¬ 

sis shows that under some circumstances in alloys, it is possible for the 

ferromagnetic change to be associated with a change of crystal structure 

and a phase change of the first order, one phase being magnetic up to its 

transition point, above which a new nonferromagnetic phase is stable, but 

this is a complication not found in pure metals. Though this ferro- 



riEc. 1] PHASE CHANGES OF THE SECOND ORDER 293 

magnetic change is the most familiar example of phase changes of the 

second order, we shall not discuss it here. 

A second type of phase change of the second order is found with 

certain crystals like NH4CI containing ions (NH4"'' in this case) which 

might be supposed capable of rotation at high temperature but not at 

low. The ammonium ion, being tetrahedrally symnudrical, is not far 

from spherical, and we can imagine it to rotate freely in the crystal if 

it is not packed too tightly. At low tempf'ratures, however, it will fit 

into the lattice best in one particular orientation and will tend merely 

to oscillate about this orientation. The rotating state, it is found, has 

the higher entroj^y and is i)referred at high temperatures. The change 

from one states to the otlu^r comes experimentally in a rather narrow 

temperatur(‘ range, giving a specific heat anomaly but no latent heat, and 

forming again a phase' e^hajige of tluj se(x>nd order. Unfortunately the 

theory is rather involved and we shall not try to give it here. 

The third type of phase change of the second order is fortunately 

easy to treat theoretically, at least to an approximation, and it is the one 

which will be discussed in the present chapter. This is what is known 

as an order-disorder transition in an alloy, and can be better understood 

in terms of sp('cific examples, which we shall memtion in the next section. 

1. Order-Disorder Transitions in Alloys.—The best-known example 

of ord('r-dis()rd(U’ transitions comes in the ^ phase of brass, Cu-Zn, a 

phase which is stable at compositions in the neighborhood of 50 per cent 

of each component. The crystal structure of this phase is body-centered 

cubic, an ess(nitial feature of the situation. In this type of lattice, the 

lattice i)oints are definitely divided into two groups: half the points are 

at the corners of tlu^ cubes of a simple cubic lattice, the other half at 

the centers of the cubes. It is to be noticed that, though they are dis¬ 

tinct, the centers and corners of the cubes are interchangeable. Now we 

can see the possibility of an ordered state of Cu-Zn in the neighborhood 

of 50 per cent composition: the copper atoms can be at the corners of the 

cubes, the zinc at the centers, or vice versa, giving an ordered structure in 

which each copper is surrounded by eight zincs, each zinc by eight cop¬ 

pers; whereas in the disordered states which we have previously considered, 

each lattice point would be equally likely to be occupied by either a copper 

or a zinc atom, so that each copper on the average would be surrounded by 
four coppers and four zincs. 

Just as the body-centered cubic structure can be considered as made 

of two interpenetrating simple cubic lattices, the face-centered cubic 

structure can be made of four simple cubic lattices. There are some 

interesting cases of ordered alloys with this crystal structure and ratios of 

approximately one to three of the two components. An example is found 

in the copper-gold system, where such a phase is found in the neighbor- 
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hood of the composition CusAu. Evidtmtly the ordered phase is that 

in which the gold atoms are all on one of the four simple cubic lattices, 

the copper atoms occupying the other three. 

We shall now investigate phase equilibrium of tlu^ Cu-Zn type, start¬ 

ing with the simple case of equal numbers of copper and zinc atoms, later 

taking the general case of arbitrary composition. We shall make the 

same assumptions about internal energy that wo have made in Sec. 2, 

Chap. XVII, so that the problem in computing the internal energy is to 

find the number of pairs of nearest neighbors having the type aa, ab, and 

bb; a and b being the two types of atoms. We assume that the only 

neighbors of a given atom to be considered are the eight atoms at the 

corners of a cube surrounding it, so that all the neighbors of an atom 

on one* of the simple cubic lattices li(^ on the other simple cubit; 

lattice. 

We shall now introduce a parameter w, whi(;h we shall call the degree 

of order. We shall define it so that w = I corresponds to having all the 

atoms a on one of the simple cubic lattices (whi(;h we may call the lattice 

a), all the atoms 6 on the other (which we call 13). w — 0 will (;orrespond 

to having equal numbers of atoms a and b on each lattice;; w = —1 will 

correspond to having all the atoms b on lattice a, all the atoms a on lattice 

Thus w = ±1 will correspond to perfect order, = 0 to complete 

disorder. Let us now define w more compl(;tely, in terms of the numbt^r 

of atoms a and b on lattices a and T^et there be N atoms, N/2 of each 

sort, and N lattice points, N/2 on each of the simple cubic lattices. Then 

we assume that 

Number of a^s on lattice a = 
4 

Number of a^s on lattice 

Number of b^s on lattice a = 

(1 -_w)N 

4 

(1 - w)N 

Number of Vs on lattice ^ = 
(1 + w)N 

(1.1) 

Clearly the assumptions (1.1) reduce to the proper valiuis in the cases 

ty == ±1, 0, and furthermore they give w as a linear function of the 

various numbers of atoms. 

To find the energy, we must find the number of pairs of neighbors of 

types aa, ab, bb. The number of pairs of type aa equals the number of 

a’s on lattice a, times S/(N/2) times the number of a\s on lattice This 

is on the assumption that the distribution of atoms on lattice p surround¬ 

ing an atom a on lattice a is the same proportionally that it is in the whole 

lattice Py an assumption which is not really justified but which we make 
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for simplification. Thus the number of pairs aa is times 

4(1 — te), or A^(l — w‘^). Similarly we have 

Number of pairs aa = Number of pairs 65 = 7V(J — %v^) 

Number of pairs ah = A^(l + w)'^ + N{\ — wY 
= 2N(1 + (1.2) 

To find the internal energy at the absolute zero, we now procec^d as in 

Sec. 2 of Chap. XVII, multiplying the number of pairs aa by Eaa^ etc. 

Then we obtain 

Energy = V, = N{\ ~ w^)(Eaa + E,,) + 2N(1 + w‘^)Ea,. (l.a) 

This can be rewritten in the form 

Uo = m xEaa + (1 - x)E,^ + 2x(l - x)[e^ - j 

+ mx^w^^E^ - (1.4) 

where a: = ^ is the relative composition of the components. We use this 

form (1.4) because it turns out to be the correct one in the general ease 

where x 9^ ^ and because it is analogous to Eq. (2.2), Chap. XVII. We 

not/C that for -m; = 0, the disordered state, Eq. (1.4) reduces exactly to 

Eq. (2.2), Chap. XVII, as it should. To find the energy at any tempera¬ 

ture, we assume as in Chap. XVII that we add an amount CpdT^ where 

Cp is the specific heat of a completely disordered phase. The actual 

specific heat will be different from this Cp, because w in Eq. (1.4) will 

prove to d(^peiid on temperature, giving an additional t(^rm in the dc^riva- 

tive of energy with respect to temperature. With these assumptions, we 

then have 

u = r/o + dT, (1.5) 

where Uo is given in Eq. (1.4). 

Next we consider the entropy. We have 
(1 + w)N 

atoms a and 

(1 + w)N 
atoms h on lattice a, and atoms a and-y 

4 4 4 

atoms b on lattice /?. The number of ways of arranging these is 

2 

[[(1 +«>)^]![(l - 
J (1.6) 





Sec. 2j PHASE CHANGES OF THE SECOND ORDER 297 

We see that at low temperatures the minimum of the G curve, giving 

the stable phase, comes at values of w different from zero, approaching 

w = ± 1 as the temperature approaches zero. As the temperature rises, 

the minima move inward toward tc == 0, and at a certain temperature 

{Tc in the figure), there is a double minimum, with a very flat curve, at 

tc = 0. Above this temperature there is a single minimum at w — 0. In 

other words, the degree of order gradually decreases from pc^rfect order at 

T = 0, to complete disorder at and above a certain temperature Tc. 

This limiting temperature corresponds to tlu^ Curie temperature in ferro¬ 

magnetism, and by analogy it is often referred to as the Curie tempc^rature 

in this case as w(dl. To get the minimum of the curve, the natural thing 

is to differentiate G with respect to w, keeping T constant. Then we have 

A A\T (V “1“ I ^ (1 + ic) ^9 n 0 = -^-j In (2.1) 

Equation (2.1) is a tran.scendental equation for v> and cannot be .solved 

explicitly. We can easily solve it graphically, however, using the form 

In 
(j_+w) 
(r-'tc) 

+ ^hh 
2 

(2.2) 

We plot In (1 + tc)/(l — w) as a func¬ 

tion of ic, and on the same graph 

draw the straight line w( — S/kT)[E,,j, — 

(Eaa + Ebb)/2], The intersections give 

the required value of w. As we see from 

Fig. XVIII-2, at low temperatures the 

straight line is stec^p and there will be 

three intersecjtions, one at -ic = 0 (evi¬ 

dently corn^sponding to the maximum 

of the curve, as we see from Fig. 

XVIII-1) and two others, which we 

d(isirc, at equal positive and negative 

values of w. As the tempe^rature in¬ 

creases and the slope of the straight 

line decreases, these intersections move 

t/oward w = 0 and finally coalesce when 

the slope of the straight line equals that of In (1 + tc)/(l — w) at the 

origin. Now 

(1 4- w) 

Fig. XVIII-2.—Graphical solution of 
Eq. (2.2). 

In 
(1 - w) 

starts out from the origin like 2tc, with a slope 2, so that for the Curie 

point we must have 
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— 8/ „ Eaa + Eb\ _ „ 
fcnV""" 2 / 

To = (2.3) 

w 0.5 h 

In terms of this, the straight line in Fig. XVIII-2 is 2TcW/T, 

By the graphical method of Eq. (2.2) and Fig. XVIlI-2, the curve 

>f Fig. XVII1-3 is obtained for the stable value of le, as a function of 

temperature. This shows the decrease 

of w from 1 to 0, first V(uy gradual, then 

as the (.^urie point is approached very 

rapid, so that the curves actually has a 

vertical tangemt at the Curie point. 

The curve of Fig. XVHI-3 cannot be 

expressed analytically, though it can be 

approximated in the two limits of 7' = 0 

and r = 7V. 

Having found the variation of w with temperature, w(j can find the 

specific heat anomaly, or the excess of specific heat over the value Cp 

characteristic of disorder. This excess is evidently 

0.5 

T/Tc 
Fig. XVlII-3.- Degree of order 

function of temperature. 

/ dw 

\dw) rdT 

A AT (JP Eaa “f” Ehl^dw - -g-jjj 
NkT (1 + w) dw 

2 (1 - w) dT 

= -NkTo-iAZ (2.4) 

using Eqs. (1.4), (1.7), (2.2), and (2.3). In Eq. (2.4), it is understood 

that dw/dT is the slope of the curve of Fig. XVIII-3 and that it is to be 

determiiKjd graphically. Since the slope is negative, the excess specific 

heat is positive. We give the resulting curve for specific heat in Fig. 

XVIII-4, where we see that it comes to a sharp peak at the Curie point 

and above that point drops to zero. 

From the discussion we have given, it is plain that the change from 

the ordered to the disordered state occupies the whole temperature range 

from zero degrees to Tc, though it is largely localized at temperatures 

slightly below Tc. Thus this change, a gradual one occurring over a 

large temperature range, is just of the sort that we wish to call a phase 
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change of the second order. We can make the situation clearer by 

plotting curves for G as a function of T. We do this for a number of 

values of w, ranging from zero to unity. In a sense, we may consider that 

we have a mixture of an infinite number of phases, corresponding to the 

continuous range of w, and at each temperature that particular phase 

(or particular w) will be stable whose curve of G against 7’ lies lowest. 

The resulting curves ar(^ shown in Fig. XVHI-5. To make them clearer, 

T/Tc 
Fig. XVIII-4.—Exc-ess specific heat arising from the ordered state, in units of Nk, as func¬ 

tion of temperature. 

Fig. XVIII-5.—Gibbs free energy as function of temperature, for dififerent degrees 
of order, in the order-disorder transition. The envelope of the straight lines represents 
the free energy of the stable state. 

we leave out the terms coming from the specific heat Cp of the disordered 

state, which are common to curves for all w^s, and do not affect the 

relative positions of the curves. When this is done, the curves become 

straight lines, since the internal energy and entropy are then independent 

of temperature. At the absolute zero, the lowest curve is the one with 

the lowest internal energy or the ordered state. The disordered states 

have greater entropy, however, even at the absolute zero, so that their 

curves slope down more, and at higher temperatures their free energies 
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lie lower than that of the ordered state. From Fig. XVIII~5 we see that 

there is an envelope to the curves, and this envelope represents the actual 

curve of G vs. Ty whose slope is the negative entropy and whose second 

derivative gives the specific heat. The j)articular valuer of w whose curve 

is tangent to the envelope at any temperature is the stable w at that 

temperature, as given by Fig. XVHI-3. 

Graphs like Fig. XVIII-5 show particularly plainly the difference 

between phase changes of the first and second order. We can readily 

imagine that, by slightly altering the mathematical details, the curves 

could be changed to the form of Fig. XVIII-6, in which, though we hav(i a 

Fig, XVIII-0.—Gibbs free energy as function of temperature, for different degrees of 
order, in a phase change of the first order, in which the ordered state is stable below a 
temperature To, the completely disordered state above this temperature. 

continuous sot of phases from w = 0 to w = 1, the envelope lies above 

rather than below the axis of abscissas. In this case the stable state 

is that with w = 1 up to a certain temperature, w = 0 from there on, all 

other values of w corresponding to states that arp never stable. This 

would then be a phase change of the first order, as shown in Fig. XVI-2, 

with a discontinuity in the slope of the G vs. T curve, or the entropy, and 

hence with a latent heat. When we sec the small geometrical difference 

between these two cases, we sec that in some cases the distinction between 

phase changes of the first and the second order is not very fundamental. 

In this connection, it is interesting to note that the rotation vibration 

transition in NH4CI, which we mentioned in a preceding paragraph, is 

clearly a phase change of the second order, the change occurring through 

a considerable range of temperature or pressure. However, there is a 

similar transition in NH4Br, undoubtedly due to the same physical cause, 

which at least at high pressure takes place so suddenly that it certainly 

seems to be a phase change of the first order. This is probably a case 
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where the distinction is no more significant than in Figs. XVlII-5 and 

XVlII-6. We must not forget, however, that there is one real and 

definite distinction between most phase changes of the first order and all 

those of the second order: in every phase change of the second order, we 

must be able to imagine a continuous range of phases between the two 

extreme ones under discussion, while in a phase change of the first order 

this is not necessary (though, as we have seen in Fig. XVIII-6, it can 

sometimes happcui), and in the great majority of cases it is not possible. 

3. Transitions of the Cu-Zn Type with Arbitrary Composition.—It is 

not much harder to discuss the general case of arbitrary composition 

than it is the simple case of 50 per cent concentration taken up in the 

two preceding sections. We assume that there are Nx atoms a, W(1 — x) 
5\s, and we shall limit ourselves to the case where x is less than th(^ 

same formulas do not hold for x greater than but to get this case we can 

UKToly interchange the names of substances a and 6. As before, we let 

the degree of order b(^ w. Then we assume 

Number of atoms a on lattice a = ^(1 + w)x 

N 
Number of atoms h on lattice a = — (1 + w)x] 

N 
Number of atoms a on lattice ^ ^ (1 — w)x 

N 
Number of atoms h on lattice [1 — (1 — w)x]. (3.1) 

To justify these assumptions, we note that they lead to the correct num¬ 

bers in the three cases w = 0, ±1, and that they give the numbers as 

linear functions of w, conditions which determine Eqs. (3.1) uniquely. 

Then for the numbers of pairs we find 

Number of pairs aa: 4:Nx^{l — w^) 
Number of pairs hb\ 4iV’[(l — x)- — 

Number of pairs ah: 8iV[x(l — x) + 

and for the internal energy we have 

= ^^xEaa + (1 - x)Ev>. + 2x(l - x){Eab “ 

+ SNx^w^[e^i, - + SNx^w^ CpdT. 

(3.2) 

(3.3) 

The steps in the derivation of Eqs. (3.2) and (3.3) have not been given 
above, but the principles used in their derivation are just Ukc those used 
in Sec. 1. We note that Eq. (3.3) is the one already written in Eqs. (1.4) 
and (1.5) but previously justified only for the case x ~ i. 
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The derivation of the entropy is also exactly analogous to that of Sec. 1 

and the result is 

Nk 
S — —j (1 + w)x In (1 + w)x + (I — w)x In (1 — w)x 

+ [1 - (1 + w)x] In []-(!+ w)x] + [1 (1 — w)x] In [1 — (1 — xo)x]\ 

+ (3.4) 

It is easy to verify that in the case x — ^ this leads to the value already 

found in Eq. (1.7). From Rqs. (3.3) and (3.4) we can find the free 

eiuTgy and carry out the same sort of dis(*,ussion that we have above, but 

for any coiKiontration. To find the value of iv for the stable state, at any 

value of Xj we dififerentiate G with respect to w and set it equal to zero. 

Then we have 

y. = 0.2 

x-0.3 

0 = 
2 (TP + EfcA , 

'^w\^Eab - - 2 7 

i„ .(1.+[1 - (1 - 
2 ' (1 — w) [l — (1 + w)x\ 

(3.5) 

or 

In 
(1 + w) [1 — (1 — w)x] 

(1 — w) [I — (i -f 'w)xi 
(3.6) 

where the Tc used in Eq. (3.6) is the one 

d(‘fined in Eq. (2.3), holding for the concen¬ 

tration X — p]quation (3.6) can be 

solved as in the special case a; = ^, plotting 

the hift side of Eq. (3.6) against w and 

finding the intersection with the straight 

line given by the right side. Qualitatively 

we find the same sort of result as in our 

previous case, the degree of order going 

from unity at absolute zero to zero at a 

Curie point. The Curie point, however, 

depends on concentration. We find it, as 

before, by letting the slope of the straight line representing the right side 

of Eq. (3.6) be the same as the slope of the left side at the origin, which is 

2/(1 — x). Equating these, we have 

Fig. XVlII-7.-—Gibbs free en¬ 
ergy as function of degree of order, 
for different compositions, T — 
0.8 Tc. 

= 4T’cx(l - x), (3.7) 

where Tc® is the Curie temperature for concentration x, Tc for concentra¬ 

tion X = From Eq. (3.7) we see that Tex is a parabolic function of 
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X, having its maximum for x = and falling to zero at the extreme 

concentration a: = 0. This is of metallurgical iiiter(‘st, for on phase 

diagrams in cases where tlu^re is a transition of tlu^ sc'cond order it is (juite 

common to draw a line of Curie temperature vs. composition to indicate 

the transition, though there is no real equilibrium of phases to be indicated 

by it. In a case like the Cu-Zn transition, this curve' should theoretically 

have the form (3.7). The experimental data are hardly good ('nough to 

see whether this is verified or not. 

X 

Fig. XVIII-8.—Gibbs free energy as function of composition, for different degrees of 
order, 7’ = 0.8 7'«. 

At a temperature below tlu^ Curie point Tc, it is plain from Eq. (3.7) 

that for concentrations nearer ^ than a certain critical concentration the 

alloys will be below their Curie points and will be in partly ordered 

phases, while for x less than this critical concentration they will be above 

their Curie points and will be in the disordered state. This is indicated 

in Fig. XVIII-7, where we show G as a function of w for different values of 

Xy at a temperature of 0.8 Tc. The critical concentration for this tem¬ 

perature is 0.277, as can be found at once from Eq. (3.7); it is not('.d in 

Fig. XVIII-7 that the curves for x = 0.1 and 0.2 definitely have their 

minima at te = 0, indicating complete disorder, while that for x == 0.3 

is very flat at the center, and those for 0.4 and 0.5 definitely have minima 

for le 7*^ 0, indicating a partly ordered state. Finally, in Fig. XVIII-8 

we show (j as a function of x, for different values of w, at this same tern- 
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perature T = 0.8 7"c. For compositions up to 0.277, as we have men¬ 

tioned, the curve for ty = 0 lies the lowest. At higher concentrations, the 

other curves begin to cross it and the stable state corresponds to the 

envelope of these curves, the lowest w rising from it? = 0 to a maximum 

of about w == 0.80 at x = This envelope is of interest, for it is the 

curve of G vs. x which should really be used to represent the stable state 

in such a system and which should be used in investigating the equilibrium 

between this phase and other phases, in the manner of Chap. XVII. We 

notice that this envelope is a smooth curve, convex downward, just as 

the curve for tt; = 0 is, and in fact it does not greatly differ from that for 

w — 0. Thus our discussion of phase equilibrium of the preceding 

chapter, where we entirely neglected the order-disorder transition, is not 

seriously in error for a phase in which such a transition is possible. Tlu^ 

reason is that, though there is a considerable difference in energy and 

entropy separately between the ordered and disordered states, these make 

contributions of opposite sign in the free energy, so that it is only slightly 

aff(^cted by the degree of order. 



PART III 

ATOMS, MOLECm.ES, AND THE STRUCTURE OF MATTER 





CHAPTICR XIX 

RADIATION AND MATTER 

In the (l(‘V('l()pm('nt of (jiiantum tlK‘ory, light, or (‘loctromagiK'tic 

radiation of visible wave lengths, has liad a \ory spc'cial pla(^(^. It was 

th(' study of blaek-body radiation that first showa^d without (piestion th(3 

inadequacy of classical nu'chanics, and that l(‘d Planck to the (luantum 

th(K)ry. On(‘ of the first triumphs of quantum theory was Faristeiids 

pn'diction of the law of pliotoelectric (^mission, a ])redi(‘tion which was 

b(^autifully verified by expcu'iimait. And in the development of the 

theory of atomic and molecular structure, the most compli(‘at(‘d and 

involved test whicdi has yci b(‘(‘ii given th(^ (piantum th(H)ry, the tool has 

been almost entirely optical, the spectrum, th(' light (anitt(‘d and absorbed 

by matU'r. Some of the most difficult logical con(‘epts of tlu^ quantum 

th(K)ry hav(i come in th(‘, field of light. The diffi(‘ulty of reconciling prob¬ 

lems lik(' int(U’f(^r('n(a' of light, whi(*h clearly indicat(^ that it is an (dectro- 

magnetic wav(^ motion, with problems lik(» th(‘ photo(dectric c'ffect, which 

equally clearly indicate that it is made of individual ])articles of (UK'rgy, 

or f)hotons, is well known. And these difficulti(‘s, indicating that light 

n^ally has a sort of dual nature, gav{‘ th(‘ sugg(\stion that matter might 

fiav(^ a dual natures too, and that tln^ parti(*l(\s with which we were familiar 

might also be associated with waves. This was Ihe sugg(\stion which 

led to wave mechanics and which raised the quantum theory from a 

rather arbitrary set of rules to a w(dl-dev(doped branch of matlumiatical 

physics. 

Throughout the development of mod(U’n ideas of light, black-body 

radiation has played an essential role. This is simply light in thermal 

equilibrium—the distribution of frequencies and intensities of light 

which is in equilibrium with mattc^r at a given tempeiature. Our study 

in this chapter will be of black-body radiation, and wc shall handle it by 

direct thermodynamic methods, using the quantum theory much as we did 

in the theory of specific heats. In the following chapter we shall take u]) 

the kinetics of radiation, the j)robabilities of emission and absorption of 

light by matter. This will lead us to a kinetic derivation of the laws of 

black body radiation, and at the same time to a usabh^ method of handling 

the kinetics of radiation problems out of equilibrium, which we very 

commonly meet in the laboratory. 

1. Black-body Radiation and the Stefan-Boltzmann Law.—Light is 

simply electromagnetic radiation, a wave motion in space, in which the 
307 
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electric and the magnetic fields oscillate rapidly with time. It can carry 

energy, just as sound or any other wave can carry energy. We are all 

familiar with this; most of the available energy on the earth was carried 

here from the sun, by electromagnetic radiation. Like all waves, it can 

be analyzed into sinusoidal or monochromatic waves, in which the 

el(K;tromagnetic field oscillates sinusoidally with time, with a definite 

frequency p; the possibility of such an analysis is a mathematical om^, 

based on Fourier\s series, and does not imply anything about the physics 

of radiation. The velocity of light, at least in empty space, is inde¬ 

pendent of the frequency of oscillation, and is ordinarily denoted by c, 

equal to 2.998 X 10^^^ cm. per scH^ond. We can associate a wave length 

with each frequency of oscillation, by the equation 

Xp = c, (LI) 

where X is the wave length. The mathematics of the light waves is 

essentially like that of sound waves, given in Sec. 2 of Chap. XIV, and 

we shall not repeat it here. In that section, how(?ver, we found that 

elastic waves were of two sorts, longitudinal and transverse. Light on 

the contrary is only transverse, with two possible planes of polarization, or 

directions for the electric or magnetic field, at right angles to the direction 

of propagation. We ordinarily deal, in discussions like the pres(uit, with 

fairly short wave lengths of light. The long waves, as found in radio 

transmission, are of small signifi(;ance thermodynamically or in atomic 

structure. Among wave's shorter, say, than a tenth of a millimeter, it is 

customary to speak of those longer than 7000 A as infrared or lu^at waves,*' 

those between 7000 and 4000 A as light (since the eye can see only these 

wave lengths), those bc'twecm 4000 A and perhaps 50 A as ultraviolet, and 

those shorter than 50 A but longer than perhaps 0.01 A as x-rays. Waves 

shorter than this are hardly met in ordinary thermodynamic or atomic 

processes, though of (jourse they are essential in nuclear processes and 

cosmic rays. Although there is this classification of wave lengths, it is 

purely a matter of convenience, and we shall not have to bother with it. 

For our purposes, we may consider as light any radiation from perhaps 

■3^ mm. to xV L is only in this range that the radiations we consider are 

likely to have appreciable intensity. 

Ordinary bodies at any temperature above the absolute zero auto¬ 

matically emit radiation, and are capable of absorbing radiation falling on 

them. Thus an enclosure containing bodies at a temperature above the 

absolute zero cannot be in equilibrium unless it contains radiation as 

well. In fact, in equilibrium, there must be just enough radiation so that 

each square centimeter of surface of each body emits just as much radia¬ 

tion as it absorbs. It seems clear that there muvSt be a definite sort of 

radiation in equilibrium with bodies at a definite temperature. For we 
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know that all bodies at a given temperature are in thermal equilibrium 

with each other, and if they are all in a container with the same th(u*mal 

radiation, this radiation must be in equilibrium with (uich body separately, 

and must hence be independent of the particular type of body, and 

characteristic only of the temperature, and perhaps the volume, of the 

container. It is an experimcaital fact, one of the first laws of temperature 

radiation, that the type of radiation—its wave kmgths, intensities, and 

so on—is independent of the volume, depending only on the temperature. 

This type of radiation, in thermal equilibrium, is called black-body 

radiation, for a reason which we shall understand in a moment. 

The first and most elementary law of l)lack-body radiation is Kirch- 

hoff^s law, a simple a]:)plication of the kinetic mc'-thod. To understand 

it, we must define some tcTins. First we considc^r the emissive power 

Cx of a surface. W(? considcT the total numlxu* of ergs of energy emitted 

in the form of radiation per s(H*ond square centime^ter of a surface, in 

radiation of wave length between X and X + t/X, and by definition set it 

equal to e\dX. Next we consider the absorptivity. Suppose a certain 

amount of radiant eiu^rgy in the wave length range r/X falls on 1 sq. cm. 

per second, and supposes a fraction a\ is absorbed, the remainder, or 

(1 — ax), being reflected. Then a\ is called the absorptivity, and 

(1 — ax) is called the reflectivity. Now considf‘r the simple requirement 

for thermal equilibrium. We shall dcanand that, in ea(*h separate range 

of wave lengths, as much radiation is absorbed by our square centimeter 

in thermal equilibrhim as is radiated by it. This assumption of balance 

in each range of wav(i lengths is a particular example of the principle 

of detailed balancing first introduced in Chap. VI, Sec. 2. Now let 

I\dk be the amount of black-body radiation falling on 1 sq. cm. per second 

in the wave length range d\. This is a function of the wave length and 

temperature only, as we have mentioned above. Then we have the 

following relation, holding for 1 sq. cm. of surface: 

Energy emittc^d per second — e\d\ 

— energy absorbed per second = I^a^dX, 

or 

■^ == = universal function of X and T. ( 1.2) 

Equation (1.2) expresses Kirchhoff’s law: the ratio of the emissive power 

to the absorptivity of all bodies at the same wave length and temperature 

is the same. Put more simply, good radiators are good absorbers, poor 

radiators are poor absorbers. There are many familiar examples of this 

law. One, which is of particular importance in spectroscopy, is the 

following: if an atom or other system emits a particularly large amount of 
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radiation at one wav(' length, as it will do if it has a line spectrum, it 

must also have a particularly large absorptivity at tlie same wave length, 

so that a continuous speedrum of radiation, passing through the body, will 

have this wave length absorl)ed out and will show a dark liru^ at that point. 

A black body is })y definition one which absorbs all tlui light falling 

on it, so that noru^ is rcdb^ctc^l. That is, its absorptivity ax is unity, for 

all wave lengths. Then it follows from Eq. (1.2) that for a black body the 

emissive power cx is (‘(jiial to /x, the amount of black-body radiation 

falling on 1 sc^. cm. pen’ second ])er unit range of wave hmgth. We can 

understand the im])licalions of this statement bedter if we consider what 

IS called a hollow cavity. This is an enclosure', with perfectly e)paque 

walls, so that no raeliatie)n can escape from it. It contains matter and 

radiation in equilibrium at a giveai tempe'rature. Thus the radiatie)n is 

black-boely raeliation charaederistic of that teanperature. Now su})pe)se 

we make> a very small opening in the ericle)sure, ne)t big enough to disturb 

the cc|uilibrium but big enough to led. a little' radiation enit. We can 

approximate the' situation in pract ice epiite' well by having a well insulaterl 

e'le'ctric furnaces for the cavity, with a small window for the opening. All 

the radiation falling e)n the' e)pening gets out, so that if we look at what 

emerges, it re'pre'sents e^xact.ly the black-be)ely radiation falling on the area 

e)f the oj)e'ning piW second. Such a furnae'e makes in i)ractice the me^st 

ce)TweMiie',nt way e)f getting black-boely radiation. But now by Kirchhoff's 

law and the', ele'finit ion of a black boely, we see that if we have a small piece 

of black boely, of the' shape' e)f the^ e)))ening in our cavity, and if we heat it 

to the ternj)erat lire e)f the cavity, it will emiit exactly the same seirt eif 

radiation as the^ eipe'iiing in the cavity. This is tlie re'.ason why our radia¬ 

tion from the^ cavity, raeliatie)n in thermal equilibrium, is also called black- 

body radiatie)!!. A blae*k body is the only one which has this property 

of emitting the same sort of raeliatiein as a cavity. Any other body will 

e^mit an amount ax/x d\ pe'r sejuare centimeter per second in the range 

f/X, and since a\ must by definition be less than or equal to unity, the 

other body will emit h^ss light of each wave length than a black body. A 

body which has very small absorjitivity may emit hardly anything. Thus 

quartz transmits practically all the light that falls on it, without absorp¬ 

tion. When it is heatinl to a temperature at which a metal, for instance, 

would be red or white hot and would emit a great deal of radiation, the 

quartz emits hardly any radiation at all, in comparison. 

Now that we understand the emissive power and absorptivity of 

bodies, we should consider /x, the universal function of wave length and 

temperature describing black-body radiation. It is a little more con¬ 

venient not to use this quantity, but a closely related one, Up. This 

represents, not the energy falling on 1 sq. cm. per second, but the energy 

contained in a cubic centimeter of volume, or what is called the energy 
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density. If there is energy in transit in a light it is obvious that 

the energy must be located somewhere while it is traveling, and that we 

can talk about the amount of energy, or the number of ergs, per cubic 

centimeter. It is a simple g(^ometric,al matter to find the ndation between 

the energy density and the inbmsity. If w(‘ consider liglit of a definite 

direction of propagation, then the amount of it whicli will strikti unit 

cross section per second is the amount containcMl in a ])rism whose base 

is 1 sq. cm. and whose slant height along th(‘ dina'tion of ])roi)agation is 

the velocity of light c. This amount is tlu^ volunu' of th(‘ prism (a cos 6, 

if 6 is the angki between th(‘ dinadion of propagation and th(‘ normal to 

the surfac(‘), multiplied by the energy of th(‘ light wave ])er unit volume. 

Thus we can find very easily tlu^- amount of light of this d('finit(‘ direction 

of propagation falling on 1 sep cm. per s(‘Cond, if we know th(^ (ai(n*gy 

dcaisity, and by int(‘gration we can find Uk' amount of light of all dina*,- 

tions falling on the surface. We shall not do it, sinc(‘ wc' shall not neiai 

the n'lation. In addition to this diffcTcmcc' Ixdwfaai //,. and tlu* former 

r(‘f(‘rs to frequency ratlun* than wav(^ length, so that }i;,(h by di'finition is 

the energy per unit volume in the frecpiency rang(' from v io v + dv. 
In addition to (‘iKU'gy, light can carry monuait um. ddiat nutans that 

if it, falls on a surfaca' and is absorlxal, it transfia's rnoimaitum to the 

surface, or exerts a fona^ on it. This force is calhal radiation i)ressur(\ 

In ordinary laboratory expc'riments it is so small as to Ix^ veay difficult 

to detect, but there aio some astrophysical cases wluM’e, on a(aajunt of the 

high density of radiation and the sinalln(\ss of other forca's, tlje radiation 

pn'ssure is a very im])ortant, effiad. The ))ressur(‘ on a i*(dl(a*t ing surfacap 

at which the momentum of th(‘ radiation is r(‘V(‘rs(al inst(aid of just bcang 

reduced to zero, is twice that on an absoi'bing surfacaa Now tlu' radiation 

pressure ciin be comput(al from electromagm'tic tlua^ry, and it turns out 

that in isotropic^ radiation (radiation in which thma^ aia^ Ixaims of lights 

traveling in all dinadions, as in black-body radiation), the pressure' against 

a reflecting wall is given by the simide relation 

P = i X energy density 

= i£’°u,dy. (1.3) 

From Eq. (1.3) we can easily prove a law called the Stefan-Boltzmann 

law relating the density of radiation to the timipen-aturea 

Let us regard our radiation as a thermodynamic system, of pn^ssure 

P, volume y, and internal energy P, given by 

U = vf^“u,dy. (1.4) 

Then, from Eqs. (1.3) and (1.4), the equation of state of the radiation is 

PV = iU, (1.6) 
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which compares with PV — %U for a perfect gas. There is the further 

fact, quite in contrast to a perfect gas, that the pressure depends only on 

the temperature, being independent of the volume. Then we have 

(1.6) 

using the fact that P is independent of V. But by a simple thermo¬ 

dynamic relation we know that in general 

Combining Eqs. (1.6) and (1.7), we have 

(1.7) 

= (1.8) 

The pressure in Eep (1.8) is really a fumdJon of the temperature only, so 

that th(‘ partial derivative can be written as an ordinary derivative, and 

we can express the relation as 

which can be integrated to give 

In P = 4 In T + const., 

P = const. T\ (1.10) 

or, using Eq. (1.3), 

Updv — const. T^. (1.11) 

Equation (1.11), stating that the total energy per unit volume is propor¬ 

tional to the fourth power of the absolute temperature, is the Stefan- 

Boltzmann law. Since the intensity of radiation, the amount falling on a 

square centimeter in a second, is proportional to the energy per unit 

volume, we may also state the law in the form that the total intensity of 

black-body radiation is proportional to the fourth power of the absolute 

temperature. This law is important in the practical measurement of 

high temperatures by the total radiation pyrometer. This is an instru¬ 

ment which focuses light from a hot body onto a thermopile, which 

absorbs the radiation energy and measures it by finding the rise of tem¬ 

perature it produces. The pyrometer can be calibrated at low tempera¬ 

tures that can be measured by other means. Then, by Stefan’s law, at 

higher temperatures the amount of radiation must go up as the fourth 
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power of the temperature, from which we can deduce the temperature 

of very hot bodies, to which no other method of temperature measurement 

is applicable. Since Stefan^s law is based on such simple and fundamental 

assumptions, there is no reason to think that it is not perfectly (ixact, so 

that this forms a valid method of measuring high temperatures. 

2. The Planck Radiation Law.—The Stefan-Boltzmann law gives us a 

little information about the function but not a great deal. We shall 

iiext see how the function can be evaluated exactly. There are many 

ways of doing this, but the first way we shall use is a purely statistical 

one. We can outline the mcdhod very easily. We consider a hollow 

cavity with perfectly reflecting walls, making it rectangular for con¬ 

venience. In siudi a cavity we can have standing waves of light; these 

waves, in fact, (‘onstitute the thermal radiation. There will be a discrete 

set of possible vibrations or overtones of a fundamental vibration, just 

as w^e had a discrete set of sound vibrations in a rectangular solid in Chap. 

XIV; only inst(\ad of having a finite number of overtones, as we did with 

the sound vibrations on account of the atomic nature of the material, the 

number of overtones h(U‘e is infinite and stretches up to infinite fre¬ 

quencies. As with the sound vibrations, (^ach overtoiK^ acts, as far as the 

quantum theory is concerned, like a linear oscillator. Its energy cannot 

take on any arbitrary value, l^ut only certain (piantized values, multiples 

of hv, where is the freciuency of that particular overtone. This leads 

at once to a calculation of the mean energy of each overtone, just as we 

found in our calculation of the specific heat of solids, and from that we 

can find the mean energy per unit volume in the frequency range dv^ and 

so can find 

First, let us find the number of overtone vibrations in the range dv. 

We follow Chap. XIV in detail and for that reason can omit a great deal 

of calculation. In Sec. 2 of that chapter, we found tlie number of over¬ 

tones in the range dv, in a problem of elastic vibration, in which the 

velocity of longitudinal waves was Vi, that of transverse waves Vi. From 

Eqs. (2.20) and (2.21) of that chapter, the number of overtones of longi¬ 

tudinal vibration in the range dv, in a container of volume V, was 

dN = Airp'^ dX, (2.1) 
vf 

and of transverse vibrations 

dN = 87r»''-“ dv~- (2.2) 

There was an upper, limiting frequency for the elastic vibrations, but 

as we have just stated there is not for optical vibrations. In our optical 

case, we can take over Eq. (2.2) without change. Light waves are only 
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transverse, so that the ovc^rtones of Eq. (2.1) are not present but those of 

Eq. (2.2) ai‘e. Since tlu^ velocity of light is c, we have 

dN = dv\ (2.3) 

as the number of standing waves in volume V and the frequency range dv. 
Next we want to know the mean energy of each of these standing 

wavers at the temperature T. Before tin? invention of the quantum 

theory, it was assumed that the oscillators followed classical statistics. 

Then, being linear oscillators, the mean energy would have to be kT at 

temperature T. From this it would follow at once that the energy density 

which (^an be found by multiplying dN in Eep (2.3) by the mean energy 

of an os(;illator, and dividing by V and dv, is 

Up 
StpHcT 

cA 
(2.4) 

Equation (2.4) is the so-called Rayl(agh-J(ians law of radiation. It was 

d(‘rived, (\ss(uitially as we have done, from classical theory, and it is the 

only possible radiation law that can be found from classical theory. Y(‘t 

it is obviously absuru, as was realized as soon as it was derived. For it 

indicates that iip increases continually with v. At any temperature, tlu^ 

farther out w('. go toward the ultraviolet, the more intense is the tempera¬ 

ture radiation, until finally it becomes infinitely strong as we go out 

through the x-rays to the gamma rays. This is ridicnilous; at low tem¬ 

peratures the radiation has a maximum in the infrared, and has fallen 

practically to zero intensity by the time we go to the visible part of the 

spectrum, while even a white-hot body has a good deal of visible radiation 

(hence the white heat^’), but very little far ultraviolet, and practically 

no x-radiation. There must be some additional feature, missing in the 

classical theory, which will have as a result that the overtones of high 

frequency, the visible and even more the ultraviolet and x-ray frequencies, 

have much h'.ss energy at low temperatures than the equipartition value, 

and in fact at really low temperatures have practically no energy at all. 

But this is just what the quantum theory does, as we have seen by many 

examples. The examples, and the quantum theory itself, however, were 

not available when this problem first had to be discussed; for it was to 

remove this difficulty in the theory of black-body radiation that Planck 

first invented the quantum theory. 

In Chap. IX, Sec. 5, wc found the average energy of a linear oscillator 

of frequency v in the quantum theory, and found that it was 

* hv . hv 
Average energy = -^ + —f,-;-^ 

eP - 1 
(2.5) 
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as in Eq. (5.9), Chap. IX. The term ^hv was the energy at the absolute 

zero of temperature; the other term represented the part of the energy 

that depended on temperatui-e. The first term, sometimes called the 

zero-point eiu'Tgy, arose because we assumed that the quantum condition 

was En — {n At i)hv, instead of En — nhv. We can now use the expres¬ 

sion (2.5) for the average energy of an overtone, but we must leave out 

tlu^ zero-point energy. For, since the number of overtones is infinite, this 

would lead to an infinite energy density, even at a temi)erature of absolute 

zero. The reason for doing this is not very clear, even in the present state 

of the cpiantum theory. We can do it quite arbitrarily, or we can say 

that the (quantum condition should b(‘ En — nhv (an assumption, how¬ 

ever, for which there is no justification in wave mechanic's), or we can 

u 
Fici. XIX-1.—Energy density from Planck’s distribution law, for four temperatures in the 

ratio 1:2.3:4. 

say that the infinite zero-point energy is rt'ally there but, sincti it is inde¬ 

pendent of temperature, we do not obsc'rve it. No one of tliest^ reasons is 

very satisfactory. Unfortunately, though it was tlie branch of physics 

in which quantum theory originated, radiation tluntry still has more 

difficulties in it than any other parts of quantum theory. We shall then 

simply apologize for heaving out the term ^hv in Eq. (2.5), and shall hope 

that at some future time the theory will be well enough understood so 

that we can justify-it. 

If we assume the expression (2.5), without the zero-point energy, for 

the average energy of a standing wave, and take Eq. (2.3) for the number 

of standing waves in volume V and frequency range dv, we can at once 

derive and we have 

Sirkv^ 1 ___ 
ekT ^ 1 

Uy = (2.6) 
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Equation (2.6) is Planck^s radiation law, and as far as available experi¬ 

ments show, it is the exactly correct law of black-body radiation. Curves 

of Uy as a function of p, for different temperatures, an^ shown in Fig. 

XIX-1. At low frequencies, even for room tempc'ratures, the frequcuicies 

are so low that the energy of an oscillator has practically the classical 

value, and the Rayleigh-Jc^ans law is correct. At higher fi-equencies, 

however, this is not the case, and the curves, inst ead of rising indcifinitely 

toward high frequencies, curve down again and go v(uy sharply to negligi¬ 

ble values. The maximum of the curve shifts to higher frcKiuencies as 

the temperature rises, clu^cking the exp(‘rim('ntal fact that bodies look 

red, then white, then bliu^, as their t(‘mp(u'ature rises. The area under 

the curve rises rapidly with tempca-ature. It is, in fact, this area that 

must be proportional to the fourth power of the temperatun', according 

to the Stefan-Boltzmann law. We can easily verify that Planck\s law is 

in accordance with that law, and at th(^ saim^ time find the constant 

in Eq. (1.11), by integrating Uy from Eq. (2.6). Wc have 

(^uydv ^ r 
Jo Jo 

- 1 

- dv 

h rv Jo \kf)j:^ _ ^\kf) 

8wk*T* f ” , 1 , 
= “TVl I ^ “r- Jo e* — 1 

48a7rA:^2’‘' 

■ Iv 
(2.7) 

where we have used the relation 

l-J, . 6(l +1 + 1 + ■ . . ) - 6., 

<* - (l + 2^ + + • • • ) - 1.0823 ■ ■ (2.8) 

3. Einstein’s Hypothesis and the Interaction of Radiation and 
Matter.—To explain the law of black-body radiation, Planck had to 

assume that the energy of a given standing wave of light of frequency p 

could be only an integral multiple of the unit hv. Thus this carries with 

it a remarkable result: the energy of the light can change only by the quite 

finite amount hp or a multiple of it. This is quite contrary to what the 

wave theory of light indicates. The theory of emission and absorption of 

energy has been thoroughly worked out, on the wave theory. An oscillat¬ 

ing electric charge has oscillating electric and magnetic fields, and at 

distant points these fields constitute the radiation field, or the light wave 
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sent out from the charge. The field carries energy out at a uniform and 

continuous rate, and the charge loses energy at the same rate, as one can 

see from the principle of conservation of energy, and gradually comes to 

rest. To describes absorption, we assume a light wave, with its alternating 

electric field, to act on an eh'ctric charge whic^h is capable of oscillation. 

The fi(dd exc'rts forces on tlu^ charge, gradually vsetting it into motion with 

greater- and greater amplitude^, so that it gr'adually and continuously 

absorbs energy. Both proc('sses, emission and absorption, then, are 

continuous according to the wave theory, and y(‘t the quantum theory 

assunu's that the enei*gy must, change by finite amounts hv. 

Einstein, clearly understanding this conflict of theories, made an 

assumption that seemc^d extreme in 1005 when lu' made it, but which has 

later come to point tlie whoh^ direction of fkwelopment of quantum 

th(H)ry. He assum(‘d tliat th(‘ energy of a ]*adiation field could not be 

(*onsid(n'(Hl continuously distributed through space, as the wave th(^ory 

indicated, but instead that it was carried by particles, then called light 

quanta, now mor(^ oft(‘n called pliotons, each of energy hv. If this hypo¬ 

thesis is assuuK^d, it b(H'om(‘s obvious that absoi*i>tion or emission of light 

of frequency v must consist of tlui absorption or emission of a ])hoton, so 

that th(i eiKU’gy of the atom or other system absorbing or emitting it must 

(*hange by the amount hv. h]instein\s hyi)othesis, in other words, was the 

direct and straightfoi’ward consecpiencc of Planck^s assumption, and it 

received immediate^ and remarkable verification in the theory of the 

photoelectric effect. 

Metals can emit electrons into empty spaea' at high temperatures by 

the thermionie; effect useel in obtaining eleedron emissiem from filaments in 

vacuum tubes. But metals also can emit ele^ctrons at ordinary room 

temperature, if they are illuminated by the proper light; this is called the 

photoelectric effect. Not much was known about the laws of photo¬ 

electric emission in 1905, but Einstein applied his ideas of photons to the 

problem, with remarkable results that proved to be entirely correct. 

Einstein assumed that light of frequency v, falling on a metal, could act 

only as photons hv were absorbed by the metal. If a photon was 

absorbed, it must transfer its whole ene^rgy to an electron. Then the 

electron in question would have a sudden inc.rease of hv in its energy. 

Now it requires a certain amount of work to pull an electron out of a 

metal; if it did not, the electrons would continually leak out into empty 

space. The minimum amount of work, that required to pull out the most 

easily detachable electron, is by definition the work function </>. Then if 

hv was greater than the work function, the electron might be able to 

escape from the metal, and the maximum possible kinetic energy which 

it might have as it emerged would be 

^ hv — <l>. (3.1) 
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If the electron happened not to be the most easily detachable one, it 

would require more work than (t> to pull it out, and it would have less 

kinetic energy than Eq. (3.1) when it emerged, so that that represents the 

maximum possible kinetic energy. 

Einsteill^s hypothesis, then, led to two definite predictions. In the 

first places, there should be a photoelectric threshold: frequencies less than 

a certain limit, equal to </>//?,, should be incapabh) of ejecting photoelecv 

trons from a metal. This prediction proved to be verified experimentally, 

and with more and more accurate determinations of work function it 

continues to hold ti*ue. It is interesting to see where this thrc^shold comes 

in the spectrum. For this purpose, it is more convenient to find the 

wave length X = c/p corresponding to the frequemey <t>/h. If we exi)n\ss 

(j> in (‘lectron volts, as is commonly done, (sch' Kq. (1.1), Chap. LX), we 

have the relation 

__ he X 300 _ 12360 angstroms . . 

4.80 X 10~^^V ^voits) 4> (volts) ' ‘ 

AW wave lengths shorter than the threshold of Eep (3.2) can eject photo¬ 

electrons. Thus a metal with a small work function of two volts (which 

certain alkali metals have) has a threshold in the red and will react 

photo(4ectrically to visible light, while a metal with a work function of 

six volts would have a thr(\shold about 2000 A, and would be sensitives 

only in the rather far ultraviolet. Most real metals lie between these 

limits. 

The other prediction of Einstein\s hypothesis was as to the maximum 

velocity of the photoc'lectrons, given by Kq. (3.1). This is also verific^d 

accuratedy by experiment. There is a remarkable feature connected with 

this: the energy of the electrons depends on the frciquency, but not on the 

intensity, of the light ejecting them. Double the intensity, and the 

number of photocdectrons is doubled, but not the energy of each indi¬ 

vidual. This can be carried to limits which at first sight seem almost 

absurd, as the intensity of light is reduced. Thus let the intensity be so 

low that it will require some time, say half a minute, for the total energy 

falling on a piece of metal to equal the amount hv. The light is obviously 

distributed all over the piece of metal, and we should suppose that its 

energy would be continuously absorbed all over the surface. Yet that 

is not at all what happens. About once every half minute, a single 

electron will be thrown off from one particular spot of the metal, with an 

energy which in order of magnitude is equal to all that has fallen on the 

whole plate for the last half minute. It is quite impossible, on any 

continuous theory like the wave theory, to understand how all this 

energy could have become concentrated in a single electron. Yet it 

is; photoelectric cells can actually be operated as we have just described. 
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All example like this is tlie most direct sort of experimental evidence for 

Einstein^s hypothi^sis, that the energy in light waves, at least when it is 

being emitted or absorbed, acts as if it were concentrated in photons. 

For a long time it was felt that there was an antagonism between 

wave theory and photons. Certainly the photoelectric effect and similar 

things are most easily explained by the theory of ]>hotons. On the other 

hand, interference, diffraction, and the whole of physical optics cannot be 

(‘xplained on any basis but, the wave theory. How (jould these theories 

be simultaneously truc^? We (^an see what happens experirncm tally, in a 

cas(^ wh(U‘e w(i must think about both types of theor‘i(‘s, by asking what 

would happen if the very weak beam of light, falling on the metal plate 

of th(‘ last paragraph, had pr(wiously gone through a narrow slit, so that 

there was actually a diffraction pattern of light and dark fringes on the 

plat(\ a pattern which can b(i explained only by the wave theory. We say 

that there is a diffraction pattern; this does not scH'm to mean anything 

with the very faint light, for there is no way to observe it. We mean 

only that if nothing is changed but the intensity of the light, and if that is 

rais(Ki far emough so that tlu^ beam can be observed by th(^ eye, a diffrac¬ 

tion pattern would be s(um on the plate. But now even with the w(^ak 

light, it r(‘ally has meaning to speak of the diffraction pattern. Suppose 

we marked off th(‘. light and dark fringes using an intense light, and then 

r(‘turned to our weak light and made a statistical study of the points on 

the plate from which eh'ctrons were ejecd-ed. We should find that the 

(electrons w(U’e all emitted from what ought to be the bright fringes, none 

from the dark fringes. The wave theory t(dis us where photons will be 

absorbed, on the average. This can b(^. seen even more easily if we replace 

the photoelectric plate by a photographic plate. This behaves in a v^'ry 

similar way: in weak light, occasionally a process takes place at one single 

spot of the plate, producing a blackened grain when the plate is developed, 

and the c;ffect of increasing the intensity is simply to increase the number 

of d(^veloped grains, not to change the blackening of an individual grain. 

Then a weak diffraction pattern, falling on a plate for a long time, will 

result in many blackened grains in the bright fringes, none in the dark 

ones, so that the final picture will be almost exactly the same as if there 

had been a stronger light beam acting for a shorter length of time. 

Nature, in other words, does not seem to be worried about which is 

correct, the wave theory or the photon theory of light: it uses both, and 

both at the same time, as we have just seen. This is now being accepted 

as a fact, and the theories are used more or less in the following way. In 

any problem where light is concerned, an electromagnetic field, or light 

wave, is set up, according to classical types of theories. But this field is 

not supposed to carry energy, as a classical field does. Instead, its 

intensity at any point is supposed to determine the probability that a 
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photon will be found at that point. It is assumed that there is no way 

at all of predicting exactly where any particular photon will go; we cannot 

say in any way whatever, in weak light, which electron of the metal will 

be ejected next. But on the average, the wave theory allows us to pre¬ 

dict. This type of statistical theory is quite diffeu'ent from any that has 

been used in physics before. Whenever a statistical (Jeinent has be(ai 

introduced, as in classical statisti(‘.al mechani(%s, it has been simply to 

avoid the trouble of going into complete detail about a very complicated 

situation. But in quantum th(‘ory, as w(i have alrc^ady mentioned in 

Chap. Ill, Sec. 3, we consider that it is impossil)le in principh^ to go into 

complete detail, and that the statisti(‘al t heory is all that thc're is. Wh(Hi 

one me(d.s wave mechanics, one finds that the laws governing the motion 

of ordinary particles, electrons, and atoms, are also wav(‘like laws, and 

that the intensity of the wave gives thc^ ])rol)al)ility of finding the i)articJe 

in a particular spot, but that no law whateven* seems to predict exactly 

where it is going. This is a curious si ate of affairs, according to our usual 

notions, but nature seems to be mad(^ that way, and the theory of radia¬ 

tion has been the first place to find it out. 



CHAPTER XX 

IONIZATION AND EXCITATION OF ATOMS 

In the scH^oncl part of this book, we liavc^ been concerned with the 

behavior of gases, liquids, and solids, and we have' s(‘en that this behavior 

is determined largely by the nature of the interatomic and intermolecular 

forces. These forc,(\s arise from the electrical structure of the atoms and 

mole(;ules, and in this third part wc shall consider that structure in a very 

elementary way, gi\^ing particular attention to the atomic and molecular 

binding in vaiious ty]:)es of substances. Most of the information which 

we hav(^ about atoms comes from sp(H*,troscopy, the interaction of atoms 

and light, and we must begin with a discussion of th(» excited and ioni- 

zat(?d states of atoms and molecules, and the relation between energy 

levels and the (‘lectrical properties of the atoms. 

1. Bohr’s Freqpuency Condition.—have seen in Chap. Ill, Sec. 3, 

that according to the quantum tluiory an atom or molecule can exist only 

in certain definite stationary states with definite energy levels. The 

spacing of these energy levels depends on the type of motion we are con¬ 

sidering. For molecular vibrations they lie so far apart that their 

energy differences are large compared to kT at ordinary temperatures, as 

we saw in Chap. IX. For the rotation of molecules the levels are closer 

together, so that only at very low temperatun^s was it incorrect to treat 

the energy as being continuously variable. For molecular translation, as 

in a gas, we saw in Chap. IV, Sec. 1, that the levels came so close together 

that in all cases we could treat them as being continuous. Atoms and 

molecules can also have energy levels in which their electrons are excited 

to higher energies than those found at low temperatures. Ordinarily 

the energy difference bc^tween the lowest electronic state (called the 

normal state, or the ground state) and the states with electronic excitation 

is much greater than the energy differciiees concerned in molecular 

vibration. These differences, in fact, are so large that at ordinary tem¬ 

peratures no atoms at all are found in excited electronic levels, so that we 

do not have to consider them in thermal problems. The excited levels 

have an important bearing, however, on the problem of interatomic 

forces, and for that reason we must take them up here. Finally, an 

electron can be given so much energy that it is entirely removed from 

its parent atom, and the atom is ionized. Then the electron can wander 

freely through the volume containing the atom, like an atom of a perfect 
321 
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gas, and its eiKugy k'vc'ls aro so cJosc'ly spacc^l as 1o l>o (‘oiitiiiuous. Tlie 

energy ](n ('Is of an atom or mok'eiile, in other words, inelink' a set of dis- 

eret-e l('V(‘ls, and alxwe those a eontinnum of k‘^'('ls asso{‘iat(Hl with 

ionization. SiK'h a s(*t of ('lU'rgy k'V(‘ls for an atom is sliown s(*h(Mnatieally 

in Fig. XX-]. The (‘tiergy difh'ixnua' hetwc'en tlu* normal state and the 

beginning of th(‘ eontinnum giv(‘s the work recpiin'd to i()niz<' the atom or 

moleeuk', or tlie ionization potc'ntiaJ. Tlu' ionization ])otentials are 

ordinarily of the order of magnitiuk' of a numlx'r of volts. Tlu' low(‘st 

ex(‘ited ('n('rgy k'vc'l of an atom, (‘alk'd in som(' (aisc's tiie ri'sonanee k'vel 

(sometimes tlu' word rc'sonanec' k'vel is used for an exeit('d levt'l somewhat 

hnrzai ion 
potent id I 

Resonance 
pohnh'a! 

higlua* than tiu' lowest oik', [>ut one which is 

n'aclu'd ])articularly ('asily from the lowest 

OIK' by th(^ a}>soi])tion of radiation), is 

ordinarily sevcaal volts above' tlu' normal 

state, the (‘iK'rgy diff('i‘('U(‘(' Ix'ing called tlu', 

resonaiK'i' i)ot(‘ntial. This V('rifi('s our state- 

iiK'nt that ('k'(*trons will not b(‘ apjireciably 

excit(‘d at orelinary tc'npxa'atun's. We can 

se(' tliis by finding the chara(*t eristic tempera- 

tiiHi associat(‘d with an ('iK'igy dilT(a*ence of 

th(i order of magnitiuk' of a volt. If we k't 

/;•() = energy of oiu' ('lectron volt, we have* 

0 = (4.80 X 10-''‘)/ (300 X 1.379 X 10' ‘‘O = 

11,600° abs. Thus ordinaiy t('mperatur(‘s 

are' ve'iy small eomiiare'el w ith such a charae*- 

teiristic te'mperature. If wa^ ceinsiek'r the 

pe)ssibility of an ek'ct ronic spe'cific he'al e'oin- 

ing from the' t'xcitatiein ejf e'k'ctrons to excited 

k'vc'ls, we s(‘e that sue'h a spe'cific heat will 

be (piitei negligible, feir ordinary substaru'e's, 

at temperature^s Ik'Iow seiV('i*al thousanel 

(k^gree^s. A few^ exce'ptional ek'inents, how- 

ever, suedi as some' of the transitiem group metals, havei excited energy 

levels only a few^ hundredths of a volt above the normal state, and these 

elements have appreciable electronic specific heat at ordinary 

temperature's. 
There are two principal mechanisms by wliich atoms or molecules c-an 

jump from one energy level to another. Thexse are the emission and 

absorption of radiation, and collisions. For the mome'iit we shall con¬ 

sider the first process. An atom in a given energy loved can have^ transi¬ 

tions to any higher energy level with absorption of eaiergy, or to any 

lower level with emission, eaeth transition meaning a epiitd definite energy 

difference. By the conservation of energy, the same quite definite 

Fid. XX-1.- -Schomalif* net 
energy levels for an atom. 

of 
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("n(U'f2:y must bo convoi tod into a photon if light is being emitted, or must 

liav(‘ eonu' from a [)Iiotou if it is being absorbcai. But by Einstoin^s 

hypothesis, the fnajiuaiey of a jdioton is determined from its energy, by 

tlie j'elation (‘n(‘igy = hv. Thus a transition ])et\veen two atomics (uiergy 

l(WC‘ls, with (‘U(‘rgi(‘s K\ and must result in the emissioji or absorption 

of a ])hol()n of frcHjiuMH'y v, wh(U‘(‘ 

K2. — E\ — hv. (1.1) 

With shai’i^ and disendc' (unn-gy l(‘V(‘]s, IIkmi, we must liav(' d('finit(‘ fre- 

(jU(‘nei('s ^nnillfnl and itbsoi lxHl, or must ha\u* a sliarj) line' spect rum. Tlie 

reflation (1.1), as np])li(Hl to tla^ sjxxdrum, is due to Bohr, and is ofbm 

ealh'd Bohi‘’s frcapu'ncy condition; it is n^ail}^ the foundation of the 

tJu'ory of s])(‘cti‘os('opy. Ib^gardcxl as an em])ii-ical fact, it staters that th(‘ 

frtapKUicic'S obsi'i ved in any SfxHdrum can lx‘ writtcai as th(‘ diftenaux's 

of a s('t of numlx'rs, calhxl tcaans, which ar(‘ simply tlie (ana’gy hwads of the 

sysbun, divid(xl by h. Sinrx* with a giv(‘n tabh' of tf'rms we can find a 

gixxit many nior(‘ ditf(‘r(‘n(‘(\s tluin tluax^ are t(‘rms, t his means that, a given 

com]>licat(xl spc'ctrum can be gi*eatly sim])lifi('d if, insbaid of tabulating 

all tlu^ sp(x*l]‘a] ft'(‘(iuen(d{'s, w(' tabulate' only the much smalha* number of 

t('rm value's. Ajid the' irnpeu'tance' e)f Boljr’s freepu'ne'y e'e)nditie)n ge)(\s 

mue'h furtlu'r than tliis. For by obse'rving the fre'ejue'ne'ie's in the' s])('c- 

tiaiin and fineling the' te'rms, we can get the^ e'ue'rgy leveds e)f tlu' atom or 

me)l('cule' ('nutting the' spe'ctrum. We can use' th(^s(' dire'ctly, with no 

more' tlu'ory, in such things as a calculation of the sjx'cific lie'at. For 

itistance, the' e'lU'rgy levels ed’ mole'cular vi])ration and re)tation, usexl in 

nneling tlie' specitie' lie'at of nieih'cule'S in Chap. TX, aix' the re'sults e)f spexv 

fre)se*()i)ie*. obse'rxat iem. Furt iu'rmeire', we e*an use' the e)]is('r\x'd ene'rgy 

k'vels to vei’ify, in a very ]>r('e*ise' way, any tlu'eire'tical cale'ulation which 

we have made em the basis eif the' quantum e'emditiems. The', I’e'lation 

l)e'twee*n the sharp line's obse'rve'el in spe'ctra, anel the' energy leve'ls oi the 

atoms en* meile'cule's making the spe'ctra, has be*en the' meist imiiortant fact 

in the' denadopment of our kneiwle'dge eif the struct ui*c of atoms anei 

moleeidevs. 

Beihr’s freque'iicy e'onditiem has one surprising fexiture. The frev 

ejuency of emitted light is related, ace'ording tei it, to the^ energy rather 

than the fre'que'iicy of the' motiein in the atom tliat preiducess it. This is 

entirely contrary to classical tlu'ory. A vibrating charge, oscillating 

with a given frequency, in classical e'lectromagnedlc theory, semels out light 

of the fre^quene'y with which it vibrates. According to wave meclianics, 

however, there is really not a contradiction here. For in wave me'edianics, 

the particles, ordinarily t he edectrons, wdiich produce the light do not move 

according to classical theory, but the frequencies actually present in their 

average motions are those given by Bohr\s freepiency condition. Thus 
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the relation between the motion of the particles, and the light they send 

out, is more nearly in accord with classical electromagnetic theory than 

we should suppose at first vsight. 

2. The Elinetics of Absorption and Emission of Radiation.—With 

Bohr^s picture of the relation between energy levels and discrete spectral 

lines in mind, Einstein gave a kinetic derivation of the law of black-body 

radiation, which is very instructive and which has had a gi-eat deal of 

influence. Einstein considered two parlienilar stationary states of an 

atom, say the ^th and jih (where for de^finiteness wo. assume that the ^th 

lies above th(i jth), and the radiation whiedi could be emittenl and absorbed 

in going betweeai these two states, radiation of freeiiiency ri/, where 

hv,j== Ei- (2.1) 

Suppose the atom, or group of atoms of the same sort, capable of existing 

in these stationary states, is in thermal equilibrium with radiation at 

temperature T, Tlien for equilibrium, using th(‘ principhi of detailed 

balancing, the amount of energy of frequency Vi,j absorbed by the atoms 

per second in making the transition from state j to state i must equal the 

amount of the same frequency emitted per second in going from state i 
to state Einstein made d('finite assumptions as to the probability of 

making these two transitions. In the first place, consider absorption. 

The number of atoms absorbing photons per second must surely be pro¬ 

portional first to the number of atoms in the lower, ^th tuKngy level, which 

we shall call Nand to the intensity of radiation of th(^ frequency 

which is Uvij, Thus Einstcan assumc'd that the number of atoms absorb¬ 

ing photons per second was 

N-jBijUyii, (2.2) 

where Bij is a constant characteristic of the transition. Next consider 

emission. Quite clearly an atom in an excited state can emit radiation 

and jump to a lower state without any outside action at all. This is 

called spontaneous emission, and the probability of it was assumed by 

Einstein to be a constant independent of the intensity of radiation. Thus 

he assumed the number of atoms falling spontarniously from the zth to 

the jth levels per second with emission of radiation was 

NiAi^, (2.3) 

where Ai^ is another constant. But at the same time there must be 

another process of emission, as Einstein showed by considering very high 

temperatures, where Upij is very large. In this limit, the term (2.2) is 

bound to be very large compared to the term (2.3), so that with just these 

two terms equilibrium is impossible. Guided by certain arguments 

based on classical theory, Einstein assumed that this additional probabil- 
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ity of emission, generally called induced emission, was 

N iB ijiipijj (2,4) 

proportional as the absorpt ion was to the intensity of external radiation. 

For equilibrium, then, we must have (‘qual numbers of photons emitted 

and absorbed per second. Thus we must have 

^iy “f“ Bijiipij) — N-jB(2.5) 

But at the same time, if tlun-c' is (H|uilibrium, we know that the number 

of atoms in the fth and jth states must be determined by the Boltzmann 

factor. Thus we must have 

Ni = const, e 
-Ej 

Nj — const, e 

Ni 
N] 

(E.-Ej) 
kT 

hvxj 

We can now solve Eqs. (2.5) and (2.6) to find u,ij- We have 

(2.6) 

_ 1 

Ni ■ 

Bii hvi} 
xkT 

1 

1 

(2.7) 

The energy density (2.7) would be the Planck distribution law, if we had 

Aij _ Hirhvlj 

Bij 
(2.8) 

as we see by comparison with Eq. (2.6), Chap. XIX. Einstein assumed 

that Eq. (2.8) was true, and in that way had a partial derivation of the 

Planck law. 

P]instein\s derivation of the black-body radiation law is particularly 

important, for it gives us an insight into the kinetics of radiation processes. 

Being a kinetic method, it can be used even when we do not have thermal 

equilibrium. Thus if we know that radiation of a certain intensity is 

falling on atoms, we can find how many will be raised to the excited state 

per second, in terms of the coefficient Bij, But this means that we can 

find the absorptivity of matter made of these atoms, at this particular 

wave length. Conversely, from measurements of absorptivity, we 
can deduce experimental values of Bij. And from Eq. (2.8) we can find 

the rate of emission, or the emissive power, if we know the absorptiv- 
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ily. Equation (2.8), saying that two qnaiit.itic^s arc proportional 

to (\a(*h otlun’, is really V(‘ry elos(^ly j*olat(‘(l to Kirc^hhoff’s law, discussed in 

Chap. XIX, S(Mr. 1, and Kinstcaids wliolo method is closely relat(‘d to the 

arguments of Kirchhoff. 

W(‘ can put Einsteiids assunii:)tion of spontaneous and induced emis¬ 

sion in an int(a‘('sting light if w(‘ (‘X])r(\ss E(p (2.5), not in t(U-ms of the 

energy density of radiation, but in terms of lh(' av(‘rag(‘ numlx'r of 

[)hotons Ny in tlu^ standing wavf‘ of fi-cxpumcy v. L(^t us s(M' just what we 

m(‘mi by this. We ar(‘ assuming that the etu'rgy of this standing wav(^ 

is (]uantized, (Hjual to nhv^ as in (diaf). XIX, S(‘c. 2; and by Einstein’s 

hy})othesis w(‘ are, assuming that this means that tlua’C' ai‘(' rcadly n 

(or Nu) photons associatc'd with this wav(‘. In i(a-ms of this, we s(H' that 

the energy density Uy is determined i)y the relation 

Total energy in dv = UyV dv 

— iiumlxa* of wa.v<‘s in du tim(‘s number of photons in 

eac'h wav(' tinuvs energy in ('a(‘h i^hoton 

= (2.9) 

using the I’esult of Eq. (2.3), Chat>t(‘r XIX. Fi*om this, we have 

_ Uv 

^ N'y 

Then wv can rewrite h]q. (2.5), using E(|. (2.8), as 

(2.10) 

Nurnlx'r of photons emitted p(a- s('cond 

AyjN.;{Ny + 1) 
== Xumlx'r of photons absoiixxl ]X‘r S(H*ond 

= A^jNjNy, (2.11) 

The interesting feature' of E(|. (2.11) is that the induce'd anel si)ontaneous 

emission combine into a factor as simple as Ny + 1. I'his is strongly 

suggr^stive of tlu' factors Nj + 1, which we met in the ])robability of 

transition in tlie Einsteiri-Bose statistics, Eq. (4.2), of Chap. VI. As a 

matter of fact, the Einstein-Bose statistics, in a slightly modifie'd form, 

applies to photons. Since it does not really contribute furtluu* to our 

understanding of radiation, howtwer, we shall not carry thi'ough a discus¬ 

sion of this relation, but meredy mention its existence. 

3. The Kinetics of Collision and Ionization.—In the last section we 

have been considering the emission and absorption of radiation as a 

mechanism for the transfer of atoms or molecules from one energy level 

to another. The other important mechanism of transfer is that of 

collisions with anothi'r atom, molecule, or more often with an electron. 

In su(;h a collision, the colliding particles can change their energy levels, 
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and at tho same time ehanj>;e their translational kinetic energy, which is 

not considered in cahailating their (energy lev(‘Js, by such an amount that 

the total ('iKU'gy is consc'rv(Hl. A collision in which only the translational 

kineti(‘, energy chang(\s, without (diange of tlie internal energy levels of 

the (a)lliding particles, is called an elastic collision; this is the type of 

collision consi(l(‘red in C'haj). VT, w^here we were finding the effect of colli¬ 

sions on the moh'cular distribution function. Th(^ type of collision that 

results in a change^ of I'lieigy h^vel, how(‘V(a‘, involving either excitation or 

ionization, is calhui an inc'lastic collision, and it is in su(‘h collisions that 

we ar(‘ ])articiilaiiy intca’esled h(‘re. We conshha* the kinetics of such 

collisions in th(‘ j)i*(\s(ait section, coming later to th(‘ treatment of thermal 

e(iuilibrium, in particular th(‘ e(piilibrium* }Hdw'(‘en ionization and recorri- 

Ihnation, as tr(‘at('(l by th(‘rmodynamics and kinetic th(M)ry. For 

g(aH‘ralily, we b(‘gin by considc'riiig tlu^ gcan'ral nature of collisions 

b(‘tw(Hai atomic or electronic, ])articles. 

Th(‘ ])ro(‘(‘ss(‘s which we consider* are collisions, and most of them 

arc' (collisions of two i)ai*ticles, which s(‘j)arat(' again afic'i* thchr c'ncountc'r. 

The probabilitic's of sucli collisions are clc'scribc'd in terms of a cpiantity 

callc'd a c()llisi()n cross sc'ction, which wee now procc'c'd to define. First 

Ic't us C()]jsid(*r a sim])le mc'chanical collision. Suppose' we have a small 

targc't, of arc'a A (small com])ared to 1 sep cm.). Thcai suppose we fire 

many projc'ctilc's in its dirc'ction, but suppose thc'y are not wc'll airnc'd, so 

that tlic'y are (‘cpially likc'ly to strike any point of iho scpiarc' cc'ntimeter 

('ontaining tlie targc't. Thcai we ask, what is the chanccc that any one 

of the' j)i’ojecti](‘s will strike' the ta-rgc't? Plainly this chance will be the 

1‘atio of the area of tlie tai’gc't, .1, to the area oi the wholcc square centi¬ 

meter, which is unity. In othcer words, A, whic'h w^e call the collision 

cross section in this particular case, Is thc^ fraction of all projectile's that 

hit the target. If instc'acl of onc' targect we had N in the rf'gion travei'sed 

by the bc'ain of unit (*ross section, and if even the' N t-ai’gets fillcH.! only 

a small fraction of the scpiarc' cc'iitimeter, so that there wais small chance 

that onc' target lay beliind another, then the chance that a particular 

I)rojectile would have a collision wmuld be NA, and to get the collision 

cross section of a single target wci should have to take the fraction having 

collisions, and divide by N. 
In a similar way, in the atomic or molecular case, we allow^ a beam of 

colliding particles to strike? the atoms or molecules that w^e wish to investi¬ 

gate. A certain number of the particles in the incident beam will pass 

by without collision, while a certain number will collide and be deflec'ted. 

We count the fraction colliding, divide this fraction by the number of 

particles with which they could have collided, and the result is the colli¬ 

sion cross section. This can jffainly be made? the basis of an experi¬ 

mental method of measuring collision cross sections. We start a beam 
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of known intensity through a distribution of particles with which they 

may collide, and we measure the intensity of the beam after it has trav¬ 

ersed different lengths of path. We observe the intensity to fall off 

exponentially with the distance, and from that c.an deduce the cross 

section in the following manner. 

Let the beam have unit cross section, and let x bo a coordinate 

measured along the beam. The intensity of the beam, at point x, is 

defined as the number of particles crossing the unit cross section at x 
per second. We shall call it I(x), and shall find how it varies with x. 
Consider the collisions in the thin sheet between x and x + dx. Let the 

number of particles per unit volume with which the beam is colliding be 

N/V, Then in the thin sheet between x and x + dx, with a volume dx, 
there will be N dxjY particles. Let each of these have collision cross 

section A. Then the fraction of particles colliding in the sheet will by 

definition be NA dx/V, This is, howevcn-, equal to the fractional decrease 

in intensity of the beam in this distance. That is, 

dJ 
I 

(3.1) 

Integrating, this gives 

NA 
— In / = + const., (3.2) 

or, if the intensity is 7o when :r = 0, we have 

NAx 

I = loe ^ . (3.3) 

From Eq. (3.3) we see the exponential decrease of intensity of which we 

have just spoken, and it is clear that by measuring the rate of exponential 

decrease we can find the collision cross section experimentally. 

The intensity of a beam falls to 1/e of its initial value, from Eq. (3.3), 

in a, distance 

X = (3.4) 

This distance is often called the mean free path. As we can see, it is 

inversely proportional to the number of particles per unit volume, or 

the density, and inversely proportional to the collision cross section. 

The mean free path is most commonly discussed for the ordinary elastic 

collisions of two molecules in a gas. For such collisions, the collision 

cross sections come out of the order of magnitude of the actual cross 

sectional areas of the molecules; that is, of the order of magnitude of 
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10-16 cm^. In a gas at normal pressure and temperature, there are 

2.70 X 10^® molecules per unit volume. Thus, the mean free path is 

of the order of l/(2.70 X = 3.7 X 10“^ cm. As a matter of fact, 

most values of A are several times this value, giving mean free paths 

smaller than the figure above. As the pressure is reduced, however, 

the mean free paths become quite long. Thus at 0*^0., but a pressure of 

30”^ atm,, the mean free paths become of the order of magnitude of 1 cm.; 

with pressures several thousand times smaller than this, which are 

easily realized in a high vacuum, the mean free path bc^comes many 

meters. In other words, the probability of collision in the dimensions 

of an ordinary vacuum tube becomes negligible, and molecules shoot from 

one side to the other without hindrance. 

The collision cross section is closely related to the quantities A?;, whi(‘h 

we introduced in discussing collisions in Sec. 1, Chap. VI. We were 

speaking there about a particular sort of collision, one in whi(;h one of the 

colliding particles before collision was in cell i of th(' phase space, the 

other in cell j, while aftcu’ collision the first was in cell k, the second in 

Cell 1. The number of such collisions per unit time was assumed to be 

A'iliNiNj. In the present cas(^, w(^ are treating all collisions of two 

molecules, one moving, the other at rest, irrespective of the velocities 

after collision. That is, the prescnit easci corresponds to the case where 

one of the two cells i or j corresponds to a molecule at rest, and wheu’e 

We sum over all cells k and h Furtherrnoi-e, th(U‘e we wf^re interested 

iti the number of collisions per unit time, hei*e in tlu^ number per unit 

distance of path. It is clear that if we knew th(‘ we could (compute 

from them the collision cross section of the sort we are now using. Our 

collision cross section gives less specific information, however. We 

exp(^ct to find a different collision cross section for (‘a(di velocity of 

impinging particle, though our restriction that the particles with which 

it is colliding is at rest is not really a restriction at all, for it is an easy 

problem in mechanics to find what would happen if both particles 

#ere initially in motion, if we know the more j’estricted case where one is 

initially at rest. But the give additional information about the 

vfelocities of the two particles after collision. They assume that the 

total kinetic energy after collision equals the total kinetic energy before 

collision; that is, they assume an elastic collision. Then, as mentioned 

in Sec. 1, Chap. VI, there are two quantities which can be assigned at will 

iii describing the collision, which may be taken to be the direction of one 

of the particles after collision. To give equivalent information to the Ai^i 
iri the language of collision cross sections, we should give not merely the 

probability that a colliding particle of given velocity strike a fixed parti- 

clei, but also the probability that after collision it travel off in a definite 

difection. This leads to what is called a collision cross section for 
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scattering in a given direction: the probability that the colliding particle 

have a collision, and aftei* collision that it travel in a direction lying within 

a unit solid angle around a particular direction in space. This cross 

section gives as much information as the set of though in a different 

form, so that it requirt's a ratlnu* complicated math(unatical analysis, 

which we shall not carry out, to pass from one to the otlu'r. 

We are now ready to consider th(‘ collision cross sections’ for some of 

the processes concerned in excitation and ionization. First w(' consider 

the collision of an elect,ron with a neutral atom. In the first, place, 

there are two i)ossible types of collision, elastic and iiK'lastic. If the 

energy of the incident electron is less than th(' r(\sonance potential of tlu' 

atom, then an inelastic collision is not possible, for tlu' final kinetic energy 

of the two particles cannot be h^ss than zero. Thus below the resonance 

potential all collisions are elastic. The cross section for elastic collision 

varies with the velo(‘ity of th(‘ impinging electron, sometimes in what 

seems a very erratic; manner. Gcuierally it increases as the velocity 

decreases to zero, but for some atoms, particularly the incu-t gas atoms, 

it go(^s through a maximum at. a velocity associated with an energy of the 

order of 10 el(‘ctron volts, t hen decrease's again as t h(' velocity is decreased, 

until it appc'ars to become zero as the velocity goc's to zero. This effect, 

meaning that extremely slow electrons have extreunely long mean free 

paths in these particular gases, is called the Ramsauer c'ffc'ct, from its 

discoverer. The collision cross sections for elastic collision of electrons 

and atoms have been investigated experimemtally for all the conveniemt 

atoms, and many molecules, disclosing a wide' varic'ty of behaviors. 

Th(;y can also be inv(;stigat('d theoretically by the wave mcK'hanics, 

involving methods which cannot be explaiiu'd hen;, and th(' theoretical 

predictions agree very satisfactorily with the experiments, even to the 

extent of explaining the Ramsauer effect. 

Above the resonance potential, an electron has the possibility of 

colliding inelastically with an atom, raising it to an excited level, as well 

as of colliding elastically. The probability of excitation, or the collision 

cross section for inelastic collision, starts up as the voltage is raised above 

the excitation potential, rising quite rapidly for some transitions, more 

slowly for others, then rc^aches a maximum, and finally begins to decrease 

if the electron is too fast. Of course, atoms can be raised not merely to 

their resonance level, but to any other excited level, by an electron of 

suitable energy, and each one of these transitions has a collision cross 

section of the type we have mentioned, starting from zero just at the 

suitable excitation en(;rgy. The probabilities of excitation to high 

energy levels are small, however; by far the most important inelastic 

^ For further information about collisions, see Massey and Mott, “The Theory of 
Atomic Collisions,Oxford University Press, 1933. 
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types of collision, at energies less than the ionization potential, are those 

in which the atom is raiscnl to on(» of its lowest excated levels. 

As soon as the energy of the impinging ('h'ctron becom(‘s greater 

than the ionization potential, inc^lastic collisions with ionization become 

possible. Here again th(^ collision ci'oss section starts rather rapidly 

from z('ro as the potential is raisf^l a]>ov(' the ionization j)otential, reaclu^s 

a maximum at the order of magnitude of two or three limes the ionization 

potcaitial, and gradually falls off with iricix^asing energy. The reason 

for the falling off with rising eiuu’gy is an elementary one: a fast electron 

spends less time in an atom, and conseciuently has less time to ioniz(‘ it 

and less ]3robability of pi'oducing th(‘ transition. A collision with ioniza¬ 

tion is of course' diffea^e'nt from an ('xcitation, in that the eje'cted ('lectron 

also h'aves the' sce'iie of the' e;e)llisie)n, so that after the collision we have 

three particle's, the ion anel two e^le'e't.rons, insteael of two as in the previous 

case;. This fact is useel in the ('xpenimental elete'rmination of resonane*c 

and ionization potentials. A beam of electrons, of carefully regulatect 

voltage, is shot through a gas, anel as the voltage is aeljusted, it is observed 

that the mean fre'c path she)ws sharp breaks as a function of voltage at 

certain i)oints, de'creasing sharply as certain critical ve>ltage's are' passed. 

This eloe's ne)t tell us whethe'r the' critical voItage;s are resonance or 

ionizatiem peffe'ntials, but if the pre'se'nce' of additional elee'trons is also 

observed, an ine're'ase in these additional e'lectr'ons is notice'd at an 

ionization pe)te'ntial but ne)t at a re'sonance pote'ntial. 

Of course', eae'h of the'se types of (;ollisie)n must have an inverse type, 

and the*. prine*i})le of microse‘e)])ic re'veu'sibility, eliscussed in Chap. VI, 

shows that the; pre)bability, or cullision cre)ss section, for the inverse 

collision can be dete'rmineel from that of the dire;ct collision. The oppo¬ 

site e)r inverse to a collisiem with excitation is what is called a (collision 

of the se'e'ond kind (the* ordinary one benng calleel a cedlision of the first 

kinei). In a collision of the second kind an e'lectron of low emergy ce)llid(;s 

with an excited atom or molecule, the atom has a transition to its normal 

state; e)r some lower energy l(;vel than the; one; it is in, and the electron 

come;s off with more kinetic energy than it had e)riginally. The inverse 

to an ionization is a three-body collision: two electrons simultane'ously 

strike an atom, one is bound to the atom, which falls to its normal state 

or some excited state, while the other electron, as in a collision of the 

second kind, is ejected with more kinetic* energy than the tw^o electrons 

together had before the collision. Such a process is called a recombina¬ 

tion; and it is to be noticed that we never have a recombination just of 

an atom and an electron, for there would be no body to remove the extra 

energy. 

In addition to the types of collision we have just considered, where 

an electron and an atom or molecule collide, one can have collisions of 
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two atoms or moleculos with oaeh other, with excitation or iorjization. 

It is perfectly posvsible to have two fast atoms collide with each other, 

originally in their normal states, and i*esult in the excitation or iopization 

of one or both of the atoms. The collision of the second kind, inyerse to 

this, is that in which an excited atom and a normal one collide, the 

excibxl one falls to its normal state, and the atoms gain kinetic pnergy. 

Then one can have an exchange of excitation: an excated and a hormal 

atom collid(', and after the collision the excited one has fallen to its pormal 

state, the normal one is (‘xcited, and the discn'pancy in energy i4 made 

up in the kinetic encu’gy of translation of the atoms. Or one can have an 

interchange of ionization: a neutral atom and a positive ion collic|e, and 

after collision the first one has Ix^come a positive ion, the second* one is 

neutral. We shall consider this same process from the point of view of 

statistical mechanics in the next section. In these cases of collisions of 

atoms, it is very difficult to calculate the probabiliti(\s of the various 

processes, or the collision cross s('ctions, and in most cases few mea^^^nre- 

ments have been made. In genei*al, however, it can be said that the 

probability of elastic collision, with the collision of two atoms, is much 

great(U’ than the probability of any of the various types of inelastic 

collision. 

In Chap. X, we have taken up the kinetics of chemical processes, the 

tyx)es of collisions Ix'twecm moh'cules which r(\sult in chemical reactions. 

There is no very fundamental distinction between those collision^; and 

the type we have just considered. In ordinary chemical reactionig, the 

colliding molecule's are under all circumstances in their lowest electronic 

state; th(iy are not excited or ionized. The reason is that excitation or 

ionization potentials, of molecules as of atoms, are ordinarily high enough 

so that the chance of excitation or ionization is negligible at the tempera¬ 

tures at which reactions ordinarily take place, or what amounts tp the 

same thing, the colliding molecules taking part in the reaction alpiost 

never have enough energy to (ixcite or ionize each other. This doe$ not 

mean, however, that excitation and ionization do not sometimes occur, 

particularly in reactions at high temperature; undoubtedly in some cases 

they do. It is to be noted that in the case of colliding molecules, unlike 

colliding atoms, inelastic collisions are possible without electronic excita¬ 

tion: the molecules can lose some of their translational kinetic energy 

in the form of rotational or vibrational energy. In this sense, an ordinary 

chemical reaction, as explained in Sec. 3, Chap. X, is an extreme case of 

an inelastic collision without excitation. But such inelastic collisions 

with excitation of rotation and vibration are the mechanism by which 

equipartition is maintained between translational and rotational and 

vibrational energy, in changes of temperature of a gas. Sometimes they 

do not provide a mechanism efficient enough to result in equilibrium 
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between these modes of motion. For example, in a sound wave, there 

are rapid alternations of pressure, produced by the translational motion 

of the gas, and these result in rapid alt(*rnations of the translational 

kinetic energy. If equilibrium between translation and rotation can 

take place fast enough, there will be an alternating temperature, related 

to the pressure by the adiabatic relation, and at each instant there will 

be thermal equilibrium. Actually, tliis holds for low frequencies of 

sound, but there is evidence that at very high freciuencicss the inelastic 

collisions are too slow to produ(‘e equilibrium, and the rotation does not 

partake of the fluctuations in (‘nergy. 

Another interesting example is found in some cases in gas discharges 

in molecular gases. In an arc, there are ordinarily electrons of several 

volts’ energy, since an electron must be accelerated up to the lowest 

resonance potential of the gases present Ix^fore it can have an inelastic 

collision and reduce its energy again to a low valuer Tlu‘se electrons 

have a kinetic energy, then, which gas moh'cules would accpiire only at 

tennperatures of a good many thousand degrees. The (4('ctrons collide 

(dastically with atoms, and in th(\se collisions the electrons tend to lose 

energy, the atoms to gain it, for this is just the mechanism by which 

thermal equilibrium and equipartition tend to Ix^ l)rought about. If there 

are enough elastic collisions before th(^ elect i*ons are slowed down by an 

inelastic (‘-ollision, the atoms or molecules will tt'iid to g(^t into thermal 

equilibrium, as far as their translation is concerned, corresponding to 

an extremely high temp(?rature. That such an eciuilibrium is actually 

set up is observed by noticing that the fast ekxd-rons in an arc have a 

distribution of velocities approximating a Maxw(dlian distribution. 

But apparently the inelastic collisions bc^tween molecules, or between 

electrons and molecules, are not effective enough to giv(‘ the molecuh^s the 

amount of rotational energy suitable to equii)ai'tition, in the short length 

of time in which a molecule is in the arc, before it diffuses to the wall or 

otherwise can cool off. For thci rotational enuagy can be observed by 

band spectrum observation, and in some cases it is found that it corre- 

sx^onds to rather cool gas, though the translational energy corresponds 

to a very high temperature. 

4. The Equilibrium of Atoms and Electrons.—From the cases we 

have taken up, we see that the kinetics of collisions forms a complicated 

and involved subject, just as the kinetics of chemical reactions does. 

Since this is so, it is fortunate that in cases of thermal equilibrium, we 

can get results by thermodynamics which are independent of the precise 

mechanism, and depend only on ionization potentials and similarly easily 

measured quantities. And as we have stated, thermodynamics, in the 

form of the i)rinciple of microscopic reversibility, allows us to get some 

information about the relation between the probability of a direct process 
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and of its inverso, though we have not tried to make any such calculai ions. 

To see how it is possible, we need only notice that evc^ry equilibrium con¬ 

stant can be written as thf^ ratio of the rates of t wo inverse redactions, as 

we saw from o\ir kinetic dei*ivation of the' mass aedion law in Chap. X, 

so that if we know thtd equilibrium constant, from enca’gy considerations, 

and if we have expen'imental or theoretical infoianation about the rate 

of omd of the reactions conc.e'rTUdd, we (‘an (ailculatc' the rate of the inverse 

without furth(dr hypot li(\sis. 

A mixture of c'l(‘ctrons, ions, and atoms forms a system similar to that 

which w(^ considercHl in Chaj). X, dealing with ch(‘inical (‘quili])rium in 

gases. Equilibrium is determined, as it was thcav, by the mass action 

law. This law can be dei‘ived by balancing the rat(‘s of (lir*(‘ct and inverse 

collisions, but it can also be derivcnl from tlu'rmodynamics, and the 

equilibrium constant can l)e found from the h(‘at of i*eaction and the 

chemical constants of th(‘ various particles concerm^d. The h(‘ats of 

reaction can be found from tlud various ionization i)otentials, cpiantities 

susc(‘ptiblc of independent measuremcait, and tlud cludmical constants 

are determincxl (essentially as in Cha]). VTIT. lliiis there are no new 

principl(\s involv(‘d in studying the equilibrium of atoms, (eh^drons, and 

ions, and we shall merely give a (pialitative discussion in this section, 

the statements lading (dquivalent to mathematical results which can be 

establish(*d immediately from the methods of Chaj). X. 

The simplest type of problem is the dissociation of an atom into a 

positive ion an(i an ('hdctron. By the methods of Chap. X, we find for 

the partial pressin'es of positive ions, n(dgativ(d (dlectrons, and neutral 

atoms the relation 

P(n) 
Kr(T), (4.1) 

whcdre P(+), P(n) are the pressures of positive ions, eh^ctrons, 

and TKdutral atoms lospectively. From Eep (2.6), (dnip. X, we can find 

the equilibrium constant Kp (dxplicitly. F(jr tlud r(‘a(;tion in which oiKd 

mole of neutral atoms disappears, one mole of positive ions and electrons 

appears, we have = 1, = 1, Pn = ~E Then the quantity — 

J 

becomes + lln — —I.P., where LP. stands for the ionization 

potential, expressed in kilogram-(dalori(ds per mokd, or otludr thermal unit 

in which we also express RT. Then we have 

5- IP- 
Kp(T) - (4.2) 

From Eq. (4.2), we see that the equilibrium constant is zero at the 

absolute zero, rising very slowly until the temperature becomes of the 
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order of mafsjnitude of tJie characteiistic temperature LP,/R^ which as 

we have seen is of the order of 10,000°. Thus at ordinary temperatures, 

from Eq. (4.1), there will 1)(‘ very little ionization in thermal equilibrium. 

This stateriKuit do(\s not hold, how('ver, at very low pn^ssiires. We can 

see this if we write our (‘(luilibrium n^Iation in terms of concentrations, 

following Eq. (1.10), Chap. X. Idien we have 

Cn 

KriT) 
P (4.3) 

From Eq. (4.3), we see that as the pnvssure is rc^duced at constant tem- 

peraturc', the dissociation becomc^s greater, until finally at vanishing 

})ressur(^ th(‘ dissociation (*an l)(‘(‘ome complete, (‘ven at ordinary teni- 

p(‘ratur(‘s. This is a result of importama^ in astrophysics, as has been 

point('d out by Saha. In tlu^ solar atmosi)here, tlu're is spectrosco])ic 

evid(*nce of the (existence of ratlu'r highly ionized ehunents, even though 

th(‘ tem])in'ature of the out(u* layers of the atmosphere^ is not high enough 

for us to (‘xpect such ionization, at ordinaiy pressures. However, the 

pn^ssure in these layers of tlu‘ sun is (‘xtremuty small, and for that reason 

th(‘ ionization is abnormally high. 

AnotluT example that (*an b(‘ handled l)y ordinary methods of chemical 

eciuilibrium is the equilibrium betweaai an ion and a neutral atom of 

another substance', in which tbe' more' ('lectropositive atom is the one 

fe)rming the positive ion, in e'quilibrium. Thus, consider* the redaction 

Li + Ne'+ ?=^Li^ + Xh', in which la has a much smallc'r ionization pe)te'n- 

tial than Ne, or is me)re^ e'le'ctre)pe)sitive'. The equilibrium will be given 

by 
CLiCNtd" 

AV(70, (4.4) 

the^ ])ressure' canceling in this e*ase. And the (Kiuilibrium constant 

Kp(T) is givem by 

Kp(T) = (::*a^i)+T:(NpO"/(Li’)"/(Nf)(r ■^2' . (4.5) 

Since the', ionization potential of n(X)n is greater than that of lithium, the 

equilibrium const,ant reduces to zero at the absolute zero, showing that 

at low temperatures the lithium is ionized, the neon unionized. In 

e)ther words, the (dement of low ionization potential, or the electropositive 

element, temds to lose electrons to the more electronegative element, 

with high ionization potential. This bmdency is complete at the absolute 

zero. At higher temperatures, however, as the mass action law shows, 

there will be an equilibrium with some of each element ionized. 



CHAPTER XXI 

ATOMS AND THE PERIODIC TABLE 

Interatomic forces form the basis of mohuuilar structure and chemis¬ 

try, and we cannot understand them without knowing something about 

atomic structure. Wi) shall for this reason give in this chapter a v(^ry 

brief discussion of the nuclear mod(‘l of the atom, its treatment by the 

quantum theory, and the resulting explanation of the periodic tabh^. 

There is of course not the slightest suggestion of completeness in our 

discussion; volumes can be written about our present knowledge of atomic 

structures and atomic spectra, and the student whe) wishes to undesrstand 

chemical i)hysics properly should study atomic structure independently. 

Since however there are many excelleait treatises available on the subject, 

we largely omit such a discussion here, mentioning only the few points 

that we shall specifically use. 

1. The Nuclear Atom.—An atom is an electrical structure, whose 

diaim^ter is of the order of magnitude of 10"^ cm., or 1 angstrom unit, 

and whose mass is of the order of magnitude of g^. More precisely, 

an atom of unit atomic w^(aght would have a mass 1.66 X 10“24 and 

the mass of any atom is this unit, times its atomic weight. Almost all 

the mass of the atom is concentrated in a small central body called the 

nucleus, which determines the properties of the atom. The diameter of 

the nuclc'us is of the order of magnitude of cm., a quantity small 

enough so that it can be neglected in practically all processes of a chemical 

nature. The nucleus carries a positive charge of electricity. This 

charge is an integral multiple of a unit charge, generally denoted by the 

letter c, equal to 4.80 X e.s.u. of charge. The integer by which 

we must multiply this unit to get the charge on the nucleus is called the 

atomic number, and is often denoted by Z, This atomic number proves 

to be the ordinal number of the corresponding element in the periodic 

table of the elements, as used by the chemists. Thus for the first few 

elements we have hydrogen H, Z = 1; helium He, Z = 2; lithium Li, 

Z == 3; and so on, up to uranium U, Z = 92, the heaviest natural ele¬ 

ment. The electric charge of the nucleus, or the atomic number, is the 

determining feature of the atom chemically, rather than the atomic 

weight. In a large number of cases, there are several types of nuclei, 

all with the same atomic number but with different atomic weights. 

Such nuclei are called isotopes. They prove to have practically identical 
336 
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properties, since most properties depend on the nuclear charge, not its 

mass. Almost the only proi)erty depending on the mass is the vibra¬ 

tional frequency, as observed in molecular vibrations, specific heat, etc. 

Thus, diffc'nuit isotoi)es have different characteristic temperatures and 

specific h(‘ats, but since the masses of different isotopes of the same ele¬ 

ment do not ordinarily differ greatly, these differences are not very 

important. Almost the only exception is hydrogen, where the heavy 

isotope lias twice the mass of the light isotope, making the properties 

of liciavy hydrogen, or deuterium, decidedly different from those of 

ordinary hydrogcai. Tlie atomic weights of isotopes are almost exactly 

whole number multiples of the unit 1.66 X gm., but the atomic 

w('ight measured chemically is the weighted mc'an of those of its various 

isotop(\s, and hence is not a very fundamental quantity theoretically. 

For our purpose's, which are largely (•hemical, we need not consider the 

possibility of a change in the propeniies of a nucleus. But many reac¬ 

tions are known, some spontaneous (natural radioactivity) and some 

artificial (artificial or induced radioactivity), by which nuclei can be 

changed, both as to their atomic weight and atomic number, and hence 

converted from the nuclei of one (dement to those of another. We shall 

assume that such nuclear transformations are not occurring in the proc¬ 

esses we considc'r. 

In addition to the nucleus, the atom contains a number of light, nega¬ 

tively charged particles, the eh^ctrons. An electron has a mass of 

9.1 X 10^^^ gm., of the mass of a nucleus of unit atomic weight. 

Its charge, of nt'gative sign, has the magnitude of 4.80 X 10™^° e.s.u., 

the unit mentioned above. There seem to be no experiments which 

give information about its radius, though tluTe are some theoretical 

reasons, not very sound, for thinking it to be of the order of cm. If 

the atom is electrically neutral, it must contain just as many (dectrons 

as the nucleus has unit (charges; that is, the number of (3lectrons equals 

the atomic numlxu*. But it is perfectly possible for the atom to exist 

with other numbers of electrons than this. If it loses electrons, becoming 

positively charged, it is a positive ion. It can lose any number of 

electrons from one up to its total number Z, and we say that it then forms 

a singly charged, doubly charged, (3tc., positive ion. A positive ion is a 

stable structure, like an atom, and can exist indefinitely, so long as it 

does not come in contact with electrons or matter containing electrons,, 

by means of which it can neutralize itself electrically. On the other hand, 

an atom can sometimes attach one or more electrons to itself, becoming 

a singly or multiply charged negative ion. Su(*.h a structure tends to be 

inherently unstable, for it is negatively charged on the whole, repelling 

electrons and tending to expel its own extra electrons and become neutral 

again. It is doubtful if any multiply charged negative ions are really 
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stable. On the other hand, a number of elements form stable, singly 

charged, negative ions. These are the so-called electronegative elements, 

the halogens F, Cl, Br, I, the divalent ('lements O and S, and perhaps a 

few others. These elements have slightly Iowcm- energy in the form of a 

negative ion, as F“, than in the dissociated form of the neutral atom, as F, 

and a removed electron. The energy difference between these two states 

is called the electron affinity; as we s(H', it is analogous to a heat of reac¬ 

tion, for a reaction lik(^ 

F-^>F + c. (1.1) 

The energy required to remove an ele(‘tron from a neutral atom is its 

ionization potential; that required to nunove the sc'cond electron from a 

singly charged positive ion is the second ionization ix)tential; and so on. 

In each case, the most easily removed elec^tron is supposed to b(^ the one 

considered, somci electrons being much mor(^ (^asily detachable than 

others. Succc^ssive ionization potcmtials get raj^idly larger and larger, for 

as the ion becomes more highly charged i)ositively, an (dectron is more 

strongly held to it by eh'ctrostatic forces and rc^quires more work to 

remove. Ionization potentials and electron affinities, as we have already 

mentioned, are commonly measured in ekn'tron volts, since el(Hd-rical 

methods are commonly used to measure them. For the definition of the 

electron volt and its relation to thermodynamic units of caiergy, the Header 

is referred to Eq. (1.1), Chap. IX, where it is shown that one electron volt 

per atom is equivalent to 23.05 kg.-cal. per gi-am mole, so that ionization 

poteiiitials of several electron volts represent heats of reaction, for the 

reaction in which a neutral atom dissociates into an electron and a 

positive ion, which are large, as measured by thermodynamic standards, 

as mentioned in the preex^ding chapter. 

2. Electronic Energy Levels of an Atom.—The electrons in atoms are 

governed by the quantum theory and cons(^quently have various sta- 

tionaiy states and energy levels, which are intimately related to the 

excitation and ionization potentials and to the structure of the periodic 

table. We shall not attempt here to give a complete account of atomic 

structure, in terms of electronic levels, but shall mention only a few 

important features of the problem. A neutral atom, with atomic num¬ 

ber Zy and Z electrons, each acted on by the other (Z ■— 1) electrons as 

well as by the nucleus, forms a dynamical problem which is too difficult 

fo solve except by approximation, either in classical mechanics or in 

quantum theory. The most useful approximation is to replace the force 

acting on an electron, depending as it does on the positions of all other 

electrons as well as on the one in question, by an averaged force, averaged 

over all the positions which the other electrons take up during their 

motion. This on the average is a central force; that is, it is an attraction 
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pulling the electron toward the nucleus, the magnitude depending only 

on the distance from the nucleus. It is a smaller attraction than that 

of an electron for a bare nucleus, for the other (dectrons, distributed 

about the nucleus, exert a repulsion on the average. Nevertheless, vSO 

long as it is a central force, quantum theory can quite easily solve the 

problem of finding the energy levels and the average positions of the 

electrons. 

An electron in a central field has three quantum numbers, connected 

with tlu^ three dimensions of space. One, called the azimuthal quantum 

riumlxu*, is denoted by Z, and measures the angular momentum of the 

electron, in units of h/2Tr, Just as in the simple rotator, discussed in 

S(^ction 3, Chap. Ill, the angular momentum must be an integer times 

h/2Tr, and here the integer is Z, taking on the values 0, 1, 2, . . . For 

each value of Z, we have a series of terms or energy levels, given by 

integral values of a second quantum number, called the principal or 

total quantum number, denoted by n, and by convention taking on th(i 

values Z + 1, Z + 2, • • • Following spectroscopic notation, all the 

levels of a given Z value arci grouped together to form a series and are 

denot('.d by a lett(u\ Thus Z = 0 is denoted by s (for the spectroscopic 

Sharp series), Z = 1 by p (for the Principal seri(^s), Z == 2 by cZ (for the 

Diffuse series), Z = 3 by / (for the Fundamental series), and Z = 4, 5, 6, 

. . . by <7, h, j, . , . , using furth(u* letters of the alphabet. A given 

energy level of the (dectron is denoted by giving its value of n, and then 

the,J(dter giving its Z value; as 3p, a level with n = 3, Z = 1. The third 

quantum number is connected with space quantization, as discussed in 

Sec. 3, Cha}). IX, and is denoted by mi. Not only the angular momentum 

Z is quantized, but also its component along a fixed direction in space, 

and this is equal to m//i/2x. The integer then, can go from the limits 

of ZA/27r (when the angular momentum points along the direction in 

question) to —lh/2Tr (when it is oppositely directed), resulting in 2Z + 1 

different orientations. B(dng a problem with spherical symmetry, the 

energy does not depend on the orientation of the angular momentum. 

Thus the 2Z + 1 levels corresponding to a given n and Z, but different 

orientations, all have the same energy, so that the problem is degenerate, 

and an s level has one sublevel, a p has three, a d five, an / seven, etc. 

This number of levels is really doubled, however, by the electron spin. 

An electron has an intrinsic permanent magnetism, and associated with 

it a permanent angular momentum of magnitude ^h/2Tr. This can be 

oriented in either of two opposite directions, giving a component of 

±^h/2'K along a fixed direction. This, as will be seen, is in harmony 

with the space quantization just described, for the special case Z = 

For each stationary state of an electron neglecting spin, we can have the 

two possible orientations of the spin, so that actually an s level has two 
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sublevels, a p has six, a d ten, an f fourteen. Tliese numbers form the 

basis of the structure of the periodic table. 

The energies of these energy levels can be given exactly only in the 

case of a singles electron rotating about a nucleus of charge Z units, in the 

absence of other electrons to shield it. In this case, the energy is given 

by Bohr\s formula 

27r-’mc'* -2’“ __ 
- Rhc (2.1) 

In P]q. (2.1), m is the mass of an electron (9.1 X 10 “-^ ^ its charge 

(4.80 X 10“^° e.s.ii.), R is th(^ so-called Rydlxu’g number, 109,737 cm. 

so that Rhc, where c is th(i velocity of light (3.00 X 10^^ cm. p('r second), 

is an energy, equal to 2.17 X 10”^^ erg, or 13.56 ek'ctron volts, or 313 

kg.-cal. per gram mole. The zero of energy is tlu^ state in which the 

electron reaches an infinite distance from the nucleus with zero kinetic*, 

energy. In all the stationary state's, the energy is l(;ss than this, or is 

negative, so that the electron can neveu* be entirely removc'd from the 

atom. The smaller the integca* n, the lower the energy, so that the 

low(‘st states correspond to n = 1, 2, etc. At tlie same time*, the lowcu' 

the enc^rgy is, the more closely bound to the nudcHis the elc^ctron is, so 

that the orbit, or the region occupied by the electron, is small for small 

values of n. The tightness of binding increases with the nuclear charges 

Z, as we should exi)ect, and at the same time the size of the orbit decreases. 

We notice that for an electron moving around a nucdcuis, the levels of 

different series, or diffc^rent I values, all have the same energy provided 

they have the same principal quantum number n. 

For a central field like that actually encountered in an atom, the 

energy levels arc quite different from those given by Fep (2.1). They 

are divided cpiite sharply into two sorts: low-lying Icmls ciorresponding 

to orbits wholly within the atom, and high levels corresponding to orbits 

partly or wholly outside the atom. For levels of the first tyf)e, the 

energy is given approximately by a formula of the type 

E = (2.2) 

In Eq. (2.2), Zq is called a shielding constant. It measures the effect 

of the other electrons in reducing the nuclear attraction for the electron 

in question. It is a function of n and I, increasing from practically z‘ero 

for the lowest n values to a value only slightly loss than Z for the outer¬ 

most orbits within the atom. For levels outside the atom, on the other 

hand, the energy is given approximately by 

1 
E = —Rhc (n - 6)2 

(2.3) 
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Hero 5 is called a quanium (l(‘fe(d.. It depends strongly on Z, but is 

ap})]*oximately independent of n in a single^ series, or for a single Z value. 

The value of 8 decreases rapidly with increasing 1; thus the .s series may 

have a large' quantum defect, the p series a considerably smaller one, and 

the d and higher seric's may have very small values of 5, for some particu¬ 

lar atom. We may illustrate these formulas by Fig. XXI-1, in which 

the ('uergies of an ('lectron in a cemtral fic'ld r(q)res('njing copper, as a 

furuhion of n, are shown on a logarithmic scale. The sliarp break between 

012345678 
n 

Fig. XXI-1.—Energies of electrons in the copper atom, in Rydberg units, as a function 
of principal (juantum number n. Energies are shown on a logarithmic scale. The energies 
in the hydrogen atom are shown for comparison. 

the two types of energy levels is well shown; 1 s, 2s, 2p, 3.s, 3p, 3d belong 

veiy definitely to the orbits lying within the atom, while the others are 

outside and are governed approximately by Eq. (2.3). 

It has been mentioned that the region occupied by the electron’s 

orbit increases in volume, as the binding energy becomes less or as the 

quantum number n increases. For our later use in studying the sizes of 

atoms, it is useful to know the size of the orbit quantitatively. These 

sizes are not definitely determined, for the electron is sometimes found 

at one point, sometimes at another, in a given stationary state, and all we 

can give is the distance from the nucleus at which there is the greatest 
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probability of finding it. This is not given by a simple formula, though 

it can be comput(^d fairly accurately by wav(‘ mechanics, hut to an 

approximation the radius r of maximum charges density or probability is 

given by 

rmax ^0^ 7 (2.4) 

for the ease of an electron moving about- a bare nucleus of charge Z, in 

an orbit of quantum numben* rq where Uo = h'-liwhne'^ — 0.53 A. This 

is the formula coimect(‘d witli the type' of oi*bit whose ('nergy is given by 

Eq. (2.1). We observe the incre'ase of size' with incre^asing n, and the 

decrease with increasing nuede'ar charge, which we have^ mentioiuHl 

before. Similarly, if the emergy is givem by Eq. (2.2), the radius is given 

approximately by 

^ max eX(i 
Z -- Zo 

(2.5) 

and if the' formula (2.3) he)lds for the energy, the radius is 

Tmax = au{n — 5)2. (2.6) 

We may expect that the radius of the atom, if that expression has a 

meaning, will be of the order of magnitude of the radius of the largc'st 

orbit ordinarily occupied by an electron in the neutral atom. In the 

case of copper this is the 46’ orbit, while in the copper ion it is the M, * In 

the next section we tabulate such quantities for the atoms, and in later 

chapters we shall find these radii of interest in connection with the 

dimensions of atoms as determined in other ways. 

We can now use the energy levels of an electron in a central field in 

discussing the structure of the atom. At the outset, we must use a 

fundamental fact regarding electrons: they obey the Fermi-Dirac statis¬ 

tics. That is, no two electrons can occupy the same stationary state. 

The principle, stated in this form, is often called the Pauli exclusion 

principle, and it was originally developed to provide an explanation 

for the periodic table, which we shall discuss in the next section. As a 

result of the Pauli exclusion principle, there can be only two Is electrons, 

two 26^8, six 2p’s, etc. We can now describe what is called the con¬ 

figuration of an atom by giving the number of electrons in each quantum 

state. In the usual notation, these numbers are written as exponents. 

Thus the symbol (ls)2(2s)2(2p)®(3s)2{37?)®(3d)^®4s would indicate a state 

of an atom with two Is electrons, two 2s, etc., the total number of elec¬ 

trons being 2 + 2 + 6 + 2 + 6 + 10 + 1 =29, the number appro¬ 

priate to the neutral copper atom. If all the electrons are in the lowest 

available energy level, as they are in the case above, the configuration 
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com\sponds to the normal or ground state of the atom. If, on the other 

hand, some ekictrons are in higher levels than the lowest possible ones, the 

configuration corresponds to an excited state. In the simplest case, only 

one electron is excited; this would correspond to a configuration like 

(ls)2(2s)2(2p)®(3^>‘)H3p)H3^/)^‘’(5p) for copper. To save writing, the two 

(configurations indicatced above would often be abbreviated simply as 4.5? 

and 5pj the inner electrons being omitted, since tlu'y are arranged as in 

the normal state. It is possible for moric than one electron to be excitnd; 

for instance, we could have the configuration which would ordinarily 

be written! as (3r/)^(4p)(5.s-) (the Is, 2s, 2p, 3<s, 3p electrons being omitted), 

in which one of the 3d electrons is excited, say to the 4p Icwel, and the 4.s 

is (excited to the 5s level, or in which the 3d is excited to the 5s level, the 

4s to the 4p. (On account of the identity of electrons, implied in the 

Fermi-Dirac statistics, there is no physical distinction between these two 

ways of describing the excitation.) While more than two electrons can 

theoretically be excited at the same time, it is very unusual for this to 

occur. If on(' or more electrons ar(' (mtir(4y removc'd, so that we have an 

ion, the remaining el(‘ctrons will have a configuration that can be indi¬ 

cated by the same sort of symbol that would be used for a complete 

atom. For ('xample, th(' normal state of the ion has the configura¬ 

tion (1 s) (2s) (2p) ^ (3s) 2 (3/;) (3d) 

The energy valu(‘s which we most often wish are excitation and 

ionization potcaitials, the (aicrgies reejuin^d to shift one or morci electrons 

from one level to anotln^r, or the differen(*-(^s of energy betwcnai atoms or 

ions in different configurations. We can obtain good approximations 

to these from our one-electron energy A^alues of Eqs. (2.2) and (2.3). The 

rule is simple: the energy r(H]uired to shift an electron from one energy 

level to another in the atom is approximately equal to the differences of 

the corresponding one-electron energicss. If two (slectrons are shifted, 

we simply add the energy diff(^renc(is for tins two. This rule is only 

qualitativ(4y corrc^ct, but is very ustfful. In particular, since the absolute 

values of the quantities (2.2) and (2.3) represent the energies required to 

remove the corresponding electrons from the central field, the same 

quantities in turn are approximate values of the ionization potentials of 

the atom. An atom can be ionized by the removal of any one of its 

electrons. The ordinary ionization potential is the work required to 

remove the most loosely bound electron; in copper, for instance, the 

work required to remove the 4^ electron from the neutral atom. But 

any other electron can be removed instead, though it requires more 

energy. If an atom is bombarded by a fast electron, the most likely 

type of ionization process is that in which an inner electron is removed, 

as for instance a Is, 2s, 2p, etc. For such an ionization, in which the 

ionization potential may be many thousands of volts, the impinging 
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electron must of course have an energy gi*eater than the appropriate 

ionization potential. After an inner electron is knocked out, in this 

way, a transition is likely to occur in which one of the outer electrons falls 

into the empty inner shell, ttie emitted energy coming oif as radiation 

of very high frequency. It is in this way that x-rays are produced, and 

on account of their part in x-ray emission, the iniKU' energy h^v(‘ls are 

known by a notation derived from x-rays. Thus the Ls* electrons are 

known as the K shell (since the x-rays emitted wdien an electron falls 

into the K shell arc^ called the K series of x-rays), and 2.s and 2p grouped 

together are the L slutl, the 3s, Sp, and M together are the M shell, and 

so on. 

In contrast to the x-ray ionization, which is not often important in 

chemical problems, an impinging elf‘ctron wdth only a few* volts’ einu’gy is 

likely to excite or ionize the outermost electron. This eh'ctron has an 

energy given approximately by Kq. (2.3), wdiich thus giv(‘s roughly the 

energies of the various excited and ionized l('vels of the atom. As a 

matter of fact, the real situation, with all but a few of the simplest atoms, 

is very much more complicated than w^ould b(^ indicated by K(p (2.3), on 

account of certain int(‘ractions betw^een the out('r electrons of the atom, 

rtisulting in what are called rnultiplets. A given configuration of the 

electrons, instead of corresponding to a single stationary state of the 

atom, very often coi*responds to a larger number of (mergy levels, grouped 

more or loss closely about the value giA^en by our elememtary appi'oxima- 

tion of one-el(K*tron energi(\s. An understanding of this multiplet 

structure is essential to a real study of molecular struct ure, but we shall 

not follow the subject far enough to Tieed it. One principle only will 

be of value: a closed shell of electrons, by which we mean a shell contain¬ 

ing all the electrons it can hold, consistent with the Pauli exclusion 

principle [in other wwds, a group like (Its)^^ (2p)^', etc.] contributes noth¬ 

ing to the multiplet structure or the complication of the energy levels. 

Thus an atom all of whose electrons are in closed shells (which, as we 

shall see in the next section, is an inert gas) has no rnultiplets, and its 

energy level is single. And an atom consisting mostly of closed shells, 

but with one or two electrons outside them, has a multiplet structure 

characteristic only of the electrons outside closed shells. Thus the alkali 

metals, and copper, silver, and gold, all have one electron outside closed 

shells in their normal state (as we have found that copper has a 4s elec¬ 

tron). As a result, all these elements have similar spectra. 

3. The Periodic Table of the Elements.—In Table XXI-1 we list 

the elements in order of their atomic numbers, which are given in addition 

to their symbols. The atoms in the table are arranged in rows and 

columns in such a way as to exhibit their periodic properties. The 

diagonal lines are drawn in such a way as to connect atoms of similar 
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properties. Table XXI-2 gives the electron configuration of the normal 

states of the elements. Table XXI-3 gives the ionization potentials 

of the various electrons in the lighter atoms, in units of RhCj the Rydberg 

energy, mentioned in the preceding section. And Table XXI-4 gives 

the radii of the various orbits, as computed by wave mechanics. We 

can now use these tables, and other information, to give a brief discussion 

of the properties of the elements, particularly in regard to their ability 

to form ions, which is fundamental in studying their chemical behavior. 

In this regard, we must remember that low ionization potentials cor¬ 

respond to easily removed electrons, high ionization potentials to tightly 

held electrons. 

Table XXI-1.—The Periodic Table of the Elements 

-Cs 55- 
Ba 56- 
La 57- 
Ce 58- 
Pr 59- 
Nd so¬ 
il 61 
Sa 62 
Eu 63 
Gd 64 
Tb 65 
Ds 66 
Ho 67 
Er 68 
Tu 69 
Yb 70 
Lu 71 
Hf 72 
Ta 73 
W 74 
Re 75 
Os 76 
It 77 
Pt 78 
Au 79 
Hg80 
T1 81 
Pb 82 
Bi 83 
Po 84 
— 86 

Li a — — Na 11 
Be 4 — — Mg 12 
B 6 — — A1 13 
C 6 — — Si 14 
N 7 — — P 15 
0 8 — __s 16 
F 9~ — Cl 17 

■Ne 10-A 18 

-87 
-Ra 88 
-Ac 89 
-Th 90 
-Pa 91 
-U 92 

In a way, the most distinctive elements are the inert gases. He, Ne, 

A, Kr, and Xe. As we see from Table XXI-2, all the electrons in these 

elements are in closed shells. They form no chemical compounds and 

have high ionization potentials, showing very small tendency to form 

ions. The reason for their stability is fundamentally the fact that 

electrons in closed shells are difficult to remove, as is shown by an exami¬ 

nation of ionization potentials throughout Table XXI-3. That is, closed 

shells form a very stable structure, difficult to deform in such a way as to 

form ions or molecules. To see why the inert gases appear where they 

do in the periodic table, we may imagine that we are building up the 

periodic table, adding more and more electrons to a nucleus. The first 
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Table XXI-2.—Electron Confkjurationb of the P^lementr, Normal States 



SBC. 3] ATOMS AND THE PERIODIC TABLE 347 

Table XXI-2.—Electron Configurations of the Elements, Normal States.- 

(Coniinued) 

Is 2s_ 
2 ^2 
2 2 
2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 

2 2 
2 2 
2 2 
2 2 

2 2 

2 2 

M 

3s 3p 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 6 

2 0 

2 6 

2 () 

2 6 

2 G 

2 6 

2 6 

2 G 

2 G 

2 G 

2 G 

2 G 

2 G 

2 G 

2 6 

2 6 

2 6 

2 6 

2 G 

2 G 

2 6 

2 6 

2 G 

2 6 

2 6 

2 6 

2 6 

4s Ap 

2 6 

Ad 4/ 5s 5/; bd 

10 1 

10 2 

10 2 1 

10 2 2 

10 2 3 

10 2 4 

10 2 5 

10 2 G 

10 2 G 

10 2 6 

10 2 G 1 

10 1 2 G 1 

10 2 2 G 1 

10 3 2 G 1 

10 4 2 G 1 

10 5 2 G 1 

10 G 2 G 1 

10 7 2 G 1 

10 8 2 G 1 

10 9 2 G 1 

10 10 2 G 1 

10 11 2 G 1 

10 12 2 G 1 

10 13 2 G I 

10 14 2 G 1 

10 14 2 G 2 

10 M 2 G 3 

10 14 2 G 4 

10 14 2 G 5 

10 14 2 G G 

10 14 2 G 7 

10 14 2 0 0 

10 14 2 0 10 

10 14 2 G 10 

10 14 i 2 G 10 

10 14 2 G 10 

10 14 2 6 10 

10 14 2 1 0 10 

10 14 1 2 G 10 

10 14 2 G 10 

10 14 2 6 10 

10 14 2 6 10 

10 14 2 G 10 

10 14 2 6 10 

10 14 2 6 10 

10 14 2 6 10 
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Table XXl-3.—Ionization Potentials op the Lighter Elements, in Rydbergs 

K L M N 0 

Is 28 2p 38 3p 3d 48 4p 4d 58 

H 1.00 
He 1.81 
Li 4.80 0.40 
Be (a. 3) 0.69 
B (15.2) 1.29 O.Gl 
C (22.3) 1.51 0.83 
N (31.1) 1.91 1.07 
o' (41.5) 2.10 1.00 
E (53.0) 2.87 1.37 
Ne (66.1) 3.56 1.59 
Na (80.9) (5.10) 2.79 0.38 
Mg 96.0 (6.96) 3.7 0.56 
A1 114.8 (9.05) 5.3 0.78 0.44 
Si 135.4 (11.5) 7.2 1.10 0.60 
P 157.8 (14.2) 9.4 (1.40) (0.65) 
S 181.9 (17.2) 11.9 1.48 0.76 
Cl 207.9 (20.4) 14.8 1.81 0.96 
A 235.7 (23.9) (18.2) 2.14 1.15 
K 265.6 (27.8) 21.5 (2.6) 1.2 0.32 
Ca 297.4 (31.9) 25.5‘ (3.1) 1.9 0.45 
Sc 331.2 (36.2) 30.0 (3.6) 2.7 0.54 0.50 
Ti 365.8 (41.0) 33.6 (4.2) 2.0 0.51 0.50 
V 402.7 (46.0) 37.9 (4.8) 3.0 ; 0..50 I 0.52 
Cr 44J. 1 (51.2) 42.3 (5.4) 3.1 0.61 0.50 
Mn 481.9 (56.7) 47.4 (6.7) 3.8 0.68 0.55 
Fe 523.9 62.5 52.2 6.9 4.1 0.60 0.58 
Co 568.1 (68.5) 57.7 7.6 4.7 0.63 0.60 
Ni 614.1 74.8 63.2 8.2 5.4 (0.68) 0.04 
Cu 661.6 81.0 68.9 8.9 5.7 0.77 0.57 
Zn 711.7 88.4 75.4 10.1 6.7 1.26 0.69 
Ga 765.6 (96.0) 84.1 12.4 8.8 1.8 0.87 0.44 
G6 817.6 (104.0) 89.3 13.4 9.5 3.2 1.39 0.60 
As 874.0 112.6 97.4 14.9 10.3 3.0 (1.6) 0.74 
8e 932.0 (121.9) 108.4 10.7 11.6 3.9 (1.7) 0.70 
Br 992.6 (131.5) 117.8 19.1 13.6 5.4 (1.9) 0.87 
Kr (1055) (141.6) (127.2) (21.4) (15.4) (6.8) (2.1) 1.03 
Rb 1119.4 152.0 137.2 (23.7) 17.4 (8.3) (2.3) 1.46 0.31 
Sr 1186.0 162.9 147.6 26.2 19.6 9.7 2.5 (2.1) 0.42 
Y 1256.1 175.8 159.9 30.3 23.3 13.0 4.7 2.9 0.48 0.49 
Zr 1325.7 186.6 170.0 31.8 24.4 13.3 3.8 2.1 0.53 0.51 
Cb 1398.5 198.9 181.7 34.7 26.9 15.2 4.3 2.5 (0.5) (0.5) 
Mo 1473.4 211.3 193.7 37.5 29.2 17.1 5.1 2.9 (0.5) 0.54 

The ionization potentials tabulated represent in each case the least energy required to remove the 
electron in question from the atom, in unite of the Rydberg energy Rhc (13.54 electron volts). ^ Data for 
optical ionization are taken from Bacher and Goudsmit, “Atomic Energy States,” McGraw-Hill Book 
Company, Inc., 1932. Those for x-ray ionization are from Siegbahn, “ Spektroskopie der Rontgen- 

strahlen,” Springer. Intermediate figures are interpolated. Interpolated or estimated values are 
given in parentheses, 
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Table XXI-4.—Eadii of Electronic Orbits in the Lighter Elements 

(Angstrom units) 

K L M N 

L? 
1 

2p 38 3p U 48 Ap 

H 0 .53 
! 

He 0 .30 
Iji 0 .20 1. 50 j 

Be 0 .143 1, 19 
B 0 .112 0. ,88 0 .85 
C 0 .090 0. 67 0 . 66 
N 0 .080 0, .56 0 .53 
0 0 .069 0, ,48 0 ,45 
F 0 .061 0 .41 0 .38 
Ne 0 .055 0 37 0 .32 
Na 0 .050 0, ,32 0 .28 1, .55 
Mg 0 .046 0 .30 0 .25 1, .32 
A1 0 .042 0 .27 0 .23 1 .16 1.21 

Si 0 .040 0 .24 0 .21 0 .98 1.06 

P 0 .037 0 23 0 .19 0, ,88 0.92 

s 0 .035 0, ,21 0 ,18 0 .78 0.82 

Cl 0 .032 0 .20 0 .16 0 .72 0.75 

A 0 .031 0 ,19 0 .155 0 .66 0.67 

K 0 .029 0 ,18 0 .14,') 0 .60 0.63 2 ,20 

Ca 0 .028 0 ,16 0 .133 0 .55 0.58 2 .03 

Sc 0 .026 0, ,16 0 .127 0 .52 0.54 0 .61 1 ,80 

Ti 0 .025 0, ,150 0 .122 0 .48 0.50 0 .55 1 66 

V 0 .024 0 ,143 0 .117 0 .46 0.47 0 .49 1 52 

Cr 0 .023 0. ,138 0 .112 0 .43 0.44 0 .45 1 ,41 

Mn 0 .022 0. 133 0 .106 0 .40 0.41 0 .42 1 .31 

Fe 0 .021 0. 127 0 .101 j 0 39 0.39 0 ,39 1 22 

Co 0 .020 0, ,122 0 .096 0 .37 0.37 0 .36 1 .14 

Ni 0 .019 0. 117 0 .090 0 .35 0.36 0 .34 1 .07 

Cu 0 .019 0. 112 0 ,085 0 .34 0.34 0 .32 1 .03 

Zn 0 .018 0. 106 0 .081 ; 0 .32 0.32 0 .30 0 .97 

Ga 0, ,017 0. 103 0 .078 1 0 .31 0.31 0 .28 0 .92 1. .13 

Ge 0 ,017 0. 100 0 .076 0 .30 0.30 0 .27 0 .88 1 .06 

As 0, ,016 0. 097 0 .073 0 .29 0.29 0 .25 0 .84 1 .01 

Se 1 0, .016 0. ,095 0 .071 0 .28 0.28 0 .24 0 .81 0 .95 

Br 0. 015 0. 092 0 ,069 0 .27 0.27 0 .23 0 .76 0 .90 

Kr 0. 015 0. 090 ! 0 .067 1 0 .25 0.25 0 .22 0 .74 0 .86 

The radii tabulated represent the distance from the nucleus at which the radial charge density (the 
charge contained in a shell of unit thickness) is a maximum. 1 hey are computed from calculations of 

Hartree, in various papers in Procetidings of the Royal Society," and elsewhere. Since only a few 

atoms have been computedi most of the values tabulated are interpolated. The interpolation should 

be fairly accurate for the inner electrons of an atom, but unfortunately is quite inaccurate for the outer 

electrons, so that these values should not be taken as exact. 
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two electrons go into the K shell, resulting in He, a stable structure wiiii 

just two electrons. The next electrons go into the L shell, with its sub¬ 

groups of 23 and 2p electrons. These electrons are grouped together, for 

they are not very differcuit from hydrogenlike electrons in their energy, 

and as we see from Eq. (2.1), the energy of a hydrogen wave function 

depends only on n, not on Z, so that the 2s and 2p have the same energy 

in this case. For the real wave functions, as we see from Fig. XXI-1, for 

example, the energies of 2s and 2p are not very diffennit from each other. 

The L shell can hold two 2s and six 2p electrons, a total of eight, and is 

completed at neon, again a stable structure, with two electrons in its K 
shell, eight in its L shell. The next electrons must go into the still larger 

M shell. Of its three subgroups, 3s, 3p, and 3d, the 3s and 3p, with 

2 + 6 = 8 electrons, have about the same energy, while the 3d is defi¬ 

nitely more loosely bound. Thus the 3s and electrons are completed 

with argon, with two eight L, and eight M electrons, again a stable 

structure and an inert gas. It is in this way that the periodicity with 

period of eight, whi(di is such a feature of the lighter elements, is brought 

about. After argon, the order of adding electrons is somcwdiat peculiar. 

The next electrons add('d, in potassium and calcium, go into 4s states, 

which for those elements have a lower energy than the 3d. But with 

scandium, the elermait beyond calcium, the order of levels changes, the 

3d becoming somewhat more tightly bound. In all the elements from 

scandium to copper the new electrons are being added to the 3d level, 

the normal state having either one or two 46* electrons. For all these 

elements, the 4.*? and 3d ek^ctrons have so nearly the same energy that the 

configurations with no 46* electrons, with one, and with two, have approxi¬ 

mately the same energy, so that there are many energy levcds near the 

normal state. At copper, the 3d shell is filled, so that the M shell con¬ 

tains its full number of 2 + 6 + 10 = 18 electrons, and as we have seen 

from our earlier discussion, there is one 46 electron. The elements 

following copper add more and more 46 and 4p electrons, until the group 

of eight 46 and 4p\s is filled, at krypton. This is again a stable configura¬ 

tion. After this, very much the same sort of situation is repeated in the 

atoms from rubidium and strontium through silver, which is similar to 

copper, and then through xenon, which has a complete M shell, and 

complete 46, 4p, 4d, 56, and 5p shells. Following this, the two electrons 

added in caesium and barium go into the 66 shell, but then, instead of 

the next electrons going into the 5d shell as we might expect by analogy 

with the two preceding groups of the periodic table, they go into the 4/ 

shell, which at that point becomes the more tightly bound one. The 

fourteen elements in which the 4/ is being filled up are the rare earths, a 

group of extraordinarily similar elements differing only in the number of 

4f electrons, which have such small orbits and are so deeply buried inside 
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the atom that they have almost no effect on chemical properties. After 

finishing the rare earths, the M shell is filled, in the elements from hafnium 

to platinum, and the next element, gold, is similar to copper and silver. 

Then the 6s and shells are completed, leading to the heaviest inert 

gas, radium emanation, and finally the Is electrons are added in radium, 

with presumably the 6d or 5/ in the remaining elements of the periodic 

table. 

Now that we have surveyed the elements, we are in position to under¬ 

stand why some atoms tend to form positive ions, some negative. The 

general rule is simple: atoms tend to gain or lose electrons enough so 

that the remaining electrons will have a stable structure, like one of the 

inert gases, or some other atom containing completed groups or subgroups 

of electrons. The reason is plain from Table XX1-3, at least as far as the 

formation of positive ions is concerned: the (^k'ctrons outside closed shells 

have much smaller ionization potentials than those in closed shells and 

are removed by a much smaller amount of (uiergy. Thus the alkali 

metals, lithium, sodium, potassium, rubidium, and cac^sium, each, have 

one easily removed ('h^ctron outside an inert gas shell, and this electron 

is often lost in chemical processes, resulting in a positive ion. The 

alkaline earths, beryllium, magnesium, calcium, strontium, and barium, 

similarly have two easily removable electrons and become doubly charged 

positive ions. Boron and aluminum lose three electrons. Occasionally 

carbon and silicon lose four and nitrogen five, but these processes are 

certainly very rare and perhaps never occur. The eletdrons become too 

strongly bound as the sh(dl fills up for them to be removed in any ordinary 

chemical process. But oxygen sometimes gains two (decti’ons to form the 

stable neon structure, and fluorine often gains one, forming doubly and 

singly charged negative ions respectively. Similarly chlorine, bromine, 

and iodine often gain one electron, and possibly sulphur occasionally 

gains two. In the elements beyond potassium, the situation is somewhat 

different. Potassium and calcium tend to lose one and two electrons 

apiece, to simulate the argon structure. But the next group of elements, 

from scandium through nickel, ordinarily called the iron group, tend to 

lose only two or three electrons apiece, rather than losing enough to form 

a closed shell. Nickel contains a completed K, L, and M shell and is a 

rather stable structure itself, though not so much so as an inert gas; and 

the next few elements tend to lose electrons enough to have the nickel 

structure. Thus copper tends to lose one, zinc two, gallium three, and 

germanium four electrons, being analogous to a certain extent to sodium, 

magnesium, aluminum, and silicon. Coming to the end of this row, 

selenium tends to gain two electrons like oxygen and sulphur, and bromine 

to gain one. Similar situations are met in the remaining groups of the 

periodic table. 



CHAPTER XXII 

INTERATOMIC AND INTERMOLECULAR FORCES 

Ono of the most fimdaraental problems of chemical physics is the study 

of the forcics between atoms and molecules. We have seen in many 

preceding chapters that these forc(\s are essential to the explanation of 

equations of state, specific heats, the equilibrium of phases, chemical 

equilibrium, and in fact all the problems we have taken up. The exact 

evaluation of these forc("s from atomic theory is one of the most difficult 

branches of quantum theory and wave mechanics. The general prin¬ 

ciples on which the evaluation is based, however, are relatively simple, 

and in this chapter we shall h^arn what these general principles are, and 

see at least qualitatively the sort of results they lead to. 

Thf^re is one general point of view regarding interatomic forces which 

is worth keeping constantly in mind. Our problem is really one of the 

simultaneous motion of the nuclei and electrons of the atomic or molecular 

system. But the electrons are vejy much light(^r than the nuclei and 

move very much faster. Thus it forms a very good approximation to 

assume first that the nuclei are at rest, with the electrons moving around 

them. We then find the energy of the whole system as a function of the 

positions of the nuclei. If this energy changes when a particular nucleus 

is moved, we conclude that there is a force on that nucleus, such that the 

force times the displacement equals the work done, or change of energy. 

This force can }>e used in discussing the motion of the nucleus, studying 

its translational or vibrational motion, as we have had occasion to do in 

previous chapters. Our fundamental problem, then, is to find how the 

energy of a system of atoms changes as the positions of the nuclei are 

changed. In other words, we must solve the problem of the motion of 

the electrons around the nuclei, assuming they are fixed in definite posi¬ 

tions. The forces between electrons are essentially electrostatic; there 

are also magnetic forces, but they are ordinarily small enough so that they 

can practically be neglected. Then the problem of solving for the motion 

of the electrons can be separated into several parts. It is a little difficult 

to know where to start the discussion, for there is a sort of circular type 

of argument involved. Suppose we start by knowing how the electrons 

move. Then we can find their electrical charge distribution, and from 

that we can find the electrostatic field at any point of space. But this 

field is what determines the forces acting on the electrons. And those 

forces must lead to motions of the electrons which are just the ones we 
352 
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started with. An electric field of this type, leading to motions of the 

electrons such that the electrons themselves, together with the nuclei, 

can produce the original field, is sometimes called a self-consistent field. 

As a first attempt to solve the problem, let us assume that each atom 

is a rigid structure consisting of a nucleus and a swarm of electrons sur¬ 

rounding it, not affected by the presence of neighboring atoms. This 

leads to a problem in pure electrostatics: the energy of the whole system, 

as a function of the positions of the nuclei, is simply the electrostatic 

energy of interaction between the charges of the various atoms. This 

electrostatic energy is sometimes called the Coulomb energy, since it 

follows directly from Coulomb's law stating that the force between two 

charges equals the product of the charges divided by the square of the 

distance between. This first approximation, however, is far from ade¬ 

quate, for really the electrons of each atom will bo displaced by the 

electric fields of neighboring atoms. We shall later, them, have to study 

this deformation of the atoms and to find the forces betwc'.en the distorted 

atoms. 

1, The Electrostatic Interactions between Rigid Atoms or Molecules 
at Large Distances.—In this section, we are to find the forces between 

two atoms or ions or molecules, avssuming that each can be represented 

by a rigid, undistorted distribution of charge. The discussion of these 

electrostatic, or Coulomb, forces is conveniently divided into two parts. 

First, we find the electric field of the first charge distribution at all points 

of space; then, we find the force on the second charge distribution in this 

field. By fundamental principles of electrostatics, the force on the 

second distribution exerted by the first is equal and opposite to the force 

on the first exerted by the second, if we make a corresponding calculation 

of the field exerted by the second on the first. Let us first consider, then, 

the field of a charge distribution consisting of a number of charges Ci, 

located at points with coordinates Xij yi, Zi, Rather than find the field, it 

is more convenient to compute the potential, the sum of the terms Si/vi 
for the charges, where Vi is the distance from the charge to the point x, t/, z 
where the potential is being found. That is, Vi is the length of a vector 

whose components are x — Xi, y — t/f? ^ ~ fhat we have 

ri = V(i - + (y - ViY + (2 - .z^)^ (1-1) 

and the potential is 

€i 

V(x - X,)® + {y - yiY + (z - ZiY 
(1.2) 

There is a very important way of expanding the potential (1.2), in 

case we wish its value at points far from the center of the charge distribu- 
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tion. This is the case which we wish in investigating the forces between 

two atoms or molecules at a considerable distance from each other. Let 

us assume, then, that all the charges Ci are located near a point which we 

may choose to be the origin, so that all the t/s, ^//s, and are small, and 

let us assume tliat the point Xj y, z where we are finding the potential is 

far off, so that r = \/is large. Then we can expand the 

potential in power series in X{y yi, and Zi, regarded as small quantities. 
We have 

^ = 27 + 2 
CiXi- 

dx, <^iy 
d /I 

'dy, 

+ • • ■ (1.3) 

The derivatives of (l/rj) are to be (computed winni Xi — yi — Zi = 0. 

But from Eq. (1.1) we have 

JL-( ^ ^ ^ ^ r, — X 
dxXrJ ~ r^\dxij ~ r\ n 

When Xi = 0, this becomes 

J /A _ 1 * 

dxArJ (I r'^ r 

On the other hand, we hav(! 

(1.1) 

(1.5) 

(1.6) 

Thus, comparing Eqs. (1.5) and (1.6), we can rewrite Eq. (1.3) a.s 

From Eq. (1.7), the potential of the charge distribution depends on the 

quantities Se<, XciXi, 2eiyi, and higher terms such as 2e<a:f, etc., 
which we have not written. 

The quantity is simply the total charge of the distribution, and 

the first term of Eq. (1.7) is the potential of the total charge at a distance 

r. This term, then, is just what we should have if the total charge were 

concentrated at the origin. The next three terms can be grouped 
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together. The quantities Xciyi, 'ZciZi form the three components 

of a veciur, which is known as* the dix)ole moment of the distribution. A 

dipole is a pair of equal charge's, say of charge +q and —q, separated by 

a distance d. For the sake of argument h^t the charges be located along 

the X axis, at d/2 and —d/2, Then the three quantities a})Ove would be 

moment is (‘(pial in this cas(^ to t h(' produ(*t of th(‘ charge and the distance 

Fia. XXII-1.—Linos of force and e<iuipotontials of a dipole. 

of separation, and it points along the axis of the dipole, fi'om the negative 

to the positive end. We now see that as far as the terms written in 

Eq. (1.7) are concerned, any two distributions with the same net charge 

and the same dipole moment will have the same potential. In the 

particular case mentioned above, the potential, using Eqs. (1.6) and 

(1.7), is {gd/r^)(x/r). Here x/r is simply the cosine of the angle between 

the radius r and the x axis, a factor depending on the direction but not 

the magnitude of r. As far as magnitude is concerned, then, the poten¬ 

tial decreases as 1/r*, in contrast to the potential of a point charge, 

which falls off as 1/r. Thus at large distances the potential of a dipole is 

unimportant compared to that of a point charge. In Fig. XXII-1, we 
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show the equipotcntials of this field of a dipole and the lines of force, 

which are at right angles to the equipotentials, and indicate the direction 

of the force on a point charge in the field. The lines of force are those 

familiar from magnetostatics, from the problem of the magnetic field of a 

bar magnet, which can be approximated by a magnetic dipole. 

In addition to the terms of the expression (1.7), there are terms 

involving higher powers of Xi^ yij and Zij and at the same time higher 

derivatives of 1/r, so that these terms fall off more rapidly with increasing 

distance. The next terms after the ones written, quadratic in thp a:/s, 

and with a potential falling off as 1/r^, are called quadrupole terms, the 

corresponding moment being called a quadrupole moment. Wo shall 

not have occasion to use quadrupole moments and hence shall not develop 

their theory here, though sometimes they are important. 

Now that we have found the nature of the potential of a charge 

distribution, we can ask what sorts of cases we are likely to find with real 

atoms, molecules, and ions. First we consider a neutral atom. Since 

there are as many electrons as are necessary to cancel the positive nuclear 

charge, is zero, and there is no term in the potential falling off as 

1/r. The atom at any instant will have a dipole moment, however; the 

electrons move rapidly from place to place, and it is unlikely that they 

would be so arranged at a given instant that the dipole moment was 

exactly zero, though it is likely to be small, since some electrons will be 

on one side of the nucleus, others on the other side. On account of the 

motion of the electrons, this dipole moment will be constantly fluctuating 

in magnitude and direction. It is not hard to show by wave mechanics 

that its average value must be zero. Now, for most purposes, we care 

only about the average dipole moment, for ordinarily we are interested 

only in the time average force between atoms or molecules, and the 

fluctuations will average to zero. Thus, generally, we treat the dipole 

moment of the atom as being zero. Only two important cases come up in 

which the fluctuating dipole moment is of importance. One does not 

concern interatomic forces at all: it is the problem of radiation. In 

Chap. XIX, Sec. 3, we have mentioned that an oscillating electric charge 

in classical theory radiates energy in the form of electromagnetic waves. 

It turns out that the oscillating dipole moment which we have mentioned 

here is closely connected with the radiation of light in the quantum 

theory. The frequencies present in its oscillatory motion are those 

emitted, according to Bohr’s frequency condition, and there is a close 

relation between the amplitude of any definite frequency in the oscillation 

and the intensity of the corresponding frequency of radiation. The 

other application of the fluctuating dipole momen,t comes in the calcula¬ 

tion of Van der Waals forces, which we shall consider later. It appears 

that the flueWating external field resulting from the fluctuating dipole 
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moment can produce displacements of charge in neighboring atoms, in 
phase with the fluctuations. The force exerted by the fluctuating field 
on this displaced charge does not average to zero, on account of the 
phase relations, but instead results in a net attraction between the 
molecules, which as we shall see is the Van der Waals attraction. It is 
rather natural from what we have said that it is possible in wave mechan¬ 
ics to give a formula for the Van der Waals force between two atoms 
which depends on the probabilities of the various optical transitions 
which the atoms can make, though we shall not be able to state this 
formula since it involves too much application of quantum theory. 

As far as the time average is concerned, we have seen that an atom 
has no fi(?ld coming from its net charge or from its dipole moment. As a 
matter of fact, in most important cases, an atom has no net field at all at 
external points. The reason is that atoms, at least in the special case 
where all their electrons are in closed shells, as in inert gas atoms, are 
spherically symmc^trical in their average charge distributions. This can 
be proved from wave mechanics and is a property of closed shells. But 
it is a familiar theorem of electrostatics that a spherically symmetrical 
(diarge distribution has a field just equal to that which it would have if 
all its charge were placed at the center. Thus a neutral atom has no 
external field. The reason is seen easily from Eq. (1.7). Each term of 
this (5xpr(\ssion after th(^ first one depends on th(i angle between the radius 
vector and the axes. This is plain for the terms written, where we have 
seen that they vary as the cosines of the angles between the radius and 
the y, and z axes respectively, but it proves to be true also for the 
remaining terms. But a spherically symmetrical charge distribution 
must obviously have a spherically symmetrical pot(mtial, so that all 
these terms depending on angles must be zero. In other words, a spher¬ 
ically symmetrical distribution, like an atom, not only has no average 
dipole moment, but has no average quadrupole moment or moment of 
any higher order. 

Next after a neutral atom, we may consider a positive or negative 
ion of a single atom, such as Na+, Ba++, or Cl“. As we have seen in the 
preceding chapter, such an ion always has the configuration of an inert 
gas, and hence is always spherically symmetrical on the average. Thus 
an ion has no dipole or higher moments, and its potential and field are 
just as if its whole charge were concentrated at the nucleus. As a next 
more complicated example, we take a molecule, charged or uncharged, 
formed from two or more atoms or ions. If the molecule is charged, 
forming an ion like NH4'^, OH"", NOs^ SO4 , etc., then in the first place 
it has a term in the potential varying as 1/r, determined by the total 
charge on the ion. In addition to this, the ion or molecule may have a 
dipole moment. When we come to discussing specific ions and molecules, 
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in later chapters, we shall see which ones have dipole moments, which 

do not; in general, for there to be a dipole moment different from zero, the 

ion or molecule must be unsymmetrical in some way, with positive charge 

localized on one side, negative on the oth(u*. The ions NH4'^, NOs”, and 

SO4 , as we shall see, prove to be very symmetrical, and have no dipoh^ 

moment, while OH“ has a dipole moment, thci negative charge being at 

the oxygen end, the positive at the hydrogen end. Similarly there are 

some unsymmetrical neutral molecuhvs which have dipole moments. 

An example is HCl, in which the H end t(mds to be povsitive, the Cl 

negative. The dipole moments have been measun^d in many of thes(^ 

cases and are generally found to be much less than one would suppose 

from a crude ionic picture. One might at first think, for instance, that 

HCl was made of a and a Cl' ion, joined together without distortion, 

so that each was spherically symmetrical. Then the resulting charge 

distribution would have a fi(‘ld at external points like a unit positive 

charge at the position of the hydrogen nucleus, and a uJiit negative charge 

at the chlorine nucleus, and the dipole momc'nt would (xpial the product 

of the electronic charge and the internuclear distance. The measured 

dipole moment is only a small fraction of this, showing that then,' has 

been a large distortion of the electronic distribution in the process of 

forming the molecule. This is tlie sort of distortion that we must tak(i 

up in a later section. 

We see, then, that at a considerable distance a single atom has no 

electric field, an ion consisting of a single charged atom has a fi(^ld like a 

point charge concentrated at its center, and a molecule or ion consisting 

of several atoms or ions may have in addition a dipole moment, with its 

accompanying field, as well as having the field of its net charges, if it is an 

ion. In addition, the molecule or molecular ion may have quadrupole 

and higher moments. The effect of these is usually small comi)ared to 

the others, but in the case of an uncharged molecule with no dipole 

moment, the quadrupole term would be the first important one in the 

expansion of the field. Having found the nature of the field of an atom 

or ion, our next problem is to find the forces exerted by this field on 

another atom or ion, always assuming both to be rigid charge distribu¬ 

tions. Fundamentally, the problem is very simple: the force exerted by 

the field of one atom or ion on each element of charge of the second atom 

or ion is simply the product of the field intensity and the charge, by 

definition, and we need merely treat the problem as one in statics, adding 

the forces vectorially to find the total force on the atom or ion, and 

adding their moments about the center of gravity to get the resultant 

moment or torque. 

Thus, let the potential of the electrostatic field be <#>, and let the 

field strength have components where by well-known methods 
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of electrostatics the field is the negative of the derivative of <l> with respect 
to displacements along the axes, so that the product of the force and the 
displacement gives the work done, or the negative of the change of 
potential. That is, 

(1.8) 

The components Ex, Ey^ and Ez will be functions of position. Now 
assume that the ion or molecule on which the force acts has charges 
at positions Xi, yi, Zi, where the origin is chosen to be at the center ol 
gravity of the ion or molecule. Then, for example, the x component of 
total force on the ion or molecuile is the sum of the x components of force 
on all its charges, and if we write Ex at an arbitrary position by the Taylor 
expansion 

- KM + + • ■ • - 

where Ex{0) and the derivatives are all to be comi)iited at the origin, we 
have the following expression for the total x component of force on the ion 
or molecule; 

BE, dEx 

The first term in Eq. (1.10) repn^sents the field at the center of gravity, 
times the total charge. This term of course is zero if the molecule is 
uncharged. The next three terms depend on the dipole moment and the 
rate of change of field strength with position. Their interpretation is 
very simple. If the field strength is independent of position, the electro¬ 
static forces on the two poles of a dipole will be equal and opposite and 
will give no net force on the dipole as a whole. But if the field is stronger 
at one end than at the other, one charge will be pulled more strongly in 
one direction than the other one is in the other direction, and there will 
be a net pull on the dipole as a whole. This pull depends on the orienta¬ 
tion of the dipole with respect to the external field; if the dipole is reversed 
in direction, so that each component of its dipole moment changes sign, 
the dipole terms in the force expression (1.10) change sign, showing 
that the force is reversed. 

A dipole is acted on not only by a force, but also by a torque, in an 
external field, and this torque is proportional to the field strength rather 
than to its rate of change with position. The x component of this torque, 
regarded as a vector, is seen to be 

Afa; == {^€iZi)Eyf (1.11) 
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showing that the torque is proportional to the dipole moment, the external 
field, and the sine of the angle between them. To sec this in an elemen¬ 
tary way, we show in Fig. XXII-2 a simple dipole consisting of charges 

at a distance of separation d, the line of centers making an angle 
6 with the external field. Then we see that the field exerts a force of 
magnitude gE on each charge, with a lever arm d/2 sin 0, so that the 
torque exerted on each charge is q(d/2)E sin 6, and the total torque is 
qdE sin 6, where qd is the dipole moment. The potential energy asso¬ 
ciated with this torque is 

Potential energy = —qdE cos d, (1*12) 

having a minimum when the dipole points along the direction of the 
electric field. That is, the field tends to swing the dipole around so that 
it is parallel to the field. 

Fig. XXII-2.—Illustrating the torque on a dipole in an external force field. 

We are now in position to understand the forces between rigid ions or 
molecules at a distance from each other. With two ions, of course the 
largest term in the force is the Coulomb attraction or repulsion between 
the net changes of the ions—an attraction if the ions have unlike charges, 
repulsion if they have like charges. If the molecules are uncharged, 
however, the largest term in the interaction comes from dipole-dipole 
interaction. Each dipole is acted on by a torque in the field of the other, 
and if we look into the situation, we see that these torques are in such 
directions as to tend to place the dipoles parallel to each other, the posi¬ 
tive end of one being closest to the negative end of the other. Also, the 
dipoles exert a net force on each other, an attraction or repulsion depend¬ 
ing on orientation. If the orientation is that of minimum potential 
energy, with the positive end of one dipole opposite the negative end of 
the other, the net force will be an attraction, for the attraction between 
the close unlike charges will more than balance the repulsion of the more 
distant like charges. We may anticipate by mentioning the sort of appli¬ 
cation we shall make later to the force between two dipole molecules in a 
gas. In this case, both dipoles will be rotating. If they rotated uni¬ 
formly, they would be pointing in one direction just as often as in the 
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opposite direction, so that the net force between them would cancel, since 

as we have seen this net force changes sign when the dipole reverses its 

direction. But they will really not rotate uniformly, for there are 

torc^ues acting on them, tending to keep them in a parallel position, 

lliese torques will result in a potential energy term, of the nature of 

Eq. (1.12), between them, and if we insert this term into the Maxwell- 

Boltzmann distribution law, we shall find that the dipoles will be oriented 

in the position of minimum potential energy more often than in other 

positions. Thus, on the average, the attractions between the dipoles will 

outweigh the repulsions, and the net effect of dipole-dipole interaction is 

an intermolecular attraction. 

As two molecules or ions get closer and closer together, higher terms 

in the exi)ansion of the potential and the force become important, and we 

must consider quadrupoles and higher multipoles. The whole expansion 

in inverse powers of r, and direct powers of the x/s, becomes badly 

convergent when the molecules approach to within a distances com¬ 

parable to their own dimensions. When the charge distributions of two 

atoms or molecuh^s really begin to overlap each other, the situation 

becomes entirely different and must be liandleHl by different methods. 

We shall take up in the next section the electrostatic or Coulomb inter¬ 

action of two rigid charge distributions representing atoms, when they 

approach so closely as to overlap. 

2. The Electrostatic or Coulomb Interactions between Overlapping 
Rigid Atoms.—We have seen in the preceding section that two neutral 

spherically symmetrical atoms exert no forces on each other, so long as 

they do not overlap and so long as we can treat their charge distributions 

as being rigid, so that they do not distort each other. Once they overlap, 

however, this conclusion no longer holds. A rigid neutral atom consists 

of a positive nucleus surrounded by a spherical negative distribution of 

charge, just great enough to balance the charge on the nucleus. Such a 

distribution exerts no electrostatic force at outside points. At points 

within the charge distribution, however, it docs exert a force, determined 

by a well-known rule of electrostatics: the electrostatic field at any point 

in a spherical distribution of charge is found by constructing a sphere, 

with center at the center of symmetry, passing through the point where 

the field is to be found. The charge within the sphere is imagined to be 

concentrated at the center, that outside the sphere is neglected. Then 

the electric field is that computed by the inverse square law from the 

charge concentrated at the center of the sphere, disregarding the outside 

charge. At a point outside the atom, this ^edtices to the same result 

already quoted: the net charge within the sphere is zero, so that there is no 

field. But as we get closer to the nucleus, we penetrate into the negative 

charge distribution, so that some of the negative charge lies outside 
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our sphere and is to be disregarded. The cliarge within the sphere, which 

we are to imagine conccnitrated at the center, then has a net positives value, 

becoming equal to the charge on the nucleus as the sphere grows smaller 

and smaller. Thus the electric field approach(^s that of the positive 

nuclear charge, in the limit of small distances. It is correct to consider 

that the electrons shield tlu' nuchais at external points, counteracting 

its field, but this shielding effect decreases as we peiu^trate the electron 

shells. At a given distance from the nucleus, the field is like that of a 

charge of (Z — Zo) units concentrated at th(i center, where Z is the 

nuclear charge, Zo a shielding constant represcuiting the amount of (dec- 

tronic charge within the sphere, a quantity which decreases from Z to 

z('ro as we go from great distances in to the nuch'us. This shi(dding 

constant Zu is essentially the same' as that introduc(^d in Eq. (2.2), Chap. 

(a) (b) (c) 
Fkt. XXII-^^. Sfhoinatic rcpmseiitatioii of the overlapping of two atoms. The 

points represent the nuclei, the circles the regions occ\ipied most densely by negative 
eloctroni(t charge distributioTis. 

XXI, where we w('re considering the effect of (dectroriic shielding on the 

motion of one of the electrons of the atom. 

It is now easy, at least in principle, to find the interatomic forces 

between two rigid atoms whose charge distributions penetrate each other. 

We simply find the force on (\ach element of the charge of one atom, 

exerted on it by th(^ field of the other. It is a difficult problem of integra¬ 

tion actually to compute this force, but the results are qualitatively 

simple. Supi)Ose the distributions have only penetrated slightly, as 

shown in (a), Fig. XXII-3. Then some negative charge of each atom is 

within the distribution of the other, and hence is attracted by part of the 

nuclear charge. Thus the first effect of overlapping is an attraction 

between the atoms. This effect begins to be counteracted in the case 

(b) in the figure, however, when the nucleus of one atom begins to pene¬ 

trate the charge distribution of the other. For the nucleus will be 

repelled, not attracted, by the other nucleus. Finally, in case (c), where 

the atoms practically coincide, there will be great repulsion. For the 

nuclei will repel very stroi!gly, being very close together, and exposed to 

all of each others^ field, while the electronic distribution of each atom is 

still at a considerable average distance from the nucleus of the other, and 

hence is not very strongly attracted. Furthermore, part of the electronic 
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distribution of each atom is on one side of the nucleus of the other, part 

on the other side, so that the forces on it almost cancel, and exactly cancel 

when the two atoms (exactly coincide. The net effect of the Coulomb 

forces, then, is a potential energy curve similar to Fig. XXII-4, with a 

minimum, corresponding to a position of equilibrium, and an infinitely 

high potential energy as iho nu(*lei are brought into contact. 

It might be thought at first sight that the curve of Fig. XXTI-4, which 

surely has close resemblance to the Morse curve of Fig. IX-1, would give 

an adequate^ explanation of the intoratomic forces that hold atoms 

together into molecules. On closer examination, however, this proves 

not to be the case. The attractions of Fig. XX11>4 ar(‘ not nearly strong 

enough to account for molecular binding, and the distances of separation 

Fig. XXII-4.—Schematic representation of the electrostatic or Coulomb energy of inter¬ 
action of two overlapping rigid atoms, as shown in Fig. XXII-3. 

are not what they should be. The reason is that our assumption of rigid 

atoms breaks down completely when the (‘kHd-ronic distributions begin to 

overlap. The charges distribution IxH^omes greatly distorted, and this 

must be taken into account in calculating the energy and forces. We 

shall now pass on to a discussion of this distortion, first taking up the 

effect of polarization, the type of distortion met at large distanc.es of 

separation, then the effect that is usually called exchange interaction, 

which is important when atoms overlap. 

3. Polarization and Interatomic Forces.—An atom or molecule 

in a uniform external electric field is polarizcxl; that is, it acquires an 

induced dipole moment, parallel and proportional to the field. This is 

the phenomenon so well known from electrostatics, when a charge brought 

near a conductor inducf^s a charge of opposite sign on the near-by parts of 

the conductor. It is not so marked with an insulator as with a conductor, 

but it always occurs. It is illustrated in Fig. XXII-5, where we show 

simply a sphere of matter in an external field, with induced positive 

charge on the right hand part of it and negative charge on the left. We 

see that the induced charge is similar to a dipole. The induced dipole 

moment, as we have stated, is proportional to the external field, and the 
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constant of proportionality is called the polarizability and denoted by 

a, so that the induced dipole moment is a times the external field. The 

polarization can be brought about in either of two ways. In the first 

place, the electrons can be displaced in the direction opposite to the field, 

so that the electronic distrilmtion is distorted or deformed. This is 

the only mechanism for polarization with atoms or symmetrical molecules. 

With dipole molecules, however, an additional form of polarization is 

possible; on account of the Maxwell-Boltzmami distribution, the dipokvs 
can be oriented in such a way as to have a net dipole moment along the 

direction of the field. W(i can easily compute the net dipole moment on 

account of this effect. 

Let the permanent dipole moment of a molecule be jjl. Then, as we 

saw in Eq. (1.12), its potential energy in a field E is —fiE cos 9, Its 

component of dipole moment along the direction of the field is g cos 9, If 

all orientations were equally likely, Cthe average component along the* 

field would be zero. But on ac- 

/Pxl-ernof/-r/e/c^ count of the Maxwell-Boltzmann 

1+ distribution, the probabihty of 

finding the axis of the dipole in 

unit solid angle about a given orien- 

Fia. XXII-5. Induced polarization of a . .. . i , ^ 
sphere in an external field. tation IS proportional tO C 

Thus to find the mean moment, we 

multiply g cos 9 by the Boltzmann factor above and integrate over solid 

angles. The solid angle contained between 9 and 9 + d9^ or the fraction 

of the surface of unit sphere between these angles, is 27r sin 9 d9. Thus 

we have 

Mean dipole moment 
JOS 9e 27r sin 9 d9 

fiE cos d 

27r sin 9 d9 

The integrals in Eq. (3.1) can be evaluated at once by substituting 

cos ^ = a:, — sin^d^ = dx^ and introducing the abbreviation == 2/, 

from which at once we have 

Mean dipole moment dx ev + 1 

The function (3.2) is shown as a function of y, which is proportional to 

the external field, in Fig. XXII-6. We see from the figure that at law 

fields the mean dipole moment is proportional to the field, but at high 
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fields there is a saturation, all the dipoles being parallel to the external 

field. It is only at low fields, where there is proportionality, that we can 

speak of a polarizability. To got the value of the polarizability, we 

should find the initial slope of the function (3.2). We easily find, by 

expanding in power series in y, that for small y the function (3.2) can be 

approximated by the straight line y/3. Thus, remembering the definition 

of y, w(‘. have the dipole moment at low fields equal to and the 

polarizability e(iual to decreasing with increasing temperature as 

we should expect. 

fjU ^ ~ U I 

Fio. XXlI-(). Function - -as function of y, giving mean dipole moment 
e» — €~^ y 

arising from the rotation of dipole molecules, as a function of y — (xE/kl\ where y is the 
dipole moment, E the field strength, according to Eq. (3.2). 

If the part of the polarizability r(\sulting from the electronic distortion 

is ao, we then have 

a = ao + 
S/bT 

(3.3) 

as the total polarizability of a molecule. This quantity can be found 

experimentally, on account of its connection with the dielectric constant. 

The mok^cular theory of dielectrics shows that a substance having N 

molecuhvs in a volume F, each having a polarizability a, will have a dielec¬ 

tric constant equal to^ 

€ = 1 + 47r^a = 1 + 47r^^ao + (3-4) 

If we measure the dielectric constant as a function of temperature, then, 

it should be a linear function of 1/T, and from the constants of the curve 

we can find both the electronic polarizability ao and the dipole moment 

iSee P. Debye, “Polare Molekeln,'* Hirzel, 1929, for further discussion of dielec¬ 

tric constants. 
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juL. It is in this way that the dipole moments of a great many molecules 

have been determined. 

We now understand the ]>olarization of a molecule in an external field. 

Next, w(^ must ask about intermoleeular forces resulting from this polari¬ 

zation. If a mo](Tule has an induced dipole moment (Kpial to aE in the 

direction of the fi(dd, tlicai we see from Eq. (1.10) that it is acted on by a 

force equal to aE{dE/dx), if the x axis is chosen in the direction of the 

external field and of the dipole. This can ho writtem 

a 0E‘^ 

2 dx-' 
(3.5) 

showing that the force pulls the molecule in the direction in which the 

magnitude of the field increases most rapidly. In the ty])e of problem we 

are considc^ring, this means a forci^ of attraction toward the other mole¬ 

cule. Th(‘ attraction will d('pend on tlie nature of the field of the other 

molecule. Thus suppose we are consid(^ring the force betw'(^en a polar¬ 

izable molecule and an ion. The field of the ion varies as so that E'^ 

varies as 1/r^, its derivative with respect to x (which in this case is r) 

is proportional to l/r\ so that the force varies inversi'ly as the fifth power 

of th(i distance, and the poteiitial energy inversely as the fourth power. 

The commoner case, how(‘ver, is that in which a dipole molecule produces 

a field that ].)olarizes its neighbors, resulting in an attraction. A mok'cule 

of dipole moment /x' produces a field proportional to at another 

molecule. This field results, according to Eq. (3.5), in a force on the 

second molecule proportional to 3ag'^/r’^. The attractive energy will 

then be proportional to 1/r®. This depends on the angle between the 

dipole moment of the first molecule and the line of cemters of the two, and 

calc\ilation shows that the average over all directions is given by^ 

Energy = (3.6) 

Equation (3.6) is essentially the formula for Van der Waals attrac¬ 

tions between molecules. Then^ are two distinct cases: the attractions 

between molecules with or without permanent dipole moments. First 

let us consider molecules without permanent moments. Even in this 

case, we have seen in S(^c. 1 that the molecule will have a fluctuating 

dipole moment, which will average to zero. Nevertheless it can polarize 

another molecule instantaneously, producing an attraction, and the net 

result, averaged over the fluctuations, will be an attraction given by Eq. 

(3.6), where a is the electronic polarizability of a molecule, and /x'^ the 

^See for instance Slater and Frank, ^Tntrodnetion to Theoretical Physics,’^ Sec. 

301, McGraw-Hill Book Company, Inc., and Pauling and Wilson, ^introduction to 

Quantum Mechanics,Sec. 47, McGraw-Hill Book Company, Inc., 1936. 
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mean square dipole momiuit. It is significant that it is the mean square 

moment that is concerned in the attraction, and this mean square is 

different from zero even when the mean moment vanishes. This attrac¬ 

tion is the typical Van der Waals attraction, a forces whose potential is 

inversely proportional to the sixtli power of th(‘ int(u*atomic distance and 

is independent of temperature. On th(' other hand, if we are considering 

the forces between two dipole molecules, there will be two changes. First, 

th(^ mean square dipole momc^nt of the first moknaile will now include 

two terms: the one coming from electronic fluctuations, which we have 

already considered, and the one corning from th(^ fixe^d average dipole 

moment. Thus, in the first i)lac(', tlui (external fi(dd will be greater than 

before. Then, in the s('con(l place, the polarizability will be given by 

Eq. (3.3), including both tlu' electronh^ i)olarizability, and that coming 

from orientation of tlu^ fixed dipol(\s. In many caSes the second term 

proves to be several times as large as the first, but it decu'eases with 

increasing bunix^ratun'. Thus w(' may (‘xpect the Van der Waals attrac¬ 

tion between molecule's with permanent dipoles to be several times as 

large as that between similar molecules without the })erman{mt dipoles, 

and furthermore we may expec't tlui Van der Waals force to decrease with 

temperature in the dipole case. Both th(\se pnnlictions i)r()V(‘ to be 

borne out by experinn'iit, as we shall see in a lat(‘r chajfler where we 

take up Van der Waals forces numc'rically for a variety of moh'cules. 

4. Exchange Interactions between Atoms and Molecules.^—In the 

preceding section, we hav(^ found how an atom or rnoh'cule is distorted 

in a uniform electric field, and have used this to discuss its distortion in 

the field of another atom or molecule. This is clearly an approximation, 

for the field of a molecule is not uniform, though it approaches uniformity 

at great distances. When two atoms or molecul(\s approach closely, this 

type of approximation, using merely an induced dipole, becomes very 

inaccurate. We must considi^r in this section how the (*harge distribu¬ 

tions of two atoms or molecules are really distorted when they come so 

close together that they touch or overlap. We shall find that there 

are two very different types of behavior possible: there may be forces of 

attraction between the atoms or molecules, tending to bind them together, 

or there may be forces of repulsion. The first case is that of valence 

binding, the second the case of the type of repulsion considered in Van der 

Waals constant b. We shall first take up the simplest case, the interac¬ 

tion of two atoms, then shall pass on to molecular interactions. The 

problems we are now meeting are among the most complicated ones of the 

quantum theory, and we shall make no attempt at all to treat the ana¬ 

lytical background of the theory. When one studies that background, 

one finds that there are two different approximate methods of calcu¬ 

lation used in wave mechanics, sometimes called the Heitler-London 
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method and the method of molecular orbitals respectively. These differ, 

not in their fundamentals, but in the precise nature' of the analytical steps 

used. For that reason, we shall not discuss them or their differences. 

We shall rather try to focus our attention on the fundamental physical 

processes behind the interniolecular actions and shall find that wo can 

understand them in terms of fundamental j)rinciples, without reference to 

exact methods of calculation. 

Let us, then, begin with the simplest possible probhmi, the interaction 

of two atoms. Unless they overlap, the only force betw'een them will be 

the Van der Waals attraction, coming from the polarization of each 

atom by the flucttuating dipole moment of th(' other. This type of inter¬ 

action persists even when the valence eh'ctrons of the atoms do overlap. 

Fig. XXII-7.—Potential energy of an electron in (a) the central field representing an 
atom; (6) the field representing two overlapping atoms. 

It is simple to describe in words. When the valence electron of one atom 

is at a given point, the valence electron of the other atom, which of course 

is repelled by it, tends to stay away from it. Thus the electrons do not 

approach each other so closely as if the repulsion were absent, and as a 

result the interaction energy betw^een them is lower than if we iKiglectf^d 

this type of interaction. This effect, tending to keep the electrons in the 

pair of atoms, or the molecule, away from each other, is sometimes called 

a correlation effect, since it depends on a correlation b(itween the motions 

of the two electrons. It results in a lowering of energy or an increase of 

the strength of the binding between the atoms. As we see, it is the direct 

extrapolation of the Van der Waals attraction to the case of close approach 

of the atoms. But as we shall soon see, it is by no means the principal 

part of the interatomic force but rather forms a fairly small correction 

term. 

In discussing the Coulomb interactions between overlapping atoms, 

in Sec. 2, we saw that as the electronic charge of one atom begins to 

penetrate into the electron shells of the other, it becomes attracted to 

the nucleus of the other atom. That is, it is in a region of lower potential 

energy than it otherwise would be. This is illustrated in Fig. XXII-7. 

There, in part (a), we show the potential energy of an electron at different 
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points within an atom, taking account of the decrease of shielding as wo 

go closer to the nucleus. In (6), the potential curves of two overlapping 

atoms are superposed, the resulting curve showing the potential energy of 

an electron in the combined molecule. We see that the potential energy 

is lower in the region where they overlap than it would be in the cor¬ 

responding part of either atom separately. This change of potential 

energy would mean that th(^ (4ectroiis from both atoms were attracted 

to this region of overlapping, so that the tendency would be for extra 

electronic charge to concentrate itself in this region. This in turn would 

decrease the total eneirgy, for it would mean the concentration of more 

charge in a region of lower potential energy. Thus this would result in 

an add(Hl attraction be^tweeri the atoms. We could regard this as an 

increase in the magnitude of the Coulomb attraction, if w(‘ chose, giving a 

much deeper minimum to the. potential emu-gy curve than one finds in 

Fig. XXIl-4. This effect is different from th(‘ Van der Waals attraction 

or correlation effect, in that it depends on the average field rather than on 

the fluctuating field, distorting or polarizing tlu' charge distribution and 

hence decreasing the energy. 

Even this effect, however, is not tho whole story. For we have 

forgotten one essential fact: the electrons ob('y the Ferrni-Dirac statistics 

or the Pauli exclusion principle. Let us state the Ferrni-Dirac statistics 

in a very simple form, remembering the existences of the (dectron spin. 

We set up a molecular, or rather an electronic, phase space, in which 

the coordinatets of each electron are given by a i)oint. This phases space 

has cells of volume in it. Then the Ferrni-Dirac. statistics states that 

no complexion of the system is possible in which more than one electron, 

of a given spin orientation, is in the same cell. Since two orientations of 

the spin are possible, as we saw in Chap. XXI, Sec. 2, this, means that at 

most we can hav(^ two electrons in a cell, one of each spin. There is, in 

other words, a maximum possible density of electrons in phase space. 

We can translate this statement into one regarding the maximum density 

of electrons in ordinary coordinate space: for a given range of momenta, 

there is a maximum possible density of electrons in coordinate space. If 

we wish to pack more electrons into a region of coordinatii space, they 

must have a different momentum from those already there. If the elec¬ 

trons already present have a low kinetic energy, this means that any 

additional electrons must have higher kinetic energy, and hence higher 

total energy, in order not to have the same momenta as those already 

present. The exclusion principle in this form can be used immediately 

to discuss the electronic interactions when two atoms begin to overlap. 

We have already talked about the lowering of the potential energy 

between two atoms when they begin to overlap, and have illustrated it in 

Fig. XXI1-7. And we have stated that there is a tendency for electrons 
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to bo eonoontratod in this region, sooking a lower potential energy and 

henc(^ deen^asiiig the eiK'fgy of the whole system. But this would involve 

an ijienuising density of eh^etrons in the n^gion between the atoms, and 

from what we have just said, this might well mak(‘ difficulties with the 

Fermi-Dirac statistics. We now meet very different situations, depend¬ 

ing on wh(‘th(‘r th(' electrons in the two atoms already are in closed shells, 

or not. First let us assume that they are in closed shells. This can be 

interpn'ted in ti^rms of the Fermi-Dirac statistics: we choose our cells in 

the electronic phase space to coincide with tlu^ stationary states of the 

one-electron problem of an electron in a central field. Wlum we state that 

the eletd rons are all in closed shells, we mean that there are two electrons 

each, one of each spin, in the lowest cells or stationary states, while the 

higher stationary states are empty. All the n^gion of space occupied 

by electrons of either atom, them, is filled to such a density with electrons 

that no additional (diarge can enter the region, without having a higher 

kinetic energy and total energy, than the charge already there. Now 

let us see how this affects the situation. If two atoms begin to overlap, we 

can certainly not have the charge shifting into the region bc'tween the 

atoms, for this would involve an increase of charge density. We can not 

even have th(‘ charge of the two atoms overlap without redistribution, for 

the same n^ason. For this would involve such a large density of charge 

between the atoms that the electrons would have to increases their kineti(i 

energy, and hence tlu'ir total (uiergy, considerably. The thing that hap¬ 

pens is that some of the charge actually shifts away from the region 

between the atoms, to th(‘ far sides of the nuclei. This involves some 

increase of kinetic energy, for iho electrons must increase the charge 

density everywhen^ ('xce]it between the atoms, to make up for th(^ decrease 

of density therc^; it involvi's increases of potential energy, since electrons 

are moving away from the region of low ])otential energy between the 

nuclei. Nevertheless, it does not mean so much increase of total energy 

as if the electrons piled up between the atoms. The net effect of this 

redistribution of charge is an increase of energy and hence a repulsion 

between the atoms. 

The effect of which we have spoken, giving a repulsion between atoms 

all of whose electrons are in closed shells, is the origin of the impenetra¬ 

bility of atoms and of the correction to the perfect gas law made by Van 

der Waals constant b. It is illustrated in Fig. XXII-8, where in (a) we 

show the charge distribution surrounding two repelling atoms, by means 

of contour lines. It is clear that the charge has been forced out of the 

region between atoms, by the effect of the exclusion principle. As a 

matter of fact, we can get similar effects, even if the outer electrons are 

not all in closed shells. Thus, consider two atoms of hydrogen, or of an 

alkali metal, each with one valence electron. Suppose the electrons of 
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both atoms have their spins oriented in the same way. Then as far as 

electrons of that spin are concerned, the shc^lls are fillcHl, although they are 

empty of electrons of the opposite s[)in. Whcui the eh^ctrons begin to 

overlap, then, there is the same difficulty about an increase of charge 

(o) (b) 
Fia. XXII-8.—Electronic charge density represented by contours, for (a) two repelling 

atoms, (/>) two attracting atoms. 

dcuLsity that there would be with really closed slu^lls, tlu' chargci distribu¬ 

tion becomes distorted as in Fig. XX11-8 (a) and tlui atoms repel. There 

really is a mode of inttu’action of two hydrogcui or two alkaline atoms 

leading to a repulsion of this sort. We show it gra])hically in Fig. XXII-9 

(a). In this figure, we plot the total energy of a pair of hydrogen atoms, 

Interoifomic 
distance 

Fig. XXII-9.—Interaction energy of two hydrogen atoms, as a function of the distance of 
separation, (a) repulsive state, (b) attractive state, with molecular formation. 

as a function of the distance of separation. At large distances, the 

energy is negative, on account of the Van der Waals attraction. But at 

small distances, when the atoms overlap, the cnryo (a), indicating tlu^ 

case where the spins of the two electrons are parallel, gives a repulsion. 

There is a minimum in this curve, leading to a position of equilibrium 

between the atoms, but it corresponds to a large interatomic distance and 
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very small binding energy, and does not correspond in any way to the 

binding of the two atoms to form a molecule. 

The cases which we have taken up so far are those of repulsion between 

atoms, resulting from the exclusion principle. But this principle can also 

operate, in a somewhat less obvious way, to give an attraction between 

atoms which is oven greater than the other forms of attraction previously 

considered. In the case of two hydrogen or alkaline atoms, which we 

have just discussed, it may be that the two ek'ctrons will have oppovsite 

spins. Then the exclusion principle does not operate dircH^tly; there is no 

obstacles in the way of the electrons from the two atoms overlai)ping, as 

much as tlu^y please, since their spins are different. The electrons are 

then free to pile up in the region between the nuclei, as we have mentioned 

before, thus decreasing the potential energy and leading to a binding 

between the atoms. But the exclusion principle, or Fermi-Dirac statis¬ 

tics, comes into wave mechanics in a more fundamental way than we have 

indicated, a way that can hardly be explained at all without going much 

further into wave mechanic's than we can. The effect in this case is 

something of the following sort: if two electrons have the same spin, as w(^ 

have seeai, the exclusion principle prevents them from being in the same 

cell of phase space. But if they have opposite spins, it operates just in 

the opposite direction, making electrons temd to occupy the same cell 

rather than different cells. A hint as to why this should bo so can be 

found from Chap. V, Sec. 6, where we discussed the Einstein-Bose statis¬ 

tics. We remember that that form of statistics resulted merely from 

the identity of molecuk's, and that it could be qualitatively described as a 

tendency for molecuk\s to stick together or condemse, as if there were 

attractive forces between them. If the exclusion principle is added to 

the principle of identity, the Fermi-Dirac statistics results, leading to 

something like a repulsion between electrons. Now two electrons of the 

same spin must obey the exclusion principle, and we have already seen 

the effect of the resulting repulsion. But two electrons of the opposite 

spin no longer need to satisfy an exclusion principle, as far as their coor¬ 

dinates and momenta are concerned, and yet they still satisfy a principle 

of identity. Hence, in essence, they obey the Einstein-Bose statistics 

and tend to crowd together as closely as possible. 

The effect of which we have just spoken is often called exchange, on 

account of a feature in the analytical calculation connected with it, in 

which the essential term relates to an exchange of electrons between the 

two atoms. The exchange interaction results in an additional piling up of 

electrons in the region of lowest potential energy, between the nuclei, and 

hence in an addition to the strength of binding. This is indicated in 

Fig. XXII-8 (6), where the charge distribution for this case of attraction 

is shown, and in Fig. XXII-9 (6), where we show the potential energy of 
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this type of interaction. The type of attraction which we have in this 

case is what is genc^rally called homopolar valence attraction, the word 

“homopolar^^ meaning that the two atoms in question have the same 

polarity, rather than one being electropositive and one electronegative, as 

in attraction betwcnni a positive and a negative ion. We can now see the 

various features involved in it: there is a tendency, from pure electro¬ 

statics, for the out(T or valence electrons of the atoms to concentrate in 

the Region between the atoms; if the eh'ctrons have the same spin this is 

prevented by the exclusion principle, but if they have oj^posite spin the 

exclusion principle indirectly ojxwates to (mhaiuie the concentration of 

charge; since this charge is concentrated in a n^gion of low potential 

energy, the net result is a binding of the two atoms together; and finally, 

the correlation (‘ffect, analogous to the Van der Waals attraction, tends to 

keep the electrons out of each others^ way, still further decreasing the 

energy. All these effects rcisult in intf'rat.omic attraction at moderate 

distances of scqoaration. As the distances is furtlu^.r decn^ased, however, 

two effects tend to produce r(q)ulsion. First, there is the simple effect of 

the Coulomb forces, discussed in Sec. 2: as the nucleus of one atom 

begins to penetrates inside tlu^ charge distribution of the other, th(‘ nuclei 

begin to reped each other, the repulsion growing stronger as they approach. 

But secondly, all atoms but the simplest ones have inner, closed shells. 

It is only the outer electrons, which are not in closed shells, that can 

take part in valence attraction. When the atoms (a)me close enough 

together so that the closed shells begin to overlap each otlu'v, the same 

sort of repulsion produced by the exclusion j)rinciple sets in which we 

have previously mentioned. In many cases this repulsion of closed shells 

is the major feature in producing the rise of the potential energy curve 

which is shown in Fig. XXII-9 (6). 

We have spoken of the effect of the exclusion principle and exchange 

on the forces between two atoms. Now we shall see what hai)pens with 

more than two atoms. For the sake of illustration,* kd, two hydrogen 

atoms be bound into a molecule by the action of exchange forces, and 

then ask what happens w^hen a third hydrogen atom approaches th(i 

molecule. The two electrons of the first two atoms have cooperated to 

form the valence bond between them. One of these electrons has one 

spin, the other the other, and they have shifted into the region between 

the atoms, filling that region up to approximately the maximum density 

allowed by the exclusion principle, with electrons of both spins. Such a 

pair of electrons, shared between two atoms, is the picture furnished 

by the quantum theory for the electron-pair bond. But now imagine a 

third atom, with its electron, to approach. The spin of this third elec¬ 

tron is bound to be the same as that of one of the two electrons of the 

electron-pair bond. Thus this third atom cannot enter into the attrac- 
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tive, exchange type of interaction with either of the atoms bound into 

the molecule. Insh^ad, the exclusion principle will force its electron 

away from the otlic^r atoms, and there will be repulsion between them. 

This effect is what is (‘ailed saturation of valence: two electrons, and no 

more, can enter into an eh'ctron-pair bond, and once such a bond is 

formed, the electrons con(*erned in it can form no more bonds. It might 

have b(^cn, however, that one of the atoms concerned in the original 

molecule had two valence electrons which it could share. In that case, 

one of them would be used u]) in forming a valence bond with th(^ first 

hydrogen atom, k'aving t-he other one to form a bond with another hydro¬ 

gen atom. In this way, we can have atoms capable of forming two or 

more valence bonds. If all the possible bonds are already formed, how¬ 

ever, the structure will act as if all its electrons were in closed shells, and 

any additional atom or mol(‘cule approaching it will be repelled. 

Theni is just one case in which the formation of a bond by one electron 

does not, pnwent the same (electron from taking part in another bond. 

This is the case of the metallic bond. If two sodium atoms approach, 

with opposite? spins, their electrons form a valence bond between 

them. But if a third sodium atom approach(\s, it turns out that the first 

valenc(? bond becomes i)artly brokim, so that the valence? electrons of the 

first tw^o atoms spend only part of th(?ir time' in the region between those 

two atoms and have part of theur time left over to form bonds with the 

new atom. As more and more atoms are added, this effect can continue, 

the electrons forming bonds whie?h are (?ssentially homopolar in nature 

but spread out throughout the? whole' group of atoms, holding them all 

together. The reason why metallic atoms behave in this way, while 

nonmctallic ones do not, is probably largely the fact that the valence 

('electrons of metals are' l(?ss tightly held than in nonmetals, as we can see in 

Table XXI-3, giving the ionization potc?ntials of the eleme?nts, and con¬ 

sequently their orbits are larger, as we see in Table XXI-4. Then the 

orbit, of one atom overlaps other atoms more than in a nonmetal, and it is 

easier for a number of neighbors to share in valence attraction. The 

conspicuous features of the metallic bond are two: first, there is no satura¬ 

tion of valence, so that any number of atoms can be held together, forming 

a crystal rather than a finite molecule; and secondly, the electron density 

is not so great as the maximum allowed by the exclusion j^rinciple. This 

second fact makes it possible for electrons to move from point to point 

without significant increase in their energy, whereas in a molecule held 

by valence bonds this is impossible, since the electron would have to 

acquire enough extra energy to rise to a higher quantum state, or more 

excited cell in phase space, before it could enter regions which already had 

their maximum density of electrons. This free motion of the electrons 

in a metal is what leads to its electrical conductivity and its typical 

metallic properties. 
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6. Types of Chemical Substances.—In the preceding seciioiiH we 

liave made a survey of the types of interatomic and intermolecular 

forces. Now we can correlate these by making a brief catalog of the 

important types of chemical substances and th(i sorts of forces found in 

each case. Following this, the remaining chapters of this book will take 

up each type of substance in more dcd.ail, making both qualitative and 

quantitative use of the laws of interatomic and intc^rmolecular forces 

found in each particular case, and deriving the ])hysic,al properties of the 

substances as far as possible from tlu' laws of force. 

The simplest class of substances, in a way, is the class of inorganic 

salts, or ionic crystals. Familiar examples are NaCl,'NaNOs, BaS04. 

Th(‘se substances are dt^finitely construct(‘d of ions, as Na*^, Cl~, 

NOa", and SO4 . The ions acl. on each other by Coulomb attrac'tion 

or repulsion, and an ion of one* sign is always surrounded more clos(dy by 

neighbors of the opposite sign than by otlau's of the same sign^ so that the 

attractions outweigh the repulsions and the structure holds together. 

As the distance b(dween ions dc^creases and tlu'y begin to touch each oth(T, 

they repel, on account of the exclusion ])rincii)le; for as we have seen, the 

electrons in an ion form closed shells and the rt'pulsion betwanm them is 

the typical repulsion of closed shells. Thus a stabh' structure can be 

formed, the electrostatic attractions balancing (h(‘ Repulsions. Thc^re is 

nothing of the nature of saturation of vakuiccq ('ven though two ions, as 

Na"*" and Cl“, may be bound into a mohecuh', tlue (‘l(‘c,trostatic (effect, of 

thcar charges extcaids far away from them, since^ tlie molecule NaCl has a 

strong dipole moment. Thus further ions can be at tract <^d, and the 

tendency is to form an extendc'd structure'. If thc' atoms in this structure 

are arranged regularly, it is a crystalline solid, thc^ most characteristic 

form for ionic substances. On the othc'r hand, at higher temperatures, 

where there is more irregularity, the solid can liquety, and at high enough 

temperatures it vaporizes. It is only in thc vapor state that we can say 

that the substancje is composed of molecules; in the licpiid or solid, each 

ion is surrounded at equal distance's by a number of ions of the opposite 

sign and there is no tendency of the ions to pair off to form molecules. 

The electrostatic attractions met in ionic crystals are large, so that the 

materials are held together strongly with rather high melting and boiling 

points. We shall see in a later chapter that we can account for their 

properties satisfactorily by quite simple mathematical methods. 

The ionic substances are those in which an electropositive element, as 

Na, and an electronegative one, as Cl, are held together by electrostatic 

forces. The other types of substances are compounds of two electro¬ 

negative elements or of two electropositive ones. The first group, made 

of electronegative elements, is thc group of homopolar compounds. 

These are held together by homopolar valence bonds, coming from shared 

electron pairs, as we have described in the previous section. Since the 
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bonds have the property of saturation, we ordinarily have molecular 

formation in such cases, the molecules being of quite definitely deter¬ 

mined size. Two molecules attract each other only by Van der Waals 

forces, and if they are brought too closely into contact, they repel each 

other on account of th(?ir closed sludls. The simpler compounds of this 

type, like H2, O2, CO, etc., are the materials most familiar as gases. The 

Van der Waals forces holding the rnolecuhvs togc^ther are rather w(iak, 

while the interatomic forces holding the atoms together in the molecule 

are very strong. Thus a relatively low temperature suffices to pull the 

molecules apart from each other, or to vaporize the liquid or solid, while 

an extremely higHi temperature is necessary to dissociates the molecule or 

pull its atoms apart. As we go to more complicateni erases of compounds 

held together by homopolar valence, we first meet the^ organic compounds. 

They arise on account of the tendency of the carbon atom to hold four 

other atoms by valemce bonds, using its femr available electrons in this 

way. The carbon atoms, on account of thenr many valences, can form 

chains and still have other valence bonds available for fastening other 

atoms to them; in this way iho great variety of organic compounds is 

built up. Another very important class of materials held together by 

valence bonds contains the minerals, silicates, and glasses, and various 

refractory materials, like diamond, carborundum, or SiC, and so on. In 

these cases, the valence bonds hold the atoms into endless effiains, sheets, 

or three-dimensional structures, so that the materials fe)rm crystals in 

their most characteristic form and are held together very tightly., These 

materials have very high melting and boiling points, since all the bonds 

between atoms are the very strong valence bonds, rather than the weak 

Van der Waals forces as in the molecular substances. 

Finally we have the metals, made entirely of electropositive atoms. 

We have seen that these atoms arci held together by the metallic bond, 

similar to the valence bonds, but without the properties of saturation. 

Thus the metals, like the ionic crystals and the silicates, tend to form 

indefinitely large structures, crystals or liquids, and tend to have high 

melting and boiling points and great mechanical strength. We have 

already seen that the same peculiarity of the metallic bond which prevents 

the saturation of valence, and henccj which makes crystal formation 

possible, also leads to metallic conduction or the existence of free electrons. 

With this brief summary, we have covered most of the important 

types of materials. In the next chapter we shall make a detailed study of 

ionic substances, and in succeeding chapters of the various other sorts of 

materials, interpreting their properties in terms of interatomic and inter- 

molecular forces. 



CHAPTER XXIII 

IONIC CRYSTALS 

The ionic compounds practically all form crystalline solids at ordinary 

temperatures, and it is in this form that they have been most,extensively 

studied. The reason for this crystal formation has been seen in the j:>re- 

cedinp; chapter: ionic attractions are long range forces, falling off only as 

the inv(u*s(^ square of the distance, so that more and more ions tend to be 

attracted! to a minute crystal which has started to form, and the crystal 

grows to larg(i size, held togeth(‘r by elec.trostatic attractions throughout 

its whole volume. Above the meriting point, the liquids of course are 

held togeth(T by the same type of force, and in the gaseous phase undoubt¬ 

edly the same sort of thing occurs, one molecule tending to attract others, 

so that presumably there is a strong tendency for the formation of double 

and multiple molecules in the gas. Unfortunabdy, however, the liquids 

and gases of ionic materials have b(?en greatly neglected experimentally, 

so that there is almost no empirical information with which to compare 

any theoretical deductions. For this reason, we shall be concerned in 

this chapter entirely with thci solid, crystalline phase of these substances, 

but venture to express the suggestion that further experimental study of 

the liquid and gaseous phases would be very desirable. In considering 

the solids, the first step naturally is to examine the geometrical arrange¬ 

ment of the atoms or the crystal structure. Then we shall go on to the 

forces between ions, and the mechanical and thermal properties, first 

taking up the case of the bc'havior at the absolute zero, then studying 

temperature vibrations and thermal effe(‘.ts. 

1. Structure of Simple Binary Ionic Compotmds.—To be electrically 

neutral, every ionic compound must contain some positive and some 

negative ions. The simplest ones are those binary compounds that 

contain one positive and one negative ion. Obviously the positive ion 

must have lost the same numbe^r of electrons that the negative one has 

gained. Thus monovalent metals form such compounds with monova¬ 

lent bases, divalent with divalent, and so on. In other words, this group 

includes compounds of Li+, Na+, K+, Rb+, Cs+, Cu*^, Ag+, and Au*^ with 

F-, C1-, Br-, I-; of Be++, Mg^+, Ca-^-, Sr^-+, Ba++, Zn++, Cd++, Hg-^^ 

with 0—, S— Se“, Tc~; of B+-^+ A1+++, Ga+++, In++-^, Tl^^-^, with 

N-, P-, As-, Sb-, Bi-. Even this list contains some negative 

ions which ordinarily do not really exist, as As , Sb , Bi . Never¬ 

theless some of the compounds in question are found. One can formally 
377 
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go even further and set up such compounds as carborundum, SiC, as if 

it were made of Si+++''' and C , or and Si . But by the 

time an atom has gained or lost so many (dectroiis, it turns out that the 

ionic description does not rc'ally apply very W(‘ll, and we shall see later 

that such compounds are regally bett er described as homopolar compounds. 

The positive ions whi(;h we have listed above by no means exhaust the 

list of possibiliti('s, on account of the fact that most of the ('h'ments of 

the iron, palladium, and platinum groups are found as divalent, or tri- 

valent positive ions, and cons(apiently form binary oxides, sulphides, 

selenides, and tellurid(\s in their divalent form, and nitrides and phos- 

phid(\s in their trivak'iit form. 

In addition to tlu'se single ions, 

there are a few complex positive 

ions, which are so much like metallic 

ions that tiny can convenicmtly be 

grou] )(h1 with tlumi. B('st known of 

these is the ammonium ion, NH4'^, 

and sonumdiat less familiar is th(' 

analogous p)hosplionium ion 

Th(^ ammonium ion has ten elec¬ 

trons: 8(‘ven from nitrogen, one 

from each of the four hydrogens, 
Fig. XXIII-1.—The sodium nhloride b(icause it is a positive ion. 

structure. That is, it has just the same num¬ 

ber as neon, or as Na *. Similarly th(^ i)hosphonium ion has eighteen, 

like argon, or K^'. The hydrogtai ions are prc^sumably imbedded in the 

distribution of nt^gative chargt', in a symim^trical tetrahedral arrangement, 

and do not greatly affect the structure, so that these ions act surprisingly 

like metallic ions. We shall group these compounds with the binary ones, 

though really the positive ion is complex. 

Most of the binary ionic compounds occur in one of four structures, 

and by far the commonest is the sodium chloride structure. This is 

shown in Fig. XXIlI-l. It can be described as a simple cubic lattice, in 

which alternate positions ar(^ occupied by the positive and negative ions. 

Each ion thus has six nearest mughbors of the opposite sign, and the 

electrostatic attraction between the ion and its oppositely charged neigh¬ 

bors holds the crystal together. This illustrates a principle which we 

mentioned in the pn^ceding chapter and which obviously must hold for 

stability in an ionic crystal, namely that for stability each ion must be 

surrounded by as many ions of the opposite charge as possible, and the 

nearest ions of the same sign must be as far away as possible. 

The second common structure is the caesium chloride structure. In 

this structure, ions of one type are located at the corners of a cubic lattice 
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and ions of the other sign at the centers of the cubes. In this structure 

each ion has eight neighbors of the opposite sign. This structure is shown 

in Fig. XXIII-2. 

The third and fourth structures are sometimes called the zincblende 

and the wurtzite structures, on account of two forms of ZiiS. The zinc- 

blende structure is also often called the diamond structure, since it is 

found in diamond and some other crystals. The fundamc'ntal features 

of both structures are similar: (^ach iori is t(d.rahedrally surrounded by four 

ions of the opposite sign, as in Fig. XX111-3 (a). There are a number 

of ways of joining siicdi tetrahedra to form n^gular crystals, liowever. The 

diamond, or zincblende, lattice is the simplest of these. In the first 

plac.e, tetrahedra like Fig. XXIlI-3 (a), can be formed into sheets like 

Fig. XXIII-3 (b) and (r), the latter looking straight down along the 

vertical leg of the tetrahedron, so that thci ion at the center and that 

directly above it coincide in the figure. Then in the diamond structure, 

the next layer up is just like that shown, but shifted along so that atoms 

like a, 6, c coincide with a', b', c'. Tlui wurtzite structure, on the other 

hand, has the next layer looking just like the one shown in (6), as far as its 

projection is concerned, but actually being a mirror image of it in a hori¬ 

zontal plane. When examined in three dimensions, the wurtzite struc¬ 

ture proves to be less symmetrical than the diamond structure, in that the 

vertical direction stands out as a special axis in the crystal. For this 

reason, the length of the vertical distance between ions in the wurtzite 

structure does not have to equal the other three distances, while in the 

diamond structure all distances must be the same. The diamond, or 

zincblende, structure is shown in Fig. XXIII-3 (d), and the wurtzite 

structure in (e). In addition to these two, a number of other structures 

built of tetrahedra can exist, in which the two types of planes, the one 
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(0 

wurtzite structures, (a) one ion tetra- 
hedrally surrounded by four others, (b) 
and (c) sheets formed from such tetrahedra, 
in perspective and plan, (d) the zincblende 
structure (which is identical with the dia¬ 
mond structure if all atoms are alike), 
(e) the wurtzite structure. 

shown in (b) and its mirror image, 

are arranged in various regular ways 

through the crystal. Seweral of 

these structures are found, for in¬ 

stance, in different forms of carbo¬ 

rundum, SiC. 

We shall now list in Table XXIII- 

1 some of the binary ionic compounds 

crystallizing in the four structures 

just discussed. Under each struc¬ 

ture, we shall arrange the compounds 

according to their valence, starting 

with monovalent substances. We 

note that some compounds exist in 

several polymorphic forms, as ZnS 

in both zincblende and wurtzite^ 

structures. We tabulate not merely 

the substances crystallizing in each 

form, but also several quantities 

characterizing each substance. 

First we giv(^ the distance between 

nearest neighbors, ro, in angstroms. 

This is necessarily the distance be¬ 

tween an ion of either sign and tlu^ 

nearest ions of the opposite sign, of 

which there are six in the sodium 

chloride structure, eight in the 

caesium chloride, and four in the 

zincblende and wurtzite structures. 

This is followed by a calculated 

value of ro, discussed in Sec. 2. 

Finally we give the melting point 

where this is known. This is simply 

an indication of the tightness of bind¬ 

ing, since a strongly bound material 

has a high melting point. We notice 

that the divalent substances con¬ 

sistently have a much higher melting 

point than the monovalent ones. 

This is a result of the tighter binding. 

Since each ion in a divalent crystal 

has twice as great a charge as in a 

similar monovalent one, the inter- 
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Table XXIIl-iLattk^b Spa(’Inok Ionic Crystals 

Material 
ro observed, 
angstroms 

ro calculated Melting point, °C. 

Sodium Chloride Structure 

LiF. 2.01 2. 10 870 
LiCl. 2 Ail 2.00 013 
LiBr. 2.75 2.75 547 
Lil. 3.00 3.00 440 

NaF. 2.31 2.35 980 
NaCl. 2.81 2.85 804 
NaBr. 2.98 3.00 755 
Nal. H. 23 3.25 651 

KF. 2.07 2.05 880 
3.14 3.15 770 

KBr. 3.29 3.30 730 
KI. 3.53 3.55 773 

BbF. 2.82 2.80 700 
HbCl. 3.27 3.30 715 
KbBr. 3.43 3.45 682 
KbI. 3.06 3.70 642 

CsF. 3.00 3.05 684 

NTI4CI. 3.27 3.25 
NH4Br . 3,45 3.40 
NH4I. 3.02 3.65 

AgF. 2.46 2.30 435 
AgCl. 2.77 2.80 455 
AgBr. 2.88 2.95 434 

MgO. 2.10 2. 15 2800 
MgS. 2.60 2.60 
MgSe. 2.73 2.70 

j 

CaO. 1 2.40 2.40 2572 
CaS. 2.84 2.85 
CaSe. i 2.96 2.95 
CaTe. 2.97 3.15 

SrO. 2.58 2.00 2430 
SrS. 1 3.01 3.05 882 
SrSe. 3.12 3’. 15 
SrTe. 3.33 3.35 

BaO. 2.77 2.75 1923 
BaS. 3.19 3.20 
BaSe. 3.30 3.30 
BaTe. 3.50 3.50 

Caesium Chloride Structure 

CsCl. 3.56 3.55 646 
CaBr.1 3.71 3.70 636 
Csl. 3.96 3.95 621 

NH4CI.j 3.34 3.25 
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Table XXlII-l.—Lattice Spacinos of Ionic Crystals.—{Continued) 

Material 
ro obHcrvctl, 
angstroms 

To calculated Melting point, 

CacHiurn Chloride Structure — ■(Continued) 

NHiBr. ! .. [ 3.40 
NHJ. 1 3.78 3.05 

TICI. 3.33 430 
TlBr. 3.44 400 

Zinrhleiide Stnudure 

CuCl. 2.34 2.30 422 
CuBr. 2.40 2.45 504 
Cul. 2.02 2.70 005 

BeS. 2.10 2.10 
BeSe. 2.18 2.20 
BeTe. 2.43 2.40 

ZnS. 1 2.35 2.35 1800 
ZnSe. 2.45 2.45 
ZnTe. 2.04 2.05 

CdS. 2.52 2. .^)0 1750 
CdSe. 2.02 2.00 
CdTe. 2.80 2.80 

HgS . 2.53 2..50 
HgRe. 2.02 2.00 
HgTe. 2.79 2.80 

Wurtisite Structure (First disiunce is that to neiglibor along axis, second to three neighbors 
in same layer) 

NH4F. 1 2.03, 2.76 ! 2.75 

BoO.. 1.04, 1.00 ! 1.05 2570 
ZnO. 1.94, 2.04 1.90 
ZnS. 2.30, 2.30 2.35 18.50 
CdS. 2.52, 2.50 2.50 1750 
CdSe. 2.03, 2.04 2.60 

Data regarding crystal structure, here and in other tables in this book, are taken from the “Struk- 
turbericht,” issued as a supplement to the Zeitschrift fiXr Kriatallographie in several volumes from 1931 
onward. This is the standard reference for crystal structure data. 

ionic forces are four times as great, with correspondingly large latent heats 

of fusion. Since the entropy of fusion is not very different for a divalent 

crystal from what it is for a monovalent one, this means that the melting 

point of a divalent crystal must be several times as large as for a mono¬ 

valent one, as Table XXIII-1 shows it to be. 

2. Ionic Radii.—The first question that we naturally ask about the 

crystals is, what determines the lattice spacings? Examination of the 
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experimental values shows that these spaeiiigs are very nearly additive; 

that is, we can assign values to radii of the various ions, such that the 

sums of the radii give the distance between the coiTt‘sponding ions of the 

crystals. A possibh' set of ionic radii is given in Table XXIlI-2. Using 

Table XXIII-2.—Ionic Radii 

(Angstroms) 

Li + 

0.20 0.80 

Mg-‘ ' Nil-' R- 

0.70 1 .05 1 .30 

Ca++ K + ci- 

0.95 1 35 1 .80 

Sr++ R])+ Br- 

1.15 1 .50 1.95 

Ch'- I~ 
1 .30 1.75 

1.45 

2.20 

0 - 

1 .45 

8 Zn 

1 .90 0.45 0.50 

8e— Cd+-^ Ag+ 

2.00 0.00 1.00 

Tc “ Hg^" 
2.20 0.60 

these radii, which as will b(' observinl are smoothed off to 0 or 5 in the last 

place, the values ro calculated of Tables XXllI-1 are computed. The 

agreement between calculated and observcnl lattice spacing is surely 

rather remarkable. There have beiai a good many discussions seeking to 

show the reasons for the small (‘rrors in the table, the departures from 

additivity. In particular, there are good reasons for thinking that 

different radii should be used for the sodium chlorides strindiire, where 

every ion is surrounded by six ludghbors, from those used in the zinc- 

blende and wurtzite structures, where there are four inaghbors. But the 

comparative success of the cakailations of Table XXIIl-1, where both 

types of structure are discussi^d by means of the same radii, shows that 

these corrections are comparatively unimportant and the significant fact 

is that the agreement is as good as it is. 

There is one point in which our assumed values for ionic radii are not 

uniquely determined. The observed interionic spacings can determine 

only the sum of the radii for a positive and negative ion of the same 

valency. We can add any constant to all the radii of the positive ions 

of one valency, subtract the same constant from the radii of the negative 

ions, without changing the computed results. On the other hand, the 

difference between the assumed radii of two ions of the same sign cannot 

be changed without destroying agreement with experiment. We have 

chosen this arbitrary additive constant in such a way as to make the 

positive ion, as K"^, an appropriate amount smaller than the negative 

ion, such as Cl“, which contains the same number of electrons, considering 

the tendency for extra negative electrons to be repelled from an atom, 

making negative ions large, positive ones small. Our estimate is probably 



384 INTRODUCTION TO CHEMICAL PHYSICS [Chap. XXIII 

nol reliable, however, and the absolute values should not be taken seri¬ 
ously as representing in any way the real radii of the ions. In particular, 
the ion of Be++ is pretty certainly not so small as its extremely small 
radius, 0.20 A, would suggest. 

It is interesting to compare the radii of Table XXIII-2 with those of 
Table XXI-4. It will be seen that though tlu'y are of the same order of 
magnitude, the ionic radii of Table XXIII-2 are several times the radii 
of the corres|)onding orbits in Table XXI-4. Remembering that Table 
XXI-4 gives the radius of maximum density in the shell, we see that 
the region occupied by electrons, given by the ionic radii, is several times 
the sphere whose radius is the radius of maximum density. This is surely 
a natural situation, since the charge density falls off rather slowly from its 
maximum. 

In Table XXIII-2, we can interpolate between the monovalent posi¬ 
tive and negativ(^ ions to get radii for the inert gas atoms. Thus we find 
approximately the following: Ne 1.1 A, A 1.5 A, Kr 1.7 A, Xe 1.95 A. It 
is interesting to compute the volumes of the inert gas atoms which we 
should get in this way, and compare with the volumes which we find for 
them from the constant b of Van der Waals^ equation. For neon, for 
instance, the volume from Table XXIII-2 would be 

1^(1.1)'* = 5.53 X cc. per atom 
= 5.53 X 10“'^'^ X 6.03 X 10^® cc. per mole = 3.33 cc. per mole. 

In Table XXIII-3 we give the volumes computed this way, the values of 

Table XXIII-3.—Volumes of Inert Gas Atoms 

Volume from 
ionic radius 

b 
h 

volume 
Volume of 

liquid ■ 

Ne. 3.33 \ 17.1 5.1 16.7 
A.1 8.6 i 32.2 3.8 28.1 
Kr. 12.5 39.7 3.2 38.9 
Xe. 18.8 50.8 2.7 47.5 

The volumes computed from ionic radii are interpolated as described in the text from the ionic radii 
of Table XXIII-2. Values of b are taken from Table XXIV-1. yolumes are in cubic centimeters per 
mole. 

Van der Waals h, computed from the critical pressure and temperature, 
the ratio of b to the volume computed from the ionic radius, and finally 
the molecular volume of the liquid. From the table we see that the 
values of b, and the volumes of the liquid, agree fairly closely with each 
other, and are three to five times the volume of the molecule, as computed 
from Table XXIII-2. Since the liquid is a rather closely packed struc¬ 
ture, this seems at first sight a little peculiar. The explanation, however, 
is not complicated. The molecules really are not hard, rigid things but 
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are quite compressible. Thus when they are held together loosely, by 

small forces, they have fairly large volumes, while when they are squeezed 

tightly together they have much smaller volumes. Now the ions used in 

computing Table XXIlI-2 are held together by strong electrostatic forces, 

equivalent to a great many atmospheres external pressure. Thus their 

atoms are greatly compressed, as we saw in the preceding paragraph; by 

interpolating, we find volumes for the inert gas atoms in a very com¬ 

pressed state. On the other hand, the real inert gas liquids are held 

together only by weak Van d('r Waals forces, which cannot squeeze the 

atoms to nearly such a compressed state. Thus it is reasonable that 

the volumes computed from the radii of Table XXIII-2 should be much 

smaller than the volumes of the liquids. These remarks lead to a conclu¬ 

sion regarding the divalent ions. Being doubly charged, the forces in the 

divalent crystals are much greater than in the monovalent ones, as we 

have mentioned earlier, and the ions are correspondingly more squeezed. 

Thus the sizes of the divalent ions in Table XXIIl-2 are really too small 

in comparison with the monovalent ones, and we cannot get a correct idea 

of the relative sizes of the ions by studying Table XXIII-2. 

3. Energy and Equation of State of Simple Ionic Lattices at the Abso¬ 
lute Zero.—The structure of the ionic lattices is so simple that we can 

make a good deal of progress toward explaining their equations of state 

theoretically. In this section we shall consider their behavior at the 

absolute zero of temperature. Then the thermodynamic properties can 

be derived entirely from the internal energy as a function of volume, as 

discussed in Chap. XIII, Sec. 3, and particularly in Eq. (3.4) of that 

chapter. The internal energy at the absolute zero is entirely potential 

energy, arising from the forces between ions. As we saw in the preceding 

chapter, these forces are of two sorts. In the first place, there are the 

electrostatic forces between the charged ions, repulsions between like ions 

and attractions between oppositely charged ones. The net effect of these 

forces is an attraction, for each ion is closer to neighbors of the opposite 

sign, which attract it, than to those of the same sign, which repel it. In 

addition to this electrostatic force, there are the repulsive forces between 

ions, resulting from the exclusion principle, vanishingly small at large 

distances, but increasing so rapidly at small distances that they prevent 

too close an approach of any two ions. 

First we take up the electrostatic forces. We shall consider only 
the sodium chloride structure, though other types are not essentially 
more difficult to work out. Let the charge on an ion be ± ze^ where z = 1 
for monovalent crystals, 2 for divalent, etc. We shall now find the 
electrostatic potential energy of the crystal, by summing the terms 

Id for all pairs of ions in the crystal, where d is the distance between 
the ions.^ We start by choosing a certain ion, say a positive one, and 
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summing for all pairs of which this is a member. Let the spacing between 

nearest neighbors of opposite sign be r. Assume the ion we are picking 

out is at the origin, and that the x, y, z axes point along the axes of the 

crystal. Then other ions will be found for x = nir, y = n2r, z = nsr, 

where ni, ^3 are any positive or negative integers. It is easy to sec 

that if + ^2 + is even the other ion will be positive, and if it is odd 

it will be negative; for this means that increasing one of the three integers 

by unity, which corresponds to a translation of r along one of the three 

axes, will change the sign of the ion, which is (diaracteristic of the sodium 

chloride structure. The distance from the origin to the ion at nir, ^2^, 

n^r is of course r\/nf + nf + ^3, so that the potential energy arising from 

the pair of ions in question is ±zhrf {r\/nl + nl + ^3), where the sign 

is + if ni + ^2 + ns is even, — if it is odd. Now there will be a number 

of ions at the same distance from the origin, and since the potential is a 

scalar quantity, these will all contribute equal amounts to the potential 

energy and can be grouped together. Wo can easily find how many such 

ions there are. They all arise from the same set of numerical values of 

nu n2y riz, but arranged in the different possible orders, with all j)ossible 

combinations of sign. If rii, 712, Us are all different and diff(^rent from 

zero, there are six ways of arranging them, and eacdi can have either sign, 

so there are eight possible combinations of signs, making 48 equal terms. 

If two out of the three n\s are equal in magnitude, but not zero, then^ are 

only three arrangements, but eight sign combinations, making 24 equal 

terms. If all three are equal in magnitude, there are still the eight com¬ 

binations of signs, making 8 terms. If one of the n’s is zero, there is no 

ambiguity of sign connected with it, so that tlnu’c are only half as many 

possible terms, and if two of the n^s are zero there are only a quarter as 

many terms. By use of these rules^ we can set up Table XXIII-4, giving 

Table XXIII-4.—Calculation of Electrostatic Energy, Sodium Chloride 

Structure 

TiiTiznz 
Number of 

terms 
Distance Contribution to potential energy 

10 0 6 r\/1 (z^e^lr) X ( —6/\/l) —3 -6.000 
1 1 0 12 rV2 (z^e^lr) X (12/\/2) 8.485 
1 1 1 8 rV3 (zVA) X (-8/\/3) = -4.620 
2 0 0 6 4 (22eV) X (6/^4) = 3.000 
2 1 0 24 r\/ 5 (2»eVr) X (-24/V5) -10.730 
2 1 1 24 6 (2>eVr) X (24/\/6) = 9.800 
2 2 0 12 r\/8 (z^eVO X (12/-V/8) s=: 4.244 
2 2 1 24 r\/9 (2»eVr) X (-24/\/9) =a: -8.000 
2 2 2 8 rVl2 (2»eVr) X (8/-S/12) 

! 
== 2.310 
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the values of arranged in order so that rii > Us; the number 

of neighbors associated with various combinations of these n^s; the 

distance; and the total contribution of all these neighbors to the potential 

energy. This table can be easily extended by analogy to any desired 

distance. 

On examining Table XXIII-4, we see that the terms show no tendency 

to decrease as the distance gets greater, though they alternate in sign. It 

is i)lainly out of the question to find the total potential energy simply by 

adding tcu’ins, for the series would not converge. But we can adopt a 

device that brings very rapid convergence. 

As shown in Fig. XXllI-4, we set up a 

cube, its fac(*s cutting through planes of 

atoms. Then if we count each ion on a 

face of the cube as being half in the cube, 

eacdi one on an edg(^ as being a quarter 

inside, and (^ach one at a corner as being 

one-eighth inside, the total (*harge within 

the cube will be zero. Enlarging the cube 

by a distance d all around will Hum add 

a volume that contains a net charge of zero, fig. *XXlll-4. - Cube of ions 

and so contribut(\s fairly littk^ to the total chloride type of 
. . -r 1 1 lattice. 

potential at the origin. In other words, ii 

we set up the total potential energy of interaction of the ion at th(^ origin, 

and all ions in such a cube, the result should converge fairly rapidly as the 

size of the cube is increased. This is in fact the case. If the cube extends 

from —r to +r along each axis, the points 100 will be counted as half in 

the cube; those at 110 will be one quarter in; and those at 111 one-eighth 

in. Thus the contribution of these terms to the potential energy will be 

6.000 . 8.485 4.620 
-2- + -4-^ = -1-457. (3.1) 

If it extends from — 2r to 2r, the points 100, 110, 111 will be entirely 

inside the cube, those at 200, 210, 211 will be half inside, those at 220, 221 

one quarter inside, and those at 222 one-eighth inside. Thus for the 

potential energy we have 

-6.000 + 8.485 - 4.620 + ^ - 

4.244 

4 

10.730 9.800 
- 2 ■+■ ■ 2 

8.000 2.310 

4 ' 8 
-1.750. (3.2) 

The next approximation is found similarly to be —1.714, and successive 

terms oscillate slightly but converge rapidly, to the value —1.742, the 

correct value, which as we see is very close to the value (3.2). 
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As we have just seen, the sum of potential energy terms between one 

positive ion and all its neighbors is 

-1.742^* (3.3) 

The number 1.742 is often called Madeluiig's number, since it was first 

computed by Madelung.^ We should have found just the same answer 

if we had started with a negative ion instead of a positive one, since 

the signs of all charges would have been changed, and each term involves 

the product of two charges. Now to get the total energy, we must sum 

over all pairs of neighbors. Let there bo N molecules in the crystal 

(that is, N positive ions and N negative ions). Then each of the positive 

ions contributes the amount (3.3) to the summation, and each of tlu^ 

negative ions contributes an equal amount, so that at first sight we should 
«2y,2\ 

say that the total energy was —2N This is incorrect, how¬ 

ever, for in adding up the terms in this way we have counted each term 

twice. Each pair of ions, say ion a and ion 6, has been counted once when 

ion a was the one at the origin, b at another point, and then again when b 

was at the origin. To correct for this, we must divide our result by two, 

obtaining 

Electrostatic energy = — N (3.4) 

Next we consider the repulsive forces between ions. The only thing 

we can say about these is that they are negligible for large interionic dis¬ 

tance, and get very large as the distance becomes small. A simple 

function having this property is where d is the distance between 

ions, m is a large integer. We shall tentatively use this function to repre¬ 

sent the repulsions. To give results agreeing with experiment, it is found 

that m must be of the order of magnitude of 8 or 10 in most cases. Thus, 

let the potential energy between two positive ions at distance d apart be 

a++/d^j between two negatives a_/d”*, and between a positive and a 

negative a^/d^. The coefficients a are all assumed to be positive, 

leading to repulsions. Then we can compute the total repulsive potential 

energy, just as we have computed the electrostatic attraction, only now 

the series converges so rapidly that we do not have to adopt any special 

methods of calculation. Thus for the sum of all pairs of ions in which 

one is a positive ion at the origin, we have 

'1\/ 6a+_ . 12a-H- . 8a+_ 

rA(^)”* (v^)” 
(3.5) 

1 For other methods of computation, see for instance M. Born, “Problems of 

Atomic Dynamics,Series II, Lecture 4, Massachusetts Institute of Technology, 1926. 



Sec. 3] IONIC CRYSTALS 389 

To have a specific case to consider, let us take m = 9, which works fairly 

satisfactorily for most of the crystals. Then the series (3.5) becomes 

+ 0.530a++ + 0.0571a+_ + 0.()117a++ + 0.0171a.H- 

+ 0.0075a++ + 0.0010a++ + 0.0012a+_ • • • ) 

'1\ 
(6.075a^_ + 0.550a+4.). (3.6) 

There is a similar formula for the sum of all pairs in which one ion is a 

negative one at the origin, with a_in place of a++. Then, as before, we 

can get the total energy by multiplying each of these formulas by N/2, 

That is, the total repulsive energy is 

Repulsive energy 6.075a+_ + 
0.0550(a++ + a_)' 

2 

(3.7) 

where A is a constant. More generally, 

Repulsive energy = —• (3.8) 

We can now combine the electrostatic* cuiergy from Eq. (3.4) and the 

rc'pulsive energy from Eq. (3.8) to obtain the total internal energy at the 

absolute zero, 

t/„= -A'l.742"-f+^, (3.9) 

To make connection with our discussion of the ecjuation of state in Chap. 

XII.I, we should expand Eq. (3.9) in power series about ro, the value of r 

at which Uo has its minimum value. First we have 

2p2 ^ 

m ^ = A1.742~- ... 
dr 

= 0 when r = ro. (3.10) 

From Eq. (3.10) we can write A in terms of other quantities, finding 

.«7rt—X 

A = A1.7423‘e''^- 
m (3.11) 
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Expanding Eq. (3.12) in power series in r — ro, we have 

U. . -A1.742^''(l - i) 

Equation (3.13) is of the form of Eq. (3.4), Chap. XIII, 

13) 

f/o == tfoo + Ncrl A"- .!-y.. 
\ ^0 / 

(3.14) 

To see the significance of c in this equation, it will bo remembered that the 

volume per molecule is given by 

V 

N 
cr\ (3.15) 

In this case, consider a cube of edge r, with a positive or negative ion at 

each corner. There are 8 ions at the corners, each counting as if it were 

one eighth inside the cube, so tliat the cube contains just one ion, or half a 

molecule. In other words, V/N — 2r^, or c = 2, for the sodium chloride 

striK^ture. It will also be rememlx'red that the quantities Pi and in 

Eq. (3.15) are coefficients in the (‘xpansioii of the pressure as a function 

of volume, at the absolute zero of t(unj)erature, as shown in Eq. (1.5) of 

Chap. XIII. These can be found from experiment by Eqs. (1,10) of 

Chap. XIII. Identifying Eqs. (3.13) and (3%14), we can then solve for 

t/oo, the energy at zero pressure at the absolute zero, PJ and P2, finding 

Coo = -iV1.742--(l - (3.16) 
rQ\ mj 

p; = 1), (3.17) 

1 749 9.2^2 

PI = - l){m + 10). (3.18) 

4. The Equation of State of the Alkali Halides.—The alkali halides, 

the fluorides, chlorides, bromides, and iodides of lithium, sodium, potas¬ 

sium, rubidium, and caesium have been more extensively studied experi¬ 

mentally than any other group of ionic ciystals. For most of these 

materials, enough data are available to make a fairly satisfactory com¬ 

parison between experiment and theory. The observations include the 

compressibility and its change with pressure, at room temperature, from 

which the quantities ai(T), a^{T) of Eq. (1.1), Chap, XIII, can be found 
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for room temperature; very rough measurements of the change of com¬ 

pressibility with temperature, giving the derivative of ai with respect to 

temperature; the thermal expansion, giving the derivative of ao with 

respect to temperature; and the specific heat. There are two sorts of 

comparison between theory and experiment that can be given. In the 

first place, we have found a number of relations between (experimental 

quantities, not involving the detailed theory of the last section, which we 

can check. Secondly, we can test the relations of the last section and see 

whether they are in agreement with experiment. 

The relations between (experimental quantities mostly concern the 

temperatures effeci-s. First, let us consider the specifics heat. In Chap. 

XV, Sec. 3, we have seen that it should be fairjy accurate to use a Debye 

curve for the specdfic; heat of an alkali halide, using the total number of 

ions in determining the number of characteristic frequencies in that 

theory. It is, in fact, found that the experimental values fit Debye 

curves accurately enough so that we shall not reproduce them. We can 

then determines the Del)ye temperatures from experiment, and in Table 

XXIII-5 we give these values for NaCl and KCl, the two alkali halides 

Table XXITI-.^.—Debye Temperatures for Alkali Halides 

NaCl, " abs. KCl, ° abs. 

i)ij from specific heat. 281 230 

On from elastic constants. 305 227 

On from residual ravs. 277 ! 227 

Data are taken from the article by Schrodinger, “Spezifische Wiirme,” in “ Handbuch der Physik/' 

Vol. X, Springer, 1926, This volume contains a number of artitslew bearing on topics taken up in this 

book and is useful for reference. 

which occur in a crystalline form in nature and for which most measure¬ 

ments have been made. But from Eqs. (3.1), (3.5), and (3.9), Chap. 

XIV, we have information from which the Debye temperature can be 

calculated from the elastic constants and the density. These constants 

are known for NaCl and KCl, and in the table we also give the calculated 

Debye temperature found from the elastic constants. Finally, in Chap. 

XV, Sec. 4, we have seem that the frequency of the residual rays should 

agree with the Debye frequency. In the table we give the observed 

frequency of the residual rays, in the form of a characteristic temperature. 

We see that the agreement between the three values of Debye temperature 

in Table XXIII-5 is remarkably good, indicating the general correctness 

of our analysis of the vibrational problem. As a matter of fact, the agree¬ 

ment is better than we could reasonably expect, on account of the approx¬ 

imations made in Debye^s theory, and there are many other crystals for 

which it is not so good, so that we may lay the excellent agreement here 

partly to coincidence. 
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Next we may consider the equation of state. From the compressi¬ 

bility and its change with pressure we have the quantities ai, a2 of Eq. 

(1.1), Chap. XIII, as we have mentioned before, and from the thermal 

expansion we have the derivative of ao with respect to temperature, but 

not its value itself. Since the thermal expansion of most of the materials 

has not been measured as a function of temperature we cannot integrate 

the derivative to find values of ao. The quantity ao comes in only as a 

small correction term in applications, how(‘ver, and if we are Avilling to 

assume Grlineisen^s theory we can calculate it to a sufficiently good 

approximation. From Eq. (1.9) or (1.10) of Chap. XIII, we can find ao 

from the thermal pressure and tlu^ compressibility. Th(‘ thermal pressure 

Po, the pressure necessary, to reduce the volume to the volume at the 

absolute zero, is giv(‘n by Eq. (4.12) of Chap. XIII. For the present 

case, if there are N molecules, 2N atoms, and 6iV degrees of freedom of the 

atoms, and if we assume ac(*ording to Griineisen that all the 7/’s are equal 

to 7, this equation gives 

Po 
6yNkT __ SyNhv 

‘"To" ■ “ f; ' (4.1) 

where r is a suitable mean of the natural frequencies p,-. The Eq. (4.1) 

is the limiting case suitable for high temperatures, where the thermal 

expansion is constant, and (;an be regarded as the integral of Eq. (4.16), 

Chap. XIII. If we assume as a rough approximation that p can be 

replaced by the Debye frequency, Eq. (4.1) leads to 

(4.2) 

where 6Nk is the heat capacity at high temperatures, x the compressi¬ 

bility, 0£) the Debye temperature. Equation (4.2) should hold for 

temperatures considerably above half the Debye temperature and should 

be fairly accurate at temperatures as high as the Debye temperature, 

where the specific heat is fairly constant. From Table XXIII-5, we see 

that the Debye temperatures for these materials are of the order of 

magnitude of room temperature, so that we should expect Eq. (4.2) to 

be fairly accurate at room temperature where the observations have been 

made. 

Using the approximation (4.2) and measured values of ai and at 

room temperature, we can use Eqs. (1.10), Chap. XIII, to find Po, Pi, and 

Pg. We find, as a matter of fact, that the term in ao, in Eq. (1.10).for 

Pi, is a small correction term, so that to a good approximation Pi and P^ 
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can be found directly from the observed compressibility and its change 

with pressure. In Table XXIII-6, we give values of Pi and P2, computed 

Table XXlTI-6.— Quantities Concerned in Equation of State of Alkali 

Halide.s 

Pi P2 

T 

(Griiii- 
eisen) 

T 

(Eq. 
4.3) 

m P‘2 
calculated 

y 
(Eq. 
4.4) 

LiF. 0.652 X 1012 2.41 X 10‘2 1.34 3.02 5.80 1.72 X 1012 1.97 
LiCl. 0.293 0.815 1.52 2.11 0.75 0.819 2.12 
LiBr. 0.232 0.C35 1.70 2.06 6.95 0.655 2.16 

NaCl. 0.238 0.600 1.63 1.85 7.66 0.700 2.27 
NaBr. 0.197 0.476 (1.56) 1.75 7.97 0.590 2.33 

KF. 0.302 0.885 1.45 2.26 7.90 0.900 2.32 
KCl. 0.178 0.402 1.60 1.59 8.75 0.557 2.46 
KBr. 0.149 0.341 1.68 1.62 8.82 0.468 2.47 
KI. 0.117 0.259 1.63 1 1.54 9.15 0.373 2.52 

RhBr. 0.126 0.268 (1.37) 1.46 8.82 0.395 2.47 
Rbl. 0.104 0.226 (1.41) 1 .50 9.37 0.335 2.56 

1 
Values of Pi and P2 are computed from data of J. C. Slater, Phys. Rev., 23, 488 (1924). Values of 7 

by Grtlneisen’s method are taken from the article by Grtiiieisen, “Zustand des festen Kdrpers,” in 

“Handbuch der Physik,” Vol. X, Springer, 1920. Values of m, Pa calculated and the two calculated 

values of 7, arc found as described in the text. 

in this way, for those of the alkali halides for which suitable measurements 

have been made. We can now make a calculation that will serve to check 

Griineisen’s theory of thermal expansion. In the first place, from Eq. 

(4.16), Chapter XIII or from Eq. (4.2) above, we see that y can be com¬ 

puted from the thermal expansion, specific heat, compressibility, and 

density. But if we assume Debye’s theory and neglect the variation of 

Poisson’s ratio with volume, we have seen in Chap. XIV, Eq. (4.6), that 

we can write y in terms of Pi and P2: 

2 . P2 /"zl 

^ = ~3 + 

This gives us two independent ways of computing 7, and if they agree 

with each other we can conclude that Griineisen’s theory is fairly accurate. 

In Table XXIII-6, we use the thermal expansion, specific heat, and 

volume per mole of the crystals at room temperature, in order to 

compute 7 by Griineisen’s theory. In the next column we give 7 com¬ 

puted by Eq. (4.3). It will be seen that the two sets of numbers agree in 

order of magnitude, and for most of the crystals they are in rather close 

quantitative agreement. Putting this in another way, if we knew merely 
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the compressibility and its change with pressure, we could make a good 

calculation of the thermal expansion, or if we knew the thermal expansion 

and compressibility we could calculate the change of (compressibility with 

pressure. The only serious disctrt'pancies come with the fluorid(\s, the 

most in(‘ompressible of the crystals, and it will be found in later chapters 

that this situation holds also for metals: the more incomi)ressible the 

crystal, the poorer the agnccment between th('. y computcHl from the 

clastic constants and that found from the tlu^rmal expansion. h]xperi- 

mentally, the (change of compressibility with pressure is grealxu* than we 

should conclude from the thermal expansion, or cA)nvers('ly the thermal 

(expansion is less than we should suppose from tlue change of com[)ressi~ 

bility with pressure. The reason for this discrei)ancy is not understood, 

but it presumably arisc's from inaccuraci(es in Gruneis(nrs assumptions, 

since there is no indication that the experimental error could ))(' great 

enough to explain the lack of agreenmnt betw(een theory and exp('riment. 

The comparisons with experiment which we hav(^ made so far do not 

involve the assumptions of the proceeding section about int(‘ratomi(c forcecs. 

We shall now see how far those assumptioijs ar(' correct. From Ec^s. 

(3.17) and (3.18) we can find valuers of Pi and P2 at the absolute zeero, in 

terms of ro, which we can take from experimemt, and the one' i)aram(cter 

7n. For approximate purposes, we can replace the values of Pi and P2 

at the absolute zero by the values at room temperature. Then we can 

ask whether it is possible to find a single valine of m that will reproduce 

both Pi and P2. To test this, we have used Pi to find a vahu^ of rn and 

then have substituted this in Eep (3.18) to compute a value of P2, compar¬ 

ing this computed value with experiment. These computed values are 

given in Table XXIII-6, and it is seen that the values agrcce as to order of 

magnitude but not in detail. In other words, our assumption that the 

repulsive potential varies inversely as a power of r is not very accurate, 

and to do better one would have to use a function with an extra disposabh^ 

constant. In the table we giv(^ values of m, and it is seen that they are 

in the neighborhood of 9 for most of the crystals, as we have stated earlier. 

Using the values (3.17) and (3.18) for Pi and P2, and Eq. (4.3), we at once 

find 

7 = ^ + 1- (4.4) 

Values of y computed in this way are tabulated in Table XXIII-6, and 

it is seen that the agreement with the value found from the thermal expan¬ 

sion is only moderately good, much poorer than that found with values 

computed by Eq. (4.3) from the experimental values of P2/P1. In other 

words, if we had a theoretical formula for the repulsive potential whicli 

gave a better value for the change of compressibility with pressure than 
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the inverse power function, it would at the same time give a better value 

for th(^ tlnuTnal expansion. 

In the preceding paragraph, we have seen that the potential energy 

curve (3.9) derivcnl from tlieory, gives qualitative but not very good quan¬ 

titative agreement witli experiment for the change of compressibility with 

pressures, and the thermal expansion. From Eq. (3.16), we can also use 

this curve tn find tlui eiKU'gy of the crystal at the absolute zero and zero 

pressure, Uoo. Th(i lu^gative of this quantity is the heat of dissociation 

of such a crystal into ions, which we may call D. Of course, a crystal 

would not really disso(;iate in this way if it were heated. It would 

dissociates into neutral mol(scul(\s, for example of NaCl, or possibly into 

atoms of Na vapor and molecules of CI2, instead. Nevertheless, tiiermo- 

chemical measurements ans available from which we can get experimental 

valu(\s for i). We may imagine that we go from the' crystal to the ionized 

gas in the following stesj^s, each of which is undtu’stood experimentally: 

(1) we vaporize the crystal, obtaining NaCl molecules, the necessary 

energy being found from the heat of vaporization, wdiich has been meas- 

ur('d; (2) we dissociate' tlus NaCl molecules into atoms, the energy being 

the h(sat of dissociation of the diatomies mefiecule, as used in the Morse 

curve; (3) we ionize the^ Na atom to femn a })ositive Na"^ ion, the' energy 

being the ionization potential; (4) wai add the (deartron so obtained to the 

chlorine atom, obtaining a Cl" ie)n, releasing an amount of energy that 

is calleal the electron affinity e>f the chlorine ion. By adding the amounts 

of eaiea’gy required for all these processes, we find experimental values that 

Table XX111-7.—Lattice Knercies of the Alkali Halides 

(Kilognini-c^alories per mole) 

Obs(TVC‘d Calculated 

LiF. 240 238 
LiCl. 199 191 
LiBr. 188 180 

NaCl. 183 179 
NaBr. 175 169 

KF... 190 189 
KCl. 165 163 
KBr. 159 156 

RbBr. 154 149 
Rbl. 145 141 

The observed values are taken from Landolt-Bornstein’s Tables, Dritter Erglinzungsband, p. 2870, 

Dritter Teil. Calculated values are found by Eq. (3.16), using numerical values from Tables XXIII-1 

and XXIII-6. 
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should agree with the values calculated from Eq. (3.16). In Table 

XXIII~7 we give a number of these values and the calculated ones. The 

units are kilogram calories per mole. The agreement between theory 

and experiment in these values is quite striking and is one of the most 

satisfactory nvsults of the theory of ionic crystals. It is not hard to see 

why the agreement here is so much better than in the calculation of change 

of compressibility with pressure. The heat of dissociation depends on 

the value of Uq as a function of F, while the compressibility depends 

essentially on the second derivative of this curve, and the change of 

compressibility with pressure on the third derivative. It is a well-known 

fact that differentiating exaggerates the errors of a curve which is almost, 

but not quite, correct. It thus seems likely that the energy of Eq. (3.16) 

is really quite accurate, but that its second and third derivatives are 

slightly in error. 

6. Other Types of Ionic Crystals.—In the preceding sections we have 

been talking about simple binary crystals, formed from a positives and a 

negative ion of the same valency. Of course, there are many other types 

of ionic crystals, and we sliall not take up the other sorts in nearly such 

detail. We shall, however, list a number of crystal structures, with the 

substances crystallizing in them. 

First we may mention the fluorite 

structure, named for fluorite, CaF2, 

which crystallizes in it. This is one 

of the simplest crystals, having 

twice as many ions of one sort as 

of the other. The structure is 

shown in Fig. XXIII-5. It can be 

considered as a cube of calcium ions, 

with an ion at the center of each 

face of the cube as well as at the 

corners, and inside this a cube of 

8 fluorine ions. It is really better, 

however, to consider the neighbors of each ion. As we see from the 

figure, each fluorine is surrounded tetrahedrally by 4 calciums. On 

the other hand, each calcium is at the center of a cube of 8 equally 

distant fluorine ions. Thus each calcium has twice as many fluorine 

neighbors as each fluorine has calciums, as the chemical formula demands. 

It is plain that molecules have no more independent existence in such a 

structure than they do in sodium chloride. 

In Table XXIII-8 we give the crystals that exist in the fluorite struc¬ 

ture and the distances between nearest neighbors. In addition, we 

tabulate the sum of the ionic radii of Table XXIII-2. Though these 

were computed from binary compounds of elements of equal valency, they 

Fig. XXIII>5.— Fluorite structure. 
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give fairly good results for the ionterionic distances even in these rather 

different compounds. 

Table XXIII-8.—Substanc^bs Crystallizing in Fluorite Structure 

Substance 
Distance, 
angstronis 

Distance 
computed 

CaFi,. 2.36 2.25 
SrF,. 2.50 2.42 
SrCh. 3.02 2.92 
IiaF2. 2.68 2.60 
CdFs. 2.34 
PbFs. 2.57 
C0O2. 2.34 
Pr02. 2.32 
ZrOo. 2.20 

ThOa. 2.41 
LiaO. 2.00 2.25 
L12S. 2.47 2.70 
NaaS. 2.83 2.95 
CuaS. 2.42 
Cu 280. 2.49 

In addition to th(^ fluorite structure, there are a number of other 

structures assumed by similar compounds. We shall not attempt to 

enumerate or describe them. Some of 

no stmse correct to say that one ion is Fia. xxiii-r>.-~~The caicite struc- 

bound to one or two neighbors more than 

to others. 
It is rather interesting to consider the crystal structure of substances 

containing more complicated negative ions. Simple examples are 

nitrates, sulphates, and carbonates. These are all similar to each other 

in that the negative ion exists as a structure by itself, like an ionized 

molecule, while the positive and negative ions arc arranged in a lattice 

without suggestion of molecular structure, as in the other ionic crystals. 

Thus in the caicite structure, CaCOg, the COs ion exists as a triangular 

structure, with the carbon in the middle, the oxygens around the comers 

of the triangle. This structure is built of hexagonal units, as shown in 

Fig. XXIII-6, with a COs— ion at the center, surrounded by six Ca++ 
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ions. Units like that of Fig. XXIII-6, and others which are the mirror 

image of it in a horizontal plane through the carbonate ion, are built up 

into a crystal. The substances which crystallize in this structure are 

tabulated in Table XXIII-9. Several distance's are necessary to describe 

Table XXIII-9.—Substances Crystallizing in Calcite Structure 

Substance 
C-0 distance, 

angstroms 

] 
C-metal 
distance 

0-metal 
distance 

CaCOa. 1.24 3.21 2.37 
MgCOs... 2.92 
ZnCOa. 2.93 
MnCOa. 1 .27 3.00 2.14 
FeCOs. 1.27 3.01 2.18 
NaNOa. 1.27 3.25 2.40 

the structure, and these cannot be found so accurately from x-ray methods 

as in the simpler crystals. In a few cases they are not known, and in any 

case they arc not very certain. We tabulate the^ carbon to oxygen (or 

nitrogen to oxygen) distance, giving the size of the negative ion, and also 

the distances from positive ion to carbon and oxygen. We see that 

while the lattice spacing depends on the positive ion, the carbonate or 

nitrate ion is of almost the same size in each case, forming a practically 

independent unit. 

The sulphate ion, in sulphates, is a tetrahedral structure, with the 

sulphur in the center, the four oxygens at the corners of a regular tetra¬ 

hedron surrounding it. The sulphur-oxygen distancci is about 1.40 A 

in all the compounds. Examples are CaS04 and BaS04. These form 

different lattices, rather complicated, but as we should expect they are 

structures formed of positive metallic ions and negative sulphate ions, 

each ion being surrounded by a number of ions of the opposite sign. 

There are a number of other compounds crystallizing in the BaS04 struc¬ 

ture: BaS04, SrS04, PbS04, (NH4)C104, KCIO4, RbC104, CSCIO4, TICIO4, 
KMn04. 

6. Polarizability and Unsymmetrical Structures.—In discussing the 

energy of ionic crystals, we have assumed that the only forces acting were 

electrostatic attractions and repulsiont^, and the repulsions on account 

of the finite sizes of ions. But under some circumstances there can also 

be forces and changes of energy arising from the polarizability of the 

ions. Of course, jiist as in Chap. XXII, we can have Van der Waals 

attractions between ions, but this is ordinarily a small effect compared 

to the electrostatic attraction and can be neglected. There can be 

other, larger effects of polarizability, however. We remember that 

according to Sec. 3 of Chap. XXII, an atom or ion in an electric field E 
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acquires a dipole moment aE, where a is the polarizability of the ion. 

Furthermore, the force on the resulting dipole is equal to the dipole 

moment, times th(^ rate of cliange of electric field with distance. This 

force and tlie nvsulting term in the energy can be large if a polarizable ion 

is in an external field, such as can arise from other ions. Now in most 

of th(^ structures wo hav(^ considered, this does not occur. In the sodium 

chlorid(^, cac'.siiim chloride, zincblende, wurtzite, and fluorite structures, 

each ion is surroundcid by ions of the opposite sign in such a symmetrical 

way that th(‘ electric fi(‘ld at each ion is zero, so that it is not polarized. 

But the calcite and barium sulphate structures are quite different. There 

the oxygcuis in the (airbonat(' or sulphate ions are by no means surrounded 

symimitrically by other ions, and there is a strong field acting on them. 

Furthermore, they arci very polarizable, and the result is a large added 

attraction Ix'tween the imrts of the complex ion. Adopting an ionic 

pictur(‘ of the structure of the CO3 and other ions, we should have it 

made of and three O \s, giving the net charge of two negative 

units. Similarly NOs” would b(^ made of and three O \s, and 

SOr' of and four () \s. Each of the ions, in these cases, would 

form a closed shell, the carbon and nitrogen being like helium, the sulphur 

and oxygen like neon. The ccaitral ion of tlie complex ion in each case 

would be v(iry st rongly positiv(^ly charged and would polarize the oxygen 

very strongly, adding gr(\atly to its attraction to the carbon, nitrogen, or 

sulphui*. We shall not try to estimate the effect of this added attraction 

at present, but we (^an easily g('t evidence of it. Thus we have mentioned 

that the sulphur-oxygen distance in the sulphates is about 1.40 A. On the 

otluT hand, the O radius, from Table XXIIl-2, is about 1.45 A. Of 

cours(% g+++++-f- would have an extremely small radius, but still we should 

expc^ct that the sulphur-oxygen distance would be something like 1.50 A 

in the absence of extra attraction. Even more striking is the carbon- 

oxygen distance in the carbonates, about 1.27 A, well below the ionic 

radius of oxygen alone. These facts suggest that some additional attrac¬ 

tion is acting between the ions in question, decreasing the distance of 

separation. One way of interpreting this added attraction is the polariza¬ 

tion effect we have mentioned. In the next chapter, we shall see that 

another interpretation is to suppose that the ions are not really as highly 

charged as the ionic picture would suggest, but that in addition there are 

homopolar bonds between the atomft making up these complex ions. The 

homopolar binding would in this interpretation furnish the extra attrac¬ 

tive force resulting in the small spacing between atoms. Thus we are 

not perhaps forced to think about polarizability at all in such a case. 

There are many cases, however, where it is definitely important, and 

the effect of polarization can be calculated easily from known polariza¬ 

bilities and charge distributions. 



CHAPTER XXIV 

THE HOMOPOLAR BOND AND MOLECULAR COMPOUNDS 

Ionic compounds, as we have seen in the pn^ceding chapter, exist most 

characteristically in crystalline solids, for the electrostatic forces that hold 

them together extend out in all directions, binding the ions together into a 

structure that has no trace of molecular formation. Compounds held 

together by homopolar bonds, on the contrary, form definitely limited 

mohicules, which are bound to each other only by th(^ relatively weak 

Van der Waals forces. Thus their most characteristic form is the gaseous 

phase in which the molecules have broken apart from each other entirely. 

The ordinary gases with which we ar(‘ familiar, and the ordinary liquids, 

belong to this group of compounds. They are the only group to which the 

idea of the molecule, so common in chemistry, really appli(\s. We shall 

begin our discussion by taking up some of the familiar molecular com¬ 

pounds and discussing the homopolar bonds which hold their atoms 

together, and the nature of hbmopolar valence. Then we shall go on to a 

discussion of the Van der Waals constants of these substances, as indicat¬ 

ing their behavior in the gaseous and liquid phases, and finally we shall 

take up the solid forms of th(^ homopolar substances. 

1. The Homopolar Bond.—The principal elements sometimes form¬ 

ing homopolar bonds are C and Si; N and P; O, S, Se, Te; H, F, Cl, Br, I. 

In these groups of elements we must add four, three, two, or one electron 

respectively to form a closed shell. But if two such elements combine 

together, where are the extra electrons to come from? There is no 

positive ion losing electrons and ready to donate them to help form nega¬ 

tive ions. The expedient which thc^se elements adopt in their effort to 

form closed studls is the sharing of electrons, as we have discussed in 

Chap. XXII. An electron can sometimes be held by two atoms in com¬ 

mon, spending part of its time on one, part on the other, and part in the 

region between; in so doing it helps fill up the shells of both atoms. There 

is just one conspicuous rule that holds for almost all such bonds, and 

that is that ordinarily two electrons are shared in a similar way, the two 

together forming what is called a homopolar or electron-pair bond. The 

reason why two cooperate, as we saw in Chap. XXII, is essentially the 

electron spin in conjunction with the exclusion principle. 

In the first place, we can symbolize the process of forming a homopolar 

bond by a simple device used by G. N. Lewis, to whom many of the ideas 

of homopolar binding are due. Most of the elements forming this type of 

bond are trying to complete a shell, or subshell, of eight electrons, as we 
400 



Sec. ]] HOMOPOLAR BOND AND MOLECULAR COMPOUNDS 401 

have explained in Chap. XXII. Lewis indicates the eight electrons by 

eight dots surrounding the symbol of the element. Thus, for instance, the 

ntnitral fluorine atom, which has only seven electrons in its outer shell, 

would be symbolized as : F.. This does not have a completed shell. But 

by combining two such atoms, we can form the structure :F:F:, contain¬ 

ing fourt('en electrons but sharing two of them in a homopolar bond, so 

that each atom in a sense has a completed shell. It is clear from this 

symbolization that the halogens, F, Cl, Br, I, can form one homopolar 

bond; the divalent (elements O, S, Se, Te, can form two; and so on. In 

this symbolization, hydrogen takes a sp(icial place, for by adding electrons 

it forms a completed Indium shell of two (dectrons. It thus forms one 

homopolar bond, and in this type of l>onding it is in many respects analo¬ 

gous to a halogen. In such a way, for instance, we can indicate the 

structure? of hydrogen chloride? as H:CT., the electron pair shared between 

the t wo atoms helping to fill up the hydrogen shell of two, and the chlorine 

she?ll of eight. Similarly and illustrating also the valences of 0, N, and 

C, we may write water, ammonia, and methane respectively as H:0:, 

H 

H 

H: N: H, and H: C: H. In each of these compounds, we observe that the 

H H 

total number of electron^^ indicated is just the number furnished by the 

outer shells of the atoms entering into the molecule. Thus, in NHs 

the nitrogen furnishes five electrons, each of the hydrogens three, making 

eight in all. 

Hydrogen is in a very special position, in that it forms a closed shell 

(heliumlike) by adding an electron, and also a closed shell (the nucleus 

without any electrons) by losing an electron. It can act, in the language 

of ions, like either a univalent positive or a univalent negative element. 

This gives the possibility of an ionic interpretation of most of the hydrogen 

compounds. Thus we may symbolize hydrogen chloride as H+(:CT.)“, 

and water as H+(:0:) H+, or as H+(:0:)"‘. We shall see later that 

H 

there is good reason to think, however, that in most of these cases the 

homopolar way of writing the compound is nearer the truth than the ionic 

method. 

The elements carbon, nitrogen, and oxygen have a peculiarity rarely 

shown by other elements: they form sometimes what is called a double 
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bond, and in the cases of carbon and nitrogen a triple bond. This means 

that two or three pairs of electrons, rather than one, may be shared 

between a pair of atoms. This is seem in its simphist form in the molecules 

O2 and N2. If two oxygens shared only one pair of electrons, they would 

not achieve closed shells; they must share two pairs, so that two electrons 

of each atom count in the shell of the other as well. Similarly two nitro¬ 

gen atoms must share three pairs. We can symbolize these compounds 

by :0: :0:, where both pairs of electrons between the 0^s are counted 

in each group of eight, and by :N:: :N Compounds having double or 

triple bonds generally have a rather unsaturated nature; they tend to add 

more atoms, breaking down the bonds into single ones and using the 

valences left over in order to attach the other atoms. A familiar example 

is the group of compounds acetylene C2H2, ethylene C2H4, and ethane 

C2H6, in which the last named is the most stable. These are symbolized 

H H 

H:C:;;C:H, H:C:C:H, formed with triple, double, and 

H ii 
single bonds respectively. 

One can derive a good deal of information about the three-dimensional 

structure of a molecule in space from the nature of the homopolar bonds, 

and it must not be supposed that the chemical formulas, written as we 

have been writing them in a plane, express the real shape of the molecule. 

We have written them in each case so as to approximate the shape as 

closely as possible, but in many cases have not succ(Kded very w^ell. In 

general, the four pairs around an atom tend to be arranged in the only 

symmetrical way they can be, namely at the four corners of a regular 

tetrahedron. The vectors from the center to the corners of a tetrahedron 

form angles of 109.5° with each other, often called the tetrahedral angle, 

and in a great many cases it is found that when two or more atoms are 

attached to another atom by homopolar bonds, the lines of centers 

actually make approximately this angle with each other. We shall dis¬ 

cuss this more in detail in the next section, in which we take up the struc¬ 

tures of a number of homopolar molecules. 

2. The Structure of Typical Homopolar Molecules.—Many of the 

homopolar molecules are among the most familiar chemical substances. 

In this section we shall describe a few of them, discussing the nature of 

their valence binding and giving information about their shape and size. 

For the diatomic, and some of the polyatomic, molecules, this information 

is derived from band spectra. In other cases, it is found by x-raj diffrac¬ 

tion studies of the solid, using the fact that homopolar molecules generally 

are very similar in the solid and gaseous phases, or by electron diffraction 

with the gas. We begin with some of the diatomic molecules listed in 

Table IX-1, including H2, CU, Brs, I2, NO, O2, Na, CO, HCl, and HBr. 
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The first molecule in the list, and the simplest diatomic molecule, is 

hydrogen, H2. Its structure of course is H:H, the two electrons being 

shared to simulate a hc^lium structure about each atom. The internuclear 

distance^ 0.75 A is the smallest internuclear distance known for any 

compound, as is natural from the small number of electrons in hydrogen. 

As wo have seen, hydrogen acts a little like a halogen when it forms home 

polar bonds, and we might consider next the molecules F2, CI2, Br2, I2. 

We have already mcmtioiuid their bonding, by a single electron pair 

bond, in the previous section. The iniernuel(\ar distances in these 

molecules are large, being 1.98 A for CI2, 2.28 A for Br2, and 2.66 A for 

I2, as we saw in Table IX-1. It is intciresting to compare these inter¬ 

nuclear distances with the ionic radii, from Table XXIII-2. There we 

found radii of 1.80 A, 1.95 A, and 2.20 A for Cl“, Br“, and I~. If these 

radii represented the sizevs of the atoms in the diatomic molecules, the 

internuclear distances would be twi(‘e the radii, or 3.60 A, 3.90 A, and 

4.40 A, almost twice the observed distances. This is an illustration of the 

fact, which proves to be quite gcmeral, that interatomic distances in 

homopolar binding are decidcnlly less than in ionic binding. The reason is 

simple. Whiles the sharing of a pair of electrons is in a sense a way of 

building up a closed shell of electrons, still the shell is really not filled to 

capacity. There is, so to speak, a soft place in the sh(‘ll just where the 

bond is located, and the atoms tend to pull together closc^r than if the shell 

were really filled. 

The remaining moleculc^s in our list are NO, O2, N2, CO, HCl, and 

HBr. The first of these, NO, is the most p(H;uliar compound in the list 

and one of the most peculiar of the known compounds. We note that 

nitrogen supplies five, and oxygen six, outer electrons to the compound, 

making a total of eleven, an odd number. It is quite obvious that an odd 

number of electrons cannot form closed shells, ele(;tron pairs, or anything 

else associated with stable molecules. As a matter of fact, out of all the 

enormous number of known chemical compounds, only a handful have an 

odd number of electrons, and NO is almost the only well-known one of 

these. We shall make no effort to explain it in terms of ordinary valence 

theory, for it is in every way an exception, though it can be understood 

in terms of atomic theory. 

Oxygen, with a double bond, and nitrogen, with a triple one, have 

already been discussed. The internuclear distances, from band spectra, 

are 1.20 A for oxygen, and 1.09 A for nitrogen. In line with what we have 

just said about the halogens, it is intercisting to notice that the inter¬ 

nuclear distance in oxygen is a great deal less than the double radius of 

O—. That ionic radius was 1.45 A, so that if it represented the size of 

^ See Sponer, ‘‘Molekiilspektren und ihre Anwendungen auf chemische Probleme,” 

Vol. I, Springer, 1935, for interatomic distances of diatomic and polyatomic molecules 

in this chapter. 
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the oxygen in O2, the internuclear distance would be 2.90 A, more than 

twice the actual distance. In the case of O27 with its double bond, the 

tendency of the atoms to pull together in homopolar binding is particu¬ 

larly pronounced, for the shell is even less nearly filled than with a single 

bond and can be even more compressed by the interaction forces. In 

nitrogen with its triple bond, the interatomic distaiuic is even smaller, in 

line with this fact. The next molecule on the list, CO, do(\s not fit in very 

well with our rules. A clue to its structure is provider! by the fact that 

it has 4 -f- 6 = 10 out(^r electrons, just like N2, and that in many of its 

properties it strongly resembles N2. W(^ have st ated that the internuchiar 

distance in nitrogen was 1.09 A; in CO it is 1.13 A. The suggestion is 

very natural that in a sense a triple bond is formc^d in this case also, with 

the structure :C:: :0:, though a triple bond is not usually forim^d by 

oxygen. 

We have already discussed the structure of the next two molecules, 

HCl and HBr, whose valence properties are indicated by the symbols 

H: Cl:, H: Br:. The internuclear distances are 1.27 A and 1.41 A respec¬ 

tively. We note, as before, how much smaller tlieso are than the values 

given by ionic radii. We have no ionic radius for H, but for Cl” we have 

1.80 A, and for Br” the distance is 1.95 A. The internuclear distances in 

these cases are actually less than the ionic radii. This is good evidemee 

for the homopolar, rather than the ionic, natures of these compounds. 

Another reason comes from the magnitudes of the electric dipole moments 

of these two molecules, which are found to be 1.03 X 10”^^ and 

0.78 X 10”^® e.s.u.-cm. If the molecules were really ionic, we should 

expect that electrically they would consist of a unit- positive charge on 

the hydrogen nucleus, and a net negative charge of one unit, spherically 

symmetrical, and therefore acting as if it were on the chlorine or bromine 

nucleus. That is, there would be charges of one electronic unit located 

1.27 A and 1.41 A apart respectively. This would give dipole moments, 

equal to the product of charge and displac.ement, of 

(4.8 X 10-''^) X (1.27 X 10-«) = 6.1 X 10”i«, 

and of 6.8 X 10”^® units, respectively. The observed dipole moment of 

HCl, as we have seen, is only about one-sixth of this value, and of HBr 

about one-ninth of the value given by the polar model. To explain this, 

we must assume that the negative charge is not located symmetrically 

about the Cl or Br but is displaced toward the hydrogen. This is what we 

should expect if there is really a homopolar bond, for then the shared 

electrons would be in the neighborhood of the hydrogen, displaced in 

that direction from the halogen ion. The dipole moments then furnish 

arguments for the homopolar nature of the bond and for thinking that it 
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is less polar in HBr than in HCl. There is still another way of regarding 
this situation: we may make use of tlui polarizability of th('. halide ion. A 
hydrog(m nucleus close to a halide ion would produce an extremely strong 
electric field, which would polarize the ion, changing it into a dipole with 
the negative charge displaced slightly toward the positive hydrogen ion. 
This dipohi moment would tend to cancel the moment produced by the 
two undistorted ions, so that the net moment would be less than the figure 
6.1 X 10^^” cahailated above. As a matter of fact, calculations by 
Debycd show that the resulting dipole moment calculated in this way 
would be of the right order of magnitude. We should not regard this 
calculation as indicating that our homopolar shared electron theory is not 
accurate', however. For in this case the polarizability is simply a rather 
crude way of taking account of the shifting of electric charge which we 
can describe more precisely as cF'ctron sharing between the atoms. The 
situation, however we d(\scrib(' it, is essentially this: that the electrons, 
instead of being arranged in a spherically symmetrical way about the 
halogen nuchnis, tend to be somewhat displaced toward the hydrogen, so 
that/ it also is partly surrounded by electrons, rather than acting as an 
entirely isolatcKl ion. 

We have now completed our list of diatomic moh'cules. Next we 
might well take up various hydrides: H2O, NH3, CH4, H2S, PH3, SiH4. 
We have already given structural formulas for H2O, NH3, and CH4; the 
others are analogous, H2S resembling H2O, PH3 being like NH3, and SiH4 
like CH4. The hydrogens are bound, on the homop)olar theory, by 
single bonds, and the angles made by the radius vectors to different 
hydrogens are very closely the tetrahedral angle 109.5°. Thus H2O is a 
triangular molecule, the hydrogen-oxygen distance being 0.96 A, and the 
H-O-H angle being 104.6°. NH3 is pyramidal, the nitrogen-hydrogen 
distance being 1.01 A and the H-N-H angle 109°. CH4 is tetrahedral, the 
carbon-hydrogen distance being 1.1 A. H2S is triangular, like water, the 
sulphur-hydrogen distance 1.35 A and the angle 92.1°, rather smaller 
than we should have supposed. PH3 is presumably pyramidal like NH3 
but the distances and angles do not seem to be known. SiH4 is tetra¬ 
hedral but again the distances are not known. 

There are only a few other common inorganic molecules to be 
mentioned. CO2 is a linear structure, with valences symbolized by 

:0: :C: :0:. That is, there are double bonds between the carbon and 
each oxygen. The C-0 distance is 1.16 A, slightly greater than the 
value 1.13 A found in CO, where there is a triple bond. N2O is also a 

linear molecule, presumably with the structure : N:: N:: O:, again fornu^d 
with double bonds like CO2, which has the same number of outer electrons. 

^ See Debye, *^Polare Molekel,^^ Sec. 14, Hirzel, 1929. 
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The distance between end atoms is 2.38 A, slightly greater than the value 

2 X 1.16 = 2.32 A between end atoms in CO2. Here again we see the 

resemblance between N2 and CO, in that they form similar molecules 

when another oxygen atom is added. The molecule SO2 is a triangular 

molecule shaped something like water. Its structure presumably is 

: 0: S:. This is the first example wo have met of a case where an atom 

*’:0: 

is not surrounded, even with the aid of shared electrons, by a closed 

shell: the sulphur has only six electrons around it. We shall come to 

other examples later, when we talk about inorganic radicals. The 

sulphur-oxygen distance in SO2 is 1.37 A. Carbon disulphide CS2 

resembles C()2 in being a linear molecule, with carbon-sulphur distance of 

1.6 A, decidedly larger than the value 1.16 A in CO2, in accordance with 

the fact that sulphur is a larger atom than oxygen. 

The molecules taken up so far are all very simple, composed of very 

few atoms. The more complicated examples of homopolar molecular 

compounds are found almost entirely in the field of organic chemistry. 

We shall postpone a discussion of organic compounds until the next 

chapter, since they form a field by themselves. Before closing our discus¬ 

sion, however, we shall take up a different sort of homopolar structure, 

namely, a few inorganic negative ions, formed very much like molecules. 

The most important ones are NOs", CO3 , S()4 , C104“, mentioned 

in the preceding chapter. The first two, as stated in Chap. XXIII, Sec. 

5, are triangular structures in a plane, the N or C being in the center, the 

oxygens at the corners. Each has 24 electrons (when we take account 

of the negative charge on the ion), so that it was possible in the last 

chapter to treat them as ionic structures, the oxygen having a closed 

shell of eight electrons, the nitrogen or carbon having no outer electrons. 

.. :0: .. :0: 
A structure much nearer the truth, however, is :0:N **. and :0:C *.*. . 

•• :0: •• ;0: 

These structures differ from the ionic one in that we have indicated two 

electrons from each oxygen as being shared with the central nitrogen or 

carbon. This case resembles that of SO2 in the preceding paragraph, in 

that one of the atoms, in this case the central one, has only six rather 

than eight electrons surrounding it. Another molecule showing similar 

structure is SO3. We have stated in the preceding chapter, Table 

XXIII-9, that the C-0 or N-0 distance in the carbonates and nitrates is 

about 1.27 A. This is decidedly greater than the C-0 distance in CO, 

which is 1.13 A, and in CO2, 1.16 A, but in the present case there is only 

a single bond, rather than the triple or double bonds found in those two 
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compounds. The agreement is close enough so that it is quite plain that 

the bonds in these cases arc homopolar and not ionic, as was stated in 

Chap. XXIII, Sec. 6. In the sulphate and perchlorate ions, SO4 and 

CIO4", then^ are enough electrons, 32 outer ones i^er ion, to form com¬ 

plete shells around the central atoms. The valence can bo symbolized 

:0: :0: 

: O: S: O: and : O: Cl; O:, and the compounds can be described as having 

** :6: " 

single valences bonds bc^tween the central atom and each oxygen. They 

have a tetrahedral form, the sulphur-oxygen distance in the sulphates 

being about 1.40 A. 

3. Gaseous and Liquid Phases of Homopolar Substances.—We have 

already mentioned that the gaseous phase is the most characteristic one 

for molecular substances with homopolar binding. We shall bc^gin, 

therefore, by examining the Van der Waals constants a and h for a con¬ 

siderable) numb('r of homopolar substances. The constant h will give us 

information about the dimensions of the molecuk'S, information that we 

can correlate with the known interatomic distances, and a will lead to 

information about the strength of the Van der Waals attraction. 

In Table XXIV-1, we give Van der Waals constants for quite a series 

of gases, arranged in order of their Vs. We include not merely the gases 

mentioned in the preceding section, but the inert gases, for comparison, 

and then a considerable number of organic substances, which as we have 

mentioned furnish the largest and most characteristic group of homopolar 

substances. In the table, the units of a are (dynes per scpiare centimeter) 

times (cubic centimeters per mole)^. The units of b are cubic centimeters 

per mole. These constants are obtained from the critical pressure and 

temperature by Eq. (2.5), Chap. XII. They do not, therefore, have just 

the same significance as the a and 6 of Eq. (5.3), Chap. XII, for those are 

the constants that would lead to agreement between Van der Waals^ 

equation and experiment at low density, while the values we use are suit¬ 

able to pressures and temperatures around the critical point, which will 

disagree with the other ones unless Van der Waals^ equation is really 

applicable over the whole range of pressures and temperatures. We 

note from Eq. (2.6) of Chap. XII, that if Van der Waals’ equation were 

correct, we should have Fc/3 == b, where Vc is the observed critical 

volume. To test this relation, Table XXIV-1 lists observed values of 

Vc/3. We see that these values do not agree very closely with the values 

of 6, as was stated in Chap. XII, though they are not widely different. In 

addition to these quantities, we also tabulate the molecular volume of 

the liquid, in cubic centimeters per mole, for the lowest temperature for 

which figures are available, and also the dipole moment for dipole mole- 
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Table XXIV-1.—Van der Waals Constants for Imperfeot Gases 

Gas Formula a b Vc/3 

Molec¬ 
ular vol¬ 
ume of 
liquid 

Electric 
moments 

Neon. Ne 0.21 X 101* 17.1 14.7 16.7 0 X 10 
Helium. He 0.035 23. t) 20.5 27.4 0 
Hydrogen. Hi 0.25 26.5 21.6 26.4 0 
Nitric oxide. NO 1 .30 27.8 19. 1 23.7 
Water . PI-.0 5.53 30.4 18.9 18.0 1.85 
Oxvgen . Oz 1.40 i 32.2 21.8 25.7 0 
Argon. A 1.30 32.2 26.1 28.1 0 
Ammonia. NHa 4.22 36.9 24.2 21.5 1.44 
Nitrogen . N2 1.36 38.3 30.0 32.8 0 
Carbon monoxide. CO 1.50 39.7 30.0 32.7 0.10 
Krypton. Kr 2.35 39.7 36.0 38.9 0 
Hydrogim chloride. HCl 3.72 40.7 29.8 30.8 1 .03 
Nitrous oxide. N2O j 3.61 41.1 32.3 44.0 0.25 
Carbon dioxide. CO2 3.04 i 42.5 32.8 41.7 0 
Methane. cn4 2.28 42.6 32.9 49.5 0 
Hydrogen aulpliide. H2S 4.40 42.7 35.4 0.93 

11 Br 4.51 44 1 1 37,5 0.78 
Xenon. Xe 4.15 50.8 38.0 47.5 0 
Acetylene. C0H2 4.43 51.3 ! ! 37.5 50.2 0 
Phosphine. PH.-, 4.69 51.4 37.7 49.2 0.55 
Chi cu> 6.57 56.0 1 41.0 41.2 0 
Suly^hur dioxide. SO-i 6.80 56.1 41.0 43.8 l.Gl 
Ethylene. C2H4 4.46 56.1 42.3 49.3 0 
Silicon hvdride. SiH'i 4.38 57.6 47 0 
Methvlaminc . CHsNHa 7.23 59.6 1 . 44.5 1.31 
Ethane. CH.T—CHa 5.46 03.5 47 6 54.9 0 
Methyl chloride. CII3CI 7.56 64.0 45.4 40.2 1.97 
Methyl alcohol. CH3OH 9.05 66.8 39.0 40.1 1.73 
Methyl ether . (C 113)20 8.17 72.2 1.29 
Carbon bisulphide. Os 2 11.75 76.6 67.5 59.0 
Dimethylamine. (CHsl-iNH 9.77 79.0 66.2 
Propylene. CsHb 8.49 82.4 69.0 0 
Ethyl alcohol. CaHr-pH 12.17 83.8 41.0 57.2 1.63 
Propane. OH3—CH2—CH3 8.77 84.1 75.3 0 
Chloroform. CHCI3 15.38 102 77.1 80.2 1.05 
Acetic acid. CH3COOH 17.81 106 57.0 56.1 . 
Triraethylamine. (CH;,)3N 13.20 108 89.3 
iso-Butane. CH(CH8).-j 13.10 114 96.3 
Benzene. C«Hfi 18.92 120 85.5 80,7 0 
n-Butane. CHatCH-diCHs 14.66 122 96.5 0 
Ethyl ether. (C2Ha)20 17.60 134 94.0 100 1.2 
Triethylamine.. (CiHidaN 27.5 183 139 
Naphthalene... CioHs 40.3 193 112 0.69 
n-Octane. CH.3(CH2)fiCHs 37.8 236 162 162 0 
Decane. CH.3(CH2)8CH3 49.1 289 195 0 

The unit of pressure in the constants above is the dyne per square centimeter, the unit of volume is 
cubic centimeters per mole. The electric moments are expressed in absolute electrostatic unite. Data 
for Van der Waals constants and volumes are taken from Landolt’s Tables; for the electric moments from 
Debye, “Polare Molekeln,” Leipiig, 1929, 
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cules, in electrostatic units; as we have seen in Chap. XXII, this has a 
bearing on the Van der Waals attraction. 

The first thing which we shall consider in connection with the con¬ 
stants of Table XXIV-1 is the set of b values. It will be remembered that 
h represents in some way the reduction in the free volume available to a 
molecule, on account of the other molecules of the gas. That is, it should 
bear considerable resemblance to the actual volume of the molecules. 
According to statistical mechanics, we have seen in Chap. XII, Sec. 5, 
that the h appropriate to the limit of low densities should be four times 
the volume of the molecules, but this prediction is not very accurately 
fulfilkid by experiment. The n^ason no doubt is that that pn^iiction was 
based on the assumption of rigid mokHuiles, wlu^reas we have seen in this 
chapter and the preceding one that molecular diameters r(‘ally depend a 
great d(ial on the amount of (•omx)rcssion produced by various forms of 
interatomic attraction. This was made particularly plain in Table 
XXIII-3, where we com]nited volumes of the inert gas atoms by using 
radii interpolated bcdvveen the ionic radii of the neighboring positive 
and negative ions and compared these volumes with the h valiK's and the 
volumes of the liquids. We found, as a matter of fact, that tlui h values 
were from three to five times the computed volumes of the molecules, in 
fair agreement with the prediction of statistical mcHdianics, but we found 
that the volumes of the liquids, in which the molecules are held together 
only by Van der Waals force's, were of thc‘ same order of magnitude as the 
h values, indicating that the Van der Waals forces, being very weak 
compared to ionic forces, cannot compress the molecules very rnucdi. To 
see if this situation is general, we give the molecular volume of the liquid 
for each gas in Table XXIV-1. A glance at the table will show the 
striking parallelism between the volume of the liquid and the constant 6. 
For the smaller, lighter molecules, h is of the s^me order of magnitude 
as the volume of the liquid, as a rule somewhat larger, but not a great deal 
larger. For the heavier molecules, there seems to be a definite tendency 
for b to be larger than the volume of the liquid, but even here it is not so 
great as twice as large. 

The actual magnitude of the constants b is of considerable interest. 
In the first place, we may ask how much of the volume of a gas, under 
ordinary conditions of pressure and temperature, is occupied by the 
molecules. One mole of a gas at atmospheric pressure and 0°C. occupies 
22.4 1., or 22,400 cc. The molecules, under the same circumstances, 
occupy the volume tabulated in Table XXIV-1, in cubic centimeters. 
For the common gases, these volumes are of the order of 30 or 40 cc. This 
is the order of magnitude of two-tenths of 1 per cent of the actual volume, 
so that it is correct to say that most of the volutne occupied by a gas is 
really empty. On the other hand, even under these circumstances, the 
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molecules aro not very far apart in proportion to their size. We may 

take an extreme ease of helium, where at noi-mal pressures and temperature 

the molecules would occupy some 23 cc., or about oik^ one-thousandth of 

the volumes ’^bo get an idc'a of the si)acing, w(' may imagine the atoms 

spac.ed out uniformly, ('ach one in the center of a cube (though of course 

actually they will be distributed at random). Tluai a cube of the volume 

of the atom would have' one one-thousandth the volume of one of these 

cubes containing an atom, but tlu^ side of the small (uibe would be one- 

tenth [= (-n)V(7)'"'] large cube, mcaining that the average 

distance between atoms is only about ten times the diameter of a single 

atom. This is for a small moh'cule; with the larger molecailes in the tabk'., 

the molecules are twice as large or mor(‘ in dianu^ter and are correspond¬ 

ingly closer tog(dh('r in prof)ortion. We can imagine that under these 

circumstances nvil gases depart (piite a}>preciably fi om perfect gas condi¬ 

tions. Furtlu^rmoi’e, it is natural that collisions Ix'tween atoms arc 

frequent and that they are of gr(‘at importance in many pluaiomena. 

This is all, however, for one atmosphere pressure. A |5r(\ssure of 10“*'' mm. 

of mercury can easily be obtaiiual in th(' laboratr)ry. This is about 

10“^ atm. and corn^sponds to atoms spaced a thousand times farther 

apart, or something like 10,000 atomic diameters ai)art. It is clear that 

a gas in this condition must be very much like a perfect gas and that 

deviations from the gas law and interactions between molecules can be 

neglected. 

It is interesting to ask how much space, on the average, is occupied 

by each atom or molecule. In a gram molecular weight, as we have said 

before, there are about 6.03 X lO-*^ molecules. Thus if we divide h by 

this figure, we shall get the volume per molecule. It is obvious from the 

table that th(^ molecules with many atoms have much larger volume's than 

those with few atoms, and it appears very roughly that the volume is 

something like 12 cc. per mole p('r atom, a figure which we could get by 

dividing the 6 for a particular molecuk' by the number of atoms in the 

molecule. Variations of more than 100% from this figure are seen in the 

table, but still it is correct as to order of magnitude. This gives 

12/(6.03 X 10"^) = 2 X 10“^^ cc. as the volume assigned to an atom. 

This is the volume of a cube 2.7 X 10“*^ cm. on a side; this figure seems 

reasonable, being of the order of magnitude of the dimensions of most of 

the atoms, within a factor of two at most. 

From what we have said, the values of the Van der Waals constants 

6 for the gases of our table look very reasonable. Next we can consider 

their a^s. In Eq. (3.6) of Chap. XXII, we have seen that the Van der 

Waals interaction energy between molecules of polarizability a, mean 

square dipole moment iP, at a distance r, is 

Energy (3.1) 
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III Eq. (5.3), Chap. XII, wo havo soon that, the Van dor Waals a for 

molecules of radius ro/2, with an intermolecular attractive potential of 

<t>, is 

a = (3.2) 

where No is Avogadro^s number. Using Ecjs. (3.1) and (3.2), we can 

now write an explicit formula for the der Waals a. It is 

a 
(|7r2aM“)^ 

(3.3) 

The terms of Eq, (3.3) are all things that can be estimated. From Table 

XXIV-1, we see that th(‘ permanent dipole moments of dipole molccuh?s 

are of the order of magnitude of 2 X 10 absolute units, and we may 

exj)ect the root mean scpiare fluctuating moimnits of othcu* molecules to 

ho of th(i same order of magnitude. The polarizability can be found from 

the measured dieletdric ('onstant-, as we have explaiiK'd in Chap. XXII, 

Sec. 3. In addition to th(‘se (piantities, we n(‘ed the volumes of the sj>here, 

^TrrJ, wliich ap})ears in th(‘ dimominator of Eq. (3.3). This will certainly 

be of the general order of magnitude of tlu^ mole(*ular volume, and for the 

present vc'ry criuh^ calculation we may take it to be the same as b, which 

we have tabulated in Table XXIV-1. (For air we use a value inter- 

me^diate b(‘twe('ii oxyge^n and nitrogen.) W(' have now (*omput(Hl values 

of M which, substituted into the formula (3.3), will give the correct value 

of a, and hav(^ tabulated these' in Tabh^ XXIV-2. We see that the 

values of m necessary to give the observed a values are of the order of 

Table XXTY-2,—CALcm^ATioNs (’oncerning Van der Waals Attractions 

Gas 
Oioloctric 

constant e 
NuCLf cubic 
ceiitiirietcrs M 

H2. 3.0002(H 0.470 1.7 X 10-i» 
Air. 1.000590 1.05 3.1 
CO. 1.000090 1.23 3.1 

CO2. 1.000985 1.75 4.2 

CH4. 1.000944 1 1.68 3.4 

C2H4. 1.00131 1 2.33 4.7 

The dielectric constant e is given for gas at 0®C/., one atmosphere pressure. Thus, since a mole of 

gas occupies 2.24 X 10^ cc. at this pressure and temperature, we have 

Noa » 2.24 X 

using Eq. (.3.4), Chap. XXII. The value of n is calculated from Eq. (.3.3), as described in the text, and 

represents the dipole moment necessary to explain the observed Van der Waals a. 

magnitude which we expected to find. As we should naturally expect, 

they increase as we go to larger and more complicated molecules. Direct 

calculations of /x, or rathef of th^ whole Van der Waals force, have been 
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made for a few of the simple gases like hydrogen and helium, with fairly 

close agreement with the experimental values. It seems likely, therefore, 

that our explanation of these attractions is quite close to the truth. 

The explanation just given for the magnitude of the Van der Waals 

attractions must be modified for strongly polar molecules, those having 

large dipole moments. From Chap. XXII, Sec. 3, we remember that in 

such cascis there is an extra term in the polarizability, on account of the 

orientation of the molecule in an exiernal field. We mentioned that this 

would iiuuH^ase the Van der Waals attraction, because pairs of molecules 

would tend to oriotit each other into the position of maximum attraction, 

and sugg('st.c‘d that it might result in a Van der Waals attraction several 

times as great as for nonpolar molecules. Examination of Table XXIV-1 

shows that, in fact, the strongly polar molecules have constants a which 

are much greater than those of nonpolar molecules near them in the list. 

Thus water has an a value about four times thos(^ of its maghbors, and 

ammonia about three times. We (^an understand in detail what happens 

by considcaing the most (conspicuous case, water. The crystal structure 

of ice is well known and will l)e dc^scrilxal in the mcxt, section. It is a 

molecmlar crystal, in wliich each oxygcai is surrounded tetrahedrally by 

four oilier oxygens. Betwcccai each pair of oxygens is a hydrogen. Each 

oxygen thus has four hydrogcais iieai* to it. But two of these four hydro¬ 

gens anc close to the oxygen, forming with it a water molecule, with its 

two hydrog(ais at an anghc, just like the water molecule in the gas. The 

other two hydrogens are attaclaai to two of th(' four ncaghboring oxygens, 

forming pai’t of tluar watca* molecules. This structure puts each of the 

hydrogens of one molecule near tiie oxygen of another, so that their oppo¬ 

site electrical charges can attract each other, hcdping to hold the crystal 

together. This arrangement undoubtedly picrsists to a large extent in 

the liquid and even to some extent in the gas, though it undoubtedly 

decreases as the temperature is raised, for at high temperatures the mole¬ 

cules tend to rotate, spoiling any (^ffcHct of orientation. And it is this 

extra attraction, on account of the particular orientations of the molecules, 

which results in the very large value of a for water. Similar explanations 

hold for the other molecules with large dipole moments, but examination 

of their structure shows that the others cannot form such tightly bound 

stinictures as water. 

There is another feature of Table XXIV-1 that bears out the unusually 

large forces between dipole molecules, and that is the molecular volumes 

of the liquids. If the polar molecules have unusually large attractive 

forces, we should expect that these forces, which after all hold the liquid 

together, would bind it particularly tightly, so that the liquids would be 

unusually dense. Consistent with this, we note that water and ammonia 

conspicuously, and some of the other polar liquids to a lesser extent, have 
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molecular volumes for their liquids decidedly smaller than their b values, 

while the iionj^olar molecules have molecular volumes rather closely equal 

to their To jnit these facts in somewhat more striking form, if water 

had no dipole moment we should expect it to have a density only about 

two-thirds what it does, and we should expect the intermolecular forces 

to be so small that it would boil many degrees below zero, as its neighbors 

NO and O2 in the table do, and to be known to us as a permanent gas 

difficult to liquefy. 

The (ixtra intermolecular force in water resulting from dipole attrac¬ 

tion, which we have just, discussed, is clos(4y tied up with one of the most 

remarkable properti(‘s of water, its ability to dissolve and ionize a gix^at 

many ionic compounds. We have s(‘en in the last chapter that it requinvs 

a large amount of energy to pull a crystal of an ionic substance apart into 

separat(xl ions. Such a process sundy will not occur naturally; if we 

examined the equilibrium between the solid and tlie ionic gas, the heat of 

evaporation would be so enormous that at ordinary tempc'ratures there 

would be practically no vapor pressures If an ion is introduced into 

water, howeven*, ther(^ is a strong binding bet ween the water molecules 

and the ion, corresponding to a large negative term in the energy, with the 

result that the heat of solution, or the work required to bi'eak up the 

crystal into ions and dissolve the ions in water, is a small quantity. In 

other words, ref(u*ring back to the type of argument met in Chap. XVII, 

an ion is about as strongly attracted to a water molecule as to the ions of 

opposite sign in tlu^ crystal to which it normally belongs; this is the 

necessary cor\dition for* solubility. We now ask, why is the ion so 

strongly bound to the watca* molecules? The reason is simply that as we 

have seen the hydrogens of the water molecule are positively charged, the 

oxygen negatively, so that a positive ion can locate itsedf near the oxygens 

of a number of neighboring water molecules, a negative ion near a number 

of hydrogems, which attract it electrostatically approximately as much as 

two ions would attract each other, or as the negative oxygen of one water 

molecaile would attract the positive hydrogens of its neighboring water 

molecules. This effcict is particularly strong in water, for the same reason 

that the Van der Waals binding is strong in water; similar effects are 

found in a lesser extent in liquid anfmonia, which is also a powerful ioniz¬ 

ing solvent, with many of the same properties as water. 

We have mentioned several times that the characteristic of the 

molecular compounds is that the Van der Waals forces between molecules 

are small compared to the valence forces holding the atoms together to 

form a molecule. Thus the substances vaporize at a low temperature, 

whereas their molecules do not dissociate chemically to any extent except 

at very high temperatures. For instance, the dissociation H2 ^ 2H is 

a typical example of chemical equilibrium, to be handled by the methods 
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of Chap. X, and the forces holding the atoms together are the sort taken 

up in Cliap. IX. We saw in Table lX-1 tliat tlu' heat of dissociation of a 

hydrogen molecule was 103 kg.-cal. per gram mole, such a large value that 

the dissociation is almost negligible at- any ordiiiary temperature. On the 

other hand, the latent lieat of vaporization, the heat required to pull the 

molecules of the liquid or solid apart to form the gas, is only 0.256 kg.-cal. 

per gram mole in this (^ase, so tliat a tenquu’ature far below O^C. will 

vaporize hydrogen. To illustrate how^ g(uieral this situation is. Table 

XXIV-3 gives the latent heat of vaporization and the heat of dissociation 

Table XXIV-3.—^Latent Heat of Vapoiuzation and Heat of Dissociation 

SubslaiKM 

H2.. 
O,.. 

N2.. 
CO. 

C02. 

NH« 

HCl. 

IDO, 

Lateiit heats are from Landolt’fs Ta>>lf*s, and in each case arc for as low a temperature aw possible, 

since the latent heat of vaporizati<m decroaee.s with increasing temperature, going to zero at the critical 

point. Heats of dissociation are from SjHjner, “ MolekCilspektren und ihre Anwendungen auf chemische 

Probleme,” Berlin, 1035, some of them having been quoted in Table IX-l. 

of a few" familiar gases. The heat of dissociation in each case is the energy 

required to remove the most loosely bound atom from the molecule. We 

see that in each case the latent heat is only a few per cent of the heat of 

dissociation; water is a distinct exception on account of its high latent 

heat, ten per cent of the heat of dissociation, which of course is tied up 

with the large Van der Waals attraction arising from the dipole moments 

of the molecules. 

4. Molecular Crystals.—The moWmles which we have been discussing 

in this chapter are tightly bound structures, held together by strong 

homopolar forces. Mathematically, these forces can be described 

approximately by Morse curves, as discussed in Sec. 1, Chap. IX. On 

the other hand, the forces holding one molecule to another arc simply the 

Van der Waals forces, which we have spoken about in Chap. XXII, and 

which are very much weaker than homopolar forces, as we saw from 

Table XXIV-3. It thus comes about that the crystals of these materials 

consist of compact molecules, spaced rather widely apart. Since the 

forces between molecules are so weak, the crystals melt at low tempera- 

Lat(^nt heat, 

k^.-cals. p(T 
gram mole 

Heat of dis- 

soeiation, 

kg.-(Tils. per 

gram mole 

0.220 103 
2.08 117 
1 .69 170 

1 90 223 
6.44 

7.14 90 
4.85 102 

11.26 118 
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tures, arc very compressible, and arc easily deformed or broken, in con¬ 

trast to the ionic crystals with their considerable mechanical strength, low 

compressibility, and high melting points. In this section we shall discuss 

the structure of a few of the molecular crystals. 

We start with th(^ iin^rt gases. The atoms of these substances are 

spherical, and we should naturally expect that their crystals would be 

formed simply by piling th(^ spheres on top of each other in the closest 

manner possible. Tliis is, in fact, the (*ase. There are two alternative 

lattices, corresponding to the closest packing of spheres. Of these, the 

inert gases choose the type called the face-centered cubic structure. This 

structure is shown in Fig. XXIV-1. In the first place, we can regard the 

structure as arising from a simple cubic lattice, as Shown in (a). There 

is an atom at each corner of the cube and in the center of each face. 

Comparison with Fig. XXIII-1, showing the sodium chloride stmeture, 

Fia. XXIV~l.“- The face-centered cubic structure, {a) atoms at the corners of a cub© 
and the centers of the faces, (h) the same atoms connected up in planes perpendicular to 
the cube diagonal, (c) view of successive planes looking along the cube diagonal, illustrat¬ 
ing the close-packed nature of the structure. 

will show that in the latter type of structure th(‘ positive ions by them¬ 

selves, or the negative ions by themselv(\s, form a face-centered cubic 

stmeture. Another way of looking at the face-center(^d cubic structure 

can be understood from Fig. XXIV-1 (6). In this, we have drawn the 

atoms just as in (a) but have connected them up differently, so as to form 

two parallel triangles of six atoms each, oppositely oriented, with two 

extra atoms. If we had considered, not simply the cube of (a) but the 

whole crystal, each of these triangles would have beem part of a whole 

plane of atoms. These same six atoms are shown by the heavy circles in 

(c), where we now look down along the normal to the planes of the tri¬ 

angles; that is, along the body diagonal of the cube, shown dotted in 

(a). In (c), we have drawn the circles representing the atoms large 

enough so that they touch, as if they were closely packed spheres. The 

next layer of spheres is shown in (c) by dotted lines, and we see that it is a 

layer similar to the first but shifted along, atoms of the second layer fitting 

into every other one of the depressions between atoms in the first layer. 

The third layer, of which only one atom is shdwn in (6), fits on top of (e) 
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in a similar manner, the one atom shown in (6) going in the common center 

of the triangles of (c). After these three layers, the structure repeats, the 

fourth layer being just like the one drawn in heavy lines in (c). From 

this description in terms of Fig. XXIV-1, (c), it is clear that the facev 

centered structure is a possible arrangement for close packed spheres. 

Each atom has twelve (equally spaced lunghbors, six in the same plane 

in (c), three each in the planes directly above and directly below. 

As we have stated, the inert gases crystalliz(^ in the fac(i-centered 

cubic structure. The distances between nearest neighbors are given in 

Table XXIV-4. In this table we give also the volume of the crystal per 

Table XXIV-4.—Crystals of Inert Gases 

Interatomic, 

distance, A 

Volume, e.e. 

per mole 

Volume of 

liquid, ec. 

per mole 

Ne. 3.20 14.0 16.7 

A. 3.84 24.3 28.1 

Kr. 3.94 26.4 38.9 

Xe. 4.37 35.8 
I 

47.5 

mole, computed in a simple way from t he cryst al structure, and finally we 

giv(i the volume of the liquid per mole, from Table XXIV-1, for compari¬ 

son. We see that the volumes of the crystals are somewhat but not a 

great deal less than the volumes of the liquids, as we should probably 

expect, since in the liquids the same atoms are packed in a less orderly 

arrangement. The interatomic distanc^es in these crystals are much 

greater than interatomic distances in any cases where the atoms are held 

by either homopolar or ionic bonds. This has already been commented 

on in Sec. 3 and has been explained by saying that the large attractive 

forces of the homopolar or ionic bonds pull atoms together, essentially 

compressing them, so that they get much closer together than when held 

only by the weak Van der Waals forces. 

The inert gases are the only strictly spherical molecules, but a number 

of the other gases have molecules nearly enough spherical to pack together 

in similar ways. The hydrogen molecule, except at the very lowest 

temperatures, is in continual rotation, so that while it is not spherical at 

any instant, still it fills up a spherical volume on the average, the volume 

swept out by its two atoms when they are pivoted at the midpoint of the 

line joining them and are free to rotate in any plane about this point. 

Hydrogen molecules, then, pack as rigid spheres, but they adopt the other 

method of close packing, the so-called hexagonal close-packed structure. 

This is shown in Fig. XXIV-2. It starts with the same layer of atoms 

shown by the heavy lines in Fig. XXIV-1 (c), then has the dotted layer of 
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(c), but after these two layers it has another layer like the first one, and 

so on, having just two alternating types of layer instead of three as in the 

face-centered cubic structure. Part of the structure is shown in perspec¬ 

tive in Fig. XXIV-2. This indicates plainly the hexagonal unit from 

which the structure takes its name. As we have stated, hydrogen crystal¬ 

lizes in this form, a hydrogen molecule being at each lattice point. The 

distance between molecules, on centers, is 3.75 A, the volume per mole 

is 21.7 cc., to be compared with 26.3 cc. in the liquid. 

The molecules N2 and CO, though they are rather far from spherical, 

still crystallize approximately though not exactly 

like close-packed spheres. Their crystal is a 

slightly distorted face-centered cubic structure, 

one dumbbell-shaped molecule being located at 

each lattice point. The molecules of these sub¬ 

stances do not rotate enough to simulate a 

spherical shape at ordinary temperature, but in¬ 

stead they oscillate about definite directions in 

space. These directions are determined for the 

various molecules in the crystal in a rather com¬ 

plicated though regular way, there being several 

different orientations for different molecules. 

The molecules are spaced about 3.96 A apart on centers, resulting in a 

volume of 27.0 cc. per mole, both for N2 and CO, compared to 32.8 cc. per 

mole in the liquid for N2, and 33 cc. for CO. 

Many molecules that are not spherical still rotate enough at high 

temperatures so that they simulate spheres, like the hydrogen molecule. 

In some cases, such molecules oscillate about definite directions at low 

temperatures, as with N2 and CO, but simulate spheres at higher tempera¬ 

tures when they are rotating with more energy. In such cases, the 

substance has two crystal forms, and there is a transition from one to 

the other at a definite temperature. The low temperature phase is likely 

to be complicated in structure, with the molecules pointing in definite 

directions, while the high-temperature phase is one of the close-packed 

structures. Hydrogen chloride HCl is a case in point. Below 98° abs., 

the molecules are hindered from rotating and the structure is a compli¬ 

cated one which has not been completely worked out. At this tempera¬ 

ture there is a transition, and above 98° the molecules rotate freely and 

the substances crystallize in a face-centered cubic structure. In many 

cases, where we might expect such a transition, it does not occur in the 

available temperature range. Thus we should ^expect that hydrogen, 

which shows free rotation under ordinary conditions, might conceivably 

show a transition to another structure with hindered rotation at low 

enough temperatures, while CO and Ng, with hindered rotation at ordi- 

Fig. XXIV-2.™-Hexagonal 
close-packed structure. 
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nary temperatures, might have a transition to a state of free rotation at 

high enough temperatures. But the necessary temperatures might be 

above the melting point, in which case the transition could not really be 

observed. 

The diatomic molecules which show hindered rotation in the solid 

generally have quite complicated molecular crystals. This is true, for 

instance, of the halogens. CI2 forms a crystal composed of molecules, 

each of interatomic distance 1.82 A (compared to 1.98 A in the gas), 

arranged in a complicated way which we shall not describe. Iodine I2 

forms a layer lattice. In Fig. XXIV-3 we show one of the layers, showing 

Fig. XXIV-3.—Layer of molecules in 12 structure. 

the diatomic molecules arranged in two sorts of rows. The spacing 

between atoms in a molecule is 2.70 A compared to 2.66 A in the gas. 

The spacing between different molecules in the same row is 4.79 A; 

between rows, 4.89 A on centers; between layers, 3.62 A. This structure 

is typical of the sort that one finds in other cases. 

Among the hydrides, water has received more attention than the 

others and is fairly well understood. The hydrides are hard to analyze 

by x-ray diffraction methods, because the hydrogens are not shown by the 

x-ray photographs; we must use other evidence to find where they are 

located. As we have mentioned earlier, we find that each oxygen is 

tetrahedrally surrounded by four other oxygens. Between each pair of 

oxygens is a hydrogen, two of the four hydrogens near an oxygen being 

joined to it to form a water molecule, the other two being attached to two 

of the four neighboring oxygens to form part of their molecules. This 

structure, as we have mentioned in Sec. 3, puts each hydrogen of one 

molecule near the oxygen of another, so that their opposite electrical 
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charges can attract each other, helping to hold the crystal together almost 

as if it were an ionic crystal. In Fig. XXIY-4 we show a layer of the 

crystal, indicating the oxygens by spheres, with vectors drawn out to the 

hydrogens. Three neighbors of the upper molecules in the layer, which 

we have drawn, are shown; the fourth lies directly above and is not 

shown. The molecules are spaced 2.76 A on (jcmters. It is interesting to 

notice that this is slightly less than twice the ionic radius 1.45 A of oxygen 

given in Table XXIII-2, showing that ice is not entirely different from an 

ionic crystal. The molecules have such a spacing that the volume of the 

solid is 20.0 cc. per mole, compared to 18 cc. per mole for the liquid, agree- 

Fia. XXIV--4.—Layer of ice structure. 

ing with the well-known fact that ice is less dense than water. This is 

because the molecules in ice arc unusually loosely packed. In water, the 

individual molecules are actually farther apart, about 2.90 A on centers 

compared to 2.76 A in ice, but they are packed so much more efficiently 

that there are more molecules in less space and a greater density. In 

addition to showing how each oxygen is surrounded by four others, Fig. 

XXIV-4 shows the hexagonal structure which is so characteristic of ice 

crystals and which is well known from the form of snow flakes. 



CHAPTER XXV 

ORGANIC MOLECULES AND THEIR CRYSTALS 

In Chap. XXIV, we have been talking about substances held together 

by homopolar bonds. We have had a rather small list of compounds to 

work on; but we have hardly touched the most fertile field for discussing 

the homopolar bond. Organic chemistry of course presents the best 

organized and most extensive field for the theory of homopolar valence. 

The carbon atom can form four single bonds, which Umd to be oriented 

toward the four corners of a tetrahedron, and this furnishes the funda¬ 

mental fact on which the chemistry of the alix)hatic or chain compounds is 

based. The great difference between organic and inorganic chemistry is 

the way in which more and more carbons can be bonded together to form 

great chains, resulting in molecules of gnmt complexity. These carbon 

chains form the framework of the organic compounds, the other atoms 

merely being attached to the carbons in most cases. In the first section, 

we discuss the ways in which carbons can be joined together. 

1. Carbon Bonding in Aliphatic Molecules.—In the first place, two 

carbon atoms can join together, as for instance in ethane, by a single 

H H 

bond. Thus ethane has the structure H:C:C:H, as indicated in Sec. 1, 

H H 

Chap. XXIV. The carbon-carbon distance in this case is about 1.54 A, a 

value approximately correct for the carbon-carbon distance in all aliphatic 

molecules with single bonds. The hydrogens are arranged around the 

carbons so that the three hydrogens and one carbon surrounding either 

carbon have approximately tetrahedral symmetry. The carbon-hydro- 

gen distance is presumably about 1.1 A, as in methane. Unfortunately 

this carbon-hydrogen distance is almost impossible to determine accu¬ 

rately, since the hydrogen atom represents too small a concentration of 

electrons to be shown in x-ray or electron diffraction pictures. Each of 

the CHa groups is able to rotate almost freely about the axis joining the 

two carbons, as shown in Fig. XXV-1. Thus there is no fixed relation 

between the positions of the hydrogens on one carbon and those on 

another. 

If more than two carbon atoms join together to form a chain, they 

necessarily form a zigzag structure, on account of the tetrahedral angle 

between bonds. Thus in Fig. XXV-2 we show propane CHjCHaCHa 
420 
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and butane CH3CH2CH2CH3. The carbon-carbon distances as before 

are about 1.54 A and the carbon-hydrogen distances about 1.1 A. On 

account of this zigzag nature, the chains with an even number of carbons 

act differently from those with an odd number, and there is an alternation 

Fia. XXV-1.—The ethane molecule, CH3-CH3. 

in physical properties as we go up the series of chain compounds, the 

even-numbered compounds falling on one curve, the odd-numbe^red on 

another. Chains of practically indefinite length can be built up, and it is 

interesting to see how the physical properties of the substances change 

Fio. XXV-2.—The molecules of propane, CH3CH2CH8, and butane, CH*CH2CH2CH8. 

as the chains get longer and longer. For example, in Fig. XXV-3 we show 

the melting point and boiling point of the chain compounds as a function 

of the number of carbon atoms in the chain. The alternation of which we 

liave spoken is obvious in the melting points, though not in the boiling 
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points. This can be explained as follows. In the solids, as we shall 

mention later, the zigzag molecules are arranged with their carbons all 

in a plane, so that the line joining carbons to their neighbors makes a 

sort of saw-tooth shape. Then the molecules with an odd number of 

carbons, in which the lines joining the two end carbons point in different 

directions at the two ends of the chain, are definitely different from those 

with an even number, in which the end lines point in the same direction 

at the two ends of the chain. Thus we can expect the solids to show an 

alternation in properties. But in the liquid, or the gas, the possibility of 

free rotation about a carl)on-carbon bond results in a great flexibility of 

of carbon atoms in the chain. 

the chain. It can turn and twist, forming anything but an approximately 

straight chain, and the result is that the two ends will be oriented quite 

independently of each other. Thus there will be no average difference, in 

the liquid or gas, between the chains with even and odd numbers of car¬ 

bons. Now the melting point measures the equilibrium between liquid 

and solid, so that the alternation in the properties of the solid will show in 

the curve, but the boiling point depends only on liquid and gas and will 

not show the alternation. 

In addition to this feature, Fig. XXV-3 is interesting in that it shows 

that the melting and boiling points of the chain hydrocarbons increase 

rapidly as the chain gets longer. Not only that, but the viscosity of the 

liquids goes up as carbons are added to the chain. These effects are 

qualitatively reasonable. Anything tending to hold molecules together 

tepds to increase the melting and boiling points. Now a chain hydro¬ 

carbon, as far as the carbons are concerned, is much like a string of 
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methane molecules fastened together like a string of beads. In a very 

rough way, the valence forces hold the carbons and their hydrogens 

together tightly, whereas the Van der Waals forces, the only ones opera¬ 

tive in methane, hold that substance together only very loosely. It is 

only reasonable, then, that the boiling points of these long chain hydro¬ 

carbons should be higher than for the short ones. The increased viscosity 

of the liquids is also reasonable. After all, a liquid made of long flexible 

chains will certainly get tangled up, just as a mass of threads will get 

tangled and knotted. Quite literally, if the chains are long enough, the 

molecules will tie each other up in knots and prevent flow of one molecule 

past another. 

H H H H H H 
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Fig. XXV-4.—Isomers of hexane, CeH^. 

We have spoken of the simple chain hydrocarbons, in which there is a 

single chain of carbons, with their attached hydrogens. These arise when 

each carbon of the chain, except the end ones, is joined to only two other 

carbons and two hydrogens. But there is nothing to prevent a carbon 

being bonded to three or to four other carbons. In other words, branch 

chains can be formed. In this way, new branching compounds are 

formed, which in general will have the same chemical composition as some 

one of the simple chains, but of course will be rather different in physical 

properties. Two such compounds, having the same number of atoms of 

each element but with different arrangements, are called isomers. As 

an illustration. Fig. XXV-4 shows the formulas for the isomers of hexane. 

Of course, on account of the possibility of rotation about C-C bonds, these 
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molecules can assume many complicated shapes. When we begin to get 

complicated side chains, however, the possibility of rotation is somewhat 

diminished, since different parts of the molecule can get into each other’s 

way with some orientations. This effect is called steric hindrance, and it 

operates to stiffen the molecule to some extent. It can hardly stiffen a 

long chain to any great extent, however, and the various branches of a 

hydrocarbon with long branches are presumably very flexible. 

If the branching process extends very far, there is no reason why the 

extremity of one branch cannot join onto another, forming a closed loop. 

The simplest compound in which this occurs is cyclohexane, shown in 

Fig. XXY-5. A geometrical investigation, made most easily with a 

model, will show that with less than the six carbon atoms of cyclohexane 

Fig. XXV-5.—The cyclohexane mole- Fia. XXV-6.—The diamond 

cule (CH2)6. structure. 

it involves considerable distortion of the tetrahedral bond angles to form 

a closed ring, but that six carbons can join up with no distortion of the 

tetrahedral angles. The atoms are rigidly held in position by their bond¬ 

ing, in this case, so that cyclohexane is a much more rigid molecule than 

the flexible chain hydrocarbons. 

The branching process and the formation of closed loops can continue 

much further than it is carried in cyclohexane. The ultimate in this 

line is the diamond. This is the structure obtained when every carbon 

is joined tetrahedrally to four other carbons. It makes a continuous lat¬ 

tice filling space, as shown in Fig. XXV-6, which is essentially the same 

as the zincblende structure of Fig. XXIII-3 except that it is formed of 

only one type of atom. The type of rigidity present in cyclohexane is 

found here in its most extreme form. The structure is braced in every 

direction, and the result is that diamond is the hardest and most rigid 

material known. One can trace out hexagons like cyclohexane in the 



Sec. 2] ORGANIC MOLECULES AND THEIR CRYSTALS 425 

diamond crystal; one only has to replace the hydrogens in cyclohexane by 

carbons and continue the lattice indefinitely to get diamond. Not only 

the arrangement but thc'. lattice spacing of diamond is the same as in the 

aliphatic chain compounds: the carbon-carbon distance in diamond is 

1.54 A, just as in the chains. 

The possibility of carbon chains is what leads to the richness of 

organic chemistry. A diamond is really a molecule of visible dimensions, 

held together by just the same forces acting in small molecules. There is 

no reason why there cannot be all intermc^diate stag(^s between the small 

molecules mad(^ of a few atoms which we usually think about and mole¬ 

cules of enormous size. Olwiously carbon atoms can link themselves 

tog(3ther in innumerable ways, if we only have enough of them. The 

organic chemists have discovered a very great number of kinds of mole¬ 

cules, but there seems no reason why they cannot go on forever without 

exhausting the ])ossibilities. For by the time a structure is built up of 

carbon atoms, many atoms in length, om^ (‘iid can no longer be expectc^d 

to know what the oihor end is doing. There is no rc^ason why one mole¬ 

cule' (*,annot add chains in one way, another in another, and form a con¬ 

tinually increasing variety of new molecules. One gets to tlu^ point very 

(easily where it hardly pays to speak about molecules of a single type at 

all, but where one', may have chains of indefinite length and things of that 

sort. Such situations are presumably met in problems of living matter, 

where many molecules are of almost microscoi)ic size. We shall meet one 

other field in which we have similar chain formation, and ther(4‘ore a great 

variety of compounds: the silicates, which form a chain of alternating 

silicons and oxygens. As the carbon chain leads to the great variety of 

mat(^rials in organic chemistry and living matter, so we shall seci that the 

silicon-oxygen chain leads to the great variety of materials in the field of 

mineralogy. 

2. Organic Radicals,—The carbon chains form the skeleton, so to 

speak, of aliphatic organic compounds. But in })lace of the hydrogens 

which are attached to them in the simple hydrocarbons, there are many 

organic radicals which can be bonded to the carbons in various positions 

of the molecule, thus greatly increasing the complexity of the possible 

compounds. We shall mention only a few of the simple radicals in this 

section. 

In the first place, a single electronegative atom can act like an organic 

radical, being substituted for a hydrogen. The monovalent halogens, 

F, Cl, Br, I, replace hydrogen freely. Like hydrogen, they can form a 

single homopolar bond with carbon. For instance, methyl chloride has 

H 

the structure H: C: Cl:. Like methane, it is tetrahedral. The carbon- 

H * 



426 INTRODUCTION TO CHEMICAL PHYSICS [Chap. XXV 

hydrogen distance is presumably about 1.1 A, as in methane, and the 

carbon-chlorine distance is 1.77 A. Similarly two, three, or all four, of 

the hydrogens can be replaced by a halogen atom, not necessarily all 

the same halogens. In these compounds, the carbon-halogen distances 

are always approximately the following: 

Carbon-fluorine.1.36 A 

Carbon-chlorine.1.77 A 

Carbon-bromine.1.93 A 

Carbon-iodine.2.28 A. (2.1) 

These distances are not far from the ionic radii of Table XXIlI-2, which 

were 1.30, 1.80, 1.95, 2.20 A respectively for F”, Cl~, Br“, I“. Since 

the (carbon certainly has nonvanishing dimensions, this means that in 

these bonds there is considerable shrinkage from the atomics distances in 

ionic crystals, but not so much shrinkage as in some other cases, so that 

we should not be surprised to find that the halogen atoms have quite a 

little of the properties of negative ions. As a matter of fact, these com¬ 

pounds have rather strong dipole moments: in CH3CI, for instance, we see 

from Table XXTV-1 that the moment is 1.97 X 10“^^ absolute units, 

corresponding to about 0.23 of an electron at the distance 1.77 A. We 

may conclude, then, that the halogen atoms pull the electrons that they 

share with the methyl or other organic group ratluT strongly toward 

them, so that they hav(^ (piite a little the structure of negative ions. In 

the matter of physical properties, we can see from Table XXIV-1 that 

replacing hydrogen by halogens increases both Van d(u* Waals a and 6, as 

we should expect from the fact that the halogen atoms are much bigger 

than hydrogen. Thus for the series CH4, CH3CI, CH2CI2; CHCI3, CCI4, 
we have the properties shown in Table XXV-1. The 5\s increase fairly 

Table XXV-J.—Properties of Substituted Methanes 

a b 
Boiling 

point, ®C 

CHi. 2.28 X 10^2 42.6 -161.4 
CHjCl. 7.56 64.5 - 23.7 
CH2CI2. 
CHCI3. 15.38 102 61.2 
CCI4. 20.65 138 76.0 

regularly as more chlorines are added, and the amount of increase per 

chlorine is not far from 28 cc. per mole, which is half the b value for 

CI2 (56.2, from 'Table XXIV-1). The increase in the a\s and 6’s leads to 

an increase in boiling points, as is shown, and as is natural with larger 

and heavier molecules. 
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Divalent and trivalent as well as monovalent electronegative atoms 

can also attach themselves to organic carbon-hydrogen chains. Thus, in 

I)articular, oxygen plays a very important part in organic, compounds. If 

an oxygen atom attaches itself by a single bond to a cai’bon, it has another 

bond free, with which to attach itself to something else. This second 

bond may go to a hydrogcui, in which case we have the organic OH group, 

H 
forming an alcohol. Thus methyl alcohol is H:C:0:. The OH group, 

H H 

like the halogens, though it does not exist as a separate ion in the organic 

molecuk^s, still has a considerable tendency to draw negative charge to it, 

pulling th(^ shared electrons away from the methyl group. Thus the 

dipole moment of methyl alcohol is 1.73 X 10“^*, almost as large as that 

of methyl chloride CH3CI. Instead of being bound to one organic group 

and one hydrogen, as in the alcohols, the oxygen may join to two simple 

organic groups, forming an ether, lik(^ dimethyl ether (CH3)0(CH3), 

diethyl ether (C2H5)()(C2Hr)), etc. Here the orgaiiic groups come off 

from the oxygen more or less at tetrahedral angl(‘S. The oxygen in the 

ethers also has some tendency to draw luigative charges to itself, so that 

the ethers have a dipole moment, though not quite so large as in the 

alcohols. It is plain from this discussion that the alcohols and ethers 

can in a way be derived from water by replacing one or both of the 

hydrogens by methyl, ethyl, or more (complicated groups. The carbon- 

oxygen distances in these compounds are about 1.44 A and the angles 

between the bonds are roughly the tetrahedral angle, though there are 

considerable variations both in distance and in angle from one compound 

to another. 

As the alcohols and ethers can be deprived from water by replacing 

one or both of th(i hydrogens, so the amines come from ammonia by 

replacing one, two, or three of the hydrogens by organic groups. In 

Table XXIV-1, for instance, we give properties of methylamine CH3NH2, 
dimethylamine (CH3)2NH, and trimethylamine (CTi3)3N. Evidently 

a complicated set of compounds can be built up in this way, using more 

and more complicated groups to tie to the nitrogen atom. 

One of the most important organic radicals is the carboxyl group, 

COOH. This group attaches itsedf by a single bond to any carbon atom, 

forming an organic acid. For instance, acetic acid has the structure 

H .0: 

H; C: C* . That is, one oxygen is held to the carbon by a double 

H:0:H 

bond, the other by a single bond, 'so that this latter can also attach itself 

to a hydrogen. Even simpler is formic acid, HCOOH. The conspicuous 
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tendency of the carboxyl group is for it to lose the H as a positive ion, 

leaving the remainder of the molecule as a real negative ion, as for exam¬ 

ple (CHaCOO)". Then a metallic ion, for instance sodium, can attach 

itself, forming for instance sodium acetate, (CH3COO)“Na‘*". While we 

have written this as if it were a rc'al ionic compound, to emphasize this 

quality more than in most organic compounds, still such a substance is 

not as definitely ionic as in the inorganic salts. For the sodium in this 

case furnishes a single electron, just like liydrogen, so that we can consider 

it as forming a homopolar bond with the oxyg(m. In sodium acetate, 

for instance, we could write the structure just as in acetic acid above, 

with the replacement of the hydrogen by sodium. The distinction 

between this way of writing it and the ionic way is simply a matter of 

degree, depending on how much tlie shared electrons between the sodium 

and the oxygen are really shared (the homopolar interpretation) or how 

much they are definitely held to the oxygen (the ionic interpretation). 

The compounds fornnid in this way, by replacing the H in the carboxyl 

group by a metal, are called the esters and are a vc’iy important group of 

compounds. 

It is obvious that in a section such as this, it is impossible to do more 

than give a cursory notice to a very few of the many important organic 

radicals. All we have hoped to do is to give some idea of the principl(\s 

of valence leading to the bonding. These same principles continue to 

be a guide in the more complicated radicals as well. At least, one can get 

some idea of the way in which, by at taching any one of a great number of 

radicals to any of the possible points of attachment in a carbon chain 

structure, one can get an enormous number of compounds, as one actually 

finds in organic chemistry. 

3. The Double Bond, and the Aromatic Compounds.—Ethylene, with 

H. .H 

structure C:: C , and acetylene, with st ructure H: C: : : C: H, are 

H' H 

elementary examples of the double and triple bonds between carbons. 

The carbon-carbon distances are 1.34 A and 1.22 A, in comparison with 

1.54 A for single bonds. This illustrates the general rule that inter- 

nuclear distances are less with double bonds than with single, and still 

less with triple bonds. There is one feature of interest in ethylene. 

Unlike the situation with the single bond in ethane, there is not the 

possibility of free rotation about the double bond. That is, the hydrogens 

all tend to lie in a plane, as our structural formula would indicate. This 

tendency is true in general with double bonds. 

The best-known, and at the sam^ time the most puzzling, double 

bonds occur in the benzene ring, which is the foundation of the aromatic 

compounds. Benzene, CeHe, is a plane hexagonal structure, as shown in 
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Fig. XXV-7. The carbon-carbon distance is 1.39 A, definitely less than 

the 1.54 A spacing in the chain compounds, but slightly greater than the 

1.34 found with double bonds in ethylene. Each carbon is bonded to 

only three other atoms, rather than four, 

and these throe lie in a plane at angles 

of 120° to each other, rather than being 

arrangc^d tetrahedrally in spacer. Car¬ 

bon in siudi a compound seems to behave 

definitely diffcu'ently from its behavior 

in the aliphatic compounds. Something 

of a guide to tlui intej'pretation is fur¬ 

nished, however, by the structure of 

graphite, a form of carbon havdng the 

same relation to the aromatic comjKuinds 

that diamond has to the ali]iliatic com¬ 

pounds. The graphite structure is 

shown in Fig. XXV-8. It will b(‘ seen 

that the atoms are arrang(‘d in sheets, 

forming regular hexagons similar to the 

benzene ring in the sluH'ts. Not only 

are the hexagons of the sam(‘ shape as the ring but they are of 

almost the same size; the carbon-carbon s})acing between neighbors in a 

sheet is -1.42 A, very slightly larger than the value 1.39 A in benzene. 

Fig. XXV-7.- -The benzene 

CdU. 
molecule, 

The sheets, however, are 3.4 A apart, a much greater distance. This is 

as if the valence bonds acted Wholly within the separate sheets, and only 

Van der Waals forces, or similar weak forces, held the sheets together and 

were not able to pull them very close together. This impression is made 

stronger by the physical properties of graphite. It is a very soft material 
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and a good lubricant, and the lubricating properties arise because one of 

the sheets slides over another, indicating that the forces between sheets 

are small and easily overcome. It is strongly suggested that the graphite 

structure is similar to the benzene ring, the carbon being in the same form 

in both substances. In harmony with this point of view, it is found that 

benzene rings can join together the same way that the hexagons do in 

graphite. Thus if we join two hexagons we have naphthalene, CioHs, 

shown in Fig. XXV-9. More and more rings can continue to join uf) in 

this way, so that we have the same possibility of continuous extension and 

complication with the aromatic compounds that we have with the ali¬ 

phatic ones with their carbon chains. 

Fig. XXV-9. The structure of naphthalene, CioHb. 

Not only can benzene rings join eacdi other, but also the hydrogens 

can be replaced by various organic radicals. Thus, for instance, one 

hydrogen in benzene can be replaced by an OH group, as in the alcohols 

among the aliphatic compounds. The resulting compound, CeHsOH, is 

phenol, or carbolic acid. Or one hydrogen can be replaced by a carboxyl 

group, COOH, resulting in benzoic acid CeHsCOOH. If the hydrogen 

in the^* carboxyl is replaced by a metallic atom, we have a benzoate of 

the corresponding metal. A great number of other radicals can replace 

the hydrogens. And we observe that if more than one of the hydrogens 

of a ring is replaced by some other radical, there are a number of possible 

positions for the radicals on the ring. Thus if two of the hydrogens of a 

benzene ring are replaced by chlorines, we have dichlorbenzene, with 

three possible structures, as indicated and named in Fig. XXV-10. The 

three types are called orthodichlorbenzene, metadichlorbenzene, and 

paradichlorbenzene, according to the position of the second chlorine with 
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respect to the first. Three such compounds can often have quite different, 

properties. In particular, it is plain that in the case shown the para- 

compound is symmetrical and can have no dipole moment, while the 

ortho- and meta- compounds are quite unsymmetrical and have a con¬ 

siderable dipole moment, since the chlorine as usual pulls a good deal of 

negative charge to itself. 

(c) paradich lor benzene. 

H 
• • 

. C 

H 
• • 

C . 

• • 
H 

H 
• • 

C 

• • ^ •u . ^ • • H 
• • 

H 

(b) 

• • 
H 

(c) 
Fig. XXV-11.—Three alternative valence structures for benzene. 

The valence properties of the carbon in the benzene ring do not at 

first sight fit in with our rules for determining valence. To explain the 

valence by homopolar bonds, we must assume that each carbon is bound 

to one of its neighboring carbons by a single bond, to the other one by a 

double bond, and to the hydrogen or other radical by a single bond. Two 

possible ways of doing this are shown in Fig. XXV-11 (a) and (6). This 

structure would suggest that the hexagon should not be a regular one, but 
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that instead the pairs of carbons held by double bonds should be closer 

together than those held by single bonds. ICxperimentally this is not the 

case, however. X-ray and electron diffraction methods show that the 

hexagon is a regular one. Furthermore, if there were real difference 

between the single and double bonds, a molecule with two radicals in the 

ortho-position and a double bond between would be different from a 

molecule with the same two radicals in th(^ same position but with a 

single bond betweeii. No such difference is observed. For all these 

reasons one concludes that the structures of Fig. XXV-11 (a) and (b) do 

not corr(\spond exactly with the facts. It is generally considered that 

the true state of affairs is a sort of combination of the two structures of 

(a) and (6), in which the pair of electrons forming a double bond is some- 

Fia. XXV-12,—Structure of the naphthalene crystal as determined by x-ray analysis. 
{From J. Monteath Robertson, Science Progress 32, 246 (1937) by permission of the author.) 

times found as in one of the structures, sometimes as in the other. This 

may perhaps be symbolizc^d as in (c) of tln^ figure, where the extra electrons 

are shown in a position where they could contribute somewhat to both 

bonds. This valence structure of benzene, though it does not fit in with 

ordinary ideas of valence very satisfactorily, proves to be very well 

explained in terms of the quantum theory. 

4. Organic Crystals.—Most organic compounds are definitely formed 

of molecules, arranged in some fairly closely packed form in the crystals. 

As with the simpler homopolar compounds, the molecules are held 

together largely by Van der Waals forces, though in some cases where 

the molecules have dipole moments, there are electrostatic forces as well. 

The intermolecUlar forces, as with the simpler compounds, are small 

compared to the energy of dissociation in most cases, and the distances 

between molecules are large compared to the interatomic distances 
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within a single molecnl(\ We shall not attempt any cataloguing of the 

different types of crystal structure found in the crystals; almost every 

compound has its own form of structure. Often they are complicated on 

account of the complicated shape of the molecules. As a single example, 

we show in Fig. XXV-12 a diagram of the naphthalene crystal. This is 

the direct result of the x-ray diffraction experiments and shows a projec¬ 

tion of the crystal along a certain axis, by giving contour lines indicating 

the density of (dectric charge. The naphthalene molecules stand out 

clearly, and we see by comparison with Fig. XXV-9, in which the double¬ 

ring structure of this molc^cule is shown, that the plane of the molecule is 

inclincid to the plane of the paper. The other organic crystals which have 

been investigatc'd all have the sam(^ general properties of representing 

fairly closely packed structures of distinct molecule's. 

The general remarks re'garding eniergy which we have made in Chaps. 

IX and XXII apply here also. The interatomic* forces within the mole- 

cuh^s can be well represented by Morse curves, as in Chap. IX, Sec. 1. 

In Table XXV-2 we give values of D and r, for the most important bonds 

Table XXV-2.—Constants of Bonds in Organic Molecules 

Substance Bond Df kg.-cal. 
Dy electron 

volts 
re, A 

Chain hydrocarbon. C—H 101 4.34 1.1 
Chain hydrocarbon. C- C 83 3.60 1.54 

Alcohols and others. C—0 83 3.6 1 .44 

Aminos. C—N 67 2.88 
Iluorine-subst. hydrocarbons. C-F 125 5.40 1.36 
Chlorine-subst. hj^drocarbons. C—Cl 79 3.41 1.77 

Bromintj-subst, hydrocarbons. C—Br 66 2.83 1.93 

lodiiie-subst. hydrocarbons. C—I 51 2.2 2.28 

Carbon double bond. C::C 150 6.46 1.34 

Carbon triple bond. C:::C 200 8.7 1.22 

Bond energies taken from Pauling, J. Am. Chem. Soc., 54, 3570 (1932). 

occurring in organic compounds, similar to the values for diatomic mole¬ 

cules given in Table IX-1. In contrast to these high values of heats of 

dissociation, the heats of vaporization of the simpler compounds are 

small. Thus in Table XXV-3 we give heats of vaporization, again in 

kilogram-calories per mole, of some of the organic compounds we have 

mentioned. The latent heats, as we see from the table, are of the same 

order of magnitude as those for inorganic compounds shown in Table 

XXIV-3. The alcohols stand out as having rather high latent heats, for 

the same reason that water does: their OH groups tend to hold the mole¬ 

cules together by electrostatic attraction. In addition, there is a general 

trend toward higher latent heats as we go down the list. This is natural, 
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Table XXV-3.—Latent Heats of Vaporization of Organic Compounds 

Suhstfinoc Formula Latent heat 

Motharic. CH4 2.3 
Kthane. CAh 3.9 
Methyl chloride'. CH3CI 4.7 
Methyl alcohol. CH3OH 9.2 
Ethyl alcohol. CzHeOH 10.4 
PropaiK^. C,H, 4.5 
Chloroform.. . CHCI3 8.0 
Acetic acid. CH3COOH 5.0 
iso-Butane. CH(CH,)8 5.5 
w-Butane. C.H.o 5.6 
Diethvl ether. (C,H6)20 7.0 
Naphthalene. CjoHs 9.7 
n-DiM*ane. C]oH22 8.5 

Latent hoaia are in kilogram-calories per mole, taken from Landolt’s Tables, and are for the lowest 
available temperature in each case. 

for the substances of higher melting and boiling points lie toward the 

end of the list, and if the entropy of melting is approximately constant for 

the various substances, as it is found to be, we see that the greater the 

melting or boiling point, tlie higher the corresponding latent heat. Aside 

from these points, the important thing to observe in comparing Tables 

XXV-2 and XXV-3 is the fact that heats of vaporization are much less 

than heats of dissociation, so that molecules in organic compounds tend 

to have separate and independent existence. 



CHAPTER XXVI 

HOMOPOLAR BONDS IN THE SILICATES 

In the pre(5(^ding chapters we have discussc^d the general nature of 
the homopolar bond and have seen how it operat(\s in certain inorganic 
molecules and in the organic compounds. In the preset)t chapter we 
shall continue the discussion to include the silicates, the substances form¬ 
ing the foundation of a great many of the rocks and minerals. Silicon and 

oxygen, like carbon, can form continuous chains, and in this way can build 
up a skeleton structure for a great variety of compounds. First we shall 
dciscribe this chain structure and then we shall go on to show how it is 
found in substances of many different sorts. 

1. The Silicon-Oxygen Structure.—Silicon has four outer electrons, 
the same as carbon. Like carbon, it can form foiu* liomo})olar bonds, 

arranged in a tetrahedral structure. Thus we have Sill4, mentioned in 
the preceding chapter, and substitution products like SiF4, SiCL, etc. 
But the characteristic compounds are those in wliich oxygcui atoms are 
held by the four bonds. Since oxyg(U) is divalent, each oxygen must also 
be bonded to something else, and the simplest case is that in which each 
oxygen is bonded also to a hydrogen, forming Si (OH) 4, wit h the structure 

H 

:0: 

H:0:Si:0:H. 

* :0:’’ 

H 

In this structure, orthosilicic acid, the oxygens surround the silicons 
tetrahedrally, and a hydrogen is somewhat loosely attached to each 
oxygen. If the hydrogens are detached as i)ositive ions, w(' leave behind 

the orthosilicate radical (Si04)’'S a tetrahedral structure similar geometri¬ 
cally to the sulphate (SO4)— and perchlorate (CIO4)” ions mentioned in 
Chap. XXIII. The orthosilicate radical occurs as a negative ion in the 
orthosilicates, typical ionic crystals in which the orthosilicate ion, and 

certain positive ions, form an ionic lattice. An example is magnesium 
orthosilicate, or olivine, Mg2(Si04), a regular structure of Mg-^^ ions and 
orthosilicate radicals. In thi^, as in practically all silicates, the silicon- 

oxygen distance is approximately 1.60 A. This can be compared with the 
carbon-oxygen distance of 1.44 A found with single bonds in the alcohols 

435 
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and ethers, and seems to indicate a similar bonding in this case, the silicon 

atom of course being larger than the carbon atom. 

There is no reason why, instead of losing its hydrogen, one of the oxy¬ 

gens attached to a silicon cannot attach itself to another silicon. This 

:0: :0: 

leads to the structure (Si207)“®, with valence structure :0:Si :():Si:0:. 

In Fig. XXVI-1 we show the (Si04)~^ and (Si207)~^ ions, which are found 

in ionic crystals, occurring in nature as minerals. The positive ions 

found associated with them include a variety of metallic ions, such as 

Ca'^+, Zn++, Na+, Mg++, A1+++, etc. We 

shall not go into the crystal structure of 

thes(i substances, for they are rather com¬ 

plicated for the most part, and yet do not 

show any new principles of structure that 

we have not already met in our discussion 

of ionic crystals, with one exception. This 

exc(iption is the fact that the natural 

csijO^r® 
Fig. XXVI-1.—Structure of silicate 

ions. 

minerals show a rather strong tendency 

to substitute one positive ion for another. 

That is, the minerals are not always of the 

sam(^ chemi(ial composition. Often a posi¬ 

tive ion is missing from the lattice, and its 

place taken by another positive ion, with¬ 

out seriously distorting the lattice. Such 

substitutions take place only wlnm the two 

ions in question have about the same ionic 

radii. For instance, from the table of ionic 

radii. Table XXIII-2, we find that Ca”^'*' 

has a radius of 0.95 A, and Na+ a radius of 1.05 A. These are near enough 

alike so that calcium and sodium can substitute for each other in the 

lattice. Of course, these ions have different charges, and such a substitu¬ 

tion would upset the electrostatic equilibrium, resulting in a crystal 

having a net electric charge. This is not allowed, and to balance it other 

substitutions are always made. There is, for instance, a silicate contain¬ 

ing Ca+"^ or Na+ interchangeably, and Mg'^'*' and Al"^^ interchangeably. 

By having suitable relations between the amounts of these four ions, the 

crystal can always be kept electrically neutral and yet may have a variable 

composition. Such a situation is very often the case in minerals. 

2. Silicon-oxygen Chains.—In Fig. XXVI-1, we have seen how 

two or more silicons can be joined together by oxygens. This process in 

the ideal case can continue indefinitely, forming endless chains and in 

practice forming chains of varying length. The simplest such chain is 
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that in which each silicon is joined, through oxygens, to two other silicons. 

This is shown in Fig. XXVI-2. The valence structure can be symbolized 

:0: :0: :0: 0: 

:Si 0:Si o
 

w
 

6
 

Si etc. This structure, like the orthosilicate ion, is 

:0: ";0; ;0; d: 

electrically charged and is sometimes called the metasilicate ion. A 

single unit of the structure evidently has the structure (SiOs) . 

(b) 
Fig. XXVI-2.—Section of metasilicate chain, (SiOs) . («) View looking directly down. 

(6) Perspective. 

Each unit of the metasilicate ion has two oxygens carrying negative 

charges, which arc able to form homopolar bonds with other atoms. The 

simplest way they can do this is to take up hydrogens, forming bonds 

that are partly polar, but mostly homopolar, with the hydrogens, and 

resulting in metasilicic acid, H2Si03. It is evident that the single unit 

H2Si03 has no separate existence; the whole structure arises when the 

silicates are joined together to form chains. Similarly the oxygens might 

take up alkali ions, for example sodium, forming sodium metasilicate, 

Na2Si08, again made out of endless chains. If the chains are finite, as of 

course they really would be, the proportion of Na increases, until finally 

if the chains are only one silicon long, we have sodium orthosilicate, 

Na4Si04, which we have mentioned before. There is the possibility of a 

continual variation from one of these limiting cases to the other, as the 

average length of the chain changes. These substances, intermediate 
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between Na2Si03 and Na4Si04, have remarkable properties. They are 

commonly called water glass. If dissolved in water and left to set, they 

form a viscous, jellylike mass. The explanation is the same that we gave 

in the preceding chapter for the viscosity of the long chain hydrocarbons: 

the long stringlike molecules, on account of the possibility of rotation 

about the bonds joining neighboring atoms, are flexible and get tangled 

up in each other. Similarly iru^tasilicic acid, H-iSiOa, in water, forms the 

remarkable substances known as silica gel. This again is a jellylike 

material, getting stiffer and stiffer as it is allowed to set. It is remark¬ 

able, like all jellies, in the very small amount of material required to 

stiffen up a large mass of water. Two per cent or so of H2Si03 in water 

will transform the whole' mass into a gel. Presumably the action is 

somewhat more complicated t han simply the entanglement of the stringy 

molecules with each other. A hyeirogen atom of one chain, carrying a 

net i)Ositive charge, can happen to come close to an oxygen of another with 

its negative charge. The resulting electrostatic*, attraction, holding the 

chains rather tightly together, is analogous to the attraction of hydrogens 

for oxygens found in water, discussed in Secs. 3 and 4, Chapter XXIV. 

By such bonding of one chain to another, the structure could be stiffened 

greatly, so that it would take on some of the properties of a solid. Of 

course, with only occasional joinings such as we could have with a small 

percentage of metasilicic acid in a great deal of water, the rigidity would 

be much less than in a real solid, but that is just the characteristic 

behavior of jellies, which act solid and yet can be greatly distorted by a 

small force. These inorganic jellies are interesting in that they probably 

show us what is the essential structure of the organic jellies like gelatin, for 

instance. They are of great practical importance, in that they furnish 

the fundamental structure in cement and concrete. They can be pre¬ 

pared in water as fairly fluid materials but become gradually stiffer as the 

chains join together, and as water evaporates out of them. 

Metasilicate chains of varying length are found not only in jellylike 

materials, but also in crystals and minerals. In such cases, the chains 

are straightened out and really become indefinitely long, running parallel 

to each other through the whole length of the crystal. Positive ions are 

arranged in regular positions between the chains, so as to make the whole 

structure electrically neutral. An example is diopside, CaMg(Si03)2. 

These materials are really ionic crystals, in which the negative ions, 

instead of being of atomic dimensions, are lengthened out in one direction 

to be of large-scale size. 

More important than the simple metasilicate chain, in the structure 

of crystals, is the double chain found in the amphiboles. This structure 

is shown in Fig. XXVI-3, looking down on the top. A unit of the chain 

contains four silicons, eleven oxygens, as we see by counting, and it has 
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six oxygens capable of forming bonds, so that its structure is (Si40ii)'~^ 

This chain, unlike that of the metasilicates, has a type of cross-bracing 

which makes it quite rigid. Thus substances of this structure do not form 

jellies or viscous fluids, since these depend on th(^ flexibility of the chains. 

The characteristic form of materials containing th(^ double chain is the 

crystalline form, the chains extending parallel to eac^h other through th(' 

crystal, and the interstices filled in with positive ions in siudi a way as to 

make the structure neutral and hold it togetluT. The ionic forces holding 

the crystal together, however, are not so strong as the homoj>olar forces 

acting between atoms within the chain. Thus mechanical forces insuffi¬ 

cient to break the chains can pull them apart and s(‘parat(^ tlu^m into 

fibers. Such a fibrous structure is characteristic of the amphiboles and 

the double chain compounds. The most familiar example is asbestos, 

Fia. XXVI-3.—Double silictate chain, view looking directly down. 

a very strongly bound material with high melting point, and yet one in 

which the fibers can be separated from each other with ease. These 

simple fibrous materials are interesting in that they suggest th(^ way in 

which the more complicated fibers of organic chemistry are built up. 

They also contain chains, generally double or more cornplicatcid chains 

to get the necessary mechanical rigidity, the atoms and bonds concerned 

being typical of organic compounds. Since even the simplest of naturally 

fibrous materials are quite complicated, we sliall give no examples of 

organic fibres. 

3. Silicon-Oxygen Sheets.—The chain structure of Fig. XXVI-3 can 

be extended to form a two-dimensional sheet, as shown in Fig. XXVI-4. 

A unit of this structure has the composition (Si205) , but as with the 

chains this individual unit has no existence by itself. Sheets of this kind 

are found in the structure of mica. This mineral consists of silicon- 

oxygen sheets piled paralhd to each other, alternating with sheets contain¬ 

ing metallic ions, as Al, Mg, etc., along with oxygen and hydrogen. The 

sheets are stronger than the ionic bonds holding them together, so that 

mechanical force easily cleaves the crystal into thin sheets. This very 

characteristic property of mica thus follows directly from its valence 
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structure. Of course, it should not be thought that one can really cleave 

the crystal down to single silicon-oxygen sheets; this would demand much 

more delicate technique than can be used. But the tendency to split one 

sheet from another is great enough so that cleavage easily occurs along 

these planes. 

Another very important group of materials, the clays, are formed 

from silicon-oxygen slu^ets. In this case, however, the sheet is not the 

simple one shown in Fig. XXVI-4, but each shec^t is bound by homopolar 

valences to another sheet of different composition. For instance, in 

kaolinite, one form of clay, one starts with a silicon-oxygen sheet. Above 

that, there is an aluminum layer, with as many aluminums as silicons, 

bonded to the oxygens. The other bonds of the aluminums extend to a 

still higher sheet of oxygens, and finally these oxygens hold hydrogens by 

their unused valences. This makes an electrically neutral sheet with no 

unshared homopolar bonds, so that successive sheets are held to each 

other only by polarization and Van der Waals forces. In this they 

resemble the sheets of graphite, described in Sec. 3 of the preceding chap¬ 

ter. Like graphite, the clays have a soft and plastic structure, resulting 

from the ease with which one sheet can slide over another. They are 

quite different from mica, in which the bonds between sheets, being 

ionic, hold the sheets comparatively firmly together. The clays are also 

different from mica in that large crystalline sheets cannot be obtained. 

It has been suggested that this may be because the two sides of the sheet, 

the silicon side and the aluminum side, may have slightly different natural 

sizes, so that one sheet may be under compression, the other under ten¬ 

sion, in the material. This would mean that thin sheets would have a 

tendency to pucker and break, preventing the formation of large sheets. 
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4. Three-dimensional Silicon-Oxygen Structures.—^There are a 

number of ways in which silicons and oxygens can be joined together into 

three-dimensional structures, filling all space. These structures are all 

alike in that each silicon is surrounded by four oxygens and each oxygen 

by two silicons, so that the formula is Si02. The valence bonds are 

completely used up in holding the silicons and oxygens together, so that 

there is no possibility of adding other atoms to the structure. These 

materials, then, being bound in all directions by valence bonds, are very 

strong and rigid, something like diamond, though not cpiite so hard 

Perhai)s the simj)l(\st of tlu'se struc- 

tun^s to visualize is crist.obalite, 

shown in Fig. XXVI-5. This 

structure is very similar to the dia¬ 

mond structure, as shown in Fig. 

XXV-6. One can start with the 

diamond structure, place a silicon 

in the position occupied by (‘ach 

carbon, and an oxygcui midway 

between each silicon and each of its 

four neighbors, and one lias the 

cristobalite structure. This is a 

slightly undesirable structure for 

the atoms to form, however, from 

the standi)oint of the oxygens. We note that it requires the two 

valences of the oxygen to be diametrically opposite each other. On 

the other hand, as we have se(ui earlicu*, oxygen prefers to have its 

two valence bonds make roughly the tetrahedral angle 109° with each 

other. It is likely, as a mattcu’ of fact, that the oxygens in cristobalite 

are really somewhat out of the line joining neighboring silicons, 

just in order to have their two valenc(\s at an angle with each other. 

They oscillate around the midpoints of the lines joining silicon atoms, 

however, ratheu’ than being found always on one side or the other, 

as one tells from the crystal symmetry, which is the same as for the 

diamond lattice. In the other crystalline forms of Si02, in contrast to 

cristobalite, the two bonds formed by each oxygen make much more 

nearly the angle that is preferred. The best-known form, of course, is 

quartz. This is a decidedly complicated crystal, atoms being arranged 

with a screwlike symmetry, as is shown by the fact that quartz rotates 

the plane of polarization of polarized light. We shall not give its 

structure, but merely point out that as in other cases each silicon is 

surrounded tetrahedrally by four oxygens, each oxygen by two silicons, 

and that the angle between the two bonds from each oxygen is about 

145°. 
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From the fact that Si02 exists in several forms, we sec that the whole 

structure of this material is not determined by the nearest neighbors of a 

given atom. That is, one (^an have each silicon surrounded by four 

oxygens, each oxygen by two silicons, in many different ways. This fact 

is responsible for the amorphous nature of fused quartz, the simplest form 

of glass. This is an irregular striKdiire, with no indication of a repeating 

regularity. And yet the immediate neighbors of any given atom are 

arranged as they are in cristobalite. It is rather hard without a model 

done, but we show in 

h 1 ^ two-dimensional schematic 
I J. JL ][ r representation of the same situation. In 

jT case, the black dots represent the silicons, 

Jl and each is surrounded by threci circles repre- 

^ senting oxygens (instead of four as in the 

I t t t Y three-dimensional case), while each oxygen 

is between two silicons. The diagram (6), 

representing the glass, shows that by only 

slight distortions of the bond angles of the 

oxygens, the molecules can be joined in a 

b quite irregular structure. Some of the bonds 

glass are under more strain than 

0-4 others, and are fairly easy to break. Thus 

_as the temperatures is raised, some bonds will 

7 break and the material will lose a little 

strength. If bonds break, it may be that 

they can join again with a different arrange- 

Fiq. XXVI-6.—Schematic repre- meiit, resulting in permanent distortion of 
sentation of crystal and glass. f rnH.teriak It is in this wav that the fflass sentation of crystal and glass. material. It is in this way that the glass 

flows at high temperatures. There is no sharp melting point as there is 

with a crystal, for this demands that in all parts of the material the bonds 

weaken at the same temperature. Rather we might say that on account 

of strain some parts of the glass have higher melting points, some lower, 

so that the softening is gradual. 

The actual glasses generally contain Na20, or other constituents, in 

addition to Si02. Now if we look back, we notice that the proportion of 

oxygen to silicon is higher in the compounds where the atoms form chains 

or sheets than in the three-dimensional lattice of Si02. The reason is 

that the chains or sheets contain some oxygens bonded to only one silicon 

rather than two, the other bond being attached to some other atom. By 

analogy, we see that in a soda glass, the extra oxygens coming from the 

Na20 will join onto silicons and will introduce some oxygens bonded to 

only one silicon. Obviously the other bond will hold the oxygen to 

sodium atoms. Such a glass, then, will have fewer cross links or bonds 
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between atoms than pure Si02 and consequently will be softer, and will 

begin to soften at a lower temperature. These properties of course are 

characteristic of the soft glasses. In any case, however, the glass struc¬ 

tures, like the Si02 structures, have a very strong and rigid bracing, so 

that it is natural that they, like diamond, which also has valence binding 

in three dimensions, should form very hard substances. 



CHAPTER XXVII 

METALS 

Most of tlie eloiTK'iits aro m(‘tals. Then' are six inert gases and 

twelve or foiirtecai definitely eleetronegativc' (dements, leaving approxi¬ 

mately seventy metallic? cdenmnts. We have ah’eady seen how tlu'y 

combine with negative radicals to form ionic substances, and how on 

occasion th(?y become bound in organic (‘ompounds, l)y a bond partly 

ionic and partly homopolar. But the ('lemcmts themselves take the 

familiar metallic form, and rnixturc^s or compounds of one metal with 

another form alloys, similar in most r(\spects t o pure metals. As we know, 

the medals are fairly strongly bound substances. Thcdr melting points 

are rather high, iiK'rcury and gallium being the only ones that are licpiid 

near room temperature. Thus we must assume that there are fairly 

strong l)onds betweem the atoms of the medal. As wc? saw in Chap. 

XXII, these bonds resemble the homopolar type, but it is generally 

considered best to treat them as in a class by themselves, the metallic 

bonds. 

1. Crystal Structures of Metals.—Metals are divided fairly definitely, 

though not perfc'ctly sharply, into two groups: the ordinary metals and 

a group of peculiar metals vc'rging on the nonnK'tals. These peculiar 

metals come at the ends of the rows of the periodic table and inc^hide 

approximately the following: C, Si (both of whi(?h have some' metallic 

properties, though we have previously treated them as nonmetals), Ga, 

Ge, As, Se (which is partly metallic), In, Sn, Sb, Te, Tl, Bi. The ones 

we have just named are peculiar in that their bonds are very similar to 

homopolar bonds. Thus Si, G(‘, Sn, all crystallize in the diamond struc¬ 

ture, like carbon, so that we can consider that thc^y have four homopolar 

valences binding them to their four nearest neighbors. Arsenic, anti¬ 

mony, and bismuth have peculiar structures in whi(?h each atom is bound 

to three nearest neighbors, corresponding to the three homopolar valences 

which we should exf)ect thc^se (dements, like nitrogen and phosphorus, to 

form. The binding joins atoms in layc^rs, resulting in brittleness and a 

tendency to cleave easily along the layers. And selenium and tellurium, 

with two valences like oxygen and sulphur, tend to form chains, each atom 

being bound to two nearest neighbors, a formation found alst) in sulphur, 

though not in oxygen. 

The ordinary metals, in contrast to these peculiar elements, do not 

form homopolar valence bonds in any ordinary sense. Each atom has too 
444 
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many nearest neiglibors to sliarc electron pairs with each; they try to 

shares electrons wit h their neighl)()rs but there are not enough to go around. 

This has several results. In the first place, there is no such directional 

property to the bonds as we have with real homopolar compounds. 

Instead of tending to come off in tetrahedral directions or something of 

that sort, tlie nnM.allic bonds can attract other atoms no matter in what 

directions they may lie. Thus the atoms act as if they were spheres 

without ])referre(l dircudions, as far as the crystal structure is concerned, 

and the' ordinary metals (uystallize in forms that are characteristic of 

closer packenl sidu'res. Secondly, since the^ valence bonds are shared, so 

to s])eak, between sevei'al pairs of atoms, tlu'y aj'e not so strong as real 

homopolar valeneies. Thus a metallie* crystal, though much stronger 

than one held togethe'r l)y Van der Waals forces, is weakei* than one, like 

diamond or quartz, held by pure homopolar vale'uces. Furthermore, the 

fevv^er electrons an atom has to share with its neighbors, the weaker its 

bonds, so that the', alkali nu'tals, with only one ek'ctron each outside 

closed shells, arc^ the weak(*st metals mechanically and the lowest melting 

ones, the alkaline earths an' next, and so on, while the iron, x)alladium, and 

platinum groups have the strongest bonds. Finally, the electrons hold¬ 

ing th(^ metal together are not localiz(Ml between definite pairs of atoms, as 

they are in homopolar bonds, l)ut can move around, sometimes being 

found betwex'Ti one })air of atoms, somc'times between another. The 

result of this fn^edom of motion of the electrons is the property of electrical 

conductivity, the most characteristic distinguishing feature of the me'tals. 

With this preliminary view of metals, w(^ shall now consider their crystal 

structures and later go on tn some of their other pro])erties. 

The ordinary metals crystallize in one of three structures: the face- 

centered cubic, hexagonal, or body-centered cubic. Of these, the face- 

centered cubic and hexagonal close-packed st ructures havts been described 

in Chap. XXIV, Sec. 4. The face-centered (uibic structure is shown in 

Fig. XXIV-1 and the hexagonal close-packed structure in Fig. XXIV-2. 

Sometimes in the metals the latter structure is slightly distorted, being 

('longat(^d along the vertical axis of Fig. XXIV-2, so that it is no longer 

a close-packed structure. The body-cent('red cubic structure consists of a 

simple cubic lattice, with atoms at the corners of the cubes and also at the 

centers. Thus it resembles the caesium chloride structure, shown in 

Fig. XXIII-2, cxcejit that its atoms are all alike, instead of their being 

two sorts of atoms as in the caesium chloride structure. In the face- 

centered cubic structure each atom has twelve equidistant neighbors. In 

the hexagonal close-packed structure each atom also has twelve equi¬ 

distant neighbors, but if the structure is distorted so that it is no longer 

close packed, the six atoms in the basal plane will be at a different dis¬ 

tance from the six neighbors in adjoining planes. In the body-centered 
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cubic structure each atom has eight equidistant neighbors. In addition 

to these strucdures, several elements crystallize in the diamond structure, 

with four equidistant neighl)ors. The other structures, in which the 

unusual metals crystallize^, will be described later. 

We now give, in Table XXVII-1, the crystal structures and lattice 

spacings of the metals. For each metal we give the structure, abbreviat¬ 

ing face-centered cubic, hexagonal, body-centered cubic, and diamond 

structures by f.c., hex., b.c., di., respectively. Those not crystallizing 

in these structures are indicated by an asterisk and will be taken up later. 

In addition, we giv(i the distance to the nearest neighbor (or to the two 

sets of nearest miighbors, in the case of hexagonal structures), in ang¬ 

stroms. It will be observed that some of the metals crystallize in more 

than one form; this is the phenomenon of polymorphism, mentioned in 

Chap. XI, Sec. 7. The rare earths are omitted from our list, since 

practically none of them can be obtained in the metallic form. 

In exaniiniiig Table XXVII-1, the first thing to notice is the regu¬ 

larity of the interatomic distances from metal to metal. Going through a 

row of the table, as from potassium to selenium, we observe that the 

largest distance is for the alkali, the next largest for the alkaline earth, 

with continuing decrease for one or two more elements. Then there is 

surprising constancy for the rest of the elements of the series. We have 

already mentioned that the alkalies, having the fewest electrons for 

sharing, are the most loosely bound metals, and the alkaline earths the 

next most loosely bound; the interatomic distances bear this out, since 

large interatomic distance corresponds to loose binding. Of course, in 

addition to this trend, there is the natural increase in size as we go to 

heavier atoms of the same type, as from lithium to caesium. This 

tendency is much less marked for the more tightly bound metals, however. 

For instance, cobalt, rhenium, and iridium, similar elements in the three 

long periods, have almost exactly the same interatomic distances. 

It is interesting to observe that this constancy of interatomic distances 

seems to hold irrespective of the particular crystal structure which the 

element may have. Thus cobalt has exactly the same interatomic dis¬ 

tance in its hexagonal and face-centered modifications, lanthanum and 

thallium have almost exactly the same, and iron changes only slightly 

from one structure to another. As we look over the table, while the 

structures appear to be arranged almost at random, there seems to be no 

correlation between spacing and crystal structure. For instance, in the 

series chromium, manganese, iron, cobalt, we have a body-centered cubic 

structure, a complex one (manganese), a face-centered and a body- 

centered cubic form of iron, and a hexagonal and a face-centered form of 

cobalt, and yet the spacings, 2.49, 2.50, 2.48, and 2.57, 2.71, show only a 

general trend, rather than erratic variation. This fits in with the idea 
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Table XXVII-L- “Crystal Structure and Interatomic Distances in Metals 
(Angstroms) 

Abbreviations; b.c. body-centered cubic; f.c. face-centered cubic; hex. hexagonal; 
di. diamond;* other structures 

Li b.c. Na }).c. K b.c. Rb b.c. Cs b.c. 
3.03 3.72 4.50 4.86 5.25 

Be hex. Mg hex. Ca f.c. Sr f.c. Ba b.c. 

2.28 3^20 3.93 4.29 4.35 
2.24 3.19 

B Al f.c. Sc Y La hex., f.c. 
2.85 3.58 3.72, 3.73 

Ti hex. Zr h(^x. Hf hex. 
2.95 3.23 3.32 
2.90 3.18 3.33 

V b.c. Nh Ta b.c. 
2.63 2.88 

Cr b.c. Mo l).c. W b.c. 
2.49 2.72 2.73 

Mn * 
2.50 

Fe f.c., b.c. Ru hex. Os hex. 
2.57, 2.48 2.69 2.71 

2.65 2.67 

Co hex., f.c. Rh f.c. Ir f.c. 
2.71 2.69 2.70 

Ni f.c. Pd f.c. Pt f.c. 
2.49 2.74 2.76 

Cu f.c. Ag f.c. All f.c. 
2.55 2.88 2.87 

Zn hex. Cd hex. Hg * 
2.65 2.97 2.99 
2.94 3.30 

Ga * In * Tl hex., f.c. 
2.56 3.24, 3.45, 3.43 

3.33 

Si di. Ge di. Sn di. Pb f.c. 
2.35 2.43 2.80 3.49 

As * Sb * Bi * 
2.50 2.88 3.10 

' Se * Te * 
2.32 2.88 
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that the metallic atoms act very much like spheres, as far as their packing 

is concerned, so that the interatomic distances of Table XXVII-1 measure 

the diameter of these spheres, irrespective of th(^ particular way they 

happen to be packed together. There is another conclusion to be drawn 

from the fact that the lattice si)acing seems to be independent of crystal 

structure. Surely the enei-gy of th(' (uystal will d(^pend principally on th(^ 

lattice spacing. Then wc; must expc'ct that the same metal can ('xist in 

different structures with almost exactly the sam(' (ni(u*gy. This means 

that it should be possible to change from oik' structure to another very 

easily, and that very slight and apparently trivial cii*cumstances can 

determine which structure n^ally has the lowest energy and is stabler 

This makes the polymorphism of the nu^tals s(?em reasonable, and it 

makes it comprehensible that there should be such apparemt hu^k of ord(u* 

in the crystal structure of the elements. Looking at Table XXVIl-1, it 

is very difficult to draw any general conclusions as to why the; various 

elements should have the structures they do. There seems to be an 

almost random distribution of the vaiious structures among the elements. 

But this is not unnatural if the structure d(‘]:>ends, not on very fundamen¬ 

tal properties like valences but on ndatively minoj* details of the atomic 

structure. 

AVe must still say something about the stnudures indicated with a 

star in Table XXVII-1. Manganese is a very pec'uliar and anomalous 

exception to the general order of the elements. It is the only d(‘finit(^ 

metal, far from the nonmetals in the table, which has a comi)licated 

structure. The structure is really comjdicatiul: tluae are 58 atoms in th(^ 

unit cell. No one has suggested a very convincing reason why this 

should be so. It bcuiomes a little less remarkable, however, when one 

studies the crystal structure of alloys. It is found that som(i alloys of 

quite ordinary metals have very complicated structures, as for instance 

one of the forms of the copper-zinc alloy found in brass. These com¬ 

plicated structures com(^ from the mixture of two different kinds of 

atoms. It has been suggested that possibly manganese atoms exist in two 

different forms in its crystal, perhaps corresponding in some indirect 

way to the two valences of manganese, and that its structure is really 

more like that of an alloy than of a pure metal. However that may 

be, it remains a peculiar and unexplained exception. 

The other complicated structures come at the ends of the groups in 

the periodic table, and as we have said they correspond to something 

more like homopolar bonds than metallic bonds. We have already 

commented on germanium and tin (the so-called gray modification of 

tin), which crystallize in the diamond structure, corresponding to the 

four homopolar bonds which they could form. They are of course very 

different from diamond in their properties, though silicon is between a 
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metal and a nonmetal in its behavior, forming a sort of bridge between 

diamond and the others. Thus the melting points are 3500°C. (dia¬ 

mond), 1420°C. (silicon), 959®C. (germanium), 232*^0. (tin), indicating a 

rapid' but not discontinuous decrease of tightness of binding as we go 

from diamond, with pure homopolar bonds, to germanium and tin, which 

are much more metallic. In electrical properties, diamond is a very 

good insulator, silicon is a substance of fairly high resistance but no 

higher than some alloys, and germanium and tin are fairly good conduc¬ 

tors. In appearance, diamond of course is transparent, while silicon, 

gcu’manium, and tin are all grayish materials, of fairly metallic appear¬ 

ance. In mechanical i^roperties, silicon possesses some of the hardness 

of diamond but germanium and tin are soft. 

Fig. XXVII-1.—Layor of atoms from the bismuth ery^tal. 

The next substances that we shall consider are arsenic, antimony, and 

bismuth. Their crystals consist essentially of layers similar to that shown 

in Fig. XXVII-i. In such a layer, each atom is bound to three neighbors, 

by bonds making almost a right angle with each other, but slightly opened 

out, so as to approximate the tetrahedral angles. If we now stacik such 

layers on top of each other, we can arrange things so that each atom will 

also have three neighbors in the layer above, which are only slightly 

further away than the three neighbors in its own layer. These six neigh¬ 

boring atoms, three in its own layer and three in the next, will surround 

the atom very much like the six nearest neighbors in a simple cubic 

lattice. In other words, the bismuth structure can be regarded as a 

slightly distorted simple cubic lattice, distorted in such a way that each 

atom has three nearest neighbors. As we have already mentioned, the 

bonds to nearest neighbors have something of the character of homopolar 

bonds, and each atom has just enough electrons t© form three bonds. 

But the homopolar character is not strong, the substance resembling 

a metal more than a homopolar compound. Still, the layer structure has 

an important effect on the properties of the substances. Single crystals 

of arsenic, antimony, and bismuth cleave very easily, splitting between 

layers, so that the metals are very brittle. And while the electrical 

conductivity is fairly good in directions parallel to the layers, it is very 
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poor in the direction normal to the layer, as if the electrons had trouble 

jumping from one layer to another. 

Selenium and tellurium have structures in which, as we have said 

before, the atoms form chains, each atom being joined to its two neighbors 

in the chain. The chains are not straight, but helical, would up like 

springs. The electrical conductivity is much jioorer at right angles to the 

directions of the chains than along them, as we should expect. There is 

one remarkable mechanical property of tellurium: when it is put und(u’ 

hydrostatic x^ressure, although of course the volume decreases, the length 

along the direction of the chains iiKjreases. It is practically the only 

substance known that exx)ands in any dirc'ction under hydrostatic pres¬ 

sure. The interpretation is that the sidewise x>ressure tends to straighten 

out the springs, thus lengthening them, though they contract laterally 

enough to decrease the volunn^ as a whole. 

2. Energy Relations in Metals.—In Chap. XXIII we hav(^ seen that 

we can understand the equation of state of ih(^ ionic crystals in a good 

deal of detail. Wo shall now show that similar x^rogress can be made in 

considering the energy relations in metals. As in that chapter, wo shall 

begin by consideiing the emxhrical values of comx)ressibility and its 

change with pressure, and shall see whether the value of the constant y 

computed from them agrees with the value found from the th(U’mal expan¬ 

sion, as Griineteen^s theory would indicate that it should. We give the 

necessary information in Table XXVn-2. First we give the quantities 

Pi and P2, of Chap. XIII, determined from the exx^erimental values of 

compressibility and its change with pressure. Then we give values of 7 

2 P 
found from Eq. (4.6), Chax^ter XIV: 7 = + tt* For comparison, 

o r I 

we give values of 7 found by Grurleisen^s ndation (4.16) of Chap. XIII, 

thermal expansion = yxCvIVo^ The agreement is definitely i)oorer than 

with ionic crystals, though still correct as to order of magnitude.^ 

The relations shown in Table XXYII-2 tell nothing about the theory 

giving the interatomic energy as a function of volume. We cannot get 

nearly so far with this as we could with ionic crystals. There the attrac¬ 

tive forces between ions were simple Coulomb forces, which we could 

calculate exactly, though we had to approximate the repulsive forces by 

an empirical formula, which we took to be an inverse power term. For 

metals, the theory of the metallic bond is so complicated that the forces 

1 Even the order of magnitude is incorrect for the less compressible metals, most 
conspicuously for W and Pt, according to Bridgman’s original measurements of Pi 

and Pi. A revision of Bridgman’s value of Pi for iron, however [see Bridgman, Phys. 
Bev.y 67, 235 (1940), Slater, Phys. Rev.y (1940)], makes possible a revision of the ^2^8 
for other incompressible metals, resulting in the figures tabulated in Table XXVII-2, 
and bringing about agreement with GrUneisen’s value of y in almPst all cases. 
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have been calculated for only a few of the simplest metals, the alkalies, 

and even there the results are available only in the form of numerical 

calculations, though there are analytic approximations that work fairly 

well for sodium, which turns out to be the simph^st of all metals theoret¬ 

ically. We have pointcid out in Chap. XXII, however, that the bonds 

between atoms in a metal are not entirely different in their properties 

from homopolar bonds. Thus it is not unreasonable to approximate the 

Table XXVIl-2.—Quantities Concerned in Equation of State of Metals 

Pi 
2 l\ 

3 
T 

(Griineisen) 

Li. 0.115 X 10'2 0.149 X 10^2 0.63 1.17 
Bp. 1.17 6.2 4.63 

Na. 0.064 0.160 1.83 1.25 
Mg. 0.338 0.77 1 .62 
A1. 0.757 

1 
1.46 1.27 2.17 

K. 0.028 0.090 2.55 1.34 
Ca. 0.168 0.23 0.71 
V. I 1 .64 6.6 

6.4 
2 7 

Cr. 1 .93 2.6 
Mn. 1.24 8.1 5.8 2.42 
Fe. 1.73 4.0 

5.1 
5.4 

1.7 1.60 
Co. 1 .85 2 1 1.87 
Ni. 1.90 2.2 i 1.88 
Cu. 1.39 3.6 1.9 1.96 

Rb. 1.48 
8r. 0.122 0.13 

5 6 
0.40 
5.6 Zr. 0.91 

Mo. 2.88 1.57 
Pel. 1.93 5.9 2.4 2.23 
Ag. 1.01 3.2 

2.6 
2.5 2.40 

Cd. 0.70 " 3.04 

Cs. 1.29 
Ba. 0.098 0 123 

0.34 
0.60 
0.53 

2.22 
La. 0.284 
Hf. 1.11 3.2 
Ta. 2.09 1.75 
W. 3.40 8. 1.7 1.62 
Pt. 2.78 11. 3.3 2.54 
Au. 1.73 3.03 
Pb. 0.42 1.30 2.42 2.73 

Meaflurements of conipreasibility, from which Pi and Pa are computed, are from Bridgman, Proc. 
Am, Acad,, 58, 165 (1923), 62, 207 (1927), 68, 347 (1928), 64, 51 (1929), 66, 27 (1933), 70, 71 (1936), 
72, 207 (1938). Values of y by Grdneisen’s method are taken from the article by GrttneiSen, “ Zustand 
das festen Korpers,” in “Handbuch der Physik,’' Vol. X. Springer, 1926. 



452 INTHODUCTJON TO CHEMICAL PHYSICS [Chap. XXVII 

internal energy of a metal by a Morse curve, as in Eq. (1.2) of Chap. IX. 

That is, we write 

Uo = (2.1) 

In Eq. (2.1), Uo represents the energy of the crystal at the absolute zero 

as a function of the distance ?• between nearest neighboring atoms, where 

ro represents the value of this distance in equilibrium, when Uo has its 

minimum valu(\ The quantity L is the energy required to break up the 

metal into atoms at the absolute zero, or the latent heat of vaporization 

at the absolute zero, a quantity that can be found from experiiiKuital 

measurements of vapor pnissure, as we saw in Cdiap. XI. The quantity 

a is an emjnrical constant. We shall determine L from the experimental 

value of the vapor pressun^, ro from the experimental density at the 

absolute zero, and a from the compressibility. To compare with our 

formulation of Chap. XIII, we expand Eq. (2.1) in Taylor’s series, finding 

Uo -L + L\ 

Then, comparing with Eq. (3.4) of Chap. XIII, which is 

(2.2) 

Uo == Uoo + Ncrl (2.3) 

we have 

« - WSi’K"-) + (2.4) 

In terms of these expressions, we have 

2 Pi aro ,l 
(2.5) 

To use these formulas, we must know the geometrical constant c, 

given by the relation that the volume per atom is cr§. In the body- 

centered cubic structure, we have a cube with an atom at each of the 

eight corners and one in the center. Each of the eight corners is shared 

equally by eight cubes, so that each of these atoms counts one-eighth 

in the cube in question. Thus the cube contains | + 1 =2 atoms. The 

semi-body diagonal is ro, so that the body diagonal is 2ro, and the side of 

the cube is 2ro/\/3* Thus a cube of volume (2ro/\/3)^ contains two 

atoms, or a cube of volume 4r3/(3)'^ contains one atom, so that 

c = ^ for the body-centered cubic structure. (2.6) 
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In the face-ccritered cubic structure, a cul)e contains eight atoms at the 

eight corners (counting as | = 1 atom within the cube), and six at the 

centers of the six faces (counting as f = 3 within the cube). Thus each 

cube contains four atoms in all. The semi-fac^e diagonal is ro, the face 

diagonal 2ro, the side of the cube '\/2ro, the volumes 2‘^^r^. Thus, since 

this volume contains four atoms, the volume per atom is (l/\/2)r§, and 

c = Tzr. for the facavcentcrcd cubic structure. 
\/2 

(2.7) 

By similar methods we can show 

8 
c = for the diamond structure, 

O' 

c = for the hexagonal closcvpacked structure. 

(2.8) 

(2.9) 

It is natural that the face-centered and hexagonal close-packed structures, 

both corresponding to the close packing of spheres, should have the 

same value of c. In cas(' the liexagonal lattices an^ not close packed, there 

is an additional correction factor in c, which we shall not evaluate. 

We can now use the observed heat of evaporation, the observed ro, 

from Table XX\TI-1, and the observed Pi, or reciproc^al of the compressi¬ 

bility, from Table XXVII-2, to det(n’min(' the values of L and of a. In 

doing so, we neglect tin', difference between Pi and PJ, or between the 

compressibility at room temperature and its value at the absolute zero. 

Then, using Eqs. (2.4) and (2.5), we can compute 7, Griineisen^s constant, 

in terms of these quantiti(is. In Table XXVH-3 we give the necessary 

information. It is seem from the table that the computed values of 7 

agree fairly well with the observed values. This is an indication, there¬ 

fore, that the Morse curve is not an entii’cly unsuitable potential energy 

function for a metal. The agreement between computed and observed 7 

is, in fact, rather surprisingly good and indicates the degree of accuracy 

obtainable from a theoretical calculation of thermal expansion from the 

compressibility and specific heat. 

We have already mentioned, in connection with the lattice spacings, 

that the alkali and alkaline earth metals are the most loosely bound, the 

transition group metals like the iron group the most tightly bound. 

This can be easily seen from Table XXVII-3. A tightly bound crystal 

has a large latent heat and a low compressibility, or large value of Pi. It 

is striking to see how these quantities change, for instance from caesium 

to tungsten. The latent heat of caesium is 18.7 kg.-cal. per mole, of 

tungsten 203, almost the lowest and highest respectively for any two 

metals. And the value of Pi is .014 X 10^^ dynes per square centimeter 

(or about 14,000 atm.) for caesium, and 3.40 X 10^^ for tungsten. The 
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Table XXVII-3.—Quantities Concerned in Energy Relations of Metals 

L a 7 (Eq. 2.5) 

Li. 36.0 0.80 1.55 

Na. 26.2 0.67 1.58 
Mg. 36.6 1.14 2.15 
A1. 67.6 1.21 2.05 

K. 21.9 0.53 1.53 
Ca. 42.8 0.84 1.98 
Cr. 89.4 1.64 2.37 
Fe. 96.5 1.45 2.20 
Co. 74.0 1.76 2.72 
Ni. 98.1 1.49 2.19 
Cu. 81.7 1.41 2.13 
Zn. 31.4 1.70 2.68 

Hb. 20.6 0.47 1.48 
Mo. 156. 1.58 2.48 
Ag. 69.4 1.39 2.33 
Cd. 27.0 1.93 3.35 

Cs. 18.7 0.44 1.48 
W. 203. l.r>l 2,39 
Pt. 125. 1,68 2.65 
Au. 90,7 1.58 2.60 

Values of latent heat of vaporization L are taken from Landolt’s Tables. They are in kilogram- 
calories per gram mole. Values of a, in reciprocal ang-stroms, are computed by Eip (2.4), using data 
from Tables XXVII-1 and XXVII-2. Values of y, computed from ICq. (2.5), are to be compared with 
values computed by Griineisen’s method, tabulated in Table XXVII-2. 

compressibility of caesium is the highest not only for any metal but for 

any known solid at ordinary temperatures, while that of tungsten is 

among the lowest known. The values of Pi show a continuous increase 

from caesium to tungsten, having the values .014 X 10^^, .098, 288, 1.11, 

2.09, 3.40; it is to be presumed that if the latent heats of the intermediate 

elements were known, they would show a continuous increase in a similar 

way. It is interesting to note that toward the ends of the periods in the 

table the binding again becomes somewhat less tight. Thus the com¬ 

pressibilities increase and the latent heats decrease quite strikingly, in 

the series Ni-Cu-Zn, Pd-Ag-Cd, and even more in Pt-Au-Hg, the latent 

heat of mercury, like its melting point, being the lowest for any metal, and 

that of platinum being among the highest. Thus it is quite clear that the 

transition groups of metals are much more strongly bound than their 

neighbors either before or after them in the table. 

While we are not prepared to say much about the quantitative details 
of the forces holding a metal together, still it is not hard to understand in a 
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qualitative way the specially tight binding of the transition elements. 

The alkali metals have only one outer electron per atom. This forms a 

bond which must be shared with all eight neighbors of an atom. The 

alkaline earths on the other hand have two outer electrons to be shared, 

and the succeeding elements have three, four, etc. outer electrons. Thus 

the number of electrons available to form metallic V:)onds increases rapidly 

as we go through a period of the table. It is only natural that this 

increases the tightness otbinding. It is a phenomenon not entirely differ¬ 

ent from that mc't in homopolar binding, where double and triple bonds 

give considcu'ably tighten* binding than single bonds; only in the metallic 

case, each bond is even less than a single bond in strength. As we go 

beyond the transition elements, there is a reversal of this tendency. The 

electrons added in the transition elements tend to form completed shcdls 

and to be no longer available for bonding, so that only a few electrons per 

atom operate to hold th(^ crystal together. This tendency has not pro¬ 

gressed very far with the elements copper, silver, and gold. Though 

these behave chemically to some extemt similarly to the alkalic^s, they are 

obviemsly mue*h more tightly bound, copper for instance having a latent 

heat of 81.7 against 21.9 fe)r potassium, and a value of Pi of 1.39 X 

against .028 for potassium. Plainly more than one electron per atom is 

operative in the binding of copx)er, though the next elements, Zn, Cd, Hg, 

are more nearly comparable to Ca, Sr, Ba. 

The values of the constants a in Table XX.VII-3 are of the same order 

of magnitude as the values for diatomic molecules, given in Table IX-1, 

indicating therefore that the binding is not entirely different from homo- 

I)olar binding. It is X)articularly interesting to compare these constants, 

and in fact all the prox)erties, of the metals with the corresponding 

proxierties of the diatomic molecules Li2, Na2, K2. These values are 

given in Table XXVII-4. We give also the values for C2 for comparison 

Table XXVII-4.—Comparison of Constants for Molecules and Solids 

ro, A L, kg.-cal. a, A“^ 

2.67 26.4 0.83 
Li metal. 3.03 36.0 0.80 

Naj. 3.07 17.6 0.84 
Na metal. 3.72 26.2 0.67 

K,. 3.91 11.8 0.78 
K metal. 4.50 21.9 0.53 

c,. 1.31 128. 2.32 
Diamond. 1.54 199. 2.17 
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with the properties of diamond, though of course it is not a metal. While 

there is no exact parallelism between the molecules and the solids, still 

there are strong resemblances. The interatomic spacing in the moh'cule 

is in each case between 80 and 90 per cent of tlie spacing in the crystal. 

This is to be explained by the fact that the bond is concentrated between 

the two atoms of the molecule, pulling them together, whih^ in the lattice 

it is shared among the neighbors. The latent heats of evaporation are 

in every case greater than the heats of dissociation of th(^ molecule but 

less than twice the heat of dissocdation. Finally, the values of the (con¬ 

stants a for the metal, while they do not agr(K> exactly with those for the 

molecules, are of the same order of magnitude, indiccating rathcn* close 

similarity between the binding in the t wo cas(\s. 

3. General Properties of Metals.—In many ways the most con¬ 

spicuous property of metals is the electrical conductivity. We have 

mentioned that this results from free (dectrons, eh'ctions not definitcdy 

tied up in any definite atom or homopolar bond but free to wander from 

one bond to another. We shall treat condiKctivity in detail later on. We 

may mention now only one general fact, bearing on our pictui'c of conduc¬ 

tion. Surcdy, we should expect at first sight that the more eh'ctrons tlncre 

were to carry the current, the biggcu* the conductivity would be. This 

being so, we might suppose that metals with two, three, or more valence 

electrons per atom would conduct better than those with only one. The 

opposite is the case, however. When reduced to proper units, the con¬ 

ductivities of the alkali metals, and of copper, silvccr, and gold, the 

elements with one electron per atom, are greater than for any other 

substances. The interpretation of this is that, though the other elements 

have more electrons, still these electrons form bonds which arc more like 

valence bonds, are localized more definitely betwecm pairs of atoms, and 

consequently are less free to travel around. The limiting case is diamond, 

where there are just enough electrons to form bonds and there is no 

conductivity. The alkalies, with the fewest electrons, have at the same 

time the freest electrons, for they must continually circulate about to 

produce the binding between different pairs of atoms. 

Another characteristic propc^rty of metals is ductility. A metal can 

be bent and deformed without breaking, much more than most other sub¬ 

stances, as for instance ionic crystals. This is particularly striking with 

the close-packed metals. In a metal, the bonds act quite indiscriminately 

between any closely neighboring atoms. They do not (Jepend greatly 

on the exact orientation of the atoms, as the real homopolar valences do. 

Thus a distortion of the lattice, so long as it does not involve much net 

change of the interatomic distances, will not greatly change the energy 

and will not be opposed by a large force. And even a large distortion 

does not weaken the lattice and may in some cases even strengthen 
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it. This is shown in the phenomenon called cold-working. A single 

crystal of a metal can often be deformed by a process called gliding. As 

indicated in Fig. XXVII-2, showing a projection of a schematic lattice, 

there are planes through a crystal which contain unusually many atoms, 

and so are unusually smooth. It is easy for part of the crystal to slide 

over the rest, slipping or gliding along one 

of these planes. The possibility of gliding, 

however, obviously depends on the per¬ 

fection of the crystal. If there are local 

irregularities in the glide planes, these will 

act like roughnesses on two surfaces of a 

bearing and will increase the friction, pre¬ 

venting gliding. Now if a crystal glides, 

while the sliding over the planes will be 

fairly smooth and will not result in much 

distortion of the lattice, still some atoms 

are bound to be pulled out of place. These 

will then act like irregularities in prevent¬ 

ing further gliding, so that the crystal will have become hardened by its 

distortion. If this process is long continued, the metal can become very 

much harder than in its crystalline form. This is very well known in 

metallurgy, where metals are hardened by being hammered, drawn, and 

otherwise distorted. 

The most conspicuous examples of gliding, and hardening by cold 

work, are found in those noncubic crystals that have only one set of 

planes over which gliding is possible. 

The best-known case is zinc. This is a 

hexagonal crystal, but so far from close 

packed that the separations between an 

atom and its neighbors out of the basal 

plane are about ten per cent greater than 

between the atom and its neighbors in its 

own plane. That is, it is almost a layer 

structure, the binding perpendicular to 

the layers being considerably weaker 

than the binding in the layers. Thus 

the zinc crystal slips or glides very easily 

parallel to the planes or at right angles 

to the hexagonal axis. A single unstrained zinc, crystal can be greatly 

distorted by the application of very small forces, by such gliding. For 

instance, a crystal in the form of a rod, with the layers inclined to the 

axis of the rod, as in Fig, XXVII-3, can be stretched out, as shown in the 

figure, by the application of a force that seems unbelievably small when 

if ns+retched 

Fiq. XXVlI-3.—Gliding 
crystal. 
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judged by our ordinary ideas of the strength of metals. The stretching 

is plainly produced by ghding, for in the actual stretched material one 

can see the surfaces along which gliding has occurred, in a way shown in an 

exaggerated form in the figure. But once the gliding has occurred, the 

rod is strengthened so much that it cannot be pushed back into its original 

form by any small force. The gliding and hardening are easy to see and 

understand in this case, because there is only one set of slip planes. In a 

cubic crystal, with many sets of planes on account of symmetry, somci 

parts of the crystal will glide along one plane, other parts along others, 

and the phenomenon is much harder to visualize and interpret. But the 

essential feature is the same, that the undistorted crystal glides easily 

but is distorted enough by gliding so that it is very much hardened. The 

ordinary materials that we meet in practice are made up of many small 

crystal grains and are ordinarily much distorted in the process of manu¬ 

facture. Thus they arc very hard compared to an undistorted single 

crystal, which has properties that at first sight make it appear very 

peculiar and unfamiliar. 

Still another characteristic property of metals is their ability to form 

alloys or compounds of different metals with variable composition. We 

have already mentioned alloys to some extent in Chap. XVII, when we 

were talking about equilibrium between phases. Ther(‘ w^e saw that some 

alloys consist of a single phase, while others are mixtures of two phases, 

each phase having characteristic crystal structure and other properties. 

Generally in these cases each phase exists in small crystal grains, th(^ 

whole alloy consisting of a mixture of these two kinds of crystals, in close 

juxtaposition to each other. We now consider the nature of one of the 

pure phases, which itself generally contains two or morcj elements in 

variable proportions. These phases are of two sorts, substitutional and 

interstitial compounds. In a substitutional alloy, atoms of one type in 

the lattice are simply absent and are replaced by atoms of the other 

type, so that the final lattice is not much affected by the substitution. 

Such alloys occur when the two (or more) types of atom in question are 

about the same size and form similar crystals. Thus, from Table 

XXVII-1, we see that the interatomic distance in nickel is 2.49 A and in 

copper 2.55 A, quite similar distances, indicating that the atoms are 

about the same size. Furthermore, nickel and copper both form face- 

centered crystals. It is then not surprising that any fraction, from zero 

to 100 per cent, of the atoms in a nickel lattice can be replaced by copper 

atoms. There is, in other words, a complete series of substitutional alloys 

of copper and nickel for any composition. All these alloys have the same 

face-centered structure, with a lattice spacing that varies smoothly from 

one limit to the other. The other extreme is the interstitial alloy. This 

is found where an atom much smaller than the other atoms of the crystal 
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enters into combination. In this case, the small atom does not substitute 
for anoth(u* atom but goes into a hole between other atoms, filling one of 
the interstices betwecin atoms, whence the name. A characteristic exam¬ 
ple is the alloying of carbon with iron to form steel. The interatomic 
distance in diamond is 1.54 A and in iron 2.57 A, showing that the carbon 
atom is much smaller than that of iron. The carbon atoms fit between 
iron atoms, distorting the lattic^e a good d(ial. This has one obvious 
effect: by distorting the lattice, the interstitial atoms prevent gliding 
and harden the metal. It is for this reason that steel is so much harder 
than iron. The alloying atoms in an interstitial compound interfere 
with the lattice much more than in a substitutional compound, with the 
result that far few(‘r can be introduced into the lattice. Thus only a few 
per cent of carbon can be introducc^d into iron, in contrast to the case of 
nickel and copper where any amount of copper can be introduced into 
nickel. 



CHAPTER XXVIII 

THERMIONIC EMISSION AND THE VOLTA EFFECT 

In the preceding chapter we took up the properties of metals, but we 
have said very litth' about their most characteristic feature, their electrical 
behavior. An understanding of the electric^al conductivity of metals, and 
its bearing on the free electrons in the metal, is essential to a proper treat¬ 
ment of the metallic bond and of the forces holding the metal together. 
We shall take these questions up in the next chapter. Before doing 
so, however, we shall take up a related problem, the thermionic emission 
of electrons from hot metals. By stud3dng the interaction between 
electrons and metals we can get some information about electrons inside 
metals, more or less in the same way that by studying the interaction 
between electrons and atoms, in such problems as resonance and ioniza¬ 
tion potentials, we can get information about atomic structure. The 
information is not so detailed as with atoms, but nevertheless both the 
practical importance of the inoblem itself and its bearing on the structure 
of metals furnish justification for studying it at this point. 

In Chap. XX, Sec. 3, we spoke about the detachment of electrons 
from atoms, and in Sec. 4 of that chapter we took up the resulting chem¬ 
ical equilibrium, similar to chemical equilibrium in gases. But electrons 
can be detached not only from atoms but from matter in bulk, and par¬ 
ticularly from metals. If the detachment is produced by heat, we have 
thermionic emission, a process very similar to the vaporization of a solid 
to form a gas. The equilibrium concerned is very similar to the equilib¬ 
rium in problems of vapor pressure, and the equilibrium relations can be 
used, along with a direct calculation of the rate of condensation, to find 
the rate of thermionic cmivssion. In connection with the equilibrium of a 
metal and its electron gas, we can find relations between the electrical 
potentials near two metals in an electron gas and derive information about 
the so-called Volta difference of potential, or contact potential difference, 
between the metals. We begin by a kinetic discussion of the collisions of 
electrons with metallic surfaces. 

1. The Collisions of Electrons and Metals.—When a slow electron, 
with a few volts^ energy, strikes a clean metallic surface, there is a very 
large probability that it will be captured by the metal, and a very small 
probability, depending on its energy and direction, that it will be reflected. 
In other words, the most likely collisions are inelastic ones, in which the 
electron loses all its energy and never gets out again. The mechanism is 

460 
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simple. The electron can penetrate a few atoms deep, but it is likely to 
have a collision without electronic excitation with each atom it strikes, 
losing energy to produce thermal vibration of the atoms. A few such 
(iollisions reduce its energy far enough so that it doi^s not escape from 
the metal. For it requires considerable kinetic energy for an electron to 
leave a metal. It is attracted to the metal by the so-called image force, 
which we shall discuss later, and it requires several volts^ energy to escape. 
This can be indicated graphically as in Fig. XXVIII-1. Here we show 
schematically the potential energy of an electron, inside and outside a 
metal. If an electron with one volt kinetic energy outside the metal 
enters it, it will have a kinetic energy of a number of volts inside the 
metal, since its total energy, kinetic plus potential, must remain constant, 
and the potential energy is lower inside th(i metal. If the el(Kdron^s 
energy is lowered by inelastic collision from its original value E to a value 

Fia. XXVIII-1.—Potential energy of an electron at a metallic surface. 

E' below the potential at infinity, it will be unable to escape. This is 
what usually happens. The exceptional case, rc'flection, comes when the 
direction of the electron happens to be reversed at its first, or practically 
its first, collision with an atom within the metal, so that it comes out again 
without chances of further collisions. In such a case it will have lost only 
a small amount of energy, and the collision will be almost elastic. 

When faster electrons strike a metal, the situation is more complicated. 
In the first place, secondary electrons can be emitted, electrons liberated 
from the metal by the impact of the primary electron. In some cases it 
is not possible to know whether the electron coming out of the metal is a 
secondary or the primary, except in cases where both come out, so that 
more electrons leave the metal than enter it, an important case prac¬ 
tically. But generally from the velocities it is possible to draw conclu¬ 
sions as to whether the emitted electron is primary or secondary. The 
secondary electrons mostly have fairly low energies, in the neighborhood 
of ten or twenty volts; of course, electrons of such energy cannot be 
emitted unless the primary electrons had a suitably larger amount of 
energy. Among the few primary electrons that are reflected, some are 
elastically reflected, as with slow electrons, and have lost almost no 
energy. But some have lost just abput as much energy as the secondaries 
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acquire, and this is easily interpreted. It is assumed in such cases that 
the primaries have ionized atoms within the metal, losing energy in the 
process, and have then happened to be reversed in direction and to escape 
from the metal. The secondaries are supposed to be the electrons ionized 
from the atoms. Since the probability of ionization, or the collision cross 
section for ionization, has its maximum when the energy of the impinging 
electron is something like twice the ionization potential, it is reasonable 
that these secondaries should have energies of a number of volts. 

In addition to these reflection phenomena, which are observed with 
all types of surfaccis, there are some very special effects observed when 
the surface is a crystal face of a single crystal of metal. Electrons of 
certain definite energies and anglers of incidence have an abnormally 
large reflection coefficient for elastic reflection, sometimes several times as 
great as that found with neighboring angles and (mergies. This phe- 
nomcmon is called electron diffraction and has b(Hm of great impoi*tance in 
developing wave mechanics, for in it the beam of electrons acts like a 
wave, and the directions of abnormal reflection are determined by inter- 
ference conditions, exactly analogous to the interference conditions in 
x-ray diffraction. While electron diffraction is of great importance in 
theory and is useful in determining the crystal structure of surface layers, 
it is not very important for our presemt purpose. 

Now let us ask what are the inverse processes to the collisions we have 
considered. Of course, the inverse to an elastic collision is also an elastic 
collision, so we do not need to consider this case further. The inverse 
to the inelastic capture of a slow electron by a metal is obviously a process 
by which an electron in the metal happens to receive a number of collisions 
in succession by atoms of the metal, in which its energy increases instead 
of decreasing in the normal way, thus giving it enough energy, as E in 
Fig. XXVIII-1, so that it can escape from the metal. Speaking in a less 
detailed way, it is a process in which the electron inside the metal, by 
thermal agitation, happens to get an abnormal energy and escapes. The 
inverse to the emission of a secondary is a complex process in which two 
electrons, a fast and a slow one, strike the metal, the slow one recombines 
with an atom of the metal, which gives up the extra energy to the fast 
electron, throwing it out of the metal. Of these processes, the only 
important one is the ejection of a fast electron by a metal, and this is 
what is known as thermionic emission. The higher the temperature the 
more likely one is to find electrons fast enough to escape, and the greater 
the thermionic emission. Our task in the next sections will be to calculate 
the rate of thermionic emission, the number of electrons per second 
emitted by a square centimeter of surface, for this is a very important 
quantity in practice. But it is a very difficult thing to find directly, as so 
many rates of reaction are difficult to compute. To find it directly, we 
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have to know a great deal about the structure of the metaL In the next 
chapter we shall investigate this and shall be able to make a direct calcula¬ 
tion. But for the present we can proceed otherwise. First we investigate 
the equilibrium of a metal and a gas of electrons outside it. Then we 
find the rate of the process by which an electron strikes the surface and 
sticks, the inverse to thermionic emission. By combining these two 
pieces of information, we can derive the rate of thermionic emission, with¬ 
out knowing any details about the metal at all. 

2* The Equilibrium of a Metal and an Electron Gas.—^The problem of 
equilibriiim between a m(‘tal and the electron gas surrounding it is very 
much like that of the vapor pressure of a solid, which we have considered 
in Chap. XI, Sec. 5, except that it is not the solid itself which is evaporat¬ 
ing, but only the electrons from it. Nevertheless, with proper interpreta¬ 
tion, we can use the same formulas that wc^re developed in that section. 
For equilibrium, we must equate the Gibbs free', energy first of a piece of 
mental and the electron gas outside it, then of the same piece of metal 
lacking a certain number of electrons, plus the gas formed outside the 
metal by th(^ original electrons j’)lus those just separated from the metal. 
The resulting formula for the pressure is just like Eq. (6.4), Chap. XI: 

In P = + 2 In P - PT-Jo 

^0 __ CT dT CT., 
P _ Q Rf^ J 0 0 ^ (2.2) 

Here the quantity i is the chemical constant of the electron gas, defined 
in Eq. (3.16), Chap. VIII. The interpretation of the quantities Lo and 
Cp must be examined in detail. The quantity Lo is clearly the work 
required to remove a mole of (electrons reversibly from the metal at the 
absolute zero, leaving the metal in its lowest possible electronic energy 
level. Thus Lo is the latent heat of vaporization of electrons from the 
metal at the absolute zero, or the thermionic work function. For most 
metals it is of the order of magnitude of four or five electron volts (or 
around 100 kg.-cal. per gram mole). We shall find its interpretation 
in terms of a model in the next chapter. The quantity Cp is the difference 
between the heat capacity of the metal and its heat capacity when a mole 
of electrons is removed. Thus it is really more exact to write the expres¬ 
sion NQ{dCp/dN)j where dCp/dN is the change in heat capacity per unit 
change in the number of electrons. Of course, one cannot remove a mole 
of electrons from a mole of metal, for that would give it an enormous 
electric charge, but the quantity NoidCp/dN) is really merely the change 
in specific heat per mole of electrons n^moved, and can be found theo¬ 
retically by removing only a few electrons, resulting in a negligible charge. 
Since changing the number of electrons in the metal would result in a 
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corresponding surface charge on the surface of the metal, we may regard 
our quantity as the heat capacity of the surface charge, per mole. Now 
this is a very difficult quantity to find, cither theoretically or experi¬ 
mentally. Perhaps it is better to interpret it in terms of Eqs. (5.6), (5.7), 
and (5.8), Chap. XI, which become 

L 

^ -N 
dT 2^ 

Lo + ^RT i d'N 
dT, (2.3) 

The quantity L represents, h('r(‘, the h(\at absorbed when a mole of elec¬ 
trons is evaporated at t(miperature T. That is, it is the change in 
enthalpy, or T times the change of entrojoy, on evaporation, or is the 
change of internal energy plus PF, since we can neglect the term PV for 
the electrons in the mental. Thus it is ilie latent heat of evaporation 
of electrons at temperature T. Th(‘n we can interpret the quantity 
No(dCr/dN) merely in terms of the change of latent heat with tempera¬ 
ture, a change that can actually depend on many factors. We may 

expect in any case that the term N()(dCp/dN)dT will not be of an order 

of magnitude greater than RT, For a tempen-ature of 3000° abs,, a high 
tempe^rature for thermionic experiments, it will them be of the order of 
magnitude of 6 kg.-cal, per gram mol, small compared to Lo, which is of 
the order of 100 kg.-cal. per gram mol, so that i)resumably the latent 
heat does not change by a very large fraction of itself in the usable range 
of temperatures. 

Finally the quantity i in Eq. (2.2) is the chemical constant of an 
electron gas. This is given by p]q. (3.16), Chap. VIII: 

^ ^ go(27rm)»ifc^ 
(2.4) 

All the quantities in Eq. (2.4) are familiar except which we now dis¬ 
cuss. As we saw in Chap. XXI, Sec. 2, the orientation of the electron 
spin is quantized in space, so that it has two possible stationary states 
of orientation, in which the spin is directed in either of two opposing 
directions. This results in having ^o, the a priori probability of the lowest 
stationary state, equal to 2, so that we have 

2{2irm)^k^ 

¥ 
(2.5) 

3. Bonetic Determinatioii of Thermionic Emission.—We have now 
found the pressure of an electron gas in equilibrium with a metal, at an 



Sec. 3] THERMIONIC EMISSION AND THE VOLTA EFFECT 465 

arbitrary temperature, by thermodynamic methods. Next we shall 
investigate the same problem by the kinetic method. We shall find the 
number of electrons per second that enter the metal from the electron 
gas, at the equilibrium pressure. But for equilibrium this must equal 
the number of electrons per second emitted from the metal, which is the 
quantity we seek. To find the number of electrons entering the metal per 
second, we first find the number striking the metal per second, which is a 
simple calculation from the kinetic theory of gases. Then we assume that 
a fi'ac^fjon r of these electrons will be reflected, (1 — r) captured. From 
what we have said, for slow ele(d.rons such as we arc dealing with, r is 
small compared to unity, so that (1 — r) is almost unity. Actually the 
reflection coefficient will presumalfly depend on the velocity of the imping¬ 
ing elect ron, but for simplicity we shall ignore this dependence, proceeding 
as if r wcu'e a constant. 

L('t us first find the number of molecules of a perfect gas, at pressure 
P, temperature striking a square centimeter of surface per second. 
Since the electrons act like a perfect gas, this calculation will apply to 
thc'm as well as to an ordinary gas. The calculation is similar to that of 
Sec. 3, Chap. IV, where we found the pressure by the kinetic method. 
Consider the molecukvs whose momentum lies in the range dpx dpy dpz. 
As in Fig. IV-2, the number of such molecules crossing one square ceirli- 
meter per})(mdicular to the x axis per sen^ond will be the number in a prism 
of l)ase one centimeter, slant height along the direction of the velocity 
equal to p/m, or altitude equal to px/m. The volume of this prism is 
Px/m, and the number of such molecules per unit volume, by Eq. (2.4), 
Chap. IV, is 

AT 

y(27rmkT)~''^^e dpx dpy dpt. (3.1) 

Thus the number of molecules crossing the square centimeter per second, 
found by integrating over all values of py and p«, but only over positive 
values of px, is 

-Y7(27rmfcP)~^M dpx\ e dpy \ e dpz 
y * tJ 0 */ — oo nJ — oo 

NIcT 
= lip(27rmA:T)~H = P(2rrmkT)-'^, (3.2) 

using the formulas Eq. (2.3) of Chap. IV. The number (3.2) gives the 
number of electrons striking a square centimeter of metallic surface per 
second, if the pressure is given By Eq. (2.2). Since the fraction (1 — r) 
of these enter the metal, we have as the number of electrons entering the 
metal per second 
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(1 - 
RT^ J 0 RT^J 0 %N dT 

= (I r^e RT^ J O RT-^J 0 “dF dT. (3.3) 

For equilibrium, the number of electrons leaving the metal per second 
must equal this value. Thus the electron current is this multiplied by the 

electronic charge e, or is A'T^e Jort^J o dN ^ where 

i4' = (1 — r)—= (1 — r) 120 amp. per sq. cm. per degl*ee,2 
V = (3.4) 

If No(dCp/dN) were zero, (SA) would have the form A'T^e 
This is the familiar formula for thermiuuic emission, and is one that shows 
good agreement with experiment, except that the experimental value of 
A^ does not agree with the theoretical valium given in Fq. (3.4). Actually 
No{dCp/dN) is undoubtedly not zero, and the last term of Eq. (3.4) must 
be retained. It varies slowly with temperature, however, while the 

factor e varies extremely rapidly. Thus we can expand it in series. 
What we shall do is to assume 

dT = a + /3T, (3.5) 

a linear function of temperature, which presumably is sufficiently accurate 
for the temperature range used. Then we have 

/T dT CT 
0 R T^J 0' (3.6) 

For the thermionic emission, we then have 

where 

ib'-o.) 

A'ePT^^e ^ AT^e 

A = 6 = - a. (3.7) 

Formula (3.7) is of the familiar form, often called a Richardson equation. 
We notice in it that b does not reprcvsent the latent heat at the absolute 
zero but a slightly different quantity without theoretical significance, 
since the expression (3.5) is merely a convenient approximation for a 
small temperature range. And A is not the value of Eq. (3.4) but has 
the additional factor e^. This factor is of the order of magnitude of 
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unity, but from the observed values of the we gather that it varies 

from something like 10”® to 10®, depending on circumstances. 

4. Contact Difference of Potential.—Suppose we have two metals, 

a and b, in the same container at the same temperature. For each one, 

we can calculate the vapor pressure of the electron gas in equilibrium with 

it by Eq. (2.2). Since this equation depends on the properties of the 

metal, we shall get a different answer in the tw^o cases. That is, an elec¬ 

tron gas in equilibrium with one metal, say one with a low work function, 

will have too great a pressure to be in equilibrium with the second metal 

with a larger work function. Ijct us use a kinetic argument to see what 

will happen and what sort of final equilibrium we may expect. Suppose 

the metal a, of low work function, has established its equilibrium pressure 

in the electron gas, and then the metal b is introduced into the container 

and brought to the same temi^erature. The gas pressure is too great for 

equilibrium with b, so that more electrons will strike its surface and 

o* b 

Fig. XXVIII-2.—Potential energy of an electron between two metals, in equilibrium. 

condense than will be emitted. Thus there will be a net flow of electrons 

into metal 6, and it will become negatively charged. It will then tend to 

repel electrons near it, by electrostatic repulsion, and this will diminish 

the electron current toward it, until finally the flow of electrons will 

stop, the electrical difference of potential being just great enough to reduce 

the number of electrons coming toward b to equality with the number 

leaving it. The net result is that the metals have become charged in such 

a way that there is a definite difference of pot(uitial between them. This 

is known as the Volta effect, and the difference of potential is the contact 

difference of potential. 

Let us now investigate the Volta effect more quantitatively. When 

equilibrium is established, there will be a difference of potential betw^een 

the empty space outside the two metals. The potential energy of an 

electron in this space will then be as in Fig. XXVIII-2. The jump in 

potential at the surface of each metal is as in Fig. XXVIII-1, but now the 

potential varies from one metal to another. Since metal b is negatively 

charged, the potential in its neighborhood is less than near metal a, and 

the potential energy of an electron, which is — c times the electrostatic 

potential, will be greater. The difference of potential between empty 
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space outside the two metals is the contact difference of potential and is 

shown in Fig. XXVIII-2. 

The electrons in the empty space now form a perfect gas in an external 

force field. This problem has been discussed in Section 4, Chap. IV. 

There we found that in such a case the temperature of the gas is constant 

throughout, but the pressure and the density vary from point to point, the 
_E pot 

number of molecules per unit volume being proportional to e In 

such a case, where the pressure is not constant throughout, we cannot use 

the thermodynamic method of the Gibbs free energy, for that is bas(‘d 

on a single pressure, constant throughout the system, which can be used 

as a thermodynamic variable. Fortunately, however, we can get as far 
_E pot 

as we need to here by means of the Boltzmann factor e for the perfect 

gas. It is just as w(^ll to remember how this factor comes about and to 

sec that it is closely relatc'd to our explanation of the Volta effect. On 

account of the difference in potential between the neighborhood of a and h, 
an electron with eniergy shown in Ei in Fig. XXVni-2 will be slowed 

down and stopped as it emerges from a and tries to reach h. Instead, it 

will be turned around and will fall back to a again. Only electrons with 

energies like Eo will be able to enter the metal b. It is this stopping of 

the slower particles by the regions of high potential energy which keeps 

the density smaller there, and which in this case keeps too many electrons 

from striking metal b. 
It is now clear what conditions we must have for equilibrium between 

metal a, metal b, and the gas. The vapor pressure outside metal a must 

be the correct one for thermal equilibrium with that metal, the pressure 

outside b must be the correct one for equilibrium with it, and the pressures 

outside the tw^o metals must be related according to the Boltzmann 

factor, to ensure equilibrium between the different parts of the gas. Thus 

let the potential energy of a mole of electrons outside the metal a b(^ 

Eaj and outside metal b be Eb. Then the Boltzmann factor leads to the 

relation 

(Eh-Ea) 

(4.1) 

where Pa, Pb are the pressures outside metals a and b. That is, 

In Pb — In Pa (Eb - Ea) 

RT 
(4.2) 

•Equation (4.2) is the condition of equilibrium of the gas. At the same 

time, we must have the gas in equilibrium with each metal, which means 

that Pa and Pb must be given by Eq. (2.1). Thus we have 
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Ri 
(Ei - Ea) 

RT ’ 
or 

E.-L.-RT£g,£N.f'^dT 

- /"ifi 
The significance of Eq. (4.3) is clearer if we neglect the terms in 

dC 

which are small though not entirely negligible. Then it is 

Ea Eh — Ea — Lh» 

Neglecting the No{dCp/dNyH^ the L\s are the latent heats. Thus wo 

have the important statement that the contact difference of potential 

between two metals ecpials the differences of their latent heats, or approxi¬ 

mately of their work functions. This relation is found to be verified 

experimentally. The contact difference of potential can be found by 

purely electrostatic experiments, and the work functions by thermionic 

emission; the results obtained in these two quite different types of experi¬ 

ment are in agreement. The small correction terms arising from the 

No{dCp/dN)^fi lie almost within the errors of the experiments, so that we 

hardly need consider them in our statement of the general theorem. 

It is a characteristic of thermal equilibrium that it is the same, no 

matter what agency or process brings it about. Thus in particular, two 

metals in thermal equilibrium will take up a difference of potential equal 

to the contact difference, so long as there is any agency whatever by 

which charge can flow from one to the other. In the case we considered, 

the (dectron gas formed the agency; it is a conductor and carried current 

from one metal to the oth(^r. But we can readily imagine conditions 

where the electron gas would not be an effective agency. For instance, 

we may have the metals at room temperature. The density of the 

electron gas at room temperature is so extremely small that for all prac¬ 

tical purposes it has no electrons at all in it, and it would take an exces¬ 

sively long time to transfer appreciable charge or produce equilibrium. 

Nevertheless in time the equilibrium would be established and from 

Eq. (4.3), since the temperature dependent terms are small, the contact 

difference of potential at room temperature must be about the same as at 

high temperature. But there are other much more effective ways of 



470 INTRODUCTION TO CHEMICAL PHYSICS [Chai>. XXVIII 

transferring charge from one metal to another at room temperature: they 

may be connected by a wire or other conductor. Thermodynamics now 

requires that if this is done, the metals will automatically come to such 

potentials that the points directly outside the two metals will differ by 

the contact potential. This of course demands that the metals will 

automatically become charged enough to produce these potentials in 

outside space. 

This mt^chanism furnishes the basis of one electrostatic method of 

measuring contact potentials. The two metals whose difference of 

potential is desired are made into plates, so that they can be brought 

close together like the plates of a condenser. When they are close 

together they are connected by a wire, so that they will set up the contact 

difference of potential; then they are disconnected. The capacity of a 

condenser is inversedy proportional to the distance between the plates, so 

that it is very large when the plates are close together, and it requires a 

large charge to produce the required potential difference. Then the 

plates, insulated from each other, are removed to a long distance apart. 

Their capacity becomes much smaller and the charge, which of course 

remains the same, raises them to a large potential difference, large enough 

so that it can be readily measured with an electrostatic voltmeter. 

We notice that in equilibrium, a metal with a low work function 

becomes positively charged, one with a high work function negatively 

charged, so as to set up the contact difference of potential. It is interest¬ 

ing to notice the close similarity between this and the corresponding 

situation of two atoms, one of low ionization potential and the other of 

high ionization potential, in equilibrium, as we considered them in Chap. 

XX, Sec. 4. If either one lacks an electron, we found that it would be the 

electropositive one, the one with low ionization potential. Similarly 

here we may consider the metals of low work function to be electropositive 

ones, which lose electrons easily. We cannot push this analogy too far, 

however, for while there is some parallelism between ionization potential 

and work function, it is by no means very complete, so that we should not 

arrange the metals in the same series of electropositive or negative charac¬ 

ter by means of the work functions that we should from ionization 
potentials. 

There is an interesting graphical interpretation of our result that the 

contact difference of potential between two metals equals the difference 

of work function. In Fig. XXVIII-2, let us go down from the energy 

Ea by the amount Lay and down from the energy Eh by the amount Lb. 

Then from Eq. (4.3), the resulting energies, Ea — La, and Eh ~ Lh, will 

be approximately the same, so that the horizontal lines drawn at these 

heights in the two metals, in Fig. XXVIII-2, will be at the same height 

in these two, or any two, metals in equilibrium. Let us see what inter- 
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pretation we can give to these levels. The quantity La represents the 

work done on an electron (or a mole of electrons, to be more precise), in 

removing it from metal a at the absolute zero. We might adopt a very 

crude picture of a metal: we might suppose it to be a region of constant 

potential energy for electrons, in which the electrons simply formed a 

perfect gas of high density. Then if the potential energy of an electron 

jumped by the amount La in going out of the surface, we should under¬ 

stand the interpretation of the work function. With this simple inter¬ 

pretation, the equality of Ea — La and Eh — L& would mean that the two 

metals set themselves so that the potential energy of an electron was the 

same in each; if they w(u*e joined by a wire, there would be no jump in 

potential in going from one metal to another. And if the electrons 

satisfied Maxwcll-Boltzmann statistics, the density of electrons within 
Lo 

either metal would be greater by a factor than the density outside. 

Since Lo is much larger than RT at ordinary temperatures, this would 

mean a veiy large density of electrons within the metal but, when one 

calculates it, it is not unreasonably large. It would also mean that the 

densities of free electrons should be the same within any two metals. 

This would not be exactly the case, however, when we recalled the addi¬ 

tional terms in Eq. (4.3), coming from the No{dCi>/dNys. These terms 

can result in slight differences of potential within the metals and in 

differences of electron densities. 

The picture of a metal which we have just mentioned was elaborated 

greatly some years ago, and was considered to be a reliable approximate 

picture. One difficulty remained with it, however. The electrons 

within the metal formed a pc^rfect gas, and there was no reason why they 

should not have the classical heat capacity of a perfect gas, f/2 per 

mole for Cv, independent of temperature. This would give a contribution 

to the specific heat of a metal, in addition to that coming from atomic 

vibration, and would increase the specific heat far beyond the value of 

Dulong and Petit. Yet experimentally metals agree fairly accurately 

with the law of Dulong and Petit, showing that the electrons can con¬ 

tribute only a little, if anything, to their specific heat. This diflSculty 

showed that there was something fundamentally wrong with the simple 

free electron picture of a metal, and that has proved to be the assumption 

of the Maxwell-Boltzmann statistics for the electrons. In fact, electrons 

have been found to satisfy the Fermi statistics. In the next chapter we 

consider the application of this form of statistics to a detailed model of 

the free electrons in a metal. 



CHAPTER XXIX 

THE ELECTRONIC STRUCTURE OF METALS 

The electrons in a mental, like those in an atom, are governed by the 

quantum theory, and a complete study of their motions is impossibly 

difficult, on account of the enormous number of electrons in a finite ])i(H;e 

of metal, all (exerting fon^es on (^ach other. The only practicable approxi¬ 

mation is similar to that used in Chap. XXI, Secs. 2 and 3, where we hav(‘ 

taken up the structure of atoms. There we replaced the foi'c.e a(*ting 

on an electron, which actually depends on the positions of all other 

electrons, by an averaged force, averaged over all the positions which 

the other electrons take up during their motion. In the case of a metal, 

then, we have a structure consisting of a great many i)Ositive mudei, 

arranged in a regular lattice structure, with electrons moving about 

them. Each nucleus will be surrounded by a group of elect rons forming 

its inner, or x-ray, shells, just as we shoidd find in individual atoms. The 

remaining electrons, however, the valence electrons, will move very 

differently from the way they would in separated atoms. The reason is 

that the dimensions of the orbits of the valence electrons in the atoms 

are of the same order of magnitude as the interatomic spacings in metals, 

so that electrons of neighboring atoms would tend to overlap each other 

and profoundly affect their motion. Thus we must treat the problem as 

if each valence electron moved in the field of the positive ions, consisting of 

the inner shells and nuclei of all the atoms, and the averaged out field 

of all the other valence electrons. Our problem of the electronic structure 

of metals, then, is divided into two parts: first, we must find what this 

field is like in which the electrons move; secondly, we must investigate 

their motion in the field. Then we can build up a model of the whole 

metal, treating each electron as if it moved in the field of which we have 

spoken and remembering that on account of the Pauli exclusion principle, 

or the Fermi statistics, no two electrons of the same spin can be found in 

the same stationary state. First, we investigate the field inside a metal. 

1. The Electric Field Within a Metal.—We have seen in Chap. XXI, 
Sec. 2, that an electron in an ivsolated atom is acted on by a central force 

on the average, equal to the attraction exerted by the nucleus, diminished 

by a certain shielding effect on account of the other electrons. The 

potential energy of the electron in such aU atom was illustrated in Fig. 

XXII-7. When such atoms are placed near each other, the potential 
472 
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energy of an electron at points between atoms decreases, as we saw in 

Fig. XXII-7 (6). In a crystal of a metal, with a lattice of equally spaced 

atoms, we have a similar situation, with a potential energy as shown in 

Fig. XXIX-1. Here we show in (a) the potential in a single atom, as 

in Fig. XXII-7 (a), and in (6) the corresponding thing for the whole 

crystal. It will be seen that, at points well within the crystal, the 

potential energy is a periodic function, reducing near each nucleus to the 

value that we should ha^e near the nucleus of an isolated atom but coming 

to a maximum between each pair of nuclei. The field, or the force on an 

electron, is given by the slope of the potential energy curve. We see that 

it fluctuates violently from point to point, depending on where the 

electron may be in an atom. The average field, however, is zero, if we 

average over many atomic diameters. For this average field is found 

from the difference of potential energy between widely separated points, 

divided by the distance between, and we see that on account of the 

periodicity of the potential energy function, the difference of potential 

Po ien H'of/ enery 

(c) (b) 

Fig. XXIX-1.—Potential energy of an electron in (a) the central field representing an 
atom; {h) a periodic field representing a crystalline solid. 

at least between corresponding points near different atoms will be zero. 

It is this average field that one speaks about in ordinary electrical prob¬ 

lems, where wo do not analyze things on a microscopic or atomic scale. 

We see, then, that Fig. XXIX-1 corresponds to a metal in which no 

current is flowing, so that by Ohm^s law the electric field within the metal 

is zero, or there is no difference of potential between different points. A 

different figure would have to be drawn in the case of a current flow, 

consisting of a curve like Fig. XXIX-1, superposed on a gradual change 

of potential energy, representing the field within the metal. Such a curve 

is shown in Fig. XXIX-2, though the over-all slope of the curve as drawn, 

representing the applied field, is much greater than one would find in an 

actual experimental case. We shall work at first with a metal in which 

no current flows, so that the mean field is zero, as in Fig. XXIX-1. 

As we go outside the metal, as Fig. XXIX-1 shows, the potential 

energy of an electron rises and approaches an asymptotic value at infinity, 

much, as the potential energy of an electron outside an atom approaches 

an asymptote at infinity. It is worth while looking a little in detail at 

the nature of this asymptotic behavior. The force acting on a particular 
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electron somewhat outside a metal of course depends.on the distribution 

of the remaining valence electrons, which are still attached to the metal. 

It is well known from electrostatics that a negative electron outside the 

metal will induce a compensating positive surface charge on thO surface 

of the metal, as indicated in Fig. XXIX-3, where we show the electrical 

Fig. XXIX-2.—Potential energy of an electron in a field representing a metal with a current 
flowing, and an average potential gradient. 

lines of force running between the electron and the induced surface charge. 

All the lines from the electron terminate on the induced charge; thus its 

net amount must b(‘ just the charge of one electron. But this is what we 

should expect. If the uncharged metal had N electrons, and one is 

removed, there are N — 1 electrons left, and the positive surface charges 

represents simply the averagc'd out deficiency left by the removed (‘lec- 

Fiq. XXIX-3.—^Lines of force between an electron outside a metallic surface and the 
positive charge induced on the surface. 

tron. Now it is easy to show that the lines of force in Fig. XXIX-3 arc 

just like those found from the electron of charge — e at a distance d from 

the surface, and an equal and opposite charge -j-e at a distance d behind 

the surface. This imaginary charge within the metal is called the electric 

image of the electron. The dotted lines within the metal in Fig. XXIX-3 

represent the imaginary continuation of the lines of force, which really 

terminate on the surface of the metal, to the electric image. But if we 
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had the two charges +e and — e at a distance 2d from each other, the force 
exerted by each on the other would be an attraction of magnitude e'^/{2dy. 
This force is called the image force, and its potential, is the 
limiting value of the potential energy of the electron, at large distances 
from the surface of the metal. It is this function which the curve of Fig. 
XXIX-1 approaches asymptotically at large distances. 

To solve the problem of the motion of an electron in a potential field 
like that of Fig. XXIX-1 is a very diflicult problem in quantum theory. 
We shall describe its solution in a later section, but first we shall take up, 
an approximation to it, the free electron theory, which has enough 
resemblance to the correct theory so that it can be used satisfactorily for 
some purposes. In this approximation, it is assumed that the field acting 
on the electrons in the metal is not only .zero on the average, but zero 
everywhere, or the potential energy is constant, equal perhaps to the 
average value of the p)otential energy over the periodic potential of Fig. 
XXIX-1. At the surface of the metal, 
of course, the potential energy must 
rise; as the simplest approximation we 
may assume that it rises discontinu- 
ously from the value which it has 
within the metal to the asymptotic 

Wa 

Fig. XXlX-4.—Simplified potential 
lergy function for the free electron 
lodol of a metal. 

value at infinity. That is, we replace the potential energy curve 
of Fig. XXIX-1 by the simplified curve of Fig. XXIX-4. We shall 
find in the next section that we can work out the motion of electrons 
in such a potential energy completely, applying the results to the prop¬ 
erties of metals. 

2. The Free Electron Model of a Metal.—In Fig. XXIX-4, there is a 
volume, which we shall take to be F, in which the potential energy has 
a constant value, wdiich we choose to be zero. Outside this volume, the 
potential energy is greater, by an amount TFa. An electron whose 
energy is less than TFa is then free to wander freely through the volume 
but cannot leave it, while an electron with energy greater than TFa can 
travel anywhere, but it suffers a decrease of TF® in its kinetic energy on 
leaving the volume. Electrons of the first sort form the picture furnished 
by this model for the electrons bound in the metal, while those of the 
second sort represent the fast electrons which can be emitted in thermionic 
emission. Let us consider first the electrons with energy less than Wa- 
These act exactly like molecules of a perfect gas, confined to the volume 
F, We have already investigated such a perfect gas. We have found its 
distribution of energy levels in Chap. IV, Sec. 1, and have applied the 
Fermi-Dirac statistics to it in Chap. V, Sec. 5. Only one change must 
be made in the formulas of that section to adapt them to our present 
use. In developing the Fermi statistics, we assumed that only one mole- 
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cule could occupy each stationary state. With electrons, however, one 
electron of each spin, or two in all, can occupy each state, so that the 
allowed number of electrons per energy range is twice what we assumed 
before. Then from Eq. (1.9) of Chap. IV, we find that if all energy levels 
are filled, the number of electrons with energy less than e is 

N{.) = (2.1) 

and the number with energy in the range de is 

dN 
de 

AwV (2.2) 

At the absolute zero, then, if the gas contains N electrons, these will be 
distributed in energy according to Eq. (2.2), up to a maximum energy 
given by setting Nie) — N in Eq. (2.1). This maximum energy, which 
was called eoo in Chap. V and which is usually called Wi in the theory of 
metals, is given, by analogy with Eq. (5.3), Chap. V, by 

We have seen, in Eq. (5.5) of Chap. V, that such energies are of the order 
of magnitude of several electron volts. In Table XXIX-1 we give values 
of these energies for a series of metals, computed on the assumption that 
the number of electrons equals the number of atoms, so that V/N is the 
volume per atom. This can be computed easily from the lattice spacings 
in Table XXVII-1, together with Eq. (3.1) of Chap. XIII, V/N = cr^ 
where r is the lattice spacing, c a constant computed in Eqs. (2.6), (2.7), 
and (2.8) of Chap. XXVII. We have no particular justification for the 
assumption that the number of electrons equals the number of atoms. 
For the alkali metals, where each atom furnishes one valence electron, the 
assumption seems very plausible, and more elaborate methods, which 
will be described later, justify it. For other metals, we should think at 
first sight that the number of electrons per atom should be greater than 
unity, since each atom has several valence electrons. On the other hand, 
the more advanced theory shows in this case that the extra electrons do 
not act very much like free electrons, and in some ways it is more reason¬ 
able to take the number of free electrons to be less, rather than more, than 
the number of atoms. 

A number of properties of the electrons in a metal can be found from 
our model. In particular, we can find the specific heat of the electrons 
and can see in a qualitative way what their contribution to the equation 
of state should be. For the heat capacity, Eq. (5.9), Chap. V, gives 

1 Cy ^ (2.4) 
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Table XXI X-L—Fermi Energy Wi of Metals 

Meta] Wi, volts 
Li. 4.7 
Be. 9.0 

Na. 3.1 
Mg. 4.5 
A1. 5.6 

K. 2.1 
Ca. 3.0 
Ti. 5.4 
V. 6.3 
Cr. 7.0 
Fe. 7.0 
Co. 6.2 
Ni. 7.4 
Cu. 7.0 
Zn. 5.9 

Rh. 
Sr. 
Zr. 
Mo 
Rii. 
Rh. 
Pd. 
Ag. 
Cd. 

1.8 
2.5 
4.5 
5.9 
6.4 
6.3 
6.1 
5.5 
4.7 

Cs, 
Ba 
Ta 
W. 
Os. 
Ir. 
Pt. 
Au 

1.6 

2.3 
5.2 
5.8 
6.3 
6.3 
6.0 

5.6 

This is a heat capacity proportional to the temperature, and in Sec. 5, 
Chap. V, we computed it for a particular case, showing that it amounted 
to only about 1 per cent of the corresponding specific heat of free electrons 
on the Boltzmann statistics, at room temperature. In Table XXIX-2 
we show the value of the electronic specific heat at 300® abs., computed 
from the values of Wi which we have already found, in calories per mole. 
We verify the fact that this specific heat is small, and for ordinary pur¬ 
poses it can be neglected, so that the specific heat of a metal can be found 
from the Debye theory, considering only the atomic vibrations. At low 
temperatures, however, Eq. (2.4) gives a specific heat varying as the first 
power of the temperature, while Debye’s theory, as given in Eq. (3.8), 
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Table XXIX-2.—Electronic Specific Heat, Free Electron Theory 

Cv/T 
calculated 

Cv/T 
observed 

Cv (300°) 
calculated 

Cu. 1.20 X 10~^ 1.78 X 10"^ 0.036 
Ag. 1.52 1.6 0.046 
Zn. ] .41 2.33 - 2.97 0.042 
Hg. 1.84 3.75 0.055 
TL. 2.10 3.8 0.063 
Sn. 1.97 3.46 0.059 
Pb. 2.21 7.07 0.066 
Ta. 1.62 27. 0.049 
Ni. 1.13 17.4 0.034 
Pd. 1.38 31. 0.041 
Pt. 1.40 16,1 0.042 

Observations are taken from Jones and Mott, Proc. Roy. Soc., 162, 49 (1937). Calculations in 

that paper assume different numbers of electrons per atom, instead of one per atom as we have done, 

and secure somewhat better agreement with experiment. Specific heats are tabulated in calories per 

mole. 

Chap. XIV, shows that the specific heat of atomic vibrations varies as the 

third power. At temperatures of a few degrees absolute, the third power 

of the temperature is so much smaller than the first jiower that the Debye 

specific heat can be neghn^ted, leaving only the heat capacity of the 

electrons. The observed specific heat in this region is in fact proportional 

to the temperature, and the constant of proportionality is roughly in 

agreement with that predicted by Eq. (2.4). In Table XXIX-2 we tabu¬ 

late the values of Cv/T as observed, as well as those calculated by Kq. 

(2.4) from the values of Wi in Table XXIX-1. It is plain that the 

agreement, while not exact, is good enough to indicate the essential cor¬ 

rectness of our methods, for most of the metals, particularly for the 

alkalies. For the transition metals, however, and in particular for the 

ferromagnetic ones, the observed value of Cv/T is much greater than 

the calculated one, a fact whose explanation we shall give later, in Sec. 6. 

To understand the relation of the electrons to the equation of stato 

of the metal, we may consider the internal energy at the absolute zero as a 

function of volume. This quantity, of course, should have a minimum 

for the actual volume of the metal, rising as it is compressed or expanded. 

In the free electron model, the energy will depend on volume in tw^o ways. 

In the first place, the kinetic energy will depend on volume, on account of 

the fact, proved in Eq. (5.7), Chap. V, that the total kinetic energy is 

iNWij where Wi is proportional to as shown in Eq. (2.3). Thus 

the kinetic energy increases as the volume decreases, varying as 1/r^, 

where r is the distance between atoms, since is proportional to r. 

This leads to a repulsive term in the energy. In the second place, the 
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potential energy of the electrons will depend on volume, on account of a 

change of the quatitity Wa with volume. It requires a little more careful 

analysis to see just what this change means, but it turns out that the 

situation is as shown in Fig. XXIX-5. Here we show potential energy 

curves like Fig. XXIX-1 for two different distances of separation. As 

the distance decreases and the atoms overlap more, we see that the 

potential energy of an electron between two atoms dc^creases. In fact, if 

the total potential energy is the sum of Coulomb attractions to the various 

atoms (a crude approximation, on account of the other electrons, which 

complicate the situation), the potential energy at a given point of the 

crystal would be a sum of terms — 1 /d^ where the (i's arc the distances to 

Fig. XXIX-5.—Potential energy of an electron in a metallic crystal, for two differ¬ 
ent distances of separation, illustrating the decrease of average potential energy with 
decreasing lattice spacing. 

the various atoms of the crystal. Then, since each of these is propor¬ 

tional to r, the lattice spacing, we find that the ])otential energy at a point 

between the atoms should decTcase approximately like —l/r. We can 

take an average value over the periodic potential of Fig. XXIX-5 to 

represent the zero of potential in the free electron picture. We see, in 

other words, that this should not be chosen as being really zero potential, 

but that it should be given a negative value, roughly proportional to 

l/r. This value, then, is the mean potential energy of the electrons. 

The net result is that we might expect to express the internal energy of 

the crystal at the absolute zero as 

f'. - -7 + (2-6) 

where the first term represents the potential energy, the second the 

kinetic energy, and where the constant B is given theoretically by 

B = 
5 o 2m 

% 
(2.6) 
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using Eq. (2.3), and Eq. (3.1), Chap. XIII, for the definition of c. The 
internal energy (2.5) is the general sort we expect, with a minimum and an 
asymptotic value at infinity, not entirely unlike a Morse curve. As a 
matter of fact, it is not very satisfactory for actually describing the 
equation of state of a metal, on account of various approximations that 
enter into it. First, the electrons of real metals are not free and their 
kinetic energy is not given at all accurately by the free electron theory. 
Secondly, the potential energy does not vary as 1/r, being really much 
more complicated than this. And finally, the electrons do not really 
move in an averaged out external field at all but are acted on by all the 
other electrons in their instantaneous motions. For all these reasons, as 
simple an expression as Eq. (2,5) is not adequate and is not actually as 
satisfactory as the Morse function, which we have used in Chap. XXVII, 
Sec. 2. In spite of this, it gives some insight into the mechanism of the 
forces in the metal, describing them in rather different light from that 
used in Chap. XXII, Sec. 4, where we treated them as a somewhat varied 
form of homopolar bonds. 

3. The Free Electron Model and Thermionic Emission.—We have 
stated in the last section that electrons whose kinetic energy is greater 
than Wa can escape from the volume V in Fig. XXIX-4, furnishing a 
model for thermionic emission. Using this free ekic.tron picture, we can 
easily calculate the rate of thermionic emission from a metal directly. 
This of course must lead to the same result as the indirect method of 
Chap. XXVIII, Sec. 3, for that is entirely justified thermodynamically, 
but it may lead to greater insight into the mechanism of thermionic 
emission. In the free electron theory, the electrons within the metal 
form a perfect gas, and we can find the number of electrons emerging per 
second by finding the number hitting the surface layer of the metal from 
the inside per second, and by multiplying by (1 — r), where r is the 
reflection coefficient, as in Chap. XXVIII. We must take account of one 
fact here, however, which vras absent in our calculation of the last chapter: 
we must confine ourselves to electrons of energy greater than TFa, so that, 
after passing the barrier, they will still have a positive kinetic energy and 
a real velocity. 

The situation of the barrier is different from what it would be with the 
Boltzmann statistics, as can be seen most clearly from Fig. XXIX-6. 
Here we have drawn energies, both inside and outside the metal, as in 
Fig. XXIX-4. The zero of energy is taken to be at the bottom of the 
picture. Then at the absolute zero there will be filled energy levels up tp 
the energy Wi and empty levels above, the filled ones being shaded in 
Fig. XXIX-6. We can now see that the potential energy of an electron 
outside the metal, TFa, is related to Wi and to Lo, the heat of vaporization 
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of a mole of electrons at the absolute zero, discussed in the last chapter, by 
the equation 

Wa=W.+ (3.1) 

For Lo represents the energy necessary to remove a mole of electrons from 
the metal at the absolute zero, in equilibrium. For equilibrium, tho 
metal must be left in its lowest state, so that the removed electrons must 
come from the top of the Fermi distribution, and they must have no 
kinetic energy after th(^y are removed from the metal. Thus each 
electron is raised just through the energy L^/N in the figure. In the 
Fermi statistics, in other words, th(' work function represents the differ¬ 
ence in energy between the top of the Fermi distribution and space outside 
the metal. And tlu^ result of Sec. 4, Chap. XXVIII, that on account of 
the contact potential the values of Ea — La and Eh — Lb were equal for two 
metals at the absolute zero, means graphically that two metals will adjust 

Fig. XXIX-6.~ Occupied energy levels for the free electron model of a metal, at the 
absolute zero, illustrating the relation between Wa, Wi, and the thermionic work function 
or latent heat of vaporization of electrons. 

their potentials so that the top of the Fermi distribution is at the same 
height in each metal, at the absolute zero. Let us find the small modifica¬ 
tions in this occurring at higher temperatures. 

The exact statement of Eq. (4.3), Chap. XXVIII, is that in any two 
metals in equilibrium, the space outside the metals acquires such a 
potential that if we subtract from it the amount 

(3-2) 

the result is the same for all metals. If it were not for the second term, 
as we have just mentioned, this would take us down to the top of the 
Fermi distribution for all metals. We shall now show that the last term 
means that really it will take us down to the level eo, rather than Wi or 
€00, as defined in Chap. V, Secs. 3 and 4, for all metals, so that any two 
metals in equilibrium have their €o's at the same energy. To do this, let 
us compute the second term of Eq. (3.2). We do not have Cp] but we 
shall assume for the present that the metal has no thermal expansion, 
so that Cp = Cvy and we can use the result of Eq. (2.4). Substituting for 
Wi from Eq. (2.3), this gives Cv proportional to Thus we have 
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dC V _ 1 Cv 
"dN ~ 3 N’ 

^'‘dN ~ 3^’' " w7 
(3.3) 

Then, substituting in Eq. (3.2), and using Eq. (5.6), Chap. V, we have 

Lo + = Lo + Noi^oo - €o). (3.4) 

But, referring to Fig. XXIX-6, we see that an energy lower by the amount 
(3.4) than the energy outside the metal, is just at the level eo, verifying our 
statement that this quantity is the same for all metals in equilibrium, 
while the energies outside the metals, and the bottoms of the Fermi 
distributions, are different for different metals. 

Now we can proceed with.our calculation of thermionic emission. We 
wish to find how many electrons, with energy sufficient to surmount the 

barrier of height Wa = Wi + ~y strike a square centimeter of the surface 

of the metal per second. Let the x axis be normal to the surface. Then 
in going through the barrier, the x component of kinetic energy, pl/2m^ 
will be reduced by Way while the y and z components will be unchanged. 
In other words, the electrons we are interested in arc those whose x 

component of momentum is greater than \/2mWa, while their y com¬ 
ponents of momentum can be anything. In finding this number, we must 
integrate over p^y Pvy Pz, rather than over the energy, for our limits of 
integration depend on the p\s. We ask first, then, how many electrons 
with momentum in the range dpx dpy dpz will cross 1 sq. cm. per second 
normal to the x axis. This, by the same methods used in the last chapter, 
will be Px/m times the number of electrons per unit volume in the range 
dpx dpy dpz. And in turn the number per unit volume in that range will 
be the number of energy levels in that range, multiplied by the Fermi 
factor 

1 
(pV2m—€o) 

e +1 

giving the fraction of those levels occupied by electrons, and divided by 
the volume V of the gas to find the number of electrons per unit volume. 
We must then find the number of energy levels in dpx dpy dpz- As in 
Chap. IV, Sec. 1, this is {V/h^)dpx dpy dpz, except for the correction arising 
from the electron spin. This doubles the number of allowed energy levels, 

2V 
leading to dpy dpz as the number of energy levels in dpx dpy dpx. 
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We are now prepared to find how many electrons, of energy sufficient 
to cross the barrier, strike 1 sq. cm. of the boundary of the metal por 
second. Using the statements made abov(i, this is 

r dpj^ dpA 
J._0O J — ^ J y \/2m Wa ^ 

jdpx 
p\)/2m- eo) 

r “ ^ ^kt +1 

(3.5) 

The integral in Eq. (3.5) cannot ))e completely evaluated analytically. 
But for the high eiK^rgy of the electrons conceriKHi, we are entirely justi¬ 
fied in negl(M‘ting the term unity in th(^ denominator of the Fermi function. 
Then the calculation can be carried out at once, giving 

mh:\j 00^ 

2mkfdp^ 
CO 

e 2mkTdp^ J, e 
■\/2m Wa 

dpx 

La Vo (to — eoo) 

Rf^ RT (3.6) 

where in the integral over p^ we can introduce pi as a new variable to 
simplify the integration. When we multiply by the factor (1 — r), 
representing the fraction of (‘lectroiis that ])enetrate the barric^r, and when 
we consider Eqs. (3.2) and (3.4), and Eq. (3.3) of Chap. XX VIII, we see 
that this result agrees exactly with that found in Chap. XXVIII. As a 
matter of fact, tlu're is nothing in this simple mod(d that would lead to 
any reflection co(‘fficient at all for electrons, so that we should really set 
r = 0. 

We have seen, in other words, that our free electron model, using the 
Fermi statistics, leads to thermionic emission agreeing with our previous 
deduction from thermodynamics. This is hardly remarkable, for any 
model whatever, correctly worked out according to thermodynamic 
principles, would have to do the same thing. But we have a somewhat 
better physical und(^rstanding of the reason for the rapid increase in 
emission with increasing temperature: only those electrons that happen 
to have enough energy inside the metal to surmount the barrier can 
escape; the number of such ek^etrons increases veiy rapidly with increas¬ 
ing temperature, the more rapidly the lower the work function is. 

The model we have used is, of course, too simplified. A more accurate 
model would likewise have to agree with our deduction of the previous 
chapter, but it could differ in its final results from th(? free electron model in 
having a different reflection coefficient and a different value of NoidCp/dN). 
And the calculation would differ in that it is only with free electrons, 
unperturbed by atoms, that we can find the number colliding with 1 sq. 
cm. of surface per second as simply as we have done here. Then in wave 
mechanics the reflection coefficient is not so simple as in the classical 



484 INTRODUCTION TO CHEMICAL PHYSICS [€hap. XXIX 

theory of free particles. Finally, the change of work function with 
temperature, coming from the term No(dCp/dN), is a decidedly more 
complicated thing than we have assumed. On account of thermal 
expansion, the volume of an actual metal changes with temperature. 
Then the energy levels of the electrons are bound to change, bringing a 
change explicitly with volume but actually with temperature, in the 
height of the barrier, in €o, and so on, quite apart from anything we have 
had to take up. All these complications make a direct calculation of 
thermionic emission from a correct model a very difficult thing. And 
they make the calculation of the preceding chapter all the more important, 
for it is derived from straightforward thermodynamics and from the 
propc^rties of the electron gas in empty space, about which there can be 
no doubt, and it does not depend on the nature of the metal at all. 

4. The Free Electron Model and Electrical Conductivity.—By slight 
extensions of the free electron theory, one can explain the electrical 
conductivity of a metal. Let there be an external electric field E, 
impressed on the metal. Then the electrons will no longer move with 
uniform velocity in a straight line, as in a jierfect gas. Instead, they will 
be accelerated, the time rate of change of momentum of each electron 
equaling the external force. If the field is applied at a certain instant, 
this external field by itself would result in a net electric current, building 
up proportionally to the time, if no other forces acted on the electrons. 
We must assume in addition, however, that the electrons meet some sort 
of resistance, proportional to their average or drift velocity, which hence 
is proportional to the current. When we consider this resistance, we find 
that the current, instead of building up indefinitely, approaches an 
asymptotic value, proportional to the external field, and hence obeys 
Ohm^s law. The time taken to reach this steady state is quite negligible 
in comparison with ordinary times, so that we find that the current in 
the conductor is proportional to the field. We can easily formulate this 
argument mathematically and see how the electrical conductivity depends 
on various properties of the electrons. The argument does not depend 
on the Fermi statistics and follows equally well from Boltzmann statistics. 

There are N/V electrons, each of charge — e, per unit volume in the 
metal. These will have a certain distribution of velocities (the Maxwell 
distribution or the Fermi distribution), of which we need only the prop¬ 
erty that the mean velocity is zero, in the absence of an external field. In 
the field E, the force on each charge will be — eE, so that, if p* is the 
component of momentum of an electron in the direction of the fi^eld (which 
we take to be along the x axis), we shall have 

(4.1) 
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But the velocity of an electron is its momentum divided by its mass, and 
the electric current density u is the number of electrons per cubic centi¬ 
meter, times the charge on each electron, times the velocity of each. 
Thus we have 

ux = j{-e)^> (4.2) 

SO that Eq. (4.1) can be rewritten 

dUx __ N 
'll “■ Vm ’ 

(4.3) 

from which we can at once verify that the current increases proportion¬ 
ally to the time. But now let us assume that there is an additional force 
acting on the electrons, proportional to their velocity, of the nature of a 
viscous resistance. Let the force acting on a single electron be — Px/r, 
where r is a constant. Then Eq. (4.1) becomes 

dpx 
dt 

(4.4) 

The meaning of r is easily seen if we ask for a solution of Eq. (4.4) in the 
case where the external field is zero. Then we have at once 

_ t 
Px = const, e % (4.5) 

so that T is the time in which the original momentum of an electron would 
be reduced to 1/e of its value on account of thc^ friction. The quantity r 
is sometimes called a relaxation time. Then we have 

"di'^Vm V (4.6) 

of which the solution satisfying the initial condition of no current at 
^ = 0 is 

N 

which reduces to 

= (4.8) 

at times large compared to the relaxation time, where by definition a- is 
the electrical conductivity, given on the free electron theory by ‘ 

V m ‘ (4.9) 
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The conductivity increases as we see with the number of free electrons 
available to carry the current and with the time in which each one can 
be speeded up by the field before it reaches a stationary speed on account 
of the resistance. It is obvious that Eq. (4.8), though it gives an explana¬ 
tion of Ohm\s law, does not lead to a calculation of the conductivity in 
terms of known quantities, because though we have seen how to estimate 
N/V, there is no way of estimating th(^ relaxation time r. We can, of 
course, reverse the argument, and from known conductivities and the 
values of N/V, assumed in Table XXIX-I, find what values of relaxation 
time would be required. These times are given in Table XXlX-3, from 
which we see that they are very short, of the order of sec. 

Table XXIX-3.—Relaxation Times for KLE(rrRKL\L Conductivity, Free Elec¬ 

tron Theory 

Li.. 

Na. 
Mg 
Al. 

K.. 

Ca. 
Ti. 

Cr. 
Fe. 
Co. 
Ni. 

Cu. 
Rb. 
Sr. . 
Mo 
Pd. 

T, seconds 
0.89 X 10-14 
3.26 
1.88 
2.20 
4.07 
3.31 
1.98 
1.62 
0.42 
0.52 
0.56 
2.50 
2.70 
0.79 
0.97 
0.50 

Ag. 3.96 
Cd. 0.97 

Cs. 7.50 

Ta. 0.41 

W. 1.00 

Os. 0.08 

Pt. 0.48 
Au.^. 2.43 

The electrical conductivities used in cornpiiting this table are either for 0 or 20®C. 

There is nothing in the free electron theory to explain the existence of 
the resisting force or the relaxation time. It is usually described as 
coming from collisions between the electrons and the atoms, and thus 
cannot properly be explained unless we take the atoms into account 
specifically. We can see something about the mechanism of the collisions, 
however, by considering the motion of the electrons in a momentum 
space, similar to that of Chap. IV, Sec. 1, in which Pyy p* are plotted as 
variables, and each electron is represented by a point. As we saw in that 
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section, we may imagine a lattice of points in momentum space, one to a 
volume h^/V, each point corresponding to an energy level, so that there 
can be two electrons, one of each spin, at each point. According to the 
Fermi distribution, at the absolute zero, the N points will be located at 

the points within a sphere of radius p = y/2mWi about the origin, so 
that the density of electrons within the sphere will be the maximum 
allowable value, while none will be found outside the sphere. At higher 
temperatures, the distribution will vary gradually, rather than discon- 
tinuously, from the maximum density within the sphere to zero outside, 
but the change will come within a very narrow region about the surface of 
the spher(\ Now if there is an external impressed field, the momentum 
of each electron will increase proportionally to the time. That is, each 
of the i)oints will move in the x direction (if the field is along x) with a 
velocity given by Eq. (4.1). Since this velocity is the same for all points, 
the whole sphere of points will drift along the x axis with uniform velocity, 
so that aft(^r a time t it will be displac^ed a distance —eEt along the px 
axis, since —eE = dpxidt is the velocity of the points. 

Now let us (H)nsid(^r the eff(H‘.t of collisions on the distribution function. 
The original distribution was in equilibrium, according to the Fermi 
distribution, so that collisions will leave it unchang(‘d, but the displaced 
distribution is not. Collisions of electrons with lattice points correspond 
to a sudden jump of a representative point from one region of momentum 
space to anoth(‘r. There are at least two principles governing such jumps 
that we can understand easily. In the first plac(% an electron cannot 
jump to a stationary states which is already occuified, on account of the 
exclusion principle. In the second place, if the collision of an electron 
and an atom is elastic, as we shall assume, it takes place with constant 
energy or only slight dissipation of energy in the form of elastic vibrations 
of thi) lattice, so that the representative point jumps from one location to 
another at the same or slightly smaller distance from tlu^ origin, in the 
momentum space. Then we can see in Fig. XXIX-7 that there are only 
a few collisions possible. In this figure we show the undisplaced sphere, 
the displaced sphere, and the crescents A and in which A includes 
points having more energy than Wiy representing electrons that have 
been accelerated by the field, and B represents points of less energy than 
Wi, from which electrons have been removed by action of the field. The 
likely collisions are essentially those in which a point from crescent A 
jumps to an unoccupied point in B. These collisions have the effect of 
disturbing the distribution, reducing the number of points with positive 
momentum, and increasing the number with negative momentum, verify¬ 
ing our statement that the distribution was not in equilibrium, so that 
collisions disturb it. We can now understand the general nature of the 
motion of representative points, subject to the external field and to 
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collisions. They stream steadily in the direction of increasing x, on 
account of the field, but as points enter the crescent A they are likely to 
have collisions taking them back to B and starting the process all over 
again. An equilibrium will be sot up, in wdiich the number of points 
entering A. per second will be equal to the number of collisions sending 
points from A to B per second. These collisions prevent the sphere from 
moving indefinitely far to the right; the farther it goes, the greater the 
crescent A becom(\s, the more collisions there' are, so that (equilibrium 
corresponds to a finite displacement of the sphere, though the individual 
points are moving as we have just stated. 

Py 

Px 

Fig. XXIX-7.—Diagram of occupied levels in momentum space, in free electron model 
of a metal. The points of the displaced sphere (shaded) are occupied when the electrons 
have been accelerated by an external field. 

The current density is proportional to the mean momentum of the 
electrons or to the displacement of the sphere from the center of the 
momentum space. The time rate of change of current, or the velocity 
of the center of the sphere, then depends on two things: on the velocity 
of the individual points, which is proportional to the external field, and 
on the number of points leaving A and entering B per second. The 
collisions, represented by these points jumping from A to B, have the 
effect of slowing down the motion of the sphere as a whole, though not of 
its individual points. The number of collisions is proportional to the 
number of points in A, and this is proportional to its area, which in turn 
is proportional to the displacement of the sphere or to the current density. 
Thus we see from our mechanism that we have essentially the two terms 
in du^ldt given in Eq. (4.6), though the second term, proportional to the 
current density, arises from collisions rather than from a frictional force. 
It is then clear that if we can calculate the probability of collision we can 
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compute the conductivity, using Eq. (4.9). We cannot go further with 
this, however, without considering the interaction of electrons and atoms 
more in detail. We can only say that the probability of collision is 
inversely proportional to the relaxation time r, since doubling the number 
of collisions will halve the time required for dissipating the momentum, so 
that the conductivity shoidd be inversely proportional to the probability 
of collision, or the specific resistance should be din^ctly proportional to th(i 
probability of collision, a very reasonable result. 

^ 6. Electrons in a Periodic Force Field.—In the three pre(;eding sec¬ 
tions, we have been dealing with the free (dectron approximation, in 
which we assume that the electrons in a metal arc^ not, act(‘d on by any 
forces. Now we shall give a brief and qualitative discussion of the 
changes brought about when we nunemlx'r that the electrons are really 
acted on by a x)eriodic force field, as shown in Fig. XXIX-1. It is quite 
impossible to understand these changes without knowing a few simple 
facts about wave m(H;hanics, and we shall proceed to giv(^ some simple 
illustrations of the wave nature of the electron. 

It has been shown, both theoretically and experimentally, that an 
electron of momentum p has many of the propcudies of a wave of wave 
length X = where h is Planck\s constant. This is shown most 
clearly in an experimental way by the phenomenon of electron diffraction, 
in which a beam of electrons striking a crystal is diffracted much as a 
beam of x-rays of the same wave length would be. Theoretically the 
wave c.oncc^ption of cdectrons is shown most clearly in the explanation of 
the quantum condition, the condition used in Chap. Ill, Sec. 3, to fix the 
cmergy levels in the quantum theory. We shall illustrate this by the 
problem in which we are particularly interested at present, the perfect 
gas. Consider a particle moving under the action of no forces in a region 
bounded hy x = 0^ x = X, y = 0, y = F, 2 = 0, 2: = Z, or in a volume 
XYZ = V. Classically, if the particle starts out with components of 
momentum px, Py, Pzj it will suffer various reflections at the walls of the 
region, traveling between collisions with the walls in a straight line with 
constant velocity and momentum. At each reflection, the component of 
momentum perpendicular to the wall will be changed in sign but not in 
magnitude, while the other two components will be unchanged. When 
we take account of all possible reflections, then, we shall find the particle 
traveling equal fractions of the time with the eight possible momenta 
given by the possible combinations of sign in ±p*, ±py, ±pz. Corre¬ 
sponding to this, in wave mechanics, a particle of momentum p* 
is associated with a plane wave of the form 

r, ( . lx At my + nA . 
sm 2Tr\vt-^-j) (5.1) 



490 INTRODUCTION TO CHEMICAL PHYSICS [Chap. XXIX 

analogous to Eq. (2.8), Chapter XIV, where we were discussing elastic 
waves. The quantities Z/X, m/X, n/X, in Eq. (5.1), are given by the 
relations 

L — m V: — 2^ 
h’ \ ~ h’ h’ 

(5.2) 

the vector form of our previous relation X = h/p. Now when we com¬ 
bine the waves corresponding to th(^ various combinations of ± signs, we 
find a standing wave, just as we did in a similar case in Chap. XIV, Sec. 2. 
It turns out that the w^ave must satisfy boundary conditions of reducing 
to zero on the surfaces of the enclosure, Sit x = Oy x = X, etc. Then, 
just as in Eqs. (2.11) and (2.12), Chap. XIV, we must have a wave 
represented by the function 

. . ^ . 2Trlx . 2Tnny . 2Trnz 
A sin ZTTvt sin -r— sin —sin — —; (5.3) 

where in order to satisfy the condition that the amplitude is zero at 
x = Xy etc., we must have 

2/X 2mY 2nZ 
(5.4) 

where Sz are positive integers. Using Elq. (5.2), we can rewrite 
these equations as 

(5.5) 

The conditions (5.5) determine the momentum, and hence the energy, of 
the electron. But they are just the conditions that would be determined 
by the quantum theory, as in Chap. Ill, Sec. 3. There we determined 
energy levels by considering a phase space and by demanding that the 
area of the curve enclosed by the path of the representative point in the 
phase space be an integer times h. In Fig. XXIX-8 we show the x — p^ 
projection of the phase space for the present case. As the particle travels 
from a: = 0 to x == X, its X component of momentum is p*. At X there 
is a collision with the wall and the momentum changes to —p®, again 
reversing when the particle returns to x == 0. The area of the rectangular 
path is then 2Xpx, so that we must have 

2Xp, = sA Px = (5.6) 

where s* is an integer, with similar relations for the y and z components. 
But Eqs. (5.6) are identical with Eqs. (5.5), showing that the wave con¬ 
ception of the electron leads to the same quantum conditions that we 
found earlier by quantizing the areas of the cells in the phase space. 
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The conditions (5.5) or (5.6) are not exactly the same that we used 
earlier, in Eq. (1.6), Chap. IV, in considering the same problem. There 
we found 

Vx == 
Uxh 

Vy 

Uyh 
Vz = 

n^h 

~Z' (5.7) 

where Uz were integers. The difference is that in Chap. IV we 
were not considering the collisions with the wall and the nwersal of 
momentum produced by these collisions. Our present treatment is 
correct, both according to ordinary quantum 
theory and to wave mcichanics, for a gas really 
confined in a box. The results are just the 
same, as far as the distribution of energy 
levels is concerned. In a momentum spac(^, 
Eq. (5.5) gives a lattice of allowed momentum 
values, each value corresponding to a volume 
(hl2X){hl2Y){hl2Z) ~ /iV^F of momentum 
space. On the other hand, Eq. (5.7) k^ads 
to a volume h^/V for each allow^ed value, so 
that there are only an eighth as many mo¬ 
menta in a given range in Eq. (5.7) as in Eq. 
(5.5). But the integers in Eq. (5.7) can be 
positive or negative, while those in Eq. (5.5) 

must be positive. Thus in Eq. (5.7) we have xxiX-8.—Path of repre- 

points in all eight octants of momentum sentative point in moraentura 

space, while in Eq. (5.5) they are confined at = o and a: - X. 

to the first octant. The number of allowed 
points within a sphere of given radius, corresponding to given energy, 
is then the same according to either equation, heading in either case 
to Eq. (1.9), Chap. IV, for the number of states with energy less than 
€, which we have used as the basis of our treatment of the perfect gas. 

While the two expressions (5.5) and (5.7), tlum, are equivalent as far 
as the distribution of energy levels is concerned, the argument on 
which Eq. (5.7) is based is more satisfactory for treating electrical 
conductivity and the flow of electrons. If we consider electrons in a box, 
there can be no net flow of current, for as many electrons will be traveling 
in one direction as in the opposite direction, on account of reflection at the 
boundaries. To get conductivity, it must be possible for more electrons 
to travel one way than the other. This is most easily handled by neg¬ 
lecting the walls of the box and by assuming that an electron continues 
with the fixed momentum p, as in the derivation of Eq. (5.7). The 
corresponding treatment according to wave mechanics proves to be to 
use only one wave, a traveling wave like Eq. (5.1), but to apply the 
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boundary conditions that the wave must reduce to the same phase at 
a: = 0 and x = X, a,t y = 0 and y — Y, and at 2 = 0 and z = Z. This 
demands 

IX p^X 
X ' h ~ 

WF PyY 
T- = T- = 

nZ __ pzZ 
~X F 

n^, (5.8) 

where Uy, Uz are integers, which reduces to the conditions (5.7). As in 
Eq. (5.7), the integers n can be positive or negative, so that the corres¬ 
ponding particles can b(^ traveling in edther direction. 

We can now considc'r the effect of a periodic potential field on the 
electrons. Tlu^, relation of waves in a constant potential field to waves in 
a*periodic field is very much like that betw(H3n the vibrations of a continu¬ 
ous medium, treated in Chap. XIV, and vibrations of a weighted medium 
or periodic set of mass points, discussed in Chap. XV. The cahnilation 
which we made there of the square of the frequency, is similar to that 
which is made here of the energy of the electron. Thus, there, for the 
continuous medium, we had Eq. (2.18), Chap. XIV, giving 

while here we have 

(5.10) 

In Chaps. XIV and XV, we found that Eq. (5.9) did not really hold for a 
solid composed of atoms. We found that there was instead a periodic 
dependence of on Sx, Sy, and Sz, as illustrated in Fig. XV-1. This arose 
because of a periodic dependence of the w^ave itself on the 6^s, as illustrated 
in Fig. XV-2, and it was closely tied up with the fact that the shortest 
wave that could be propagated in the crystal had a half wave hmgth equal 
to the interatomic distance, so that this wave corresponded to opposite 
displacements of neighboring atoms. Similarly in the wave mechanics 
of electrons in a periodic potential, there is a periodicity, and the shortest 
wave is that which is in opposite phases at successive atoms. We cannot 
give any sort of derivation of the behavior, without much more knowledge 
of wave mechanics than we have developed here, but the analogy with the 
mechanical vibrations is correct in most details. In place of the reciprocal 
space which we had in Chap. XIV, Sec. 2, and Chap. XV, Sec, 2, we have 
our momentum space, each wave function being represented by a point in 
this space. The momentum space is divided into certain polyhedra, or 
Brillouin zones, such that the energy repeats periodically in each zone 
and each polyhedron contains as many stationary states as there are 
atoms in the crystal. There is one difference between this case and that 
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of elastic vibrations, however. In the case of vibrations, there were a 
number of independent solutions of the equation giving v- as a function of 
Sx, Sy, Sz] the number was equal to the number of atoms in the unit cell, in 
the simple case of one-dim(nisionai vibration which we took up there, but 
in general it equals three times this miml)er, when we consider both 
longitudinal and transverse vibration. Here, however, the relation 
giving ^ as a function of Uy, has an infinite, rather than a finite, 

(a) Px 

(b) 

(c) 
Fig. XXIX-9.—Energy as a. function of momentum px, for an electron in a one¬ 

dimensional lattice, (a) Almost free electron. (6) Same as (a), but plotted in the first 
Brillouin zone, (c) More tightly bound electron. 

number of solutions. These are often called energy bands. As in Chap. 
XV, Sec. 2, we can handle these different bands in either of two ways: in 
the first place, we can confine our attention to the central Brillouin zone, 
plotting E as a function of the n’s for each energy band; or in the second 
place, we can plot one band in one zone, another in another, in such a 
way that they fit together in a reasonable way. The corresponding two 
ways of plotting the elastic spectrum were shown in Fig. XV-4 (c). 

Now we are prepared to understand the actual behavior of the elec¬ 
tronic energy levels in a crystal, as a function of the momentum. In 
Pig. XXIX'9 we plot curves of E vs. p*, for a one-dimensional model of a 
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crystal, in two (jasos. In (a) we show a case in which there is only slight 
departure from constancy of the potential, so that w^e have almost the 
free electron case. For free electrons, of course E = p2/2m, so that the 
curve would be a parabola. The curve in (a) is plotted so as to show its 
resemblance to a parabola, each energy band being plotted in a different 
zone. It will be seen that for most energies and momenta the parabola is 

Fig. XXIX-10.—Energy bands as a function of intcrnucloar distance. The graph is 
drawn for metallic sodium, showing the bands that go into the Us, 35, and Sp levels of the 
atom at infinite separation. The 25 level is an x-ray level, and 35 is the valence electron 
level. The energy gap which appears between 35 and 3p in the figure, at distances of less 
than QA, is really filled with bands from higher atomic levels. 

a good approximation, but there is a discontinuity of energy near the 
momenta at the edges of the zones. In (6) we plot the same curves 
reduced to the central Brillouin zone. The case (c) shows a much greater 
departure from free electrons. This is a case more like what is met in an 
actual metal. We plot this only in the central zone; it is so far from 
the case of free electrons that there is no sense trying to make the curves 
resemble a parabola by plotting as in (a). Here there are a number of 
bands of very low energy, with almost a constant energy throughout the 
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band. Those correspond to the inner, x-ray energy levels of an electron 
in a force field representing a single atom, and as we should expect from 
the fact that the orbits of the corresponding electrons do not overlap at 
all, these energy levels arc in almost exact agreement with those of iso¬ 
lated atoms. The higher bands, however, are fairly broad; that is, the 
energy difference between the top and bottom of a band is considerable. 
These correspond to the valence electron levels of the separated atoms and 
are broadened on account of the perturbation of the valence electron of 
one atom when it overlaps another. 

It is very instructive to plot the energy bands in another way, as in 
Fig. XXIX-10. Hero we show the top and bottom of each band, as a 
function of internuclear distance, as we vary the size of the crystal. This 
shows very clearly the way in which the energy levels at infinite sej^aration 
go into sharp levels, as in the isolated atoms. On the other hand, as the 
distance is decreased, the bands broaden, the broadening beginning at 
about the interatomic distance where the orbits in question begin to 
overlap, so that the valence (dectron levels are broadened at the normal 
distance of separation in the metal, while the x-ray levels arc not but 
would be broadened if the crystal were compre^ssed to a much smaller 
lattice spacing. Fig. XXIX-10 is drawn for a three-dimensional lattice, 
rather than a one-dimensional one as in Fig. XXIX-9. In the one¬ 
dimensional case, there is an energy gap Ix^tween each band and its 
neighboring band, a gap in which there are no energy levels. On the 
other hand, in three dimensions, this is not in general the case. With 
the lower, widely separated bands there are gaps, but in the case of the 
valence electrons the bands overlap and the gaps are filled up. 

6. Energy Bands, Conductors, and Insulators.—In discussing atomic 
structure in Chap. XXI, we first found out about the energy levels of an 
electron in a central field, and then we built up a model of the atom by 
assuming that the electrons of the atom were distributed among these 
energy levels, the lower ones being filled with two electrons each, one of 
each spin, and the upper ones being empty. Similarly here we have taken 
up the energy levels of an electron in a periodic potential field, and next 
we must ask what levels are actually occupied in the metal. We have 
mentioned that each of the energy bands consists of N stationary states, 
if there are N atoms in the metal. For the x-ray levels, these stationary 
states all have almost exactly the same energy, while for the higher levels 
they vary considerably in energy. In a crystal, then, each band can 
accomodate 2N electrons, N of each spin, or two electrons per atom, one 
of each spin. We first fill up the x-ray levels, having just the same 
number of electrons per atom as in the isolated atoms and with just about 
the same energy. The remaining electrons go into the valence electron 
bands. It then becomes a question of great importance how many such 
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electrons there are, and how much they fill the bands up. To consider 
this question, let us consider a series of elements, such as Ne, Na, Mg, 
etc., each containing one more electron than the one before. If we 
formed a crystal of Ne atoms, there would be ten electrons per atom, just 
enough to fill the energy bands coming from the atomic ISj 2s, and 2p 
electrons. These are all fairly narrow bands, not overlapping with others. 
Thus all the electrons of a neon crystal would be in filled energy bands. 
With sodium, however, there is one more electron per atom, and it must 
go into a valence electron band. The band coming from the atomic 3s 
electron is broadened a good deal at the actual distance of separation of 
sodium atoms, and in fact its E vs. p curve is a good deal like that for fre(' 
electrons. This band can hold two electrons per atom, but only oik^ is 
available, so that it is only half full. In the momentum space, if the 
energy is approximately proportional to as with free electrons, the 
occupied levels will then fill an approximately spherical volume half as 
large as a Brillouin zone, or just the same size that we should have for 
free electrons with one free electron per atom. In magnesium, with two 
valence electrons per atom, we might think at first sight that both would 
go into the 3^ band, filling it. But actually there is no gap between this 
3rS band and the one coming from the atomic 3p levels. Some of the 
levels of the 3s band lie higher than the lowest ones of the 3p band. The 
two valence electrons per atom, or 2N for the crystal, will go into the low¬ 
est 2N states of the combined bands, meaning that some will go into the 
3s band, some into the 3p, neither one being entirely filled. As more and 
more electrons are added, the bands fill up more and more, but for th(^ 
characteristically metallic elements the levels all overlap, so that we nev(u 
have the situation of a certain number of filled levels, all the rest being 
empty, with a gap between. 

It can now be shown that if a crystal has all its electrons in filled 
bands, it must be an insulator; conductivity comes essentially from 
partly filled bands. To see this, we need to know the effect of an external 
field on the energies of the electrons, in a periodic field. It turns out 
that, just as in Sec. 4, the external field brings about a constant rate of 
change of momentum, the points representing the various electrons drift¬ 
ing with uniform velocity in the momentum space. The relation between 
momentum and energy, however, is as we have found in this section. 
Thus we may sec, for example in Fig. XXIX-11, what will happen. At 
the instant when the field is applied, the levels indicated by shading in (a) 
are assumed to be occupied. This corresponds to a whole Brillouin 
zone, or a whole band, being filled. As time goes on, the momenta all 
increase, so that the occupied levels have shifted along to those shaded in 
(6). But on account of periodicity, the levels that have been filled in 
going from (a) to (b) are exactly equivalent to those vacated, so that 
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there has been no net change of the electrons at all, and no resultant elec¬ 
tric current has been set up. Furthermore, no change of distribution 
within this band can be brought about by collisions, for there are no 
empty levels to which (electrons can jump. In other words, the electric 
field has no effect on a filled band. This argument is not exactly correct; 
it neglects the polarization effect, which the field of course can produce on 
electrons in closed shells. But it is correct in showing the lack of con¬ 
ductivity from filled bands. In a partly filled band, on the contrary, the 
behavior is qualitatively, though not quantitatively, like that described in 
Sec. 4. Only a part of a Brillouin zone is filled with electrons, so that 
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(b) 
Fig. XXIX-11.—Occupied electronic levels in Brillouin zones, one-dimensional crystal 

(a) At time of application of external field, {h) After lapse of time, illustrating that on 
account of the periodicity the occupied levels really do not change with time. 

when the filled region is shifted by the field, the levels that are filled are 
different from those that are vacated, and there is a net change in the 
distribution, resulting in a current. 

Using the statements just made, we see that a crystal of neon, or 
other material having only filled electron bands, will be an insulator, while 
a metal, having partly filled bands, will be a conductor. One can set up 
energy bands for chemical compounds, as well as for elements, and if the 
compounds are held together by homopolar bonds, it turns out that the 
energy bands are such that certain bands are entirely filled, the others 
entirely empty, so that these materials are insulators. For metals, on 
the other hand, even though the conductivity is explained essentially as 
on the free electron theory, the wave mechanical picture can contribute 
several important points to the theory. In the first place, the current 
produced by a certain change of momentum, or by a given field acting 
through a given time, is not the same as in the free electron theory. We 
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can see this from the fact that a filled band of electrons produces no net 
current, though it would according to the free electron theory. As a 
matter of fact, as the number of electrons in a band increases, the current 
produced by a given field at first increases ])roportionally to the number 
of electrons, as if they were free, but as the band is more nearly filled the 
current increases less rapidly than the number of electrons, then reaches 
a maximum, and decreases to zero when tlu^ band is filled. As a result of 
this effe(‘t, the curnait produced is k'ss than if the electrons wore really 
free. may define an eff(^ctive numbe^r of free electrons, equal to the 
number that would produce the same current as the electrons actually 
prestait. For the alkali metals, this effective number of free electrons is 
almost exactly equal to the actual number of valence ('h^ctrons, but for 
other metals it, is much less, so that even though there are more valence 
electrons than in the alkalies, the eff(‘ctiv(i number of free electrons is less. 

A second point in which the (^xa(*t theory affects the conductivity is 
in the matter of the collisions of the (‘lectrons with the atoms, resulting in 
the time of relaxation which we hav(^ discusse^l in Sec. 4 in connection 
with the resistance. We found in Eep (4.9) that, the specific, (ionductivity 
was proportional to the relaxation time', or thc^ spcndfic r(‘sistance propor¬ 
tional to the probability of collision. Now in wave mc'chanics the picture 
we forin of the collision of an eh^ctron with an atom is the scattering of the 
wave representing the ('h'ctron, by t he irr(‘gularity of potential represent¬ 
ing the atom. But wo nailly have sc^attcu’ing, not by a single atom, but 
by a whole crystalline^, arrangemient of atoms. If these are regularly 
spaced, the electron wave' will not be scatte^e'xl, any more than a light 
wave is scattereel in passing through a crystal. It is only the^ de^viations 
from homogeneity, the irregularitie's in density, that proeluce scattering. 
Thus if the lattice is perfea'tly regular, electrons will travel through it 
undeviated. This is the case at th(^ absolute zero of temperature. At 
higher temperatures, however, th(*re will be fluctuations of density, on 
account of the temperature vibrations of the atoms. The amount of 
scattering of the wave, or the probability of collision of the electron with 
atoms, will be proportional to the mean square deviation of density from 
the mean, or to the square of the amplitude of atomic vibration, which 
in turn is proportional to the energy of the vibrating atoms, or to the 
temperature. Thus we expect the probability of collision and the specific 
resistance to be proportional to the temperature. Of course, it is a well- 
known experimental fact that this is true, and this simple explanation of 
the temperature variation of specific resistance is one of the most impor¬ 
tant results of the wave mechanical theory of conductivity. More 
elaborate methods make it possible to estimate the magnitude of the 
scattering and of the resistance, and the agreement with experiment is 
good. 
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Further applications of the theory of energy bands can be made to 
the interatomic forces in metals and other solids. We have already 
spoken, in Sec. 2, of the relation of the free electron theory to the equation 
of state. This relation can be made much more accurate and quantitative 
by means of the energy band theory. In Fig. XXIX-10 we have shown 
the way in which the energy bands vary with interatomic distance. In 
an approximate way, we can find how the energy of the crystal varies with 
lattice spacing by adding the energies of the various electrons it it, though 
further corrections must be made to get accurate results. We see that 
most atomic energy levels widen out as the atoms approach,, their centers 
of gravity staying roughly constant, but then rising as the atoms come 
very close togcither. If, then, the crystal had only filled bands of elec¬ 
trons, we should expect the energy to be roughly constant for large 
interatomic distances but to rise for smaller distances. That is, there 
would be no attractions between atoms, apart from Van der Waals forces, 
which are neglected in this treatment, but at smaller distances there would 
be repulsions, resulting in tlui impenetrability of atoms. This is what we 
should expect in an inert gas like neon, for instance. But if we consider 
a crystal like sodium, we have a band of valeiK^e electrons only half full, 
the bottom half being oc.cupied. This bottom half represents a band of 
electrons which spreads out as the interatomic distance decreases (as 
we found in Sec. 2 to be the case with free electrons), but whose center of 
gravity first decreases, before its final increase at very small interatomic 
distance. Thus the mean energy has a minimum; this is what is responsi¬ 
ble for the binding of the metallic crystal. Calculations using this model 
for the alkali metals give very good agreement with experiment. It is 
clear from this example that the essential for metallic binding is a band 
whose lower half is filled, while its upper half is empty. The broader the 
band is and the more electrons it holds, the tighter the binding. Thus 
in the transition groups of elements, we have noted in Chap. XXVII, 
Sec. 2, that the binding increases in strength as we add more d electrons, 
weakening again as the d shell is filled. These d electrons have a band 
which is rather narrow but which is capable of holding ten electrons. The 
first five go into the bottom half of the band, contributing to the binding, 
while the last five go into the upper half, weakening the binding again. 

We have just stated that, though the d band in the transition group 
elements is rather narrow, resulting from the small overlapping of the 
rather small d orbits, still it can contain ten electrons. This means that 
the number of energy levels per unit range of energy must be very much 
greater than it would be for free electrons. This has an interesting 
application to the electronic specific heat of these metals. The general 
expression for the specific heat of a system obeying the Fermi statistics 
is given in Eq. (4.8), Chapter V, 



600 INTRODUCTION TO CHEMICAL PHYSICS [Chap. XXIX 

whore dN/de is the number of energy levels per unit range. Since this is 
much larger for the d shell than for free electrons, we infer that the elec¬ 
tronic specific heat should be iimisually large for a transition metal. This 
is observed experimentally, as we have already shown in the discussion of 
Table XXIX-2. 

The binding of valence crystals can also be explained from the stand¬ 
point of energy bands. In Fig. XXlX-12 we show energy bands for 
diamond, a typical crystal held by homopolar bonds. We see that the 
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Fig. XXIX-12.—Energy bands in diamond. The lower band is occupied, the upper one 
unoccupied, illustrating the energy gap above the occupied levels. 

bands look rather different from what they do in a metal, in that they an' 
divided into an upper and a lower half, with a gap between. There are 
enough electrons in carbon to fill the bands coming from the Is atomic 
level, and the lower band coming from the atomic 2s and 2p. Then there 
is a wide gap between the top of the filled level and the first empty level, 
showing that diamond must be an insulator. But now we notice that the 
filled level dips down sharply as the interatomic distance decreases, before 
commencing its rise. Thus diamond is strongly bound, as we know from 
its high heat of vaporization and low compressibility. Similar bands 
occur in other valence compounds, though they have not been extensively 
investigated. 

From the examples considered, we see that the effect of the periodic 
potential on the motion of the electrons is essential to an understanding 
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of interatomic or intermolecular binding in crystals, as well as of the 

electrical properties. We have been able to do no more in this chapter 

than give a suggestion of the type of results to be obtained. To go 

further, one must make a great deal more study than we have of the 

principles of wave mechanics. The same remark might, in fact, be made 

about a great many of the topics taken up in this book. A well-trained 

chemical physicist should be an expert in the quantum theory and wave 

mechanics, as well as in thermodynamics and statistical mechanics. Our 

effort in this book, however, has been to show that one can really get 

surprisingly far and can understand nature surprisingly well, with rela¬ 

tively elementary facts about the fine structure of matter and the prin¬ 

ciples governing its behavior. 





PROBABLE VALUES OP THE (GENERAL PHYSICAL 
CONSTAN^J’S 

Velocity of light 

Mechanical equivahnit 

of heat 

Normal atmosphere 

Gas constant 

Ice point 

Volume of 1 mole of 

perf(i(!t gas, n.t.p. 

Avogadro’s number 

Boltzmaim^s constant 

Planck’s constant 

Electronic charge 

Electron volt 

c — 2.998 X 30^® cm. per second 

1 cal. = 4.185 X 10^ ergs 

1 kg.-cal. ~ 4.185 X 10^*^ ergs 

1 atm. = 1.013 X 30*^ dynes s(piare centimeter 

R — 8.314 X 10^ (Tgs per degree per mole 

_ 8.314 X KF 

"" 4.TS> X i(P 

= 1.987 cal. per d(‘gree per mole 

== .08205 1. atm. per degrcaj t)er itiole 

Temp. - 273.2'^ abs. 

Volunie = 0.08205 X 273.2 - 22.41 1. 

Vo = 0.03 X UP molecules per mole 

^ _ 8.314 X KF 

” 0.03 X 102^ 

= 1.379 X 10 erg per degree 
h — 0.()1 X 10‘27 ('rg-sec. 

c = 4.80 X 10“^*^ e.s.u. 

4.80 X 10- 
e.v. — 

299.8 
= 1.00 X 10 ^2 erg 

1.00 X ur‘2 X 0.03 X 1023 

4T85 X 10'« 

== 23.05 kg.-cal. per mole 

Mass of atom of unit 

atomic weight Mass = 1.60 X 10"24 gm. 

Mass of electron m = 9.10 X 10“28 gm. 

= j X mass of unit atomic weight 

Rydberg energy Rhc — 2.17 X 10“’' erg 

= 13.50 electron volt 

==313 kg.-cal. per mole 

Radius of first hydro¬ 

gen orbit ao == 0.53 A. 

The values for the large-scale constants are taken from the well-known tabulation 

of Birge, Phys. Rev. Supplement, Vol. 1, 1929. The atomic and electronic constants 

are taken or computed from the more recent values tabulated by Dunnington, BuU. 

Am. Phys. Soc., 14 (1), 17 (1939). 
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The reader may very likely want to refer to other texts dealing with the same 
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statistical ideas connected with the introduction of the theory of quanta. Another 

standard text, dealing principally with phase equilibrium, is the “Lehrbuch der 

Thermodynamik,” by J. D. van der Waals. “The Dynamical Theory of Gases,” by 

J. H. Jeans, Cambridge University Press, is a standard text on kine^tic theory; more 

recent texts on the same subject are “Kinetic Theory of Gases,” by Loeb, and a book 

by the same tith^ by E. H. Kennard, both published by McGraw-Hill Book Company, 

Inc. “Kinetische Theorie der Warme,” by K. Ilerzfeld, published by Vieweg, com¬ 

bines the principles of statistical mechanics with application to matter, in somewhat 

the same way as the prc'sent text. Among more recent texts of thermodynamics one 

may mention “Thermodynarnicts,” by E. Fermi, Prentice-hlall, Inc., 1937; “Textbook 

of Thermodynamics,” by P. Epstein, John Wiley & Sons, Inc., 1937; “Heat and 

Thermodynamics,” by J. K. Roberts, Blackie and Son, Ltd., 1933; “Modern Thermo¬ 

dynamics by the McdJiod of Willard Gibbs,” by E. A. Guggenheim, Methuen and 

Company, Ltd., 1933; and “Heat and Thermodynamics,” by M. W. Zemansky, 

McGraw-Hill Book Company, Inc., 1937. Recent texts on statistical mechanics 

include the standard treatise, “Statistical Mechanics,” by R. H. Fowler, Cambridge 

University Press, 1929; (a revision and condensation of this work, in collaboration 

with Guggenheim, is understood to be in preparation); “Statistical Mechanics with 

Applications to Physics and Chemistry,” by R. C. Tolmaii, (Chemical Catalog Com¬ 

pany, 1927; the successor to that volume, “Principles of Statistical Mechanics,” by 

Tolman, Oxford University Press, 1938; “Statistical Physics,” by Landau and Lif- 

schitz, Oxford University Press, 1938; and “Quantenstatistik und ihre Anwendungen 

auf die Elektronentheorie der Metalle,” by L. Brillouin, Springer, 1931. A number 

of texts on physical chemistry and chemical thermodjmamics bear closely on the topic 

of this book. First of course is the well-known “Thermodynamics and the Free 

Energy of Chemical Substances,” by Lewis and Randall, McGraw-Hill Book Com¬ 

pany, Inc., 1923. Others are “A Treatise on Physical Chemistry,” by H. S, Taylor, 

D. Van Nostrand Company, Inc., 1932; and “A System of Physical Chemistry,” by 

W. C. McC. Lewis, Longmans Green & Company, 1921. Closely related is “The New 

Heat Theorem, its Foundation in Theory and Experiment,” by Nernst, E. P. Dutton 

Company, Inc., 1926, describing some of the early applications of quantum theory to 

thermodynamics. 
Thermodynamics and statistical mechanics, as well as the structure of matter, can 

hardly be understood without a study of atomic and molecular structure, and of the 

quantum theory which underlies them. Suggested texts in this general field are 
505 
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^^Introduction to Modern Physics,” by F. K. Richtniycr, McGraw-Hill Book Com¬ 

pany, Inc., “Atoms, Molecul(‘s and Quanta,” by Ruark and Urey, McGraw-Hill Book 

Company, Inc., “Introduction to Atomic S])ectra,” by H. E. White, McGraw-Hill 

Book Company, Inc., “The Structure of Lino Spectra,” by Pauling and Goudsmit, 

McGraw-Hill Book Company, Inc. For somewhat more mathematical treatments 

of the same field, including wave mechanic's, useful treatmenfs are found in “Introduc¬ 

tion to Quantum Mechanics,” by Pauling and Wilson, McGraw-Hill Book Company, 

Inc., “Elements of Quantum Mechanic's,” by S. Dushman, John Wilc'y & Sons, Inc., 

“Wave Mechanic's, lOlementary Theory,” V)y J. I'Tcmkel, Oxford University Prc?ss; 

“The Fundamental Principles of Quantum Mechanics,” by E. C. Kemble, McGraw- 

Hill Book Company, Inc.; as wcdl as the treatment in “Introduction to Theoretical 

Physics,” by Slater and Frank, McGraw-Hill Book Company, Inc. 

Many texts deal with specific subjects taken up in one chapter or another of the 

present book. One may mention “The Physics of High Pressure,” by P. W. Bridg¬ 

man, The Macmillan Company, 1931, and “The Thermodynamics of Ek^ctrical 

Phenomena in Metals,” also by Bridgman and published by The Macmillan Com¬ 

pany; “Metallography,” by C. H. Desch, Longmans, Grcam and Company, for a 

treatment of phase equilibrium; “Measurcancait of Radiant Energy,” by W. E. 

Forsythe, McGraw-Hill Book Company, Inc., for black-body radiation; “Crystal 

Chemistry,” by C. W. Stillwell, McGraw-Hill Book Company, Inc., with more 

detail(‘d treatments of many of th(‘ points taken up in the Part III of the present 

book; “Valence and the Structure' of Atoms and Moh'cules,” by G. N. Lewis, Chemical 

Catalog (bnipany, and “Tlie Nature of the Chemical Bond,” by L. Pauling, Cornell 

University, 1939, for discussion of valence bonds; “The Crystalline State,”.by W. H. 

and W. L. Bragg, The Macmillan Company, 1934, and “The Structure of Crystals,” 

by R. W. G. Wyckoff, Chemi(\al Catalog Company, for Tiiore d(4,ailed information 

about crystal structure; “Photoelectric Phenomena,” by Hughes and DuBridge, 

McGraw-Hill Book Company, Inc., for treatment of eh'ctronic questions; “Properties" 

of Metals and Alloys,” by Mott and Jones, Oxford University Press, “Elektronen- 

thcorie der Metalle,” by PI. ITohlich, Springer, and “The Theory of Metals,” by A. H. 

Wilson, Cambridge University Pr(\ss, for the structure of metals. 

In addition to these texts, various handbooks, tables, etc., arc of great service. 

Both the “Handbuch der Physik” and the “Handbuch der Experimentalphysik” 

contain several volumes dealing with the geriCTal subjects tre^ated in the present 

book, treated both experirmaitally aiid theoretically. Some specific references are 

made to tliem in the text. For numerical data, Landolt-BornsteirPs “ Physikalisch- 

Chernische Tabellen” are invaluable, supplemented by the “International Critical 

Tables.” In the field of atomic spectra, “Atomic Energy States,” by Bacher and 

Goudsmit, McGraw-Hill Book Company, Inc., has very complete data, and the field 

of crystal structure is covered by the “Strukturbericht,” a supplement to the “Zeit- 

schrift flir Kristallographie.” Band spectra and molecular structure are included in 

the volume of tables in “ Molektilspektren und ihre Anwendungen auf Chemische 

Probleme,” by H. Sponer, Springer. Finally, though we have not listed many refer¬ 

ences to original articles, the reader will do well to consult review articles in Chemical 
Reviews and Reviews of Modern PhysicSj as well of course as becoming familiar with the 

large literature in the Journal of Chemical Physics^ Journal of the American Chemical 
Society, as well as foreign periodicals. 
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A 

A priori probability, 36, 38, 127 
Absorption of radiation, 309-310, 322-333 

Absorptivity, 309-310, 325-326 
Acetic acid, data regarding melting point, 

259 

heat of vaporization, 434 

structure of molecule, 427 
Van dor Waals constants, 408 

Acetylene, structure of molecule, 428 
Van der Waals constants, 408 

Activation, eiuirgy of, 159-164, 257 

Adiabatic processes, 13, 17-19 
Aliphatic compounds, 420-428 

Alkali halides, data regarding crystals, 
381, 393, 395 

data regarding melting point, 259 
equation of state, 390-396 

residual rays, 254-255 
specific heat, 253 

Alloys, 270-290, 458-459 
Aluminum, crystal structure, 447 

data regarding melting point, 259, 261 
Debye temperature, 237 

equation of state and crystal structure, 
451, 454 

molecular volume, 261 
specific heat, 236 
thermal expansion, 261 

Ammonia, data regarding melting point, 

259 
formation of ammonium complex, 

272-273 

heat of vaporization, 414 

valence structure of molecule, 401 
Van der Waals constants, 408 

Ammonium bromide, data regarding 

crystals, 382 

rotation of ions, 300 
Ammonium chloride, data regarding 

crystals, 381 
rotation of ions, 293, 300 

Ammonium iodide, data regarding crys¬ 

tals, 382 

Ammonium ion, 357, 378 
Angular momentum, (juantization, 40, 

135, 339 
Annealing, 282 

Antimony, crystal structun^ 447, 449 
data regarding nadting point, 259 

Argon, atomics volum<i, 384 

data regarding crystals, 416 
data regai'ding m(4ting point, 259 

specifics heat, 130 
Van der Waals constants, 408 

Aromatic comixainds, 428-432 

Arsenic, crystal structure, 447, 449 
Assembly, canonictal, 46-53 

fluctuations in, 101-111 

microcanonical, 46 
in molecular phase space, 69-72 

statistical, 32-35 
Atomic number, 336 

Atoms, structure, 321-351 
Attractive torches between molecules, 

130-133 
and atomic theory, 352-376 
in solutions, 271-277 
and Van der Waals^ equation, 182-184, 

194-196 

Avogadro's law, 60 

Avogadro’s number, 60-61, 128 

B 

Barium, crystal structure, 447 

equation of state, 451 
Barium chloride, data regarding melting 

point, 259 

Barium oxide, sulphate, selenide, tellu- 

ride, data regarding crystals, 381 
Barometer formula, 62-64 
Benzene, data regarding melting point, 

259 
structure of molecule, 428-431 
Van der Waals constants, 408 

Beryllium, crystal structure, 447 

equation of state, 451 
Beryllium oxide, sulphide, selenide, tellu- 

ride, data regarding crystals, 382 
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Binary systems, phase equilibrium, 270- 

290 
Bismuth, crystal structure, 447-449 

data regarding melting point, 259 

Black-body radiation, 307-320, 325-326 

and Einstein-Bosc statisti(;s, 85 

Body-centered cubic structure, and 

metals, 445-447 
and molecular vibrations, 232 
and order-disorder, 293 

Bohr, freqiKuicy (‘ondition, 323 

hydrogen atom, 340 
Boiling point, 166-169, 171-180 

of chain eoinpoiinds, 422 
Boltzmann factor, and thermionic emis¬ 

sion, 468 
Boltzmann statistics, a])plication to per¬ 

fect gas, 115-129 

fluctuations, 101-104, 109 

and kinetic method, 86-96 
relation to Fermi-Dirac and Einstein- 

Bose statistics, 68-72 

Boltzmann’s constant, 33, 61 

Boltzmann’s H theorem, 90 
Boltzmann’s rcdation between probability 

and entropy, 34 
Boundary conditions, vibrating chain of 

atoms, 244 

vibrating solid, 227-228 
Boyle’s law, 30, 60 

deviations from, 190-198 

Brass, phase equilibrium, 270, 287-288 
Bridgman, 24, 181, 201, 220 

Brillouin zone, and electrons in metals, 

493-501 

and molecular vibrations, 233 

Bromine, characteristic temperature, for 
rotation, 136 

for vibration, 142 

heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

and homopolar bonds, 400-408 

and organic compounds, 425-426 
Butane, heat of vaporization, 434 

structure of molecule, 421 

Van der Waals constants, 408 

C 

Cadmium, crystal structure, 447 

data regarding melting point, 259, 261 

Debye temperature, 237 

equation of state and energy, 451, 454 

Cadmium, molecular volume, 267 

thermal expansion, 261 

Cadmium oxide, sulphide, selenide, tel- 
luride, data regarding crystals, 382 

Caesium, compressibility, 202 

crystal structure, 447 
data regarding imilting point, 259 

equation of state and energy, 451, 454 

Caesium bromide, fluoride, iodide, data 

regarding crystals, 381 

Caesium chloride, crystal structure, 378- 

379, 381 
Calcite structure, 397-398 

Calcium, crystal structure, 447 

equation of state and energy, 451, 454 

phase ecpiilibriurn in alloys, 274 

Calcium carbonate, structure, 397-398 
Cahaum chloride, data regarding melting 

point, 259 

Calci\im oxide, sulphide, selenide, tel- 
luride, data regarding crystals, 381 

Caloric theoyy of heat, 4~6 

Calori(‘, 6 

numerical value, 8 
Canonicail assembly, 46-51 

and Maxwell-Boltzmann distribution, 

52-53 
Carbon, and hoinopohir bonds, 400-407 

and organic compounds, 420-434 

(diamond), crystal structure, 379, 424 

Debye temperature, 237 

energy bands, 500 

energy constants, 455 

(graphite), crystal structure, 429 

(molecule), characteristic temperature, 

of rotation, 136 

of vibration, 142 

heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 
Carbon bisulphide, Van der Waals con¬ 

stant, 408 

Carbon dioxide, data regarding melting 

point, 259 

heat of vaporization, 414 

triple point, 167 

valence structure of molecule, 405 
Van der Waals constants, 408, 411 

vapor pressure and latent heat of 

vaporization, 188-189 

Carbon monoxide, characteristic tem¬ 

perature, for rotation, 136 

for vibration, 142 
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Carbon monoxide, crystal structure, 417 

data regarding molting point, 259 

dissociation, 133 

heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 
heat of vaporization, 414 

Van der Waals constants, 408, 411 

vibrational specific heat, 144-145 

Carbon tetrachloride, boiling point, 42G 

data regarding melting point, 259 

Carbonate ion, valence structure, 406 

Carboxyl group, 427 
Cells in phase space, 38-43 

and Fermi-Dirac and Einstein-Bose 

statisti(;s, 65-85 
and interatomic forces, 369 

and kinetic method, 86-100 

CH, characteristic temperature, for rota¬ 

tion, 136 
for vibration, 142 

heat of dissociation, interatomic dis- 

taiKH^, Morse constant, 132 

Change of phase, 23, 166-190, 256-269 
Characteristic temperature, for atomic 

vibrations in crystals, Debye, 235- 

236 

for ionization, 322, 335 

for rotation, 136 
for vibration, diatomic molecules, 141- 

142 
Charles’s law, 60 

Chemical constant, and chemical equilib¬ 

rium, 155-156 

of diatomic gas, 140 

of monatomic gas, 118, 120, 128 
and thermionic emission, 463-464 

and vapor pressure, 178-180 

Chemical equilibrium, 150-165 
Chlorine, characteristic temperature, for 

rotation, 136 

for vibration, 142 

data regarding melting point, 259 
heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

and homopolar bond, 400-408 

and organic compounds, 425-426 

Van der Waals constants, 408 

Chloroform, boiling point, 426 

heat of vaporization, 434 

Van der Waals constants, 408 

Chromium, crystal structure, 447 

data regarding melting point, 259 

Chromium, equation of state and crystal 
structure, 451, 454 

Clapeyron’s equation, 174-181, 220 

Cla.A", structure, 440 

Cobalt, crystal structure, 447 
data regarding melting point, 259 

equation of state and energy, 451, 454 

Cold-working, 457 

Collisions, and chemical reactions, 150- 

154, 158-165 

effect on approach to equilibrium, 86- 

92, 96-100 
elastic, 327 

and electrical resistance, 487-489 

of electron and rnetal, 460-467 

inelastic, 327 
and radiation, 326—333 

of second kind, 331 

Complex ion, 33-43 
and Fermi-Dirac and Einstein-Bose 

statistics, 65-85 

Compressi]>ility, of alkali halides, 392- 

395 
and entropy of melting, 261 

and flucl nations, 110 

of metals, 452-454 

of solids, 200-205, 218-221 

and thermal expansion, 238-240 

and thermodynamics, 19 

of water and ice, 170 

Concentration, and chemical equilibrium, 
153-154 

and mixtures of gases, 121-124 

and phase equilibrium in binary sys¬ 

tems, 270-290 
Conductivity, electrical, 456, 484—489, 

495-501 

Configuration, atomic, 342 

table of, 346-347 
Cf>nservation of energy, 3-9 

Conservative force, 3 

Contact difference of potential, 467-471, 

480-482 

Copper, alloys with nickel, 458 

crystal structure, 447 

data regarding melting point, 259 

Debye temperature, 237 

energies of electrons in atom, 341 

equation of state and energy, 451, 454 
order-disorder in alloys, 293—304 

phase equilibrium in alloys, 270, 279- 

282, 287-288 
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Corresponding states, and Van der 

Waals’ equation, 187 
Coulomb energy, 353, 361-363, 368-369 

Covalent bond, 373-376, 400-407 
and organic compounds, 420-434 

and silicates, 435—443 
Cristobalite structure, 441 

Critical point, 166-169 

and phase changes of second order, 291 

and Van der Waals equation, 184-187 

Crystals, electric field in, 473, 489-501 
equation of state, 211-221 

ionic, 375, 377-399 

and liquid, 256-258 

of metals, 444-451 

molecular, 414-419 
Cuprous chloride, bromide, iodide, data 

regarding crystals, 382 

Curie point, 292, 297-304 

Cyclohexane, structure of molecule, 424 

D 

Debye, ionic crystals, 390-393 

specific heat of solids, 222-240, 245, 

253-255 

Decane, heat of vaporization, 434 

Van der Waals constants, 408 

Degeneracy, in space quantization, 139, 

339 

Degradation of energy, 12 

Degree of order, 294-304 

Dependent variables, 17-18 

Detailed balancing, 91 
and radiation, 324 

Diamond, crystal structure, 379, 424, 

444-447 

energy bands, 500 

melting point, 449 
Diatomic molecules, 130-145, 400-414 

comparison with metals, 455 

Dichlorbenzene, structure of molecule, 

431 

Dielectric constant, 365 

and Van der Waals forces, 411 

Diffusion, 12-13 

Dimethylamine, structure of molecule, 

427 

Van der Waals constants, 408 

Dipoles, 354-361 

moment of HCl and HBr, 404-405 

moments of molecules, table, 408 

Disorder, 10-12, 32-38, 43-46 

in alloys, 293-304 

Dispersion of elastic waves, 223, 234, 244 

Dissociation, 152-154 

Distribution function, 33-35, 46-51 

in Fermi-Dirac and Einstein-Bose 
statistics, 65-85 

for fluctuations, 104-107 

in Maxwell-Botzmanii statistics, 52- 
64 

Double bonds, 401-402, 428, 431 
Ductility, 456 

Dulong and Petit’s law, 213 

deviations from, 222-240 

E 

Effective volume of molecules, and Van 

der Waals’ equation, 183, 195-196 

Einst(‘in, black-body radiation, 324-326 

photoelectric effect, 316-320 

specific heat functions, for gases, 144, 

147 
for solids, 214-215, 253 

Einstein-Bose statistics, 52, 65-85 

and black-body radiation, 326 

and fluctuations, 108-109 

and kinetic method, 96-100 

and perfect gas, 126 

Elastic collisions, 327 

Elastic vibrations of solids, and specific 

heat, 222-255 
Electron affinity, 338 

Pilectron gas, and F(umi-Dirac statistics, 

81 

and metallic structure, 475-484 

Pilectron volt, numerical value, 132-133, 

318 
Electrons and atomic structure, 337-351 

and structure of metals, 472-501 

Pilectrostatics, and field in metal, 472- 

489 

and interatomic forces, 353-367 

and ionic crystals, 385-390 

Pimission of radiation, 309-310, 317-320, 

322-333 
Emissive power, 309-310, 325-326 

Energy {see Conservation of energy; 

Internal energy; Kinetic energy; 

Potential energy) 
Energy of activation, 159-164, 257 

Energy bands in metals, 493*-601 
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Energy density, in radiation, 310-316, 

324-326 

Energy levels, 41-42 

of atomic systems, 322, 338-344 

Ensemble {see Assembly) 

Enthalpy, and Joule-Thomson (iffect, 

197-198 

and latent heats, 175-178 
and thermodynamie«5, 20-21 

Entropy, of diatcjinic gas, 140 

and eqnilibrinm of phases, 170-173 

in Fermi-Dirac and JOinstein-Bos(i 

statistics, 69-72 

and fluctuations, 107 

of fusion, 171-180, 258-269 

and kinetic method, 89-91, 98-99 
of mixture of gases, 121-123, 128-129 

of perfect gas, 117-119, 127 

Fermi-Dirac statistics, 78-79 
and phase change of second order, 

291-304 

and phase equilibrium in binary sys¬ 

tems, 272-290 

of solids, 207-218 

and statistical mechanics, 32-35, 43-51 

and thermodynamics, 9-14, 17 18, 21 

of vaporization, 171-180 

Equation of state, of imperfeart gases, 

182-198 

of ionic crystals, 385-396 
of metals, 450-456, 479-480 

of perfect gas, 58-61 
Fermi-Dirac statistiers, 82 

and phase (iquilibriuni, 169-170 

of solids, 199-221 

and thermodynamics, 16-18, 22—23, 

29-30 

Equilibrium, between atoms and elec¬ 

trons, 333-335 

between liquid and solid, 266—269 

betw(!en metals and electron gas, 463— 

464 

between phases, 166-181, 184-190 
in binary systems, 270-290 

chemical, 150-165 

and radiation, 325 
thermal, 13-15, 23, 37-38, 46-51, 96, 98 

Equipartition of energy, and Maxwelhs 

distribution, 57-58 

and specific heat, of polyatomic gases, 

134, 144, 146 

of solids, 213 

I'ithane, heat of vaporization, 434 

hind(^red rotation, 147-148 

structure of molecule, 402, 420-421 

Van dor Waals constants, 408 

Ettiyl alcohol, data regarding melting 
point, 259 

heat of vaporization, 434 

Van der Waals constants, 408 

Ethyl ether, heat of vaporization, 434 
structure of molecule, 427 

Van d(^r Waals (‘onstants, 408 

lihyhuie, stnudure of molecule, 402, 428 
Van d(‘r Waals constants, 408, 411 

Eu1,(‘(‘tic, 284-285 

Exchange, and interatomic forces, 367— 

374 

JOxritation of atoms, 321-333, 343 

Exclusion primiple, 342 

and interatomic forces, 369-372 
Explosion, 158-159 

External work, 3, 7-9, 17, 21-22 

and statistical mechanics, 49 

V 

Fac(^-centered cubic structure, descrip¬ 

tion and figure, 415 

in inert gas(^s, 416 

and metals, 445-447 

and molecular vibrations, 232 

and ord(‘r-disorder, 293 

Fermi-Dirac statistics, 52, 65-85 

and atomic structure, 342 
and (‘xchange (dh^ct, 369 

and fluctuations, 108-109 

and kinetic, method, 96-100 
and metals, 471, 475—484 

and p('rfect gas, 126 

Ferromagnetism, 292-293 

Fibers, silic^ate, 439 
Fi(4d, €4octric, and interatomic forces, 

359-360, 366 

in metal, 472-501 

First law of tlKTinodynamics, 7-8, 19 

and statistics, 49-51 

Fluctuations, 32, 101-111 

Fluorite structure, 396-397 

Forces between molecules, 130-133 
interpretation from atomic theory, 

352-376 

in solids, 271-277 
and Van der Waals’ equation, 182-184, 

194-196 
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Formic acid, structure of molecule, 427 
Free electrons in metals, 475—489 
Free energy, Gibbs, and chemical equili¬ 

brium, 154-158 

of diatomic gas, 140 
and equilibrium of pliasea, 170-180 

and melting, 265-269 
of mixture of gases, 123-124 

of perfect gas, 120 
and phase changes of second order, 

296-304 

and phase equilibrium in binary 

systems, 270, 278-290 

of solids, 205-211 

and thermionic emission, 463-464 

and thermodynamics, 22-23 

and Van der Waals’ equation, 184— 
189 

Helmholtz, and Fermi-Dirac and Ein- 

steiii-Bose statistics, 73, 79, 82 

and melting, 265-269 

of perfect gas, 119, 126 

and second virial coefficient, 193-194 

of solids, 205-211, 216-218 

and statistical mechanics, 50-51 

and thermodynamics, 21-22 

Free expansion of gas, 30, 196-198 

Freezing {see Melting) 

Frequency of oscillation, diatomic mole¬ 

cule, 141 

molecular solid, 241-255 

solid, 213-240 

Friction, 3 

Fusion, 23, 166-169, 171-176, 256-269 

G 

Gallium, crystal structure, 447 

data regarding melting point, 259 

Gas constant, 33 

numerical values, 60 

Gases, and equilibrium with other phases, 

166-180 

imperfect, and Van der Waals^ equa¬ 

tion, 182-198 

perfect, 17, 30 

chemical equilibrium in, 150-165 

and Maxwell-Boltzmann distribu¬ 

tion, 53-64 

polyatomic, 130-149 

thermodynamic and statistical treat¬ 
ment, 115-120 

Gases, perfect, translational energy levels 
in quantum theory, 54-55 

Van der Waals constants, 408 
Gauss error curve, 106 

Germanium, crystal structure, 444, 447- 
449 

melting point, 449 
Gibbs, 32, 44, 107 

Gibbs free energy {see Free energy, Gibbs) 
Gibbs\s paradox, 129 

Glass, 256-258 

structure, 442 

variability of composition, 273 
Gliding, 457 

Gold, crystal structure, 447 
data regarding melting point, 259 

D(il)ye tern per at un% 237 

equation of stab? and energy, 451, 454 

order-disorder in alloys, 293-294 

Graphite structure, 429 

Gravity, 4 
Griineisen, thermal expansion, 217-221, 

238-240 
of ioni(; crystals, 392 -394 

of metals, 451-456 

H 

H theorem, 90 

Hafnium, crystal structure, 447 

equation of state, 451 

Halogens, characteristic temperature, for 
rotation, 136 

for vibration, 142 

data regarding melting point, 259 

heat of dissociation, interatomic dis- 

taiK^e, Morse constant, 132 

and homopolar bonds, 400-408 

and organic compounds, 425—426 

Heat absorption, 7-9, 12-13, 20 
and statistical mechanics, 49 

Heat, of dissociation, diatomic mole¬ 

cules, table, 132 

latent {see Latent heat, of fusion; 

Latent heat, of vaporization) 

of reaction, 156-158 

and equilibrium of ions and electrons, 
334 

specific {see Specific heat) 

Heat capacity {see Specific heat) 

Heat engine, 13, 172 

Heat flow, 12-13 

Heitler-London method, 367-368 
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Helium, specific heat, 130 
Van der Waals constants, 408 

Helmholtz free energy {see Free energy, 

Helmholtz) 

Hexagonal close-packed structure, de¬ 

scription and figure, 417 

and metals, 445-447 
and molecular vibration, 232 

Hexane, structure of molecule, 423 
Hindered rotation, 147-149, 417-418 

Homopolar valence attraction, 373-376, 

400-407 
and organic compounds, 420-434 

and silicates, 435 -443 

Hydrogen, chara<d('ristic temperature, 

for rotation, 136 

for vibration, 142 

combination with oxygen to form 

water, 151-164 

data regarding melting point, 259 

h(iat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

heat of vaporization, 414 

and homopolar bonds, 400-408 

interatomic potential, 371 

and organic compounds, 420-434 

specific heat, 137-138 

Van der Waals constants, 408, 411 
Hydrogen bromide, data regarding melt¬ 

ing point, 259 

valence structure, 404-405 
Van der Waals constants, 408 

Hydrogen chloride, chara(i eristic tem¬ 

perature, for rotation, 136 

for vibration, 142 
crystal structure and hindered rota¬ 

tion, 417 

data regarding melting point, 259 

dipole moment, 358 
heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

heat of vaporization, 414 

valence structure, 404-405 

Van der Waals constants, 408 
Hydrogen sulphide, valence structure, 

405 
Van dcr Waals constants, 408 

I 

Ice, crystal structure, 412, 418-419 

polymorphic forms, 167-170 

structure, 260 

Image force, 461, 474-475 
Impenetrability of matter, 130 

Imperfect gases, and phase equilibrium, 

166-170 

and Van der Waals^ equation, 182-198 
Independent variables, 17--18 

Indium, crystal structure, 447 

data regarding melting point, 259 

Induced emission, 325 

Inelastic collisions, 327 

Inert gases, crystals, 416 

and periodic table, 345-350 
volumes of atoms, 384 

Insulators, and energy bands, 495-501 

Integrals independent of path, 8, 13 

Interatomic distan(;es, in crystals, and 

formulas for thermodynamic (pian- 

tities, 212-213 

in crystals of inert gases, 416 

in diatomic molecules, tablci, 132 

in ionic crystals, table, 381-382 
in m(}talH, 447 

in organic compounds, 420-434 
Interatomic forces, 130-133 

interpretation from atomic theory, 

352-376 
in ionic crystals, 385—390 

in metals, 451-456 

in organic compounds, 433 

and second virial coefficient, 191--196 

and Van der Waals’ equation, 182-184 

and vibrations of atoms in crystals, 

211-240 

Interference of light, and quantum 
theory, 319-320 

Intermolecular forces, in gases, 410-414 

Internal energy, 6-9, 17 

at absolute zero, 179 

and melting, 258-269 

of mixture of gases, 123 

of perfect gas, Boltzmann statistics, 

117 
Fermi-Dirac statistics, 77-78, 81-82 

and phase change of second order, 295, 

301 

of solids, 205-220 

of solutions, 275-277 

Internal pressure, 182-184 

Iodine, characteristic temperature, for 

rotation, 136 

for vibration, 142 

crystal structure, 418 
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Iodine, dissociation, 133 

heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

and homopolar bond, 400-408 

and organic compounds, 426 

Ionic crystals, 375, 377-399 

Ionic radii, 382-385 

Ionization, of atoms, 321-335 

Ionization potential, 322, 334, 343 

table of, 348 

Ions, and atomic structure, 321-335, 337- 

338, 351 

forces between, 357-358 
formation in solution, 272-274, 290 

Iridium, crystal structure, 447 
Iron, crystal structure, 447 

data regarding melting point, 259, 261 
Debye temperature, 237 

equation of state and crystal structure, 

451, 454 

molecular volume, 261 

thermal expansion, 261 

Irreversible process, 11-13, 16 

and kinetic approach to equilibrium, 

86-92, 96-98 

and statistical mechanics, 43-46 

Isomers, 423 
Isothermal processes, 19 

Isothermals, of solid, 200 

and Van der Waals’ equation, 184-186 

Isotopes, 336-337 

J 

Joule, 5 
Joule-Thomson effect, 196-198 

Joule's law, 30, 115 

K 

Kinetic energy, and exchange effect, 369 
and Maxwell-Boltzrnann lavr, 60 

of polyatomic molecules, 134, 144 

Kinetic theory, 15, 86-100 

and chemical reactions, 151-154, 158- 

165 
and radiation, 324-333 

and thermionic emission, 466-471, 

480-484 

Kirchhoff's law, 309-310 

K^pton, atomic volume, 384 

data regarding crystals, 416 

Krypton, spccifu^ lu^at, 130 

Van der Waals consfants, 408 

L 

Lanthanum, crystal structure, 447 

equation of stat(^, 451 

Latent heat, of evaporation of electrons, 

464, 469-470, 481-484 
effusion, 171 180, 258-269 

of vaporization, 171-180, 258-260 
of metals, 452-454 

of organic compounds, table, 434 
table of, 414 

and Van der Waals' equation, 189 
Lattice; (‘ii(;rgies, alkali halides, 395-396 

Latti(;(' s{)a.cings, ionic; crystals, 381-382 

metals, 447 

Lead, (“rystal structure, 447 
data regarding m(;lting, 259 

Debye tcanpeniture, 237 

equation of state;, 451 

Load bromide, chloride;, iodide;, data 
regarding melting point, 259 

Lewis, G. N., and homopolar l)ond, 

400-408 

Line;ar oscillator, and black-body radia¬ 

tion, 314-316 

and (;epiij)artition of energy, 58 

quailt\im theory, 39-40, 42 

and vibration of atoms and molecules 
in crystals, 211-240 

and vibration of diatomic molecules, 

140-149 

Liouville's theorem, 37-38, 44r-46, 88 

Liquefaction of gases, 198 

Liquids, 166-174, 256-269 

Liqiiidus, 281 

Lithium, compressibiUty, 202 

crystal stniefure, 447 

equation of state and energy, 451, 454— 

455 

molecule, characteristic temperature, 

for rotation, 136 

for vibration, 142 

dissociation, 133 

heat of dissociation, interatomic 

distance, Morse constant, 132 

Lithium fluoride, chloride, bromide, 

iodide, data regarding crystals, 381, 

393, 395 
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Tiithium nitrate, data regarding melting 

point, 259 

Longitudinal waves in solids, 222-240 

M 

Madelung, el(HdTostatie energy of crys¬ 

tals, 385-388 

Magnesium, crystal slriicture, 447 

data regarding meriting })oint, 259, 

201 

equation of state and energy, 451, 454 

molecnilar volume, 201 
phase ('(|ui]ihrium in alloys, 274, 

287-288 
th(^rmal (^xj)ansion, 201 

Magnesium oxide, sulphides, sedenide, 

data r(‘garding crystals, 381 

Manganese, crystal structure, 447-448 

data regarding melting point, 259 

equation of state, 451 

Mass a<dJou law, 151-158 

applied to atomic. proc(\ss(\s, 334-335 
Maxwell-Boltzmann distribution, 52-04 

and a,(d,iva,tion, 159 

and Fermi-Dirac and Kinstein-llose 

stjitistics, 74, 84 
and fluctuations, 101-104 

and m(‘an moment of rotating dipole, 

301, 304 

Maxwell’s d(unon, 45-40 
Maxwell’s distribution of velocities, 

5.5-58 

in arcs, 333 
and kinetic methods, 91-90 

Maxwell’s relations, 20 

Mean fna; path, 328 

Mechanical (‘quivalent of heat, 5, 8 

Mechanical work (.sec External work) 

Melting, 23, 100 109, 171-170, 250-209 

of alloys, 278-290 

Melting jKunts, of chain compounds, 422 

ionic crystals, table, 381-382 

Mercuric bromide, data regarding melt¬ 

ing point, 259 
Mercuric iodide, data regarding melting 

point, 259 

Mercuric sulphide, selcnide, telluride, 

data regarding crystals, 382 

Mercury, crystal structure, 447 

data regarding melting point, 259 

Metallic bond, 374-370, 451-454 
Metals, 370, 444-470, 472-501 

Metasilicate ion, structure, 437 
Metastable equilibrium, 163 

Methane, boiling point, 426 

data regarding melting point, 259 
heat of vaporization, 434 

valences structure of molecule, 401 

Van der Waals constants, 408, 411 
Methyl alcohol, data regarding melting 

point, 259 

heat of vaporization, 434 

structure of molecule, 427 

Van der Waals constants, 408 

Methyl chloride, boiling point, 426 

luiat of vaporization, 434 

structure of molecule, 425 

Van der Waals constants, 408 

Methyl ether, Van der Waals constants, 

408 

Methylainine, structure of molecule, 427 

Van (k^r Waals constants, 408 

Mica, structuH'., 439 

Mi(trocanonical assembly, 46 

Micros(;M)pic properties, 32-35 

Mi(troscopi(; reversibility, 88, 331 

Mixture of gases, 120-124 

and chemical equilibrium, 154-158 

Molecuilar orbitals, 368 

Molecular phase space, and Fermi-Dirac 

and Einstein-Bose statistics, 6.5-86 

and Maxwell-Boltzmann distribution, 

52-64 

Molecular volume, of liquids, table, 408 

table of, 261 

Molecules, sizes of, 409-410 

in valence compounds, 375-376 

{See also Diatomic; molecvdes; Poly¬ 

atomic molecules) 

Molybdenum, crystal structure, 447 

Debye temperature, 237 

equation of state and crystal structure, 

451, 454 

Moment of inertia, diatomic molecule, 

134-135 

Momentum, 36, 38-43 

and approach to equilibrium, 87 

of radiation, 311 

Monatomic gases, and Maxwell-Boltz¬ 

mann distribution, 53-64 
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Morse curves, 133 
and raetals, 452 

Multiplets, 344 

N 

Naphthalene, heat of vaporization, 434 

structure of crystal, 432 

structure of molecule, 430 
Van der Waals constants, 408 

Neon, atomic volume, 384 

data regarding crystals, 416 

specific heat, 130 
Van der Waals constants, 408 

Newton’s second law of motion, 3 

NH, characteristic temperature, for 

rotation, 136 

for vibration, 142 

heat of dissociation, interatomic dis¬ 

tance, Morse constaiit, 132 

Nickel, alloys with copper, 458 
crystal structure, 447 

data regarding melting point, 259 

equation of state and energy, 451, 454 

phase equilibrium in alloys, 274, 279- 
282 

Nitrate ion, 357 

valence stnicture, 406 
Nitric oxide, characteristic temperature 

for rotation, 136 

for vibration, 142 

data regarding melting point, 259 
heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

specific heat, 137 

valence structure, 403 
Van der Waals constants, 408 

Nitrogen, characteristic temperature, for 

rotation, 136 
for vibration, 142 

crystal structure, 417 

data regarding melting point, 259 

dissociation, 133 

heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

heat of vaporization, 414 

and homopolar bonds, 400-408 

Van der Waals constants, 408 

Nitrous oxide, Van der Waals constants, 

408 
Nonconservative force, 3 
Normal modes of vibration, 215, 222-255 
Nucleus, atomic, 336 

O 

Octane, Van der Waals constants, 408 

OH, characteristic temperature, for rota¬ 
tion, 136 

for vibration, 142 

heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

Ohm’s law, 484-489 
Opalesccnse, 111 

Order-disorder transition, 293-304 

Organic compounds, 376, 420-434 

Orthosilicate radical, structure, 435 
Osmium, crystal structure, 447 

Overtones, 215, 222-255 

Oxygen, characteristic temperature, for 
rotation, 136 

for vibration, 142 

(combination with hydrogen to form 

water, 151-164 
data regarding nudting point, 259 

heat of dissociation, interatomic dis- 

taime, Morse constant, 132 
h<cat of vaporization, 414 

and homopolar bonds, 400-408 
Van der Waals constants, 408 

P 

Palladium, crystal structure, 447 
equation of state, 451 

Partial derivatives, 16, 18--20, 23-30 

Partial preassure, 120-121 

and chemical equilibrium, 151-158 
Partition function, and fluctuations, 106 

and melting, 265-269 

for perfect gas, 125-128 

for rotation, diatomic molecule, 138- 

140 

and second virial coefftcient, 191-196 

for solids, 213-218 

and statistical mechanics, 50-51 

for vibration, diatomic molecule, 143 

Pauli exclusion principle, 342 

and exchange effect, 369 

and metals, 475-476 

Perfect gas, 17, 30 

chemical equilibrium in, 150-165 

and Maxwell-Boltzmann distribution, 

53-64 

polyatomic, 130-149 
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Perfect thermodynamic and statis¬ 
tical treatment, 115-129 

translational energy levels in quantum 

theory, 54-55 
Periodic potential in metal, 473, 489-501 

Periodic table, 344-351 

Permutations, 67 

Phase changes of second order, 291-304 

Phase diagram, 166-168 
binary systems, 281-287 

Phase equilibrium, 166-170 

binary system, 270-290 
Phase space, 36-43 

and Maxwell-Boltzmann distribution, 

52-64 

Phosphine, valence stru(;ture of mole¬ 

cule, 405 
Van der Waals constants, 408 

Phosphoniiini ion, 378 

Photoelectric effect, 316-320 
Photon, 316-320, 323-326 

Planck, black-body radiation, 307-320, 

325-326 

probability and entropy, 34 

Planck’s constant, 39 
Platinum, crystal structure, 447 

data regarding melting point, 259 

Debye temperature, 237 
equation of state and energy, 451, 454 

Poisson’s ratio and velocity of elastic 

waves, 238, 240 
Polarization, and interatomic forces, 

363-367, 398-399, 410-414 

of light, 308 

Polyatomic gases, 130-149 

internal coordinates, 124 

Polymorphic phases, 167-170, 180-181, 

220-221, 448 

Potassium, compressibility, 202 

crystal structure, 447 

data regarding melting point, 259, 261 

Debye temperature, 237 
equation of state and energy, 451, 454- 

455 
molecular volume, 261 
molecule, characteristic temperature, 

for rotation, 136 

for vibration, 142 

dissociation, 133 
heat of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

thermal expansion, 261 

Potassium bromide, data regarding crys¬ 

tals, 381, 393, 395 

data regarding melting point, 259, 261 
molecular volume, 261 

thermal expansion, 261 

Potassium chloride, data regarding crys¬ 
tals, 381, 393, 395 

data regarding melting point, 259, 261 

Debye temperature, 391 
molecular volume, 261 

thermal expansion, 261 

Potassium dichromate, data regarding 
melting point, 259 

Potassium fluoride, data regarding crys¬ 

tals, 381, 393, 395 

data regarding melting point, 259 

Potassium hydroxide, data regarding 

melting point, 259 

Potassium iodide, data regarding crys¬ 

tals, 381, 393, 395 
Potassium nitrate, data regarding melt¬ 

ing point, 259 

Potential, electrostatic, 353-367 
Potential (mergy, 3 

of interatomic forces, 131-133, 191— 
196, 352-376 

and Maxwell-Boltzmann distribution, 

54, 62-64 

Pressure, 17 

and chemical equilibrium, 151-158 

and equation of state of ionic crystals, 

392-396 

and equation of state of metals,450-456 

and equation of state of solids, 199-221 

and equilibrium of phases, 166-181 

of imperfect gases, and Van der Waals’ 

equation, 182-198 

of mixtures of gases, and partial pres¬ 

sure, 120-121, 128 

of perfect gases, 58-60 

Fermi-Dirac statistics, 79 

of radiation, 311 

Probability, a priori, 36, 38, 127 

and Maxwell-Boltzmann distribution, 

53 

thermodynamic, 34 

of transition, 324-333 

Propane, heat of vaporization, 434 

structure of molecule, 421 

Van der Waals constants, 408 

Pyrometer, 312-313 
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Q 

C^uadrupole moment, 356-357 
Quantum defect, 340-341 

Quantum theory, 36, 38-43, 45-46 
and atomic structure, 330-344 

and equation of state and specific heat 

of solids, 215-221, 234-240 
and identical particles, 129 

and kinetic method, 96-100 
and li([uids, 265 

and radiation, 314-320 

and specific heat of polyatomic gases, 
138-149 

and structure of metals, 489-501 

and translational energy levels, 54-55 
Quasi-ergodic motion, 38 
Quenching, 181 

H 

Radiation, 307-326 

Radii, of atoms, 342 

table of, 349 

of ions, 382-385 

Ramsauer effect, 330 

Randomness, 9-12, 32-35, 43-46 
and melting, 262-264 

Rate of reaction, 150-154, 158-165 
Rayleigh-Jeans law, 314 

Reciprocal space, 230, 245 
Recombination, 165 

Reduced mass, 135, 141 

Reflection of electrons by metals, 462, 465 

Relaxation time, in electrical conduc¬ 
tivity, 485-486 

Representative point, 36-38, 65-66 

Repulsive forces, between atoms, and 

exclusion principle, 369-372 

between ions, ionic crystal, 388-390 
between molecules, 130-133 

and Van der Waals' equation, 182-184, 
194-196 

Residual rays, 254-255 

Resistance, electrical, 484r-489, 498-501 
Resonance potential, 322 

Reststrahlen, 254-255 

Reversible processes, 10-13, 16 

and statistical mechanics, 44—51 

Rheology, 256-258 

Rhodium, crystal structure, 447 

Richardson equation, thermionic emis¬ 
sion, 466 

Rigid sphere atomic model, 131 

Rotator, diatomic molecule, 134-140 
and equipartition of energy, 58 

in quantum theory, 40, 42 

Rubidium, compressibility, 202 

crystal structure, 447 

data regarding melting point,, 259 

equation of state and euiergy, 451, 454 

Rubidium fluoride, chloride, bromide, 

iodide, data regarding crystals, 381, 
393, 395 

Rumford, 5 

Ruth(‘nium, crystal structure, 447 
Rydberg number, 340 

S 

Saha, 335 

Saturation of valence, 374-376 
Second law of th(;rmodynami(;s, 12-14, 16 

and statistics, 19, 49-51 

Second ord('r, phas(‘ change, 291-304 

Second virial coefficient, 190-196 

Secondary emission of electrons, 461-462 

Selenium, crystal structure, 444, 447, 450 

data regarding melting point, 259 

Shielding constant, 340-342 

Shot effect, 108 

Silica gel, 438 

Silicates, 435-443 

Silicon, crystal structure, 444, 447 
and homopolar bonds, 400 

melting point, 449 

Silicon hydride, valence structure of 
molecule, 405 

Van der Waals constants, 408 

Silver, crystal structure, 447 

data regarding melting point, 259, 261 
Debye temperature, 237 

equation of state and energy, 451, 454 

molecular volume, 261 

thermal expansion, 261 

Silver bromide, data regarding crystals, 
381 

data regarding melting point, 259-261 

molecular volume, 261 

thermal expansion, 261 

Silver chloride, data regarding crystals, 
381 

data regarding melting point, 259, 261 
molecular volume, 261 

thermal expansion, 261 
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Silver fluoride, data regarding crystals, 

381 

Silver nitrate, data regarding melting 

point, 259 
Simple cubic structure, and atomic 

vibrations, 232 

Sodium, crystal structun^, 447 
data regarding melting point, 259, 201 

Debye temperatuni, 237 

electronic energy bands, 494 

equation of state and energy, 151, 454- 

455 
and thermodynamic functions, 200— 

211 

molecailar volume, 201 

molecule, chara(d<nistic temp(u-ature, 

for rotation, 130 

for vibration, 142 

dissociation, 133 

h(?at of dissociation, interatomic dis¬ 

tance, Morse constant, 132 

thermal expansion, 201 

Sodium acetate, striictun^ of moUHade, 

428 

Sodium bromide, iodide, data, regarding 

crystals, 381, 393, 395 

Sodium (ddoride, ciystal structun', 378, 

381 

data regarding crystals, 381, 393, 395 

data regarding nudting point, 259, 201 

Debye temperature, 391 
molecular volume, 201 

thermal expansion, 201 

water solution, 285-287 

Sodium fluoride, data regarding crj^stals, 

381, 393, 395 

data regarding melting point,’259 

St)dium hydroxide, data regarding melt¬ 

ing point, 259 
Sodium nitrate, data regarding melting 

point, 259 

Sodium perchlorate, data retarding melt¬ 

ing point, 259 
Solids, binary systems, 270-290 

equation of state and specific heat, 

199-255 
equilibrium with other phases, 160-181 

ionic substances, 377-399 

melting, 256-269 

metals, 444-501 

Solidus, 281 

Solutions, 270-290 

Space quantization, 139, 339 

Specific heat, 17-20, 22-23 

of compounds, 241-255 

difference between Cp and Cv, 30 
electronic, 322 

and fluctuations, 107-108 

of free electrons, 471, 470-479, 499-500 
internal, of gas, 117 

of ionic crystals, 390-393 
of liquids, 262-265 

of monatomic perh^ct gases, 61—62 
F<u‘mi-Dirac statistics, 78-79 

and phases changes of second order, 
291-304 

of polyatomic ga8(;s, 130-149 

of solids, 203-205, 213-214, 222-255 

and statistical mechanics, 51 

and temperature variation of latent 

heat, 177-178 

variation with pressure and volume, 

116 

Spectrum, infrared, of crystals, 254-255 

opti(5al, and Kirchhoff’s law, 309-310 
of vi])rational frequencies, solids, 225- 

255 

Spin, electronic, 339 

and interatomic forces, 369-374 
and metals, 476 

Spontaneous emission, 324 

Standing waves, 226-231, 242-252 

of electrons in metals, 489-501 
Stationary states, of electrons in atoms, 

321-323, 338-344 

of oscillator and rotator, 41-42 

Statistical mecihanics, 14, 32-85 
applied to black body radiation, 307— 

320 

applied to chemical equilibrium, 154- 

158 
applied to equation of state of solids, 

211-221 

applied to equilibrium between phases 

and vapor pressure, 178-180 

applied to melting, 265-269 

applied to perfect gas, 124-129 

applied to polyatomic gases, 138-140, 

142-145 

applied to second virial coefficient, 

190-196 
applied to solubility and phase equilib¬ 

rium, 270-304 

Stefan-Boltzmann law, 307-313 
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Stirling's theorem, 70-72 

Streamline flow of representative points, 

37, 94 

Stresses and strains, 17, 199 
Strontium, crystal structure, 447 

equation of state, 451 

Strontium oxide, sulphide, selenide, tellu- 

ride, data regarding crystals, 381 
Sugar, phase equilibrium in solution, 270 

Sulphate ion, 357, 398 

Sulphur dioxide, valence structure of 
molecule, 406 

Van der Waals (!onstants, 408 
Supercooling, 181, 256-258, 262-264 

T 

Tantalum, crystal structure, 447 

equation of state, 451 
Tellurium, crystal structure, 444, 447, 

450 

Temperature, 9, 12-14, 17 

bath, and canonical assembly, 46-47 
and fluctuations, 101 

of inversion, Joule-Thomsoii effect, 198 

and kinetic method, 96 

Temperature-entropy diagram, 172 

Terms, spectroscopic, 323 
Thallium, crystal structure', 447 

data regarding melting point, 259 
Thallium bromide, data regarding melt¬ 

ing point, 259 
Thallium chloride, data regarding crys¬ 

tals, 382 

data regarding melting point, 259 

Thallium iodide, data regarding crystals, 

382 

Thermal equilibrium, 37-38, 46-51 
and kinetic method, 96, 98 

Thermal expansion, 19, 200-220, 238- 

240, 261 

of ionic crystals, 392-394 

of metals, 450-456 

Thermal pressure, 217-218 

Thermionic emission, 460-471, 480-484 

Thermodynamic formulas, 16, 23-30 
table of, 27-29 

Thermodynamic probability, 34 

and Fermi-Dirac and Einstein-Bose 
statistics, 69-72 

Thermodynamic scale of temperature, 

30-31 

Thermodynamics, 14, 16-31 

applied to black-body radiation, 307- 
320 

applied to chemical equilibrium, 154- 

158 
applied to equation of state of solids, 

199-211 

applied to equilibrium, between atoms 
and electrons, 333-335 

between metal and gas, 463-464 

between phases, 174-178 

applied to perfect gas, 115-124 

applied to solubility and phas(i equilib¬ 
rium, 270-304 

applied to Van der Waals' equation, 

184-189 
Threshold, photoelectric, 318 

Tin, crystal structure, 444, 447-449 

data regarding melting point, 259 

Debye temperature, 237 
Titanium, crystal structure, 447 

Transition probability, 42, 88 

of atoms, 322-333 

Transverse waves, in electromagnetic 
radiation, 313—314 

in solids, 222-240 

Traveling waves, 226-228 

Triethylamine, Van der Waals constants, 

408 

Trimethylamine, structure of molecule, 

427 
Van der Waals constants, 408 

Triple point, 166-167, 171-172, 181 

and eutectic, 285 

Tungsten, crystal structure, 447 

equation of state and energy, 451, 454 

U 

Uncertainty principle, 40-41 
Undetermined multipliers, 48 

V 

Valence forces, 130 
explanations from atomic theory, 371- 

376 

Vanadium, crystal structure, 447 

equation of state, 451 

Van der Waals constants, 182-198 
for molecular substances, 407-414 

Van der Waals' equation, 182-198, 210 

and molecular substances, 407-414 
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Van der Waals forces, 182-198 

and atomic structure, 356-374 

and inert gases, 385 

and molecular substances, 407-414 

and solutions, 273 

Van’t Hoff's equation, 154-158 

Vapor pressure, 166-169, 174-180 

and Van der Waals’ equation, 188-189 

Vaporization, 23 

entropy of, 171-180 

heat of, 171-180 

of metals, 452-454 

of organic compounds, table, 434 

table of, 414 

and Van der Waals’ equation, 189, 

258-260 

Velocity, of elastic waves, 227-240 

of light, 308 

Vibration, of diatomic molecules, 140-149 

and light waves, 313-314 

of raolecuhis and atoms in crystals, 

211-255 

Vibrational degrees of freedom, 146 

Virial, 190-196 

Viscosity, 12, 13, 257 

Volt, electron, 132-133, 318 

Volta effect, 467-471 

Volume, 17 

and chemical equilbrium, 151-158 

of imperfect gases, and Van der Waals’ 

equation, 182-198 

molecular, table of, 261 

of liquids, table, 408 

of perfect gas, 58-61 

and phase equilibrium, 168-178 

of solids, 199-221 

W 

Water, crystal structure, 260, 418-419 

data regarding melting point, 259 

dissociation into hydrogen and oxygen, 

151-164 

entropy and free energy, 172-173 

equilibrium between phases, 166-169 

heat of vaporization, 414 

Water, and solubility, 270-275, 285-290 

valence structure of molecule, 401 

Van der Waals constants, 408,412-^14 

vapor pressure and latent heat of 

vaporization, 188-189 

vibrational specific heat, 146-147 

Water glass, 438 

Wave mechanics, 41, 307 

and electrons in periodic potential, 

489-501 

and radiation, 323 

Waves, elastic, in continuous media, 

227-234 

electromagnetic, and light, 308, 313- 

320 

in molecular media, 241-252 

Work, 3, 7-9, 17, 21-22 

and statistical mechanics, 49 

Work function, thermionic and photo¬ 

electric, 317-318, 464, 469-470, 

480-484 

Wurtzite, crystal structure, 379-380, 382 

X 

Xenon, atomic volume, 384 

data regarding crystals, 416 

specific heat, 130 

Van der Waals constants, 408 

X-ray diffraction, liquids, 256 

X-ray levels in atoms, 344 

Z 

Zinc, crystal structure, 447 

data regarding melting point, 259 

Debye temperature, 237 

energy, 454 

order-disorder in alloys, 293-304 

phase equilibrium in alloys, 270, 

287-288 

Zinc oxide, sulphide, selenide, telluride, 

data regarding crystals, 382 

Zincblende, crystal structure, 379-381, 

382 

Zirconium, crystal structure, 447 

equation of state, 451 
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