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FROM THE PREFACE TO THE 
SEVENTH GERMAN EDITION 

The success of this textbook has been due primarily to Grimsehrs 
remarkable gifts as a teacheui Amplified aftcT his death in the spirit, 
of the original, the work has .obtained widespread recognition and is 
in extensive use both as a reference book for teachers and also as a 
textbook for students at universities and teclmical colleges. 

While preserving the original character of the book, it has been 
possible to take account of the new advances as well as of the changes 
in treatment and arrangement of the subject-matter whi(*h thes<». 
advaru;es necessitate. Care has been taken not to exceed the j)revious 
S(?ope of the book. Certain parts of major importance, notably in the* 
section upon electricity, have had to be completely rewritten. 

My thanks are due to Dr. Stehberger and also to Dr. Schauff (who 
was chiefly concerned with the (editing of the school edition of (;}rim- 
selibs work) for their kind assistance in reading the proofs. 1 should 
also like to thank all those who have helped by letting me have dia¬ 
grams and original photographs. 

I wish to express my gratitude to the publishers for their sympathetic 
co-operation with regard to the new illustrations. 

Mxrbubo on the Lahn, 

August, 1929, 

E. TOMASCHEK. 





PREFACE TO THE ENGLISH 
EDITION 

I have taken the opportunity of the puhlieation of this edition to 
make a few corrections and improvements. W^ith a view to meeting 
the needs of English readers, some new matter has been added. I 
wish to thank the translator for the adequate manncn* in whi(^h he 
has carried out his task, and hope that in its new dress the work 
will greatly extend the circle of its friends. 

R. TOMASCHEK. 
Marbcro, 

7th Fcb.y W.VU 

The English ptihlishers msh to express their thanks to the authorities 

of the Royal Society and to Dr, J. K. Roberts for permission t i use 

diagrams zchich have appeared in the Philosophical Transactions and in 

the textbook Heat and Thermodynamics by Dr, Roberts, 
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HEAT 

CHAPTER I 

Thermometry. Specific Heat. Heat and Work 

1. Thermometers 

1. Temperature. Thermometers.—Most bodies expand when heat 
is added to them and contract again when heat is removed from 
them. If the amount of heat taken away is equal to that previously 
added, a body will return once more to its original volume. The 
volume of a solid body or a given amount of liquid is constant so long 
as its thermal condition (temperature*) remains imchanged. Hence 
this volume can be used as an indicator for the corresponding thermal 
state. The volume of a given mass of gas is also suitable for this purpose 
provided that the pressure is constant. 

A device in which the change of volume of a body is used to 
indicate changes of temperature is called a thermoscope.t When the 
change of volume is used as a measure of the thermal state, the 
instrument is called a thermometer.| 

If a glass vessel fitted with a narrow exit tube at the top be filled 
up to this tube with a liquid, the free surface will rise visibly in the 
tube Avhen the vessel and its contents are warmed slowly. From this 
it follows that the volume increase (cubical expansion) of the liquid 
is greater than that of the vessel. At each temperature the liquid 
stands at a quite definite level in the tube. Hence this level can be used 
as an indicator for the corresponding temperature. Of all liquids 
mercury has proved to be the most suitable for the measurement of 
temperature. 

2. Mercury Thermometers. Fixed Points.—The mercury ther¬ 
mometer (fig. 1) consists of a narrow closed glass tube of uniform 
bore (the stem) with a bulb blown at one end. The bulb and a part 
of the stem are filled with mercury, the remainder of the closed tube 
being usually air-free. 

* Lat., temperare, to temper. f Gr., thermos, hot; ekopein, to see. 
I Gr., metTdn, measure. The name thermometer can be traced back as far as 1626. 

(B536) . 1 2 
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R C Ahs. 

Wben the instrument is placed in melting ice the mercury level 
takes up a certain position. This is always the same however often 
the experiment be repeated (but see p. 4). In the same way the 
mercury is at another definite level when the thermometer is held 

in the vapour of water boiling at 760 mm. 
pressure. Thus at normal atmospheric pressure 
the temperatures of melting ice and boiling 
water are constant. The two corresponding 
points on the mercury thermometer scale are 
called the fixed points (the melting-point of 
ice and the boiling-point of water *). The 
interval between them may be called the 
fundamental interval. Assuming that the bore 
of the thermometer stem is uniform, the 
fundamental interval (and hence also the 
volume of the stem between the fijced points) is 
divided into 100 equal parts. Each of these 
is called a degree.f The lower fixed point is 
marked 0® C. and the upper one 100® C. (Thus 
ice melts at 0® C. and water boils at 100® C. 
under 760 mm. pressure.) The scale divisions 

Fig. I .—Fahrenheit, R^iaumur cxtrapolatcd at cqual distauces above and 
below the fundamental interval and numbered 
accordingly. Under 0° C. the degree markings 
are negative. 

1 1 
\-2l2 “80 -100“ 

-122 ~ 40 50 - 

-32 - 0 -0 -- 

k i\ k 

and Centigrade Mercury Ther¬ 
mometers with their Fixed 
Points. 

3. Historical. — Thormometers were discovered shortly after 1600 by 
Galileo and also independently by the Dutchman Drebbel. The scale divisions 
were at first arbitrary. About 1660 the Florentine Accademia del Cimento used 
alcohol thermometers whose scale registered 11° to 12° in the most severe 
cold of the Tuscan winter, 13^° in melting ice, and 40° in the hottest summer 
sunshine. These Florentine thermometers were widely distributed at that time. 
Many suggestions for improvement and comparable production have subsequently^ 
been made. 

Fahrenheit { was the first to use mercuiy as thermometric substance. 
He chose it after many thorough experiments because only with this substance 
did he find it possible to make different thermometers giving residta in agreement 
ivith one another. The alcohol thermometers then in use were very inaccurate 
and insensitive. Fahrenheit originally chose the temperature of a freezing 
mixture of snow and ammonium chloride as the zero of his scale; this was equal 
to the lowest temperature at Danzig in the winter of 1709. He set blood heat 
equal to 8.12 = 96°. Thus the freezing-point of water lay at about 32° on his 
scale. He later put this exactly equal to 32° and used it as a fixed point along 
with the boiling-point of water, which he took as 212°. 

* The former was introduced as a fixed point by Hooke in 1664, and the latter by 
Huygens in 1666. 

f Lat., gradus, step, 

I Fahrenheit, born 1686, died 1736 at Danzig. 
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RiiAUMTXE ♦ used dilute alcohol as thennometric substance. He originally 
put the melting-point of ico as lOOO"^ and the boiling-point of water as 1080'^, 
but later set them equal to 0° and 80^ respectively. He claimed to have found 
a special method of making comparable thermometers and discarded mercury 
as thermometrio substance. His work nullified the advances which Fahrenheit 

had made in the measurement of temperature, and the uncertainty in the 
production of the necessary instruments became greater than ever. Eventually 
in 1772 Del 00 f restored the mercury thermometer to its place of favour. He 
kept to the Reaumur scale but replaced alcohol by mercury. Thus the Reaumur 
thermometer ought strictly to be called the Deluc thermometer. It is still used 
to some extent on the Continent. 

After 1740 Celsius J took the melting-point of ice as 100'^ and the boiling- 
point of water (at 7(30 mm. pressure) as O'". He thus introduced the centigrade 
scale into general use, but with the opposite direction from that employed 
nowadays. The present centigrade scale (i.e. melting-point of ice = 0° and the 
boiling-point of water = 1(X)°) lias been shown to have been first used by LiNNi; || 
(commonly called Linnaeus) in 1740. It is used by all natious. § 

4. Rules for Transformation from one Temperature Scale to Another.— 
In the case of Fahrenheit thermometers the melting-point of ico is H-32^ and 
the boiling-point of water -f 212°. The interval between the fixed points is thus 
divided into 180 degrees. The formulae for transforming from one scale to 
another (0. == centigrade, R. ~ Rj&aumur, F. — Fahrenheit) are: 

f C. (;^i+ 32)°F., 

<°R.-: C.=- (l^-f 32)°F., 

e F. I (t - 32)° C. =- i‘ (t - 32)° R. 

More succinctly, if C, R, F are the numbers representing a given temperature 
on the throe scales, then 

C R F - 32 

5 4 "" 9 

It has been shown (p. 11) that the temperature of 273-2° C. is the lowest 
possible and represents an absolute zero, lii scientific work, therefore, temperatures 
arc often reckoned from this zero, the size of the degree being taken equal to 
that on the ordinary centigrade scale. In this way we get the absolute scale of 
temperature, in which negative numbers of degrees do not occur. Temperatures 
on the absolute and centigrade scales are connected by the equation 

abs. -= (« - 273-2)° C. 

5. Comparison of Mercury Thermometer with one containing some other 
Substance.—The above measurement of temperature is based upon the apparent 

* Antoine Ferohault Seigneur de Reaumur (1683-1757), well known for his 
technical, botanical, and zoological work. 

t Jean Ande6 Deluo (bom 1727 at Genova, died 1817 at Windsor), Professor at 
Gottingen, lived mostly in London, Hanover, Berlin, and Brunswick. 

t Celsius, born 1701, died 1744 at Upsala. 
II LiNNt of the Botanical Garden at Upsala. In the preface of his Hortus Upsaliensis, 

written in 1748, he reports: “Greatest cold in the night of 1740 25 1, 28° below 
freezing-point, the freezing-point being designated by 0° and the boiling-point of water 
by 100°.* * * §’ The Lyonese doctor Leon Pierre Ciiristin used a mercury thermometer 
with centigrade scale and introduced it into France. In Sweden, however, Elvius 
mentions a centigrade scale as early as 1710. 

§ In England meteorological observations are still stated on the Fahrenheit scale. 
For other scientific purposes, however, the centigrade scale is always used. 
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(p. 9) volume expansion of mercury in glass. If we choose another substance 
(e.g. sulphuric acid), determine the fixed points and divide up the interval between 
them in the same manner, then the indication of the sulphuric acid thermometer 
so made will be slightly different from that of a mercury thermometer placed 
simultaneously in the same bath of water at an intermediate temperature. Thus 
for the same change of temperature the apparent expansion of the mercury is 
not proportional at all temperatures to that of the sulphuric acid. Hence if we 
wish to make a thermometer containing some other liquid than mercur>% we 
must calibrate it from degree to degree against a correctly divided mercury 
thermometer. Besides mercury the only thermometric liquids in use are alcohol, 
petroleum ether, pentane, and toluene (see below). 

6. Temperature of the Surroundings.—A mercury thermometer indicates 
directly only its own temperature. The fact that it also shows the temperature 
of tlie stirroundinga is due to the property of all bodies whereby their tem¬ 
perature changes until it becomes the same as that of their environment. Hence 
in determining a temperature the reading of the thermometer must not be taken 
until it has become constant. 

7. Variations of the Fixed Points.—^When a thermometer which indicates 
0*^ C. correctly in melting ice is raised to a higher temperature (e.g. in boiling 
water) and then replaced in the ice, it will as a rule no longer indicate the correct 
temperature of 0® C. but a few tenths of a degree (up to 0.) lower. This 
depression of the zero point is due to an enlargement of the bulb. In the case of 
newly made instruments it is permanent and hence a new calibration is necessary. 
Even older thermometers which have been in long use show the same depression; 
in this case it is only temporary, however, and disappears after a short time. 

If newly made thermometers be left out of use, i.e. exposed only to the 
variations of the air temperature, the bulb contracts slowly and causes a secular * 
rise of the zero point. In the course of years it may amount to several degrees. 

The change of the zero point is dependent to a large extent upon the com¬ 
position of the glass of which the thermometer is made. Instruments made of 
“ Jena Normal Glass 16 HI ” bear a single longitudinal line of reddish-violet 
colour as trade mark; this guarantees a mean depression of not more than 
0*05® C, The Jena glasses discovered later and known technically as “ Boro- 
silicate Thermometer Glass 59 III ” and “ Alkali-free Thermometer Glass 
477 III ” have the depression constants C. and 0-014° C„ the latter being 
the smallest yet attained. In order to avoid the permanent depression of the 
zero point in newly made thermometers and also to diminish the secular rise, 
the instruments are “ artificially aged by means of repeated rapid variations 
of temperature. Thermometers for scientific work should bear the name of the 
glass as well as a statement that they have been subjected to this treatment. 

8. Calibration of a Thermometer.—The zero point is determined by placing 
the thermometer with the whole mercury thread under the surface of a mixture 
of distilled water and finely powdered ice free of salt. The thermometer must 
remain in the mixture until the mercury level no longer changes; this may 
take a considerable time, especially if the instrument has been previously sub¬ 
jected to a high temperature (see above). The final indication gives the zero 
point. 

The upper fixed point, the boiling-point of water, is determined by placing 
the thermometer in the vapour from water boHing rapidly in a metal vessel 
or in a glass vessel containing pieces of metal (p. 67). The whole length of the 
mercury thread must be in the vapour and the bulb must not dip into the water 
but remain some distance above the surface. The vapour must be able to escape 
freely so that there is no excess pressure in the vessel. The mercury level must 
not be marked imtil sufficient time has elapsed for it to have become constant. 

* Lat., saeculum, an age, a generation. 
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Even then it only gives the fixed point 100° C. when the atmospheric pressure 
is 760 rnm. It has been found that the temperature f C. indicated at barometric 
height b mm. is given by 

< = 100 -f 0-0375 (b - 760). 

9. Temperature and the Absolute System of Measurement.—By means of the 
so-called laws of radiation (Vol, V) it is possible to refer temperature to the 
fundamental units of measurement, cm., gm., and sec. But it is not possible 
to determine the dimensions of temperature in this way, because the constants 
of these laws are not yet established with sufiicient accuracy and it has not 
been decided what dimensions are to be associated with them. The product 
of the temperature T and a certain transformation constant Jc occurring in many 
laws (pp. 41 and 45) has the dimensions of tmergy, namely [dyne, cm.] ™ 
[gm. cm.^ sec.""®]. If in accordance with the principles of the absolute measuring 
s^^stem this constant h were to bo taken as of zero tlimensions, then temperature 
would have the same dimensions as energy. This has not yet become customary, 
however, and consequently the dimension “ degree ” for temperature is regarded 
as independent of the fundamental dimensions of length (cm.), mass (gm.), and 
time (sec.). In this sense the constant for example, is regarded as having the 
dimensions erg/degree — [gm. cm.^ sec.”"* degro©““^J. 

10. Thermodynamical Scale.—Up to the present our definitions of temperature 
and the magnitude of a degree (p. 2) have been based upon the arbitrary 
choice of mercury as thermometric substance. In principle wo might have made 
our definitions dependent upon any other substance. As has been seen above 
(p. 4), the temperatures would then have been different and the degrees of 
other magnitudes. It has therefore been the aim of physicists to arrive at a 
conception of temperature and a method of temperature measurement which 
are free from all arbitrariness, in particular independent of the particular properties 
of any chosen thermometric substance. One lino of approach to this has already 
been mentioned, namely the laws of radiation. iVnother way, the one heading 
to the most exact and scientific definition of temperature which we have to-day, 
was pointed out as early as 1848 by William Thomson, afterwards Lord Kelvin 

(p. 124). 
On the Kelvin scale the numerical value of any temperature is completely 

determined by the so-called second law of thermodynamics as soon as one point, 
say the lower fixed point, has been assigned some definite non-zero value Tq. All 
other temperatures can then be evaluab^ by the measurement of certain definite 
processes, the so-called cycles (for further details see p. Ill et seq.). The scale 
defined in this way is known as the thermodynamical scale of temperature. 

For all practical purposes it coincides very nearly with the temperature scale 
based upon the indications of a gas thermometer (for further information see 
p. 17). Indeed the thermodynamical scale would necessarily be identical with 
that of a thermometer filled with a perfect gas. Now the behaviour of real gases, 
especially hydrogen and helium, is almost ideal at low pressures. Hence the 
differences between the thermodynamical scale and the indications of a gas ther¬ 
mometer filled with a real gas (hydrogen or helium) at ordinary pressure can be 
determined and are known to-day with great accuracy. We are therefore enabled 
also to refer the indications of a mercury thermometer to the thermodynamical 
scale. 

The following short table gives the differences between the thermodynamical 
and mercurial scales of temperature for two specified types of mercury ther¬ 
mometer. 
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Thermodynamical 
Temperature on the 

Centigrade Scale 

Indication of a Mercury 
Thermometer made ox 

Jena Glass, 16 in, 
with Equal Degree 

Divisions 

Indication of a Mercuiy 
Thermometer made of 

Jena Glass, 59 III, 
with Equal Degree 

Divisions 

-30° -30-28° -30-13° 
-20 -20-16 -20-07 
-10 -10-07 -10-03 

0 0 0 

+ 20 +20-09 +20-04 
+ 50 +60-12 + 60-03 
+ 80 +80-06 + 80-00 
+ 90 +90-03 + 89-98 

+ 100 + 100 + 100 

+200 +200-29 +200-84 
+ 300 +302-7 + 304-4 

The differences are usually taken into account by the manufacturers of good 
thermometers, a correction to the thermodynamical scale being embodied by 
suitable deviations from e^quality in the degree markings. 

11. The Temperature Scale outside the Fixed Points.—For the regions outside 
that between the melting-point of ice and the boiling-point of water a number of 
standard temperatures on the thermodynamical scale have been determined. 
Amongst these we may mention the following melting-points: 

Mercury -38^87° 
Tin +231-85 
Cadmium 320-9 
Zinc 419-6 

Antimony 630-5° 
Silver 960-5 
Gold 1063 
Copper 1083 

Palladium 1549° 
Platinum 1755 
Tmigsten 3400 

In addition there are the boiling-points of a number of ikibstances at 760 mm. 
pressure, e.g. sulphur, 444-60°. Below —40° the standard tempei-atures are the 
boiling-points (at 760 mm. pressure) of carbon dioxide, —78-6°; oxygen, —183-0°; 
and hydrogen, —252-8°. Temperatures between these standard points are 
partly determined by the alteration of the electrical resistance (Vol. Ill) of platinum 
(from —193° to +630-5°), partly by the thermoelectric potential of a thermo¬ 
element (Vol. Ill) of platinum and 10 per cent rhodium-platinum (up to 1063°) 
and partly by the luminosity of a radia^g black surface (above 1063°). 

Liquid Thermometers for Low and High Temperatures. — Mercury ther¬ 
mometers cannot be used below -—39° C. because mercury solidifies at this 
temperature. Alcohol or better toluene can be used down to —100° C. and 
petroleum ether or better pentane down to —180° C. On account of the markedly 
non-uniform expansion the length of the degree divisions of a liquid thermometer 
calibrated on the gas (thermodynamical) scale decreases at lower temperatures. 

Liquid thermometers for high temperatures can be made by filling the space 
above the Hquid with carbon dioxide or nitrogen under high pressure. Using 
high melting glass it is possible in this way to make mercury thermometers 
which can be used up to 600° C.; using silica (fused quartz) the range may even 
be extended up to 760° C. Since the gas pressure above the mercury is betw een 
16 and 100 atmospheres, there is always a danger of explosion in using 
thermometers of this type. 
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2. Thermal Expansion of Solids 
Linear Expansion.—When a solid body is heated the resulting 

increase of volume takes place in all dircctionB. Most bodies (all 
isotropic bodies) expand in the 
same ratio in all directions simul¬ 
taneously, but crystals sometimes 
expand difierently in difierent 
directions (anisotropic). We will 
restrict our considerations to iso¬ 
tropic bodies. The expansion of 
a rod-sliaped body in one direc- ' ,,_Mea»uremcn, of Linear Thermal 

tion (e.g. in the direction of its Expansion of a Metal Tube 

length) is called linear expansion. 
An arrangement of the kind shown in fig. 2 may be used to measure the linear 

expansion of a solid. The substance to bo investigated (e.g. brass) is taken in 
the form of a tube about 70 cm. long. TSvo notches are made upon this at a 
distance of 50 cm. apart. The tube is clamped at the first notch and rests with 
the other upon a horizontal knife-edge, which is fixed to a brass plate capable 
of rotation about a horizontal axis 5 mm. higher. The plate also carries a vertical 
pointer 25 cm. in length measured from the axis. Thus a small alteration in 
the length of the tube is magnified 50 times in transmission to the end of the 
pointer, where it can be read off upon a mirror scale. Rubber tubing is attached 
to the two ends of the tube so that a current of hot w'ator or steam can be passed 
through it. The temperature of the water is read off upon mcrcur}' thermometers 
both as it enters and leaves the tube. When those readings are equal the tube 
has also taken up the same temperature. 

The alteration in the length of the 50 cm. section of tube is noted when water 
at different temperatures is flowing through it. Observation shows that within 
the limits of error of the method the alteration of length is proportional to the 
alteration of temperature. Thus for each 1® C. rise in temperature the tube shows 
the same expansion. Now this expansion is obviously proportional to the original 
length of the tube. Hence we obtain a quantity independent of this length by 
dividing the linear expansion of the tube per degree by its original length. The 
quanti^ thus obtained is called the coefficient of linear expansion of the substance 
considered. 

The coefficient of linear expansion of a solid is the ratio of its increase in 
length per 1° C. rise of temperature to its length at 0° C. 

Its value for iron is 0*0(X)012, for brass 0*000019, and for zinc 
0*000029; for other substances see Table I (p. 289). For practical 
purposes the coefficients of linear expansion of substances in coromon 
use may be taken as constant at ordinary temperatures. This is in 
agreement with the result of the experiment described above, namely 
that the change of length is proportional to the change of temperature. 
Letting a be the coefficient of linear expansion, a rod of len^h I will 
expand by an amount la for F C. rise of temperature and by an amoinit 
lot for f C. rise of temperature. The new length will then be I + lat. 
If Iq be the length of the rod at 0° C. and the length at f C., wc have 
therefore 

1% = /o(l -f- dt)* 
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Accurate observations have proved that the expansion per 1® C. is not in¬ 
dependent of the initial temperature, i.e. that the coefficient of linear expansion 
in not a constant. If it is desired to take this into account, it is necessary to 
state within which temperature range or from what initial temperature the 
expansion has been measured. 

Compensated Pendulum.*—This is a pendulum in which the 
increase of length due to rise of temperature is neutralized by the 
use of a suitable combination of different metals. The pendulum 
rod (fig. 3) consists of three rods of iron and two of zinc arranged 
in the manner depicted (gridiron pendulum). Aa a result of the 
thermal expansion of the iron rods the pendulum increases in 
length with rise of temperature; but as a result of the expansion 
of the zinc rods the top of the middle iron rod is raised to such an 
extent that on the whole the pendulum length remains constant at 
all temperatures. 

Such compensated pendulums were much used formerly in 
accurate clocks. In more modern times it has been possible to 
make a metallic alloy (steel with about 36 per 
cent nickel) called invar f whose coefficient / 
of linear expansion is so small as to be prac¬ 
tically negligible. In modern accurate clocks ^ 

Pig 3 made of this alloy and the pendulums 
Compensated constructed with a simple rod. ^ 

(Gridiron) Metallic Thermometer.—This consists of 
Pendulum strips of mctal of different coefficients of Fig.4.-—Bimetallic Strip 

expansion (e.g. iron and brass) riveted together 
firmly (so-called bimetallic strip, fig. 4). If the strip is straight at some inter¬ 
mediate temperature (e.g. 20° C.), it will become curved with rise of temperature 
so that the brass is on the convex side, and with fall of tejmperature so that 
the brass is on the concave side; for the brass has the greater coefficient of 
expansion and therefore expands more than the iron when the temperature is 
raised and contracts more when the temperature is lowered. In order to accom¬ 
modate a long strip in a small space, it is often coiled round into the form of a 
spiral, the middle of which is held fixed while the outer end carries a pointer. 
The motion of the end of the pointer is generally registered by means of a 
coloured pencil or pen (thermograph; for figure see Vol. V). 

Cubical Expansion.—In the case of an isotropic body the linear expansion 
is the same in all directions. Hence the shape remains similar when the tem¬ 
perature is altered. Now the volumes of similar bodies are in the ratio of the 
cubes of corresponding linear dimensions and hence wo have the equation 

whence V, == Vo(l 4- af)^ == Vo(I -f 3a^ + 

Since the coefficient of linear expansion a is a very small quantity, we can neglect 

* The compensated pendulum as a regulator for accurate clocks was discovered 
by JoHW Hareison (1693-1776), who was originally a carpenter. He received a prize 
of £50CK) for it from Parliament in 1768 and another prize of £10,000 in 1766 for im¬ 
provements to his clocks (ship’s chronometers). It is possible that George Graham 
(1676-1761), an excellent mechanic and clockmaker, was acquainted with the com¬ 
pensated pendulum before Harrison. Graham attempted to obtain the same result 
later with a pendulum whose bob consisted of a vessel containing mercury, 

t From “ invariable **. 
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the terms of second and third degree in a in comparison with the term of the 
first degree. The equation then simplifies to 

“ Vo(l + Zat). 

The quantity 3a is called the coefficient of cubical expansion. 
The coefficient of cubical expansion of a substance is equal to three times the 

coefficient of linear expansion. 

3. Thermal Expansion of Liquids 
Since liquids and gases have no definite shape we only have to 

consider their coefficients of cubical expansion. Now a liquid must 
always be enclosed in a vessel, which will also increase in volume with 
rise of temperature. Hence it is only possible to observe the apparent 
expansion of the liquid in the vessel. In order to obtain the coefficient 
of true or absolute expansion account must also be taken of the 
expansion of the vessel. 

The measurement is usually carried out in the following way: A pyknometer 
(VoL I) is completely filled with mercury and weighed. It is then heated in a 
water bath to a known temperature. A certain amount of mercury flows out of 
the pyknometer and its volume is determined by weigliiug again, subtracting 
from the original weight and dividing the difference by the specific gravity of 
mercury. ^Iho volume expansion so measured is the apparent expansion, i.e. 
the difference between the expansion of the mercury and that of the glass. "Ihus 
to get the absolute expansion w^e have to add 
the increase of volume of the vessel as calcu¬ 
lated from the equation ~ Vo(l d- 3a0 on 
pp. 8, 9, knowing the value of a, the coefficient 
of linear expansion of the glass. The true 
expansion of the mercury, corrected in this 
way, is then divided by the rise of temperature 
and by the original volume. This gives the 
value O'OOOIS for the coefficient of absolute 
(cubical) expansion of mercury. 

With the help of the theorem that the 
heights of the liquid columns in communicating 
vessels are inversely proportional to their re¬ 
spective specifio gravities (Vol. I), it is possible 
to determine the coefficient of absolute expan¬ 
sion of a liquid by the following direct method. 
The vertical limbs of a U-tube (fig. 5) are 
surrounded by jackets through which water is 
passed at different temperatures. In this way a 
known difference of temperature is maintained 
between the liquid columns in the two limbs. 
If the U-tube is filled, for example, with mer¬ 
cury, the-specific gravity of the mercury in the 
hotter limb is smaller than in the colder limb, 
and consequently the level in the hotter limb 
is higher. The ratio of the lengths of the two liquid columns is measured; 
this is the same thing as the ratio of the volumes of a given mass of liquid at 
the respective temperatures of the water jackets (method of Dulonq and 
Petit). 

Fig. 5.—Aleasurement of the Thermal 
Expansion of a Liquid 
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The coefficient of expansion of most liquids is different in different 
temperature ranges. Hence it is necessary always to state over which 
temperature range it has been measured. Table I (p. 289) gives the 
values for some liquids at 18° C. 

Expansion of Water.—The change in magnitude of the coefficient 
of expansion of water at different temperatures is particularly re¬ 
markable. 

This shows itself clearly if we make a thermometer containing water and 
place it along with a mercury thermometer in a water bath which is gradually 
warmed up. In this experiment only the apparent expansion of the water is 
visible (on account of the simultaneous expansion of the glass containing it) 
and therefore we introduce the following modification. Inside the water ther¬ 
mometer we enclose a body which expands with rise of temperature to such an 
extent as just to compensate the increase in volume of the thermometer duo to 

Fig. 6.—Measurement of the Thermal 
Expansion of Water 

Fig. 7.—Expansion of Winter with Rise 
of Temperature. (Ordinates: i div. — 
o oooi of vol. at 4“ C.) 

the expansion of the glass. We shall learn below that the coefficient of expansion 
of air is 0-00367, The coefficient of cubical expansion of glass is 0-000021, i.e. 
175 times smaller than that of air. If therefore we enclose an air bubble of volume 
2 cm.^ in a flask of volume 350 cm.^, the expansion of the vessel will be just 
neutralized by that of the bubble (fig. 6). We also furnish the flask with a 
nan-ow glass tubf^ open at the top and a mercury thermometer, both passing 
through a tight s upper. When now the apparatus is warmed up slowly in a 
water bath, the temperature can bo read off on the mercury thermometer and 
the volume change of the water on the narrow open tube. We plot the tem¬ 
peratures as abscisj je and the corresponding water levels as ordinates, and thus 
obtain the curve shown in fig. 7. 

At 4° C. the , volume of the water is a minimum. When heated 
uniformly from 0^ C., the volume first decreases slowly to 4° C., then 
begins to increase, reaches approximately its original value at 8° C. 
and thereafter goes on increasing more and more rapidly. In Table II 
(p. 290) are given the volumes at each successive degree between 0° C. 
and 20° C., the volume at 4° C, being put equal to unity. For higher 
temperatures see p. 158, fig. 27. 
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Since a given mass of water has its minimum volume at 4® C., the density 
must also be a maximum at this point. This is the reason why the temperature 
of the water at the bottom of a tall vessel cooled at the top (e.g. by addition 
of pieces of ice) only falls to 4° C. As long as the surface water is at a temperature 
above 4° C. it becomes heavier when cooled and sinks to the bottom; but below 
4° C. it becomes lighter when cooled and hence remains at the top. For the same 
reason deep waters never freeze at the bottom; the ice layer forms at the surface. 

4. Thermal Expansion of Gases. Absolute Temperature 

1. Coefficient of Expansion.—To measure the (cubical) expansion 
of gases, use may be made of a spherical glass bulb (fig. 8) of about 

100 cm.^ capacity on 
--.. , D the end of a narrow 

tube bent ut right 
angles and having its longer limb horizontal (sec 
figure). The bore of the tube is determined by 
previous experiment. The bulb is filled with dry air, 
which is enclosed by a drop of liquid placed in the 
horizontal part of the tube to servo as index. The 
bulb is placed in a water bath, whose temperature 
can be read ofi by means of mercury tliermomcter 
and the position of the index noted. If now the 
temperature of the bath and hence also of the', air 
in the bulb (dilatometer) is raised, the increase of 

volume can be observed and measured from the movement of the 
index along the tube of known bore. 

Suppose that the volume of the air enclosed by the index at C. 
is 100 cm.^. When the bath is heated up we obs(^.rve that the index 
moves along proportioimlly to the temperature. Measurements of 
this kind have given the value a --- 0-00367 ™ 1/273 for the coefficient 
of cubical expansion (volume coefficient) in the equation ~ 
Vq(1 + at) (p. 8). If we fill the dilatometer with other gases we 
always obtain the same coefficient of expansion. This is known as 
Gay-Lussac’s law.* 

The coefficient of thermal expansion {volume coefficient) is almost 
exactly the same for all gases y the mean value being 

1/273*2 == 00036604. 

This is the value for an ideal or perfect gas (p. 14). Actual measure-* 

* This law, wrongly named after Gay»Lus3Acj, was first proved by the Parisian 
scholar Amontons (1663-1705). Amoktons invented the air thermometer. Ho was 
also of the opinion that heat consisted of a lively motion of small heat particles which 
could bo transferred to the particles of the body: the higher the temperature, the 
greater the velocity of these heat particles and of the material particles set in motion 
by them. On this theory Amontons calculated the temperature at which the material 
particles would have no motion at all and obtained the value - 230*5° C. According 
to more accurate measurements this temperature, which is to-day called the absolute 
zero, is — 273*2° C. 

Fig. 8.—Thermal 
Expansion of Ciases 
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ments, which can only be carried out with real gases, have given the 

following figures: 

for helium, a = 0-0036604 — 0-0000019 Pq] 

for hydrogen, a = 0-0036604 0-0000012 p^; 

for nitrogen, a = 0-0036604 + 0-0000127 Pq, 

where Pq is the pressure of the gas at 0° C. expressed in metres of 
mercury. 

2. Pressure Coefficient,—In the above apparatus (fig. 8) it was 
assumed that the liquid drop serving as index could move easily, 

so that the gas was able to expand at a constant 
pressure equal to that of the atmosphere. We 
will now modify the experiment by connecting 
the dilatometer to an open mercury manometer 
(fig. 9). The tube from the bulb and also that 
of the manometer must be so narrow that the 
change of volume corresponding to the alteration 
of the mercury level in the manometer can be 
neglected. When the air in the dilatometer is 
heated, the difference of level in the two limbs 
of the manometer increases, i.e. the pressure of 
the air increases at constant volume, being equal 
to atmospheric pressure plus that indicated 

Fig. Q.—Measu^rement of }yj difference of the mercury levels. The 

of a Gas obscrvcd lucreasc of pressure is found to be 
proportional to the rise of temperature. 

If pQ be the pressure of the air at 0° C., and p^ that at f C., then 

Pi = PQ{l + where j8= 0-00366041/278-2. 

The quantity ^ is called the pressure coefficient; except for slight 
deviations its value is the same for all gases and practically equal 
to the volume coefficient. The following are the values actually found: 

for helium, ^ = 0*0036604 — 0-0000004 p^; 

for hydrogen, ^ = 0-0036604 + 0*0000017 p^;. 

for nitrogen, P ™ 0-0036604 + 0-0000134 Pq] 

where p^ is the pressure of the gas at 0® C. expressed in metres of 
mercury. For vanishingly small pressures {p^ == 0) both the volume 
coefficient a and the pre^re coefficient B approach the same limiting 
value y = 0-0036604.\>^ 

3. The Boyle - Gay-Lussac Law.—At constant temperatures the 
volume and pressure of a given mass of gas are connected by Boyle’s 
law, viz. 

pY := const. 
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A change of temperature can cause changes both of pressure and of 
volume. But, as in the above experiments, one or other of these 
quantities may be kept constant. In order to arrive at a general relation¬ 
ship between the volume, pressure and temperature of a given mass of 
gas, we first consider the temperature to be raised from 0"’ C. (at which 
the volume is Vq and the pressure to C. Then according to Gay- 
Lussac’s law the new volume is given by the equation 

Vo(l + at). 

We now keep the gas at the constant temperature C. and change 
its volume and pressure Pq to the values V and p respectively. 
Then by Boyle’s law 

pV---^PoV,, 

and hence pV -- poY^ — ^>oVo(l d- u^)- 

We can also carry out the changes by keeping the volume constant 
as the temperature is raised from (f C. to 0. In this case the new 
pressure p^ is determined by Gay-Lussac’s law, viz. 

Pt==^Po(^ + W.(1) 

We now produce a simultaneous change of the volume and j)ressure 
Pi to the values V and p respectively, keeping the temperature f C. 
constant. The product of pressure and volume must once more remain 
constant by Boyle’s law, and we must have the equation 

;>V -- p^Q -= . 

This is not only similar to equation (1) in form; the two are identical, 
since the quantity a (the coefiicient of thermal expansion) in equation 
(1) is equal to the quantity ^ (the coefficient of thermal increase of 
pressure) in equation (2). Hence we can express the relationship 
between the volume, pressure, and temperature of a given mass of 
gas quite generally by means of the equation 

This is called the Boyle - Gay-Lussac law. At constant temperature 
the equation becomes identical with that of Boyle’s law; at constant 
pressure or volume (and variable temperature) it assumes tlie form 
of the equation expressing Gay-Lussac’s law. 

4. Absolute Temperature (see p. 11, footilote).—Wo transform 
the last equation by substituting a= 1/273*2 and get 

ft^t = ?0Vo(l + 2^) ^’oVo(■“27^^2“)■ 
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By putting 273*2 + ^ — T we introduce a temperature T corresponding 
to f C. but referred to a zero point lying 273*2° C. below the tempera¬ 
ture of melting ice (0° C.). This zero point is called the absolute zero 
and temperature measured from it in centigrade degrees is called the 
absolute temperature. /Thus the melting-point of ice is Tq™ 273*2° 
abs.* on this sealery 

5. Equation of State.—Making use of the concept of absolute 
temperature, the last equation simplifies to 

T . To 

This equation is called the equation of state of the mass of gas 
considered. It is also known as the Boyle - Gay-Lussac law and can 
be expressed in words as follows: 

For a given mass of gas the froduct of the fressure and volume 
divided hy the absolute temperature is a constant. 

The absolute zero and absolute temperature are concepts which greatly 
facilitate the mathematical expression and application of the Boylo-Oay-Lussac 
law. Wo know nothing about the state or the behaviour of bodies at the absolute 
zero, because, though it has been possible to come very near to it, this tem¬ 
perature has never yet been reached. If we were to apply the Boyle-Gay-Lussac 
law at the lowest temperatures, wo should be led to the meaningless equation 
PoVo — 0, from which we should deduce that a gas at the absolute zero would 
either have no volume or would exert no pressure. Wo know, however, that all 

gases sooner or later become liquid when cooled, so that at the temperature of 
the absolute zero tlio gaseous state probably no longer exists. 

The Boyle~Gay-Lussac law is only 
an approximation (p. 90; Vol. I, 

, p. 315). The farther the state of a 
gas from the point at which it lique¬ 
fies (p. 88), the more nearly it obeys 
the Boyle-Gay-Lussac law. Only for 
an ideal or perfect gas would the law 
hold strictly. The smaller the density 
of a real gas becomes with decrease of 
pressure, the more nearly its behav¬ 
iour approaches that of a perfect gas 
and the better it obeys the law. 

6. Gas Isotherms.—We can 
represent the essential content 
of the Boyle-Gay-Lussac law by 

means of a system of curves obtained by plotting pV/T= const, for 
a number of different temperatures, say T = 100°, 200°, 300° abs., &c. 

In fig. 10 it has been assumed that a certain mass of gas has the 

♦ Instead of T® abs. it has recently become usual in certain sections of physical 
literature to write T° K (road “ degrees Kelvin see p. 6). 

PinALnins 

Fig. lo.—^Pressure-Volume Isotherms 
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volume V “ 1 litre at the temperature T — 100° abs. and the pressure 
1 atm. We plot the curve of pV = 1, taking the volumes as 

abscissae and the corresponding pressures as ordinates. Since this 
curve applies for a constant temperature of T ~ 100° abs., it is called 
an. isothermal curve or isotherm * for this temperature. The isotherm 
for 200° is derived from the equation pV ~~ 2, that for 300° from 
y)V -= 3, &c. 

We can read off at once from the diagram wJiat volume the chosen mass of 
gas will have at any temperature and pressure. Thus, for example, at T — 600*^ 
abs. and p =: 2 atm. the volume is V — 3 dm.®, for the ordinate ^ ™ 2 corresponds 
on the isotherm for T — COO^ abs. to a point at which V ™ 3. 

7. The Perfect Gas.—A gas obeying the above equations exactly 
is called an ideal or perfect gas. Real gases of simple constitution 
may be regarded as approximately perfect at low prcssines. At higher 
j)ressures deviations occur (p. 90); these are due to the increased 
importance of molecular forces. 

8. Specific Gas Constant.—The value of the expression 
depends only upon the nature and the quantity of the gas in question. 
It is usual to consider 1 gm. of the gas and to express the pressure 
in dynes per square centimetre and the volume in cubic (‘entimetres. 
Now 1 gm. of air under normal conditions of temperature and j)res- 
sure occupies a volume 1/0*001293-t - 1000/1*293 cm.^, and the 
pressure of a column of mercury 700 mm. long is equal to 1033.981 
dynos/cm.^. Hence for 1 gm. of air 

T^oYp 
To 

1033.981.1000 
' 1*293.273 

: = 2*871 . 10® ergs/degree. 

In the same way we obtain for oxygen tlui value 2*597.10®, for nitrogen 
2*967.10® and for hydrogen 41*25.10®. These are called the specific 
gas constants of the different gases. Using the value for hydrogen, 
for example, we obtain for m gm. of this gas 

=•- 41-25 m . 10». 

9. Universal Gas Constant.—The last equation assumes a par¬ 
ticularly simple form if we consider a quantity of gas whose mass in 
grammes is' numerically equal to its molecular weight. This qu<antity 
is called a gramme-molecule or a mol. If the molecular weight of the 
gas is fi, then the quantity of mass p, gm. is a mol. Thus, for example, 
one mol of oxygen is 32 gm., one mol of nitrogen is 28*02 gm., one 
mol of hydrogen 2*016 gm., and so on. 

If for each gas we multiply the specific gas constant by the molecular 

* Gr., isos, equal; thermds, hot. 
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weight, we get for oxygen 32.2*597.10® = 8*312.10^, for nitrogen 
8*314.10^, and for hydrogen 8*316.10^, i.e. the same value in each 
case. The most accurate numerical value is taken as 8*313. lO"^. 
This is known as the universal gas constant and is denoted by R. 
Thus for 1 mol of a gas the equation of state simplifies to 

8-313.107. 

10. The Clapeyron Equation of State.—If we wish to apply the 
above equation to an arbitrary quantity of gas, we must know the 
number i' of mols it contains. We can then write the equation in 
the form 

T 
Rv, R=-8*313.10’ r—^£L_-| 

LDegree. MolJ 

This is known as the Clapeyron * equation of state for gases. 
11. Molar Volume.—With the help of the Clapeyron equation 

of state we can calculate the volume Yq of one mol of a gas at normal 
temneraiwe and pressure (N.T.P.) by putting — 1033.981 dynes 
per cm.2 and T = 273*2. Then 

„ 8*313.10’. 273*2 v. 
= —i®rw- “ ■“ "■« 

We can also calculate this value directly by dividing the molecular 
weight 2*016 of hydrogen by the known weight of 1 litre of the gas 
at N.T.P. We get 

molar volume -- Vq — 2*016/0*09 = “ 22*4 litres. 

12. Avogadro’s Law.—The fact that the molar volume of all gases 
is the same has been explained by assuming that the number of 
molecules in a given volume is the same for all gases under the same 
conditions (see p. 63). 

This hypothesis was first made by Avogadro f in 1811, who was 
led to it from considerations of the behaviour of gases in chemical 
reactions. Since its experimental verification it is known as Avogadro’s 
law, and is usually expressed as follows: 

At the same temperature and the same pressure equal volumes of 
differenl gases contain equal numbers of molecides. 

From this it follows further that: 
The densities of two gases are in the same ratio as their molecular 

u'eights. 

* B. P. E. Clai’KYEON (1799-1864), French engineer. 

t Count Aimadeo Avogadro di Quareqna ui CERErro, born 1776 at Turin, 
died 1866, was first a jurist, then devoted himself to natural science and obtained 
in 1820 the chair of mathematical physics at Turin, which he occupied intermittently 
until 1861. 
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13. Dissociation.—Let n be the number of molecules in 1 gm. of 
hydrogen and d the density of a gas relative to hydrogen at the same 
temperature and pressure. Then the number of molecules in 1 gm, 
of the gas is given by the quotient njd. Hydrogen obeys the laws of 
Boyle and Gay-Lussac almost perfectly. For all gases wliich also 
obey these laws d must remain constant w^hen the temperature is 
altered, and consequently the number of molecules contained in a, 
mass of 1 gm. must also remain constant. If now the density of such 
a gas relative to hydrogen at the same temperature and pressnn^ 
changes with temperature (as, for example, in the case of N2O4, where 
d. becomes smaller with rise of temperature), it follows that the number 
of molecules per gin. must also have changed. The simplest explanation 
of this phenomenon is obtained by assuming that the com])lex molecules 
of such gases decompose with rise of temperature, so that each molecule 
gives rise to two or three. This process is called gaseous dissociation 
(compare p. 80). 

5. Gas Thermometers 

In § 1, p. 2 et seq,, we based the definition of the centigrade scale 
upon the expansion of mercury. If the coefiicient of expansion of gases 
were proportional at all temperatures to t hat of mercury, the indications 
of a gas thermometer would coincide at all temperatures with thos<‘ 
of a mercury thermometer. This is only approximately the case, 
however. 

A mercury thermometer which is not gas-filled can at most only 
bo used between the freezing-point and boiling-point of mercury, i.e. 
between about —40'^ C. and therefore desirable to 
have a thermometric substance which can be used at all temperature,s. 
For this reason a second scale of temjierature has been set up; it is 
based upon the correctness of the Boyle-Gay-Lussac law. 

The farther the state of a gas from its liquefaction point, i.e, the higher its 
temperature and the lower its pressiire, the better it obeys this law. In laying 
down an “ international legal measure of temperature ” in 1887 the International 
Committee for weights and measures took the behaviour of hydrogen as basis, 
because it obeyed the Boyle-Cay-Lussac laAV the best of all the then known gases. 
It was not found till later that helium has a still lower liquefaction-point than 
hydrogen. Hydrogen becomes liquid at —252*8® C., helium at --268*71® C. 

The instruction of the International Committee of Weights and Measures in 
1887 was: 

Temperature shall be measured by the gaseous pressure of a constant volume 
of chemically pure hydrogen, which at the melting-point of ice exerts a pressure 
equal to that of a mercury column 1000 mm. in length. The fixed points of the 
thermometer shall coincide with those of the Celsius scale. 

The value of the pressure coefiicient (p. 12) of hydrogen is taken as 
p 0*0036621. 

The thermodynamical scale differs only very slightly from that 
of a hydrogen or nitrogen thermometer; see the following table. 

(Kaac) 3 
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'I'hcrmo- 
d3mamical Scale 

Constant Volume Constant Pressure 

Hydrogen Nitrogen 
(or Air) Hydrogen 

Nitrogen 
(or Air) 

-200° +0-07° 4-0*52° 4-0-25° 4^5-42° 

-100 0-02 005 0-02 0-46 

0 0 0 0 0 

-j-50 0-000 -0 009 -0-001 -0-024 

100 0 0 0 0 

200 4-0*003 4-0*046 1 -fO-005 4-0-11 

500 0*02 0*280 — 0-65 

1000 I 0-05 0*77 0-07 1-65 

Jolly’s * Air Thermome¬ 
ter,—Measurement of tem¬ 
perature with the air ther¬ 
mometer necessitates the 
simultaneous observation of 
volume and pressure. The 
apparatus is therefore ar¬ 
ranged so that the volume 
of the enclosed air remains 
constant. 

A practical form of constant- 
volume air tliennometor, sug¬ 
gested by Jolly in J874, is 
shown in fig. 11. A glass globe 
a filled with dry air is connected 
by means of a fine capillary b 
with a wide glass tube whose 
lower end is connected by thick- 
walled rubber tubing with a tube 
capable of movement along a 
scale. The two tubes joined 
with the rubber tubing contain 
mercury. Close below the end 
of the capillary is a mark s 
determined by a fine point of 
glass. The globe is surrounded 
with a mixture of water and 
ice, whereby it is brought to 
the temperature To ™ 273-2'^' 
abs., and the movable tube is 
then raised until the mercury 
surface just touches the glass 
point 5. The difference in the 
mercury levels in the two tubes 
(from s to R') plus the atmo¬ 

spheric pressure as read off from a barometer gives the pressure jPq. Hence all the 
quantities in the expression are known except Vq. 

♦ G. Ph. von Jolly (1809--84), Professor of Physics at Munich. 

Fig. 1T.—Jolly’s Constant-volume Air Thermometer 
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If then the globe of the air thermometer is dipped into the liquid whoso 
temperature is to be measured (which wo wdil suppose to bo higher than that 
of melting ice), the movable tube will have to bo raised farther in order to bring 
the mercury surface back into contact with tho point s. In tho new expression 
PiVi/Ti wo know the pressure (sum of atmospheric pressure and observed 
difference of mercury levels), and since Vj " Vo wo get by the Boyle-Oay-Lussac 
law the equation 

PiXo ^ PoVo 
Tx To * 

Here Vq cancels on both sides and we have 

T,^2n-2pjp,, 
in measurements with the air thermometer it is usual to neglect tho expansion 

of tho glass, since this is 175 times smaller than that of tho air. For this reason 
also tho inconveniences of zero point variation due to after elfects in tho glass 
(p. 4) do not arise. If a. globe of sibca bo used, there? is no need to take its 
change of volume into account even in tho most accurate w ork; for tho coefficient 
of expansion of silica is less than a tenth of that of glass. 

Air Thermoscope.—The largo thermal expansion of gases has led to the 
construction of simple thcrrnoscopcs with which it is possible to demonstrate 
changes of tcmperatur(3 to a largo audience. Such ihennoscjopcs consist of an 
air container connectorl by means of rubber tubing to an open liquid manometer. 

Geometrical or Dalton Scale of Temperature.—The measurement of tem> 
perature and tliorowith tho conception of tomperaiuro as a measure of thermal 
state is based upon tho expansion of certain specially selected substances. d.’iie 
thermodynamical scale (p. 5), which deliries temperature iri a. satisfactory 
scientilic manner, also makes use of a substance, namely a perfect gas. It is a 
common postulat-o of botli these definitions that etpial increases of volume of 
tho thcrmometric substance shall correspond to equal ijicrcases of temperature. 
This is, of course, purely arbitrary. In principle it "would have been C({ually 
justifiable to postulate that equal relative increases of volume of a perfect gas 
should correspond to equal rises of temperature. We should then liavo arrived 
at a temperature scale differing considerably from the usual oue. Such a scale 
was proposed by Dalton * in 1802. If t is tho centigrade temperature and t 
the corresponding temperature on tho Dalton scale, then jirovided that the two 
coincide at 0° and 100'', 

Hence wffien t ~ —273, t — oo . 
If the geometrical scale were used instead of the ordinary one, the conce^pi 

of an absolute zero would be avoided. Tho temperature range of 1° C. between 
— 272-2^ C. and —273-2^ C. would correspond to an infinitely large temperature 
range on the Dalton scale. This teaches us therefore that the concept of an absolute 
zero arises only from the customary definition of temperature and the behaviour 
of a perfect gas; it can be avoided by a modified method of reckoning temperature. 
Most of the natural laws would, however, assume a much less simple form if tho 
temperature were measured on tho Dalton scale instead of on the customary 
one. 

* John Dalton (1766-1844), English scientist, particularly famous for his discovery 
of tho law of multiple proportions in chemistry and his explanation of it in terras of 
atoms, through which he became the originator of the atomic theory of cli(.?mical 
processes. He also discovered colour blindness in himself (green-red blindness— 
daltonism). 
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6. Quantity of Heat. Specific Heat 

1. Quantity of Heat.—beaker containing 1 kg. of water is heated 
over a gas flame and the temperature read off on a thermometer. 
In 5 min. a rise of about 20"^ C. is observed. Then | kg. of water is 
placed in a beaker of the same size and the experiment repeated. The 
rise of temj)erature in 5 min. is now about 40° C. In the same time 
the same source of heat now causes twice the rise of temperature 
not(;d in the first case. The product of the mass of the water and the 
rise of temperature remains constant; hence we can look upon it as 
a measure of the thermal effect of the flame. It is called a quantity of 
heat. 

The unit quantity of heat is that required to raise the temperature 
of 1 kg. of water from 14^° C. to 15|° C. 

It is known as the kilogram-calorie * or large calorie (abbreviated 
kcal. or Cal.). The gramme-calorie or small calorie (abbreviated cal.) 
is also used as a smaller unit; it is the quantity of heat required to 
raise the temperature of 1 gm. of water from 14|° C. to 15^° C.t 

Assuming that the quantity of heat required to raise the tern* 
perature of a certain mass m of water from 0. to (0+ 1)° C. is 
independent of the initial temperature, w^e can calculate the quantity 
of heat Q from the rise of temperature t by means of the equation 

Q " mt. 

For accurate measurements the quantity of heat required to raise 
the temperature by 1° C. must be specially determined from degree 
to degree; for in reality it is not exactly the same in all temperature 
ranges. The deviations are so small, however, that they may be 
neglected for our purposes, 

2. Specific Heat.—We modify the experiment described above 
by placing first a spiral of lead wire weighing ^ kg. in the beaker and 
then adding J kg. of water. The total mass is thus 1 kg. as before. 
We heat the beaker and contents with the same flame as in the previous 
experiment and observe after 5 min. a rise of temperature of about 
38*8° C. From this it follows that \ kg. lead does not require as much 
heat as \ kg. water in order to raise its temperature by 1° C.J 

In the first experiment the flame heated up 1 kg. of water by 20° C. 
in 5 min.; it therefore furnished 20 Cal. In the last experiment the 
same flame must have furnished the same quantity of heat. Since 
now I kg. water was heated up by 38*8° C., the quantity of heat given 

* Lat., mlor, heat. 

t The kilogram-calorie (15® C.-kilogram-calorie) is the official unit. It is equal 
to the Tnmn kilogram-calorie measured between 0° C. and 100® C., and is 1*008 times 
the Regnault 0° C.-kilogram-calorie, i.e. tho quantity of heat required to raise the 
temperature of 1 kg. of water from 0® C. to 1® C. 

t In this experiment we neglect the quantity of heat given up by tho flame to 
tho vessel and the air. 
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up to the water was 38*8. ^ = 19-4 Cal. Therefore the quantity 
required to raise the temperature of i kg. of lead by 38*C. was 
only 0*6 Cal. Hence T2 Cal. would be necessary to raise the tem¬ 
perature of 1 kg. of lead by 38-8^ C. or 1-2/38-8™ 0*03 Cal. to raise 
the temperature of 1 kg. of lead by 1"^ C. 

If we repeat the same experiment with other substances, we find 
a different rise of temperature in each case; but it is always smailer 
than when wc heat ^ kg. of pure water alone. It follows therefore 
that unit mass of every substance requires a definite positive quantity 
of heat (the specific heat) to raise its temperature by I"" C. This quantity 
depends upon the nature of the substance. 

The specific heat of a substance is the quantity of heat necessary 
to raise the temperature of 1 gm. of the substance by 1° C. 

TIio quantity of heat id expressed hero in gramine-caluries. If I kg. be elioseri 
as the unit of mass, then the quantity of heat miist bo expressed in kilograin- 
ealories. Tho specific heat of a body is not tho same at ail temperatures (p. 25), 
and iience for accurate calculations it is necessary to state at what temperature 
th(^ detei'inination has been carried out. 

3. Heat Capacity.—If c be the specific heat of a body and m its 
mass in gm., tlie quantity of heat (expressed in gramme-calories) 
required to raise its temperature by T^ C. is 

K — me. 

This is called the water equivalent or heat capacity of the body. Since 
for water c ^ 1, K is numerically equal to that mass of water requiring 
th('. same quantity of heat to raise its temperature by the same amount. 
To heat up the body by f C. the quantity of heat required will bo 

Q met Kt, 

4. Historical.—The concept of quantity of heat was probably first formulated 
clearly by Gkorge Wilheij^i Richmann (1711-55, member of tho Petersburg 
Academy). Specific heat was introduced after 1762 by Joseph Black (1728-99, 
from 1750 Professor of Chemistry in Glasgow, and from 1766 in Edinburgh). 
Johannes Kakl Wilcke (born 1732 at Weimar, died 1796 as Secretary of tho 
Academy of Stockholm) determined the first specific heats about 1772. 

7. Determination of Specific Heats 

1. Calorimetry,—The measurement of heat is called calorimetry; 
the apparatus used is called a calorimeter. Most accurate determinations 
of specific heat are made by this method. 

I. Determination of the Specific Heat of a Sohd. Metal Calorimeters.— 
In principle the simplest method of determining 8}>ecific heat is to add a measured 
quantity of heat to a weighed amount of tho substance and to detvermine tho 
rise of temperature. The most important point here—as indeed in all calori- 
metrical measurements—is to prevent losses of heattothe surroundings. 
Measurements of this kind can be performed 
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maimer in a vacuum calorimeter (Nernst), a piece of apparatus especially suitable 
for measurements at low temperatures. 

A massive block of the substance to be investigated is heated electrically 
in an evacuated vessel (fig. 12) surrounded by a bath at the desired 
temperature (c.g. that of liquid air). The quantity of heat added is 
determined from the easily measured quantity of electrical energy 
used (Vol. Ill), and the temperature of the body is determined 
from tlie electrical resistance of the heating wire, which varies 
vith tcmi>erature (Vol. III). The evacuation of the calorimeter 
considerably reduces loss of heat to the surroundings (p. 178). 

A hollow copper block (of about J kg. wt. 
and known heat capacity) electrically heated 
in a vacuum can also be used to contain 
the body under investigation (copper calori* 
meter of Nernst). 

The Method of Mixture.—In a thin-walled 
vessel K (fig. 13) (the calorimeter) is placed 
a known quantity of water whose tempera¬ 
ture is read off on a thermometer marked 
in tenths of a degree. The body to be in¬ 
vestigated (e.g. small pieces of metal) is 
heated up to an accurate^ known tempera¬ 
ture in a test-tube placed in a water bath. 
The pieces of metal are then shaken out into 
the water in the calorimeter, which is then 
vigorously stirred so as to bring about a 

rapid equalization of temperature. The temperaturo of the water in the 

n 

\^_,y 

12.— 
Nernst Vacuum 

Calorimeter 

i3.~ 

Method of Mixture 

cal wimeter rises. 
Let /j be the initial temperature of the water, 4 of the heated bod}', 

and 4 that of the mixture. Further let the mass of the water be mi gm. and 
the mass of the body gm. We will calculate the quantity of heat that w'ould 
be necessary to raise the temperature of each of the bodies concerned from 0° C. 
to that observed. We will call this their heat content. 

The initial heat content of the water in the calorimeter was cal.; that 
of the heated body of specific heat o was m^^oU cal. Thus the total heat content 
before mixing was (w^^ -h cal. Afterwards it is -f cal. 

Assuming that there was no loss of heat during mixing, the total heat content 
before and after mixing must bo the same. Hence we get the equation 

whence c = (^3 
^2 (4 — ^3) 

In the above experiment the calorimeter itself was also heated up, as well 
as the thermometer and stirrer. In order to take this into account wo calculate 
the water equivalent r of these three bodies from their known masses and specific 
heats. This must be added to the mass ni^ of the water in the calorimeter, so 
that the formula for c becomes 

^2(^2 ^3) 

If the calorimeter is made of very thin metal and if the masses of the thermometer 
and stirrer are also small, their water equivalent may be neglected for rough 
measurements. 

A very accurate apparatus, which, however, is only suitable for a limited 
range of temperature, is the ice calorimeter (p. 69). 
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II. Specific Heats of Liquids.—These are determined just as in 
the case of a solid by heating up a known quantity of liquid and 
mixing it with water (or some other liquid of known specific heat) 
in a calorimeter: or a known quantity of the liquid to be investigated 
may be placed in the calorimeter and a hot body of known temperature 
and specific heat brought into it. In each case the final temperature 
of the mixture after equalization is observed. The total heat contents 
before and after mixing arc then calculated and from them the 
unknown specific heat of the liquid. Another good method of de- 
termining the specific heat of a liquid is to add a calculated quantity 
of heat by means of an electric current passing through a wire dipping 
in it. (For the method of Callendar and Barnes, see Appendix.) 

III. Specific Heat of Gases.—Since the density of a gas is relatively 
small, it is not possible to determine the spechic heat by heating a 
certain volume and measuring the quantity 
of heat given up wdic]) it is mixed with 
water in a calorimeter. Hence a large 
amount of gas, previously raised to a high 
tomperatun*, is led through a spiral tube 
(fig. 14) situated in a calorimeter K filled 
with water. The temperature of the enter¬ 
ing gas is measured at A, that of the out¬ 
flowing gas at B. The gas cools down in 
passing through the tube and thus warms 
up the water in the calorimeter. The 14—Determination of the 

,, , , hpecilic. Heat of a !il Constatit 
specinc heat ol the gas can then be calcii- pressure, 
lated from the observed rise in temperature 
of the water and the mass and fall in temperature of tlu*. gas. 

In this experiment care must be taken that the gas flows out at 
B at as nearly as possible the same pressure as it enters at A. For 
this reason the bore of the spiral tube must be chosen as wide as 
possible. If the pressure of the gas falls during its flow through the 
calorimeter, we obtain a lower value for the specific heat than at 
constant pressure. The specific heat of a gas is therefore not completely 
defined unless the words ''at constant fressure'' are added. The 
specific heat of air at constant pressure is Cp — 0*2375. For other 
gases see Table III (p. 290). 

The gas cools down in passing through the calorimeter. Since its 
pressure remains constant it therefore flows out wfith a smaller volume 
than it had upon entry. The experiment can also be imagined to be 
carried out in such a way that the pressure of the gas diminishes 
during its passage through the spiral to such an extent that it leaves 
B with exactly the same volume as it had when it entered A. The 
value obtained in this case is the specific heat of the gas at constant 
volume, The practical performance of this experiment is attended 



24 THERMOMETRY 

by great difficulties, and hence is determined indirectly in a manner 
to be described later. The specific heat of air at constant volume is 

== 0*1G90. (Fuller details are given in the Appendix.) 
It is found that the quotient y = has almost the same value 

for all diatomic gases such as oxygen, nitrogen, and hydrogen, namely 

y = 1*4. 

For monatomic gases (as for example helium, argon, and the other 
noble gases, also mercury vapour and zinc vapour) we obtain the 
value y 1-67. For triatomic gases, e.g. carbon dioxide and water 
vapour, y-r: 1*3. As will be explained fully in § 1, p. 41, the still 
lower values given in Table III for alcohol and ether are due to the 
relatively complicated structure of the molecules of these gases. 

2. Results of the Measurements of Specific Heats.—The specific 
heats of almost all substances are smaller than 1, i.e. smaller than 
that of water. Amongst solids an exception is lithium, which at 
100° C. has a specific heat of 1*04. Ammonia liquefied under pressure 
also has a specific heat somewhat greater than unity. Amongst 
gases hydrogen with - 3*4 and helium with c.p-=- 1-25 are worthy 
of mention. 

The high specific heat of water explains the enormous influence of warm 
or cold ocean currents upon the climate of a land and also the dilTerenco between 
oceanic and continental climate. It finds practical use in hot-water heating. 
Table I gives the specific heats of a number of substances. Since the values 
vary with temperature it is necessary to state that those given only hold over 
a range from about 0"^ C. to 100° O. 

The Dulong-Petit Rule.—In general the greater the specific gravity 
of a metal, the smaller its specific heat. The simple relationship 
between the specific heat and the atomic weight of solid elements was 
first discovered in 1819 by Dulong and Petit* and is therefore known 
as the Dulong-Petit rule. 

The product of the specific heat of a substance and its atomic 
weight is called the atomic heat of the substance. 

The value of the atomic heat is approximately the same, na,mely 6-0, 
for all elements in the solid state. 

In the case of chemical compounds the following rule (Kopp and 
Neumann) is of fairly wide validity. 

The molecular heat of a compound {i.e. the product of its specific 
heat and molecular weight) is equal to the sum of the atomic heats of its 
constituent elements. 

Under ordinary conditions of experiment the Dulong-Petit rule is not a law 

♦ r. L. Dulong (1785-1838), mostly occupied with chemical work, was severely 
injui’ed in discovering nitrogen trichloride (NClj,); later Director of the Polytechnic 
School at Paris. Alexis TnifeEtSE Petit (1791-1820), Professor of Physics at the same 
place. 
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of nature; otherwise the deviations from it would not be so considerable. In 
spite of this the approximate equality of the atomic heats of the elements in 
solid form is very striking. According to the atomic theory weights of different 
elements in the ratio of their atomic weights contain eqtial numbers of atoms. 
Hence the above rule leads to the conclusion tijat equal numbers of atoms in 
any solid element require equal quantities of heat to raise their temperature by 
V C. (of. p. 44). 

Another striking thing is the idctitifij of the molecular heats (at constant 
volume) of the different simple gases, both with one another and also approxi¬ 
mately with the atomic heat of solid elements. Thus, for example, oxygen has 
the molecular weight 32, the specific heat at constant volume 0154 and hence 
the molecular heat 4-928. The con’csponding figures for hydretgen arc M. VVt. — 2, 
e„ ~ 2-414, molecular heat 4-828; and for nitrogen M. VVt. ~ 28, r,, - - 0 1729, 
molecular heat--: 4*841. 

The respective atomic heats (at constant volume) of these diatomic gases 
(namely 2-40, 2-41, 2-42) are therefore approximately equal to one-half of the 
atomic heat of solid elenumts. Now the atomic heat of the monatomic gas argon 
has been found to bo 2*9984, that of the monatomic gas lu-Iiuin 2-949, and of 
monatomic mercury vapour 2-99, i.e. approximately the same value in each case. 
Thus a kind of .DuLOi^r.-PETiT law appears to hold also for gases, being most 
accurately obeyed by monatomict gases. 

The atomic heats of gaseous elements have approximately the. same value, namely 
3, i.e. one-half of that for elements iu the solid state. 

The atomic heats of the above-mentioned diatomic gases are smaller than 
those of the monatomic gaseous dements by about oue-sixth of tludr value. The 
explanation of these relationshq)s will bo given on p. 44 et seq, 

3. Dependence of Specific Heat upon Temperature.—The explanation 
of the deviations from strict obedience to th(‘ Dulong-Petit rule lies 
in the fact that the specific heats of substances are not true constants 
but vary with the temperature. At very low temperatoes there is a 
decrease in the specific heats of all substances; at the absolute tem¬ 
perature the value zero would probably be reached (see furidier 
figs. 3 and 4, pp. 45 and 46). Th(‘. rate of this decrease is 
different for different substances. Thus whercias in the (-ase. of 
metals there is a fairly steep fall of specific heat at very low tem¬ 
peratures, the values for carbon and also for silicon and boron decrease 
gradually and continuously with decreasing temperature at room 
temperature. Conversely the specific heats of many bodies increase 
when the temperature is raised above the normal; this is particularly 
marked in the case of carbon. Whereas the atomic heat of diamond 
at room temperature has the smallest known value of 1*35, at 1000"^ C. 
it has risen to about 6, the value for most other solid elements. From 
this it follows that the Dulong-Petit rule is a limiting law: the liigheT 
the temperature and the more nearly the specific heat of the substance 
has attained its maximum limiting value, the more closely the rule 
is obeyed. 

8. Heat and Work. The Mechanical Equivalent of Heat 

1. Transformation of Work into Heat.- It is a matter of everyday 
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experience that a body becomes warm when its motion is resisted 
and its kinetic energy consequently reduced. 

Tn sawing a board—especially when the saw is blunt and binds, i.e. when a 
great deal of work must bo expended in moving it—the blade of the saw becomes 
so hot that it cannot be touched without burning the fingers. In filing a piece 
of steel both the steel and the file become very hot, particularly when the former 
is placed upon wood, which has only a small power of conducting away the heat 
developed. Tliere is also a. marked rise in temperature during the hammering 
of load, since the hammer docs not bounce back from the blow; but the effect 
is much less marked when a piece of (cold) steel or iron is hammered, in which 
case the hammer springs up again to a considerable height after the impact, 
and has its kinetic energy only partially destroyed. The metal shavings from 
largo mental-planing machines are so hot that there is a hissing souiid when they 
fall into water. Lighter medals (especially magnesium alloys) may catch fire 
spontaneously when being turned in a lathe. If a piece of ordinary wood b(^ 
rotated rapidly in a lathe and touched with a small piece of hard wood it will 
become so hot at the point of contact that it will bo charred. Lead shot become 
warm when vigorously shaken up in a cardboard box; the same is true of mercury 
shaken in a vessel. 

Idle most ancient method of producing fire, which is still in use amongst 
savages, consists of rapidly spiiming a stick of hard wood in contact with a, piece 
of softer w'ood. During this process the shreds of wood scraped off are first charred 
and finally burst into flame. The sparks produced by the impact of flint and 
steel also owe their origin to the heat of friction, the detached fragments of steel 
being raised to combustion temperature. The same process is also used in modem 
automatic lighters, which are provided with a piece of “ ecreisen ”, the splinters 
of which, when scrape<i off, are heated up to combustion and then ignit{‘ the 
petrol vapour above the saturated wick. 

The production of frictional heat is often demonstrated by moans of the 
following lecture experiment. A thin-vs ailed brass tube dosed at one end is 
placed upon a whirling machine, filled with other and closed with a tightly 
fitting stopper. It is set into rotation and its motion suddenly braked by means 
of tw^o pieces of cork pressed tightly against it with a clamp. The tube becomes 
hot, the ether evaporates, and the vapour blow%s the stopper out with a loud 
explosion. 

2. Historical.—Although the fact that friction between bodies produces 
heat was known in earliest times, there was no clear conception of the nature of 
heat until comparatively recently. 

The view that heat is a form of motion was expre-ssed by individual thinkers 
at an early date (F. Bacon) and also later by Boyle, Huygens, Newton, 
Daniel Bernoulli, Euler, Lavoisier, and Laplace. But the predominant 
opinion up to the first forty years of the nineteenth century was that heat was 
a substance (known as cciloric). 

Thus, for example, Black explained the difference of the specific heats of 
different substances by saying that the same quantity of caloric had a greater 
power of heating mercury than of heating an equal mass of water. It was only 
possible to account for the production of frictional heat by assuming that the 
specific heat of the particles detached during sawing, planing, and filing was 
smaller than that of the substance in bulk. 

Benjamin Thompson (Count Rumford) * observed (1798) during his term 

* Benjamin Thompson, born in North America in 1763, died at Paris in 1814, 
fought in the War of American Independence on the English side. In 1780 he was 
appointed English Secretary for State, and from 1782 was at the head of a squadron. 
After peace was made ho entered the service of the Prince of Bavaria, in w'hich he 
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of office in the arsenal at Munich that a considerable amount of heat de¬ 
veloped in the boring of cannon barrels. By placing the metal and the blunt 
borer in water ho was able to bring this to the boil in 2h hr. From the quantity 
of water and the initial temperature he calculated that 26-6 lb. ( = 12 07 kg.) 
of water could have been healed in this time from freezing-point to boiling-point. 
Tho energy required to drive the borer was furnished by two horses. Ilumford 
maintained that it could have been furnished by one horse. In this case a certain 
amount of fodder would have had to bo given to the horse to revive its capacity 
for work. Itumford deduced that it Avould be possible to produce the same 
quantity of heat by using this amount of fodder direc.'tly as fuel. Ho })ointed 
out further that tho frictional heat produced ^\ilH incxhaustiblo, i.c. that he 
could produce as large a, quantity as desired from the same piece of metal by 
letting the horse work a sulliciently long time. This was incompatible, however, 
w'ith the hypothesis that heat is in the nature of a ^'iubstance. Thus Rurnford 
finally came to tho conclusion that the only explanation of tho production of 
heat through motion was to be found in tho hypothesis that heat is itself a form of 
motion. He discarded the previously accepted theory that tho fragmcjit.s detached 
in sawing, boring, and powdermg have a smaller specific heat than the body 
from which they are formed; for, as ho proved, the borings actually possess the 
same specific heat as tho bulk metal. Moreovc'r he obtained tho same (juantity 
of heat when he used a blmit borer wliicb produced no borings at all. 

One year later (1799) Sir Hcjmi’hry JJavy* proved that the explanation of 
frictional heat as due to a diminution of specific heat was untenable by rubbing 
together tw^o pieces of ice at 0. in an air-free spai^e protected against radiant 
heat. This caused tho ice to melt, although the sp(‘citic heat of watAT is gn^ater 
than that of ice. 

In spite of these fundamental experiments, whicli w^ere incompatible with 
the hypothesis of a heat substance, the old view was not- givt n u}). Even Sadi 
Carnot t whoso work has become of great importance lor ffio development 
of the science of heat (p. Ill, et seq.). ba.sed his arguments and calculations 
upon the assumption that heat cannot be destroyed or created. l<rom the sketches 
he left behind, however, it is clear that he gave uj) this assumption shortly 
before his death. But those notes, which were not p\iblished tiU .1878, had no 
influence upon the development of tho subject. Clapkyron (p. 10), who did 
valuable work in developing Carnot’s ideas (especially by his grai)hical re¬ 
presentation of Carnot’s cycle, 1834) maintained tho constancy of tho quantity 
of heat in aU thermal processes. On tho contrary Seguin declared himself in 
1839 definitely in favour of tho theory that there must bo an identite de miturc ” 
between heat and motion, and that tho tw^o must bo different forins of effect 
arising from the same cause. 

distinguished himself in many 'ways (introduction of potatoes and laying out of the 
English Garden in Munich, &c.), becoming lieutenant-general and receiving the title 
of Count Rumford. Then in 1799 he became one of tho founders of the Royal In¬ 
stitution in London. Ho went to Paris in 1803. 

* Sir Humphry I)avy, born in 1778 at Penzance, was first a surgeon's apprentice 
in 1795 and then a chemist at Bristol in 1798. In 1801 ho became Professor of 
Chemistry at tho Royal Institution in London. Re was President of tho Royal Society 
from 1820 to 1827. His chief work was of a chemical nature. Ho discovered potassium 
and sodium, which ho prepared with tho electric current by electrolysis. His name 
is also connected with tho miner’s safety lamp. His experiment described above was 
of importance for tho development of thermodynamics. He died in 1829 wliile on 
a visit to Geneva. 

t Sad! Carnot, born in 1796 in Paris, entered tho French engineer corps in 1814 
and was appointed captain in 1826, He left the army in 1828 and died of cholera in 
I*aria in 1832. His treatise Reflexions sur la puissance motrice du feu . . . , in which 
ho published the cyclical process named after him, appeared in 1824, 
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Hence although the essential identity of heat and motion had been 
suspected by different thinkers at a much earlier date, it is un¬ 

doubtedly the Heilbron doctor Robert 

Mayer’s * distinction (1842) to be the 
first to deduce with complete clearness 
that a definite numerical relationship 
must (ixist between heat and work, 
and to calculate its value. 

Without being acquainted with Mayer’s 
conclusions Joule f determined this rela¬ 
tionship experimentally by various methods 
and using different substances. In one of 
his pieces of apparatus a certain measurable 
amount of work was expended in moving 
a paddle-wheel in a cylindrical vessel con¬ 
taining water or mercury. This arrange¬ 
ment is represented diagrammatically in 
fig. 15. The two weights PP are raised 
through a certain height h by moans of 
the crank-handle in the middle, the coupling 
between the axle and the paddle-wheel 
being disengaged. The paddle-wheel, which 
is capable of rotation in a cylindrical 
vessel G serving as calorimeter, is thoTi 
coupled with the axis. When now the 

K.g. .5.-Ui.gr»m representing Joule’s weights fall through the same dktanoe h 
Apparatus for determining the Mechanical thciT motion IS braked by the paddle-whcel 
Equivalent of Ilcat. and the temperature of the calorimeter and 

its contents is raised. If W is the total 
water equivalent and C. the rise in temperature, the quantity of heat obtained 
from the mechanical work Ph expended is Q W^. 

Joule also determined the heat produced by rubbing two metal plates 

together in a calorimeter. 

* Julius Robert Mayer, born in 1814, was the son of an apothecary in Heilbron, 
studied medicine at Tubingen from 1831 to 1837. On a voyage to Java as ship’s doctor 
he made the observation in 1840 that the venous blood is not so dark in colour in 
tho tropics as in colder regions. In seeking for an explanation of this he became in¬ 
volved in considerations, partly of a philosophical and partly of a physical nature, 
concerning the relation between heat and work. Since he lacked a thorough physical 
and mathematical education, it is not surprising that Poggendorf, tho editor of 
the Annalen der Physik, refused to accept Mayer’s first treatise. The true essence 
of his theories w^as not sufiiciently easily discernible in face of the established concepts 
and doctrines of physics. Even a later and considerably clearer treatise, which 
appeared in 1842 in Liebig’s periodical the Anjialm der Chemie und Pharmazief under 
the title “ Bemerkungen uber dio KrMte dor unbelobten Natur ” (Remarks upon the 
forces of inanimato nature), attracted but little attention. In his short treatise 
Mayer starts out from the fundamental principle “ cansa aequat effectum ”, which 
ho interprets in the sense: “ tho cause is equal to the effect ”. Thus if heat is caused 
by motion, heat must be motion. The great value of Mayer’s work does not lie in 
this assertion, which had indeed been made by others—especially Count Rumford 
—before him, but in his numerical calculation of the relation between work and heat. 
The values of tho specific heats of gases used by Mayer as tho basis of his calculation 
differ not inconsiderably from tho values accepted to-day, and hence there is also 
a difference between the results of Mayer’s and more modern calculations. Ho himself 
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experiments led Helmholtz f to write his classical treatise Uher 
die Errmltung dcr Kraft, m which he extended the principle of the conservation 
of energy to all types of phenomena. 

3. Mechanical Equivalent of Heat. — The numerical factor by 
which a given quantity of heat is reduced to an equivalent quan¬ 
tity of work is called the 
mechanical equivalcM of limt. 
The far-reaching importance 
of this constant is due to 
the fact that it expresses a 
connexion between two com¬ 
pletely different groups of 
phenomena. 

Fig. IG shows an np])aratns 
(after (^}rimseiil) by means of 
which it is possible to demon- 
atrato as a lecture cxi^eriment 
the production of frictional heat 
and the quantity of work ex¬ 
pended. The falling weight .sets 
in rotation an axle, on tlic pro¬ 
longation of which is a cylinder 
of wood with a coni(\‘d hole 
l)ored in it. A hollow coppcT cone is pressed into this hole and held at rest 

(lid not carry out any practical experiments. In 1841 ho relumed to his native town 
as doctor. Although not a physicist and little recognized at first among physicists, 
ho dedicated his time and w'ork chiclly to the foundation and extension of the 
principle of the equivalence of w^ork and heat in the organic and inorganic w'orld. 
ifo died in 1878 at Heilbron, misunderstood and embittered to the (?nd. 

t Jaxies PiiEscoTT JoxiLE, bom 1818 at Salford, Manchester, died J88G at Sale, 
■vras the owner of a brewery in Iiis native town. Ho soon began to occupy his time 
with experimental investigations of electromagnetic phenomena and of the heat, 
developed by an electric current in a conductor. These then led him (from 1843 onwards) 
to undertake experimental researches upon the relation between heat and work. Ho 
finally carried out important investigations on the thermal phenomena accompanying 
change of volume in gases (p. 106). 

t Hekmaxn von Helmholtz, born 1821 at Potsdam, studied medicine in Berlin 
from 1838 to 1842. He then bccamo assistant iihysician at the Berlin Charilr, and in 
1848 anatomy teacher at the Kunstakadcinie in Berlin. In 1849 ho bocamo Professor 
of Physiology at Konigsberg, later took up positions at Bonn (1855) and Heidelberg 
(1858), and finally as Professor of Physics at Berlin (1871). In 1888 ho was appointed 
President of tho newly founded l^hysiJcalisch-Techiiische Ecichsanstall at Clmiiottcn- 
burg, an office which ho held until his death in 1894. His scientific experiments wyre 
cliiefly concerned with problems of physiology and physics. In the former subject 
ho became famous on account of his invention of tho ophthalmoscope, as well as for 
his fundamental works Ilandbuch dcr Fhysiologisclien Optik and LeJire ivn dcr Tonemp- 
findungen. In tho realm of physics his above-mentioned treatise Dbcr die. ErhaWang 
dcr Kraft was of a pioneer character. In it Heliviholtz made no mention of tho 
meritorious work of Robert Mayer. Tho treatise contains a critical survey of the then 
known experiments and a rcsum6 of tho results on tho basis of tho general principh^ 
of the conservation of energy. Ho also published a largo number of scientific v orks, 
of an equally fundamental character, upon electrodynamics, thermodynamics, ojfiics, 
and hydrodynamics. 

Fig. i6.—firimschl’s .Apparatus for clcrcrininLig the 
Mechanical Equivalent of IJcat 
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by means of a cross handle while the wooden cylinder rotates. The copper 
is heated on account of friction with the wood, and the air inside it expands and 
moves the liquid in an open manometer connected as in the figure. The water 
equivalent of the cone and also the change of temperature corresponding to one 
scale division of the manometer being known from previous experiment, it is 
possible to calculate the quantity of heat produced and hence to determine its 
relationship to the work performed by the falling weight. 

In 1842 Robekt Mayer calculated the numerical 
rclationsliip between work and heat in a purely 
theoretical manner from the dift’erence of the specific 
heats of gases at constant pressure and constant 
volume (p. 23). For this purpose he considered the 
following ideal experiment. 

Let ABCD (fig. 17) represent the vertical section 
tlirough a prism-shaped box, the area of whose base 
is 1 m.2. The box is closed by an air-tight friction- 
less and weightless piston CD at a distance of 1 m. 

from the base. The space enclosed is filled with air at C. and 700 mm. 
pressure. Now imagine the air to be heated by 1° C., the piston being 
h(dd at rest so that the volume remains constant (case 1). Alternatively 
(case 2), imagine the rise of temperature to occur with the piston 
movable, so that the pressure of the air remains constant and the 
])iston is raised to the position EF. 

The original volume of the aii* considered is 1 m.^. Now 1 cm.^ 
of air has the mass 0*001293 gm. at 0° C. and normal pressure, and 
hence the mass of the air enclosed in the box is m — 1*293 kg. The 
specific heat of air (p, 23) at constant volume is -- 0*169, at 
constant pressure — 0*2375. Hence the quantities of heat required 
to produce the change of temperature in the two cases arc respectively 
7Hc^, and mcy,. The second quantity is greater than the first by m{Cj, ■— c^) 
------ 1*293(0*2375 - 0*169) -- 1*293.0*0685 0*0886 Cal, 

Now in the second case the piston is raised through the height 
between Cl) and EF. The atmospheric pressure upon the piston is 
thereby overcome through this distance, i.e. work is performed. Since 
the atmospheric pressure is 1*033 kg. wt. per cm.^ (Vol. I), the total 
thrust upon the piston is P ~ 10,330 kg. wt. The height through 
which this is raised is equal to that by which the air column 1 m. in 
length expands according to Gay-Lussac's law when heated through 
1'^ C. The coefficient of expansion of gases is 0*00367 and hence 
]i ™ 0*00367 m. The work done is therefore 

PA =- 10,330.0*00367 = 37*91 m. kg. wt. 

This must be equivalent to the excess of heat in the second case, 
namely 0*0886 Cal. Therefore 1 Cal. is equivalent to 37*91/0*0886 
= 427*9 m. kg. wt. As was known to R. Mayer, the assumption of 

I'jg. 17. —Ideal Ex¬ 
periment of R. Mayer 
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this method of calculation* is that a simple volume increase of a gas 
against zero pressure requires no heat (§ 6, p. 105).t 

In 1858 Hibn J determined the mechanical equivalent of heat by means of 
collision experiments with the apparatus represented diagrarnmatically in fig. 18. 
lie suspended a large block of stono 8 
of 941 kg. wt. from a fixed frame by 
means of four strong ropes, so that 
it could execute pendulum swings in 
a direction i)araliel to itself. Immedi¬ 
ately in front of it was an iron cylinder 
H of 350 kg. vrt,. suspended in the 
same way. This served as hammer 
and the stone block as a kind of anvil. 
The face of the block turned towards 
the iron cylinder was protected with 
an iron plate E, and just in front 
of it was 8UHj)ended a. ]('ad cylinder 
B of 3 kg. wt. When the hammer was 
raised out of its equilibrium position inU> that s1k)\mi dotteii in the figure, it 
possessed an amount of ])otential (uiergy which eouitl be calculated from its 
weight and the height tlirough which it had t)ocu liftc'd. It. was then let go 
and struck the lead cylinder. The stone block and the hammer moved together 
a small distance farther, rising slightly at the same time. The energy oalculatccl 
from this small vertical rist^ ajid total weight was smalkr than th(^ original 
cnerg}" of the hammer. The ditTcrcnco had been transfoi'moLl into heat, wliich 
had raised tlK) temperature of the lead. 'Ilie quantify of heat ])r(Klaced 
could be measured by allowing the load to fall into a (‘alorimet(T. In this 
way Hibn found the value 452-2 in. kg. \vt. per caloric^ f<.)r tlu^ mechanical 
equivalent of heat. 

A vojy easily understood and instructive nu'thod of d(‘tcrmining tlio me¬ 
chanical equivalent of heat is that making nso of WniTiJS(rs tube. Tiiis is a 
cardboard tube about 1 m. long and (> cm. in diameter. The ends are dosed ■with 
corks after 1 kg. of lead shot has been poured in. When the tube is turned say 

* [Most Englisli writers regard this assumption as a very serious flaw in Mayer’s 
argument. Thus P. G. Tait {Sketch of 'fhermodjpiamir.^ 1877) remarks: “All three 
[Mohr, S6guin, Mayer] entirely ignore Carnot’s fundamental principle, viz., that 
no deduction whatever can ho made as to the relation between heat and mechanical 
effect, when the body operating or operated upon is in different states at tlio be¬ 
ginning and end of the experiment.” “ Mayer . . . cnimtiatcd and applied a false 
principle, and got (from the experiments of others on the specilic hoat.s of air) a widely 
erroneous result, which was improved, not by its author but by Joule, two or three 
years afterwards; who, after finding the true result by a legitiiuaf© process proved 
by experiments on air that Mayer ought to have got a good approximation,” 

Again, J. K. Roberts {Heat and ThermodynaniicSy 1928) says: “ Tho calculation 
was of no actual value, until Joule showed later that the internal energy of a gas w’a,s 
to a close approximation independent of its volume.”] 

t Ono year later L. A. Coldino (1818-89) of Copenhagen made cominunications 
to the Copcnliagcn Scientific Society upon the connexion between heat and work. 
These wore based originally upon considerations of a speculative nature. He followed 
them up later with experiments and determined the mechanical equivalent of heat 
by a frictional method, obtaining tho value 350 m. kg. wt. per Cal. 

t Gustav Adolf Hibn, born 1815 at Logolbaoh near Kolmar, was a physicist and 
engineer at Kolmar, began his investigations of tho mechanical equivalent of boat in 
1843 and continued them in tho meteorological observatory founded by him near 
Kolmar in 1880. He died at Kolmar in 1890. 

Fijcr. rS.— Ilirn’s Collision Experiment 
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100 times through 180° so that each time it finishes up vertical and the shot 
falls the whole distance from one end to the other, the temperature of the shot 
is raised by about 0° Erom the mean total distance of fall, tlie weiglit, the 
specific heat, and the rise in temperature of the shot it is i)Ossible to calculate 
the inochanica] ecpiivalcnt of heat. 

Experiments carried out with extreme care (sec Appendix) have 
iinally led to the following values for the mechayiical equivalent of heat: 

1. The quantify of worh eq}iivalent to the 15^ C.-gmmme-ealorie 
(cal.) is 

4-185.10’ ergs 0*1268 m. kg. wt., 

the value of g being measured at 45^ latitude and at sea-level, viz. g 980-6. 
2. The quayitity of worh equivalent to the mean (O'" (h-lOO"^ C.) cal eyrie 

is the same as in the case of the 15° C.-calorie. 
3. The heal equivalent of the joule is equal to 0*23895 15° C.-caloric. 
In future we will designate the work equivalent of the 15° O.-calorie 

in absolute units by J and the heat equivalent relative to the same 
units by K. Then 

J 4185.10’ ergs per 15° C.-cal. ^ 4-185 joules per 15° C.-caL 

K: - 1/J -- 0-23895.10 ’ 15° C.-caL per erg 
0-23895 15° C.-cal. per joule. 

If wc wish to transform a given amount of mechanical work W 
into the equivalent quantity of heat Q, wc must multiply W by K. 
The result is then obtained in cal. Conversely if wc wish to transform 
a given quantity of lieat Q into mechanical work, we must multiply 
Q by J. Thus wc have 

Q - KW, W - JQ. 

9. The First Law of Thermodynamics (Principle of 
Energy) 

The law that heat ayul work are equivalent is known as the first 
law of the theory of heat or the first law of thermodynamics. It is 
an extension of the law of conservation of mechanical energy enunciated 
in Vol. I; for it states that when, for example, a certain amount of 
kinetic energy disappears with production of heat, then an equivalent 
quantity of heat is produced in its place. The newly appearing energy 
is equal in quantity to the energy which has disappeared. The same 
equivalence also holds for the reverse transformation. The total energy 
is therefore constant. 

Hence, as was first perceived by J. R. Mayer, the generalized 
statement of the law of the conservation of energy runs as follows: 

If a certain quantity of energy of any kind disappears in a process, 
then an equal quantity of energy of some other kind appears. 
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It is thorefore impossible to conceive a procc^ss capable of prodmang 
energy, e.g. inecbanical work, (‘ontinnously out of notbing. The })roof 
of this is furnished by the universal failure of all attempts to construct 
a perpetual motion nuichims* i.e. a machine capable of juoducing 
a greater amount of work than the (mergy ex])en(hHl in driving it. 
Hence the energy principle can also be>^tated as follows: 

It is imj)ossible to construct a 'perpetual motion ynachinc. 
We will also ex]u<‘ss the first law of thermodynamics in a mathe¬ 

matical form. 
AVhen a certain quantity of heat eiuu’gy f/Q is communicatcHl to 

a ])ody, it may be transformed into a numlau* of other (mergy forms. 
We will H'strict our consideration for the juescait to mechanical and 
lliermal (‘haiiges. Th(‘se consist of: (1) change of volume; (2) c]iang(‘ 
of temp(‘rature; (3) change of mol(‘Cular condition, e.g. of state of 
aggregation. 

As a rule the volume of a body is incnaised hy heating. can 
consider the volume incTeasi^ dV as an outward dis])la('em(mt of each 
(dement of surface area through the small distance (Is, If tin*, 
surface is subject t o a normal pressuri' p (e.g. that of the atmosjhiuib 
the thrust on (‘ach elenumt of surface' area is pdil and the corre¬ 
sponding mechanical work done during the (‘xpansion iS' 

(l\\ pdil (Is. 

Fhe whoh‘ body therefore j)erforms the external tcork 

dW - JpdLhh p j'dilds 

against the })ressur(‘. Now \dilds is equal to the change in volume 
dV. Hence the external work is 

dW - yn/V. 

Since this work is a part of tln^ effect of the heat emugy </Q, we 
wall express it in thermal units, thus obtaining 

KdW - KprfV. 

As wall be explained in the next paragraph, the temperature of a 
body must be considered as due to the motions of its moh'cules. We 
know further that forces act l)etwTen the molecules, determining their 
mutual distances and ecpiilibria. In virtaie of their motions the 
molecules possess hnetic energy, and because of the molecular forc(‘s 
they must also possess a certain jwlendal energy corresponding to 
the state of the body. The siun of these energies is given the name 
internal, energy or energy content of the body. If the temperature and 
the molecular condition are altered by addition of heat, the internal 

* Cf. footnote, Vol, 1, p. 354. 
( K 636 ) 
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energy of the body is cluinged. We will call this change the tniernal 
work performed by th(‘. heat and designate it by rfU in mecEanicaJ 
measure and by in thermal measure. This internal work is tin* 

second ])art of dQ. 
N(‘glecti!ig for the })r(‘sent all oth(‘r changes which can be caus(‘d 

by Hie addition of heat (in particular electric or magnetic changes), 

w'e therefore have the equation 

da K{d}5 + j>d\). 

This eciuation is the matluunatical expression of th(‘ first law' of 
thermodynamics. It was first stated in this fonn by K. (Yausuts.* 

Internal Energy of a Gas.—lYom tho oquation given alxna' we wiJl make 
a furtlier deduetifm wlii(di w ill l>e useful latiT; 

l^el the lemp(Tatiir(‘ of a body be raised ])y the amount JT hy tlu^ addition 
of a quantity (IQ. of h(‘at. Tlu^n in order to rais(' the tenq)erature H a (|iiantity 
(»f Jieat r/Q/(/T will be required. This is the specific h(‘at c of the body. Making 
use of the equation for tlu' first law we obtain therdore 

/Q 
It 

K 
VT <irj 

In the ease of a gas we havc^ to distinguisli betwaxui the s])eciric h(‘ats at constant 
volume and constant ])rcssure. In tho former ease wc have \ const, and 
therdore (/\^/V/T 0. Jlcmce there is no extc'rnal work df)nr w hen a gas is h('at(‘d 
at constant volume. Thus in this ease 

Fi’om this it follows that (/V = or integrating betwa'cn the limits T^ and T 

IT.--: . Jr,(T-T„). 

If we make the further assumption that the internal energy of a gas vanishes 
at the absolute zero, we liave 

IJ- Jr„T. 

This equation can bo expressed in words as follows: 
TAc internal energy of a gas is proportional to its absolute temperature. 
It was assumed above that the s])ecirie heat of tho gas at constant volume^ 

dc)es not vary with t(‘m])erature; such a gas is an ideal gas in the sense of j>. \t). 
Sine(^ the last equation does not contain either p or V, it follows that: 
The internal energy of a gas is independent of its pressure and volume. 
If the volume and pressure of a gas alter at constant temperaturCy the internal 

energy remains nnchanged. 
For the experimental investigations on this subject, see § 6, p. 105. 

* IlcDOLJ'’ ('lalsu s, burn 1822 at Koslifi, in 1855 becamo Frufessor of Fhysics 
at tho Folyteclmic College and tho Vniversity of Zurich; in 1887 he went to Wiirz- 
burg in the same capacity, in 186U to Bonn, where lie di(‘d in 1888. 



CHAPTER II 

Kinetic Theory of Heat 
1. Gases 

1. Kinetic Theory of Gases.--It has already becai ineniioiiod above 
that the h(‘at energy of iiiat(‘ria] ])0(li(‘s is to lie regarded as energy of 
motion, i.(*. in aecordance with our knowledge of the strnetim^ of matter 
(Vol. I, ]). 20J), (Uiergy of motion of the mol(‘euh\s. Sinet^ ev(Ty body 
at a tem])tT-ature above the al)sohit(‘ zito possesses Jieat eiKTgy, we 
must (consider tln^ mohauh^s in all the ])odi(\s which w(‘ can inv(‘sti- 
gate as l)(‘ing in un(*ea,sing motion. 

One of th(i mcvst im})r(\ssivt‘. (‘xperiments in this eoma'xion is the 
following. A line water suspension of any insoluble snlistanee (e.g. a 
<ly(‘) is vi(‘wed niuhu* th(‘. mieroseo[)e. The whole fiibl of view is then 
seen to b(‘ tilled with a teeming, irr(*gular motion, although we are 
d(‘aling witli a ''dead, inorganic " substance. (Brownian Jiiovamumt.) 
This is a dinn't observation of iieat jnotion. The same ran also b(‘ 
.seen with th(‘ aid of a lUKTOseope in the case of smoke iiarticles sus- 
pemded in th(‘ afr. A more detail(‘d discussion of this jihenomeuioii 
will bo found in § 2. jj. 51. 

A iiumbfT of other ])henomeiia also lead to the conclusion that 
under ordinary conditions the moleeides must be in rapid motion. 

Thus if a gas jar (*ontaining the very dense breiwn gas bromines 
be closeei with a cover vslij) and a wedi fitting jar full of air inverted 
over it, the bromine will spread u]) into the air when the slip is with¬ 
drawn, although its density is jnuch greater' than that of air. The ])roc(‘Ss 
can be followed easily e)n ae*e:ount of the brown colour. There' is no 
macrosco])ic motion (i.e. motion visible to the naked eye) or flow in 
the gas, as eun be jiroved by iiise'rting very light bodies which would lie* 
moved l^y the smallest enirrent. From this we coiudude that in s[)ite e)f 
its apparent state of re‘st the gas posse^sses an irregular iuteriial molecular 
motion, by virtue of which the molecules can advance considerable 
distances in a few se'conds in spite of the zig-zag nature of their ])aths. 

It will be particularly simple to follow the regularities of this 
motion in the case of gases, for here the forces e)f cohesion are seare-edy 
noticeable (Vol. I). Our mental picture of a gas must be as follows. 

Ail extremely large number of tiny fart ides, the molecules, which 
we can ascribe elastic jn'opertics, 7no've about with high velocities like a 
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confused swarm of niinufe billiard halls, frequenihj colhdinf] with one 
another and rebound in (f vigoroushj. In general tin*, iorces of attraction 
are quite ineflectiv'e, because tbe lengths of time during wliich the 
molecnles are siifliciiaitly close together are far too short. This way 
of ]>icturing a gas is (*alled the kinetic theory of gases. 

Tho, seiciico of heat as a form of motion ^^as develoja^cl t'speeially by 
('LArsn.’s from 3857 onwards. 

had recognized that th(^ eoiiditions of motion must be vta v sini]>le in tho 
(‘as(5 of gaR<‘s, ])eeause hen*, the moleeiiles have the gn'atest freedojn. Although 
Kiio.NKi * Jiad investigated gases a year earlicT with regard to their molecular 
motion, it. is tho a(*hievenient of (^L.vusirs to have developed in dc'tail th(‘ science 
of the motion of gaseons molecules as the (‘xjdanation of heat energy. 

A(H*ording to the simplest assumption of the kiiudic theory the 
individual molecules in a space fdled with an idcad gas under no forces 
move, in straight lines with comj)l(‘te frt^edom and without any in¬ 
teraction ((‘xcept for complet(‘ly (histit^ collisions) (§ Id and § 11, 
p. 138 el seq.). The molecular velocities, which art‘ very great, (h'pend 
only nj)on the nature of the gas and upon its temperature. We may 
nunark in advance that air molecules, for exanqhy move with a mean 
velocity of about 500 m. per sec. (p. 47) at (T (A In spite of this, 
the distances traversed by the individual mohaades betweeji chance 
encounters with other molecules are oidy small (on an av(‘ra,ge 
1 . 10^^ cm. (]). 50). The reason for this is that there is such an ('X- 
f.raordinarily larg(‘ number of molecules present. At normal atmo- 
sph(ric pressure and O'" (h there are about 27 . 10^^ molecules (]). 53) 
in a (ad.)i(' (Huitimetre. 

Jii order to giv(^ an idea of the magnitude of tliis number it may be stated 
that, continuing day and night at the rate of 100 per minute, the time rec[iiire(i 
to count up to it would l)e more than 500,000 million years'. 

The diameter ol each individual molecule is of the order of 5.10“^ 
cm. (p. 53) and their mean distance a.{)art is 3.10 " cm. Each molecule 
in 1 cm.^ eh air makes about 5000 million collisions every second. 
The numbers given are averages deduced theor(3tie!ally from exjxri- 
mental re^sults. 

The im])acts of the gas molecules upon the walls of the containing 
vessed are the cause of its presvsure. Thus the pressure of a gas is not 
to be regarded as a statical clavstic pressure but as a dynamical effect 
due to a molecular bombardment, similar to the dynamical pressure 
exerted by a jet of water directed against a flat surface. 

In the light of the kinetic theory wo can explain why a gas always occupies 
the whole of the space at its disposal. For in the case of a gas enclosed in a 
cylindrical space by means of a movable piston the molecules collide at frequent 

* A. K. Kroxio (1822-79), high school headmaster. Tho first to perform accurate 
calculations in this direction ajipcars to have been J. J. Watekstox, who sent in a 
paper on th© subject to the Koyal Society in 1845. The paper was, however, refused. 
Ho thus had the same exxieriencc as J. Jl. Mayer shortly before in Germany. 
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intervals and bounce off each other like completely elastic spheres; th(\y also 
strike against the cylinder walls and tlie piston and rebound from them. Now 
imagine the piston, which so far lias been held at about the middle of the cylinder, 
to be withdrawn suddenly. Instead of rebounding from it as before, the rapidly 
moving molecules Avill now bo able to penetrate fre^‘ly into the ncAV part of tJio 
cylinder Ixdore they are turned back. 

2. Calculation of the Pressure of a Gas by the Kinetic Theory,— 
Jjot V be the volume of the vessel, n the number of molecules enclosed 
in it;, m t he muss of each molecule, c the mean velocity of the molccuh's,* 
j) the pressure of the gas (jier unit area, cm.2) and E the total kinetic 
(‘uergy of all the molecules enclosed in the vessel. Then at constant 
temperature the following equation liolds: 

__ 2E 
^ 3V“ 

V\*c will prove diis ccpiatiou only for the s]>c(;ial case of a hollow spherical 
vessel of radius Jl; tlu^ juoof can, liowcvcr, bo extended to vessels of any other 
shap(‘. Wo vill simplify the oalenlation by assimiiug tliat the molecules do la^t 
colli(l(‘. Tliis is permissible and introduces no error; tor wlicn two molecules, 
considered as similar and completely clastic, collidt* lu'ad on tiny simply 
exchange their velocities, i,e. the r(‘sult is exactly the sanu' as if they Juid passed 
freely through each other; when the collision is obli(jU(‘, the directions of motion 
are also elianged, but; tlie total energy remains unalterf^d. 

All elastic sphere of mass w, impinging normally witli vc'locity c upon a fixed 
wall, is turned back without ehangc of niagnitudo of its velocity; but its dirc( ti<^>n 
is H'vcrsed, i.e. c is changed into -c and the momentum uic into -(tic. dhus 
the chang(‘ oi momentum is 2mr. We can irnagmo this cliange as du(‘. to a forct^ 
of inipuLs(‘ 2mc (‘xerted nj)on the s]>here by tlie wall. According tc> th(‘ 
principle of the e(£uality of action and reaction the wall must also ho subject(‘d 
to the impulse 2mc in the same time. If the direction of motion (.>f the s])here 
hefon^ impact makes an angle 9 w ith the nonnal to tlu^ wall, tlien only the c-orn- 
j»oacnt of the impulse perpendicular to tlie wall, namely 
2mc cos 9, is effective. 

'riic gas molecules in the spherical vessel (fig. 1) 
beliave like tiu^ elastic* s])h(Tcn just considered. Each 
moleeulo rebounds from its impact with t he inner surface 
of llui sphere at the same angle 9 as its angle of incidence. 
It then striivcs the wall again later at the same angle and 
so on. Thus betw^een two successive imi)a(*ts the molecule 
considered always traverse's the^ same distance .s* ^ 2U 
cos9. kSince its velocity is r, it must strike the wall r/(2R 
cos 9) times per second. Now each impact is associated 
w ith the impulse 2mc cos 9, and hence the total impulse (^f all the impacts in a 
second is 

2rnc cos 9.1 2R cos 9 

'me- 

li' 

But according to the fundamental meaning of impulse*- tlio total impulse per 
second is numerically equal to the mean force over the same period. From tlie 
disappearance of 9 out of the e((uation it follows that the fem'e exerted upon 
the w'all by a molecule is independent of its direction of motion. 

* For the time being wo will consider all the molecules as having tlie same 
velocity c. 
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Since tliere are n inolocnleH present, the total force ii})on the whole inner 
surface of the vesst^l is The area of this surface being 4tcR^, the pressure 
(per unit area) is 

or since; the vohinie oi i he sphere is V ~ 

V 
7oar- 

:5 V ‘ 

'I'hc lunelie energy- of ('aeh moh'eule is \nicr and therefore the total kinetic 
eiK'rgy <>f ah the molecules is E \nmc-. Substituting this value we obtain 
the result to be proved, viz. 

nmvr 2K 
;t\- ;iv' 

AVriting ill is equation in the form 77V — rJE and remembering 
that as long as the temjKU'ature does not eliange tlie total kiiudie 
enei’gy must, remain constant on aeeoiint of th(‘ assumed eom])l('t(‘ 
elasticity, w(‘ obtain Hoyh^'s law: 

pV const. 

o. Temperature. —The addition of heat to a gas at constant volume 
iu(*r(‘as(\s its internal energy. Now it follows from th(‘ fij’st law (see 
p. :tl) that the intt‘rnal (Uiergy of a gas is directly proportional to 
its absolute temperature. Jbit according to the fundamental hy|)othosis 
of the kinttic theory of heat this internal energy is nothing (‘ls(‘ than 
th(‘ kiiudie (uiergy of th(‘- gas m()Iecul(‘s. L(d T and V he the absolute 
temperature aiid internal energy of the gas respectively ])efor(‘ the 
addition of heat, and T' and LI' the r(*sj)e(‘tiv(‘ values afterwards. 
TluMi we have (p. :tl) T : E' - T : T'. On the other hand, however, 
r himc-. where n is th(‘ number of molecailes in th(^ s])a,e(^ con- 
sidenal, 7n the mass of (\aeh and c the nK'aii molecailar vekx'ity. In 
th(* same way V' bnne'-. Hence U : U' : Intc'-, and in 
combination with the previous equation 

T:T' - 

This equation states that: 

The absolute temperature of a gas is proportional to the I'inctio cnergg 
and therefore to the mean scjuare velocitg of the molecules. 

We may write this relationship in the form LT : E//?, 
whor(^ L is a proportionality factor representing the mean kinetic 
energy of a gas molecule at the temperature T V" abs. The equation 
for p can them be transform(‘d to 

2LTm jN 21m 
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The quantity on the riglit-hand side o£ the last equation is constaiiiu 
Hence we may write 

This is the .Boy]c-Gay-Jjiissa(‘ law and ]t is the gas constant referred 
to H molecules, i.(‘. It - - 2L?i/3. As a mnemonic it may be riunarhed 
that the quantity 2L/3 would be the gas constant for n- 1, i.e. 
referred to an amount of gas (‘onsisting of only o/?c molecade. If by 
It we iindersiand the gas constant for a gramme-molecule (oiK' mol), 
n musd be put ('qual to the numlxT of molecules in a mol. 

4. Temperature Equilibrium.— E-xjuTK^uce tliat. x\}i(‘n twt> quantitic'S 
of th(^ same "as at (lifTeroiit temperaan^ brought together, the temperatures 
equalize^ out and there results a mixtunv of uniform temperatun^ throughout. 
When it is no long(‘r ])ossib]e to <>bserve any temperature dilference between any 
two space elements however small, wo say that 1her)no(hjnamkal or iemperdtiitr. 
(•qn’dihrunn has l)een reached. Jleforo mixing, the molecules <4 the colder gas 
had a. snudler mean velocity than tl)os(‘- of lh{‘ hotter gas (se(' aboxu'). At 
thermodynainieal oqiiilihrium th(^ mean molecular veloejti<\s of tlu' tw'o quantities 
of gas must* Iiave becoim^ equalized owing to tlie numerous eollisicaiH. In tin; 
tinaJ stat(“ tla^ velocities (»f all the molecules of the mixture lie around one mean 
vidue at any instant. In Iho same way the nuxni value of the velociti(‘S assumed 
by any sc'h'etod rnoleeulo lH‘tW'f‘e7i siieca'ssive (‘ollisions. i.e. tlu' imvni Nclniity 
nf any inoh'ouh^ over a pcTiod of time, is ecjiial to thc^ mean vi'lo'uty o( all the 
molecules at any iustant. I'he following consideration of a. special ease sliows 
that such an equalization of velocity is a. lU'cessary result of tln^ fundamental 
hypothesis of the theory. Kirst consider all the'. juohM-uh's in a. ( (‘rtaiii s])a(‘e to 
have zero velocity, i.e. to be at rest, relative to 11k’* lioundary walls, and to b(‘ 
distributed eomjiletely at* random. JmaLu'ne now a single new' molecule^ to ('liter 
the spa(!e witli fiigli velocity. It will soon come into collision with one of flat 
molecules at rest. If the coUision is head on, then according to the Jaws of 
eollision tlie mo\ iiig moleenlo will come to rc'sl, its motion being tak(‘ii up eoni- 
jiletely by the moh'cule it strike's. On aee.ount of the hnito size and random dis¬ 
tribution of the moh'eules a. far more jirohable ease will be that in which the 
eollisiem is obliejue; the struck molecules will then move. ulT with, a fraetiem of 
the' vi'locdty of the striking moleeaile, wliicli xvill be correspondingly slowe'd down 
and defleeted, .Both molecules x\ill now^ soon eollido with otlicrs at rest. similar 
traii.*<fereiiee of velocity and c'ncrgy wall ouco more take place', until eve'iitually 
all the molecule's are involved. Wo se'c, thmde^re', t hat a tinal state w ill be ronehed 
in W’hieli all tJie' moh'culos arc in motion and continually sliaring thc'ir e'uergie's. 
Since tliei total emergy of the system re'inains constant and (in aceordaneo Avitii 
the assumed random distribution) no moleeaile is elistinguished freun the others, 
they must all eventually possess the same time average e>f kine'lic energy. 4’hus 
the energy of the single moving molecule i.s dlstributeel on the average uniformly 
amongst all the others; this is the characteristic e)f tlmrmodynamieal e'qni- 
librium. 

5. Molecular Energy of Different Gases. We have lacilly assumed 
above that the nioh^cide' entering the space was of the sain(‘ kind and 
therefore of the same mass as those already ])r(\s(mt. How will the 
result be ali’eeied if tht^ entering nioleeiile is of another kind and 
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possesses a difTerent, say a much greater, mass? When the final state 
of thermodynamical ecjuilibrium is reached, this one molecuh^ will 
be distinguished from the others on account of its greater mass. Tt 
might therefore be thought that it would possess a greater or smaller 
mean eiKTgy than the others. Tt is difficult to reach a decision on 
tins point by theoretical considerations, because the conditions are 
very complicated. We will therefore refer once mor(‘ to experiment. 
Consid(‘r (‘qua! jiumbers of heavi(‘r and lighter gas rnohnniles cucIosimI 

in a spac(‘ at thermodynamical equilibrium. We cam now iniagin(‘ 
tlH‘ two gases to ])e separated partially from one another without 
changes of their molecular vcdocity. For this purpose use might be 
made, for instance, of the ])ropei*ty that lighter gases dilfus(‘ more 
quickly than heavier ones through a ])orous wall. Thus if the s])ace 
containing the gases wcu'e fitted with a porous wall, th(‘ lightcT 
molecules would dillusc^ through into thc^ adjoining space in greater 
numbers than thci heavier ones. In this way the cniginal S})ace could 
1)0 divided into two parts (‘ontaining <‘qual numbers of molecules, the 
OLK'- ])art containing an excess of the molecules with smaller inass, 
and the other an e.vcess of those with greater mass. Experience t(‘ac‘h(‘s 
that the temperature must remain the same' in both ]:)arfs; for no 
case has ever yet been obsc'rved in which a dilference of tcniperature 
a])])eared ‘‘ of itself i.c^ without work being expended upon the 
system from outside (§ 9, }). 125). ITut the sam(‘. ecpiation of state 
with the same gas constant It holds (p. 10) for ecpial numbers n of 
molecules of all (ideal) gas(\s. According to the last equation above 
(p. 38) 

Hence L and consequently LT hne^ have the same respective 
value's for all gases. 

At thermodynamical equlUhrium the internal Idnetic energy of an 
{ideal) ffas is distributed^ on the average uniformly amongst all the 
moleodes, no matter irhat their nature, 

Tliis law of tho c'([uality of the mean molecular energies of all gases at the 
same temperature is deduced here from Avooadro’s hypothesis (p. 16) in com¬ 
bination with tlie Boyle-Gay-Lcssao law. Conversely, Avogadro’s hyi)othesis 
follow's strictly from the kinetic theory of gast\«?, provided it can be j^roved that 
the mean molecular energy is independent of molecular mass at thermodynamical 
equilibrium. This proof was furnished in 1860 by Clerk Maxwell wdth the help 
of fundamental calculations involving tfie theory of probability, and Avas (com¬ 
pleted in 1894 by Lirnwio Boltzmann. 

6. Law of Equipartition of Energy at Thermodynamical Equi¬ 
librium.—This law lias attained great importance in the theory of 
heat. It can be generalized at once as follows. Imagine the velocity 



GASES 41 

of a molecule to be resolved into tlir(‘e mutually perpendicular com¬ 
ponents c ,,, Cy, and c.. Then 

LT I me- ^ I me/ ^ j i me,/ - p I me/. 

Since all the directions of motion oi the ^,uis moh'cules in tlu*. space 
considered are eqidvalent, the mean values of the squares of the 
component velocities must be equal, i.e. 

Thus we can imagine the mean kinetic (‘iKU’gy of the moh'cules to 
be made up of three inde])eudent ])ai1s eacli associated witli one of 
the co-ordinate directions and e(|ual to AVe may (‘X])ress this l)y 
saying that th(‘, kinetic heat <m('rgy is equally distributed amongst 
the three co-ordinate directions. 

If a moh'cule were not fr(‘e to move in all dircMlions, (‘.g. if it were 
constrained to move along a straight line, it wo\ild b(‘. r(‘strict(‘(l with 
r(‘gard to partition of its energy by collision. It would only be abh* 
to receiva^ and impart Idows in tlu^ din'ction in wJiich it; was free' to 
move. The mean energy corresponding to this singl(‘ direction is 
.jLT Henc(‘ ])y the law of (‘quipaitition tln^ mean eiuTgy 
of the constrain(‘d moh'cule could only b(‘ IjLT. 

This kind of consideration is of gr(‘at importance k)^ the ti*(‘at~ 
imait of the kinetic heat energy of a solid. Th(‘ mohn ule is then 
considered to oscillatii about an e(juilibrium ])Osition. The IVeedorn 
of motion of the molecules of a solid is thus limited in comparisorr 
with that of the molecules of a gas with which it is in thermodynamical 
equilibrium. The gas mol(‘Cule has thr(‘(‘- spac(‘^ components of fi*<‘(^ 
mobility, whereas the molecuh^ of tin* solid oscillating a])Out a lixed 
equilibrium position has only one. We say that th(‘ gas niolecuh^- 
has thi’ce degrees of freedoot, and the linearly oscillating mole(‘ule of 
the solid has only one degree of freedom. The ecpiipartftion law then 
takes the following form. 

At thcrmodi/n(Wiic(d. equilibrium the energy is distnhuted on the 
average wriforndy amongst all the degrees of freedom (f the moleeule. 

Now in tJio case of a molecule oscillating linearly about a mean })osition 
(a tincar oscillator), as in (‘very (harmonic) motion (e.g. lhat of a pendulum), 
the time mean of the kinetics energy is equal to the time m(;an of the potential 
energy. Thus the linear oscillator possesses the average amount ^LT of kinctict 
energy and the same average amount of potential energ>^ Its total energy is 
therefore E = - 5LIV //J\ The constant k (Boltzmaxx’s constant) is the mean 
total energy of such a mokcule at the temperature 11’ abs. (kor the 
numerical value see p. (30.) One share of cnerg}^ is re({uired, as it were, for the 
motion of the molecule and one for its displacement from the mean position. 

If a gas molecule has a moment of inertia of considerable magnitude (see 
below), it may be set into rotation by collision. The molecule thus takes up 
rotational as wtU as translational energy as int(‘rnal molecular energy. When 
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t>nly one axis of rotation is possible, it follows from the Maxwet.l-Boltzmann 
law of eqiiipartition that tlic nmoniit of (‘iiergy corn'sponding to tin's one degree 
of freedom must also be 1, LT. 

The law (d the eqiiipartition of energy has been stated })y these inv(\stigators 
in a form covering all these eases, namely: 

At thennoih/namkal equilibrium the thermal energy m distrihuted equally amongai 
all the indepewlent parameters of state upon whose squares the energy depends. 

JV parameters of stat(‘ (§11, p. 141) we have here to understand sueli cjuajitities 
as veloeity eomi)onents, angular velocities, harmonic disjdaeements, fre(juenci(‘S, 
&e., whu'h ([(‘termine the thermal state of tlie system considered. The law has 
jmnaTl to ha\e wide validity not only in the theory of gas(\s but also jiiore 
especially in the theory of licpiids and solids and even of heat radiation. 

7. Most Appropriate Measure of Temperature.—Accordbig to the 
Jaw of 0(]nij)artition of heat energy it is ])ossi])le to (letermiiie n (Mudain 
nmncrieal quantity for each parameter of state' at tliermody]iami(*al 
equili].)riuni, namely the magnitude of the mean kinetic* lu'at eiu'rgy 
]>('r degree of freedom, \m(- This is therefore', the most 
a})propriat(‘, mc'asure of temperature. 

S. Molecular Heat.—In the ease of an idc'al gas whoso moh'cuh'S arci assumed 
to lx’s ])oint masses and therefore 1,o possess neither rotational nor inU'rnal 
vibrational energy (p. 142), the lu'at content Q is ecpial sim])iy to the total kinetie 
energy of the translational motion (4 the molecules, lienee for ii molecait's we 
have 

Q -- E - 4 mner UYn, 

Since now U- (see al)ov('), therefore i},- f.dlT, or for each degree of free¬ 
dom Q - .Un'. If r,, is the sj)eeitic lu'at of the gas at eonstant volnine and [i 
the molecular W(‘ight, tlam is tlie heat ea]>aeity for a gramme-molecule, 
i.e. the molecular Jieat. The gas constant, R in mechanical measure or IvR in 
thermal measure, is referred to one gramnu'-molecule, consequently 

Q - T[jLr„ ^’KRT and pCy = C,y —= 

or for each degree of freedom 
(V iKR. 

Nau-KR= ; 8-3i:{. 1(R--(pp. IG and 32) and 
<‘rg degree . mol. 

lienee ----- . 0-230.8-313 - 2-98 cal. 

Tims the kinetie thecdry <df gases recjuires the same molecular heat for all 
(id('al) gas(‘s (sec also § 9, jn 34). It is worthy of note tliat the value derived 
from the theory has been abnost exactly verified for monatomic gases, namely 
for argon (2-998), lielium (2-949) and mercury vapour (2-99). 

In the eas(i of diatomic gases tho molecular heat is considerably greater. 
Erom this it can b(3 concluded that tho molecules of these gases possess other 
energy ])arameters beside the velo('ity of translation; according to tiie law' of 
eqnipartition these take up a part of the energy added. Thus, for example, 
tho molecules may rotate or there may bo vibrations of their eonstitiieiit atoms. 
\\ o w ill assume tliat there is merely a rotation of the moleciik) as a whole about 
an axis at right angles to tho line joining tho two atoms and passing through 
its middle pohit (see belowb- Tho molecule has tAVO mutually j)erpendicuiar 



GASES 43 

principal axes of inertia of this kind. By the equipartition law the rotations 
about each of these independent axes f)f rotation must bo associated \\ith tlio 
mean energy -Jwc-. The total rotational eiuTgy about the two axes is tJiereftU’o 
\mc^. lienee for n molecules the total energy (translational and rotational) is 

\iuncr -|- ' E -I' : - f:E — fj^iLT. 

j^et this be the h(‘at cditcait of a gramme-molecule of mass |x. Tlaai again 

Q - ^ ^KRT 

and :] . 2*f)<S cal, - l-9()7 cal. 

'Phis is tlie theoreti(*al molecular luvit for a diatomic gas. 9'lie actual values 
given on p. 25 for oxygen (4-928) and nitrogen (I-SIl) are not very diil'enait 
from the theoretical value, ddiat for }iydrog(‘n (4*828) is somewhat' lower (see 
below). 

9. The Ratio of the Specific Heats eje^ y. AVJieii lieat is added 
to a gas at roustant ])r(‘ssuro th(‘r(‘ is an increase of volinne and Innieo 
a ])erformanco of external work. Thus quantity of luait r(*(juired 
to j)rodnce a rise of tenqxn'atun^ - - Tj must be gr(*at(T than at 
(onstant volume by an amount erjuivaltait to the work performed. 
An increase of vo]um(‘< at pr<‘ssnre p eorr(‘S])onds to the work 

\\) or the equivalent ([iiantity of heat. Kp(\^2 ^ i)- 
the s])ecific heats at eonstant volume and constant ])n\ssure an^ 
respectively c.,^ and c^,, then for a gramme-mol(‘(‘ul(‘ of mass p tln^ 
quantity of heat n^quinal to ju’odma^. a rise of t(‘nq)erat.ur(‘ - T] is 

Q /iC,,(T2--Tj) j .K/dV2 - Vj). 

From the equation of st-ate W(‘ have }f(V2 ~ Vj)-- - 'I'l) 
luMice 

Q- /uy(T2- Tj) *!-KE(T2 - T,). 

But from above KR — f/xr,., ther(‘for(^. 

Q -- - i\) -I- §/tr, (T, - T^) - T^). 

For Q we can also write 

Q - Ti). 

It. follows therefore that 

y CpII ^ 1*()G7. 

This requirement of the theory is fulfilled for all monatomic gases, 
argon, helium, mercury va]>our. &c. (p. 24). 

From this experimental verificalioii of tlu^ value f; for y vc can d(‘ducc tf)o 
fundamental equation of the kinetic theory of gases (p. .‘17). Thus if avc sub¬ 
stitute Y:=:^ f: in the equation E==^ pV/(y -- 1) (ui p. 104 we. obtain E - ujN. 

Hero E has the same meaning as on p. 37, since according to the fundament a/ 
liypoihcsis of the kinetic theory the total energy content of a gas is equal to the 
kinetic energy of its molecules. 
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In tho case of diatomic molecules the ouly modification is that 
now KR f/xc„ (see ])revious subsection). It follows then that 

Q ... - Ti) - fJLcAT, - T,) -f f/xc„(T2 - T^) ... i/xc,(T, - T,), 

whence y — Cp fc^ ^ 

This equation is fairly well obeyed in the case of hydrogen, oxygen, 
and nitrogen (see Tabh^ ITT), for all of which y “ 1405. 

10. The Decrease of Specific Heat at Low Temperatures.—In the ease of 
the atoms of a solid vibrating al)oiit fixed centres, the equipartition law states 
that the quantity of energy J-mc^ must be associated with each degree of free¬ 
dom as mean kinetic energy and an equal quantity as mean potential energy 
(s('o al)Ove, p. 41). lienee, taking the number of degrees of freedom as .‘1, the 
atomic heats of a solid element iiiust bo twice as great as the molecular h(‘at of 
an ideal monatomic gas, i.c, 2.2*980..- 5*90 cal. But this is the Dttlong-Betit 
rul(‘. It is also possible to give a partial explanatiou of the deviations from it. 
One thing not accounted for by the treatment so far given. })owever, is the 
observed decrease of specific heat at very low temperatures. Since all bodies 
show this decrease, it must be due to some quite fundamental cause not embraced 
in the above theory. Einstetx Avas able to show that this behaviour c:ould be; 
accounted for on the basis of Planck's quantum theory (to bo treated in detail 
in Vol. V), i.c. Avilh the assumption that the molecules do not take up energy 
c(.>ntinuously Avhen heated, but only in certain small units, tlu; cvergy quanta. 
It' is found that the size of these quanta (i.e. the amoimt by Avhich the energy of 
a molecule can alter) d(‘f)ends upon the frequency v * of tlu; molecule, the energy 
for each degree of freedom only altering by the amount s ; ^ or an integral 
multipk; of it. Here h is a universal constant (Planck’s constant), the nature 
and significance of Avhich A\'iU be discussed in Vol. V. We can obtain the approxi¬ 
mate A’aluc of the frequency of the molecule from the folloAving equation 
(Linbemaxn, 1910). 

in Avhich Tf is the melting-point of the substance on the absolute scale, A its 
atomic Aveight and V the volume occupied by a gramme-atom. Tlie lino of thought 
leading to this relationship betAvecai melting-point and frequeney is someAvhat 
as follo^v.s. The more tightly an atom is held by those next to it, the less will it 
be displaced out of its mean position by temperature motion, i.e. the higher Avill 
be the raeltmg-j)oint of the substance. But the more tight ly an atom is held 
by its neighbours, the greater is its frequeney of elastic oscillation. 

Accurate calculations show that it is necessary to assume a number of 
diff(Tent fre((ueneies v in the same body. 

The sj)ccilic heat of a gas at constant volume was found above (p. 42) to 
bo Cl,/ : -- Hi ftu* each degree of freedom; but according to the theory of quantized 
distribution of energy the value for c'ach degree of freedom in the case of a solid 
is 

Ay 

♦ Considering only solids. 
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The symbols have the same meaning as above and k is tlie Boi.tzma>:n constant, 
1-37.10(p. 41). 

When v/1 is very small, i.e. when v is very small (e.g. in the ease of bodies 
of low melting-point) or when T is very large, the ex])r(‘ssi()n for becomes 
identical with that for On th(’; other hand, wlnm v, P l)ecotnes larsfe, 
is smaller than 0,/; in the limit vhen v/d'go, C/'-- 0. TTenee if v remains 
constant and the number oi degrees <.»i freedom d(K‘s not eliange, the specific 
h(‘at must decrease with decreasing temjierat ure. 

The greater v is, tlie smaller the <*(>ntribution of each degree of fn'edom to the 
specific heat. Hence if, for examph*, the moment of inertia about om^ of the 
ax(‘S is very small, the corres])ondiTig period of oscillation (whi(*h is ])ro])ortional 
to the scjuarc root of tlii‘ moment of inertia) will also bt* small, dhe frequtaicv v 
will therefore be very large. At low t(an])eratur(\s v T will be; largi^ and lienee 
the eontrilmtion of this d('gr(‘e of frec^dom to the specitic, luNit will also be very 
small. It is tluTefore justifiable only to take into account moments of inertia- 
uf considerable magnitude an<l to neglect the others. As regards its mechanical 
propcTtics, a {.liatomic molecule can lie imagmed t(j consist of two clastic sjilu'res 
<‘onnected rigidly togetlu'r at a distance which is large' in 
comparison witJi their diameters (tig. 2, ‘Alumb-beir’ 
model). In this case both the mutually perpendicular 
axes a and h will corresjiond to de'grees of frt'cdom, O -' —C ^ 
but not the axis c. Ibaice. such a nK»d(*l has 3 • 2 - o ; 
d(‘gr('es of freedom. Its moh'cular heat mu.st tlu'n'- jOjiy. ^ -Durnh-btll Model 
for(‘. b(‘ 4-9()7 cal. (se-ic above). The jnoimaits of iiuHia ot a Dwiotnie Moiieulc 
about the axes a and h are in g(‘neral not Acrv larg(‘, 
particularly if the masses of tlu' atoms are. small, so that a decrc'asi' of the 
specific Jjeat is to be ex]>ected at low temperatures. This is actually obs(T\ed. 
Even at room teinperatun.’; the value for hydrogiui is considerably smalkT than 
would corresfiond to the total numlxa- of its degree's of frei'dom. With decn*ase 
of temperature its specific heat becomes still smaller (P^tcken, 1912). d'he 
following are tlie obserctnl values: 

/ ■ 7b -183 -233MT 
T=- 197 90 dtPabs. 

C;, = 4-38 3-25 2-9S. 

Thus at -- 233“^ C. hydrogcai has tlic specific lu'at of a monatomic gas, the rotatif)nal 

Fip. 3*—Dependence of Specific Heat of Solids upon the 'retriper.ifure 

degrees of freedom contributing scarcely anything to its value. Tliest; cunsidtaa- 
tions only hold for degrees of freedom to which one can ascribe a frequency v 
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(motions of oscillation or rotati(^n). It is not possible to ascribe a fre(piency v 
directly to the rectilinear translational motion of a gas molecule. 

In tlui case of solids, A\ liere there is no translational motion of the molecules, 
the sp(‘citic heat must decrease inrire and more with decrease of temperature. 
This is actually borne out by observation (fig. 3). This de(Tease wall be most 
easily observable at (lomparatively liigh temperatures for substanc(^s for which 
V is large, i.c. according to the formula on p. 44 for substances which have a 
liigh nudting-point and a low atomic; weight. The* best examples are diamond, 
boron, and silicon. Ev’on at room temperature diamond has a remarkably low 
atomic? hc^at, namely 1-4 instc^ad of t> as demanded by the Dulomg-Petit rule. 
At 1S3 C. the value is only 0-03 and at — 23(b' C. i)ractically zcto. (Neknst- 

InNOEMAis^N.) Jn the (;ase of boron and silicon the decrease also occurs at much 
highcT fempcraturc's than for the other elements. The frecpieiicy v can be cal¬ 
culated from the fornnda on j). 44 or better from it can also be obtaincMl 
direcdly from optic'al measurememts (residual rays, see Vol. V). The valuta oblained 
for diamond is 3'9.1(h-* sec. ^ and for lead 1*9.10^^ sec'.^b (The c^rdcT of 
magnitude! is that of long-wave* infra-red radiation; ordinary red light has a 
frequency of about 4 . sec.~ b) 

tn the t*quation for t',/' the only property wdiich varies from substance to 

Fig. 4. -i'v of Solids as a Function ol the Characteristic I'empcraturc O 

The values of <"> (- ht'jk) for various substances are: argon, 85; lead, 88; 
zinc-blende, 175; silver, 215; sylvite, 230; rock-salt, 281; copper, 315; alu- 
niiriiuni, 308; lluor spiar, 474; diamond, 18(10. 

substanct; is the frefjueney v and this always occurs' in the combination T/v. 
If- follows tJierefort? that the variation of the sptjcitic heat must be tliti same for 
all 8ubstanc(\s possessing the same number of degrees of freedom, provided that 
it is rehuTod iu ea(*h case to T/v. 2\s is shown by the curve of fig. 4, this is actually 
found to be the case. Tlu^ variable 0 has the value Jiv/k and is called the 
characteristic, tetn.perature. It characterizes thermal state in the sense that diffennt 
substances arti in corresjjonding thermal states when at their respective char- 
acterisf ie tcm})eraturcs. 

11. Mean Molecular Velocity.—Combining the equation fY 
^nme^ with the equation of state jpY — j^RT we obtain 

fKT. 

Now 7ini M, the total mass of the gas, which can also be expressed 
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as M ~ v^i, where v is the number of gramme-moJeciiles considered 
and fi is the molec'ular weight of the gas. Hence 

RcT; 

1 o 3RT w lienee -. 

This equation not only contains the relationshij) already d(‘rivi‘d 
above, naintOy that the absolub'. teinjx‘ratnr(‘ of a, gas is jirojiortional 
to tlie nu'an of the squares of th(‘ veloeiti(*s of th(‘ moleeules: it. also 
makes it possifiJe to ealeulate a mean, inolcrular rclocity. A(*eording to 
the al)OV«‘ equation tliis is inversely proportional to th(‘ s([uare root 
of the mo](‘eular wdght. Putting R . 10' and T 273 we 
have 

Co - A/3 . <S*313 . J(F7273/ V/x 

, — 2000 
— 200000/ V f^i cm. p(‘r see. - per see. 

Vfi 

From tliis we, olitain the following values at 0 (\: 

a Mean Velocity ( ' 

Hydrogen, 11^ , , 1S45 m. ]>er see. 
Oxygem, O2 . . .. :i2 461 „ 
Ts'itrogc'iL 'N^ . . .. 28 41)8 „ 
Parbon dioxide, (JC)2 * 41 81)8 „ „ 

12. Velocity Distribution, Tho nn'an molecular velocity eaieulaOMi 

in tliis way (the root mean square veloeitv) must not be eonrus<‘d Mitb tlie 
arithmetic mean of the velocities. The arithmetic mean v/) of tw(j 
numbers /n and ?i is always smaller than the s(juare root of tliC! arithnu‘tie 

mean of their squares, viz, \ \{m"-\ - 'n~). The same is also true of rnon' than 
two numbers. In order to be able to ealeulate t he dilVerenct' bet ween thes(‘ nK*ans 
it is necessary to know in what manner the ditfert'nt. velocities are distributcnl 
amongst th(‘ mok^cules. J. C. Maxwell * was the tir.st to discover thi' dc'sircM 
dlMrUmfion lau\ MaxwelFs treatincmt is based upon the assunifition that thc‘ 
distribution law^ is independent of time', i.e. that it rejirc'sents a state of dynaniicial 
e'qnilibrium. External influenees, such as addition of lieat, &e., can at most 
change the mean .square veloeity, but the distribution of veloeitic'S about this 
mean is always governed by tlie same law. All the dirc'ctions in space arc; takcai 
as equivalc'iit, so that each o(?curs c'qnally often. Hence a givcai velocity v can 
reisnlt from a largo iiimibeT of dilterenit combinations of componcaits. The‘ tlirea; 
componemts eif v parallel to threa* mutually perpendicular axe's can c'ach assume 
all possible vahms betweem v and 0. Maxwell inve‘stigated the mathematic-al 
probability W that a e*ortain erne of the; mc^le^euk's (‘onsideTcd shonlel liavc; a 

* James (^lerk Maxwell (18111-71)), became IVofessor of Physic s at Vfarisc hal 
Colk'go, Abercieeuj, in 1856, was at King’s C()li(\L!;e, London, from 1866 to 1865, and 
Professor of Physics at (Cambridge from 1871. His greatest- work was in connexion 
with the development of the kinetic theory of gases and the foundation of tin' elc ftro- 
magnetic theory of light. 
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velocity lying betwc^eii v and dv. With the assumptions mentioned lie finds, 
by means of the theory <^)f probability, the value 

W -- 7 - i’-e ’ (ii\ 
0L^\ TC 

In this a is a constant and ^V is tlu^ ratio of the number dn of the favourable 
cas(‘s to the total number -a of possible eas(‘s, i.(‘. the proportion of the mole- 
eiiles witli veloeitif'S IvinL^ between v and r - dr. 

Most Prohable Velocity. The prob¬ 
ability W is ])roportional to the velocity 
increment diK If we put dv 1 cm. fier 
sec. (whicli is permissible for purposes 
of ajijiroximalion), fhen W re])rcs(*iils 
the mathematical probability that a 
(‘(‘ftaiii molecul(‘ possess(‘S a vHocity 
between v and {v-\- 1) cm. ])(t sec. 
For the time being we w ill regard a on 
th(‘ right-hand side of the etjnation as 
an undetermined (‘onstant. The numlxT 
dti - nW is th(‘ number of moh'cules 
(out of tlie V molecules in th(‘ space 
consider(‘d) which have velocities be¬ 
tween V and V -1- dv. idott ing t In* rat i(>s 
r/a as abscissa* and the values of 

aW/V/e as ordinates, we obtain the (uirve shown in tig. 5. Th(* l('ngths 
of the ordinat(5 of a point- on the curve is a nif'asun* of the probability 
that a given molecule will hav(‘. a vekxdty in tlie interval l/oc cm. jier 
sec. reckoned from vj'x. The area of a stri]) boundc'd by th(^ ordinates cor- 
K'Sponding to the abscissje r/a and (v -j- dr)/a. the axis of abscissae and the 
curve (shown shaded in the figure) is numerically e{{ual to the probability 
that a certain molecule pos.sesses a velocity between r/cc and (c-| dv)lcL. We 
notice that the curve passes through a maximum value of over 0-8 for v/a - J. 
Th(! greatCvSt possible value* for a mathematical })robability is unity; the 
probability is then a ec'rtainty. JJenee if for vIol 1 the ordinate of the curve 
were not 0-8 but unity, this would inean that the probability of the velocity 
of a chosen molecule lying between a and (a 4 1) amounts to a certainty, i.(‘. 
that all the molecules possess velocities betw('en thes(i limits. But the actual 
maximum ordinate is not unity, though it comes near to it. This means that 
there is a maximum probability that the velocity of any selected molecule will 
lie in the neighbourhood of a. Thu.s a represents the wost probable velocity. 
Remembering now that dnjn ■- W is the fraction of the 7i molecules with V(‘locitie8 
between v and | rfc, and noting that the greatest part of the area bctw(‘en 
the curve and the axis of abseissje lies in the iieighbourhc^od of vjix ™ 1, we see 
at once that by far the larger number of the molecules have velocities not very’’ 
different from v --- a. Only a few' posses.s velocities twice as great, still fewer 
possess velocities three times as great. Maxwell’s distribution km thus shows 
that the assumption made tacitly' above (p. :17), namely that the molecules 
have the same nu'an velocity c, is not so very seriously at variance with the 
actual condition of the gas. 

Mean Velocity,- An ordcT to calculate the mean velocity v we must add 
together all the velocities of tlu* 71 molecules and then divide by^ n, i.e. 

I'jK. 5. iM.iwvcirs Law f)i tiu' Distribution ot 
Molecular N'clocitics, (Ordinates -- aW/gt .) 

n 
i:W(e) —1.^. S {v^e '^ '‘^-dv 

TZ \ 
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Since v is continuously variable, the last sum becomes an integral, vh\ 

a^VK 
dt\ 

Integrating we obtain V ™ 2a 

vW 

Ifenco the mmn velocity v is greater than the most probable velocity a, aij can 
he seen at once from the tmsymmetrical shape of the area between the ofirvo 
and the axis of abscissae 

In order to find the relation between the mean velocity and the previous 

I’oot mean srpiaro velocity Cq -- wo will calculate c- in the usual way, viz. 

IIcnee the root mean square velocity is 

Vc2 = a Vg. 

(Mre should bo taken not to confuse the diherent velocities whose relationships 
are expressed in these equations. 

For hydrogen we had Cq - 1845 m. per st‘c. Hence in this case the mtyst 

prolxJtUe velocity is a — CoVf • 1500 m. per sec., and the mean velocity is 

2a /8 
■y ~ 1701) m. per see. 

13. Mean Free Path. Viscosity of a Gas. -hi spite of their ex¬ 
tremely high velocities, the molecules of a gas under ordinary con¬ 
ditions, i.e. at atmospheric pressure, do not fly very far between 
successive collisions. This is because of the enormous number of 
molecules contained in unit volume, which renders the chance of 
cjollision very great. The mean distance traversed by a molecule 
between successive collisions is called the 7nean free fath. There are 
three important phenomena dependent upon the mean free path: 
the internal friction or viscosity, dilfusion, and thermal conductivity 
of gases. 

When one layer of a gas moves relatively to the layer next to it, 
the two are as it ennnshed in each other by \drtuc of the mole¬ 
cules which fly through their common surface. Each molecule ]:)assing 
out of the faster moving layer into the slower brings with it a certain 
momentum in the direction of the former and vice versa, so that 
the velocity difference between the two layers tends to be neutralized. 
Thus the faster moving layer is retarded and the slower one accelerated 
{internal friction). A fraction of the velocity of flow is transformed 
into irregular molecular motion, i.e. into heat. Near the surface of 
a solid the influence of the molecules of the solid is so great that the 
surface layer of air is held quite fast when the pressure is not too 
high. 

{E636) 5 
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The ex^Btence of internal friction can be demonstrated by the 
following experiment. A plane circular plate is made to rotate rapidly 
in air and brought close to another similar plate also mounted so as 
to be capable of rotation. I'he second plate then also begins to rotate 
with it. The magnitude of the internal friction or viscosity is measured 

by the force per unit of area 
between two gas layers with 
unit difference of velocity. 

As in the case of liquids, 
the measurement can be 
carried out by means of the 
flow tlirough a capillary 
tube (fig. 6). The fall of 
pressure can be measured 
by manometers. The ob¬ 
served values of the co¬ 

efficient of viscosity at 0° C. are: air, 0*00018; hydrogen Hg, 0*00008; 
and nitrogen Ng, 0*0003. (For viscosity, compare Vol. I, p. 264.) 

With certain simplifying assumptions the viscosity can be calculated 
on the basis of the kinetic theory of gases. The value obtained is 

7] 0*30967 i5AM, 

where M is the mass per unit volume, v the mean molecular velocity 
calculated above, and A the mean free path. Hence 

A=:— ^ 
0*30967 vM* 

If we divide the mean velocity v by the mean free path A, we obtain 
the number S of collisions of a given molecule per second. The follow¬ 
ing table gives a few values calculated from the formula). 

Mean Free Path 
in Cm. 

Number of Collisions 
of Each Molecule 

per Second 

Hydrogen 
Oxygen 
Nitrogen 
Carbon dioxide 

0*0000185 
0*0000099 
0*0000160 
0*0000008 

9,480,000,000 
4,065,000,000 
4,760,000,000 
6,510,000,000 

The greater the molecular diameter and the nearer the molecules 
are together, the smaller the mean free path. If n' is the number of 
molecules per unit volume and p the radius of each of them (assumed 
spherical), the mean free path is given by 
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Viscosity of Gas Independent of Pressure. — From the above equation it 
ean bo shown (Maxwell, 1876) that th& internal friction of a gas is independent 
of the pressure. Reduction of the pressure has two effects: on the one hand fewer 
Tuoleculea will pass through the common surface between two layers, but on the 
other hand they will be able to penetrate farther into the other layer on account 

the increase of their mean free path. As far as the internal friction is con¬ 
cerned these opposing effects just balance each other, so that the internal friction 
is theoretically independent of the pressure. This result is rather siu-prising 
at first sight, but is in complete harmony wdth experiment. Tliis may be shown 
as follows: A thin circular disc of mica is suspended from its middle point upon 
a thin thread so as to be able to perform torsional oscillations in its cum plane. 
Close beneath it is fixed another plane plate and tho wliole arrangement is placed 
inside an evacuated vessel. The mica disc is set swinging (say by means of a small 
piece of iron wire cemented to it, w hich can bo moved by a magnet fronx outside 
the vacuum). Tho motion of tho disc is damped owing to the friction of the thin 
layer of air between it and tho fixed plate. Tho magni¬ 
tude of the damping is determined at atmospheric pressure 
and at reduced pressures, and is found to bo always the 
same. 

This result Avould seem to bo at variance w itli the 
observation that in the case of moving bodies the frictional 
resistance of the air becomes smaller as tho air prcssurci 
is reduced. The apparent contradiction is explained by 
the fact that in such cases theni is a considerable loss of 
I'nergy due to the formation of vortices. Unlike sliding 
friction, turbulent friction varies very much with tho 
f)ressure. 

The validity of the above treatment must reach a 
limit when tho pressure becomes so small that tho mean 
free path is of the same magnitude as the thickness of 
the layer between the plates. Many of tho molecules will 
then fly from the one plate to the other without any 
intermediate collision, so that wo can no longer speak 
of the sliding of one air layer over another. We should Fig. 7.— 

then expect that the friction would depend upon the Molecular Air Pump 

number of collisions per second, i.e. that it would 
become smaller as the pressure is decreased. This is essentially the result 
which is actually observed at low pressures. The damping of tho motion 
of (for example) a vibrating quartz fibre can bo taken as a measure of 
pressure; this is the principle of the very sensitive quartz fibre manometer for 
very low pressures (Knudsen). 

Molecular Air Pump.—Gabde has made use of the viscosity of gases and 
of Maxwell’s law in his molecular air-pump, the construction and operation of 
which may be seen from tho diagram of fig. 7. A metal cylinder C rotates with 
high velocity in a cylindrical casing G. The space H between cylinder and casing 
is about 1 cm, thick and is interrupted by tho ridge E. To the right and left of 
E are two openings m and n connected respectively with the tubes V and P. 
On account of the viscosity the air in the space H is carried round by the 
cylinder C and thus driven from V towards P. When the cylinder is rotating 
rapidly a manometer inserted between P and V shows a pressure difference 
of about 10 mm. In accordance with Maxwell’s law this difference remains 
(approximately) constant when tho air is rarified. Hence if P be connectod with 
an ordinary air pump acting as auxiliary pump the low pressure so produced 
is still further reduced by the amount stated above, so that an extraordinarily 
high vacuum can bo produced in a vessel connected with V. In this way it has 
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been possible to attain pressures corresponding to less than 0'’0000002 mm. The 
molecular pump does not work with the same efficiency for all gases; the most 

favourable are those with high 
molecular weights. 

Dependence of Viscosity of 
Gases upon Temperature.—The 
kinetic theory of gases also leads 
to the conclusion that the vis¬ 
cosity of a gas must increase 
with rise of temperature; for 
the greater the velocity of the 
molecules, the more often will 
they pass through the common 
surface between two layers of 

Fig. 8.—Dependence of Viscosity of a Gas and hence the greater the 
upon the Temperature “ meshing ’’ effect. 

This can easily be proved by 
means of the arrangement shown in fig. 6, the second capillary being heated 
(fig, 8). The liquid in the middle manometer rises, because the resistance of the 

Fig. 9.—Viscosity as a Function of the Temperature 

heated part becomes greater. Thus in contrast to the case of liquids the viscosity 
of gases increases with rise of temperature (fig. 9). 

14. The Avogadro Constant.—If a gas be subjected to a very 
great pressure at a very low temperature, we may assume that the 
molecules will approach each other to the point of touching. The 
arrangement being imagined to be cubical, each molecule will then 
be enclosed in an elementary cube of edge 2p (p = molecular radius). 
The limiting volume of the compressed gas is thus made up of as 
many such elementary cubes as there are molecules present, i.e. 
V == 8Np®. With the help of the equation for the mean free path 
^ven in the foregoing paragraph, we can calculate from this the 
important quantities p and N. These considerations were first put 
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forward in 1865 by the Austrian physicist Loschmidt, who also 
carried out the first calculations of the corresponding numerical 
values. For the approximate diameter of an air molecule he obtained 
the value 3.cm. He calculated the rough value n' — 20.10^^ 
for the number of gas molecules in a cubic centimetre at 0^ C. and 
atmospheric pressure. Since then this important number has been 
repeatedly determined by a variety of very different methods. The 
most reliable value is taken at present as 27'0.10^® (see next para¬ 
graph). There are 22,410 times more molecules in a gramme-molecule 
(mol) of any gas (see p. 16). The number of molecules in a gramme- 
molecule of a gas is known as the Avogadro constant (sometimes the 
Loschmidt number). Its most reliable value (determined by an 
electrical method) appears to be N ™ 60*6.10^^, Using this value 
and also that given above for the mean free path, the equation for 
A (p. 50) gives the diameter of a hydrogen molecule as 2p 2-18.10"^ 
cm. Since one mol of hydrogen weighs 2.1-0077 gm. wt., the mass 
of a hydrogen atom is 1-0077/(60-6.10^^) =: 1-662.10“^^ gm. 

2. Molecular Motion 

Atomic (or Molecular) Rays.—^Very special interest attaches to 
those phenomena which give a direct ocular demonstration of the 
thermal motion of molecules. In this respect the following experiments 
are particularly convincing. 

If gas molecules are allowed to fly out of a container through a 
small hole into a completely evacuated space, they conserve both the 
direction and magnitude of their velocities and fly 
through in straight lines. This rectilinear motion can 
bo demonstrated in the following way (Dunoyee, 
1911, fig. 10). The source of atoms or molecules is 
at A (in the experiments of Dunoyer this took the 
form of a piece of sodium, which was allowed to 
evaporate in vacuo)] the space in which it is situated 
is completely evacuated. and are two screens 
with circular openings, by means of which a conical 
region is left free for the flying particles. If the 
motion is really rectilinear, a circular deposit of 
sodium must be formed upon an interposed plate P. 
This was actually observed. Also an obstruction 
(e.g. a wire D) placed in the path of the atomic rays 
(sodium vapour is monatomic) threw a shadow upon 
the plate P, just as if it were placed in a beam of light. In fig. 10 
the plate P is drawn at right angles to its actual position. 

It was particularly desirable to investigate whether the velocity 
of the particles in these rays coincides with the calculated velocity. 

JP 

i B, 

! 

_c La. 
Fig. lo.— 

Atomic Rays 
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This investigation lias been carried out with success (Stern, 1920). 
The principle of the apparatus is shown in fig. 11. The vessel V ia 
evacuated as completely as possible. Within it is the source of 

molecules A (in this case this was 
an electrically heated platinum wire 
coated with silver). The gas mole¬ 
cules are shot out from A in straight 
lines with a mean velocity v corre- 

Fig. M.-D«emii„a,ion of sponding to their tcmperatuTe. As in 
Molecular Velocity fig. 10, a conical beam of atomic 

rays is selected by means of one 
or more diaphragms. Silver atoms have the property of con¬ 
densing on glass surfaces even at room temperature and hence 
they deposit themselves upon the glass plate P. The screens are so 
arranged that the resulting mark has the form of a line. If the whole 
apparatus is made to rotate rapidly about an axis through A per¬ 
pendicular to the rays (i.e. perpendicular to the plane of the figure), 
the line on the glass plate P will be displaced somewhat in the opposite 
direction. For the molecules leaving A take a certain time to get to 
P, and during this time the plate P has itself moved on a small distanc(\ 
Thus the rays strike the plate P at a different place. 

If I ia tho distance between A and P, and t the time taken by a molecule tO' 
fly over it at velocity v, we have t --- Ijv. When the apparatus is rotating v times 
per second, tho distance moved through by the plate in this time is s = 

On account of the Maxwell velocity distribution the values of a will 
be spread out over a certain range, i.e. the line on tho plate will be somewhat 
blurred. Conversely it would be possible to calculate the velocity distribution 
from tho intensity distribution in the line. For v = 50 sec.~^ /= 10 cm. 
V 500 m. per sec., wo have a ^ Q mm. 

Figs. 12,13 show the two traces (natural size) produced respectively 
by right-handed and left-handed rotation of the apparatus at a speed 
corresponding to v ~ 45 revs, per sec. Tho velocity value 675 m. 
per sec., calculated from this record and from the constants of the 
apparatus, is in good agreement with that to be expected from the 
temperature of the silver during the experiment. 

These experiments demonstrate very clearly the correctness of 
the theories put forward in the foregoing paragraph. It has even 
been possible to render the paths of individual molecules visible, 
but these experiments cannot be discussed in this volume. 

Brownian Molecular Motion,—This provides a beautiful and ocular 
confirmation of the kinetic theory of heat and the validity of the 
law of energy distribution at thermodynamical equilibrium. The 
English botanist Brown called attention as early as 1827 to the 
motion shown under a high-power microscope by extremely small 
particles suspended in a liquid drop. This phenomenon is well known 
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to every microscopist, Tlie motion consists of a completely irregular 
2:ig-zag displacement of the particles and a gradual progress in many 
small jiunps. The smaller the particles, the more lively their motion. 
The phenomenon can easily be observed; 
small grains of every kind and from any 
source show this teeming movement. Small 
traces of pigments, such as bone black or 
carmine red, can he seen very well with 
high magnification. The Brownian move- 
_ment can be demon¬ 

strated best with the 
ultramicroscope in 
the case of ultrami- 
(’roscopic particles, 
e.g, gold sols (Vol. ]). 
It is scarcely obser¬ 
vable when the 
diameter of the pai* 
tides exceeds O-OOl 
mm. The motion 
can also be observed 
very beautifully in 
the case of extremely 
small particles, e.g. 
of tobacco smok<‘, 
suspended in the 
air. Fig. 13 is a 
microphotograph of 
falling oil droplets 

(Regener). We see clearly how the smaller droplets perform the 
more vigorous motions. 

The Brownian movements are to be explained as due to moh^cular 
motion. The molecules of the fluid medium in the immediate vicinity 
of a suspended particle collide with it in consequence of their thermal 
agitation and share their energy with it. In general the impacts on 
all sides of the particle will balance each other; the number of impacts 
per second is so immense that to observe them individually is un¬ 
thinkable. The molecules have all possible velocities (p. 47), however, 
though according to Maxwell's law of distribution the very high values 
are correspondingly rare. Thus every now and then a fluid molecule 
strikes the particle with exceptionally high velocity, far abov(^ the 
mean. Hence in spite of its relatively very largo mass, the particle 
will occasionally have such a high velocity imparted to it by a collision 
of this kind, that its motion wfi4 be observable imder the microscope. 

I. In spite of the quivering movement of the particle we observe 

Mm 

Fig, 12.—Displacement 
Record for Silver Atomic 
Rays, after Stern. 

Fig. 13.—Thcimal Motion 
of Falling Oil Droplets, after 
Regener. 
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only a slow progress from one place to another, since the impacts 
are quite irregular both in time and direction and therefore balance 
out to a great extent. It is possible to calculate (A, Einstein, 1906) 
how much a selected particle will be displaced in a given time r in 
a radial direction from its initial position. 

In tliis calculation the Boltzmatsx-Maxvveli. law of uniform mean distribution 
of energy at tliermod3mamical equilibrium i.s applied to the particle. Its average 
kinetic energy is equal to that of a gas molecule at the same temperature, i.e. 
hne^ - LT. If the motion in the a:-dircction is observed and if the component 
mean square velocity in this direction is then \. hne^ ~~ JLT, 
siiK;e we are only dealing with one degree of freedom (p. 41). According to a 
^velJ-testod fonnula of 8tokes (Vol. 1), the frictional resistance to wliich a small 
s}>hcro of radius r and uniform velocity Cj. is subjected in a fluid of viscosit^^ 
f] is GTTYjrc^. The impacts drive the particle forwards, the frictional resistance 
opposes its motion. FurthiT LT - - jRT/^ (p. 39), where R is the universal 
gas constant referred to n molecules. With the assumptions mentioned it is 
})Ossible to calculate (in a manner which cannot bo gone into here) the mean 
di.splaoement diX of the particle in the a'-dircction and in the time t. The value 
r)btamed is 

/2LT^. /KT. _ 
V 97T7]r V3TC7)rrt 

It was found possible to vcTify this equation b}^ quantitative experiments for 
various directions. Microphotographic exposures were made at short intervals 
of OT see. upon particles performmg Brownian movements, and the plates so 
obtained were carefully measured. In this way it was actually found that A;r 
is directly proportional to the square root of the absolute temperature and of 
the time of observation and inversely proportional to the square root- of the 
viscosity of the medium and also of the radius of the particle. Confirmation 
of the average dependence of the disphnement upon Vi can also be found in 
fig. 14. The mean displacement was further found to be independent of the mass 
of the particle, as napiircd by the formula. 3’hus the investigation led to the 
.satisfactory conclusion that the explanation of the Browmian movement as 
the visible result of invisibhj molecular impacts is to be regarded as cumplotely 
ratified. Since the equation contains as known quantiti€\s the gas constant R, 
the viscosity of the fluid 7], the temperature T, the time interval t, the radius 
r of the particle and the measured displacement Ax, it offers a direct and 
('legant method of determining the number of molecules present in the gas volume 
corresponding to R. 

n. J. P iiaiRiN * was the first to carry out very successful and thorough measure¬ 
ments upon the Brownian movement. He was able also to observe rotations 
in the case of larger particles; they were irregular and spasmodic, just like the 
translational movements. Einstein ha.s also given a formula for the magnitude 
of the mean rotation corresponding to the one given above, and Perrin succeeded 
in verifying it completely. The formula once more contained the mean energy 
of a molecule corresponding to one degree of freedom. Hence the confirmation 
of the formula was also proof of the Maxwell-Boltzmann law of oquipartition 
of energy for rotational motions (p. 41). It also gave another independent 
determination of the number of molecules n. 

These observations and measurements make it quite certain that 
the Brownian movements must be regarded as visible thermal motions. 

* At Paris. 



MOLECULAR MOTION 57 

They give us a picture of the invisible molecular motions and reflect 
their characteristics in every detail. Brownian movements difler 
from, molecular motions only in their extremely small velocities and 
their extremely small mean free paths, wliich are due to the great 
mass of the observed particles. 

In this connexion the following consideration (duo to PEimm) is of interest. 
In fig. 14 are thi'ee diagrams formed by joining the successive positions of one 
and the same mastic particle at intervals of 30 sec. One of th(i dhigrams Ci)ntains 
50 such positions. The figure gives a good idea of the iiTcguIarity and complexity 
of the path traced out by the particle. But wo must hear in mind that each 

Fip:. 14.—Positions of a Particle every 30 see. 

position was taken after tm interval of 30 sec.; if the interval had been 1 sec. 
instead of 30 sec., wc should have obtained a path with 30 times as many zig¬ 
zags. And if we remember that the particle is subjected to (countless millions 
of impacts every second, we realize that the diagrams really only give a poor 
representation of the actual coinjfiications of the paths jeally traced out by the 
molecules. 

Perhaps the most striking demonstration of the molecular kinetic 
nature of the Brownian movements is furnished by the following 
observation. When a suspension of very fine paiticles is left in a 
capillary tube to ‘‘ settle out ’’ under the influence of gi-avity, an 
equilibrium state of distribution is reached after a while. Fig. 15 
shows such a distribution with a very high magnification. Fig. 16 
shows cross-sections at different heights. 
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The observations ’vvere carried out upon the smallest particles of a mastio 
emulsion, obtained by dropping an alcoholic mastic solution into water and 
then separating the finer particles from the coarser by centrifuging. The particles 
had a diameter of 1 (i.. (This is beat determined by measuring the rate of fall 
in winter; the radius can then bo calculated from Stokes’s law (p. 56).) The 
pliotographic exposures in fig. 16 were made after equilibrium had been attained, 
the niicrosc(jpc being raistid by 12 p. between each exposure. The figure show^s 
a large number of particles in the lowest 
cross-section, wliereas only 24 p higher 
(top section) the density of the particles 
has already sunk to a small fraction of 
that in the bottom section. 

tel 

Fjjj. 15.—Sedimentation 
Equilibrium of an Emulsion 
as a result of Brownian 
Movement. 

(From Eucken, Grundriss 
der physikalischen Chemie, 
published by Akademische 
Verlagsgesellschaft m.b.H., 
Leipzig.) 

Fig. 16.—Cross-sections at Different 
Heights of a Suspension in Sedimenta¬ 
tion Equilibrium. Distance between the 
sections 12 ju. 

The explanation of this is as follows: The particles suspended in 
a liquid behave just like the molecules of a ga^, the only difference 
being that the particles are continually sharing energy with the 
molecules of the liquid by collision. 

CaUvIation,—Consider an infinitely tall cylinder of unit cross-sectional area^ 
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closed at the bottom and filled with a gas under the influence of gravity. Owing 
to gravity the paths of the molecules between successive collisions are no longer 
straight, but bent downwards into parabolas. If the gas was originally uniformly 
distributed, this curvature of the paths will cause more molecules to pass down¬ 
wards through a given cross-section than upwards. In time, therefore, the 
number of molecules below the cross-section must increase. This means that 
in this region each molecule will be subjected to more collisions per second than 
formerly. But this causes an increased probability that the molecules will be 
driven up through the cross-section again as the result of a collision; for the 
number of impacts from below is now greater than the number from above. Thus 
the downw'ard movement of the molecules due to gravity produces an opp<3sing 
upward movement, the effect increasing more and more as the differtmce of 
density between different layers of the cylinder becomes greater. After a time 
an equilibrium state must be reached; this will bo determined by the number 
and the weight of the individual molecules, anti is characterized by a decrease 
of density (and therefore also of pressure) with iiicroaHing height. The weight 
of the molecules in any layer must be just balanced by the difference between 
the impacts on the lower and upper cross-sections bounding the layer. The 
result of this distribution is obviously expressed in the formula connecting the 
barometric height with the altitude (Vol. 1). Wo can write this in the form 

V'lag5?-». 
^0 6 ^0 p 

If n and tiq are the numbers of molecules per unit volume at the respective 
altitudes h and /iq, wo can put (p. 37) 

p == gs'b :== inmc% p^ - - g^'h^ J n^7nc^, 

where g is the gravitational acceleration, s' the density of mercury, and h and 
6o the respective barometric heights. 

As on p. 38 wo write ^ ?LT -- /cT, thus obtaining 

p = gs'h ~ wfcT, ^0 (Js'Iq ™ n^¥X!, 

The density Sq of the gas is further equal to n^m. 
formula, we have 

h = log^, 
gn^m n 

or n — noC 

Substituting in the barometric 

Now by p. 40, 
mN _ [X 

k “■ | LN “ K’ 

where N is the Loschmidt number for one mol, [x ~ mN is the molar weight 
and R the imiversal gas constant referred to one mol. Making use of this 
relation, we obtain finally 

71 ~ W0C 

of 
The number of molecules per unit volume decreases exponentially with mcrease 

edtitvde according to the law 

loir ^ 
RT* 

The particles of the mastic suspension fall in the capillary tube under the 
influence of gravity in exactly the same way as the molecules of the gas in the 
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cylinder just considered. Just as the greater density of molecules in the lower 
layers of the gas increases the chance of molecules being driven upwards by 
collision, 80 also in tho capillary tube the probability that more particles will 
leave a certain layer as a result of their Brownian movement than will enter 
it will be greatest in those layers which are most densely populated with particles. 
Thus a similar equilibrium will be attained in tho capillary tube to that in the 
gas cylinder. Now tho quantities in tho barometric formula which determine 
the distribution of tho molecules are their weight mg and their mean kinetic 
energy ^ kT. The heavier a molecule is, the greater is the downward force upon 
it and hence tho more rapidly will the density decrease with increase of altitude. 
Whereas in the case of air the barometric pressure does not fail to a half of its 
value until an altitude of 6400 m. is reached, the corresponding height in the 
case of a gas with a molecular weight 10,000 times greater would bo only 0-54 m. 
fj. i^errin was able to determine the size of his mastic particles with great 
accuracy by means of Stokes’s law. Hence, knowing the specific gravity of 
mastic, it is possible to calculate tho downward force upon a mastic particle, 
where of course the upthrust must be taken into account. This determines the 
value of 7ng in the former of tho above two equations for w, in so far as it 
concerns this experiment. If now the numbers and n of particles be counted 
from tho photographic exposures at the respective diUerent heights and h, 
all tho quantities in tho equation are knowm except k. Hence k can be calculated; 
or from tho second equation for n wo can calculate p, and licence obtain the value 
of N 

Wo have seen that the Brownian movement provides three in¬ 
dependent methods of determining the number of molecules in a 
given volimie. Tho results of these three methods are practically 
identi(‘al. The latest measurements give the Avogadro constant as 
N - ()0*6 . 10^2 Iqj. gramme-molecule or n' --- 27.10^® for 1 cm.^ 
of a gas. The corresponding value of the Boltzmaim constant (p. 41) 
is h ~~~ 1-375.10“^® ergs/degree and the kinetic energy of a gas 
molecule at the absolute temperature T 1° abs., as given by the 
relation k - -|L, is L = 2-00.10“^® ergs/degree. 

3. Diffusion 

1. The Brownian movement gives rise to a very important pheno¬ 
menon. In mixtures where the individual molecules are capable of 
altering their positions in space, all substances gradually assume 
a distribution which, considered statistically, may be described as of 
perfectly random character. That is to say, all the particles in such 
mixtures distribute themselves after a time with the greatest possible 
macroscopic uniformity, provided that they are not subjected to 
forces of a special nature. This phenomenon is known as diffusion. 

An example has already been given on p. 35, where it was mentioned that 
tho denser gas bromine gradually mixes against gravity with a layer of specifically 
lighter air above it. In the same way the lighter gas diffuses downwards. Thus, 
for example, a gas jar filled with hydrogen or coal gas and closed with a cover 
slip may be placed downwards upon a similar jar full of air, and the cover slip 
removed. It can then be shown that after a few minutes in the case of coal gas 
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and after a fraction of a minute in tho case of hydrogen the gas has moved down¬ 
wards into the air in the lower cylinder, thus forming an explosive mixture 
there. 

Similar phenomena occur also in liquids and even in solids. 

If a cylinder be half filled with concentrated copper sulphate solution, and 
a layer of pure water poured in carefully on top, it is possible to get a quite sharp 
dividing surface. But if the cylinder be left to stand in a place free from 
vibration, the sharp dividing surface wall slowly become blurred. iVftcr a few 
hours tho blue colour shows that a part of tho copper sulphate solution lias 
risen (in spite of its greater specific gravity) about a centimetre into tho water. 
The blurred dividing surface itself rises continuously though slowly, from which 
it follows that a part of tho water has also passed downwards into the copper 
sulphate solution. After a few weeks the mixing of the two liquids is almost 
complete. 

2. Liquids and gases also diffuse through porous dividing walls. 
This can be demonstrated as follows. 

The bottom of a bottle is broken off and replaced by a pig’s bladder, which 
has been soaked in water, stretched over tho bottom of tho bottle and bound 
tightly in place with string. The bottle is then filled with copper sulphate solution 
and closed with a bored stopper carrying a narrow glass tube, so that a part of 
tho copper sulphate solution rises up into tho tube. The bottle is then suspended 
in a vessel containing viator. After a short time the liquid is observed to ris(' 
in the tube, i.e. there is an increase in tho amount of liquid in the bottle. Water 
has passed from tho outer vessel through tho pig’s bladder into the bottle. From 
the pale blue colour of the water in the outer vessel wo conclude also t hat a part 
of tho copper sulphate solution has passed out through tho animal membrane. 
But more water has diffused into the bottle from outside than copper sulphate 
solution has diffused out from inside. 

This process is called osmosis.’*' 
3. On account of the increasing lieight of its column, the liquid 

ill the inner vessel exerts an increasing pressure upon tho membrane. 
The water must overcome this pressure in entering. Thus a stationary 
state is finally reached, in which tho pressure has become so great 
that it can no longer be overcome by the water. This pressure is 
called the osmotic pressure. 

It has been found possible to make membranes through which 
only the pure water can pass, certain solutes being unable to do so. 
Such membranes are said to be semi-'permeable, 

Semi-permeablo membranes are prepared by filling a strong jiorous pot 
of unglazed porcelain with copper sulphate solution and placing it in a solution 

* Gr., osmds, impulse, penetration. This phenomenon was discovered in 1748 by 
Abb^: Nollet (17(X)-70; originally abb6, then Professor of Physics at Paris from 
1753, rendered vahiablo .service in spreading the knowledge of physics by means of 
lectures and books; he originated the name “ Leyden Jar'’). It was investigated 
further by .Dutrochet (1776-1847, physician) in the years 1827-35. The first accurate 
measurements were performed, however, by Pfeffeb (1845-1920, Professor of Botany 
at Lieipzig), after ho had succeeded in making resistant, semi-permeable membranes, 
completely impermeable to certain dissolved substances, such as cane sugar. 
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of potassium ferricyanide. The two liquids meet inside the porous walls and 
form there a precipitate of copper ferricyanide, which is permeable to water 
but holds back dissolved substances. 

A permeable membrane must be regarded as a dividing wall penetrated by 
innumerable tiny channels of very different diameters, through which the 
molecules pass in their zig-zag motion. It is obvious that the greater the velocity 
and the smaller the size of the molecules, the more rapid will be their passage 
through the membrane; for the smaller molecules will have a greater number of 
possibilities of getting through, whereas the larger ones will often remain stuck, 
if the width of the channels is such that water molecules can pass through, but 
not the (usually larger) solute molecules (which generally carry along a cluster 
of water molecules with them), wo have a semi-permeable membrane. In the 
same way membranes with fairly wide channels, which let through smaller 
molecular complexes, still hold back larger molecules or molecular complexes. 
Examples of such large complexes arc starch powder steeped in water, dextrin, 
rubber, silicic acid, ferric oxide, certain dyes, proteins, &c-, which can be separated 
by means of suitable mi'mbranes (e.g. parchment) from true molecular solutions, 
c.g. from associated salts or acids. In this case the process is known as dialysis 
(Graham, 1862). The substances held back by the membrane are called colloids * 
(Vol. I, p. 334). The process differs in no way from osmosis, however, and there is 
no essential difference between colloidal solutions and “true” solutions, the mole¬ 
cular complexes distributed in the liquid merely being very large in the former. 

Diffusion and osmosis arc of the highest importance for all life processes. 
In a certain sense they are the basis of all life, for only by these processes can 
the food-stuffs provided to the body be absorbed into it. The surface area serving 
this purpose in the human body, i.o. the surface area of the capillaries, amounts 
probably to about COCO m.^. 

Structures which arc very similar to natural plant forms and which grow by 
osmosis, can be made by placing a fragment of ferrous chloride in a solution 
of potassium ferrocyanido or a fragment of copper sulphate, manganous sulphate 
or nickel nitrate in a dilute water-glass solution. Around the crystals are formed 

semi-permeable skins which allow the water to enter but 
not the salt to escape. They therefore swell up, burst at 
some point and then immediately form a new skin, thus 
gi'owing larger and larger. 

4. Measurement of Osmotic Pressure.—Osmotic pressure 
can be measured as shown in fig. 17 with the help of an 
unglazcd porcelain pot in whose pores scmi-permeable 
membranes have been precipitated (see above). Through 
a stopper closing the pot or ccU passes a XJ-shaped tube 
connected to a mercury manometer. Tlie interior of the 
cell being filled with solution and the cell being placed in 
pure water, a rise of the manometer is observed after a 
short while, i.e. an increase of pressure inside the cell. 
Eventually the pressure inside becomes so great that it 

Fig. 17.- prevents any further entry of water through the walls. 
Osmotic Pressure This final constant pressure is the osmotic pressure of the 

solution. 
The following laws have been found to hold for dilute solutions: 
I. The osmotic pressure is independent of the particular properties of the 

fiemi-pcrmeablo wall. 
II. The osmotic pressure for a given dissolved substance at a given temperature 

is proportional to the concentration of the. solution. 

♦ Gr., hdlluy glue, for which this phenomenon was first observed. 
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III. The osmotic pressure is proportional to the absolute temperature, the 
increase of the osmotic pressure per centigrmle degree being 1 /273 r- 0*00307 
of the value measured at 0® C. 

IV. Solutions containing equal numbers of gramme-molecules of different 
substances in equal volumes have equal osmotic pressures. Such solutions are 
said to be isotonic. 

These results can bo summarized as follows (Van’t Hoff ♦, 1887): 
The osmotic ^pressure of a solution is equal to the pressure lohicli the dissolved 

substance would exert, if it were qnesent as a gas in the volume occupied by the 
solution. 

it is therefore possible by means of the osmotic ]iressuro to detonnino tno 
\ apour density of a substance which cannot bo brought into the vapour state, 
and hence also to deterraiiio the molecular weight of tlio diasalvcd substance. 

As a numerical example of osmotic pressure we may take the folkmmg. 
The osmotic pressure of a 1 per (‘ent sugar solution at 15'^ Ct has been found 
to bo 0*684 atmosphere. One litre of the solution contains 10 gm. of cane 
sugar (CioHgaOji). The molecular weight of the solute is [jl - - 12.12 22,1 

: 11 • 16“- 342, and hence there are 10/342 gramme-molecules per litre. In 
the gaseous state at 0^ C. and atmospheric pressure this w^oiild correspond to a 
volume 10.22*4/342 litre (p. 16), or at 15^ C. the volume (10.22*4/342). 288/273 
^ 0*691 litre. If this volume were to expand to 1 litre, its pressure would fall 
to 0*691 atmosphere. This is in very good agreement with the observed osmotic 
])rc8sure. 

In this calculation the molecular W'cight of cane sugar was taken as known, 
if it had bex^n unknown, it could have been calculated from the observed osmotic 
pressure. 

The law.s mentioned above only hold for dilute solutions and also only for 
those solutions wdjich do not conduct an electric current (Vol. Ill), i.e. mainly for 
organic substances like cane sugar, alcohols, and the like. 

5. The phenomena of diffusion can be observed particularly easily 
in the case of gases, especially if suitable permeable membranes be 
used (e.g. poroms porcelain cylinders).f 

The velocity of diffusion is found to be different for different gases, 
being greatest for gases of low molecular weight. 

The velocity of diffusion is measured by the amount of gas passing in imit 
time through unit area of the membrane. 

The difference of the velocities of diffusion of different gases can bo de¬ 
monstrated by means of the following experiment (fig, 18). A porous pc^rcelain 
cell, such as is used in galvanic elements, is closed by a bored stopx^er through 
which passes a long glass tube. The lower end of this tube dips into w^ater. Over 
the porous cell is hung a glass beaker. Coal gas or bettor hydrogen is now allowed 
to enter the beaker from below. It diffuses with such velocity through the porous 
walls that a rapid stream of bubbles issues from the lower end of the glass tube. 
The beaker is then removed. The porous cell is now surrounded by air, but 
contains inside it a mixture of air and gas. The gas onco more diffuses so ra})idly 
tlirough the porous walls that the water closing the tube below rises considerably. 

Carbon dioxide diffuses more slowly than air. Hence if a i)orous cell bo dipped 
in a vessel filled with carbon dioxide (as in fig. 19), the water first; rises up the 

* Jacobus Hendeik Vah’t Hoff, born at Kotterdam in 1852, Professor of Theo¬ 
retical Chemistry in Amsterdam and then in Berlin from 1899 to hi.s deatli in 1911. 

■f In this case the process is sometimes called transfusion. 



64 KINETIC THEORY OF HEAT 

tube. The beaker being removed, the rapid diffusion of air into the cell causes 
a vigorous stream of bubbles to issue from the lower end of the tube. 

'.rho phenomenon finds practical application for the detection of light (and 
mostly dangerously combustible) gases, e.g. to detect the presence of hydrogen 
in airship or balloon gondolas. The diffusion of gases is also mad© use of in 
certain air pumps (Gaede) of extreme efficiency (Vol. I). 

The above experiments show that at a given temperature the more raj^idly 
moving molecules (p. 47) of the lighter gas make their way more quickly than 
the slower molecules of the heavier gas through the pores of the porcelain pot. 
Wo should therefore expect the velocity of diffusion to be proportional to the 
molecular velocity, i.e. inversely as the square root of the molecular mass. 
This is actually so for narrow pores. 

An interesting consequence of the thermal motion of molecules is the pheno¬ 
menon of the different velocities of diffusion of one and the same gas at different 

Carhon Dioxide 

Jdydrogeiv i 

Fig. 18 
Diffusion of Gases through Porous Wall 

Fig. 19 

temperatures. This can be shown very beautifully by a method similar to that 
shown in fig. 18, the air inside the cell being heated (e.g. by means of a glow lamp 
with leads passing air-tight through the stopper) instead of a different gas being 
used outside. It is then found that at equilibrium the pressures inside and 
outside are not equal, but that there is a constant excess pressure inside the 
cell. So long as the temperature within the cell is higher than outside, bubbles 
of air issue from the glass tube into the water. If the tube bo closed, the pressure 
rises until tho number of molecules entering the cell through the pores is equal 
to the number leaving. If and ng are the numbers of molecules per cm.® inside 
and outside respectively, then at equilibrium we have 

where and are the corresponding velocities. But 

Pi-Pz^ niVj®: W2V2S 

and hence at equilibrium 

Ps ■■ P?. --- t>i: Va = Vfi: VTj. 

This relationship has actually been verified (Knudsen). 
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Change of State 

1. Solids, Liquids and Gases 
In general when heat is added to a solid it becomes liquid at a 

certain temperature (the melting-point); similarly the liquid becomes 
gaseous at a certain higher temperature (the boiling-point). The 
case can also arise, however, in which a sohd passcvs directly into tlie 
gaseous state (sublimation). Conversely a gas will in general become 
liquid at a certain temperature (the liquefaction-point) when heat is 
withdrawn from it; and a liquid will become solid at a certain 
temperature (the solidification- or freezing-point). For a. pure sub¬ 
stance, i.e. one consisting only o£ one kind of molecule, the melting- 
point and the solidification-point are identical, as are also the boiling- 
point and liquefaction-point. 

In solids the molecules have no translational motion, but must 
be imagined as vibrating about moan equilibrium positions (cf. 
§ 1, 6, p. 41). They hold each other in these (‘.qiiilibriurn positions 
by virtue of their mutual attractive and repulsive molecular forces. 
Addition of heat increases the energy of vibration, i.e. increases th(? 
amplitude. The molecules require more space; the body expands. 
When the melting-point is reached, the motion becomes partly trans¬ 
lational; the molecules are then able to leave their places. 

In liquids, on the contrary, the molecules are in rotational and 
translational motion, which, however, is not so great that they can 
overcome their mutual attractions. The molecules of a liquid can 
indeed change places under the influence of small forces; but in 
consequence of their dense packing and their frequent collisions they 
only progress slowly by thermal agitation. The assumption of trans¬ 
lational motion is necessitated by the phenomenon of diffusion 
(p. 60); for liquids also diffuse through one another, though very 
slowly in comparison with gases. Diffusion has also been demonstrated 
in the case of solids, e.g. gold into lead, but it only becomes perceptible 
after years. From this it follows that even in solids a certain very 
small proportion of the molecules are in translational motion. These 
are the molecules which happen to have been knocked out of their 
equilibrium positions by very energetic impacts. 

In addition the evaporation of liquids (and also of many solids) 
(B536 ) 65 6 
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necessitates the assumption of a translational motion. If the molecules 
moving in the immediate vicinity of the free surface once break through 
it and pass out of the sphere of attraction of their neighbours, they 
will fly off as gas molecules into the space above the liquid. If we 
imagine the space to be closed, it will gradually be filled with more 
and more gas molecules, which will collide with each other and with 
the boundary walls and thus be partly driven back into the liquid 
and caught by it. After a time an equilibrium state is reached, in 
which the number of molecules turned back into the liquid is equal 
to the number flying out. This is known as the saturation state. 
Addition of heat, i.e. rise of temperature, increases the velocity and 
hence also the kinetic energy of the liquid molecules. This is the 
reason why the number flying clear of the liquid becomes greater: 
the equilibrium is displaced towards the side of the vapour. Finally, 
when the velocity of the molecules has been increased by addition 
of heat mitil they can overcome the whole of the pressure of the air 
above the liquid, the liquid boils. 

In the change of a substance from the liquid to the solid state 
or from the liquid to the gaseous state there are often inhibitions, 
reminiscent of states of unstable equilibrium. 

Thus a liquid in a perfectly clean vessel protected from vibration 
can often be cooled down far below its normal solidification point 
without becoming solid (supercooling). With careful cooling, water 
can bo taken down to a temperature of — C. and lower in a clean 
vessel. But if the water is disturbed by means of a sharp blow^ upon 
the vessel with some hard implement, freezing suddenly sets in and 
a thermometer dipping in the liquid (see fig. 2, p. 69) rises to 0° C. 
(the normal freezing-point). 

The solutions of certain salts show a behaviour similar to super¬ 
cooling. For instance 100 gm. water dissolve approximately 50 gm. 
of sodium sulphate (Glauber’s salt) at 33® C., and only about 13 gm. 
at 15® C. But if a solution saturated at 33® C. be cooled without 
vibration, the excess (37 gm.) of salt remains in solution (super- 
saturation). If now the cooled solution be disturbed or a fragment 
of the solid salt allowed to come in contact with it, the whole excess 
of salt crystallizes out with simultaneous rise of temperature. Sodium 
thiosulphate also shows the same behaviour; it dissolves at 48® C. 
in its water of crystallization, but when cooled again to room tem¬ 
perature without vibration it remains liquid. 

By heating water carefully in a clean vessel it is possible to raise 
its temperature several degrees above the normal boiling-point 
(100® C.) without its beginning to boil (superheating or delayed boiling). 
Also in this case a sharp disturbance causes boiling to set in with 
great (often explosive) vigour, the thermometer falling to 100® C. 
The so-called “ bumping ” during slow boiling of water in glass vessels 
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is due to superheating of this kind and its sudden disappearance. 

Supercoolmg and superheating can be avoided by placing small solid bodies 
ill the liquid, especially if they have sharp edges, c.g. fragments of glass or metal 
snippings. Their influence is probably to be explained as due to a change of 
surface tension. Superheating and bumping can bo most effectively prevented 
by the addition of small porous objects, such as pieces of filter paper, pumice 
stone or tile. They remain effective so long as they are still able to release air 
from their pores. A slight chemical development of gas within the liquid is ako 
a certain means of preventing delayed boihng. Very small air bubbles present 
in or introduced into the liquid favour evaporation by forming “ nuclei ” for 
the vapour bubbles. Hence water which has been freed to a great extent from 
air under the pump or by long boiling exhibits the phenomenon of superheating 
in the> greatest degree. 

Gases can remain gaseous at temperatures below their normal 
boiling-point or condensation-point. Sudden condensation is then 
brought about by blowing in fine dust particles. These form ^'con¬ 
densation nuclei ” by adsorbing (Vol. I) the gas molecules upon their 
surface and thus instigating liquefaction. This is the reason why 
fogs are more easily formed in the neighbourhood of cities with 
vsmoking chimneys than in country districts. 

2. The Processes of Melting and Solidification 

1. Determination of the Melting-point.—^h'or this purpose the solid 
is placed in a small thin-walled tube which is then fastened to the glass 
of a thermometer, the whole being finally brought into a liquid bath. 
The bath is heated up gradually and the temperature read off on the 
thermometer at the moment when the substance in the tube becomes 
liquid. 

This method is only applicable for bodies whose melting-points are not too 
high. Determinations of liigher melting-points and indeed aU measurements of 
high temperatures are made by other methods, which cannot be discussed until 
Vol. HI. 

For a few very accurately known melting-points see p. 0. Further 
constants are to be found in Table I (p. 289). 

Melting- and solidification-points can also be determined from 
the cooling curve (see p. 71). 

2. Change of Volume accompanying Solidification. — For most 
substances there is an increase of volume during melting and a decrease 
during solidification. This is the explanation of the formation of deep 
holes in the middle of the surface of molten wax, molten lead, and most 
other molten substances when they are cast in a mould. Closed 
cavities in castings are also due to the same cause. For this reason the 
moulds are provided with extensions where the molten substance 
is poured in. These necks are also filled, so that during solidification 
the liquid in them may flow into the mould proper and keep it quite 
full. 
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A few substances exhibit quite the opposite behaviour: they 
expand during solidification. This is particularly pronounced in the 
case of water, the volume increasing by 9 per cent during freezing 
to ice. This is the cause of the bursting power of freezing water, the 
weathering of rocks and stones (into whose cracks water penetrates, 
freezes and thus forces the sides apart), the bursting of water-pipes 
and motor-car radiators, &c. The pressure exerted by freezing water 
is so great that if a hollow cast-iron sphere, 1 cm. thick, is filled 
with water and closed tightly with a screw, it is burst when the water 
freezes. Cast iron and bismuth also expand on solidification. (For the 
application of this tyj)e of expansion in the ice calorimeter see below.) 

There is a very great increase of volume during the change of 
a liquid to the gaseous state, i.e. during evaporation. Thus, for 
example, water vapour at lOO"" C. and atmospheric pressure occupies 
about 1700 times the volume of the same mass of liquid water under 
the same conditions. 

3. Latent Heat of Fusion.—There is no rise of temperature while 
a solid is being melted by addition of heat; the whole of the heat added 
is used up in changing the state of aggregation of the substance. 

The quantity of heat in cal. (Cal.) required to change 1 gm. (1 kg.) 
of a substance from the solid to the liquid state without change of 
temperature is called the latent heat of fusion of the substance. 

1 kg. of water at 100° C. is mixed with 1 kg. of ice at 0° C. in a 
thin-walled vessel of small heat capacity. After all the ice has been 
melted, the temperature of the mixture is found to be 10° C. The 
1 kg. of water gave up 90 Cal. during its fall of temperature from 100° C. 
to 10° C. Of this 10 Cal. were used up in raising the temperature of 
the melted ice from 0° C. to 10° C. lienee the apparently lost 80 Cal. 
must have been required to change the 1 kg. of ice into water at 
constant temperature. The latent heat of fusion of ice * is therefore 
80 (more accurately, 79*67) Cal./kg. or cal./gm. 

Water possesses the highest latent heat of fusion of all substances. 
Amongst others may be mentioned: lead, 6; silver, 21; and mercury, 
3 cal./gm. For other values see Table I. 

Tho known latent heat of fusion of ice is used as follows for the determination 
of Bpecific heats. A hole ia made in a block of ice and is provided with a well- 
fitting cover also made of ice. The body under investigation is heated up to a 
known temperature and then j>laced in the hole, which has been previously 
thoroughly dried, and the ice cover is placed over it. Time is then allowed for 
the body to cool down to 0° C., when the hole is opened and tho mass of ice 
molted determined by weighing. From this it is possible to calculate the quantity 
of heat given up by the body, and hence also its specific heat (Black, about 
1760). 

♦ Beluo discovered in 1764 that heafc disappeared (became latent) during the melting 
of ice. J. Black was the first to determine the latent heat of fusion accurately. Ho 
obtained the value 79-5, Wilcke having found the value 72 at about the same time^ 



PROCESSES OF MELTING AND SOLIDIFICATION 69 

In the Bunsen ice calorimeter use is made of the fact that ice contracts on 
melting. Actually 1 gm. of ice at 0° occupies a volume greater by 0*0917 cm.® 
than that of 1 gm. of water at the same temperature. The Bunsen ice calorimeter 
(fig. 1) consists of a bent glass tube AB into 
whose wider limb A is fused a narrower tube closed iiTm-iTm-tT-r■ . 
at the bottom. The body to bo investigated calori- 
metrically is placed in this latter tube. On to the 1 
narrower limb B is joined a horizontal capillary D, A 
which has been previously accurately calibrated. I I A 
The wider limb A is filled with pure water, which |J 
is closed below by mercury. The mercury also fills 
the limb B and extends into the capillary O. The 
whole apparatus, with the exception of the capillary. y J 
is placed in a vessel of melting ice. so that its tem¬ 
perature is maintained alw^ays at 0° C. Calorimeter 

Ethyl ether or solid carbon dioxide is fimt 
evaporated in the fused-in tube, thus causing an ice hiyor to bo formed around 
it. The freezing water expands during the process and drives the mercury 
thread along the capillary. A known mass of the substance to be investigated 
is then heated up to a known temperature and placed in the tube; 
or alternatively the process to be investigated (e.g. a chemical 
reaction) is allowed to take place there. From the distance which r[^ 
the mercury moves back along the capillary it is possible then to I J 

deduce the mass of ice melted and hence the quantity of heat given i| 

up. Once the apparatus is prepared, very accurate calorimetrical T 
measurements can be carried out with it in a short time and with ! 
small quantities of substance. A 

In passing from the liquid to the solid state a substance 
gives up its latent heat of fusion again (heat of solidifi- | 
cation). From this it follows that in general a liquid can f 
be made to solidify by withdrawing heat from it, i.e. by -|| 
cooling. I i 

If a body is made to pass from the liquid to the solid I - 
state without withdrawal of heat, a rise of temperature :1 
occurs. Thus the temperature of supercooled water rises t 
from —10'^ C. to O'"’ C. when freezing is started by shock. I 

This behaviour can be shown conveniently with the help of the 
freezing thermometer shown in fig. 2. This consists of an ordinary # 
thermometer surrounded by a glass vessel partly filled with pure j 
boiled water. 

i. Heat of Solution.—Heat is always used up in melting § ^ 91 
a solid. The same is usually true in the case where a I 
salt is brought into the liquid state by solution in water; 
the temperature usually falls while the salt is dissolving, 
This effect is particularly striking in the solution of salt- 
petre or sodium thiosulphate in water. Fig. - 

The quantity of heat required for solution is called Thm^ometer 

the heat of solution. 

Fig. 2.” - 
Freezing 

rhermometer 

When crystals are deposited from a supersaturated solution of Glauber’s 
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salt or sodium thiosulphate (p. 66) there is a marked rise of temperature, 
analogous to that due to heat of solidification. 

5. Freezing Mixtures.—When equal parts of finely powdered ice 
and common salt are mixed, the temperature falls to —20° C. This 
large fall is due to the fact that brine (salt solution) is formed (see 
below); both constituents of the mixture pass into the liquid state, 
thus requiring a large quantity of heat, which they draw from the 
surroundings. 

6. Melting-point or Freezing-point of Solutions.—Solutions freeze at a lower 
temperature than the pure solvent, the lowering of the freezing-point being 
proportional to the concentration of the dissolv^ substance, provided this is 
not too great. The lowering produced by 1 gm. of the solute in 100 gm. of the 
solvent is called the specific depression of the freezing-point. 

Raoult showed in 1886 that the specific depression of the freezing-point of 
a solvent is inversely proportional to the molecular weight of the dissolved 
substance. Hence we can express the law of freezing-point depression as 
follows. 

The depression of the freezing-point is proportional to the number of gramme- 
molecules of the solute dissolved in unit volume, and is independent of the particular 
nature of the solute* 

The product of the specific depression 0 and the molecular weight ^ of the 
solute is therefore a constant C of the solvent, independent of the nature of 
the solute, i.e. 

p0=C. 

The value of C for water is 18*3, for acetic acid 39, and for benzene 51. 
The depression of the freezing-point provides the chemist with an important 

method of determining the molecular weight of a substance. For example, if 
1 gm. of cane sugar is dissolved in 100 gm. of water, the observed depression 
of the freezing-point is 0 — 0*054° C. Therefore the molecular weight of cane 
sugar is fji ™ C/0 = 18*3/0 054 “ 339 (cf. p. 63). (Cryoscopic * method of 
molecular weight determination.) 

When the concentration of the dissolved substance becomes greater, 
the conditions are more complicated, since it is no longer possible 
to distinguish between solvent and solute. This case arises, for example, 
in alloys. Figs. 3 and 4 show the behaviour of a copper-gold alloy 
and an iron-carbon solution. The melting-points have been plotted 
as ordinates and the composition of the systems as abscissse. The 
upper curve gives the melting-points for the corresponding compositions. 
The complicated behaviour represented by the lower curves (see 
below) cannot be discussed here. 

As can be seen from the figures, the melting-point of a metallic allay 
is in general lower than would be expected from the proportions of 
the constituents. It often lies lower than the melting-point of the 
more easily fusible constituent of the alloy. Thus, for example, the 
melting-point of an alloy of equal parts of tin and lead (soft solder) 

* Gr., hryos, froat, ice; and skopiin, to look at. 
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is at 200° C. Wood’s metal, consisting of an alloy of 1 part of cadmium, 
1 part of tin, 2 parts of lead, and 4 parts of bismuth, melts as low as 
68° C.; hence it becomes liquid in boiling water, whereas none of its 

Fig. 3.—Melting-point Diagram for the 
System Copper-Gold 

Fig. 4.—^Melting-point Diagram for 
the System Iron-Carbon 

constituents has a melting-point below 200° C. An alloy of equal 
parts of sodixun and potassium is liquid at ordinary temperature, 
although each of these metals alone is solid under the same conditions. 

7. Determination of Melting- and Freezing-points from the Cooling Curve.— 
When a liquid melt is allowed to cool, its temperature falls continuously. 
Eventually the freezing-point is reached and the substance begins to separate 
out in solid form. The temperature 
now remains constant imtil the 
whole has become solid. It then 
begins to fall once more (fig. 5). 
In this way the solidification tem¬ 
perature can be determined very 
accurately by means of the curve 
obtained from continuous tempera¬ 
ture measurements. In general, 
solutions show no such period of 
constant temperature during freez¬ 
ing. This is due to the fact that 
often when a solution freezes only 
pure solvent is deposited (e.g. pure, j-g ^—Cooling Curve for the Solidification of a 

salt-free ice from sea water); the Pure Substance 

remaining liquid therefore becomes 
more and more concentrated and shows a lower and lower freezing-point (see above). 
The horizontal lines in figs. 3 and 4 give the temperatures at which the whole 
mixture finally becomes solid. If, how^ever, the solute and solvent are deposited 
in the same proportion as in the liquid, then the concentration and fre<ving- 
point of the residual melt remains constant. Hence such a solution melts and 
solidifies just like a pure substance. A mixture of this sort is called an eutectic. 
For easily apprecia^ reasons its composition is given by the lowest point of 
the melting-point diagram (see figs. 3 and 4). In the case where one of the 
components is waier, we also speak of cryohydrates. 

8. Dependence of Melting-point upon Pressure. — The melting- 
point of a substance is not an absolute constant; it varies with the 
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pressure to which the substance is subjected. Those substances which 
contract on solidification have their melting-points raised by increase 
of pressure (§ 15, p. 153). 

Under high pressure they melt at a higher temperature than under 
lower pressure; for example, mercury under 15,000 atm. pressure 
does not melt until +10"^ C., whereas under 1 atm. it melts at -”-39° C. 
Oji the contrary, those substances which expand on freezing have 
their melting-points depressed by increase of pressure (the brothers 
Jamks and William Thomson, 1850). For instance, the melting- 
point of ice is depressed by 0*0075° C. for each 1 atm. increase of 
])ressur(‘. 

Thus wat(‘r freezes at a tempi^rature below 0° C. when under great 
pressure. It is possible to liquefy pieces of ice by means of high pressure 
in a steel cylinder. When the cylinder is opened the various pieces of 
ice are found to have formed one uniform mass (Tyndall),* since 
the pressure is thereby released and the melting-point returns to the 
normal (n'gelation*)*). 

The plasticity of ice and the formation and flow of glaciers can be explained 
(Tyndall, Helmholtz) by the fact that upper masses of icc and snow exert 
such a great pressure upon the lower ice layers that a partial melting takes place. 
The resulting water flows into the cracks and at once freezes again. This explana¬ 
tion is not a sufficient one in all cases, however; for in very cold lands the 
obsorve-d temperatures inside glaciers are so far below the normal freezing-point 
that the actual pressures arc not great enough to cause melting. Thus for 
(‘xample the internal temperature of the glaciers in Greenland is between —15'^ C. 
and -”16° C. or Humetim(?H much lower (sec Vol. I, p. 267). The ice underneath 
the blades of skates is subjected to the pressure of the skater’s weight; it there¬ 
fore molts and thus facilitates gliding. 

If a block of icc be placed in a fork-shaped stand and a piece of thin steel 
wire hung over it, with weights (each about 10 kg. wt.) at the ends, the wire will 
cut deeply into the block owing to the melting of the ice immediately underneath 
it. The water so formed flows round the wire and freezes once more to ice above 
it; thus after the wire has passed right through, the block of ice is still whole 
and solid. 

T1i(3 change of volume on solidification and the change of the 
melting-point are connected with the latent heat of fusion by the 
following equation (for the method of proving which see p. 143): 

8 ■ 0*0242 degrees/atm., 
J-i 

* John Tyndall (1820-93), studied from 1848 to 1860 at Marburg (under Bunsen) 
and in 1861 at Berlin (under Magnus); from 1863 onwards Professor of Physics at 
tho Royal Institution and at tho School of Mines in London as the successor of 
Michael Pahaday (Vol. Ill); celebrated in his day on account of his brilliant skill 
as an experimenter and his fascinatingly written popular works upon various physical 
themes; he was also a prominent supporter of mountaineering sport in the Alps. 

tliat., regelare, to freeze again. The phenomenon of regelation was discovered 
by Michael Fabaday in 1860. The name is duo to Tyndall. 
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S being the elevation of the melting-point for one atmosphere increase 
of pressure, and V2 the volumes of 1 gm. of the substance in the 
liquid and the solid states respectively, T the absolute temperature 
and L the latent heat of fusion in calories per granmie. 

The changes of melting-point caused by changes of pressure are so small that 
those corresponding to variations of citmospheric pressure are always negligible. 

3. The Processes Involved in Vaporization 

1. Determination of the Boiling-point.—In determining boiling- 
points with a thermometer the question arises as to whether this 
should be placed in the boiling liquid or in the vapour from it. It is 
found that the vapour always has the same tem])erature, provided 
that it can escape freely; but on account of su])erheating (see above) 
a thermometer placed in the 
liquid often shows very (con¬ 
siderable variations. Hence 
boiling-points may only be 
determined with the th(‘r- 
mometcr in the vapour. 
Examples of actual values: 
meremry, 35(3*7^' C.; alcohol, 
78-3" 0.; ether. 34-6^ C.; 
liquid air, —193^ C. For 
further numerical data see 
p. 6 and Table 1 (p. 289). 

2. Latent Heat of Vapor- f __ ^ 
ization.—Heat is required 
to bring a body from tlu; - - 
licjuid into the gaseous state. -I^t^tcrmination of the Latent Heat of Steam 

This is illustrated by the 
fact that a flame beneath boiling water supplies heat continuously to 
it without causing the temperature to rise above 100*^ C. Thus when 
the temperature of a liquid (we refer here only to a single pure liquid 
substance) has reached the boiling-point, it does not rise any more 
when further heat is supplied, but remains constant. The heat is 
then used up in transforming the liquid into vapour at the same 
temperature. 

The quantity of heat in gramme-calories which is required in order 
to vaporize 1 gm. of a liquid at constant temperature is called the 
latent heat of vaporization of the substance. A numerically identical 
value is obtained by expressing the quantity of heat in kilogram- 
calories and taking 1 kg. as the unit of mass. When the vapour 
condenses, the same quantity of heat is given up again (heat of con¬ 
densation) 
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Determination of the Latent Heat of Vaporization of Water,—By means of the* 
arrangement shown in fig. G the vapour from boiling water is led into a. weighed, 
quantity Wj gm. of colcl water at temperature t^ C. The branch tube at the 
lowest point of the bent tube dips in a vessel of hot water and receives the water 
which has already condensed. Suppose that the temperature of the originally 
cold water rises to ('. on account of the steam passing into and condensing in 
it, and that the final mass of water (obtained by re-weighing) is mo gm. Then the 
mass of steam condensed in the calorimeter vessel is (m^, — mf) gm. The 
corresponding latent heat has been given up to the calorimeter and cc.itents 
as heat of condenmiion. Let the latent heat of vaporization bo x cal. Then 
(mg — vifjx cal. is the quantity of heat given up by the steam in changing to 
liquid water at 100'’ 0. This condensed water then gave up (m^ — mf) (100 — t^) 
cal. in cooling from 100’’ C. to t^ 0. The calorimeter and original contents were 
heated up through {t.y — iff C., i.e. absorbed the quantity of heat ^^(t^ — 4) cal. 
Wo have therefore {m^ —* -f (m^ — m^) (100 — tf) — — ^i). Hence 

X = - 100 + 
Wo — 

Example.—The masses of water in the calorimeter before and after passing 
in the steam were m^ ™ 501 gm. and mg = 504*3 gm. respectively. The tem¬ 
perature rose from 16*45° C. to 20*53° C. Then 

* = _ 100 + 20-53 ^ - 79-5 = 540 cal./gm. 

The accurate value of the latent heat of vaporization of water is 639*1 cal. 
per gm. (Table I.) The greater part of this is used up in changing the state 
of aggregation, a relatively small fraction (amounting to 40*3 cal. per gm.) 
going to perform the work requiroAi to bring about the increase of volume against 
atmospheric pressure (p. 33). The total latent heat of vaporization is thus 
composed of two parts: (i) the actual internal latent heat of vaporization which 
brings about the molecular process of evaporation, i.e. the overcoming of the 
forces of cohesion, and (ii) the external latent heat of vaporization, w^hich goes 
to perform the external work. 

Even at ordinary temperature a liquid passes into the state of 
vapour. This vaporization takes place only at the free surface and is 
called evaporation (p. 81). Heat is also required for evaporation. 
Hence the temperature of water in an open vessel is always somewhat 
lower than that of the air. 

In many parts of the world drinking water is kept cool by storing it in porous 
vessels through which it percolates slowly. The vessel being placed in the fresh 
air, the water evaporates to some extent on the outer surface and the necessary 
quantity of heat is drawn from the surroundings, including the water in the 
vessel, which is thereby cooled. On a hot summer day the cooling effect of sprinkling 
water is well known. Liquids which evaporate rapidly at ordinary temperature 
can give rise to a very great temperature fall. The rate of evaporation of ether 
from a vessel is accelerated by blowing in air, and the cold produced may be 
sufficient to cause the vessel to freeze tightly on to the table, if the latter be 
wet. Considerable reduction of temperature renders the tissue of animal bodies 
insensitive. To produce ansesthesia during surgical operations the skin is often 
sprayed with ether or better with the even more rapidly evaporating and more 
effectively cooling methyl chloride. 

For the application in hygrometers and psychrometers see § 6, p. 86. 
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3. Effect of Pressure on the Boiling-point. — The boiliiig-pointB 
given on p. 6 and in Table I refer to the case in which the boiling 
liquid is subjected to a pressure of ^ 
one atmosphere. The values are „ 
altered by increase or decrease of B 
pressure. B 

The boiling-point of water under in¬ 
creased pressures can be determined, for 
example, in Papin’s* pot (fig. 7). This 
is a pot made of stout copper sheet and 
tightly closed witli a cover secured with 
screws. The cover carries a safety valve, 
a manometer, and an iron tube closed at 
its lower end. This tube is filled with 
mercury, into which dips a thermometer 
to determine the temperature of the in¬ 
terior. The pot is partially filled with 

Fig. 7 —Papin’s Pot Fig. 8.—Boiling-point under Reduced Pressure 

water, closed and heated with a fiame. The steam is unable to escape; it 
therefore exerts a great pressure upon the whole interior of the pot, including 
the water. This pressure can be read off upon the manometer. There is a 
simultaneous rise of the boiling-point of the water as indicated by the ther¬ 
mometer. The following table gives the observed boiling-points at different 
pressures. 

Pressure in atmospheres 1 2 3 4 5 

Boiling-point in °C. 100 121 131 144 152 
_( 

* Denis Papin (1647-1712), from 1672 assistant to Huyuens, from 1688 Professor 
at Afagdeburg. In 1681 he invented the steam cooking pot, in which food is cooke<l 
at temperatures above the normal boiling-point (100° C.). Ho also invented the safety 
valve, the modern design of which is still essentially the same as that of Papin. He 
constructed the first—though very imperfect—^steam-engine in the year 1690. 



76 CHANGE OF STATE 

Th& boiling-pomt of water under reduced pressure may b© determined with 
the apparatus shown in fig. 8. A round-bottomed flask partially filled with 
water has a thermometer inserted air-tight in its neck. The neck is also providcjd 
with a side tube which is bent upwards and then downwards again as in the 
figure. The vertical downward limb is about 1 m. long and its lower end dips 
in a vessel containing mercury. When the water is brought to the boil by means 
of a flame beneath it, the steam developed drives the air out of the tube. The 
observed boiling-point is 100° C. The flame is then removed or turned low. The 
temperature within the flask sinks, but in spite of this the water goes on boiling. 
At the same time the mercury rises up the tube. The boiling-points are read off 

\J 
Fig. Q.—Vapour 

Pressure of Water 
Fig. lo.—^Vapour-pressure 

Curve for Water 

on the thermometer and the corresponding levels of the mercury noted. The 
pressure is in each case equal to the bar^etric pressure minus the height of 
the mercury column in the tube. The following table gives the observed results. 

Pressure in mm. of 
mercury . . 760 526 355 233 149 92 55 32 

Boiling " point of 
water in °C. 100 90 80 70 60 50 40 30 

4. Vapour Pressure.—By means of the arrangement shown in 
fig. 9 it can be shown that water vapour exerts a measurable pressure 
even at low temperatxires. 

A glass tube about 1 m. long is provided with a tap, above which the tube 
widens to a small vessel. The lower end of the tube is connected by means of 
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thick-walled rubber tubing with a levelling vessel. The tube is also surrounded 
by a wider glass jacket through which water at Icnown temperature can be 
passed. In this way the whole of the inner tube is heated or cooled to a known 
temperature. By filling the levelling vessel and the rubber tubing with mercury, 
raising the former till the whole glass tube is filled with mercur^^ closing the 
tap and lowering the levelling vessel more than 760 mm., a vacuum is produced 
below the tap. When now a little water is allowed to enter this vacuum from 
the wider part of the tube above the tap, there is a sudden vaporization and the 
mercury sinks in the glass tube by an amount equal to the vapour pressure of 
the water. 

The vapour pressure is equal to the dihereuce between the 
barometric height and the height h between tiie two mercury levels 
(see figure). The following table gives the observed results. 

Temperature in °C. 
Vapour pressure in mm. 

5 10 15 20 25 30 

of mercury 6-5 91 12-7 17+ 23-8 31-8 

A gimeral idea of the relations between vapour pressure and 
temperature is best obtained from a graphical representation in which 
the temperatures are plotted as abscissa) and the corresponding vapour 
pressures as ordinates (fig. 10). The numerical data for water are 
given in Table IV (pp. 290, 291). It is seen from the curve of fig. 10 
that with rise of temperature the vapour pressure increases at first 
slowly and then more and more rapidly. The boiling-point of water 
at any pressure can be obtained from the curve and Table IV. 

The boiling-point under a given pressure 
is the temperature at which the vapour 
pressure becomes equal to that pressure. 

Thus, for example, the boiling-point 
of water under a pressure of 1500 mm. 
of mercury is 120'’ C.; for at this tempera¬ 
ture the vapour pressure is eq\;sal to 1500 
mm. of mercury. ^ 

The vapour-pressure curve for water is shown 
again in fig. 11 for temperatures between —10° 
0. and +40° C., the scale being different from 
that in fig. 10. Table V contains the corre¬ 
sponding accurate numerical data. Wc soo from 
the curve that there is evaporation producing a 
measurable vapour pressure at ordinary room temperature and even indeed at 
temperatures below 0° C. 

The vapour pressures of some other liquids are collected in Table VI (p. 291). 
The lowest row of figures gives the boiling-points at the normal atmospheric j^rcs- 
sure of 760 mm. The determination of these values can bo earned out in many 
cases with the apparatus shown in fig. 9. 

Fig. 11.—Vapour-pressure Curve 
for Water at Low Temperatures 
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6. Determination of Atmospheric Pressure from the Boiling-point.—The 
interpolation formula 

«= 100 4- 0-0375(6 - 760) 

has already been mentioned on p. 5. It expresses the boiling-point C. of 
water as a function of the barometric height 6 mm. of mercury within the range 
715 < 6 775. Given a reliable thermometer at least accurate enough to read 
correctly to 0 01° C., the equation may be used to calculate the barometric height 
from the observed boiling-point C. It has been found possible to reduce the 
limits of error in the determination of barometric pressure by this method to 

; 0-02 mm. 
The value of the gravitational acceleration g varies slightly at different places 

on the earth. It may be determined in the following way. The atmospheric 
pr(3ssurc indicated by the barometric height 6 is 0-1 hsg dynes/cm.^, where & 
is the density of mercury. Hence the same atmospheric pressure will correspond 
to (lilTenmt barometric heights 6^ and at two different places where the 
graritational accelerations are respectively g^ and g^^ These quantities will be 
connected by the equation ™ If the dependence of the boiling-point 
upon the barometric height 6^ be known from formulae or tables for one definite 
place where the gravitational acceleration is known to be then it is possible 
from a detc^rmination of the boiling-point at a second place to find the barometric 
height which would correspond to the actual atmospheric pressure if the gravita¬ 
tional acceleration were The actual barometric height at the time and place 
of the boiling-point determination being the atmospheric pressure in dynes/cm.^ 
is given by 01 h^sg^ --- ()•! 625^2- From this we obtain the unknown gravitational 
acceleration, viz. 6igj/62. In this way by comparison of the actual barometric 
height with that calculated from the boiling-point it has been possible to determine 
the gravitational acceleration at many different places on the earth’s surface— 
especially on the sea, where pendulum observations could not be carried out 
(jii account of the motion of the ship. The results have given very clear and 
unexpected information about the distribution of gravitational force on the 
earth’s surface (Heckkr, 1910), 

The method of boiling-point determination can also be used with advantage 
to obtain barometric heights on mountains, since the necessary apparatus is 
more easily portable than the very fragile mercury barometer. Such an easily 
portable apparatus for boiling-point determinations is called a hypsometer.’*‘ 
Irom the barometric height it is then possible to calculate the height of the 
mountain by means of the altitude formula (Vol. I, p. 319). 

6. Vapour Pressure of Solids.—Solids also show vapour pressures 
which vary with temperature in %, similar manner to those of liquids. 
If the vapour pressure of a solid reaches atmospheric pressure at a 
temperature below the melting-point, the substance sublimes (sub¬ 
limation-point). At the melting-point the vapour pressures of the solid 
and liquid are equal, since at this temperature both can exist together 
in equilibrium. (If the vapour pressures were not equal, the form 
with the greater vapour pressure would necessarily pass over gradually 
into the form with lesser vapour pressure.) 

The \apour-pressure curves for water and ice are shown diasrammatically 
in fig. 12. ® ^ 

Water, ice, and water vapour can exist together in equilibrium under a 

* Gr., hyjjsos, height. The method and name are due to RuoNAtrLT. 
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presaure of 4-6 mm. at a temperature slightly above 0° C. (on account of the 
alteration of melting-point by change of pressure). This point is called the triple 
point. In the varioua sections of the diagram are inscribed the stable phases 
under the corresponding conditions of temperature and pressure. In the figure 

triple point and C.P. — critical point (p. 89). The dotted curve is the melting- 
point curve for normal substances, i.e. substances which expand on melting. 

7. Boiling-points of Solutions.—Solutions boil at higher temperatures 
than the pure solvent, the elevation of the boiling-point being pro¬ 
portional to the concentration of the dissolved substance, provided 
that this is not too great. The specific elevation of the boiling-point 
is that produced by 1 gm. of the dissolved substance in 100 gm. of 

solvent. The product of the specific elevation 9 and the molecular 
weight fji of the dissolved substance is a constant C' of the solvent 
(Raoult), i.e. 

The value of C' for ether is 21, for alcohol 11*G, for benzene 27, 
and for water 5*2. 

The elevation of the boilvig-point^ of a given solvent depends only 
upon the number of gramme-molecules of solute per unit of volume, being 

independent of the nature of the solute. 

Hence the elevation of the boiling-point ia used, like the depression of the 
freezing-point, for the determination of the molecular weight of a substance. 
For example, 4 gm. of cane sugar dissolved in 20 gm. of water raise tlio boiling- 
point by 0-3r C. The specific elevation is therefore 0 (0-31 . 20)/(4.100) 

0 0156° C. Hence the molecular weight is 

jx C'/e 5-2/0-0165 =- 335 (cf. p. 03). 

PSlnillioscopic * method of molecular weight determination.) 

* Fr., to boil. 
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Many salts {electrolytes) show considerable deviations from Raoult’s law 
both with regard to depression of the freezing-point and elevation of the boiling- 
point. These deviations are particularly marked when these substances are 
dissolved in water. They are explained, like the deviations from Van’t Hoffs 
law (p. 63), as due to a splitting up of the salt molecules on solution into two 
or more (electrically charged) parts, known as ions (electrolytic dissociation). 
(See Vol. 111.) 

8. Distillation.—In distillation a liquid is changed into vapour by 
addition of lieat, and the vapour is then brought once more into the 
liquid state by cooling. 

Since the percentage composition of the vapour from a mixture 
is in general different from that of the liquid, distillation may be 
used with advantage to separate two liquids of different boiling-points 

Fig. 13.—Distillation Apparatus: Distilling Flask, Licl>ig Condenser and Receiver 

or to separate a liquid from a solid dissolved in it. Ordinary spring 
water or tap water contains a number of salts in solution. When 
it is boiled in a vessel, pure water passes off as steam and can be 
condensed by cooling with cold water and collected in a separate vessel. 

Fig. 13 shows the kind of distillation apparatus usually employed in the 
laboratory. The liquid is brought to the boil in the distilling flask on the right 
of the figure. The temperature of the vapour can be read off on the thermometer 
inserted as shown. Then the hot vapour is cooled by means of cold water in the 
Liebig condenser, near the lower end of which it becomes liquid. The condensed 
product (distillate) is collected in the receiver. The direction of flow of the cooling 
water is opposite to that of the vapour, a method by which the cooling effect of 
the water is most efficiently utibzed and the lowest possible final temperature 
of the vapour attained {counter-current 'principle). 

If the distilling flask contains a mixture of two liquids with different boiling- 
points, e.g. alcohol and water, practically only alcohol passes over when the 
boiling-point of alcohol is reached. The temperature rises slowly, however, and 
water begins to pass over along with the alcohol. The higher the temperature, 
the greater the proportion of water distilling. Finally, when the boiling-point 
of water is reached, practically pure water passes over. The distillates for different 
temperature ranges arc collected separately. In this way a number of different 
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liquid mixtures (fractions) is obtained, those collected at the lowest temperatures 
being richest in alcohol. By repeating this partial separation of alcohol from 
water several times for each fraction, an almost complete separation of the two 
substances is eventually attained (fractional distillation). 

In many cases a complete separation of two substances by means 
of distillation is not possible, because of tbe formation of mixtures 
of definite percentage composition which behave like pure substances 
in having constant boiling points. 

4. The Behaviour of Vapours 
1. Evaporation in Space filled with Gas.—^T'rom the fact that the water 

in an open vessel gradually disappears we conclude that water (and also other 
liquids) must vaporize at room temperatiiro in a space already filled with gas. 
The water evaporates, i.e. passes over into vapour, w liicli mixes with the air. 
In this case the formation of vapour takes place only at the free surface. In 
boiling, however, it takes place for the most part in the 
interior of the liquid, namely at those points where', the 
supply of heat first causes the vapour pressure to become 
equal to the pres.suro to which the liquid is Ruhject(3d. Thus 
iiormally boiling begins at the bottom of a heated vessel. 
The vapour pressure in the air-free space above a liquid 
has already been discussed on p. 77. 

The vapour from a liquid also juoduccs a x>res- 
sure in a space filled with gas. Tlirough the doubly 
bored stopper of a glass bottle (fig. 14) pass one 
glass tube with a tap and another which is con¬ 
nected by means of rubber tubing with a mercury 
manometer. A >small quantity of ethyl ether, con¬ 
tained in a small thin-walled glass bulb, is introduced 
into the bottle, the tap is closed and the bulb 
broken by shaking the bottle. The ether escapes 
out of the bulb and evaporates. The corresponding 
vapour pressure causes the manometer to rise, at first rapidly and 
then more and more slowly. After a time a constant final state is 
reached, in which the excess pressure as read off on the manometer 
is equal to the vapour pressure of the ether. It is found that this 
vapour pressure is exactly equal to that which would have been exerted 
(Table VI, p. 291) if the vapour had been formed in an air-free space. 

The ^pressure of the air merely retards the vaporization; the partial 
pressure of the vapour after equilibrium has been attained is independent 
of the presence of other gases or vapours. (Dalton’s law, 1807.) 

2. Unsaturated Vapours.—In the experiment shown in fig. 9, 
p. 76, the first drops of liquid introduced into the air-free space above 
the mercury evaporate completely. When enough liquid has been 
introduced, however, a liquid layer is formed on top of the mercury. 
The space has then taken up all the vapour which it is fible to take up 

( E 5S6 ) 7 

Fip. 14.—Addition ul 
Partial Pressures 
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at the temperature of the experiment, and is said to be saturated with 
vapour. The vapour is also referred to as saturated vapour. On the 
other hand, when the amount of liquid introduced is so small that it 
has evaporated completely, and when subsequent liquid additions 
will also evaporate, the vapour is said to be unsaturated. In this case 
it behaves similarly to a gas, obeying Boyle’s law approximately when 
the levelling vessel is raised or lowered. But from the moment when 
the raising of the levelling vessel causes the vapour to begin to con¬ 
dense, the pressure of the vapour (which is now saturated) remains 
constant. Further raising of the levelling vessel causes more vapour 
to condense. Lowering causes the condensed liquid to evaporate until 
it has all become vapour; then further lowering causes the vapour to 
become unsaturated. 

When a vessel full of saturated vapour is heated, it becomes un¬ 
saturated; for the higher the temperature, the more vapour the given 
space can take up. Hence unsaturated vapours are also called 
superheated vapours. The farther the temperature of a superheated 
vapour is from the condensation point, the more nearly will the vapour 
obey Boyle’s law (p. 12 and Vol. I). Hence the volume and density 
of a vapour at any desired temperature can be calculated by means of 
Boyle’s and Gay-Lussac’s laws from the corresponding values deter¬ 
mined at a known pressure and a known temperature lying far above 
the boiling-point. 

3. Vapour Density.— 
The vapour density of a gas or an unsaturated vapour is that mass 

whose volume at O'’ C. and 760 mm. pressure, as calculated by the Boyle- 
Gay-Lussao law, would be 1 cm.^. 

By dividing the density by the mass of an equal 
volume of air or of hydrogen, we obtain the vapour density 
relative to air or relative to hydrogen respectively. In 
chemistiy the vapour density is often defined as the 
density relative to hydrogen as unity. 

Dumas’ * method of determining vapour density is as 
follows. A few cubic centimetres of the liquid (e.g. ether 
or benzene) whose vapour density is to be determined is 
introduced into a thin-walled glass bulb (fig. 16) with 
a finely drawn out point. The weight Wj of the bulb 
has been previously determined. The bulb is heated in a 
bath up to a temperature at which all the liquid evaporates, 

vapours developed drive all the air out of the bulb. 
Density Detennination. When no more liquid remains unevaporated, the fine 

point of the bulb is sealed off, the temperature t of the 
bath and the barometric height h being noted simultane¬ 

ously. The bulb is then removed from the bath and its weight Wg determined. 
The point is then broken off under water, which enters and fills the bulb. 
Let the weight of the bulb full of water be Wg. Then (Wg - Wj) gm. is 
the weight of the water required to fill the bulb, i.e. is equal to the volume 

♦Jean Baptiste Dumas (1800-84), famous chemist at the Sorbonne in Paris. 



THE BEHAVIOUR OF VAPOURS 83 

V in cm.^ of tho vapour when tho bulb was sealed off. The volume reduced 
to 0° C. and 760 mm. pressure is therefore 

W,-Wi 6 
® 1 + a< ■ 760’ 

The weight of tho bulb filled with air is the weight of tho air contained in it 
is (W3 — Wi). 0*001293 gm., therefore the weight of the bulb alone (as weighed 
in air) is 

Wi - (W3 -- Wi). 0*001293 gm. 

Hence the weight of vapour fiUing tho bulb is 

W - W2 - [Wi - (W3 - Wi). 0-001293J gm. 

From this we obtain the vapour density d W/Vq. Tho vapour density relative 
to air may be found by division by 0*001293. 

Victor Meyer’s * apparatus for the measurement 
of vapour density is shown in fig. 16. It consists of 
a long glass tube with a wider cylindrical bulb B 
blown on its lower {ipd. The whole of the tube with 
tlie exception of its topmost parts is surrounded by a 
wider cylindrical jacket, in which a liquid F is boiled 
by means of a flame luidemeath it. A few metal 
snippings are introduced into this outer jacket t('‘ 
prevent superheating. The vapour keeps the whole 
inner tube at tho boiling-point of F. The upper end 
of the inner tube is provided with two side tubes. 
Of these R is a narrow tube whoso end dips in a 
pneumatic trough, wiiilo S is closed by moans of 
a piece of rubber tubing through which a glass rod is 
pushed until it touches tho wall of tho vertical tube. 

Tho substance whoso vapour density is to be 
determined is contained in a small bottle K, which 
is introduced through tho upper end of tho vertical 
tube. The glass rod pushed through S prevents the 
bottle from falling down to B. The upper end of tho 
vertical tube is then closed with a stopper. 

Tho whole apparatus is heated up until no more air bubbles escape from tho 
side tube R. The glass rod is then drawn out a little bo that tho small bottle K 
falls ihto the bulb B. The liquid contained in it evaporates at once and drives 
out a part of the air from the inner tube. The air thus displaced is collected in 
a measuring jar M inverted over tho end of tho tube R. The volume of tho air 
collected is equal to tho volume of the vapour produced by the evaporation of the 
substance from the bottle. Since the volume of the air is measured after it has 
cooled down to room temperature in passing out of tho heated tube, it is not 
necessary to know the temperature at which the evaporation of tho substance 
took place. For tho definition of vapour density was based upon tho assumption 
that the vapour behaves like a perfect gas, i.e. that the volume of tho vapour 
decreases with fall of temperature to the same extent as tliat of air. Room tem¬ 
perature and the pressure under which the air is collected must be noted. All 
the quantities required for the calculation of the vapour density are then known. 

On account of its simplicity the Victor Meyer method of vapour density 
determination is much used by chemists. 

♦Victor Meyer (1848-97), Professor of Chemistry at Heidelberg from 1889 as 
successor to BuifSEN. 
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4. Vapour Density and Molecular Weight.—^According to Avogadro’s 
law (p, IG) equal volumes of two different gases xmder the same con¬ 
ditions contain equal numbers of molecules. Hence the weights of the 
two equal volumes are in the ratio of the respective molecular weights. 

Molemlar weights are in the same ratio as vapour densities. 
Hence one of the methods of determining molecular weight is based 

on the measurement of vapour density. Measurements of this kind 
are therefore important in chemistry. 

Example.—Ifc is knoT;\Ti from chemical analytical methods that the elements 
carbon and hydrogen are contained in benzene, in tho ratio 12 : 1 by weight. 
Henco from tho known atomic weights (C ™ 12 and H = 1) we deduce that the 
chemical formula for benzene is where n is an integer. A determination 
of tho vapour density of benzene relative to hydrogen gives tho value 39. Now 
tho molecular weight of hydrogen is 2; henco tho molecular weight of benzene 
must be 2-39 ^ 78. From this it follows that tho formula of benzene is CgHg, 
for only with tho value = G can tho molecular weight bo 78. 

For other methods of molecular weight determination see pp. 70 
and 79. 

An interesting method of molecular weight determination from the surface 
tension is that of Eotvos (1886). Let V be tho volume of a gramme-moleculo of 
tho liquid, a tho surface tension, and T tho absolute temperature. Then the 
energy required to produce tho surface S of one gramme-molecule is aS, and 
therefore a numerical multiple of According to Eotvos the equation 

aV2/3 == 0*227(To - 1\) 

is fulfilled, where is tho temperature at which a = 0, i.e. the temperature 
at which gas and liquid are identical. This is approximately the critical tem¬ 
perature (p. 89). Since V = [i/s, where (jl is the molecular weight and s tho 
density, it is possible to calculate p. from the observed surface tension, tempera¬ 
ture and density. 

5. Humidity 

According to Dalton’s law (p. 81) a space filled with a gas can 
go on taking up vapour from a liquid until the partial pressure of the 
vapour becomes equal to the vapour pressure which the saturated 
vapour would exert if it alone vrere present in the space. From this 
it follows that the presence of air above the surface of water merely 
has a retarding effect on the vaporization, the same saturation state 
being eventually reached in presence and absence of air, provided 
that sufficient time is allowed. 

If tho atmospheric air were always at the same temperature and 
always at rest, this saturation state would long since have been reached 
and would remain undisturbed. Actually, however, there are always 
air currents and changes of air temperature. When the temperature 
of the air falls so much that the actual amount of water vapour present 
exceeds the saturation amount, the excess is deposited as mist and 
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water drops. Wlieri the temperature rises again the air is no longer 
saturated. A considerable time elapses before the saturation state is 
once more attained. It follows, therefore, that the atmosphere is not 
in general saturated with water vapour. 

Since the quantity and pressure of a saturated vapour in an air* 
free space increases with rise of temperature, the quantity of vapour 
required to saturate a space filled with air also increases in the same 
way. When the saturation state is reached, i.e. when the space filled 
with air has taken up the greatest possible amount of water vapour, 
the corresponding partial pressure of this vapour is called the satura¬ 
tion pressure. It is equal to the vapour pressure at the same tem¬ 
perature (see figs. 10 and 11, p. 76). The difference between the 
saturation pressure and the actual partial pressure may be called the 
saturation deficiency. 

The water-vapour content of the air is called the humidity. It is 
expressed in grammes of water vapour per 1 m.^ of air. This is the 
absolute humidity and may be denoted by /. The ratio oi the 
absolute humidity to the maximum possible content of water vapour 
in the saturation state at the same temperature is called the relative 
humidity. It is usually expressed as a percentage. 

Table V eontains the saturation pressures p and the corres})onding niasses 
of vapour per 1 for temperatures between —10° C. and --1-29° C. We boo frf)in 
the table that 1 m.® of air at 20° C. can only take up 17*3 gm. of water, and that 
the partial vapour prcKSSuro of the water vapour is then 17-5 mm. This is tlicre- 
foro the saturation preswsuro at 20° C. If now the vapour pressure of the water 
vapour actually present has been found to bo 12-8 mm., wo soo from the table 
(for 15° C.) that this corresponds to a content of 12-8 gm. per m.'^. (Tho identity 
of the numerical values is fortuitous.) The absolute humidity is therefore 12-8 
gm./m.^. Tho difference 17*5— 12-8 = 4*7 mm. is the saturation deficiency, 
and tho quotient 12*8/17*3 — 0*74 74 per cent is the relative humidity. If 
/o is the saturation humidity, p^ tho saturation pressure at the temperature con¬ 
sidered, / tho actual absolute humidity and p the actual partial vapour pressure, 
then f/fo is the relative humidity. At ordinary temperatures it is also approxi¬ 
mately equal to p/Po- 

When the air becomes cooler, tho absolute humidity does not change at first; 
but tho saturation pressure becomes smaller and hence tho relative humidity 
increases. In tho example given above the absolute humidity becomes equal 
to tho saturation humidity when tho temperature has fallen to 15° C. Tho satura¬ 
tion deficit is then zero and the relative humidity 100 per cent. 

If the temperature falls still farther, a part of the water vapour 
condenses to mist or water drops, which form in particular upon dust 
particles (p. 67) (condensation nuclei) or other solid bodies. 

The temperature at which the condensation of water vapour begins 
is called the dew-point. 

The dew-point is therefore the temperature at which the actual vapour pres¬ 
sure would be the saturation pressure. In tho example given above the dew¬ 
point is 15° C. If we know the dew-point, we can find tlio corresponding satura- 
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tion pressure and liiimidity from Table V; these are then respectively equal to 
the actual partial water-vapour pressure and absolute humidity of the atmo¬ 
sphere. 

Measurement of Humidity. Hygrometers.*—The theoretically simplest 
measurement of humidity consists in passing a certain volume of air, say 1 m,®.. 
through a tube filled with a very hygroscopic substance (calcium chloride, con¬ 
centrated sulphuric acid or phosphorus pentoxide), and wcigliing the tube before 
and after (absorption or chemical hygrometer). This kind of determination 
is very inconvenient to carry out, but it is the standard method for fundamental 
scientific measurements and the construction of tables. 

Another method equally simple in theory is that in¬ 
volving the direct determination of the partial pressure of 
the water vapour present. This is done by measuring the 
pressure exerted by a certam quantity of atmospheric air 
in a closed vessel and then absorbing the water vapour 
completely by means of hygroscopic substances and measur¬ 
ing the pressure again. This method is also inconvenient 
to carry out. 

Dew-point Hygrometers.—The basic principle of dew¬ 
point hygrometers for the determination of the dew-point 
is that a part of the instrument, 
whose temperature can be measured 
easily, is cooled down until it be¬ 
comes covered with a deposit of 
moisture, i.e. until the dew-point 

Fig. 17.—Daniell’s Dew¬ 
point Hygrometer 

Fig. 18.—I^ambrccht 
Dew-point Hygiometer 

Fig. 19.—August’s Psy- 
chrometer or Wet and 
Dry Bulb Hygrometer 

is reached. The oldest (and least dependable) dew-point hygrometer is that 
of I)AKiELi,t (fig. 17). A U-shaped glass tube BC with bulbs at each 
end is evacuated, filled with ether and ether vapour and sealed off. The 
bulb B on the shorter limb is covered with light cloth; the bulb A on the 
longer limb is gilded on the outside and fitted with a thermometer 
inside. Liquid ether is poured gently on to the cloth surrounding the bulb 
B. It evaporates and thus cools down the ether vapour inside the tube 
and causes it to condense. There is a decrease of pressure inside B, as a result 

* Gr., hygrds^ wet. 

t JoH2? Eredeeiok: Baeiell (1790-1846), English physicist, Professor of Chemistry 
in King’s College, London, and inventor of Baniell’s cell, described his hygrometer 
in 1820. 
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of which the ether inside the gilded bulb A evaporates. Thus the bulb A is also 
cooled. Its temperature is read off at the moment when it becomes dimmed 
with a film of moisture, and then again when the deposit of moisture disappears. 
The mean of the two readings is the dew-point. The corresponding absolute 
humidity is read off from Table V, and the relative humidity can then, bo calcu¬ 
lated. 

A more recent form is the Lambrecht dew-point hygrometer (fig. 38). This 
consists of a thin-walled, highly-polished metal box into which pass a ther¬ 
mometer and a tube. The box is filled with ethyl ether. Air is blowm intc» the 
ether by means of a rubber bulb, the ether evaporates quickly, the box is cooled 
down. It becomes coated with a film of moisture at the dew-point, which can 
be read off on tho thermometer. The metal box is surrounded by a flange of the 
same metal, so that tho difference betw^cen the dimmed box and the bright flange 
may bo easily observed. 

August’s Psychrometer * (1825) or Wet- and Dry-bulb Hygrometer.—This 
apparatus (fig. 19) consists of two exactly similar thermometers. The bulb 
of one of these is wrapped roxmd with light cloth. This is moistened with water, 
which evaporates and withdraw's heat from the thermometer, thus cooling the 
bulb. Tho farther tho air is from tho saturation state, tho faster the evaporation 
of the water and the greater tho cooling. Hence tho difference of the readings of 
the two thermometers gives a measure of tho saturation deficit and hence also 
of tho absolute humidity. If t is the temperature of the dry-bulb thermometer, 
t' that of tho wet-bulb thermometer, f' tho saturation humidity for the tempera¬ 
ture t' and h the barometric height, then the required absolute humidity is given 
by the equation 

F = /' -- Ah{t — t'). 

Here A is a constant, if i' is above 0° C., A may be put equal t(3 0-0008; when ^ 
is below 0° C., A 0*00068. In practical use the values of F are obtained from 
special psychrometric tables. 

If tho air is still the layer immediately 
surrounding the wet bulb may easily become 
saturated with water vapour and thus make 
tho observed humidity too great. Tho ther¬ 
mometer or the air must therefore bo set 
in motion before the reading is taken. Tliis 
can be done most simply by arranging both 
thermometers in a common frame and whirl¬ 
ing the whole about 100 times in a circle 
at the end of a strong string (centrifugal 
psychrometer), or by enclosing both ther¬ 
mometers in a case through which air is 
constantly sucked by means of a small 
clockwork fan (aspiration psychrometer of 
AsSMAN^r.t) 

Hair Hygrometer.—In this hygrometer 
(fig. 20) use is made of tho fact that organic 
materials will take up moisture from humid 
air and thereby change in size. A stretched 
human hair freed from grease becomes longer 
in moist air. If such a hair bo fixed at one 
end and wound round the axis of a pointer, 

* Gr., paychrdsy cold. 

fRiCHAEDT Absmann, died 1918, Director of the Aeronautical Observatory at 
Lindenberg, 191&-18 Professor at Giessen. 

Fig. 20.—Hair Hygrometer after Koppe 
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tho latter will be moved when the length of the hair varies.* The relative humidity 
can thus be read off directly. The scale must be calibrated empirically. The read¬ 
ing is convenient; but the results are not completely dependable. Since hair 
hygrometers are very simple and have the remarkable property of giving the 
relative humidity practically independently of the temperature, they are also 
much employed in conjunction with registering apparatus in the meteorological 
investigation of the upper atmosphere (balloon and kite experiments). 

The same principle is embodied in the weather indicators made in the form of 
a little house, at the top of w^hich is fixed a catgut string carrying a cross beam at 
its lower end with two small figures upon it. When the relative humidity is great, 
the catgut string turns in one direction; when the relative humidity is small, 
it turns in tho other. 

6. The Liquefaction of Gases 

When the levelling vessel of fig. 9, p. 76, is raised at constant 
temperature, the difference of level in the two tubes, i.e. the vapour 
pressure, remains constant from the moment at which the first traces 
of condensed liquid are visible above tho mercury. If now the tem¬ 
perature of the jacket be raised, the liquid vaporizes once more; but 
the vapour can be liquefied again by higher pressure. The liquefaction 
of a vapour begins as soon as the external pressure reaches the satura¬ 
tion vapour pressure at the temperature of the experiment. 

There arc two general methods of liquefying a gas, namely, lowering 
of temperature and increase of pressure. Many substances (e.g. carbon 
dioxide, sulphur dioxide, ammonia, &c.) which are gaseous at ordinary 
temperature and pressure can be liquefied by cither method. Other 
gases, in particular hydrogen and the constituents of the air, cannot 
be liquefied at ordinary temperature even by a pressure of 3000 atmo¬ 
spheres. 

Andrews f explained this in 1869 by subjecting carbon dioxide 
to increasing pressures at different constant temperatures and investi¬ 
gating carefully the attendant phenomena. 

At 13-P C. the volume of the carbon dioxide under 47-5 atm. pressure was 
13*13 . 10”^ of the original volume. Further compression caused further decrease 
of volume; at 48*8 atm. j)rcssure the volume was 12*4.10"® of tho original. 
Liquefaction then began and there was a continuous decrease of volume to 
2*1. 10”® of tho original, tho pressure remaining constant at first and then finally 
rising to 60 atm. All the carbon dioxide was now liquid. A further increase of 
pressure to 100 atm. only decreased the volume to 1*96.10"® of tho original. 

In fig. 21 the low^est dotted cuive is the corresponding isotherm (p. 15) of 
carbon dioxide for 13*F C. The isotherm for 21*5° C., as observed by Andrews, 
is also shown. Both isotherms have the common property of running almost 

* The hair hygrometer was first described in 1783 by Horace de Satjsstjre (1740- 
99). 

t Thomas Andrews (1813-85), Irish chemist and physicist, Vico President and 
Professor of Chemistry at Queen’s C-oUege, Belfast, from 1845 to 1879. Awarded tho 
Royal Society medal in 1844 for work upon the heat developed in chemical reactions. 
He is famous chiefly, however, on account of his work in connexion with the lique¬ 
faction of gases. 
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horizontally for a considerable volume range, namely in the region B in \vhicli 
liquefaction takes place, and where the carbon dioxide exists in both gaseous 
and liquid states side by side. 

The horizontal part of the isotherm for 21*5° C. is shorter than that of the 
isotherm for 13T° C. As the temperature rises the horizontal part becomes shorter 
and shorter. The isotherm for 31-F C. no longer has any horizontal section, i.e. 
there is a continuous decrease of volume with increase of pressure. In this case 
no liquefaction of the carbon dioxide occurs, no matter how much the pressure is 

? 

right) arc isothcrmals of a perfect gas. 

increased. There is only a point of iiiflcctioii in the isotlicnu indicating the point 
at whi(di condensation would take place at lower temperatures. Willi further 
increase of temperature the inflection also disappears more and more complotely. 
Tn the isotherm for 48-F C. there is no trace of it. 

For ]jiirposcs of comparison some isotherms of a perfect gas for the same 
t emperatures are shown to the right of the diagram. Wo boo that carbon dioxide 
is very far from obe^dng the ideal gas laws under these conditions. This is the 
case in general for ail gases in the neighbourhood of their condensation points 
or imder high pressures (see next section). 

The temperature at which the horizontal part of the curves just vanishes is 
called the critical temperature, and the point at wdiich the isotherm for this 
temperature touches the curve bounding the region B of coexistence of liquid 
and gas is called the critical point. This is the highest point of the region B. 

The whole phase diagram of carbon dioxide is divided into two essentially 
<iLffcrcnt regions by the isotherm for the critical temperature. Above the critical 
temperature in the region A no liquid state is possible for carbon dioxide even 
under the greatest pressures. Below the isotherm for the critical temperature 
every isotherm passes from a region C in which the carbon dioxide is completely 
gaseous, through a region B in which it is partly ga^seous and partly liquid, and 
finally into a region B in which it is completely liquid. 
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The most important result of Andrews’ investigation is the fol¬ 
lowing: 

For every vapour or gas there exists a critical temperature above which 
liquefaction by pressure is impossible. 

Thus the region of existence of the li(Juid state vanishes altogether 
above the critical temperature (cf. fig. 12, p. 79). 

Below it, at a given temperature the substance is gaseous at low 
pressures, then at a higher, practically constant pressure it passes, 
through a region of coexistent gaseous and liquid states, becoming 
completely liquid when the pressure is still further increased. Tlie 
critical temperatures of some substances are given in Table \^n 
(p. 292). 

The phenomena connected with critical temperature can be con¬ 
veniently observed in a sealed glass tube partly filled with liquid 
carbon dioxide. At ordinary temperature the division between the 
liquid and gaseous carbon dioxide is sharp. When the tube is warmed 
in a water bath, however, the division vanishes completely at 31° C. 
with the appearance of a peculiar opalescence (see p. 141); for at and 
above this temperature carbon dioxide can no longer exist in the liquid 
state. 

The vapour pressure at the critical temperature is called the 
critical pressure (Table VII). 

When the existence of a critical temperature and the nature of the phenomena 
connected \nth it had been recognized, it also became clear why in many cases 
the previous attempts to liquefy gases by pressure had failed: the attempts hati 
been made at temperatures above the critical temperatures. After Andrews' 

investigations CAmLETET in Paris and Pictet in Geneva (1877) first succeeded 
in liquefying the constituents of the air by using low temperatures. Later followed 
the liquefaction of hydrogen by Olszewski (1895) and J. Dewar (1898), who 
was the first to liquefy large quantities. Finally in 1908 Kamerlingh-Onnes also 
succeeded in liquefying helium at Leiden at a temperature of — 268*71® C. Now¬ 
adays, since Linde of Munich has made possible (1895) the production of low 
temperatures by the method described in § 6, p. 109, the liquefaction of gases 
no longer presents any difficulties, 

7. Van der Waals’ Equation of State 
As is seen from fig. 21, the volume at a given pressure is much smaller for 

carbon dioxide than for a perfect gas (dotted curve at the top of the figure to the 
right). Thus a given pressure is able to produce a greater compression in the case 
of carbon dioxide than in the case of a perfect gas. It is plausible to assume that 
the reason for this may lie partly in the molecular forces of cohesion, which were 
regarded as negligibly smaU in the derivation of the laws for perfect gases. A 
further assumption made in the derivation of the ideal laws was that the space 
actually occupied by the molecules themselves is negligibly small in comparison 
with the volume of the space in which the gas is coni^ed. The error introduced 
by this assumption must become noticeable under high pressures, when the gas 
is compressed to a small fraction of its volume at atmospheric pressure. For the 
purposes of the present treatment we may regard the molecules as rigid elastic 
spheres. Thus even when they are packed together as closely as possible, the gas 
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will still occupy a certain volume b. In addition the outward pressure of tbo gas 
upon tho walls of tho containing vessel, which has been calculated exclusively 
from the rectilinear velocities of tho molecules, will be decreased by the inter* 
molecular forces of attraction. These arc the same forces with w^liich w'c have 
already become acquainted as forces of cohesion in the case of denser molecular 
disposition. The effect of such forces of attraction vanishes on the whole for mole¬ 
cules in the interior of the space in which the gas is confined. It becomes apparent, 
however, at the boundaries, as an inward attraction upon tho surface molecules. 
Hence the total effect is the same as if tho external pressure p upon tho gas w^cre 
increased by an amount a. Now on the one hand a is proportional to the number 
of attracted molecules per unit area of the boundary suilacc. Hence it must 
be proportional to the total number of molecules per unit volume, and therefore 
inversely proportional to tho volume V of tho gas. On tho other hnnd, a is also 
proportional to the number of attracting molecules, i.e. proportional to the 
number of molecules per unit volume and again (for a second reason) inversely 
proportional to tho volume V. Wo may tJiercfore ^vrito a - u/V^, w here a is a 
constant. Since tho gas molecules are of finite size, tho tot al volume V ai. thcii* 
disposal must be diminished by the amount b in order to obtain the free volume 
to which the Boyle-Gay-Lussac law refers. As a result of these considerations 
VAN DER Waals * modified the Boyle-Gay-Lussac lawpV = vRT by tho addition 
of two terms, thus setting up tho equation of state of real gases which is kno'wn by 
his name: 

(V-b) (^ -1 ^)-^vBT. 

It has been found to hold well for many gases. It is especially important 
because it does not break down for the transition from the gaseous to the liquid 
state, and permits of the calculation of the critical temperature and colicsioyi 
pressure of Hquids. Tho constants a and 6 have definite specific values for 
each gas. Taking 1 m. of mercury as the unit of pressure and tho volume of 
1 kg. of gas at 0° C. and 1 m. mercury pressure as the unit of volume, and substi¬ 
tuting V = in the above formula (p ~ molecular weight), wo obtain tho 
following mean values of a and b: 

Air: a = 0*0037, b = 0*0026; 
Carbon Dioxide: a = 0*0115, b = 0*003; 
Hydrogen: a; = 0, 5 — 0*00069. 

According to Daniel Berthblot (1903) an equation of state 

(V-6)(2) + ^,) = vRT 

is in better agreement with observation at very high pressures and high tempera¬ 
tures. Here the cohesion pressure a = a/TV^ is inversely proportional to the 
absolute temperature. A corresponding equation for carbon dioxide had been 

previously proposed by Claxtsitjs. 

* Johannes Dietrich van deb Waals, 1837-1923, Professor at Amsterdam frojn 
1877 onwards, formulated his equation of state in 1873. He was Nobel prize-winner 
in 1910. 



CHAPTER IV 

Thermodynamics 

1. First Law of Thermodynamics 
It lias already been explained in detail above (p. 35 et seq,) that 

heat must be regarded as a form of kinetic energy, namely, the kinetic 
energy of the random motion of the molecules. A quantitative trans¬ 
formation of mechanical work into heat is possible, and the equivalence 
of work and heat forms first law of thermodynamics. Confining our¬ 
selves to mechanical and thermal changes, the equation 

dQ — K(d!U + jpdN) 

of p. 34 states that the quantity of heat cZQ developed or used up is 
equivalent to the change of internal energy of the system under con¬ 
sideration together with the external work pdV performed by or upon 
the system. We will consider below the nature of this equivalence in 
certain special cases. 

2. Adiabatic Changes of a Gas 
1. The Relationship between the Specific Heats.—To calculate the specific 

heat Crp of a gas at constant pressure we transform the general equation for c 
(p. 34) by means of the equation of state (p. 16) for unit mass of a gas, viz. 

pY vRT, 

where v is the number of gramme-molecules contained in unit mass of the gas. 
For this purpose wo differentiate the last equation with regard to T and obtain 

<’S+ 

Wo then substitute the value for pdYjdT from this equation in the general equa¬ 
tion for c, obtaining 

c “ K vR — 

The pressure •p of the gas being constant, we have dpIdT = 
of the specific heat of the gas at constant pressure becomes 

/dV 
vR K ^ + KvE. 

dT 

92 

: 0 and the value 

8ince now (p* 34) 
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we have c,, -j- KvR 

or — KvR. 

2, Poisson’s Law. -If we assume tie correctness of R. Mayer’s 
calculation (p. 30) of the mechamcal equivalent of heat from the 
difference of the specific heats of a gas at constant pressure and con¬ 
stant volume, we can deduce that a gas must become hotter by com¬ 
pression and cooler by expansion, provided that these changers are 
carried out without heat being supplied to or withdrawn from the gas. 
In fig. ] 7, p. 30, the air has a greater heat content in the state ABEF 
than in the state ABCD. Hence if it be brought by pressure from the 
former state into the latter, its temperature must rise. 

This exporiment is actually carried out in the case of the pneu¬ 
matic tinder box. A cyUndrical tube (fig. 1), generally made of 
glass, is closed at one end with an air-tight cap and at the other 
with an air-tight movable piston. At the end of the piston there is a 
small hollow to receive the tinder. If the piston bo forced rapidly 
into the cylinder by the application of great preasuro and then 
immediately withdrawn, it is observed that the tinder has ignited. 
The temperature of the air has been raised by the compression to 
the ignition point of the tinder. 

When a gas in a closed space is subjected to a change of j,. ^ 
pressure, its temperature being kept constant by simultaneous pneunmn 
supply or withdrawal of heat, the change is said to be iso- 
thermal. Boyle’s law, pY const., holds for such isother¬ 
mal changes, p being the pressure and V the volume of the enclosed gas. 

On the other hand, when the walls of the enclosure are impervious 
to heat, so that no heat can either enter or leave the gas, every change 
of pressure is accompanied by a change of temperature. This kind of 
change is said to be adiabatic.* 

According to Boyle’s law the pressure of a gas is doubled when its volume is 
compressed to a half, say in the pneumatic tinder box by pushing in the piston. 
This is actually true, provided that the compression bo carried out so slowly that 
the» gas is all tho time in temperature equilibrium with the surroundings. If, 
however, tho compression to half tho original volume is carried out very rapidly, 
i.e. adiabaticaUy, the pressure wiU bo more than doubled on account of tho simul¬ 
taneous rise of temperature. 

For adiabatic changes we have Poisson’s law (1882) ')*, 

pYy ™ const., 

in place of Boyle’s law. Here p is the pressure and V the volume as 
before, and y == c^/c^ is the ratio of the specific heats of the gas. 

3. Proof of Poisson^s law.—Fig. 2 shows three different conditions 0, I, 

♦ Gr., a, not; dia, through; batos, passable. 
fS. D. Poisson (1781-1840), one of the greatest of French scientists, remarhahlo 

for his versatility. He made important discoveries in all branches of pure and 
applied mathematics. 
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II, of a certain mass m of gas enclosed in a cylinder fitted with an air-tight 
movable piston. In the first condition O the gas has the volume Vq at a pressure 
Pq and absolute temperature Tq. A certain quantity Q of heat is added to the 
gas, the piston being held at tlie same position. Thus in the condition X we have 
the same volume Vj = Vq. The corresponding rise in temperature from Tq to 

1\ is accompanied by an increase of pressure 
from po to pi. By the Boylo-Gay-Lussac 
law ^vo have 1 

Vo \K^Vo V, 
po V* p/Po 

To z 

Pi. 

% 

Po or Pi ^^ Po 
To' 

/ 

Fig. 2. 

The condition II is reached from the con¬ 
dition O by the addition of the same quantity 
Q of heat, the piston now being free to move 
and the pressure remaining constant, P2 =Po- 

Tiie volume Vq increases to Vg, while the temperature rises simultaneously from Tq 
to Tg, By the Boylo-Gay-Lussac law 

Tr Ar T, 

Making use of the specific heat of the gas at constant volume, the rise of 
temperature during the transition from condition 0 to the condition I is given by 
the equation 

Q = ^o)» 

whence Tj - To = A, i.e. Tj = T# + 

In the same way the rise of temperature (T^ — T©) can be calculated in terms 
of the specific heat Cj, of the gas at constant pressure, viz.: 

Q = rnCj, (Ta — To), 

whence T, - T„ = i.e. T, = T, + 
mcj, mCj, 

The temperatures, volumes and pressures in the three conditions O, I and II are 
given below in tabular form: 

Condition 0 I II 

Temperature .. T„ Ti == To + -^ T,= To+ 
rtWj, 

Volume .. Vo Vi -- Vo li 

Pressure .. Po o 

!! li © 

If the gas be brought from the condition I to the condition 11 by raising the 
piston without supply or withdi-awal of heat, the change is an adiabatic one. The 
following changes take place: 
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1. The volume is increased by the amount 

Vj-= 
-^0 

2. The pressure is diminished by the amount 

— T 
2h “ Pi ^ Pi ’ 

* 0 

3. Tho temperature is lowered by the amount 

Ti - T, . . Q 

Cr4> 
Dividing 2 by 1 we obtain 

.Now from the values 

Pi Pi ^ 

V, - V. 
Pi (fi J-q) 

Vi (T.-'To)' 

((see the above table) wc have 

1\ - To -- " and T., - T. Q 

= S - Y 
T;*- To ^ f ' 

'Substituting this in the equation just. obtain(‘d, it follows that 

V/ 
Pi - - 7h 
Vi-vr 

or V.-r.Yay. 
Pi ^ I 

Since — Po and Vi Vq, it follows further that 

Pi Po _ V 
^ W ' Vo " ^ 

Now imagine the two conditions I and II to differ very little from one another. 
Wo may then put 

p^-Po== ^P and Vo - V, - AV, 

thus obtaining tho equation 
Ap^_ AV 

p ^ V ■ 

Proceeding to the limit when both Ap and AV become vanishingly small, we have 

p ^ V' 

Integration gives 
]ogg^> -- — Y logpV 4- const, 

or log^ -f Y V const. 

•i^eitihg rid of the logarithms we have at once 

p\y const. 

This is Poisson’s law for adiabatic changes. 
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Dividing tho equation of Poisson^s law by the equation of state 

T 

which holds for all gases, we obtain the new equation 

= const. 

If tho equation of state be raised to the yth power and then divided by the 
equation of Poisson’s law, wo have 

-1 

Tv 
const. 

Use is made of this equation for tho calculation of tho rise of temperature accom¬ 
panying tho compression of a gas or tho fall of temperature accompanying ex¬ 
pansion. 

Aliernative Proof.—Poisson’s law can be derived directly from the first law of 
thermodynamics (p. 34) by putting dQ ~ 0; for tho essential characteristic of 
adiabatic changes is that no heat is either supplied or withdrawn. In this way 
we at onco obtain tho equation 

0: K /</U , dV\ 

In accordance with p. 34 wo substitute 

and obtain c^dT = —KpdV, 

Dividing this equation by tho equation 

vR' 

which follows at once from tho general equation of state for gases, we have 

dT _ KvR ^ 

Integration of this between the limits Tq and T on the left-hand side apd ¥<> 
and V on the right gives 

r dT _ KvR r ^ 

Jt/T " 

log^T- ]og,T„ = 
KvR 

(log,V„-log,V). 

or 

Getting rid of the logarithms, we have 

T /VAK.R 
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Now KvR 1™ Cj, — (p. 93), and hence 

Substituting this in the equation just obtained, wo have 

J "" T„V„r-i coD8t. 

This Ls a form of Poisson’s law already deduced above. 
4. Change of Temperature accompanying the Adiabatic Change of a Gas.— 

Prom the equation 
py—i 

const. 

it follows that T., {}hy-'iy 
t“ VpJ 

and hence that I’o — T, J • 

Example 1.—Consider the compression of air in the pneumatic tinder box 
from atmosplieric pressure to a pressure of 10 atmospheres. In this case 2hlP\-~ 
Let the original temperature of the air be 17"^ C., i.e. Tj - - 27.3 17 ^ 29(P abs. 
Then 

To — Ti -- 290(101-b'y — J) 290(10>-'’-'^«^ — 1) 
- ^ 290(1 *93 - 1) 290.0-93 270. 

Thus the tenq)cratiiro of the air rises by 270° C., i.e. to 287' and the tinder 
is thereby ignited. 

Example 2.—Let a quantity of atmospheric air as(Muid from the surface of 
the earth (where the barometric height is and the absolute temperature T(y) 
to the altitude h (barometric height h). It thereby cools down adiabatically by f ho 
amount 

Now according to the barometric formula for altitude (Vol. 1) we have 

h 18400 (log^o 

7 „ '' 
whence ^ 10 i»4oo. 

h 

Consequently the fall in temperaturo is 

r n 
AT == To [lO 18400 - 1J. 

Let A== 100 m. and the air temperaturo fo the earth’s surface be 17° C., 
i.e. To = 290° aba. Then 

AT 290(10-0 00156 _ 1) = --l OI, 

i.e. the temperaturo faJls approximately 1° C. 
In the above calculation wo have assumed that the air is perfectly dry. For 

damp air the conditions are somewhat different. We will suppose that the relative 
humidity is about 60 per cent. In this case the temperature falls at first in strict 
accordanoo with the equation obtained above. During this phase the absolute 

CE636) 8 
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humidity remains constant, but tho relative humidity increases imtil the air 
becomes saturated at a certain temperature. From this point onwards the fall of 
temperature is accompanied by a condensation of water vapour to liquid water, 
a process involving liberation of heat of condensation. Tho consequence is that 
the temperature now falls more slowly than would be expected according to the 
above formula. Wo see therefore that in general the fall of temperature with 
increase of altitude is less than that calculated above. Actual observations have 
shown that on the average a fall of temperature of 1° C. corresponds to 200 m. 
increase (►f altitude. 

On account of the adiabatic cooling of ascending air currents and the continual 
exchange between tho upper and lower layers, the air at great altitudes must be 
colder than that near the earth’s surface. It follows also that when damp winds 
are forced upwards by mountain masses, they must give up a part of their water 
vapour content by condensation. This is the explanation of tho heavy rainfall in 
all mountain districts which are subject to moist ocean winds (Norway, the Alps, 
the Himalayas). After passing over tho mountain ridge the winds descend again 
and warm up once more; they then possess a very small relative humidity (e.g. 
the Fohn wind). 

3. Determination of (GI^ment-Desormes *) 
A glass bottle G (fig. 3) of about 1 litre capacity is closed with a 

doubly bored stopper, through which pass two tubes, one with a wide 
bore tap H and the other bent into the form of a manometer M, The 

manometer liquid is coloured water. When a 
small quantity of air is blown into the bottle 
the air pressure inside is increased and the 
manometer at once indicates a corresponding 
difference of level h. But on account of the 

*? adiabatic nature of the compression this is not 
^ the final indication of the manometer. The 

final difference of level is not attained 
until the temperature of the air inside the 
bottle has become equal to that of the air 
outside. 

Fi 3—element and ^ opcucd for a short time 
Deformes* Eljeriment just Sufficient for the internal and external pres* 

surcs to become equal, and then closed again. 
The manometer again begins to rise, reaching after a while the final 
constant difference of level Ag- The explanation of this effect is that 
the compressed air expands adiabatically and therefore cools down 
when the tap is opened. After the tap has been closed again an equaliza¬ 
tion of temperature occurs, the air in the bottle warming up to the 
temperature of the outer air. This rise of temperature causes the 
increase of pressure observed on the manometer. The final pressure is, 
of course, smaller than the initial pressure. 

The two manometer readings and Ag are related to the specific 

* This experiment was published in the year 1819 by (1779-1842) and 
Desormes (1777-1862) (see also Vol. I, p. 350). 



DETERMINATION OF cjc^ 99 

heats of air at constant pressure (c^) and constant volume (c^,) by the 
cqtiation 

_ i_ 
/q 7^2 

Hence the Clement-Desormcs experiment allows of a simple deter¬ 
mination of the ratio y 

Let tho temperatiiro of the air surrounding tho bottle bo and the atmo¬ 
spheric pressure p^. Tho pressure Pi ” Po obtained from readings of the 
barometer and manometer. Then Pi — Po^ h^. Wo open the tap H of the 
Cl(5ment-D(^ormes apparatus (fig. 3), and tho air. expands adiabaticalJy until 
its pressure falls to 2^q- Eet it cool down to tho temperature To during this ex¬ 
pansion. Wo immediately close tho tap again and tho temperature of tho interior 
of tho bottle rises to room temperature T^. fcJinoo tho volume of tho flask romams 
constant, tho pressure rises to tho new value p./, which by Gay-Lussac’s law is 
given by 

This pressure is read off on tho manometer as a differenco of level i.o. 

Pi =‘Po + K- 
Hence we have ^2 P/ -PO^PO - - - rj 

(1\ T,) 

Applying Poisson’s law in tho form (p. 96) 

Ty 
const. 

to tho adiabatic change, we obtain 

or 

TiV TjY 

Now lot Ai/Po (Ti — Tgl/Tg be small in comparison with 1. Then expanding 
and neglecting higher powers, wo may write the equation in first approximation 
as follows: 

11/ 1 \ ^'1 1 j Ti — To 
1 + (y - 1)“ 1 + T -Sp—^ 

Po dg 
, Tj - Ta Y *- 17 

whence Po —m—- “  -'b- 
-I3 Y 

In combination with the equation 

obtained above, this gives ^- 

or 
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From the above calculation it follows that relatively accurate values of y 
can only bo obtained by the Clement-Desormes experiment provided that the 
compressions or rarefactions are small. 

4. Isothermal and Adiabatic Curves 

By plotting the volumes of a gas as abscissas and the corresponding 
pressures as ordinates, we obtain a curve representing the changes of 
condition of the gas. As has already been shown in chapter I, 
at fig. 10, p. 14, the Boyle-Gay-Lussac law gives a system of rect¬ 
angular hyperbolas. Each hjrpcrbola holds for a definite temperature, 
and is therefore an isothermal curve. Adiabatic changes can be repre¬ 
sented similarly by means of an adiabatic curve. 

Fig. 4.—Isothermal and Fig. 5. — A Closed Figure ABCD made 
Adiabatic Curves up of Arcs of Isothermal and Adiabatic 

Curves. (T ~ Isothermal, K — Adiabatic.) 

In fig. 4 the two heavy lines are isothermals and the two lighter 
lines are adiabatics. In the case of the pair of curves lying nearer to 
the axes, the initial state of the gas has been taken as that represented 
by the point (1, 1). Whereas the isothermal curve is a rectangular 
hyperbola, the adiabatic lies above it at higher pressures and below 
it at lower pressures. 

Thus if the pressure is doubled, the volume of a gas is halved when the change 
is isothermal (Boyle’s law); but when the change is adiabatic, the volume only 
decreases to 0-61 of its original value in the case of air (Poisson’s law). This is due 
to the rise of temperature accompanying adiabatic compression. If the pressure 
be reduced to half, the volume of a gas is doubled when the change is isothermal; 
but when the change is adiabatic, the volume only increases to 1*64 of its original 
value in the case of air. This is due to the fall of temperature accompanying 
adiabatic expansion. 

The other pair of curves (isothermal and adiabatic) intersecting at the point 
(2, 2) represent the condition of the same mass of gas as before but at an absolute 
temperature four times as great as for the first pair of curves. 
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Since the adiabatic curves lie above the isothermal curves at high 
pressures and below them at low pressures, each adiabatic must inter¬ 
sect all the isothermals; the intersection with the isothermals of lower 
temperature will lie at lower pressures and vice versa. Fig. 5 shows 
five isothermal and five adiabatic curves and their points of inter¬ 
section. 

Particular interest attaches to the fact (which follows at once from what has 
been said above) that it is possible to get from any point of the {py V) plane to 
any other point by means of an adiabatic and an isothermal change of the gas. 
Thus, for example, we can pass from the point A to the point C by going first 
from A to B along the isothermal curve T4 and then from B to C along the adiabatic 
Kjj. Alternatively we may go first from A to D along the adiabatic Kg and then 
from I) to C along the isothermal Ts. 

\P 

‘ "av'^ 
♦ 
p 

Y 

1/j/t 
t 

Fig. 6.—Work 
performed in Com - 

pressing a Cias 

5. Work associated with Change of State of 
a Gas 

Consider a mass of gas of volume V enclosed in a 
cylinder of cross-sectional area A by means of an easily 
movable, weightless piston loaded with a weight P 
(fig. 6). The weight exerts a pressure _7>=P/A per 
unit area of cross-section of the cylinder. If the length 
of the enclosed cylinder of gas is h, we have V = A)/, 

Now imagine the gas to expand by a volume AV, 
thereby raising the piston a distance Kh, Then AV = AM, Assum¬ 
ing that the volume change is so small that the pressure may be 
regarded as constant throughout, the 
work performed by the gas in expand- 
ing is 

AW = P AA = = pAY. 

In the graphical representation (fig. 7) 
this work corresponds to the area of a small 
rectangular strip. Thus the rectangle ABCD 
represents the work involved in the isothermal 
change Cl) of the gas. In the same way the 
rectangle EFGH represents the work involved 
in the adiabatic change GH. 

In order to calculate the work 
performed during a greater change of 
condition, we must divide up the total 
change into elementary steps, for each of which the pressure may 
be regarded as constant. We can then calculate each element of 
work by means of the above formula, and finally obtain the total 

Fig. 7.—Graphical Representation of 
the Work Performed 
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work by addition of all the elements. Tli\is W = 2(p AV). When 
the elementary steps are infinitesimally small, we obtain 

This equation may be transformed with the help of the equation of 
state pV ” vRT by substituting the value of p ™ vRT/V. We then 
obtain 

W = vr/'t^. 
V 

I. Isothermal Change.—In this case the temperature remains 
constant. Hence the last equation simplifies to 

W = vRT f' ^ = vRT (log, V, - log, Vi) 

or W vRT log, (y). 
'Vi' 

From the equation of state we have 

Vg : Vi — ^1: p2- 

Hence we may also express the above equation in the form 

W -= vRT log, (^\ 

Work is performed by a gas when it expands against an external 
pressure. Hence the energy content of the gas is diminished by an 
equal amount. It follows, therefore, that the gas must cool down, 
unless heat is supplied to it from outside. This addition of heat must 
occur if the expansion is to be isothermal. 

During {infinitely slow) isothermal expansion the gas merely plays 
the part of an agent whereby the heat supplied from outside is transformed 
into mechanical worh. Since no other {internal) energy changes take place 
during the isothermal change of a perfect gas {experimental proof in next 
section)^ this transformation of heat into worh is a complete one. 

We can imagine the process to be realized as follows. The cylinder of fig. 6 
is provided with a bottom which is perfectly permeable to heat, and stands 
the whole time in an infinitely large heat reservoir at constant temperature. 
The piston is in equilibrium when the pressure p, volume V, and constant 
temperature T satisfy the gas law pV = vRT. 

Imagine now a virtual displacement of the piston, whereby V increases by 
AV and p decreases by Ap. If the piston is to be in equilibrium after the dis¬ 
placement, the load upon it must also be reduced by the amount AP. It mnst 
not be imagined, therefore, that the whole weight P is lifted throughout the iso¬ 
thermal process; on the contrary, P must be reduced after each elementary 
change. 
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The whole process is made up of a succession of equilibrium slates. The increase 
of energy corresponding to the quantity of heat added in any element of time is 
just neutralized by the decrease of energy due to the raising of the weight. Thus 
the energy content of the gas remains constant throughout. 

Now imagine the piston to be provided with an arrangement regulating the 
pressure automatically in such a way that the product pV remains constant at 
every instant during the change of position of the piston. The cylinder of gas 
could then take up an unlimited quantity of heat from the heat reservoir and 
transform it completely into mechanical work. Of course the cylinder would 
have to be infinitely long in order to take up an infinite quantity of heat from 
the reservoir. If the piston were driven back again, the work so performed would 
be transformed completely into heat, which would flow back once more into the 
heat reservoir at constant temperature. When eventually the piston had come 
back to its initial position, the distribution of energy between mechanical work 
and heat would be exactly the same as it was originally. 

The amount of energy transformed alternately from heat into work and from 
work back into heat in this periodic process is given by the formula derived above, 
viz.: 

W vBT log, (-- vRT log, (^‘). 

Its value therefore depends upon the temperature at which the isothermal change 
takes place. Hence if we imagine an otherwise identical change to be carried out. 
first at the temperature T^ and then at the temperature Tg, the ratio of the quan¬ 
tities of energy transformed will be 

W, : Wg = Tj : Tg. 

This opens up the possibility of transforming a greater quantify of energy 
from heat into work during the upward stroke of the piston than is transformed 
back again into heat during the downward stroke. For this purpose t he upward 
stroke of the piston must take place at a higher temperature than the downward 
stroke, that is to say, a process must be inserted between the strokes whereby 
the temperature of the gas is alternately raised and lowered. Of course this new 
process must not require an extra expenditure of energy greater than the ex¬ 
pected gain of mechanical work, 

II. Adiabatic Change.—Here Poisson’s law holds. We will make 
use of it in the form (p. 9G) TV>“i ™ C (where C == const.) in order 
to transform the general expression 

W = vR^'t 

Taking logarithms on both sides of the above equation for Poisson’s law, we 
obtain 

logeT+(r~l)log,V-log,C, 

whence log,V = Jog,T. 

Differentiation of this equation gives 

dV__ 1 dT 
V (y- T) r 
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Substituting this in the equation for W we obtain 

W 
vR vR 

(Y“ 1) 
(Ti - Tj). 

This is the work performed by the gas during the raising of the 
piston. At the same time the gas cools from the temperature to the 
temperature To. In the isothermal expansion the temperature was 
maintained at the initial value by the addition of a corresponding 
quantity of heat; but in the adiabatic change there is no addition of 
heat and hence the temperature fall is not neutralized. In the latter 
case all the boundary walls of the cylinder (including the bottom) 
must, of course, be completely impervious to heat. 

The whole of the external work performed during an adiabatic change 
of a gas is derived from the energy content of the gas itself. 

During the adiabatic expansion tlie pressure and volume are connected by 
the equation of Poisson’s law, viz. pVy — C. The pressure also falls in this case 
when the volume is increased. In order that there may be equilibrium at every 
instant during the process by which a part of the energy contained in the gas is 
transformed into mechanical work, the load on the piston must be varied in 
accordance with Poisson’s law. We will imagine as before that a suitable arrange¬ 
ment is fitted to the piston for this purpose. Then by raising the piston, a certain 
amount of the energy content of the gas can bo withdrawal from it in the form of 
heat and transformed into mechanical work. The tempersturc of the gas is thereby 
lowered. 

The lowest temperature which a body can have is that of the 
absolute zero. Hence if we put Tg 0, we shall obtain th(^ total amount 
of energy which can be withdrawn from the gas. This is 

W max 
vBT 

r—1 

By the Boyle-Gay-Lussac law vRT ~ pY; 
above expression in the form 

W. 

hence we may write the 

If we put the energy content of the gas at 0° abs. equal to zero 
(cf. § 14, p. 150), then W^ax represents the total energy content E at 
the temperature T. Thus wc have 

E = 
Y-1 

The total energy per unit volume of the gas, i.e. the energy density^ 
is therefore 
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If we imagine the piston to be alternately raised and lowered, there will be 
an alternate transformation of heat into work and work into heat. When the 
piston is displaced from an initial position and then returned to it again, the 
final distribution of energy between heat and work is also the same as at first. 
Hence it is impossible by means of a periodic process of alternate adiabatic ex¬ 
pansions and compressions of a gas to withdraw heat continually from it in the 
form of meclianical energy. 

It follows further from the main equation of p. 100 that: 
The quantity of energy transformed during an adiabatic process is 

dependent only upon the difference of ieinperaiure between the mitial and 
fiml conditions. 

Applying this result to hg. 5, p. 100, it follows that the same quantity of 
energy is transformed when the gas passes from the condition A to the condit ion 
1) by way of the adiabatic AD as when it passes from the condition B to the con¬ 
dition C by way of the adiabatic BC; for both AD and BC lie between the same 
iaothermals, so that the initial and final iemperatiirca are the same respectively 
in both cases. 

6. Expansion of a Gas without Performance of External 
Work. 

1. Perfect Gases.—In the imaginary experiment of Egbert Mayer for the 

determination of the mechanical equivalent of heat (fig. 17, p. 30), the gas ex¬ 

pands from the volume ABCD to the volume ABKF against the external pressure 

“JF L 

/ 

■3- 

;; n. ■} 

A B 

Fig. 8, — Expansion without 
Performance of External Work. 
Hjrn’s Apparatus 

Fig. 9.—Joule’s Experiment 

of the atmosphere, thereby performing work. It is this work which accounts 
for the fact that a greater quantity of heat is required to raise the temperature (;f 
the air, and simultaneously to bring it into the volume ABEF, than is required 
merely to raise the temperature of the air by the same amount at the volume 
ABCD. 

Imagine a closed cylinder ABCD (fig. 8) containing air and having an air¬ 
tight glass partition EF across the middle. The two compartments are in com¬ 
munication through the pump P, by means of which all the air is pumped out of 
the compartment I into the compartment II. The whole apparatus is brought 
to a uniform known temperature in a colorimeter. The glass partition EF is now 
broken by allowing the iron ball K to fall doTO upon it. The air in II expands 
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without 'performing any work until it fills both I and IL This experiment was 
carried out successfully by Hirn, who found that there was no change of tem¬ 
perature in the calorimeter. 

Joule performed the experiment with the following modification. He connected 
two equal metal cylinders Rj and Rg (fig. 9) by means of a tube fitted with a tap, 
and placed them in a vessel containing water which served as the calorimeter. 
The first cylinder R^ was evacuated and the second Rg filled with air under pres¬ 
sure. JIo then opened the connecting tap so as to allow a part of the air to flow 
from the second cylinder into the first. The compressed air thereby expanded 
to twice its original volume without doing any external work. Joule observed 
no change of temperature in the calorimeter, from which it follows that tiio air 
neither absorbed nor gave out heat dui’hig the expansion. 

The internal energy of a gas therefore remains constant when the volume 
changes (p. 34). This result may be expressed as follows: 

The internal energy of a given mass of gas at constant temperature is independent 
of the volume. 

According to p. 34 the internal energy is proportional to the absolute 
temperature. 

The above law is not at variance with the fact that 
a gas can perform mechanical work in expanding; for 
during expansion 'with performance of work the tempera¬ 
ture falls, i.e. heat must be supplied from outside if the 
original temperature of the gas is to be maintained. 

Joule next proceeded to modify his experiment in 
the manner shown in fig. 10, namely, by placing the two 
cylinders in two similar but separate calorimeters and 
then opening the connecting tap. The water in the calori¬ 
meter containing Rj (the originally evacuated cylinder) 

Fig. 10.—Joule’s Apparatus boated, and the water in the other calorimeter was 
cooled. This is due to the fact that it is only in the first 

instant of its expansion out of Rg that the air performs no work. As soon as there 
is air in R2, the subsequently entering air must overcome the pressure of that 
already present. On the whole, however, the temperature of the air did not change, 
i.e. no heat was developed or taken up. The total internal energy of the whole 
mass of air remained constant. 

A similar experiment had been performed previously by Gay-Lussac and was 
taken by Robert Mayer as the basis of his calculation of the mechanical equiva¬ 
lent of heat (p. 28). Gay-Lussac worked without a calorimeter. His apparatus 
was similar to that shown in fig. 10, but each of the vessels was provided with a 
thermometer inside it. He observed that after equalisation of pressure the ther¬ 
mometer in the originally evacuated vessel had risen by the same amount as the 
other had fallen. 

2. Real Gases.—^It follows from the above experiments that there is no change 
of temperature when a perfect gas expands without performing external work. 
Accurate observation has shown, however, that there are considerable tempera¬ 

ture changes when real gases are subjected to the 
same process. 

In 1852 Joule and W. Thomson repeated the 
experiments upon the expansion of gases without 
performance of external work, but with the follow¬ 
ing modification. The gas under investigation was 
compressed into a container and the pressure kept 
constant by means of a pump. The gas flowed out 

through a tube which was protected as efficiently as possible against loss and gain 
of heat. The pressure in the tube was also constant but lower than in the con- 

— / iA| 
hnrTtTTrrn'fTUTTrrrrrrir^^ 

Fig. II.— Apparatus for the 
Demonstration of the Joule- 
Thomson Effect. 

j? 
.w. 
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tainer. In the tube (fig. 11) was a porous plug P of compressed silk or wool, 
through which the gas flowed slowly. The heat produced by friction in the plug 
was so small as to bo negligible. After a time a stationary state was reached in 
which heat was neither absorbed nor developed. The temperatures of the gas in 
front of and behind the plug wore then determined very accurately with the help 
of thermo-elements. A temperature difference was found. At one atmosphere 
difference of pressure this temperature difference amounted to about — J'" ( ;. for 
air, oxygen, and nitrogen, and about C. for carbon dioxide. In the case 
of hydrogen the change of temperature was very much smaller and of the opposite 
sign, there being a rise instead of a fall in temperature of about C. as a 
result of the expansion. It was found that the temperature difference decreased 
in general with rise of initial temperature and vice versa (Joule-Thomson 
effect). 

Experiment has shown that the Joule-Thomson fall in temperature AT is 
given by the equation 

AT-=|x(To)%, 

where Ap is the pressure difference, Tq = 273, and T is the temperature of the 
experiment in degrees absolute. When T Tq — 273^^ abs. tlic^ facjtor fx has 
the value 0*275 for air and 1*30 for carbon dioxide. Thus the temperature fall 
is inversely proportional to the square of the absolute temperature, i.o. tlu^ lower 
the t<emperature, the greater the temperature fall. 

Olszewski succeeded later (1902) in showing that below --80*5° 0. (the 
“inversion temperature”) the behaviour of hydrogen also becomes normal, 
i.c. that below this temperature hydrogen is cooled down when it expands with¬ 
out performing external work. It has been found that there is an inversion tem¬ 
perature for every gas; the nearer the gas is to its condensation point at room 
temperature, the higher its inversion temperature. Hence the inversion tem¬ 
perature is particularly low in the case of helium, which boils at ”-269'^ (J. under 
atmospheric pressure. In this case the inversion temperature is lower than that 
of liquid air. 

The Joule-Thomson effect is made up of two processes. The first of these 
consists of forcing the gas through the porous plug and overcoming the back 
pressure of the gas already on the other side. The second process is the over¬ 
coming of the forces of cohesion during the expansion of the gas to the greater 
volume and lower pressure on the other side of the plug. At low temperatures 
the latter process predominates over the former, which generally causes a rise 
of temperature, so that the total Joule-Thomson effect is a temperature fall. 
In a perfect gas the second process does not exist, since perfect gases have no 
cohesion. In real gases, however, the cohesion makes itself apparent, its influence 
being greater, the nearer the gas is to its condensation point. These effects can 
be calculated from the van dor Waals equation (sec § 7, p. 90). Indeed the 
Joule-Thomson effects of different gases can be obtained very well from the van 
der Waals constants a and b. The Joule-Thomson effect is used very widely 
for the industrial liquefaction of air by the Linde method (especially in the 
production of nitrogen for the synthesis of ammonia). 

7. Refrigerating Machines 
1. Freezing Mixture.—The production of low temperatures by means of 

freezing mixtures has already been treated briefly on p. 70. The use of freezing 
mixtures (ice and common salt) for the preparation of ice cream depends upon 
the fact (p. 149) that a large quantity of heat is required by ice in melting (latent 
heat of fusion) and by salt in dissolving (heat of solution), i.e. by both substancea 
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in becoming liquid. Tliis heat is taken from the body placed in the freezing 
mixture. 

2. Formation of Ice by Evaporation (p. 81).—This can bo demonstrated 
by means of the apparatus shown in fig. 12. The flask-shaped bulbs A and B 
are connected by means of a horizontal tube and closed with singly bored stoppers. 
Through the stopper of A passes a thermometer; through that of B passes a 
tube with a tap and a funnel-shaped upper end. Both bulbs are partially filled 
with water, which is boiled by means of two flames. In this way all the air is 
driven out of the apparatus, which is then closed by means of the tap. All the 
water is now poured over into the bulb A. When now the flask B is dipped into 
cold water, the pressure of the water vapour in it is reduced by condensation to 
such an extent that the temperature in A becomes sufficient to make the water 
boil (§ 1, p. 81). A simultaneous fall of temperature is observed on the ther¬ 
mometer, since the water requires latent heat in boiling. I’hc whole apparatus 

Fig. 13.—Carr6 Ice Machine (Diagrammatic) 

having been brought down to room temperature in this way, all the water is 
poured over into A again. Concentrated sulphuric acid is then allowed to flow 
in slowly from the funnel. On account of the strongly hygroscopic nature of the 
sulphuric acid the water vapour within the apparatus is absorbed to a large ex¬ 
tent, the sulphuric acid becoming warm. The water in A goes on developing 
water vapour by evaporation. Consequently its temperature goes on falling, in 
many cases getting as low as —10° C. (supercooling). Then ice formation sets in 
with simultaneous rise of temperature to 0° C. 

The process of withdrawal of heat by evaporation finds wide practical appli¬ 
cation in the Can^ ice machine. 

Fig. 13 shows a diagrammatic sketch of such a machine. The pump P forces 
ammonia (or sulphur dioxide) gas into the spiral tube situated in the cooler K, 
and compresses it until it becomes liquid. The liquid is allowed to pass through 
the tap H into the other spiral tube on the right of the figure. It evaporates very 
rapidly and hence produces a great cooling effect. The heat required for the vapori¬ 
zation is taken from the bath V surrounding the spiral tube. The bath liquid is a 
concentrated salt solution (usually calcium chloride), whose temperature is thus 
reduced to —10° C. The cold bath liquid flows through a tube D into a vessel in 
which are placed pads containing water. Heat is withdrawn from this water, 
which therefore freezes. The bath liquid, whose temperature rises to 0° C., is 
sent back again into the cooling bath V through the return tube C. The spiral 
tube in the jacket K is cooled by a stream of cold water, which enters through A 
and leaves at a higher temperature through B. 
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The process may also be regarded as a removal through B of the heat sup¬ 
plied through C. Obviously the heat is thereby raised from lower to higher tem¬ 
perature. In spite of this, however, the process is not at variance with the second 
law of thermodynamics (§ 9, p. 125); for in order that the process may be 
possible, the pump P must do work continuously during the refrigeration (p. i2(>). 

By means of the Carre ice machine about 30 kg. of ice can bo produced 
per hour per horse-power when the original temperature of the v ater to be frozen 
and the water of the cooler is 10° C. 

The liquefaction of the constituents of the air already mentioned on p. 8S 
was carried out by Pictet in an apparatus consisting essentially of a combination 
of two refrigerating machines, in which the temperature lowering was produced 
by the evaporation of a liquid as in the Carre ice machine, lii the first of these 
machines sulphur dioxide was liquefied by high pressure and cooling with cold 
water, and was then allowed to evaporate rapidl3". In the evaporation vessel was 
a spiral tube in which carbon dioxide was cooled and liquefied by high pressure. 
The cold liquid carbon dioxide was then allowed to evaporate in another vessel 
in which was a tube containing the constituents of the air under pressure. A tem¬ 
perature of --130° C. was reached in this last cooling vessel. \Vhen the sulphur 
dioxide was replaced by nitrous oxide (N.>0), the temperature sank to —140° C. 
At this temperature and under high pressure the air became liquid. 

The liquefaction of hydrogen was carried out by Olszewsky in 1895 by com¬ 
pressing tho gas to 190 atmospheres pressure and cooling it simultaneously with 
boiling oxygen (at a temperature of —211° C.). 

3. The Linde * Refrigerating Machine.—This utilizes a cpito 
different principle, namely, the fall of temperature accompanying 
the expansion of air witliout performance of external work (Joule- 
Thomson effect). The counter current principle is also applied in 
order to obtain a cumulative effect from a large number of successive 
expansions. 

If air at 16° C. is compressed to 65 atmospheres and then allowed to expand 
to 22 atmospheres, then according to the numerical data given on p. 107 tho 
temperature fall due to tho Joule-Thomson effect is 

AT = 0-275(66 - 22) 11° C. 

The air therefore cools down to 5° C. If now this be used to cool a new quantity 
of compressed air, tho temperature of the latter wiil fall by a further 11° C. when 
it is allowed to expand. Its final temperature will therefore be —6° C. Thus by 
repeated cooling and expansion of compressed air, the fall of temperature accom¬ 
panying tho expansion can bo used each time to produce a further lowering of 
temperature. Indeed the lower the temperature, the more rapidly tho temperature 
lowering takes place. 

Tho construction of tho Linde Uquid air machine is seen in fig. 14. The air 
is drawn through the tube L into the double-barrelled pump C (the compressor), 
where it is compressed first to 22 atmospheres in the barrel e and then to 65 
atmospheres in tho barrel d. From here it flows through Pg into tho drying vessel 
/, ai^d is cooled to 0° C. in the spiral tube g suiTOund^ bj^ ice. The compressed 

* Kael von liiNDE, bom 1842, Professor at Munich, published an account of liis 
machine in 1895. At about the same time it became toown that an Englishman 
Hami’SON hod invented a machine working on the same principle. 
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and cooled air then enters the counter-current apparatus G. This consists of a 
long double-walled spiral tube packed round with wool to protect it against 
external heat. The compressed air enters at the top through the inner tube, 
whence it can pass at the bottom through the valve a into the outer tube. It 
thereby expands from 65 atmospheres to 22 atmospheres pressure and is cooled 
by 11^ C. The air thus cooled to —11° C. flows back through the outer tube of 
the spiral in the opposite direction from that of the air in the inner tube. Thus 
the upward current is heated up and flows out through Pj at 0° C., while the 

Fig. 14.—Linde Liquid Air Machine 

downward current is cooled down so that it arrives at a with a temperature of 
— 11° C. The air leaving through Pj is compressed in the barrel d of the com¬ 
pressor, cooled down to 0° C. in p, and passes once more through the same process. 
Hence a continuous fall of temperature is produced in the counter current ap¬ 
paratus by the expansion at a. When the temperature has become so low that 
the air liquefies at a pressure of 22 atmospheres, it is allowed to run through the 
valve h into the flask c, whence it can be drawn off by means of the tap h. When 
the tap h is opened a part of the liquid air passing through it vaporizes at once, 
thereby lowering the temperature to —191° C., the normal boiling-point. The 
air which has cooled down in expanding to atmospheric pressure flows round 
the counter-current apparatus in a tube completely surrounding the other tubes, 
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which are thus further cooled. The liquid air is collected in Dewar flasks (figs. 
Sand 9, p. 178). It can be kept for a. considerable time in this kind of vessel; 
for the gradual evaporation of a part of the liquid keeps the temperature of the 
rest down to ~ 191° C. Of course the Dewar flask must remain open, so that the 
liquid air can evaporate without danger of explosion. 

Since air is made up of the two gases nitrogen and oxygen, liquid 
air is also a mixture of two liquids. Pure nitrogen boils at —195*7^^ C., 
pure oxygen at —183'' C. Thus nitrogen has a lower boiling-point than 
oxygen, whence it follows that fractional distillation takes place from 
a.n open Dewar flask containing liquid air, more nitrogen evaporating 
than oxygen. Hence liquid air gradually becomes richer in oxygen 
by evaporation. When 50 per cent of the liquid air has evaporated, the 
remainder contains 35 per cent oxygen; when 75 per cent has 
evaporated, the remainder contains 53 per cent oxygen. 

This residual mixture, rich hi oxygen, is widely used as an explosive in com¬ 
bination with organic substances such as wood charcoal. On account of the ex¬ 
plosive nature of such a combination, caution is demanded m the use of liquid 
air for the cooling of vessels filled with wood charcoal (Vol. I, p. 320). 

8. Cyclic Processes or Cycles 

1. General.—Change of the condition of a body or system of bodies 
is often associated with a simultaneous change of the energy of the 
body or system, a part of this energy assuming some new form. The 
total energy, however, remains constant. Thus, for example, when a 
body falls from a certain height, a part of its potential energy is trans¬ 
formed into kinetic energy. If the body returns once more into its 
original condition, the energy also reassumes its original form and 
magnitude. In such a case the body is said to have performed a cyclic 
process or more simply a cycle. 

As an example of a cyclic process we may quote the pendulum already treated 
in mechanics (Vol. I). Hero the transformations of potential energy into kinetic 
energy and vice versa take place in regular alternation. If the motion of the 
pendulum is subject to no resistance, its amplitude remains constant. But in 
air the resistance of the medium decreases the amplitude and causes an a})parent 
loas of energy. In reality, however, the pendulum has given up a part of its energy 
to the air. In this case we say that the system formed by the pendulum alone is 
not a dostd system, since other bodies (the air) not actually belonging to it also 
take part in the transformation process. 

In a cyclic process a pait of the energy may be transformed into 
thermal energy. At the end of the closed cyclic process, how’^ever, this 
thermal energy must have been changed back into its original fonn. 

As an example of such a closed cyclic process we may take tbo adiabatic 
change of condition of a gas contained in a vessel with ’walls impervious to heat 
(p. 101). When the gas is brought back to its original condition, the energy also 
xeassumes its original form. 
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In expanding isothermally a gas absorbs beat energy from the beat 
reservoir (p. 103), though the latter is external to the system actually 
performing the process. In returning isothermally to its original con¬ 
dition the gas gives up to the reservoir the heat energy which it pre¬ 
viously absorbed. Thus the total process can be called a cycle, although 
the energy content of the body was changed temporarily during it. 
If the system be taken to include the heat reservoir as well as the gas, 
then the whole forms a closed system which performs a cyclic process 
with constant total energy. 

In the examples mentioned above the process by which the energy 
was transformed back to its original form was the exact reverse of the 
first half of the cycle. This is not absolutely necessary, however, since 
energy is a scalar quantity and independent of the path. 

Consider, for example, a sphere inside a ring-shaped tube at its highest point. 
When released, the sphere falls down one side of the ring and rises up the other 
side again to its original position. In this case there is again a transformation 
of potential energy into kinetic energy and a complete reverse transformation; 
but the path of the first half of the process is different from that of the second. 

When the above sphere has regained its original position, the con¬ 
dition of the system is exactly as it was at the beginning of the cyclic 
process. Thus the mechanical process of the falling of the sphere is 
reversible. 

In general, a process is said to be reversible when the original con¬ 
dition of the system can be fully restored in any manner and by any 
means, i.e. restored so that all of the bodies taking part in the process 
arc brought back to their original conditions. If such a reversal is 
impossible, the process is said to be irreversible. 

Thus for the characterization of a process as reversible it need not necessarily 
bo capable of reversal in the sense that the second half of the closed cycle is 
identical with the first, but in the opposite direction. A process is to bo regarded 
as reversible, provided that the whole of the system taking part in it can bo made 
to reassume its original condition in any way whatever. If there is no way in 
which this is possible, then the process is irreversible (p. 123). 

WTien a body or a part of the system taking part in a process comes 
back to its original condition, we say that that body or that part of 
the system has performed a cyclic process. During this cyclic process 
the condition of other parts of the system may have changed. If now 
all these other parts of the system reassume their original condition 
when the cyclic process of the one body or one part of the system is 
reversed, then we have a reversible cyclic process or a reversible cycle. 
The consideration of such reversible cycles plays a great part in thermo¬ 
dynamics. 

It is not possible to give in advance a general experimental criterion 
as to whether a process is reversible or not. 
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In order to grasp the difference between a reversible and an irreversible pro¬ 
cess, let us consider the case of a steel ball falling on to a plate. 

At the beginning of its fall the ball possesses a certain potential energy corre¬ 
sponding to its position. This potential energy is transformed completely into 
kinetic energy during the fall. Now imagine the ball to impinge upon a horizontal, 
perfectly elastic steel plate. As a result of the impact the Idnetic energy of the 
ball is transformed instantaneously into potential energy of the elastic deforma¬ 
tions of both bodies. Then follows an immediate recovery from these deformations, 
and the ball rebounds from the steel plate with the same kinetic energy as it- had 
before impact. As it rises this kinetic energy is transformed back again into 
potential energy. At the moment when the ball reaches its original position, its 
energy also reassumes its original form. Every individual part of the system has 
returned of itself to its original condition. The process is a purely mechanical 
one and, like all such, is reversible in every detail. The same is true of all purely 
electromagnetic processes. 

If, on the other hand, the ball falls upon an inelastic lead plate, its kinetic 
energy is transformed into heat by friction during the deformation of the lead. 
In this case there is no reverse transformation of the heat energy; on the con¬ 
trary, the heat developed at the point of impact distributes itself uniformly 
thi’oughout the whole of the lead plate, eventually causing a uniform rise of 
temperature. Thus the process does not reverse itself; and there is no means by 
which the dissipated heat energy can bo concentrated again and transformed 
back so as to make the ball rise up again from the plate. The process takes pbujo 
in one direction, but never in the other: it is irreversible. 

A process becomes irreversible as soon as it ceases to be purely 
mechanical in the usual sense of the word, i.e. as soon as there is fric¬ 
tion and consequent production of heat. In the same way reversible 
electromagnetic processes become irreversible as soon as imperfect 
conductors or insulators give rise to the production of heat by the 
currents in a manner analogous to the production of frictional heat in 
mechanical processes. Now strictly speaking no terrestrial mechanical 
process is frictionless and no terrestrial insulator or (.‘-onductor is per¬ 
fect. Hence all mechanical and electrical processes are really irre¬ 
versible and their reversibility is only an abstraction, though an 
abstraction which often corresponds very nearly to actual fact. There 
are also other irreversible processes besides that of friction. 

In a closed system, i.e. a system in which there is no loss or gain of 
total energy, certain processes can take place spontaneously or as the 
result of a mere release, such as the opening of a tap, the bringing of 
two bodies into contact with one another, the making of an electrical 
contact, and the like. All such processes are irreversible. 

Examples.—Equalization of pressure in a gas, equalization of temperature by 
conduction or radiation, equalization of concentration by diffusion, &c. A closer 
consideration of these processes reveals the fact that, in order that they may 
proceed with finite velocity, one parameter must always bo indeterminate. Thus 
the opening of the tap of a vessel containing gas under pressure or the release of 
a piston so that the gas drives it out rapidly against a lower external pressure 
gives rise to a turbulent motion in which the pressure of the gas is indeterminate. 
In such CBisea therefore it is impossible to determine the work performed by the 
gas from the expression Ipdv. This would only be possible if the gas w ere allowed 

(K636) ^ 
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to expand infinitely slowly in infinitesimally small pressure stages, for instance 
by establishing successive pressure equilibria with an infinitely large number of 
containers each of which had an iiinitesimally lower pressure than the one 
before it, or by removing the load from the piston (p. 103) by infinitesimally small 
steps. Such methods would allow of an infinitely gradual reduction of the pres¬ 
sure of the gas. The expansion would then be reversible; for in order to reverse 
the whole process it would only be necessary to bring the vessel containing the 
gas into successive equilibria with the containers in the reverse order, or gradually 
to increase the load on the piston again to its original value. The same reversi¬ 
bility could also be attained in the case of thermal conductivity or radiation. 
The pressure containers would then have to be replaced by heat reservoirs with 
graduated temperatures and the body brought into temperature equilibrium 
with each of them in succession. 

From what has been said above it follows that a reversible process 
can only take place infinitely slowly, so that the system is always in 
pressure or temperature equilibrium or in a condition deviating only 
infinitesimally from such equilibrium. In this case the pressure and 
temperature (and also concentration, &c.) have definite values at 
every instant. In actual fact processes may occur fairly rapidly and 
yet remain very nearly reversible. For example, a gas may flow com¬ 
paratively rapidly, because its individual particles themselves have 
very great velocities and thus establish the definite pressure very 
quickly. When occasioned by finite differences of pressure or tem¬ 
perature, a spontaneous process is always irreversible; but with the help 
of special devices and controls it may be conducted reversibly. 

The spontaneous reversal of irreversible processes is not absolutely impossible, 
however; but it is so improbable that it may be regarded as impossible for all 
practical purposes (Boltzmann *). The reason for this is to be found in the 
complex structure of the matter involved, which consists of an immense number 
of individual atoms and molecules. In the investigations of physical processes, 
account must be taken of the motions of these ultimate particles and the distri¬ 
bution of velocities amongst them. The explanation of all phenomena on the 
basis of these elementary motions is the problem of so-called statistical mechanics. 

Consider a vessel divided into two compartments A and B and containing 
two particles x and y in random motion. Then there are four possible and equally 
probable states, namely (i) a; in A and y in B, or (ii) y in A and x in B, or (iii) x 
and y in A, or (iv) x and 2/ in B. Thus the probability of both particles being in 
A is J. If we have three particles, the probability of all being in A and none in 
B is considerably smaller. With increasing number of particles the probability 
of this state decreases very rapidly, becoming vanishingly small when the number 
of particles is very large. The smaller the probability of an event, the longer the 
average time that elapses before it happens. Now in the case of a gas wo are 
dealing with an immense number of individual molecules; hence there is only 
a vanishingly small probability that the average uniform distribution of the 
molecules in a relatively largo volume will show a chance disturbance great enough 
to be recognizable with an extremely rapidly acting manometer. Such momentary 
compressions or rarefactions may well occur in very small volumes; but on 

* Ludwig Boltzmann (1844-1906), whose acute and fundamental researches led 
him to become one of the founders of the kinetic theory of gases. He was Professor 
of Theoretical Physics, chiefly at Vienna. 
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account of the rapidity of the molecular motions their duration must be very short. 
What we measure with a manometer is the space and time average over a largo 
volume and (even with very rapidly acting pressure gauges) over a relatively 
long time. The probability of the occurrence of a momentary state in which there 
is an abnormal concentration of gas molecules in one part of a given volume 
may be compared to the probability of throwing a large number of dice so that 
they all show 6, or the probability of obtaining the text of this book by shaking 
letters in a line out of a large sackful. The above cases are quite possible, but 
they are extremely improbable (see below). As with gaseous pressure, so also 
with temperature distribution. There is only a vanishingly small probability 
of a momentary chance excess of the more rapidly moving molecules in one part 
of a comparatively large volume, i.e. of the appearance of a difference of tem¬ 
perature between different parts of the gas. The probability of the persistence 
of such a temperature disturbance for a time long enough to permit of its being 
measured is of an even higher order of smallness (of. § 1, p. 39 and § 2, p. 5b). 

Thus we see that in the cases of pressure and temperature equalization and 
also of concentration equalization by diffusion, which wo designate as irreversible 
processes, reversal is not impossible but extremely improbable. A process may 
he taken as irreversible 'when its reversal is almost infinitely improbable. 

2. Carnot’s Cycle.—The mighty quantities of energy which are 
indispensable to modern life were first made available by means of 
heat engines (e.g. the steam-engine). In these engines the heat energy 
of the process of combustion is transformed into mechanical energy. 
Very soon after the discovery of the steam-engine it was recognized 
that it only transformed a fraction of the total lieat energy in this 
way. Repeated eSorts have therefore been made to increase the 
efficiency of heat engines (i.e. the ratio of the output of mechanical 
energy to the total heat energy) as much as possible. Sadi Carnot 

was the first to calculate (1824) on theoretical grounds the maximum 
efficiency of an ideal heat engine. The Carnot cycle is therefore of 
fundamental importance for the development of the theory of heat 
engines. 

It was shown on p. 102 that an infinitely large quantity of heat 
energy could be transformed into mechanical work by the isothermal 
expansion of a gas into an infinitely long cylinder. Since, however, 
it is impossible to make an engine with an infinitely long cylinder, it 
follows that only a finite quantity of heat can be transformed into 
mechanical work by the isothermal expansion of a gas. The quantity 
of work obtainable is given by the equation 

W= vRTlog.(^^), 

which shows that not very much heat can be transformed into work 
unless a very long cylinder be used. In order to produce a sufficient 
quantity of mechanical work for practical purposes, the piston en¬ 
closing the gas must therefore be brought back repeatedly into its 
original position, and the total output of work increased by repetition 
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of the isothermal expansion with the help of a periodically acting 
device. 

But the mechanical work produced in the expansion is used up 
again completely in compressing the gas 
isothermally back to its original con¬ 
dition. Thus at the end of the whole 
process we have exactly the same quan¬ 
tity of heat as at the beginning and the 
method is useless as a means of produc¬ 
ing mechanical work. 

It was mentioned on p. 103, however, 
that mechanical work can be gained by 
compressing the gas at a lower tempera¬ 
ture than that at which it expanded. It 
was also stated that the quantity of heat 
energy transformable into mechanical 
work by isothermal expansion is pro¬ 
portional to the absolute temperature 
of the gas. Upon these princfples is 
based the following (ideal) heat engine 
(fig. 15) (Carnot’s cycle). 

A certain mass of gas is enclosed in a cylinder by means of an easily movable 
piston. The piston and the cylinder walls are completely impervious to heat, 
but the end EE of the cylinder is a perfect thermal conductor. This end is placed 
in contact with a heat reservoir which can be kept at constant temperature. 
The perfectly conducting end of the cylinder may also be covered with a disc S 
made of material which is completely impervious to heat. Fig. 15 shows the 
engine and heat reservoir in five successive conditions. The fifth is identical with 
the first; the gets therefore passes through a complete cyclic process. 

In the first phase the heat reservoir is kept at the temperature Tj and the gas, 
whose original volume is V, expands isothermally, thereby moving the piston AA 
to the right and performing external work. The requisite energy is supplied to 
the gas in the form of a quantity of heat from the heat reservoir at tempera¬ 
ture Tj. The pressure exerted by the gas upon the piston, and transmitted farther 
by the piston rod, decreases gradually according to the equation of state 
pY = vRTj ” const. The piston eventually reaches the position BB (II). 

The end of the cylinder in contact with the heat reservoir is now covered with 
the disc S of material impervious to heat. From this point onwards the gas ex¬ 
pands adiahatically and its temperature therefore falls to Tg, by which time the 
piston has taken up the position CC (III). The work performed by the gas in this 
phase is derived from its own internal energy. 

The heat reservoir is now kept at the temperature Tg assumed by tho gas 
as a result of its adiabatic expansion, and the disc S is removed so as to render 
tho end of tho cylinder perfectly conducting once more. The piston is then driven 
into tho cylinder by the application of external work, but in such a way that 
there is equilibrium between the force upon the piston and the thrust of the gas 
upon it. If the end of the cylinder were impervious to heat, this compression 
would cause the temperature of the gas to rise. But as it is, a quantity Qg of heat 
equivalent to the work done upon the gas flows at temperature Tg into the heat 
reservoir. The piston thus roaches the position BD (IV). 

i: A 
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The end of the cylinder is now covered once more with the non-conducting 
disc S, and the gas compressed adiabatically until the piston returns to its original 
position AA (V == I). The position DD (IV) must be chosen in such a way that 
the temperature of the gas reassumes the value T| at the end of the whole cycle 
when the piston has returned to AA. The mechanical work performed upon the 
gas in the adiabatic compression then raises its temperature to the original value 
and the whole cyclic process can be repeated. 

A general idea of the different phases of the cycle 
can be obtained from CLArEVKON’s graphical represen¬ 
tation (fig. Ifi). This shows the isothermals for the 
temperatures T^ and T2, and also the adiabatics Kj and 
Ko; their intersections A, B, C and D represent the 
conditions I, II, III and IV respectively of the gas in 
the heat engine shown in the last figure. In the first 
phase p and V vary in accordance with the isotliermal 
Ti between the points A and B. The amount of work 
performed by the gas during this phase is represented 

graphically by the area of 
the figure ABFE. Then fol¬ 
lows the second phase—the 
adiabatic expansion from B 
to C. The corresponding 
work performed by the gas 
is represented by the area of 
the figure BCGF bounded 
above by the adiabatic 
The third phase is the iso- 
tlu.Tinal coinpre^ssion of the 
gas from C to D at. the ttun- 
perature T^. TJie area of 

the figure CDHG, bounded al>ove by the isothermal Tg, represents the 
external work done upon the gas. Then follows the last phase, the adiabatic 
compression from I) to A. The external work done upon the gas in this 
compression is represented by the area of the ligure DAEH which is bounded 
above by the adiabatic K.,. 

Fig. 16.—Isothermals and Adiabatics in Carnot’s Cycle 

On the whole, the excess of the work done by the gas over the 
work done upon it during the complete cycle is represented by the 
area of the figure ABCD bounded by the four arcs of the isothermal 
and adiabatic curves. The cycle is thus accompanied by a gain of 
mechanical work. The requisite energy is derived from the excess of 
the quantity of heat absorbed at the higher temperature Tj during 
the motion of the piston from AA (I) to BB (II) over the quantity Q2 

of heat given back to the heat reservoir at the lower temperature T2 

during the return of the piston from CC (III) to DD (IV). 
The amounts of work performed by the gas in the difierent phases 

of the cycle may be calculated from the equations derived in § 5, 
pp. 102 and 104. For the sake of simplicity we will measure in me¬ 
chanical units the quantities of heat taken from and given back to the 
heat res.ervoir. These can then be transformed afterwards into thermal 
units. We will designate the volume and pressure of the gas for each 
of the piston positions AA, BB, &c., by corresponding subscripts, 
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Va) Va, &c. The amounts of work performed during the different 
phases will also be designated by subscripts; thus, for example, 
will represent the work done by the gas during the displacement of the 
piston from the position A A to the position BB. 

In the first phase AB (fig. 16) of the process a certain quantity of heat -h Qi 
is supplied to the gas at the temperature Tj. The gas performs an amount of 
work equivalent to this quantity of heat, viz. (p. 102) 

W^=vRT,log.(^£). 

In the second phase BO of the proceas a portion of the internal energy of the 
gas is transformed into mechanical work without external supply of heat. The 
gas performs the work (p. 104) 

Wbo = :^(T,-T,) 

and its temperature falls from Tj to Tg. 
The third phase consists of an isothermal compression of the gas from C to 

D by the expenditure of external mechanical work upon it. If it were to expand 
isothcrrnally from D to C, the gas would do the work 

w„c= vRT,log,(^). 

Conversely, when this amount of work is done upon the gas, as is the case during 
the compression from C to D, the work performed by the gas must be 

Wc.>= vRT,log,(|5). 

which, as is seen from the logarithm, has a negative value. At the same time 
a quantity of heat Qg equivalent to Wcd flows out of the gas into the heat reser¬ 
voir at Tg. The quantity of heat supplied to the gas is therefore — Q2, the nega¬ 
tive sign indicating that the gas actually loses heat. 

In the fourth phase DA the volume of the gas is diminished adiabatically. 
The mechanical work done in moving the piston from DD to AA goes to increase 
the internal energy of the gas and raise its temperature to the original value 
Tj. In expanding adiabatically from A to D (and simultaneously cooling from 
Tj to Tj) the gas would perform the mechanical work (p. 104) 

But in the fourth phase the gas is compressed, i.e. this amount of work is done 
upf^n it. The work actually done by the gas during the compression is therefore 
negative and equal to 

There is no gain or loss of heat during this phase. 
The value of is equal to that of Wbo I>wt of opposite sign. This is to be 

expected, since the amount of work associated with an adiabatic change depends 
only upon the temperature difference (p. 105), and this is the same in both cases. 
The net gain of mechanical energy is therefore equal to the difference between 
the absolute values of Wab and Wod* This is obtained by adding the values 
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obtained above, which alread}^ include the proper signs. On the whole, therefore, 
the gas has performed the mechanical work 

W = Wab + Wbo 4- Woo -f WoA - Wab + Woo. 

This net output of work is equivalent to the net quantity of heat supplied, 

Q=Qi-Q2. 

Of the latter | Qj | is absorbed at the temperature Tj and | Q, | given up again 
at the lower temperature Tg. According to the first law of thermodynamics the 
quantities Q and W must be equivalent, i.e. we must have 

W - JQ. 

This can also be seen at once from the individual terms of the sums for W and 
Q. The value of W may be transformed as follows: 

W = + Wox, = vRT, log, (Ys) + vRT, log, (Yp) 

= vRT, log, (^-?) - vRT, log, -JP. 

Now by Poisson’s law 

V^-^T, = and Vb’'~'Tj = W“’T^, 

whence by division we have -— =: ———^ 
V/~‘ 

ie. Yp^Yo. 
Va V„ 

Combining this with the expression for W obtained above we have 

W = vR (T, - T^) log, (Yp). 

The ratio of this net gain of work to the heat energy taken 
by the gas from the reservoir at Tj is therefore 

Wab”” T, * 

This is the ratio of the output of work from the engine to the heat 
supplied to it at the temperature Tj. 

During the process a part of the heat supplied flows back into the 
heat reservoir at the lower temperature Tg. Its quantity — Qg is de¬ 
termined by the expression for Wop, and its ratio to the quantity of 
heat supplied at T^ is at once obtained by division, viz. 

Wqp_ Tg 

Wa“ t/ 

So far we have expressed the energies in mechanical units. In order 
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to transform to thermal units, we simply have to multiply by the 
factor K (p. 32). Hence 

and -Q^^KWe^. 

The ratios of the energies are not affected by this change of units. We 

can therefore write at once 

Ql Q2 _ ^ ^2 J ^_ '^Ol>_ ?2 

Q, T, t; 

This final result may be expressed as follows: 
By mmns of Carnofs cycle the energy of a quantity of heat ivith- 

draum from a heat reservoir at the higher temperature T^ may be divided 
into two fractions p and (1 — /x), the first of which is obtained as mechanical 
work, while the second flows back into a heat reservoir at the lower tem¬ 
perature Tg. These fractions are given by the quotients /x — (T^ — Tgl/Tj 
and (1 — /x) = Tg/Tj. 

The quotient /x is called the thermal eflaciency of the process. 
As treated above, the Carnot cycle consists of a succession of states 

of equilibrium] it must therefore take place infinitely slowly. In par¬ 
ticular we have assumed that no temperature difference arises between 
the gas and the heat reservoir in the two isothermal phases. The 
calculations are only valid if this is the case. 

In accordance with the considerations put forward in the previous paragraph 
it follows therefore that the whole cyclic process can also take place in the reverse 
direction. Thus Carnot’s cycle is a reversible process. When it is conducted in 
the reverse direction, we get the following result: 

By the absorption of a quantity Qg of heat from a heat reservoir at the lower tem¬ 
perature Tg and the expenditure of an amount J(Qj — Q2) of ejctemal work upon 
the gas, it is possible to supply a quantity Q, of heat to a heat reservoir at ike higher 
temperature Tj. 

The fundamental principle of the reversed Carnot cycle finds application in 
refrigerating machines (§ 7, p. 107). The working gas only performs a true cycle 
if it reassumes its original condition completely. The heat reservoirs alter its 
condition, in that the first one supplies heat and the other removes it partially. 
The system, gas -f- heat containers, only completes a cyclic process after passing 
through the Ornot cycle twice, once in the forward direction and then back 
again in the reverse direction. Assuming infinite slowness, everything has then 
returned to its original condition. 

3. Generalization of the Principle of Carnot’s Cycle.—Carnot’s 
cycle is of particular importance because the thermal efficiency of an 
ideal heat engine was first calculated by means of it. But this efficiency 
is by no means confined to the Carnot cycle. On the contrary every 
heat engine performing a reversible cyclic process has exactly the 
same efficiency. It makes no difference whether the working substance 
is a gas, a vapour, a liquid, or a solid, provided only that the proccos 
is reversible, i.e. that it consists of a succession of equilibrium states* 
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L The fact that every heat engine in which a working substance 
performs a reversible process must have the same efficiency 
M = (Tj — T2)/Ti can bo proved as follows: 

Consider any two reversible heat engines M and N working between 
the temperatures and Tg. Suppose that M has the efficiency 
whereas N only has the efficiency /a. Then by means of M it would 
be possible to absorb a quantity Q of heat from a hot reservoir, trans¬ 
form a part a/xQ of it into mechanical work and return the rest 
{1 — a/x)Q to a cold reservoir. The second heat engine with the smaller 
efficiency could be allowed to work in the reverse direction in com¬ 
bination with the same reservoirs in such a way as to require the 
expenditure of the same amount a/xQ of external work as was de¬ 
veloped by M. Since the efficiency of N is /x, it would deliver the 
quantity aQ of heat to the hot reservoir and absorb the quantity 
a(l — /x)Q of heat from the cold reservoir. The former quantity is 
made up of the latter together with the thermal equivalent UjaQ of the 
work expended upon the engine. 

The result of the total process performed by both engines in com¬ 
bination would therefore be as follows. The mechanical work involved 
would be zero. More heat would have been taken from the cold reser¬ 
voir than would have been supplied to it. This excess (a — 1)Q would 
be equal to the excess of the heat supplied to the hot reservoir over the 
heat taken from it. On the whole, therefore, heat would have passed 
from the cold to the hot reservoir without the expenditure of external 
work. This is not at variance with the first law of thermodymmics, 
but it is certainly contrary to experience. It has never been found 
possible by any means whatever to withdraw heat from a heat reser¬ 
voir at lower temperature and transfer it to a heat reservoir at higher 
temperature without the expenditure of work or the simultaneous 
occurrence of some other changes. 

In the above example the second engine N might also be allowed 
to work in such a way as to supply the heat reservoir with a quantity 
of heat Q equal to that withdrawn by the engine M, so that this 
reservoir would return to its original condition. An amount of work 
/xQ would then have to be done upon the engine N. Simultaneously 
the quantity of heat (1 /x)Q would have to be withdrawn from the 
cold reservoir. But this is greater than the quantity (1 — afx)Q of heat 
which would be given up to the cold reservoir by the engine M. Hence 
the result of the combined action of the two engines would be to leave 
the hot reservoir in its original condition and completely to transform 
the heat withdrawn from the cold reservoir into an equivalent amount 
/xQ(a — I) of work. This has also been found hy experience to be im¬ 

possible. 
It is impossible to construct a device which will withdraw heat 

from sea water, for example, and transform it completely into useful 
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work. Since tlie natural stores of heat are inexhaustible, such an 
engine would have an immense supply of energy. It would therefore 
represent a type of perpetual motion machine not excluded by the first 
law of thermodynamics. This type of perpetual motion machine is 
said to be of the second kind to distinguish it from the first hind for¬ 
bidden by the first law. 

The principle of the impossibility of a perpetual motion machine of 
the second kind, also known as the second law of thermodynamics 
(§ 9, p. 126), is based entirely upon experience. A necessary deduc¬ 
tion from it is that every reversible heat engine, no matter what its 
working substance, must have the same efficiency fx as an engine em¬ 
ploying a perfect gas and working between the same temperatures. 
Thus the eJEficiency of every reversibly worldng engine is that calcu¬ 
lated by Carnot, viz.: 

The thermal efficiency 

of a reversible heat engine is proportional to the difference T^ T^ 
between the initial and final temperatures of the process. Hence the 
greater this difference, the more favourable the working conditions. 
The temperature of the hotter heat reservoir must therefore be made 
as high as possible and that of the colder one as low as possible. The 
efficiency would become equal to 1 if the temperature Tg of the colder 
reservoir could be made equal to that of the absolute zero (see below). 

When we come to consider actual heat engines we shall find that these theoreti¬ 
cal results are borne out by practical experience. In a steam engine, for example, 
the efficiency may be increased by raising the temperature of the steam entering 
the cylinder and by lowering the temperature of the condenser into which the 
steam escapes after it has performed its work. 

II. In the graphical representation Carnot’s cycle corresponds to 
a four-sided closed figure bounded by the arcs of two isothermals and 
two adiabatics. But any other closed figure, no matter how compli¬ 
cated, also represents a reversible cycle, provided that the funda¬ 
mental conditions are the same as for Carnot’s cycle. 

Imagine such a process represented by a closed curve of any shape, e.g. by 
the curve MANC in fig. 17. We may divide up the enclosed area into a very large 
number of elementary areas, each lying between neighbouring adiabatics and 
bounded at the ends by isothermals. An example of such an element of area is 
that enclosed by the adiabatics AD and BC and the isothermals AB and DC in 
the figure. In passing through the conditions represented by the periphery of 
this element, the gas performs a Carnot cycle. Now imagine the gas to perform 
all these elementary cycles in succession in the manner indicated diagrammati- 
cally in fig. 18. The changes corresponding to points inside the zigzag boundary 
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cancel out and wo are left with the changes corresponding to a passage round this 
boundary alone. Now the smaller each element of area is chosen, the more nearly 
the zigzag approximates to the original boundary curve (fig. 17). In order 
actually to conduct such a process it would bo necessary to supply or withdraw 
a quantity dQ of heat at each element of arc corresponding to passage along an 
isothermal. Each of these elementary quantities of heat would have to be sup¬ 
plied or withdrawn at the temperature of the corresponding isothermal. When 
this condition is fulfilled, the gas performs a reversible cyclio process. Hence: 

All reversible cyclic processes have the same thermal efficiency 

If there were any reversible cycle for which this is not true, it 
would always be possible to combine that cycle with a Carnot cycle 

Figs, 17 and 18.—Cyclic Processes 

working with the same heat reservoirs in such a way that the com¬ 
bined cycles would give a result at variance with the second law of 
thermodynamics (i.e. either production of work from a store of heat 
at constant temperature or transference of heat from a lower to a higher 
temperature without expenditure of external work). 

A number of conditions must bo fulfilled in order that a cyclic process may 
be reversible. They can be summed up in the one condition already referred to 
several times above, namely, that the process must consist of a succession of 
states of equilibrium. From this follows further: (1) There must be no loss of 
heat by conduction away through the walls of the cylinder. (2) At no point of 
the process may finite differences of temperature occur; for this would result 
in equalization of temperature, with the result that a part of the difference 
(Tj — Tj), which determines the thermal efficiency, would be lost without pro¬ 
duction of work. (3) The external pressure determining the work done must never 
differ by more than an infinitesimal amount from the pressure of the gas. 

These conditions can never be realized in actual fact. Hence Carnot’s cycle 
is the ideal case of a heat engine. The thermal efficiency calculated from it is 
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therefor© the maximum possible for a heat engine; we can approach this maxi¬ 
mum, but never attain or exceed it. Every deviation from the above conditions 
(1) to (3) results in a loss of heat without production of mechanical work and 
a loss of reversibility on the part of the engine. 

Irreversible cyclic processes therefore have a smaller thermal efficiency 
than reversible ones, 

4. The Kelvin or Thermodynamical Scale of Temperature.—^It was pointed 
out on p. 5 that the original definitions of temperature by means of a mercury 
or hydrogen thermometer are completely arbitrary. They provide no guarantee 
that the concept of temperature so defined does not involve peculiarities of the 
particular thermometrio substance of which it ought to be independent. Now 
the simple relation Q1/Q2 = T^/Tg, derived on p. 120 for the quantities of heat 
taken in and given out during a reversible cycle, is certainly quite independent of 
any material properties of the working substance. Careful measurements also 
prove that the relation is not satisfied if Tj and Tg are measured by a mercury 
thermometer from —273® C. (or more accurately — 273-2° C.) as zero (see the table 
on p. 6). The same is true when the hydrogen thermometer is used to measure 
tho temperatures, though in this case the deviations from the theoretical are 
different. The deviations in both cases must bo due to the lack of a satisfactory 
thermometer, i.e. to the fact that the coefficient of expansion of mercury and tho 
pressure coefficient of hydrogen are not independent of tho temperature. 

This difficulty was removed by a proposal of W. Thomson (I^bd Kelvin).* 

His proposal was to use the above equation itseff to determine temperatures on 
a thermodynamical scale. In accordance with the first law of thermodynamics, 
the ratio Q1/Q2 of the quantities of heat involved in a cyclic process may bo 
obtained by measuring the equivalent energies. Thus it is possible in this way to 
determine the ratio of two temperatures just as easDy as the ratio of two volumes 
of a given mass of mercury. 

Tho small deviations found by experiment between tho thermodynamical 
scale and tho mercury or hydrogen scale are to be regarded as corrections to the 
latter arising from the slight lack of uniformity in the expansion of these ther- 
momctric substances. With increasing rarefaction the individual properties of 
aU gases become less marked, and their obedience to the Boyle-Gay-Lussac law 
more nearly exact. Hence in the limiting case of infinite rarefaction tho behaviour 
of a real gas may be taken as identical with that of a perfect gaa. Now the re¬ 
versible cycle is an ideal process only realizable "with a perfect gas. The 
thermodynamically determined temperature is therefore identical with that 
which would bo indicated by a thermometer containing a gas at infinite 
rarefaction. 

Since a perfect gas does not exist, the determination of temperature thus 
indicated is always accompanied with a certain degree of uncertainty, the limits 
of which are determined by the level of experimental technique. The thermo¬ 
dynamical definition of temperature opens up the possibility of unambiguous 
determinations in all regions of temperature, including those in which it is im¬ 
possible for practical reasons to work with gas thermometers. Thus all gases 
liquefy at very low temperatures; and since all solids melt at very high tem¬ 
peratures, no terrestrial material exists in which a gas could be confined under 
these conditions. In tho theory of radiation, however, certain temperature laws 
have been deduced (Vol. V) from the second law of thmsMynandcs, which is 

♦SiK William Thomson (1824-1907, from 1892 onwards Lobd Kjblvin), Pro¬ 
fessor of Physics in Glasgow. His highly original methods of treatment enabled him to 
make important advances in the most varied branches of physios. 
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itself based on Carnot's cycle. These laws permit certain conclusions as to thermo¬ 
dynamical temperatures to be drawn from the results of practicable experiments. 
In this way methods are opened up for the direct and absolute measurement of 
temperatures lying right outside the regions in which expansion thermometers 
are applicable. 

9. The Second Law of Thermodynamics 

1. The First Law of Thermodynamics.—^Wo have seen above that 
mechanical work can always be converted completely into heat. 
The first law of thermodynamics (§ 9, p. ‘^2) states that to every 
quantity of work expended there is a definite equivalent quantity 
of heat. Hence work can never be lost during the process of con¬ 
version; there is always an equivalent quantity of heat produced. 
The first law is the principle of the conservation of energy, applied 
to thermal processes. 

2. The Second Law of Thermodynamics.—I. Wc have also seen 
that heat can be converted into mechanical work and that the con¬ 
version always takes place in accordance with the energy principle, 
the work obtained being equivalent to the heat supplied. But this 
process can never take place alone; it must necessarily bo accom¬ 
panied always by other permanent changes of condition. In the case 
of an engine working periodically in a cyclic process, these changes 
consist of a transference of heat from a reservoir at higher temperature 
to another at lower temperature. In addition to supplying the useful 
quantity of heat which is converted into mechanical work, the reser¬ 
voir with the higher temperature must also provide a further quantity 
of heat, which is useless as far as production of work is concerned in 
that it passes over to a reservoir at the lower temperature Tg. If the 
process is reversible, its eJfiiciency is the maximum possible: if it is 
irreversible, its efficiency is less. The maximum possible efficiency, 
which is possessed by every reversible engine for the conversion of 
heat into work, is 

It is therefore dependent only upon the temperatures of the reservoirs 
and can never be exceeded. A continually working engine of higher 
efficiency is fundamentally impossible. Such an engine need not be 
in the slightest degree incompatible with the first law of thermo¬ 
dynamics; but it would necessarily give rise to other processes con¬ 
trary to all the evidence of experience—evidence which has become 
so overwhelming that it has been taken as the basis of a second law of 
thermodynamics. Ostwald expressed this law in the following form 
(p. 122). 

Perpetiuil motion of the second hind is impossible. 



126 THERMODYNAMICS 

It is impossible by means of a periodic process to withdraw heat 
continually from a reservoir and to convert it into work at constant 
temperature. The presence of a second reservoir at lower temperature, 
i.e. a temperature difference, is necessary for the conversion of heat 
into work. 

II. As mentioned above, the existence of a heat engine of higher 
efTiciency than the Carnot cycle would also lead to another impossible 
process. This is the passage of heat from a lower to a higher tempera¬ 
ture without the occurrence of any other processes. Hence the second 
law of thermodynamics may also be expressed in the following form, 
due to Clausius (1850): 

Heat can never fass spontaneously {i.e. without external influences) 
from a colder to a hotter body: a temperature difference can never appear 
spontaneously in a body orighmlly at uniform temperature. 

III. The essential meaning, the kernel of the second law of thermo¬ 
dynamics, is contained in the formulation given in 18G6 by Ludwig 

Boltzmann: 

Nature tends to pass froyn a less probable to a more probable condition. 
Probability of a Condition.—(See also § 10, section 6, p. 139.) The 

direction of all spontaneous processes of nature is such as to give rise 
to a more probable or at least an equally probable condition (pp. 114 
and 137). The most probable state for an isolated closed system is 
that of complete disorder, in which there are no directed conditions, 
such as differences of temperature, of pressure, or of concentration. 
In this state there is no excess of energy in any one part of the system; 
the energy distribution is perfectly uniform, and the whole system is 
therefore at a uniform temperature. 

For a further formulation of the second law see immediately below, 
and also § 10, p. 135. 

3. Direction of Natural Processes.—In a closed system all processes 
take place in such a direction as not to bring the system into a less 
probable condition. Processes in which the probability remains the 
same are reversible^ they can pass through all their phases in the re¬ 
verse direction. On the other hand, processes causing an increase in 
the probability of the condition of the system are irreversible. 

All purely mechanical and purely electromagnetic processes are reversible and 
accompanied by no change of probability, provided that dissipation of energy 
is excluded, i.e. provided that the energy remains in an ordered form (p. 113). 
The probability of the system also remains constant in reversibly conducted 
thermal processes. The system must be taken to include all the bodies involved. 
In Carnot’s cycle, for example, the condition of the working substance is in no 
way changed when the cycle has been completed. The increase of probability 
which would occur if the passage of the heat from the hotter to the colder heat 
reservoir took place irreversibly is exactly compensated by the decrease of prob¬ 
ability due to the conversion into mechanical work of a part of the heat derived 
from the hotter reservoir. 
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Now perfectly reversible processes do not exist in nature. All 
mechanical and electromagnetic phenomena of matter are associated 
with an irreversible transformation of ordered into random energy. 
Hence as a general principle based on experience we may say: 

All changes in a closed system occur in the direction in which the sum 
of all the processes involved is irreversiblcy i.e. in which the probability 
of the state of the system is increased. 

This is the essence of the second law of thermodynamics. 

A closed system is an ideal concept and as such is never actually realized. 
But the larger a natural system is, the more nearly docs it approximate to a closed 
system. For since all the processes occur within it, the magnitude of the quanti¬ 
ties of energy and matter taking part in them will bo proportional to the volume 
of the system, whereas the magnitude of the external inlluences will be propor¬ 
tional to its surface. Hence the greater the system, the less the relative effect 
of external influences. On this account, attempts have been made to apply the 
second law of thermodynamics to the whole universe (sec subsection C below 
and p. 135) and to express it in the form: 

All 'mtural events occur in such a direction that the universe passes into a more 
probable state. 

In the case of a reversible process both the initial and final states have the 
same probability; neither of them is preferred above the other. This might bo 
expressed by saying that nature favours both equally. Therefore such a process 
will not in general occur spontaneously, A temperature diflerence will not equalize 
itself spontaneously in a reversible manner; nor will a pressure diflcronco in a 
gas. A liquid will not evaporate reversibly. On the contrary all such processes 
occurring spontaneously do so in such a way that the system passes into a more 
probable, more favoured state. Spontaneous processes are therefore irreversible. 
They can only bo conducted reversibly (actually approximately reversibly) with 
the help of special devices. It is also clear from what has been said above that, 
even if only a small elementary part of a process is irreversible, the final state of 
the whole system concerned has the greater probability, and the whole system 
cannot return spontaneously into its initial state. Hence in order that a process 
may be reversible, it must be capable of complete reversal in all its elementary 
parts. A necessary condition for the occurrence of a spontaneous process in a 
closed system is the presence of a difference of condition within tho system. 
There must be a directed gradient (Vol. I, p, 191) of some property (as of pressure, 
temperature, concentration, chemical nature, &c.) which urges towards equaliza¬ 
tion—an order tending to pass into disorder; the system must be provided with 
the opportunity of passing into a more probable state, i.e. into tho maximum 
possible degree of disorder, by tho occurrence of the process. 

The physicist often has to deal with cases in which purely mechanical and 
electromagnetic processes of a reversible nature occur spontaneously. These are 
processes of oscillation, e.g. tho swinging of a pendulum or the discharge of a 
condenser, which occur without increasing the probability of the system. It 
must not bo forgotten, however, that these processes are usually considered only 
in their ideal form. Actually processes of oscillation are also accompanied by 
the development of heat due to friction or electrical resistance and therefore 
increase the probability of the state of the oscillating system (see also § 10, 
subsections 3 and 6, pp. 134 and 139). 

4, *“ Order ” in Molecular Processes.—^It has been thought that processes at 
variance with the second law of thermodynamics, such as spontaneous appearances 
of temperature or pressure differences in a gas, might be possible by the inter- 
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vention of beings (the so-called “ demons ” *) endowed with intelligence. These 
might sort out the moving molecules of a gas by operating certain shutter devices, 
clack-values or the like. For example, they might separate the more rapidly 
moving molecules from the more slowly moving ones by allowing only the former 
to pass througli; or with the help of a one-way valve they might collect more 
molecules in tlio one part of a space than in the other, thus producing a difference 
of pressure. The only objection which can bo raised to this view is that our ex¬ 
perience indicates that such intelligence does not exist in inanimate closed systems 
in temperature equilibrium. As far as wo know, beings endowed with intelligence 
thcms(‘ives necessarily require temperature differences and the like; our ex¬ 
perience leads 113 to tliink that every display of understanding is accompanied 
by chemical processes. Valves of the typo mentioned may possibly play a part 
in the living cell; but as yet wo have no indication that this is the case. 

5. Limits of Validity of the Second Law of Thermodynamics.—According to 
Boitzmann’s formulation, processes at variance with the second law are not 
impossible, but only in the highest degree improbable. As w'as shown on p. 114, 
the probability of any given state of distribution increases as the number ot 
particles involved is made smaller. Hence if the number of particles taking part 
in the process or the space it occupies is sufficiently small, the probability of t 
occurrence of the process may become so great that it may actually be observed 
once within measurable time. The investigation of Brownian molecular move¬ 
ment (p. 54 ei seq,) has led to the recognition that suspended particles of a size 
just visible in a microscope possess kinetic energy which they have derived from 
the thermal energy of their surroundings at uniform temperature, and also that 
observable variations in the distribution of these particles occur spontaneously 
in neighbouring small volumes. 

The visible motions of the particles are the result of particularly energetic 
impacts. Thus heat energy has passed over into actual bodies—as distinct from 
molecules—in a greater degree than that corresponding to thermodynamical equi¬ 
librium. (Subsection 6, p. 140.) If we could collect the mechanical (kinetic) energy 
of these particles, we should bo able to obtain mechanical work at the expense 
of the heat of the surroundings. This would break the second law of thermo¬ 
dynamics. Now all conceivable devices for collecting this kinetic energy prove 
to be impracticable, because essential parts of them would also show Brownian 
motion and therefore not function. Imagine, for example, a particle to be con¬ 
strained to move ujx)n a vertical guide in such a way that it is prevented by a 
catch from slipping down, but is free to move upwards. Then it would be raised 
higher and higher by chance impacts of great energy and would thus acquire a 
store of useful potential energy at the expense of the thermal energy of its sur¬ 
roundings, But the catch would necessarily have to be of the same dimensions as 
the particle itself or even smaller. Its o'wii irregular Brownian movement would 
therefore ruin the operation of the mechanism. 

We might also dispense with the catch and wait for a chance impact of a par¬ 
ticularly favourable character which would raise the particle so high up the guide 
that wo could then make direct use of its potential energy. But a more accurate 
investigation shows that with increasing thermal energy transmitted to the 
particles the average lengths of time between successive favourable impacts 
increase tremendously. (Subsection 6, p. 140.) Hence from a practical point of 
view such a utilization of heat energy with the help of the Brownian movement 
is quite impossible. For practical purposes the validity of the second law of 
thermodynamics is unrestricted. 

The particles just considered, their numbers and the volumes concerned, are 

* These are often referred to as MaxwdVs demons, since Maxwell was the first to 
point out that the second law of thermodynamics might be broken by the intervention 
of a discriminating intelligence in the course of the processes on the molecular scale. 
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SO small that wo cannot speak of a most probable average distribution of particles 
and thermal energy as we can in the case of larger numbers of particles and grc'att^r 
volumes. Now the statements of the second law of thermodynamics concerning 
temperature, pressure, concentration, &c., refer to this large-scale average. 
Regions of the order of magnitude of tlio particles showing Brownian movement 
therefore represent the limit down to which the concepts of temperature, pressure, 
concentration in their usual form still hold, and down to wliich we can still speak 
of the general, practical validity of the second law of thermodynamics. Up to 
the discovery of the phenomena referred to above the second law had been sup¬ 
posed to hold universally for all observable (“ macroscopic ”) processes. It is only 
in the light of these discoveries that the necessity for and the great significance 
of Boltzmann’s formulation become apparent. 

The second la.iv of fhermodynamics can therefore make no claim to 
be universally valid and unwersally hindiny. 

Amongst very small bodies up to 0*001 mm. in size, we can see 
processes wliich do not obey the second law. Amongst larger bodies 
processes at variance with it are not completely impossible; they are 
merely so improbable and therefore so rare that they are excluded for 
practical purposes. 

6. Zero-point Energy,—The validity of the second law of thermodjiaamics is 
connected with the experimental fact that in all processes a part of the energy 
concerned is transformed into heat, that is to say into random motion of the 
molecules. The logical conclusion from this is that all energy must eventually 
pass into heat and that this heat must distribute itself uniformly throughout the 
universe. Thus the universe would succumb to a “ thermal death Admitting 
the correctness of this unjustifiable extension of those principles beyond the realm 
of our experience, this state could only bo attained provided that the amount (jf 
matter is conserved, i.o. provided that the number of molecules sharing the heat 
motion is constant. We know to-day, however, that the atoms making uf) the 
molecules may break down under certain conditions (radioactivity, nuclear rui)- 
turc, see Vol. V), thereby setting free extremely largo quantities of energy at 
certain points. Thus as a result of this internal atomic energy (which is still 
present even at the absolute zero of temperature—zero-point energy—and which, 
as far as w^e know, is independent of the temperature) differences of energy and 
temperature are always being produced and physical processes thereby made 
possible. But these atomic changes can only postpone “ thermal death ”, not 
prevent it; for observations so far carried out indicate that radioactivity is a 
disintegration of matter, so that in this respect also there must eventually be a 
state of uniformity, of death. Our present knowledge of the structure of matter 
(Vol. V) is in no way incompatible with the idea that conditions may exist in 
the universe under which radioactive matter is spontaneously formed again 
(Nernst). This would provide a process continually supplying new energy dif¬ 
ferences from the disintegration of matter, and therefore new “ life ” to the chain 
of physical events. Hence it is possible that the second law of thermodynamics 
has limits in that statistical fluctuations (of the kind that always occur on the 
molecular scale, e.g. very small regions of “ high temperature ” or of “ high 
pressure ”) may under special conditions attain a certain perynanence, for example 
as a result of the formation of radioactive molecules whoso stability is almost 
infinitely great in comparison with thermal fluctuations. In this way these fluc¬ 
tuations would as it were be retarded to an enormous extent and would thus come 
into the order of magnitude apprehensible by us human beings. Hence, just as 
the existence of Brownian movements would exclude the possibility of a “ thermal 

(E536) 10 
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death ” of the universe for beings of molecular dimensions, so also would such 
a “ death ” of the universe bo impossible in our case if the above formation of 
radioactive matter actually occurred. Instead of succumbing to a “ thermal 
death ”, the universe would “ live ” eternally in the ebb and flow and endless 
rhythm of physical change. 

10. Entropy 
1. Reduced Quantity of Heat.—So far we have been concerned 

chiefly with that part of the quantity oi heat which can be converted 
into mechanical work. We will now make use of the equation 

T — T 

(already mentioned several times above) to derive a relationship be¬ 
tween the quantity of heat absorbed and the quantity Qg given out 
again by the gas in Carnot's cycle. 

From p. 120 we have 

Q2 _ Qi 
% 

If, as on p. 119, we take quantities of heat supplied as positive and 
quantities withdrawn as negative, we must write this equation in the 
form 

-Q2 Q| , Q2 
“ . “ riTi- 

Ti 
0. 

Following the nomenclature of H. A. Lokentz,* the quotient of a 
quantity of heat by the temperature at whicli it is absorbed or given 
out by a process may be called a reduced quantity of heat. The last 
equation can then be expressed as follows: 

In a Carnot cycle the smn of the reduced quantities of heat supplied to 
and withdrawn fro7n the working gas is equal to zero. 

Any reversible cyclic process can be divided up into a large number of elemen¬ 
tary Carnot cycles (see fig. 17, p. 123), such that the final temperatures of certain 
of them coincide with the initial temperatures of certain others. This last con¬ 
dition is inessential for the present considerations; all that we need notice is 
that th(> temperatures at which heat is supplied and withdrawn respectively arc 
different in different elementary cycles. Hence the elementary quantities of heat 
must be reduced in every case to the proper temperature at which they are ab¬ 
sorbed or given out in the corresponding elementary Carnot cycle. If the whole 
cyclic process is to be a continuous succession of elementary Carnot cycles, the 
quantities of heat supplied or withdrawn in the successive elements must be 
infinitesimally small. Consider any one of these elements, e.g. that shaded in 
fig. 17, p. 123. Let the quantity of heat AQ„j be absorbed at the initial temper¬ 
ature and the quantity — AQ„ given out again at the final temperature T^. 

♦ H. A. Lorentz (1853-1928), Professor of Theoretical Physics at Leiden, one of 
the loading theoretical physicists of the last generation. He received the Nobel prize 
iu 1913. 
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Then the sum of the reduced quantities of heat involved in this elementary Carnot 
cycle must be zero, i.e. wc must have the equation 

I 0 

Corresponding equations also hold for every one of the elementary (‘ycles. 
Adding all of them together wo have 

0. 
In the limit when all the temperature steps become infinitesimally small, tJiia 
sum becomes an integral and wo obtain , 
the important equation V 

The circle through the integral sign 
indicates that the integration is to be 
extended over the whole c^^clic process, 
i,c. round the whole of the periphery of 
tho closed figure in fig. 17, p. 123. 

In this equation all quantities of 
heat supplied are to be reckoned as 
positive and all quantities of licat 
withdrawal as negative. Each ele¬ 
mentary quantity is then to bo divided 
by tho absolute temperature at which 
it is supplied or withdrawn. The 
equation can bo expressed in -words as 
follows: 

H 

In every reversible cyclic process the algebraic sma of the reduced 
quantities of heat supplied, and ivithdraimi is equal to zero. 

2. Entropy.—Imagine a body, whose state is represented by the 
point A in fig. 19, to pass over into the state E by means of a. reversible 
process (not a cyclic process). Then: 

The sum of the reduced quantities of heal supplied or withdrawn 
during a given reversible process is independent of the path along which 
the process takes place. 

In order to prove this theorem, imagine the process to take place along tho 
path AHE and a closed reversible cycle to be completed by tho performanoo of 
the reverse process along the dilierent path EZA. If the sum of tho reduced 
quantities of heat necessary for the process AIIE is X and tho corres})undiiig sum 
for the process EZA is Y, then we must have X H- Y -- 0. 

Suppose now that the sum of the reduced quantities of heat required for tho 
process along some other path AHjE is X^. Wo can also combine this path witl\ 
the reverse path EZA so as to make a closed reversible cyclic i)rocoss. Ilcnco 
also Xi + Y = 0. From the two equations it follows that X = X^. 

The value of the integral 
(rev.) 

A T’ 
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which gives the sum of the reduced quantities of heat supplied or with¬ 
drawn during the reversible change from the state A to the state 
is therefore independent of the path, i.e. independent of the nature of 
the process. Its value depends only upon the initial and final states. 
Hence for each state of the body there exists a quantity S, which has 
the value in the state A and the value in the state E, and which 
is such that the difference is equal to the sum of the reduced 
quantities of heat involved when the change takes place along any 
reversible path. Hence the elementary reduced quantity dQ/T of heat 
involved in the passage of the body from one state to another infinitesi¬ 
mally different from it is equal to the clement dS of the quantity S; 
expressed in mathematical terms, it is equal to the complete differential 
dS of the characteristic quantity S. 

The difference Si^—is called the entropy (dimensions: [erg. deg."^]) 
of the body in the state E relative to the state A. 

The absolute value of entropy camiot be obtained directly. Hence 
it is necessary to fix an arbitrary reference or zero state to which all 
other states can be referred. In other words, the entropy of a body 
involves an arbitrary additive constant, namely, the entropy of the 
body in the reference state. Putting this constant equal to Sq, the 
entropy S of any other state is given by the equation 

(rev.) 

Q Q r 

in which the integral is to be extended over the path along which the 
body passes reversibly from the reference state into the state under 
consideration. The entropy S has the same value for all reversible 
paths. It is therefore defined for all states into which the body can 
be brought reversibly. Now experience teaches that there is no state 
into which a body cannot be brought in a reversible manner. Hejice 
the entropy of a body is defined for all states except in so far as it involves 
the same additive constant in each case. If the passage from the state 
1 to the state 2 is reversible then 

(rev.) 

The entropy of a body is proportional to its mass. Hence entropy 
is referred to unit mass. The entropy of a system of bodies is equal to 
the sum of the entropies of the individual constituents. 

3. Entropy in the Case of Irreversible Processes.—Consider first the 
case in which a body performs a reversible cyclic process. It is supplied 
with heat from the sources 1, a part of which it gives up again to the 
receivers 2 at lower temperature, the rest being converted into work 
of some kind. Since the body performs a cycle, it must return to its 
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original condition, i.e. to its original entropy. Hence Sjl = S2 and for 
any reversible cyclic process 

(rev.) 

The integral is to bo extended over all the elementary quantities of 
heat supplied to or withdrawn from the body, the former being 
reckoned as positive and the latter as negative. T is the temperature 
of the body at which the corresponding elementary qmntity of heat is 
absorbed or given out. Since the process is reversible, T is identical at 
every instant with the temperature of the heat reservoir with which 
the working body is in thermal contact. 

When the cyclic process occurs irreversibly, the integral assumes 
a value difierent from zero; but in general it is not possible to state the 
nature of tliis difference. If T is put equal to the temperature of the heat 
reservoir, which in irreversible processes may differ by a finite amount 
from the temperature of the body, experience shows that the integral 
assumes a negative value, i.e. tliat 

(irr.) 

A few examples may bo given by way of illustration. 
I. Consider first tho case in which friction reduces tho efficiency of tho con¬ 

version of heat into work below the value corresponding to friction less (i.e. re¬ 
versible) working. Let tho quantity of heat supplied to the body (e.g. a gtis 
engine) from tho heat reservoir 1 bo Qj. Then a smaller fraction of will bo 
converted into useful work and a larger fraction given up to the colder reservoir 
than would bo tho case if there were no friction. Tho negative part of tho integral 
is therefore increased. On the other hand, if tho frictional heat is returned to tho 
hotter source, the positive part of the integral is diminished. Thus in both cases 
the integral assumes a negative value. 

II. The equalizations of temperature between tho body and tho heat reser¬ 
voirs may occur with finite speed, because tho temperature of the body is lower 
by a finite amount than that of the hotter reservoir or greater by a finite amount 
than that of the colder reservoir. Now T is put equal to the temperature of tho 
reservoir instead of tho body. In the first case (positive cZQ) the value used in 
the integral will therefore be too high; and in the latter case (negative dQ) too 
low. Thus the positive part of tho integral will be reduced and tho negative part 
increased in comparison with tho case of reversible action. Hence the value of 
the integral is again negative. 

III. Irreversible action may also be due to finite difi’erences between the 
external pressure and the pressure of tho working substance (e.g. tho pressure 
in the cylinder of a gas engine). The work performed during expansion is then 
less than in the reversible case of continuous pressure equilibrium. Hence less 
heat is absorbed from the heat source for conversion into work; consequently the 
positive parts of the integral are diminished. Conversely an excess of external 
pressure during compression causes the performance of too great an amount of 
work upon the body. An equivalent quantity of heat is given up to tho colder 
reservoir and the negative parts of the integral are increased. 
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Thus all the above factors rendering the process irreversible cause 
the integral to assume a negative value. The general conclusion is 
that the value of the integral is negative for any irreversible cyclic 
process, i.e. 

dQ 
T 

rdi 

J T 
0. 

It is now a simple matter to derive a general theorem as to the 
relation between the entropy and the value of the integral for an irre¬ 
versible process by which the body passes from the state 1 to the state 
2. For if we bring the body back from the state 2 into the state 1 again 
by a reversible process, then for the whole irreversible cycle we have 

(irr.) (rev.) 

But the latter integral is ecpal to the difference — S2 of the en¬ 
tropies of the body in the two states. Hence 

1)1 the case of an irreversible process the difference of the entropies 
of the body in the initial and final states is greater than the integral 

fdQ/T. 
•^1 

From this follows an important theorem for closed systems, i.e. for 
systems completely isolated from their surroundings. In this case dQ 
is always equal to zero. The integral therefore vanishes and we have 

S2 ~ S, > 0. 
That is to say: 
The direction of irreversible processes within a closed system is always 

such that the entropy of the system increases. 
In the limiting case of reversibility the sign of inequality is replaced 

by that of equality: the entropy of the system remains constant. The 
case never occui’s in which the entropy of a closed system is diminished 
by any process of any kind. 

If the entropy is to diminish, the system cannot be a closed one^ 
but must be subject to external influences. If the system be enlarged 
so as to take in the sources of these influences, the whole is once more 
closed. The total entropy obtained by the addition of the entropies 
of all the bodies involved in a process must increase, or in the limit 
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remain constant. This limiting case is never actually realized, because 
all real processes are strictly speaking irreversible. 

On this account the following generalization has been made: 
On the whole all processes take place in such a way that the entropy of the universe 

always increases. 

Uhis is a further formulation of the second law of thermodynamics; but it 
exceeds the bounds of our experience. It is still an unsolved and debatable ques¬ 
tion whether we are justified in Q'Pptying to the energy forms of life all the con¬ 
clusions draivn from the relationships between the energy forms in inanimate 
processes. It is conceivable that in the living cell there may bo valves or mem¬ 
branes permeable in one direction only, such as might produce decreases of cn- 
tropy. In the light of modem knowledge the existence of processes causing a 
decrease of entropy has also become quite thinkable (see p. 128). 

The first law of thermodynamics determines the quantitative 
equivalence between thermal and mechanical energy 'witJiout reference 
to the question whether the transforynation of the one into the other can 
actually take place. The second law, on the other hand, determines the 
direction in which such a transformation can occur. 

4. Practical Application of the Concept of Entropy.—We cannot 
in this book go into all the extremely numerous applications of the 
two laws and of the concej)t of entropy in scientific and technical 
thermodynamics. For these the reader should consult a special work. 
We will merely illustrate by one simple example the fact that an 
equalization process is accompanied by an increase of entropy. 

Consider the process of temperature equalization involved in tJio mLxiiig of 
two equal quantities of water each of I kg. mass, the one at the tem])erature Tj 
and the other at the temperature T2. Ix^tting f ho entropy in an arbitrary reference 
state of tem}3crature Tq bo Sy, wc can calciilato the entropies of the t wo masse.s 
of water before mixing relative to this reference state. Wc have 

dQ = wodT, 

w^hore m is tlie mass and c the specific heat. In our case m = 1 and c = 1 and 
therefore 

dQ ™ dT. 

Making use of this we have for the first mass 

Similarly for the second mass 

S,-So=log,J. 
■^0 

The sum of the entropies relative to the reference state before mixture is tl)orefore 

S'=Si -l-S2-2S„=Iog,(?JJ?). 

After mixture and equalization of temperature the total mass of 2 kg. has the 
temperature |(Ti -f Tg). Its entropy is therefore 

. S» . 2(S. - S.) - 2 
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As a result of mixing the total entropy has altered by the amount S"—S', given by 

S" - S' = 
(T, + 

= loge 

VI 

■(Ti_+Tgri 
. '4T,T, J' 

But (Ti + == 4TiT, + (Ti - Tj)» 

ie 0 + T2)“=1 
4T1T2 ■ 4fif2 ■ 

Therefore S" - S' - ^ log, [l + • 

Since now the second term in the bracket is certainly positive, the whole 
expression in the bracket must be greater than unity and therefore the right- 
hand side of the equation certainly greater than zero. Hence 

S" > S'. 

A similar calculation can bo performed for every equalization process. In 
all such cases there is an increase of entropy, because the whole system concerned 
performs an irreversible process. 

A knowledge of the entropy of a body is of great importance for 
technical purposes, because it determines the work value of the body 
for thermal processes. The entropies of technically important sub- 
stances (e.g. steam) have therefore been determined empirically. It 
is only possible to calculate entropy values if the equation of state be 
known. But for vapours or even for real gases this deviates considerably 
from that of a perfect gas. In the case of a perfect gas we have 

dQ - dU + - cJT + j>dN. 

Hence the entropy S per unit mass is given by 

f dJi f'R dSf , ^ K, , 
== J +i M T M 

where M is the molecular weight. For an adiabatic change we have 

and therefore S := const. 

Hence the entropy remains constant during adiabatic processes. 

The technical significance of entropy may be illustrated by the following 
example: 

A quantity Qi = 1000 kcal. of heat, which may be imagined for simplicity 
to be stored up in liquid water at temperature Tj, represents an energy of 427,000 
m. kg. Only a part of it can be converted into a useful form, however. The re¬ 
mainder ^ 
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wliero Tj is the final temperature of the heat engine employed, is useless and is 
necessarily lost during the conversion of the other part into work. Wo see that 
the quotient Qi/Tj, i.e. the entropy in the state 1, is of considerable importance 
for this loss. The final temperature Tg of the heat engine will generaUy bo room 
temperature or somewhat higher. Wo will take it as 30*^ C. We will further sup¬ 
pose that the 1000 kcal. of heat are stored up in h'quid water at 130® C. Actually 
this will require about 10 litres of water, wMch will naturally have to be imder a 
correspondingly high pressure. In this case only the fraction 

Ti - T2 __ 100 

Tj 403’ 

or about 25 per cent of the total heat energy (about 106,000 m. kg.) is obtainable 
as mechanical work even under the most favourable conditions. If the initial 
temperature of the water (in this case about 5 litres) is 230® C., then the 
fraction 200/503 or about 40 per cent of the heat (about 170.000 m. kg.) is utilizable. 
This shows clearly the great advantage of making the initial temperature as high 
as possible. The endeavours of engineering are therefore directed towards this 
end (see § 16, p. 153 et seq.). 

5, Entropy and Probability.—^It has been shown above that all pro¬ 
cesses in a closed system take place in such a way that both the entropy 
and the probability of the state of the system increase. Entropy and 
probability are therefore presumably closely related to one another. 
This relationship can in fact be expressed in mathematical form. 

Consider a system consisting of two bodies in thermal connexion. Tho body 1 
possesses the quantity of heat, tho body 2 tho quantity Q^. Tho probabilities 
of these states are functions of the respective quantities and Q2, i.c. 

Pi = /i(Qi) and P2 = /2(Q,). 

Hero Pj is the probability that the body 1 will possess the energy Qi and Pg the 
probability that the body 2 will possess tho energy Qg. Then according to tho 
theory of probability, the probability P that the body 1 will possess tho energy 
<Ji, and simultaneously tho body 2 tho energy is given by the product of the 
separate probabilities, i.c. 

P-P1P2. 

This is the probability of tho system composed of the two bodies in this state. 
It must therefore tend towards a maximum value. Now tho condition for a 
maximum is 

dV - 0, 

i.e. 

or 

dP " = - PjdPj -I- PgdPi - 0, 

Pi P2 

Since no other bodies are involved and the tw^o bodies 1 and 2 form a closed 
system, we must also have 

dQi dQj =5 0. 

Combining tho last two equations, we obtain the condition for tho statistical 
equilibrium towards which the system tends, viz.; 

1 dl\__ 1 QT>g 
Pi dQi P2 dQ.; 
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But wo know from experience that this equilibrium is attained when the two 
bodies are at tho same temperature, i.c. when = T2. 

We may therefore regard the quantity 

^ E) 
P dQ dQ 

as a measure of temperature. Setting it inversely proportional to the temperature, 
we obtain 

k == 1 
dQ T’ 

\\'here k is a constant. 
A comparison of this with the equation expressing the thermodynamical 

definition of entropy, 
dS 
W T’ 

gives th('. relationship between entropy and i)robability. 

In this way we obtain the equation 

S h log^P + const. 

Since the entropy itself involves an arbitrary additive constant, we 
may omit the constant of integration. The value of the constant Jc 
(the BoLTZMATm entropy constant) can be obtained by methods which 
cannot be discussed here. It comes out to |L (for the definition of L 
see p. 38), which is the same as the value found on p. 41 for the 
energy of a linear oscillator at a temperature of abs. (For further 
details see Vol. V—Heat Radiation.) Tho numerical value of k is 
1-37 . ergs/degree. 

The last equation gives an essentially neiv definition of the odropi/ 
of a system. 

The entropy of a state is a definite multiple of the natural logarithm 
of its probability. 

The concept of entropy, which is very difficult to grasp from the 
purely thermodynamical point of view, becomes easier to understand 
in the light of this definition. The general and precise determination 
of the magnitude of entropy is one of the most important problems 
of the statistical method of treatment. In the first place a more exact 
definition must be given of what is to be understood by the probability 
of a state. A detailed discussion of this lies naturally outside the scope 
of this book, but the following brief indications may be given. 

In a gas, which is to be regarded as composed of an immense number of indi¬ 
vidual molecules, any given instantaneous state is only mechanically determined 
provided that wo know tho corresponding position and velocity of every mole¬ 
cule. This knowledge is not necessary, however, for tho macroscopic treatment 
of processes in which tho elementary particles are moving at random. For this 
purpose it suffices to know how many of the particles lie within any given space 
or velocity interval. Thus tho macroscopic state is determined by tho space and 
velocity distribution. Now it is obvious that each such distribution is realizable 



ENTROPY 139 

in many different ways, because it can be formed by many different groupings oi 
the individual particles (in the case of a gas, the molecules). Consider the case, 
for example, in wliich 4 out of 10 similar balls are in a compartment A and the 
remaining 6 in another compartment B connected to it. This state is realizable 
in a largo number of ways. Imagine the balls to bo marked with the numbers 
1 to 10. Then in A wo may have the balls 1, 2, li and 4 or 1, 2, 3 and 5 or 
1, 2, 3 and 6, &c.; or 2, 3, 4 and 6 or 2, 3, 4 and 6, &c., and so on. The state 
of 4 balls in A and 6 in B is therefore realizable by a largo number of ao-callod 
complexions. Each of these complexions is exactly equivalent to each of the 
others as far as the realization of the state is concerned, though considered 
more closely they are all different. In the complete molecular disorder of a gas 
the state is, as it were, completely independent of what mark any particular 
molecule bears, being characterized only by the possible number of complexions. 
This 7iumber is called the prohahilily of the state. The larger it is, the more the state 
will predominate over other possible states. The calculation of the number of 
complexions of a given state is a statistical problem and may be solved according 
to the rules of the theory of j)robability. 

G. Rarity of Transitions into an Ordered State.—In the light of the concept 
of probability the results of thcrmod3niamics lose their cluiracter of absolutely 
binding laws; they are shovm rather to be mere rules, true Jii the majority of 
cases but liable to be broken in exceptional cii’cumstanccH. It is therefore instruc¬ 
tive to sec by means of a numerical example to ^\hat ('xtent this can invalidate 
the purely thermod^mamical conclusions as to the occurrc'nce of a process. 

Consider two bodies at the respective tcmj)fTatures Tj - - 273 -t 27 = - 300 abs. 
and Tg 273 -1 28 ~ 301° abs. Let the conditions be such that normall.v' a 
quantity of heat energy equivalent to 1 erg i)asses over frf>m the hotter to the 
colder body in a certain interval of time. Wo will first investigate the amount by 
which the probability of tlio final state differs from that Wj of the original 
state. The entropy change AH is given 

= sio - si i = i • R*' ‘ erg/degreo. 

Erom the entropy-probability equation on p. 138 we have 

AS= 

or 

Therefore 

AS 
Wa-Wie^ === Wie« 

W. 

W, 

10-* 1(1'* 100 
Wi e ^ - 

10‘» 

Thus the probability of the final state is an enormous number of times greater 
than that of the initial state. Hero is the number of complexions of equal 
probability by means of which the initial state can be realized. Similarly is 
the number of complexions of the final state. According to the j^resent method 
of treatment each one of these Wj + Wg independent complexions is of exactl^^ 
equal probability. The fact that the second state is the more probable is due 
solely to its very much greater number Wg of complexions. Of the -f W2 

possible complexions, Wg correspond to the passage of heat from the hotter to 
the colder body, to the absence of such a process. In accordance with the 
theory of probability, the probability W that the process will bo observed in a> 
given time is given by the quotient of the number of favourable cases divided by 
the total number of possible cases, i.e. 

W2 W = 
W2+Wi 
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Since the term W1/W2 is very small, we may write 

w=.-w,. 

Similarly the probability W' that heat will not pass from the hotter to the 
colder body is 

W' = 
W2 + W/ 

for which we may write approximately 

W' = ^ = 1 : lOOO’O'". 
W, 

This means that on an average the thermod3mamically required transition of 
heat from the hotter to the colder body would b© found not to occur in at 
most one out of 1000^^*° observations carried out under the same conditions. 
Now 1000^^^“ “ is an unimaginably largo number. If every 
digit took up a space of 4 mm. the strip of paper required to write out 
would bo 4.10,000,000,000 mm. == 40,000 km. long, i.e. long enough to go once 
round the earth. The number 1000^0*“ would require a strip three times as long. 
Ilenco there is only an unimaginably small probability that, in many thousands 
of years—at least in periods covering the whole of human history—^and amongst 
all the observers of the world, one case will arise in contradiction to the require¬ 
ments of thermodynamics. For practical purposes, therefore, the probability of 
thermodynamically required processes amounts to complete certainty. 

We arrive at a diHerent result if we consider a very much smaller quantity 
of heat than 1 erg, for example, 12.10“^ ^ erg. Then by a similar calculation wo 
obtain 

whence 

W. 

w, 
e — 2-7, 

W- 
W. 

W2 +Wi 3-7 
and W' 

Wi __ 1 
Wo + Wi 3-7* 

In this case the small quantity of heat considered would bo found on the 
average to have passed over from the hotter to the colder body in only 27 cases 
out of every 37. In the other 10 cases it would be found not to have passed over, 
and would thus have contradicted the requirements of thermod3niamic8. From 
this wo conclude that the larger the amount of energy involved, the rarer and 
more improbable are exceptions from the normal course of thermodynamical 
processes. Even the passage of a quantity of thermal energy equivalent to 1 erg— 
a very small quantity compared with those involved in our usual measurements 
—from a hotter to a colder body takes place practically without exception. But 
in the case of very small amounts of energy, such as those involved in molecular 
changes, processes at variance with the mles of thermodynamics may very well 
bo encountered (§ 9, p. 129). 

7. Statistical Fluctuations.—Owing to the random nature of 
molecular motion it follows that excesses of very rapidly moving mole¬ 
cules (a high ‘‘ temperature or of very slowly moving molecules 
(a low temperature may occur in very small volume elements and 
for very short times. In the same way the “ pressure ” in very small 
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volume elements is continually fluctuating. Under certain circum¬ 
stances these fluctuations may become visible; for instance in the 
Brownian movement, where the density of distribution and the 
velocity of motion of the particles can be seen to vary under the micro¬ 
scope. Similar phenomena can also be observed in the vaporization of 
liquids near the critical point. At constant critical pressure the volume 
of the gas just above the critical temperature is very much greater 
than that of the liquid just below. Hence a very slight change of tem¬ 
perature causes a very great change of volume. The statistical fluctu¬ 
ations of the thermal motion must be accompanied by very great 
fluctuations of density. Consequently very small liquid regions are 
continually being formed in a gas which is Icept at constant critical 
pressure and temperature—^tiny liquid droplets which disappear again 
at once and reappear suddenly at other points. On account of this 
marked lack of uniformity the gas appears opalescent in this state 
{critical opalescence). The measurement of this opalescence provides 
a method of determining the Loschmidt number. A determination of 
this sort has actually been carried out successfully (Kameulingh- 

Onnes) in the case of ethylene. 

11. Combination of the First and Second Lav^s of Thermo¬ 
dynamics 

In the course of the above treatment wo have had to deal with 
certain quantities which are descriptive of the state of a given system 
in that they have a definite numerical magnitude for every state. 
These quantities are: internal energy U, pressure j), volume V, tem¬ 
perature T, concentration as given by the number N of dissolved 
molecules, and finally the entropy S. They are not indei)endent of 
one another but arc connected by certain functional relationships 
determined by the nature of the system. A change of one of these 
parameters of state * causes in general a change of the others, although 
one or more of them may remain constant. 

For example, when a perfect gas alters its volume without performing external 
work or having external work dono upon it, its internal energy and temperature 
remain constant. The process is thus an isothermal one at constant internal 
energy. The internal energy of a perfect gas depends only upon the temperature 
and therefore remains constant as long as the temperature remains constant. 
The state of the system can be varied while one of the parameters is kept con¬ 
stant: e.g. isopiestic f processes (p — const.), isochorief processes (u= const.), 
isothermal processes (T = const.), isentropic processes (S = const.), processes at 
constant concentration, and so on. During an (infinitesimal) change tho system 
will in general receive from or give up to tho surroundings a quantity dA of work 
and a quantity dQ of heat. But hero again the condition may bo imposed that 
there shall be no external work done by or upon the system (dA — 0) or that there 
shall be no gain or loss of heat (dQ = 0.) Tho latter type of process is the adiahatic 

* Qr., paramdrein, to measure, pUzein, to compress. J Gr., chorerna, volume. 
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type. If simultaneously c?A = 0 and dQ = 0, then the system is a closed one, 
because it cannot gain or lose energy of any kind. 

The equation for the first law of thermodynamics is 

J dJQ ™ dU + 

where dQ, is the quantity of heat supplied to the system, cHJ the in¬ 
crease of internal energy and dA the external work performed by the 
system. In the case of reversible processes we may introduce the entropy 
8, tlius combining the first and second laws by means of the equation 

JTdS-dU+dA. 

For adiabatic processes dQ ~ 0; the external work is performed at the 
expense of the internal energy of the system, i.e. in the case of a perfect 
gas there is a corresponding fall in temperature. A reversible adiabatic 
process is at the same time isentropic. 

Internal Energy.—When none or only a part of the heat supplied 
to the system is used up for the performance of external work, i.e. 
w’hen dA = 0 or < J dQ, the internal energy must increase. 

'rj)0 nature of this change of internal energy leads to theories of the consti¬ 
tution of matter identical with those wdiich form the basis of the kinetic theory 
of gases (§ 1, p. 35 el seq.). Thus in the simplest typo of substance^ a monatomic 
gas, the heat supplied causes an equivalent increase of the kinetic energy of mole¬ 
cular translation. This appears as a rise of temperature of tlie gas and, at constant 
volume, as a rise of pressure. In the case of a diatomic gas tlio heat added is partly 
used iij) in increasing the kinetic energy of translation of the molecules, i.e. in raising 
the temperature and, at constant volume, also the pressure; but a part goes to 
strengthen internal motions (atomic vibrations) witbm tho molecules, i.e. to 
incrcaso tho amplitude of the intramolecular vibrations and their periodic energy 
transformations (kinetic into potential and vice versa). This latter part of the 
heat energy supphed docs not cause any rise of temperature. The mternal energy 
is very complicated in tho case of solids and liquids, because in addition to tho 
complex structure of tho molecules there are also combinations of the molecules 
w ith one another to be taken into account (forces of cohesion). 

External Work.—Unless some special constraint is applied, 
changes of the temperature of a body arc in general accompanied by 
changes of length or volume. If the body is subjected to external 
forces, these changes perform work. For instance, in the case of a rod 
expanding and raising a weight the quantity of work performed is 
given by the product of the weight into the height through which it is 
moved. An increase dV of volume against a pressure p performs the 
external ivorh pdN (p. 33). In the case of solids and liquids this can 
be neglected in comparison with the internal work. In tho case of gases, 
however, tho external work is the main part—for a perfect gas the 
whole—of tho w^ork performed. Tho equation of the first law of thermo¬ 
dynamics for systems where pdV is the only external work performed is 

JdQ = dU -f pdiV. 
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For reversible processes combination witb the second law gives 

JTdS = (ro + pdW, 

Experience shows that the two laws can also be extended to systems 
in which other kinds of external work are performed, such as elastic 
deformations, chemical changes, solution, electrical work, and the like. 
In all such cases the work done can be measured by the product of a 
generalized force parameter P and the change dV of another parameter. 
Examples: electrical work ~ electromotive force X quantity of elec¬ 
tricity; work against surface tension ~ surface tension X change of 
surface area; chemical work ^ chemical force X amount trans¬ 
formed; work of solution — solution pressure X amount dissolved; 
elastic work = stress X change of strain; and so on. For a system 
capable of performing any of these tjrpes of work we have 

JdQ - JTdS(,ev.) -- dU + SPfiV. 

The Clausius-Clapeyron Equation.—This is an important relation 
connecting the latent heat of a vapour, tlic change of volume due to 
evaporation, and the rate at which the saturation pressure changes 
with the temperature. The relation is readily obtained as follows. 

Consider a Carnot cycle in which tlie working substance consists 
of a liquid with its vaj)0iu’. Throughout the operations the two jhases 
are supposed to remain in equilibrium with each other, or, in other 
words, the vapour alw^ays remains saturated wiiile the temperature 
and pressure change. This gives a Clapeyron diagram (p. 117) in wdiich 
the isothermals are lines of constant pressure and therefore horizontal, 
and these are connected by tW'O adiabatic curves. 

As on p. 117, let Tj and Tg be the two temperatures considered, 
and let and 2^2 corresponding saturation pressuiv\s. Also, 
let be the latent heat of unit mass at temperature T^. 

In the first operation, w^o suppose unit mass of the liquid, at tiuu- 
peraturo T^, to be changed into vapour at the same temperature s.nd 
at pressure The heat supplied is therefore L^. 

The efficiency is ..Jb, 

The work done is th{U’efore JLi “-7p— 

But the work done is equal to the area of the Clapeyron diagram. To 
obtain a simple expression for this area we shall suppose the chaug(i 
of temperature — T2, and therefore also the change of pressure 
Pi P2’ small. 

Let Yi be the volume of unit mass of the liquid, and that of 
unit mass of the vapour. 
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The change of volume in the first operation is V-y — V^. The diagram 
is practically a parallelogram with base — Vj and height Pi — 
its area is therefore (V^ — V^) 

Thus we find 

or V.-v,= JL,Ti-T, 

Ti Ti~Tz 

Now let Tj — Tg and — po become indefinitely small, and write 
T, L instead of Tj, Lj^. Wc obtain the exact equation 

T dp^ 

or, as it may also be written, 

dp __ JL 
Tr “ T(V,-~ Vi)‘ 

This is the famous Clausius-Olapeyron equation, giving the change 
of vapour pressure with temperature. A similar equation applies also 
to the melting of solids, the proof for this case being practically identical 
with the above. 

Example',—Find how much the boiling-point of water ia lowered when the 
atmospheric pressure falls from 760 mm. to 750 mm. of mercury. 

Hero L 539 cal./gm. 
- 1674 c,c./gm. 

Vj 1 c.c./gm. 
J “ 4-2 X 10’ crgs/cal. 
T - 373° C. abs. 

. . dp _ 4-2 X 10’ X 539 
The equation gives - = . 

= 3*627 X 10^ dynes per sq. cm. per degree C., 

which, on multiplication by 760/(1*013 X 10®), gives 

^ = 27*2 mm. of mercury per degree C., at 100° C. 

Hence, for a fall of pressure from 760 to 750 mm., the boiling-point falls by 
10/27-2 degrees, i.e. by 0*37° C. 

12. Thermochemical Relationships 
Almost all chemical processes are accompanied by change of tem¬ 

perature. In most cases there is a rise of temperature; heat is 
developed during the process, which is then said to be exothermic,’*' 

* Gr., outside. 
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Exothermic processes usually continue of themselves when once they 
have been started. As examples we may mention the burning of a 
candle, the combination of hydrogen and chlorine to hydrogen chloride, 
the explosion of gimpowder, &c. Other processes only take place 
provided that heat is continually supplied (analogously to the evapor¬ 
ation of water); they use up this lieat without rise of temperature. 
If they occur without heat being supplied, the temperature of the 
bodies taking part is lowered (endothermic * processes). 

The quantity of heat set free or absorbed during a given chemical 
process is proportional to the mass of the substances taking part in it. 

Heat of Combination.—The quantity of lieat used up or developed 
in a chemical combination is Icnown as the heat of comhinaiion. It is 
reckoned as negative in endothermic pro(;esses and ])ositive in exother¬ 
mic ones. Since the symbols for the elements in chemical equations 
also stand for gramme-atoms, lieats of combination are also referred 
to the same units. Thus we write, for example, 

Fc -I- S FeS -I- 23,800 cal. 

This means that 23,800 cal. of heat aro act free when 56 gm. of iron and 32 gm. 
of sulphur combine to form 88 gm. of ferrous sulphide (a reaction which takers ])lacc 
spontaneously when the ch'mciits are intimately mixed, the mixture l)(>roniirig 
white hot). 

In these processes account must also be taken of any inet hanical 
work which may be performed in addition to the generation of heat. 
Tliis work is generally that done against atmospheric pressure by the 
change of volume accompanying the process and must be added In 
with the beat of combination (positive or negative). In cases where 
doubt is possible it is therefore necessary to spt'cify in the equal ion 
the state of the substances involved. 

Example.—When a mixture of two volumes of hydrogen w ith uno of oxygen 
(explosive mixture) is ignited, the two substances combine with great evolution 
of heat to form water vapour, which condenses to water on cooling. The equation 
for this reaction is 

211. (gas) -f- O2 (gas) -= 2H2O (liq.) + 137.000 cal. 

That is to say: 137,000 cal. are set free by the combination of 4 gm. of gaseous 
hydrogen with 32 gm. of gaseous oxj’^gen to form liquid water. This includes the 
work performed on the system by the external pressure ou account of the de¬ 
crease of volume. If we wish to know the heat of combination for the process 

2H2 (gas) -h O2 (gas) 2H2O (ga.>), 

we must subtract from 137,000 cal. the latent heat of vaporization of the water 
(i.e. 19,400 cal.) which was liberated during the condensation. 

At the end of the reaction the quantity Q of heat developed plus 
the work p AV performed is equal to the decrease of the internal energy 

(1636) 
* Gr., ^Tidon, within. 

tl 
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U of the system. Hence thermochemical equations are often written 
in the form 

Fe+S-FeS- 23,800 cal. 

The algebraic sum of the amount of work performed and the quantity 
of heat developed (each either positive or negative) is the change of 
the total energy of the system. 

Particular interest attaches to those chemical reactions (combus- 
tions) in which a substance combines with oxygen, since they are 
simple to carry out experimentally and the quantities of heat de¬ 
veloped are as a rule very great. In this case the heat of reaction is 
called the heat of combustion. iUthough both oxygen and the sub¬ 
stance are involved in the development of heat, it is usual to speak 
merely of the heat of combustion of the substance. 

In physics and engineering heats of combustion are often referred 
to 1 gm. of the substance instead of to the quantities expressed in the 
chemical equation. Thus, for example, 34,300 cal. are produced by 
the combination of 1 gm. of hydrogen with the corresponding quantity 
of oxygen to form liquid water. We will define this value as the heat of 
combustion of hydrogen. 

The measurement of heats of combustion is carried out in many cases inside 
a calorimetric bomb. This consists of a completely air-tight vessel made of steel 
and covered on the inside with platinum or enamel. If the substance to be investi¬ 

gated is gaseous, the bomb is filled at about 25 atm. with 
a mixture of this gas with the exact quantity of oxygen 
necessary for its combustion. An electric spark is then 
allowed to pass inside the v('Hsel between the wall and an 
insulated platinum wire; t'iis starts the explosive com¬ 
bustion. 

There are two reasons for oan*ying out the process with 
the mixture under pressure: (i) in order to have as large a 
mass as possible in a small volume and (2) in order that the 
combustion may proceed to completion. 

During the combustion the bomb is placed in a water 
calorimeter. The heat developed raises the temperature of 
the bomb and the water. The water equivalent (p. 21) of 

Fig. 20.—Berthelot’s the former being known, the quantity of heat set free can be 
Bomb Calorimeter calculated from tho observed rise in temperature by methods 

already explained. 
If tho substance under investigation is solid or liquid, it is suspended inside 

the bomb in a j)latinum spoon (fig. 20), the remainder of the interior being full of 
oxj’gen. Tho combustion is then started by means of a platinum spiral which is 
made red hot by an electric current. 

The determination of heats of combustion is of very great practical impor¬ 
tance, because the value of substances as fuel depends primarily upon their heats 
of combustion. 

In the case of an allotropic substance (i.e. a substance which can 
exist in difierent modifications), the heat of combustion is different for 
each modification. Thus, for example, the heat of combustion (per gm.) 
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of carbon to carbon dioxide is 7860 cal. for diamond, 7900 cal. for 
graphite, and 8000 cal. for amorphous carbon. 

Many substances have different degrees of oxidation. In such cases 
jt; is necessary to specify which degree is attained in the combustion. 
For instance, 1 gm. carbon burns to carbon monoxide with develop* 
ment of 2180 cal., but to carbon dioxide with development of 8000 cal. 
If the combustion of carbon is controlled in such a manner that it first 
gives carbon monoxide and then this burns to carbon dioxide, th(i first 
stage of the process develops 2180 cal, and the second 5820 cal. Thus 
the total is once again 8000 cal. 

It is therefore often possible, in cases where the heat of combustion 
of a substance cannot be determined directly, to carry out the deter¬ 
mination by an indirect method. For instance, it is practically im¬ 
possible to burn carbon to pure carbon monoxide; hence the corre¬ 
sponding quantity of heat developed cannot be measured directly. 
The following procedure is therefore adopted: the heats of combustion 
of carbon and of carbon monoxide to the dioxide are measui’cd directly 
and the difference taken. 

It is a general law tliut the heat of reaction of several substances taking 
part in a process depends only upon the end products and not at all upon 
the way in which these are produced. 

It is therefore possible, by the combination of suitable and easily 
measurable chemical reactions, to calculate heats of reaction which 
are otherwise only obtainable with difficulty. The knowledge of such 
heats of reaction is of decisive importance for the calculation of the 
course of chemical processes. For instance, the heat of transformation 
of diamond into graphite, which could never be determined directly 
on account of the extreme slowness of the change, has been found by 
means of the heats of combustion (Nernst). According to the data 
given above it is equal to 40 cal, per gm. 

Heat of Neutralization.—One heat of reaction which is often de¬ 
termined experimentally is that set free by the mutual neutralization 
of an acid with a base. It is known as the heat of neutralization. The 
heat of formation of the salt produced by the neutralization can be 
obtained from it. The measurements arc best carried out in a Bunsen 
ice calorimeter (see p. 69). 

13. Application of the Laws of Thermodynamics to 
Chemical Processes. 

1. The so-called Berthelot Principle.—When a chemical process is 
allowed to take place in a calorimeter without performance of external 
work, a certain heat of reaction, i.e. an absorption or production of a 
quantity (iQ of heat is observed. This is given by 

JdQ = dV; 
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where ci!Q is to be reckoned as positive when heat is absorbed and vice 
versa. A decrease of U thus corresponds to a negative value of dQ, 
which is then taken to represent a development of heat. 

Observation shows that many of the more vigorous chemical pro¬ 
cesses develop a large quantity of heat. For example, more heat is 
developed when sodium oxide combines with sulphur trioxide to giv(^ 
sodium sulphate than when the same substance combines with carbon 
dioxide to give the carbonate. It was once believed that a measure of 
chemical affinity had been discovered in the heat of reaction. In 1867 
Beuthelot propounded the rule which is known by his name and 
which states that of all the possible chemical reactions the one accom¬ 
panied by the greatest development of heat will occur. He had to 
exclude changes of state, however. There were also obvious deviations 
from the rule. 

2, Free and Bound Energy.—^Unless specially controlled, a chemical 
process in general takes place irreversibly. In order to account for the 
deviations from Berthelot’s rule, it is necessary to conduct the process 
reversibly. This can be done by making it perform external work, such 
as electrical work in a voltaic element, the chemical processes in 
which can be reversed by expenditure of the same amount of work, 
or osmotic work in the case of processes in solution, and so on. We 
have then in general 

JciQ--JTrfS-dU+PcZV 

where PeW represents the external work of all kinds (see p. 142). If 
the process is isothermal (i.e. if there is thermal contact with a large 
heat reservoir) the external work done, wliich is given by 

PefY- - c?U+ JTrfS= - cZ(U- JTS) = - dH 

is equal to the decrease of a quantity 

H=:=U~ JTS. 

Since the greatest possible amount of work is obtained when the pro¬ 
cess is conducted reversibly, this decrease of the function H is the 
maximum amount of work which the process can yield. In 1883 
Hoef recognized this to be the true measure of chemical affinity. Thus 
w’^e see that the whole of the decrease of the internal energy U is not 
obtainable as useful work, but only the part H. The function H is 
therefore called the free energy of the system (H!elmholtz), while the 
other part JTS is called the bound energy, because it cannot be obtained 
in useful form. Thus the total internal energy is composed of these 
two parts: 

U - H + JTS. 

• Maboblun Berthelot (1827-1907) of Paris, famous chemist. 
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When a process is conducted isothernially and reversibly the amount 
of work it performs is given by 

There is also a simultaneous heat of reaction, given by 

JdQ - JTrfS 

and equal to the change of the boimd energy. 
Since the entropy increases, spontaneous processes must cause H 

to decrease', that is to say, they must be capable of performing ex¬ 
ternal work. It depends entirely upon the conditions whether this 
decrease of H is really obtained as work or not. If not, there is an 
equivalent heat of reaction developed by the system. On the other 
hand, a process accompanied by an increase of free energy H necessi¬ 
tates the expenditure of external work; such a process never occurs 
spontaneously. At the same time alterations of the bound energy can 
cause further heats of reaction either ])ositive or negative. 

A few examples may be given by way of illustration. 
I. When a salt is dissolved work is performed by the solution pressure J^, If 

the quantity passing into solution is dV, the work done is P<f\'; this can be 
obtained in useful form by a suitable device, say with the help of a semiqjermeable 
membrane. It is equal to the decrease dll of free energy. At the same lime the 
change of state of aggregation causes an alteration of the bound energy, which 
tends to cause a fall of temperature and for isothermal solution requires the 
addition of a quantity dQ,^ of heat. If the decrease of free energy is not made 
do external work, an equivalent quantity dQo of heat is developed. This is what 
happens when the salt is dissolv^ in w'ater without special control. The whole 
heat e.bsorbed is then 

(ZQ —- 

Thus it is impossible to make any general statement as to w^hethcr dQ will bo 
positive or negative. This depends upon whether (ZQi ^ dQ,^ particular 

case. There is usually a fall in temperature when a salt is dissolved, i.e. the 
isothermal process necessitates addition of heat {dQ positive). This indicates 
that the increase of the bound energy due to the liquefaction of the salt out- 
Aveighs the decrease of the free energy. 

n. There is a considerable evolution of heat when sulphuric acid is dissolved 
in water, because the great chemical alBBnity means a great decrease of free energy, 
which, when not mad© to do work, appears as heat. Thus we have a great evolu¬ 
tion of heat, i.e. negative dQ when the process is isothermal. When sulphuric 
acid is mixed with snow, the chemical reaction is accompanied by a melting of 
the latter. This change of state causes the bound energy to increase more than 
the free energy decreases, so that on the whole the process causes a cooling or 
when isothermal requires the addition of heat. On account of the change of state 
of aggregation of the water, sulphuric acid and ice form a powerful freezing 
mixture. Similarly in the case salt -{- water the total internal energy U of the 
mixture increases during the chemical process. But the free energy always de- 
<5rearfes. During the dilution of sulphuric acid with water both the free energy H 
and the internal energy U decrease, because there is no increase of the bound 
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energy owing to change of state of aggregation to mask the decrease of the free 
energy. 

We see from these examples that the so-calJed Berthelot principle only 
possesses limited validity, namely, for those cases in which there is no change 
of the bound energy. Such a change may be caused not only by change of state 
of aggregation but also by dissociation, change of crystal struct:jre, molecular 
rearrangement, change of specific heat, &c. 

III. When current is taken from a voltaic element, the decrease of free 
energy accomjjanying the chemical process is made to perform useful electrical 
Avork, such as can be employed to drive a motor or to raise weights, i.e. to do 
mechanical work. The total process is then reversible and there is no heat effect 
in the element. This method is the one most used to determine the maximum 
work H. But in addition to the actual chemical reaction, accompanying pro¬ 
cesses may give rise to a change of the bound energy, in which case a positive or 
negative amount of heat wiU be developed. If the electric current is used to pro¬ 
duce heat in a wire, the process becomes irreversible. The same is true if the 
element has an internal resistance against which work is lost. In this case the 
equivalent quantity of heat is produced in the element. 

In order to make full use of the capacity of a chemical process to 
perform work, it must be conducted reversibly. This necessitates its 
being slowed up to an infinitesimally small velocity. The reaction must 
be conducted in such a way that no excess velocity is imparted to the 
molecules. In an irreversible process the reacting molecules rush 
together, as it were, unimpeded. Their kinetic energy so obtained is 
transformed irreversibly into heat. 

For the numberless applications of these principles the reader must 
be referred once more to a special work on chemical thermodjuiamics, 
one of the branches of physical chemistry. 

14. The Nernst Heat Theorem 

According to the preceding paragraph the internal energy U of a 
system is equal to the sum of the free energy H (the maximum work) 
and the bound energy JTS, i.e. 

U=H+JTS. 

Both the internal energy and also the maximum work are dependent 
upon the temperature. For T ~ 0, the equation shows that U ™ H 
Now experiment shows that in reactions between pure solids and 
liquids the difference between U and H is only small and that it only 
varies very little at low temperatures. This led Nernst to assume 
that at the absolute zero U and H are not only equal but that their 
values, approach each other asymptoticjilly, i.e. 

Iimg=liing(forT=0) 

(see fig. 21). This is the Nernst heat theorem (1906). According to 

the equation given above the theorem can also be formulated as follows: 
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In the neighbourhood of the absolute zero all 'processes taJce place uifh- 
out change of entropy; all processes are then reversible, i.e. 

lim AS = 0. 
'r ->• 0 

This means further that no property of a body alters appreciably in 
the neighbourhood of the absolute zero; indeed even above the al)- 
solute zero the alterations arc only very small. We conclude also that 
the volume and pressure of gases are independent of the temporatuT<' 
in the neighbourhood of the absolute zero {degeneration of gases). 

The Nernst heat theorem has extremely important applications, 
because with its help the quantity H can l)e calculated from purely 
thermal data. For this pm'pose it 
is necessary to know the behavioui* 
of U with change of temperature 
at very low temperatures, i.e. in 
general the behaviour of the specific 
heat. Even at easily attainable 
temperatures the condition 

dH _ (fU _ 
dT'""dT 

is often fulfilled; it is generally not ^ 
necessary to go below 100° abs. Fig. 21.-Xemst Meat Theorem 

If the vapour pressure curves of 
the reagents be known, it is then possible to calculate the course, the 
temperature dependence and the equilibrium, of any chemical process. 

If u-Uo+^r 

be known as a function of T, then 

TI - Uo - 

is a close enough approximation for many ])urposes. 
The heat theorem has achieved extraordinary success in the treat¬ 

ment of numerous problems and is therefore often called the third latv 
of thermodynamics. It may be stated in a form analogous to the first 
two laws: 

It is impossible to attain the absolute zero by any process whatsoever. 

As an example of the application of the heat theorem wc may mention the 
calculation of the transition temperature Tq of monoclinic into rhombic sulphur. 
At this temperature the twv modifications are in equilibrium and the affinity H 
is therefore zero. Measurements of the specific lieats of the two modifications at 
different temperatures down to abs. give 

U = 1-57 + 1-15.T*. 
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From this it follows that H ~ 0 for = 369*5° abs., whereas the experimentally 
determined temperature is 368*4° abs. The agreement is excellent. Direct measure¬ 
ments of H are also in very good agreement with the calculated values. 

For further details elucidating the significance of the third law of thermo¬ 
dynamics, see Vol. V. 

15. The Principle of Le Chatelier 

To conclude this general discussion we shall now explain a principle 
wliich, though not so far-reaching nor so quantitative as the second law 
of thermodynamics, indicates the direction of a process taking place 
in a system. It applies only to processes induced by some other primary 
process in the system or by some external influence. The principle 
was first enunciated by Le Chatelier* in 1884, and more thoroughly 
followed up and established by Braun f a few years later. It states: 

Every process caused hy an external influence or by a primary process 
in a system takes place in such a direction that it tends to oppose the altera¬ 
tion of the system produced by the external influence or primary process. 

Thus when a primary process or influence A gives rise to a process 
in a system, the process B protects the system against the primary 

disturbance, i.e. makes the system more resistant to the change which 
would otherwise be produced. By means of the process B the system 
defends itself, as it were, against the process A and tends to weaken its 
effect. The system is loth to quit the state in which it finds itself and 
exerts a resistance of inertia against any change. 

Examples.—1. The mechanical resistance of inertia exerted by every mass 
against any change of the magnitude or direction of its motion is a characteristic 
example. But analogous cases are met with in all the other branches of physics. 

2. We increase the external pressure upon a body so as to tend to decrease 
its volume (influence A). The result is a change of temperature (process B) of 
such a nature as to tend to increase the volume again. That is to say, bodies 
which expand on heating have their temperatures raised by compression; bodies 
which contract on heating (e.g. water below 4° C.) have their temperatures lowered 
by compression. 

3. In the same way rods and wires which lengthen on heating become cooler 
by extension; those which shorten on heating (loaded rubber tube) become 
hotter under the same treatment. 

4. When heat is added to a mixture of water and ice, the latter melts and 
thus prevents the rise of temperature which would otherwise occur. 

5. Consider two substances in chemical equilibrium. When heat is added, 
the reaction will proceed in the direction in wlflch heat is absorbed, thus tending 
to cool the system. Hence rise of temperature favours the decomposition of 
compounds formed by exothermic reactions (i.e. with evolution of heat), and also 
the formation of endothermic compounds. 

* H. L. Lb Chatblibe (born 1850), French investigator, carried out valuable 
theoretical and practical work in thermod3mamic8. 

fK. Feed. Bbatjn (1860-1918), Professor at Strasbourg; in recognition of his 
valuable work in wireless telegraphy the Nobel prize in Physios was divided between 
him and Mabcoih in 1909. He died in the United States, where he was staying at the 
outbreak of the European War and was interned. 
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6. An increase of pressure favours those changes of form, transformations of 
molecular and crystalline structure, dissociations, &c., which are accompanied 
hy a decrease of volume, because an increase of volume would increase the pres¬ 
sure still further. For this reason ice melts when the pressure is increased (p. 72) 
and its freezing-point is lowered. Most other substances arc denser in the soHd state 
than in the liquid; their melting-point is therefore raised by increase of pressure. 

7. Consider a solid salt in its saturated solution. When the process of solution 
is accompanied by absorption of heat, rise of tempcratiu'c causes more salt to 
dissolve; in the opposite case it causes more to bo deposited. 

8. When an electrical conductor is moved in a magnetic field, a current is 
induced in it. This current is such that the action of the magnetic field upon it 
urges the conductor in the opposite direction from that in which it is moved 
{Vol. III). Similarly the current induced in a conductor by the approach of a 
magnet repels the latter; when induced by the wutlidrawal of the magnet, the 
current attracts it. T^he current due to self induction when a circuit is closed or 
broken is such as to oppose the change of current (Lenz rule, Vol. HI). 

9. When an electric current passes through the junction of tw’o metals, the 
temperature of the junction alters in such a wav that the resulting thermo-cur¬ 
rent tends to weaken the original current (Peltier effect, Vol. III). 

10. The passage of an electric current through a salt solution causes a polariza¬ 
tion current (Vol. Ill) in the opposite direction. 

A large number of further examples miglit be adduced. It is easy 
to understand why the direction of the process involved must in all 
cases be in harmony with Le Chatclier’s principle. If this wore not 
the case, no equilibrium state would be possible. Ev(.^ry incipient 
process or every external influence would be streugfchened by the 
process to which it gave rise iu the system, and this mutual eflect 
would lead to a complete change of the system. A conductor in a 
magnetic field would go on moving continually once it was disturbed; 
a magnet would recede contiuually from a solenoid once it was dis¬ 
placed; a momentary (uirrent in a thermoelement would give rise to a 
continuous current and an ever increasing temperature difference of 
the junctions, and so on. 

The fact that according to the principle of Le Chateliee a closed system 
reacts to external influences in such a way as to oppose any change, has been 
taken as justification for attempts to comprehend and explain mechanistically 
the wonderful appropriateness of the reactions of a living organism to external 
influences of a disturbing or hurtful nature. It may bo mentioned, however, that 
the principle is not applicable without restriction to aU systems and all possible 
external influences, but presupposes a certain measure of stability. It does not 
hold for “ trigger ” actions, i.e. for processes released by primary changes in a 
system, for example, explosions, reactions started by beating, and so on. 

16. Heat Engines 
The convertibility of thermal energy into mechanical work is turned 

to practical use in heat engines. Four forms of these have attained 
especial importance: 

A. Hot-air Engines, in which the expansion of an enclosed mass of 
air produced by supply of heat is used to perform work. 
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B. Piston or Reciprocating Steam Engines, in which use is made of 
the fact that water occupies a considerably greater volume in the 
vapour state than in the liquid (1700 times at 100° C. and 1 atmosphere 
pressure), and that the pressure of water vapour is increased by rise 
of temperature. 

C. Steam Turbines, in which the kinetic energy of the flowing vapour 
is converted into mechanical work. 

D. Gas Engines, in which an explosive mixture of gas and air is 
ignited inside a closed cylinder, so that the very hot products of com¬ 
bustion drive back a piston. 

A. Hot-air Engines. 
The hot-air engine * (fig. 22) has only found application for small motors. 

The air in a cylinder is alternately heated and cooled. The expansion produced 
by the heating drives a piston outwards; while the fall of pressure during cooling 
causes the piston to bo driven back again by the external atmospheric pressure. 

Fig. 22.—Diagram of a Hot-air Engine 

The alternate heating and cooling is attained by surrounding one half of the 
cylinder with the fire box H and the other half with a cold-water jacket R. A 
hollow closed metal cylinder, the displacer V, half fills the interior of the cylinder 
of the engine but does not fit tightly against its walls. Hence the air can flow 
between the cylinder walls and the displacer. When the latter is brought into the 
cold part of the cylinder, the air passes into the hot part W and expands, thus 
driving out the air-tight piston A. When the displacer is brought into the hot 
part of the cylinder, the air passes into the cold part, is cooled down, and permits 
the ijiston to return. The piston rod is jointed to the fly-wheels by a connecting 
rod, which transforms the backward and forward motion into a rotational motioji 
of the fly-wheel. The displacer rod passes through the piston and is also con¬ 
nected to the fly-wheel by means of a connecting rod: it is thus moved backwards 
and forwards automatically by the rotation of the fly-wheel. 

The disadvantage of this kind of engine lies in the impossibility of increasing 
the air pressure sufficiently within the range of technically attainable temperatures. 
For this reason the dimensions of the engine must be very great in comparison 
to its power. 

B. Reciprocating Steam Engines. 

I. Mode of Action of Steam Engines.—Water is boiled inside a 
closed boiler made of iron or steel plates and the vapour prevented 
from escaping imtil it has reached a pressure of several atmospheres. 
The steam under pressure is then conducted into a cylinder closed at 

♦ Invented in 1855 by the Swedish-American engineer John Ericsson (1803-89), 
who was also a successful in'^entor in other directions. 
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both ends, in which a piston can move backwards and forwards. Th(‘ 
steam enters the cylinder on the one side and on the other side of th(‘ 
piston alternately, while in each case the side opposite the steam inlet 
is simultaneously brought into connexion either with the outer at¬ 
mosphere {high-pressure or exhaust steam engine) or with the condenser 
{^ow-pressure or condensing steam engine). In the latter case the escape 
ing steam is cooled and condensed to water. The steam inlet and out¬ 
let arc regulated by the automatic steam distribution. 

Steam Distribution.—This takes the form either of slide-valve distribution or 
distribution by valves of other types, the latter being used chiofl\^ in high-power 

/ i 

Fig. 23.—Singlc-cyluidcr Steam Engine with Simple Slide-valve Control 

engines. The mode of operation of a slide valvt' and the whole action of a steam 
engine can be seen from fig. 23, which represents a horizontal steam engine with 
slide-valve control. The slide-valve mechanism is dravai again in detail in tig. 24. 
The steam comes from the boiler through the tube U. Tlio .slide-valve mechanism 
consists of the slide casing S in which the actual slide (D-slide) reciprocates. It 
glides, hollow side down, upon a plane surface attached to the cylinder. This 
surface has three holes bored in it: the upper one in tig. 24 leads to the upper part 
and the lower one to the lower part of the cylinder, while the middle boring is 
connected to the exhaust pipe W. 

* The first automatic steam distribution is said to have been invented about 1717 
by the boy Humpheey Potter. The essential parts of the modem steam engine: 
steam distribution with eccentric sheave, condenser, fly-wheel, governor, &c., were 
described by James Watt (1736-1819) in the course of work extending over many 
years from 1766 onwards. 
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When the slide is in the position shown in fig. 23, the steam entering by 
"ifay of TJ can pass through the left-hand passage into the left-hand part of the 

cylinder O. It presses upon the piston A and 
M r"m di-ives it to the right. At the same time the 

I * i steam on the right of the piston in the other 
# ! I \ cyhnder is able to escape through 

^ cavity in the D-slide into the exhaust 

Villon A is connected with the vision 
;!ij y rod B. This is constrained to move in a straight 
STI I -f hno by the cross-head C which travels between 

I I I f two guides. One end of the connecting rod D is 
M., I .fa jointed to the cross-head and the other to tlu* « crank loeb E. Thus the backward and forward 

motion of the piston is transformed into 
rotational motion of the crank shaft F and the 
fly-wheel G. The crank shaft also carries the 
eccentric sheave H, i.e. a circular disc attached 
to the shaft in such a way tliat its axis of 
rotation does not pass through its centre. The 
eccentric sheave, which acts exactly as a crank 
or cam, rotates within a ring bearing (the 
eccentric strap). To this is attached the eccentric 
rod M, which is jointed at the other end to th(^ 
valve spindle T. When the erank shaft roiatess 
the eccentric sheave moves the eccentric rod 
backw^ards and forwards, and this motion is 
transmitted by the valve spindle to the slide 
valve. The eccentric sheave is turned through 
90'’ on the shaft relative to the crank web E, 

Fis. =4.-siiJc-vahv Mechanism ^ moving With maximum 
speed in its mean position when the piston is 

ther" rnTcatcTin'oJdcr from Cylinder Similarly 
nbove downwards: lubricating bolcj tllC sllQC VcllV0 18 its UliiXlIllllZll dlSpluCClllGlltf 
indicator socket; socket for drain cock, and approximately at rest w^hen the piston is 

moving in the middle of the cylinder. 
Boilers.—^The steam is generated in a boiler, which is usually housed in a 

special room away from the engine. There are various different types of boiler 

Fig. 25.—Single-flue Tank Boiler with Corrugated Flue 

construction. Fig. 26 shows a single-flue tank boiler. Through the interior of the 
cylindrical tank passes a wide and generally corrugated tube forming the space 
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for tho firing. Its front part is divided by the fire bars into two parts, the upper 
one being occupied by tho fuel and the flames and combustion products, while 
the lower serves as ashpit and inlet for tho necessary air. Tho boiler is enclosed 
in a wall provided with special flues through which tho hot gaseous products of 
combustion pass, in order that they may remain as long as possible in contact 
with tho surface of tho boiler before they pass into the chimney by way of the 
subterranean flue. Tho boiler must be filled with water over the furnace 
flue. In order that tho steam may leave in as dry a condition as possible, i.e. 
without sweeping liquid water along with it, tho boiler is provided with a 

Fig. 26.—Babcock and Wilcox Boiler with Superheater, fitted for Oil-firing, 
for mail and passenger vessels 

S.S. Steam space. vv.T. Water-tubes. F. Furnace, r.t. llcturn tubes. 
S.H. Superheater, c. Chimney, o.f.g. Oil-firing gear. 

steam dome from which tho steam passes through pipes to tho actual steam 
engine. 

In fumace4ube boilers the furnace gases pass through a boiler in many sej)arato 
tubes (e.g. in locomotives, torpedo boats, &c.). In water-tube boilers (fig. 26) the 
actual boiler consists almost entirely of a system of tubes which are surroundeni 
outside by the furnace flames and gases. In the best plants of this type, u]> 
to 85 per cent of the heat of combustion of the fuel is transferred to the boiler 
water. 

The steam leaving the boiler is often heated further without increase of 
pressure to a temperature above the bofling-point corresponding to the working 
pressure, so that it enters the cylinder completely dry and undergoes a greater 
expansion {superheated steam). The chief advantages of superheated steam arc 
of a practical nature; it does not conduct heat nearly so well as wet steam, and 
is therefore much less sensitive to the cooling influence of the internal surface of 
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the engine. Hence the use of superheated steam allows of a considerable economy 
of water and fuel without loss of power. 

The endeavours (based upon thermodynamical reasoning, p. 122) to use the 
highest possible initial temperatures in heat engines are of great physical interest 
and also of cvor-mcreasing practical importance. In one of these, the Benson 
method, the production of steam takes place in the critical state (205 atm.; 
374° C.), in which the density of the saturated vapour is equal to that of the w ater, 
and the liquid passes directly into the vapour state without the formation of a 
mixture. This also has the considerable advantage that the latent heat of 
vaporization is zero. The production of vapour takes place in the simple manner 
represented diagrammaticaUy in lig. 27. The water is compressed b}^ means of 
Jiigh-pressure pumps a into a system of tubes at 230 atm. There it is heated to 
374° C., so as to vaporize it. Further supply of heat causes the vapour to become 
superheated. This superheated vapour is conducted to the engine and finally 
passes back to the boiler as condensate. In fig. 27 the curve showing the volume 

Fig. 27.—Principle of the Benson Method. (Ordinates represent specific volumes) 

of the water and vapour as a function of the temperature is shown above the tube 
in which the vaporization takes place. It is seen that even before the critical 
temperature is reached there is abeady a loosening of the molecular texture of 
the water and a consequent increase of volume to three times its original value. 
The volume then increases rapidly during superheating, as is to be expeci-ed of 
the gaseous state. On account of the technical difficulties involved such highly 
compressed vapour is used almost exclusively in steam turbines (p. 165). 

Condenser.—If the exhaust steam from the cylinder escapes freely into the 
air, it has to overcome the back pressure of the atmosphere; but if it is allowed 
to escape into a vacuum, this back pressure is no longer present. The condenser 
serves to produce a vacuum. It is a special vessel into which the exhaust steam 
flows and is condensed by means of cold water. The cooling w^ater may either be 
sprayed directly into the condenser, i.e. mixed with the steam (.vpra?/ or mixing 
roitdenser) or made to flow through numerous tubes passing through it. In the 
latter case the exhaust steam from the engine condenses on the surface of the 
tiii)o system {sxLrface condenser). 

Expansion.—The steam enters the cylinder at approximately the same pres¬ 
sure as that in the boiler. If it were allowed to flow in freely during the whole 
of the piston stroke, a volume equal to the whole volume of the cylinder would 
be required. During the return stroke of the piston this highly compressed steam 
w ould escape into the atmosphere. But highly compressed steam is still able to 
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do work on account of its compression, so that this escape would represent a 
waste of work, i.e. a waste of fuel. For this reason the steam inlet is closed before 
the piston has completed its stroke and the steam is thus allowed to expand. 
In this way use is made of the work done during expansion. Theoretically the 
energy of the steam would be fully used if it could expand to atmospheric pres¬ 
sure or to the pressure in the condenser. This, 
ho^vever, would necessitate the use of impracticably 
long cylinders (p. 115). 

Compound Engines. — In these the steam is 
enabled to undergo a very largo expansion, and a 
better utilization of its energy is therefore attained. 
The steam, which has expanded in the first cylinder 
to about half its original pressure, i.e. to twice its 
original volume, is not allow'ed to escape directly 
into the condenser, but is conducted into a second 
cylinder of greater cross-section in which it yields 
more work by further expansion. The steam is 
thus enabled to expand from its original volume 
to that of the larger cylinder. 

Fig. 28 shows a two-stage cximpound erigine. Hero 
the two cylinders I and II are situated one above 
the other. The steam enters the lower part of the 
high-pressure cylinder I at boiler pressure through Fig. 28.—Diagram of a Two-stage 
the pipe and the slide-valve casing. It thus Compound Engine 

raises the upper piston. The steam still in the 
upper iDart of 1 leaves through the upper slide-valve casing and passes by way 
of Zg into the lower slide-valve casing, whence it enters the lower part of the 
low-pressure exjlinder 11. The expanding steam thus lifts the lower piston in the 
same direction as the upper one. The exhaust steam from II passes out through 
A into the condenser. (In a triple-expansion engine it first does w^ork in a third, 
still larger cylinder.) When, as in fig. 28, both pistons are attached to the same 
piston rod, the engine is called a tandem engine. 

Fig. 2Q.—Low-pressure, IntcrmcJutc-prcssure, and Hjgh-pressuri- Cylinders 
(in order from left to right in diagram) 

The cylinders are usually arranged side by side, as in the plan shown in fig. 29. 
The cylindrical shaped slide valve Sh lets the steam from E into the high-pressure 
cylinder. After it has expanded here it passes by way of the slide valve Sm into 
tlie intermediate-pressure cylinder and finally through the slide valve S'/i' into the 
low-pressure cylinder. From here it escapes through A into the condenser. The 
motion of each of the three pistons is transmitted by means of a connecting rod 
to a special crank or eccentric on a common shaft. 

II. Calculation of the Work yielded by a Steam Engine.- The work per- 
formed by the piston of a steam engine can be calculated from the magnitude! 
of the total thrust P exerted and the distance h through which it acts. Here h 
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is the length of the stroke of the piston, i.e. the length of the cylinder minus the* 
thickness of the piston. The work done during each stroke is therefore W = P^. 
The force P is itself equal to the product of the cross-sectional area A of the 
cylinder or of the piston face, and the steam pressure p per unit area, i.e. 
P =- Ap. 

The pressure in kg. wt. per 1 cm.^ of the piston surface is equal to the number 
of technical atmospheres pressure in the boiler minus the back pressure of the 

Fig. 30.—Work Diagram for Full 
Admission 

Fig. 31.—Work Diagram with 
Expansion 

exhaust steam on the other side of the piston. In the simplest^ case, where the 
steam escapes into a completely evacuated condenser, p is equal to the pressure 
read off on the pressure gauge of the boiler plus one atmosphere. Hence the work 
done in one stroke of the piston is W — Aph. The product AJi is equal to the 
volume V occupied by the vapour in the cylinder and therefore W pV. 

In a piston steam engine working with full admission, i.e. in which the steam 
exerts its full pressure on the piston during the whole stroke, the work is equal 
to the product of the steam pressure and the volume swept out by the piston. 
This may be represented, as in fig. 30, by the area of a rectangle, one side of which 
represents the volume and the other the pressure (work diagram). 

In an engine workhig with expansion, i.e. in which the steam inlet is cut off, 
for example, when the stroke is half completed, we have the conditions shown in 
fig. 31. The work during the steam admission is represented by a rectangle, 
one side of which represents the half volume swept out by the piston and the 
other the pressure. Then follows the expansion. We will assume for the purposes 
of calculation that the pressure decreases in accordance with Boyle’s law.* The 
area representing the expansion work is then bounded above by a portion of a 
rectangular hyperbola. The pressure of the exhaust is half as great as that of the 
boiler steam. The area of the figure representing the expansion work can be 
calculated easily with the help of the infinitesimal calculus. 

♦ If the expansion were adiabatic, we should have to use the equation of Poisson’s 
law. On account of the gains and losses of heat through the cylinder walls, the actual 
behaviour of the steam will be intermediate between the two laws. 
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We will perform the calculation for the general case where the steam inlet is 
cut off when Ijn of the total volume has been filled. The shaded area in fig. 32 
represents the work performed by the piston during one stroke. The part marked 
p\ln = Wi gives the admission work. The scale of the figure is so chosen that 
this part is a square, the one side representing the volume Vfn which is filled at 
full steam pressure, and the other the magnitude of this admission pressure. 

The process of expansion is represented by a rectangular hyperbola with the 
equation 

The abscissa gives the total volume of cylinder. 
The expansion work is determined by the area of the figure bounded by the 

axis of abscissae, the ordinates to and and tho arc of the hyperbola inter¬ 
cepted between them. This area is given by tho general formula 

Wo - • 

Rubstitiitiug the value of y fr<mi tho equation of tho hyperbola, we obtain 

V ' cLc 

X 

V , a-. 
----- —p logv 

Now X2 ~ i.e. x^jx^ 'ii. 'khereforo tho cx}>arisioii work is 

Wo-- -plog.V/. 
Jl 

'.rhc^ total work W done by tho piston during one stroke is the sum of tho 
admission work and the expansion work W., i.e. 

V V V" 
VV -- —p-'r ~v i' 

n n ' H 

Here \jn is the quantity of steam admitted to tho cylinder, i.e. 
tho amount actually taken from the boiler. Putting this equal to 
V'. tho expression simplifies to 

W = V"p(l d- logg?0- 

I'ig- 33-—Effect of Initial Pressure upon the Output 

Under certain conditions, 
namely, when n ’> c, the 
second part of tho w'ork is 
greater than tho first. In an 
engino worldng without expan- 
.sion tho second part is entirely 
lost. 

Advantage of High Steam Pressure.—From tho last expression for W it 
follows that tho greater tho initial pressure p and tho greater w, tho greater th(‘ 
W’ork yielded by a given volume of steam. This is also clear from fig. 33, in which 
it is assumed that a certain volume V of steam enters under tho excess pressure 
(i.e. pressure difference between tho two sides of the piston) of 20 atm. and ex¬ 
pands to atmospheric pressure. The different parts of the shaded area represent 
the amounts of work performed by the steam in the cylinder between tho re¬ 
spective pressures. Thus it performs the amount I of work if it enters at 2*5 atm. 
and leaves at 1 atm. If the pressure on entry is 5 atm., the extra amount II of 

(Kr).30) 12 
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work is obtained. Similarly the additional amounts III, IV and V of work are 
obtained by raising the initial pressure to 10, 15 and 20 atm. respectively. 

Now it is true that a greater supply of heat is required in order to produce a 
higher steam pressure in the boiler; but the extra amount of fuel consumed for 
this purpose is only small in comparison with that used up in vaporizing the 
water in the first place. The use of a higher pressure therefore enables a higher 
effi(‘iency to bo attained. When the steam pressure is still further raised, the 
corresponding gain of work does not go on increasing in the same degree; at 
nigher pressures the areas added are only narrow. The engineering difficulties 
of boiler construction and prevention of leakage in the engine also increase extra¬ 
ordinarily as the pressure and temperature of the steam are raised. Hence pres¬ 
sures higher than 15 atm. were formerly seldom employed. 

Nowadays these difficulties have been overcome, so that pressures of 30 atm. 
or more are quite practicable. High-pressure plants are also built for 200 atm. 
or more (p. 158). Such high pressures and admission temperatures of 450°~475° C. 
are mostly used in connexion with steam turbines (see p. 169). 

34-—of a Steam-engine Indicator 

(Arrows indicate: left, steam inlet; below, steam outlet; right, to the crank) 

The fact that the thermal efficiency of a steam engine is increased by raising 
tho initial pressure and lowering tho final pressure of the steam also follows at 
once from the calculations carried out in connexion with the Carnot cycle (p. 115), 
The higher tho initial pressure, the higher the initial temperature of the work¬ 
ing substance; the lower the final pressure, the lower the temperature To of the 
condenser. Tho efficiency of the Carnot engine is proportional to the difference 
I To/Tj. Therefore the efficiency of a steam engine must be increased by 
raising tho initial pressure and low'cring tho final pressure of the steam. 

The Indicator.—In tho paragraphs above tho w ork was calculated by purely 
theoretical considerations, more particularly with the assumption that the pres- 
.suro of tho steam entering the cylinder is the same as that in the boiler and that 
tho expansion takes place in accordance with Boyle’s law\ In actual fact the 
pressure conditions in the cylinder do not correspond accurately to the theory. 
The actual pressure in tho cylinder is therefore measured by means of a special 
device which makes an automatic graphical record of the pressures at every 
moment of the stroke. This device is called an indicator. Its mode of action is 
shovm diagrammatically in fig. 34. The backward and forward motion of the piston 
h in the cylinder a is transmitted by the piston rod c to a holder for the sheet of 
paper (in actual instruments usually a rotating drum). The main cylinder is 
provided with a small side cylinder d, the piston of which pushes against a spiral 
spring and thus compresses it proportionally to the pleasure inside the cylinder. 
These motions are recorded on the paper by the pencil e. 
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When the engine is running the pencil moves up and down and the paper 
moves backv^ards and forwards (usually with a rotational motion imparted by 
suitable transmission). Thus the pencil simultaneously records the pressure in 
the vertical direction and the piston disjdace- 
ment in the horizontal direction. The result 
is a curve from which the steam pressure can 
bo read off for any position of the piston. 

A (closed) curve of this kind is called an 
indicator diagram. The points n and o upon 
it (fig. 34) correspond to the positions n' and 
o' of the piston. The diagi'am gives at once 
the work done by each stroke of the piston; 
this is represonted by tho area cnelosod by the j.-jg. js.-inaicator Diagram 
curve. 

Fig. 35 shows both the theoretical work diagram for a steam engine and also 
the indicator diagram actually obtained. Tho shaded part shows tho difference 
between the theoretical and tho indicated work; it represents the unavoidable loss 

p of work. Fig. 36 shows the same diagrams for a triple-expansion 
engine. In this case the indicator diagram must bo taken 

r/ separately for each cylinder. 1'he top unshaded area corresponds 
S ft high-pressure cylindiT, the middle one to the intermediate- 

r ^ \ pressure cylinder, and the lower one to the low^-pressure cylinder. 
^ \ Tho steam expands from 12 atm. to 5 atm. in the high-pressure 
^ cylinder, from 5 atm. to 2 atm. in the intermediate-pressure 

C3'liuder, and from 2 atm. dow'n to tho condenser pressure in 
low-pressure cylinder. Tho 

so-called aimo- 
y■ ^ •'^pheric line. Tho area of tho 

^ indicator diagram lying below 
\/'/y2?Vrr-j / u ^ (Jijs pno represents the w^ork 

^ ^ gained by tho use of a con- 
rig. 36.—Indicator Dlngram of a Triple-expansion Engine denser (p. 155). H'hc sliadt'd 

part of tho iigure again gives 
the difference between the theoretical and the indicated work. 

In order to evaluate the indicator diagram w ith regard to the work perfi»rmed 
])er piston stroke, tho area enclosed by the curve is represented as tho area of an 
equivalent rectangle upon the same base (seo tig. 37). Iho height of this rect¬ 
angle is the mean steam pressure used in calculating tho indicated work. 

HI. Power and Efficiency of Piston /— 
Steam Engines.—The power of a steam 
engine is usually expressed in horse-pow(jr , ^... . 
(h.p.). If the work performed by the p- 
piston per stroke (expressed in m. kg. wt.) /--^ 
is knowm from the indicator diagram, ^ — ... —2_ 

tills need only be multiplied by the Rectangle of Area equal to that 
number of strokes per second, i.e. by of the indicator Diagram 

twice the number of revolutions of the 
shaft, and then divided by 75, in order to obtain the indicated horse-power. 
This is designated by i.h.p. Recently preferenoo is being shown for tho 
expression of steam-engine powers in kdowatts (Vol. I).* 

* In English engineering the mean effective pressure is measured in pounds per 
square inch. This has to be multiplied by the area of the jiiston in square inches and 
by the length of the piston stroke in feet to find the work done per stroke in foot-pounds. 
The indicated horse-power is then obtained by multiplying this by the number of 
strokes per minute and dividing by 33,000. 
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The brake horse-power (b.li.p.) is the power actuaJly delivered by the machine 
in working. This is measured by means of a. brake dynamometer, e.g. Prony’s 
brake (Vol. I). 

The ratio of the brake horse-power to the indicated horse-power is called the 
medianicaI efficiency of the engine; it is generally expressed as a percentage. 
In large well-made steam engines its value may bo as high as 90 per cent. If the 
mechanical efficiency is known, tlie brake horse-power can be calculated at oner 
from the indicated horse-povrer as obtained from the indicator diagram, 

A steam engine roquii'cs betw'oon 4 and 20 kg. of steam per horse-pov cr per 
hour, according to the magnitude of the steam pressure used. This amount can 
be calculated from the cylinder volume and the speed of revolution, allowanci^ 
being made for unavoidable losses. From the amount of steam used, it is possible 
further to calculate the cpiantity of heat required and also the amount of fuel, 
and hence finally the cost of running. The average calculated value is about 
1 kg. of coal for the production of 8 kg. of steam. Hence in the best steam cnghics 
about 4 kg. of coal is required per horse-power hour. In special cases the fuel 
consumption has been reduced to as low as 0*4 kg. of coal per horse-pow'cr hour. 

The average heating value of coal is about 8000 Cal. per kg. If, therefore, the 
whole of this could bo converted into mechanical -work, it would yield J . 8000.425 
m. kg. wt. = 1*7 . 10® ra. kg. wt. Now one horse-power hour is onl}^ equal to 
75.00 . GO m. kg. wt, === 270,000 m. kg. wd. The ratio of the amount of work 
actually obtained to the total amount of energy supplied in the form of fuel is 
called the economic efficiency of the engine. In the above mentioned very favour¬ 
able case it is equal to 

,--— -^ O'lO or 16 per cent. 
8000.425 ^ 

The economic efficiency of smaller steam engines is much lower than this, 
and often does not amount to as much as 2 per cent. That is to say, more than 
98 per cent of the heat energy liberated by the combustion of the coal is lost. 

The theoretical maximum utilization of the thermal energy of the steam is 
determined (p. 120) by the initial temperature T^ of admission and the final 
temperature Tg of the condenser, and is equal to (Tj — T2)/T2. In the case of an 
engine working at 15 atm. initial pressure, Tj — 197° C. = 197 -f- 273 = 470 
abs. The temperature of the condenser may be taken as 30° C. = 30 + 273 — 
303° abs. Then 

_ 0.355 Qj. about 35 per cent. 
I\ 470 

This is the fraction of the heat which the engine could utilize if it w^orkcnl without 
any losses due to friction, radiation, &c. 

A comparison of the actual and theoretical thermal efficiencies shows that 
considerably better utilization of the coal is inherently possible than has yet been 
attahiod. In the best steam engines not half of the convertible energy of the 
coal used for the steam generation is actually turned to use. 

If the energy of combustion of the coal were not employed for the generati(m 
of steam (a method by which the maximum amount obtainable as work is about 
35 per cent), but could be converted into work in some other way (e.g. by a direct 
electrical process), an ideal utilization of 95 per cent would be attained. This is 
the magnitude of the free energy H of the combustion (Nernst). 

C. steam Turbines. 
Principle.—The principle of steam turbines is the conversion of the 

kinetic energy of a stream of vapour into work. This is effected by 
allowing the stream to issue from a nozzle and impinge upon a set of 
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vanes (blades, buckets) fitted on a rotator. The interaction between 
liquid jets and bucket wheels has already been discussed (Vol. I. p. 355 
et seq.)) the same essential considerations can be transferred at once 
to jets of steam. Reference should be made to Vol. I for the nomen¬ 
clature, which will be used below without further explanation. New 
factors enter in the case of steam turbines on account of the peculiar 
properties of vapours at very great velocities of flow. 

Nozzle Shape.—^When vapour flows out of a container at high 
pressure into another at low pressure through a simple orifice or through 
a tapering nozzle, the velocity of flow caimot exceed a velocity ap¬ 
proximately equal to that of sound (about ^50 m. per sec. in the case of 

Turbin,.' 

Fig 30-—Diagram of Single-stage impulse. 
Turbine 

(Arrous: upper, from boilci; luwci, to 
condenser) 

steam), no matter how great may be the pressure dilference l^etween the 
containers. This velocity can only be exceeded without limit by the use 
of divergent nozzles of a special shape (see, for exam])le, tig. 38); in this 
case t he vapour forms a jet. The nozzles are thus devices in which the 
pressure of the vapour is transformed into velocity (Vol. I, p. 3-f 0). 

Speed of Revolution in Turbines.—On thermodynamic grounds it 
is desirable to use vapour at the highest possible initial prcssiu-e and 
the lowest possible final pressure. The above mentioned attendant 
difficulties as to jet velocity can be overcome by a suitable nozzle 
shape. But other difficulties also arise. As stated at p. 355, Vol. I, 
tlio utilization of the energy of a jet is most perfect when the velocity 
of the blades of the rotor is one half of the velocity of the jet. Since 
now the jet velocity of vapour issuing through a correctly shaped nozzle 
from 10 atm. initial pressure into 0*2 atm. condenser pressure is about 
1100 m. per sec., the peripheral velocity of the rotor would have to be 
about 500 m. per sec. The first steam turbines (De Laval *), which 
were built in the manner shown diagrammatically in figs. 38 and 39, 

* Gustave de Laval built the first practicable impulse turbine in 1887. Its most 
important parts are shown in fig. 38. 
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attained these peripheral velocities at speeds of revolution up to 20,000 
per minute. Hence for practical use inconvenient gear transmissions 
were necessary. Increase of the diameter of the rotor, which of course 
lowers the speed of revolution for a given linear velocity of the peri¬ 
phery, met with no success on account of technical difficulties. 

There are various methods by which, as explained below, this 
trouble can be overcome. 

We may distinguish between the following two types of tinbines. 
I. Impulse or Constant-pressure Turbines, in which the pressure is 

the same on exit as on entry (see below). The De Laval turbine belongs 
to this class. 

Fig. 40.—Diagram of a Turbine 
with Two Velocity Stages 

(In figure, upper broken line re¬ 
presents pressure of vapour, the 
lower represents velocity.) 

Fig. 41.—Diagram of a Turbine with Three Pressure 
Stages 

(d, nozzle; R, rotor. In figure, upper line, 
pressure of vapour; lower line, velocity of 
vapour.) 

A. Turbines with Velocity Stages.—If the blades run too slowly, 
the steam does not impart the whole of the kinetic energy to them, but 
flows out with a certain fraction of its original velocity. It is then 
conducted through suitable nozzles or arrangements of blades (guide 
blades, guide wheel L) into a second rotor R (fig. 40). Both rotors are 
generally mounted so as to form one wheel (see fig. 40) (Curtis wheel). 
The pressure in the whole of the casing of this type of turbine (as also 
in the De Laval type mentioned above) is equal to that of the external 
atmosphere or of the condenser, this pressure being attained at the 
mouth of the nozzle where the whole pressure difference is converted 
into velocity (Vol. I, p. 340). Thus it is only the velocity of the 
steam which alters during passage through the wheels. 

B. Turbines with Pressure Stages.—In order to avoid very high 
steam velocities, however, the pressure drop can be divided up into 
several stages, i.e. the steam need not attain the final pressure after 
passage through one nozzle, but may pass first into a space at inter- 
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mediate pressure. The steam velocity will then depend upon the pres¬ 
sure difierence and can thus be made to have any desired magnitude 
by suitable choice of the pressure stages. Fig. 41 shows a diagram of 
such a turbine and also the pressure and velocity variations of the steam. 

II. Reaction Turbines.—The pressure fall may be made to occur, 
not in the nozzles or the fixed guide wheels, but in the rotor wheels 
themselves, which must then be given a 
special form. In this case the steam not L L 
only gives up its kinetic energy of flow --- 

to the blades of the rotor, but also in R R R ' ^ 
virtue of its expansion within the rotor ____ 
it, so to speak, drives the blades back  L...J. —.— 
behind it. Since the pressure is greater Fig. 42 ~'Pressurc and velocity Varia- 

.1 • 1 i -j r X tions in a Parsons Turbine (l, guide 
on the inlet side oi the rotor than on vvheei; r, rotor) 

the outlet side, this type is sometimes 
known as the variable pressure type (Parsons * turbine). The thrust 
on the rotors due to this difference of pressure on the two sides must 
be kept as small as possible or else compensated by special devices. 
The first of these objects is attained by attaching the rings of blades 
to drums instead of to separate rotors. A large number of stages (up 
to 70) are used. Fig. 42 shows the pressure and velocity variations 
and fig. 43 a sketch of a turbine with three pressure stages. In this 
type of construction the thrust towards the right upon the rotors is 

BalwicePistoihs Guides 

Rotors ^ 
Fig. 43-—Reaction Turbine with Three Stages of Expansion (Diagrammatic) 

compensated by means of balance pistons which arc subjected to a 
thrust towards the left. Because of their large number of stages, reaction 
turbines work with very small pressure drops and, since vortices in 
the vapour are avoided, they have an excellent thermal efficiency. 

III. Combination Types of Turbine.—In order not to have too high 
a pressure (and hence also temperature) in the main part of the turbine, 
the pressure is allowed to drop as much as possible in the first nozzle, 
i.e. the first rotor is made in the form of an impulse wheel (generally 

* Charles Parsons built the first practicable reaction turbine in 1886 at Kew - 
castle-on-Tyxie. 
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a Curbis wheel with two stages). This is the form in which practically 
all modern turbines are built. After the Curtis wheel come the re¬ 
maining stages, the nature of which depends upon the particular type 
of turbine. Fig. 44 shows the details of a Parsons compound 
reaction turbine. 

Advantages of Steam Turbines.—The main advantages are: sim¬ 
plicity of construction, quiet running, small size, easy starting and 
many advantages in the matter of attendance. Whereas in steam 
engines a maximum total efficiency of 16 per cent, or in some cases 
17 per cent (p. 164), is attainable, well-built turbines give a total 
efficiency of 20 per cent; that is to say, 20 per cent of the heating value 
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of the fuel is converted into work. Thus, steam turbines are more 
efficient than reciprocating steam engines. Recently attempts have 
been made to increase the efficiency (as in the case of steam engines) 
by the use of very high initial temperatures. Wliereas large plants 
usually work with about 30 atm. initial ])ressure (sometimes with 
superheating to 425°), modern turbines have been made to work with 
100 atm. initial pressure (high-pressure turbines) and about 475° initial 
temperature. The speed of revolution is usually about 1000-3000 per 
minute. 

D. Gas Engines (Internal-combustion Engines) 

Steam-driven engines involve the conversion of the heat of combus¬ 
tion of the fuel into steam pressure. This not only imposes an upper 
limit to the initial temperature which can be attained (thus limiting 
the total efficiency for purely thermodynamic reasons), but it also 
gives rise to unavoidable working losses which considerably diminish 
the total efficiency. In gas engines, on the other hand, an explosive 
mixture of air and fuel gas is ignited in the engine itself and the result¬ 
ing increase of pressure is converted directly into mechanical work. 

The advantages of this j)rocedure are firstly the elimination of a 
great part of the losses necessarily involved in the indirect method 
employing the generation of steam, and secondly, tlie use of very high 
initial temperatures (generally over 1500° C.) in tln^ thermal proecss. 
Consequently it is possible in such motors (more particularly in Diesel 
engines) to attain a total efficiency of 0*35; that is to say, 35 per cent 
of the thermal energy liberated by the combustion of the fuel is con¬ 
verted into mechanical work. Thus an engine of this kind has an 
efficiency twice as great as that of a steam engine. On an av(*ragc 
the total efficiency of moderate sized gas engines may be taken as 
about 0*24. 

Gas engines therefore furnish a much more rational solution of the 
)>roblem of the utilization of thermal energy than do steam engines. 
The disadvantage of gas engines lies in the fact that their fuel (reckoned 
per horse-power hour) is in general more expensive than coal. A din^ct 
application of coal in gas engines has not yet met with success. 

Construction of Gas Engines.—As has already been mentioned 
above, the principle of the gas engine consists in igniting a com¬ 
bustible or explosive gas mixture under pressure in the cylinder and 
utilizing the increase of pressure for the performance of mechanical 
work by means of a j)iston, as in the steam engine. On account of 

* First mado on a large scale by the Frenchman K. Lenoir Irom 1800 onwards. 
Eugen and Otto Langen of Deutz built four-stroke motors from 1807. Tbo forms 
of modern motors for cars and aeroplanes have been evolved as the rosnlt of compe¬ 
tition between inventors in aU the leading engineering countries, s'meo Daimler de¬ 
vised the petrol motor at Cannstatt in 1885 and C. Benz took out the first patent for 
a petrol automobile in 1886. 
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the high temperatures involved the cylinder must be cooled. The 
most common type of engine works on the foitr-slroJce i.e. 
the piston only does work during every fourth stroke, the other three 
strokes being used respectively for suction, compression and exhaust. 
The mode of action is shown in fig. 45. In stroke 1 the air-gas mixture 
is sucked into the cylinder; in stroke 2 it is compressed and ignited 
(nowadays almost exclusively by means of an electric spark) at top 
dead centre (generally shortly before); in stroke 3 it is allowed to 
expand; in stroke 4 the burnt gases are expelled into the outer atmo¬ 
sphere. The inlet and outlet valves are opened and closed at the right 
moments by suitable mechanism. The portions of the work diagram 
corresponding to the different phases are also shown in fig. 45. The 

disadvantage of this four-stroke action is the uneven force develop¬ 
ment (fig. 46), since the fly-wheel (which is also necessary here, as in 
a steam engine) is only propelled every other revolution. The velocity 
of the crank-shaft is therefore non-uniform and the fly-wheel must be 
made rather large. To counteract this, several cylinders are usually 
ari'anged so as to drive the same shaft (fig. 47); in large engines there 
are generally two, in smaller ones (e.g. motor-car engines) six or eight. 
The working strokes of the different cylinders are made to follow on(^ 
another at intervals equal to the corresponding fraction of the total 
cycle. Thus, for example, in an eight-cylindered motor the crank¬ 
shaft receives an impulse every quarter revolution. 

Two-stroke Engines.—Another method is to build engines which 
perform work every second stroke. The principle is as follows (see fig. 
48). The cylinder has exhaust ports, which are closed during the 
greater part of the stroke by the relatively long piston and are only 
opened at the end of the stroke when the exhaust is to escape. On 
account of their rather high pressure the burnt gases rush out rapidly 
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and are completely removed from the cylinder by compressed air. 
Shortly before the ports are covered again by the returning piston a 
new charge of gas mixture is forced into the cylinder by means of 

^ . ... Fig. 47.—Force Transmission to the 
Ordinates, crank force. Abscissa?, Crank in a Six-cylindered Motor 

revolutions; o — i, suction; ^ ~ 1, 
compression; i •—jj, working stroke; (Ordinates, crank force; Abscissae, 

— 2, exhaust. revolutions of motor shaft) 

special pumps. (In small engines the incoming charge itself is often 
used for scavenging, i.e. for driving out the burnt gases in front of it.) 
The charge is then compressed by the piston and ignited at the dead 

Fig. 48.—Diagram of a Two-stroke Engine 

centre (or, on account of the finite duration of the explosion, a little 

before). 
Double-acting Engines.—The two-stroke eSect can also be attained 

in the case of four-stroke engines by arranging for the four-stroke 
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action to take place not only on one side of the piston, but (with 
corresponding displacement of the phases) on both sides. A similar 
combination of two-stroke processes gives a one-stroke engine, i.e. 
an engine which imparts an impulse to the crank-shaft every half 
revolution. 

General.—The ignition is nowadays almost exclusively by means 
of electric sparks. The duration of the explosion is not very short; 
the follov/ing data, for instance, were obtained for coal gas at atmo¬ 
spheric pressure. 

1 \'olumcj Highest Pressure 
l^roduced 

(in atmospheres) 

Duration of 
Explosion 

(in seconds) 

Highest Temper.iturt; 
J’roduced 

(in ‘’C.) 
Gas Air 

1 4 5G 0-16 1600 

1 6 6*3 0*04 1800 

1 14 2-8 
I 

0*45 800 

The greater the preliminary compression of the mixture, th(‘ more 
intense the explosion. Thus compression gives higher initial pressures 
and temperatures from the explosion and hence (as is easily seen from 
the work diagram whose area is a measure of the work done) an in¬ 
creased output of work (see p. 161). Hence the greater the compression 
of the charge before ignition, the higher the efficiency of an internal- 
combustion engine. A limit is set, however, by the heating eflect of 
the compression. Naturally this must not be so great as to give rise 
to an explosion, otherwise the piston would receive an impuls(^ when 
in an unfavourable position of its stroke—an event wkich might 
damage the engine (“ knocking ’’ in a motor). 

Fuel.—Use may be made either of gases or of liquid fuels which 
may be gasefied in the engine. Besides coal gas, the gases most ex¬ 
tensively used are those produced from the incomplete combustion 
of the various fuels by blowing in steam (suction gas, Mond gas, water 
gas, &c.), also blast-furnace gas and coke-oven gas. The chief liquid 
fuels are the light mineral oil distillates and also benzol and alcohol. 
They are brought into the form of spray in a carburettor by the suction 
of the air current flowing past a jet; this causes rapid evaporation and 
formation of the explosive mixture. 

Diesel Engines (Constant-pressure Engines) (named after E. 
Diesel *). These work on the same principle as other gas engines, 
but employ an extremely high compression (30-35 atm.). This causes 
a very great rise of temperature, such that all fuel mixtures would 
ignite spontaneously. The fuel is therefore sprayed in after the com¬ 
pression by means of a pressure pump. In consequence of the high 

♦Rudolf Diesel (1863-1913), engineer at Munich. 
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temperatui'c the mixture explodes at once without any special ignition 

device. This method of working has considerable advantages which 

give greatly increased efficiency. Firstly, there is the high initial 

pressure, secondly, the great compression which makes the combus¬ 
tion very complete, and thirdly, the gradual addition of the fuel and 

the consequent slow combustion which delivers a fairly even pressure' 

over a period of time (constant-pressure engines). The difference be¬ 
tween the Diesel engine and the ordinary type can be seen clearly 

from the respective work diagrams (figs. 49 and 45). A further 
advantage of using a very high temperature and spraying in the fuel 

is the possibility of using cheap, not easily vaporizable fuels, such as 
heavy oil and even tar. Experiments have also been carried out in 

which coal dust was made to explode in a Diesel engine; but so far 
no technical application of this has been possible. Diesel engines are 

built up to 2000 h.p, per cylinder. 



CHAPTER V 

Transference of Heat 

1. Types of Heat Transfer 
The passage of heat from one place to another can occur in three 

ways, by convection, conduction, and radiation. 
1. Convection.—In convection the body carrying the heat also 

moves from the one place to the other. The propagation of heat in 
liquids and gases occurs chiefly in this manner, i.e. by simultaneous 
transport of matter. This can be seen in a beaker of water (fig. 1) 
heated from below with a small flame. Small suspended particles, 
c.g. sawdust or fragments of amber, rise directly above the flame and 

Fig. I.—Convection 

then sink again near the walls, thus 
maintaining a continuous circulation. 

If a tube bent into the form of a rectangle 
(fig. 2) be filled with water and heated at one 
comer, the warm (and therefore specifically 
lighter) water rises up the corresponding 
vertical limb and sinks again in the opposite 
one. This can be seen well by adding a drop 
of dye solution or a trace of solid dye (c.g. 
methyl violet) through the upper opening 

Fig. 2.—Diagram 
of Hot-water lleal- 

in a Liquid during the heating, and then watching the iiig System. 

movement of the coloured streaks. If the 
flame be removed from the one corner and placed under the other, the direction 
of flow^ of the water is reversed. 

In a room the air currents due to heating can bo made visible by means of 
tobacco smoko. This rises near the radiators and falls again near the windows. 
A lighted candle held at the chink of the door of a heated room shown the 
direction of flow of the air. Idames burning in still air are directed upwards 
bocaiiso the bumirag gases and the air immediately next to them are hotter 
and therefore lighter than the surrounding atmosphere and hence rise upwards. 
The draught in lamp glasses and in chimneys is also caused by the rising of 
hot air, which simultaneously bears away the heat. 

Convection plays a great part in winds and ocean currents. In the summer 
the cast winds bring heat to central and western Europe from the hot parts of 
Russia; in winter they are cold and hold back the warm winds from the west. 
The Gulf Stream brings us heat from the tropics, thereby raising the mean tem¬ 
perature in west and central Europe about 10° C. above that of districts lying in 
the same latitudes on the east of North America and Asia. 

On account of the presence of internal temperature differences in 
the substance convection is always accompanied by conduction of 

174 
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lieat (see below); in the case of large volumes of liquids and gases, 
however, this is small, and may be neglected in comparison with con¬ 
vection. The transference of heat by convection (plus conduction) 
depends upon the complicated laws of hydrodynamics governing the 
flow of liquids and gases. 

The quantity Q cal. of heat transferred in this way can be repre¬ 
sented mathematically by the expression 

Q a'AT(^i - /^), 

where A is the area in cm.-, (t^ — C. the temperature difference 
concerned, and r the time in seconds. 

The factor a' gives the quantity of heat transfeiTcd per second 
through 1 cm.^ of surface when the temperature difference is 1° C. 
In engineering it is referred to 1 m.^, 1 hour and the kilocalorie, and 
is then denoted by a. Its value varies very 
much with the conditions (roughness and 
shape of the boundary surfaces); but its 
value is knowm with sufficient accuracy 
for many technically important purposes. 
This type of heat transference decreases 
very rapidly in gases as the pressure is 
reduced (vacuum vessels, see p. 178). 

2. Conduction of Heat. -In conduction the heat passes from the hotter 
to the colder part of a system without these parts moving relative to 
one another. Thus there is no transport of matter—only a transport 
of energy in consequence of the impacts of the molecules of the hotter 
part w^hich have the higher energy. Thermal conductivity is therefon^ 
a property of matter. If one end of a needle is held in a flame, the 
other end becomes so hot after a minute or two that it cannot bei 

Fit'- 3-—Temperature Gradient 

held in the fingers without burning: them. 

Fig. 3 shows an an’angemcnt in which a inctal bar about 50 lan. in Jength 
and of 1 cm.^ cross-sectional area is heated at one cud by a flame. Thermometers 
inserted at equal intervals along the bar soon show rises of temperature. The 
nearer the thermometer to the heated end, the greater the temperature rise it 
indicates. The heat is propagated from the hot end along tlie bar to the other 
end by conduction. After a time the readings of the thermometers become con¬ 
stant; the curve in fig. 3 shows tho difiPerent mercury levels in this stenriy state. 

The process of conduction may be imagined to consist of con¬ 
tinual equalization of the temperatures of every pair of neiglibourijig 
elements of the bar. If this were the only process, the whole of the 
bar would soon take up the same temperature, namely, that of the 
heated end. But heat is being removed simultaneously from the 
surface of the bar by the surrounding air. Thus the bar is being cooled 
.at all points except at the heated end; and the rate of cooling is greatest 
where the temperature difference relative to the air is greatest (seep.179). 
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Hence the temperature of the bar at any given point is determined by 
the rate of gain of heat from the warmer side and by the rate of loss of 
heat both to the colder side and to the surrounding air. The stationary 
state is reached when these rates are equal at all points of the bar. 

In the above experiment we have to consider two factors; firstly, 
the conduction of the heat within the rod, and secondly, the loss of 
heat to the surroundings, mainly by convection. 

The {internal) conduction depends only upon the nature of the 
substance used, i.e. is a specific property of that substance. In order 
to define this more exactly, imagine two large vessels separated by a 
large platii of the substance 1 cm. thick. The vessels are filled with a 
liquid so that there is a temperature difference of 1° C. between them. 
Then a certain quantity of heat passes per second through each squar^^ 
centimetre of the conducting plate. 

The quantity of heat, expressed in gramme-calories, which passes per 
second through a cross-section of 1 cm.- of a plate 1 cm. in thickness with 

a temperature dijference of C. between its 
faces, is called the specific thermal conductivity 
k of the substance. 

Its dimensions are therefore [cal. degree'^ 
scc.“^]. The engineering value, which is referred 
to the kilocalorie, metre and hour, is 360 times 
larger. The thermal conductivity k is different for 
different substances: for silver, 1-01; copper 
iron 0*15; lead 0*08; glass, 0*002 cal. degree"^ 
cm.”’ sec."’ (see also Table I). 

In 1822 Foubier first developed the mathe¬ 
matical laws of thermal conductivity in a purely empirical manner and without 
recourse to molecular theory. In a body not at uniform temperature the conduction 
of heat takes place in the direction of the normals to the isothermal surfaces, 
i.e. the surfaces of equal temperature within the body. On the simplifymg 
assumption that these surfaces are parallel planes and that^ the heat only flows 
in the a;-direction, the quantity Q of heat transferred by conduction is given 
by the equation 

Q = -- 1cAt~, 
ax 

where t is the temperature, t the time, A the area, ^ the temperature gradient, 
and k the thermal conductivity. 

The difference of the thermal conductivity of solids can be observed by hold¬ 
ing a rod of copper about 6 cm. long and 2 mm. diameter in one hand and a 
similar rod of iron in the other, and placing the opposite ends in the same flame. 
It will bo noticed that the copper rod gets hot much sooner than the iron one. 
Similarly one end of a glass rod may be held in the hand while the other is 
heated to white heat and melted; but an iron rod becomes so hot before its end 
is red hot that it can no longer be held in the hand. 

The same thing can be demonstrated by means of Ingenhousz’s trough 
(fig. 4). In this similar rods of different materials are inserted through the wall of 
the same trough so as to project equal distances from it. The rods are coated 
either with wax or with the double iodide of silver and mercury. When the trough. 

Fig. 4.—Ingenhousz’s Experi¬ 
ment upon Thermal Conductivity. 
Rods of Copper, Brass, Zinc, Iron, 
Lead, Glass (in order of nearness). 
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is filled with hot water, the different conducting powers of the various materials 
can bo seen at once from the fact that the wax melts to different distances or 
the double (which at ordinal^ temperature is light yellow, but changes almost 
suddenly to orange at 35° C.), changes its colour to different distances along 
the different rods. 

Vessels for hot liquids are usually provided with wooden handles, so that they 
may be grasped without burning the hand. In the Davy miner’s safety lamp 

(fig. 6) a wire gauze surrounding the flame keeps the temperature 
of the gases leaving the lamp below the ignition temperature of 
the combustible gases which might be present in the atmosphere 
of the coal mine, thus preventing explosion. 

Such metal gauzes arc also used in petrol containers 
(e.g. in motor-car carburettors) as a safety device 
against the propagation of an explosion in the interior. 

The thermal condiictivitj of crystals is 
different in different directions. If a 
plate cut out of a gypsum crystal be 
covered with wax and a wire passed 
through a hole in the noiiddie of it, the 
wax does not in general melt in a circle 
around the wire when the latter is 

Fiff. S-—Davy 
Safety Lamp 

Fig, 6.—Experiment 
illustrating the Small 

heated, but in an ellipse (according to the direction of the section). 
The thermal conductivity of liquids is very small in comparison 

with, that of metals. In investigating the thermal conductivity of 
liquids care must be taken to exclude transference of heat by con¬ 
vection. Fig. 0 depicts an experiment upon a test-tubeful of wat<‘r 
at the bottom of which is a small piece of ice loaded with lead. By 
heating the water at the top of the tube with a flame it can be 
boiled without melting the ice below. 

Fig. 7.—Thermal Conductivity of Gases 

The thermal conductivity of gases is still smaller. This is the reason 
why loose fabrics, peat-fibre or straw protect hot or cold bodies against 
change of temperature (woollen clothes, beds, double windows, ffreless 
cooker). The hollow walls of icehouses are filled with peat-mould and 
straw. The individual pieces of the filling minimize convection so that 
only the thermal conductivity of the air contained in the wall is effec¬ 
tive. The thermal conductivity of water is about 1/600, that of air 
about 1/20,000. (See pp. 183, 184.) 

The thermal conductivity of different gases varies considerably. It is rela¬ 
tively great in the case of hydrogen, namely 7 times as great as for air. Those 
differences may be demonstrated with the apparatus shown in fig. 7. Tliis con¬ 
sists of a gloss tube with a stopper in the middle and at each end. Thiough these 

13 
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stoppers pass copper rods holding two similar pieces of platinum wire, one in each 
compartment of the tube. These wires are heated electrically and both glow with 
eqiial intensity when both compartments are filled with the same gas. If, how¬ 
ever, difierent gases bo introduced or one compartment evacuated by means of 
the side tubes, the intensity of the glow is altered. It is brightest in vacuo, be¬ 
cause there is no gas and consequently no thermal conductivity; it is less bright 
in carbon dioxide, still less in air. If one half of the tube be filled with hydrogen 
and the other with air, the platinum in the former will hardly glow when that in 
the latter is at a bright red heat. 

The Leidenfrost phenomenon (also known as the spheroidal state) depends 
upon the poor thermal conductivity of water vapour. When drops of water are 
sprinkled upon a clean red-hot metal dish, they move about upon the surface 
without boiling. The explanation of this lies in the fact that the extremely rapid 
vaporization between the drops and the red-hot dish gives rise to a thin layer 
of steam. The drops are borne upon this cushion and thus protected against rapid 

heating by its poor thermal conductivity. The temperature 
of the water di'Ops in the spheroidal state is about 97° C. 

An efiective method of protecting vessels against loss or 
gain of heat is to provide them with double walls and to 
evacuate the space between (vacuum-walled vessels or 
Dewar fiasks (figs. 8 and 9)). Vessels of this type were first 
made in 1881 by Weinhold at Chemnitz. Dewar* later 
(1890) introduce a great improvement by silvering them 
on the inside. This also reduces loss and gain of heat by 
radiation. Liquid air can bo kept for days in silvered 
Dewar flasks. The so-called thermos-flasks for keeping drinks 
or food hot or cold for considerable periods are Dewar 

flasks enclosed in sheet-metal cases to protect them against mechanical damage. 

3. Heat Radiation.—In radiation tlic passage of heat from one body 
to another takes place without the agency of matter. The sun sends 
us its warming rays without causing any rise of temperature in the 
space between. On cold winter days, when the air temperature is below 
the freezing-point of water, a thermometer exposed to direct sunlight 
(especially if its bulb is blackened) will register considerably over 0° C. 

Thermal conductivity and convection involve the agency of matter, 
the heat energy passing from a place of higher temperature to one of 
lower temperature in the form of molecular motion; but in heat 
radiation the only agent is the ether. The thermal energy must first 
change into another form, namely, into electromagnetic waves. Hence 
heat radiation cannot be discussed until Vol. V. Jn most cases it con¬ 
sists mainly of a kind of invisible light (infra-red radiation). 

Wc know that some substances are more and some less transparent 
for visible light; the same is also true for heat radiation. Substances 
which are transparent to heat radiation are said to be diathermic or 
diathermanous, those which are opaque to heat radiation are adia- 
thermic.-f These properties do not run parallel with ordinary trans¬ 
parency and opacity. Thus glass, for example, is very adiathermic. 

* James Dewar (1842-1923), Professor at Cambridge. Vacuum-woUed vessels are 
usually called Dewar flasks. 

f Gr., cf, not; dia^ through; therme, heat. 

Figs. 8 and 9.—Dewar 
Flasks 
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Upon this depends the action of greenhouses. The visible rays of the sun pass 
through the glass without being appreciably weakened. They thus warm up the 
bodies in the greenhouse. The heat radiation emitted by these bodies caimot 
get out again, however, because the glass is opaque to it {greenhouse principle), 

it. Law of Cooling.—When a hot body is left in the air, it gradually 
becomes colder owing to loss of heat (mainly by convection and radia¬ 
tion) to its surroxmdings. The greater the temperature difference, 
the more rapid the loss of heat, the rate of cooling being directly pro¬ 
portional (within certain limits) to the temperature difference and to 
the time (Newton’s law of cooling). The velocity of cooling is the quo¬ 
tient of the temperature fall divided by the time. The quantity of 
heat lost from imit of area of a surface, per emit time and per unit 
excess of temperature over that of the surrounding medium, is called 
the emissivity of the surface with respect to that medium. 

If T is the temperature of the body, Tj that of the surroundings, and t the 
time, then 

Hence = _Krf< 

and by integration loge(T — T^) = —-1- const. 

fi at the time t~Q the initial temperature was Tq, then the integration constant 
is equal to logg(To — Tj). Hence we have 

logJT - %) - log,(To - Td = 

or T == Ti + (To — Ti)e-^K 

The constant K depends upon the mass, the specific heat and the nature of 
the surface of the body. The above equation shows that the temperature at any 
moment can be calculated, provided that the initial temperature of the body 
and the value of the constant K be knowm. The latter must be obtained by prt,*- 
liminary experiments. The equation is of general importance in so far as it states 
that: 

When the rate of change of the state of a body is proportional to the difference 
between that state and a cojistant reference state, then the state of the body is detennined 
by an exponential function of the time. 

2. Experimental Methods of Determining Thermal Con¬ 
ductivity 

The methods used to determine thermal conductivities vary greatly 
with the nature of the substance under investigation. Four cases 
may be distinguished: (A) solids which are good conductors (metals); 
(B) solids which are moderate or poor conductors (woods, sand, stones, 
bricks, cork, charcoal); (C) liquids; (D) gases. 

A. Good Conductors (metals).—For these, a rod or bar is nearly 
always used. We shall describe (i) a direct method, (ii) an electrical 

method, (iii) a comparative method. 
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(i) Direct Method,—The earliest direct determination of the con- 
ductivity of a metal was that of Forbes.* His method was of no great 
accuracy, but has been much improved by Callendar and others. One 
end of the bar is heated, the other end cooled. The heating may be 
done electrically, and the cooling by means of a stream of water. The 
heat passing into the water can be found from the rate of flow and 
the rise of temperature; the heat supplied at the other end is determined 
electrically. The temperature at various points of the bar is found 
by means of thermo-couples, and the temperature gradient deduced. 
The heat flowing across any section of the bar is determined as the 
sum of the heat flowing into the water and the heat lost from the 
surface between the section and the cold end; as a check, this sum 
ought to be equal to the heat supplied, less the heat lost between the 
section and the hot end. The losses from the surface can be made 
small by lagging, so that the temperature gradient is practically 
uniform; and the actual values of the losses can then be measured 
approximately, by heating the whole bar to a uniform temperature, 
and recording the rate of cooling. 

From the observed flow of heat and temperature gi'adient, the 
value of h follows at once from its definition. 

(ii) Electrical Method,—A good method of determining the thermal 
conductivity of a metal is to observe the distribution of temperature 
in a rod of the metal when it is heated by an electric current. The 
method was originally suggested by Kohlrausch, and was applied in 
an important series of experiments (1899) by Jaeger and Diesselhorst. 

The principle underlying the method is simply this, that the heat generated 
in any element of the rod, when the steady state has been reached, is equal to 
the heat which leaves the element by conduction, assuming that there is no 
loss of heat from the sides. Wo may suppose that the flow, both of electricity and 
of heat, takes place in lines parallel to the axis. Consider a section P at distance 
X from one end, and let v, T be the electric potential and temperature at P. 
Similarly, let v + dvy T -j- he the corresponding values for the section Q at 
distance x -f dx. Let A be the cross-section, h the thermal conductivity, and 
cr the electrical conductivity. Wo shall suppose that h and o are both independent 
of the temperature. 

The heat entering tho element at P is 

and the heat leaving at Q is 

1 {k&^)dx. 
doc doc \ docr 

The gain per unit time from conduction is therefore 

kA^dx. 
dx^ 

♦James David Foebes (1809-68), Professor of Natural Philosophy in the Uni¬ 
versity of Edinburgh (1833-60), afterwards Principal of the University of St. Andrews. 
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The gain of electrical energy by the element per unit time is equal to the square 
of the potential difference between P and Q divided by the resistance of the element, 
or^ if m is a coefficient depending on the units used, the gain is 

m • Aa/da;, 

or mA<j dx, 

. 

But we may r^ard T as a function of v, so that 

dT _ dT dv 

dx dv dx 

dx^ dv^ \dx) dv dx^. 

Now the current is constant, and therefore dvjdx is constant, and dhjdo^ - 0. 
Thus, from (1) and (2), 

k— + mo « 0, 
dv^ 

and, by integration, 

—T = - Jd* + O + D, 
ma 

where C and D are constants. 
Hence, by observing T and v at three points, we can determine C and I), and 

then Jc/(j, If o be knovii independently, this gives k. 

(iii) Comparative Method,—The conductivity of a metal may often 
be conveniently determined by comparison with another metal whoso 
conductivity is known. 

The method depends on the law of the steady flow of heat along 
a bar, one end of which is kept at constant temperature, while its 
len^h is subjected to radiation and convection inside an enclosure 
the temperature of which is also constant. 

In the notation just used for the electrical method, we prove as before that 
the section between x and dx gains per unit time from conduction the 
quantity of heat 

M—<&. 

It loses from the surface of the element the quantity 

EpTda:, 

where E is the emissivity and p is the perimeter of the section (p. 179). 
in the steady state 

]^T 
dx^ kk ‘ 

Hence, 
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Tho solution of this differential equation is 

T = Onaj _|_ 

where w ~ V (EjpjkA), and C, D are arbitrary constants. Suppose now that the 
temperatures at three points, equally spaced at distances x a, x, x — a, say, 
are Ti, Tj, T,. Then it is easily verified that 

Ti + Tg _ 
2T2 2 

If (Tj -f T3)/2T2 is known, and has tho value r, this equation is a quadratic 
to find e”®, and gives 

na = log^{r -f Vr® — T). 

It follows that if we take two bars of different metals, but having the same cross- 
section A, perimeter and omissivity E, and observe the temperatures in both 
at three equaUy spaced points at the same distance apart, we get the ratio of 
the conductivities from the equation 

k\ _ log(/+ V/^-- 1) 

k^' \og(ry/— \) 

This method was used in 1854 by Wiedemann and Feanz. They secured equal 
emissivities by electroplating their rods. Since, however, Newton’s law of cooling 
is only true for small temperature differences, tho method is not very accurate. 

B. Solid Non-metals.—The conductivity of small thin slabs of 
material has been determined by Lees by a method which is applicable 

over a wide range of temperatures. 
The arrangement is shown in fig. 10. 

The substance S was contained be¬ 
tween two copper blocks or discs U and 
M, and the heating coil between U and 
a third copper block C. The thicknesses 
were: U and M, 3 mm.; C, 1 mm. The 
temperatures of all the copper blocks 
were measured by thermo-couples. 

Fig. 10 When the discs had been assembled 
they were varnished to give them the 

same cmissivity (p. 179), and the whole apparatus was suspended in an enclosure 
of constant temperature. 

In the theory given below, the following symbols are used: 

H = rate of supply of energy to the heating coil, after the steady state has 
been reached. 

Ji heat loss per second per sq. cm. for 1° excess of temperature of discs 
over that of enclosure. 

t “ excess of temperature over that of enclosure. 
d thickness of disc. 
r = radius of disc. 

The heat received per second by the disc M and given up to the air is 

(tw® + 2T:rdu)hti^^ 

__ Copper C 

Copper U 
Substance S 

1 Copper M 
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The heat received per second by S and given np to the air from its exposed surface 
or passed on to M is 

-f 2TzrdM)htii -j- 2TirdJi. + jfu)* 

If A; is the thermal conductivity of the disc S, the heat flowing through it is 

We may assume that the heat flowing through S is the mean of the quantities 
of heat flowing into it and out of it, i.e. that the third of the above quantities 
is half the sum of the other two. We have, therefore, on dividing by Trr', 

^"^“d—^ ~ ^ ^ "I” J * 

This gives k in terms of h and measured quantities. But we can obtain h in terms 
of H, since the total heat supplied must be equal to that given up by the \ arious 
surfaces. Thus 

H Tur“/t(^o 'i" ^m) “}"2TcrA-{djy[f]ii d^ . ^u) ~f" ~r d^tc]. 

We can therefore express k in terms of quantities that can be ineasuroii. 

C. Liquids.—The determination of the conductivity of a liquid 
is complicated by the fact that convection currents are very easily 
set up in a liquid in which there is a temperature gradient. The com¬ 
monest way of overcoming this difficulty is to eliminate convection 
by suppljdng heat at a horizontal surface at the top of the liquid, and 
abstracting heat at a similar surface at the bottom (p. 177). 

The conductivities of many liquids were determined by Lees in this way. 
He followed a somewhat similar method to that just described for non-metallic 
solids, but the disc of the substance S (fig. 10) was replaced by a film of liquid 
about 1‘2 mm. thick, filling the space between the copper discs M and U, and 
contained within an ebonite ring of slightly greater diameter than that of the 
discs. The flow through the ebonite was found by an independent experiment, 
with air occupying the place of the liquid. 
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D. Gases.—In gases it is necessary to guard against, or take account 
of, the disturbing effects both of convection and of radiation. One 
satisfactory method is that of Hercus and Laby. Their apparatus is 
shown in fig. 11. 

All the plates were of copper. The air experimented on was contained between 
the hot plate B and the water-cooled plate C. The plate A was kept at the same 
temperature as B, and so prevented any loss of heat from the upper surface of B. 
B was surrounded by a guard ring D, which was maintained at the temperature 
of B by an auxiliary heating coil. The heating of B was effected by a heating 
coil between the two plates, clamped together, of which B consisted. All the 
heat generated in B flowed to C, and the heat flow was therefore determined by 
measuring the electrical energy supplied to the heating coil in B. The temperatures 
of all the copper blocks were measured at various points by attaching constantan 
wires to them, these forming thermo-couples with the blocks, each of which 
had a copper lead attached to it. 

Since the heat flow is all downwards, there is no convection in this method, 
but radiation has to bo allowed for. In Hercus and Laby’s experiments, the 
correction for radiation amounted to about 5 per cent of the whole transfer of 
heat. It was determined by separate experiments on the loss of heat from a 
silvered Dewar flask. 
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SOME EXPERIMENTAL METHODS 

Joule’s Equivalent. Specific Heat 

1. Continuous-flow Calorimetry 

Some of the best determinations of specific heats, both of liquids 
and of gases, have been carried out by the method of continuous-flow 
calorimetry. This is a method which was developed by Callendab 

and Barnes for the purpose of obtaining the value of the mechanical 
equivalent of heat. As a by-product of their research, these physicists 
made a very accurate determination of the specific heat of water over 
a wide range of temperatures. An account of their methods and results 
will now be given (§§ 2, 3). 

2. Joule’s Equivalent 

The steady-flow electric calorimeter, which was the instrument 
used by Callendar and Barnes, is shown diagrammatically in fig. 1. 

Fig. I 

A steady current of water flowed through the central tube. The water 
was heated by a steady electric current in a conductor of platinum. 
When the difference of temperature between the inflowing and the 
outflowing water had become steady, it was measured by means of 
a differential pair of platinum thermometers at the two ends. The 
bulbs of the thermometers were surrounded by thick copper tubes, 
which served the double purpose of equalizing the temperature, and 
of preventing the current from generating heat immediately beside 
the thermometer bulbs. The current was introduced by the leads CC. 
The difference of potential on the central conductor was measured 
by the leads PP, which were carefully insulated. The flow tube was 
of glass, and was sealed at each end, beyond the thermometer bulbs, 
into a glass vacuum jacket, which helped to diminish the loss of heat 

186 
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to the outside. The whole apparatus was enclosed in a copper jacket 
(not shown in the figure). Water circulated rapidly in the jacket, and 
was kept at a constant temperatui*e by a very delicate electric regu¬ 
lator. 

The equation on which the method depends may be written 

Ea= JMdT+H. 

In this equation E is the difference of potential on the central con¬ 
ductor, and C is the current. These were both measured with great 
accuracy by means of a carefully calibrated potentiometer. M is 
the mass of water flowing in time dT is the rise of temperature, and 
H the loss of heat in joules, also for time t. J is the mechanical equi¬ 
valent of heat, or, more definitely, the number of joules in 1 calorie 
at a temperature which is a mean of the range dT. 

The time of flow t was generally about 15 to 20 min., and was 
recorded automatically. M was usually about 600 gm., and dT from 
8 to 10 degrees. The thermometer readings were considered to be 
correct to one-thousandth of a degree. The loss of heat to the outside, 
H, was small and could be estimated and eliminated. 

Callendar and Barnes laid great stress on the necessity for 
absolute steadiness in all the conditions. By attending to this, it 
becomes unnecessary to take account of the thermal capacities of 
the various parts of the apparatus, which otherwise would be very 
troublesome. 

They also pointed out the importance of having the water well 
mixed on its way along the tube; and to meet this requirement used 
a stranded conductor for heating. 

In the equation 

Ea-JMdT, 

E and C, wliich were measured in volts and amperes, can be reduced 
to electromagnetic imits, and EQ can thus be expressed in ergs. 

The above equation can therefore be interpreted as giving the 
value of the mechanical equivalent of the calorie from the measure¬ 
ment of the electrical energy required to produce a measured amount 
of heat. 

3. Specific Heat of Water 
But, apart from giving the value of J, these experiments of 

Callendar and Barnes also determine how far the specific heat of 
water depends on the temperature. For this application it is not 
essential that the absolute values of the electric standards should be 
known, since only relative amounts of energy at different tempera¬ 
tures are here in question. 



SPECIFIC HEAT OF WATER 187 

The following table shows the values obtained by Callendar and 
Bames for the specific heat of water at various temperatures. 

Temperature 
CC.) 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
60 
70 
80 
90 

100 

Specific Heat 
of Water 

1-0047 
1-0019 
hOOOO 
0-9988 
0-9980 
0-9976 
0-9973 
0-9973 
0-9975 
0-9978 
0-9987 
1-0000 
1-0017 
l-003(> 
1-0057 

4. The Two Specific Heats of a Gas 

Constant Pressure.—The method of continuous flow, or steady 
electric heating, used by Callendar and Barnes in the research just 
described, was first applied to gases by Swann. The most accurate 
work using this method is that of Scheel and Heuse, who dealt with 
temperatures between —180° C. and room temperature. 

Their calorimeter was of glass, and sealed within an evacuated tube 
60 as to avoid heat loss. The whole calorimeter was immersed in a 
constant-temperature bath. After passing through a long tube immersed 
in this bath, the gas entered the calorimeter at the bottom, and flowed 
past a platinum thermometer, which measured the inlet temperature. 
The heater was of constantan wire. To reach it the gas had to follow 
a devious path, where it intercepted any heat escaping from the heater. 
A second platinum thermometer measured the temperature of the 
outgoing stream. 

The total mass of gas passing through the instrument, and the rise 
of temperature, are Imown, as well as the heat electrically supplied; 
the specific heat can therefore be calculated at once, as in the method 
of Callendar and Barnes. 

Constant Volume. The Joly Steam Calorimeter.—The s])ecific heat 
of gases at constant volume was first accurately determined by Joly, 
in 1890. The steam calorimeter which ho used is shown in fig. 2. A 
front view is shown on the left, and a side view on the right. Two 
equal copper spheres, one exhausted and the other containing the gas, 
hang from the two arms of a balance in a closed chamber. When 
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temperature equilibrium is established, steam is admitted. The steam 
condenses on the spheres, which are thus raised to the temperature of 
the steam. Pans are provided to catch the water so condensed. More 
water is condensed on the full sphere than on the empty one, and the 
difference is measured by adding weights to restore the balance. This 
difference, multiplied by the latent heat of vaporization of water, gives 
the heat required to raise the known mass of gas in the full sphere 

from its initial temperature to that of the steam. The specific heat of 
the gas at constant volume can then be calculated at once. 

Corrections are necessary for: 
(a) Expansion of the heated sphere and consequent work done 

by the gas. 
(b) Increase of volume of the full sphere under the increased pressure 

of the gas. 
(c) Buoyancy effects due to difference in the expansions of the 

spheres. 
(d) Unequal thermal capacities of the spheres. 
(e) Eeduction of weight of precipitated water to weight in a vacuum. 



VIBRATIONS AND WAVES 

CHAPTER I 

Vibrations 

1. General Treatment of Vibrations 

1. When a system is slightly displaced out of its condition of stable 
equilibrium, it will in general tend to return to it. But the original 
equilibrium condition is hardly ever reached by a single revcjrsal of 
the displacement; the condition of the system usually overshoots this 
mean and then oscillates or vibrates about it until the vibrations are 
stopped by external forces. 

The time between two successive passages in the same sense through 
the equilibrium condition is called the 'period of the vibration. 

, The number of complete vibrations, or cycles, per unit of time is 
^called the frequency. It is measured in cycles per second, and there¬ 

fore has the dimension [sec.“^]. The unit of frequency, i.e. 1 cycle 
per second, is sometimes called the hertz.* 

A simple example of such a system is the pendulum already treated at p. 144, 
Vol. I. The equilibrium position is vertically beneath the point of suspension 
(position of rest). The period of a simple pendulum (Vol, I) is T = 2nVllg 
and that of a compound pendulum T= 27:Vl/R^ Another example already 
treated is torsional vibration (p. 207, Vol. I). 

Further Examples,—Longitudinal elastic vibrations, A long thin metal wire 
is fastened at one end to the ceiling and the other end is loaded with a mass m. 
This stretches the wire and enables the mass to perform vibrations by virtue of 
the elastic forces. In order to calculate the period of these vibrations, the wire 
is loaded with an extra weight sufficient to extend it 1 cm. further; or alter¬ 
natively the extra extension caused by a known added load is measured and tb<^ 
magnitude of the force required to produce an extra extension of 1 cm. is obtained 
by calculation. This force, expressed in dynes, is the quantity k in the general 

* In honour of H. Hertz, who was the first physicist to demonstrate by expri- 
ment the existence of electric waves. 
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formula for the period of a vibration (p. 148, Vol. I). The mass m being known 
(in gm.), the period T can be calculated from the equation 

T-S»VI 
Conversely the force k may be calculated from the observed period of vibration 
and known mass, and the value so obtained used for the determination of the 
modulus of elasticity of the wire. 

The same experiments can also be carried out very conveniently with a spiral 
spring. In this case the elongation is not produced by extension of the wire but 
by bending and twisting of the coils. 

V/fjratwns of a Liquid in a U-Tuhe.—^If the cross-sectional area of the U-tube 
is a, the density of the liquid and the total length of the liquid column I, the 
mass of the liquid in the tube is m “ las. If now the liquid ho raised 1 cm. in one 
limb (say by sucking at the end), it falls by 1 cm. in the other. The level in the 
first limb is therefore 2 cm. liigher than in the second. The weight of the excess 
column, expressed in dynes, is the force 1% hence k = 2asg. The period of vibra¬ 
tion is therefore 

The period is thus independent of the cross-section of the tube and the density 
of the liquid. It is the same as the period of a pendulum whose len^h is half 
that of the liquid column. For the practical application of such vibrations in the 
anti-rolling tank see p. 202. 

2. Graphical Representation of Vibrations.—^This may be illus- 

Fig. I.—^Timc-Displacement Curve for a Simple Harmonic Vibration 

trated for the case of harmonic motion (Vol. I, p. 146). This can be 
regarded as the projection of a uniform circular motion upon a diameter. 
This circular motion and its projection upon the diameter AA' are 
represented in fig. 1. The times are plotted as abscissae along a hori¬ 
zontal straight line GG', the ordinates being the corresponding dis¬ 
placements of the vibrating point. The graph so obtained is a sine curve. 
Instead of the time, the phase (which is proportional to the time, 
Vol. I, p. 146) may be chosen as abscissa. This representation, which 
is generally preferable, is employed in fig. 2, which shows the dis¬ 
placement X (as in fig. 1) and also the magnitude of the velocity u and 
acceleration a at each instant. Since in harmonic motion the displace¬ 
ment, velocity and acceleration are proportional to the sine (or cosine) 
of the phase, this kind of vibration is often called sine vibration. 



GENERAL TREATMENT OF VIBRATIONS 191 

The experimental proof that the swings of a pendulum foUow the sine law for 
small amplitudes can be obtained as follows. The pendulum, which consists of a 
heavy funnel-sliaped veosel with an opening at its point, is suspended as in fig. 3. 

Fig. 2.—^Thc Displacement, Velocity and Acceleration Fig. 3.—'Fracing of Pendulum 
4n Simple Harmonic Motion as a Function of the Phase Vibrations 

It is filled with sand and set swinging while a piano board is pulled along under¬ 
neath it with uniform velocity in a direction at right angles to the piano of swing. 
Tho sand running out of tlic funnel traces a sine curve as the graph of the dis¬ 
placement-time law. 

If a narrow glass trough be placed under¬ 
neath tho funnel and parallel to the direction 
<)t swmg (fig. 4), the sand is piled up most 
wliero the pendulum moves slowest, the depth 
being inversely proportional to the velocity 
of swing. The curve of the surface of tho 
5and in the trough is foimd to bo such that 
the depth is inversely proportional to tho 
cosine of the phase. 

3. Damped Vibrations.—Observation 
shows that all vibrations, 
unless they are continually 
excited afresb, gradually 
decrease in amplitude and 
die out until finally the 
stable position of rest is 
reached. Such vibrations 
are said to be damped. The 
decrease of amplitude is 
due to the action of forces 

Fig. 4. resisting the motion of the Fig. 5.—Damped vibrations 

system, e.g. friction of 
bearings, air resistance and the like. The amplitude may decrease 
in various ways; either in arithmetical progression (fig. 5a), as, 
for example, in certain cases where the friction is constant; or in 
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geometrical progression (fig. 5b), when the opposing force is always 
proportional to the rate of increase of some co-ordinate (e.g. like air 
resistance, proportional to the velocity of a moving body). This latter 
case of a geometrical decrease of amplitude is especially common and 
important. When the damping is so great that the amplitude becomes 
zero after one or even half a period (fig. 5c), the motion is said to be 
aperiodic. If the successive amplitudes in the case of geometrical 
decrease are ag? • • • ? “tliGii 

^ — 7^ 

The constant /c, the damping factor, is a measure of the damping. 
Frequent use is also made of A= log^^;, the logarithmic decrement. 

The period T of a damped vibration is greater than that (r) of the 
undamped vibration. The two are connected by the equation 

This result may be proved as follows: 
The equation of an undamped simple harmonio vibration (Vol. I, p. 146) is 

X + n^x « 0, 
tho solution of which is 

X ^ Ami{nt — a), 

where A and a are constants, and the period is 

Tho corresponding damped vibration is given by the equation: 

X -p 2ax -p 7i^x == 0, 
which has for solution 

X = sin( — — p). 

as may easily be verified by differentiation and substitution. 
The period is now 

m „ _^TC_ 

V(n2 a^) 

After each half period the amplitude is diminished in the ratio : 1* 

Hence 

and 

li 

Thus T2(7ia - a2) == 4;^^ 

or 

which gives 
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2. Combination of Vibrations 
When a body performs two vibrations simultaneously, the resul¬ 

tant motion may be found by the parallelogram law. It is necessary 
here to distinguish between two cases: (1) where the directions of the 
partial vibrations coincide and (2) where they are at right angles to 
one another. All other cases can be referred back to these two. 

1. The Directions of the Partial Vibrations are Coincident,—The 
resultant displacement is obtained by the algebraic addition of the 
displacements of the partial vibrations. 

Fig. 6.—Composition of Two Vibrations of Different Frequency ?i, Amplitude a and 
Phase in the same Direction 

Fig. 6 gives examples of such combined curves. Special interest 
attaches to the case of the mutical neidmlization of two vibrations with 
equal frequency and equal amplilvdc, but with a phase difference of 7i 
(z=z 180°). This special case is of great importance, particularly in 
optics. 

The combination of two harmonic vibrations can be carried out conveniently 
with the help of the apparatus shown in fig. 7. This consists of a strong frame of 
four vertical rods connected together at their upper ends by a frame. This frame 
carries an easily rotating horizontal axis, from which hang two rods loaded at 
their lower ends with cylinders of brass. These aro connected together by four 
strong short rods, and between them is stretched a steel wire to which a vertical 
cross rod is attached at its middle point. Upon this rod slide four adjustable 
weights. 

(E 630 ) 14 
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The vertical rod carrying the sliding weights can perform torsional vibrations 
about the steel wire as axis. In addition the whole suspended system can swing 
as a pendulum. These two types of vibrations are independent of one another. 

The period of the loaded rod can bo varied within wide limits by sliding the 
adjustable weights. When the pendulum and also the rod are set swinging the 
lower end of the latter performs both vibrations simultaneously. It is provided 
with an adjustable thin glass point, which traces out the vibrations upon a glass 

Fig. 7,—Grimschrs Apparatus for tracing Two Superimposed Vibrations 

plate covered with dust. The plate being at rest, the trace is a single straight 
Hne; but when the plate is pulled with uniform velocity along the straight rails 
at right angles to the direction of swing, a curve is obtained which represents 
the sum of the two vibrations. 

The case of the superposition of two vibrations of almost equal 
frequency is of special interest. The addition gives a resultant vibra¬ 
tion of somewhat variable period (fig. 8) and,what is more important, 
of regularly variable amplitude. These variations of amplitude or 
beats, as they are called, themselves have a frequency which is equal 
to the difierence between the frequencies of the two component vibra¬ 
tions. 

Example—-WhoiXi two vibrations with frequencies of 30 and 31 per second 
interfere, the resultant amplitude reaches its maximum once every second; the 
beat frequency is therefore 1 per second. When frequencies of 30 and 32 per 
second interfere, there is a gain of one oscillation every half second, i.e. twice per 
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second. These two cases are represented in figs. 9 and 10 respectively, which 
show the two component vibrations and beneath them the variations of the 
amplitude of the resultant vibration in each case. 

2. The Directions of the Component Vibrations 
are at Right Angles.—In this case the resultant 
vibration is found by the geometrical addition of 
the components. The curves obtained by the com¬ 
bination of two mutually perpendicular harmonic 
vibrations are called Lissajous* figures. 

Fig. 11 shows the curves obtained by the combination 
of two mutually perpendicular harmonic vibrations of equal 
period and equal amplitude but with various phase difi’er- 
cnces. The component vibrations are drawn as projections 
of uniform circular motions. If the phase difference is 0 or 
an even multiple of 7:/2, the resultant vibration is linear 

Figs. 9 and lo.—Beats 

o and harmonic. Every other phase difference gives riso to 
§ an elliptical vibration, which becomes circular in tlie special 
I case when the phase difference is an odd multiple of t:/2. If 
I the frequencies and amplitudes of the two component vibra- 
^ tions are not equal, complicated curves are obtained. A 
o6 few examples are shown in fig. 12. The phase differences 

given at the side of the figure refer to the beginnmg of 
^ the vibration; the numerical ratios below refer to the 

frequencies. 
Experimental Tracing of Lissajous Figures.—For this 

purpose the apparatus shown in fig. 13 (p. 197) may be iiscd.f 
Four strings each about 3 m. long are suspended from hooks 
A, B, C and D, screwed into the ceiling at the corners of a 
square of about 1 m. side. The pair of strings hanging from 
A and C and the pair hanging from B and 1) are connected 
together respectively about halfway down by rings fixed at 
the ends of a rod EF 1 m. in length. From here tbo pairs 
of strings pass down to a funnel-shaped vessel G suspended 
from them. The funnel has a hole at its point. 

When the vessel is displaced slightly in a plane perpendicular to EF it per¬ 
forms harmonic oscillations about EF as axis, the points E and F remaining 

* Jules Antoine Lissajous (1822-80), French physicist. 
t The arrangement is a modification of the ** Blackburn pendulum ”, devised in 

1844, while he was a student at Cambridge, by Hugh Blackburn, afterwards Fro- 
fessor of Mathematics at Glasgow. 
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absolutely at rest. When the vessel is displaced in a plane parallel to EF, the 
whole suspended system performs harmonic vibrations in this plane. The pendu¬ 
lum length is then the distance from EF to the ceiling, since the triangle EFG 
cannot swing in this plane. To trace out the vibration figures, fine dry sand is 

^ placed in the funnel-shaped vessel and a hori- 
^ zontal board placed beneath it. The sand flowing 

: i S traces the figures automatically. By pushing 
.“ a the rod EF up or down, the periods of the two 

; !i ^ pendulums may be altered in opposite senses and 

’ y - j 2.—Lissajous Figures 

/: ; i\; hence the ratio of the frequencies varied. In this 
—if—^ g ia possible to obtain many other figures in 

\ i ! ; \j\ I. addition to those shown in fig. 12. 
[V*i.M The flexural vibrations of the free end of a 

clamped rod are also harmonic. Attach two 
.■ TSi lx, pieces of steel of rectangular cross-section (e.g. 

clock spring) at opposite ends and at 45° to the 
edges of the opposite longer faces of a block of wood (fig. 14); the two 
pieces of steel are thus at right angles to one another. They are provided 
with small mirrors on the inside surfaces of their free ends. A beam of light 
is made to fall upon one of these mirrors so as to be reflected from it on to 
the other and then on to a white screen. When one of the springs vibrates, its 
mirror is rotated according to t he sine law and the beam of light produces a bright 
spot performing harmonic vibrations upon the screen. The same is also tnie 
when the second spring vibrates; but in this case the plane of the harmonic 
vibration is at right angles to that of the first. When both springs vibrate simul¬ 
taneously, the bright spot also performs both vibrations simultaneously. The 
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froqu^cies can be varied by loading the springs with small weights. The curve 
traced out by the spot of light is a Lissajous figure. 

3. Composition of two Oppositely Directed Circular Motions.—The resul¬ 
tant motion of a body performing two congruent, oppositely directed, circular 
motions simidtaneouriy may be found by the parallelogram of displacements, 
ouch a combination is shown in fig. 16. The orbits are represented by the two 

13—Combination of Fig. 14.—Optical Combination 
Harmonic Vibrations at of Vibrations 

Right Angles 

Fig. 15.—Combination of Two 
Oppositely Directed Circular 

Motions 

circles with centre A., which must be imagined really to coincide. The Roman 
and Arabic figures mark the successive corresponding positions which the body 
would have as a result of the respective component motions. The figure shows the 
graphical combination of the displacements in the positions 1 and 1 by the paral¬ 
lelogram construction. The resultant position is at B. The displacement of the 
extreme point C from the centre is twice the radius of the circle. 

The combination of two oppositely directed circular motions of equal radius and 
period gives a linear vibration with the same period and an amplitude equal to twice 
the radius of the component circular motions. 

Taking account also of the case shown in fig. 11 {d), p. 19G, we may 
sum up by saying: 

A circular motion of radius r and period T may he regarded as com¬ 
posed of two linear vibrations of the same amplitude r and period T and 
with a phase difference of 7r/2. A linear vibration of amplitude a and period 
T may be regarded as composed of two oppositely directed circular motions 
of radius a/2 and the same period T. 

3. Forced Vibrations. Resonators 
- In the cases so far considered we have assumed that the excitation 

of the vibration consisted of a single impulse, after which the system 
performed its oscillatory motion undisturbed (free or natural vibra¬ 
tion). Great importance also attaches to the case in which the excita¬ 
tion is produced by a vibrating system. The phenomena are then 
very varied and depend upon the ratio of the frequencies and upon 
the damping in the systems concerned. The following is a mechanical 
example of such a forced vibration, as it is called. 
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A mass M is suspended by means of a spiral spring F (fig. 16). When 
displaced from its position of rest by stretching the spring, and then 
let go, the mass performs the natural vibrations caused by the elastic 
force of the spring. Now let the point of suspension A be the end of 
a rod S which itself performs a continuous up and down periodic motion 
(say by means of a crank drive). We will assume that the mass of the 
system with which the rod is connected {the exciter) is very great in 
comparison with the mass M suspended from the spring, so that the 
vibrations of the latter do not react upon the exciter. The system 
of spring and mass, called the resonator, is then forced to perform the 
vibrations of the exciter. Now how do the amplitude and phase of the 
resonator depend upon the physical conditions of the two systems? 

Fig. i6 Fig. 17.—Amplification at Different Frequencies and with Different Damping 
Forced 

Vibration 

1. Amplitude of the Resonator as a Function of the Exciting Fre» 
guency n. 

Resonator without Damping.—If the frequency n of the forced 
vibrations is very small compared with the natural frequency N, the 
resonator exactly follows the motions of the point of suspension. As 
n increases, the amplitude of the resonator increases more and more 
until in absence of damping it eventually becomes infinitely great 
(i.e. the system would be destroyed) when n becomes equal to the 
natural frequency N. When n the natural frequency and the 
forced frequency are said to be in resonance. 

If n is further increased, the amplitude of the forced vibration 
decreases again until, when n is very large, the motion of M consists only 
of a rapid trembling with very small amplitude. In addition to the 
forced vibrations the resonator also performs its own natural vibra¬ 
tions. The resultant motion is obtained by superposition as in the 
examples shown in fig. 6, p. 193. 

The uppermost curve of fig. 17 represents the above variations of the ampli¬ 
tude of the forced vibration. The abscissae are the frequencies of the forced 
vibration expressed as multiples of the natural frequency N of the resonator. 
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The ordinates are the corresponding amplitudes of the forced vibration divided 
by the amplitude of the exciting vibration {amplijicatmi factor). For ri = Is fho 
amplification factor is infinite. 

Damped Resonator.—When the resonator is damped, the depen¬ 
dence of its amplitudes upon the exciting frequency n is more or less 
the same as without damping, but even in resonance the amplitude 
remains finite. With increased damping the maximum amplification 
also moves towards frequencies smaller than the resonance frequency. 

Fig. 17 shows the amplitudes for different dami)ing factors k (p. 192). The 
dash-dot curve indicates the displacement of the maximum amplification with 
increasing damping. 

Examples.—When an electro-motor of adjustable speed of revolution is placed 
upon a table, its vibrations, which in general have a frequency about equal to 
the number of revolutions per second, are transmitted to the table and set this 
into forced vibration. In the region of a certain quite definite frequency (often 
of several) very pronounced vibrations are produced; this is when the vibrating 
systems are in resonance. Largo num¬ 
bers of soldiers are not allowed to \ \ 
march over a bridge in step, because ' 
chance resonance might cause damage. 
Such resonance phenomena are also of 
great importance in practical engin¬ 
eering. Vibrations of largo amplitude 
may occur in machines with rotating 
shafts. On account of slight irregu¬ 
larities of running, all engines perform 
small vibrations with a frequency 
approximately equal to the number 
of revolutions per second or a multiple “f PoW’» Vibration Apparaiua 

of it. If now at a certain speed of 
revolution the frequency coincides with the natural frequency of the system 
shaft -j - rotating parts, there will bo a very great increase of tho amplitude of 
the forced vibrations, which may destroy the machine. Those speeds of revolu¬ 
tion of engines at which such resonance phenomena appear are called critical 
speeds. 

The cases just considered are also of great importance for tho treatment of 
problems concerning electric oscillations and optical absorption, as well as for 
the problem of faithful reproduction of sounds by loud-speakers and for the 
theory of musical instruments. 

The apparatus of Pohl (fig. 18) is very suitable for the demonstration of 
forced vibrations’*'. 

The system performing the forced vibrations, or briefly the resonator, consists 
of a copper wheel to whose axis a spiral spring is attached at 1. Thus it is essen¬ 
tially a balance wheel like that used in watches. Its natural frequency Vq is 0-38 
sec.~^. Its damping factor can bo varied between 1-11 and 2-72 by means of a 
Foucault current brake W. The periodic force producing the oscillations of tho 
wheel acts at the end 2 of the spiral spring. It is obtained in the simplest manner 
by means of a connecting rod S fixed eccentrically at E to the axis of a motor 
(the exciter) whoso speed of revolution can be varied at will. 

♦ R. W. Pohl, Physical Principles of Mechanics and Acoustics, p. 254. 
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2. Phase of the Resonator for Different Exciting Frequencies. 

Resonator without Damping.—In this case the phase of the resonator 
coincides exactly with that of the exciter for all frequencies n smaller 
than the resonance frequency N. For all frequencies greater than N, 
however, the phase is altered by tt, i.e. the resonator vibrates in the 
opposite direction to the exciter. Thus the phase suddenly changes 
by 7t in passing through the resonance frequency. 

Damped Resonator.—Here the phase difference gradually increases. 
For very slow forced vibrations it is very small, increases with increas¬ 
ing frequency in a manner dependent upon the degree of damping. 

Fig. ig.—Phase Difference a.s a Function of the Frequency with Difforont D.'imping Factors 
(N “ Resonance Frequency). Ordinates, phase difference. Abscissa.% frequency 

and finally always reaches the value 7r/2 at resonance. The resonator 
is then in its position of greatest displacement when the exciter is just 
passing through its equilibrium position. Fig. 19 shows the phase 
differences as a function of the exciting frequency for different damping 
factors. In absence of damping (h ~ 1) the curve runs from 0 to N 
along the axis of abscissae, and for n > N parallel to tliis axis at a 
distance tt from it. 

Tlie phase differences can bo demonstrated very well with the above-men¬ 
tioned apparatus of Pohl. They play an important part in applied electricity, 
and in cases where complicated vibrations have to be registered true to phase. 
They have found practical application in Frahm’s anti-rolling tank (p. 202). 
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4. Coupled Vibrations 

In the previous paragraph it was assumed that the resonator did 
not react upon the exciter as in the mechanical example quoted. 
We will now consider systems which are equivalent to one another in 
that the resonator can react without restriction upon the exciter. 
Such systems are said to be coupled. 

1. There is in general a continual interchange of energy between 
the coupled systems. 

Experiment.—Hang two heavy bodies (c.g. kilogram weights) as pendulums 
from the ceiling at a distance of 50 cm. apart on the ends of two threads 2 m, 
long (fig. 20). Since their lengths are equal, these jiendulums have equal periods. 
Connect the two suspending threads about half-way up with a cross thread about 
70 cm. in length, and load it in the middle with about 50 gm. wt. Kow set the 
first pendulum swinging in a plane perpendicular to that passing tlirough the 
common equilibrium position of the whole system. In swinging, the first pendulum 
lifts the weight hung upon the connecting thread, 
which thus exerts a pull upon the second pendu¬ 
lum. A certain time is necessary for the transmis¬ 
sion of this pull from the first pendulum to the 
second. As a result, the second pendulum is also 
set swingmg and the first loses a part of its kinetic 
energy. Since tlie first pendulum is always in 
advance of the second, it accelerates the latter 
and is itself retarded somewhat every swing; its 
amplitude is thus gradually diminished. After 
about 10 swings the first pendulum has given up 
the whole of its energy to the second, and has 
therefore come to rest, while the second pendu¬ 
lum is swingmg ^vith the full amplitude, i.e. 
■with the amplitude which the first pendulum 
originally had. 

Trom this point onward the second j)eudulum assumes the rule of the first 
and begins to transmit during every swing a part of its energy back again to the 
first, until this eventually swings once more with its full original amplitude and 
the second pendulum is once more at rest. 

If the weight which acts as coupling is replaced by another twice as great, 
the coupling becomes “ tighter ” than before, since the force between the two 
pendulums is greater. The complete transmission now takes only five swmgs 
instead of ten. If the coupling is still tighter, i.e. if the connecting thread is still 
more tightly stretched, the transmission takes jdace in still shorter time. 

The coupling can also bo loosened or tightened by raising or lowering the 
connecting thread. 

2. If the natural frequencies of two systems before coupling are 
and Ng respectively (N^ < Ng), every part of the coupled system 

vibrates with two frequencies and such that % < ISTj and 
^2 ^2* The superposition of these two frequencies gives rise to 
beats (p. 194) which become apparent in the energy exchanges between 
the two systems. The above experiments show that the looser the 
coupling, the less the difference between the two coupled frequencies; 

I'ig. 20,-—Coupled Vibrations 
(after Oberbeck) 
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for the energy exchange then takes place more slowly, i.e. the beat 
frequency is smaller. Thus the looser the coupling the longer the beat 
period. Even when the two systems have the same natural frequency 

- - Ng, two frequencies are produced by coupling and hence beats 
appear. 

Fig. 21.—Coupled Vibrations of Damped Systems 

Primary System, above; Secondary System, below 

3. When both vibrations are damped, the resultant beats are also 
damped. Fig, 21 gives an example of the behaviour of two such coupled 
systems. This case is of great importance, especially in connexion 
with electrical oscillations (see Vol. Ill for the treatment of the example 
of fig. 21). 

The Fralim anti-rolling tank is an example of the practical application of 
coupled vibrations. 

When the frequency of the waves striking a ship is approximately in resonance 
with its natural frequency, the ship may bo displaced 
very considerably from its mean position, since each 
successive wave increases the effect of the previous 
one. The ship then “ rolls ’* badly. 

There is, however, a phase difference of Tr/2 (p. 20t>) 
between the motion of the ship and that of the waves 
(resonance case n = N), so that the latter strike the 
ship most vigorously just as it is passing through its 
position of rest. To damp this “ rolling *’ a tank may 
be employed (i.e. a system coupled to the ship). This 

is built into the ship in the manner shown in fig. 22 and is about half filled with 
water. It is made in two parts, I and II, communicating with one another by 
means of a channel K. It is essential that the dimensions be so chosen that the 
natural frequency of the water in the tank is equal to that of the ship (p. 189). 

The rolling of the ship sots the water in the tank swinging, and this reacts 
back upon the ship owing to the inertia and displacement of the weight of the tank 
water. Since the oscillation is in resonance with that of the ship, there is a phase 
lag of 71/2. There is therefore a difference of tt between the phase of the waves 
striking the ship and that of the oscillating tank water. Hence the tank water 
oscillates in exactly the opposite direction from the waves and thus protects the 
ship against too great rolling. 

lx 

V_^^ 
Fig. 22,—Fralim Anti¬ 

rolling Tank 
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The valve S serves to regulate the flow of air between the two parts I and II 
of the tank, and permits of the regulation of the damping of tho tank water oscil¬ 
lations to suit the strength of the waves. Tho effect of tho anti-rolling tank can 
bo seen from fig. 23, -which shows the rolling motion of a ship with and without 
the device. 

Note.—Tho impact of two elastic masses can also bo regarded as a case of 
coupled vibration in which the vibrations are caused by tho elastic deformations. 
Here the coupling is so tight that even after a quarter of a period tho energy trans¬ 
mission to the second body is complete. When, for example, an ivory ball hanging 

JO 

Fig. 23. -Effect of the Anti-rolling Tank (each half of the figure represents a period of 8 minutes) 
(Left: without tank. Right: with tank) 

from a thread strikes against another similar ball also hanging from a tiircad 
of tho same length, tho total energy of the first ball is transferred to the second 
by the impact. On account of the freedom of motion the coupling is at once re¬ 
moved and hence the second ball retains the whole of the energy. 

5. Propagation of Energy through a Series of Coupled 
Systems 

1. We will now consider a series of similar pendulums hanging side 
by side and coupled together as in the simple case shown in fig. 20 
(p. 201). When the first pendulum is set swinging, the second gradually 
takes over the motion as explained, while the &st gradually loses its 
energy. In the case at present under consideration, however, tho 
subsequent pendulums will also be set swinging and the first one will 
rapidly come to rest. Thus the energy is propagated from the one end 
right through the series. 

This propagation can be demonstrated in a very elegant manner by means 
of the following apparatus (after Julius) in which the pendulum swings are 
replaced by torsional oscillations. At the upper and lower ends of a stand 2 m. 
in height are fixed horizontal cross bars bearing small hooks (figs. 24 and 25). 
To these are attached two thin threads about 25 cm. long, which are joined re¬ 
spectively to the upper and lower ends of a steel wire, which passes freely through 
two clamps; but they permit it to turn about its own axis without producing a 
turning moment sufficiently great to influence the present experiments. 

Horizontal brass rods can bo attached to the steel wire by means of suitable 
clips. The moment of inertia of these rods is increased by loading them at the 
ends with small bulbs. Wo will first attach (mly one such rod. Then by the appli¬ 
cation of an instantaneous displacing moment it can be set into rotation about 
tho steel wire as axis. The wire turns also without rasistance, since the two 
threads by which it is stretched do not exert any approoiablo torsional forces. 
The rotational motion of tho whole therefore takes jiiace with approximately 
uniform angular velocity. But if tho steel wire bo clamped tightly at one or both 
ends, the single brass rod will perform harmonic torsional vibrations about it. 

Now let us attach two cross rods as shown in fig. 24. For the present we will 
leave both ends of the wire free, i.e. not clamped, and will set tho lower rod into 
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rotation by an instantaneous displacing moment. This twists the part of the 
steel wire between the two rods, thus producing a moment which acts upon the 
respective rods with equal magnitude and in opposite senses. The result is that 
the lower rod is retarded and the upper one accelerated. After a while the lowei 

rod comes compJetely to rest, by which time the upper one has assumed a motion 
exactly identical with the original motion of the lower one. 

The rotation of the upper rod now twists the portion of the wire between the 
rods in the same manner as before, and the interchange of energy is reversed. 
Thus the whole energy passes alternately from the one rod to the other. The 
course of this process is determined only by the moment of inertia of the masses 
and the torsion they produce in the steel wire. 

We now attach a larger number of similar cross rods to the steel wire as in 
fig. 25. The ends of the wire are allowed to remain free as before. When the 
lowest rod is made to rotate, the initial stages of the process are just the same 
as described above. But even while it is being turned by the torsion of the lowest 
section of the wire, the second rod is giving up a part of its energy to the third 
owing to the twisting of the portion of the wme between them. Thus the third 
and successive rods are gradually set rotating, wliile the rotation of the lowest 
one is retarded. After a while the lowest rod comes completely to rest after 
turning through a certain angle depending upon the magnitude of the original 
moment applied. Each subsequent rod then performs exactly the same rotation 
through exactly the same angle and then also comes to rest. Thus the rotation 
is transmitted right up to the topmost rod. 

2. Behaviour of the System at the End of the Series. Reflections.— 
When the energy reaches the end of the series it turns back and passes 
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along the series in the opposite direction: it is then said to have been 
reflected. The reflection takes place without loss of energy, but the 
relation between the phases of the incident and reflected vibrations 
depends upon whether the end of the series is fixed or is itself free 
to vibrate. 

When the end is free, there is no phase change on reflection; when the 
end is fixed, the phase is reversed. 

This behaviour can also be demonstrated by means of the apparatus already 
described. In the last experiment the topmost cross rod is subjected to no clastic 
resistance, since the upper end of the steel wire can rotate freely. Hence this 
rod goes on rotating until it has completed twice the angle turned through by 
the other rods. It thus reacts back upon the lower rods by virtue of the elastic 
torsion of the sections of the steel wire, and the rotation is transmitted down¬ 
wards again in the same manner as it was transmitted upwards. The sense of 
the rotations of the individual rods remains the same as that of the original dis¬ 
placement. The process is repeated a number of times, until finally the general 
lesistances to motion interfere wdth its normal course and bring it to an end. 

Wo will now clamp the upper end of the steel wii’e and once more set the 
lowest rod into rotation. The first stages of the process are exactly the same as 
described above; but when the disturbance has reached the upper end, the top¬ 
most rod camiot perform its rotation without resistance, since it must twist the 
topmost section of the steel wire. The result of this torsion is a reaction upon the 
topmost rod itself, in consequence of which it not only comes to rest very soon, 
but swings back again into its initial position under the influence of the elastic 
stress of the topmost section of the wire. It now reacts back upon the rods be¬ 
neath it, causing them all to rotate successively in the opposite direction from 
that of their initial rotation. If in the meanwhile the lower end of the wire has 
also been clamped, the motion passes down to the lowest rod, which is again 
unable to rotate freely. It therefore produces an elastic twisting of the lowest 
section of the ware and this causes the lowest rod to swung back. This backward 
rotation is then transmitted back up the scries again in the mamicr already 
described. 

3. Transmission of Energy along a Series of Elastic Systems when 
Struck.—Several equal elastic spheres 
are hung up touching one another 
(fig. 26). When the first sphere A im¬ 
pinges on the second, the energy is trans¬ 
mitted completely from the first to the 
second. The second transmits it to the 
third, the third to the fourt/h, and so Fig. 26.—Transmission of Energy 

on. The last sphere C moves off with by impact 
the same energy as that possessed by 
the first before impact, and therefore rises to the same height as 
that from which A originally fell. 

The transmission of energy takes place in accordance with the laws 
and formula) regarding clastic impact derived in § 5, p. 214, Vol. I. 
Now it must be remembered also that a cert/ain time is required for the 
transmission of the energy from the first sphere to the last. If we 
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assume that the row of spheres is so long that this transmission takes 
one second, we can call this length, which is the distance covered by 
the energy in one second, the velocity of propagation. It is greater 
than the velocity of impact of the first sphere. Thus the last sphere 
moves off sooner than the first would have arrived at the far end of 
the row if it had been moving freely. 

The process of transmission can be regarded as equivalent to the 
motion of a body with uniform velocity; the whole of the mass of the 
body does not move at once, however, but the state of motion is trans¬ 
mitted from sphere to sphere along the whole row, each individual 
sphere only moving through a very small distance. 

Ill connexion with this case it is very instructivo to notice that when the first 
sphere imiiinges upon the row its energy is not transmitted to all the other spheres 

that they each take up a fraction simultaneotisly. Actually they ail remain 
at rest and the last one receives the whole of the energy of the first. This is duo 
to the fact that the transference is not instantaneous, but requu’es a certain 
time (J period), so that the remaining spheres do not act as one mass. It is also 
clear from this that the velocity of propagation of the energy depends upon the 
])eriod of the clastic vibrations, i.o. essentially upon the elastic properties of the 
system. 

The case just considered is very important; for if we imagine the spheres to 
bo connected rigidly together, we obtain an elastic rod. The above considerations 
therefore hold quite generally for the propagation of a disturbance in an elastic 
medium. The velocity of such a propagation has already been calculated in § 6, 
p. 217, Vol. I. 

1. Reflection at the Junction of Rods of Different Mass per Unit 
Length.—Consider an elastic rod with another rod of the same material 
but of smaller cross-section joined on to it at one end. The energy of 
a blow upon the other end of the first rod is propagated along it until 
it reaches the junction; then a fraction of it passes over into the thinner 
rod exactly as in the impact of one elastic sphere against another of 
smaller mass. The thinner the second rod, the smaller the fraction of 
the energy that passes into it. The remainder is reflected without 
alteration of phase. 

If the second rod is of the same material as the first but of greater 
cross-section, the energy is again partially reflected from the junction, 
tliis time with reversal of phase. A part of the energy passes into the 
wider rod exactly as in the impact of one elastic sphere against another 
of greater mass. 

These phenomena can ako be observed well with tbo apparatus shown in figs. 
24 and 25 (p. 204), if the moments of inertia of a group of the cross bars are 
increased by attaching larger weights to their ends. 

A disturbance passing along one part of a rod is reflected without 
change of phase at the junction with a second part when the mass per unit 
length of the second part is less than thaJt of the first. The reflection is 
accompanied by a reversal of phase when the mass per unit length of the 
second part is greater than that of the first. 
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In both cases there is a partial loss of energy from the first part to 
the second. 

5. Longitudinal and Transverse Transmission.—In the experiments 
with a row of spheres or an elastic rod described above, the direction 
of motion of the individual parts was tlie same as (or opposite to) the 
direction of propagation of the energy. This is known as longitudinal 
transmission. In the exj)eriment with the two pendulums (fig. 20, 
p. 201) the direction of swing was at right angles to the direction in 
which the energy was transmitted between them. This is kno\Mi as 
transverse transmission. 

Further Emmples.—1. The propagation of a transverse impulse can easily 
be observed by stretching a long rubber tube (about 10 m.) horizontally and 
then striking it a short sharp downward blow at one end. It will bo seen that 
the downward motion of the individual parts is propagated along the tube and 
then reflected at the opposite end in such a w’ay that the downward motion is 
converted into an upward motion. This is the phase reversal which alw ays accom¬ 
panies reflection at a fixed end. The phenomenon can be especially wtII follo^vcd 
if the tube is filled with w^atcr, since this increases its mass and diminishes the 
speed of propagation of the disturbance. 

If the far end of the stretched tube be attached to one end (jf a long thread 
(i.e. a body of smaller mass per unit length) the other end of which is tied to a 
fixed wall, the reflection at the junction now takes place without change of phase. 
Since, however, the thread has a certain mass, a fraction of the energy jjasses 
over into it and the reflection is therefore accompanied by diminution of ampli¬ 
tude. 

2. An open narrow vessel at least 2 m. in length and with parallel sides is 
partially filled with water. A body is dipped into the water or a stone or drop 
of water is allowed to fall into it at one end of the vessel. The individual w^ater 
particles are thereby set into a circular motion, as can be seen from the move¬ 
ments of light suspended bodies such as fragments of sawdust. Each particle 
rnoves only once around its circular path, thereby transmitting its energy to the 
next and coming to rest itself. In this way the initial disturbance is transmitted 
right along to the end of the vessel. An elevation or crest and two depressions 
or troughs are observed to move over the surface of the water and to bo reflected 
at the far end. The force effecting the transmission is in this case the force of 
gravity upon the water part/icics, by virtue of which there is a tendency for 
differences of level between neighbouring portions of the surface f.o bo equalized. 
Thus gravity pla3^s here the part of the coupling. IIio transmission of such dis¬ 
turbances upon the surface of water is not purely transverse, since the circular 
motion of the individual particles also has longitudinal components. 



CHAPTER II 

Wave Motion 

1. Introductory Observations upon Water Waves 

1. Formation of Wave Trains.—In the experiments so far de¬ 
scribed there was only a single impulse, so that each individual particle^, 
only performed its motion once. The first particle may, however, be 
made to vibrate continuously. For example, the first cross rod of the 
wave apparatus (fig. 25, p. 204) may be displaced at once in the oppo¬ 
site direction every time it comes to rest, or in the last example a series 
of drops allowed to fall into the water at such a rate that each gives 
rise to a new disturbance as soon as the preceding distmbance has been 
passed on. In these cases each successive impulse is transmitted in 
the same wny as the first, so that the whole series of cross rods or the 
whole surface of the water performs vibrations, each particle going 
through the same motions as the preceding one but a little later. If 
we assume that the wave apparatus or vessel of water is infinitely 
long, we need take no account of the backward motion produced by 
reflection at the end. Wo then have a wave system or wave train. 

The production of water waves * is represented in fig. 1. In the top figure 
the water surface is at rest. When it is disturbed, the points numbered 0 to 15 
move in circles with constant velocity. When the jiarticlo 0 has completed ^ 
of its circle, the particle 1 begins to move. By the time the particle 0 has com¬ 
pleted of its circle, the particle 1 has completed ib of its circle and the particle 
2 begins to move. This state is represented in fig. 1 II. Similarly figs. IV to 
Xll show the states of motion after completion by each particle of a further 
yo, &c., of its circular orbit. Thus, for example, in fig. VI the zero particle 
has completed the first particle the second the third yl, the fourth ,b, 
and the fifth of its circular motion, while the sixth particle is just about to 
begin to move. At this moment the zero particle has arrived once again at the 
original water level; it is not in its original state of motion, however, but is now 
moving upwards instead of downwards. Only after it has completed the whole of 
its circular orbit does the zero particle arrive at its initial position and its original 
state of motion. At this moment, which is represented in fig. XII, a complete 
wave has been formed. The twelfth particle is then in the same state of motion 
as the zero particle, while each intermediate particle is in advance of the one 
preceding it by of its complete cycle. 

* Experimental investigations of wave motion wore carried out in 1825 by the 
brothers E. H. Weber and Wilhelm Weber of Leipzig. 

208 



OBSERVATIONS UPON WATER WAVES 200 

Fig. 1 XII rIiows how a part of the water has risen above the 
original level and a part has sunk below it. The former is called a 
crest, the latter a trough. The distance of the zero ])article from the 
twelfth is called the wave-length. The diScrenco in height betw^eeji 
the normal level and the top of the crest or bottom of tlie trough is 

■orniation of Water Waves by tho Ciicular Motion of the 
Individual Particles (after the brothers Weber) 

the amplitude of the wave. In the case of a tvaier wave the crest ayid 
trough arc not of the same shape', the crest is shorter and steeper than the 
trough. 

The wave motion can only be k(^pt up in this form, provided that 
the zero particle is given a continuous series of suitably timed impulses. 

When the free water surface is of large area and the zero particle 
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is situated somewhere in the middle of it, the waves extend in all 
directions. Thus the farther the wave spreads out from the centre of 
disturbance, the larger the mass of water to which the kinetic energy 
is transmitted. If the amount of kinetic energy initially imparted to 
the zero particle is then when the mass of water set in motion 
has become four times as great, the kinetic energy must be expressible 

Fig. 2.—Circular Wave Tram 

ill tlic form 1.4M . {Iv)-. The velocity with which the fourfold mass 
of water jiasses through its position of equilibrium is thus only half 
as great as the original viOocity imparted to the zero ])article. In other 
words, the amplitude of the w.ave decreases with increasing distance 
from the centre of disturbance; for, other things being equal, the 
smaller the velocity of passage through the equilibrium jiosition, the 
smaller also the amplitude. 

Fig. 3.—Single Circular Wave (diagrammatic) 

Til tlio experiment with the water wm’-o in the narrow vessel with parallel 
w alls there was no such deereaso of amplitude (neglecting the effect of the friction 
of the particles against one another and against the walls), because the mass of 
water subsequently set in motion is never greater than that originally disturbed. 

2. Observations on Single Waves.—When a stone is throwm into water or a 
droj) allowed to fall on to the surface, a circular wave train consisting of a small 
number of crests and troughs spreads out from the disturbed point, while after 
a time no more motion can be seen at the centre itself. Fig. 2 is a reproduction 
of a photograph of a wave produced by throwing a ball into water. Fig. 3 shows 
a diagrammatic section through a single circular w^avo of wave-length X. 

In actual experiment the circular w\avc is ])receded by a large number of 
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smalJer waves of qniit; difl'crent appearance, particularly of much smaller amj)]i- 
tilde. Th(^ ri'ason for tliis twofold wave is that stable equilibrium state of 
the water surface is determined by two different forces, gravity and surfaci' 
tension, ".rhe main wave is duo to gravity and the smaller ones to surfac^e tension. 
The lattiT are called capillary waves. Each of tlio two 13^103 must be considered 
separatclw Here we will onU consider the gravitational waves, 

it is ch'ar that when the initial disturbance is only of short duration, only a 
few waves will spread out from the centre; for the whole energy of the distur- 
liance is passed on completely to the iK'ighbourmg ■water masses in a short time. 

The velocity with which a water wave spreads out, i.e. the velocity with 
which a p;irticular part of the wave advances radiallv" from the cirntre, is inde¬ 
pendent of the amplitude. When the depth of the water is small in comparison 
with the wave-length, the velocity is also independent of the wavi'-length (but 
ilependent upon the depth of the water). When tlio deptli is greater, the velocity 
increases as the depth increases and then also with the wave-length, until for 
very great depths it reaches a limiting value onl3' dependent upon the wave- 

Fifi-. 4.—Interference or Superposition drawn for two sets of ripples originating at A and a 

length, ill the case of shallow' water, e.g. near a coast, an observant ])ersoii can 
draw conclusions as to the depth from the behaviour of the waves. Thosi^ jiarts 
of an incoming w^ave w hich pass over shallow's lag behind thitse w^liich pass over 
pla(!es wht're the water is deeper. 8ea waves caused by strong winds may have 
a wave-li'iigth from 50 to 150 m., an amplitude of about 10 m. and a, velocity 

advance of from 10 to 15 m. per sec. 

3. Interference of Single Waves.—When two similar stones or 

drops are allowed to fall simultan(‘ously into water at some distance 
apart, the two congruent wave systems prodiu'ed spread out with 
equal velocities from their respective centres. After a time they pene¬ 
trate each other, and we observe the effect shown in fig. 4. 

It is seen (cf. also tig. 7, p. 214) that at points corresponding to eri'sts in both 
systems there are crests of double height, and at points corresponding to troughs 
in both systems there are troughs of double depth, but at points corresponrling 
to a crest in one system and a trough in the other there is no difference in level 
as compared Avith the free surface at rest. As the Avaves spread out these points 
preserve their mutual positions AV'ith only slight displacements. The crests of 
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dou])Io height and the tronghn of double depth mov'c along the perpendicular 
bisector of the line joining the two centres. Thus along this i)erpendicular moves 
a short wave of double amplitude, while on both sides of it the water surface 
remains approximately at r(‘st. If the movement of tlic middle of this wav(^ be 
noted at dilTerent points s(7)arated by ccpial time intervals, its velocity is found 
to b(^ A cry great at lirst and then to decrease gradually until it finally iK'comcs 
ei{ual to the velocity of the })rimary waves. Th(^ points of minimum amplitiah^ 
on (‘it her sid(^ nioAm A\'ith ap])roximatelv constant vt'locity away from the line 
joining the two eentn's and gradually clivaTge from the perp(mdicular bisector. 

Th(‘ ])oints of maximum elevation and depression lie on th(^ ])er])('ndicuJar 
bisector of the join of the (arntres of disturbanc<‘, because this is the locus of ))oints 
eijuidistant from these ccaitres and hence of ecjual phase in both wave systems, 
hoi- tlie points of minimum amplitude, on the other hand, tlie ditferenci' of tin- 
distanccAS from the eentn's must be half a Avave-haigth. The lo(*ns of sm h ])oints 
is a hyper‘bola A\hose transverse axis is erpial t(3 half th(‘- wave-h'ngth of the 
primary waA'Cs. The ^loint.-^ move along the branches of this hyperbola vith a 
velocity which is at first great and tluai deciTases. 

If three stones or three drops are let fall into wiiter simultaneously in such 
a way that the three (‘(mirths of disturbance lie ujxm a straight lino at (‘(jual dis- 
tanc(‘s, thixH^ circular aa^ra'cs I, II and Ilf arc pnxluced. As a result of the intc-r- 
f(*rcnc(! * of I with 11 and If Avit h 111, points of maximum and minimum amplitud(‘ 
are prodnccxl as already described. .In addition, points of doubles amplitud(‘ also 
appear Avhere the AvaA^es I and HI cross Avith lik(‘ phase, i.e. upon flu* piTjK'n- 
dicular bisi'ctor of the liiu^ jraning the r(‘S})eetive cemtn'. These points also movt‘ 
at right angle.s to the line of cc'iitres and are uc’companied on either side by points 
of apjiroximately zero amplitndis 

ddio R'sult of further increasing the mimhcT of disturbances ujion a straiglit 
liiKi is to iiroduce further rc'petitions of the aboAX; etfect. A syshun of jioiiits of 
maximum amplitude appears and moves at right angles to tla^ line joining the 
centres of disturbance. 'The x)oints of minimum amplitiKh', Avhieh move laterally- 
Avhen at r(‘lati\'(‘ly gnvit distances from tin* centr(‘s, are of no (dfect. When a. 
large number of points lying side by sid(^ upon a straight line an^ disturlxxl simul¬ 
taneously by throAAing a- rod horizontally on to the surface of the Avatcr, circular 
waA-c?i spread out from the ends of tlie rod, Avliile straight waves parallel t(.) the 
rod move out perjiendienlar to it. 

In the ease of a rod in the form of an are of a circle, (‘acli ('lenient can be re¬ 
garded as straight. Ncgh'cting the cLreular waves spreading out from tlui ('iids, 
a circular Avave of great amplitude must therefore be sent out from ('aeh side of 
the rod. The centre of curvature of these Avaves Avill coincide Avith the centres of 
the circles of Avhich the' curved rod forms an arc. In this case it is jiossibk'. to 
observe how the amjilitudi' of the Avave sent out from the eoneave side of tlie 
rod increases as its energy is eoncentrated into evc't decreasing masses of Avater. 
CoiiAXTsely, th© amplitude of the AvaA^e from the other side of the rod becomes 
smaller and smaller. The total AAm^e produced by the superposition of a large 
number of small individual Avaves is called a wave front to distinguish it from the 
elementary waves spreading out in circles from the individual ])oints of distur¬ 
bance. 

'1. Observations upon Wave Systems.—In order to produce a 
system or train of circular Avater waves the water must be made to 
vibrate up and down by continued periodic impulses, so that energy 

* The principle of intcrfcrcnco was used by Newton to explain certain tidal pheno- 
iiK'iia, but Avas lirst definitely stated about 1800 by Thomas Young in liis cedebrated 
papers on the Wave Theory of Light. 
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is continuously supplied to the Avave system. Thus, for example, 
the central wave system shown in fig. 5 was juoduced by moving a 
ball up and down continuously at the centre. 

Being reproduced (like the other pictures of water waves) from a photograph, 
tlio shape of the w^avc^s in tig. 5 is inoditied by the perspective. The waves are 
represented as they actually appear to tlie eye. The (‘llipses of the figure e(^rr(> 
spond therefore to concentric circles seen in perspective. 

Wo. now ox(‘it(‘ two neighbouring points simultaneously by means 
of a fork-shaped wire attaelied to a vibrating rod. Two exactly similar 
circular wave systems spriuxd out from the two points where the (mds 
of the wire dip into the water. Tlu‘ interference of the crests and 
troughs of the two systcmis gives rist; to hyperbolas as already dis¬ 
cussed above (see also fig. 4, p. 211). 

Fig* 5*—Central Wave System 

Fig. G shows a photograj)!! of the effect produced by tho interfereneo of two 
central wave systems. These were produced by two wooden balls suspended a 
short distance apart from a rope stretched across a, smooth Jake. The roj)o w as 
set vibrating and the Avooden balls thus made to dip periodically into the water. 
The first interference hj^perbolas on each side of the perpendicular bisector of 
the line joining the halls corrcsj>ond to a phase difference of half a wave-length 
betw een the interfering wixve trains. The successive hyperbolas on each side corre¬ 
spond to phase differences of wave-lengths. Tho wave centres are the 
common foci of all these confoeal * hyperbolas. At great distances from the 
centres f)f disturbance the h}7)crbolas may be regarded as identi(*al with their 
asymptotes; the interference lines arc then straight. In fig. 7 a. part of the 
interfering systems is reproduced on a larger scab'. Particular attention is called 
to tho fact that the waves on opposite sides of the interference hyperbolas have 
opposite phase, i.e. that a crest on one side of a hyperbola comes opposite a trough 
on the other side. 

lu fig. 8 six points at equal, short distances along a straight hue 
were excited vsimultaneously. In the immediate neighbourhood of these 

Lat., con, together; confoeal, with common focus. 
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C(‘ntres i,s a rcTitivoly complicated system of crests and troughs. 
Kather farther out on the right of the figure, however, straight wave 
fronts are seen to be formed. The direction of their propagation is at 
right angles to the line through the centres of disturbance, i.e. in the 
figure from left to right. If a still larger number of points be excited 

I'igs. 6 and 7.—Interference of Two Wave 'Craias 

simultaneously, the confusion in their immediate neighbourhood 
vanishes completely and a straight wave front is formed at once. 

Such a straight wave front can be produced by attaching a long narrow strip 
of metal to the end of a vibrating rod so that it dips periodically in the water. 
Alt(Tnatively the edge of a board may be movt^l periodically backwards and for¬ 
wards in the surface. The right-hand side of iig. 9 (p. 215) shows such a straight 
wave front, the direction of whose motion is from right to left. 



OBSERVATIONS UPON WATER WAVES 215 

5. Huygens’ Principle.*—Parallel to the oncoming straight wave 
front we place in. the water a screen consisting of a vertical board with 
a narrow slit-shaped aperture in it. We then obsfuve a completely 
new phenomenon (tig. 9). The wave does not mov(' on in a straight 
line beyond the aperture, but the motion of the water in it gives rise 
to a new wave centre from whi(‘h the wave spreads in circles behind 
the scre('n. 

Fig. 8.—Interference of Six Wave Systems with Centres upon a Straight Line 

From this (‘xptriment it follows that W(‘- are justili(‘d in rt'garding 
ev(‘ry individual point of a wave system as a new wave c(mtr(\ If we 
make three openings in the screen, each of th(\se a(*ts as a. new centre. 
When the number of openings is still further increased. th(‘ result 
becomes identical with the right-hand side of fig. 8 above, i.e. a nt'W 
straight wave front is formed })ehind the screen. It now we imagine 

Fig. 9.— C ircular Wave emanating from the Aperture in a Screen 

an even greater number of such openings side by side, so that the 
portions of the screen between them become negligible. Wf‘ (‘ventually 

* CimiSTiAN Huygens (also spelt IIuyghens), born 1029, dietl 1095 at the Hague, 
the most important scientist of his time, and a prominent memher of the newly founded 
Academy of Sciences in Paris. He inny bo regarded as one of the founders of modern 
physics. He made pioneer investigations of the compound pendulum, in whic h hts 
originated the concept of moment of inertia. He invented the pendulum clock and the 
type with balance wheel regulation, and oexmpied himself with many other physical, 
astronomical and mathematical problems. He was the founder (1678) of the wave 
theory of light {Trail/' dc la Lmni/rc^ 1690), altlioiigli this had previously been 
suggested, as ho himself admits, by the Jesuit father Ignatius Pardies (1638-73) 
and by K. Hooke. 
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arrive at the case in which the screen is not th(‘re at all. In spite of 
this, each of th(^ points where the screen was can be regarded as the 
c(aitre of a new eleTncjitary circular wave. This considerai ioii emboditvs 
the ideas underlying Huygens' principle: 

Every f()int of a wave can be regarded as the centre of a neiv elementary 
wave, llie resultant wave produeed by the interference of all these elemen¬ 
tary waves is identical with the original wavc.^ 

0. Reflection of Waves.—The phenonuuion of reflection of waves 
can be understood in the light of Huygens’ principle. On the right- 
hand side of fig. 10 can be seen a portion of the })oar(i by whose periodic 

Fig. 10.—Reflection of Plane Waves 

motion a straight wave? front is produced. The circular wave system 
sent out from the end of the board can also be seen; this is of no 
importance .for the present considerations. The straight wave front 
moves from right to left and is incident against a fixed board. The 
portions of the board lying farthest to the right in th(^ figure are first 
struck by the wave front. Each point of incidence upon the reflector 
can be regarded as a new centre of excitation from which elementary 
circular waves are sent out. The portions of the fixed board lying 
farther to the left are struck later and thus in turn become new cerntres 
of elementary waves. By the interference of all these elements a new 
system of straight wave fronts is formed. These move oil diagonally 
upwards to the right, in contrast to the incident waves which ap- 

* It may be remarked that Huygens’ principle, while of great service in many 
cases, does not hold with strict mathematical accuracy. A rigid formulation of it was 
given in J 882 by Ktrchhofe; but this can hardly be explained without extensive use 
of mathematical symbols. For further information the reader is therefore referred to 
textbooks of mathematic al ])hysics. 
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proached the board diagonally upwards to the left. The incident straight 
wave system is therefore reflected. The angle of incidence (i.e. the 

I'lff. II.—Reflection of Circular Waves at a Straight Wall 

angle between the direction of incidence and the normal to ihe reflec't- 
ing surface) is equal to the angle of reflection (i.e. the angle b(‘tween 
th(‘ direction of the motion of the reflected wave and the normal). 

Fig. 12,—Reflection of Straight Waves at a Concave Wall 

The reflection of a circular wave .system at a fixed wall (see fig. 11) takes i)laee 
in the same way. The centre of the reflected circular waves lies as far behind tlio 
wall as the centre of the incident circular waves lies in front of it. 

I^ig. 12 shows the reflection of a straight wave front at the concave side of a 
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wall having tho shape of a circular arc. Since the incident, wave front strikes the 
outer ends of the reflector first, new elementary waves ar(' formed here sooner 
than in tJie middle. Tn this w'ay a new circular wave syst(‘m is s(‘t np. Its dir(‘c- 

Fij?. 13.—Reflection of Waves emanating from a Focus 

tion of motion is towards a point, W'hich aj)poars as a dark spot in the figure. 
Thus the reflected waves converge towards this point (tlic focus), 

ConvtTsely, if we excite a circular W’^ave system with its centre at the focus of 
tho concave wall (fig. 13), the weaves so produced strike the middle j)arts of the 
wall before the outer ])nrfs. Mnv eentr(‘S of (‘lementary waves are thus formed 

Fig. 14.—Reflection of Circular Waves at a Convex Wall 

first at the centre and filter at the outer points of tho reflector. The interference 
of all these elementary w aves produces a straight wave front: the incident circular 
w\avc system is reflected as a system of straight wave fronts. 

Fig. 14 shows the reflection of a circular wave system from a convex circular 
wall. Tho reflected system is also circular, but its centre lies behind the reflector 
and nearer to it than the centre of the incident system. 
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These plienoraona, Aviiicli can be observed directly in the case of water waves, 
occur also for ail wave motions. A more exact matiiematieal treatment of them 
follows in § 5, p. 239 et seq. 

7. Progressive Waves. -The direct observation of waves on the 
surface of water gives the impression of a forward motion, although 
the individual water particles only perform oscillations about an 
equilibrium position. It is this apf)arent translational motion which 
is referred to when we s])cak of progressive or advancing waves. 

An advancing ivave is alwai/s formed ivhoi each of a succession of 
particles oscillates according to the same latv, hut in such a vjag that there 
is a. constant phase difference hetween each particle ami the next. 

2. The Laws of Progressive Transverse Sine W'^aves. 

energy from one particle to the next is at right angles to their direction 
of vibration, we obtain the result shown in fig. 15. The displacements 
of the particles are shown after fifteen successive equal int(‘rvals of time, 
the fjhase change in each interval being tt/G (see subsc^ction 2, 
immediately following; reference may also be made to the section 

on simple harmonic motion, Vol. I, p. 146). 
Each particle begins its motion one interval of time aftei* the 

particle before it. In the figure it has been assumed that the zero 
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particle is oiice more passing throngli its initial position with the 
initial velocity in the initial direction when the twelfth partich; is 
just beginning to move. This moment corresponds to the curve XII 
of fig. 15. The phase difference between successive particles is 
thus 7t/6. 

The distance from any particle to tlu‘- next particle in the same 
state of motion is called the wave-length. The maximum displacement 
is called the amplitude of the wave (p. 209). This kind of wave is 
said to be transverse, since the direction of vibration of each particle 
is at right angles to the direction of advance of the wave itself. 

2. The Wave Equation.—^According fro ]►. 14G, Vol. I, the law governing the 
frransv(a’8e hannonio mot ion of oacli parfrieki is expressible by the ecpiation 

rsin^, 

wiiere y is the diHj)lacement, i.e. the ordinate of the particle in fig. 15, r the anif)li- 
tudo and 9 the angle determining the corresponding time. Tliis angle is called 
the phase angle. The time T required by eaeli particle for a coraidete oseillation 
is called the period. During one complete period 9 passes through all values from 
0 to 2tu; hence 9 changes by 27r/T per unit of time. The value of 9 corresponding 
to any time t is therefore 9 - - (27r/"r)b llencc the law of harmfuiic im^tion c‘ari 
also be VTitten in the form 

y 

This involves the assumption that- the motion of the particle begins at the time 
t = 0. It holds therefore for the zero particle. 

The first particle does not begin its motion until a certain time 0 (in our case 
jbT) has elapsed. The; equation of its motion is t herefore 

?/, = j-Kin (t — 0)J. 

For the pth particle we have similarly 

2/3,^-- rsiii 

If we consider n particles (in our case 12) to the Avavc-lcngth, have 7i0 - T 
or 0 ' - Tin. In this case the equation of motion for the pth particle is 

Let the wave-length, i.e. the distance between the zero and the vdh particle, bo 
X. Further let the distance of the pth part icle from the zero particle be x. Then 

X : X = jt: 71^ 

and therefore, finally, 

Vp = Vx =-- >• sin [y 0 ”” I ^)] 
or ,'sm[27r(i-0]. 

This is the equation of motion of any particle of the wave. 
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Tho equation contains the two variable's t and x. If we wish to derive from it 
the equation of motion of a selected particle, avc consider x as a constant. Tho 
equation tlicn simplifies to 

y r sin ^27r — cjJ. 

If, on tlie other hand, the equation is to exj)ress t he dLsj)laceinent of all the ])oint3 
at a, selected time, wc must keep t constant. Tlio equation tlum simplifies to 

y,: ..sin [2.(cr_ •;;)]. 

A comparison of the last two (‘quations eonlirms Avliat is at once ck'ar from the 
geometrical derivation of th('. wave, nanu'ly, tliat it mak('s no dillVrence to tlio 
in\'('stigation whether we consider the siu'cessive states of motion of a selected 
])oint or the simultaneous states of motion of all the points at^ a si'h'ctc'd time. 
In other words: 

The cinematoyrajdtlc picture of the niotion of a selected point of a transverse 
leave is identical ivilh the instantaneous jticture of the irhole iravc, 

d. Energy of a Wave.—Itilferentiating the wave ecpiation with n'sjiect to t 
we olitain the velocity of any oscillating ])oint- (u; - const.), vi/-. 

(fn 
7lt 

111 ttie saiiK^ way for the acceleration wo obtain 

di\, ft .e\ “1 t 

If the mass of tho oscillating tiarticle is ?//, its kinetii^ (‘iK'i’gy is 

and its jiotential eiuTgy 

py , 4w7r- r.v, , 2mr." , r > /'■ ■'Ai 

The total energy of the jiarticle is therefore 

K -■ G. - 9] ■!- .i..=G - 9 ] 1 '"S-■ 

Hence also in the ease of a wave: 
The energy is jiroportional directly to the square of the ampUtade and to the niass 

of the oscillating particles awl inversely to the sequare of their period of oscillation. 
Every iiarticlo in a wave train has the same energy, jirovided that the ampli¬ 

tude and masses of the particles remain constant throughout. 
4. Components of a Wave and their Superposition.—Tlie disjilats'ments y, 

the velocities and the accelerations a of the oscillating points are vector quan- 
tities and as such may be resolved into eomiionents by tho parallelogram law. 
Thus a transverse wave may be resolved into component waves whosi^ displa.ee- 
ments, velocities and accelerations are the components of the respective quan¬ 
tities in tho original wave. The component waves Ciin be treated as se])arate 
individuals, each governed by the law^s of wave motion. Converse ly sen oral 
waves can be combined according to the parallelogram law to give one re'sultant 
wave. 
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5. Relationship between Velocity of Propagation, Freguency, and 
Wave-length.—If we wisli to find out which points of a wave train 
hav(^ the same displacement ;?/«., velocity and acceleration we 
must k(‘ep the phase angle constant. All points x having exactly the 
same (lisplacemeot, velocity and acceleration are therefore given by 

const. 

Taking the special case in which the displacement consid(Ted is that 
of the point x 0 at the tinu^ t - 0, W(i have 

t X 

T “ A 
0 or ^ 

t 

A 

T 
c. 

That is to say, all the points have the same displacement in succession, 
this (Vjuivalence of phase advancing with velocity xjt along the wave 

Fig. i6.— W ave iti a Scries of Coupled Oscillating Point 

train. Th(‘ velocity c is called the velocity of propagation of the wave 
or tlui wave velocity, ('ailing 1 /T = p the frequency * of the wave, 
w^e have 

c — vX. 

This equation can also be d(‘rived easily in a more direct way. During 
each com])lcte oscillation of a particle the w ave advances by one wave¬ 
length A. Hence if each particle performs v oscillations per second, 
the wave must advance a distance vX hi a second. But this is the 
velocity of propagation c. 

6. Group Velocity.—The above simjde considerations only hold so long as 
the velocity of propagation of the wave is independent of the wave-length. If 
this is not the case, tlie conditions arc much more complicated. An experiment 
may serve to convmce us that under certain conditions not infrecpiently met A\ ith 
in nature it is necessary in dealing with wave-motion to distinguish betwecai 
different velocities. 

Wo make u.se of a net loaded with a row of lead balls as shown in fig. 16. We 
move one end of this once or oftener backwards and forwards in a transverse 

* The frequency is sometimes defined as the numerical value of Stt/T ■ - 27ri/, 
i.o. the niimher of oscillations in 27r seconds. 
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direction and ilien hold it still. The disturbance travels alun^ the row of lead 
balls in a dilferent manner from that previously <lescrihed. Tf wo watch one of 
the advancing crests carefullj^ we see that its amplitude becomes smaller and 
smaller as its distance from the initial point of disturbance increase's, until finally 
it vanishes altogether. But new waves follow behind the vanishing wave and 
behave in the same manner. Before dying out, however, ('ach one of these Avaves 
gets farther in the direction of it; motion than the one ht'fore it. Any given lead 
hali of the row therefore swings Avith initially increasing amjditudc'. It is seen 
that the original disturbance distributes itsidf ovt'r a certain length of the row. 
Within this length aac can recognize a number of AvaA’^es folloAving one another: 
Ave liaA^e Avhat is called a “ Avavci group ” AAuth a definite beginning and a dc'linite 
('nd. This group inovi's forAvard Avith a smaller velocity than that of tlu^ aa iiat's 
Avithin it. These waves are formc'd anew at the rear of the group, move along it, 
decrease in amplitude and finally disappear at its ‘Miead It is not ditticult 
to determim^ experimentally the time which the disturbance tidvc's to travi'l the 
length of the net. By di\dfiing the distance by the time Ave can then obtain 
the velocity of proyiagation of the Avave grou}) or the group velocity as it is 
called. 

AVe iiOAv modify the above exjieriment by moving th(' end of tlui net continu¬ 
ously backAvards and forwards instead of holding it still aft(T a fcAv oscillations. 
The AA'ave train hoav jir;,- ’uccd has no end. Tf s head moves right across the net, 
is reflected at the far end and moves back again to t he init ial point of (list urhance. 
In this Avay stationary Asaves arc^ formed as (‘xplaincxl in § 4, ]j. 2.‘}2 et f^vq. bVom 
this moment onAvards the jila'iiomenon (jf a spc'cial group velocity is no hjiigm* 
perceptible in the motion of tlu' net . Instead Ave laua' Iavo wave trains moving 
in opposite directions Avith cons!ant amplifndt'. Their ])has(‘s are ])ropagat(‘d aaII h 
a constant velocity greater than the group V(4oeit a . This AAiive A elocity c can 
1) (j (h'termined from t he period T and the a\ave-kaigth X (X - rT). 

The reason for this ]Ki(niliar lichaviour of Avaves at the loaded edge oi the net 
is to he found in the fact, that the lead balls have a certain natural period. Each 
ball can be regarded as the bob of a iiendulum suspenih'd from the cross beajii 
carrying the iitd. Each (.»f these pcaidulums is coupled to its neighbours and tends 
to SAving Avith its natural jx^riod. A more accurate theoretic'al investigation shoAvs 
that oscillations of ditferent frecpiencu'S arci propagated Avitli dilferent AvaA^o 
AX’loeities; the less the period diflers from the natural period of the pendulums, 
the greater the wave velocity. For the calculation of group A elocity see suhsectii ui 
10 beloAV. It may be mentionc'd that in the ease of Avater Avaves the wave velocity 
also deiiends in gcmeral npcm the AAaAT-length (p. 211), and that therefore^ tlu^ 
Avaves Avithin a AAaA^e grou]) (e.g. the groujis produced by individual dro2)s falling 
into a dee]? basin of Avater) shoAv a Ix'haAdour similar to that described above for 
th(^ loadcid ncd . 

7. Superposition of Waves.—Comjionent Avaves do not allect each other, but 
combine to give one resultant AA aAa? Avhoso displacement at any point is obtained 
by the addition of the ca)rresj)onding component disidaceim'rits. 'Thus each 
2Xirticlc of the medium through AAhich the waA^e is 2)ro2Jagated may 2XTform a 
numbe^r of oscillations simultaneously. 

(Vmvcrsely Fourier’s* theorem state's that every iva.ve motion, no mattcir A\hat 
the form of the adA^ancing distiirhancc', can he 7'epresented as the superposition of 
component sine leaves of different iravedength. The mathematical ef2uation C'X- 
2) rcssing tliis theorem is 

2/» ^ / (* — cO -- ri sin2Tt + 8j) + 8m2TT iff— -i- ^s) i- 

* J. B. J. Fourier (1768-18:10), Paris. 



224 WAVE MOTION 

or more shortly 

Vx ■ S Tx sin 27r -! • 8a) • 

The siimination extends o\('r a. iiuinlxT of terms each eorrespondin.^ to a, dif- 
fer(*nt value of a, and lienee also of the amplitude r and t lu; phases dilTerenee o. 
'Jdie vahu's of r and 8 in the eompoiients vary aecordinjj; to the form of tlu' original 
wa\ (', i.e. according to the nature of the function /. .In most jiraciieal eases / is 
a ])eriodie funetionv Ei this ease it is possible to lind the eomponent of greatest 
jieriod ajud t(.) (express tlie jundods of the nanaining eom])on(‘nts as inti'ural frac¬ 
tions of Xlna JuiichnucnlaL 

The mathematical expression of Courier's theorcan tluai assumes tlu' soni('\\ liat 
simpha’ form 

S sin-'/-(.r— e!) ! eos-/-(,r ■ - r7)l. 
(ti) L ' A A J 

Th(^ summation is now to be lUTformed over all the values of the term in the 
scpiare braek(‘ts corr(\s])onding to integral xadues of n from 0 to c/^. The co- 
etlicicaits a„ and are t he amjilitudes of tlu^ eompoiients. Their \ a lues can b(‘ 
calculated by special methods given In' Foukier, provided that th(‘ form of the 
resultant wave motion, i.e. the function/, be known. The process of (hdcaniiniuL^ 
the amplitudes of the compomaits of a. givcai wave form, vlKdlaa' by matla-- 
matical or (cxperinuaital methods, is calhvl harmonic analysis. 

8. Dispersion. - In the ease of a A\ave disturbance in a, nu'dium in which the 
vf'locity of propagation varic's with the wave-length (as, for exanpile, in tlu' tkT 
a])])aratus of lig. Iti, p. 222), the dilferent components have dilTerHuit velocities. 
After a wliih', tluTefon', they become sejiarated. The form of the wave cannot 
nanain constant, as it does yluai tlie eompomuits all hav(' the same \ (docity. M r 
say that there is a, dispersion of tlie eonpionents. iJisjwrsion uhray.s' occurs iu a 
row of 2>oinls possessing a oiafuruJ period, or {more, generally) hi a nadium consisf- 
ing of such 'points. 

9. Beats.—If we suptTimposc^ two wav(‘ trains of equal amjditude r and ware 
velocity c but ditforiait ])eriods and hence also different frequencies v (otd V|, th(‘n 
in accordance with the above, the rissultant displacement is givaai lu' 

r sin (^1 — 0 J ^ ^ ^ ) J 
2. cos [2:t (l - f) (V- -.) ] «i.. [2:. {l - i) (''c/''.) ] 

If in addition v and dilTer only slightly from one another, so that v — V| 
a small quantity, the equation assumes the approximate form 

Y, - 2r 
r2tcAv / x\ ■ ' Vo f y -rX “I 

1-2- { *-c). 
sin Ztzv f 

Av is 

This can be interpreted by regarding it as the equation of a single harmonic wave 
of frequency v and of anqilitudo 

-[vc;-)]' 
Thus the amplitude is itself a periodically variable function. Its maximum 
value of -| 2/* and its minimum value of —2r arc each assumed Av/2 times per 
second. ^Neglecting the sign, we can say that the displacement xmries Av times 
per s(x;ond between the values zero and 2r. At any S(‘lect(‘d point for which 
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a: :=zz const, the inotioji of oscillation tliereforc vanislu's and appears again Av 
times per second. Tlie amplitude is at first vanishingly small, then works u]) to 
the value 2r and subsequently dies down again to zero, whereupon the process 
is repeat(?d anew . 'Ehese rhythmical inert'ases and decn'ases of the eiK'rgy of 
oscillation are the beats of the two su])erimposed w^av(^ trains (cf. iig. 8, ]). ilf)). 
We hav(‘ thus contirmc'd the result already enunciated above: 

The nnmher of heatH per second Is eqnal io Ihc difference Jnin'coi the frequencies 
of the fu'o siijierhnposed, wave trains. 

W(*> will now consider tlu* siu'cession of points in tlu^ wave, i.c. we wall take x 
as variable. In this way we see the dilTercnt values of the*: amplitu<le side by side 
in space, instead of one after another in time as is the case when x - const. Now 
all points x satisfying the equation 

i — - const., 
c 

for example 0 or ~ - r, 
c i 

have the same amphtude. A giv<‘n vahu' of th(‘ am})litude tlms moves along with 
the w^ave velocity c. Tin* inlinitely Jong wave train is su})di\'ided into sections 
l\y the points of zert) anqditudc. ddiese ar(‘ given by 

“v ('■') - "I 
where n is a whoj(' number. At a given mouK'nl. e.u. / - 0, we have'- from the 
last equation 

that is to say, successive points of zero am])litiide are sc])arated by a distance 
('([ual to c;'Av. TIk) whole wave motion is theixdore )nade up of elenK'ntary w ave 
trains of length c/Av, which follow' one another Avith the saTue velocity c (see 
tigs. 1) and 10, p. 105). 

10. Quantitative Expression for the Group Velocity. -We can giiieralize 
th<^ abov(^ c’ase by assuming that the w'av(‘ velocity is dilh'rent for the dillercmt 
frequeneicK v and v^. This is the cas(‘ of bc'ats in a medium showing dispersion. 
The tw o superimposed w ave trains tlien satisfy the ecpiation 

h(Sr')] ..^(-V’')] 
in which c and X reftT to th(' Avave of frcqiK'ucy v and rq and X^ to th(^ wave of 
frequency Wo may regard c — Ac and X — X^ AX as small qnaiititi(‘S. 

Transforming the sum on the right-hand side int-o a product as before, we obtain 

fc c, \ / • ^ ]*Rr{'(r , Cl \ 
- ■ ) r ( — ) !' 7- ) I ;r ( - - 

L2 1 ' ̂ X X^/ \; X x^/ i Xj/ \X Xi/ j J 

Remembering that Ac and AX ari^ small quantities, Ave may write 

^[i 
UXAc - cA> 

Interprcthig this in the same Avay as in the previous tr(‘atment, Ave sec that it 
represents an inlinitely long Avave train of wave-length X, Avhose Avaves move 
Avith the 7vave velocity c and Avhose amplitude again varies periodic^allA' with the 
time and with the abscissa x. 

(Er>.%) 16 
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The points of zero amplitude divide up the infinite wave train into elementary 
w ave groups of equal length. The velocity of motion of these groups, however, 
is no longer the same as the wave velocity (see p. 223). We find its value c', as 
in the foregoing treatment of beats, by putting the angle of the cosine function 
equal to zero and solving for the quotient xjt. This gives 

(XAc- cAX)H a;AX-=- 0 

X 
Ac 

AX* 

For vanishingly small AX and Ac the equation becomes 

dc 
c' ™ c — A —- (Rayleigh's * equation). 

dj\ 

This equation shows how the group velocity c' can be calculated when the 
ndationship between the ?caw velocitif c and the wave-length is known. It teaches 
further that with vaiiLsliing wave-length tlie group velocity becomes equal to 
the wave velocity (p. 223). If the di^spersiou of the medium is such that the wave 

dc 
velocity increases with increasing wave-length, then ~ - is positive and the group 

aX 
velocity is smaller than the wave velocity. Within a wave group between two 
successive points of zero amjfiitude the waves therefore move from the lear of 
tlie group to its head, their amplitudes at first increasing and then decreasing 
again (p. 223). 

11. Propagation of Energy in a Wave Train.—In an advancing wave train 
now waves are continually being formed at the h€*ad, e.g. at the far end of a long 
rope wdiose near end is being moved backwards and forwards harmonically. 
Thus energy is propagated along the train; the energy of the new' motion appear¬ 
ing at its head is supplied from behind. In suc^h an advancing wave train a n(w\' 
length c is set in motion every second. Henc(' the energy transmitted must b(‘ 
equal to the energy of a single oscillating particle multif)li(d by the number of 
such particles in the length c. If each particle is of mass niy length A.'i', cross- 
section a and density s, we have m ~ as A.r and the number of such particles in 
the length c is r/Ar. Hence the amount of energy passing through the cross- 
seedion a per second (see p. 221) is 

A.r i ^ I^x 
ZTT-r-V-CCf.S’. 

In cases when it is necessary to distinguish between wave velocity and group 
velocity, the quantity c in this equation is the group velocity. Such a propagation 
(or radiation) of (uiergy also occurs when the energy is continually converted into 
heat by resistance at one end of the wave train, so that a damping of the wave 
motion would occur if new' energy were not continually supplied. We shall be¬ 
come acquainted in Mach’s wave apparatus (fig. 23, j). 239) with a device by 
means of wdiich waves (;an be produced in a row of points not coupled together 
in any w ay. Tlierc is, of (course, no propagation of energy in a wave of this kind. 
Similarly in the case of a w\avo train in a row' of very loosely' coupled j:)omts 

♦John William Strutt, third Baron Rayleigh (1842-1919), Cavendish JVo- 
fessor of Experimental Thysics in the University of Cambridge from 1879 to 1884, 
and Professor of Natural I’hilosophy at tho Royal Institution of Creat Britain from 
1887 to 1905. The first observations upon tho differeiico between group velocity and 
wave velocity were made by the brothers Weber (Wilh. Ejl, 1804-91, Ernst Heini^., 
1795-1878) at Gottirigeii (p. 208). 
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possessing a natural period the velocity of propagation of energy must bo 
considered smaller than the wave velocity. 

12. Investigation of the Velocity of Propagation of Tranverse Waves in 
Stretched Strings.—The velocity with Avhich a transverse wave moves along a 
stretched string depimds upon the tension of the string, its thickness and the 
density of the niaterial of Avhich it is made. The nature) of this dependence can 
bo determined in the folloAving way. A steel wire of about 0 0 mm. diameter and 
about GO m. long is stretched between the ends of a long (torridor as shoAATi in 
fig. 17. J he one end of the wire is fastened directly to the wall, while between the 
other end and the other wall are introduced a spring balance and a pulley block. 
In order to mark off a definite length, ])ieces of Avood Avfith sharp iijiper edges are 
{)laccd as props beneath the AAurc) near its tAA"o ends. Jly means of tht' jiulley 
block the Avirc can be stretched Avith any desked tension, the A’akie of Avhich is 
read olT on the spring l^alancc. The wire is given a sharp blow near one of the 
props. The disturbanca) so jiroduecd moA'cs along to the opposite end, Avhero it 
is reflected AAith rcA^ersal of phase and passes back again. It is reflected again 
at the first tuid and thus moves backwards and forwards along the AAiro several 
times. The number of such comjilcte journeys along the wire in a given time is 
noted, and from it the velocity of propagation is calculated. 

Fig. 17.—^Velocity of Propagation of a Wave along a Stretched Wire 

An observation upon a steel Avire 58-10 m. long and 0-9 mm. thic*k at a ten- 
.sion of 5 kg. Avt. gave the result that the Avave covered the length of the wire 100 
times in a minute. Thus the distance moved by the wave per minute Avns 5810 m. 
or per second approximately 100 m. 

IVhcn tlio tension of th(' string is increased to four time's or nine time's its 
original value, the veloedty of propagation of the Avave is doubled or tre'bh'ei re¬ 
spectively. Hence: 

The velociti/ oj ‘propagation of a wave along a string is jwoportional to the square 
root of the tension. 

If a steel Avire of double the thickness, i.e. of four times the cross-seediemal 
area, is used, the ve'locity of propagation is halved. I^rom a large; numbe'r of 
similar observations upon steed Avires of different thicknesses it follows that; 

The velocity of propagalum of a wave along a string is inversely proportional 
to the diameter of the string, i.e. inversely proportional to the square root of its cross- 
sectional area. 

Finally, investigations u])e)n strings of other materials (i.e. Avith other densi¬ 
ties) show that: 

The velocity of propagation is inversely proportional to the square loot of the 
density of the substance of which the siring is made. 

Wo can combine the last tAve) results as fe>lle)ws: 
The velocity of propagation is inversely proportional to the square root of the mass 

per unit length of the string. 
It is usual to express these relationships in te;rms eif the' frequency v ejf the 

string, i.e. the number of backward and forward eiseallations of the transverse 
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wave per second, instead of in terms of the velocity of propagation. The experi¬ 
mental results can then be summed up by means of the formula * 

2lSd 

where v is the frequency, I the length of the string, j) the tension, and d the mass 
per unit length. All these quantities arc to be expressed in C.G.S. units. 

3. Progressive Longitudinal Sine Waves 

1. Formation of a Longitudinal Sine Wave.—Wlien the individual 
particles of a body perform harmoni(' vibrations and when the energy 
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Fig. i8.—Formation of I.ongitudinal Waves 

transmission from one to the n(‘xt is in the same direction as the vibra¬ 
tion, the particles periodically approach and recede from one another: 
alternate compressions and rarefactions occur in the body. Fig. 18 
shoves fifteen stages (separated by equal intervals of time) in the form¬ 
ation and course of such a lougitiidinal wave. 

The simjdest Wcay of constructing a longitudinal wave is that shown in fig. 10. 
This (consists of drawing a transverse wave and then turning each displacement 
through 00\ an upward displacement of the transverse wave becoming a dis- 

* The laws expressed in this equation were first established in a purely experi¬ 
mental manner by Mersenne (about 1633). The formula itself was later (1715) derived 
mathematically by B. Taylor (1685-1731, English mathematician). It does not give 
exact values, especially for rapid vibrations, because it takes no account of the natural 
“ stiffness ” of the string, which is equivalent to a tension. The formula only holds 
for the ideal case of a perfectly flexible string, devoid of all flexural rigidity. 
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placement to the right in the longitudinal wave and a downward displacement 
becoming a displacement to the left. Taking account of the direction of propa¬ 
gation of the transverse and longitudinal waves as well as that of the motion of 
the individual particles, wo see at once from the figure that: 

At the coinpressions the particles move in the same sense as the ivhole ivave, at the 
rarefactions in the oj)posite sense. 

Longitudinal waves are mostly maintained by the action of elastic forces. 
The energy transmission from one particle to the next then occurs in exactly the 
same way as was discussed in VoL 1, p. 217 et seq. 

2. Velocity of Propagation of Elastic Longitudinal Waves.—This is the 
.same as the velocity c of propagation of an impulse imparted to one end of an 

».— ..>■ 

Fig. 19.—Relation between Transverse and Longitudinal Waves 

elastic rod, which was derived in the passage just cited from Yomig’s modulus 
E and the density p. All the quantities being cxi)rcssod in C.G.S. units, we have 

Erom this w^e can calculate, for example, the velocity of propagation of a longi¬ 
tudinal wave in a steel wire. Hero 21,000 kg. wt./mm.^ whence 

E ™ 21,000,1000.100.981 d^Tie.s/cm.“ — 2-00.10^^ dynes/cm.^; 

and p 8-0 gm./cm.- fsee also Vol. I, p. 219). 
Heneo 

c = cm. per sec. = 5100 m. per sec. 

The velocity of propagation is independent of the amplitude and the frequency, 
provided that the deformations follow the simple Hooke’s law, i.e. are propor¬ 
tional to the stresses. 

In order to be able to calculate the velocity of propagation of a longitudinal 
wave in a column of air by the same formula, W'o must know the modulus of elas¬ 
ticity of the air. Imagine a volume V cm.^ of a gas enclosed under the pressure p 
dynes/cm.2 in a cylinder of length I cm. and cross-sectional area A fitted with a 
movable piston. Then V = /A. The colunm of gas may bo compared to a wire 
which can bo stretched or compressed by an applied force. If the piston is driven 
in with the additional thrust AP AAp, the gas column is shortened by the 
amount A? and its volume thus diminished by the amount AV - - AA^, W(.' can 
apply Hooke’s law to this process, provided that the formula given (Vol. I, p. 
197) is suitably modified. The force P in this formula now becomes AP '• A A;). 
Similarly the extension V ~ I becomes ~ A/, because formerly an increase of 
length accompanied an increase of force, whereas now the reverse is true. Further, 
the modulus of elasticity was formerly expressed in kg. wt./mm.^, whereas 
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we nuitst now express all the quantities in C.G.S. units. .Hence Hooke’s law, which 
was previously expressed in the form (Vol. T, p. 197) 

now becomes 

whence 

p.-eaL^-'. 

AP ^E'A 

AP 

A *A/’ 
E' 

Substituting AP/A = Ap and remembering that 

I 
M' AM' AV’ 

wc obtain for the (bulk) modulus of elasticity of the gas 

y/ V 
AV 

Within the elastic limits the elastic? extension of a wire is prc>portional to the 
stress. It is also so small in comparison with the total length that the lattcT can 
bo taken as constant in applying Hooke’s law. In the case of gases, theretbre, 
Hooke's Jaw can only be appliecl for very small volume changes and very small 
forces; otherwise the voluim? \\ which appevars as a factor, t;annot bo regarded 
as constant. With this assumption we can replace the dilferenco quotient ApjAW 

by the differential coefficient AVo then obtain the expression 

-V 
dp 
dV 

for the (bulk) modulus of elasticity of a gas (and naturall}' also of a liquid). 
Substituting this in the formula for the velocity of propagation of a longi¬ 

tudinal wave, w'c liave 

c = 
V dp 

p dV' 

The relative expansion duo to the increase of pressure dp is ~dVIV. The 
corresponding value for unit increase of pressure is therefore 

1 dV 

V dp 

and is called tho compressihility. The rc*ciprocal of the comprt'ssibility is the 
modulus of elasticity or volume elasticity of the gas (or liquid). 

J. On tho assumption that tho propagation of a longitudinal wave in a gas is 
an isothermal process, wo may put pV -= const. (Boyle’s law, Vol. I). Differen¬ 
tiating this equation, wo obtain 

\dp -1- pdY ^ 0, 

whence 
dV IP- 

Substituting this in the expression for c wo have 

c = (Newdon’s formula, 1686). 
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For ordinary air, 13-6.981 dj-nea/cm.^, p = 0-001293 gm./em.®, 

and honco c ~ era. per sec. — 280 m. per sec. 

This value is quite out of agreement, however, with the observed velocity of 
propagation of a longitudinal wave in air. 

II. ()n the assumption that the propagation of a longitudinal wave in a gas 

is an adiahatic process, wo must make use of Poisson’s law, namely, = const, 
(p. 05). Differentiating tiiis equation wo obtain 

whence 

M^dp ^-pyYy-UN 0, 

Substituting this in the expression for c, Ave have 

c (Laplace's equation, 1810). 

Prom this wo can calculate the velocity of propagation of a longitudinal wave 
in air by putting p ■ - 70.13T). 981 dynes/cm. 2, p r- 0*001293 gm./cm.'^ and 
Y ^ 14. This gives 

hi). 13*0.981^1 

V 0*001293 
— cm. per sec. = 331*3 m. ])er sec. 

Certain elastic longitudmal waves are iierei'jitible to us as sound. Thus the 
above is the velocity of sound in air. After faking careful account of all the con¬ 
ditions the mean of many thousands of observations made durmg the Dreat War 
by (ferman and also by Pronch sound-ranging corps comes out to c - 330*8 m. 
per see. at 0^ C. (At ir)-" C. the value is 339*8 m. per sec.) The small but ap¬ 
preciable variation from the calculated result remams unexplained.* lienee the 
propagation of sound must be regarded as an adiabatic proci^ss. In actual fact 
the time between successive compressions and rarefactions of the air during the 
pas,sage of sound is so small that a temperature crjualization betwc'cn neigh¬ 
bouring regions doe-s not occur. 

Prom th(‘< observation of c it is possible to detei-mmc y, the ratio of the two 
specific heats of a gas, tand thus to decide wliether its molecules contain one, two, 
three or more atoms. This is indeed the way in which the monatomic nature of 
the noble gases was first established, since chemical methods are inapplicable on 
account of the inertness of these substances. If the velocity of sound is measured 
with Kundt’s tube by the method developerl on t). 205, only quite small quantities 
of gas are required. 

The equation c ' 
dp 

dV 

also holds for the propagation of longitudinal waves in liquids. Prom the observed 
value of 1435 m. per sec. in Avatcr (first determined in 1827 by Colladon and 
Sturm in the Lake of Geneva) we obtain the value 0*0000470 1/21,000 for the 
compressibility of Avater (per atmosphere). This is in good agreement with the 
results of measurements by other methods (p. 208, Vol. 1). 

* According to detenuinations made by the German Physikalisch-Technischo 
Keichsanstalt the value for dry air free from carbon dioxide is Cq — 331*57 m. per 
second. Prom this we obtain y - 1*4034. Por hydrogen the value Cq -* 120*0 m. per 
sec. was found. Prom this y 1*408. 
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3. Comparison of the Velocities of Propagation of Elastic Longitudinal and 
Transverse Waves.—The fundamental formuJa for the velocity of propagation 
of elastic waves (thermal effects being neglected) is 

In this formula the particular value to be taken for the elastic constant E' depends 
on the typo of wave which we are considering.* Liquids and gases have no rigidity 
and consequently there can bo no transverse but only longitudinal elastic waves. 
(Waves of this kind must not be confiisc'd with the waves on the surface of a 
liquid; these are not due to elastic forces.) In solids both longitudinal and trans¬ 
verse waves are possible; both are indeed produced by a cUsturbanee in t he interior 
of a solid body. The velocity of propagation of longitudinal waves is greater than 
that of transverse v aves. 

Observations upon elastic waves are of imx)ortanco for the investigation of 
the interior of the earth. 'J’lms from the velocity of earthquake waves it is possible 
to draw conclusions as to the density and elasticity of the earth’s interior. In tlu^ 
upper layers the mean value of c for longitudinal waves is from 4 to 6 kin. per 
see. Since this value varies according to the nature of the rocks, attempts have 
been made to use measurements upon elastic waves for the purpose of locating 
deposits of ore. 

4. Stationary Waves 

1. Transverse Waves.—Up to the present we have assumed that 
the media in which the waves are ])ro2)agated ar('. of unlimited extent. 
This does not correspond to acdual fact. At the edges of a vt\ssel of 
water or at the ends of a stretched string new eff(H‘ts ar(i produced 
which considerably alter the ])henomeiia. 

It was shown on j). 227 that a single disturbance in a stretched 
string is refl(*cted at the end, there being no jdiase clumge when the 
end is free and a reversal of phase when it is fixed. This rc^flection of 
the individual disturbances also takes place when a train of advancing 
waves reaches the end of the string. It follows, tluTcfore, that after 
reflection every point of the string lying within the reflected wave is 
under the simultaneous influence of two waves moving in opposite 
^directions—the incident wave and the reflected wave. 

When a particle performs two motions simultaneously, they are 
added together. If the component motions are in the same or in opjiosite 
directions, the addition is algebraic: if they are inclined to ou(^ anotluT, 
the addition is a(?cording to the parallelogram law. Thus the velocity 
of a point in presence of two waves is the geometrical sum of the 
velocities which it would have in the presence of either of the two waves 
alone. The same applies also to its displacement. The maximum dis¬ 
placement in the case of a sine wave is the amplitude. Hence when two 

* Por longitudinal waves in a cyhndrical bar E' is Young's modulus; for waves of 
simple distortion (transverse waves in an infinite solid) E' is the modulus of rigidity 
7i; for longitudinal (sound) waves in an infinite fluid E' is the bulk modulus k; for 
longitudinal (sound) waves in an infinite solid E' is k -h in. (See Vol. I, Appendix 1, 
p 408.) 
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mdcpendeiit wave trains cross one another, their amplitudes add to- 
gether geometrically (principle of the superposition of waves, pp. 211, 
-Ll and 223). In our case of purely transverse waves in a string each 
particle performs tw^o simultaneous motions at right angles to the 
.string, i,e. in the same or opposite directions. Hence at any moment 

E, 'k[ B, k, M h\ B^ K’ E^ 

Fig. 20.—Formation of Stationary Waves 

the displacement of any point of the string takhig part in both motions 
is obtained by algebraic addition of the corresponding component 
displacements. 

Eig. 20 shows 19 stages in the ellect produced when two exactly similar trans¬ 
verse waves meet upon the same string. The wave moving from left to right i.s 
shown as a dotted lino, the wave moving from right to left as a broken line. The 
instant at wliicli the tw’^o waves meet at the middle of the figure is shown in T. 
In II the waves have each advanced by of a w^ave-lengtb. Each successive 
stage represents a further advance of of a wave-length by each wave. The new 
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wave found by the algebraic addition of the component displacements is repre- 
sen ted by the heavy continuous line. In VII each of the waves iias progressed 
by J a wave-length since their meeting. y\t this stage the component displace¬ 
ments of every point are equal and opposite, so that tlie total effect is to leave 
every point in its equilibrium position; the displacements are all zero. The same 
state is reached again in XIIT, XIX, &c. 

In IV, X. and XVI the middle point M of the string has its maximum dis¬ 
placement towards the same side in both component waves. Thus its n-vsultant 
displacement is twice as great as in either of the components. The same applies 
to the points and in X and XVT. 

These points of maximum displacement are at constant positions 
upon the string. They are called loops or antinodes. Special mention 
must also be made of the points Kj', K^, K2, K2', &c., whose com¬ 
ponent displacements are always equal and opposite, so that their 
resultant displacement is always zero. They are called nodes. 

Since the points of maximum amplitude, like those of zero ampli¬ 
tude, do not alter their position, the resultant wave is called a 
stationary wave—a name which also describes its appearance. 

T/ie wave-lemjth of a stationary ivace is cqtial to that of the component 
admneiny ivaves producing it. It is equal, to the distance from a given 
node to the next but one or from a given antinode to the next hut one. 

When we pluck a stretched string whose hmgth corresponds to the distance 
between the two points Kj and a stationary w'ave is produc(;d with a node 
at each end of the string and an antinode in the middle. The wave-hngth is then 
twice the length of the string. 

If the length of the string corresponds to the distance between the points K/ 
and Ko, we obtain a node at each end and in tlie middle with two antinorles b('- 
tween. The wave-length is then equal to the length of the string. 

If t he length of the string corresponds to the dLstance between the points K/ 
and Ko^ we obtain a node at each end and two intermediate ones. Antinod('s 
lie between each node and the next. 

In all these eases the string is fixed at both ends. The advancing wave is 
reflected at the end with reversal of phase. Hence the ends of the string must 
be nodes. 

The ease in which the ends arc free does not occur for a string. But it can 
occur for a vibrating rod, which may either be clamped at the ends or in the 
middle. The points wliere it is clamped become nodes. 

When advancing waves are continually produced at one end of a stretched 
string or wir(\ they are reflectwl at the other end and give rise to stationary 
waves whose wave-length depends upon the period of the original components. 
If the second wave is produced at the moment when the first one is reflected 
from the far end, we get the effect shown in fig. 20 between K^' and K^. But if 
the second wave is sent out when the first has only got half-way along th(' string, 
the second wave will meet the reflec3ted first wave three-quarters of the way 
along the string with reversed phase, so that the first node is formed here. The 
faster the succession of waves produced at the end, the nearer the first node will 
be to the far end of the string. Hence also for a stationary wave; 

The frequency is inversely proporliotml to the wave-length (p. 222). 

Difference between Progressive and Stationary Waves.—In a pro¬ 
gressive wave all the points have the same amplitude, but their 
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phases are dift’erent. In a stationary wave all the points between 
two successive nodes have the same phaso^ but their amplitudes are 
different. At each node the phase changes by tt, i.c. the points on 
the opposite sides of a node move in opposite directions. 

2. Longitudinal Waves.- “Longitudinal stationary waves are pro¬ 
duced by the superposition of two oppositely directed advancing 
longitudinal waves, the second of which is usually du(^, to the reflection 
of the first. 

The most convenient method of graphical construction is that 
shown in fig. 21, namely, by turning the displacements of a stationary 
transverse wave through 90"". Upward displacements must become 
displacements to the right and downward displacements must be¬ 
come displacements to the left. It is seen from the figure that the 
greatest variations of density occur at the nodes (the points always 
at rest) and that the movement of the particles is from the positions 

Fig. 21.—Stationary Longitudinal Waves 

of maximum density towards the ])Ositions of minimum density. Con¬ 
sequently the positions of minimum density become those of maximum 
density after half an oscillation and vice versa. The antinodes are the 
points of minimum variation of density. 

The nodes of the motion are therefore the aniinodes of the pressure 
and viee versa 

Wlien the formation of the stationary waves is due to reflection at 
a fixed end, this end must be a node on account of the phase reversal 
on refl(‘ction. On the other hand, if the formation of the stationary 
waves is due to reflection at a free end, this end must be an antinode 
on account of the similarity of the phases of the incident and reflected 
waves. 

The number of nodes and antinodes formed in a long elastic body 
depends upon the frequency of the individual particles. 

If the ends of an elastic rod are clamped, they must become nodes. In addition, 
any number of further nodes may be formed at equal distances along the wliole 
length of the rod. 

If the ends of the rod are free, they must become antinodes. In addition, any 
number of alternate nodes and antinodes may be formed at equal distances along 
the rod. 

A rod clamped at one end and free at the other has a node at the former and 

* When not otherwiso specified, the expressions antinodes and nodes will always 
be taken, as previously, to refer to the state of motion. 
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an antinode at the latter. Further nodes and antinodes, if any, occur at equal 
distances along its length. 

A column of air enclosed in a tube behaves in exactly the same manner as an 
elastic rod. 

In the case of an elastic rod the longitudinal vibrations are so rapid that they 
cannot bo followed by eye. They can be seen better in the case of a spiral spring. 
Here it is at least possible to distinguish between nodes and antinodes, because 
at the nodes, which remain at rest, the coils appear sharp, whereas at the anti¬ 
nodes they appear blurred on account of their rapid backward and forward 
motion. 

stroboscopic * illumination may bo used with advantage for the observation 
of rapid periodic motions. Fig. 22 shows an arrangement from which the principle 

of the method is a2)parent. In front of a screen is stretched a S2)iral spring in which 
stationary longitudinal waves can bo set up by an electrical device. The illumina¬ 
tion is provided by a small electric arc lamp in front of which a circular disc with 
several radial slits can be rotated by means of an electromotor. The speed of 
rotation of the disc can be varied within wide limits by adjustment of a resistance 
in series with the motor. 

When the disc is rotating the beam from the lamp is i^eriodically interrupted. 
The lamj) sends out a flash of light each time a slit passes in front of it. 

We will assume that the spiral spring performs 40 longitudinal vibrations per 
second and that the disc has four slits and revolves 10 times per second, so that 
40 flashes fall on the spring every second in regular succession. Then at every 
flash the spring w ill be in the same state of motion and will consequently appear 
to our eyes to bo at rest. 

If now the speed of revolution of the disc is varied so that there are 39 flashes 
of light per second, each flash will illuminate the spring when it is in a state of 
motion 4V) of a whole vibration in advance of that illuminated by the preceding 
flash. During one second, therefore, all the 40 stages of the vibration will bo 

* Gr., stroboSy whirl. 
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illuminated in succession and thus rendered visible. The spring will appear to 
perform only one vibration j)cr second-—a speed which can be followed easily by 
eye. 

Stroboscopic illumination can also be used for the investigation of other 
periodic processes. 

3. Mathematical Treatment of Stationary Waves: Reflection at a Free End.— 
We will first consider the case in which the stationary waves ar(^ formed by the 
supcTposition of two advancing waves, the second of which is due to reflection 
of the first at a free end. According to p. 220 the displacement of the original 
wave at time t and at a distance x along a string or rod of lengtii I is 

The distance of this ])oint frcun th(‘ reflecting (md is I — x. iSiiice there is no phase 
change on r(‘flection, the motion of the point x due to the reflected wave is the 
same as that which a j)oint at a distance 2{l — x) farther along the string would 
have if the reflecting end were not present and tlie string were of unlimited length. 
The distance of this imaginary point from the original end of tlie string is 
X -| 2{l — a) 21 ~ X, Its displacement would therefon^ be 

Hence at the point x the superposition of tlu^ incident and reflected waves gives 
the resultant displaecmient 

Y.X = 2/x -i- l/J W4--9] 1 r 
Making use of the relation 

sin a H sin [6=2 sin - - i ct 

the expr(*ssion for (^aii be transformed to 

Y, = 2r Hin [2;r - Q] cs [2:r (Lr..*)]. 

This is the equation of the stationary wave. 
The value of the factor cos|'27r(/ — a)/X] depends only upon the position of 

the point considered. When it is equal to zero, also remains equal to 
zero. The condition for this is 

2-2’ 

where 7i can have any integral value including 0. Thus wo obtain the positions 
of the nodes: for ^ — 0, x=l — JX; for n = 1, x=l— |X, &c. 

When X I the cosine factor in the expression for Y^, becomes equal to 1. 
Hence at the free end (x ~ 1) of the string wo have the maximum amplitude 2r; 
this end is an antinode. The nodes lie at equal distances JX apart. The first out' 
is at a distance JX from the free end. 

Reflection at a Fixed End.—In this case there is a reversal of phase on 
reflection. We can take this into account by adding half a wave-length to the 
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distance 2Z — x used in the preceding investigation of reflection at a free end. For 
the unreflecled wave we have the same displacement at the point x as before, 
viz.: 

r sin 

But for the reflected wave we nov' have 

^ r sin 

The resultant displacement duo to the superposition of both waves is found by 
uddition and becomes after transformation 

, == 2r Bin [2:. ooB [2,. (L-^^/i)]. 

This is the equation of the stationary wave. 
The value of the cosine factor again depiuids only upon the variable x, i.e. 

upon the position of the point. The (!ondition that this factor shall vanish is 

■or 

2.f--.£+V4) = (2«-M)- 

X -- I - 
71X 

2’ 

where 71 may have any integral value including 0. Tor 71 — 0, x = 1; 71= 1, x=^- 

l — 11; 71 ■ - 2, X ~ I — 1; 71 - 3, x I — ill; &c. Thus the nod(vs are situated 
at/ distances JX apart and the fixed end of the string, for which x - - /, is a node. 

Amplitude of Stationary Waves.—In the case of reflection at a fixed end the 
jiositions of the antinodes are given by 

Substituting this in the equation for Y^., the cosine factor assumes the value if. 1. 
The expression for the displacement is then 

rf:2r sin 

3’he same rc'sult is obtained for the antinodes in the case of reflection at a free 
end. Hence: 

The amj^Uiude at the antinode of a stationary wave is twice that of each of the 
component advancing waives. 

Demonstration of Wave Motion with Mach’s* Wave Apparatus. — This 
(tig. 23) consists of a row of pendulums of equal length at equal distances apart. 
Each is suspended upon two strings, so that it can only swing in the direction 
at right angles to the plane of the strings. When this direction is at right angles 
to the row, the apparatus can be used to demonstrate a transverse wave. The 
pendulums are set swinging in succession, each one a certain constant time after 
the preceding one; this is done by displacing all the pendulums to the same ex¬ 
tent by means of a long bar and then withdrawing the bar with uniform velocity 

* Eknst Mach (1838-1916), Professor of Physics in Prague from 1867 to 1895, then 
Professor of Philosophy at Vienna until 1901. 
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in the direction of the row. In this way each pendulum is released the same length 
of time after the preceding one and a representation of a transverse wave of the 
kind already described is produced. 

By means of a special device it is possible to turn the suspensions of all the 
pendulums simultaneously through any desired angle, e.g. 90 ’. In this way the 
previously transverse swings become swings in the direction of the row and a 
representation of a longitudirml wave is produced. This is the mechanical realiza¬ 
tion of fig. 21, p. 235. 

Alternatively, the block 5 may be moved with uniform velocity along the rail 
e bemeath the pendulums, so as successively to displace each of them by the same 
small amount and release it again. The motion of each .pendulum thus begins 
the same length of time later than the preceding one, and the representation of 
a longitudinal wave is produced directly. 

As already mentiom.'d, it is possible by rotation of the suspensions to turn the 
planes of oscillation of the pendulums from the transverse to the longitudinal 
direction and vice versa. This shows clearly that })Oth kinds of waves are governed 

by the same law and that the only dilfercnce between them lies in the direction 
of oscillation of the particles relative to the direction of propagation of the wave. 

For the demonstration of stationary transverse^ waves use may be made of 
the curved wire gJi, which can be turned about an axis through its middle point. 
For stationary longitudinal waves the bar st is used. 

The individual pendulums of Mach’s wave apparatus move iiuh'piauhmtly 
of one another, since there is no coupling between them. Their motion is there¬ 
fore only a representation of a wave. In order to reproduce wave motion exactly, 
the individual pendulums must be coupled togeth('r, say by clastic strings, in 
some such way as in the net shown in fig. 10, p. 222, or the Julius wave apparatus 
shown in figs. 24 and 25, p. 204. 

5. General Laws of Wave Propagation 

In § 1, p. 208 et scq., tlie spreading of a plane wave system Las 
already Ixien considered in the special cas('. of water waves. W(‘ will 
now give a more general derivation of the observed laws. 

1. Wave Front.—In the figures of § 1, p. 208 et seq. certain lines can 
be seen, whose points all have the same phase. Thus, for example, 
the wave centre in fig. 5, f). 213, is surrounded by circles corresponding 
to equality of phase, say crests. The observation of the formation of 
such a wave system shows how the waves spread out in circles across 
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the surface of the water. The locus of all the points which the wave 
motion has reached at a given moment is called the wave front. In 
the case of waves on the surface of water the wave front is a line. 

If the wave system is not two-dimensional but three-dimensionaL 
as, for instance, in the case of sound waves (*onsidered below (p. 251). 
the locus of the points reached by the wave motion at any given instant 
is not a line but a surface. In an isotropic mc'dium, i.e. a medium in 
which the volodty of propagation is the same in all directions, the 
wave front is a spherical surface. 

Since the energy must be the same for evf^ry wave front, and the*' 
area of a sphere is proportional to the square of the radius of the 

sphere, the energy of the wave per 
unit area of front must be inversely 
proportional to the scpiare of this 
radius. 

In the case of a wave spreacling in 
three dimensions in an isotropic medium 
the energy of the vibrating particles varies 
inversely as the square of the distance from 
the wave centre. 

In anisotropic media the wave front 
is not spherical. In certain cases (of 
importance in optics) it may be the 
surface of an ellipsoid. 

Under certain circumstances (e.g. at 
very great distances from the wave 
centre and when only a very small part 
of the front is considered) the wave 

front may be a plane. In this case we speak of plane waves. 
2. The Huygens-Fresnel Principle.—The principle of the super¬ 

position or interference of waves (§ 1, p. 211 et seq.) is of great impor¬ 
tance for the question of wave propagation. The reason for this li(‘s 
in Huygens’ principle, which has already been enunciated on p. 21(): 

Every point of a wave front may he regarded as the centre of a new 
elementary ivavc system. The resultant system pmdaced hy the inter- 

ference of all these elements is identical with the actual single wave. 
Huygens’ expression of the principle named after him was as 

follows. If M (fig. 24) is the centre of a wave system and if the wave 
has spread to the spherical front K^, every point of this spherical 
surface can be regarded as the centre of spherically spreading elemen¬ 
tary waves. The front of the resultant wave formed by the super¬ 
position of all these elements is then the spherical envelope K2. This 
is identical with the surface of the sphere with the same centre M as 

a; 

Fig. 24. — Huygens’ Principle: the 
.Spherical Wave as the Envelope of the 
Elementary Waves. 

* These belong therefore to a three-dimensioyial wave system. 
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tEc original wave and a radius equal to the sum of the radii of the 
sphere and an elomoutary sphere. 

If we wish to find the state of motion at any point L (sec fig. 24) 
of the wave system, we must consider the siiperjiosition of all tlie 
elementary waves at this point.* 

V 

f 

The complete solution of this problem i; rather 
complicated, and can only be obtained with the 
help of the integral oalcuhis. We will therefore 
simplify the problem by considering })lane wave 
fronts (cf. lig. 8, p. 215), i.e. we will imagine the 
(amtro M of the wave to be at such a gn^at distance 
that the arc of the circle (tig. 24) may }>e 
regarded as a straight line. 

With this simplification wo can consider the 
plane wave front ]V1M' (lig. 25) to move in a dire(*tion 
at right angles to its(‘lf. Let it have arrived at th(‘ j)ositi()n NN'. Then by 
Huygens’ principle each point O of NN' is the (aaitre of an elementary spherical 
W7vve and PE' is the common tangent ])lane to all of these elements. 

I’iff. ;5.—Huvgens’ Principle: 
Plane W avc I'ront 

Pig. 2O.—Frconer.s Zones 

Wc will investigate the state of motion at a j)oint P (fig. 20) at a distance d 
in front of NN'. For this purpose drop the i)('rpendieular PO from F on to NK'. 

* This method was originated by FEESi^rx wdtli the helj) of the interference principle 
put forward by Thomas Youno. "A. J. PYtESNEU (born 1788 at Broglie, died 1827 at 
Ville-d’Avray near Paris), originally an engineer; his work, begun in 1814. helped gn^atly 
to bring about the aeeoptanee of the imdulatory theory of light. His “ Menioire sur la, 
diffraction do la hmn6ro ”, for which he received a special prize from the Academy, 
definitely established the theory. He treated most optical processes by means of the 
theory of the elastic vibration of the Imniniferovs ether. Ho is also famous as the in* 
ventor (1823) of “ zone Itmses ”, i.e. large lenses consisting of a comhiuation of a large 
number of individual prisms, by means of which the light from lighthouses is concen¬ 
trated, partly by refraction and partly by total reflection, so that it can bti seen at 
very great distances. 

17 
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The point O is called the i)ole of the point P. ALso draw the straight lines PA, 
PB, PC,.. &r., and PA', PB', PC', ..&c., such that 

PC :u, PA-.PA'-.uPiX, PB=:PB'=a-[-2.U. PC=PC'---a + 3.jX,...&c., 

i.e. so that each of the points A, B, C, . . . &c., is half a wave-length farther 
from P than the preceding one. This construction must ho carried out for the 
whole of the plane wave front. The system of lines from P to the plane then form 
a system of conical surfaces intersecting the plane in a system of concentric 
circles. These turclcs are shown in the lower half of tig. 2t). In order to obtain 
the correct three-dimensional figure, this lower half must be imagined to be 
turru^d about NN' as axis until it stands at right angles to the plane of the paper. 
Thus the upper and low or halves of fig. 26 repre^sent the side elevation and plan 
rcs})ectively of the wdiolc three-dimensional system. Tlie diameter AO - of 
the first circle can be calculated from the riglit-anglod triangle POA. Wc have 

iX)- — 4- nX -j- - ~ = uX 
4 4 

Now W'C suppose that X is so small in comparison with a that the quadratic 
ternr X-/4 can bo neglected in comparison with the term aX of the first degree. 
We can then put o'l VaX. 

In the same way the radius of the nth circle can be obtained from the 
equation 

Assuming that ?/X is small in comparison with a we have from this 

a:„ = V naX. 

The different- circles have the areas 

“ TcaX, Sg == 7r:r2“ ™ 27raX,..., = WTraX. 

The ring-shaped regions hetween the successive circles are all of the same area, 
'namely, that of the innermost circle Sj = jcaX. 

Each of these ring-shaped regions is called a Fresnel zone. Hence all the 
Fresnel zones contain the same number of equal elements of area, i.o. from each 
Fresnel zeme originate the same number of elementary waves.* 

Now each successive circle is half a wave-length farther from P than the one 
before it. Hcnec if elementary waves set out from every point of the piano wave 
front NN' with the same phase, they will not arrive at P in the same phase; for 
to every point of a zone, e.g. of the %th zone, there corresponds a point of the 
next zone, the (71 -j- l)th, from which waves arrive at P in exactly opposite phase. 
If the amplitudes of these elementary waves were equal, those from tho first 
zone would be neutralized at P by those from the second. Similarly the elemen¬ 
tary waves from the third and fourth zones, as well as from each successive pair 
of zones, would neutralize each other at P, which would therefore remain always 
at rest. 

Actually, however, the amplitude of the elementary waves decreases as they 
spread out from their centres. Without going into details with regard to the law 

* If the wave front from which the elementary waves originate is not a plane hut 
a spherical surface, tho Fbesnel zones are again equal, provided that JwA can be 
neglected in comparison with a. 
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of this docTcasc, it can be sho\vn * that the amplitude of any elementary wave 
is equal to the arithmetical mean of the amplitudes of those on either side of it. 
Hence the effect of all the elementary waves from any given Fresnel zone is neu¬ 
tralized by the effect of the contiguous halves of the two neighbouring zones. 
In fig. 26 the fifth zone V and the contiguous halv’^es of the fourth zone U and 
the sixth zone W are shown shaded. The total effect of all these shaded parts at 
the point P is zero. 

If the effect of any zone is where n is the ordinal number of the zone, the 
total effect of all the zones of the unlimited plane w^ive from NN' is 

Z Zi Z2 '!- Zs 24 -.1- Zj — -|- . . . . 

Tliis can Iks transformed to 

z ™ -Izj^ -1- {Iz^ *— -2 + l-a) 'I" (1-3 ~ -4 "i" Ih) + • • • • 

In this each of the expressions in brackets vanishes and the total effect simplifies 
to 

since in the case of an unlimited plane wave front the subsequent terms of tho 
series for z decrease continually and tend to the limit zero. 

Hence it follows that: 
All the elementary waves sent oat according to Huygens'' principle 

from all the points of an infinite phne {or spherical) wavefront have the 
same total effect at a point as the half of the first elemeniary zone surround- 
ing the pole of the point. 

From this follows at once the validity of Huygens' principle in its original 
form for infinite plane waves. Tho derivation of this principle for infinite waves 
of other shapes follows the lines of tho above example. The strict proof cannot, 
how ever, be given here. 

* The difference of amplitude due to the small difference in distance between suc¬ 
cessive zones is also extremely small. If we consider the amplitude of tho waves arriv¬ 
ing at P from tho elementary zones as a function of ihc number n of the zone, i.c. if 
wo write 

Z„ “/(a + 

we can regard the increase JA of {a + ^nX) corresponding to the passage from one 
zone to the next as the differential of {a + ^nX). According to tho rules of the dif¬ 
ferential calculus we may then write approximately 

Z»+1 “/[a + («+ ■“/(« + ’2^) |/'(“ + v) “ Z-. + p'(« -I- y). 

=/[« + (» + 2)^] - f(a + H 2.|/'(a + + 2.^,/'(a + f). 

Small terms of higher order have been neglected. From this we obtain 

A. « — Oat i-kT* <v _ d* 
Zn + 2 ~ 1 1 OT | i — , 
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3. Diffraction.—Tlie condition that a wave shall have the same 
effect at a point as that of the half of the central Fresnel zone is that 
the wave is of infinite extent; for only then do the effects of the other 
zones neutralize each other and only then can the effects of the farthest 
zones be set equal to zero. If on the contrary we are dealing with a 
limited portion of an advancing wave, the behaviour is essentially 
different. 

As a practical application of Huygens’ principle we will consider 
more closely the case (already represented for water waves in fig. 9, 

p. 215) of a screen with an opening 
in it. We will investigate the effect 
behind the screen of a system of 
plane waves incident upon it. 

Jn fig. 27 represents the central 
portk)n of a screen with the circular 
opening NN". A system of j)lane waves 
is incident upon it in the direction L 
(in the figure from below upwards). Let 
O bo the middle point of the opening 
and Vi and Po any two points upon th(^ 
perpendicular io tluj screen through O. 
About Pj (and similarly about Po) we 
describe concentric; spherical surfaces, 
the innermost of which has the radius 
a and passes througli 0. The radius of 
each successive sphere is greater by {>X 
than that of the preceding one, i.e. 

PiO - a, PjAi -- a -1- IX PiBi = a-\-2, -JX,..., kc. 

These spheres intersect the opening and divide it up into Fresnel zones. In fig. 27 
it has been assumed that the spherical surfaces about P^ as centre give rise to 
three zones and those about Pj as centre to four zones. 

Now in evt;ry case a is to bo considered as very much larger than |X, so that 
the amplitudes of the elementary waves from the points A^, B^, Cj, <fec., of the 
small opening NN are practically equal when they arrive at tlu; point (or Po). 

The elementary zones I, II, III, &c., are of the same area (see above), and the 
phases of weaves from any two consecutive zones are opposite; therefore the 
effect of each pair of consecutive zones is zero. From this it follow s that all points 
P^, which are at such a distance from the middle O of the opening that the corre¬ 
sponding number of Huygens’ zones in the opening is odd, must oscillate with 
great amplitude. Similarly, all points for which the corresponding number 
of elementary zones is even, must remain at rest. 

In the same w ay it can also be shown that there are points lying off the axis 
OP which are at rest or oscillating with maximum amplitude accordmg to their 
distance from the centre of the opening. In the case of a circular opening and of 
spherical elementary waves the loci of all such points are circles in planes parallel 
to the plane of the opening. Hence: 

When a system of plane waves is incident upon a screen with a circular 
hole in it, the whole of the space behind the screen is filled with waves in 

Fig. 27.—Diffraction due to a Small Circular 
Hole 
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such a way that in planes parallel to the plane of the opening there exist 
ring-shaped regions of maxiynum or zero amplitude. 

The appearance of tliese interference effects is an extremely im¬ 
portant criterion for tlie presence of a wave motion. It was with the 
help of experiments of this kind that Yorao and Fresnel succeeded 
in proving the nndulatory nature of light. 

Fig. 28 (after Akkadiew) shows reproductions of photographs obtained with 
Jight beams which have passed through small openings. In the first picture the 
opening was of such a size as to include seven Fresnel zones; in the second pictun% 
eight,. H(‘ncc in the first case the 
middle of the diffraction })attern is “ ~ 
bright, in the second dark. Further 
examples of this kind will be treated 
in Vol. IV (Optics). 

All especially important case 
is that in which the waves arc 

incident upon a large, number r>. o n r . t .r 
« , T \ . Fik. 28- Patterns formed bv Diilraetion 

ot regularly arranged openings smaii Holes' 

(a so-called grating). When tlie 
nature of the arrangement is known, measurement of the positions 
of the maxima and minima of intensity behind the screen provide 
a particularly suitable method of determining the wave-length A of 
the waves. This very important method is also descrilxnl more 
fully in Vol. IV. 

4. Reflection.—At the boundary surface betwetri two media in 
which the velocity of propagation of the wave motion is flifferent, a 
more or less (complete reflection occurs. We will consider on the basis 
of Huygens’ principle a few special cases similar to those represented 
for water waves in figs. 10, 12, 13 and 14 (pp. 21()-218). 

Reflection of Plane Waves at a Plane Boundary (Mirror) (cf. figa. 10 and 11, 
pp. 210 and 217). In fig. 29 let ZZ be the plane surface separating two media. 
The plane waves with the front A^Ag arc incident in the direction of the arrow E. 
If the incidence is slanting, the point of the wave front corresponding to A, 
reaches the surface ZZ first at the point Cj and gives rise here to a system of 
elementary waves which spread spherically. At this moment the point of the 
wave front corresponding to A^ has reached Co- Fv the time this ixunt of the 
front has reached the plane ZZ at the point Do, the spherical elemcmtary wave 
from C\ has already covered a distance equal to C2D0. Thus tlie radius of the 
wave front of this elementary wave is CiDj = CoDg. Any other part of the wave 
(such as that dotted in the figure) has by this time covered after reflection a dis¬ 
tance shorter than (VJ).,. The spherical front of tlie corresponding elementary 
wave is represented by the dotted circle in the figure. Thus v hen the plane wave 
is incident upon the plane surface ZZ, the points of the surface struck by the 
wave Ix'come centres of elementary waves, which combine to give the new front 
DjDa. The direction of propagation of the reflected wa\ e is at right angles to 
the front DiDa, i.e. that of the arrow R. The? reflected wave front subsequently 
reaches the position F^Fo. 

Draw the perpendiculars and DoLj: at the* points and Dj, le- 



246 WAVE MOTION 

spectively. The angle of incidence is = a and the angle of reflection 
L2D2F2 = p. 

Since CjDi == C2D2, therefore A C1D2C2 is congruent with A C3l)2l^i» whence 
it follows that ZC2C1D2 “ ZDiDgOi- Now ZCgOjDa == a and ZDiDg^i ™ P» 
Therefore a = p. This equation expresses th(^ law of reflection: 

The angle of incidence is eqml to the angle of reflection. 

Reflection of Plane Waves at a Spherical Surface (Concave Mirror). —Con¬ 
sider a piano wave with the wave front W (fig. 30) to l)e incident in a direction 
parallel to the axis AC upon a spherical reflector represented by the shaded 
circular arc. At the moment when the wave front has reached D, the point upon 
the axis has only reached L. The front is then represented by the dotted line 
LD. The point 1) now becomes the centre of new elementary waves wliicdi, by the 
time the point L has reacdied the reflector at C, liave covered a distance equal 

to LC, The same consideration applies for all the points of the incident wave 
front incident upon the reflector between 1) and C. The reflected wave front OE 
is then the envelope of all the elementary waves. If we confine our attention to 
parts of the wave lying near the axis, CE can be regarded as a circular arc. The 
reflect(‘d wave is therefore spherical. At a later time the reflected wave front has 
the position V and eventually shrinks to a point at F. Here all the energy of tlie 
reflected wave is concentrated. In the special case when the incident wave is 
plane and parallel to the axis this point is called the/oci«,s (cf. fig. 12, p. 217). 

Let r be the radius of the reflector and M its centre of curvature, and 
/ — FE = FC the radius of the reflected wave front. Let LD = h. Since wo 
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are only considering that portion of tbo wave in the neighbonrhoo<i of the axis, 
we may regard arc as equal to chord, and therefore h ^ LL CD CE. Then 
by geometry 

LC : ^ ^ : 2r and (ED 1- LC): h - h : 2/. 

Hence, since ED = LC, we have 

2'-=^, and 2/^ 
and therefore 

f - It. 

2LC’ 

That is to say, in the case of a spherical reflector the focus lies midway between 
the centre of curvature and the refletitor itself. 

Reflection of Spherical Waves at a Spherical Surface.—In fig. 31 G is the 
centre of f-ho incident wav^e system and is such that GC is greater than the radius 
MC of the reflector. The surface W represents a position of the incident wave front. 

Fig. 31.—Reflection of a Divergent Wave System at a Concave Reflector 

At tlui moment vvlitm a point of this front has reached the refl(H‘tor at D, the 
point on the axis is still in front of the reflector at K. At the moment when this 
axial j)oint has reach(‘d the reflector at C, the points lying off the axis havt^ already 
been reflected and have given rise to a sj^stem of elementary spheri(%‘il waves 
with a wave front C-E. This front is itself sphcTical. At a later time it arrive s at 
the position V and eventually shrinks to the point B. 

This point B is called the image of the point sourcjc G. If —u- GD GK 
is the distance of the source from the reflector (negative, because the direction 
of the incident wave is opposite to that of the reflected wave), v ~ BD == BC 
the distance of the image from the reflector and r = MD the radius of curvature 
of the reflector, then, since CD can be put equal to h, we have as above 

(ED -f- J..K KC): h - h : 

LIx I Ih —- Iv I 

LK-1 K0:h^hi2r. 

2KC -f LK 

LK 

LK + KC 

2v 

2n 

2r 

and 

iSince ED = KC, therefore 
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Adding the first two equations we obtain 

2(LK I KC) 
A2 , ;^2 

Combining tliLs with the third equation we have 

2v 2u 2r ‘ 

Therefore 
11, 2 1,1 
V u r u f' 

This is the equation comieeting the dislancc of the source, the distance of tlio 
image, and th(‘ radius of curvature of tlic rcfl<‘ctor (( oncave mirror). 

The derivation of tiie corresponding equation for convex mirrors is analogous 
to the above. It is seen from fig. 14, p. 218, that in this case tlie ni^w system of 
waves formed liy reflection has its centre behind the reflector. 

5. Refraction.—^When a wave is inoident upon the boundary sur¬ 
face between two media in which the velocity of propagation of the 
waves is different, the reflection (see above) is only partial. A part 
of the wave passes through into the second medium, but with a sudden 
change of direction. This phenomenon is called refraction. 
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Wc will consider the case of piano waves incident upon a plane boundary 
surface betw’oen twT) media (fi^. 32). Lot the direction of incidence be that of the 
arrow E. At the monu'nt when the extreme lateral point of the Avave front corre¬ 
sponding to Aj has reached the surface at the other c'xtrcmc point correspond¬ 
ing to A2 has only reached Co. The point (’j becomes the centre of a new' elemen¬ 
tary Avave, which sjireads into the second medium Ix'Ioav ZZ. Let the velocity 
To of propagation in the second medium he smaller than that in the first. By 
the time the extreme j)oint corresponding to Ao has reached ZZ at Do, the spherical 
front of the elementary wave sent out from will have reacheil the position 
represented by the circle through D^. If tho rati(j of v., to 7*^ is 1 to then 

oj), - 
77. 

An intermediate point of the incident AvaAC front (see the dotted line parallel to 
A,C, and gives rise to an elementary spluTical AvaA'c Avhose front Avill have 
reacluxl th(^ corn's})onding position n'jn'eseTitx'd by the dotted circle. Thus the 
total refracted AvaAC front in the st'cond medium is the common tangent DiDg 
to all the elementary Ava\a\s. ^die refracted Avav(‘ moves in a direction at right 
angles t(^ this front, i.('. in flu* direction of the arrow B. At some time after re¬ 
fraction th(‘ Avav(‘ front readies the pa^ition E,I\. 

At (Jj and D2 draw' the p(‘r}K‘ndiculars L,L, and rt'>|)ective]y to the sur¬ 
face ZZ. The angle of incidenc(‘ is ZA^C^Lj - a. The angle of refraction is 
ZD/JjLj p. From the figure it is seen also that ZCU'iD^ a and ZC/ILI^ 

-- p. In AC'jL.JLAve liaA'c sin a - (U)2/CT)2. In A(YB)IL. dn p ■ (\Dj/f-TL. 
By division, sin a/sin p (^iL/C'iD,. But from the ratio of the AU'locitk's of 
liropagation in tlu' two media avc have tyL/LiD^ -- a. 

Til ore for (‘ 
sin a Vt 
—- n —. 

sin p v.> 

The ratio of the ^ine of the auf/le of ineideaee to the of the a>}(jle of 
refraetion is eq}{al to the ratio of the velocities of propatjation of the ivaves 

in the respective 'media. 
This ratio n is called the refractive index. 





SOUND 

CHAPTER I 

Sources of Sound 

1. Scope of the Subject 

1. Acoustics or the science of sound is a special branch of th(^ 
science ot vibrations. It includes the theory of elastic longitudinal 

waves in gases and of the vibrations of the bodies producing them. 

As a rule only such vibrations are considered as produce the sensation 

of sound in the ear; recently, however, it has become usual also to 
include in acoustics vibrations of frequencies far above the upper 
limit of audibility (see below) (ultra-sonic waves). 

If a bell be placed under the receiver of an air pump and the air removtid, 
the bell is still set vibrating by the strokes of the hammer, but in spite of this 
it cannot be heard. From this it follows that the propagation of sound is normally 
through the air. Care must be taken in the above experiment, however, that the 
vibrations of the bell are not transmitted by means of solid bodies to the external 
walls of the receiver. Thus the bell must be placed upon some soft substance or 
suspended by an elastic thread (e.g. of wool or rubber). 

2. Limits of Audibility.—In order that it may be heard, the vibra¬ 

tion must have a certain strength and a certain frequency. The strength 
or intensity of the waves (elastic pressure waves in the air) can be 

measured by means of the pressure variation (pressure amplitude). 
The unit of frequency is the hertz (1 cycle per second). The minimum 
intensity which a sound wave must have in order to be audible is 

called the threshold intensity of audibility. If the energy increases 

above a certain value (the threshold intensity of feeling) a sensation of 
pain is produced in the ear. Further, the vibration must have a fre¬ 
quency above a certain minimum (lower pitch limit of audibility) in 
order to be perceived as sound. This limit lies at about 16 hertz. Fre¬ 

quencies above 20,000 hertz are likewise inaudible (upper pitch 
251 
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limit). Fig. 1 gives graphs of these relationships. The 2)ressure ampli¬ 
tudes in dynes per cm.- are plotted as ordinates and the frequencies 
ill hertz as abscissaB. The region of audibility lies between the two 

curves, which represent the 
thresholds of audibility and feel¬ 
ing. (See further § 3, p. 282 et 
seg.) 

3. Notes.—The sound impres¬ 
sions wc‘ receive may be divided 
into noises and musical sounds. 

Closer analysis by one of the 
methods to be described later 
sliows that musical sounds arc 
due to periodic vibrations, wliere- 
as noises consist in general of 
irregular disturbances of the air. 
We shall only deal with musical 

sounds. These usually involve rather complicated vibrations. A 
sound due to a pure sine vibration will be called a note.* According 
to Fourier’s theorem (p. 223) any periodic vibration can be analysed 
into a sum of sine vibrations; hence every musical sound can be 
regarded as a combination of notes. 

A note is characterized by its pitch and its intensity or loudness. 

2. Pitch 

1. What Property of the Vibration is perceived as Pitch? 

Experment.—For the investigation of pitch we will consider first the pro¬ 
cesses involved in the vibration of a string. Wo stretch the string as in fig. 2. 
The apparatus depicted is called a monochord. According to p. 228 the frequency 
of vibration is 

Any desired length of the string can be divided off by means of movable bridge- 
pieces j)laced beneath it. In this w^ay, therefore, the frequency of vibration of 
the section under investigation can bo varied at will. This frequency can bo 
calculated from the length, mass per unit length (obtainable from the weight of 
a kno^n length), and the tension of the string (measured by the weight in the 
scale pan—see figure). 

* The sound duo to a pure sine vibration (i.e. a simple harmonic vibration) is more 
strictly called a simple tone, or pure tone. Hut both words, tone and note, are used 
in various senses in musical and ordinary language. Wo sp^ak, for example, of the tone 
of a piano, of an interval of a tone or semitone, of the note of the nightingale, of tho 
notes of tho musical staff. In less exact usage the terms note and musical sound are 
sometimes taken to bo equivalent. This gives rise to a difficulty in deciding upon the 
frequency, to avoid which tho lowest frequency is taken as the frequency of the musical 
sound, although often it is only weakly represented. 

ImK- I.—Range of Audibility. (Ordinates repre¬ 
sent pressure amplitudes in dynes/cm.upper 
curve, threshold ol leeling; lower curve, threshold 
of audibility.) 
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The shorter the leiigtli of the string or the greater its tension, i.e, 
the greater r, the higher becomes the pitch of the note. 

The characteristic property associated with pitch is frequency. vl 
higher pitch always corresponds 
to a higher f requency. 

If we produce the same 
frequency in two different 
ways, firstly, by c'lioosing the Fig. 2—Monochord i 

right length of the string with 
a given load, and secondly, by clioosing the riglit load with a given 
length, we get the same pitch in both cases. Thus pitch depends 
only upon frequency. 

Further KxperlmeMt.—A circular disc Avith a rin^ of holes Ihrouiili it at o([ual 
distances parallel to its piTiphcrv (siren, li.ix. 42, p. 274) is inad(i to rotate rapidly 
and uniforTuly. A stn^am of air blown against the holes is thus peri<jdically inter¬ 
rupted and a. note is h(‘ard. The fr(‘(jU(‘ncy can be cah'ulated from the number 
of holes and the speed of revolution of tlu'. disc. A toothed whetd can also be 
used, a piece of card being h(‘ld against its teeth. The pitch becomes higher 
as the speed of revolution is increased. Jfi^re again notes of equal fre(juency 
(compared with those of the monochord) have the same ■|)it(di as heard by the 
ear. 

2. Designation and Graphical Representation of Notes. In the 
com])ari.son of not(\s of different j)itcli it is found that certain pairs of 
notes appear very similar. These are notes whose frequtmeit's are in 
the ratio 1 : 2. the liigher is called the octave of thf^. lower. For the 
})urpos(‘S of music certain notes have been scdocted from th(‘ infinite 
number of possibilities and have been designated by letters. For 
historic reasons it is usual in the simplest case to have six notes b(‘- 
tw('en the two notes of the octave, the lower of which is called do and 
the upper do\ The six intermediate notes have frequencies in the 
simplest jiossiblc ratios to that of the do. (See table below.) 

The ratio of the frequencies of two notes is called the interval be¬ 

tween them. 
The notes are designated from do upwards by the letters 

C, D, E, F, G, A, B. Thus we have the following simplest scale: 

Name do re mi fa sol la si do' 

Relative fre-\ ^ g,g 4/3 3/2 5/3 15'S 2 
quency J 

Interval of Sue-) g,g gyg 
cessive Notes j ' i t 

Designation .. C D E F G A B c 

Smallest integers^ 
proportional to j 24 27 30 32 30 40 45 48 

frequencies J 
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The octave cZo’ is designated by the same letter as do, but in order 
to distinguish between them the higher is designated by a small letter 
and the lower by a large letter. Still higher octaves are designated by 
o’, c”, &c., lower ones by C|, Cn, &c. 

The interval between consecutive notes may have three values, 
namely, 8 : 9 C : D - F : G -- A : B; or 9 : 10 D : E -- G : A; 
or 15 :16 -- E : F B : c. The difference between the intervals 9/8 
and 10/9 (namely, 9/8 ^ 10/9 — 81/80) is small and only recognizable 
with difficulty. It is called a comma. The intervals 9/8 and 10/9 are 
called ^najoT and minor toyies respectively. The interval 16/15 is known 
as a semi-tone or limma. 

It was decided by international agreement in 1885 to fix absolute 
pitch by taking as a’ the note with the frequency 435 hertz (French 
Pitch).* 

For graphical rejjresentation use is made of a musical 
staff notation in which the time is plotted roughly as abscissa 

and the logarithm of the 
frequency as ordinate. 
Fig. 3 shows an example 
of such a representation. 

___ In the case of the piano 
^ . ..~ ^ .— the notes actually used 

~-- range from An to a"". The 
range used in the whole of 
music is from An to d‘'"', i.e. 
from about 27 to 1700 hertz. 

3. Loudness 

1. Measurement of Loudness or Intensity. The inffuence of loud¬ 
ness upon audibility has already been mentioned on p. 251. The in¬ 
tensity of sound is measured by the quantity of energy I passing per 
second through unit area at right angles to the direction of propa¬ 
gation. Its unit is therefore erg/(sec. cm.“) — 10“" watt/cm.^. The 
pressure amplitude p (unit: dyne/cm. 2) is also often used as a measure 
of intensity (see, for example, fig. 1, p. 252). The two are related by 
the equation „ 

T - . 
2p^’ 

3.- -Piano Keyboard and Corresponding 
Staff Notation 

Fig. 4 

Rayleigh 
Disc 

where Pq is the mean density of the air and c the velocity of sound. 

In practical measurements the pressure amplitude may be determined directly 
by ineans of suitable manometers, or the intensity may be measured directly by 
converting the energy into electrical work which (;aii be measured easily. The 
apparatus for these purposes cannot be discussed here. 

* Concert pitch is 400 for ah In physics it is convenient to put a* — 426*66 hertz, 
because then c' is 266, which is 2*. 
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2. Sound Pressure.—A third mcdhod makes iLse of the prepare effect of sound 
-waves. When they arc reflected at a w alk the sound waves exert a pressure upon 
it—the sound pressure. It is proportional to the energy density e ~ I/c, where 
J is the intensity and c the velocity of the sound. Further, bodies are attracted 
to the sound source when they arc denser than the medium, and repelled from 
it when they are lighter than the medium in which the sound is propagated. 
(ScHELLBACir, 1870.) Thus, for example, a piece of paper is attracted by a sounding 
tuning fork. To measure the intensity use is made of the fact (Loitn Kayleigh, 

1882) that a very thin disc (of about 2 mm. diameter) tends, when hung up in 
the way of the sound, to set itself with its surface at right angles to the direction 
of propagation (fig. 4). 'The causes of this plienomenon are the same as those 
w'hich give rise to the tendency of a falling sheet of paper to set itself at right 
angk\s to its direction of falling. The turning moment exerted upon the disc is 
j)roportional to the intensity of the sound. The Rayleigh disc, is widely used for 
the measurement of sound intensity independently of frequency and wave form. 

3. Variation of Intensity of Sound with Distance from the Source. 
— Since sound consists of a system of waves, it spreads in the air in 
the same manner as the water waves shown on pp. 213-218, bnt with 
the differences that the advancing waves are longitudinal and that the 
spreading is in three dimensions, so that we have a system of spherical 
weaves instead of circular wav(‘s. From this it follow^s that the intensity 
of spreading sound waves decreases more rapidly with the distanc(i 
than that of water waves. Whereas in the plane system of water waves 
the mass of water set in motion is proportional to the distance from the 
centre of the wave system, the corresponding mass in the case of 
spherical sound waves is proportional to the square of the distance. 
From this it follows by theory that the intensity of sound, i.e. the 
energy im])arted to a certain mass of air, ought to be inversely propor¬ 
tional to the square of the distance from the source (p. 240, see also 
belowd. 

In th(i case of propagation of sound along tubes there is only a 
small decrease of intensity, because the energy of the vibrating masses 
of air cannot sj^read out in all directions (ear trumpet, speaking tube); 
the energy transmission takes place in a 
manner similar to that for a row of clastic 
l)alls (fig. 20, p. 205). For the same 
reason sounds are transmitted to greater 
distances along a stretched wdre or thread 
(string telephone) than through the air. 
If a ticking watch be placed upon a table, 
then by placing the ear against the table 

the ticks can be heard at a greater dis- s.—Zone of silence in an Ex- 

tance than through the air. The reason 
for this is that in the table the energy 

plosion (Moscow, 1920). (The dots 
show the places at which the explosion 
was heard.) 

transmission is only along a thin lamina 
and therefore with an intensity inversely proportional to the 
distance, whereas in the air the spreading is in three dimensions and 
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the intensity inversely proportional to tlie square of the distance. 
It is remarkable that over very great distances the decrease of 

sound int(‘nsity is by no means of the above gradual and continuous 
character. Instead an intermediate zone of zero intensity (zone of 
silence, hg. 5) a])})ears, while at greater distaiK'es the sound becomes 
audible again. For an explanation of this plienomenon see p. 277. 

Soujid waves of \'ery liijih frequency, i.e. very small wave-length, arc absorbed 
to a great extent in air. The distance over which the intensity falls to 1/100 of 
its original value is 40 cm. for a wave-length of 0-8 mm., but only 0*6 cm. for 
a wave-l(‘Jigth of UT mm. Ifenee above a frequency of 3,000,000 hertz no 
sound waves can be deteet(‘d in air. 

4. Quality or Timbre 

Differences art* often a})parent between musical sounds of the same 
pitch and loudness. For instance, the somxd of one and the same note, 
say a', is different on th('. violin, and on the clarinet. This difference 
is described by the t('rm quality or timbre. 

Even th(^ same source can produce 
(iifl'erent qualities, if excited in differ¬ 
ent ways. Thus when a inonochord 
is pinched first in the middle and 
then near one end, the note sounds 
’* brigliterin the second ease than in 
the first. 

The investigation of sounding strings 
gives vibration figures like those shown 
in fig. G. In I the string was plucked 
ill the middle, in II about one-third of 
the way along, and in III and IV still 
nearer the end. It will Ix^ schui that the 
quality depends on the form of the 
vibration. The more complicated the 
form, tlie brighter ” the note sounds. 

We have seem (p. 223) that compli¬ 
cated forms of vibration can be regarded 
as the superposition of different sine 
vibrations whose frequencies are mul¬ 
tiples of the fundamental. These 
superimposed sine vibrations are 
called overtones, or upper partials. 
Hence: 

Fig. 6.—Vibration Forms of a Plucked 
String with Overtones 

The quality of a 7nusical sound is due to the jyfesence of oi^crtones in 
addition to the f undamental (Helmholtz). 

The quality as perceived by our ears varies according to the relative 
amplitudes of the different overtones. 
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For the above reason particular importance attaches to the series 
of notes whose frequencies are in the ratio of the whole numbers 
1 : 2 : 3 : 4, &c. This is called the harmonic series. Beginning with the 
fundamental C it consists of the following notes: 

123456789 10 11 12 
C c g c' e« g' i' c" d" e" k" g" 

Of these the seventh and eleventh do not belong to the ordinary 

musical sc.ale, and arc thc^rcfore designated by special letters. 
It is found that the i)hasc differences of the overtom^s do not alTect 

the quality. Thus it is not the actual form of the vibration, but only 
its composition from partial vibrations, which (httumines the inquc'S- 
sion upon the car. 

The composition of the musical sounds from different sources and 
the consequent quality will be discussed further in the next paragraph. 

5. Sources of Sound 

1. Application of Resonance in Acoustics. For the production of 
soimd, use is generally made of solid bodies whose vibrations are trans¬ 
mitted to the surrounding air. The amjditudes of the vibrations of 
these bodies are usually very small and, since the density of the air is 
very small, the amoimt of energy transmitted is also small. Hence the 
intensity of tlu^ sound is only slight. In order to set great(‘r masses of 
air into vibration, the source is therefore coupled in most cases with a 
system having a large area or a large volume. This produces th(' 
desired pressure variations in the air on account of its own forc(‘d 
vibrations. When the coupling is very loose, we have the c^ase of th(‘. 
exciter and resonator already discussed. If the damping is slight thc^ 
resonance curve (fig. 17, p. 198) rises to a sharp peak; such a resonator 
only amplifies its own natural frequency. It must be tuned exactly 
to the exciter in order to produce the maximum effect. This kind of 
amplification by resonance is used for all sources of sound in which 
the main object is the production of one single note. 

Coupling in acoustic processes can be observed as follows: 

Two similar strings are stretched upon the monochord in such a way that the 
pitch, i.e. the frequency, of both is exactly the same. Then when one string is 
plucked, it is observed that the other is also set into vibration. The amplitude 
of the second string increases rapidly, while that of the first decreases at the same 
rate. The process is then reversed, and the second string gives back its energy 
to the first and comes to rest. Several such alternations can often be observed, 
but owing to losses of kinetic energy to the air the amplitudes of both strings 
soon become so small that the eficct is no longer visible. In this experiment the 
coupling is partly through the base of the monochord and partly through the air 
between the strings. 

By a suitable arrangement the coupling can be produced by the air alone. 
When a soimding tuning fork is held near an open piano whose dampers 

have been raised by depression of the pedal, that string begins to sound whose 

(EMO) 18 
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frequency coincides exactly with the frequency of the tuning fork. If the dif¬ 
ference of frequency is slight a weak resonance may occur, but with greater 
differences there is no response. 

When it is desired to amplify a number of different notes with 
different frequencies (e.g. in the case of a violin, piano or loud-speaker), 
the source of the note must be coupled with a system (the sound box 
or board) which is incapable of resonance within the range of fre¬ 
quencies to be amplified, i.e. which has no natural frequency in this 
range. In this case, the coupling must also be made as tight as possibles 
so as to force the vibrations of the exciter upon the system (when the 
coupling is tight, any resonance maxima which may be present are 
also flattened). 

Fig. 7.—Modes of IVansverse Vibration of a Stretched String giving its 
Fundamental and First Four Overtones 

The resonance system used to amplify the sound has a considerable 
influence upon its quality; for as a rule the different partials are ampli¬ 
fied to different extents, so that the ratio of the amplitudes of the 
overtones, which determintvs the quality, is altered. This effect may 
be desirable in many cases, but undesirable in others. Upon this 
depends to a great extent the difference between good and bad musical 
instruments. Examples of this will be given below (e.g. figs. 10, 20, 
21, pp. 260 and 203). 

2. Vibrating Solids as Sources of Sound: Transverse Vibrations of 
Strings.—In the transverse vibrations of a stretched string fixed at 
both ends there is always a node at each end (p. 238). Such a string 
can be made to vibrate either by plucking it or by bowing it with a 
violin bow previously rubbed with rosin. According to the nature of 
the plucking or bowing the string either vibrates with a single anti¬ 
node in the middle (fig. 7, 1) or in the other ways shown in fig. 7, i.e. 
either with 1 section or with 2, 3, 4, 5 or more equal sections. Vibra¬ 
tion in sections can be favoured by lightly touching the points which 
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are to become nodes, while the string is being bowed. Thus a string 
can give a scries of higher notes (overtones) in addition to its funda¬ 
mental. 

, From fig. 7 it follows further that the pitch of the note produced 
when there is one node in the middle is the same as that which would 
be produced if only one half of the string were to vibrate. Hence, if 
the fundamental note is C, the first overtone is c, i.e. the next note of 

the harmonic series. The higher overtones also 
coincide with notes of the harmonic series. Fig. 7 
shows the modes of vibration of the string in pro¬ 
ducing its fundamental C and the first four 
overtones c, g, c‘ and e'. The higher overtones 
are particularly easily brought out if the string be 
bowed near one end and a point not far away 

WWVWVVA/ 

a) 

FiK. 9.—Modes of Vibration of a Point of a 
String (rt) when Struck and {h) when Bowed 

Fig. 8. — Successive 
Shapes of a String plucked 
one quarter of the way 
from one end. 

iT 
" ~~ touched lightly with the finger. The positions of 

the nodes and antinodes can be made visible by 
placing small paper riders upon the string. At 
the nodes these riders remain in position; at the 
anti nodes they are thrown off. 

According to the formula given on p. 228 
the pitch varies with the length, tension, thick¬ 
ness and density of the string. 

Usually all the modes of vibration of the string 
arc produced simultaneously, and are superimposed. The quality or 
timbre of the sound then varies according to the relative amplitudes 
of the different overtones. The form of vibration and hence also the 
quality are found to depend considerably upon the nature of the 
excitation (bowing of a violin, plucking of a guitar, percussion of a 
piano). Fig. 8 shows (as it were cinematographically) the form of 
vibration of a string plucked one-quarter of the way from one end. 
Fig. 9 (like fig. 6, p. 256) shows the vibration of one point of the string: 
(o) when the string is struck, and {b) when bowed. 
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Since strings only have a small 
energy to the air is extremely slight, 
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Fig. lo.—Composition of the Sound of a Stradi- 
varius Violin (I-IV) and an Ordinary Violin (V) 

I •-« G-string, II = D-string, III == A-string, IV 
E-string, V »= A-string. (The upper numbers 

give the frequencies in hertz, the lower numbers 
mark the successive members of the harmonic 
series.) 

surface area, the transmission of 
, They must therefore be coupled 
to a resonator. But this ( Jianges 
the quality. Fig. 10 shows the 
composition of the quality of a 
good and a poor violin from the 
overtones. It is remarkable that 
in two of the cases in the figure 
the fundamental note is very 
weak. 

Transverse Vibrations of Rods. 
—Vibrations may be excited 
in an elastic steel rod when it 
is siipjiorted either at both ends 
or in the middle or at any 
other points. The points of sup- 
port become nodes. A straight 
homogeneous rod vibrates most 
easily when it is supported as 
in fig. II. The nodes then lie 
one-sixth of the length of the 
rod from each end; in the 
middle and at both ends are 
antinodes. Other modes of vibra¬ 
tion may be produced, but they 
can only be brought out fully 
by means of special external 
constraints. 

Vibrating rods are used for producing chimes with such instruments as the 
crescent (Turkish), in musical boxes and children’s glass-rod pianos, and in the 
xylophone. In the last named a row of tuned wooden rods is placed upon two 
bundles of straw laid upon the table at such an inclination to each other that 

y/ / / -y r // ^ //■■// / "T-rry r/ / / / 7TV 

Fig. 11 .—Transverse Vibration of an Elastic Rod 

they come under the nodes of the rods. In these-instrum cuts the rods arc struck 
in the middle with small hammers. 

Tuning Forks (fig. 12) are very important. They consist of bent 
rods which vibrate transversely. They may either be struck with a 
soft hammer or made to sound by bowing them. Antinodes are formed 
at both ends of a tuning fork (fig. 13); the ends move inwards or 
outwards simultaneously. Near the bend and equidistant from the 
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middle of the fork are two nodes. At the middle there is always an 
antinode. 

The tendency of a timing fork to form an antinode at the middle 
of the bend is not eliminated by providing it with a rod or 
stem which is held in the hand. Thus the stem of the 
fork also vibrates, in this case longitudinally. 

When the tuning fork is held with the end of its 
stem against some largo surface such as a table, the stem 
imparts periodic impulses to the table and thus sets it 
vibrating also with the same frequency, i.e. the same 
pitch, as the fork its(‘lf. The note of the fork thus 
becomes distinctly audible when the stem is placed 
against the table. At each up and down movement of 
the stem the table takes up a considerable part of the 
kinetic energy of the fork; hence the fork comes to 
rest much more quickly than if it is merely held in the 
hand. 

For physical experiments the stem of the timing fork 
is fix(‘d to the upper surface of a hollow wooden box 
(the sounding box) (fig^ 14). The top of the box performs 
forced vibrations owing to its coupling with the stem. Modeck 
The air in the box is also set vibrating with the same \ibration 

Fip. 12 frequency and consequently the note of the fork is 
Tun,HK Fork l o.k. 

Since the fork only gives one note, the sounding box 
(resonance box) is chosen so that its natural frequency is identical with that of 
the fork. (For a box closed at one end the length of one side must be about J of 
the wavedength X of the note in the air. For a box open at both ends, the length 
must be I a. ) 

The frequency of a tuning fork is determined by the mass and 
the elastic restoring force. As in the case of all vibrations, the j)eriod 

increases as the mass increases and 
as the restoring force decreases. 
Thus the pitch of a tuning fork 
is lowered when the mass of the 
moving parts is increased, e.g. by 
sticking wax on to one or both 
prongs. The effect is determined 
by the moment of inertia of the 
wax about the nodes; consequently 
the nearer the wax is to the free 
ends of the prongs, the greater the 
lowering of the pitch. 

The mass of the moving parts 
is diminished by filing away the 
prongs. This therefore raises the Tuning 

Fig. 14.—^Tuning Fork with pitch. On the Other hand, if Fork of 
Resonance Box tlliimer in the 1^‘gb Pitch. 

neighbourhood of the nodes, 
the restoring elastic force is made smaller and the pitch lowered. 

It is possible to make two tuning forks of identical pitch, the one long and 
thick and the other short and thin. The energy of vibration, however, is greater 
for the larger and thicker fork because its mass is greater. Hence very heavy forks 
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(fig. 15) are used for the production of high notes of sufficient loudnesa and 
duration. 

Since transversely vibrating rods usually only give their fundamental (fig. 7, 
p. 258), timing forks are of considerable importance for scientific purposes on 
accoimt of their purity of tone. 

Transverse Vibrations of Membranes and Plates.—The two-dimen¬ 
sional analogue of a string is a mefnbrane, artificially stretched so as 
to be capable of vibration. The two-dimensional analogue of a rod is a 
'plate, whose capacity for vibration is due to its elasticity. 

A square plate of glass or metal of uniform thickness, fixed at its 
middle point, can be set into vibration by bowing its edge. In this 
way stationary waves are formed over the whole of the plate. The 
state of vibration can be observed well by sprinkling fine sand upon the 
sounding plate. This is driven away from the places of maximum 
motion and piled up at the places of zero motion. In this way the 

KB KB B 

Fig. i8 Fig. 10 

Chladni Figures 

nodal lines sejjarating the antinodes are made visible. The ri^gions on 
opposite sides of a nodal line vibrate with opposite phase. The patterns 
obtained are called Chladni * figures. 

The formation of certain nodal lines can be favoured by touching the plate 
lightly at one or two points while it is being bowed. Figs. Ifi, 17 and 18 show 
the simplest figures in the case of a square plate held in the middle. Each figure 
corresponds to a certain note. The more complicated the figure, i.e. the larger 
the number of nodal lines, the higher the corresponding note. The higlier notes 
arc not harmonics of the fundamental. 

The form of the Chladni figures is altered if the plate is held at some other 
point instead of its middle. 

Circular plates usually divide up into an even number of vibrating sectors 
separated by radial nodal lines (fig. 19). The most readily formed pattern has 
six sectors. 

Bells are curved plates. When struck they divide up, like circular 
plates, into a number of sectors with a common point at the point of 
suspension. If a wine-glass partially filled with water is bowed at the 
rim, the formation of nodes and antinodes can be observed from the 

* Ernst Florens Friedrich Chladni (1756-1827), born in Wittenberg, died at 
Bre.slau; he started as a jurist, but later devoted himself wholly to his favourite science, 
acoustics, which ho enriched with many new discoveries. 

Fig. 16 Fig. 17 
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fact that the water is disturbed to different extents at different points 
of the side of the glass. 

The overtones of plates and bells are not as a rule harmonics of 
the fundamental. The art of 
bell-casting is to produce as 
many harmonic overtones as 
possible, and to avoid any 
which are not harmonic by 
suitable choice of size and 
thickness. 

The vibrations of mem¬ 
branes and plates have recently 
come into importance on ac¬ 
count of their extensive ap¬ 
plication in gramophones and 
loud-speakers. In this case 
the membranes and plates 
are not made to perform 
their own natural vibrations, but are only used for the trans¬ 
mission of forced vibrations to the air. Thus it is impoi*tant 
that all the frequencies of the exciter shall be amplified to the same 
ilegree. Since, however, the amplification is great('r for a natural 
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Fig. 20.—Curves showing the Reproduction of a 
“ Good ” (continuous line) and “ Bad (dotted 

line) Loud Speaker 

Fig. 21.—Curve showing the Reproduction of a Large Loud Speaker (II is an 
improved version of I) 

frequency of the membrane or plate than for other frequencies (fig. 17, 
p. 198), care must be taken to choose the shape, material and method 
of fixing so that the natural frequencies are repressed as much as 
possible. Figs. 20 and 21 show curves in which the ordinates are the 
amplitudes with which different frequencies of the same original in¬ 
tensity are reproduced. In theoretically perfect reproduction the 
curve would be a straight line parallel to the axis of abscissae 

Longitudinal Vibrations of Strings.—A stretched string can be 
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made to vibrate longitudinally by rubbing it with a rosined cloth. 
The ends of the string are always nodes. In the simplest case there is 
one antinode at the middle. The frequency of a longitudinally vibratin 
string can be calculated from Young’s modulus E and the density 
according to the formula given on p. 219, Vol. I. 

In the case of the fundamental, the wave-length X for the string is twice the 
length I of the string; for the distance of one node from the next is JX. Hence, 
having calculated the velocity of propagation from the formula 

c- 100 m. per sec. 

(at the place just cited it is proved that c = 5100 m. per sec. for a steel wire), 
we can also obtain the frequency from the equation 

V = 
c 

X 

(For the general equation c = vX, sec p. 222.) Now in the case of the fundamental 
"k — 21 and therefore 

V 
100 /e, 

2rV p* 

The frequency of a longitudinally vibrating string or wire is almost completely 
independent of its cross-se(?tion and its tension. 

Examples,—-A steed wire 1 m. long gives a fundamental of frequency 2550. 
In order to give the note a' with the frequency 435 as fundamental, a steel wire 
must be 5-86 m. in length. 

When there is a node in the middle as well as at tlu^ ends, the wave-length is 
equal to the length of the wire and the note is the octave of the fundamental. 

The overtones of a longitudinally vibrating wire form a harmonic series; 
for the distribution of nodes and antinodes is the same as that represented for 
transverse vibrations in fig. 21, p. 235. From the transverse vibrations shown in 
that figure we can construct the corresponding longitudinal vibrations by the 
method there shown, namely, by turning all the displacements through 90‘\ 
The maximum variations of density occur at the nodes, the minimum variations 
at the antinodes. 

Longitudinal Vibrations of Rods.—clamped elastic rod can be 
made to vibrate longitudinally by rubbing it. Metal rods and wooden 
rods may be rubbed with, a rosined leather, glass rods with a damp 
cork. The point where the rod is clamped is always a node. When this 
point is in the middle, the free ends become antinodes. The feequency 
can be calculated in the same way as that already given for longi> 
tudinally vibrating strings. The overtones correspond to the odd terms 
of the harmonic series. 

A rod clamped at one end has a node at that end and an antinode 
at the other. Its whole length is then a quarter of the wave-length of 
the fundamental. The overtones again correspond to the odd terms 
of the harmonic series. 

to
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If a rod is to have antinodes at the middle and at the ends, it must be clamped 
a quarter of the way along it from each end. The pitch is then the same as that 
of a rod of a quarter the length clamped at one end or a rod of half the length 
clamped in the middle. A rod clamped one quarter of the way along it from each 
end gives the purest possible note. 

The electrical excitation of quartz crystals to longitudinal vibra^ 
tions has recently become very important. This makes use of the 
proj)erty of quartz crystals of changing their length when an electric 
pressure is applied to the surfaces. (For further details sec Vol. HI.) 
Since it is possible to produce very pure electrical oscillations, very 
pure acoustic vibrations can be set iq) in this way. A quartz crystal 
in the shape of a plate or rod (piezo-electric crystal) is excited by an 
electrical oscillation corresponding to one of its natural frequencies, 
and is thus made to vibrate with great constancy and under certain 
conditions with very great intensity. (Thus, for example, from a 
quartz plate 10 X 10 X 1*0 cm. it has been possible to send out about 
1 kw. at 40,000 cycles.) Such crystals are used especially for the pro¬ 
duction of very high frequencies (up to several million cycles). 

Fig. 22.—Kundt Dust Figures (seen from above) 

3. Columns of Air as Resonators and Sources of Sound: Natural 
Frequencies of Air Columns.—Like the solid bodies discussed in the 
preceding section, air colunms also possess certain natural frequencies. 
When they are excited, stationary longitudinal waves are formed. 

The pro(jf of the formation of stationary waves can be obtained as folIo\^'s 
{Kundt,* 1866). One end (in fig. 22 to the left) of a horizontal glass tube is closed 
by a movable airtight piston. Into the other end projects a rod of glass (or metal) 
clamped at the middle. A small light disc of cork is attached to the end of the 
rod within the tube. The rod is now made to vibrato longitudinally by rubbing 
it with a damp cork. Its ends become antinodes and the cork disc is moved back¬ 
wards and forwards, thus imparting a regular succession of impulses in the form 
of sine vibrations to the air column enclosed in the tube. The piston at the other 
end of the tube is adjusted until at a certain povsition the note of the glass rod 
is considerably amplified. The air in the tube has then been set into stationary 
vibration, and has itself become a source of sound. 

In order to investigate the nature of the vibrations of the air column, fine 
cork dust is sprinkled in the tube (Kundt’s method). At resonance the dust piles 
up into peculiarly striated heaps; for, like the sand in the case of Chladni figures, 
it is driven away from the antinodes and collects at the nodes. The wave-length 
in the air column can be measured olf from the positions of the heaps. Com¬ 
parison with the length of the exciting rod then gives the ratio of the velocity of 
propagation in air and in the material of the rod. 

If the tube be filled with some other gas, the wave-length is different because 

* August Kundt (1838-94), Professor of Physics at Bonn. 
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the velocity of propagation is different. For this velocity c is given by Laplace’s 
equation (p. 231) 

‘-Vf- 
whence it follows that for constant y the velocities of propagation and heiu e also 
the wave-lengths for two gases are in the inverse ratio of the square roots of 
the respective densities, i.e. 

Now the densities are proportional to the molecular weights and (jLo. Conse¬ 
quently 

On the other hand, the method can be used to determine y (p. 231) in the case 
of gases of different y and known density. 

Vibrations of an Air Column Free at Both Ends (Open Pipe). - 
case the ends become antinodes, since the air can move freely 
there. In the simplest case there is one node at the middle, 
where the air therefore remains at rest. Here occur the 
maximum variations of pressure (p. 235), wdiile at the ends 
the pressure variations are a minimum (because the pressure 
differences can become equalized towards the outside). 

Investigation of the Motion of Air vibrating in Pipes.—Use is 
made of a pipe with a glass side (fig. 23). The pipe is excit(‘d in some 
w ay (see p. 270) and, while it is sounding, a light frame 
covered with very thin paper is lowered down into it 
upon a thread. A few grains of sand, previously placed 
on the paper, remain at rest in j)laces where the air is at 
rest, but dance up and dowm in a lively manner w here th(‘ 
air is in motion. When the pipe is giving its fundamental 
the minimum motion is found at the middle and the 
maximum motion at the open ends. 

The pressure conditions can be investigated (after 
Kundt) with the help of a water manometer of the type 
shown in fig. 24. The two openings are provided with 
small valves made of thin paper or rubber. The valve 
on the left opens outwards, i.e. under the influence of 
external rarefaction of the air, and shuts under the 
influence of external compression. The other valve opens 
inwards, i.e. under the influence of external compression. 
The manometer is lowered into the sounding pipe upon a 
thread, as in the case of the light frame in fig. 23. At 
the antinodes the water levels in both limbs remain the 
same; this occurs, for example, at the open ends of the nomctc/* 
pipe. But at the node (in the middle of the pipe) the 
manometer indicates a pressure difference of several 

centimetres. (Differences of 30 cm. water have been observed.) Thus it is seen 
that the maximum pressure changes occur at the nodes. 

Ill tills 

Fig. 23 
Position 

of the An¬ 
tinode in 

an Open 
Pipe. 
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In order to detect rapid variations of pressure use may be made of Konig’s * 
raanometrio flames. This device is shown in section in flg. 25. Coal gas enters 
below on the right and passes through the right-hand compartment of a small 
chamber to the jet above where it burns. The two compartments of the chamber 
are separated by a thin membrane of paper or rubber. 
So long as this membrane is at rest, the flame is steady; 
but when the membrane vibrates, periodic pressure varia¬ 
tions are set up in the right-hand compartment containing 
the coal gas and consequently the flame flickers wuth 
the same frequency. When viewed in a rotating mirror 
(fig. 26) the imago of the flame is drawn out laterally 
into a band showing the individual flickers. Fig. 27 
shows the appearance of the flame in the mirror when 
the membrane is under the influence of simple vibrations, 
which are caught in a trumpet (see fig. 25, on the left). 
Sucdi manometric flames can also be brought up directly 
in front of holes in a sounding pipe and the corresponding Manometric i<"ame 

pressure variations observed. 
The pressure conditions and the positions of nodes and anlinodos in an air 

column in stationary vibration can be w(‘ll demonstrated by means of the so- 
called wave tube showm in fig. 28. This is a tbin-walled iron tube with a row of 
holes in the top. It is closed at one end with 
a thin membrane and at the other with a 
cork, (k)al gas is conducted into tb(!i tube 
and ean be ignited at the holes so as to give 
a row of small flames of equal lieight. llie 
resonance box of a loudly sounding tuning 
fork is now broiiglit near the membrams or 
a pipe is made to sound there. -As a result 
the flames burn with dillerent heights and 
produce the result shown in the figure. 
Eaedi flame performs the same flickering 
motion as a Konig manometric flame. The 
greatest flickerings, i.o. the tallest flames, 
are produced at the places of maximum 
pressure variation, that is to say, at the 
nodes. 

The states of pressure and motion 
in the interior of a sounding pipe 
have been investigated oft(m and with 
great care. It has been found that: 

When an open is giving its 
fundamental, a node or position of rig. 26—Rotating Mirror 

minimum motion and maximum pressure 
variation is formed at the yniddle and ant/inodes or positions of maximum 
motion and minimum pressure variation at the ends, 

* Rudolf Konio, horn 1832 at Konigsberg, died 1904; from 1852 onwards in 
Paris, A mechanic, ho rendered valuable service in acoustics by the construction of 
suitable apparatus and by his own scientific researches. His w^orkshops are run to-day 
by Caiu’ENTIer. 
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Fig. 29 shows the conditions in the interior of an open pipe giving its funda¬ 
mental. Four phases at intervals of i period are depicted. In the first phase 
the density is the same throughout, but the air is moving from the ends towards 

the middle. This produces the second 
- phase, in which there is a compression in 

the middle. The air then flows away from 
the middle as shown in the third figure. 
It does not come to rest in the condition 
of uniform density, however, but over¬ 
shoots this and produces the fourth phase, 

Fig. 27.—Appearance of the Vibrating in which there is a rarefaction in the 
Flame m the Rotating Mirror middle. This succession of phases is then 

repeated in the same manner. 

A 2)ipc can also give overioms, the air column dividing up into 
nodes and antinodos as in the case of the transverse vibrations of a 
string. Fig. 30 shows the nature of this division in an open pipe giving 

its first four overtones. The jiairs of horizontal 
lines mark the nodes, the arrows the antinodes. 

The fundamental and the overtones of an open 
pip)e form a harmonic series. 

Vibrations of a Column of Air free at one end 
only (Closed Pipe).—When a pipe is closed at one 
end, this end is always a node and the open end 
is always an antinode. The positions of the nodes 
and antinodes in this case are shown in fig. 31. 
The first figure shows the conditions when the 
pipe is giving its fundamental, the second and 
third when it is giving its first and second over¬ 
tones respectively. 

The f undamental of a closed pipe is the same as 
that of an open pipe of twice the length. The over¬ 
tones of a closed pipe form the odd members of a 
harmonic series. 

Thus in the sound of a closed pipe the octave of the 
fundamental is missing. This accounts for the fact tliat 
a closed pipe sounds somcwdiat “ dull ” in comparison 
wdth an open one. 

Relation between the Length of a Pipe and 
its Pitch.—The frequency f of a note, its wave¬ 
length A and the velocity of propagation c are 
related by the equation (p. 222) 

c ~ vA. 

The wave-length of the fundamental of an open 
pipe is equal to twice the length of the pipe. 
Hence the frequency is inversely proportional 
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to the length of the pipe. From this it follows that the pitch of a pipe is 
lowered by lengthening it and raised by shortening it. In this way a 
pipe can be tuned to any desired pitch. 
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State of Vibration within an Open Pipe 

The way in which t his is done in the case of an open pipe is clear from fig. 32. 
A (jlosed pipe can be tuned as in fig. 33 by means of a plunger. 

The pitch of an open pipe can also be lowered by partially closing it. This 
method is widely used, for instance, in tuning organ pipes. The pitch (.)f a bugle 
can be lowered within certain limits by inserting the fist in the horn. 

It is not strhitly accurate to assume that there is an antinodc at an open (‘ud. 
This was first pointed out by Lord Ray¬ 
leigh (p. 226). The presence of the external 0 
body of air has the (effect of adding inertia 
to the air within the tube. This produces 
a virtual increase of hngih of the air 
column, with a (jonseepent lowering of 
I)itch. The effective increase in the length 
of the tube is about three-fifths of its 
radius for each open end, the end being 
supposed unflanged. 

It 
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== it 
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Fig. 31.—State of Vibration 

within a Closed Pipe 

Fig. 32 
Tunable 

Open Pipe 

Fig« 33 
Tunable 

Closed Pipe 

Natural Vibrations of Spherical Masses of Air. -In contrast to cylindrical 
or conical resonators, spherical resonators arc practically free from overtones. 
(The possible overtones do not belong to a harmonic series.) Thus they only 
amplify one note, the fundamental, by resonance. They find application espe¬ 
cially in the analysis of sounds, i.c. for finding out which partials are present. 
The resonator is placed with the narrow opening h (fig. 34) in the ear. It only 
amplifies the note to w hich it is tuned. Thus out of a mixture of notes only this 
one is hoard, provided, of course, that it was present in the original sound. 
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Excitation of Vibrations in Air Columns.—Stationary longitudinal 
waves can be produced in a column of air by any periodic movement 
whose frequency coincides with one of the natural frequencies of the 
column. Two types of excitation are of special importance: 
firstly, by means of the vibration of elastic tongues of metal 
(;rce(l pipes), and secondly, by means of the periodic separation 
of vortices from a sharp edge, the '' lip ” {flue pipes). 

Feed Pipes.- The air from the blower enters a chamber 
(fig. 35) from which its only escape is through a lateral slit. 
Ov(.T this slit is an elastic tongue or reed. When the velocity 
of the air stream is sufficiently great, the reed is swept back 
and closes the exit. Then when the air in the chamber has 
come to rest, the reed springs away again from the opening, 

allowing the air to flow out once more. 
This process is repeated in rapid suc¬ 
cession. 

In this way the air current is periodi¬ 
cally cut off, the frequency depending 
chiefly upon the natural frequency of 
the reed. The air vibrations thus pro- 
duc(^d serve to set up stationary waves 
in the i>ipe. It is necessary, therefore, 

to tune the natural frequency of the reed to that of the pipe. For 
this purpose the reed is provided with a spring (see fig.) by means of 
w^hich its length can be varied. 

Fig. 34.—Helmholtz’s 
Spherical Resonator 

Fij?. 35 
Reed Pipe 

with Sound 

Horn 

Air column and reed form an example of coupled systems. Actually the 
reaction of the former upon the latter is quite considerable, especially if the reed 
is very flexible. If, therefore, the natural frequencies of the reed and pipe are 
not exactly identical, combination vibrations are set up; in ilit'se the frequency 
of the reed is of the greater importance. 

The reed principle is used in organ reed pipes (metallic reeds), also in clarinets, 
oboes and bassoons (very elastic wooden reeds). The same principle is also applied 
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Fig. 36.—Composition of the Sound of a Clarinet, and of an Oboe 

in the case of the horn and other brass wind instruments, but here the lips of the 
player act as double reeds opening outwards. Fig. 36 shows the composition of 
the sound of a clarinet and an oboe. (Abscissae = frequencies; the numbers 
stand for the successive notes of the harmonic series. Ordinates = relative 
intensities.) 
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The sound of the reed itself is comparatively weak in the above 
cases. Reeds can be used, however, without air resonators, as in the 
harmonium and mouth-organ. 

The Human Voice.—The human 
voice-organ may be regarded as a 
double-reed pipe instrument (fig. 37). 
The double reed is formed by the 
meal chords. The air flows out through 
the glottis and sets the vocal chords 
vibrating. The cavities of mouth and 
nose act as resonators. 

Durijig normal breathing the vocal 
chords are slack, thus leaving a wide 
passage for the air. In speaking they are 
tightened and brought nearer together, so 
that only a narrow space, the glottis, is 
left between them. The air driv(‘n out of true vocal chords; d, trachea; e, anterior 

the lungs fiow^s through the glottis and larynx, 

thus causes the vocal chords to vibrate 
witli a fre(pien(\v that can be altered within certain limits by adjustment 
of their tensiem. The so-called false vocal chords (sec hg. 37) also influence the 
vii)rations of the true vocal chords, though only to a small extent. The air 
vibrations set up b}^ the vibrations of the vocal chords are generally composed 
of ^ (Ty many notes. The cavities of nose and mouth act as resonators. Their 
shape can be regulated by suitable adjustments of the positions of tongue, teeth, 
and lips, and in this way the ((uality of the sound, i.e. the amplification of the 
different notes of the mixture, varied at will. The vocal chords and the adjust¬ 
ment of the res<_)nance space of th(^ mouth and pharynx are particularly important 
for the formation of vowel sounds (irelmholtz vowel theory). In the formation 
of consonants the soft palate, tip of the tongue and li[)s are themselves made to 
vibrate at different places; these vibrations produce the desired effect either 
alone or in combination Avith the complex sound given out by the vocal chords. 

Each of the vowx'ls, as sung, has its owm characteristic sound composition. 
It is to be noted that for an adult the ahsolute 2>itch of the characteristic over¬ 
tones is constant, since it corresponds to certain natural vibrations of the mouth 
cavity in the position necessary for the production of the vowel sound. Thus 
the frequency of the characteristic overtones is independent of the particular 
note upon which the vowel is sung. Vowel sounds differ therefore from the sounds 
of most other musical instruments in that the strength of the overtones does 
not depend upon their x>osition in the harmonic series, but rather upon their 
absolute pitch. (Helmholtz.) 

Flue Pipes.—^Vortices sc'parate periodically at the surface between 
two layers of gas or liquid moving with difierent velocities. This 
occurs, for instance, in the case of air flowing out through a slit or 
nozzle. The result is a musical sound. 

Ascending cigarette smoko begins to oscillate of itself after rising a short 
distance. Compare also the separation of vortices in [fig. 68, p. 392, Vol. I. 
Air flowing out of a slit oscillates in the same manner. The cause of this regular 
periodic motion has been found to lie in the separation of vortices (p. 382, Vol. I), 
formed at the slit. (The same is also true of a current of gas or liquid directed 

Fig- 37-—Diagram of the Larynx 

a, epiglottis; b, false vocal chords; c. 
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against a sharp knife edge; here t(;o vortices are formed at the edge and separate 
in regular succession.) Compare in this connexion the regular flapping of a flag 

in a uniform wind; this is due to the separation of vortices 
alternately to the right and to the left. 

The period of the air vibrations depends upon the width of the 
slit and also upon the velocity of outflow, i.e. upon the pressure^ of 
the escarping air. 

If a knife edge or lip is placed in the way of the air 
current (as shown in fig. 39, where the lip is represented as 
a wedge), the air strikes in regular alternation upon the left 
and right sides, thus producing a note. The pitch depends 
upon the width and position of the lip as well as uj)on 
the size of the slit and the air pressure. The knife edg(‘ 
being extended upwards, periodic pressure variations ar(^ 
formed on both sides of it. These can be used for the 

Fiufp^pe excitation of stationary vibrations in an enclosed air 
column. 

By combining slit, lip and air column inio one apparatus wo obtain a so- 
callcd flue pipe of the type shown in longitudinal section in fig. 38. It consists 

Fig* 39-—Separation of Vortices when an Organ Pipe is blown (after Carri6re) 

(From Handbuch der Physik^ Vol. VIII, published by Julius Springer, Berlin) 

of an air chamber K with the exit slit S, opposite which is the lip L. The air can 
escape between the slit and the lip. The continuation of the lip forms the resonance 
tube R—the actual pipe. The periodically oscillating air escaping from S strikes 
against the lip L and gives rise to stationary longitudinal waves in the air en- 
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closed in R, provided that the frequency of oscillation of the air stream C(hneide3 
'With one of the natural frequencies of the pipe. There is also a reaction of the 
stationary waves produced in R upon the frequency of the impulses of the air 
stream. Even if the two frequencies were not exactly in tune originally, they 

I I I I I 1 m r IiTTn 
1 2 3 ft 5 C 7 8 910 15 

Fig. 40.—Composition of the Sound of a Flute (gently blown at medium and low pitch: 
medium, above; low, below) 

become identical automatically. But the pipe sounds most readily when prop(‘rly 
tuned. Hence for every pipe there is an optimum position of slit and lip. 

The frequency of the pipe is raised by narrowdng the slit and placing the lip 
nearer to it. Thus a flue pipe, which gives its fundamental when the slit is wid(i 
and the lip at a comparatively great distance from it, may give its (>v(Tton(‘s 
when the slit is made narrower and the lip brought nc^aror to it. 

Fig. 39 shows two photographs of the ])rocess(\s 
occurring when a flue pipe is blow’n. Two different 
times during one period are depicted. (The numlxTs 
give the fraction of the period already completed.) 
Flue liipes are used in organs. The flute and flagc'olet 
are instruments of this type. The sounds of a flute 
(fig. 40) have very few and very ftreble overtones and are 
therefore almost pure sine not(\s. 

Oalton Pipe.*—For the production of notes of very high 
pitch a small flue pipe (fig. 41) may be used. Its length can be 
varied with micrometer adjustment at E and the relative 
positions of the slit O and the lip D by means of the micrometer 
adjustment at B. The air is blown in at A. In this way it is 
possible to produce Irequencies as high as 30,000 cycles (per 
second). 

Sensitive Flames.—-When a current of gas is on the point 
Fig. 41.—Gallon of breaking up into vortices, this process can be brought about 

by very small external disturbances. If the pressuri^ of 
gas burning at a small jet is gradually increased, the flame 

will begin to “ roar ” at a certain point. The reason for this lies in the fact that 
at this pressure vortex-formation sets in. When now the pressure is diminished 
again until the “ roaring ” just stops, the steadily burning flame so obtained 
shows a peculiar behaviour towards notes of high pitch. When such a note is 
sounded at a short distance, the flame at once shortens. This also occurs even if 
the pitch of the note lies above the upper limit of audibility. Such a flame is 

* Francis Galton, born 1822 in London, died 1911, physician and meteorologist. 
(KuSO) 
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particularly sensitive towards rattling of glass, jingling of bundles of keys, crack¬ 
ling or tearing of paper, and clicking of the tongue. 

Excitation of Vibrations in Air Columns by other Means. — Singing 
Flames."* A current of gas issuing from a fine jet tends to begin to vibrate. 
This tendency persists in the case of hydrogen or coal gas when the current is 
ignited at the jet so as to burn wdth a long thin flame. If such a flame is intro¬ 
duced from below into a vertical glass tube about 2 or 3 cm. wide, the tube will 
begin to sound when the flame has reached a suitable position. The pitch of the 
note depends only upon the length of the air column. In this experiment the 
flame itself vibrates. The periodic development of heat due to the increase and 
decrease of the size of the flame plays an important part in maintaining thf‘, 
vibrations. 

A vertical tube can also be made to give a note by bringing a hot 
gauze under it at about a quarter of the length of the tube from its 
lower end. 

4. Production of Sound Waves without making use of Natural 
Vibrations. 

I'lg. 42.—Principle of 
the Siren 

The Siren.—The simplest source of sound from a theoretical standpoint is 
the siren (p. 253) of Cagniard LATOUR.f A circular disc (fig. 42) rotates about 

an axis through its centre in front of the opening of a 
nozzle through which air is blown. The disc has a row 
of holes in it parallel to its circumference; as it rotates, 
these holes move past the opening of the nozzle. Thus 
the air stream is periodically intcrru])ted. Each time a 
hole comes opposite the nozzle, a puff of compressed air 
escapes. Then when the opening of the nozzle is closed, 
the inertia of the moving air produces a rarefaction. 
These periodic pressure variations are propagated through 
the elastic air to our ears, where they are perceived 

as a musical note. If the number of revolutions of the disc per second is known, 
the frequency of the note is obtained by multiplying this by the number of holes. 

The siren may be driven either by the air current itsedf (often also by a current 
of high-pressure steam) or else by means of an electromotor. It is often provided 
with a revolution counter. 

All other notes produced by rotation belong to the same class. For example'., 
the singing of electromotors, turbines and rapidly rotating aeroplane engines, 
the screeching of circular saws (accompanied, however, by the natural vibrations 
of the saw plate), &c. 

Particular practical interest attaches to the sound of aeroplanesj which is 

* This experiment is often known by the name “ chemical harraonicon ” because 
this kind of production of musical sounds was first observed in 1777 by Higgi:ns during 
chemical experiments with hydrogen gas. The experiment can be carried out with 
equal success with a small coal-gas flame, especially if a small reservoir (e.g. a litre 
flask) bo inserted between the gas tap and the jet, so as to prevent the proximity of 
the tap from interfering with the formation of the vibrations. 

t Charles Cagniard de Latotjr (1777-1859) first determined the frequency of 

a note in 1819 by means of his siren. The remarkable name “ siren ” is derived from 
the fact that the apparatus also produces musical notes under water when driven by 
a stream of water instead of air. This is the rather far-fetched reason for naming it 
after the island sea-nymphs, who sang with such bewitching sweetness to Odysseus. 
The siren was considerably improved by Ltjdwio Seebeck (1805-49), grammar- 
school master, latterly Professor of Physics at Leipzig. 
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made up partly of the sii*en notes of the motor and propellers and partly of the 
“ flue” notes produced by the current of air past the machine (p. 272). 

The Thermophone.—This device is based upon the fact that the periodic de¬ 
velopment of heat in a very thin metal wire carrying an alternating electric 
current is transmitted to the surrounding gaseous medium, thus producing corre¬ 
sponding pressure variations. (The frequency of those variations is found to be 
either the same as or twice that of the alternating electric current, according to 
the conditions.) The thermophone, which functions very exactly and the in- 
t(uisity of whose sound productiem can be calculated, has recently found exten¬ 
sive application for scientific purposes. 



CHAPTER TT 

Sound Waves. Hearing. Music 

1. The Propagation of Sound 
L Velocity of Propagation.—The velocity of propagation of longi¬ 

tudinal elastic waves, of which sound is a special case, has already 
been discussed (p. 229 et seq,). As we have seen, the velocity of sound 
in solids and liquids is considerably greater than in gases. The follow¬ 
ing table gives the values for a few substances: 

Hydrogen at 0° C. .. 1261 m. per sec 
Carbon dioxide at 0° C. .. .. 259 
Water at 15° C. .. 1440 
Sea water at 15° C. .. 1503 
Aluminium. .. 5104 
Lead .. 1320 
Cork . approx. 500 
Rubber . „ 50 

The velocity of sound in normal moist air is, in metres per second, 

C = 331 vr+ 0-UOS 

where t is the temperature in degrees centigrade. 
The initial velocity of propagation of explosive waves is often con¬ 

siderably greater than that of soimd. In air such initial velocities have 
been measured up to twice the normal velocity of sound. 

2. Reflection of Sound.—The reflection of sound is governed by 
the same laws as have already been given (p. 216 et seq?j for waves. 
After reflection at a plane wall, the sound waves move as if they had 
come from a source lying as far behind the wall as the real source of 
the incident waves lies in front of it (acoustic image of the source). 
If the real source is far enough from the wall, the reflected sound 
(echo) is heard separately from the original sound. For this it is neces¬ 
sary that a certain interval of time shall elapse between the arrival of 
the two sounds at the ear. 

When the source is nearer to the wall, we hear the reflected sound 
merely as a prolongation of the original one (reverberation). In closed 

276 
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spaces the reverberation serves to amplify the sound, provided that 
it follows so rapidly as to be superimposed upon it. On the other 
hand, if the reverberation reaches our car so late that it is super¬ 
imposed upon a subsequent sound, the effect is to render the whole 
indistinct and blurred (disturbing reverberation in large churches). 

We can distinguish about 10 sounds per second (compare p. 283). Hence 
at ]7‘^ C. the source of sound must be at least 340/10 — 34 m. distant from its 
acoustic image, i.e. at least 17 m. from the reflecting wall, in order that the echo 
may be heard separately from the original sound. 

If a source of soimd is placed at the focus of a large spherical con¬ 
cave reflector, the reflected waves have a plane front (fig. 13, p. 218). 
Hence they no longer spread in all directions and can therefore travel 
long distances in a straight line (whispering galleries). Ear trumpets 
and speaking tubes also depend upon this kind of concentration of 
the sound energy. 

h 
knv 
80, 

Fig. I.—Path of Sound througii the Atmosphere over Great Distances 

The rofi(‘ction of sound waves has found a very important practical appli¬ 
cation in the sonic depth finder of Behm. This is used princi])al]y for measuring 
the depth of the sea, w'hich is obtained from the time taken by a sound signal 
to reach the bottom and be reflected back again as an echo. Very reliable results 
are obtained by the use of automatic time registration. With the help of this 
very rapid method more accurate information has been obtained about the shape 
of the sea bed than was hitherto possible. The pro(;edure is also of great impor¬ 
tance for the safety of navigation. The method is likewise used in aviation. 

3. Refraction of Sound Waves.—^When sound waves pass from one 
medium into another, a change of direction (refraction) occurs. The 
nature of this has been discussed fully above (p. 248 et seq.). It has 
been found possible to make large concave lenses of thin paper or 
rubber sheet filled with carbon dioxide, which focus sound rays in the 
same way as light rays are made to converge by a convex lens of glass 
(condenser lens). 

The frequently observed anomalous propagation of sound is duo to refraction 
through air layers of different temperature. This is the explanation of the “ zone 
of silence ” (fig. 5, p. 255). Fig. 1 represents the paths of a sound over great 
distances under fairly normal meteorological conditions. Attempts have recently 
been made to obtain information about the course of sounds and hence about the 
state of the upper atmospheric strata by means of artificially produced explosions. 
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Superposition of Sound Waves. Beats.—When two wave trains of 
approximately the same frequency meet, periodic intensity variations 
or beats are produced (p. 224). The number of beats per second is 
equal to the dilforence between the frequencies of the two systems. 
When two sources simultaneously sound musical notes of slightly 
different pitch, the ear perceives these periodic intensity variations as 
an alternation of crescendo and diminuendo. Such beats can be heard 
easily in the case of two similar tuning forks, one of which has been 
put slightly out of tune by sticking some wax on its prongs. 

The formation of beats is a certain proof that two notes are approximately 
but not exactly in tune. Use is made of this in tuning musical instruments. 

Combination Tones. Two pure notes may give rise to further notes 
called combination tones, especially if they both exert a strong in¬ 
fluence upon the same body—say a mass of air or a membrane. The 
most intense of these new notes is usually the so-called difference tone, 
which has b(‘on known for a long time.* Its pitch corresponds to the 
difference — ?^2 of the frequencies of the notes producing it. The 
difference tone may be regarded as a beat tone. As the beats become 
more rapid, they eventually produce an audible note, the difference 
tone. The so-called summational tone + n^ is usually considerably 
weaker and hardly audible. Difference tones of higher order are also 
often easily perceptible. The theory of combination tones has been 
given by H. Helmholtz. They must appear whenever the amplitudes 
of the vibrations of the sounding body are so great that the restoring 
force can no longer be taken as proportional to the displacement from 
the equilibrium position as required by Hooke’s law. If the square 
or higher powers of the displacement occur in the expression for the 
restoring force, the latter is no longer symmetrical. Combination tones 
may be formed at the different membranes within the ear; in this 
case they are not present in the outer air and cannot be amplified by 
means of resonators. They are therefore known as cniotic f or subjec¬ 
tive combination tones to distinguish them from the objective combin¬ 
ation tones, which can be amplified by resonators. 

Interference of Sound Waves.—Interference can arise by the su})er- 
position of two systems of sound waves, just as for water waves 
(figs. 6 and 7, p. 214). It can be recognized by the ear when the fre¬ 
quencies of the two notes are either identical or slightly different. 

The conditions for the production of two synchronous J wave systems 
in the air arc fulfilled, for example, when a tuning fork vibrates freely. 

* The violin virtuoso Giuseppe Tartini (1692-1770) first discussed combination 
tones in 1754 in an essay; the Lobenstein organist Georg Andreas Soroe liad first 
referred to them publicly in 1744. 

f Gr., entds, within; ous, dios, the ear. 
J Gr., syn, together; chronos, time. Synchronous is used in physics to describe two 

processes whose successive states occur simultaneously. 



THE PROPAGATION OF SOUND 279 

Two similar wave systems S2)read from the two prongs and produce 
interference. The greatest amplitude of the resultant waves formed by 
the superposition of the two components lies on the perpendicular 
bisector of the line joining the prongs. At 
the sides of this line of greatest amplitude lie 
two hyperbolic lines of minimum amplitude. 

The pr(‘H(‘nco of these regions of maximum and 
minimum loudness c^an be detected by the ear by 
walking round a sounding tuning fork or turning 
the fork near the ear. As the fork is turned right 
round once, the note is heard to increase or decrease 
in intensity four times. It is loud(\st on th(‘- per¬ 
pendicular bisector of the line joining the prongs 
and attains another maximum of intensity upon Fig. 2.—interference Hyperbola 

the line joining the prongs. Between these maxima ^ Tuning Fork 

lie ilie four directions of minimum loudness. 
In lig. 2 the shaded rectangles represent the two ends of the prongs seen in 

plan. The two continuous lines are the directions of maximum loudness, the 
dotted hyperbola branches (p. 212) the loci of the ix)sitions of minimum loudness. 
The form of tljtj hypcTbola depends upon the distance between the prongs of the 
fork and also upon the wave-huigth of the note. 

If two tuning forks of th(^ samc^ pitch are 
made to sound sid(' by side, new interferences are 
produced between th(^ two forks as well as those 
due to each fork s(‘f)arately. JMaxima of loudness 
are again obtained upon the per])endicular bisector 
of the line joining th(^ two forks, and on each 
sidt^ of this there are again hyperbolic regions of 
minimum loudness. When the forks are at a 
greater distance apart s(‘veral hyperbolas of maxi¬ 
mum and minimum loudness may be formed. 

The following instructive experiment upon the 
int('rf(TC‘nca^ of sound waves was first described by 

it may also be used to determine the 
wave-length of a note. The tube T (fig. 3) is 
join(;d as shown to another tube whh^h is bent 
round at A and B and unites again at the tube O. 
T'he one limb B of tlu^ double tube can be drawn 
out in the manner of a trombone. The tube T is 
placed before a source giving a pure note, so that 
the waves pass through the apparatus via both A pig. 3.—Interference Tube 

and B to O. If the lengths of the paths traversed (after G. Quincke) 

by the sound waves in the two limbs are equal, 
the two parts of the w^avo system reach O in the same phase and therefore 
combine to give approximately the original intensity. But if the variable limb 
be pulled out a distance d, i.e. if the path on that side bo increased by 2d, the 
two parts of the wave system will reach 0 with a phase difference. When 
now the path difference 2d is equal to an odd multiple of half the wave-length, 
the two parts will interfere and neutralize each other and nothing will be heard 
at 0. On the contrary, when the path difference is equal to an even multiple 
of half the wave-length a maximum of loudness is heard at 0. 

* Georg Quincke (1834-1924), Professor of Physics at Heidelberg until 1908. 
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2. The Doppler* Effect 
As a whistling locomotive, a tram sounding its bell, or a cyclist 

ringing his cycle bell passes us, we hear a sudden drop in the pitch of 
the note. These are special cases of a general effect. 

TFAcn the distance between us and a source giving a note is decreasing, 
the filch of the note apferns to he raised; when the distance is increasing, 
the fitch Off ears to he lowered as compared with the pitch when the dis¬ 
tance is cmtstant. 

1. Medium at Rest Relative to the Observer.-As the source of the note 
approaches our ear, the distance between the successive compressions is reduced, 
since the point at which the second compression is sent out from the source* lies 
nearer than the point at which the first is sent out. The wave-length is therefore 
diminished as compared with the case in which both source and observer are at 
r(‘st. The diminution 8 is ecpial to the distance covered by the source during 

^^ ".... 

Fig. 4.—Doppler Effect; source in motion, observer at rest 

one complete vibration (fig. 4). If the source T moves a distance a per sect)nd 
(velocity relative to the ear) and a distance 8 per vibration, we must have 

where n is the frequency of the note. The wave-length X is reduced by S to the 
new apparent wave-length X', i.e. 

X' X — 8. 

The apparent frequency n' is given by the relation (p. 222) 

Hence w e have 
c~n\— n'W 

If the source recedes from the car with the relative velocity a, we have instead 

X" = X + S and ~ ^ . n. 
c + a 

As a source of sound approaches an observer its pitch appears too high; as it 
recedes, its pitch appears too low\ At the moment of passing, therefore, the 
apparent pitch must fall suddenly. The interval of this fall is 

_ c -h a ^ 

n" c a 

* Chkistian Doppler (1803-53), Professor of Mathematics in Prague and Vienna, 
first enunciated the principle of this effect in 1842 in connexion with the colour of 
stars. He maintained that the colour of a self-luminous body (e.g. a star) must be 
displaced towards the blue end of the spectrum when the body is moving towards us, 
and towards the red end when it is receding from us. Buys-Ballot (1817-91) investi¬ 
gated the effect experimentally with moving sound sources in 1845. See also Vol. V. 
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Example,the velocity of a cyclist be a ■— 
Then 

n' 330 I 5 ^ 07 

~n" 330 - 5 “ 05 ^ 

18 km. per hr. = 5 m. per sec. 

I 03. 

The musical interval through which the note of the cyclist's boH falls as he passes 
a stationary observer is therefore smaller than a smaller chromatic semitone 
(i.e. 25/24 — 1-04). Tor a railway locomotive moving at 54 km. per hr.™ 15 m. 
per sec. the corresjionding interval is 

330 } 15 23 

330 - 15 ‘ “ 21 
1005, 

i.e. somewhat smaller than a minor tone (10/0 ^ Ml). 
2. Medium at Rest Relative to the Source. AMien the ear O approaches the 

fiource T with the velocity a (fig. 5)» it hears not only the n vibrations sent out 

a_ 

Fig. 5.— Doppler F.ffect; source at rest, observer in motion 

from 1' per second but also those lying upon the path of length a which it covers. 
The extra number d of vibrations entering the ear per setamd is given by 

d:n ^ a ic. 

w hence d = —. 
c 

I'he apparent frequency Vi is then 
/ 17 c -]■' a 

n/ = 71 }- d ~ —- . 
c 

When the ear recedes from tlie source the positive sign becomes negative and 
we have 

Demonstration and Experimental Observation.—The change of pitch due to 
the motion of the source can be demonstrated by swinging a whistle round in a 
circle (best in the open air) upon the end of a rubber tube through which the 
whistle is blown. An observer standing in the plane of the circular motion hears 
a rise and fall of pitch every revolution. 

In the case of two railway trains passing one another in opposite directions, 
the one whistling, an observer in the other hears at the instant of passing a change 
of pitch over an interval w hich may be as great as a third. 

When a powerful tuning fork (fig. 15, j). 201) of say n ■- - 20W is made to 
approach a wall with the velocity a ™ 1 m. per sec., an observer situated farther 
from the wall hears distinct beats. These are due to the superposition of the 
•direct and reflected waves. The former arrive at the ear directly from the fork, 
which is receding. The reflected waves behave as if they came from the acoustic 
image of the fork (behind the wall), which is approaching the ear with the same 
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velocity. Thus the ear hears two notes of frequencies n' and n'*. Since c = 330 m. 
per sec., a = 1 m. per sec., and n — 2000, we have 

w' = 2006 and =- 1994. 

The ear therefore hears 12 beats per second. 

3. The Human Ear 

The human organ of hearing (fig. 6) consists of the external part 
or finna, the ear canal or avditory meatus, the drum or tympanic mem- 
hrane, the small bones or ossicles (called respectively the hammer, 
anvil and stirrup), the vestibule with the three semicircular canals, 
the spiral cochlea and the Eustachian tuhe.^ 

Fig. 6.—^The Human Organ of Hearing (Right Ear). All Parts shown in the natural positions 

a, external ear canal; h, drum or tympanic membrane; c, chain of ossicles; semicircular 

canals; e, auditory nerve; /, cochlea; g, carotid; h, Eustachian tube. 

A musical note entering by way of the pinna and ear canal jiro- 
duces vibrations of the tympanic membrane; these are then trails- 
mitted by the ossicles to the oval window of the vestibule. The laby¬ 
rinth, consisting of the vestibule, semicircular canals and spiral cochlea, 
is filled with a fluid, which is thus also made to vibrate. The cochlea 
is divided by a partition into two hollow spaces lying one above the 
other, and known as the scala vestibuli and the scala tympani. This 
partition is composed of a bony projection from the axis of the cochlea, 
joined at the outside to a membrane; it is the part of the ear which 
really receives the sound. The membrane part of the partition and 

* So called after the physician Bartolommeo Eustachio (born 1574 in Koine), 
who gave an accurate description of the ear. 
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also a system of extremely fine Iiairs (Corti’s* organ) are set into vibra¬ 
tion by the vibration of the fluid filling the inner ear. The different 
hairs of Corti’s organ and the membrane of the partition are of different 
length and thickness (the number of hairs is about 5000) and thus 
r(\sound to different frequencies. The ends of the individual nerve- 
fibres of the auditory nerve are attached to the ends of the individual 
hairs. Thus when a note of a certain pitch strikes the ear, it is trans¬ 
mitted through the ossicles and the fluid of the inner ear to the mem¬ 
brane and sets a definite hair of Corti’s organ vibrating (probably by 
vortex formation in the surrounding fluid). The nerve fibre attached 
to the end of the vibrating hair then transmits the excitation to the 
brain (resonance theory of audition). 

The semicircular canals lie in three mutually perpendicular planes. They 
are assumed to give us our sense of direction in space (upwards, forwards, side¬ 
ways) and our capacity for preserving our equilibrium. The otoliths (bony 
(concretions in the membranous labyrinth) probably have a similar function. 

The mnf^e of audibility, both from the point of view of frequency 
and of loudness, is shown in fig. 1, p. 252. The upper pitch limit of 
audibility varies for diflerent individuals. It decreases with increasing 
age: at 20 years old it is about 19,000, at 35 about 15,000, and at 
47 about 13,000 vibrations per second. Thus old people can no longer 
hear such sounds as the chirping of cric^kets or the squeak of bats. 

According to fig. 1, p. 252, the greatest sensitivity of the ear for small 
sound intensities lies at a frequency of about 2300 h(‘rtz. This sen¬ 
sitivity is extremely high. The minimum pressure variations of about 
7.10“^ dynes per cm.^ are less than 10“® atm.; thus the ear can detect 
air vibrations whose amplitudes are much smaller than one atomic 
diameter (10”® cm.) (M. Wien). 

Experienced musicians are also extremely semsitive to small dilTercnces in 
pitch between two notes. In order that they may b(', recognized as out of tune, 
the frequencies of two notes (of medium average pitch—500-2500 hertz) need 
only differ by a fraction of 1 hertz. The minimum perceptible difference of pitch 
is found to be indejxmdent of the absolute pitch over a wide range. 

Our comparatively certain sense of the direction from which a sound reaches 
us probably depends on our extreme sensitivity to differences in the time of 
arrival at our two ears. When this difference is less than 0-00003 sec. the source 
of the sound seems to be in the plane bisecting at right angles the line joining our 
ears. But if the difference is greater than this minimum, the source is recognized 
as being more or less to the side, according to the magnitude of the difference. 
The impression of maximum lateral position of the source (i.e. 90'^ to the right 
or left) corresponds to a time difference of 0*0006 sec. This impression remains 
for all greater differences. The lower limit 0*00003 sec. corresponds to a sound 
path of 1 cm.; the upper limit 0*(X)00 sec. to a path of 21 cm. If the sounds are 
not of short duration (clicks or pops) but sustained notes, the impre^ssion of direc- 

* First described in 1851 by Marchese Alfonso Cokti (1822-76). Corti took his 
doctorate in 1847 at Vienna, later carried out anatomical investigations of the inner 
ear at Wurzburg, but had to give up science on account of illness, and devoted him¬ 
self from 1852 onwards to agriculture in his native country, Italy. 
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tion is determined apparently by the time difference between the arrival of the 
same phase at the two cars. Thus notes with wave-lengths shorter than 1 cm. 
would not convey any sense of direction, if they were audible. As a matter of 
fact the highest audible notes (chirping of crickets) can only be localized with 
the greatest difficulty, whereas for notes of medium pitch the direction can be 
determined correct to about If a signal of short duration (a click) arrives at 
one ear more than 1*2.10“^ sec. later than at the other, it is hoard twice. Thus 
unconsciously (i.e. as direction) we can recognize time differences as low as 3.10”“ 
sec. with our ears; consciously, as low as 1*2.10”® sec. 

4. Theory of Music 
Consonance, Dissonance, Triad.—The impression, produced by 

sounding two musical notes together may be pleasant or unpleasant, 
according to the particular notes chosen. In the first case we say that 
the notes are consonant, in the second case dissonant. In the former 
class we may quote the octave (C-c), fifth (C-G), fourth (C-F), 
major third (C-E), and minor third (E~G). The pairs of notes given in 
brackets are examples of the respective consonances. Other examples 
of a fifth are (E-B) and (F-c). The second (G-D) and the seventh (C-B) 
are the chief examples of dissonances. Comparing the ratios of the 
frequencies in consonant pairs we arrive at the following general law: 

The ratio of the frequencies of two consonant notes can be expressed 
as the ratio of two small whole numbers. The smaller these numberSy 
the more comflete the consonance, (Pythagorean school about 500 b.c.) 

According to Helmholtz the dissonance of two notes is due to 
the effect of beats, which (like all intermittent stimuli, such as the 
flickering of light, scratching and the like) cause an unpleasant sen¬ 
sation. The feeling of dissonance is no longer produced if the beats are 
slow enough to be recognized as separate disturbances, nor if their 
frequency exceeds a certain limit. In the latter case, as for rapidly 
intermittent light like an arc or filament lamp lit with an alternating 
current of high enough frequency, the variations become too rapid 
to tire the nerves and the notes blend to a consonant mixture. The 
beats formed by the superposition of the many overtones may also 
cause dissonance in the case of two or more musical sounds. In the 
same way the higher harmonic overtones (the interval between which 
decreases as we pass up the harmonic series) or the presence of inhar¬ 
monic overtones may impart a dissonant character to a single musical 
sound. Bells may show markedly inharmonic overtones (p. 263). 

Arranging the consonances according to the magnitude of their inter¬ 
vals, we obtain: 

C-c .. octave .. 1:2 
C-G fifth .. 2:3 
C-F .. fourth .. 3:1 
C-A .. sixth .. 3:5 
C-E .. major third .. 4:5 
E-G .. minor third .. 5:6 



THEORY OF MUSIC 285 

The reason why the boundary between consonance and dissonance lies at the 
number 7 may perhaps lie in the fact that this number does not correspond to 
any note used in music. Thus because the intervals 6 : 7 and 7 : 8 do not exist, 
the gap between the intervals 5 : 6 and 8: 9 is particularly wide. The interval 
5 : G is reckoned (nowadays) among the consonances, but 8 : 9 among the dis- 
sonaiKics. 

If several notes are to be consonant, each pair of them must also 
be consonant. The most complete consonance within the range of an 
octave is the major triad or common chord 

C-E-G -4:5:6. 

Adding the octave of the ground note or toiiic we obtain the con¬ 
sonance 

C-E-G-c - 4 : 5 : 6 : 8. 

The consonant intervals in this are the octave, fifth, fourth, major 
third and minor third. 

Jf to this major triad we add above the further major triad fonned 
of the notes G-B-d and below the further major triad fonned by the 
notes iVA|-C, we obtain the sequence 

r,-Ai-C-E-G-B^, 

which contains all the notes of the major scale or their higher or lower 
octaves. (Construction of the scale according to Chlabni, p. 262.) 

Minor Scale.—The scale given above is the major scale. The chief 
difference in the minor scale is that the third note is replaced by a 
somewhat lower note at the interval G : 5. Thus in the bottom line of 
the table on p. 253 the frequency 30 (re) must be replaced by 28-8. 
In the minor scale the sixth and seventh notes are also lowered. 

The Major Scale with Arbitrary Tonic.—In playing a piano it is 
desirable to be able to produce a major scale starting from any note. 
Thus, for example, it is desirable that the series of numbers 24, 27, 
30, &c., proportional to the frequencies shall correspond to actual notes 
of the piano when we start at D instead of C. The intervals 8 : 9 and 
9:10 are so nearly equal that they can only be distinguished with 
difficulty (p. 254). Thus the major scale with 1) as tonic can be startcid 
with the notes D, E. The next note must be such that the ratio of 
its frequency to that of E is either 9:8 or 10:9. This note does not 
exist in the major scale of C. It must be higher than F and lower than 
G. Its frequency can be found by multiplying that of D (namely 27) 
by 5/4 (interval of the major third). In this way we obtain the fre¬ 
quency 33*75. Proceeding farther, it is found necessary to insert 
another new note between c and d; for in the major scale of D the 
seventh note (with the interval 15/8 from the ground note 27) corre¬ 
sponds to a frequency of 27.15/8 — 50*63. This lies between c (48) 
and d (54). 
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Starting from the other notes as tonics and forming major scales, 
we come to the result that new notes have to be inserted between each 
of the pairs of consecutive notes of the scale CDEFGABc. This 
is done by multiplying the frequency of the next lower note by 25/24 
(the note so obtained is known as the sharp and is indicated by the 
symbol S) and that of the next higher note by 24/25 (the note so 
obtained is called and is indicated by the symbol 1^). Thus the 
notes obtained by sharpening the notes of the major scale of C are: 
Clf, DS, ES, FS, GS, A$, and Those obtained by flattening are: 
C , D , E , F , G , A , and B The calculation does not give identical 
frequencies for such pairs as C& and D^, the former of which has the 
frequency 25-0 and the latter 25*92. But since these two frequencies 
only differ slightly, they are replaced by a single note lying between 
them in the case of instruments (such as the organ and piano) which 
only have fixed notes. This compromise gives a new note which bears 
both names and 

Equalization of Intervals.—^A musical error is introduced by insert¬ 
ing only one note instead of two between C and D, 1) and E, F and G, 
and A and B. In order to make this error as small as possible in instru¬ 
ments with fixed notes (e.g, piano, harp and organ), it is spread out 
over all the notes of the octave by making all the intervals (12 in 
number) of the octave exactly equal. This is done by dividing up the 
octave interval (2:1) into twelve equal intervals, each having the 
value iy2 : 1 — 1*0595 : 1. The scale so obtained is said to be equally 
tempered. In it the interval C-D is 1*1225, instead of 
27/24 ~ 1*1250 as in the natural scale. The complete scale of 12 semi¬ 
tones is called the chromatic scale. 

In instruments (such as the violin, whose “ open ” strings give the notes 
g, d, a‘ and e*) where the notes are not fixed, the player tunes his notes by ear by 
pressing his finger on the string so as to mark off a certain suitable length. When 
playing alone without piano accompaniment, a violinist plays natural (i.e. not 
tempered) notes; but when playing together with a piano or organ he must 
temper his scales equally so as to match the fixed notes of the accompanying 
instrument. 

The tuning of a musical instrument with fixed notes is performed as follows. 
The note a‘ is first tuned correctly with the help of a standard tuning fork (435 
vibrations per second, French pitch). The remaining notes are then tuned by ear 
to the right intervals, proceeding upwards and downwards from a* by fifths. 
A correction must subsequently be applied, because proceeding in fifths does not 
give exactly the same result as proceeding in octaves. Thus the seventh octave 
with the interval 2’: 1 ~ 128 ; 1 differs from the twelfth fifth with the interval 
(3/2)12 . I _ 129-7 .* 1. The tuning by fifths is therefore corrected subsequently, 
so that the highest note a““ exactly coincides with the seventh octave of the 
lowest note A,|. The octaves are made pure, because our ear is much more sensi¬ 
tive to impure octaves than to impure fifths. The impure but equally tempered 
fifth has the interval (^\2y : 1 — 1*498: 1 instead of 1*5: 1, as in the natural 
scale. 
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The equally tempered tuning of an instrument with fixed notes can only be 
performed by persons who by long practice have attained the musical ear for 
this temperament, analogous to the natural musical ear for untempered intervals. 

Relative and Absolute Frequencies of the Notes 

OF THE Upper Octave 

Relative Frequencies • 
Absolute Frequencies 

of the Notes of the 

Natural Tuning 
Equally 7'empered 

Tuning 
Upper Octave (a'—435) 

c umm l-(X)000 258-052 

c ^ l*()416fi 1 
10594t) 274-033 

d? 1-08(MK) 1 

d M2r)(X) 1 12240 290-327 

M7187) 
1 18921 307-592 

]-2(H)(K)i 

e 1-25000 \ 
1-25992 325-881 

1-28(HKI 1 

1-30208 1 
1-33484 345-259 

f l-333;5;5( 

fs l-3888y) 
1-41421 365-730 

g" 144(XK)i 

g 1-5(XKK» 1-49831 387-541 

gS l-.xwrxi \ 
1-58740 410-585 

l-(i0(K)0l 

a l-6(i607 1-08179 435 
a^ l-73()lll 

b^ l-8(KXK)| 1-78180 460-866 

b 
o'? 

1-875001 

1-!)2(XX)/ 
1-88775 488-271 

b;: 1-95313 
2-0000 517-305 

c 2-fXKXW / 
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Table 1V6.—Vapoub Pressube of Water in Kg./<^ ® 

t p t P t P t P 

99^ 0. 1 158 6 183 11 200 16 
119 2 J()4 7 186 12 203 17 
1:12 3 199 8 190 13 206 18 
142 ' 4 174 9 194 14 209 19 
ini ' 5 179 10 197 15 211 20 

Table V. Pressure {in Mm. of MERCirRy) and DENsrry 

(ln (tR./M.^) of Saturated Water Vapour 

p P t P P t P P t P 
“C. mm. •’C. rnm. R./m.* "C. mm. ii-lm ’ ^C. mm. ff./m “ 

- 10 1-95 214 0 T58 4-84 i-10 9-2 9‘4 -r20 17-5 17*3 
.... 2-13 2-33 + 1 4-9 5-2 11 9-8 lO'O 21 18*7 18*3 
-s 2-32 2-54 2 5-3 5-6 12 10*5 10-7 22 19*8 19*4 
„.7 2'53 2«76 3 5-7 60 13 11-2 11*4 23 2M 20-6 

" - 
2*76 2-99 4 61 6-4 14 120 12-1 24 22*4 21*8 

— 5 1 301 324 6*5 6-8 15 12-8 12-8 25 23*8 23*0 
„..4 3-28 3-51 6 7-0 7'3 16 13-6 13-6 26 25*2 24*4 
-3 j 3-57 3-81 7 7*5 7-8 17 14-5 14*5 27 26*7 25*8 
-2 I ' 3-88 413 8 8*0 , 8-3 18 15-5 15*4 28 28*3 27*2 
-1 ; 422 4-47 9 8-6 8*8 19 16-5 16*3 29 30*0 28-7 

Table VI.—ITiessure of Saturated Vapours (in Mm. of Mercury) 

1 Temperature Ether 
Carbon 

Disulphide 
Alcohol Benzene Water Mercury 

-20“ C. 66 47 3*3 6 0*77 
0 185 128 12*5 26 4*6 0*0004 

+ 20 440 298 441 75 17*5 0*0011 
40 920 618 133*6 182 65*3 0-0(Ki 
60 1740 1160 351 389 149*2 0-025 
80 3000 2030 812 753 ! 355*1 009 

100 4900 3220 1690 1342 760 0-28 

Boiling-point 34*5 "G. 46-2“ 1 78*3° 
! 

80*2^ 100^ 356*7*" 
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Table VII.—Cmtioal Temperatures and Pressures 

Critical 
T ernpera- 
turc, “C. 

Critical 
Pressure, 

Atmo¬ 
spheres 

Critical 
Tempera¬ 
ture, °C. 

Critical 
Pres.su rc, 

A trna- 
spheres 

Helium -267-84 2-26 Ammonia 133 112 
Hydrugen -239-91 12-80 Sulphur dioxide 157 78 
Neon ., -228-91 26*86 Ether 194 35*5 
Nitrogen -14713 , 33-4 Alcohol .. 243 1 63 
Oxygen -118-82 i 49-71 Carbon disulphide 273 1 76 
Methane -82*85 45*60 Benzene .. 288 47 
Kthylene 
Carbon dioxide 

-f 9-5 
-1 3M 

60-65 
73 

Water 374 218 

Table VIII.—Heats of Combustion (K-Cal) 

Reaction 
Per Gramme 
of Substance 

Burned 

For the Num¬ 
ber of Mols O2 

appearing in 
the Equation 

Remarks 

2H2 0, 2H2() 34-3 1370 Product liquid 
2K, 0, 2K,0 1*24 194*2 solid 
2Na2 + 02 2Na20 2-08 192*0 99 99 

2Ca + Go 2CaO 3-49 280 99 99 

2Zn 02 -■ 2ZnO 1-30 170*4 99 99 

2Cu + 0, 2CuO 0-684 74*4 99 99 

4Cu -f O2 2Cu.,0 0-32 81-6 99 99 

2Pb -f Oj — 2Pbb 0-243 100-6 tJ 99 

2S + 20, 2S0, 2-21 141*2 » gaseous 
2S "f 30, 2S0, 2-87 183-8 >» „ 
P4 + 60, 2P,0, 6-96 740 99 solid 
2N2 + 0^ 2N,0 -0-631 -35-4 99 gaseous 
N2 + 0. 2N0 -1-64 -43-2 99 j> 

N2 + 20, 2N0, -0142 - 4-0 99 99 

2Nj + 50, 2N,0, -0-043 - 2*4 99 99 

2C + 0. 2C0 2*17 52*2 Diamond, product gaseous 
G 4" 0, CO, 7-86 94-3 . „ 

C + 0, CO, 8*0 97 Amorphous, „ „ 
C + O2 CO, 7*9 95 Graphite, „ „ 



EXAMPLES 

HEAT 

CHAP. I (pp. 1-34) 

1. How can the coefficient of expansion of a solid body in the form of a rod 
be measured? 

By how many degrees must a piece of iron be raised in temperature so that 
its volume will increase by a thousandth part of itself? 

(Coefficient of linear expansion of iron — 0-000012.) (Liv. Inter.) 

2. How have you determined the specific heat of a metal? What precautions 
would you have to take if you wished to make a more accurate deterrninaiion? 

What evidence can you give for the assumption which you use in the cal¬ 
culation, viz. that the heat absorbed by a quantity of water is proportional to 
its rise of temperature? {Liv. Inter.) 

3. Describe an accurate method of measuring the specific heat of a solid. 
Discuss the general nature of the results of experiments to determine the atomic 
heats of elements. (C. Tripos^ PL 1.) 

4. Explain carefully why a gas has two principal specific heats. 
Describe a method of measuring each experimentally. {Liv. F.) 

6. A boy eats 0-5 kgm. of ice at 0"^ C. in 10 minutes. What horse-power does 
he expend if his body temperature is 98° F.? 

746 watts = 1 h.p. Latent heat of ice == 80 calorios/gramme. {Br. Inter.) 

6. Describe one of the more accurate methods of determining the mechanical 
equivalent of heat. 

Given that the mean radius of the earth is 6400 km. and its mean specific 
heat is 0*1, find the rise in temperature the earth w ould experience if its energy 
of rotation were suddenly transformed into heat. 

1 calorie is equivalent to 4*2 X 10’ ergs. {Br. F.) 

7. State clearly the meaning of the term “ mechanical equivalent of heat ”, 
The difference in temperature between the top and bottom of a waterfall 

200 metres high is 0-4° C. Assuming that all the heat developed remains in the 
water, deduce a value for the mechanical equivalent of heat. {Br. Inter.) 

8. In what way has it been showm that heat is a form of energy? 
A loaded cart weighing 2 tons runs for half a mile down a hill, the gradient 

of which is 1 in 20. At the foot of the hill its velocity is 20 feet per sec. E^ind 
approximately the amount of heat developed by friction during the descent. 

(Neglect the kinetic energy of rotation of the wheels.) 
^ = 32 ft./sec.*. One water lb. degree centigrade unit of heat ™ 1390 foot¬ 

pounds. (Hr. Inter.) 
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9. Explain why the specific heat of a gas at constant pressure differs from 
the specific heat at constant volume. 

Show how this difference in the specific heats of a gas has been used to esti¬ 
mate the value of the mechanical equivalent of heat. (Br. Inter,) 

CHAP. II (pp. 35-64) 

10. Outline the essential features of the kinetic theory of gases and apply 
it, so far as you can, to account for the laws of Boyle, Avogadro, and Charles. 

(London Ext.) 

11. What do you understand by the “ mean square velocity ” of the mole¬ 
cules of a gas? Describe how it can be calculated, proving any formula you use. 

If the root mean square velocity of an oxj^gen molecule at N.T.P. is 461 m. 
per second, what is that of a hydrogen molecule (a) under the same conditions, 
(6) at 100° C.? (Sheffield Inter.) 

12. Show how, on the kinetic theory of gases, the pressure depends upon 
the molecular mass and velocities. 

Show that, on this theory, all perfect gases will have the same coefficient of 
expansion. (Liv. F.) 

13. Give an account of the simple kinetic theory of gases and deduce a value 
of the mean square of the molecular velocity. Explain how Boyle's law follows 
from this theory. (G. Tripos, Pt. I.) 

14. Show how the gravitational constant G has been accurately determined. 
To what temperature must the surface of the moon be raised in order that 

hydrogen molecules may escape, if it be supposed that all the molecules have 
the energy corresponding to the temperature of the surface? 

Mass of moon — 7 X lO^^ gm.; radius of moon = 1760 km. 
Gravitational constant = 6-7 X 10“®; R = 2 calories. (Oxford F,) 

15. Describe a method of determining the ratio of the two specific heats of 
a gas. What inferences concerning the constitution of the molecules of a gas 
have been drawm from the value of this ratio? (C. Tripos, Pt. 1.) 

16. Explain why the specific heats of a gas at constant pressure and at con¬ 
stant volume differ, and show that for a gas whose molecules have each n degrees 
of freedom 

Describe some experiment by means of which this ratio has been determined. 
(Manchester, H. Pt. I.) 

17. Describe the methods of measuring the atomic heats of metals at low 
temperatures. 

Suggest the outlines of a theory which gives results corresponding closely 
with experiment. (Ox. F.) 

18. Describe an accurate method for the determination of the specific heat 
of a solid at low temperatures. State briefly the results of the examination of 
specific heats of solids over a wide range of temperatures. (Land. Inter.) 

19. Derive an expression for the coefficient of viscosity of a gas. 
(Bond. Inter.) 
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20. Describe the main theoretical and experimental investigations of the 
Brownian movement. (G, Tripos, Pt, IL) 

21. Survey the methods, based on the kinetic theory, of determining 
Loschmidt’s number. (Lond. Exter.) 

22. How may the value of the mean free path of a gaseous molecule be deduced 
from (1) the coefficient of diffusion, (2) the coefficient of viscosity of tho gas? 

Give a short account of experiments on Brownian movements. (Br, F.) 

23. Explain in terms of the molecular theory of matter (1) the phenomenon 
of diffusion, (2) tho spherical form of a drop of water, (3) evaporation. 

(Br, Inter.) 

24. Explain what is meant by osmotic pressure and describe how it may bo 
measured. 

A solution of barium chloride (BaCl2) containing one-tenth of a grarame- 
molecnle per litre has an osmotic pressure of 4-48 atmospheres at 17° C. Find 
the percentage of the salt which is dissociated. 

(1 litre of hydrogen at N.T.P. weighs 0*089 gm.) (C, Tripos, Pt. I.) 

CHAP. Ill (pp. 65-91) 

25. Describe a form of calorimeter which depends in its action upon tho 
change of volume which results when ice melts. 

An iron ball, of weight 160 gm., and at 100° C., is brought to 0° by immersing 
it in a mixture of ice and water contained in a thermally insulated vessel. Find 
tho change in volume of the mixture, given that the specific heat of iron is 0*10 
and that tho density of ice is 0*92. (Latent heat of ice = 80 calories per 
gramme.) {Br. Inter.) 

26. Describe and explain tho action of tho Bunsen ice calorimeter. 
(Br. Inter.) 

27. Show from thermodynamical reasoning that a substance which contracts 
on melting has its melting-point lowered by an increase in tho pressure. 

Calculate from familiar data th^ freezing-point of water at a pressure of 50 
atmospheres. (Br. P. <£? Hons., Pt. I.) 

28. What is meant by the term “ latent heat ” ? 
Steam at 100° C. is passed into a mixture of ice and water at 0° C. How 

much ice will be melted when 10 gm. of steam have been condensed? 
Latent heat of fusion of ice = 80 centigrade imits. 
Latent heat of evaporation of water at 100° C. = 537 centigrade units. 

(Br. Inter.) 

29. How may tho temperature of saturated water vapour be determined for 
a series of pressures below that of the atmosphere? 

On a certain day tho actual temperature is 15° C. and the dew point is 6° C. 
Calculate the relative humidity and indicate how the mass of water vapour in 1 
litre of air could be estimated. 

Saturated vapour pressure at 6° C. 7-0 mm. of mercury. 
„ „ „ 16°C. «12*7 „ „ (Br. Inter.) 

30. Explain what is meant by the “ triple point ” for a substance. 
Show on a pv diagram the general shape of the isothermals near the triple 

point of a substance (a) which expands on melting, (6) which contracts on 
melting. 

Explain the state of the substance denoted by various portions of the iso¬ 
thermals. (Br. F.) 
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31. A cylindrical^ vessel contains a mixture of air and saturated water vapour. 
The pressure of the mixture is 780 mm. of mercury, the partial pressure of the 
vapour being 20 mm. What is the pressure when the volume of the vessel is 
reduced to one-half of its original volume at constant temperature? 

(j?r. Inter,) 

32. Describe carefully a method of determining the vapour density of an 
unsaturatod vapour (ether, for example), giving the necessary calculations. 

(Shejf. Inter.) 

33. What is meant by the saturated vapour pressure of a liquid? Explain 
how it is related to the boiling-point. 

A cylinder provided with a frictionless movable piston contains air and a 
small amount of water. When the temperature is increased from 7° C. to 47° C. 
the distance of the piston from the closed end of the cylinder increases by 25 
per cent, the external atmospheric pressure on the piston remaining constant 
throughout and equal to 76 cm. Assuming that the saturated vapour pressure 
of water at 7° C. is 1 cm., calculate its value at 47° C. (Man, H.) 

34. Give drawings of the isothermal curves for carbon dioxide (liquid and 
vapour) in the neighbourhood of its critical temperature. By what experimental 
means are such curves obtained? How will they be altered if the gas is not pure 
but contains a small proportion of air? (Liv. F.) 

35. Discuss, with diagrams, the form of the isothermals of a substance above 
and below its critical temperature. 

Explain briefly the principles underlying some method of liquefying gases 
such as air. (Man. H.) 

36. Write a short account of the simple physical properties of gases and 
vapours. (Liv. Inter.) 

37. Describe the experiments which have been made, and the results which 
have been obtained, on the relation between the pressure, volume, and tempera¬ 
ture of a gas. 

How have the deviations from the simple laws been explained? 
(C. Tripos^ Pt, I.) 

CHAP. IV (pp. 92-173) 

38. Obtain a relation connecting the pressure and volume of a given mass 
of gas which is subjected to an adiabatic change. 

Calculate the rise in temperature of a quantity of gas, initially at a tem¬ 
perature of 15° C., if its pressure is suddenly doubled (y = 1*4). (Man. H.) 

39. Show that the external work done by a body during expansion is given 

pdv in the usual notation. 
Vx 

Find from the following data how much of the speoifio heat of hydrogen at 
constant pressure is due to the external work done in expansion. 

1 gm. of hydrogen at a pressure of 76 cm. of mercury at 0° C. occupies 11*2 
litres. 

Specific gravity of mercury = 13*6. J = 4*2 X 10^ ergs/calorie. 

40. A gas expands imder conditions which prevent heat from entering or 
leaving it. Discuss the two limiting cases: 

(a) a very slow expansion; 
(h) expansion into a region of low pressure, so that the external work don© 

can be taken as negligible. 
Explain very briefly the bearing of (b) on the problem of producing low tem¬ 

peratures. (C. Tripos, Ft L) 
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41. Describe and discuss the porous plug experiments of Joule and Kelvin. 
Explain what is meant by temperature of inversion, illustrating your answer 

by reference to hydrogen or helium. {Lond, Extcr.) 

42. Give an account of the principle governing the action of a refrigerating 
machine. 

Explain why the large heat content of the earth is not used as a source of 
energy. (Liv, F.) 

43. Give an account of the methods of liquefying gases, and discuss the 
principles on which these methods depend. (G. Tripos, PL I.) 

44. Explain what is meant by a reversible change. 
Show that the efficiency of all reversible engines working between the same 

two temperatures is the same. (G. Tripos, Ft. I.) 

46. State and explain the second law of thermod5mamic8, and show how it 
can be used to define an absolute scale of temperature. (G. Tripos, Pt. I,) 

46. Assuming the properties of a Carnot engine, show how a scale of tem¬ 
perature may be devised which is independent of the properties of any particular 
substance. What fixes the zero of such a scale? 

How may this absolute scale bo realized approximately in practice? 
(Man. H.) 

4:1, Define the term “ entropy ”. 
What is meant by the statement that the entropy of a system tends to a 

maximum? 
What change of entropy occurs when 50 gm. of steam at 100° C. are converted 

into water at the same temperature? 
Latent heat of steam ~ 536. {Br, F,) 

48. Define “ entropy ” and show that the change in entropy of a self-contained 
system in passing from one state to another depends only upon the initial and 
final states. Show also that the entropy of a system is increased by processes 
which tend to equalize the temperatures of its parts. (Man., E, PL I.) 

49. What are the conditions which must be fulfilled by an ideal heat engine? 
Point out some of the ways in which an actual steam engine fails to fulfil these 
conditions. 

Show that the Carnot engine is the most perfect possible engine, and cal¬ 
culate the efficiency of that engine when working between the temperatures 
100° and 10° C. (Br. F.) 

CHAP. V (pp. 174-184) 

60, Draw a diagram of a typical hot-water system of a house. 
In a certain hotel it is found that every time a hot bath is taken by a visitor 

15 lb. extra of coal have to be fed to the fire under the boiler of the hot-water 
system to restore the initial conditions. Using the following data, calculate the 
percentage of the available heat which is used. Give two causes of the low value 
obtained. 

Heating value of coal === 8000 lb. °C. units per lb. 
Weight of iron bath = 224 lb. 
Specific heat of iron =* 0-11. 
Weight of water used 300 lb. 
Temperature of supply water — 10° C. 
iPinal temperature of water in bath == 38° C. (SJteff. Inter.) 



298 EXAMPLES 

61. Describe a method of finding the thermal conductivity of a good con¬ 
ductor. 

A long metal bar is coated with wax, and one end of the bar is maintained 
at a temperature above the melting-point of the wax. If Newton’s law of cooling 
holds, show that when the steady state is reached the length of the portion of 
the bar on which the wax is molted is proportional to the square root of the 
thermal conductivity. (0. Tripos, Pt. L) 

52. What is meant by the coefficient of thermal conductivity? 
The walls of a cottage are 12 cm. thick and are built of material o^ conduc¬ 

tivity 0-0035. The temperature inside the cottage is kept by fires at 15° C., the 
outside temperature being 6° C. Tho area of the walls is 1000 sq. m. What is the 
minimum amount of coal of calorific value 8400 cals, per gm. that must be burnt 
per hour in order to maintain a constant temperature of the interior? 

(Br. Inter.) 

53. Describe a method suitable for finding the thermal conductivity of a 
liquid. 

Discuss the difficulties which beset the investigation of the thermal con¬ 
ductivity of gases and indicate how and to what extent they have been overcome. 

(Lond, Exter.) 

VIBEATIONS AND WAVES 

CHAPS. I, II (pp. 189-249) 

64. What do you understand by simple harmonic motion? 
A beam of light falls on a screen after successive reflections from two small 

mirrors attached to the prongs of two tuning forks vibrating in perpendicular 
planes, tho frequency of one fork being nearly twice that of the other. Describe 
and explain the figures produced on the screen. Inter,) 

65. Show that the energy in a train of progressive sound waves is half potential 
and half kinetic. 

Find an expression for the energy conveyed by sound waves, and show how 
the amplitude of vibration necessary for audibility has been determined. 

(Br, F.) 

56. Show that the velocity of propagation of longitudinal waves in a uniform 

rod is VE/p, where E is Young’s modulus for the rod and p is its density. 
A uniform rod is suspended vertically, being clamped at its upper end. Find 

how the elongation produced by its weight varies with its length. 
{Man., H, Pt, I.) 

67. Prove that the elasticity of a gas for adiabatic compressions is yp, where 
y is the ratio of the specific heat and p is tho pressure. {Ox, F,) 

58. An observer sets his watch by the sound of the mnversity boll one mile^ 
away. Find the allowance that he should make on account of the distance, the 
temperature of the air being 20° C. 

(Velocity of sound at 0° C. — 1080 feet per second.) {Br, Inter,) 

69. Find an expression for the velocity of sound in a gas in terms of the 
elasticity and density of the gas. 

Two trains of waves of the same form, amplitude and wave-length traverse 
the same region of space in opposite directions. Show that they lead to the 
formation of nodes and loops. {Lmd, Inter,) 
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60. Discuss the principles involved in the use of a stroboscope. 
In order to test the speed of a gramophone turntable there is placed upon 

it a disc marked with 36 equally-spaced radial lines. When this disc is viewed 
in the light from a lamp served from the alternating current mains of frequency 
60 per second it appears, while the table is rotating, to be stationary. Find the 
possible values of revolutions per minute of the turntable. (Leeds Inter.) 

61. Light from an arc-lamp is focused at a point near the circumference 
of a cardboard disc in which are cut 30 equally-spaced holes, so that the light 
is alternately transmitted and interrupted when the disc rotates. A vibrating 
tuning fork appears to be motionless when viewed by the light transmitted if 
the disc makes 260 revolutions per minute. Explain this phenomenon. 

How many beats would be heard per second if this fork were sounded simul¬ 
taneously with one of frequency 128? Lnfer.) 

62. Show that the resultant of two wave-motions of equal wave-length and 
amplitude travelling in opposite directions is a system of stationary waves, and 
deduce an equation for the resultant motion. 

How could the velocity of soimd in a gas be deduced from observations on 
such a system of stationary waves? (Br. P.) 

63. Compare the characteristics of progressive and stationary waves. 
Describe methods of producing stationary waves in which the vibrations 

are (a) transverse, (h) longitudinal. How would you show' the presence of nodes 
and antinodes in each case? {C. Tripos, PL 1.) 

64. Discuss the application of the method of dividing a wave-front into 
Fresnel zones to diffraction phenomena, illustrating your answer with particular 
examples. How many half-period elements are there in a circular portion, 1 cm. 
radius, of a plane wave-front, given that the w^ave-length is 6 X 10"*^ (m. and 
the distance of the point of observation from the wave-front 1 metre'? 

(Man.y H. Pt. I.) 

SOUND 

CHAPS. I, II (pp. 251-287) 

65. Describe a method of measuring the frequency of the note emitted by a 
tuning fork. 

Two stretched wires A and B, each of the same metal and under the same 
tension, emit the same note when plucked. The length of A is 3 ft. and its dia¬ 
meter is half that of B. What is the length of B? If the tension in B is doubled, 
to what length must it be adjusted to give again the same note as A? 

(Br. Inter.) 

66. Prove that the velocity of a pulse along a stretched string varies directly 
as the square root of the tension and inversely as the square root of the linear 
density. 

Calculate the frequency of the fundamental note of a string 1 metre long, 
w'eighing 2 gm., when stretched by a weight of 100 kilogrammes. (Br. F.) 

67. Discuss the terms loudness, pitch, and quality os applied to a musical 
note. Account for the difference in quality of the notes given by a closed and 
an open organ pip©. {Leeds Inter.) 
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68. Discuss the character of the vibrations of a uniform rod clamped in the 
middle and stroked with a resined cloth. The rod being 2 metres long, of metal 
of density 7 and of Young’s modulus 10^® C.G.S., find the pitch of the vibration 
of lowest frequency and that of the next lowest. {Br, P.) 

69. Describe a simple form of singing flame. Account for its behaviour in 
maintaining a column of air in vibration. {Land, Inter.) 

70. Draw an analogy between the possible modes of vibration of a stretched 
wire and of a column of air. Give an explanation of the difference in quality 
between a closed and an open organ pipe. (Br. Inter.) 

71. Explain why the sound of a large explosion has only a limited range of 
audibility in the immediate neighbourhood of the explosion, and why, also, there 
is a second zone of audibility at a great distance from the source, with a silent 
zone inside. What evidence can be obtained about the upper atmosphere from 
observations of sound in these regions? (Ox. F.) 

72. Explain Doppler’s principle. 
A spectnim line, of wave-length 4 X 10”® cm., in the spectrum of the light 

from a star is found to be displaced from its normal position towards the red 
end of the spectrum by an amount equivalent to 10~® cm. What velocity of the 
star in the line of sight would account for this? (C. Tripos, Pi. I.) 

73. Describe some experiments illustrating the reflection and refraction of 
sound. 

I’he sides of a certain mountain pass assumed to bo vertical are 1 mile apart. 
A man in the pass fires a gun and hears the first two echoes, one from each side, 
4 seconds apart. Where is he with respect to the sides? 

(Velocity of sound = 1100 ft./sec.) (Br. Inter.) 

74. A vibrating tuning fork tied to the end of a string 6 ft. long is whirled 
roimd in a circle. If it makes two revolutions a second, calculate the ratio of the 
frequencies of the highest and lowest notes heard by an observer situated in the 
plane of the tuning fork. 

(Velocity of sound = 1100 ft./seo.) {Man. H.) 



ANSWERS TO EXAMPLES 

I. 27-8° C. 6. 0-66 h.p. 8. 103-1° C. 

7. 4‘90 X 10’ ergs per calorie. 8. 405 lb. "C. units. 

II. 1844 metres per second; 2155 metres per second. 

14. 150° C. 24. 43-8 per cent. 25. A contraction of 1-74 c.o. 

27. -0-34° C. 28. 79-6 gr. 29. 55-1 per cent. 

31. 1540 mm. of mercury. 33. 7*45 cm. of mercury. 

38. 76*9° C. 39. 0-99 calories/gr. 47. 71*8 calorie8/°C. 

49. 0*24. 60. 7-57 per cent. 52. 12-5 Kg. 

56. Elongation varies as where L is the original length. 58. 4*72 secs. 

60. I60*7w/ rotations/min. where n is an integer. Note that the frequency of 
occurrence of the maximum illumination from the lamp is lOO/sec. 

61. Frequency of fork must be 125n vibrations per second, where n is an 

integer. If n = 1 there wiU be a beat frequency of three per second. 

3 
64. 167. 65. 1-5 ft.; ft. 66. 350 cycles/seo. 

68. 946 cycles/sec.; 2835 cycles/sec. 

72. A velocity of recession of 75 km./sec. 

78. 1540 ft. from one side, 74. 1-147 :1. 
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Absolute scale, 3, 124. 
— temperature, 13, 14, 297. 
— zero, 3, II, 14, 19, 151. 
-and efficiency of engine, 122. 
Absorption of sound, 256. 
Adiabatic (debnition), 93. 
— chaises in a gas, 92-8, 292. 
-(Poisson’s law), 93-7. 
-(/>. V relation), 95. 
-T relation), 97. 
-(work done in), 103-5. 
— elasticity of a gas, 298. 
—• processes, and entropy, 136. 
Adiabatics and isothermals, 100, loi. 
— in Carnot’s cycle, 116-8. 
Adiathermic, 178. 
Advancing waves. See Progressive Waves* 
Aeroplanes, sound of, 274. 
Air columns, vibrations of, 265-74. 
— liquid, 90. 
— pump, Gaede’s, 64. 
-molecular, 51. 
— water vapour in, 84-8. 
Alloys, melting-point of, 70, 71. 
AmontonSj ii. 
Amplification, 263, 265, 269. 
— of sounds, 258. 
— of vibration, 199. 
Arnplitude, 220, 232, 256. 
— in Fresnel zones, 243. 
— of stationary wave, 238. 
‘— of vibration, 191, 192. 
— of wave, 209, 210, 
— pressure, 251, 252, 254. 
Andrews, T., 88. 
— and the critical point, 88-90, 
•— experiments on carbon dioxide, 88-90. 
Antinodes, 234, 237, 264, 265, 266, 299. 
— in plates and bells, 26a, 
— in tuning-fork, 260. 
Atmosphere, sound exploration of, 277. 
— water vapour in, 84-8. 
Atomic heat, 24, 25, 289-90. 
-anomalous, 46. 
— rays, 53. 
Atoms, number of, iri molecule, 231. 
Audibility, 296. 
— limits of, 251. 
— range of, 283. 
Audition, resonance theory of, 283. 
Avogadro constant, 52, 53, 60. 
— hypothesis, 40, 
"T law, 16. 

Bassoon, 270. 

Beats, 104, 195, 201, 202, 224, 225, 278. 
— and dissonance, 284. 
Bells, 262, 263. 
— and dissonance, 284. 
Benson method, in steam production, 158. 
Berthelot, 148. 
— principle, 147, 148, 150. 
Black, Joseph, 26, 68. 
Blackburn, Hugh, 195. 
— pendulum, 195. 
Boilers, 156-8. 
Boiling, 66. 
Boiling-point, 65. 
— and height, 78. 
— and pressure, 75-7, 144. 
— and vapour pressure, 77. 
— determination of, 73, 
— of solutions, 79. 
— specific elevation of, 79. 
Boltzmann, and kinetic theory, 40. 
— and probability, 114. 
— and second law, 126, 129. 
— constant, 41, 60, 138. 
Bomb, calorimetric, 146. 
Bound energy, 148-50. 
Boyle-Gay-Lussac law, 13, 14, 17, 39, 40, 

82. 
Boyle’s law, 12, 13, 93, 160, 230. 
-on kinetic theory, 38, 290. 
Braun, K. F., 152. 
Brownian motion, 54-60. 
— movements, 35, 128, 129, 141, 291. 
Bumping, in boiling, 66, 67. 
Bunsen ice calorimeter, 69. 
Buys-Ballot, 280. 

Calibration of thermometer, 4, 
Callendar and Barnes, 185-7. 
Calorie, 20, 26, 
— work equivalent of, 32. 
Calorimeter, 21-3. 
— Bunsen ice, 68, 69. 
— electric steady-flow, 185, 186. 
— ice, 291. 
— Joly steam, 187, 188. 
Calorimetry, 21, 22. 
— continuous flow, 185-7. 
Capacity, heat, 21. 
Carbon dioxide, isothermals of, 89, 
Carnot, Sadi, 27, 115, 
-— cycle, 115-26, 143, 162. 
-and entropy, 130, 131. 
-and refrigerating machines, 120. 
-thermal efficiency of, 120. 
— engine, 293. 
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Carr^ ice machine, io8, 109. 
Celsius, 3. 
Change of state, 65-91. 
Chemistry and thermodynamics, 147. 
Chladni, E. F. F., 262, 285. 
— figures, 262. 
Chord, common, 285. 
Circular motions, combination of, 197. 
Clapeyron, 16, 27. 
— equation of state, 16. 
— p-v diagram, 117, 122, 123, 143. 
Clarinet, 270. 
Clausius, R., 34, 36, 91. 
— and second law, 126. 
Clausius-CIapeyron equation, 72, 73, 143, 

^ 144. 
Cl{5ment-Desormes, method for c/lc7', 98, 

99- 
Clerk Maxwell, and kinetic theory, 40. 
Colding, L. A., 31. 
Colladon and Sturm, 231. 
Colloids, 62. 
Combination of vibrations, 193-7. 
-optical, 196, 197. 
— tones, 278. 
Combustion, heat of, 146. 
Comma, 254. 
Complete differential (dQ/T), 132. 
Component waves, 221. 
Compound engines, 159. 
Compressibility of gas, 230. 
— of water, 231. 
Condensation, delayed, 67. 
Condenser, 158, 159, 163. 
Conduction of heat, 175-84. 
-formula for, 176. 
-in bar, 175, 176. 
Conductivity, thermal, 298. 
-by comparative method, 181, 182. 
-by electrical method, 180, 181. 
— — by experiment, 179-84. 
— — by Forbes’s method, 180. 
—- — by Lees’ method, 182, 183. 
— — definition of, 176. 
-Ingenhousz’s experiment on, 176. 
-of crystals, 177. 
-of gases, 49, 177, 184. 
-of good conductors, 179-82. 
-of liquids, 177, 183. 
-of solid non-metals, 182, 183. 
Connecting rod, 156. 
Consonance, 284. 
Convection currents, elimination of, 183, 

184. 
— of heat, 174, 175. 
Cooling curve, 67, 71. 
— law of, Newton’s, 179. 
Corti, A., 283. 
Coupled systems, 270. 
-{propagation of energy in, 203-7. 
— torsional vibrations, 204. 
—- vibrations, 201-7. 
-frequency changes in, 201, 202. 
-of damped systems, 202. 
Coupling of vibrators in sound, 257, 258, 
— tight and loose, 201, 202. 
CranK web, 156. 
Crescent, 260. 
Critical opalescence, 141. 
— point, 79, 89, 90, 141* 
— pressure, 90. 

Critical speeds, 199. 
— temperature, 89, 90, 292. 
Cross-head, 156. 
Cryohydrate, 71. 
Cryoscopic method for molecular weights, 

70. . . . 
Crystal, piezo-electric, 265. 
Curtis wheel, 168. 
Cycle, 111-24. 
— Carnot’s, 115-26. 
— four-stroke, 170, 171* 
— reversible, ii2. 
— two-stroke, 170, 171. 
— vibrations, 189. 
Cyclic processes, 111-24. 
Cylinder, in steam engine, 154-64. 

Dalton temperature scale, 19. 
Dalton’s law, for evaporation, 81, 84. 
Damped vibrations, 191, 192. 
Damping factor, 192, 199. 
— in coupled vibrations, 202. 
— in resonator, 257. 
DanieU, J. F., 86. 
Davy, Sir Humphry, 27, 177. 
— safety lamp, 177. 
Death, thermal, 129, 130. 
Degeneration of gases, 
De Laval, G., 165. 
Deluc, 3, 68. 
Demons, Maxwell’s, 128. 
Density, vapour, 82-4. 
Depth-nnder, sonic, 277. 
Dew point, 85-7, 291. 
Dewar, Sir James, 90, 178. 
— flask, III, 178. 
Diagram, Clapeyron’s p-v, 117. 
—; indicator, 160-3. 
Dialysis, 62. 
Diathermic, 178. 
Diesel, R., 172. 
— engines, 172, 173. 
Difference tone, 278. 
Differential, complete (dQ/T), 132. 
Diffraction, 244, 245, 295. 
—; grating, 245. 
Diffusion, 60-4, 65. 
— and temperature, 64. 
— of gases, 49, 63, 64, 291. 
Dilatometer, ii, 12. 
Dimensions and temperature, 5. 
Dispersion, 224, 225. 
Dissipation of energy, 113. 
Dissociation of gases, 17. 
Dissonance, 284. 
Distance and intensity of sound, 255, 256- 
Distillation, 80, 81. 
Doppler, C., 280. 
— effect, 280-2. 
— principle, 296. 
Drop, form of, 295. 
Dulong and Petit, 9. 
Dulong-Petit rule, 24, 25, 44, 46. 
Dumas, J« B., 82. 
— method for vapour density, 82. 
Dust figures (Kundt), 265. 

Ear, the human, 278, 282-4. 
— sensitivity of, 283. 
-for direction, 283, 284. 
— trumpets, 277. 



INDEX 305 

Earthquake waves. 232. 
EbulUoscopic metnod for molecular weight, 

79. 
Eccentric rod, 156, 
— sheave, 156. 
— spindle, 156. 
— strap, 156. 
Echo, 276, 277. 
Efficiency and irreversible cycles, 124. 
— and reversibility, 120, 123. 
— economic, of steam engine, 164. 
— of engine, maximum, 122. 
— of reversible engine, 121, 122, 125. 
— of steam engine, 162-4, 169. 
— of steam turbines, r68, 169. 
— thermal, of Carnot’s cycle, 120. 
Einstein, on Brownian motion, 56. 
— on specific heat, 44. 
Elastic waves, longitudinal, 229-32. 
Elasticity of gas, 229-32. 
-adiabatic, 231, 298. 
-isothermal, 230. 
Electric oscillation, 265. 
Emissivity, 179. 
End conditions in waves, 232, 234, 235, 

237. 238. 
Endothermic, 145. 
Energy and cycle, 111. 
— and distance in sound wave, 255. 
— and heat, 289, 
— and sound intensity, 254. 
— and temperature in gas, 105. 
— conservation of, 32, 33. 
— content of gas, 104, 105. 
— density, 255. 
-of gas, 104. 
— dissipation of, 113. 
— equipartitiqn of, 40-2. 
— exchanges in coupled systems, 201. 
— free and bound, 148-50. 
— free, of combustion, 164. 
— internal, 33, 142. 
-of a gas, 34, 106. 
— in wave motion, 240. 
— kinetic, 32, 33. 
— molecular, of gases, 39, 40. 
— of sound waves, 294. 
— of wave, 221. 
— potential, 33, 
— principle of, 32-4. 
— propagation of, 203-7. 
-in waves, 226. 
— rotational, in gases, 41, 42. 
— transformation of, 33, 111-3. 
— transmission of, by impact, 205, 206. 
— 2ero-point, 129. 
Engines, double-acting, 171, 
— heat, 153-73- 
— hot-air, 153, 154. 
— internal-combustion, 169-73. 
— reciprocating steam, 154-64. 
— steam and gas compared, 169. 
— steam, compound, 159. 
— steam turbines, 164-9. 
— tandem, 159.^ 
— triple-expansion, 159. 
— two-stage, 159. 
Entrom^ x 30-41» 293. 
— and Carnot’s cycle, 130, 131. 
-— and pr<»bability, 137-40. 
— example of increase of, 135, 136. 

(E 636) 

Entropy, in adiabatic processes, 136. 
— in irreversible processes, 132-5. 
— near absolute zero, 151. 
— of universe increases, 135. 
— practical example, 136-7. 
— probability definition of, 138. 
— statistical view of, 138, 139. 
Envelope of secondary waves, 240, 241. 
Eotvos and molecular weight, 84. 
Equation of state, Berthclot’s, 91. 
-Clapeyron, 16. 
-for gas, 14. 
— -- van der Waals’, 90-1. 
Equipartition of energy, 40-2, 56. 
Eustachio, B., 282. 
Eutectic, 71. 
Evaporation, 65, 74, 291. 
— and freezing, 108. 
— change of volume in, 68. 
— into gas-filled space, 81. 
Excitation of vibrations in pipes, 270. 
Exothermic, 144, 145. 
Expansion, apparent, 3, 4. 
— coefficients of, 7, 9, 289. 
— cubical, 8. 
— linear, 7, 8. 
— of air, no. 
— of gases, 11-9. 
-without work, 105-7. 
— of glass, 10. 
— of liquids, 9-11. 
— — absolute, 9. 
-apparent, 9. 
— of solids, 7-9. 
— of water, 10, 

Fahrenheit, 2. 
Faraday, Michael, 72. 
First and second laws combined, 141-4. 
First law, equation of, 142. 
Fixed points of thermometer, x, 2. 
-variation of, 4. 
Flames, manometric, 267. 
— sensitive, 273, 274. 
— singing, 274, 296. 
Flats and sharps, 286, 287. 
Flexural vibrations of springs, 196. 
Flue pipes, 270-3. 
-(diagram), 272. 
Flute, sound of, 273. 
Focus, 246. 
Fogs, 67. 
Forbes, J. D., i8o. 
Forced vibrations, 197-200, 257. 
Fourier. J. B. J., 223. 
Fourier8 theorem, 223, 224. 
Four-stroke cycle, 170, 171. 
Frahm anti-rolling tank, 202, 203. 
Free energy, 148-50. 
-of combustion, 164. 
— path, 49, 50. 
Freezing mixture, 70, 107, 149. 
Freezing-point, 65. 
— and molecular weight, 70. 
— in solutions, 70. 
Frequen<^, 189. 
— and pitch, 253. 
— and wave-length, 234. 
— high, of crystals, 265. 
— in coupled vibrations, 201, 202. 
— in wave motion, 222. 
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Frequency, molecular, 44-6. 
— natural and forced, 198. 
— of musical sound, 252. 
— of waves in string, 227, 228. 
Fresnel, A. J., 241, 245. 
Fresners zones, 241-4, 299. 
Friction, as irreversible, 113. 
— heat from, 26. 
Fuel, for internal-combustion engine, 172. 
Fundarnental, 256. 
— in pipe, 268. 
— of vibrating string, 258, 259. 

Gaede’s air pump, 51, 64, 
Galton, F., 273. 
Gallon pipe, 273. 
Gas, adiabatic changes in a, 92-8. 
— constant, for one mol, 39. 
-specific, 15. 
-universal, 15, 56. 
— energy and temperature of, 105. 
— energy content of, 104, 105, 
— energy density of, 104. 
— engines, 169-73. 
— expansion of, without work, 105-7. 
— ideal, 15. 
— perfect, 15. 
-equation of state of, 16. 
— relation between specific heats of, 92. 
— thermometers, 17. 
— velocity distribution in, 138, 139. 
— work done by a, 101-7. 
-in adiabatic changes, 103-5, 
-in isothermal changes, 102, 103. 
Gases, cause of pressure of, 36-8. 
— co^cients of expansion of, 11, I2. 
— degeneration of, 151. 
— diffusion of, 49. 
— expansion of, 11-9. 
— Idnetic theory of, 35-53, 290. 
— liquefaction of, 88-90, 293. 
— mean free path in, 49, 50, 
— molecular data for, 36. 
— molecular energy of, 39, 40, 
— molecular heat of, 42, 43. 
— ratio of specific heats of, 43, 44. 
— specific heats of, 30. 
— thermal conductivity of, 49. 
— viscosity of, 49-52. 
Gay-Lussac and Joule's experiment, 106. 
Gay-Lussac’s law, ii, 13. 
Gradient, temperature, 175. 
Graham, George, 8. 
— on dialysis, 62. 
Gramme-molecule, 15, 53. 
Grambphones, 263. 
Graphical representation of vibrations, 190, 

I9r. 
Grating, diffraction, 245. 
Gravitational constant, 290. 
Greenhouse principle, 179. 
Group of waves, 223. 
— velocity, 222-6. 
— — calculation of, 225, 226, 
-Rayleigh's equation, 226. 

Harmonic analysis, 224. 
motion, 290. 
— equation of, 220. 
— aimple, 298. 
aeries, 257* 

Harmonic vibrations, 190. 
Harmonicon, chemical, 274. 
Harmonics in pipe, 268. 
Harmonium, 271. 
Harrison's pendulum, 8. 
Hearing, 282-4. 
Heat, 1-188. 
— and work, 26-34, 92. 
— as form of energy, 289. 
— engines, 
-ideal, 203. 
- mechanical equivalent of, 289. 

— of combustion, 145, 146. 
— of neutralization, 147. 
— of reaction, 147. 

— passage from cold to hot body, 121. 
— quantity of, 20. 
— specific, 20-5. 
-- transference of, 174-84. 

— transformable into work, lao. 
Height from boiling-point, 78. 
Helium, liquefaction point of, 17. 
— liquid, 90. 
Helmholtz, 29, 256, 271, 278, 284. 
Hercus and Laby, 184. 
Hertz, H., 189. 
— (unit of frequency), 189, 251, 
Him, G. A., 31. 
Hooke. R., 215. 
Hooke's law, 229, 230, 278. 
Horn, 270. 
Horse-power brake, 164. 
— indicated, 163. 
— in steam engine, 163, 164. 
Hot-water system, 297. 
Humidity, 84-8. 
— absolute, 85. 
— relative, 85, 291. 
— saturation, 85. 
Huygens, C., 215. 

I —principle, 215, 216, 240-3, 
— wavelets, 215-^. 
-and reflection, 216-9. 
Huygens-Fresnel principle, 240 3 
Hydrogen and gas laws, 17. 
— liquefaction of, 109. 
— liquid, 90. 
Hygrometers, 86-8. 
Hyperbola, interference, 279. 
Hypsometcr, 78, 

Ice from evaporation, 108. 
— machine, Carr6, 108, 109. 
— melting-point of, and pressure, 72. 
Ideal gas, 15. 
Ignition in internal-combustion engine, 

172. 
Impact of elastic masses, 203. 
— transmission of energy by, 205, 206, 
Indicator, 162, 163. 
— diagrams, 160-3. 
Infra-red radiation, 178. 
Instruments, musical, 258, 259. 
Intensity (or loudness), 254-6. 
— of sound, and distance, 255, 256. 
Interference and phase difference, 213. 
— hyperbolas, 213. 
— of jEiuygens wavelets, 216-8. 
— of six wave systems, 215, 
— of sound waves, 278. 
— of two wave-trains, 214* 



Interference of waves, an, aia, 240. 
— tube (Quincke), 279. 
— with tuning-fork, 279. 
Internal-combustion engines, 169-73. 
-fuel for, 172. 
-ignition in, 172. 
Intern^ energy, 142. 
Intervals for consonance, 284, 285. 
— frequencies, 253. 
— musical, 284. 
Invar, 8. 
Inversion temperature, 107, 297. 
Irreversibility of natural processes, 113. 
Irreversible cycles and efficiency, 124. 
— processes, 112-5. 
-and entropy, 132-5, 
-spontaneous, 114. 
Isentropic processes, 141. 
Isochoric processes, 141, 
Isopiestic processes, 141. 
Isothermal changes in gas (/>, t; relation) 

93. 
-(work done in), 102, 103. 
Isothermals and adiabatics, 100, loi* 
— in Carnot’s cycle, 116-8. 
— of carbon dioxide, 89. 
Isotherms of gases, 14. 
Isotropic, 240. 

J, mechanical equivalent of heat, 32. 
Jaeger and Diesselhorat, 180. 
Jolly’s air thermometer, 18. 
Joly steam calorimeter, 187, 188. 
Joule, J. P,, 29. 
Joule (unit of work), 32. 
Joule’s apparatus, 28. 
— equivalent, 185, 186. 
— experiment on gas, 105, 106. 
Joule-Thomson effect, 106, 107, 109. 
Julius wave apparatus, 204, 239. 

K ~ reciprocal of J, 32. 
Karnerlingh-Onnes, 90, 141. 
Kelvin, 5. 
— scale of temperature, 14. 
-(absolute), 124. 
Kinetic theory and viscosity, 50. 
-of gases, 3S-53f 390* 
-of heat, 35-64. 
Kirchhoff and Huygens’ principle, 216. 
Knocking, 172. 
Knudsen, on diffusion, 64. 
Kohlrausch, 180. 
K6nig, R., 267. 
KSnig’s manometric flame, 267, 268. 
Kundt, A., 265, 266. 
Kundt dust figures, 265. 
— tube, 231, 

Laplace’s formula for velocity of sound, 
231- 

Larynx, diagram of, 271. 
Latent heat, 291. 
-of fusion, 68. 
-of ice, 289. 
-of steam, 73, 74. 
— — of vaporization, 73, 
-of vapour, 143. 
-of water, 68. 
-pressure and melting-point, 72, 73. 
Latour, C. C, de, 274. 
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Laws, thermodymmical, combined, 141-4. 
Le Chatelier, principle of, 152, 153, 
Lcidenfrost phenomenon, 178. 
Lenses for sound, 277, 
Lenz’s rule, 153. 
Limma, 254. 
Linde, K. von, 90, 109- 
Linde, and liquid air, 107. 
—refrigerating machine, 109. 
Lindemann, on frequency of molecule, 44. 
Liquefaction of gases, 88-^0, 297. 
— of hydrogen, 109. 
Liquid air, 90. 
—-—- Linde process, 109-11. 
Liquids, molecular motion in, 65, 
Lissajous, J. A., 195. 
Lissajous figures, 195—7. 
Logarithmic decrement, 192. 
Longitudinal progressive sine waves, 228- 

33. 
— transmission, 207. 
— vibrations of rods, 264, 265. 
-of strings, 263, 264. 
— waves, elastic, 229-32. 
-in rod, 294. 
Loops, 234. 
Lorentz, H. A., 130. 
Loschmidt number, 53, 59, 14T, 291. 
Loud speakers, 263, 
Loudness, 254-6. 

Mach, Ernst, 238. 
— wave apparaUis, 226, 238, 239, 
Manometer, 12. 
— for low pressures, 51. 
— Kundt, 266. 
Maxwell, J. Clerk, 47. 
— distribution law, 47, 48. 
— velocity distribution, 54. 
Maxwell-Boltzmann law, 56. 
Mayer, Robert, 28, 29, 30, 32. 
— method for J, 105, 106. 
Mean free path, 49, 50, 291. 
— square velocity, 47, 49, 290. 
— velocity, 48-9. 
Mechanical equivalent of heat, 29-32, 185, 

186, 289. 
-by Him’s experiment, 31. 
-by Whiting’s tube, 31. 
-(J)» value of, 32. 
-Mayer’s calculation of, 30, 
Melting-point, 65. 
— and change of volume, 79. 
— and pressure, 71, 72, 79, 291, 
— change of, 72, 73. 
Membranes, semi-permeable, 6i, 
— vibrations of, 262, 263. 
Mersenne, 228. 
Meyer, Victor, 83. 
Mirror, concave, 246, 247. 
— rotating, 267, 268, 
Modes of vibration of string, 258-60. 
Modulus, bulk, 230. 
— elastic, and wave velocities, 232. 
— Young’s, 230. 
Mol, 15, 53. 
Molar volume, 16. 
Molecular air pump, 51, 
— energy of gases, 39, 40. 
— frequency, 44-6. 
— heat, 25, 42» 45* 
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Molecular motion, 53-64, 65. 
— velocity, 53. 
-mean, 46-9. 
— weight and boiling-point, 79. 
-and freezing-point, 70, 79. 
-and vapour density, 84. 
-from surface tension, 84. 
Molecules, energy of, 290. 
Monochord, 252, 253. 
Mouth-organ, 271. 
Music, theory of, 284-7, 

Nernst, 164. 
— and regeneration of matter, 129. 
— heat theorem, 150-2. 
Newton, on interference, 212. 
Newton’s fo^ula for velocity of sound, 230. 
Nodal lines in plates and bells, 262. 
Nodes, 234, 237, 264, 266, 299. 
— and antinodes, 235, 259. 
— in vibrating rod, 260. 
Nollet, Abb^, 61. 
Notation, musical, 253, 254. 
Notes, 252. 
— frequencies, intervals, 253. 
— musical sound, noise, 252. 
— names of, 253, 254. 
Nozzle shape in steam turbine, 165. 
N.T.P., 16. 

Oboe, 270. 
Octave, 253, 284. 
Olszewski and inversion temperature, 107. 
— and liquefaction of hydrogen, 109. 
Optical combination of vibrations, 196, 197. 
Organ pii)e, 272. 
— reed pipes, 270. 
Oscillations, electric, 202, 265. 
Osmosis, 61. 
Osmotic pressure, 61-3, 291. 
Order in molecular processes, 127, 128. 
Ordered state, transitions into, 139. 
Ostwald and second law, 125. 
Overtones, 256, 264, 271. 
— in pipe, 268. 
— of vibrating string, 258, 259. 

Papin, 75. 
Papin’s pot, 75. 
Parallelogram law and vibrations, 193. 
— — and waves, 221. 
Parameters of state, 141, 
Parsons, C., 167. 
— turbine, 167, 168. 
Partials, detection of, 269, 
— upper, 256. 
Peltier effect, X53. 
Pendulum, 189, igi. 
— compensated, 8. 
— vibrations, tracing of, 191. 
Perfect gas, 15. 
■— ~ equation of state of, 16. 
Period in wave motion, 220. 
Perpetual motion, 33. 
— — of second kind, 122, 125. 
Perrin on Brownian movement, 56. 
Pfefier on diffusion, 61. 
Phase angle, 220. 
— difference, 193, 195, 220. 
— — and interference, 213. 
-in progressive wave, 219. 

Phase difference, in sounds, 257. 
— in Fresnel zones, 242. 
— in stationary waves, 235. 
— of vibration, 190. 
— relations in reflection, 204-7, 234, 
Pictet and refrigeration, 109. 
Piezo-electric crystal, 265. 
Pipes, closed, 268. 
— conditions at end of, 269. 
— excitation of vibrations in, 270. 
— flue, 270-3. 
— open, 266. 
-nodes and antinodes in, 267. 
— organ, 272, 296. 
— pitch of, 268, 269. 
— reed, 270, 271. 
— tunable, 269. 
— vibration of (graphical), 269. 
-of air in, 266-74. 
Piston, 156, 158, 159. 
Pitch, 252, 253. 
— absolute, in human voice, 271, 
— and frequency, 253. 
— audible limit of, 251. 
— concert, 254. 
— French, 254, 286. 
— of a pipe, 268, 269. 
— of vibrating string, 259. 
— sensitivity to, 283. 
Plates, vibrations of, 262, 263. 
Planck’s constant, 44. 
— quantum theory, 44. 
Pohl. R. W., 199. 
Pohl 8 apparatus for forced vibrations, 199, 

200. 
Poisson, S. D., 93. 
Poisson’s adiabatic law for gases, 93-7, 160, 

231. 
Porous plug experiment, 293. 
Potter, Humphrey, 155. 
Pressure and boiling-point, 75-7, 144. 
— high steam, X61, 162. 
— of gas, on kinetic theory, 36-8. 
— partial, 81. 
— sound, 255. 
— variations, 266. 
-in sound, 257. 
Probability and entropy, 137-40. 
— and irreversibility, 126, 127. 
— and natural processes, 114, 115, 126, 

127. 
— of a state, 139. 
Progressive sine wave, equation for, 220, 

221. 
— waves, 2i9-;32, 
-longitudinal sine, 228-232. 
-transverse sine, 219-28. 
Propagation of disturbance, examples of, 

207. 
— of energy^ 203-7. 
-reflection m, 204-7. 
— of sound, adiabatic, 231. 
— velocity of, 206. 
Psychrometer, 86, 87. 
Pyknometer, 9. 
Pythagoreans, 284. 

Quality (or timbre), 256, 257. 
— in organ pipes, 299. 
— in vibrating string, 259. 
Quantity of beat, umt, 20, 
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Quantum theory, 
Quartz crystals, vibrations of, 265. 
Quincke, G., 279. 

Radiation, infra-red, 178. 
— of heat, 175, 178, 179. 
Radioactivity and second law, 129, 
Rainfall and mountains, 98. 
Raoult’s law, 70, 79, 80. 
Rayleigh, Lord, 226, 255, 269. 

• disc, 255. 
— equation (group velocity), 226. 
Rays, atomic or molecular, 53. 
Reaction turbines, 167. 
Reaumur, 3. 
Reduced quantities of heat, 130, 131, 
Reed pipes, 270, 271. 
-with sound horn, 270- 
Reflection in energy propagation, 204-7. 
— of circular waves, 2i> 
— of disturbance on density change, 206. 
— of plane waves, 216, 
— of sound, 276, 277, 300. 
— of wave, 2i6“9, 232, 234, 235, 237, 

238. 
-and Huygens’ principle, 216-9, 
-at concave wall, 217, 218. 
-at convex wall, 218. 
-- from point source, 218. 
'— phase relations in, 204-7, 234. 
— wave theory of, 245-8. 
Reflectors of sound, spherical, 277. 
Refraction of sound, 277. 
— wave theory of, 248, 249. 
Refractive index, 249. 
Refrigerating machines, 107-11, 297. 
-Carnot’s cycle in, 120. 
-Linde, 109-11. 
Regelation, 72. 
Regener, on falling oil droplets, 55. 
Reproduction in loud speakers, 263. 

4*^esonance and frequency, 198. 
— examples of, 199, 202. 
— frequency and phase difference in, 200. 
— in acoustics, 257, 258, 
— phase relations in, 200. 
Resonators, 197-200, 278. 
-- air column as, 265. 

— damped, 199, 200. 
— Helmholtz’s spherical, 270. 
— spherical, &c,, 269. 
— undamped, 198, 200. 
Reverberation, 276, 277. 
Reversibility, 293. 
— and Clapeyron's diagram, 122, 123. 
— and eflSciency, 120, 123, 
— and probability, 126. 
— conmtions for, 123. 
Reversible and irreversible processes, 126, 
— cycle, 112. 
— processes, 112-5. 
-and entropy, 131. 
-infinitely slow, 114. 
Rods, longitudinal vibrations of, 264, 265, 

300, 
— transverse vibrations of, 260-2. 
Root.mean square, 290. 
-; — velocity, 49, 
Rumford, Count, 26, 28. 

Saturated vapour, 82, 291, 292. 

Saturation pressure, 85. 
— — and temperature, 143. 
— state of liquid, 66. 
Scale, chromatic, 286. 
— equally tempered, 286, 287, 
— major and minor, 285. 
— with natural tuning, 286, 287. 
Scheel and Heuse, 187. 
Schellbach, 255. 
Second law and radioactivity, 129. 
-limits of, 128, 129. 
--of thermodynamics, 122, 123, 125-30, 

297. 
Secondary, or elementary, waves (Huygens), 

215, 216, 240-4. 
Sedimentation equilibrium, 58. 
Seebeck, L., 274. 
Seguin, 27. 
Semitone, 254. 
Sensitivity of ear, 2S3. 
Sharps and flats, 286, 2S7. 
Simple harmonic vibrations, 190. 
Sine vibrations, 190, 191. 
—^ wave, equation of, 220, 221. 
Singing flame, 300. 
Single waves, 210, 2ii. 

— circular, diagram of, 210, 
Siren, 253, 274. 
Slide-valve, 155, 156. 
Solder^ melting-point of, 70, 71. 
Solidification, change of volume in, 67, 68. 
— heat of, 69. 
— point, 67. 
Solids, molecular motion in, 65. 
— vapour pressure of, 78. 
Solutior^, boiling-point of, 79, 
— freezing-Doint of, 70. 
— heat of, 69. 
— pressure, 149. 
Sorge, G. A., 278. 
Sound, 251-87, 295, 300. 
— pressure, 255. 
— reflection of, 276, 277, 
— refraction of, 277. 

- sources of, 257-75. 
- velocity of, 276, 294, 299. 
-experimental, 231. 
-in air, 231. 
-in water, 231. 
-Laplace, 231. 

-Newton, 230. 
“ vibrations producing, 251. 
- waves, 276i-82. 
-in air, 229-32. 

Speaking tubes, 277. 
Specific heat, 20-5. 
-and temperature, 25. 
-at low temperatures, 44-6, 
-in solids, 45. 
- — method for, 68. 
-of gases, 30, 187, i8t 289, 290. 

-of gases, ratio of, 43, 44, 98-100, 231. 
-of Uouids, 23. 
-of solids, 21, 22, 289, 290. 
-of water, i86, 187. 
Specific heats, the two, 23-5. 
-relation between, 92. 
Spectrum, displacement of, 300. 
Spherical resonators. 269. 
Spheroidal state, 178. 
Spontaneous processes, 127. 
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Stailf notation, 254. 
State, ordered, transitions into, 139, 
— parameters of, 141. 
— probability of, 139. 
Stationary longitudinal waves, 235-7. 
— transverse waves, 232-5. 
— waves, 232-9. 
-in air column, 265. 
-mathematics of, 237, 238. 
-motion, diagram of, 233. 
Statistical fluctuations, 140, 141. 
— view of entropy, 138, 139. 
Steam distribution, 155, 156. 
— engincj efficiency of, 162-4, 169. 
-honzontal, 155. 
-power of, 163, 164. 
-work in, 159-64. 
— expansion of, 158, 159. 
— latent heat of, 73, 74. 
— pressure, high, 161, 162. 
— superheated, 157, 158. 
— turbines, 164-9. 
Stern, on silver atomic rays, 55. 
Stokes’s law of viscous resistance, 56, 58. 
Strings, longitudinal vibrations of, 2635 

264. 
— modes of vibration of, 258-60. 
— plucked or bowed, 258, 259. 
— pulse in, 299. 
— transverse waves in, 227, 228. 
Stroboscope, 299* 
Stroboscopic apparatus, 236. 
Sublimation, 65. 
— pointj 78. 
Summational tone, 278. 
Supercooling, 66. 
Superheated steam, 157, 158. 
— vapour, 82. 
Superheater, 157. 
Superheating, 66, 67. 
Superposition of sound waves, 278. 
— of vibrations, 193, 194. 
— of waves, 221, 223, 233, 240. 
Supersaturation^ 66, 67. 
Swann, on specific heat, 187. 
Synchronous processes, 278, 

Tait, P. G., 31. 
Tank, anti-rolling, 202, 203. 
Tartini, G., 278. 
Taylor, Brook, 228. 
Temperament, equal, 286, 287. 
Temperature, i. 
— absolute, 3, 5, 13, 
— and dimensions, 5. 
— characteristic, in solids, 46. 
— Dalton’s scale of, 19. 
— equilibrium, 39. 
— inversion, 107. 
— Kelvin (absolute) scale of, 124. 
— official definition of (1887), 17. 
— on kinetic theory, 38, 39, 42. 
— on various scales, 6. 
— scales, 3. 
— standard, 6. 
— thermodynamical, 17, 18. 
Thermochemical relationships, 144-7. 
Thermodynamical scale, 5. 
Thermodynamics, 92-173. 
— first law of, 32-4, 92, 125. 
— second law of, 122, 123, 125-30. 

Thermodynamics, third law of, 151. 
Thermometer, i-6. 
— calibration of, 4. 
— comparison of, 3. 
— fixed points of, i, a* 
— freezing, 69. 
— gas, 5, 17. 
— history of, 2, 3. 
— Jolly’s air, 18. 
— liquid for, 4, 6. 
— mercury, 1-6, 17. 
— metallic, 8. 
Thennophone, 275. 
Thermoscope, i, 19. 
Thermos flasks, 178. 
Third, major and minor, 284. 
Third law of thermodynamics, 151, 
Thomson, James, 72. 
— William, 72. 
Threshold intensity, 251. 
Timbre in vibrating string, 259. 
— of sound, 256, 257. 
Tones, combination, 278. 
— difference, 278. 
— major and minor, 254. 
— simple or pure, 252. 
— summational, 278. 
Tonic, 285, 286. 
Torsional vibrations, coupled, 204. 
Transference of heat, 174-84. 
Transfusion in gases, 63. 
Transition temperature, 151. 
Transmission of disturbance, longitudinal, 

207. 
-transverse, 207. 
Transverse transmission, 207. 
-^ examples of, 205. 
— vibrations of membranes and plates, 

262, 263. 
-of rods, 260-262. 
— waves in strings, 227, 228. 
Triad (of notes), 284, 285. 
— major, 285. 
Triple point, 79, 291. 
Tube, wave, 267, 268. 
Tuning forks, 260-262, 278, 279, 298, 299, 

300. 
— of instrument, 286. 
Turbines, combination types of, 167, 

168. 
— De Laval, 165. 
— impulse, 166. 
— impulse, of 1, 2, or 3 stages, 165, 166. 
— Parsons, 167, i68. 
— reaction, 167. 
— steam, 164-9. 
-advantages of, 168, 169. 
-efficiency of, 168, 169, 
-speed in, 165, 166. 
— with pressure stages, 166. 
— with velocity stages, 166. 
Two-stroke cycle, 170, 171. 
Tyndall, John, 72, 

Ultra-sonic waves, 251, 

Value of y (»» c/ilcv)^ 231. 
Valve, slide, 155, 156. 
Van aer Waals, J., 91. 
Van der Waals’ equation of state, 90, 91, 

107. 
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Van*t Hoff on osmotic pressure, 63. 
Vaporization, 73-81. 
— latent heat of, 73, 74, 
Vapour, behaviour of, 81-4. 
— density, 82-4, 292. 
-and molecular weight, 84. 
— pressure, 76-8. 
— — and boiling-point, 77, 
-and temperature, 77. 
-of solids, 78. 
-of water, 76, 77. 
— saturated, 82, 291, 292. 
— superheated, 82. ' 
— unsaturated, 81, 82. 
Variation of fixed points, 4. 
Velocity distribution in a gas, 138, 139. 
-Maxwell, 54f 55- 
-molecular, 47-9. 
— group, 222-6. 
— mean, 48, 49. 
— mean square, 47, 49. 
— molecular, 54. 
— most probable, 48, 49. 
— of dififerent types of wave, 232. 
— of explosive waves, 276. 
— of longitudinal elastic waves, 229-32. 
— of propagation, 206. 
— of sound, 276, 298, 299. 
-in air, 231. 
-in water, 231. 
— of waves in string, 227, 228. 
Vibrations, 190-207. 
— and waves, 189-249, 298, 299, 
— combination of, 193-7. 
— coupled, 201-7. 
— coupled torsional, 204. 
— damped, 191, 192. 
— fiexural, of springs, 196. 
— forced, 197-200. 
— free and forced, 197. 
— graphical representation of, 190, 191. 
— longitudinal elastic, 189, 190. 
— neutralizing each other, 193. 
— of liquid in U-tube, 190. 
— of mass suspended by spring, 196. 
— of string, modes of, 258-60. 
— simple harmonic, 190. 
— sine, 190, 191. 
—- two perpendicular, 195-7. 
Violin, composition of sound of, 260. 
Viscosity of gases, 49-52, 291. 
-and pressure, 51. 
-and temperature, 52. 
— on kinetic theory, 50. 
V. Meyer’s method for vapour density, 83. 
Vocal chords, 271. 
Voice, human, 271. 
Vortices and sound, 271, 272. 
Vowel sounds, 271. 

Water equivalent, 21. 
— expansion of, 10. 
— maximum density of, 10, ii. 

specific heat of, x86, 187. 
— vapour in atmosphere, 84-8. 
— waves, 208-19. 
Watt, James, 155. 
Wave apparatus, 204. 
— — Julius, 204, 239. 
— — Mach’s, 238, 239. 

components of, 22 z* 

Wave crest, 209. 
— equation, 220, 221. 
— front, 212, 239, 240, 299. 
-ellipsoidal, 240. 
-plane, 241-3. 
-spherical, 240. 
— length, 209, 211, 220. 
— — and frequency, 234. 
-depending on velocity, 222-6. 
-determination of, 245. 
— motion, 208-49. 
— train, 208-10, 212-4. 
-circular, 210. 
-trough, 209. 
-tube, 267-8. 
— velocity, 222, 232. 
Waves, capillary, 211. 
— combination of, 299. 
— earthquake, 232. 
— elastic, in earth, 232. 
— elementary, 212. 
-(secondary), 240-4. 
— end and edge effects in, 232, 234, 235, 

237, 238. 
— energy of, 210, 221, 240. 
— frequency of, 222. 
— gravitational, 211. 
— group of, 223. 
— interference of, 211, 212, 214, 240. 
— longitudinal and transverse, compared, 

232. 
— longitudinal elastic, 229-32. 
— longitudinal, in air column, 229, 
— of sound, 276-82. 
— passage of, through aperture, 215. 
— plane, 240, 244, 245, 246, 249. 
— progressive, 219-32. 
-and stationary, 295. 
— — longitudinal sine, 228-32. 
— propagation, laws of, 239, 249. 
-of energy in, 226. 
— reflection of, 216-9, 232, 234, 235, 237, 

238. 
-and Huygens* principle, 216-9. 
-at plane, 245, 246. 
— — at sphere, 246, 247. 
— refraction of, 249. 
— relation between A, v, T in, 222. 
— single, 210, 211. 
— single circular, diagram of, 210. 
— sound in air, 229-32. 
— stationary, 232-9. 
-diagram of, 233. 
-longitudinal, 235-237. 
-mathematics of, 237, 238. 
-transverse, 232-5. 
— superposition of, 221, 223, 240, 
— transverse, in strings, 227, 228. 
— water, 208-19. 
-and depth, 211. 
-diagram of, 209. 
-motion of particles in, 209. 
-near shore, 211. 
Weber, F. H. and W., 208, 209. 
— W. E. and E. H., 226. 
Whispering gallery, 277. 
Wires, vibration of, 295. 
Wood’s metal, 71. 
Work, admission, 161. 
— 88 product of factors, 143. 
— diagrams, 160, 
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Work, done by a gas, 101-7. 
-in adiabatic changes, 103-5. 
-in Carnot’s cycle, 117-20. 
-in isothermal changes, 102, 103. 
— expansion, 161. 
— external, 33, 142, 143. 
— from isothermal expansion of gas, i j 
— in steam engine, 159-64, 

Xylophone, 260, 

INDEX 

Young, Thomas, 241, 245. 
-on interference, 212. 
Yotmg’s modulus, 229, 264,300. 

Zero, variation of, 4. 
Zero-point energy, 129. 
Zone lenses, 241. 
— of silence, 255, 256, 277, 300. 
Zones, Fresnel, 241-4. 
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