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PREFACE TO THE SECOND EDITION 

During the four years that have elapsed since its initial appear¬ 
ance, this book has been subjected to the careful scrutiny of 
the members of the staff at the Massachusetts Institute of Tech¬ 
nology engaged in teaching the elementary physics course and to 
the merciless criticism of the students using it as a text. It is 
gratifying that the scope of the book and the general order and 
treatment of the material have proved satisfactory and that 
a basic revision has not been found necessary. Hence in this 
second edition a number, of topics have been rewritten in an 
attempt to improve the mode of exposition rather than to alter 
the original aims and material. 

It seems advisable in a preface of this sort to list the more 
important revisions that have been made. First, Chap. II on 
linear kinematics has been completely reworked and expanded 
so as to lessen the difficulties that invariably confront the 
beginning student who is learning the elements of calculus at 
the same time. Enough detail has been included to make the 
subject matter in this chapter self-contained. A final section 
on some of the aspects of the kinematics of circular motion has 
been inserted to acquaint the student as early as possible with 
the concepts of angular velocity and angular acceleration, treat¬ 
ing the motion as an example of a motion of one degree of freedom. 

In Chap. Ill the geometrical proof of the radial acceleration 
in circular motion has been changed to bring out more clearly 
the concept of the rate of change of a rotating vector. In the 
chapter on plane dynamics, a sharper distinction between con¬ 
strained and non-cons trained motion has been drawn and projec¬ 
tile motion is treated as an example of the latter type of motion 
rather than as a separate subject. The ever-troublesome subject 
of potential energy has been completely rewritten and the 
presentation of simple harmonic motion has been altered so that 
the kinematical aspects of the motion are discussed before the 
dynamics of the motion are studied. In addition, a section on 
resonance without friction is inserted at this point to avoid 
some of the difficulties that occur when the subject is deferred 
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to the chapter on acoustics. The discussion of angular momen¬ 

tum has been revised and that of gravitational potential expanded 

with an eye to the student's later study of electrostatics. The 
chapter on static elasticity proved to be too concise and has now 
been completely rewritten and expanded. In the chapter on 
dynamics of elasticity the treatment of wave motion has been 
changed, and throughout the chapters on heat many minor 

revisions and corrections have been incorporated. 
A large number of new problems have been included, some of 

them of a very elementary nature, as well as a number of more 
difficult ones. It is hoped that these additional problems will 
help to avoid too much duplication of assignments from year 

to year as well as provide a greater range in complexity. 
It would be virtually impossible for me to express my thanks 

individually to all who have been kind enough to offer their aid 
in the form of suggestions and of criticisms. These include both 

colleagues and students. To all of them I wish to express my 
deepest gratitude. 

N. H. Frank. 

Cambridge, Mass., 

March, 1939. 



PREFACE TO THE FIRST EDITION 

This book has its origin in the development of a course in 
physics. This course is the first of a sequence of two full years 
of physics at the Massachusetts Institute of Technology, a basic 
elementary course required for all but a few of the students at the 
Institute. In attempting to describe the nature and purpose of 
this course, it is, I believe, necessary to point out the sharp 
differences which exist between two types of elementary physics 
course taught in our universities and technical schools. On the 
one hand exists the general survey course studied by students 

who, in general, have no intention of pursuing scientific or tech¬ 
nical careers. This type of course essentially minimizes the use 
of mathematical methods and necessarily is of a descriptive 
nature. On the other hand students intending to pursue scien¬ 
tific or engineering professions must be given a course in physics 

which is far more exacting and thorough, especially with respect 
to the use of mathematical methods, than the usual survey 
course. After all, physics is fundamental as a basis for all 
technical and engineering subjects. It is hoped that the present 
book will serve a purpose for this type of elementary or inter¬ 

mediate course in technical physics, where a thorough quanti¬ 
tative foundation is desired. 

In the preparation of this book the guiding thought has been 
to develop a logical unified treatment of the subject matter, com¬ 
prising the topics of mechanics, acoustics, and heat, so that the 
student may learn to appreciate and to utilize fundamental and 
general methods of attack on problems in all branches of physics. 
The attempt has been made to discourage the use of special 
formulas for special problems, unless the relation of such special 

formulas to general principles has been carefully expounded. It 
is clear that such a program can be successfully carried out only 
if elementary calculus is employed from the very outset; yet 
the subject matter is so arranged that a concurrent course in 
calculus may provide the student with all the necessary mathe¬ 

matical tools, 
vii 
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After an introduction to the kinematics of particle motion 
on a straight line and in a plane, a chapter has been inserted pre¬ 
senting Newton^s laws and dealing with particle statics. The 
object in doing this is to allow the student to grasp the funda¬ 
mental notion of force as a vector quantity before embarking 
into the realm of dynamics proper. Thus the troublesome 
question of units is separated from the study of forces as such. 
The discussion of planetary motion and of gravitation is placed 
after the chapters on rigid body statics and dynamics so as to 
serve as introduction to the general concept of force fields. 
Thus a smooth transition is made to the mechanics of continuous 
media. The latter subje(‘t is treated more extensively than in 
most elementary discussions so as to impress on the student 
that the general principles employed in particle and rigid body 
mechanics form the basis of this subject. In the last sections 
devoted to topics in heat, a close connection to mechanical 
principles is maintained by developing the elementary kinetic 
theory of gases. As already stated, every attempt has been 
made to develop the ideas as a single unified structure, each 
section building on the previously developed material. 

It should be emphasized that the primary purpose of this 
book is definitely that of a guiding textbook, and, as such, it may 
advantageously be supplemented by laboratory work and more 
extensive descriptive material. The latter has been minimized 
for two principal reasons. In the first place, any attempt 
properly to introduce all the descriptive matter pertinent to the 
subjects treated would result in an unwieldy book. Second, too 
much descriptive physics interspersed with a logical systematic 
development of physical principles tends to hinder the student 
from grasping the well-ordered continuity of thought and method 
pervading the whole quantitative structure of physics. Thus 
the ratio of qualitative to quantitative material is smallest at 
the beginning, but of necessity increases in the later chapters 
where the properties of matter are introduced. 

A number of sections have been set in smaller type than the 
main body of the text. These, and perhaps a few of the regular 
sections, may well be omitted in a first course. The primary 
purpose of these sections is that of completeness to the extent 
that no wide gaps be left between this bopk and those used in 
more advanced treatments of similar subjects. A number of 
problems have been included at the end of each chapter. I firmly 
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believe that no adequate understanding of physical principles 
can be obtained without ample practice in applying these 
principles to many and varied problems. It is a common 
experience of teachers to hear students maintain that they 
understand the theory perfectly but are unable to solve problems. 
An attempt has been made to design the problems so that they 
will truly test the student’s understanding of principles without 
leading to unnecessary mathematical complications. 

I should like to express my thanks to several of my colleagues 
for many helpful suggestions, and especially to Dr. M. F. Man¬ 
ning, whose keen interest and constant criticism have done 
much toward giving this book its final form. 

N. H. F. 
Cambridge, Mass., 

August^ 1934. 
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INTRODUCTION TO 
MECHANICS AND HEAT 

CHAPTER I 

FUNDAMENTAL DEFINITIONS 

Physics, in common with the other exact sciences, sets as its 
object the ability to predict the behavior of natural phenomena 
with the help of a system of laws which have been derived from 
observation and experience. To accomplish this, it has been 
necessary to build up a large number of concepts and to create a 
special vocabulary which give precision to our everyday mode of 
expression. In particular, these concepts and this vocabulary 
must be so chosen that they are amenable to the methods of 
mathematics; for physics is a quantitative science, and a qualita¬ 
tive prediction, although very helpful and necessary in the course 
of development of our knowledge, never forms a satisfactory 
answer to a physicist. Since the concepts of physics grow out of 
our naive sensations, we shall attempt to trace their development 
from the experiences of everyday life and then give them the 
precise form demanded by a science which eliminates as far as 
possible the vagueness common to all human endeavors. Physics 
lays the basis for most of our engineering achievements and, 
apart from its own inherent interest, must be conscientiously 
studied by those who wish to enter any engineering or scientific 
profession. We shall not be satisfied with a descriptive knowl¬ 
edge but will pursue the subject quantitatively, taking advantage 
of that tremendously powerful weapon, mathematical logic. 

!• Divisions of Physics.—Physics divides itself very naturally 
into two great branches, experimental physics and theoretical 
physics. The former is the science of making observations and 
devising experiments which give us accurate knowledge of the 
actual behavior of natural systems. The accumulation of data 
alone, however, even with the help of the most careful and 

1 



2 INTRODUCTION TO MECHANICS AND HEAT 

painstaking measurements, would result in no progress toward 
our goal were it not for the second great division which, on 
the basis of the experimental facts, builds up a system of quanti¬ 
tative relations among the measured quantities and formulates 
these relations into physical laws. The great theoretical struc¬ 
ture of physics which has been erected reacts strongly on the 
experimentalist, who must use the experience of the past as 
expressed in these laws as a guide to his own work and who must 
plan decisive experiments to answer further questions proposed 
by the theory and thus break the ground for further advance¬ 
ment. Physics is fundamentally an experimental science, but 
it is not mere experimenting, and its fruitfulness lies largely in the 
theoretical structure it has reared. Experimental and theoreti¬ 
cal physics must be pursued with equal zeal in a first course. 

It may not be out of place to make a few remarks about the 
^Hruth” of a physical law. Every physical law is based on 
experiments and is devised to correlate and to describe accu¬ 
rately these experiments. The wider the range of experience 
covered by such a law, the more important it is. Since the 
knowledge which humans have is incomplete and very limited, it 
is obvious that there can be no such thing as a final, finished 
theory in physics. Furthermore one can never overthrowa 
theory of physics which has successfully described a certain 
range of experience. Every new theory must, in its field, explain 
at least as much as the theory it proposes to replace. Thus the 
history of physics brings with it an ever increasingly powerful 
theoretical structure and a highly developed experimental 
technique. 

The subject matter of physics is usually divided into a number 
of branches: mechanics, acoustics, heat, electricity, magnetism, 
and optics. The cause of this type of division is to be sought 
in the historical development of the science and is easily under¬ 
stood if one remembers that the concepts of physics have always 
started with direct sense perceptions. From a more modern 
standpoint, this classical, customary mode of division of physics 
into compartments possesses certain serious disadvantages in that 
the fundamental interconnections among these branches remain 
hidden and hinder progress toward that unity of thought and 
method which is so important in understanding a science such 
as physics. For example, one may experience the sensation of 
warmth with the help of a hot stove in one of two ways, either 
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by direct physical contact with the stove or by merely holding 
one^s hand in the vicinity of the stove. According to our present 
viewpoint, these two processes of transferring heat from one 
body (the stove) to another body (the hand) are of quite different 
nature. In the first case, the nerve sensations in the skin are 
excited by certain mechanical vibrations of the material (more 
exactly, of the atoms) of which the stove is made. These 
vibrations are of a similar nature to those of very much lower 
frequency, i.e., fewer vibrations per second, which affect another 
sense organ, the ear. Thus there exists an intimate intercon¬ 
nection between mechanics, acoustics, and heat. In the second 
case, however, the process is quite different. The nerves of the 
hand are excited largely by a radiation which emanates from 
the stove and is propagated throughout the room. This radiation 
turns out to be electromagnetic waves which are of a nature 
similar to radio waves and to those associated with visible light 
and X-rays. All these waves differ in but one fundamental 
property, their frequency. Thus we see common bonds between 
heat, electricity, magnetism, and optics. 

In our treatment we shall not follow these classical divisions 
of physics but shall treat the two large divisions which have been 
exemplified above. Mechanics, acoustics, and certain appro¬ 
priate topics in heat form our first division to which we devote 
our attention in this book, and perhaps we may use the 
word mechanics in a wider sense to denote these. The remain¬ 
ing topics can be rightly called electromagnetic theory^ or 
electrodynamics, 

2. Definition of Mechanics.—Mechanics, the oldest of all 
physical sciences, is defined in a specific sense as the study of the 
laws of motion of material bodies, z.e., the relative changes of 
position of such bodies with time. The purpose of this study is 
to classify these motions and to describe them in a simple, logical 
manner. The mechanics which we shall study is based on a 
number of hypotheses, apart from those which we intuitively 
make, which are due largely to Newton, although the essence 
of them is to be found in the works of Galileo. 

We place mechanics first in our study because this oldest 
branch of physics appeals so directly to our intuition, and hence 
the fundamental concepts in this field have been employed and 
generalized to help build up the rest of physics, so that a proper 
understanding of mechanics, apart from its desirability for its 
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own sake, provides a sound foundation for all other work in 
physics and in its manifold applications. 

3* Definitions of Physical Quantities.—In the preceding 
section we have defined mechanics as the sthdy of the laws of 
motion of material bodies. Since the motion of a body is the 
change of its position in space with respect to time, it is essential 
at the outset to give definite and unique meanings to the words, 
space and time. We here meet one of the most fundamental 
characteristics of physics, or rather of all exact sciences, which 
makes it so enormously powerful compared to the other modes 
of investigating the world in which we live. We have already 
pointed out that in the last analysis all the results of physics 
depend on experiment and observation and that these become 
endowed with their greatest power when they deal with quan¬ 
tities described by numbers and measures. Two steps must be 
taken in defining a physical quantity. First, the idea or concept 
of the quantity must be specified. Unless a method of measure¬ 
ment is given, the quantity remains undefined and ambiguous 
from the standpoint of physics. How different from the usual 
definitions of words which we encounter in daily life! The ideas 
of distance and time are intuitive with all human beings. We 
must lay down methods for measuring them if they are to serve 
any purpose in physics, and the methods are arbitrary. The 
manner of measuring any fundamental quantity in physics is 
defined, never discovered, and the final results of any physical 
theory are (or should be) numbers which can be obtained by a 
measuring process. 

4. The Measurement of Length.—We shall define the 
distance between any two points as the number of times a 
certain ^^unit'^ material body (a scale), or copy of it, can be fitted 
between the two points in question. This definition specifies a 
method of measuring a length, viz.y we count the number of 
times our unit scale can be placed in successive positions in the 
interval. The unit scale is arbitrary and we may choose it as 
we wish. Different peoples have introduced different units, but 
we shall be concerned with only two of them. For scientific 
purposes we ordinarily employ the arbitrarily accepted unit of 
length in the metric system, which is defined as the one-one- 
hundredth part of the distance between two scratches on a 
platinum-iridium bar, kept in Sevres, near Paris, the bar being 
maintained at a temperature of 0°C. distance between the 
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scratches is called one meter and the unit is called one centimeter. 
In the metric system we commonly employ the terms millimeter 
for yoVi) nieter, decimeter for ^ meter, and kilometer for 1,000 
meters. There are names for 10 and 100 meters, but, as they 
are seldom used, we omit them here. 

In the English system of units, used almost exclusively in 
this country in engineering practice, the unit distance is defined 
as one-third the distance between two scratches on a metal bar 
kept in London and is called the foot. The common multiples 
of the foot are the inch, which is foot; the yardy which equals 
3 feet; the rod, equaling IfiJ feet, and the miUy which is 5,280 feet. 

The relations between the units of the metric and English systems 
must be determined by experiment. A convenient relation to 
remember is that 2.54 centimeters very nearly equals 1 inch. 
From this fact a conversion table between lengths in the English 
and metric system can easily be constructed. 

It is clear from the definition of distance that the position 
of a bodyis not an absolute quantity, but that it must be referred 
to some reference body. All we 
can determine is the distance 
between two bodies. We now call 
attention to two fundamentally 
different types of length measure¬ 
ment, the direct and the indirect. 
Every direct measurement of length 
depends on the actual use of a scale. 
This seems a rather trivial state¬ 
ment in the light of our definition, 
but its fundamental importance 
was not properly emphasized until ® ^ 
1905 (Einstein). It is clear that a 
direct measurement of length is impossible in many cases 
of interest, e,g., the distance between two mountain peaks or the 
distance between the earth and a star. Such measurements must 
be made by some indirect method, such as measuring a base 
line BC and the two angles a and p and then calculating the 
desired distance x (Fig. 1). This simple indirect method is not 
free from possible criticism. We must identify the paths of the 
rays of light from AtoB and from A to (7 used in determining the 
angles with the straight lines of Euclidean geometry. In fact, 
every indirect measurement involves some hypotheses in the 
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process of evaluation of the desired quantities; and the calcula¬ 
tions may involve rather intricate theoretical knowledge as 
in the determination of the distance between two ions in a rock- 
salt crystal by means of X-rays. These points are brought to the 
reader^s attention lest he proceed in his study without a proper 
appreciation of the possible intricacies in the determination of 
so apparently simple a thing as length. 

6. The Measurement of Time.—The experimental basis for a 
measurement of time is .a periodic motion of som(5 sort. We 
choose the earth as the fundamental body for time measurement, 
making use of the fact that it rotates about its axis. The time 
of one rotation of the earth with respect to the fixed stars is 
employed as a unit of time in astronomical work and this time 
interval is called one sidereal day. The sidereal second, as it is 

called, is the 1/86,400 part of this day. The m,ean solar second, 
which is the unit used in most physical measurements, is obtained 
by multiplying the sidereal second by 366.25/365.25. The 
mean solar day is obtained by referring the rotation of the earth 
to the sun and averaging the result obtained over a year. There 
are 365.25 solar days and 366.25 sidereal days in a year. The 
slight difference in these units (remember that since the unit 
is arbitrary both kinds of second are equally justified) is due to 
the relative motions of sun, earth, and fixed stars. The most 
usual device for measuring time is a watch or clock which is 
referred to the mean solar second. Two common time intervals 
frequently used as units are the hour which is day, and the 
minute, which is 60 seconds. 

It must not be thought that the necessity for a method of 
measuring time is not important. We all have the feeling that 
time elapses as we live, but the intuitive time “sense'' which we 
possess must not be identified with the measured time of physics. 
How often does a day seem “long" or “short" to us! 

6. Material Bodies; Divisions of Mechanics.—We now turn 
to a classification of material bodies for the purposes of mechanics. 
The simplest material body is a material, or mass point, some¬ 
times called a particle. It is defined as a body whose linear 
dimensions are smaller than the experimental uncertainty in the 

length measurement which fixes its position. It is clear that 
every physical measurement involves some uncertainty. No 
matter how fine a measuring instrument is employed, no matter 
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how carefully it is used, inevitable errors creep in and we cannot 
reduce the uncertainty of any measurement exactly to zero. 

A body need not be ^^smalF' in the everyday sense of this 

word to be a material point. For example, if we consider the 

distance from the earth to the sun, then with respect to this 

measurement the earth may be considered a material point. 

However, if we consider the rotation of the earth on its axis, we 

can by no means deal with it as a material point. (Note the 

tremendous difference between this idea and that of a geometrical 

point as employed in mathematics.) If a body is too large to be 

considered a particle, we can always think of it as composed of a 
large number of particles. 

If the distance between these particles remains unaltered 
(what are the restrictions on this statement?), we say the body is 

rigid. If not, we say the body is deformable. The same body 

may be considered rigid or deformable depending on the type of 

process considered. A bullet may well be considered a rigid 

body during its flight, but no one would ever say it was rigid when 

it hits a target and gets ^'squashed.'^ 
Finally, we shall divide mechanics itself into sections. First, 

the subject of kinematics, which classifies various types of motion 

and their characteristics without regard to the causes of the 

motions considered, and secondly, dynamics, the study of 

motions as related to their causes. Statics is to be considered a 

special case of dynamics. 



CHAPTER II 

LINEAR KINEMATICS OF A MASS POINT 

In this chapter we shall devote our attention almost entirely 
to the kinematical description of the motion of a particle on a 
straight line. By thus restricting ourselves to rectilinear motion 
we introduce a minimum number of now concepts and definitions 
essential to a proper mathematical description of motion. This 
procedure allows us to divide our kinematical discussion into 
two parts, the first of which comprises the content of this chapter. 
We must start by formulating our problems so that quantitative 
as well as qualitative answers may be obtained. 

7. Reference Systems.—We start our study of mechanics 
with the motion (change of position with time) of a single mass 
point. Since all points of space are identical and indistinguish¬ 
able, it is impossible to fix the position of a mass point absolutely, 
but the position, and hence the motion, must always be specified 
relative to some other body. Thus we see that from a kine¬ 
matical standpoint there is no such thing as absolute motion, all 
motion being relative. The body to which we refer the position 
of the mass point is known as a reference body and it provides an 
anchor for a frame of reference which we consider fixed. We 
choose some point of a rigid body as an origin of our reference 
system and discuss the motion relative to this frame of reference. 
If it requires only one number to specify the position of a mass 
point with respect to this origin, we say that the mass point has 
one degree of freedom. As an example, a mass point which can 
move along a straight line passing through the origin has but one 
degree of freedom. In this case the mass point performs linear 
motion. Another example of motion with one degree of freedom 
is that of a mass point in a circular path. If we choose our origin 
at the center of the circle and draw the radius from the origin 
to the mass point, the angle which this radius makes with a 
fixed straight line through the origin is sufficient to determine 
uniquely the positron of the mass point. To specify the position 

of a mass point free to move in a plane (or on any surface), 
8 
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however, we need two numbers and we say that the mass point 
has two degrees of freedom. Finally, a mass point free to move 
throughout space has three degrees of freedom. In the folloydng 
discussion we shall use the expressions position of a mass^oint, 
velocity, etc., but it must be remembered that these statements 
tacitly refer to a system of reference. 

8. Graphical Description of Linear Motion: Velocity.—Sup¬ 
pose we consider the motion of an automobile along a straight 
road and inquire as to how we should set about describing its 
motion. Our first task is clearly that of adopting a method 
of specifying its position on the road. For this purpose we must 
first choose an origin of position, and we then can uniquely 

Fig. 2. 

specify the position of the automobile by giving its distance to 
the right or to the left of the origin 0 (Fig. 2). 

We shall adopt the convention that distances to the right 
of 0 shall be specified by positive numbers and those to the left 
by negative numbers. Thus, if we say that the automobile 
is at the position x feet, we mean that it is x feet to the right 
of 0 if X is a positive number and x feet to the left of 0 if x is 
negative. In Fig. 2, Xi and xi are positive, and Xz is negative. 
The x^s are called the coordinates of the body. 

Suppose that the automobile is at the position Xi at a certain 
instant of time and that it is later at the position X2. We sa;^ 
that the automobile has undergone a displacement and define 
this displacement as the algebraic diifference between its final 
and initial coordinates. Thus X2 — Xi represents the displace¬ 
ment of the car from the position Xi to the position x^ and is a 
positive displacement to the right. Similarly, Xi - X2 represents 
a displacement to the left from X2 to Xi. It is important to note 
that not only the magnitude but also the direction of the dis¬ 

placement must be given. 
The most direct mode of ascertaining the motion of a body 

consists of noting the position of the body at different instants 
of time. Suppose we have made such a series of observations in 
the automobile of the preceding discussion which we record in 
tabular form (see Table I). Our problem is to determine the 
details of the motion as far as possible from the observed data. 
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In the following table we have placed the origin of coordinates 
at the starting position of the automobile. 

Table I 

t (sec.) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
X (ft.) 0 5 20 45 80 125 180 240 300 360 410 440 455 463 465 465 465 

(all positive) 

From this table we see that the automobile moves always in 
the same direction (to the right), and if we inspect the displace¬ 
ments occurring in successive seconds, we can say roughly that 
the car speeds up at the beginning, then later it slows down and 
eventually comes to rest. To make our conclusions more 
precise, we now introduce the concept of average velocity of the 
body during a specified time interval. We define average 
velocity as the displacement undergone by the body divided by 
the time interval during which the displacement occurs. Thus, 
if the body occupies the position at time h and a position X2 

at a later instant of time ^2, its average velocity in the time inter¬ 
val U — ti is given by the relation 

Average velocity = v = 2?-^ (1) 
12 ~ ti 

and is expressed in units of length/time such as cm./sec., ft./sec, 
miles/hr., etc. 

Average velocity is a quantity possessing direction, its direction 
being that of the displacement X2 — Xi, since the expression 
t2 — t\ is always positive. Now suppose we calculate the average 
velocity of the automobile during successive seconds of its 
motion. For the first second 

X2 — Xi 5 — 0 . / 
” - ■ “0 ■ ® 

For the second second 

For the third second 

Xi — xi 45 — 20 . 

From such a calculation we then can construct a table of 
average velocities for the corresponding time intervals as follows: 
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Table II 

Time interval 
Ist 

sec. 

2cl 

sec. 

3d 

sec. 

1 

4 th 

sec. 

5th 

sec. 

6th 

sec, 

7th 

sec. 

8th 

sec. 

9th 

sec. 

10th 

sec. 

11th 

sec. ^ 

12th 

sec. 

13th 

sec. ' 

-1 

14th 

sec. 

15th 

sec. 

16th 

sec. 

V (ft./Hee.) 5 15 25 35 45 55 60 60 60 50 30 15 8 2 0 0 

The preceding table now allows a somewhat closer description 
of the actual motion. We sec easily that the automobile is 
increasing its velocity (accelerating) for the first six seconds, 
from the seventh to ninth second it moves with constant velocity, 
then it loses velocity (decelerates), and, finally, it comes to rest 
about the fifteenth second. 

We have now a rough idea of the motion, and if we wish to 
pursue our investigation further and obtain still more detailed 
information, we must adopt some scheme which allows us to 
obtain information as to position and velocity at all instants of 
time from 0 to 16 sec. and not merely at the relatively few 
instants of time provided by the table of observed data. For 
this purpose we construct a graph of the motion to show the 
relation between x and t geometrically. This is done as follows: 
We first construct two straight lines which intersect each other 
at right angles. Usually one line is drawn horizontally and the 
other vertically. The vertical line is known as the axis of 

ordinates and the horizontal one as the axis of abscissas. Along 
the axis of abscissas we mark off equal intervals of length, each 
interval representing some unit of time. Thus we may choose 
^ in. on this axis to represent a time interval of 1 sec. The rela¬ 
tion between the time interval and the length interval on the 
abscissa is known as the scale, and the scale is arbitrarily chosen 
for convenience. The student must use his judgment in deciding 
on the proper scale. If the scale is too small, the graph becomes 
too small to show proper detail, and if too large, it limits the time 
during which the motion can be represented on a single plot. 
Similarly, we mark off equal length intervals on the axis of 
ordinates, each interval on the axis representing some lengt^i 
in the actual motion. The intersection of the axes is taken as 
the origin 0, i.e., it corresponds to both the origin of coordinates 

X = 0 and the origin of time t = 0 (Fig. 3). 
W^e now choose some value of t, find the corresponding value 

of X, and, directly above or below this value of t on the horizontal 
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axis, we place a fine dot at a vertical distance corresponding to 
the value of x. Repeating this process for a number of values 
of t (and x), we obtain a series of points whose horizontal distances 
from 0 represent values of t and whose vertical distances from 0 

represent the corresponding values of x. Next we join these 
points by a smooth fine curve which provides us with a geometrical 
picture of the motion. The curve is called a graph of the motion. 

In constructing this curve, it is best first to sketch it lightly 
in pencil and to ink it in later. 

t in Seconds 
Fia. 3. 

Figure 3 is a graph of the motion of the automobile which we 
have already discussed with the help of Tables I and II. The 
small circles are the points corresponding to the values given in 
Table I. One advantage of the graph over the table of values is 
immediately clear. We can now readily find the position of the 
automobile for instants of time not given directly in the table. 
Another becomes apparent when we inquire as to the graphical 
representation of the average velocity over different intervals 

of time. 
Suppose we wish to calculate the average velocity of the auto¬ 

mobile during the eighth second of its motion with the help 
of the graph. On the graph the point P represents the values 
t = 7 sec. and x =*240 ft.; and the point R represents the values 
t =» 8 sec. and x = 300 ft. If we construct the horizontal line 
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PQ and the vertical line QR, as shown, it is clear from the figure 
that QR represents the displacement of the automobile during 
the eighth second and PQ represents the time interval of 1 sec. 
during which this displacement occurred. Thus 

V = 
QR 

PQ 

and is the ratio of the side opposite the angle RPQ to the side 
adjacent in the right triangle PQR. This suggests a close rela¬ 
tion to the tangent of the angle RPQ, and indeed v would equal 
this tangent were it not for the fact that in the triangle PQR 

the sides have neither the same dimensions nor are they drawn 
to the same scale. We shall, however, say that 

V = tan Z RPQ 

remembering that we do not mean the geometrical tangent but 
the ratio of the opposite to adjacent sides with the proper dimen¬ 
sions. Thus the geometrical tangent of the angle RPQ is -f-? but 
in our sense it is 

60 ft. 
1 sec. 

= 60 ft./sec. 

In order to proceed further in our description of the motion, 
we can now find the average velocity of the car over half-second 
intervals instead of over whole-second intervals as before. It 
is clear that, as we lessen the time interval over which we aver¬ 
age, we obtain an increasingly detailed description of the motion 
and that a complete description will be obtained only as we 
investigate what happens to the average velocities as the time 
interval is reduced indefinitely. In general, as the time interval 
is decreased, the displacement occurring in that time interval is 
also decreased, but the ratio of displacement to time interval 
approaches a definite, limiting value which we call the instan¬ 

taneous velocity, or simply the velocity of the body. How may 
we carry out this process with the help of the graph? Suppose 
we wish to calculate the average velocity in the half-second 
interval after the body reaches P. This value is indicated on 
the graph as Q'R/PQ\ and since the triangles PQR and PQ'JB' 

are similar, 

<?'«' QR 
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It is clear that this equality is due to the fact that during the 
eighth second the graph of the motion is a straight line. If we 
now proceed to average over shorter and shorter intervals of 
time, we s*ffhuld construct smaller and smaller right triangles, and, 
because of similar triangles, the angle at P and hence its tangent 
stay unchanged. Thus, in this simple case, we have shown that 
average velocity equals instantaneous velocity, and the velocity 
of the automobile 7 sec. after it starts is 60 ft./sec. 

If we now wish to carry out the above process during a time 
interval when the graph is not a straight line, e.g,, from t = 2 sec. 
to < = 4 sec., we see in Fig. 3 that, in the right triangle ABCy 
BC/AB = tan Z CAB equals the average velocity in this time 
interval. However, in this case the. hypotenuse .4C no longer 
coincides with the graph from A to C. We now average over a 
shorter time interval, from t — 2 sec. to ^ = 3 sec. and obtain 
as the average velocity for this time interval 

^ = tan Z C'AB' 
AB' 

and this value is smaller than BC/AB since the straight line 
makes a smaller angle with the horizontal than the straight 
line CA. Now, as we take smaller and smaller time intervals, 
the angles between the hypotenuses of the right triangles and 
the horizontal get more and more nearly equal to a definite 
angle, the tangent of which is the velocity of the car at A, We 
may also describe this by saying that the directions of the 
straight lines AC, AC', etc., become more and more nearly alike 
and approach, as a limiting value, the direction of the dotted line 
through A in Fig. 3. The dotted line is called the tangent 
line to the curve at A, and the tangent of the angle between this 
line and the axis of abscissas is called the slope of the curve 
at A. We now have the important relation that the slope of the 
displacement-time curve at any point equals the velocity of the 
body at that point. We shall later learn an algebraic method 
of determining this slope if the equation of the graph is known. 

&. Acceleration in Straight-line Motion—We have just seen 
how to obtain the velocity of a body from the displacement-time 
graph of its motion. An inspection of Fig. 3 shows that the 
slope of the curve, which equals the velocity, increases steadily 
up to about 6 sec., then stays sensibly constant up to about 10 
sec., and after that decreases, finally becoming zero at about 
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16 sec. Thus we see that the velocity of the automobile varies 
during the motion, and it becomes necessary to introduce a new 
concept to describe the changes in velocity—that of acceleration. 

Suppose that we have determined the velocity of the auto¬ 
mobile from Fig. 3 at different instants of time, let us say, at 
i == 1, 2, 3, 4 sec., etc. Or, perhaps, let us imagine that a 
passenger in the automobile records the speedometer reading at 
1-sec. intervals. We can then construct a table of velocities 
and corresponding values of time as is done in Table III. 

Table III 
t (sec.) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

V (ft./sec.) 0 10 20 30 40 49 57 60 60 60 45 20 10 5 2 1 0 

If the velocity at time U is Vi and at a latei* time U is we define 
the average acceleration (a) during the time interval h — h by 
the relation 

and this is a vector quantity having the dimensions velocity/time 
or length/(time) 2. The average acceleration is positive or nega¬ 
tive depending on whether t;2 — > 0 or 2;2 — < 0, where wo 
must remember that vi and V2 are algebraic quantities. Thus, if 
V2 is positive and larger numerically than i^i, which is also positive, 
V2 — > 0, and the average acceleration is positive representing^ 
a speeding up to the right. Suppose, however, that Vz is negative 
and that V\ is also negative but larger numerically than Then 
1^2 1^1 > 0, and the acceleration is still positive. In this 
case the body is moving to the left and slowing down. But- 
slowing down during a motion to the left is exactly equivalent to 
speeding up during a motion to the right, as far as velocity 
changes are concerned, so that the acceleration is positive in 
both cases. The analysis of other possibilities is left as an 

exercise for the student. 
We now construct a graph of velocity vs. time using the 

values tabulated in Table III and obtain the curve shown in 
Fig. 4. From this curve we can immediately obtain the average 
acceleration of the automobile over any desired interval of time, 
and hence, by taking successively smaller time intervals, we 
obtain the instantaneous acceleration of the car at any desired 
moment. Thus the average acceleration during the third second 
is equal to BC/AC = 10 ft./sec.^, and since the graph is essen- 
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tially a straight line from < = 0 to 4 sec., the average acceleration 
over any time interval in this range is equal to its value over any 
other time interval in this same range, no matter how small this 
latter time interval is chosen. Thus this portion of the motion 
is one with constant acceleration. 

It will further be noted from Fig. 4 that the velocities at 
2| sec., etc., coincide rather closely with the average 

velocities for the first, second, third seconds, etc., as shown 
in Table II. The only exception is the point at sec. where 
the actual velocity is about 55 ft./sec., whereas the average 

0 2 4 6 8 10 12 14 16 
t in Seconds 

Fig. 4. 

velocity for the tenth second is 50 ft./sec. This is due to the 
fact that the velocity change from 9 to 10 sec. is not uniform 
and is comparatively large. In general, if the velocity changes 
slowly, one can approximately obtain the velocity at instants 
halfway between two observed values of time by taking the aver¬ 
age velocity. It must be kept in mind, however, that this is 
only approximate and is of little use when the acceleration is 
non-uniform and large. 

On the other hand, the average acceleration during the twelfth 
second is given by QR/PQ = —10 ft./sec.^, but in order to obtain 
the acceleration at < = 11 sec., we must average over successively 
shorter time intervals and thus approach the tangent to the curve 
at the point P. From the figure one sees that the acceleration 
at P is negative and greater numerically than the average 
acceleration from t = 11 to t = 12 sec. 

With the help of the curve in Pig. 4, we now can give a detailed 
description of the motion. The automobile starts from rest, 
speeds up at a constant rate of 10 ft./sec.* for the first 4 or 5 sec., 
and then picks up velocity less rapidly until at 7 sec. it has 
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attained a maximum velocity of 60 ft./sec., which it holds for 
the next 2 sec. Then the brakes are applied causing a decelera¬ 
tion; first a large one and later a somewhat smaller one and, 
finally, the car comes to rest about 16 sec. after the beginning 
of the motion. 

10. Equations of Motion.—We have seen that the motion of a 
particle on a straight line can be completely described if the 
position of the body, i.e., the displacement of the body measured 
from an origin, is known for every value of the time. In the 
preceding discussion the relationship between the coordinate 
X and the time t has been expressed by a table of values such as 
Table I or, better still, by a graph such as Fig. 3. There remains 
a third very valuable method of expressing the relationship 
between x and t, viz.^ by a formula. This latter method, which 
we are about to discuss, has decided advantages over the first two 
if we must make further calculations utilizing this relationship. 

In such a formula we have the two quantities x and t, and the 
value of either is determined if the value of the other is given. 
We say that x is a function of t, and, conversely, t is a function 
of x. Both x and t are called variable^y the quantity chosen 
arbitrarily is called the independent variable and the other the 
dependent variable. We may choose either variable as the inde¬ 
pendent variable, and, for reasons which will appear immediately, 
we shall choose the time t as the independent variable. This is 
a convenient but not necessary procedure. If we specify a given 
value of t and then determine the corresponding value of a:, we 
find where the particle is at that instant of time. On the other 
hand, were we to specify a value of x (choosing it as the inde¬ 
pendent variable) and determine the corresponding value of t, 
we find the instant of time when the particle is situated at a given 
point of the line. 

As an example of such a formula let us write 

a; = 5 - lOi (3) 

where x is the coordinate of the body expressed in centimeters 
and t is the time in seconds. If any value of t is given, it is 
substituted in the above equation, and the corresponding value 
of X can be found. In this manner we may construct a table 
of values of x vs. t from which a graph may be constructed. The 
above equation connecting values of x with corresponding values 
of t is known as the equation of motion of the body. With the 
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help of such an equation all questions concerning the position 
of the body at different instants of time may be answered. For 
example, we may ask, ^^When does the body pass through the 
origin of coordinates?^^ The answer is obtained by substituting 
x = 0 into the equation and solving for t. Thus we have 

0 = 5 - 10^ 
^ f sec. 

so that, J sec. after we start counting time, the body passes 
through the origin. 

If we now inquire into the question of the velocity of the body 
whose motion is described by Eq. (3) at different instants of 
time, we start with the definition of average velocity as given by 
Eq. (1). Suppose we wish to calculate the velocity of the body 
when t = 1 sec. From Eq. (3) we find that the position at 
^ = 1 sec. is 

Xi = 5 — 10-1= —5 cm. 

Let us first find the average velocity from t = 1 sec. to ^ = 2 sec. 
We then have U = 2 sec.; 0:2 = 5 — 20 = —15 cm.; and 

X2 — xi —15 + 5 , y = - = -— = --.10 cm./sec. 
^2 — A — 1 

To obtain the velocity at i = 1 sec., we proceed to average over 
shorter and shorter time intervals. 

Let U — 1.1 sec. Then X2 = 5 — 11 = —6 cm., and 

^ 11 ^ 1 ~ = —10 cm./sec. 

so that the average velocity is the same for these two time 
intervals. 

Now let U = 1.01 sec. Then 0:2 = 5 — 10.1 = —5.1 cm., 
and 

_ -5.1 + 5 
1.01 - 1 

0.1 
0.01 

— 10 cm./sec. 

We see that the average velocity stays unchanged as we change 
the time interval over which we average. A graph of Eq. (3) is a 
straight line. The slope of this graph (which, as we have seen, 
is the velocity) .is constant, so that the velocity is constant 
throughout the motion and, hence, the average velocity over any 
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time interval equals the constant value of the velocity through 
the motion. We can prove this from the formula [Eq. (3)] as 
follows: 

The position of the body at time t is 

xi = 5 - 10^ 

At a later time t + h, the position is 

X2 = 5 - 10(t + h) = 5 - lot - lOh 

so that the average velocity over the time interval h sec. is 

- = ^2 - _ (5 ~ \0t - lOA) - (5 - IQQ ^ ^ 
(i “f" /i) — t {t h) — t h 

— 10 cm./sec. 

a constant value which does not depend on the time interval h. 
Thus Eq. (3) describes a motion which takes place with constant 
velocity, i.e.y uniform motion. 

Now suppose we consider the motion of a particle on a straight 
line described by the equation 

rc = 10^2 (4) 

where x is in centimeters and t in seconds. We wish to calculate 
the velocity of the body when it is 10 cm. to the right of the origin, 
i.e., Sit t = 1 sec. Suppose we start by calculating the average 
velocity in the time interval from 1 to 2 sec. When ti = 1, 
Xi = 10; and when t2 = 2, ^2 = 40, so that 

. 40 - 10 , 
2; = = 30 cm./sec. 

Now let us reduce this time interval, taking t2 — 1.1 sec. In 
this case X2 = 12.1 cm., and the average velocity for the sec. 
following t = 1 sec. is 

y = ^ = 21 cm./sec. 

not equal to the value previously found. 
We now repeat this process, taking <2 = 1.01 sec. and find 

X2 = 10.201 cm., so that for xixr the average velocity is 

iJ = 
10.201 - 10 

= 20.1 cm./sec. 
1.01 - 1 
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Repeating this process for t2 = 1.001 sec., we have 

X2 = 10.02001 cm., 

and the average velocity for sec. is 

10.02001 - ] 

1.001 - 1 
= 20.01 cm./sec. 

Thus we see that as we average over shorter and shorter time 
intervals, the average velocity changes and gets nearer and nearer 
to a definite limiting value, in this case 20 cm./sec., which is 
defined as the velocity for ^ = 1 sec. The student should repeat 
this calculation for t = 1.0001 sec., and this should yield a value 
of V — 20.001 cm./sec., indicating how v approaches the instan¬ 
taneous value {5 = 20 cm./sec. as the time interval approaches 
zero. 

Now let us extend the above method to hold for any value of 
the time. At time the position is 

and at a later time t + h, the position is 

X2 = 10(^ + /i)2 = 10^2 + 20ht + lOh^ 

The average velocity for the time interval h is 

3^2 - Xi ^ 10^2 + 20ht + 10h^ - lOt^ 
(t + h) — t h 

20t + lOA 

so that it will be different for different time intervals h. 
To find the velocity at any definite instant of time we let 

t stay fixed in the above equation and let h get smaller and smaller. 
The term 20^ does not change, but the term (+10/i) gets smaller 
and smaller as h approaches zero. Hence the limiting value of 
V is obtained by placing h — 0, and we find, for the velocity at 
any time 

V = 20t (5) 

where v is, of course, expressed in centimeters per second and t in 
seconds. This formula now allows us to calculate the value of 
V for any value of time so that this algebraic method is more 
general than the arithmetic method previously given. 

We can state the results of the above discussion by specifying 
that the velocity of a body is the limiting value of the ratio of 
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displacement to time interval as the latter approaches zero. In 
symbols 

V = limit of --p- as <2 — 0 
H ~ 

It is customary to write U — t\ as At (read delta t), and is 
known as the increment of time. Similarly, we write 

X2 — Xi — Ax, 
where Ax is the corresponding increment in x. We may then 
write for our definition of velocity 

Ax 
V = limit of — as 0 (6) 

Now let us apply the above methods to calculate the accelera¬ 
tion of the body from Eq. (5). At time t, the velocity is y = 20/, 
and at a later time t + At, the velocity is 

V 4” At) = 20 (/ “f" At) 

so that the average acceleration is 

= + Az;) - i; ^ 20/ + 20(A/) - 20/ ^ 
(/ -f- At) — / / 4” At — / 

and is constant, so that the instantaneous acceleration at any 
instant of time is constant and has the value 4-20 cm./sec. 
Thus we see that Elqs. (4) and (5) describe a motion taking place 
with constant acceleration. 

In general, we write as the definition of acceleration 

At) 
a = limit of — as A/ —^ 0 (7) 

Example.—We shall now illustrate in detail the methods which we have 
discussed, with the help of another example. Suppose a stone thrown into 
the air moves along a vertical straight line according to the equation 

x = 4 4- 32/ - 16/» (8) 

where t is in seconds and x is in feet measured positively upward from an 
origin on the ground. First we note that every term in a physical equation 
must have the same dimensions. Thus the 4 means 4 ft., the 32 means 
32 ft./sec. and is a velocity, the 16 means 16 ft./sec.* and has the dimensions 
of an acceleration. Every term in Eq. (8) represents a displacement. 
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If we place ^ = 0 in Eq. (8), we find x = 4 ft., and this means that initially 

the stone is 4 ft. above the ground. Another way of stating this is that the 

initial position of the stone (denoted by xo) is 4 ft. Let us obtain an expres¬ 

sion for the velocity of the stone at any time t. At time the position is 

a; = 4 -b 32^ - 16^^ 

At a later time, t + A^, the stone is at x + Ax, where 

X -j- Ax == 4 “b 32 (i “b A^) — 16 (i -b A^)* == 

4 -b 32^ -b 32(A0 - 16^2 - m{M) - 16(A0* 

whence 

Ax = 32(A0 - 32<(A0 - IGCA/)* 

The average velocity over this time interval A< is 

g = ^ = 32 - 32< - 16(A<) 

and if A/ —► 0, we obtain for the velocity, at any time /, 

V = 32 - 32i (9) 

(9), we find v = 32 ft./sec., so that initially the 

stone is projected upward with a speed of 

32 ft./sec. We shall denote the initial velocity 

by Vo. The values of xo and vo for any motion 

are called the initial conditions. 

Finally, from Eq. (9) we find for the acceler¬ 

ation the constant value 

a == -32 ft./sec.2 (10) 

which represents a constantly decreasing veloc¬ 

ity. We are now in possession of enough data 

to describe roughly the motion (Fig. 5). The 

stone starts upward from a point 4 ft. above 

the ground with an initial speed of 32 ft./sec., 

slows down, and turns around, falling with 

increasing speed (decreasing velocity!) until it 

hits the ground. 

To find when and where the stone reverses 

the direction of motion, we note that previous 

Fig. 6. to this instant of time the velocity is positive 

and after this instant of time it is negative. 

Hence the velocity must be zero at the top point of the path where the 

reversal of direction takes place. 

Placing V = 0 in Eq. (9), we find that for 

32/ — 32 = 0 or / = 1 sec. 

the stone reverses direction. At this instant of time we find the position 

If we place t = 0 in Eq. 

X in F+ 
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of the stone by substituting this value of t in Eq. (8) 

xi = 4 -b 32 • 1 ~ 16<1)2 = 20 ft. 

so that the stone rises to a maximum height of 20 ft. above the earth. 

If we inquire when the stone hits the ground, we place a: == 0 in Eq. (8) 

and find 

16<2 - 32^ - 4 = 0 

/ = 1 ± 

whence 

t = 2.12 sec. or i — —0.12 sec. 

Since the second value corresponds to an instant of time before the motion 

starts, it is discarded, and the stone hits the ground 2.12 sec. after it starts. 

0 0.5 LO L5 2.0 
t in Seconds 

Fio. 6. 

From Eq. (9) we find that the velocity of the stone is negative as it hits the 

ground and has the value 

t; = 32 - 32(2.12) = -32(~1 4- 2.12) = -35.8 ft./sec. 

so that the speed of the stone at this time is 35.8 ft./sec. 

It is instructive to express t in terms of x. We rewrite Eq. (8) in the form 

- 32f = 4 - X 

and solving for t, we obtain 

t == 1 ± l\/(20 - x) 

For values of x greater than 20, t.e., for heights above 20 ft., the quantity 

under the radical is negative, so that t is not real for these values of x. 

This means that the stone never reaches a height greater than 20 ft. 

Thus we see that a large amount of physical information may be 

obtained from as simple an equation as Eq. (8). The physical interpre¬ 

tation of mathematical equations is all-important in the study of physics. 
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Figures 6 and 7 show the displacement-time and velocity-time graphs for 

this motion. The curve of Fig. 6 is known as a parabola. The straight- 

line plot of Fig. 7 shows clearly that the velocity decreases uniformly with 

the time and hence the acceleration is constant. 

In conclusion, we will give general relations for the two simplest 
kinds of linear motion, viz.j (1) motion with constant velocity 
and (2) motion with constant acceleration. It must be kept in 
mind, however, that these are special cases and \isiially we must 

t in Seconds 
Fig. 7. 

use the general methods already discussed. For motion with 
constant velocity the equation of motion is 

X = Xo + Vot (11) 

where Xo is the initial position and Vo the initial velocity. The 
velocity is constant and equal at all times to the initial value 
Vo. For motion with constant acceleration a, the equation of 
motion is 

X = Xo + Vot + (12) 

where again Xo and Vo are the initial values of position and 
velocity. The velocity at any time t is given by 

V Vo + at (13) 
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and the acceleration is constant throughout the motion and 
equal to a. 

In using these equations to solve problems one is at liberty 
to choose the origin of coordinates arbitrarily. Hence o^o can 
be made zero by placing the origin at the starting point of the 
motion. However, if we are discussing the motion of two or more 
bodies simultaneously, we may make Xo = 0 for one of the bodies 
but obviously not for all of them. In some problems one is 
confronted with a situation where two or more bodies start their 
motion at different instants of time (as well as different posi¬ 
tions), and it is convenient to have a systematic method of 
handling such cases. This may be done as follows: In all our 
discussion we have started counting time at ^ == 0, f.e., we have 
placed our origin of time at the start of the motion. Thus the 
t appearing in the equations of motion really means the time 
interval which has elapsed since the 
motion started. If now we call the 
instant of time at which the motion 
starts lo instead of 0, all our equa¬ 
tions must be rewritten, so that in 
place of t we now have (i — ^o)- 
Thus Eq. (12) may equally well be 
written 

X = Xo + Vo(i — to) + ict(t — to)^ 

where Xo and Vo are as before the values of position and velocity 
at the start of the motion, f.e., when t = to- 

11. Angular Motion.—We shall digress in this section from the 
problem of rectilinear motion of a particle to discuss some aspects 
of another type of motion involving only one degree of freedom. 
Suppose we consider a wheel which is free to rotate about its 
axle. Such a motion can be described by a single coordinate, the 
angle 0 which one spoke of the wheel makes with a fixed line 
(the x-axis) through the center of the wheel (Fig. 8), If the wheel 
rotates in a counterclockwise direction as indicated, we shall 
say that 0 increases and if clockwise that 6 decreases. The angle 
6 shall be specified in radians, not in degrees. 

All the concepts we have introduced may now be taken over to 
describe this angular motion. Thus, if at an instant of time h 
the angular position of the shaded spoke is Bi and at a later time 
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it is ^2, we define the average angular velocity of the wheel by 

w (14) 

62 — ^1 is the angular displacement of the wheel in the time inter¬ 
val <2 “■ ^1, and the average angular velocity co is measured in 
radians per second. The notion of instantaneous angular 
velocity immediately follows as the limiting value of the average 
angular velocity as the average is taken over shorter and shorter 
time intervals. Thus 

03 — limit of ^ as ^ 0 
At 

or, more concisely, 

dt 
(15) 

If we have a motion with constant angular velocity o3o then the 
relation between angular displacement and time is simply 

6 — ^0 ~ (16) 

where ^0 is the initial value of 9. 
In general, the angular velocity of the wheel will not be 

constant but will keep changing during a motion. In such a 
case it is necessary to introduce the idea of angular acceleration. 
We define the average angular acceleration for a time interval 

^2 — as 

a = 
032 ““ C*>1 

<2 t\ 
(17) 

where C02 is the angular velocity at time t2 and wi the angular 
velocity at time h. From this we obtain the instantaneous 
angular acceleration a in the usual manner. Thus 

a = limit of ^ as Ai —> 0 
At 

or, again in calculus notation, 

a 
do) 
dt 

(18) 

Eversrthing we have done for linear motion can be now done for 
angular motion, all the formulas remaining valid if we substitute 
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angular coordinate ^ for linear coordinate x, angular velocity w 
for linear velocity v, and angular acceleration a for linear accelera¬ 
tion a. For example, the equations describing a motion with 
constant angular acceleration a take a form just like Eqs. (12) 
and (13). They are 

^ — Oq H" ^cxt" (19) 

oi — 03 0 at (20) 

Problems 

1. t (sec.) 0 1 2 3 4 5 6 7 

X (cm.) 3 8 11 12 11 8 3 -4 

The table above gives the coordinates of a moving body over an interval 

of 7 sec. 

Make a graph of the table, plotting the coordinates of the body as ordi¬ 

nates (vertically) and the corresponding times as abscissas (horizontally). 

Use EE graph paper; let 20 small divisions ecpial 1 sec. and 10 small divisions 

equal 1 cm. The graph need not be drawn in ink. 

a. Find the displacement of the body during the following intervals: 

0 to 1 sec., 4 to 5 sec., 0 to 6 sec., 1 to 7 sec., 1.5 to 5.7 sec. 

b. Calculate the average velocity d\iring these same intervals. 

c. Find the average velocity during the intervals from 1 to 3 sec., 1 to 2 

sec., 1 to 1.5 sec. Then draw the tangent to the curve at the point t ~ 1 sec., 

and from this determine the instantaneous velocity at that point. 

d. By drawing tangents, find the velocity at times t — 2 sec., t — 3 sec., 

/ = 4 sec., t ~ 5 sec., t = 6 sec., and i = 7 sec. 

From these values construct a graph of velocity vs. time, including the 

value for t — 1 sec. obtained in Part c. Making allowance for possible 

errors in estimating the slope of the tangent lines, what sort of curve seems 

to fit the points best? 

e. From the velocity graph find the average acceleration during the time 

intervals 1 to 3 sec., 4 to 6 sec., 0 to 7 sec., expressed in the proper units. 

What is the meaning of the sign of the acceleration? 

2. The equation of motion of the body referred to in Prob. 1 is 

X = 3 -f 6^ - 

a. Check this by computing the values of x from the equation for four 

values of t and comparing with the table in Prob. 1. 

h. From the equation of motion compute the position of the body at 

times i = 1.5 sec. and t — 5.7 sec. Then calculate the average velocity 

during this time, and compare with the value found graphically in Prob. 1. 

c. From the positions of the body at times f = 1 sec. and t = 1.5 sec., 

find the average velocity over the interval 1 to 1.5 sec. Repeat the process 

for the interval 1 to 1.1 sec., 1 to 1.01 sec., 1 to 1.001 sec. What limiting 

value do your results seem to be approaching? Compare with the value 

found graphically in Prob. 1. Which method do you think is more accurate? 
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d. Find the general expression for the velocity of this body at any time t; 
i.e.j find the expression giving its position at times t and t + /i, find the 

average velocity during time h, and find the limiting value of the expression 

as h becomes zero. Check your answer by using the expression which you 

obtain for v, to find the instantaneous velocity at time ^ = 1 sec. 

e. Find the expression for the acceleration of this body, and compare 

with the result obtained in Prob. Ic. 

/. Answer the following questions (let the quantity x refer to distances 

on a vertical line): 

a. Where is the body initially? 

h. At what time does it reverse its direction of motion? 

c. What is the maximum height reached? 

d. At what time does it reach the origin? 

e. What is its velocity at this point? 

3. A particle moving along a vertical line has the following positions at 

various instants of time: 

<(sec.) - 0 1 2 3 4 5 10 

a:(cm.) - 4-8.0 +5.0 +4.0 +5.0 +8.0 +13.0 +68 0 

a. Make a plot of displacement from the origin vs. time. 

h. Find the average velocity of the particle in the intervals 0 to 1 sec., 
0 to 2 sec., 0 to 3 sec., 0 to 4 sec. 

c. What is the displacement of the particle at the end of 3 sec.? at the 

end of 4 sec.? 

d. Find the slope of the curve you have drawn at the points t - 1,2,3, 

4, and 5 sec. 

e. Plot these values of the slope (what units?) vs. time. 

/. From this plot determine the acceleration of the particle for different 

values of i. 
4. A particle moving along the x-axis obeys the following equation of 

motion: 

X - 2t^ 

where x is in feet and t in seconds. 

а. Find the velocity of the particle at f = 0, 1, 2, 3, and 4 sec. 

б. Find the acceleration of the particle at f == 0, 1, 2, 3, and 4 sec. 

6a. Make a graph of the equation of Prob. 4. 

h. Make a graph of velocity vs. time. 

c. Make a graph of the acceleration of the body vs. time. 

d. Describe the motion in words. 

6. The velocity of a body is 60 miles/hr. Express this velocity in feet 

per hour, feet per minute, feet per second, centimeters per second, meters 

per minute, and kilometers per hour. 

7. If a runner covers 100 yards in 10 sec., what is his average velocity in 

miles per hour? What would be the time for 100 meters at the same average 

velocity? 

8. The radius of the earth is about 4,000 miles, and it makes one revolu¬ 

tion in 24 hr. Find the speed of a point on the equator, due to the earth^s 

rotation (a) in miles per hour; (6) in feet per second. 
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9. A body starts from rest and gains velocity at the rate of 2 ft./sec. 

every second. What is its velocity, in feet per second, at the end of 1 sec.? 

of 2 sec.? 1 min.? What is its velocity in feet per minute, at the end of 

1 min,? PJxpress its acceleration in the following units: 

feet per second per second; feet per second per minute; 

feet per minute per minute; feet per minute per second. 

10. A body is initially at rest at the origin and moves thereafter along the 

a:-axis with a constant acceleration of 8 ft./sec.2. What form do Eqs. (12) 

and (13) take for this special case? How far does the body move during the 

first second? What is its velocity at the end of the first second? What is 

its average velocity during the first second? How far does it move during 

the first 2 sec.? What is its velocity at the end of 2 sec.? What is its aver¬ 

age velocity during the first 2 sec.? How far does it move during the second 

second? What is its average velocity during the second second? 

11. The acceleration of a freely falling body is approximately 32 ft./sec.^ 

or 980 cm./sec.^ An object is dropped from the top of a tall building. 

The origin may be taken at the starting point and the downward direction 

as positive. How fast is it falling at the end of 1 sec.? How many feet 

does it fall during the first second? What is its average velocity during the 

first second? If the building is 256 ft. high, how long a time is required 

for the body to reach the ground? What is its velocity when, f.e., just 

b(‘fore, it strikes? What was its average velocity for the entire distance? 

If the })uilding contains 25 stories, each of equal height, at about what floor 

was the body after 1 sec.? After 2 sec.? How long a time is required for 

it to fall half the distance? Why is this not half of the total time? 

12. A body is thrown vertically downward from the same building with 

an initial velocity of 8 ft./sec. What is the form taken by Eqs. (12) and 

(13) for this case? What is the velocity of the body at the end of 1 sec.? 

How far does it fall during the first second? What is its average velocity 

during the first second? How long a time is required for it to reach the 

ground ? 
13. An automobile traveling at 30 miles/hr. is brought to rest by its 

brakes in 4 sec. Compute the acceleration (assumed uniform) in miles 

per hour per second, and in feet per second per second. How many feet 

does it travel before coming to rest? What distance would be covered in 

stopping from twice the original speed with the same acceleration? 

14. At the instant the lights turn green, a car which has been waiting 

starts to accelerate at the rate of 4 ft./sec.*, while a second car which just 

reaches the intersection at this instant continues on at a uniform velocity 

of 20 miles/hr. How long a time is required for the first car to overtake 

the second? How fast is it traveling at this instant? What distance has 

it covered? 
16. Which would win a 100-yard dash, a runner who can cover the 

distance in 10 sec. or an automobile which can accelerate to 60 miles/hr., 

from rest, in 16 sec.? 
16. A ball is thrown up with a velocity of 64 ft./sec. What is its velocity 

after 1 sec.? After 2 sec.? How high does it rise? How many seconds 

are required for it to return to earth? 
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17. A pop fly is caught by the catcher 6 sec. after being struck. How 

high did it rise? What was its velocity when caught? 

18. Starting from the equations 

z « Xo + V Vq at 

deduce the equation 

= vj -i- 2a{x — Xo) 

19. If two particles moving on the same straight line have positions xi 

and X2, respectively, at any instant of time, we define the relative position 

of 2 with respect to 1 as 

Xil = X2 — Xi 

a. Show that the rate of change of X21 with respect to t (the relative veloc¬ 

ity) is equal to the algebraic difference of velocities between 2 and 1, 

h. Show that the rate of change of relative velocity with respect to time 

(the relative acceleration) is equal to the acceleration of 2 minus the accelera¬ 

tion of 1. 

20. Two bodies A and B move along the same straight line with constant 

velocities of 4-40 cm./sec. and —80 cm./sec., respectively. 

a. What is the relative velocity of B with respect to A ? 

h. What is the relative velocity of A with respect to ^? 

c. If at / = 0 the relative position xba is 200 cm., when will they collide 

(if ever)? 

d. What was the relative position of A with respect to B hi t — —1 sec.? 

21. Two bodies A and B move along a straight line according to the 

equations 

xa — — lOi 4- 5^* cm. 

xb = 30 4- — 10^* cm. 
H in seconds 

a. Find the relative velocity of B with respect to A when they meet. 

h. For what value of t do they meet? 

c. What is their relative acceleration hi t = 0? at f =5 sec.? 

d. Where do they meet with respect to the initial position of A? 

€. When and where is their relative velocity zero? What is their separa¬ 

tion at this instant of time? 

22. Two particles move along the same straight line according to the 

equations 

Xi 

X2 

-lot 4- 2^2 ft. 
xo 4“ 5^ — t^ ft. 

t in seconds 

where Xo is a constant. 

a. Find the velocity and acceleration of each particle at the end of 1 sec. 

b. If the particles collide at the end of 6 sec., find their initial separation. 

23. A man standing at the edge of a roof throws a stone vertically upward 

with an initial velocity of 64 ft./sec. Three seconds later he drops a stone 

from rest. How far below the edge of the roof do the stones meet? 

24. A stone falls from the edge of a cliff from rest and 1 sec. later a second 

stone is thrown down from the edge of the cliff with an initial speed of 

40 ft./sec. If they meet at the bottom, 
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а. How high is the cliff? 

б. What is their relative velocity at the bottom? 

25. The engineer of a train running at a speed of V\ ft./sec, sights a freight 

train A ft. ahead of him on the same track moving in the same direction 

with a speed of ft./sec. He puts on the brakes giving the train a constant 
deceleration (negative acceleration) of a ft./sec.* Show that, if 

A 

there will be no collision; 

A 

the|;e will be a collision. (Assume v\ > ^2.) 

A particle moves on a straight line according to the equation 

X = 

Show that the acceleration is 

2a 

2a 

and that at a; = 00, 

V = 0. 

Find the velocity of the body at ^ =0. 

27. A stone drops from the roof of a building and requires J sec. to pass 

from the top to the bottom of a window 6 ft. high. How high is the roof 

above the top of the window? 

28. A wheel rotates about its axis with a constant angular acceleration 

of 1 revolution per second per second. 

a. Find the angular acceleration in radians per second per second. 

h. If its initial angular velocity is 600 r.p.m., find its angular velocity in 

r.p.m. and in radians per second at the end of 1 min. 

c. How many revolutions does the wheel make during this minute? 

What is the angle through which it turns (in radians) ? 

29. During a time interval of 2 sec. a wheel rotating with constant angular 

acceleration turns through 10 revohitions. At the end of this time interval 

its angular velocity is 360 r.p.m. Find the angular acceleration of the wheel. 

30. The angle turned through by the flywheel of an automobile engine 

in a time interval t is given by 

e ^ sot O.IP radians 

where t is in seconds and the above equation describes the motion from 

i = 0 to i = 10 sec. 
a. Find an expression for the angular velocity in terms of the time t. 
b. Find an expression for the angular acceleration in terms of L 
c. What is the angular velocity of the wheel for t = 10 sec., in radians 

per second and in r.p.m. 
d. What angle is turned through from ^ « 0 to ^ 10? , How many 

revolutions does the flywheel make in this time interval? 



CHAPTER III 

PLANE KINEMATICS OF A MASS POINT 

It>. this chapter we shall continue our discussion of kinematics, 
now extending the concepts introduced in Chap. II to describe 
the j notion of a particle in a plane. Motion in a plane displays 
characteristics which are not present in linear motion and which 
are essential to our study. For example, in linear motion the 
patli of the particle is always a straight line by definition, 
whereas in a plane there is an infinite variety of curves which the 
particle may follow in its motion. Furthermore, in linear 
motion the vectors could possess but two directions, to the right 
or to the left. In a plane these vectors may now point in any 
direction and we must learn how to manipulate these quantities 
when there are two degrees of freedom. 

12. Vectors in a Plane.—^Pisplacement, velocity, and accelera¬ 
tion are all vector quantities, as they possess magnitude and 
direction. A displ^ceipent can be represented by a straight line 
whose length indicates the magnitude and whose direction 
indicates the direction of the displacement. To make the 
specification unique, we must indicate by an arrowhead the sense 
of the vector, f.e., the direction along the straight line in which 
the displacement occurs. In exactly similar fashion, any vector 
may be represented by an arrow of given length and direction. 
As long as we restricted ourselves to linear motion, the direction 
of our vectors was fixed by the straight line along which the 
motion occurred, and it was only necessary to specify magnitude 
and sense. The latter was done by treating vectors as algebraic 
quantities, and the laws of addition and subtraction of vectors 
followed algebraic rules. Now these rules of addition and 
subtraction must be extended to the plane case, where the 
directions of the vectors may differ from one another. Vectors 
which lie in the same plane are called coplanar. 

The position of a point P in a plane, for example on this page, 
is determined by two independent pieces of information. Let 
us choose an origin 0, say at the lower left-hand corner of the 

32 
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page, and draw a straight line from 0 to P. Adding an arrow¬ 
head at P, we have the vector which represents the displacement 
from 0 to P and hence fixes the position of point P. There are 
two convenient ways of specifying the vector OP and thus the 
position of P: First, we may specify (a) the magnitude (the 
length) of the vector OP and (6) the angle which this line of 
displacement makes with a horizontal line, such as the bottom 
edge of the page; and, second, we may give (a) the distance to the 
right of the origin and (6) the distance above the origin. In 
any case, two numbers are necessary corresponding to the two 
degrees of freedom of a point in 
a plane. In the second mode of 
representation the distance of 
the point P to the right of the 
origin is clearly the length of 
the projection of the vector OP 
along a horizontal line, which we 
may take as an rr-axis. This 
projection along the .r-axis is 
known as the x-coniponent of the 
vector OP. Similarly, the dis¬ 
tance of the point P above 0 is 
given by the projection of OP 
along a vertical line which we take as a y-axis. This projection 
is known as the y-conipo7ient of the vector (see Fig. 9). 

In Fig. 9, OP represents a displacement from 0 to P. Suppose 
a man walks from 0 to P and then from P to Q, He has under¬ 
gone two successive displacements, OP and PQ. Clearly the 
sum of these two displacements is represented by the vector 
OQ, and from the figure it is obvious that we cannot add dis¬ 
placements (and hence vectors) algebraically. To obtain the 
sum of the two vectors OP and PQ we must construct a parallelo¬ 
gram of which OP and PQ are adjacent sides and the diagonal of 
which is the sum of the two vectors. Since we construct & 

parallelogram, it is irrelevant if we move PQ parallel to itself 
to the position OQ' and then form the sum of OP and OQ'. From^ 
this law of addition, the law of subtraction follows immediately. , 
Suppose we wish to subtract the vector PQ (or OQ') from the 
vector OP. This is equivalent to adding the vector -PQJ 

(or -OQO to the vector OP. Thus we first construct the vecW 
-PQ. This is the vector equal in length to PQ but opposite in! 
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\ direction. Then we complete the parallelogram of which OP 
I and —PQ are adjacent sides. The diagonal of this parallelogram 
,^ is the difference between OP and PQ. A little consideration 

shows that this equals the vector Q'P in Fig. 9, z.e., the other 
diagonal of the parallelogram OPQQ\ The important thin^ 
to keep in mind is that neither the sum nor the difference of twcf 
vectors has in general the same direction as either of the twJ 

vectors. 
In actual calculations of the 

sum and differences of vectors 
we may proceed according to the 
geometrical procedure outlined 
above, but it is much more con¬ 
venient to proceed with the help 
of the components of the vectors. 
The general idea is to work with 
the components of the vectors, 
using the simple algebraic rules 
for adding the a;-components and 
for adding the ^/-components. 

Suppose we have to calculate the sum of OP and OQ' 
(or PQ)f and that we know the magnitudes of these vectors 
and the angles which they make with the x- and the T/-axes 
(Figs. 9 and 10). We perform the following steps: 

1. Resolve each vector into two components, one along the 
x-axis and one along the y-axis: 

^-component of OF = OP cos a 
y-component of OP = OP sin a 
^-component of OQ' = OQ' cos P 
y-component of OQ' = —OQ' sin 

The minus sign in the last component shows that this component 
is negative and points down along the negative y-axis. 

2. Add all the x-components algebraically and all the y-com- 
ponents algebraically to obtain the x- and y-components of the 
vector which represents the sum or resultant. This is allowed 
because all the x-components lie along the same straight line. 
Similar considerations hold for the y-components. Thus 

x-component of the resultant = OP cos a + OQ' cos p ^ X 
y-component of the resultant = OP sin a •— OQ' sin — Y 

X and Y are used merely as abbreviations. 
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3. Find the resultant vector whose a:-component is X and 
whose ^/-component is Y (Fig. 10a). From the right triangle the 
length of the resultant vector R is given by 

R = + F2 

and the angle B which this resultant makes with the x-axis is 
fixed by the relation 

Y 
tan ^ ^ 

and thus we have the answer. 
The advantage of the method of breaking up a vector into 

components rather than adding by the parallelogram method is 
that we always deal with right triangles and thus simplify the 
calculations. These rules of ad¬ 
dition hold for all vector quan¬ 
tities, and it is easy to see how 
we are to add more than two 
vectors. The rules for sub¬ 
traction using components follow 
immediately from the rules above -- 
and are left as an exercise for 
the student. In the study of 
kinematics, the resolution of 
vectors into components turns a 
problem of motion in a plane 
into two simple problems of 
straight-line motion. After solving the problem for each com¬ 
ponent separately, we then obtain the final result by vector 
addition. 

Thus the magnitude of the resultant displacement s from 
the origin of a point which has coordinates (x, y) is 

Fia. 10a. 

S = y/x^ + (1) 

The magnitude of the velocity v is calculated from the values 
of the components Vg and Vy by 

V = \/vl + vl (2) 

and similarly, for the acceleration, 

a = \/a» + ^2 (3) 
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The directions of the resultant vectors may then be found 
imm^iately. 

shall now illustrate by a simple example. Suppose a man 
can row a boat at a constant speed of 3 miles/hr. in still water. 
He rows across a river I mile wide and there is a current moving 
with a speed of 4 miles/hr. The problem is to find his resultant 

velocity, the distance he moves 
down stream, and the total dis¬ 
tance covered. 

Let us choose our a:-axis point¬ 
ing down stream and our ^/-axis 
across the stream (Fig. 11). 
The boat moves with constant- 
velocity components 

= 4 miles/hr. 
Vj, — 3 miles/hr. 

In t hr., he covers a displacement 
whose components are 

X = Vxt — U 
y = Vyt = 3^ 

Now we know that the distance across the stream (the ^-com¬ 
ponent of the displac(mient) is | mile. Thus we place y — \ mile 
and find 

== I X § = i hr. = 10 min. 

To find the a:-component of the displacement, i.e., the distance 
he moves down stream, we insert this value of t in the equation 
for rr and find 

a; = 4 X ^ = I mile 

To find the magnitude of the displacement (the total distance 
covered), we have, according to Eq. (1), 

s = Vx^ + = VUy + (1)^ = Vfl = § mile 

The resultant velocity has a magnitude 

V — \/vl + vl = + 3^ = 5 miles/hr. 

and makes an angle 6 with the a;-axis given by 

tan d ^ — -r 
Vx 4 
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whence 

6 = 37° (approximately) 

so that the velocity vector makes an angle of 37° with the 
down-stream direction. Since the resultant speed is constant, 
we can also calculate the distance covered directly from it. The 
speed is 5 miles/hr., and, since it takes 10 min. for the crossing, 
the distance covered is 5 X J g mile, checking the answer 
we have already found. It must be noted, however, that it is 
necessary to consider one component of the velocity to cal¬ 
culate the time of crossing. 

13. Velocity and Acceleration in a Plane; Circular Motion.—In 
the last section we have seen how to obtain the resultant velocity 
and acceleration of a particle moving in a plane from a knowledge 
of the components of velocity and of acceleration along two 
mutually perpendicular axes (which we have called the x- and 
^-axes). Let us now turn to a geometrical investigation of the 
nature of the resultant velocity 
and acceleration. Suppose that 
the curve shown in Fig. 12 repre¬ 
sents a portion of the path 
traversed by a mass point, and 
that when it is at the point P its 
vector velocity is v. The mag¬ 
nitude of V is indicated by the 
length of the arrow labeled v and 
its direction is that of the tangent 
to the curve at P, After a very 
short interval of time which we 
denote by At, the particle will 
move a short distance As along the curve to the point P'. If 
we take very small. As will be extremely small and will 
practically coincide with the displacement from P to P' both 
in magnitude and direction. Hence we have very nearly 

or 

and, if we let At 0, we get (exactly) 

(4) 

(4a) 
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(6) 

where we must remember that both v and the infinitely small 

displacement ds are vectors. According to Eq. (5), the velocity 
and the displacement ds along the curve have the same direction. 
For all practical purposes we may consider ds a little piece of the 

curve representing the path. As the particle 
moves along its path, its velocity at any point 
coincides with the direction of ds at that point. 
If the path is curved, the pieces ds will have 
different directions, so that the velocity vector 

changes its direction (and perhaps its magnitude) as the particle 
moves along the path. A changing velocity vector means accel¬ 
eration, so that motion in a curved path is always an accelerated 
motion, never one of constant velocity since this would mean 
constant direction (straight-line motion). 

To see which direction the acceleration vector possesses, we 
construct a figure (Fig. 13) which represents the velocities 
of the particle at the two positions P and P'. In this figure we 
have displaced the vector v' parallel to itself so that it starts from 
the same point as v. Now the vector v represents the velocity 
at P, and v' is the velocity of the particle dt sec. later when the 
particle is at P'. Hence the change in velocity is dv which is 
shown in Fig. 13 as the vector difference between v' and v. 
Then, by definition, the acceleration vector is 

V’ 

Fig. 13. 

(6) 

and has the direction of dv (not of ds or of v). 
A special but important case of plane motion which requires 

some detailed study is that in which a particle moves in a circular 
path. This type of motion affords an excellent example of 
motion in which the direction of the velocity vector changes con¬ 
tinually. Let the radius of the circle be R, and let us take the 
center of the circle as coincident with a set of x-y axes (Fig. 14). 
The position of the point P on the circle can be specified either 
by giving its x- and ^-coordinates or by giving the magnitude of 

the radius vector R and the angle $ which this vector makes 
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with the positive x-axis. Since the magnitude of the vector R 
stays constant in circular motion (it is equal to the radius of the 
circle), we have a motion of only one degree of freedom and can 
use the single coordinate d to specify the position of the particle; 
d is called an angular coordinate. 

If we wish to find the velocity 
of the particle at the point P, we 
may proceed as follows: By defi¬ 
nition the velocity of the particle 
is the rate of change with time of 

—> 

its position vector (in our case P), 
and for circular motion this posi¬ 
tion vector is a rotating vector of 
constant magnitude. Thus we 
must find an expression for the 
time rate of change of a rotating 
vector. If the particle is at the 
position P at time t and at the position P' at a time later, then 
the average velocity during this time interval is 

_ Alt 
^ At (7) 

and has the direction of AT? shown in the figure. During this 
time interval the angle 0 between the radius vector and the x-axis 
changes by an amount Ad. The velocity of the particle at the 
point P is then obtained by allowing At (and consequently Ad) to 
approach zero. We note that AT? equals the chord PP' and 
remember that, as the angle subtended by the chord of a circle 
approaches zero, the arc and the chord approach each other in 
value. Thus in Eq. (7) we replace AT? by the arc PP' and then 
let At or Ad approach zero. Since the arc PP' equals RAd, we 
have, for the velocity at the point P, 

t> = T? lim ^ as At-*0 

and if we define cu, 
equation 

the angular velocity of rotation, by the 

dt 
(8) 

V = R^ = P« at 

we have 

(9) 
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Here v is the magnitude of the velocity vector and R the length of 
the radius vector. The direction of v is tangent to the circle, 

at right angles to the radius vector R. 
We have thus derived the very important result: The rate of 

change of a vector of constant magnitude rotating with an angu¬ 
lar velocity co is a vector of magnitude equal to the product of 
the magnitude of the rotating vector and the angular velocity. 
The direction of this vector is at right angles to the original 
rotating vector. 

We now wish to calculate the acceleration of the particle, and 
we shall first confine ourselves to the case in which the particle 
moves with constant speed v in the circle. In this ease we see 
from Eq. (9) that the angular velocity a> of the particle is constant. 

—> 

Since the velocity vector v is always perpendicular to the radius 

vector R, it changes its direction exactly the same way as R does 
and hence rotates with the same constant 
angular velocity w. We can represent 
this fact on a velocity diagram in which we 
draw the successive velocity vectors for 
the particle from a common origin O' 
(Fig. 15). In the figure, Vp represents the 
velocity of the particle at the point P of 
Fig. 14 and vp* the velocity at the point P'. 
The angle is the same as shown in Fig. 
14. Thus we have a vector of constant 
magnitude v (for the case of constant 

speed motion) rotating with a constant angular velocity co, and 
we can apply the theorem stated above. Hence we obtain for 
the acceleration (since the acceleration is the rate of change of 
the vector velocity) a vector of magnitude 

a = VO) (10) 

Fici. 15. 

and, since w is the same as in Eq. (9), this can be written 

a 
R (11) 

The direction of this acceleration vector is perpendicular to the 
vector v. The vector v being tangent to the circle at any point 
the acceleration vector points along a radius, and a little con¬ 
sideration shows that it is directed toward the center of the circle 
in which the particle actually moves. 
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The preceding derivation is a geometrical one, and it is instruc¬ 
tive to carry through an equivalent derivation analytically. 
Referring back to Fig. 14, we have for the x- and ^/-coordinates 
of the point P 

X — R cos 0 = R cos o)t) . . 
y = R sin 6 = R sin ootj ^ 

These are the kinetic equations of motion of the mass point. 
In them co is constant. We obtain the velocity components by 
differentiating these equations with respect to t, yielding 

Vx = —o)R sin 
Vy ~ -\-<joR cos cot 

The magnitude of the resultant velocity (the speed) is, according 
to Eq. (2), 

V — y/vl + vi = cjo‘^R‘^ sin2 cot -f- co'^R^ cos^ cot = coR 

which is simply Eq. (9). 
Since the direction of v is not constant, there is an acceleration 

the components of which we find by differentiating Eqs. (13) 
with respect to L This yields 

Ua, = —CO^R COS Co/) 

Qy == —co^R sin (ot) ^ 

The magnitude of the resultant acceleration is, according to 

Eq. (3), 

a = y/+ al — o)^R\/cos^ cot + sin^ cot = co^R 

or, using Eq. (9), 

a = ^ (15) 

in exact agreement with the result of Eq. (11). 
Now let us find the direction of this acceleration vector. Let a 

be the angle which this vector makes with the x-axis. Then 

we have 

tan a = ~ 
ax 

Oy _ sin cot 
as --co^R cos cot 

tan cot = tan 0 

and since 
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we see that 
tan a = tan $ 

Hence a = and we find the acceleration vector pointing along 
the radius as before. We also know that it points toward the 
center of the circle since the minus signs in Eqs. (14) mean that 
the x-component of the acceleration points to the left and its 
^/-component points down. 

To recapitulate: 
Motion in a circle with constant speed is an accelerated motion. 

The magnitude of this acceleration is v‘^/R (v the speed, R the 
radius of the circle), and it is 
directed at every instant of time 
toward the center of the circle 
along the radius R. This acceler¬ 
ation is due only to a change of 
direction of the velocity vector, 

14. Circular Motion with Variable 
Speed.—A more general case is 
that in which the particle moves 
in a circular path with variable 
speed. In this case we have not 
only an acceleration due to a chang¬ 

ing direction of the velocity vector but also an acceleration 
because of the changing length of this vector. As we have 
seen in the last section, the component of acceleration due to 
changing direction of the velocity is at right angles to the 
velocity itself and the component of acceleration due to the chang¬ 
ing length of the velocity vector is in the direction of the velocity. 
Thus we have two components of acceleration: 

1. The central acceleration directed along the radius toward 
the center. 

2. The tangential acceleration directed along the velocity 
vector, t.e., tangent to the circle and hence perpendicular to the 
radius of the circle. 

Let us consider the second component of the acceleration more 
closely. If the particle is at the position P at a certain instant 
of time, after a time interval dt it is at P' at a distance ds along 
the arc from P (Fig. 16). 

From the figure we see that 

ds = Rd$ (16) 
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and the speed at the point P is 

where a? == dO/dt is the instantaneous angular velocity at P 
and does not remain constant. 

Differentiating with respect to we find, for the component 
of acceleration tangent to the circle, 

where we call a = doi/dt the angular acceleration of the particle. 
From Eqs. (17) and (18) we see that angular velocity and angular 
acceleration are proportional to the linear speed and tangential 
acceleration, respectively, so that we may use them equally well 
to describe the aspects of the motion due to changes in speed of 
the particle. 

In general it turns out that Eq. (15) is valid for the central 
acceleration even if the speed does not stay constant, so that 
we may write for the two components of acceleration: 

1. The central part 

vP" 
Qf ~ = o)^R 

iC 

2. The tangential part (19) 

dv ^ 

Since these are at right angles, the resultant acceleration has a 

magnitude given by 

a = Val + af = + ^2 (20) 

Equation (20) can be derived directly from the kinetic equations 
of motion, using the method of the last section. We start with 

the equations 

X = R cos V 
y = Rsin 0) 

differentiate each twice with respect to t, remembering that 
w = d$/dt and that a = = dW/dt^, thus obtaining exprea- 
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sions for the x- and 2/“Componerits of the acceleration. The 
resultant acceleration has a magnitude given by the square root 
of the sum of the squares of these components. The actual 
derivation is left as an exercise for th(^ student. Perhaps one 
word of caution is necessary: In the general case it is not allow¬ 
able, as it was for constant speed, to place 6 — cot, since this 
relation follow\s from the definition co — dd/dt only when oo and 
hence the speed are constant. 

A special case of consideral)le interest is that in which a particle 
moves in a circle with constant angular acceleration. If this 
constant acceleration is denotf^l by a, we easily find the equations 

CO = 0)0 “h (22) 

and 

e ^ do + coot + (23) 

where coo and do are the initial angular velocity and initial angular 
position, respectively. 

Problems 

1. Two vectors have magnitudes of 40 and 60 cm. and make an angle of 

40° with each other. Find the magnitude of the sum of these vectors and 

the angle which this resultant makes witli the smaller vector. 

2. Two vectors, one of which has twice the magnitude of the other, have 

a resultant of magnitude 26.5 in. which makes an angle of 40.9° with the 

smaller vector. Find the magnitude of each vector and the angle between 

them. 

3. The resultant velocity of a particle is made up of three components, 

as follows: A lO-ft./sec. vector in the direction of the positive x-axis; a 

20-ft./sec. vector making an angle of 30° with the positive ^/-axis in the 

second quadrant; and a 25-ft./sec. vector making an angle of 45° with the 

negative a;-axis in the third ejuadrant. 

a. Find the x-component of the resultant velocity. 

b. Find the i/-component of the resultant velocity. 

c. Find the magnitude and direction of the resultant. 

4. A vector 20 units long makes an angle of 37° with the -f-x-axis in the 

first quadrant. Find the x- and ^/-components of this vector. If this vector 

is added to another vector of length 4 units pointing along the negative 

X-axis, find the length of the resultant vector and the tangent of the angle 

it makes with the x-axis. 

6. A vector has x- and ^/-components of +10 units and +5 units, respec¬ 

tively. Find the magnitude of the vector and the tangent of the angle which 

it makes with the x-axis. Find the sum of this vector and a vector of length 

20 units making an angle of 45° with the negative x-axis in the third quad¬ 

rant. GiVe the magnitude of the resultant and the tangent of the angle it 

makes with the x-axis. 
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6. A man runs at the rate of 6 miles/hr. (with respect to the deck) from 

the bow to the stern of a steamboat. The boat attains a speed of 10 miles /hr. 

in still water and is pointed directly across a river which is flowing south 

with a spetid of 3 miles/hr. Calculate the velocity (magnitude and direc¬ 

tion) of the man’s motion relative to the bank of the river. 

7. A ship heads due north with a speed in this direction of 12 miles/hr. 

At the end of 2 hr. it is 8 miles east of north. What is the velocity of the 

current? How far does the ship go in 2 hr. ? What angle does the resultant 

velocity make with the north direction? 

8. A raindrop, falling vertically, hits the window of a train moving with 

a speed of 45 miles/hr. It makes a streak on the pane which makes an 

angle of 10° with the horizontal. What is the downward spend of the 

raindrop? 

9. Two vectors of lengths A and B make an angle 0 with each other. 

Prove, by taking components along an x- and a y-axis, that the length of the 

resultant R is 

R = + •B'* + 2AB cos e 

10. A man can row a boat 4 miles/hr. in still water. If he is crossing a 

river where the current is 2 miles/hr., in what direction should his boat be 

headed if he wishes to reach the point directly opposite his starting point? 

If the river is 4 miles wide, how long will it take him to cross the river? 

Find the time it would take him to row 2 miles down the river and then 

back to the starting point. 

Find the time it would take him to row 2 miles upstream and then back to 

the starting point. 

In what direction should he direct the boat if he wishes to cross in the least 

possible time? 

11. The moon rotates in a circle of radius 240,000 miles about the earth 

once in about 28 days. Find the speed of the moon. Find its angular 

velocity. What is its acceleration? 

12. A stone at the end of a string 1.5 ft. long is rotated in a circle at a 

constant rate of 90 r.p.rn. 

а. Find the angular velocity of the stone in radians per second. 

б. Find the speed of the stone. 

c. What is the acceleration of the stone? 

13. A particle moves with a constant speed of 5 cm./sec. in a circle of 

radius 20 cm. At t = 0 the particle is on the positive x-axis. 

a. Find the x- and ^-components of the acceleration of the particle. 

b. Calculate the position of the particle at i = 4t/3 sec. 

c. Calculate the x- and y-components of the velocity of the particle at 

this instant of time. 
d. Calculate the x- and ^/-components of the acceleration of the particle 

at this instant. 
14. A particle moves in a circle of radius R with constant speed v. 

a. Indicate two successive positions of the particle and construct the 

velocity vectors at these two positions. 

b. Draw a separate figure to indicate the chaixge in velocity between these 

positions. 
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c. Using similar triangles and the definition of acceleration, derive an 
expression for the acceleration of the particle. What is the direction of the 
acceleration vector? 

15. An automobile engine is running at 600 r.p.m. The accelerator is 
suddenly depressed, and the engine speeds up to 3,600 r.p.m. in 10 sec. 

a. Compute the angular acceleration of the engine during the 10 sec. 
(Assume it to be uniform.) 

b. If the flywheel of the engine is 18 in. in diameter, compute the tangential 
acceleration of a point on its rim. 

c. How many revolutions does the engine make during the 10 sec.? 
16. A wheel 25 cm. in diameter accelerates at a constant rate from rest to 

an angular velocity of 1,200 r.p.m. in 20 sec. 
a. Find the angular accieleration of the wheel. 
h. How many revolutions are turned through in the 20 sec.? 
c. Find the resultant acceleration (magnitude and direction) of a point 

on the rim at i = 0 sec., t = 1 sec., and t = 20 sec. 
17. A wheel starting from rest with constant angular acceleration acquires 

an angular speed of 1,800 r.p.m. in 30 sec. The radius of the wheel is 6 in. 
Calculate the radial and tangential components of the acceleration of a 
point on the rim I sec. after starling. Draw a diagram indicating the direc¬ 
tion of rotation and tlie direction of each component of the acceleration. 



CHAPTER IV 

NEWTON’S LAWS; STATICS OF A PARTICLE 

Up to this point we have been studying the characteristics and 
the method of description of various motions, in particular 
of straight-line motion and of circular motion. We have merely 

assumed that such motions exist and we have not inquired as to 
how they are actually produced. In this and succeeding chapters 
we shall undertake a study of the causes of real motions, compris¬ 

ing the subject of dynamics, and this study lays the foundation 

for the whole science of mechanics. More precisely, we shall 
concern ourselves in this chapter with a statement and discussion 

of the fundamental laws of motion, followed by a study of the 
statics of a particle to gain familiarity with the composition of 
forces, and hence we must start by discussing a number of new 

physical concepts and definitions. 

16. The Concept of Inertia.—In order to obtain an under¬ 
standing of the causes of motion of bodies in nature, we must 

appeal primarily to our experience, and in particular to those 
experiences in which we recognize and distinguish among various 

kinds of motion, c.g., a falling stone or a bullet shot from a rifle. 

In each of these cases it is noticed that we intuitively associate a 
definite cause of the motion; for the stone, we say that the earth 

causes the motion, and in the case of the bullet, the expanding 

gases are the cause of the motion of the bullet. By these state¬ 
ments we mean only that if the bodies which “cause’’ the 

motion were to be removed, the motion would lose its original 

characteristics. 
The first question we ask is: How would a material point move 

if it were free from all external environment, i.e., completely 
isolated and infinitely distant from all other material bodies in 

the universe? Of course such a question cannot be answered by 
an experiment, and, in fact, we may justly wonder how much 

physical meaning such a question has, since we do not know if 

huge bodies at enormous distances from our mass point might 

appreciably modify the motion. On the other hand we can, in 
47 
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certain special motions, keep diminishing the effects of the causes 
of motion. We cannot remove the earth but can eliminate its 
influence by placing the material point (e.g., a block) on a rigid, 
horizontal plane. If we now" let the block slide (passing a given 
point with some definite velocity), we notice that it gradually 
slows down and stops. This simple experiment seems to indicate 
that the answer to our question would be that, when freed from 
external environment, a body remains in a state of rest. Such, 
indeed, was the attitude of the Greeks toward this matter, and 
this view persisted up to the time of Galileo. If we repeat our 
experiment with a smoother block on a smoother surface, we 
notice that the decrease of velocity ensues more slowly, and that 
this effect keeps increasing as the block and surface are made 
smoother and smoother. Therefore, w^e extrapolate and say that 
if all roughness and consequent friction could be eliminated, the 
body would continue indefinitely in a straight line with constant 
velocity. This constitutes Galileo^s answer to our question. Of 
course, this mode of presentation cannot be looked upon as a 
proof, since an independent definition of external influence is 
lacking. It is possible, however, to interpret the experiment in 
the above manner. This principle of Galileo is the interpretation 
and generalization of, rather than a deduction from, experience. 
This procedure is the only one which allows science to progress; 
a fact, or a set of facts, alone can teach nothing new no matter 
how often it is ascertained, interpretation and generalization 
thereof alone open the path to progress. 

The relation that a body retains a uniform linear motion once 
started is often described by assigning a property to matter which 
we call inertia. To say that matter possesses inertia is to express 
the relation of Galileo, and this relation, like every generalization, 
must appeal to the correctness of the results obtained therefrom 
for justification. 

16. The Concept of Force.—The primitive concept of a force 
is a push or a pull exerted by our own muscles. For the purposes 
of physics, however, it is necessary to make such a concept more 
precise, and we must find a method of measuring forces, f.6., 
comparing different forces. We know that by pushing or pulling 
on a body, such as the block in our example, we can produce 
changes in its velocity and the harder the push or pull, the greater 
the ensuing acceleration. It is very natural to look upon force 
as the cause of acceleration, f.c., of rate of change of velocity, but 
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our muscular sensations are too vague and uncertain to be used 
as a measure of force so we must proceed to set up a more exact 
definition (Sec. 17). 

Forces fall into two general classes: first, forces which are 
exerted on bodies by direct contact with other bodies, or are 
transmitted through ropes attached to the bodies on which they 
act; and, second, forces which ^'act at a distance^' and which are 
due to the mere presence of bodies other than the one on which 
the force is acting. As an example, a piece of iron held in the 
neighborhood of a magnet is acted on by a force due to the 
magnet. To convince ourselves thereof, we remove the magnet 
and find that the force on the iron changes. All forces acting on 
a body have their origin in other bodies, and a good test to find 
out if a body A exerts a force on body B is to remove body A 
and see if the velocity of B changes. For example, a ladder 
standing up against a wall is pushed outward by the wall. The 
fact that the ladder remains at rest must mean that more than 
one force acts on the ladder and that the resultant of all these 
forces must be zero. If we imagine the wall to be removed, 
there is no doubt that the velocity of the ladder would change. 

17. The Concept of Mass; Momentum.—It would seem 
simplest to place the force acting on a body equal to the rate of 
change of velocity (acceleration) which it produces. Such a 
procedure is, however, unsatisfactory for two reasons. First, 
and most important, is the fact that such an assumption is not 
consistent with experimental facts; the same force produces the 
same acceleration of the same body in repeated experiments, 
but, if it acts on different bodies, it produces different accelera¬ 
tions. Second, there is a logical difficulty. Acceleration is a 
purely kinematical (geometrical) quantity, and force is a dynami¬ 
cal (physical) quantity; Equating the two would hardly be a 
logical procedure. Instead of considering the velocity of a body 
(and its changes) alone, we must consider a dynamical quantity 
which describes the motion of a body, which Newton called the 
quantity of motion and which we now term the momerdum of a 
body. We define the momentum of a particle as a quantity 
proportional to its velocity: 

Momentum = mv 

where the proportionality factor m is called the inertia mass of 
the particle. Qualitatively we think of the mass of a body as a 
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quantity determining the amount of matter in a body. Such a 
concept may be useful but cannot form a satisfactory physical 
definition. We must lay down some means of measuring mass, 
t.e., we must define a physical process by which we can compare 
masses quantitatively. If we then choose a mass to serve as unit 
mass, our definition becomes complete. We now agree to meas¬ 
ure force by placing the force acting on a particle equal to the 
rate of change of momentum which this force produces. Since 
we think of mass as a measure of the quantity of matter in a body, 
it seems reasonable to suppose that the mass of a particle does 
not depend on its motion, provided the particle does not pick 
up other particles during its motion or lose pieces of itself. Let 
us make this assumption tentatively, being prepared to reject 
it if it does not work. Then we may write 

Rate of change of momentum = 
mass times rate of change of velocity 

Now let us suppose that we allow the same force (e.g.j the force 
exerted by a spring which is always stretched the same amount) 
to act on a number n of mass points one after the other. We 
observe that the velocities of the particles t^i, V2f . . . , Vn change 

dvi _ dv2 _ dvn 
_ _ a., - 02, • • • , at different rates O'nj and we 

assign a series of factors mi, m2, . . . , mn to the various particles 
so that 

/ Yi\ dv 1 dv 2 (F) = _ 

Of course we may choose one of the m’s, let us say mi, arbitrarily, 
and then the remaining m^s are fixed by the above equalities. 
Now we can perform an experiment to see if our assumption 
about the m^s being independent of the motion leads to diffi¬ 
culties. We perform another series of experiments with a 
different spring (force F^) and find that we can satisfy the 
equations 

(F') = mi 
dt 

with the same m's as before, using the same value of mi as in the 
first case. Hence we conclude that within our experimental 
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error the masses m are constant, so that our assumption is 
justified. These equations which may be written in the form 

mitti = m2a2 ==••*= mnOn 

allow us to compare masses and hence to measure them if a unit 
mass is chosen. This choice is perfectly arbitrary. Suppose 
our first mass mi is chosen as unit mass, then the mass of the 
third particle, for example, is determined by 

mz = mi¬ 
en 
'as 

and, since ai and can be measured, we may thus measure the 
number of units of mass in the mass m3. 

In the metric system of units, the unit mass is arbitrarily 
defined as jtjVd of the mass of a piece of platinum kept at Sevres, 
near Paris, and this unit mass is called the gram. It is very 
nearly equal to the mass of one cubic centimeter of water at 
4°C. and at atmospheric pressure. 

In the English system of units, the unit mass is defined as the 
mass of a certain piece of metal kept at London and is called 
the pound mass, 

18. Forces Occur in Pairs.—In Sec. 16, we made the statement 
that forces acting on a body have their origin in other bodies. It 
is a matter of experience that whenever a body A exerts a force 
on a body J5, the latter body exerts a force (reaction) on body A, 
If any one doubts the validity of this statement, let him try 
kicking a door with his bare foot. The damage done to his toes 
will convince him of the forces exerted by the door on his foot. 
It is one of the fundamental postulates of mechanics that the 
force exerted by 5 on A is equal in magnitude and opposite in 
direction to that force which A exerts on B, 

19. Newton’s Laws of Motion.—The facts, definitions, and 
postulates discussed in this chapter were first definitely for¬ 
mulated by Sir Isaac Newton in three laws, known as Newton^s 
laws of motion. These laws form the basis of the science of 
mechanics. 

Law I. Every particle persists in its state of rest or of uniform 
motion in a straight line, except in so far as it is compelled by 
impressed force to change that state. 

Law II, The force acting on a particle is equal to the rate of 
change of momentum of the particle, and the rate of change of 
momentum is in the direction of the applied force. 
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Law III. To every action (force exerted on body A by body 
B) there is an equal and opposite reaction (force exerted hy 
body A on body B), 

In the case where the mass of a body is constant, and we shall 
restrict our attention to this case, the second law may be sym¬ 
bolically written as 

Tjy dv r = m-n = ma 
at 

The second law shows that force is a vector quantity. It must 
be assumed in this connection that when a number of forces act on 
a particle the resultant acceleration calculated from the resultant 
force is the same as if we calculated the accelerations separately 
for each force and then combined these accelerations vectorially 
to find the resultant acceleration. 

The importance of Newton’s laws cannot be overestimated. 
They form the starting point of every physical argument in 
mechanics, and the whole science of mechanics consists of apply¬ 
ing these principles to all natural motions. 

20. Examples.—The most important task confronting the 
student in attempting to solve a problem in mechanics is the 
clear recognition of the forces which act on the body whose 
motion is to be studied. Let us consider an example. A billiard 
ball resting in a groove on a table is set in motion by a collision 
with another ball. Due to this collision, the stationary ball will 
acquire a certain definite velocity, let us say 10 ft./sec. in the 
direction of the groove. During the time of collision, the moving 
ball A exerts a force on the stationary ball B, and the second law 
tells us that the rate of change of velocity of B is proportional to 
the force exerted on it by A. The third law shows that, during 
the collision, the ball B pushes back on ball A with a force 
equal to that which causes its own acceleration. The force 
(reaction) may bring ball A to rest, slow it down, or reverse the 
direction of its motion, depending on the relative masses of A 
and JB. 

The ball B.now moves along the groove and will slow down and 
stop. The first law tells us that this could not occur if forces 
did not act on the ball. What forces bring the ball to rest? The 
air offers a resistance to the motion, pushing against the surface 
of the ball very much as a man might push. There is a force 
(friction) exerted by the table on that paxt of the surface of the 
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ball resting on it. Finally, let us suppose that the groove is 
curved. If the motion continues for some time around the 
curve, there must be a force acting, since the first law demands 
that, in the absence of force, the motion is uniform and recti¬ 
linear. This force is the push of the side of the groove on the 
ball, and its direction is toward the center of the curve. 

To summarize, we have stated that three forces act on the ball: 
a. The push of the air. 
b. The frictional force of the table on the ball. 
c. The sidewise push of the groove on the ball toward the 

center of the curve. 
What are the equal and opposite reactions demanded by the 

third law? 
a. The ball pushes back the air and it is this force that really 

removes the air and carves out a path for the ball. 
2). The ball pushes on the table and tries to drag it along in the 

direction of motion. This, of course, does not happen, if the 
table is fastened to the floor. 

c. The ball pushes sideways on the groove outward from the 
center of the curve. Again, since the table is held fixed, it 
does not start moving. Were the table free to move in the 
direction of this force, it would start to do so, and we shall 
later learn how to calculate such a motion of table and ball. 

In the discussion of h and c we are referring the motions to a 
coordinate system fixed on the earth’s surface. Referred to a 
reference system attached to the fixed stars (an absolute system) 
the reactions of the ball on the table would be transmitted to the 
earth, and we must assume a consequent acceleration of the 
earth which, due to the enormous mass of the earth, would 
escape experimental detection. 

In all problems in mechanics, we must list completely all the 
forces which act on the body whose motion is being studied 
before any attempt is made to apply Newton’s laws to determine 
the actual motion. 

21. The Static Measure of Force.—We now turn to a closer 
examination of the forces which act on bodies, and our first task 
is to define a method of measuring force. The method which we 
shall first describe depends on the validity of the first and third 
laws of motion without reference to the second law. The idea 
of the method, which we shall term the static method, is to make 
use of the fact that if a body, under the action of several forces, 
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has zero acceleration the vector sum of all the forces acting on 
the body must be zero. This statement is merely a repetition 
of the first law of motion. To employ this method of comparing 
forces, we simplify the procedure as follows: If a single force acts 
in a given direction on a body, it would produce an acceleration. 
This acceleration may be made zero (in practice the body is kept 
at rest) by applying another force opposite in direction to the 
first, of such magnitude that no acceleration is observed. When 
this condition is obtained we know that the two forces are equal 
in magnitude. We must now choose some force as unit force 
and then we are in a position to measure forces. Historically, 
the force most familiar to man is the pull of the earth, a pull 
exerted on every body. We now choose some body as a standard 
and define a unit force as the earth pull on that body. Such a 
unit of force is called a gravitational unit and there are two such 
common units. The English gravitational unit of force is the 
earth pull on (or weight of) a pound of matter and this force is 
termed a one pound force. The metric gravitational unit of force 
is the earth pull on a gram of matter and is called the gram weight. 
For reasons which we shall discuss later, it is further specified 
that the earth pull is to be taken at 45® N. Lat. and at sea level. 

The usual spring balance so often employed to measure forces 
provides the best example of a device which directly uses the 
principles just discussed. A pointer is attached to a spring, and 
a body, e.g.y 1 lb. of matter, is hung from the spring. The 
spring stretches until the pull of the spring on the body is equal 
in magnitude and opposite in direction to the earth pull on this 
body. A mark opposite the pointer on a fixed scale may then be 
labeled 1 lb. and whenever the spring is stretched to this point 
we know that it exerts a force of 1 lb. Similarly, 2 lb., 3 lb., etc., 
may be hung from the spring and a complete set of marks may 
then be made on the scale, and we thus have a calibrated spring 
balance which may be used to measure forces. 

22. Classification of Forces,—As we have already pointed 
out in Sec. 16, forces fall into two general classes, contact forces 
and action-at-a^distance forces. The only force of the latter type 
which we shall consider is the pull of the earth on a body equal 
to the weight of the body; a force which is constant in magnitude 
and direction. This force always acts and must be included in 
every calculation (except when specifically stated that it may be 
neglected). 
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In the former class are the pushes and pulls of bodies in 
contact with the body under consideration. In particular, we 
shall often deal with inextensible strings which pull on bodies. 
By the tension in the string we mean the pull of the string on 
any body to which it is attached. Another type of force fre¬ 
quently encountered in practical problems is the friction force 
which always acts in^uch a direction as to oppose the motion of 
a body. For the present we need only consider the case of the 
friction forces appearing when one body slides on another, e.g.^ 
a block of metal sliding on a wooden table. When the block is 
at rest, there are two forces acting on it: (1) pull of the earth, TF, 
and (2) the push of the table, N, These are equal in magnitude 
and opposite in direction. If we pull horizontally on the block, 
we find that the block does not start to move until we increase the 
force to a certain value /m. Since for all horizontally applied 
forces less than the block has no acceleration, we must conclude 
that the push of the table on the block is no longer perpendicular 
to the surface of contact but that it acts in a direction such that 
its component parallel to the surface of the table is equal and 
opposite to the applied force. This tangential component is 
called a frictional force, and for a body at rest can assume a 
maximum value equal to /m. We define /x, = fm/N as the coeffi¬ 
cient of static friction between the two bodies. In this definition 
N is the normal component of the push of the table top on the 
block. The actual friction force / acting on a body at rest may 
thus have any value from zero to/m and may act in any direction. 

After the body is set in motion, we define the coefficient 
of sliding friction /jl as the ratio of the friction component to the 
normal component of the force exerted by the table surface on 
the block. Thus 

In general ^ < /x„ and for moderate velocities and reasonably 
smooth surfaces of contact m may be considered constant. The 
above relation is also valid for inclined or curved surfaces. 

23. Equilibrium of a Particle.—A particle is said to be in 
equilibrium if its acceleration is zero. If the particle is at rest, 
we speak of static equilibrium, and if it moves with constant 
velocity, we speak of kinetic equilibrium. According to the first 
law of motion the vector sum of all the forces acting on the 
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particle must vanish. We shall now formulate this condition 
analytically, referring back to the discussion in Sec. 12. Suppose 
the vector forces in a plane acting on a particle in equilibrium are 
denoted by Fi, F2, . . . , We form the sum of the vector 
forces in the same manner as in Sec. 12 and must add the x- and 
^/-components of the forces to find the x- and 2/-componeiits of the 
resultant force F. If a vector is zero, each of its components 
must be zero. The proof of this statement is left to the student. 
Thus the conditions for equilibrium are 

F*. = Fix + F^x + * ' * Fnx = 0) . . 
Fy == Fly + F^y + * * • F ny = Oj 

As an example of the application of the above laws let us 
consider the problem of a 50-lb. 
body supported by two strings 
which make an angle of 60° 
with the horizontal. We 
desire the tension in each 
string. The first step is to 
draw a figure (Fig. 17) and 
indicate all the forces acting 
on the 50-lb. body. We choose 
the ar-axis horizontal and the 
^-axis vertical and the origin 
at the 50-lb. body. 

The sum of the x-components 

y 

\ / 
- E a r 

IS 

so lb’s. 
Fig. 17. 

+ Ti COS 60° - T2 cos 60° + 50 cos 90° - 0 

and for the ^/-components 

+ Ti sin 60° -b T2 sin 60°‘- 50 cos 0° = 0 

The first equation gives 

Ti - T2 

Inserting this value of T2 in the second equation, we find 

Ti sin 60° + Ti sin 60° = 50 

whence 

2 sin 60° “1.73 

The tension in each string is found. 

291b. 
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As a second example let us consider a block being pulled up 
an inclined plane by a string which passes over a light pulley at 
the top of the plane and from which a weight is suspended. The 
body on the plane weighs 12 lb., the hanging body weighs 8 lb., 
and the plane is inclined at an angle of 30° with the horizontal. 
It is observed that the hanging weight descends‘with constant 
velocity, and it is desired to find the coefficient of friction and the 
tension in the string (Fig. 18). 

We choose x- and i/-axes with an origin at 0, the x-axis parallel 
to the plane and the i/-axis perpendicular to the plane. We 

Fia. 18. 

have indicated all the forces acting on the two bodies. On the 
hanging weight we have the pull of the earth and the pull of the 
string T. On the 12-lb. body there is (1) the pull of the earth, (2) 
the pull of the string, and (3) the force exerted by the plane 
which we have represented by its x- and 2/-compoiients —/ and 
Nj respectively. Since both bodies move with constant velocity, 
the sum of the forces acting on each separately must be zero. 
First we consider the 8-lb. body. The forces acting on it yield 
as their sum 

whence 
8 T = 0 

r = 8 lb. 

as the tension in the string. Now consider .the 12-lb. body. 
The x-components 6f the various forces acting on it are as 
follows: 

x-component of T = +T 
x-component of / = —/ 
x-component of iV =0 
x-component of weight == —12 sin 30° = —6 lb. 
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Thus, for equilibrium, 

whence 
+ r6 = 0 

/=r~6 = 8- 6 = 2 1b. 

so that the friction force is 2 lb. The ^/-components of these 
same forces are: 

7/-component of T == 0 
^/-component of / =0 
2/-component ol N — -\-N 
^/-component of weight = —12 cos 30° = —10.4 lb. 

so that, for equilibrium, 

+i\r - 10.4 = 0 
N = 10.4 lb. 

The coefficient of friction /x is defined by 

so that in our case 

/ 
N 

= 0.19 

which completes the solution. 
There are several points worthy of special mention in the 

above solution. First, we note that the tension in the string 
numerically equals the weight of the hanging body. It is clear 
that this is true only because there is no acceleration of this 
body. Were this body to descend with an accelerated motion, 
the above mentioned equality could never exist and the tension 
in the string would be less than the weight of the body. Second, 
we note that the tension in the string is T (and not 2T). The 
body on the plane exerts a force T on the hanging body, and 
this force is transmitted by the string. Now according to the 
third law the hanging body exerts an equal and opposite pull 
back on the body on the plane. This pull is also transmitted by 
the string. It is the magnitude of this force transmitted by 
the string from one body to another body which is called the 
tension in the string. 

Problems 

1. Draw a neat diagram, and construct a force diagram with approxi¬ 
mately correct scales of all the forces acting on the block. State in words 
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the ^‘reactions” as given by Newton’s third law to the forces you have 

drawn. State on what bodies these '^reactions” act and ‘"by” what bodies 

they are exerted. 

a. A block is pushed V)y a horizontal force along a rough (with friction!) 

horizontal surface at constant speed. 

h, A V)lock is pulled along a rough horizontal surface', at constant speed 

by a rope making an angle of 30° above the horizontal. 

c. A block is pushed along a rough horizontal surface at constant speed 

by a downward for(‘.e making an angle of 30° with the horizontal. 

d. A block slides down a smooth incliiK'd plane. (No friction.) 

e. A block rests on a rough inclined plane. 

/. A block is pulled up a rough inclined plane at constant speed by a rope 

parallel to the incline. 

g. A block is allowed to slide down a rough inclined plane at constant 

speed by pulling up on a rope parallel to the incline. 

h. A block is pushed ux) a rough inclined plane at (constant speed by a 

horizontal force. 

1. A block rests on a horizontal rough surface. 

j. A block on a horizontal rough surface is x>ollcd horizontally with a 

forces of 8 lb. but remains at rest. 

k. (1) A block slides along a smooth horizontal table with constant speed. 

(2) The same block has left the table and is falling freely. Neglect air 

resistance. 

2. A 1-kg. weight is supported by two ropes, one inclined at an angle of 

40° and tlui other at angle of 50° with the vertical. Find the pull of each 

rope on the weight. 

3. A 10-11). body is hung from a ceiling by two strings, one of which is 

5 ft. long. The ])ody is 4 ft. below the ceiling, and the tension in the 5-ft. 

string is half of the tension in the other string. Calculate the length of the 

latter string and the. tension in each string. 

4. A 100-11). bod}^ hangs on a rope 10 ft. long. If the body is displaced 

horizontally a distance of 3 ft. and held there by a horizontal force, find 

a. The magnitude of the horizontal force. 

h. The tension in the rope. 

6. An 8-lb. block is held at rest on a frictionless inclined i)lane by a 

horizontal force of magnitude 13.8 lb. What angle does the inclined plane 

make with the horizontal? 

6. A 200-lb. weight is supported by two ropes, A and B. The rope A 
makes an angle of 37° with the horizontal and the rope B makes an angle of 

60° with the horizontal. Find the tension in each rope. 

7. A 20-lb. block is held at rest on a frictionless inclined plane making 

an angle of 37° with the horizontal by a force acting downward at an angle 

of 60° with the surface of the plane. Calculate the magnitude of this forqe 

and the resultant push of the plane on the block (magnitude and direction). 

8. A 15-lb. block is placed on an inclined plane of base 16 ft. and altitude 

12 ft. A string attached to this block runs over a light frictionless pulley 

at the top of the plane. When a 10-lb. weight is hung on the free end of the 

string, the block on the plane ascends with constant velocity. 
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What weight must be hung on the string so that the 15-lb. block descends 

along the plane with constant velocity? 

9. A 10-lb. block slides down an inclined plane with constant speed. 

The incline is 20 ft. long and the top of the plane is 12 ft. above the bottom. 

a. Calculate the coefficient of friction between the block and the plane. 

b. How big a p\ish parallel to the plane would be necessary to cause the 

block to move up the plane with constant speed? 

10. A weight W is supported by two strings A and B. String A makes an 

angle of 60° with the horizontal and is fastened to the ceiling. String B 
makes an angle of 30° with the horizontal and nins over a fixed frictionless 

pulley. A 10-lb. weight hangs from the free end of string B. 
Find the weight W and the tension in string A. 
11. A 10-lb. metal block rests on a horizontal table and the coefficient of 

static friction between block and table is 0.6. What horizontal force will 

just start the block in motion? If an upward force is applied at an angle of 

60° with the horizontal, how large can it be without starting the block? 

If the force acts downward at an angle of 60° with the horizontal, what is the 

maximum value of the force possible without motion of the block? 

12. A weight is supported by two ropes, each of length 50 cm., which are 

fastened to two rings. The rings arc free to move on a horizontal rod, and 

the coefficient of static friction between rings and rod is 0.75. Find the 

maximum separation possible for the rings without slipping. 

13. A lO-lb. block rests on a 60° inclined plane. The coefficient of static 

friction between block and plane is 0.8. What is the least force acting 

parallel to the plane on the block which will prevent motion? What is the 

maximum force possible without motion? 

14. Solve Prob. 13 if the external force on the block is horizontal. 

16. A metal block slides down a 37° inclined plane with constant velocity. 

What is the coefficient of sliding friction between block and plane? 

16. A 4-lb. block stands at rest on a 30° inclined plane. What is the 

force of friction exerted on the block by the plane? If a 4.8-lb. force pushing 

up parallel to the plane causes the block to ascend with constant velocity, 

how large a force must be applied downward jiarallel to the plane to cause 

the block to slide down the plane with constant velocity? 

17. A 4-lb. body is connected to a 12-lb. body of the same material by a 

string and both rest on a 37° inclined plane, the 4-lb. body occupying the 

lower position. Another string attached to the 12-lb. body passes over a 

small pulley at the top of the plane. When an 18*-lb. body is hung from the 

free end of the string, the latter is observed to descend with constant velocity. 

а. Calculate the coefficient of friction between the 4-lb. and 12-lb. bodies 

and the plane. 

б. Calculate the tension in each string. 

c. If the positions of the 4-lb. and the 12-lb. bodies are reversed, calculate 

the weight which must be hung on the free end of the string such that it 

descends with constant velocity. 

d. What hanging weight would allow the bodies on the plane to descend 

with constant velocity? 



CHAPTER V 

LINEAR AND PLANE DYNAMICS 

In the last chapter we have formulated Newton^s laws of 
motion and have discussed applications of the first law. We are 
now ready to proceed to complete our program by appl3ring the 
second law of motion. This law, which states that the resultant 
force acting on a particle is equal to the mass of the particle 
times the rate of change of its velocity, now allows us to combine 
the considerations of the last chapter concerning forces with the 
kinemalical results which we obtained in Chaps. II and III. In 
static problems we had merely to add forces, and consequently 
the units which we used for forces were arbitrary and did not 
necessarily have any connection with the units of any other 
physical quantities. In applications of the second law, however, 
there is an intimate interconnection and we must start our 
study with a closer analysis of this interconnection between 
various systems of units. 

24. Dynamical Measure of Force; Units.—The second law 
of motion suggests a method for measuring forces, known as the 
dynamical method, quite different from the method encountered 
ill the last chapter. If we arbitrarily choose a unit mass, such 
as the gram mass or the pound mass, then we are not at liberty 
to choose the unit force in such a system of units arbitrarily. 
Indeed the second law F — ma provides an equation which fixes 
the size of the unit force, once the unit mass is chosen, as the unit 
acceleration is determined by our previously chosen units of 
length and time. The force which imparts unit acceleration to 
a unit mass is the unit force. Were this not so, we would have a 
conflict with Newton^s second law of motion. Thus we measure a 
force by applying it to a body of known mass and measuring the 
acceleration produced. This procedure leads to the so-called 
absolute system of units. As we have already stated, the units 
of length, time, and mass are taken as the fundamental units, 
defined arbitrarily as we have seen, and all other mechanical 
quantities are defined in terms of these three quantities. 

61 
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If we measure mass in grams, length in centimeters, and time 
in seconds (the so-called c.g.s, system of units), the unit of force 

equal to in this system becomes I from the law F (' '^di) 

one gram-centimeter per (s(i(*ond)^. We give the name one dyne 

to the unit one gram-centimeter per (second)but this does not 
make it an arbitrary fundamental unit. A mass of one gram 
acted on by a force of one dyne acquires an acceleration of one 
centimeter per (second)This absolute system of units is 
universally employed in scientific work, and we shall make much 
use of it. 

Now we must consider the situation when we wish to employ 
the gravitational units of force which we arbitrarily introduced in 
our study of statics. If we wish to use the second law employing 
these units of force, it is clear that we may not choose an arbitrary 
unit of mass in this gravitational system of units. For example, 
if we wish to determine the unit of mass to be used with the pound 
force, we apply the se(*ond law and find it equal to one pound- 
(second)^ per foot. We give this mass unit the name one slug, 

but again the slug is not a fundamental unit. 
To recapitulate: 
(a) In the absolute system of units length, mass, and time are 

defined arbitrarily. Force is a derived quantity. (6) In the 
gravitational system of units length, force, and time are defimed 
arbitrarily. Mass is a derived quantity. 

25. Freely Falling Bodies.—If we now wish to answer the 
question as to the relation between the mass and force units in the 
absolute and gravitational systems we must turn to experiment 
and determine the accelerations produced by the pull of the earth 
on a body. It turns out that all bodies which are allowed to fall 
freely in a vacuum at the earth^s surface fall with very nearly the 
same constant acceleration. We denote this acceleration by the 
letter g and its numerical value is 32 ft./sec.^ = 980 cm./sec. 
According to the second law, there must be a pull of the earth 
on the body which falls, and it is this pull which was used‘in 
defining a unit of force in a gravitational system of units. For 
example, a mass of 1 gram is pulled downwards by the earth 
with a constant force 

F mg = 1 gram X 980 cm./sec.^ 
= 980 gram-cm./sec.2 = 980 dynes 
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Thus, we say that a mass of 1 gram “weighs'^ 980 dynes. A 
gram weight of force equals 980 dynes. Careful measurements 
show that g varies slightly from point to point on the earth^s 
surface, and hence the earth pull on the pound mass, which is 
the force causing this a(‘celeration, must vary slightly from point 
to point on the earth\s surface. We tht'refore must fix a point 
on the earth’s surface to be used in connection with the definition 
of the pound for(;('. As we have stated, the eartb pull on a pound 
mass at s('a level and 45°N. L'at. is the unit of force in the English 
gravitational system. What is the unit of mass to be used in 
ai)plying Newton’s second law corr(\sponding to the pound force? 
Since a unit force must cause unit acceleration of this unit mass, 
obviously tlie })ound mass cannot be used in conne(*tion with the 
pound force, as it acquires an acceleration of 32 ft./sec.^ (z.c., of 
32 units) under tlie action of such a force. The unit of mass in 
the English gravitational system (the slug) must be 32 times as 
large as the pound mass. One slug acquires an acceleration of 
1 ft./sec.“ when acted on by a force of 1 lb. 

The metric gravitational system is built up quite similarly to 
the English system. The unit of fon^e is the earth pull (at 
sea level and 45° N. Lat.) on a gram mass and is called one gram 

weight. What unit of mass belongs to the gram-weight unit of 
force? Obviously not the gram mass, as it acquires an accelera¬ 
tion of 980 cm./sec.^ under the action of such a force, and our 
unit must have an acceleration of 1 cm./sec.^ under such condi¬ 
tions. Hence the unit of mass in the metric gravitational 
system must be 980 times as big as the 1-gram mass. 

In the application of Newton’s laws, we shall make use prin¬ 
cipally of two systems of units: 

a. Metric absolute: cm. gm. sec. fundamental units. 
b. English gravitational:/^. lb. sec. fundamental units. 
In a the force unit is derived and is called the dyne. 

In b the mass unit is derived and is called the slug. 

One system of units must be used in the solution of any problem. A 
mixture of units leads to nonsensical results. 

26. Application of Newton’s Laws to Rectilinear Motion.—A 
large number of mechanical problems which one has to solve are 
of the following type; to determine the motion of a body which is 
subjected to the action of certain forces. The first step toward 
the solution of such a problem is the determination of all the 
forces which act on the body. The mass of the body must be 
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determined, and this is usually done by weighing. With the 
help of Newton\s second law the acceleration of the body can 
be found from the above data. From the acceleration we arrive 
at the kinetic equation of motion by reversing the process of 
differentiation, i.e,, by integration. 

Applied to the case of the motion of a mass point along a 
straight line, we proceed as follows: If a number of forces Fi, 
F2, . . . , Fn all acting in the direction of the straight line are 
impressed on the body, we find the resultant force F as the 
algebraic (vector) sum of the individual forces 

F = F, + F, + Fs+ • • • + Fn (1) 

If the earth pull on the mass point is IF, we find the mass m from 

W = mg (2) 

g is the acceleration of a falling body. 
Applying the second law, we find 

dA 

or (3) 
^ _ F \ 

dt m I 

and this acceleration may depend on the time on the position x, 

on the velocity v, or on all three quantities. For the present we 
restrict ourselves to the case where the acceleration is constant. 

This means that the forces acting are constant. We then write 

where a denotes the constant acceleration (it may be zero!). 
Putting Eq. (4) in Eq. (3) we find 

dv _ 
dt 

(5) 

and, integrating with respect to t, we obtain 

V — ajdt c — at + c (6) 

where c is an arbitrary constant. The correctness of Eq. (6) 
may be checked by differentiation. It is, furthermore, clear that 
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from a purely mathematical standpoint the constant c may have 
any value whatsoever. Physically, we fix the value of c by 
noticing that when ^ = 0, in Eq. (6), 

^^o = c (7) 

HO that the value of c is the velocity at t = 0. 
We can now write Eq. (6) as 

V = — at Vo (8) 

and, integrating again, 

X = aJidt + Vajdt + ci\ 

^ ~2—h + Cl j 
(9) 

The value of the arbitrary constant Ci is again determined by 
placing ^ = 0 in Eq. (9) and we find 

Xq = Cl (10) 

where Xo is the position of the mass point at < = 0, so that our 
final answer for this case is 

X = + Vot + Xo (11) 

Equations (8) and (11) have already been encountered in Chap. 
II, where they were obtained from purely kinematical considera¬ 
tions concerning linear motion with constant acceleration. 

From this example we learn the following important fact: The 
acceleration of a body alone is not suflSicient to completely deter¬ 
mine its motion. We must also know its position and velocity at 
some instant of time which we may call t = 0. In other words, the 
acceleration and the initial conditions completely determine the 
motion. This last statement is true even if the acceleration is 
not constant but varies in any way whatsoever. If we know 
X and V for any instant other than < = 0, we can find xo and vq 

from Eqs. (8) and (11). 
27. Example.—A 16-lb. body is pushed along a floor by a 

constant force of 10.0 lb. for 3.00 sec. During its motion it is 
also acted on by a force of friction equal to one-tenth of its 

weight. If the body starts from rest, find 
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a. How far it moves in 3.00 sec. 
fe. How fast is it going at the end of this time, 
c. How far and how long it moves before coming to rest. 

During the first 3 sec., the body is acted on by two forces: 
(1) iPi = + 10.0 lb. (to the right, let us say). 
(2) = ~1.6 1b. 

The minus sign states that the friction acts to the left (opposite 
to the direction of motion which we have taken to the right) and 
tends to stop the body. The resultant force is 

f + Fa = 10.0 + (-1.6) = 8.4 lb. 

To say that we have a 16-lb. body is perfectly definite since a 
16-lb. body undergoes an earth pull {i.e.y has a weight) of 16 lb., 
according to the definition of the pound force. 

The mass of the body is 

^ OKI 

The acceleration during the first 3 sec. is 

F 8 4 
a = - = ^ - 16.8 ft./sec.2 

m 0.5 ' 

As the body starts from rest, = 0. What shall we do to fix Xo? 
Remember that we must choose an origin, and we can place it 
an3rwhere along the line of motion. If we measure displace¬ 
ments from the position of the body at < = 0, we have Xq = 0, 
and this is a convenient, but not necessary procedure. Hence 

V = 16,8t + 0 

and 

a: = 8.4^2 + 0*^ + 0 

For t = S sec. 

V == 16.8 X 3 = 50.4 ft./sec. 
a; = 8,4 X 9 = 75.6 ft. 

which are the answers to a and 6. x is the distance measured 
from the starting position. After reaching this position, the body 
is acted on by another force, so we must consider the subsequent 
motion of the body as a separate problem. In this second 
problem we shall understand by f the number of seconds after 
the 10-lb. push stops acting. 
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The force acting is 

The mass is 

F2 = -1.6 lb. 

m = 0.5 slug 

and the acceleration 

1 6 
a = = -3.2 ft./sec.2 

For this problem we have from the answers to a and b: 

so that we have 

Xo ~ 75.6 ft. 

^^o = 50.4 ft./sec. 

V - -3.2^' + 50.4 1 
and > (a) 

a: = -1.6i5'2 + 50.4^' + 75.6) 

When the body comes to rest, 

V — 0 

and we find, from the first of the Eqs. (a), 

3.2^' = 50.4 
t' = 15.8 sec. 

so the total time elapsed until the body comes to rest is 

T = 3.0 + 15.8 = 18.8 sec. 

To find the position when the body stops, we place the value 
i' = 15.8 sec. in the second equation and find 

a: = -1.6(15.8)2 + 50.4(15.8) + 75.6 
- -398 + 794 + 76 = 472 ft. 

which is the total distance covered by the body. 
In cases where the acceleration, i.e., the forces, are not con¬ 

stant, problems are solved in exactly the same manner, the 
only difference occurring in the actual evaluation of the integra¬ 
tions. Many times it is not possible to perform the integrations 

by elementary methods. 
28. Newton’s Laws for Plane Motion.—The fundamental 

fact which always must be kept in mind when we attack a 
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mechanical problem concerning the motion of a particle in a 
plane is that force (and acceleration) is a vector. To find the 
resultant force acting on a particle it is necessary to perform a 
vector addition of all the forces acting on this particle. As we 
have seen, it is simplest to work with the x- and 2/-components of 
the vectors. Thus if we have n forces Fij F2, . . • , Fn, we 
first find the x- and ^/-components of each force and add the 
x-components and the ^-components of these forces separately. 
This yields the x- and y-components of the resultant force, 
respectively, and we have 

Fx — Fix ~hF2x~i- * * ' + 
Fy = Fly +F2y + - - + F.J 

Now we proceed to find the x- and ^/-components of the accelera¬ 
tion of the particle, using the second law of motion. In com¬ 
ponent form the second law of motion is 

Fx 

Fy 

= m 

m 

dvx 

di{ 
dVy 

dt, 

(13) 

so that we have found the x- and ^/-components of the accelera¬ 
tion, from which the magnitude and direction of the resultant 
acceleration of the particle may be immediately found. The 
simplest procedure to follow to find the motion of the particle is 
to use Eqs. (13) as they stand, integrating each of them separately 
to find how the x- and ^/-coordinates vary with time. Let us 
suppose that we have done this. The actual motion of the body 
is then the composition of two straight-line motions at right 
angles to each other. 

Thus we have reduced the problem of determining the plane 
motion of a particle to the much simpler problem of determining 
the motion of a body on a straight line. To be sure we must 
do the latter problem twice, once for the x-motion and once for 
the ^/-motion, and then combine the results vectorially. For 
each of the rectilinear motions we must know two initial condi¬ 
tions, in addition to the acceleration for a complete solution, 
so that we must know not only the two components of accelera¬ 
tion of the body but also the two components of its initial 
displacement from the origin (its initial position) and the two 
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components of its initial velocity. Thus a motion is completely 
specified when dvxidt, dvy/dt, Vxo, Vyo^ Xo^ and yo are determined. 

There is, however, a new aspect of motion in a plane which was 
lacking in the discussion of motion in a straight line. In the 
latter case the orbit or path is fixed and is the straight line along 
which the body moves. In the former, the path may be any 
curve in the plane of the motion, and it may be determined by the 
following method: Let us suppose we have solved Eqs. (13) and 
have obtained the two kinetic equations of motion of the type 

^ = Mt)\ 
y = Mt)} 

(14) 

These equations tell us how the x- and iZ-^^oordinates of the 
particle vary with time; from them we may determine the posi¬ 
tion of the particle for any and every instant of time. If we plot 
the points so obtained for a number of values of we shall obtain 
a graph of the path. In many cases one can obtain the mathe¬ 
matical equation of the path. Let us suppose we solve the first of 
Eqs. (14) for t in terms of x and insert this value of t in the 
second equation. We then obtain a relation of the type 

y = 4>(^) (15) 

which is the equation of the orbit. 
As an illustration of the application of the above methods, we 

consider the motion of a projectile, Lc., the motion of a particle 
under the action of the earth pull alone. Suppose a body 
is projected from a point on the earth’s surface with an initial 
speed Vo in a direction making an angle 8 with the horizontal. 
The motion takes place in a plane defined by the vertical and the 
direction of vo and is motion with constant acceleration. We 
choose an origin at the initial position of the body, the x-axis 
horizontal and the i/-axis vertical and positive upward. Since 
the pull of the earth is vertical, the horizontal motion ensues with 
constant velocity. The vertical motion is one of constant down¬ 
ward acceleration, and the composition of these two motions 
yields the resultant motion of the projectile. 

If Vox and voy denote the initial values of the horizontal and 
vertical components of velocity, the kinetic equations of motion 
corresponding to Eqs. (14) are 

X == voxt; y ^ voyt - ^rjt^ (16) 
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and the velocity-time equations are 

Vx = Vox] Vy = VQy - gt (17) 

Vox and Voy are related to Vo and 6 by the equations 

Vox — Vo cos 6; Voy = vo sin 6 (18) 

The maximum height attained by the projectile occurs when 
Vy = 0, hence when 

Voy - = 0 

t = 
9 

and the maximum height is, inserting this value of t in the second 

of Eqs. (16), 

^ ^ ^ ^ vl sin^ 0 
g 2g 2g 2g 

(19) 

The last equality is obtained with the help of the second of Eqs. 

(18). 
The range of a projectile is defined as the horizontal distance 

covered before the particle returns to its initial height, i,e., to 
2/ = 0. From the second of Eqs. (16), t/ = 0 when 

^Oyt — ^gt^ = 0 

from which we obtain 

< = 0 or 
2V0y 

9 

The value t = 0 is the instant of starting, and the other value is 
the time of flight, which we note is twice the time required to 
reach the maximum height. Inserting this second value of t 
in the first of Eqs. (16), we find for the range 

. 3!!^ . !?(2 cos » sin 9) - iiSL?? 
n n ^ ' n (20) 

For a given initial speed Vo the maximum range occurs for 
sin 26 = If since this is the maximum value the sine of an angle 
may have. Hence for maximum range 26 = 90°, or ^ — 45°. 

The path or trajectory is found, as we have outlined, by solving 
the first of Eqs. (16) for t and inserting this value in the second 
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of these equations. The result yields the equation of a parabola 
and is shown in Fig. 19. 

29. Constrained Motion.—We shall often encounter problems 
in which the path or orbit of a body is given, and this type of 

problem is of sufficient importance to warrant a special discussion. 
In such cases we speak of the motion as constrained, since the 
body is constrained to move in a specific path. Motion of a body 
on an inclined plane or in a circle are examples of this type of 
motion. In such problems there 
always appear certain unknown forces 
which serve to keep the body in its 
prescribed path, and the determination 
of these forces constitutes part of the 
problem. In the case of motion on 
an inclined plane, the push of the 
plane on the body is such a force; in 
the case of a body whirled in a circle 
at the end of a string, the tension in 
the string is unknown at the start and must be determined with 
the help of Newton ^s laws of motion. 

As an example of the method to be employed in handling such 
problems let us consider the motion of a body on an inclined 
plane. If we choose the a;-axis parallel to and along the plane 
and the ^/-axis perpendicular to this direction, we avoid difficulties 
with the equation of the path. The x-axis is the path of the body, 
and the problem becomes simpler than if we attempted to use 
horizontal and vertical axes. 

Stippose the body weighs 16 lb. and that it is pushed up a plane 
making an angle of 30° with the horizontal by a horizontal force 

0 
Fig. 20. 
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of 20 lb. The coefficient of sliding friction is 0.096 and the body 
starts at the bottom of the plane from rest. If the plane is 
10 ft. long, let us calculate the acceleration of the body up the 
plane, the time necessary to move the body 10 ft. up the plane, 
and the velocity of the body at the top of the plane (Fig. 20). 

We choose x- and ^/-axes with the origin at 0, the x-axis 
parallel to the plane and the ^-axis perpendicular to the plane. 
Since the body stays on the plane, = 0 and the sum of the 
2/-components of all the forces acting on the body must be zero. 

^/-component of the 20-lb. force = — 20 sin 30® = —10 lb. 
^/-component of the weight = —16 cos 30® = —14 lb. 
i/-component of the push of the plane on the body = lb. 

Hence 

iV - 10 - 14 = 0 

or 

W = 24 lb. 

The sum of the forces in the x-direction is obtained as follows: 

x-component of the push of the plane 
= -F = -nN = -2.3 lb. 

x-component of the 20-lb. force = +20 cos 30® = +17.3 lb. 
x-component of the weight = —16 sin 30® = —8.0 lb. 

Hence the resultant force acting up the plane is 

= 17.3 - 8.0 - 2.3 = 7.0 lb. 

From the second law of motion, we find the acceleration 

di M 0.5 *t-/sec. 

Since the body starts from rest, the distance 

s = ^ = 7^2 

The time necessary to reach the top is 

t = \/^ = 1*2 sec. 

The velocity at the top of the plane is obtained from 

V — at 
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so that 

2; = 14 X 1.2 = 17 ft./sec. 

The method which we have employed for handling motions in 
a plane depends on the fact that a vector may be represented by 
its X- and ^-components, and, while it is the simplest method in 
most of the cases which we shall investigate, it is not always so. 
We have already seen that a vector is determined by a specifica¬ 
tion of its magnitude and of its direction (the angle made with 
the :r-axis). Thus we might resolve the resultant vector force 
into two components, one along the radius from the origin to 
the particle and the other at right angles to this direction. The 
complication in this method over our previous method is that 
the component of force, and hence of acceleration, along the 
radius keeps changing direction as the particle moves. Yet 
in the case of circular motion this method is of advantage, and 
we shall investigate this case more closely. 

To fix our ideas, let us suppose we have a stone of mass m 
attached to one end of a string of length R and the stone is 
whirled in a circle in a horizontal plane. The reason for choosing 
a horizontal plane is that we may not be concerned with the 
earth pull on the body which is irrelevant to our particular 
problem. We have already seen that for circular motion the 
acceleration vector may be resolved into two components, the 
central acceleration along the radius and the tangential accelera¬ 
tion perpendicular to the radius. These have the values 

a. - ^21) 
at = Ra ) 

where v is the speed of the particle, w its angular velocity, and a 
its angular acceleration. Thus the resultant force acting on the 

particle has the components 

Fr 

Ft = mat = mRa 

mar = — 

H 
■mw'^Rl 

(22) 

In our case of the stone on the string, if there are no forces acting 
on the stone other than the pull of the string, the tangential 

component of force is zero, f.e., 

Ft = mRa = 0 
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and the stone must move with constant speed. The tension in 
the string then is the force causing the central acceleration. 
This force is just the force necessary to keep pulling the stone 
out of a rectilinear path (in which it would move under the 
action of no forces according to the first law of motion) into the 
circular path in which it actually moves. 

A numerical example may help clarify the situation. Suppose 
a block of metal is at rest on a horizontal turntable at a distance 
of 2.4 ft. from the center of the turntable. If the turntable is 
now rotated slowly, the block will rotate with the table and stay 
at rest with respect to the table. As the angular velocity is 
increased, the block will eventually start to slip on the turntable. 
If the coefficient of static friction between block and table is 
0.3, what is the highest angular velocity with which the turn¬ 
table may rotate without having the block slip? We recall 
that the friction exerted by the tabh^ on the block may take on 
any value from zero to a maximum value given by / = 
where N is the normal component of the push of the table on the 
block. Since there is no vertical acceleration, we have 

N = mg 

and hence the maximum friction force is 

f = fxN == 

If now the turntable is rotated with an angular velocity co small 
enough so that the block does not slip, the force of friction pulls 
the block toward the center with a force 

F — mo)^R 

where R is the distance from the center of the turntable to the 
block. Obviously the maximum angular velocity possible 
without slipping of the block occurs when the friction force 
reaches its maximum value. Thus 

fjLfng = 

.whence 

ng _ 0.3 X 32 
R 2.4 

and 

«»»» = 2 radians/sec. 
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Thus, at any angular velocity less than I/tt r.p.s., the block 
remains at rest with respect to the turntable. At any higher 
angular velocity, the block slips on the table and no longer 
performs circular motion. The situation is analogous to the 
case of the stone on the string. As the stone is whirled faster 
and faster, the tension rises according to Eq. (22). Eventually 
the breaking strength of the string is reached, the string breaks, 
and the stone flies off at a tangent to the circle. 

These two examples show us how to proceed in the general 
case. We resolve the forces acting into components in the 
direction of motion (tangential components) and perpendicular 
to this direction (normal components). Then we write Ncwton^s 
second law in the form 

Ft = mat 

Fn ^ ma^ (23) 

Here Ft is the sum of the tangential components of all the 
forces acting on the body, and Fn is the corresponding sum of the 
normal components. The normal component of acceleration 
On = where R is the radius of curvature of the path (the 
radius of the circle for circular motion and infinitely great for 
straight-line motion). The tangential component at is the rate 
of change of speed of the particle in its motion. 

Simultaneous solution of the two equations then yields com¬ 
plete information concerning both the motion and the unknown 

forces. 
30. Conservation of Momentum for Rectilinear Motion.—Up 

to this point, we have been considering one body and the forces 
acting on it. If we now consider the interactions of two bodies, 
we must make use of the third law as well as of the second law. 
Consider two bodies, free to move on a straight line, which exert 
forces on each other (e,g., they may be connected by a spring) 
but are subjected to no other forces. This system of bodies is 
called isolated if this condition is fulfilled. If we denote by Fi 
the force acting on body 1 and by F2 the force acting on body 2, 

the third law states that 

Fi - 

but, by the second law, 

(24) 
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if mi is the mass of the first body and vi its velocity. 
Similarly, 

F2 = ^(^22^2) 

so that using Eq. (24), 

or 

=0 

This can be written 

+ m2V2) = 0 

and says that the rate of change of the total momentum of the 
system (momentum of body 1 plus the momentum of body 2) is 
zero. Hence the total momentum is constant, and we write 

triiVi + m2V2 = constant (25) 

In words: The total momentum of an isolated system is constant. 
This law is called the conservation of momentum and is valid no 

matter what the nature of the interaction forces is. It is essential 
that the system be subjected to the action of no external forces. 

Example.—Two bodies of masses mi and m2, respectively, attract each 

other with forces which vary with the distance between them. If they both 

start from rest, find the velocity of m2 when the velocity of mi is vu 
Since both bodies start from rest and since the only forces acting are the 

interactions between the bodies, we know that the sum of the momenta 

(i.c., the total momentum) is zero for < =0 and does not change with time. 

Hence 

(mit>i -f rn2.V2)t = (mjVi -f m2t^2)(-.o = 0 

so that 

This result is correct even if a collision takes place and holds both before 

and after the collision. 

31. Conservation of Momentum for Plane Motion.—Since 
momentum is a vector quantity we should expect that the law 
of conservation of momentum for plane motion would be equiva¬ 
lent to two independent relations. This is indeed the case, 
as we see from the following. Let us again consider bodies 1 and 2 
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which exert forces on each other but are not subjected to the 
action of any outside forces. 

By the third law 

Fi = -Fi (26) 

where is the force acting on body 1 and Fj is the force acting on 

body 2. Equation (26) in component form is 

Fu = 
= -F,J (27) 

Applying the second law to each of these eqviations, we find 
easily that 

d, 
-TArn-iViy + niiViy) 

(28) 

so that 

niivix + = Cl 

m\V\y + m^Viy = Ci 
(29) 

where Ci and Ci are two arbitrary constants. The following 
example illustrates the applica- . 
tion of the above law. , 

Example.—An automobile wcigliing 

2.0 tons moving with a speed of 60 

miles/hr. collides at an intersection 

with a truck of weight 10 tons which is 

moving with a spt'.od of 30 miles/hr. on 

a strecd, perpendicular to the street on 

which the automobile moves. If the 

two cars lock together, find the 

velocity (speed and direction) of the 

two after collision. Let us choose x- 
and ?/-axes as indicated in Fig. 21. We 
have for the components of momentum before collision: 

Fig. 21. 

> 
X 

2.0 X 60 + 10 X 0 = 120 ton-miles/hr. = Ci 

2.0 X 0 -h 10 X 30 = 300 ton-miles/hr. == C2 

Note that the units which we use may be anything 'provided we use the same 

units throughout. After collision the total mass is M =* 2 + 10 « 12 tons, 

so that 

MVz = 120 ton-miles/hr. 
MVy = 300 ton-miles/hr. 
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and hence 

~ miles/hr. 

Vy == = 25 miles/hr. 

which are the velocity components after collision. 

The speed of both after collision is 

V = \/(10)2 + (25)» = 27 milesAr. 

and the angle made with the a;-axis is determined by 

whence 

tan 6 
Vy 

Fx 10 
= 2.5 

0 = 68°, approximately (Fig. 21). 

32. Impulse-momentum Theorem.—There is a general conse¬ 
quence of Newton's second law w’hich is easily derived. We write 
this law as 

F = ^(m.) 

i.e.j the rate of change of momentum of the body is equal to the ap¬ 
plied force. If we integrate this equation with respect to t, we get 

(30) 

where ?;o is the velocity of the body at i = 0 and v its velocity 
at time t. The right-hand side may immediately be integrated, 
yielding 

so that 

rnv — mvo 

JF dt = mv — mvo 
0 

(31) 

The quantity on the left-hand side of this equation is called the 
impulse of the force F in the time interval 0 to t. The right-hand 
side of the equation is the change in momentum of the body 
(final momentum minus initial momentum). 

Thus we have derived the theorem: 
The impulse of a force is equal to the change of momentiun of 

the body acted on by this force. 
33. Application of the Impulse-momentum Theorem to 

Plane Motion.—For motion in a plane the theorem that the 
impulse of a force is equal to the change of momentum of the 
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body on which it acts is equivalent to two independent relations> 
They are 

\ Fx dt = mvx 
Jo 

I Fy dt = mVy 
Jo 

~ mvx, 

TYlVy^ 

(32) 

The proof of these relations is left as an exercise for the student. 
As an application of this law, let us suppose that the auto¬ 

mobile and truck of the previous example crash into a pole and 
are brought to rest. What is the impulse of the force which 
brings them to rest? 

If we wish to express the force in pounds, we must change the 
mass to slugs and the velocity to feet per second. We then have 
a mass of 

12 X 2,000 
32 

= 750 slugs 

moving with velocity components 

Yx — 10 miles/hr. = 15 ft./sec. 
Yy = 25 miles/hr.^ 37 ft./sec. 

brought to rest. 
Hence the ^-component of the impulse is 

i F^dt = 750 X 0 - 750 X 15 = -11,000 Ib.-sec. 

and for the ^/-component we have 

X Fy dt = 750 X 0 - 750 X 37 = -28,000 Ib.-sec. 

The resultant impulse is 

Impulse = veil,000)2 + (28,000)2 = 30,000 Ib.-sec. 

in a direction opposite to the resultant velocity F. 
We can reach the same result somewhat more simply by 

considering the motion after the collision along a new axis which 
we shall call x'. For this straight-line motion, we have 

(40 ft./sec. = 27 miles/hr.) 

df = 750 X 0 - 750 X 40 = -30,000 Ib.-sec. 
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as before. It should be noted that 1 Ib.-sec. == 1 slug-ft./sec., if 
the pound means pound force as it does here. 

Problems 

1. What is the earth pull on a l-gram body? What acceleration of this 

body does this force produce? How large a force would produce an accelera¬ 

tion of this body of 1 cm./sec.2? 

WTiat is the earth pull on a l-lb. body? What acceleration of this body 

does this force produce? On what mass would this force act to produce an 

acceleration of 1 ft./sec.2? 

2. A 50-gram body is acted on by a constant force of —1,000 dynes 

(acting to the left). If the velocity of the body is -f-lOO cm./sec., how long 

does it take for the force to produce the same speed in the opposite direction? 

How far does the body move in this time? What is the change of momen¬ 

tum during this time? 

3. A 10-lb. body hangs on a spring scale which is fastened to the roof of 

an elevator. 

a. If the elevator ascends with a constant velocity of 10 ft./sec., what 

does the scale read? 

b. If the elevator has an upward acceleration of 2 ft./sec.what does the 

scale read? 

c. What must be the acceleration to cause the scale to read 5 lb.? 

d. If the elevator cable breaks and the elevator falls freely, what does the 

scale read? 
4. A 16-lb. body A and a 40-lb. body B lie at rest on a perfectly smooth 

table touching each other. If a 9-lb. force pushes parallel to the table top 

on A toward B calculate the acceleration of both bodies. What force does 

B exert on A? What force does A exert on B? 
6. Two 8-lb. bodies standing on a smooth table are connected by a 

string A. One of the bodies is connected by a string B which runs over a 

small frictionless pulley to a third body which hangs from string B. This 

third body falls 5.3 ft. in 1 sec. from rest. 

a. What is the acceleration of each body? 

b. What does the third body weigh? 

c. What is the tension in the strings A and B1 
6. A bullet of mass 1 gram is shot from a gun with a speed of 300 meters/ 

sec. It pierces a wooden board 2 cm. thick and emerges with half its initial 

speed. What is the change in momentum? If the average force exerted 

by the board on the bullet is 1.69 X 10® dynes, how long does it take for 

the bullet to pierce the board? 

7. A 300-gram block is started sliding on a horizontal table top with a 

velocity of 200 cm./sec. The coefficient of friction between block and table 

is 0.2. Find 

a. The distance moved in coming to rest. 

5. The position of the block when its initial momentum is halved. 

8. A 16-lb. body is pushed along a horizontal table by a downward force 

of 12 lb., making an angle of 30® with the horizontal. If the coefficient of 

friction is 0.1, find 

a. The acceleration of the body. 
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6. Its momentum at the end of 2 seci., if it starts from rest. 

9. A 1-kg. block initially at rest on a table is pushed horizontally by a 

constant force of 100,000 dynes for 1 sec., and this force ceases to act at this 

instant of time. If the coefficient of sliding friction between the block and 

table is 0.02, how far does the block slide before it comes to rest? 

10. A stone weighing 2 lb. falls from the edge of a roof 36 ft. high and 

penetrates 6 in. into the muddy ground. Assuming that the force which 

brings it to rest is constant, find the magnitude of this force. 

11. A 200-grain body is imlled along a smooth table by a string which 

runs over a small frictionless pulley and on which hangs a 500-gram body. 

If the system starts from rest and the 500-gram body is initially 70 cm. 

above the floor, find the speed of each body when the 500-grain body hits 
the floor. 

12. An 800-gram block rests on a horizontal table and is connected by a 

string passing over a small frictionless pulley at the end of the table to a 

400-gram body which initially is 150 cm. above the floor. The system starts 

from rest, and the coefficient of friction between the block and table is 0.4. 

a. What is the velocity of the 800-gram block when the 400-gram body 
hits the floor? 

h. If the 800-grain block remains on the table after the other one hits the 

floor, how much farther will it move before coming to rest? 

13. A block that weighs 450 grams rests on a horizontal surface, and from 

it a cord runs horizontally over a frictionless pulley to a weight of 300 grams 

which hangs freely from the cord. Find the acceleration of the block if the 

coefficient of friction between block and surface is 0.6. 

14. The total weight of an elevator and its load is 1,600 lb. What is the 

tension in the supporting cable when ascending at a uniform speed of 20 

ft./sec.? When descending at a rate of 10 ft./sec.? What is the tension in 

the cable when the elevator is dropping with an acceleration of 32 ft./sec.®? 

What is the tension when there is an upward acceleration of 8 ft./set.®? 

What is the tension when the elevator is moving downward but the speed is 

decreasing at the rate of 6 ft./sec.®? 

16. Masses of 600 grams and 200 grams are fastened to the ends of a cord 

which passes over a frictionless pulley. Find the acceleration of the 200- 

gram weight and the tension in the cord. 

16. A body is pulled along a table by a rope exerting a constant horizontal 

force of 20.8 lb. with an acceleration of 2 ft./sec.®. If there is a friction force 

equal to one-tenth the weight of the body, what does the body weigh? If 

at the end of the third second from rest the body breaks into two equal 

pieces, how far does the part to which the rope is attached move in the next 

second? How far does the other piece move in coming to rest? 

17. A 10-gram body initially moving to the left is acted on by a force of 

100 dynes to the right. It returns to its initial position 10 sec. after the 

force starts to act. 

a. Find its initial velocity. 
h. Where and when does it reverse the direction of its motion? 

18. A particle is constrained to move on a vertical circular ring (radius 

40 cm.) which is rotating about a vertical axis through its center with a 

uniform angular velocity of 7 radians/sec. At what height above the 

lowest point of the ring will the particle take its position, neglecting friction? 
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19. A cyclist weighing 256 lb. (with his bicycle) rides on the inside of a 
vertical circle of radius 15 ft. When at the top point of the circle, he has a 
speed of 20 miles/hr. How hard does the track push on the cycle? How 
slow can the rider move at this point and not leave the track? 

20. A 10-lb. block is dragged up an inclined plane making an angle of 60'^ 
with the horizontal at constant speed by a 9-lb. force directed up the plane. 

o. What is the coefficient of friction between block and plane? 
6. Starting from rest, how far down the plane would the blocjk move in 

2 sec. if the upward force did not act? 
21. Calculate the acceleration of a block sliding down a plane inclined SO"" 

with the horizontal if the coefficient of friction is 0.30. 
22. An 8-lb. body on an inclined plane making an angle of 37° with the 

horizontal is connected by a string passing over a light pulley at the top of 
the plane to an 8-lb. weight which hangs vertically. The coefficient of 
friction is 0.2. 

а. Find the tension in the string. 
б. Find the acceleration of each mass. 
c. If at the end of 1 sec. the string is severed, how long after it starts does 

the body on the plane take to return to its initial position, assuming that it 
starts from rest? 

23. A 10-lb. block is projected up a 37° inclined plane with an initial 
velocity of 22.4 ft./sec. at the bottom of the plane. The coefficient of 
friction between the block and the plane is J. 

a. How far up the plane will the block move? 
h. How fast is it moving at the bottom of the plane on its way down? 
24. Two blocks, A and By each weighing 8 lb., are placed in (sontact 

at the top of an inclined plane 25 ft. long and 15 ft. high, A being above B, 
The coefficient of friction between A and the plane is 0.1, and the coefficient 
of friction between B and the plane is 0.15. The system starts from rest. 

o. How long does it take for the blocks to reach the bottom of the plane? 
h. What is the force exerted on B by A ? 
c. What would happen if the position of the blocks were reversed? 
26. Two masses mi and m2 (mi > m2) are hung on the ends of string 

which runs over a smooth, very light pulley (Atwood’s machine). If the 
string is cut t sec. after the bodies start to move from rest, show that the 
mass m2 will continue to rise a farther distance of 

h = 
2 \7/ii -f- m2/ 

26. Two bodies of mass mi and m2 are placed on two inclined planes of 
angles a and ^ placed back to back and are connected by a string running 
over a smooth block at the top of the planes. The coefficients of friction 
are jui and /X2, respectively. 

a. Show that if mi moves down the plane its acceleration is 

mi (sin a — Ml COS a) — m2 (sin ^ + M2 cos jg) 
mi 4- m2 ] 

h. Show that if'm2 moves down the plane its acceleration is 

'm2 (sin ~ Mg CO8 0) — mi (sin « 4~ mi cos qQ 1 
mi -h m2 J at « g\ 
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c. From a and h derive the conditions under which there will be no motion 

if the system is originally at rest. Apply these conditions to the case where 

= tan a and fii = tan 

27. A 50**gram body moving along the x-axis with a constant speed of 

20 cm./sec. is acted on by a force of 100/v'S dynes making an angle of 30° 

with the negative x-axis in the second quadrant. If at ^ = 0 it is at the 

origin and has a velocity of 20 cm./sec. along the positive x-axis: 

a. Find the x-component, the ?/-component, and the resultant acceleration. 

h. Find the position and vector velocity of the body at the end of 1 min. 

c. What is the maximum value of the x-coordinate of the body? When 

is this reached? Where is the body at this instant of time? 

d. Make a plot of the path of the body. 

28. A body of mass m is acted on by a constant force whose components 

are Fxo and Fyo. If at time ^ = 0 it has a velocity vo in the positive x-direc- 

tion, find the equation of the orbit. Make a graph of this result. 

29. A body moves in a plane according to the equations of motion 

X — A sin cot 

y = B cos 0)1 

a. Find the equation of the path of the body. Wliat sort of a curve is it? 

b. Solve a, if A = B. 
c. Find an expression for the magnitude of the resultant velocity in terms 

of X and y. 
30. An electron of charge e moves in a horizontal plane with a constant 

velocity v. If a constant vertical magnetic field is applied, there is a force 

acting oil the electron given by F — eHvy where /f is a measure of the mag¬ 

netic field strength, which acts at right angles to the direction of motion. 

Hence the motion is motion in a circle with constant speed. Show that 

the radius of the circle is 

What dotis this mean when H — Oj i.e.y no magnetic field? 

31. An automobile weighing 2,400 lb. is being towed up a 5° inclined 

plane. What is the tension in the tow rope if the automobile is moving at a 

constant speed of 20 rniles/hr, ? What is the tension if there is an accelera¬ 

tion of 3 miles/hr. per second up the hill? (Neglect friction.) 

32. A block weighing 24 lb. is pulled up a 30° inclined plane by a rope 

parallel to the plane which passes over a pulley and has a weight of 40 lb. 

hanging freely at the other end. Find the acceleration of the 40-lb. weight 

if the coefficient of sliding friction between the 24-lb. weight and the plane 

is 0.4. 
33. A piece of ice slides down a roof 15 ft. long which is inclined 30° with 

the horizontal. The edge of the roof is 40 ft. above the ground and 2 ft. 

from the side of the building. If the ice starts from rest at the top of the 

roof and the coefficient of friction with the roof is 0.1, how far from the side 

of the building is the point where the ice strikes the ground? 

34. If the distance from center field to home plate is 100 yards, assuming 

that the ball is thrown at an inclination of 45° with the horizontal, with what 

velocity must the ball leave the fieldeFs hand if it is to reach home plate? 
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36. When a baseball leaves the pitcher’s hand at an elevation of 5.5 ft. 
above the ground, it is moving horizontally with a speed of 120 ft./sec. If 
the distance to the plate is 00 ft., how high is the ball above the ground when 

it passes over the plate? 

36. A ball is projected directly upward with a velocity of 160 ft./sec. 

At what time is its vertical velocity equal to zero? How high will it rise? 
Find the velocity at 2 sec. and 8 sec. after leaving the ground. 

37. A shell is fired horizontally from the top of a cliff 400 ft. high with a 
speed of 1,000 ft./sec. 

a. How far from the bottom of the cliff does it land? 
h. How long is it in flight? 

c. What is its speed when it hits? 

38. A bullet is shot from a gun on the ground at an angle of 45° with the 

horizontal and hits a cliff 100 ft. above the ground. The cliff is 1,000 yards 
from the gun. 

a. What is the muzzle velocity of the gun? 

h. How long is the bullet in flight? 

c. Has it reached the highest point of its path before hitting the cliff? 
39. A brick slides down a roof inclined 37° to the horizontal. The edge of 

the roof is 35 ft. above the ground. If the coefficient of friction is 0.1, and 

the body starts from rest at a point 30 ft. from the edge of the roof: 
a. Find the velocity of the body when it leaves the roof; when it hits the 

ground. 

5. How far along the ground from a point directly under the edge of the 

roof will it hit? 

40. A projectile is fired with a velocity «o at an angle B with a horizontal 

plane at the bottom of an inclined plane of angle a. Show that it will hit 
the plane at a distance along the plane given by 

__ 2v\ cos B sin {B — a) 

g cos^ a 

From this show that, if B alone is varied, a maximum range is obtained when 

Hint: sin (2B — a) = 2 cos 6 sin (.19 — a) -f- sin a. 

41. A bombing plane, diving at 256 miles/hr. at an angle of 37° with the 

vertical, drops a bomb. If the altitude of the plane was 2,500 ft. find 
(neglect air resistance): 

a. The time it takes the bomb to hit the ground. 

b. The distance from the point where it strikes to the point directly 
beneath the place where it was released. 

c. Its speed when it strikes. 

42. A golf ball is driven with an initial velocity of 128 ft./sec. at an angle 

of 30° above the horizontal. (Neglect air resistance.) 
а. Find the maximum height reached. 

б. Find the time needed to reach this point. 

c. Find the radius of curvature of the trajectory at this point. 

43. A metal block is projected up along a 37° inclined plane with an 

initial velocity of 40 ft./sec. at the bottom of the plane. The incline is 

20 ft. long) and the coefficient of friction between the plane and block is i 



LINEAR AND PLANE DYNAMICS 86 

o. What is the velocity of the block as it leaves the top of the plane? 

6. How long does it take for the block to reach the top of the plane? 

c. If after leaving the plane the body falls freely, what is its speed when 

it hits the ground? 

44. The long-range guns which bombarded Paris during the war weighed 

320,000 lb., had a barrel 120 ft, long, and fired a projectile weighing 256 lb. 

with a muzzle velocity of 5,000 ft./sec. at an elevation of 53° above the 

horizontal. 

o. Compute the initial recoil velocity, assuming the gun completely free 

to recoil. 

h. Compute the horizontal range in the absence of air resistance. What 

percentage of this value is the actual range of 130,000 yards? 

c. Compute the maximum height (in miles) reached by the projectile, 

neglecting air resistance. (1 mile = 5,280 ft.) 

d. Assuming uniform acceleration in the bore of the gun, compute the 

time required for the projectile to travel the length of the barrel. 

e. Compute the time of flight in minutes, neglecting air resistance. 

46. A body of mass 300 grams initially at rest is pushed along a smooth 

table by a constant force of 600 dynes. The force ceases to act at the end 

of 2 sec., and 3 sec. after the body starts it collides with another of twice its 

mass and sticks to it. 

a. Find the velocity of the two bodies after the collision if the larger one 

is at rest before the collision. 

h. How far does the first body move before it hits the second? 

46. Two freight cars are rolling toward one another on a level track. 

The first weighs 40 tons and is traveling 5 ft/sec., the second weighs 125 tons 

and is traveling 4 ft./sec. The two cars couple together after colliding. 

Find their final speed, and the direction in which they move. Neglect 

rolling friction between cars and track. 

47. A i -oz. bullet strikes and remains embedded in a 5-lb. bird in the air. 

The bullet has a horizontal velocity of 800 ft./sec., and the bird is flying 

horizontally in the same direction 64 ft. above the ground with a velocity 

of 20 ft./sec. just before the impact. Assuming that the bird begins to 

fall when it is struck, what will be the distance of the point where the bird 

strikes the ground from the point on the ground directly below the bird^s 

position when it was hit? 

48. A 6-lb. block rests on a horizontal frictionless table, the top of which 

is 4 ft. above the ground. A bullet weighing 0.06 lb. is fired horizontally 

into the block where it remains embedded, and it is observed that the block 

acquires a speed of 16 ft./sec. 

a. What was the speed of the rifle bullet? 

h. How far from the edge of the table does the block hit the floor? 

c. How fast is the block moving as it hits the floor? 

49. A rifle weighing 10 lb. fires a bullet weighing i lb. The initial recoil 

velocity of the rifle is 12.5 ft./sec. The rifle is brought to rest by the gunner 

in 0.02 sec. 

a. Compute the muzzle velocity of the bullet. 

h. Compute the impulse of the force against the gunner^s shoulder, by 

the impulse-mbmentum theorem. 
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c. If this force is constant, find its value from the definition of impulse. 

60. An automobile moving with a velocity of 60 miles/hr. hits another of 

1.5 times its weight, at rest, and sticks to it. Find the velocity of both 

after collision. 

61. Two masses of mass 4 and 8 lb., respectively, attract each other with a 

(jonstant force of 2 lb. If they are 32 ft. apart at t = 0 and the 4-lb. body 

is at rest at < = 0 and they collide at the end of 2 sec. find their relative 

velocity at < == 0. How far has each moved in these 2 sec.? Calculate 

the total momentum of the system at ^ = 0 sec., ^ — 1 sec., and ^ = 1.5 sec. 

Discuss the last answer. 

62. A block of mass M resting on a table is hit horizontally by a harniiK^r 

and the impulse of the force is (7. If there is a friction force equal to fW 
where W is the weight of the body and / is a proper fraction, show that the 

body comes to rest in time 

_ J7 
jMg fW 

and moves a distance 

^ r ^1 
® 2'fgMi 2fWM 

63. Two bodies each of mass 2 grams attract each other with a force 

proportional to their separation. When their separation is 10 cm. the force 

is 10^ dynes. If they are at rest initially and are separated at t = 0 by a 

distance of 20 cm., find their relative velocity when they collide. 

Hint: 
dt dx dt ^^dx 

64. A 2-lb. body free to move along the a:-axis is acted on by two forces: 

1. A constant force, to the right, of 6 lb.; Fi — +6 lb. 

2, A force to the left, ~ ~2t lb. 

If the body starts from rest, 

a. Find the expression for its velocity at any time t. 
h. Find the expression for its position at any time t. 
c. Where does it reverse the direction of its motion? When? 

d. How long does it take to return to its initial position? How fast is it 

then moving? 

66. A 24-lb. shell lying on a flat smooth surface explodes into three equal 

pieces. Two of them shoot out at right angles to each other with speeds of 

40 miles/hr. and 60 miles/hr., respectively. Find the momentum (magni¬ 

tude and direction) of the third piece. If the explosion takes place in 

10“» sec., find the average force (magnitude and direction) pushing on each 

piece during the explosion. 

66. A 500-lb. shell is fired from a 10-ton armored railway car at rest on a 

track running north and south. The shell is shot in a horizontal plane with 

a velocity of 1,000 ft./sec. in a direction making an angle of 60° with the 

track. 

a. What is the recoil velocity of the car? 

h. If the shell is in the gun for 0.01 sec., what is the average lateral force 

exerted by the rails on the wheels of the car? 



CHAPTER VI 

WORK AND ENERGY; POTENTIAL ENERGY 

We have now reached a point in our discussion where it pays 
to summarize our results and from this summary to plan in 
which direction we must next proceed. We have developed a 
method of solving the problem of motion of a particle under the 
action of given forces in which we apply the second law of motion 
directly, calculating the acceleration of the particle and then 
proceeding to the kinetic equations of motion by integration. 
However, it is clear that the equation dvjdi — FIm can be 
integrated directly for v only if the force is constant or depends 
on and our next problem is to investigate the solution of 
problems for other types of forces. A most important type of 
force (perhaps the most common in physical problems) is that 
in which the force depends on the position of the body. Thus our 
equation for the acceleration becomes (if we consider straight- 
line motion for simplicity) dvjdi — f(x) where f{x) is some 
function of x given by the forces acting. This equation can¬ 
not be directly integrated as it stands, since this would yield 
V = jf(x)dt, an integral whose value may be found only if it is 
known how x varies with L This latter information, however, 
constitutes the solution of our problem, so that we are obliged to 
look for a different scheme of solution. The method employed is 
so fruitful that a number of new concepts and definitions have 
been introduced, especially useful for this kind of problem, and 
the study of these and the method of solution form the subject 
matter of this chapter. 

34, Fundamental Definitions; Motion in a Straight Line.— 
When a particle is acted on by a force or by a number of forces, 
it will, in general, be accelerated and perform some sort of 
motion. The simplest possible case occurs when a single con¬ 
stant force acts on the body and the body moves in a straight 
line in the direction of the force. For this case we define the 
work done by the force on the body as the latter moves a certain 
distance as the product of the magnitude of the force and the 
magnitude of the displacement undergone by the body. 

87 
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If the straight-line motion takes place under the action of 
several constant forces, e.g., a block sliding down an inclined 
plane, then some or all the constant forces may not act in the 
direction of motion of the body. If we consider one of these 
forces which makes an angle <t> with the line of motion, then only 
the component of this force along the line of motion contributes 
anything to the acceleration of the body. This component is 
F cos 0 (Fig. 22), and if the body moves from a position Xi to a 
position X2j we define the work done by F on the body when 
the body is displaced from Xi to X2 as 

W = F cos<t>(x2 — Xi) (1) 

The work done by a force may be cither positive or negative, 
according to whether the component F cos </> acts in the direction 
of motion or opposite to it. Thus, for example, the work done by 
a friction force on a body will always be a negative quantity. It 
is common in such a case to talk of the work done against friction, 

this being the negative of the work 
done hy friction on the body. If 
we calculate the work done on the 
particle by one of the forces acting 
on it according to Eq. (1) and 
repeat this process for all the forces 
acting on the body, the algebraic 

sum of the works done by the individual forces equals the work done 
by the resultant of all these forces. The proof of this statement is 
left as an exercise for the student. 

In the general case of motion along a straight line, the force 
(or forces)*will not be constant. In this case we must generalize 
our definition of work. Suppose the force F in Fig. 22 is a vari¬ 
able force. We imagine the line along which the body moves 
to be divided into a huge number of small intervals, each interval 
of length dx. If the length of these intervals is sufficiently small, 
we may treat the force acting on the body as it moves one 
interval dx as constant and write for the work done by the force 
in this motion 

dW = F co&<t> dx (2) 

where F is now the magnitude of the force at the position where 
dx is located and <t> the angle which F makes with the line at that 
point. The total work done by F on the body as the latter moves 

Fig. 22. 
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from Xi to Xi is the sum of all the dPT’s over all the intervals 
between xi and X2, or in calculus notation, 

XXi 

F COS0 dx (3) 

where the limits Xi and x^ indicate that we take the value of the 
integral for x ^ X2 and subtract from this its value for x = Xi. 

The unit of work in the c.g.s. system is one dyne-centimeter, 
and is called one erg. In the English gravitational system of 
units the unit of work is the foot-pound. 

Definition.—The product of onC’-half the mass of a particle and 

the square of its speed is called the kinetic energy of the particle. 

In symbols, we write 

K.E. = (4) 

We shall now derive the following fundamental theorem: 
The work done by the resultant force acting on a particle during 

any part of its motion is equal to the gain of kinetic energy of the 

particle during that part of its motion. 

For the case of straight-line motion we note that the resultant 
force must act along the line of motion. Were this not so, the 
particle would move in a curved path. During a displacement 
dx of the particle, the force F does an amount of work 

dW = Fdx = m^-dx - (5) 

since the second law requires that F — m(dv/dt). 

The right-hand side of Eq. (5) may be written as 

m^ ' dv = mv dv 

since by definition v = dxjdt. Thus Eq. (5) becomes 

dW — Fdx = mv dv (6) 

where dv is the change v occurring in the interval dx. 

If we now integrate Eq. (6), i.e., sum up the work done in all 
the intervals dx lying between and X2, we have 

w = fjydx = f'mv dv (7) 

where Vi is the speed of the particle when it is at Xi and V2 its 
speed when at x^. The right-hand member of Eq. (7) may be 
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evaluated immediately and one obtains 

w = £‘Fdx = ^ - (8) 

which, remembering the definition given by Eq. (4), is the 
required result. 

36. Work-energy Theorem for Plane Motion.—In the general 
case of motion in a plane, i.e., in the case of variable forces and of 
motion in a curved path, it is possible to apply the foregoing 
argument with but little modification. We reduce the problem 
here to the one previously handled by considering the path not as 
a whole but by dividing it up into a large number of small 
sections, each of length ds and small enough so that we may 
consider it a straight line and that the force acting during the 
corresponding time interval is constant. We then apply our 
definition (2) to each small portion and add up the results to 

get the total work done. For each 
little length dsj the work done is 

F cos ds 

and the sum becomes, as each ds is 
taken smaller and smaller, 

W = Jf cos 0 ds (9) 

where the integral is to be taken 
over the portion of the path under 
consideration (Fig. 23) from A to B. 

We must now find an expression for W in terms of the compo¬ 
nents of F along the x- and y-axes {F^ and Fy). From Fig. 23 
we see that (j) = \l/ — Oj where ^ is the angle which F makes with 
the x-axis, and d is the angle made by ds (tangent to the curve) 
and the a;-axis. We make use of a theorem in trigonometry. 

cos <l> = cos (^ —• 0) = cos ^ cos 6 4* sin \l/ sin 6 (10) 

Inserting this expression for cos <t> into Eq. (9), we find 

W = cos ^ ds cos 6 + Jf sin ^ ds sin 0 (11) 

But 

F cos = Fa,; F sin ^ = Fy 
ds cos 6 = dx; ds sin 6 = dy 

Fig. 23. 
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so that Eq, (11) becomes 

W = j*F cos <f>ds = fF.dx + dy (12) 

or, in words, the work done on the body is equal to the sum of the 
work done by the a;-component of the resultant force acting on 
the body and the work done by the ^-component of this force. 

We now can easily find the kinetic energy-work theorem for 
any motion in a plane. We have already shown that 

^h\dx 
and / (13) 

^Fydy = ^vl - 

since each of these equations represents the case of motion along a 
straight line. If we now add these two equations, the left-hand 
side represents the total work done on the body by Eq. (12). 
Thus 

w = ^{vl + vl) - |(«|„ + vl) = (14) 

w^here v represents the magnitude of the final resultant velocity 
(the speed) and Vo the initial speed. Thus we find again that the 
work done on a body by a force is equal to the change of kinetic 
energy of the body caused by this force. 

36. Potential Energy; Straight-line Motion.—The theorems 
developed in the preceding sections suggest strongly that one 
might classify forces advantageously according to a scheme 
dependent on the idea of the work done by these forces. This 
turns out to be an important and useful procedure, and forces 
thus classified fall into three classes. 

First, there are the forces which do no work on a body during 
its motion and hence which do not affect the changes of speed 
that occur. These forces necessarily act in a direction normal 
to the direction of motion of body. As examples we call atten¬ 
tion to constraint forces such as the pull of a string on a body 
when the latter is twirled in a circle or the normal component of 
the push of a plane on a body which slides on its surface. 

To classify the forces which do work on a body, it is best to 
start with a simple example. Suppose a body moves on a straight 
line under the action of a single force pushing or pulling it in a 
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direction opposite to its direction of motion. Such a force will 
decrease the speed and hence the kinetic energy of the body and 
bring it to rest. The body may then stay at rest or may return 
in the opposite direction to its initial motion. Suppose the 
latter is the case and that when the body reaches a given position 
its kinetic energy is just equal to the kinetic energy it previously 
possessed at that point when moving in the original direction. 
In this case the body has lost kinetic energy during part of its 
motion but regains all of it as it returns to its former positions. 
Forces which produce this effect are called conservative forces, and 
we think of the decreasing kinetic energy of the body being stored 
up in what we may call energy of position or ^^potentiaF^ energy. 
This potential energy is regained as kinetic energy when the body 
returns. 

If, on the other hand, the body comes to rest and stays there 
or returns to its initial positions with decreased kinetic energy, 
we say the force is dissipative^ as the original kinetic energy has 
been totally or partially lost during the motion. In such a case 
we clearly cannot think of the kinetic energy being stored up and 
hence cannot introduce the notion of energy of position. As an 
example consider a ball thrown vertically upward. As if. moves 
upward it loses speed, comes to rest, and returns to ihs initial 
position. An elementary calculation shows that it returns to 
its initial position with th(i same speed (and hence kiiiet,i(‘ energy) 
as when it started up. The only difference Ixdween the initial 
and final velocities is one of direction, not of magnitude. Thus 
we think of the body losing kinetic energy as it proceeds upward, 
gaining potential energy, and on the way down its kinetic energy 
increases and its potential energy decreases. A similar situation 
exists in the case of a block moving on a frictionless table and 
being stopped by a spring. As the block slows down, the spring 
is compressed, and the original kinetic energy is regained as the 
spring pushes the block back to its starting point. Thus, as 
examples of conservative forces, we have the pull of the earth 
and the force exerted by a spring on a body in contact with it. 
On the other hand consider a block sliding along a table with 
friction. The friction force brings the block to rest, and it 
remains at rest. All the original kinetic energy has been lost, 
and the block of itself will not return to its initial position. Thus 
a friction force is a dissipative force, and its action always results 
in a loss of mechanical energy. 
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We must now formulate the preceding qualitative ideas in 
quantitative precise form. In the examples of conservative 
forces which we have given, the negative work done by the force 
in stopping the body must just be equal to (and opposite in sign 
to) the positive work done by the same force as the body returns 
to its initial position. The total work done by this force in a 

round trip is zero^ and, in general, if this is so, the force doing the 
work is a conservative force. When a conservative force acts on a 
body we define the potential energy of the body as follows: We 
first arbitrarily choose some position of the body for which we say 
its potential energy is zero. Let this point be denoted by Xq. 

Then the potential energy of the body in any other position is 
equal to the negative of the work done by the conservative force 
when the body moves or is moved from Xo to its new position. 
We denote the potential energy by the letter F, and since this 
depends on the position of the body, we shall write F(x). In 
symbols the above definition becomes 

V{x) - - fXdx (15) 

where denotes the conservative force. It should be noted that 
Eq. (15) is entirely equivalent to the relation 

F. = 

dx 
(16) 

It follows from the defining equation [Eq. (15)] that if a l)ody 
moves from a position Xi to a position X2 under the action of a 
conservative force the gain in potential energy is equal to 

F2 - F, = -fy.dx (17) 

or, in words, to the negative of the work done by the force during 
this motion. Since the potential energy of a body depends only 

on its position, it follows that the work done by a conservative 
force on a body depends only on the initial and end points of the 
motion and cannot depend on the intermediate details of the 
motion or on the intermediate positions. Thus a conservative 
force is one which may vary only with the position x and not, for 
example, with the velocity of the body. 

Combining the theorem of Eq. (8) with Eq. (17), we obtain 
for a motion under the action of a conservative force 
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or rewritten 

+ Fi = ^ + Fa (18) 

In words, the sum of the kinetic and potential energies of the body 
is the same at the point Xi as at the point X2 and is therefore con¬ 
stant. We call the sum of the kinetic and potential energies the 
total mechanical energy and denote it by the letter E, We may 
then write Eq. (18) in the form 

~ + V (18a) 

In the case of a body acted on by several forces, some conserva¬ 
tive and some dissipative, we can still speak of the potential 
energy associated with the conservative forces and hence of the 
total mechanical energy of the body, although it does not stay 
constant. In fact, the decrease of total mechanical energy during 
any motion must just be equal to the work done against the 
dissipative forces. If we consider again a ball thrown into the 
air but take air resistance into account, we see that the ball will 
not rise so high as when air resistance is lacking since at the top 
of its path its total energy is all potential and this is less than its 
initial energy by an amount equal to the work done against 
friction. 

One more word may be added concerning a convenient choice 
of origin for potential energy. For the case of constant forces 
there is no particular advantage in any single position over any 
other, and the particular problem usually dictates a convenient 
origin for potential energy. When the force varies with position, 
however, it is usually most convenient to set the potential energy 
equal to zero at a position where the force vanishes. Thus, if a 
force varies inversely as a power of the distance from a fixed 
point, we place the potential energy equal to zero when the body 
is at infinity, whereas, if the force varies directly as a power of 
the distance from a fixed point, we set the potential energy zero 
at the fixed point. 

37. Potential Energy; General Case for Plane Motion.—For 
the general case of motion in a plane, we say that a potential 
energy is associated with a force if 

The work done by the force on the body as it moves from a 
point £ to a point C is equal and opposite in sign to the work done 
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by this force on the body as it moves from C to 5 along any path 
whatsoever. 

Several consequences of this statement are at once evident. 
The work done by a conservative force on a body moving from 
B to C along any path is independent of the path. Also, the 
total work done by a conservative force as a body moves around 
any closed path is zero. 

If we consider only conservative forces, since the work done by 
these forces on the body does not depend on the path followed 
by the body, it can depend only on the end points (the initial and 
final points). As before, the work done on the body is equal 
to the loss of potential energy and is equal to the increase of 
kinetic energy of the body. We then have the relation 

(■«) 

Z.C., the sum of the potential and kinetic energies of the body at 
any point is equal to the same sum at any other point and hence 
is constant. This is the 'principle of the conservation of mechanical 

energy for conservative motions. 

The important point to remember is that the proof of this 
theorem depends on the condition that the work does not depend 
on the path followed and that only for this case is mechanical 
energy conserved. In all other cases we find other forms of 
energy appearing at the expense of the lost mechanical energy, 
such as heat in the case of frictional forces. 

38. Example: Equipotential Surfaces.—To illustrate the 
statements of the preceding section, let us consider the case of a 
body moving under the action of the pull of the earth, i.c., its 
weight. This is the case of the motion of a body under the action 
of a constant force and the direction of the force is vertically 
downward. When the body is at the surface of the earth, we 
shall call its potential energy zero, thus fixing an origin for 
potential energy. If the body is moved along the earth^s surface, 
i.f?., horizontally, the work done on it by its weight is zero since 
the angle between the direction of motion and the force is 90°. 
The same is true in every horizontal plane at a given height h 

above the earth^s surface. Thus the potential energy of the body 
does not change as it moves in any horizontal plane, and we call 
these planes surfaces of constant potential energy, or for brevity, 
equipotential surfaces. In general^ when a body moves under the 
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action of a conservative force, there will exist a family of surfaces 
on which the potential energy is constant, and the normals to 
these equipotential surfaces will everywhere coincide with the 
direction of the conservative force. 

Let us now apply the test as stated in Sec. 37 to see if a con¬ 
stant force such as the Wfdght of a body is conservative. We 

shall calculate the work done by 
the pull of the earth as the body 
moves from a point A to the point 
C a distance h below A (Fig. 24) 
and see if this work depends on the 
path between A and C. 

First, suppose the body moves 
from A to C in the vertical line 
connecting these points. The 
work done by the weight is 

— mg (0 — h), if we take the upward direction (^/-axis) as positive 
and let the ^/-coordinate of C be zero and that of A be h. Thus 
the work done is 

Wac = +mgh. 

Now suppose the body moves down an inclined plane of angle 
(Fig. 24). The work done by the weight of the body as the 

latter moves from A to is 

WAii = —mg cos (90® — 0)(--s) = mg sin </> • s 

where .s is the length of the inclined plane and we use —s for the 
distance, since we are measuring positive displacement upward 
and in our case the body undergoes a negative displacement. 
From the figure we see that s • sin <^ = A and hence 

Wab = +mgh 

Since the path from B to C is horizontal, the work done in moving 
the body horizontally from to C is zero; Wbc — 0. Thus we 
have 

Wac = Wab + Wbc - +mgh 

which is the same result as in the case where the body moves 
directly from A to C. 

For a general proof that the work Wac does not depend on the 
path between A and C, we proceed as follows: Let the coordinates 
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of point A be Xi and yi; those of C be X2 and 2/2. Now from Eq. 
(12) we have, for the work done by a force with components 

and Fy, 

W = fF,dx + fPy dy 

In our case we have 

Fx = 0; Fy = —m.g 

so that 

Wac = 0 + \\-ni(j)dy = -mgiy^ ~ yi) = +m(j(yi - 2/2) 
Jyi 

and since 2/1 — 2/2 is equal to h, we have in general 

Wac = -\-mgh 

and this does not depend on the path between A and C but rather 
only on the difference between the 2/-'COordinates of these points, 
i.e.j on the difference in height, which is the distance between 
the equipotential planes at yi and 2/2. Thus we find that the 
force of gravity is a conservative force, and that for falling 
bodies the principle of the conservation of mechanical energy 
is valid. This is of course no longer true when there are friction 
effects. If we call the potential energy zero for /i == 0, then the 
potential energy of a body at a height h is mgh. The vel(K:*ity 
with which a body starting at the height h from rest hits the 
ground is obtained as follows: The decrease of potential energy 
is mgh and this is equal to the increase of kinetic energy and, as 
the body starts from rest, this is mv'^/2. We then have 

' , mv'^ 
mgh = — 

or _ 
V = '\/2gh 

which we also obtain from kinematical considerations. 
39. Power.—In the preceding sections we have been discussing 

the work done on a body by forces. The length of time necessary 
to perform the work is completely arbitrary. In order to include 
the time, we define power as the rate of doing work. Thus, if an 
amount of work ATT is done by a force in time At, the average 
power developed by the force is 

A Average power = 
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and, if we let » 0, we get 

Power = (20) 

For the case of straight-line motion 

AW — FAs 

so that 

Average power = 

and, if we let At 0, 

Power = = Fv (21) 

so that the instantaneous power is the product of the force and 
the velocity of the body. 

In the case of plane motion, we have for AW from Eq. (12) 

AW = FxAx + FyAy = F cos(/>As 

so that 

Average power = F®— + = P 

and,*if At 0, 

Power = Px ' Vx + Py • Vy = P cos0 v (22) 

The unit of power in the c. g. s. system is 1 erg/sec. As this is 
such a small unit, 10,000,000 ergs/sec. are used as a unit called 
one watt. 

1 watt = 10^ ergs/sec. = lO’' dyne-cm./sec. 

In the English gravitational system the unit is 1 ft.-lb./sec., 
where the pound force is meant. Again this unit is too small 
to be convenient in practice so that ratings of machines are 
usually given in horse power, where 

1 hp. = 33,000 ft.-lb./min. = 550 ft.-lb./sec. 

Problems 

1. A 100-gram body is projected vertically with a speed of 98 meters/sec. 

a. How much work has been done on the body by the pull of the earth, 

when the body is at the highest point of its path? 
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6. What is its potential energy (referred to its potential energy at < =0), 

when at the top of its path? 

c. Show that this is a conservative motion. Set up the law of conserva¬ 

tion of energy for this motion. , 

d. Solve for the velocity of the body when it is 300 meters high. When 

it is 1,000 meters high. Discuss your answers. 

2. An 8-lb. iron block falls vertically through a height of 4 ft. and strikes 

the top of a nail which is partly driven into a wooden block, driving it in 

1 in. farther. 

a. Calculate the loss in potential energy of the block while falling. 

h. Find from (a) the kinetic energy of the block at the instant it strikes 

the nail. 

c. Find the work done in driving the nail. 

d. Find the force which would be required to press the nail into the 

wooden block. 
e. Compute the deceleration of the iron block while it is being stopped 

by the nail. 
3. A freight car weighing 12 tons is at rest with brakes released on a 

level track. A second car weighing 4 tons and moving 8 ft./sec. strikes the 

first, and the two couple together and move as one. The cars then come to 

a grade, rising vertically 1 ft. in 200 (measured along the track). How 

far along the incline will they move before coming to rest? Neglect friction. 

How does their potential energy in this position compare with the original 

kinetic energy of the 4-ton car? 

4. The force necessary to compress a helical spring a distance x is pro¬ 

portional to X. A force of 4 lb. is found to compress the spring 6 in. A 

4-lb. block resting on a table is pressed against the spring, compressing it 

12 in. (Neglect friction between block and table.) 

a. What force F is necessary to hold it in this position? 

b. How much work in foot-pounds was done in compressing the spring? 

c. If the force F is suddenly removed how much kinetic; energy will the 

4-lb. block acquire? 

d. What will be the velocity of the block at the instant it leaves the 

spring? 

5. A 200-gram body moves on a straight line under the action of a force 

F - — lO^o; — 200x3 dynes 

The body is initially at rest at a point 10 cm. from its equilibrium position 

X — 0. 

a. How much work is done on the body as it moves from its initial position 

to X — 0? 
b. What is the speed of the body at x =0? 

c. How far does the body move before reversing its direction of motion? 

6. A 10-ton freight car moving with a velocity of 40 ft./sec. hits a spring 

bumper and is brought to rest, compressing the bumper 18 in. If the force 

necessary to compress the bumper a distance x is given by 

F ^ kx 

a. Find the kinetic energy of the freight car before collision. 
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b. Find the value of k in the expression for F. (Units.) 

c. What force will compress the spring 6 in.? 

7. A mass point of mass 8 grams is acted on by a force in dynes given by 

F = 10 -2x 

where x is in centimeters. When the body is at a: = 0, it is at rest. 

a. How much work is done by F, when the body moves from x ~ 0 cm. to 

X ^ b cm.; from x — 0 cm. to x = 10 cm.? 

h. What is the velocity of the body at x = 5 cm.? at x = 10 cm.? 

c. Draw a graph of work vs. displacement. 

8. A 2-gram body, free to move along the x-axis, is attracted to a point 0 
by a force of magnitude 

F = 
2,700 

x^ 
dynes 

where x is in centimeters. 
a. How much work is done on the body when it moves from x = 2 cm. to 

X = 4 cm.? 

h. How much work is done by the body when it moves from x — —10 cm. 

to X == —3 cm.? 

c. Find the potential energy and total energy at x = 5 cm. and x = 3 cm., 

if the body is at rest at x = 10 cm., if the potential energy is zero when 

X = 00. 

d. Find a general expression for the potential energy of a body of mass ni 
acted on by this force. 

9. A body weighing 40 lb. is pushed up a frictionless 30° inclined plane 

10 ft. long V)y a constant force F. If the velocity at the bottom of the 

plane is 4 ft./sec. and the velocity at the top 12 ft./sec., how much work is 

done by the force F? 

10. A block is projected up a 37° inclined plane. At the bottom of the 

plane it has a velocity of 16 ft./sec. The coefficient of sliding friction 

between block and plane is I, 
a. How far up the plane does it slide? 

b. How long does it require to slide back to the bottom? 

c. What is its velocity at the bottom on its way down? 

11. A body starting from rest slides down a plane of length I which is 

inclined at an angle 6 with the horizontal. If the coefficient of friction is ju, 

find an expression for the velocity at the bottom by using Newton’s laws 

directly and also by using the work-energy principle. 

12. A sled starts from a height of 30 ft. above an ice pond and slides down 

a slope 50 ft. long, across the ice a distance of 120 ft., and up a slope inclined 

at an angle of 30° with the horizontal. If the coefficient of friction is 0.10 

for all portions of the path, how far along the second slope will the sled go 

before coming to rest? 

18. A 25-lb. block is pushed 100 ft. up the sloping surface of a plane 

inclined at an angle of 37° to the horizontal, by a constant force F of 32.5 lb. 

acting parallel to the plane. The coefficient of friction between the block 

and plane is 0.25. 

a. How much work is done by the force F? 
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6. Compute the increase in kinetic energy of the block. 

c. Compute the increase in potential energy of the block. 

d. Compute the work done against friction. 

14. A 10-lb. body is pulled up an inclined plane 12 ft. high and 20 ft. 

along the slope by a force of 10 lb. acting parallel to the plane. The body 

starts from rest at the bottom of the plane and the coefficient of friction is 

0.25. Calculate: 

a. The work done by the 10-lb. force as the body moves to the top of the 

plane. 

b. The work done against friction in the above motion. 

c. The work done against gravity in the above motion. 

d. The speed of the body at the top of the plane. 

16. An 8-lb. block on a table is pulled toward a point O by a spring with a 

force F = — 4x, where F is in pounds and x is in feet. The coefficient of 

friction between block and table is 0.5. The block starts from rest at a 

point 2 ft. from 0. 

a. Compute the work done by the spring when the block has moved 1 ft. 

toward 0. 

b. How much work has been converted into heat during this motion? 

c. What is the speed of the body after moving 1 ft. from its original 

position? 

16. A particle weighing 1 lb. slides without friction on the inside of a 

vertical circular track of radius f ft. The speed of the particle is 9 ft./sec. 

when it is at the top point of the circle. 
a. Calculate the speed of the particle when it is at the bottom of the 

circle. 

b. Calculate the speed of the parti(;le when it is at the lower end of a 

diameter making an angle of 60° with the vertical. 

c. What is the push of the track on the particle whe^n the latter is in the 

position described in (5)? 

17. A roller-coaster car starts from rest at the top of an incline and coasts 

without friction. The bottom of the incline is a section of a vertical circle 

of radius 40 ft. If the starting point is 16 ft. higher than the bottom, what 

is the upward force on a 160-lb. passenger when the car is at the lowest point 

of the curve? 

18. A small body of mass 10 grams hangs from a light inextensible cord 

1 meter long. It is pulled aside until the cord makes an angle of 60° with 

the vertical, and then released. 

o. Find its velocity as it passes through its lowest point. 

b. Find the tension in the cord, in dynes, at this point. 

19. Prove that, if a stone is whirled in a vertical circle at the end of a 

string, the tension in the string when the stone is at the bottom point of the 

circle is greater than the tension when the stone is at the top point by six 

times the weight of the stone. What physical principles are involved in the 

solution of this problem? 

20. A particle of mass 100 grams is constrained to slide without friction on 

a vertical circle of radius 25 cm. If the particle is released at the end of a 

horizontal diameter, what will be the force exerted on the particle by the 

supporting frame when the particle is at the lowest point of the circle? 
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21. A body slides on the inside of a frictionless vertical circular track 7i in. 

in diameter. It passes the lowest point of the circle with a speed Vo. Find 

the smallest value of Vo such that the body does not leave the track at the 

highest point of the circle. 

22. An 80-lb. body is attracted to a point 0 by a force in pounds, 

F = -lOx 

where x is measured in feet from O. There is also a friction force of 10 lb. 

acting on it while it is in motion. 

a. If the body reaches a point 9.0 ft. to the left of 0 and then turns back, 

where was it at i = 0 if it started from rest? 

b. How much work was done by the friction force during the motion ? 

c. What is the loss of potential energy during the motion? 

d. Find the total energy of the body when x — 1 ft., if its potential energy 

is zero at x = 0. 

23. Two bodies of mass 20 and 60 grams, respectively, initially at rest 

with respect to one another, attract each other with a force proportional to 

the distance between them. At < = 0, this force is 1,500 dynes. How far 

apart must they be initially, if they are to collide with a relative velocity 

of 100 cm./sec.? 

24. A body of mass m is attracted by a fixed mass point at 0 by a force 

given by 

where /c is a constant and r is the distance from 0 to the mass point m. If 

k == lO"*^ cm.Vsec.2, and m is 10 grams, calculate: 

a. The work done by F in moving m from a point P(r == 10 cm.) along the 

line connecting 0 to P to a distance r = 100 cm. (point Q), 
h. The work done by P as m moves along the arc of a circle of radius 

100 cm., center at 0, from Q to a point R on the opposite side of 0. 
c. The work done by P as w moves along the line OR from r — 100 cm. to 

r = 10 cm. (point S). 
d. The work done by P as m moves from S back to P along the arc of the 

circle of radius 10 cm. (center at O). 

e. Find the sum of a, 5, c, and d. What conclusions can you draw from 

this answer? 

26. A mass point of mass m is acted on by a force 

a. Make a plot of P vs. x. 
h. Make a plot of the potential energy of m vs. x. Where on this curve is 

the point corresponding to P =0? What does this mean? 

26. A cannon weighing 2 tons fires a projectile weighing 20 lb. If the 

muzzle velocity is 800 ft./sec. at an angle of 41.4° with the horizontal, what 

is the initial velocity of recoil of the cannon if it is free to move in a hori¬ 

zontal direction? What is the kinetic energy of the projectile? of the can¬ 

non? What becomes of the vertical component of the momentum imparted 

to the cannon? 
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27. A horse pulls a horse car with a force of 300 lb. at an angle of 30° with 
the track. The car moves with a speed of 5 miles/hr. 

a. How much work is done by the horse in 10 min.? 
b. What is the power exerted by the horse? 
28. An automobile truck can run up a grade of 1 in 60 with a speed of 

8 miles/hr. If there is a friction force equal to the weight of the car, how 
fast does it run down the same hill, the horse power of the motor being the 
same? 

29. An automobile weighing 2,400 lb. rolls down a 4° grade (inclination 
with horizontal = 4°) at a constant speed of 30 miles/hr. What is the 
power output of the engine when it is climbing the same hill at the same 
speed? 

30. The force required to tow a barge at constant velocity is proportional 
to the velocity. If it takes 10 hp. to tow a certain barge at a speed of 2 
miles/hr., how many horse power would it take to tow it at a speed of 
6 miles/hr.? 

31. The forces acting on a body can be classified into two types: conserva¬ 
tive and dissipative. For the case of a body moving in a straight line, prove 
that the power of the dissipative forces is equal to the rate of decrease of 
total mechanical energy of the body. (Only the conservative forces give 
rise to a potential energy.) 



CHAPTER VII 

SPECIAL DYNAMICS OF A MASS POINT 

In this chapter we shall apply the principles and methods of 

point dynamics as we have developed them to certain problems 

of special interest. We shall learn how to make use of the 

various principles, sometimes utilizing more than one in a given 

problem. Many times it is possible to solve a given problem 
by several methods. In general, one method is simpler than 
the others and it is important that the student learn how to 

analyze a problem and to determine the method most appropriate 

for its solution. 
40. The Ballistic Pendulum.—Consider a mass Af, such as a 

block of wood, suspended by a string of length L to form a 

pendulum. If the linear dimensions of M are small compared to 
the length we have a simple pendulum (c/. Sec. 45). If this 

mass M is subjected to a horizontal blow (impulsive force), it 
will swing in the arc of a vertical circle, rising to a maximum 

height h above its equilibrium position and th(^ string will sweep 
out an angle 6. Either h or 6 may be used as a measure of the 
impulsive force. When a pendulum is employed in this manner, 

it is known as a ballistic pendulum. 

The case which we shall discuss is that in which the impulsive 
force is caused by shooting a bullet of mass m into the block of 

wood, and the problem before us is to derive a relation from 

which we may calculate the speed of the bullet before impact. 
Let us call the velocity of the bullet v (Fig. 25). We shall make 

the following assumptions: 
1. We have a simple pendulum, so that M may be treated as a 

mass point. 
2. The bullet is brought to rest inside the block of wood. 
3. The bullet is brought to rest in such a short time that the 

block M does not move appreciably during this time. 

4. The mass of the bullet is very small compared to the mass 

M. 
104 
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These conditions may be easily obtained in an actual experi¬ 
ment. By virtue of assumption 3, we may divide our problem 
into two parts: 

a. The stopping of the bullet by the block, during which the 
only forces acting in a horizontal plane are the push of the bullet 
on the block and the push of the block on the bullet. During this 
process we have conservation of momentum for the system bullet 
and block. 

b. The subsequent swinging of the block to the position P. 

This is a conservative motion, so that we may apply the principle 
of conservation of energy to this part of the motion. 

Fig. 26. 

Since the block has no momentum before the impact, the total 
momentum of block and bullet before impact is 

mv 

If the block and bullet acquire a velocity V due to the impact, the 
total momentum after impact is 

(M + m)V 

and, since these are equal, we have 

mv = {M + m)V ^ (1) 

Now, since m << Jkf, we may write instead of Eq. (1) 

V 
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In the second part of the motion we have the block and bullet 
with an initial velocity V brought to rest at a height h above their 
initial position. The loss of kinetic energy must equal the gain 
of potential energy, so that 

^ UM + m)F* = (M + m)gh ' (2) 

where g is the acceleration of a freely falling body. Inserting the 
value of V from Eq. (2) into Eq. (la), we find that 

M _ 

Since h is usually very small compared to L, it is inadvisable to 
try to measure it directly; much more accurate results can be 
obtained by measuring the angle 6, From Fig. 25 we see that 

OM ^ L 

OQ = L cos 0 

so that 

QM = h = L(1 — cos d) = 2L sin^ | 

Substituting this value of h into Eq. (3), there follows that 

2M . e 

as our final result. All the quantities of the right-hand side of the 
equation are easily measurable, so that our problem is solved. 
If the angle 6 is small enough so that 6/2 < < 1, we may replace 
the sin 6/2 by 6/2 in radians and Eq. (3a) simplifies to 

41. Collisions: Coefficient of Restitution.—^Let us first examine 
the problem of a body initially moving perpendicular to a fixed 
surface and then colliding with it. During the collision the 
moving body is brought to rest relative to the surface by a force 
whose impulse equals the change of momentum of the body, f.e., 
equal to the initial momentum of the body. Due to the com¬ 
pression of the fixed surface, it exerts this force even after the 
body has come to rest and thus accelerates the body in the 
direction opposite to its original motion. The impulse of this 
force, called the impulse of restitution, is equal to the momentum 
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gained by the body and thus equals its momentum as it leaves the 
surface. The ratio of the impulse of restitution to the impulse 
of the stopping force depends, as is found experimentally, only 
on the nature of the materials of which the colliding body and 
surface are composed and not on the momenta before and after 
collision. This constant ratio is measured by the coefiicient of 
restitution which is defined by 

Un 
= e (4) 

where Un is the velocity of the body just before collision and Vn its 
velocity after collision. This ratio is of course equal to the ratio 
of final to initial momentum and also to the ratio of the impulse of 
restitution to impulse of the stopping force. The negative sign is 
introduced since Un and Vn are always of opposite signs and thus e 
is a positive number. The subscripts n are introduced to 
indicate that the velocities are normal to the surface. In this 
form the above definition of e is valid for collision at an angle 
with the surface, if Un and Vn denote normal components of 
velocity. 

The coefficient of restitution e may have any value between 
0 and unity. In symbols 0 ^ ^ ^ 1. The limiting case c = 1 is 
called an elastic collision and in this case the speed of the colliding 
body is unaffected by the collision. Hence the kinetic energy 
of the body is unchanged by an elastic collision. The other 
limiting case e = 0 is called a 'perfectly inelastic collision and in 
this case the body loses all its kinetic energy, since is zero. 

Let us consider the case of a body initially at rest dropped from 
a height h above a fixed horizontal surface. If the coefficient of 
restitution is e, the loss of kinetic energy upon collision is 

m 
f (wS - vl) = 

mu: 
-"(1 - e^) 

If the body rebounds to a height h\ then the loss of potential 
energy in one bounce is mg{h — h'). Since this must be equal 
to the loss of kinetic energy during impact, we have 

A - A' = ^(1 - e^) 
2g 

and, since the velocity just before collision is given by m* = 2gh, 
we have 
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h- h' ^ h{l - e2) 
or 

A' == e% (5) 

For a perfectly elastic impact, h = 7i'; and for a perfectly inelastic 
impact, A' = 0; i.e.y the body does not rebound at all. 

Now let us consider the case where the impinging body strikes 
the surface at an angle 6 with the normal to the surface and 
rebounds at an angle </> with this normal. We suppose further 
that the surface is perfectly smooth, f.e., ytt = 0. 

Since there is no friction, there is no component of force acting 
parallel to the surface, and hence the momentum parallel to the 
surface is unchanged by the collision. Thus, 

mu sin 6 — mv sin 

The normal component oi urn Un — u cos B and the magnitude of 
the normal component of v is Vn — v cos (t> = eun = eu cos 0, if 
the coefficient of restitution is e. Thus we have 

sin ^ = 2; sin 0 
eu cos 6 = V cos <p 

If we now divide one equation by the other, we find 

tan 0 = e tan 0 (6) 

In words: 1{ e — 1 (elastic impact), the angle of incidence B equals 
the angle of reflection 0, Just as in the case of optics. If e = 0, 
tan 0 = C30 and 0 = 90°, so that upon completely inelastic 
impact the body just slides along the surface after collision. 
For other values of e, we see that 0 > ^, ^^e., the rebound always 
makes a larger angle with the normal than the impact. 

We shall now examine the laws of collision between two bodies 
initially moving with constant velocities along the same straight 
line, as, for example, two billiard balls moving in the same 
straight groove. The impact takes place normal to the surface 
of each ball. Let Ui and be the velocities of the balls before 
impact and vi and their velocities after impact. Relative to 
ball 2, ball 1 has the (relative) velocity Ui — u^ before collision 
and vi — V2 after collision, so that the coefficient of restitution is 
now defined by 

Vl — V2 
e = 

U\ — 162 
(7) 
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If ball 2 were to be held fixed, we see that this agrees with 
our former definition. Since no forces act upon the bodies 
except during the time of collision we must have conservation of 
momentum, i.e., 

mi Ui + m2 W2 = mi Vi + m2 V2 (8) 

As a special case, we consider the impact of two balls of equal 
mass. We thus have the two equations 

Ui + U2 ^ Vi + V2 ) 
and \ (9) 

eui — eu2 = — + V2) 

If we add the two equations and then subtract one from the 
other, we find for and V2‘. 

vx = ~{1 - e) + ^(1 + e) = ^(m, + M2) - |(M) - M2) 

+ e) + “(1 - e) = 2(mi + M2) + -|(mi - M2) 

In the case of an elastic collision, 6 == 1, and Eqs. (10) become 

Vi = U2; V2 = Ui (11) 

so that the bodies exchange velocities. 
We now proceed to calculate the change of kinetic energy dur¬ 

ing impact. Before the collision, we have 

(A.A.). = 2(«i + «|) = ^1^-2- +-2-j 

and, after the collision, 

rzrr<\ ^^21 2\ wfCMi + M.)" . 6", 
(a:.a.)2 = = 2 2 ~ 

If we now form the difference, it follows that 

{K.E.)x - {K.E.)2 = f (1 - e2)(Mi - M2)^ (12) 

which is always positive, since < 1. In the limiting case of an 
elastic collision {K,E.)i == (X.J5.)2, so that energy is conserved 
in this special case. In all other cases there is a loss of kinetic 
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energy during the collision, and this loss is greatest for perfectly 
inelastic collisions (e == 0), in which case 

iK.E.)i - iK.E.)2 = |(mi - Ma)* (13) 

42. Periodic Motion; Kinematics of Simple Harmonic Motion. 
By periodic motion of a particle is meant a motion in which all 
aspects of the motion, viz., position, velocity, and acceleration 
are repeated at equal intervals of time. The interval of time 
between successive recurrences of the same position and velocity 
of the body is called the period of the motion. Periodic motions 
are always confined to restricted regions of space. If the body 
moves back and forth on a portion of a straight line or of a curve, 
one calls the motion vibratory. As examples of vibratory motion 
we have the motion of tuning forks, musical instruments, or 
vibration of springs or of bodies in general. If the body moves 
in a closed curve we talk of rotatory motions, such as the motion 
of the earth about its axis, its motion around the sun, or the 
motion of the planets. 

In this section we shall examine in detail the kinematics of a 
special, important type of straight-line periodic motion known 
as simple harmonic motion. If we wish to describe a straight- 
line periodic motion analytically, we must write an equation 
giving the coordinate of the particle as a function of the time. 
Inunctions which describe periodic motion are known as periodic 
functions. One of the simplest atid by far the most important 
of these functions is the sine or cosine of an angle. If we imagine 
the angle starting with the value zero and increasing continuously, 
both the sine and cosine change until the angle becomes equal 
to 2-7r radians or 360°, and then they return to their initial values. 
Further increase in the angle repeats the values already obtained. 
Thus we can say that a sine or cosine function of an angle is 
periodic with an angular period of 2x radians. 

Simple harmonic motion is defined as motion of a particle 
in which the position of the particle is proportional to the 
sine or cosine of an angle and the angle increases uniformly with 
the time. If we call x the coordinate of the particle, we should 
write an expression such as a: = A cos ^ and ^ = aj(^ — <o), where 
A and w are proportionality constants and U is the initial value 
of the time L Combining these two expressions, we hav.e 

X ^ A cos — <o)] (14) 
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Equation (14) may be looked upon as the kinematical definition of 
simple harmonic motion. Let us examine the details of such a 
motion. Since the maximum value of the cosine of an angle is 
+ 1 and its minimum value —1, the largest and smallest values 
of X attained in this motion are -{-A and —Ay respectively. 
Thus the motion is confined to the portions of the x-axis which 
lie between these limits. A is called the amplitude of the motion, 
and the angle — to) is called the phase of the motion. This 
angle is, of course, to be expressed in radian measure. As t 
increases, the phase increases, and the cosine of the angle reaches 
the value +1, then decreases to the value —1, then again 
increases to the value +1, and repeats this behavior indefinitely. 
Thus the particle oscillates back and forth along the straight 
line, reaching a maximum displacement from the origin (x = 0) 
equal to A. 

From the definition of the period of a periodic motion, it is 
the time required for the particle to move from x = +A to 
X = — A and then back again to +A, ix,, the time for one 
complete vibration. During this time 7", the phase of the motion 
increases by 27r radians. Expressing this as an equation, we have 

0){t — ^o) 4" 27r = (j){t + T — ^o) 
so that 

The number of complete vibrations per unit time is called the 
frequency of the motion. Denoting this by n, we have from the 
definitions of period and frequency 

n = j (16) 

Inserting this into Eq. (15), we find 

0) = 2x71 (17) 

Thus the constant co is 27r times the frequency and is often called 
the angular frequency. 

With the help of Eqs. (15), (16), and (17) we may rewrite 
Eq. (14) in the equivalent forms 

X == A cos [27rn(/ — ^o)] = A cos “ ^o) j (18) 
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Figure 26 is a graph of Eq. (14) or (18) with to set equal 
to zero. The curve shown is typical of those obtained for 
any arbitrary value of U. Thus, for example, if we chose 
^0 = TIA — l/4n, we can write Eq. (18) in the form 

X — A cos ^wnt — A sin 27rnt 

The graph of this equation is identical with that of Fig. 26, if 
we place the origin of t at O' instead of at 0. Similarly, different 
values of correspond to different origins but to identical 
curves. Furthermore, the example above shows the complete 

equivalence of cosine and sine functions in describing simple 
harmonic motion. 

From Eq. (14) we obtain an equation for the velocity of 
the particle by differentiating with respect to the time 

i; = ^ = —qoA sin [(a{t — ^o)] (19) 

and differentiating again we obtain for the acceleration 

dv 
a = ^ = —co^A cos [co(^ — to)] = == —Air^n^x (20) 

Equation (19) shows that the velocity has a phase different from 
that of the displacement by Tr/2 radians or 90®. Thus, when the 
particle is at the end points of its path {x = ±4), the velocity 
is zero, and the velocity is biggest when x = 0. The acceleration 
of the particle is proportional to its displacement and opposite 
in direction, t.e., out of. phase by t radians or 180®. 
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42a. Initial Conditions for Simple Harmonic Motion.—The general 

equation for simple harmonic motion contains two arbitrary constants, the 

amplitude A and the initial time to. According to our general theory these 

are to be determined from initial conditions, i.e., from the values of x and 

V Sit t =0. To simplify the notation, we rewrite Eq. (14) in the form 

X = A cos {u)t — 5) 

where 5 = 2im<o. — S is called the initial phase of the motion. In this 

notation the velocity at any time is given by [see P]q. (19)] 

V = —(aA sin (o>t — 5) 

In the first of these equations we place x — xq and i — 0, and in the second 

we place v — Vo and ^ = 0. In this manner we obtain 

Xo — A cos 5 (21) 

Vo = wA sin 5 (22) 

where we have made use of the fact that cos ( — 5) = cos 6 and sin (~6) — 

—sin 6. 
Solving these equations for A and 5, we find easily 

from which A and 6 may be readily found if xo and Vo are known. 

To illustrate the use of these equations, let us suppose we have a body 

initially displaced a distance Xo from the origin and at rest. We have the 

initial conditions Xo 5*^ 0, vq = 0. Inserting vo = 0 into Eqs. (23), there 

follow 

A — Xo 
tan 5—0; 5=0 

Thus the equation of motion becomes 

X = A cos 2Trnt = Xo cos 2irn< 

for these initial conditions. 

If, on the other hand, we choose ^ = 0 at the instant of time when the 

body passes through the origin, we have at t = 0, vo 0, xo = 0. Inserting 

the latter value of xo in Eqs. (23), we find 

A 
(O 

tan 5 = 00; ^ ~ § 

so that for these initial conditions the equation of motion becomes 

a; — cos f sin 2irWf 
w \ 2/ 2im 
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43. D3mamics of Simple Harmonic Motion; Hooke’s Law.— 
We now turn to the question of the nature of the force which 
must act on a particle to produce simple harmonic motion. From 
Eq. (20) we have seen that the acceleration of a particle moving in 
simple harmonic motion is proportional to its displacement and 
directed opposite to it, i.e.^ toward the origin a: — 0. Thus from 
Newton’s second law we conclude that a particle will perform 
simple harmonic motion along a straight line if acted on by a 
force which pulls it toward a fixed point on the line (the origin) 
and which has a magnitude proportional to the displacement of 
the particle from the origin. 

Analytically this force is represented by 

F == ~kx (24) 

and is called a linear restoring force; linear because it varies with 
the first power of x and restoring because it always tends to 
restore the particle to the position x = 0, which is an equilibrium 
position. The negative sign insures the latter behavior since, 
when the particle is to the right of the origin, x is positive and the 
force is negative, indicating that it acts to the left. Similarly, 
when the particle is to the left of the origin, x is negative and 
the force positive, i.e., acting to the right, fc is a positive 
constant which depends on the nature of the body exerting this 
force. 

If a helical spring is stretched or compressed from its normal 
length, it is found experimentally that the force F' necessary 
to hold a stretched or compressed spring in equilibrium is pro¬ 
portional to the increased or decreased length of the spring. 
Thus, 

F' = kx 

where x is the change in length of the spring from its normal 
length, and the proportionality factor k is called the stiffness 
coefficient of the spring. From the third law of motion it follows 
that the spring exerts an equal and opposite force —kx on the 
agent which holds the spring in equilibrium, and this is just the 
linear restoring force defined in Eq. (24). If a body of mass m is 
hung on such a spring, it will assume a certain equilibrium 
position. We shall call the length of the spring its normal length 
when this equilibrium condition is maintained. Now, if the 
spring is furtW stretched or compressed, and suddenly released, 
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the mass m will be acted on by a resultant force given by Eq. (24) 
and will perform simple harmonic motion under the action of this 
force. 

PJquation (24) is known as Hookers law for one-dimensional 
motion. It is true in general that if any body or system of 
bodies is displaced slightly from a position of stable equilibrium, 
the restoring force very nearly follows Hooke’s law and the 
smaller the displacement the more nearly this law is obeyed. 
We shall meet this law again when we discuss the mechanics of 
deformable bodies. 

If we write Newton’s second law of motion for a body acted 
on by a linear restoring force —kx and utilize Eq. (20) for the 
acceleration of the body as it performs simple harmonic motion, 
there follows: 

F = —kx — ma = — 
and hence 

The frequency n is given by 

and the period T by 

T = 2^^ (256) 

so that the frequency and period of the motion depend only on 
the stiffness coefficient k and the mass m of the vibrating body 
and not on the amplitude of the motion. 

Using Eq. (25) we can now rewrite the purely kinematical 
equations (14) and (18) in the form 

x = A cos - <o)j (26) 

and thus have a complete solution of the dynamical problem. 
To summarize, if a particle of mass m is acted on by a linear 
restoring force of stiffness coefficient fc, it will perform simple 
harmonic motion with a frequency determined by the values of 
k and m. The amplitude and initial phase of the motion are 
determined by the initial conditions (xo and Vo). 

Let us apply the energy considerations of Chap. VI to the 
above motion. We have shown there that a linear restoring 
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force is conservative, and hence we have a potential energy of 
the particle 

V = dx = j^x dx = ^ (27) 

if we call the potential energy zero when x = 0. 
The law of conservation of mechanical energy requires that 

the total energy be constant, z.e.. 

mv^ kx^ _ 
(28) 

where E is the total energy of the motion. Let us see if this 
checks. Using Eqs. (19) and (14) for v and x, respectively, 
we have 

~A^ sin2 [a,(^ - ^o)] 

and 

^ cos* [w(< - <„)] 

From Eq. (25) we can express w in terms of k and m and find 
readily that = k/m. Using this relation, the law of conserva¬ 
tion of energy becomes 

^2/ 

2 - to)]) - F 

and this is constant as predicted. The maximum value of the 
potential energy is kA‘^12^ and since this occurs when the velocity 
and hence the kinetic energy vanish (the turning points of the 
motion), it equals the total energy. 

Equation (28) may thus be written in the form 

mv'^ /cx2 ^ kA 2 
T" "2 T 

or solving for v 

(29) 

V = * a/-42 — x2 (29a) 

which is a convenient form for many applications. 
44. Forced Harmonic Motion; Resonance.—The simple har¬ 

monic motion discussed in the preceding sections constitutes 
a motion with constant total energy which would continue 
indefinitely in the absence of forces other than the linear restoring 
force acting on the body; Thus, if a mass hanging in equilibrium 



SPECIAL DYNAMICS OF A MASS POINT 117 

on a coiled spring is displaced from its equilibrium position and 
suddenly released, it will oscillate forever with an energy just 
equal to the work done on it in displacing it from equilibrium. In 
all practical cases, however, there will be friction forces acting 
(they may be made exceedingly small), so that the motion will 
gradually become of smaller and smaller amplitude and eventu¬ 
ally the body will come to rest. The initial energy of the vibrat¬ 
ing body will disappear from the system and reappear as heat. 
The vibrations of a body when acted on only by restoring forces 
(and friction) are called the/ree vibrations of the body. 

It is possible to produce and maintain simple harmonic 
motion by applying an additional external force to the particle, 
provided this force varies sinusoidally with the time. Such a 
motion is called a forced vibration. The actual motion of the 
body will consist of a superposition of two motions: (1) a free 
vibration entirely similar to the motion performed in the absence 
of an external force. If even a small amount of friction is present, 
this motion will eventually die out and hence is called a transient 
motion. (2) There will be a motion of the body with a frequency 
equal to that of the external force, and this motion will persist 
as long as the external force acts. This second type of motion is 
called the steady-state motion of the particle. 

Let us investigate this second type of motion in more detail, 
and for simplicity we shall neglect the effects of friction. We 
then have a particle acted on by two forces, a linear restoring 
force —kx and an external force Fq cos o)t where co is the angular 
frequency of this force. Newton^s second law applied to this 
problem yields 

F = —kx-\-Fo cos (j)t = 
dt 

This can be rewritten in the more convenient form (using 
V = dx/dt) 

d^x 
+ kx = Fo cos o)t (30) 

Since we are interested only in the steady-state forced motion 
which occurs with the same frequency as that of the external 
force, let us try to find a solution of this equation of the form 

X == C cos Oit (31) 

and to determine C from Eq. (30). This is to be looked upon as 
a trial, and we must be prepared to reject it if it does not work, 
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t.e., if C does not turn out to be a constant, independent of t. 
DiiBferentiating Eq. (31), we find dx/dt = — wC sin and, 
differentiating again, we have 

cos o}t 
aV 

Now substituting back in Eq. (30), there follows 

— cos cot + kC cos cot = Fq cos cot 

and since the factor cos cot cancels out of the equation, our 
scheme works. Solving for C, we have 

r = == Fp/m 
k 2 coj — 0)2 
m 

if we set kjm — ojq, coo being 27r times the natural frequency 
of the body in the absence of an external force. We now obtain 
the final result by substituting this value of C in Eq. (31) and 
have 

* ■ md- „•) ““ 

This is the equation of forced simple harmonic motion in the 
absence of friction. The amplitude of the motion is proportional 
to the amplitude of the driving force and depends in a remarkable 
way on the frequency of the driving force. We note that if the 
frequency co of the driving force becomes nearly equal to the natu¬ 
ral frequency cop, the amplitude becomes very large since the 
denominator becomes very small. Indeed if co = coo, our equa¬ 
tion predicts an infinite amplitude. This cannot occur in 
practice, and, just for this case, friction (which we have entirely 
neglected) becomes important no matter how small the friction 
forces are. At any rate, the amplitude becomes very large when 
CO is almost equal to coo, and the abnormally large motion which 
occurs under these conditions is known as the phenomenon of 
resonance. 

There are many familiar examples of resonance. When 
driving an automobile one often notices that at a certain speed 
parts of the body may be set into vibration but that this does 
not occur appreciably at other speeds. In this case the motor 
supplies the driving force which has a frequency proportional 
to its speed. In acoustics, one tuning fork will set another 
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into so-called sympathetic’^ vibration if the latter has the same 
frequency (pitch) as the first but not otherwise. In electrical 
circuits one has a common example of resonance in the fact that 
the circuits can be tuned to a definite frequency and respond 
appreciably only to waves of this frequency. 

To get a better picture of resonance, Fig. 27 shows a plot 
of the magnitude of the amplitude Fo/lm(wl — a?^)] against the 

angular frequency co ot the applied force. This shows how 
the amplitude of the motion changes as a> changes and that in the 
neighborhood of coo it becomes so large that we can say that 
the body responds appreciably to an external force only if the fre¬ 
quency of the external force is equal to the natural frequency 
of the body. 

Equation (32) shows us that, if w < wo, the motion is in phase 
with the exciting force and that, if w > coo, it is 180° out of phase. 
In both cases the power delivered to the vibrating body is zero 
on the average and one can readily show that for half a period the 
external force does work on the body and that for the other half 
the body does an equal amount of work on the source erf the force. 
This is no longer true when friction is present, as the external 
force must on the average do an amount of work per unit time just 
equal to the rate of dissipation of mechanical energy by friction. 

46, The Simple Pendulum.—A simple pendulum is a mass 
point suspended by a string (or by any body whose mass can be 
neglected compared to the mass of the mass point) from a fixed 
point and free to swing in a vertical plane. If the pendulum 
swings through an angle so small that the motion of the mass 
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point takes place almost in a straight line, it performs simple 
harmonic motion. Even if the angle is large, we have periodic 

0 

Fig. 28. 

(not simple harmonic) motion and can obtain 
an insight into the question of the value of 
the period by considering the various quanti¬ 
ties on which the period can depend. The 
period T may depend on the mass m of the 
body, on the pull of the earth, f.e., on g, on 
the length of the string Z, and on the maxi¬ 
mum angle 0 through which the pendulum 
swings (Fig. 28). 

The equation expressing T as a function of 
these quantities must, like every physical equation, have the 
same dimensions on each side of the equation. 

The dimensions of T are those of time. Thus 

[T] = t 

[1] = I 

[g] = it-^ 
[m] = m 

and the angle 0 is dimensionless as it is measured by the ratio of 
two lengths. 

We immediately see that the period cannot depend 
on the mass of the body and must depend on the 
other quantities in the form 

- w 
Therefore we can write 

T = /(e)^ (33) 

and thus the only question remaining is to find/(0) 
which may or may not depend on 0. 

For the case of small angles B we proceed as 
follows: The forces acting on the mass are the pull of 
the earth mg and the tension in the rope T (Fig. 29). Since there 
is no motion in the direction of the string, we need only consider 
the components of the forces perpendicular to it. Perpendicular 
to the string, the force is 

F = - mg mi B — ma 
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so that 

a = —g sin $ 

Now, for small angles 6^ we can take the direction perpendicular 
to the string as horizontal and write approximately 

a — ax — —g sin S 
but 

so that 

• A ^ sin ^ j 

g 
ax — ^ X 

If we replace g/l in this equation by k/m it becomes the equa¬ 
tion for simple harmonic motion. Thus it follows from Eq. (25) 
that 

whence 

which is the same as Eq. (33), with /(0) = 2t and hence inde¬ 
pendent of 0. For larger amplitudes, /(0) does depend on 0. 

46. Lissajous Figures.—When a particle moves in a plane 
under the action of two mutually perpendicular linear restoring 
forces, the paths described are known as Lissajous figures. Both 
the X- and z/-coordinates of the particle perform simple harmonic 
motion. Without loss of generality we may take 5 = 0 for the 
x-component of the motion. This choice merely fixes the instant 
of time which we call t = 0. For the ^/-component of the 
motion, however, we must retain the term 5, since the y-com- 
ponent of the displacement of the particle is arbitrary at the 
time which we have chosen as < = 0. We thus write as the 
equations of motion 

X = A cos 2irni< 
y — B cos (2x712^ — d) 

We shall restrict ourselves to an analysis of several special cases 
of these equations. 

Example 1.—^Let us consider more closely the case of equal frequencies 
m ^ n. The simplest case occurs when 5 *» 0. 
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(a) 5 = 0: 
X A cos 2fmil 
y — B cos 2irnn 

(35o) 

so that the orbit is obtained by simply dividing the second equation by the 
first. This yields 

which is the equation of a straight line making an angle tan”' B/A with the 
positive a:-axis and passing through the origin. 

^ X = A cos 2imt 

^2* y — B cos ^2xni T B sin 2imf 

We can rewrite these equations as 

^ = cos 2Tmt 
A 

V • 
-f- ~jg = sm 2fr7it 

Squaring and adding, we obtain the equation 

JiL 4-A. = 1 
A^^ B^ 

which represents an ellipse with semimajor and semiminor axes A and B 
directed along the x- and y-^xes. In the particular case of equal amplitudes 

A = 5, we get 

x* 4- t/2 = A* 

which represents a circle of radius A, 

In general for wi = 712, the path is an ellipse but the major axis does not 

coincide with the x- or ^/-axes except for S = ±7r/2. This ellipse is always 

contained within a rectangle of width 2A and height 2B as we see easily 

from Eq. (35). The limits ±A and ±B are known as the Vibration limits 

of the motion. 

Example 2.—Here we consider W2 = 2ni\ 6 = T7r/2; A — B. The 
equations of motion are 

whence 

but- 

X ~ A cos 27rni< 

y — ±A sin Airnit — ±2A cos 2Trnil sin 2Tnit 

y — ±2x sin 2Trnit 

sin 2Tmit = II-—- (see Fig. 30) 

so that 
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For y — 0, X has the values 

X * 0, X » ±il 

For 2/ = ±Af X has the values 

X = ±~ = ±0.7074 
V2 

Other points on the curve may be easily calculated. The path is shown 

in Fig. 31. 

Thus we see that the path is split into two parts but closes on itself. In 

general, if the ratio of 712 to ni can be expressed as the ratio of two whole 

numbers, the path is closed. If not, it never closes on itself. The larger the 

two numbers whose ratio represents W2/W1, the larger the number of points 
where the path crosses itself. 

47. Effect of the Earth’s Rotation on the Value of g,—We have tacitly 

assumed that we have referred all motions to a system of reference which is 

at rest, an absolute system of coordinates. In practice, we refer our motions 

in most cases to a system of reference attached to the earth. The earth 

possesses a rotation about its axis, and hence a system of coordinates 

attached to the earth is an accelerated system of coordinates. We must 

inquire how Newton’s laws (which refer to an absolute system fixed in space) 

are modified when one refers motions to accelerated systems. First let us 

consider a frame of reference moving with a constant velocity Wo in the x- 

direction with respect to the absolute fixed system. If v represents the 

velocity of a particle with respect to the absolute system and v' the velocity 

of the particle with respect to the moving reference system, we then have 

t; = »' + Wo 

and for the accelerations (wo = constant), 

dv _ dv* 
dt~ it 

so that the acceleration has the same value in both systems and the systems 
are dynamically equivalent. 
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Suppose the second system has an acceleration ao in the direction of the 

a;-axis with respect to the fixed system. Let a* be the acceleration of a 

body with respect to the fixed system and a' that referred to the accelerated 

system. By the second law 

Fx = max 

where Fx is the component of force acting in the a;-direction on m. The 

acceleration a* may be thought of as compounded of the acceleration of the 

system ao and the acceleration of the particle referred to the moving system, 

o'. Since these accelerations are all in the same direction, 

so that 

which may be written 

Ox — o' + Oo 

Fx — nuij. 4- wioo 

Fx — woo = r«o' (36) 

which shows that the motion is the same as if the system of reference were at resty 
providing we imagine the force Fx diminished by an amount mao. 

We now apply this result to motions referred to axes fixed to the earth^s 

surface and which consequently partake of the earth^s rotation and conse¬ 

quent acceleration. In Fig. 32, let OO be 

the earth^s axis, C the center, and P any 

point on the earth^s surface at a latitude 9. 
The point P describes a circle of radius 

PQ =: R cos 0 and has an acceleration 

towards Q equal to 

..2 

— co^R COS 0 
R cos 0 

if w is the constant angular velocity of the 

earth on its axis. The motion of a point 
referred to P may he now calculated if in 
applying Newton^s second law wc subtract 
from the component of force along PQ an 
amount mta^R cos 0. 

Combining this last force with the actual earth pull at P, we get the 

apparent (to us) pull of gravity, which we mean when we speak of the weight 

of a body. To find the apparent weight of a body at P, we must add the 

pull of the earth mgo to the force —mo>^R cos 0 vectorially. mgo acts along 

PC, which we call the x-axis, the 2/-axi8 being perpendicular thereto. 

x-component of —mo>^R cos 0 = —mw^R cos^ e 
^/-component of —mo)^R cos 9 = —muI^R cos 0 sin 0 

x-component of mgo = 4-m<7o 

Thus the components of the resultant are 

Px 

Fy 
tnigo — ta^R cos® d) 

—moj^R sin 0 cos 9 
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Squaring and adding, and denoting the resultant by mg as always, 

= m'^{g\ — 2a>*JK^o cos* B + cos* B) 

so that 

ff* = 

/ 
» = 1- 

\ ^0 

- COS* B H-^ cos* B 
Qo gl 

COS* B -f 

ffl 

) 

Taking the diameter of the earth as D = 7,930 miles, and go as 32.3 ft./sec.* 

(the acceleration at the north pole), we find that 

com 1 

9o 290 
very nearly 

so that the last term in the parentheses may be neglected, and we have 

finally 

- ^0^1 go 
cos* B 

Thus the apparent weight of a body at a latitude of 45° is less than the true 

weight by 2l?r(l\/2)^ == e Jo weight. 
The resultant force does not act along the line PC. It acts at angle 4^ with 

this line given by 

tan 4^ = 
com cos B sin B ^ com cos B sin B 
go — com cos* 6 go 290 

sm B cos 9 

giving the deviation of the plumb line from the earthradius at the point P. 
The foregoing calculations are based on the assumption of a perfectly spheri¬ 

cal earth. The actual shape of the earth is not a true sphere so that our 

formulas must be modified. Actually the dependence on B (latitude) is 

correct. The factor must be replaced by xiTJ- 
In the future we shall, as before, neglect the effects due to the rotation of 

the earth, since the error is small and we can now correct for it if necessary. 

Problems 

1. A 4-kg. block hangs from a string 2 meters long. If a bullet of mass 

2.0 grams moving horizontally with a velocity of 400 meters/sec. strikes and 

remains imbedded in this block, find: 

a. The velocity of the block after collision. 

h. The kinetic energy gained by the block during the collision. 

c. The loss of kinetic energy during collision. 

d. The height the block rises above its initial position. 

e. The angle through which the string swings. 

2. Prove that, if a ballistic pendulum struck by a bullet moves through a 

horizontal distance d (the angle <1), the velocity of the bullet is given 
very nearly by 

V 

where the symbols have the same meaning as in the text. 
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3. A bullet weighing 0.01 lb. is shot through a 2-lb. wooden block 

suspended on a string 5 ft. long. The pendulum is observed to swing 

through an angle of 5°. Find the speed of the bullet as it emerges from 

the block, if its initial speed is 1,000 ft./sec. 

4. A bullet weighing i oz. and moving at a speed of 800 ft./sec. strikes 

and remains imbedded in a block weighing 50 lb. which was initially at rest. 

What is the velocity of the block directly after the impact? 

5. A bullet weighing 0.1 lb. and moving with a speed of 840 ft./sec. 

strikes and remains imbedded in a block weighing 2 lb. which was initially 

at rest on a plane inclined at an angle of 6° with the horizoxital. If the 

coefficient of friction between block and plane is 0.4 how far up the plane 

will the block slide before coming to rest? 

6. A 10-gram bullet moving with a velocity of 100 meters/sec. strikes a 

block of wood resting on a horizontal surface and penetrates 10 cm. (Assume 

the force acting on the bullet while it is being brought to rest is constant.) 

The block of wood weighs 10 kg. and the coefficient of sliding friction 

between the block and the horizontal surface on which it rests is 0.80. 

What is the maximum velocity of the wooden block? 

7. A ball weighing W lb. is hung at the end of a rope and pulled aside 

until the rope makes an angle </> with the vertical and then released. Find 

an expression for the tension in the rope when it makes an angle 0 with the 

vertical. For what value of 6 will T be a maximum? for what value a 

minimum? 

8. A 500-gram block rests on a horizontal table, the coefficient of friction 

between block and table being 1. A 2-gram bullet traveling horizontally 

with a velocity of 300 meters/sec. hits the block and goes through it. The 

block is observed to move 10 cm. before coming to rest. Calculate the 

velocity of the bullet as it emerges from the block. 

9. A 4-lb. block hangs on the end of a string 4 ft. long. It is hit a 

horizontal blow which imparts a velocity of 14 ft./sec. to the block. 

a. What is the impulse of the blow? 

6. What is the maximum height to which the block rises? 

c. What is the tension in the string when it makes an angle of 60° with 

the vertical? 

10. A 600-grara block of wood rests on a smooth horizontal table. A 

bullet of mass 2 grams moving horizontally with a speed of 300 meters/sec. 

strikes and remains embedded in the block. After moving a distance of 

1 meter, the block is brought to rest by a horizontal spring bumper of 

stiffness coefficient 10® dynes/cm. 

o. Calculate the maximum velocity attained by the block. 

b. What fraction of the original kinetic energy of the bullet remains as 

kinetic energy after the bullet comes to rest in the block? 

c. How far is the spring compressed in bringing the block to rest? 

11. A 10-gram ball is dropped from a height of 25 cm. on a fixed horizontal 

surface and rebounds to a height of 9 cm. 

а. What is the coefficient of restitution? 

б. What is the change of momentum of the ball during the collision? 
c. What is the change of kinetic energy upon collision? 
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12. A body impinges with a velocity u at an angle ^ on a perfectly smooth 

surface. Prove that it loses an amount of kinetic energy equal to 

— e*) cos* 6 

where e is the coefficient of restitution. 

13. A body strikes a smooth horizontal surface at an angle of 30° with 

the normal and rebounds at an angle of 60° with the normal. On the 

rebound it rises to a maximum height of 1 ft. 

а. Find the coefficient of restitution. 

б. Find the velocity with which the body hit. 

c. How far from the original point of contact does the body hit the second 

time? 

14. In Prob. 13 find how high the body rises on its second rebound. 

15. A body impinges with a velocity it on a surface of coefficient of friction 

ft at an angle d and rebounds with a velocity v at an angle <t>. (Both angles 

measured with respect to the normal.) Prove that 

e tan <t> — tan 0 — (1 + e)ti 

where e is the coefficient of restitution. 

16. A ball weighing 100 grams and moving with a speed of 40 cm./sec. 

impinges directly on another weighing 50 grams and moving in the opposite 

direction with a speed of 20 cm./sec. If the coefficient of restitution is 0.5, 

what are the velocities after impact? 

17. A 3-lb. block rests at the foot of an inclined plane 30 ft. long and 18 ft. 

high. The coefficient of sliding friction between block and plane is 0.50 

and the coefficient of static friction is 0.80. A rope 32 ft. long passes4rom 

the 3-lb. weight up the plane and over a small pulley and a 5-lb. weight hangs 

freely at the end of the rope. The system starts from rest. When the 5-lb. 

weight reaches the horizontal, it is suddenly brought to rest. Where does 

the 3-lb. weight come to rest? Will it remain there? 

18. A particle moves in simple harmonic motion with an amplitude of 

10 cm. and a frequency of 4 per second. 

o. Make plots of divsplacement, velocity, and acceleration vs. time. 

Plot these one over the other. 

h. WHiat is the maximum velocity of the particle? Where does it occur? 

c. Where is the force pulling the particle greatest? What is the accelera¬ 

tion at this point? 

d. What are the velocity and acceleration when the displacement is -f5 cm. ? 

19. A 5-kg. body hung on a spring displaces it 20 cm. It is removed and 

then 100 grams is hung on the same spring; the spring stretched and released. 

a. Find the stiffness coefficient of the spring. 

h. Find the period of the motion. 

20. A mass of 2 kg. hangs from a spiral spring. A 200-gram body 

hung below the mass stretches the spring 2 cm. farther. The 200-gram 

body is then removed and the mass set into oscillation. Find the period. 

21. A block rests on a horizontal surface which is executing simple 

harmonic motion in a horizontal plane at a rate of two oscillations per second. 

If the coefficient of static friction between the block and the plane is 0.50, 
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how large can the amplitude be without the block slipping with respect to 

the surface? 

22. The tip of one of the prongs of a tuning fork performs simple harmonic 

motion with a frequency of 256 vibrations per second and an amplitude of 

0.1 cm. 

a. What is the maximum speed attained by the tip of the prong? 

6. What is the maximum acceleration attained by the tip of the prong? 

c. What is the acceleration when the displacement is 0.05 cm.? 

23. A particle of mass 1 gram oscillates in simple harmonic motion with a 

frequency of 10 vibrations per second and an amplitude of 10 cm. 

o. Calculate its speed when it is 6 cm. from its equilibrium position. 

b. What is the force in dynes acting on it at this point? 

24. The piston of an automobile moves with simple harmonic motion 

of amplitude 2 in. and makes 3,600 complete vibrations in 1 min. At what 

part of the stroke is the acceleration a maximum ? How great is the accel¬ 

eration at this point? If the piston weighs 1 lb., what is the force acting 

on it at the same point? 

25. A spiral spring hangs from a hook. If a mass of 500 grams is hung 

upon it, it stretches 20 cm. If the 500-gram mass is pulled 10 cm. farther 

down and released, find: 

а. The period. 

б. The force which the spring exerts on the mass when it is at the lowest 

and highest points of its motion. 

c. The maximum velocity the mass has in its motion. 

26. The length of a certain spring from which a mass of 1 kg. is suspended 

is found to be 20.02 cm. The addition of 800 grams increases the length to 

21.00 cm. A total mass of 5 kg. is now hung on the spring and the whole 

set into oscillation. What will the frequency be? If the amplitude of the 

oscillation is 2 cm. what is the maximum kinetic energy of the body? 

27. A body of mass 100 grams hangs from a long spiral spring. When 

pulled down 10 cm. below its equilibrium position and released, it vibrates 

with a period of 2 sec. 

а. What is its velocity as it passes through the equilibrium position? 

б. What is its acceleration when it is 5 cm. above the equilibrium position? 

c. When it is moving upward, how long a time is required for it to move 

from a point 5 cm. below its equilibrium position to a point 5 cm. above it? 

d. How much will the spring shorten if the body is removed? 

28. a. A vertically arranged helical spring is compressed 5 cm. by a force 

of 30,000 dynes. A 1.0-gram body is placed on the spring; the spring is 

compressed 25 cm. and suddenly released. How high will the 1.0-gram 

body rise? How long will it be in the air? 

6. If a 10-gram body is hung from the same spring and allowed to oscillate, 

what would be the period? 

29. A helical spring of stiffness coefficient 19,600 dynes/cm. hangs 

vertically with a hook on its free end. A 100-gram body is placed on the 

hook and suddenly released. How far below this initial position does the 

body descend? What are the amplitude and period of the resulting simple 

harmonic motion? (Assume that the spring exerts no force on the 100-gram 

body before it is released.) . 
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30. A body is hung on a spring and performs simple harmonic motion 

with a frequency of 4 vibrations per second. The same spring is then set 

up as a horizontal spring bumper, and the same body, resting on a horizontal 

table, is pressed against the spring, compressing it 4 in. The body is sud¬ 

denly released. How far along the table top does the body move if the 

coefficient of friction between the body and the table is J? 

31. A platform moves up and down with simple harmonic motion having 

an amplitude of 0.096 in. What is the maximum frequency which the 

motion can have so that a block on the top of the platform will remain in 

contact with it continuously? 

32. A 4-lb. body, hung on a spring, is observed to make 40 vibrations in 

31.4 sec. The system is now l)rought to rest, and an additional 2-lb. body 

is hung on the spring. Find the amount by which the spring is stretched. 

How long would a simple pendulum have to be to oscillate with the above 

frequency? 

33. A simple pendulum 8 ft. long swings with an amplitude of 1 ft. 

a. What is the period of the pendulum? 

h. What is the velocity of the bob at its lowest point? 

34. A simple pendulum consists of a small 10-gram mass at the end of a 

cord 1 meter long. It is pulled aside 10 cm. from its equilibrium position 

and released. Find its position and velocity after one-eighth of a period. 

36. A particle of mass 1 gram has a natural frequency of 47.8 vibrations 

per second. It is subjected to the action of an external sinusoidal force 

F = 25 X 10^ cos (4000 dynes 

where t is in seconds. 

a. Calculate the amplitude of the forced steady-state motion of the 

particle. 

h. What other frequency might the external force have and still produce 

the same amplitude? What difference, if any, would there be in the motion 

of the particle? 

36. A body is pulled toward a point O by a force proportional to its dis¬ 

tance from 0 and hence performs simple harmonic motion. Prove that 

the average kinetic energy of the body equals its average potential energy. 

(Average over the time of one vibration.) 

37. Assuming that the pull of the earth on a body below its surface varies 

proportionally to the distance from the earth's center, find by how many 

per cent the period of a simple pendulum changes if it is taken down a mine 

shaft 5 miles deep. Radius of the earth = 4,000 miles. 

38. A particle is acted on by two linear restoring forces at right angles 

and performs motion according to the equations 

X = A cos 2imif 

y ^ B sin Omit 

Make a plot of the path of the particle. Make this plot for the case where 

y ^ B cos 6imi^. 

39. A body is suspended on a spring balance when in a ship at the equator. 

If the ship sails along the equator with a velocity r, show that the scale will 
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read very nearly 

»'•(' ± t) 

where TFo is the reading when the ship is at rest, oj the angular velocity of 

the earth, and g the acceleration of gravity. 

40. A body is hung on a spring balance at the north pole of the earth and 

the reading of the balance is 64.0 lb. If the same body is hung on the same 

balance at the equator, what will the reading of the balance be? 



CHAPTER VIII 

DYNAMICS OF A SYSTEM OF PARTICLES 

Except for the principle of conservation of momentum, we 

have confined ourselves exclusively to the dynamics of a ^single 

particle. In problems involving two or more particles we have 

dealt with each particle separately, applying Newton\s laws to it 

and solving for its motion. The knowledge of the individual 

motion of each particle in a system of particles is of course 

sufficient to specify completely the motion of the system. On 
the other hand, there are certain general laws which give some 
information as to the motion of a system of particles (such as the 

conservation of momentum for an isolated system) and it is 

worth while to investigate some of them. Apart from their own 

intrinsic value, these laws provide a valuable background for the 
study of rigid-body motion which we shall start in the next 

chapter. Our treatment in this chapter will not be exhaustive, 

and we shall delay the presentation of part of the subject until 

after our treatment of rigid bodies. 

48. Motion of Two Particles; Center of Mass.—We shall first 
discuss the motion of two particles in a plane, since it is easier to 

understand the important points involved and our derivation 

may then be extended immediately to any number of mass 

points. Consider two mass points mi and m2, free to move in a 

plane. Suppose external forces Fi and F2 act on these particles 

respectively and let us denote the x- and y-components of these 

forces by Xi, X2, and Fi, F2. In addition to these external 
forces there may be interaction forces between the two particles 
which we denote by Qi and Q2, the interaction forces acting on 
particles mi and m2, respectively. For these interaction forces 
we have the relation, supplied by the third law of motion, 

Qi = (1) 

or, in component form, 

Qi* ~ Q2* 
Qly = —Qsy 

131 
(2) 



132 INTRODUCTION TO MECHANICS AND HEAT 

We now apply the second law of motion to each of these particles, 
writing it in component form. Thus, for the a;-component of 
motion of the first particle we have 

d/™ dxi\ 
X. + 

and similarly, for the second particle, 

d/^ dx2\ 

In these equations we have written the a:-components of the 
velocities of the particles as dxildt and dx^ldi. If we now add 
these two equations and remember that according to Eq. (2) 

Q\x + Q2* == 0, it follows that 

^ d ( dx\ d ( dx2\ 

I d / dxi . dx2\ /c%\ 
(3) 

An exactly similar set of equations holds for the ^/-component of 
motion of the two particles, so that we obtain 

Equations (3) and (4) state that the vector sum of the external 
forces is equal to the rate of change of the total momentum of the 
system. This law is true, independent of the nature of the 
internal forces in the system. Furthermore, these equations 
contain the principle of conservation of momentum. For, if 
there are no external forces acting on the particles, 

and we have 

and 

- X2 = Fi = F2 = 0 

dx\ I dx2 j j 

mi—77 + m2-j7 = constant 
at at 

+ m2 
dyt 
dt 

= constant 

so that the vector sum of the momenta of the two particles is 
constant in the absence of external forces (the case of an isolated 

system). 
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The fundamental Eqs. (3) and (4) may be written in a more 
convenient fashion. Consider the right-hand side of Eq. (3); in 

it the expression + ^2^ may be written + ^2^2), 

so that Eq. (3) may be written 

(1,2 

Xi + X2 = ^2(^1^! ^2^2) (3a) 

and similarly for Eq. (4), 

Fi + F2 = ^2(^12/! + ^22/2) (4a) 

If we now denote the total mass of the system by M = mi + m2 
and define a point in the plane whose x~ and ^/-coordinates are 
given by the relations 

and 

miOTi + m2X2 __ m^Xi + 7112X2 

M rrii + m2 

niiyi + ^22/2 ^ rriiyi + m22/2 
M mi + m2 

Equations (3a) and (4a) take the simple form 

Xi + Z2 = M 
d^x 

Fi + F2 = M 
dt^ 

(5) 

(6) 

(36) 

(46) 

We call the point whose coordinates are x and y the center of mass 
of the system, and we can state Eqs. (36) and (46) in words: 

The motion of the center of mass of a system of particles is 
the same as the motion of a single particle of mass equal to the 
total mass of the system acted on by all the external forces which 
act on the system of particles. 

This is an important law and we shall make much use of it in 
our study of rigid bodies. In this case we have the simple 
situation that the position of the center of mass of the rigid body 
is always fixed with respect to the body. Our equations of 
motion of the center of mass suggest the following method of 
considering the motion of any system of mass points; (1) the 
motion of the center of mass of the system and (2) the motion 
of the particles with respect to the center of mass of the system. 
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This particular mode of analysis of the motion turns out to be 
fundamental. We have already solved part 1 of the motion, 
and, since this is a problem in the motion of a single mass point, 
we need not discuss it further. 

49. Center of Mass {ContiniLed).—We now may generalize 
the results of the last section for a system of n particles. We 
proceed as before, writing the equations of motion for each 
particle. When we add the equations, we find as before that the 
interaction forces (internal forces) cancel out in pairs, so that 
we are left with the sum of the external forces only. Thus, for 
plane motion, the equations of motion are 

+ Z2 + X3 + • • • + Zn = 
+ m2X2 + + * * * + rrinXn) (7) 

and 

Fi + F2 + F3 + • • • + = 

^2(^1^! + ^22/2 + mvs + • • • + rrinyn) (8) 

Rather than writing these sums explicitly each time they 
occur, we shall adopt a shorthand notation which is universally 
used. For example, we write as the sum of the x-components 
of the external forces. 

Xi + X2 + Xs + * • * + Xn = ^Xk 
1 

The Greek sigma indicates that we are to form a sum, and the 
subscript k is to have all values starting with /c = 1 (indicated 
below the 2) and ending with k — n (indicated above the 2). 
We then rewrite Eqs. (7) and (8) as 

The definition of the coordinates of the center of mass may 
now be written 
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n 

1 
n 

'^mkVk 

1 

»2 
rrikXk 

fc *» 1 

rnuyk 

k^\ 

(9) 

(10) 

where M is again the total mass of the body. The general 
equations corresponding to Eqs. (36) and (46) of the last section 
now are 

2^* = 
k^\ 

n 

,d^x 
(76) 

■d^V 
dt^ 

(86) 

k^l 

Now in the case of most bodies, such as a piece of metal or 
wood, the particles of which it is composed are so numerous and 
they are so close together that we are justified in considering the 
body as a continuous distribution of matter. All the theorems 
which we have developed hold, and we must only rewrite the 
definition of the position of the center of mass in an appropriate 
form. If we consider a small volume AF of our body containing a 
mass Ailf, then we define the density p of the body at the point 
where AF is situated as 

p = lim 
AV-*0 

AM 
AF 

dM 
dV (11) 

and hence the total mass M is given by 

M = fpdV (12) 

In the important special case of a homogeneous body in which p 

is constant, we have 

M = p. JdV = pV (12o) 

To define the x- and j/-coordinates of the center of mass of such 
a body, we consider the body as composed of a huge number of 
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small masses each of mass AAf. Each AM has its own x- and 
^-coordinates, and the coordinates of the center of mass become 

In the case of a homogeneous body we write 

y = -M^ T 

(13) 

(13o) 

(14) 

(14a) 

using the relation that p = M/V and the fact that p is constant. 

have as the coordinates of 
For mi = 10 grams: 

Xi = 

2/1 = 

For m2 == 20 grams: 

X2 ' 

Vi = 

For ms = 30 grams:. 

50. Examples.—^Let us apply 
the definitions given in the 
last section to some actual 
problems. As the first appli¬ 
cation, let us suppose that 
we have three particles of 
masses 10, 20, and 30 grams, 
respectively, fixed at the apices 
of an equilateral triangle of 
side 20 cm. (Fig. 33). Let us 
choose x- and y-axes as shown, 
the origin at the 10-gram mass 
which we call mi. We now 

the three bodies, 

0 
0 

20 cm. 
0 

Xs = 10 cm. 
2/3 = 20 sin 60® cm. = 17.3 cm. 

since the angles are all 60®. 
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Thus, from the definition as given by Eqs. (9) and (10), 

X = ^(10 X 0 + 20 X 20 + 30 X 10) = W = 11-7 cm. 
y = ^(10 X0 + 20 X0 + 30 X 17.3) = W = 8.7 cm. 

Thus we find the situation of the center of mass 11.7 cm. to the 
right of the 10-gram mass as shown in the figure and halfway up 
between the line joining the 10- and 20-gram mass and the 
30-gram mass. In connection with this example it should be 
emphasized that the choice of origin does not affect the result. 
The student should solve this problem using the position of the 
20-gram mass as origin, then using the position of the 30-gram 
mass as origin, and finally using the center of the triangle as 
origin. 

Turning now to the case of continuous bodies, we shall first 
consider the case of homogeneous symmetrical bodies, a case of 
great practical importance. As examples of symmetrical 
bodies, we may call attention to the sphere which is symmetrical 
about its center, the hoop which is symmetrical about its center, 
the circular cylinder which is symmetrical about a point halfway 
along its long axis, and a uniform stick which is symmetrical 
about its mid-point. For all these cases we shall prove the 
following very important result: 

The center of mass coincides with the center of symmetry. 
We prove this theorem as follows: Let us choose the center 

of symmetry as an origin. Then, since the body is symmetrical 
about the origin, there is for every dM with a coordinate x a 
similar dM with coordinate — x, so that, when we add all the 
xdM^s, the terms cancel in pairs and the integral in Eq. (13) is 
zero. A similar situation must exist with respect to the i/-axis, 
so that by the same argument the integral in Eq. (13a) vanishes. 
Thus we find x = y = 0, so that the center of mass is at the 
origin. Since we started by placing the origin at the center of 
symmetry, this completes the proof. 

Let us illustrate this proof by considering a homogeneous rod 
of length I and constant cross section A, The center of sym¬ 
metry is the center of the rod which we choose as origin, letting 
the x-axis coincide with the rod (Fig. 34). Now consider a small 
mass dM at a distance x from 0. The mass is 

dM = pAdx 

where p is the constant density of the rod. 
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If we insert this value of dM in the equation defining x, there 

follows that 

^ 2 

The integral yields 

[fl::: 

pAxdx = = eA C ■ xdx 

^ 
8 8 

= 0 

and 
X = 0 

so that we have found the center of mass at the center of sym¬ 
metry as expected. 

- 

Fig. 34. 

The foregoing choice of our origin is convenient but not neces¬ 
sary. Any other origin will lead to the same result. Thus let 
us take the origin at one end of the rod, and now let x denote 
the distance of a volume element Adx from this end. We have 

as before 
dV = Adx 

and furthermore 

so that Eq. (14) yields 
M = Apl 

Axdx 

where now the limits of integration are 0 to Z, corresponding 
to a summation starting at the origin x = 0 and ending at the 
end of the rod x = Z. Thus we obtain 

X 
1 

2 

so that we again find the center of mass of our rod at its geo¬ 
metrical center, t.e., halfway along the rod. 

As a third and final example, let us consider a right circular 
cone of altitude A. We now choose the vertex of the cone as 
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origin and the y-axis as shown in Fig. 35. From the symmetry 
about the i/-axis we know that the center of mass lies somewhere 
on the 2/-axis so that we need only calculate y. 

Consider a horizontal disk of thickness dy^ and radius r at 
a height y above the origin. Its mass is 

dM = fyjrr^dy 

where p is the constant density of the material of which the cone 
is made, and the radius r depends on y. From the figure it is 
clear that r is proportional to t/, and we have 

r = ky 

Now at the top y — h and r = ro, so that 

and we have 

To — kh or fc = 

To r = ^y 

To 

Substituting this value of r in the expression for dMy it follows 
that 

dM = ^yHy (a) 
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We have now expressed dM as a function of y and are prepared 
to integrate, y is defined by 

S - ^jydM - y'iy 

The value of the integral is so that 

fyjrrlK^ 

y^-Tw 
We must still express M in terms of p, ro, and h. Now 

M = JdM = 

using Eq. (a). The integral has the value AV3, so that we 
obtain 

Substituting this value of M in our expression for y^ it follows 
that 

y = 
fyrrrlh^ 3 

4 p^rlh 

so that center of mass is on the axis of the cone one-fourth the 
altitude from the base. 

61. Kinetic Energy of a System of Particles.—We now turn to a discussion 
of the kinetic energy of a system of particles in preparation for a formulation 
of the work-energy theorem. Suppose we have an automobile moving in a 
straight line with a velocity of 20 ft./sec. and a man in the automobile 
projects a stone of mass m with a speed of 10 ft./sec. with respect to the 
automobile in the direction of its motion. If the man throwing the stone 
were fixed in space, he would say that the stone acquires a kinetic energy of 
Jm(lO)*, or 50m, and he would identify this increase of kinetic energy as the 
work done in throwing the stone. If he takes his motion into account, 
however, he might calculate the work done in the following manner: Initially 
the stone has a velocity of 20 ft./sec. due to the motion of the automobile, 
and after projection it has a velocity of 30 ft./sec. in the same direction. 
Hence the work done in throwing the stone is the change of kinetic energy, 
im(30)® --im(20)*, which is equal to 250m, or five times the work necessary 
if he were at rest. This is obviously a ridiculous conclusion, and the purpose 
of the following argument is to clear up this type of difficulty. 

We can straighten out the trouble in our example if we remember that 
according to the third law of motion it is impossible for the man in the 
automobile to exert a force on the stone without exerting an equal and 
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opposite force on the automobile. In fact the change of momentum of the 

automobile must be just equal to the change of momentum of the stone, 

according to the law of conservation of momentum. Thus in order to 

calculate the work done in throwing the stone, we must calculate the change 

of kinetic energy of the automobile as well as that of the stone. This would 

seem to be the answer to our problem but we should not stop at this point 

of the argument. Surely, the automobile cannot have its momentum 

changed without exerting a force on the earth so that the momentum of the 

earth is changed, and we should include the change of kinetic energy of the 

earth. But again the earth exerts forces (due to gravitation) on the moon, 

sun, etc., so that we might go on indefinitely, and our problem still offers 
difficulty. 

We arc thus led to answer the question as to the correct method of 

calculating the kinetic energy of more than one body. The answer is 

contained in the theorem: 

The kinetic energy of a system of particles is equal to the kinetic energy 
of motion relative to the center of mass of the system, plus the kinetic energy 
of a single particle of mass equal to the total mass of the system moving 
with the center of mass. 

We shall prove this theorem for the case of two particles, free to move in a 

plane. Let the particles mi and m2 have coordinates Xi, yi and X2, 1/2, 

measured with the center of mass as the origin. In this system of reference 

the velocity components of the particles are v*i, Vyi, ^*2, and r,;2, respectively. 

Now suppose the center of mass has coordinates x and 2/with respect to any 

set of axes (moving or fixed). The components of velocity of the center of 

mass with respect to these last axes are then Vx and Vy, In this system 

of reference the coordinates of the particles are 

X -f xi, -f 2/1 (of m,) > . 

X Xt,y A- 2/2 (of m2) i ^ ^ 

and the corresponding velocity components are 

Vx -f t'xl, Vy H- Vyl) 

and r (16) 

Vi -f- Vx2j Vy -j- Vy2} 

The kinetic energy of the system is then 

K.E, = \mi[{vx -h VxiY -f- {Vy -f- VyiY] + hrn^livx + VxtY + {Vy + Vy^Y] (17) 

If we now expand and regroup the terms, there follows: 

K.E. = l[mi{vl + vl) + m^ivl -f vl)] -f J[mi(e^Ji + vli) + m^ivh -f vl^I)] 
+ lvx(miVxi 4- ^2^x2) 4“ Vy{miVyi + m2Vy2)] (18) 

We shall now show that the last term is zero. When the center of miiss is 

taken as the origin, the particles have coordinates Xi, yi and X2, ?/2. Accord- 

ing to Eqs. (5) and (6) we then have 

mixi 4- ^2X2 ^ Q myi 4- my2 ^ q 
mi 4- W2 wii 4* ^2 
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If we differentiate these equations with respect to t, we then have 

miVxi + miVx'i == 0 and miVyi + miVy2 = 0 

which proves the result. 

The first term in Eq. (18) may be written in the form 

\{mi 4- m2){vl 4- vl) 

which is the kinetic energy of a particle of mass (mi 4 ^2) moving with the 

center of mass. The second term in Eq. (18) is just the sum of the kinetic 

energies of the two particles referred to the center of mass as origin, and thus 

our proof is complete. Thus Eq. (18) can be written 

K.E. = \Mv^ -h \mivl 4 (19) 

where M = mi 4 v — 4* the speed of the center of mass, and 

Vl and V2 are the speeds of the two particles measured with respect to the 

center of mass. 

The extension of the foregoing argument to a system of n particles (and 

to motion in space) is left as an exercise for the student. The result may be 

stated as follows: 

n 

K.E. = iMv' + imtvl (20) 

i - 1 

where rrik is the mass of the fcth particle and Vk its speed. 

62. Work-energy Theorem for a System of Particles.—The theorem of 

the last section shows the fundamental significance of the statement of Sec. 

48, that the motion of a system may be considered as compounded of the 

motion of the center of mass and the motion with respect to the center of the 

mass. We shall now derive the work-energy theorem for a system of 

particles. Again we shall restrict ourselves to two particles free to move 

in a plane, leaving the generalization of the proof as an exercise. Let the 

resultant force acting on particle mi have components Xi, Yi; and similarly 

for particle m2 we have the force components X2 and F2. Using the notation 

of the previous section, the position of particle mi in a fixed system of refer¬ 

ence is given by 

X -f xi and 2/ + 2/1 

and the work done by the external forces in a small displacement of this 

particle is 

Xid(x 4 xi) + Yid(y + yi) 

Similarly, for particle m2 we have as the corresponding expression 

X2d(x 4 Xz) 4" Yzdiy 4- 2/2) 

so that the total work done by all the forces in any small displacement of 

both particles is 

Xid{x 4- xi) 4 Xtd(.x 4- Xz) + Yid{y -f yi) + Yzdiy 4- Vi) 
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which may be written 

[(Xi + X2)dx + (Fi + Y2)dy] -f {Xidxi -I- Xidx^ + Yidyi + Y^dyi) (21) 

The first term represents the work done by the external forces in a small 

displacement of the center of mass. Now we have shown in Sec. 48 that the 

motion of the center of mass is the same as if all the mass of the system 

were concentrated here and this particle of mass M were acted on by all the 

external forces. Thus it is clear that this term of Eq. (21) represents the 

work done in the motion of the particle M and is equal to the change of 

kinetic energy of this particle moving with the center of mass. 

Now the whole expression (21) is equal to the total increase of kinetic 

energy of the system, and in Sec. 48 we have proved that this can be written 

as the change of kinetic energy of a particle of mass M moving with the 

center of mass, plus the change of kinetic energy of the particles with respect 

to the center of mass. The first part of this kinetic-energy change, as we 

have seen, is equal to the first term of Eq. (21), so that the latter part must be 

equal to the second term of Eq. (21). 

Thus the increase of kinetic energy relative to the center of mass is 

Xidxi + X^dxi -f Yidyi -f- Y^dy^ 

and is hence equal to the work done by the forces, calculated as if the center 

of mass were at rest. This gives us the result we set out to obtain, since in 

any problem we need only place our origin at the center of mass of the 

system and then calculate work and kinetic energy using this origin, f.e., 

the system behaves just as if the center of mass were at rest. We now see 

that in our example of the man throwing a stone out of a moving automobile, 

if the mass of the stone is small compared with that of the automobile, the 

motion of the center of mass of the system, stone plus automobile, is prac¬ 

tically that of the automobile. The work done in throwing the stone is 

practically equal to that done if the automobile were at rest. Incidentally, 

a similar consideration holds for all motion on the surface of the earth. 

Because of the huge mass of the earth, we may, for all practical purposes, 

take the center of mass of any accelerated body and the earth coincident 

with the center of mass of the earth. This justifies our earlier procedure 

of using the work-energy principle in which we considered the velocity of 

the body measured with respect to the earth. 

Problems 

1. Masses of 2, 3, and 4 lb. are located, respectively, at the vertices 

A, B, and C of a triangle. The side AB is 10 ft. long, .AC is 15 ft. long, and 

the angle BAC is 37®, Find the center of mass of this system with respect 

to the point A. 

2. Masses of 10, 10, 20, and 40 grams are located, respectively, at the 

corners A, B, C, and Z> of a rectangle A BCD. The sides AB and CD are 

each 80 cm. long and the sides BC and AD are each 40 cm. long. Find the 

position of the center of mass of this system. 

3. Masses of 2, 4, 6, and 10 lb. are located, respectively, at the corners 

A, B, C, and D of a quadrilateral. The sides AB and AD are perpendiculac 
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to each other and of lengths 6 and 8 in., respectively. BC is parallel to 

and is 20 in. long. Find the position of the center of mass of this system. 

4. A beam of constant density is 1 ft. long and has the cross section 

shown in Fig. 36a. Find the position of the center of mass of this beam. 

6. A flat piece of wood has the shape shown in Fig. 366. Find the 

position of its center of mass. 

6. The cross section of a wedge is a right triangle of base 10 cm. and 

altitude 5 cm. Assuming constant densit3^, find the position of the center 

of mass. 

7. If the sharp end of the wedge in Prob. 6 is cut away so that the base 

becomes 8 cm. long, find the position of the center of mass of the blunt 

wedge. 

8. A flat thin board has as its boundaries the horizontal a;-axis, the 

vertical line a; = 10 in., and the curve y — 0.2x^. Find the position of 

the center of mass of the board. 

(a) (b) 

Fig. 36. 

9. A slim rod of length L has a variable density, the density increasing 

proportional to the distance from one end according to the relation 

p = po[(l + x/L)]. Find the position of the center of mass of the rod. 

10. A truncated right circular cone of constant density has its smaller 

base one-half the area of the top base and is of altitude h. Calculate the 

position of the center of mass of this cone. 

11. A slim homogeneous wire is bent into a semicircle of radius 10 cm. 

Calculate the position of its center of mass using the center of the circle as 

an origin. 

12. A slim homogeneous wire is bent into the arc of a circle of radius r. 
The arc subtends an angle Bo. 

а. Find the position of the center of mass of the wire. 

б. Find the angle if the center of mass is a distance r/2 from the center of 

the circle. 

13. A 10-lb. uniform rod of length 4 ft. has a 4-lb. mass point fixed at one 

end, a 6-lb. mass point at the other end, and an 8-lb. mass 1 ft. from the 

4-lb. mass. Find the position of the center of mass of the system. 

14. A horizontal uniform rod 10 cm. long, of mass 10 grams, has small 

bodies of masses 10 grams and 20 grams at its ends, A and B, respectively. 

a. Find the position of the center of mass of the entire system. 
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5. If a resultant upward force of 400 dynes, constant in magnitude and 

direction, is applied at A, find the position of the center of mass after 3 sec. 
c. If two equal and opposite vertical forces, each of 400 dynes, are applied 

at A and B, calculate the position of the center of mass after 3 sec. 

16. Two particles of masses 100 and 200 grams, respectively, attract 

each other with a constant force of 500 dynes. Initially they are 100 cm. 

apart and each is at rest. 

a. Calculate the position of the center of mass of the system from their 

initial positions. 

b. Calculate the position of each mass at the end of 2 sec. 

c. Using the positions calculated in 6, find the position of the center of 

mass. How should this answer be related to that found in a? 

16. An 8"lb. body and a 20-lb. body both free to move along a straight 

line attract each other with a force proportional to their separation. They 

are initially 4 ft. apart; the 8-lb. body to the left of the other has an initial 

velocity of —20 ft./sec., the 20-lb. body an initial velocity of +4 ft./sec. 

Where do they collide, if this collision takes place at the end of 20 sec.? 

17. Two particles 1 and 2, of equal mass, are on the a:-axis initially; 

particle 1 at the origin, and particle 2 at the point x = —10 cm., 2/ = 0. 

The latter particle has an initial velocity of 10 cm./sec. in an upward direc¬ 

tion making an angle of 30° with the x-axis, and the former has an initial 

velocity of 20 cm./sec. downward at an angle of 60° with the x-axis. The 

particles attract each other with forces depending on the distance between 

them. If particle 1 passes through the origin at ^ = 4 sec., find the position 

of particle 2 at this time. 



CHAPTER IX 

STATICS OF RIGID BODIES 

We now turn our attention to the behavior of rigid bodies. 
We remember that the definition of a rigid body is that it is a 
system of particles in which the distance between any two 
particles does not change. It is this constancy of distance 
between any two particles which makes the rigid body the 
simplest sort of system of particles. In the last chapter we have 
seen that a fundamental mode of description of the motion of a 
system of particles consists of combining the motion of the center 
of mass of the system with the motion relative to the center 
of mass. In the case of a rigid body this latter motion is simple. 
In the first place, the mass points of which the body is composed 
cannot move toward, or away from, the center of mass without 
deforming the body. Thus the only motion possible for a 
particle of the body is one in which its distance from the center 
of mass stays constant. This is motion on a sphere, or rotation. 
Furthermore, any two lines in the rigid body which pass through 
the center of mass must maintain their angular separation 
unchanged (otherwise the distance between a mass point on one 
straight line and another on the second line would change, 
violating the definition of a rigid body) so that the body may 
rotate as a whole about the center of mass. Thus the most 
general motion of a rigid body may be built up of the motion of 
the center of mass plus the rotation of the body about the center 
of mass. In this chapter we shall consider the statics of rigid 
bodies and investigate the conditions which must be satisfied if a 
rigid body stays at rest under the action of external forces. 

63. Plane Motion of a Rigid Body; Degrees of Freedom.—For 
the time being we shall restrict our discussion to a simple type 
of rigid-body motion, viz.^ the plane motion of such a body. 
This means that the center of mass of the body is free to move in 
a plane, and also that the axis of rotation of the body maintains 
a fixed direction which is perpendicular to this plane. In fact, if 
these conditions are fulfilled every point of the rigid body stays 
in one plane. As familiar examples of such motion, we bring to 
mind the rolling of a wheel or of a sphere, or the rotation of a 
flywheel about its axis. To describe uniquely the position of a 

146 
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rigid body capable of plane motion we must determine three 
independent quantities. For example, we must know (a) the 
a:-coordinate of the center of mass, (h) the y-coordinate of this 
point, and (c) the direction (angle) which any straight line 
passing through the center of mass makes with the a:-axis. Thus 
it is evident that our rigid body has three degrees of freedom. 
If (a) and (6) change with time and (c) is fixed, we say that the 
body moves in pure translation. Every point of the body moves 
in an identical manner to the center of mass, so that the motion 
of the body as a whole is described when the motion of the center 
of mass (or of any other point of the body) is given. If (a) and 
(6) are fixed, and (c) changes with time, we say that the body 
moves in pure rotation about the center of mass, or, more exactly, 
about an axis through the center of mass and perpendicular to the 
plane of the motion. It is of course possible to have the case of 
pure rotation about any fixed axis perpendicular to the plane, 
and we shall have occasion to investigate such motions. We are 
now ready to formulate the conditions governing the statics of 
rigid bodies. 

64. Equilibrium Conditions for Rigid Bodies; Moments of 
Forces.—We now proceed to set up the conditions which must 
be satisfied if a rigid body is in equilibrium. These will be three 
in number, corresponding to the three degrees of freedom of the 
body. In the first place we note that, if the body is in equilib¬ 
rium, there must be no acceleration of the center of mass. We 
have already shown in the last chapter that the center of mass of 
any system of particles (and this certainly includes rigid bodies) 
moves as if all the mass of the system were concentrated at this 
point and all the external forces act on this mass point. Thus 
the equilibrium conditions for the motion of the center of mass 
{i.e.y for translation) are identical with those for a particle free 
to move in a plane, and these are 

Xi + + • • • + Xn = 
Fl + 72 + • • • + Fn = Of 

if Xiy X2, . . . , Xn are the x-components of the external forces 
which act on the body and Fi, F2, . . . , Fn are the ^-compo¬ 
nents of these forces. In words, the sum of the x-components of 
all the external applied forces and the sum of the ^/-components of 
all the external applied forces must be zero. Thus, there 
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remains only the equilibrium condition for motion relative to the 
center of mass, i.e,, for rotation about an axis through this 
point. In pure rotation, every mass point must move in a 
circle about the center of rotation. If the body is in equilibrium 
there can be no tangential acceleration of any mass point, or, 
what is the same thing, there can be no angular acceleration of 
the body. We now must ask the question; How does the angular 
acceleration of the body depend on the applied forces? The 
answer to this question may be obtained as follows: The tan¬ 
gential acceleration of a mass point moving in a circle is pro¬ 
portional to the component of the applied force tangent to the 
circle, i.e,, perpendicular to the radius of the circle. Thus we 
see that the angular acceleration of a rigid body will be propor¬ 

tional to the component of applied 
force perpendicular to the line 
joining the center of rotation to 
the point of application of the 
force, or to F sin 6 (Fig. 37). 
Furthermore it is clear that the 
angular acceleration produced by 
this force will depend on the 
distance r from the center 0 to the 
point of application and will increase 
as r increases. Certainly if the 
force is applied at 0, it can produce 

no angular acceleration about O. It is a matter of simple 
experience that the angular acceleration produced by a 
given force increases proportional to the distance r. A simple 
experiment will illustrate this fact. If we have a seesaw orig¬ 
inally balanced horizontally and place a body at a distance r 
to one side of the point of support, the seesaw will start to 
rotate. If we now take a body of half the mass of the first, we 
find that by placing it at a distance 2r to the other side of the 
point of support the seesaw stays at rest. 

The net result is that the angular acceleration of a rigid 
body is proportional to the product Fr sin 0, or to a sum of 
such products if there is more than one force acting. The 
expression Fr sin 0 is called the moment^ of the force F or the 

* Strictly speaking, the moment of a force is a vector since one must specify 

a direction, that of the axis, about which the moment is taken, as well as a 
magnitude. The same is true of angular velocity, but we shall not stress this 

point here as it is not essential for our present purposes (see Sec. 70). 
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torque about the center of rotation 0, Now, since for equilib¬ 
rium the angular acceleration of the body about its center of mass 
is zero, it follows that the sum of the moments of the applied 
forces about this point must be zero. Thus we write as our third 
and final condition 

FiTi sin Bi + sin ^2 + * * * + FnTn sin = 0 (2) 

We shall call the moment of a force positive if, when acting alone, 
it starts the body rotating in a counterclockwise direction and 
negative if it produces a clockwise rotation. 

66. Anal3dic Representation of Moments of Forces.—^Let us 
consider the expression for the moment of a force more closely. 
We have written it as 

Fr sin B 

and have shown that it is the product of the radius and the com¬ 
ponent of the force per¬ 
pendicular to the radius. 
There is another mode of 
interpreting this expression. 
Consider the expression r 
sin B (Fig. 38). If we drop a 
perpendicular from 0 to the 
line of action of the force, we 
form the right triangle OPQ. 
From this triangle we see that 
the line OQ = r sin B, so that 
we may thus say: 

The moment of a force about a center O is the product of the 
force and the perpendicular distance from the center to the 
line of action of the force. 

This proves to be a very useful definition in many applications 
and we shall now make use of it. 

There is another method of representing the moment of a force 
in terms of the components of the force. We construct a set of 
coordinate axes through the center of rotation 0 and replace 
the force F by its x- and ^/-components X and F, respectively. 
The point of application of the force P is at a distance r from 
0 and has the coordinates x and y. From the definition of the 
last paragraph the moment of the F-force is + Yx and that of the 
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X-force is —Xy. Thus we may write the moment of the force F 
whose components are X and Y as 

Fr sin 6 = Yx — Xy (3) 

In the following applications we shall make use of all the above 
expressions for the moment of a force. 

66. Equilibrium Equations.—^Let us recapitulate our three 
conditions for equilibrium. We have seen that (1) the sum of 
the x-forces and (2) the sum of the ^-forces each must be zero, 

and also that (3) the sum of the moments about the center 
of mass must be zero. We shall now prove the exceedingly 
important theorem: 

If the above conditions for equilibrium are satisfied, the sum 
of the moments about any point in the plane is zero. 

This theorem will allow us to replace the third condition 
of equilibrium by the condition that the sum of the moments of 
the applied forces about any point in the plane is zero. By this 
means a great practical advantage is gained, as it is usually 
easier to calculate moments about some point other than the 
center of mass. 

To prove the theorem let us consider a point P whose coordi¬ 
nates are xi and yi with respect to a set of coordinates with the 
origin 0 at the center of mass (Fig. 39). The first step is to 
calculate the coordinates of P measured from another origin O', 
li^t the origin O' have the coordinates o^o and yo, measured with 
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respect to the origin 0. If the coordinates of P with respect to 
0' are called x[ and t/i, it is clear from the figure that 

and 
Xi — X\+ Xq 

yi = Vi + 2/0 

Now suppose the force Fi (components Xi, Fi) acts at the point 
F. Then according to Eq. (3) the moment of this force about the 
center of mass is 

YiXi ~ Xiyi 

Similarly, if a force (components X2, F2) acts at a point 
whose coordinates are :r2 and 2/2, its moment about the center of 
mass is 

F 2X2 — X2?/2 

Thus the sum of the moments of all the forces about the center 
of mass may be written 

(Fixi ~ Xiyi) + (F2X2 - X^y^) + • • • + (F„x„ X^yn) 

or more concisely 
n 

^ {Y,x, - Xm) 
k = 1 

For equilibrium this expression must be zero. 
If we now substitute the expressions 

Xi = x[ + Xo 

yi = y'l + yo 
Xi = + Xo 

1^2 = J/2 + J/O 
Etc. 

in the above expression for the moments, we obtain for equilib- 
rium 

0 = X [Y,ixi + Xo) - Xuiy', + yo)] (4) 
« 1 

We may now rewrite the right-hand side of this expression as 

X (Y^i - «) +xoXY,-yoXx, 
* -1 * - 1 * -1 

(5) 
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Now, since for equilibrium 

2 + X* + • • • + z„ = 0 
k = 1 

and 
n 

2) n = Fi + F* + • • • + r„ = 0 
k - 1 

there follows 

X (Ya', - X,yl) = 0 (6) 
k = I 

This is just the sum of the moments of the forces about the 
point O', which is any point in the plane, and our proof is com¬ 
plete. We must particularly emphasize the fact that this 
theorem is valid only if SZ = 0 and SF = 0, and hence is true 
only for equilibrium. We shall have occasion to refer to this in 
the next chapter when we study the general translational motion 
of a rigid body. 

As a final summary we repeat: A rigid body free to move in a 
plane is in equilibrium, if 

(а) The sum of the x-components of the applied forces is zero\ 
(б) The sum of the 2/-components of the applied forces is zero/ 
(c) The sum of the moments of the applied forces about any( 

point in the plane is zero. / 

Of course, the algebraic sum is meant in all the three conditions. 
A very useful corollary of the above laws is the following. 

If the lines of action of all the applied forces go through the 
same point in the plane, the moments of all the forces around 
this point are zero and the third condition c is automatically 
fulfilled. In this case we have only to apply the first two 
conditions. 

67. Examples.—The following examples may help to illustrate 
the meaning and method of applying the laws which we have 
derived. Suppose a rigid body of any shape be allowed to fall 
freely. Every particle of the body acquires an acceleration p, so 
that the whole body performs translatory motion. We now 
ask the question: Is it possible to apply a single force to the body 
which will hold the body in equilibrium? If so, at what point 
must this force be applied and how large must it be? We choose 
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an arbitrary origin and choose the x-axis horizontal. Now we 
divide the body into a huge number of vertical slices, of thickness 
dx and mass dm. The pull on one of these slices due to the 
earth is —gr • dm (Fig. 40) 
and is vertically downward 
on each slice (although it 
may be different in magnitude 
for different slices). Let us 
now apply our conditions of 
equilibrium. If F is the un¬ 
known force, we have for 
equilibrium: 

1. The sum of the x-com- 
ponents of all the forces is 
zero, and, since all the forces 
due to the earth are vertically downward, this condition 
can be satisfied only if the force F is vertical so that its 
x-component vanishes. 

2. The sum of the ^/-components of all the forces is zero. Here 
we have as the sum of all the forces due to the pull of the earth 

= = —Mg 

if M is the total mass of the rigid body. Thus this condition of 
equilibrium demands that 

-Mg + F = 0 
or 

F = Mg 

so that we have found that the force F must be directed vertically 
upward and must be equal to the weight of the body. 

3. The sum of the moments of all the forces about any point is 
zero. Let us take moments about the origin (which is arbitrary). 
The earth pull on the slice dm which is located at a distance x 
from 0 has a moment 

—gdmx 

and the total moment due to the earth pull on all the slices is 

—gfxdm 

The moment of the force F is 

+Fx' 



154 INTRODUCTION TO MECHANICS AND HEAT 

if x' is the distance from the origin to the line of action of F, 
Thus the sum of the moments is 

Fx' — gjxdm = 0 

and, since F = Mg, this becomes 

This is just the a:-coordinate of the center of mass, so that 
have proved that a rigid body may be held in equilibrium under 
the action of the earth puli by a single vertical force equal to 
the weight of the body whose line of action passes through the 
center of mass of the body. Our proof holds no matter what the 
orientation of the body in space, and, since the force F always 
passes through the center of mass (and not through any other 
points of the body for two or more different orientations), we 

.p may replace the whole body by a 
single particle of mass M at the 

[«—X,-—X—X2—^>1 center of mass and consider the pull 
I_0_I of the earth on this particle. In 

^ " .* doing this we take account of the 
weight of the body and also of the 
moments of the weights of all the 

T Y T particles of which the body is com- 

Fig^41 posed. Because of the importance 
of the center of mass in this con¬ 

nection it is usual to call this point the center of gravity of the 
body. In the following discussion we shall use the terms 

interchangeably. 
As a second example let us consider a uniform rigid rod of 

mass m supported on a knife edge at its center 0 (Fig. 41) and 
suppose two masses mi and m2 are suspended from it at distances 
xi and from 0. According to our discussion in the last 
paragraph we may represent the pull of the earth on the rod by 
a single force acting at the center of gravity 0. If this system 
is in equilibrium, we must satisfy the three conditions of Eq. (7). 

a. Since there are no a;-components of force acting on the rod, 
this condition is automatically satisfied. 
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b. In the ^-direction there are the weights of the two masses 
and of the rod acting downward, and the push of the support up 
on the rod. If this push is F, we must have 

'fng + Mig + m2g = P 

c. If we take as a center of rotation the point of support 0, we 
have as the sum of the moments 

migxi sin (90°) — m2gx2 sin (90°) == 0 
or 

rriiXi — 1712X2 

This gives us a simple and practical method of comparing masses 
and is usually done with an equal-arm balance for which Xi = X2. 
In this case the condition for equilibrium demands that mi = m2, 
so that the mass of any body may be thus obtained by comparing 
it with a set of standard bodies. It is impossible to obtain the 
weight of the body by these measurements alone, as one must 
also determine the acceleration g oi sl freely falling body at the 
place where the measurement is made. It is to be noticed that 
the value of g is immaterial to the above measurement; the only 
assumption made is that it is the same for all bodies at the same 
place on the earth^s surface, and this assumption is well borne 
out by measurement. 

Consider a ladder 40 ft. long 
which leans up against a wall 
making an angle of 60° with the 
floor. It weighs 40 lb., and its 
center of gravity is 15 ft. from the 
bottom. If the reaction of the wall 
is horizontal, find the forces exerted 
on the ladder at both its ends. 

The first thing to do in such a 
problem is to make a proper dia¬ 
gram such as Fig. 42 and to draw 
all the forces acting on the body in 
their proper positions. We then apply the conditions of 
equilibrium. 

a. The sum of the forces in the ^-direction must equal zero: 

—^ + C = 0, or A — C 

b. The sum of the y-forces must be zero: 

5 ~ 40 = 0, or B ~ 40 lb. 
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c. The sum of the moments of all the forces about any point 
must be zero. Here we can save a lot of work by choosing the 
center of rotation skilfully. If we choose it at the point of 
application of one of the forces, then the moment of this force 
about this point is zero. Therefore we choose the bottom point 
of the ladder as the point about which we are to take moments. 

We have 

40 • 15 • sin 30° ~ A • 40 • sin 60° = 0 
300 - 35A = 0 

A = 8.6 lb. to the left 

From the first condition, we now find 

C — 8.6 lb. to the right 

Thus all the unknown forces have been obtained. 

Problems 

1. A 500-lb, body is suspended by a bar and a rope. The body hangs at 

one end of the 4-ft. bar which is horizontally fixed to a wall. The free end 

of the rope is attached to a point on the wall 3 ft. above the bar. 

Find the tension in the rope and the compression in the bar. 

2. A body weighs 10.0 grams when placed on one side of an **equar'-arm 

balance and 10.5 grams when placed on the opposite side. The beam is 

horizontal with no weights in the pans. Find the true weight of the body. 

Prove that the ratio of the arm lengths of the balance is \/i6.5/10. 

3. A tapering pole has its center of gravity one-third of its length from 

the thick end and weighs 50 lb. It is carried by two men supporting it at 

each end. Where must a 25-lb. weight be hung so that each of the men 

supports the same load? What is the upward force exerted by each man on 

the pole? 

4. A 20-ft. uniform plank weighing 80 lb. rests on a horizontal plane with 

5 ft. of its length protruding over the edge of the plane. How far out can a 

150-lb. man walk without tipping the plank? 

5. A cube 3 ft. on an edge weighing 100 lb. rests on a floor with one edge 

touching a cleat in the floor. At what height above the floor must a 60-lb. 

horizontal force be applied to just tip the cube? What is the force (magni¬ 

tude and direction) exerted by the cleat on the cube? 

6. A uniform ladder 20 ft. long and weighing 40 lb. leans against a smooth 

vertical wall and is inclined at an angle of 53° with the horizontal. The 

coeflScient of static friction between ladder and floor is 0.60. How far up 

the ladder can a 160-lb. man climb before it slips? 

7. Two uniform similar ladders 10 ft. long, each weighing 20 lb., are 

hinged together at the top and stand on a smooth floor with their ends 12 ft. 

apart. They are connected by a rope 3 ft. above the floor. 
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a. Find the push of the floor on each ladder. 
b. Find the tension in the rope. 
c. Find the force (direction and magnitude) exerted by one ladder on the 

other at the hinge. 
8. If in Prob. 7 a 50-lh. weight is placed on a step halfway up one of the 

ladders, find 
а. The push of the floor on each ladder. 
б. The tension in the rope. 
c. The force exerted by one ladder on the other at the hinge. 
9. The top of a ladder that weighs 100 lb. rests against a smooth vertical 

wall and the ladder makes an angle of 60° with the horizontal. What is the 
force of friction at the foot of the ladder? 

10. A door 3 ft. wide and 8 ft. high is supported by hinges 1 ft. from the 
top and bottom. ‘ If f of the weight of 200 lb. is supported by the lower 
hinge, what is the resultant force exerted by the door on each hinge? 

11. One end of a uniform rod weighing 20 lb. rests on a frictionless surface 
and the other end is supported by a nail. What are the magnitude and direc¬ 
tion of the force exerted by the nail? 

12. A ladder, length 10 ft. and weighing 50 lb., rests against a smooth 
vertical wall and is inclined at an angle of 60° with the horizontal. If the 
coefficient of static friction between the ladder and the horizontal surface 
on whi(;h it. rests is 0.40, how far can a man weighing 150 lb. climb up the 
ladder before it starts to slip at the bottom? Assume center of gravity of 
ladder is 4 ft. from lower end. 

13. A derrick ])oom is hinged at one end and supports a weight of 2,000 lb. 
at the other end. At the same end as the weight is a supporting cable which 
makes an angle of 60° with the vertical and in such a direction that the stress 
in the boom is a compression. If the boom is inclined at an angle of 30° 
with the horizontal, what is the tension in the supporting cable? Find 
the magnitude and direction of total force exerted on the boom by the hinge. 

14. A 50-lb. table, 4 ft. high and 8 ft. between its front and rear legs, is 
dragged lengthwise up a 30° inclined plane at constant velocity by a rope 
attached to the center of the top edge of the table. The center of gravity 
of the table is 1 ft. below the center of its top, the rope is parallel to the 
surface of the inclined plane, and the coefficient of friction between the legs 
and the plane is 0.3. 

Calculate the pull of the rope on the table and the components of the 
forces exerted by the plane on the legs of the table parallel to the plane and 
perpendicular to the plane. What are the direction and magnitude of the 
resultant force exerted by the plane on each leg? 

15. One end of a 40-lb. uniform beam 6 ft. long is hinged to a vertical wall. 
To the other end is fastened a 6-ft. rope which itself is fixed to the wall at a 
point 6 ft. above the hinge. A 60-lb. weight hangs from the beam at a 
point 4 ft. along the beam from the wall end. 

а. Calculate the tension in the rope. 
б. Calculate the resultant force exerted on the hinge by the wall. 
16. A circular ring weigliing 12 lb. rests upon three supports 120° apart. 

Find the least downward force which will cause the ring to leave one of the 
supports and where must it be applied? 
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17. A derrick boom is hinged at one end and supports a weight of 4,000 lb. 

at the other end. A supporting cable is attached to the end carrying the 

weight and makes an angle of 30° with the vertical in such a direction that 

the boom is under compression. If the boom is inclined at an angle of 45° 

with the horizontal, what is the tension in the supporting cable? What is 

the resultant force exerted on the boom by the hinge? 

18. A bar AB is 10 ft. long, weighs 30 lb., and has its center of mass 4 ft. 

from A, The bar rests with one end (A) on a smooth inclined plane making 

an angle of 30° with the horizontal and end B rests on a similar inclined 

plane making an angle of 45° with the horizontal. 

Calculate the force exerted by each plane on the bar and the angle which 

the bar makes with the horizontal. 

19. A 100-lb. table 6 ft. long and 4 ft. high slides down a 30° inclined 

plane with constant velocity. The center of mass of the table is 1 ft. below 

the center of the table top. 

a. Calculate the coefficient of friction between the table legs and the plane. 

h. Calculate the magnitude of the force exerted by the plane on the front 

legs of the table. 

20. An 80-lb. table is dragged along a floor at constant velocity by a 

horizontal rope attached to a point on the table 3 ft. above the floor. The 

distance between the le^ is 8 ft., and the center of mass of the table is mid¬ 

way between the front and rc^ar legs, 2 ft. above the floor. The coefficient of 

friction between the legs and floor is 0.20. 

a. What is the tension in the rope? 

h. What are the normal components of the push of the floor on each leg? 

21. A 15-ft. uniform ladder weighing 28 lb. is dragged along a horizontal 

floor by a man who pulls on one end 2.8 ft. above the floor, the other end 

resting on the floor. The coefficient of friction between ladder and floor is 

0.2. If the man drags the ladder with a constant velocity of 5 ft./sec., find: 

a. The horizontal and vertical components of the pull exerted by the man. 

h. The pull exerted by the man (magnitude and direction). 

c. The upward push of the floor on the ladder. 

22. A uniform beam 20 ft. long, weighing 50 lb., stands on one end leaning 

30° to the vertical, with a horizontal rope attached to the top end to maintain 

equilibrium. 

a. Make a force diagram showing the forces acting on the beam. 

h. Compute the unknown forces. 

23. A uniform bar 4 ft. long, weighing 10 lb., has two weights hung from 

its ends. One, a 10-lb. weight, is hung on a string 1 ft. long and the other, 

a 20-lb. weight, is hung on a string 2 ft. long. 

a. Where must the bar be supported if it is to maintain a horizontal 

equilibrium position? 

b. How far below the bar is the center of mass of the system? 

24. One end of a uniform 12-lb. rod is hinged to a horizontal surface, and 

the other end rests on a smooth 60° inclined plane. The rod makes an angle 

of 30° with the horizontal. Find the force exerted by the inclined plane 

on the rod. 

26. A 10-ft. uniform horizontal boom weighing 100 lb. is hinged at one 

end to a vertical wall. The other end is attached to a 12.5-ft. cable which 



STATICS OF RIGID BODIES 169 

is fastened to the wall at a point above the hinge. Weights of 200 and 50 lb. 

are hung from the boom 3 and 8 ft. from the wall, respectively. 

а. Find the tension in the cable. 

б. Find the magnitude and direction of the force exerted by the hinge on 

the boom. 

26. A 2,000-lb. truck of 120-m. wheel base has its center of mass at a 

point 50 in. back of the front wheels. The truck is at rest. 

a. Find the upward forces at the front and rear wheels. 

h. How far forward of the rear axle should a load of 3 tons be placed in 

order that the upward forces at front and rear wheels be equal? 

27. A uniform ladder 20 ft. long weighing 50 lb. rests against a smooth 

wall with its base 12 ft. from the wall. A horizontal rope is attached to the 

ladder and wall and is 4 ft. above the floor. The coefficient of static friction 

between ladder and floor is 0.2. 

Tf a 150-lb. man stands on the ladder 15 ft. from the bottom, find the 

tension in the rope and the push of the wall on the ladder. 

28. A 40-lb. chair is pulled along a floor with constant velocity by a 

horizontal force acting at a point midway between the rear legs at the 

height of the seat. The seat is 18 in. from the floor, and the center of mass 

of the chair is at the center of the seat. The distance between front and 

rear legs is 2 ft., and the coefficient of friction between the legs and the floor 

is 0.20. 

a. What force is needed? 

b. Find the horizontal and vertical components of the push exerted by 

each leg on the floor, 

c. What is the maximum height at which the force can be applied without 

tipping the chair over? 

29. A light rigid frame is in the form of a right triangle of base 15 cm. and 

altitude 5 cm. Small masses of 20 and 10 grams are placed at the ends of 

the 15-cm. side, the 20-gram mass at the comer where the angle is 90^^. 

If the frame is supported so that it can swing freely about the comer of 

the frame to which no mass is attached, find the angle which the hypotenuse 

will make with the vertical when the frame is in equilibrium. 



CHAPTER X 

PLANE DYNAMICS OF RIGID BODIES 

In the last chapter we confined ourselves to a study of the 
conditions which must be fulfilled if a rigid body free to move 
in a plane is held in equilibrium. Now we are prepared to 
extend our discussion to include the case of accelerated motion 
of such bodies. Again w’^e remind ourselves that the most general 
plane motion of a rigid body may be compounded of a motion of 
the center of mass of the body plus a rotation about the center of 
mass. The motion of the center of mass is calculated by replac¬ 
ing the whole body by a mass point of mass equal to the total 
mass of the body and calculating the motion of this particle under 
the action of all the external forces which act on the rigid body. 
Furthermore we have seen that it is convenient to think of two 
typical kinds of motion which a rigid body may perform: (1) pure 
translation in which the body moves as a whole, every point of 
the body performing the identical motion of every other point; 
and (2) rotation of the body about an axis perpendicular to the 
plane of the motion. We shall adopt the procedure of first 
discussing problems of pure translation, then turning to the 
study of pure rotation of a rigid body about a fixed axis, and 
finally combining these results to develop the general scheme for 
solving problems involving the general motion of the rigid, body. 

68. Translation of a Rigid Body.—When a rigid body moves in 
pure translation, the motion of any point of the body describes 
the motion of the whole body. In particular the motion of the 
center of mass of the body (coordinates x, y) is in any case 
determined by the equations of motion: 

sx = m'^) 
t <*> 

XY = M^\ 
at I 

where 2X and 2F denote the sum of the x- and ^/-components of 
all the external forces acting on the body, M the mass of the 

160 
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body, and Vx and Vy the x- and i/-components of the velocity 
of the center of mass. If the body moves in pure translation 
then there must be no rotation about the center of mass (every 
point of the body performs a motion identical with that of the 
center of mass), and hence the sum of the moments of the forces 
taken about an axis passing through the center of mass must be 
zero. Thus, for translation alone, we must satisfy the condition 
that the sum of the torques about an axis passing through the 
center of mass vanishes. 

sr = 0 (2) 

It must be emphasized that Eq. (2) refers to the moments of the 
forces about the center of mass and about no other point in the 

plane. As we have seen in Eq. (5) of Chap. IX, if the sum of the 
moments about the center of mass is zero, then this sum is zero 
when taken about another point if, and only if, there is no 
acceleration of the center of mass, t.e., if the body is in equilibrium 
and hence SX = SF = 0. 

To illustrate the use of the above equations let us consider a 
chair on a floor pushed by a horizontal force applied to the back 
at a point 4 ft. above the floor. Suppose the front and rear legs 
are 2 ft. apart and the center of mass is located at a point \ ft. in 
front of the rear legs and 1 ft. above the floor. The coeflicient 
of friction between chair legs and floor is 0.25. We wish to find 
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the greatest acceleration possible for the chair without tipping. 
Let the normal components of the push of the floor on the front 
and rear legs be Ni and iV2, respectively (Fig. 43). According 
to our equations of motion ^ 

hX = F — JJlNi —• = Mdx 
SF = iVi + ATs ~ = 0 

and taking moments about the center of mass, 

l.SATi - li^Ni - lMiV2 - 3F - 0.5^2 = 0 
whence 

SF = h5Ni - 0,5N2 - n(Ni + N2) 

From the second equation of equilibrium, 

Mg - N2; Ni + N2 = Mg 

and, using the value m = !> there follows for F, 

„ 1.5Mg - h5N2 - O.5N2 - 0.25M6^ 1.25Mg ~ 2N2 
F = -g^- 

and we see that, as the force F is increased from zero, the push 
on the rear legs decreases. Since the smallest value possible for 
^^2 is zero, the maximum force we may apply and still produce 
pure translation is 

Fmnz ~ y^Mg 

Inserting this value in our first equation of motion there 
follows 

(a*)_ = ft./sec.» 

Thus we see that it is possible to accelerate the chair with any 
acceleration up to ft./sec.^ without producing tipping. From 

this example we see that the weight of the chair does not influence 
this conclusion. A much smaller acceleration is possible if the 
force F is reversed in direction, everything else staying the same. 
The solution of this problem is left as an exercise for the student. 

69. Rotation of a Rigid Body about a Fixed Axis.—If a rigid 
body moves in pure rotation about a fixed axis, every mass point 
of the body performs circular motion about the axis. The linear 
velocities and accelerations of the various particles differ one 
from another, but as a consequence of the rigidity of the body the 
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angular velocity and the angular acceleration of every particle 
in the body are the same. Thus the motion of the whole body is 
described by the angle </> which some line of the body passing 
through the center of rotation 
makes with a fixed axis, e,g., 
the :c-axis, the angular velocity 
0) — d(l)/dty and the angular acceler¬ 
ation is a = d<x)ldt. We now 
proceed to a derivation of the 
equations of rotational motion. 
Consider any mass point nii of 
the body at a distance ri from 
the axis of rotation 0. Let the 
resultant force Fi acting on it 
make an angle 9i with ri (Fig. 44). The component of the 
acceleration of the point toward 0 is caused by the internal 
forces which hold the body together and does not interest us 
further. The tangential acceleration is determined by the 
external force. Since this acceleration is perpendicular to ri, 
we have 

Fi sin $i — m^ay 

and, since the tangential acceleration ay is related to the angular 
acceleration of the body by the equation 

O'It 

do) 

we may rewrite our equation of motion as 

rr • /i do) Fi sin $1 = miri-jr 
dt 

Similarly, for another point m2. 

F2 sin 62 

do) 

In exactly the same manner we may write an equation of motion 
for each mass point of the body, e.g.j for a mass point m*, 

Fk sin dk 
do) 
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If we now multiply both sides of the first equation by ri, of the 
second by r^, etc., and then add all the resulting equations, it 
follows that 

FiVi sin $1 + F2r2 sin 62 + sin ^3 + * * * 

= (mirf + ni2rl + m^rl + ' ' ‘ (3) 

or, written more concisely, 

'^P'r sin e = 

Or, in words: 
The sum of the moments of all the forces taken about the axis 

of rotation is proportional to the angular acceleration of the body; 
the proportionality factor is the sum of the mass of each mass 
point each multiplied by the square of its distance from the axis 
of rotation. 

It is customary to give special names to the terms in Eq. (4): 
the moments of the forces are also called the torques which 
we denote by the symbol T, and the term is called the 
moment of inertia of the body about the axis in question and is 
denoted by the symbol J. Thus we may write the equation of 

motion, Eq. (4), as 

rdo) 
T = I 

dt (5) 

We shall now prove the impor¬ 
tant theorem that the left-hand 
side of Eq. (5) is equal to the sum 
of the external torques, since the 
torques due to the interaction 
forces between the various mass 
points of the body add up to zero 

as a consequence of the third law of motion. Consider any two 
mass points mi and m2 at distances ri and r2 from the rotation axis 
0. Let Qi be the force which m2 exerts on mi and Q2 be the force 
which mi exerts on m2. The sum of the moments of these two 
forces about 0 is (Fig. 45) 

Fig. 45. 

— Qid + Qjjd = d(Q2 — Qi) 

and since according to -the third law Qi = Q2, this sum is zero. 
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Thus we see that the sum of the internal torques cancel in 
pairs, so that, when we add all the torques due to all the forces 
acting, we are left with the sum of the torques of the external 
forces only. Thus we may state: The rotational motion of a 
rigid body is determined completely by the external torques 
and is independent of the nature and magnitudes of the internal 
torques. This statement is valid (according to the above proof) 
for any system of particles whether they form a rigid body or not. 

60. Calculation of Moment of Inertia; Radius of Gyration.— 
The moment of inertia of a rigid body about a specified axis 
is a quantity dependent only on the body, independent of its 
motion, and for rotational motion plays the same part as that of 
the mass of a particle in translation. For a number n of discrete 
particles held together in a rigid structure, the moment of 
inertia about an axis is defined as 

n 
I = (6) 

and, if the positions of these masses with respect to the axis of 
rotation are known, the evaluation of the moment of inertia 
becomes a matter of simple (although perhaps very tedious) 
addition. Just as in the case of the calculation of the position of 
the center of mass of a body, it is convenient to treat most rigid 
bodies as continuous distributions of matter, of given shape and 
density. To calculate the moment of inertia of such a body about 
some axis, we imagine the body divided into a huge number of 
tiny elements, each of mass Ailf. If the mass AM is at a per¬ 
pendicular distance r from the axis of rotation, we have (in the 
limit as AM 0) 

I — lim Xr^AM = {rHM 
AM-^O ^ 

where the integration is to be extended over the whole rigid body. 
In order to carry out this integration, we place 

dM = p dF (8) 

where dV is the volume occupied by the mass dM, and p is the 
density of the body at that point. In the special but extremely 
important case where the body is homogeneous, i.e,, the density is 
constant, we have, besides Eq. (8), 

M = pF (9) 
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so that Eq. (7) may be written 

I = 4 p rHV (10) 

This is the form which we shall generally use in the actual 
evaluation of moments of inertia. 

To illustrate the procedure which must be followed, let us 
calculate the moment of inertia of a homogeneous slim rod of 
length L and mass M about an axis at right angles to the rod and 
passing through one end. We choose this end of the rod as an 
origin and let the :r-axis lie along the rod. The essential point 
in the calculation is to choose dV so that all points in it lie 
at the same distance from the axis. Thus, in this case, if we 
proceed along the rod a distance x from 0, at this distance wo 
take a volume element of length dx and cross section A {A is 
the constant cross section of the rod). If the cross-section 
dimensions are small compared to the length of the rod (and this 
is the case we arc considering), we may say that every point 
in the volume element dV = A dx lies at the same perpendicular 
distance x from the axis 0. Inserting this value of dV in Eq. 
(10), we have 

/ - dx - xMx 

where we have used V = AL and have inserted the limits of 
integration a: = 0 to x = L. The value of the integral is so 
that we obtain 

ML^ 
3 (11) 

as the moment of inertia of the rod about this axis. 
From our derivation it is clear that this holds only for a rod of 

small cross section, and in the case of a large cross section we 
would have to further subdivide the body into smaller volume 
elements since different points of the same cross section would 
then lie at different distances from the axis 0. 

As a second example let us calculate the moment of inertia of 
a homogeneous solid cylinder of mass M and radius R about its 
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axis of symmetry. This axis passes through the center of mass 
of the body. We must now subdivide the cylinder into volume 
elements such that all the points in each element lie at the same 
distance r from the axis of rotation. It is clear that such points 
lie in a cylindrical shell whose 
axis is coincident with that of 
the solid cylinder. In fact, we 
may think of the solid cylinder 
as composed of a huge number 
of cylindrical shells of different 
radii fitting tighfly one over the 
other, the outermost shell having 
a radius R and the innermost a 
radius zero. Thus our procedure 
is to calculate the moment of 
inertia of one of these shells, and 
then add these up (integrate) for 
all the shells. For this purpose, 
consider a cylindrical shell of radius r and thickness dr (Fig. 46). 
The volume of this shell is the area of its base times I, if I is the 
altitude of the cylinder. Thus 

dV == 2wrl dr 

and the total volume of the solid cylinder is 

V = wRH 

Inserting these values in Eq. (10) and integrating from r = 0 
to r = Rj there follows that 

I 
_M_ r 

wRHJo 
2'KlrHr = 

2M C 

R^Jo 

R 

rHr 

The value of the integral is i2V4, and hence 

so that the moment of inertia is one-half the mass of the cylinder 
times the square of its radius. For convenience we give without 
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proof as the moment of inertia of a solid homogeneous sphere of 
mass M and radius R about an axis passing through its center, 

2MR^ 
(13) 

It is often convenient to introduce a quantity known as the 
radius of gyration of a body about a specified axis. The meaning 
of this quantity is best described as follows: Consider a hoop 
or cylindrical shell of mass M and radius fc. Since all the mass 
of the body is at a common distance k from an axis passing 
through the center of mass, the moment of inertia about this axis 
is simply Mk^. Now suppose we consider some arbitrary rigid 
body whose moment of inertia about a specified axis is 7. The 
radius of gyration of this body about this axis is denoted by k and 
is defined by the relation 

Mk^ = 7 (14) 

where M is the mass of the body. From the above discussion 
we immediately see the significance of the radius of gyration. 
If we were to imagine a hoop or ring of mass equal to the mass 
of the body and radius equal to the radius of gyration, this hoop 
would have the same moment of inertia about its center as the 
original body has about its axis of rotation. Thus the radius of 
gyration is that distance from the axis of rotation where we 
could concentrate all the mass of the body and obtain the same 
moment of inertia as the actual body possesses about this axis. 

For the slim rod free to rotate about an axis through one end, 
we have 

Mkl, ML^ 
3 

according to Eq. (11), so that 

A: rod 

L 

\/3 
(15) 

For a solid cylinder about its axis of symmetry according to 
Eq. (12), 

Mkl - 
MR^ 

2 
so that 

R 

V2 
(16) 
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and for a solid sphere about an axis through its center 

k, - ViR (17) 

61. Relation of Moments of Inertia about Different Axes.— 
According to the definition of moment of inertia, its value 
depends on both the rigid body and the axis about which the body 
may rotate. There is an important relation between the moment 
of inertia of a body about an axis which passes through its center 
of mass and the moment of inertia of the same body about any 
other axis parallel to the first. This relation may be stated as 
follows: 

The moment of inertia of a rigid body about any axis is equal 
to its moment of inertia about a parallel axis passing through its 
center of mass, plus the product of the mass of the body and the 
square of the distance between the axes. 

m 

Let a be the distance between the axes and let us choose our 
origin 0 at the center of mass and the x-axis along the line joining 
0 and O'. Since our origin is the center of mass we have the 
relations 

Zmx = 0 and Smy = 0 (18) 

which follow from the definition of center of mass in Sec. 49. If 
we now fix our attention on any mass point m of the body at a 
distance r from 0 and r' from O', then, from the definition of 

moment of inertia, 
lo = 

/o' - (19) 

where /o and /q' are the moments of inertia about the axes at 0 
and O', respectively. From Fig. 47 we see that 

r'2 = (a - xY ^ -2ax + ^ -2ax 
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Inserting this value of in the expression for /o', there follows 
that 

/o' = — 'L2amx 

and, since a is a constant length, this may be written as 

/o' = — 2a'Lmx 

In the first term Sm is the sum of the masses of all the mass 
points in the body and hence is the total mass M, The second 
term is just /o according to Eq. (19), and because of the fact 
that 0 is the center of mass the last term is zero (Eq. 18). Thus 
we have 

/o' = + /, (20) 

which completes the proof. This theorem allows us to calculate 
the moment of inertia about any axis parallel to one through the 
center of mass in a simple manner if the moment of inertia about 
the latter is known. 

We may also express the result embodied in Eq. (20) in terms 
of the radius of gyration of the body. Let fco be the radius of 
gyration referred to the axis through the center of mass, and k' 

the radius of gyration of the body referred to the other axis. By 
definition, 

/o' = k^m and /o = km 

from which follows that 

^kl + a^ (21) 

There is one more point which should be mentioned in con¬ 
nection with the calculation of moments of inertia. Suppose 
we consider a rigid body as made up of several parts, let us say, 
three parts, which we label I, II, and III. Since the moment 
of inertia of the whole body is obtained by adding the quantities 

for all the mass points in the body, it is clear that we may 
first perform this addition for part I, then for part II, and 
finally for part III. Let the results of this calculation be A, /ii, 
and /ill. If we now add these three quantities together we 
obtain the total moment of inertia /, so that 

/ = /i + /ll + /hi 

or, in general, the moment of inertia of any rigid body may be 
obtained by adding the moments of inertia of the various parts 
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of which the body is composed. This is a convenient rule which 
may be illustrated in the case of a solid disk of mass ilf, radius 
with projecting hubs each of mass m and radius r. We may 
think of this body composed of three cylinders; the first a solid 
cylinder of mass M and radius and of two other solid cylinders, 
each of radius r and mass m. Thus the moment of inertia of the 
disk and hubs about the axis is given by 

/i + 7n + Iiu — 

An example of pure rotation follows. 

Example.—As an example of the application of the laws of rotational 

motion of rigid bodies, let us consider a uniform 

cylinder weighing 128 lb., 4 ft. in diameter, 

which is free to rotate about its own axis which 

is held fixed in a horizontal plane (Fig. 48). A 

weight hanging on a string which is wrapped 

tightly around the cylinder falls a distance of 

16 .ft. in 3 sec,, starting from rest. Required 

are the weight hanging on the cord, the tension 

in the cord, the torque acting on the cylinder, 

and the angular velocity of the cylinder at the 

end of 2 sec. 

First consider only the falling weight. It is 

acted on by two forces, the pull of the earth 

and the constant tension F in the cord. For a 

body starting from rest and moving with con¬ 

stant acceleration, we have 

5 = iaP 
so that 

16 = |a • 9 

or 
a ~ 32/9 ft./sec 2 

According to Newton's second law, we have for this body 

mg — F — m.a (!') 

where a is the constant downward acceleration of 32/9 ft./sec®. In this 
equation both m and F are as yet unknown. 

Now consider the cylinder. If we neglect friction in the bearings, the 

torque acting on it about its axis is T == Fr, where r is the radius of the 

cylinder. Note that the cord leaves the surface of the cylinder tangentially 

and hence at right angles to a radius. Thus we have 

T ^Fr ^ lot 

(2') 
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In this equation F and a are as yet unknown, r is known and I can be 

calculated from the given data. 

In Eqs. (!') and (2') we have three unknowns, F, m, and a, and we need 

one more equation to effect a solution. This is a geometrical relation 

between the angular acceleration of the cylinder and the acceleration of the 

falling weight. If the cord does not slip, the acceleration of a point on the 

cord must equal the tangential acceleration of a point on the circumference 

of the cylinder, and, furthermore, the acceleration of the weight is equal to 

that of any point of the cord. Thus, since at — ra, 

a = ra (3') 

Using this relation, Eq. (2') can be written as 

F = La (2") 

and, adding Eqs. (!') and (2"), we eliminate F. This yields , / 
mg — ma + (40 

The moment of inertia of the cylinder about its axis is 

2 2^112 ^ ® 

and hence Eq. (40 becomes 

from which 

and the falling weight is 

32,„ = 3|h 2 X ^ 

m — \ slug 

mg = ~- = 8 lb. 

The tension in the cord is most easily calculated from Eq. (2'0 as 

-7.11b. 

and the torque acting on the cylinder is 

r = /fV = 7.1 X 2 = 14.2 lb .-ft. 

To calculate the angular velocity when t = 2 sec., we remember that the 

angular acceleration is constant and that the cylinder starts from rest. 

Then 

so that 

oi — at 

16 
X 2 3.55 radians/sec. 

62. Energy Relations for Rotation.—We now shall investigate 
the expressions for the kinetic energy and for the work done by the 
forces acting on a rigid body which is free to rotate about a fixed 
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axis. Consider a particle mi of the rigid body at a distance 
ri from the axis of rotation. Its speed is 

v\ = rio) 

where o) is the angular velocity of the rigid body about this axis 
(the common angular velocity of all the points of the body). Its 
kinetic energy is by definition 

= \mivl = 

Similarly, for a second particle at a distance 

[K.E.)2 — \rn2v\ = 

with a similar expression for each mass point in the body. 
Now the total kinetic energy of the body is equal to the sum 
of the kinetic; energies of all the particles of which it is composed, 
so that we have 

K,PL = + m2r2 + m^rl + • • • ) 

or more concisely 

K.E, = |(Zmr2)co2 = \Io^^ (22) 

We now are in a position to derive the work-energy theorem 
for rotating rigid bodies. We start with the equation 

where T is the resultant torque (sum of all the torques) and 
I the moment of inertia about the axis of rotation. In time 
dt^ the body turns through an angle d(t>. Multiply both sides 
of this equation by and it becomes 

Td4> I^d4> = Ida, 
at dt 

Now d(l)/dt — 0) from the definition of angular velocity so that 
we have 

T d<i> = /o) do) (23) 

The left-hand side of the equation is the work done by the 
external torques when the body rotates through a small angle 
d(i>. If we wish the total work done by these torques when the 
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body rotates from an initial angle <t>f, to an angle <t>, we must 
integrate Eq. (23) from </>o to <l>. Thus 

w = rv d<t> = r“7co dco = 7 r<o do, 
•/uo 

where a?o is the initial angular velocity (at <^>o) and co the angular 
velocity at the position <t>. Carrying out the integration on the 
right-hand side, we find 

W = rr d<t> = llo,^ - ^0,1 (24) 

which is the work-energy theorem since the right-hand side is the 
increase of kinetic energy of the body. In the special case of a 
constant torque Eq. (24) takes the form 

T{(f) — <t>o) == (24a) 

We can use these results to check the answers we obtained 
to the example of the last section. There we found that the 
falling weight had an acceleration of ^ ft./sec.and hence, in 
2 sec. from rest, it descended a distance 

s = i • ^9^ • 22 = 7.1 ft. 

Thus 7.1 ft. of the string are unwrapped from the cylinder in 
this time. When the cylinder turns through an angle d</>, a 
length of string ds = R d4> becomes unwrapped so that we have 

or 
5 = R((l> — (t>o) 

7.1 ft. 
2 ft. 

= 3.55 radians 

Since the system starts from rest, wo = 0 and the torque is 

T = 14.2 Ib.-ft. 

and the moment of inertia 7 = 8 slug-ft.^. Since the torque is 
constant, we may apply Eq. (24a) and obtain 

(14.2)(3.55) 
8^ 
2 

(7.1)2 

4 
CO = 3.55 radians/sec. 

which checks the result found by other methods. 
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Another method of finding this result is as follows: The sum of 
all the forces which may do work on the system (cylinder and 
hanging body) is just the weight of the hanging body. In 
descending a distance of 7.1 ft. this force of 8 lb. does an amount 
of work equal to (7.1) (8) ft.-lb. Now this must be equal to 
the total gain of kinetic energy of the system, so that 

(7.1)(8) - imv^ + 

Now, V = at = (V)2 ft./sec., where v is the velocity of the 
falling body at the end of 2 sec., so that 

(7.1)8 = I • A • + 4co2 
= 12.6 

0) = 3.55 radians/sec. 
as before. 

63. Combined Translation and Rotation.—We are now pre¬ 
pared to examine the most general plane motion of a rigid body. 
As we have repeatedly emphasized, the most general motion can 
be thought of as a combination of translation of the center of 
mass in a plane and of rotation about an axis perpendicular to 
this plane and passing through the center of mass. We have 
already discussed in some detail each of these motions separately 
and there remains only the task of combining our results. The 
motion of the center of mass is determined by Eqs. (1), Sec. 58, 
and these are 

X = 

f (25) 
Y = M^\ 

ctt / 

and the equation for rotation about an axis through the center of 
mass is given in Eq. (5) which we now write as 

using /o to indicate that the rotation is taken about the center 
of mass. 

Equations (25) and (26) form the complete set of equations of 
motion, and we shall now proceed to illustrate their use in dis¬ 
cussing the motion of rolling bodies. If a body rolls without 
slipping, there is a definite relation between the angular motion 
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of the body about its center of mass and the linear motion of its 
center of mass. Let us formulate the condition for rolling for 
the case of a symmetrical body such as a cylinder or sphere 
rolling on a horizontal plane. If the body rolls without slipping, 
then each point of the circumference comes in contact with a 
different point of the horizontal plane. Thus, while the body 
makes one complete revolution about 0, the point of contact P 
progresses to the right a distance equal to the circumference of 
the circle, or 2TrR. Now the center of mass 0 is always located 
directly above the point of contact so it also moves to the right a 
distance 2TrR, In general if the body rotates through an angle 
d(l) in time dtj a point on its circumference moves a distance 
ds = R d(t> and this is equal to the distance moved by the center 
of mass in this same time dt. Thus we have as the general 
condition for rolling (without slipping) 

ds == Rd(t> (27) 

where ds is the distance the center of mass moves parallel to 
the surface on which the body rolls and d<l> is the angle turned 
through by the body in the same time. If we divide each side 
of Eq. (27) by the time dt^ it follows that 

or 

ds d<i> p , 

V = Ro) 

(28) 

Finally, if we differentiate this equation with respect to 

dv _ 
dl ~ 

(29) 
or ^ 

a ~ Ra ^ 

so that the center of mass has an acceleration equal to the radius 
R times the angular acceleration of the rolling body. Any one 
of the three conditions as expressed by Eq. (27), (28), or (29) 
is sufficient to establish the fact that the body rolls without 
slipping. 

Let us take as an example the case of a homogeneous cylinder 
rolling on a horizontal plane under the action of a horizontal 
force F whose line of action passes through the center of the 
cylinder, and the friction force necessary to cause rolling. If we 
take the direction of F as the +x-axis, then the friction force / 
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acts in the negative a;-direction (Fig. 49). The equation of 
motion for the translation of the center of mass is, according 
to Eq. (25), 

F -f = (30) 

and, since there is no ?/“Component 
of acceleration, we need not write 
the other equation for translation. 

The equation for the rotational 
acceleration about 0 is, according b 

T ^fXR ^ 

and, since Iq = ^MR‘\ this equation may be written as 

or 

f 

The condition for rolling [Eqs. (29)], however, is 

dvjg do) 

H ~ ^~dt 

so that 

/ - (32) 

If we now insert this value of the friction force in Eq. (30) we 
find 

or 

F . (33) 

so that the translational acceleration of a rolling cylinder is 
two-thirds as large as it would be on a perfectly smooth surface 
under the action of the same force F, since then we would have 
pure translation. 

64. Instantaneous Axis for Rolling Bodies.—In the last section 
we have discussed the motion of a rolling body as a translation 
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of its center of mass plus a rotation about this center. There is 
another important method of discussing the motion of a rolling 
body (or, in fact, of any rigid-body motion) which depends on the 
fact that at any instant of time the body is rotating about a 
definite axis. To show that this is so, let us fix our attention on 
the cylinder of the last section and calculate the velocity of the 
point P, a point on the circumference of the cylinder which is in 
contact with the plane at the instant of time under consideration. 
Relative to the moving center of mass 0, this point has a velocity 
— coP (in the same direction as/), and, since the center of mass 
itself has a velocity in space equal to v, the velocity of the point P 
in space is 

Vp = V — Ro) 

and from our condition for rolling without slipping [Eq. (28)] this 
is zero. Thus we have shown that, when any point P on the 
(drcumference of the cylinder comes in contact with the plane, 
its velocity in space is zero. It is easy tq see that only those 
points which are in contact with the plane have zero velocity, and 
these lie in a straight line perpendicular to the paper at P (Fig. 
49). Thus we have the situation that all the points on one 
straight line in a rigid body have zero velocity while all other 
points in the body have velocities other than zero. Clearly this 
is a rotation about the straight line through P. Thus we have 
shown that the rolling of a cylinder is a pure rotation about an 
axis passing through the point of contact of cylinder and plane. 
Since this point of contact is not fixed in space during the motion, 
we call the axis of rotation an instantaneous axis of rotation. 

We shall now prove the important result that the angular 
velocity (and angular acceleration) of the body about the 
instantaneous axis P is equal to the angular velocity (and 
angular acceleration) about 0. Let w' be the angular velocity 
about the instantaneous axis P at any instant of time. The 
linear velocity of the point 0, which is a distance R from this axis, 

is 

Vo = Pw' 

Now from Eq. (28) the linear velocity of the point 0 is related 
to the angular velocity w of the body about an axis through 0 

bv the equation 
Vo == Pco 
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so that 
* 0) = 0)' 

If we differentiate this equation with respect to t, it follows that 

a — a* 

Let us apply these considerations to calculate the acceleration 
of the cylinder in the last section, considering the motion as pure 
rotation about P. We then have 

(34) 

f.c., the sum of the torques about P is equal to the moment of 
inertia about P times the angular acceleration. The sum of the 
torques is 

'^Tp = FR 

and we can calculate the moment of inertia about P with the help 
of Eq. (20). Since the distance between P and 0 is P, this 
yields 

= Jo + MR^ = = ^mR^ 

Inserting these values in Eq. (34), it follows that 

f X R . |mr=| 

and, since R-^ 

x-axis, 

dvx 

dt’ 
the linear acceleration of 0 along the 

F = -M^ 
2 dt 

which is identical with the result of our calculations of Sec. 63, as 
expressed in Eq. (33). 

66. Energy Relations for Combined Translation and Rotation. 
We shall now derive an expression for the kinetic energy of a rigid 
body. Let v be the velocity of its center of mass at any instant of 
time and let us take its direction as that of the :r-axis. Further¬ 
more, at this instant let the angular velocity of the rigid body be 
0), Consider any particle of the body m at a distance r from 
0. The velocity of this particle with respect to the center of 
mass 0 is t;' = rw, and this vector makes an angle <l> with the 
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^-direction as shown in Fig. 50. This velocity vector has 
components ^ 

r' = ro> sin <l> 
Vy = — roj cos (t> 

Now the particle m has a velocity v in space, which is the sum 
of the velocity of 0 (v) and its velocity (v') with respect to 0. In 

component form this is 

Va; = V + = V + ro) sin 
^t/ = 0 + Vy = —rco cos </> 

The kinetic energy of this particle is, by definition, 

im(v^ + Vy) — jmv^ + ~2mr^aj“(sin^ + ^*os- <^) + sin 

To get the total kinetic energy of the body we add up over all 
particles in the body, obtaining 

K,E, — + wi;(2mr sin <i>) 

Now . 

Sm = M 

the total mass of the body; and 

= Jo 

the moment of inertia about the center of mass 0; ♦ 

Smr sin 4> = 'Lmy * 0 

since the origin 0 is the center of mass, and our expression reduces 
to 

K,E. = iilft?* + |/oco2 (35) 

Or, in words: 
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The kinetic energy of a rigid body is equal to the kinetic energy 
of a particle of mass equal to the mass of the body moving with 
the center of mass plus the kinetic energy of rotation about the 
center of mass. 

The work-energy theorem and the principle of conservation of 
mechanical energy hold unchanged if we use Eq. (35) for the 
kinetic energy. To understand this we must remember that the 
most general displacement of a rigid body in a plane is the sum 
of a displacement ds of the center of mass and an angular dis¬ 
placement d(t> of the body about an axis through the center of 
mass. The work done in the displacement ds is 

and that done in the displacement d<t> is, according to Eq. (23), 

(XT)d(l> 

Since the first expression equals the change in translational 
kinetic energy, and the second equals the change in rotational 
kinetic energy, it follows that the total work done by all the 
external forces equals the change in the total kinetic energy of 
the body. 

In the special case of rolling without slipping these relations 
become much simpler. Consider a symmetrical body such as 
a wheel rolling on a plane (inclined or horizontal). Let R be 
the distance from the center of mass to the plane. Its kinetic 
energy is, according to Eq, (35), 

K,E. = 

and, since it rolls without slipping, 

V 

Inserting this value of w in the expression for kinetic energy, it 
becomes 

K.E. - + i7.| - (36) 

and, if fco is the radius of gyration about the center of mass, this 
is 

K.E. - + I) (36o) 
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We shall now show that for a rolling body the friction force 
necessary to produce rolling is not a dissipative force and that 

it acts as a converter of transla¬ 
tional into rotational energy. To 
fix our ideas, let us suppose the 
rigid body rolls down an inclined 
plane making an angle ^ with the 
horizontal (Fig. 51). Choosing 
the x-axis parallel to the plane, 
there are two a:-forces acting: 
mg sin ^ down the plane and the 
friction force / up the plane. 
The sum of the ^/-components of all 
the forces is zero, so we need not 

consider them further. Suppose the center of mass 0 moves a 
distance ds down the plane. During this displacement the body 
rotates through an angle d<t> = ds/R. The work done in the 
displacement ds is 

(mg sin ^ — f)ds 

and that done in the displacement d(p is 

Td<t> = (JR)d<t> = / ds 

so that the total work done on the body is the sum of these two 
expressions 

dW = mg sin /3 ds — / ds + / ds = mg sin ^ ds 

an expression which no longer contains the friction for(;e /. If 
the body rolls a distance s down the plane, the total work done 
on it is 

mg sin s = mgh 

where A == s sin /3 is the vertical distance through which the body 
falls and is the decrease in potential energy of the body. Sup¬ 
pose now that the body starts from rest. After moving this 
distance s, its kinetic energy is equal to the gain of kinetic energy 
so that we have 

1 / 

mg sin |8 s = ^v^\l + ^ 

Hence its velocity v at any point s from the start is given by 
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2g sin 

1 + M. 
(37) 

If we compare this expression with that for the velocity of a mass 

point moving with a constant acceleration dv/dt = a, and 

starting from rest 

= 2as 

we see that the body rolls down the plane with an acceleration 

g sin ^ 

1 + 
(38) 

(39) 

For a cylinder where kl = \R^, this becomes 

ac = Ig sin /3 

and for a sphere where kl = ^R^, we have 

a, = ^g sin (3 (40) 

Thus we see that we may apply the principle of conservation of 

mechanical energy to such a motion 

and hence that the friction force 

which produces rolling does not 

dissipate mechanical energy. 

66. Rolling and Sliding.—In this 

paragraph we shall consider an ex¬ 

ample of rigid-body motion in which 

both sliding and rolling occur. Sup¬ 

pose a sphere or wheel is projected 

along a horizontal surface with an initial linear velocity vu and 

with an initial angular velocity coo, so that it starts sliding along 

the surface (Fig. 52). We consider the case when coo tends to pro¬ 

duce rolling opposite to the direction of motion. The friction 

force is —fiMg and is the only unbalanced force acting. Hence 

jx M9 

Fig. 52. 

-nMg = 

dv 
dt 

or 
dv 
Tt= 

(41) 

Furthermore the friction force exerts a torque action about an 
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axis through the center of mass 0. This torque is 

T = ~^MgR 

and, if the radius of gyration about the axis in question is ky 

■nMgR = km~ 

whence 

Adding Eqs. (41) and (42a) we find 

^.{v + Rm) = ~ixg\ 

Sliding ceases when v + Ro) = 0, since v + Ro) is the forward 

velocity of the lowest point of the body. Integrating Eq. (43), 

we find 

V + R(j3 — (vo + Rcoo) — 

and this is zero when 

t =.(44) 

After this interval of time, sliding ceases. For this value of t 

we obtain the velocity of the body by integrating Eq. (41) 

V = e^o — txgt 

__ Vo “f" i?COo 
- To - - ^2 

which may be written 

+ i?2\ 

SO that the motion may be either backward or forward after 

sliding stops. If Vo > k^ico/R, the body continues to roll in the 

same direction with the velocity fJ, and if vo < k^m/R) it returns 

to its starting point with this velocity v. 
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For a ring, and we have 

^rin« = ~ i^Wo) 

as the velocity of the center of mass when slipping stops. 

For a sphere 

P = IR^ 

so that 

^sphere = “ f-RcOo) 

The case where coo tends to produce rolling in the direction of va 

is left as an exercise for the student. 

Problems 

1. The center of mass of an automobile is 2 ft. above the ground and 4 ft. 

back of the front axle. The brakes when applied lock the front wheels 

without affecting the rear wheels. It is stated that the automobile can be 

brought to rest in a distance of 50 ft. without having the rear wheels leave 

the ground. What is the maximum speed for which this statement is true? 

2. A 2-ton automobile has a wheel base of 11 ft. and its center of mass is 

halfway between the front and rear wheels and 3 ft. off the ground. 

a. What is the maximum acceleration which the car may attain without 

having the front wheels leave the ground? 
h. What is the traction force? 

c. What is the minimum value of the coefficient of friction between the 

wheels and the ground which will allow this motion? 

d. Calculate the upward push on each of the rear wheels and also the 

total force exerted by the road on these wheels. 

3. A 100-lb. bench 3 ft. high with its legs 4 ft. apart has its center of 

gravity at the center of the top of the bench. It is pulled up a 30® incline 

at constant velocity by a horizontal force F acting at the center of mass. 

The coefficient of friction is 0.20. 

a. Calculate the force F, 
b. Calculate the normal force on each leg. 

c. Calculate the total force exerted by the incline on each leg. 

4. Prove by means of a direct integration that the moment of inertia of 

a thin rod of length L and mass M free to rotate about an axis perpendicular 

to the rod and passing through the center of mass is ^ ML®. If the axis 

passes through one end of the rod, prove that the moment of inertia is \ML^. 
5. Find the moment of inertia of a hollow cylinder of mass M, inner 

radius Ri and outer radius R%. 
6. A 2,400-lb. automobile is driven at a speed of 48 ft./sec. around a 

curve on a horizontal road, the curve being an arc of a circle of 128-ft. 

radius. The lateral distance between wheels is 5 ft., and the center of mass 

of the car is situated in a vertical plane halfway between the left and right 

wheels and is 2.5 ft. off the ground. 
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a. Calculate the vertical component of the push of the road on the wheels 

nearer the center of the curve. 

b. What is the maximum speed with which this car can round the curve 

without tipping over, assuming sufficient friction to prevent skidding? 

7. A slim rod has a density which varies proportionally to the distance 

from one end. The density at one end is twice that at the other end. Thus 

the density at a point x is p 

By integration calculate an expression for the moment of inertia of this 

rod about an axis pavssing through one end (the one of smaller density) and 

perpendicular to the length of the rod. 

Express your answer in terms of Jl/, the mass of the rod, and L, its length. 

8. A flywheel weighs 64,000 lb. and has a radius of gyration of 10 ft. 

a. What constant torque will bring it up to a speed of 300 r.p.m. in 2 min. 

from rest? 

b. What is the angular acceleration? 

c. How much work is done in getting it up to speed? 

d. How many revolutions does the wheel make in the 2 min.? 

9. A vertical steel tank used as a centrifuge is to be set in rotation about 

a vertical axis through its center. The radius of the tank is 2 ft. The top 

and bottom weigh 96 lb. each, and the cylindrical portion weighs 192 lb. 

About how long a time is required to bring it up to a speed of 1,200 r.p.m. 

by a 10-hp. motor? 

10. A lO'lb. block is pulled up a frictionless S7° inclined plane by a string 

parallel to the plane. The string passes over a pulley weighing 28 lb. whose 

radius of gyration is l/\/2 times its radius and a weight of 16 lb. hangs on 

the free end of the string. 

а. Calculate the acceleration of the hanging weight. 

б. Calculate the tension in the part of the string between the hanging 

weight and the pulley. 

c. Calculate the tension in the part of the string between the block on the 

plane and the pulley. 

11. Two solid disks A and B are mounted on a light shaft free to rotate 

about a fixed horizontal axis. Disk A weighs 6 lb. and is of radius 8 in., 

and disk B weighs 4 lb. and has a radius of 4 in. Strings are wrapped 

tightly around the surfaces of the disks leaving the disks on opposite sides 

of the shaft. On each string is hung a weight of 2 lb. These two suspended 

weights start from rest, and both are initially 4 ft. above the floor. 

a. Which weight will descend? 

b. How long does it take for one of the weights to reach the floor? 

c. How fast is each moving at this instant of time? 

12. The moment of inertia of a wheel and axle is 20 slug-ft.®. When 

acted on by a constant external torque it speeds up from 600 to 1,200 r.p.m. 

in 1 min. If the external torque is then removed the wheel comes to rest 

in 15 min. 

а. Find the angular acceleration and the angular deceleration of the wheel. 

б. Find the external torque acting for the first minute and the value of the 

torque due to friction, (Assume the latter constant.) 

c. How many revolutions does the wheel make in the first minute? in the 

last 10 min.? 
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d. How much work is done by the friction torque in bringing the wheel 

to rest? 

13. A wheel is mounted on an axle weighing 32 lb. and 4 in. in diam¬ 

eter. A rope is wrapped around the axle and a weight of 40 lb. hangs at 

the end of the rope. If the weight descends a distance of 150 ft. from rest 

in 5 sec., what is the moment of inertia of the wheel? 

14. A solid cylinder 8 in. in diameter and weighing 30 lb. is free to rotate 

about a fixed horizontal axis. A rope is wrapped around the cylinder and a 

weight of 5 lb. hangs freely at the end of the rope. If the system is initially 

at rest, what will be the angular velocity of the cylinder when the 5-lb. weight 

has fallen a distance of 25 ft.? 

16. An Atwood's machine consists of a pulley in the form of a solid disk 

of mass M. When masses mi and m2 are attached to the ends of the string 

running over the pulley, show that mi descends with an acceleration 

mi — m2 a=.- 

mi -f W'2 -h “2 

16. Masses of 200 and 400 grams are connected by a light cord which 

passes over a frictionless pulley of radius 10 cm. The downward accelera¬ 

tion of the 400-gram weight is found to be 100 cm./sec. ^ Assuming that 

the cord does not slip, calculate the moment of inertia of the pulley. 

17. An Atwood's machine consists of a frictionless pulley of radius 10 cm. 

Masses of 60 and 40 grams are attached to the ends of the string running 

over the pulley. The larger mass is observed to descend 49 cm. in 2 sec. 

from rest. 

a. What is the moment of inertia of the pulley? 

h. Find the pull of the string on the 40-gram mass. 

18. A uniform rod 6 ft. long rotates about an axis through one end. It is 

held in a horizontal position and then released. Find the linear velocity of 

the free end when it passes through the lowest point. 
19. A pencil 8 in. long is stood on end on a table and allowed to tip over. 

If the bottom point does not slip, find the velocity of the tip of the pencil 

when it hits the table. 

20. A 64-lb. sphere 3 in. in radius rolls along a horizontal floor with a 

constant velocity of 8 ft./sec. 
a. Find its translational and its rotational kinetic energy. 

h. How far would this sphere roll up a 30° incline? 

c. How long would it be on the inclined plane? 

21. A 3-kg. uniform solid cylinder rolls on a horizontal table under the 

action of a horizontal force whose line of action passes through the center of 

the cylinder. The force is exerted by a rope which passes over a light fric¬ 

tionless pulley, and a 400-gram body hangs at the end of the rope. If the 

system starts from rest, what is the velocity of the center of mass of the 

cylinder when the 400-gram body has descended a distance of 40 cm.? 

What is the tension in the rope? 

22. A uniform solid cylinder rolls up a 30° inclined plane. If its transla¬ 

tional velocity is 16 ft./sec. at the bottom of the plane, how far from the 

bottom of this plane does the cylinder come to rest? What is the time 

required to travel this distance? 
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23. On a loop-the-loop apparatus a sphere is released at a height h above 

the lowest point of the circle. Show that the smallest value of /i, such that 

the sphere does not leave the framework at the highest point of the circle, 

is HRf where R is the radius of the circle minus the radius of the sphere. 

24. A sphere, mass 100 grams, rolls without slipping on the inside of a 

vertical circle. If the sphere is released fiom rest at the end of a horizontal 

diameter, what are the magnitude and din^ction of the force exerted on the 

circular framework by the sphere at the lowest point of the circle? 

25. A thin uniform rod of mass 600 grams and length 1 meter is free to 

rotate about a fixed horizontal axis through one end of the rod. Two mass 

points, each of mass 250 grams, are attached to the rod, one at a position 

20 cm. from the axis and the other 80 cm. from the axis. The rod is held in a 

horizontal position and released. Calculate the speed of each particle 

when the rod makes an angle of 30° with the horizontal. 

26. A hoop of radius 20 cm. is free to rotate about a horizontal axis 

perpendicular to the plane of the hoop and passing through its rim. The 

mass of the hoop is 1 kg. 

a. Find the moment of inertia of the hoop about this axis. 

h. If the hoop is at rest when its center is directly above the axis, find its 

angular velocity and acceleration when the center is at the same level as the 

axis, and find the force exerted on the axis when the center is directly below 

it. 

27. Two solid spheres are fixed at opposite ends of a slim rod of length 

100 cm. and mass 500 grams. The rod is free to rotate in a vertical plane 

about an axis passing through its center. The spheres are 10 and 20 cm. in 

diameter and have masses of 2 and 8 kg., respectively. 

а. Calculate the position of the center of mass of the system. 

б. If the rod is held in a horizontal position and released, calculate the 

speed of the center of each sphere when the rod makes an angle of 37° with 

the vertical. 

28. A solid homogeneous cylinder and a hollow cylinder of the same radius 

start rolling together from rest at the top of an inclined plane 24 ft. high 

and 40 ft. long. 

а. Which cylinder reaches the bottom of the plane first? How long does 

it take? 

б. What is the separation of the cylinders when the faster one reaches 

the bottom? 

29. A 104b. uniform disk of 1-ft. radius is mounted so that it is free to 

rotate in frictionless bearings about a horizontal axis perpendicular to the 

plane of the disk and passing through its center. A 14b. small mass is 

rigidly attached to the rim of the disk and is initially held at rest in a position 

such that the radius from the center to the 14b. body lies above the hori¬ 

zontal at an angle of 30°. The system is released from rest. 

o. Calculate the speed of the 14b. body as it passes through the lowest 

point of its path. 

h. Calculate the force exerted by the bearings on the rotating system when 

the 1-lb. body is at the lowest point of its path. 

80. A sphere rolls on the inside of a vertical circular track and rolls conl- 

pletely around the track. If the normal push of the track on the sphere is 
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F% at the bottom point of the circle and is Fi at the top point, show that 

F2 — Fi = ^mgy where mg is the weight of the sphere. 

31. A sphere of mass M rolls on the inside of a vertical circular framework. 

If it starts from rest at the end of a horizontal diameter, show that the normal 

component of the force exerted on the sphere by the framework when the 

sphere is at the end of a diameter making an angle </> with the vertical is 

N = N^Mg cos <i> 

32. How much work is done by a horizontal force applied to an axle 

passing through the center of a solid cylinder weighing 10 lb. in rolling it up 

a plane 12 ft. long inclined 30° with the horizontal? The velocity of transla¬ 

tion of the center of mass is 6 ft./sec. at the bottom of the plane and 10 ft./sec. 

at the top of the plane. 

33. A sphere rolls down a 30° inclined roof. If it starts from rest at a 

point 17.5 ft. from the edge of the roof and the edge of the roof is 26 ft. 

above the ground, where is the point where it strikes the ground? 

34. A brass disk is 1 in. thick and 6 in. in diameter and has projecting 

hubs 2 in. in diameter, each 2 in. long. Two strings are wrapped about the 

hubs and their ends fastened to a ceiling. The disk is then allowed to fall 

and starts rotating as the string unwinds. What is the downward velocity 

of the disk 3 sec. after it starts to fall? How far does it fall in the next 

second? 

35. A cylindrical spool of mass M has a cylindrical axle d cm. in diameter, 

I cm. long, and disks D cm. in diameter and L cm. thick. Its moment of 

inertia about its figure axis is /. A string is wound about the axle and leaves 

the bottom of the axle at an angle <i> with the horizontal. The spool is 

rolled along by exerting a force F on the string. Discuss the ensuing motion, 

distinguishing among the various possibilities. 

36. A wheel rolls along the ground with a constant velocity of its center 

of mass of 10 ft./sec. Find the velocity of the points on the rim at both 

ends of the vertical diameter and the horizontal diameter 

a. Relative to the center of the wheel. 

b. Relative to the ground. 

Sketch the path of a point on the rim during a complete revolution of the 

wheel. 

37. A uniform rod 2 ft. long rotates freely in a vertical plane about an axis 

through one end. On the other end is a fixed body of mass equal to that 

of the rod. If the velocity of this body at the bottom point of its path is 

three times as great as its velocity at the top point, calculate this latter 

velocity. 

38. A spool consisting of two disks each of mass 100 grams and radius 

10 cm., connected by an axle of mass 20 grams and radius 5 cm., rests on a 

30° inclined plajne. A string is wrapped around the axle, leaving the axle 

on its top side and passing over a frictionless pulley of negligible moment of 

inertia at the top of the plane. On the end of the string hangs a 100-gram 

body. If the spool rolls, calculate how long it takes for the hanging weight 

to descend a distance of 70 cm. from rest. 
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39. Solve Prob. 38, if the string leaves the axle on its bottom side. 

40. A 4-lb. block is pulled on a horizontal table by a string which passes 

over a smooth pulley and is wrapped around the rim of a 16-lb. wheel of 

radius 8 in. The radius of gyration of the wheel is 4 in., and the coefficient 

of friction between the block and table is 0.5. The system starts from rest, 

and the string unwinds from the wheel starting it rotating as it falls. How 

fast is the block moving when the wheel has falhm a distance of 5 ft.? How 

far has the block gone in this time? 

41. The fixed pulley of an Atwood^s machine has a mass of 600 grams, a 

radius of 8 cm., and a radius of gyration about its axis of 6 cm. One end of 

the string passing over this pulley is wrapped around the surface of a 500- 

gram thin hollow cylinder. A 200-gram body is hung on the other end of 

the string. What is the acceleration of the center of the hollow cjdinder? 

What is the acceleration of the 200-gram weight? 

42. Two inclined planes stand back to back. On the plane of angle di 
is a cylinder of mass M, radius R; on the plane of angle di is a block of mass 

m. They are connected by a string passing over a frictionless pulley of 

negligible moment of inertia at the top of the planes, and the line of action 

of the string passes through the center of mass of the cylinder. The cylinder 

rolls, and the coefficient of friction between block and plane is ju. Prove 

that, if 

m sin 02 > ptni cos 62 -f- M sin 

the block will descend, and that, if 

M sin 01 > fim cos 02 -b m sin 02 

the cylinder will roll down the plane. 

43. A spool with wheels of radius R2 and an axle of radius Ri rests on a 

horizontal table. A string wrapped around the axle leaves the underside 

at an angle of 0 above the horizontal. Prove that, if cos 0 > Ri/Ra the 

string will unwind and, if cos 0 < Ri/Riy it will wind up. 

44. A homogeneous sphere of radius R is projected up along an inclined 

plane of angle a with an initial angular velocity o>q and initial linear velocity 

The coefficient of friction is Discuss the motion following the 

argument of Sec. 66. 

45. A homogeneous sphere of radius r is placed on top of a large fixed 

sphere of radius R and rolls on it without slipping. If the rolling sphere 

starts from rest at the top point: 

a. Find an expression for the speed of the center of the rolling sphere 

when it is a distance h below the starting point. 

b. Find an expression for the angular velocity of the sphere at the above 

position. 

c. For what value of h will the small sphere leave the surface of the large 

one? 



CHAPTER XI 

SPECIAL RIGID-BODY MOTIONS 

In this chapter we shall bring to a conclusion our study of 

rigid-body motions, and, although we shall confine our attention 

to certain special kinds of motion, it will be necessary in so doing 

to generalize the concepts introduced in the previous chapter. 

The first part of our study will take up certain problems of pure 

rotation about a fixed axis under the action of a variable torque, 

leading us to so-called angular harmonic motion w^hich is the 

rotational analogue of simple harmonic motion. The second 

part of the work will be concerned with the simplest kind of 

rigid-body motion in which we drop the restriction that we 

have plane motion of the body. It is in this latter connection 

that it will be necessary to extend our definition of torque and 

angular velocity so that the vector nature of these quantities is 

brought to light. 

67. The Physical Pendulum.—We have already 

discussed the motion of a simple pendulum from 

the standpoint of simple harmonic motion, and 

have found that for small oscillations the period 

T is given by 

T 

If we now wish to consider the pendulum motion 

of a rigid body suspended on a fixed horizontal 

axis, the so-called physical pendulum, it is simplest 

to consider pendulum motion as a pure rotation about the axis 

of suspension. 

For a simple pendulum (Fig. 53), we write, as the torque r 

acting on the body, 

T == —mgl sin d (2) 

If we take 6 positive for counterclockwise rotation about a fixed 

axis we may write 

191 
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= /a = / 
d^e 
dt^ 

where we have 
I = 

m 

(4) 

Inserting Eq. (2) in Eq. (3) we find, as the differential equation 
of the motion, 

d^e a . 
-75 + -^ sm = 0 

dU I 
(5) 

For angles small enough so that we may replace sin 6 by ^ we 
know that the motion is simple harmonic with the period given 
by Eq. (1). 

For a physical pendulum Eq. (3) is of course still valid, and 
Eq. (2) may be used if we replace Z by L, the distance from the 

axis of support to the center of mass C 

(Fig. 54). If I denotes the moment of 
inertia of the body about the fixed axis, we 
have 

T ■ a T = —m,gL sm 6 = 7-^ 

or 
d^ mgL . 3P + -,-sm* (6) 

which is exactly the same form as Eq. (5) 
if we replace I by I/mL. Hence, for small oscillations, a physical 
pendulum oscillates with the period 

gL 
(7) 

where k is the radius of gyration of the body about the axis 
through 0. Comparison of Eq. (7) with Eq. (1) shows that the 
period is the same as that of a simple pendulum of length 

U = 
mL L 

(8) 

la is known as the length of the equivalent simple pendulum. 
The point O', which lies a distance U from 0, is known as the 
center of oscillation of the physical pendulum with respect to 0. 
The point 0' is the point where we may concentrate all the mass 
and retain the same oscillatory motion about 0. 
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68. Center of Oscillation.—^Let us denote the period of a 
physical pendulum oscillating about an axis through 0 by To, 
and its period when oscillating about an axis through 0' by Tq. 

If O' is the center of oscillation with respect to 0, then 

To - n (9) 
From Eq. (7) we have 

Let us call the radius of gyration about an axis through the 
center of mass fco- We then have by virtue of Eq. (21), Chap. X, 

= kl + IJ and k'^ = kl + (I - ly 

and, by Eq. (8), 
= LI, 

so that 

kl = L(ls - L) 

Inserting this into the expression for we find 

k'^ = {I, - L)l, 

so that Eq. (11) becomes 

which completes the proof. 
0 and 0' are known as conjugate points of the pendulum. It is 

clear that the length of the equivalent simple pendulum is equal 
to or greater than the distance from the axis to the center of mass, 
i.c., I, > L, The proof is left to the student. 

69. The Torsion Pendulum.—Consider a rigid body suspended 
by a wire. If a torque r is applied which twists the wire about 
its axis, it is found experimentally that when the wire comes to rest 
it has twisted through an angle d which is proportional to r, 

r - k'd (13) 

If the external torque is removed, a restoring torque equal to 
—k'd acts on the body and it performs rotatory harmonic motion. 
Such a device is known as a torsion pendulum. 
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If the moment of inertia of the body about an axis coincident 
with that of the wire is /, we may write (neglecting the small 
moment of inertia of the wire) 

loL = -k^d 

or 

+ fc'e = 0 (14) 

Equation (14) is identical with Eq. (6) if in the latter we 
replace sin 6 by Q. Hence we have simple harmonic motion with 
period 

¥ is called the coefficient of torsional stiffness of the wire and we 
shall learn how to calculate its dependence on the dimensions of 
the wire later. 

The torsion pendulum may be used to determine the moment of 
inertia of complicated bodies experimentally. The suspended 
body may be in the form of a platform. With the platform 
alone, the period may be found to be Ti. A body of known 
moment of inertia A (such as a solid disk) may then be placed 
on the platform and the period again determined as T2. 

Finally the disk is replaced by the body whose moment of iner¬ 
tia B is to be found, and the period of vibration is measured. 

We are thus led to the three equations 

II (I 
k' 

» 

II 

fTTA 

k' 

r, = 2t^ [I + B 

k' 

which contain the three unknowns /, fc', and Of course, this 
result refers to moments of inertia about an axis coincident with 
that of the wire. 

70. Angular Velocity and Torque as Vectors.—We have thus 
far treated angular velocities and torques as algebraic quantities, 
and this has been sufficient as long as we confined ourselves to 
studies of rotation about an axis whose direction in space remains 
unaltered during the motion. We must now extend these defini- 
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lions to take care of more general motions. The complete specifi¬ 
cation of either an angular velocity or a torque involves both a 
magnitude and a direction (the direction of the axis about 
which the body rotates or about which the moment of a force is 
taken). This suggests strongly that these quantities are vectors, 
and it turns out that this is the case. 

Consider a rigid body rotating about an axis, e.g,, a wheel 
si)inning on its axle. We define the angular velocity a? of the body 
as a vector drawn along the axis of rotation, of magnitude 
d(l)/dt, where def) is the angle through which the body turns in 
time dt. Furthermore, the vector is drawn in the direction in 
which a right-handed screw would move if rotated in the same 
sense as the body rotates. 

The definition of a vector torque is as follows: Consider a force 
F acting at a point P (Fig. 55). If we wish the moment of this 
force about a point 0, we construct the vector r = OP. The 
vectors r and F determine a plane, and the axis about which the 
torque is taken is the perpendicular to this plane through the 
point 0. The moment of F is then a vector of magnitude 

T = Fr sin $ (16) 

where d is the angle between the direction of r and that of F, 
and it is drawn along the axis at right angles to both r and F. 
The sense of the vector is determined by rotating the vector r 

about the axis until its direction coincides with that of F, the 
rotation to take place through the smallest angle possible. The 
direction in which a right-handed screw would move when so 
rotated is then the direction of the vector T. 

The above definition of moment of a force as a vector can 
obviously be extended to vectors other than forces. 
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71. Angular Momentum and Its Conservation.—In Chap. VIII 
we have seen that a direct application of Newton^s second 
law to systems of particles led to theorems concerning the 
motion of the center of mass of such systems. In effect the 
fundamental law states that the sum of the external forces equals 
the rate of change of linear momentum of the system. There is a 
similar fundamental law concerning the rotational motion of a 
mechanical system, and we shall develop this law and examine 
some of its consequences in this section. 

First, let us examine the motion of a single particle of mass m. 

We define the angular momentum of this particle about a point 0 

as the moment of the momentum vector of the particle about 
this point, and this is a vector directed at right angles to the 
momentum vector and to the radius vector r drawn from 0 to 
the point where the particle is situated, as explained in the previ¬ 
ous section. The fundamental theorem for rotation may be 
stated as follows: The torque about any point of the resultant 

force acting on the particle is equal to the rate of change of angular 

momentum of the particle about the same point. 

If we denote the angular momentum by p, then this theorem 
can be symbolically written as 

T 
dp 

dt 
(17) 

This is a vector equation and really represents three inde¬ 

pendent equations, one for each degree of freedom of the particle. 
Applied to a system of particles or to a rigid body, the same form 
of the equation still holds where T represents the vector sum of 
the external torques acting on the system and p the vector 
sum of the angular momenta of all the particles of which the 
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system is composed, or, briefly, the resultant angular momentum 
of the system. 

We shall now indicate the derivation of Eq. (17). Consider 
a particle of mass m located at point P and moving with a velocity 
V as shown in Fig. 56. We choose an arbitrary origin 0 and let 
the x-y plane be the plane containing the vectors r and v, as 
shown. The x- and y- components of the resultant force F 

acting on m will be denoted by X and F, respectively, and those 
of r by a: and y. The second law of motion requires that 

Z - 

(18) 

If we multiply the first equation by i/, the second by x, and 
subtract the first from the second, the left-hand side of the 
resulting equation becomes xY — yX. From Eq. (3) of Chap. 
IX, we see that this is the torque about 0 or, more precisely, the 
component of the torque of the force F at right angles to the x-y 

plane which we shall call the ^-component of the torque. The 
right-hand side of the same equation is 

The expression inside the square bracket is just the ^-component 
of the angular momentum which we denote by Rz, so that we have 

T, = xY - yX = j^x{rmy) - y{mv^)] = (19) 

In exactly the same way one can show that equations similar to 
Eq. (19) hold for the x- and y-components so that Eq. (17) has 
been derived for a single particle. 

For a system of particles or for a rigid body we have an equa¬ 
tion identical with Eq. (19) for each particle; upon adding them 
the left-hand side becomes the sum of the 2-components of the 
external torques (the torques due to internal forces add up to 
zero), and the right-hand side equals the rate of change of the 
2-component of the resultant angular momentum of the system. 
Thus the proof is complete. 

If the system of particles performs plane motion, the above 
results take a more familiar form. Referring back to Fig. 56, 
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we have for the angular momentum of the particle m, 

p — mvr sin 6 (20) 

and since v sin 6 is the component of velocity perpendicular to 
r, it can be written as rw, where a> is the angular velocity about 
0. Thus Eq. (20) becomes 

p = mr^o) (21) 

and the total angular momentum of the system becomes 

p = (22) 

For rigid bodies performing plane motion, co is the same for all 
particles, and Eq. (22) takes the simpler form 

p = a)(]Smr^) = Icx) (23) 

so that for this case the angular momentum of the rigid body 
about the axis through 0 is equal to the product of the moment of 
inertia and the angular velocity taken about the same axis. 
Inserting this expression for p into Eq. (17) and remembering 
that 7 is a constant for a rigid body, we obtain the familiar 
equation 

We now are in a position to state an important consequence of 
Eq. (17): If a system of bodies is acted on by no external forces, 
its angular momentum about any axis is constant. This theorem 
is known as the conservation of angular momentum. For a 
system of particles performing motion in a plane, it can be written 
as 

p = 'Emr^o) == constant (25) 

and for the special case of a common angular velocity w of all the 
particles it takes the simpler form 

p = lo) = constant (26) 

As an example of an application of the theorem of the con¬ 
servation of angular momentum, we may consider the sun as 
practically free from external forces. The sun is supposed to be 
constantly shrinking in size; if this is so, its angular velocity 
about its axis must continually increase to keep its angular 
momentum constant. • 
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72. Angular Impulse—Angular-momentum Theorem.—For 
cranslational motion we have the theorem that the impulse of a 
force which acts for a time t is equal to the change of linear 
momentum of the body on which the force acts during that time. 
There is an analogous theorem for rotation. According to 
Eq. (17) we have 

(27) 

where T is the resultant of the external torques. Integrating 
this equation from < = 0 to ^ we obtain 

j^Tdt = pt - po (28) 

or, in words, the impulse of a torque {angular impulse) acting for 

time t equals the change in angular momentum during this time 

interval. It must not he forgotten that p is a vector. 

For plane motion of a rigid body or of a system of particles 
of common angular velocity o;, this 
becomes 

ffdt = {Iw), - (/a,)o (29) 

73. Center of Percussion.—If a 
rigid body held fixed at a point is 
struck a blow, there will be, in 
general, a transfer of momentum 
to the body which holds the rigid body fixed. This transfer of 
momentum will just equal the impulse of the force exerted on 
the rigid body at the point of support. Suppose the fixed axis 
is through 0, the center of mass at C, the blow of impulse J is 
struck at O', and the impulse of the axis on the rigid body is J' 
(Fig. 57). 

From the impulse-momentum theorem, we have 

J + J' = mv = mLo) 

if the body is initially at rest and the angular velocity about 0 

produced by the blow is w. The angular momentum produced 
by the blow is 

Jl = /w 
so that the impulse J' is 
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and this will be in the same direction as J or opposite to it depend¬ 
ing on whether I is greater or less than I/mL. If the axis absorbs 
no momentum, then J' = 0, and hence 

j ^ -L hi 
^ niL L 

which is identical with Eq. (8) and shows that O' is the center of 
oscillation with respect to 0, O' is also known as the center of 

'percussion with respect to 0. 
Anyone who has played baseball knows the sting” experi¬ 

enced if the ball is not hit at the center of percussion of the bat. 
74. The Gyroscope; Precession.—In our study of rigid-body 

motions up to this point, we have restricted ourselves to motions 
involving rotations about axes of fixed direction, f.e., we have 
(‘onsidered only changes of magnitude of the vector angular 
momentum and not changes of direction of this vector. The 
situation is entirely analogous to the study of the motion of a 
mass point in a straight line, where only changes in speed could 
()(;cur. In considering motions of a mass point in a plane, we 
saw that the most general acceleration (and hence motion 
derived from it) could be compounded of a rate of change of 
magnitude of the velocity vector (tangential acceleration) and a 
rate of change of direction of the velocity vector (normal accelera¬ 
tion). Similarly, to study the most general motion of a rigid 
body we must consider changes in the direction of the angular- 
momentum vector as well as changes in the magnitude thereof. 
Such a study would take us far beyond the scope of this book, 
and we shall restrict our attention to the simplest sort of rigid- 
body motion which illustrates the effect of a torque changing 
only the direction of the angular momentum. This motion is 
entirely analogous to the motion of a mass point in a circle with 
constant speed where the velocity changes only in direction 
at a constant rate and is known as the steady precession of a 

gyroscope. 

By ^ gyroscope we shall understand a symmetrical rigid 
body rotating about its axis of symmetry which is free to change 

its direction. The steady precession of such a gyroscope is a 
motion in which every point of the axis performs circular motion 
with constant angular velocity. Such a motion can be obtained 
by setting a wheel into rotation about an axle (the axis of sym- 
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metry) and supporting one end of the axle on a vertical post 
(Fig. 58). 

The steady precession of this gyroscope consists of a circular 
motion of the axis OP in a horizontal plane with a constant angular 
velocity co' about the vertical 
axis OA. In order that such 
a motion occur we must have a 
constant external torque such 
as is provided by the pull of the 
earth on the gyroscope (in Fig. 
58, T = MgL), The axis 
about which this torque acts, 
i.e.j the direction of the torque, 
is perpendiculaT to the plane of 
the paper through 0. 

Let us consider the processing 
gyroscope at the instant of time when it is in the position shown 
in Fig. 58. The angular momentum of the system at this instant 
is very nearly a vector of length /a? in the direction OP, and the 
torque T is a vector at right angles to lo) in a horizontal plane 
(Fig. 59). 

Here I represents the moment of inertia about the axis OP 

and CO the angular velocity about this axis. During the next dt 

Whee/ 

A 

Fkj. 58. 

Horizontal plant 

Fig. 59. 

sec., the impulse of the torque is Tdt and produces a change in 
angular momentum d{Io)) which is at right angles to /co. The 
final angular momentum /co + d(/co) is the vector shown in 
Fig. 59, and from the triangle we see that the angle d<t> through 
which the axis turns in dt sec. is 

, d(Icc) Tdt 
(30) 

which upon division by dt becomes 
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or 

f d<l> T 

dt lo) 
(31) 

T = (32) 

so that we see that a constant torque acting at right angles to the 
already existing angular momentum produces a constant angular 
velocity of precession about an axis perpendicular to the axes of 
torque and angular momentum. The magnitude of the angular 
momentum about the axis must remain constant since no 

torques act about this axis. 
In particular, if the torque is due to gravity, then 

T - MgL 

where L is the distance from the vertical axis to the center 
of mass of the gyroscope. Equation (32) then becomes 

MgL = Jwo)' (33) 

It must be pointed out that the constant torque can only 
maintain the steady precession of the gyroscope but cannot alone 
produce such a motion. For example, if a gyroscope, such as is 
shown in Fig. 58, is supported at the center of mass and suddenly 
released, a precession will occur, but it will not be of the steady 
type described above. At the first moment the axis will drop a 
little, and then as precession ensues, the end of the axis OP 

oscillates up and down about the position it occupies during 
steady precession. This latter oscillation, which is usually very 
fast, is called nutation, and there is nothing analogous to it in 
particle dynamics. Since there is no component of torque about 
the vertical axis, the component of angular momentum about 
this axis must stay constant. Thus as the gyroscope axis drops, 
the precession velocity increases and vice versa. The steady 
precession of a gyroscope is a stable motion, and if it is disturbed 
the forces act in such a direction as to restore this motion. This 
is analogous to static stability, as exemplified by a marble at the 
bottom of a bowl. If disturbed, it oscillates about its equilibrium 
position. In the gyroscopic case, steady precession is a state of 
dynamic stability, and when disturbed an oscillation takes place 
about this stable motion. It is just this oscillation which we call 
nutation. 
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Problems 

1. An annular disk of inner radius R\ and outer radius R2, mass M, is 

hung on a knife-edge perpendicular to the plane of the disk and performs 

small oscillations. 

a. What is the moment of inertia of the disk about the axis of suspension? 

h. Where is the center of oscillation? 

c. What is the period of the oscillations? 

2. Show that the center of oscillation of a sphere of radius R hung on a 

2 R^ 
string of length L lies a distance - --- below the center of the sphere. 

bL + R 
3. A connecting rod 30 cm. long suspended from one end oscillates with 

a period of 1.00 sec. When suspended from the other end, it oscillates with 

a period of 0.896 sec. Find the radius of gyration of the rod referred to an 

axis through its center of mass. Where is the center of mass? What are 

the lengths of the equivalent simple pendulums for these two oscillations? 

4. A thin rod 3 ft. long is held 6 in. from one end by a boy. If he hits a 

ball with this rod, where along the rod must he hit it if he is to feel no 

'‘sting’^? 

6. A torsion pendulum consists of a platform in the form of a circular 

disk 20 cm. in diameter suspended by a thin rod perpendicular to the plane 

of the disk. Alone it has a period of 0.75 sec. If an annular ring of outer 

radius 9 cm, and inner radius 8 cm. of mass 2 kg. is placed symmetrically 

on the disk, the period of the pendulum is doubled. The annular ring is 

removed, and two homogeneous cylinders, each 4 cm. in diameter and 15 cm. 

high, are placed on the disk so that the axes of the cylinders intersect a 

common diameter of the disk and the surfaces of the cylinders are tangent 

to the edge of the disk. The period is found to be 1.60 sec. Find the 

density of the material of which the cylinders are made. 

6. A flat circular disk, 20 cm. in radius, performs small oscillations as a 

pendulum about a horizontal axis perpendicular to the plane of the disk 

and 1 cm. from the center of the disk. Find the length of the simple 

pendulum which will have the same period. 

7. A physical pendulum is constructed of a slim rod 28 cm. long at the 

end of which is fastened a disk of radius 14 cm. and mass equal to the mass 

of the rod. The center of the disk is placed at the free end of the rod, the 

plane of the disk being vertical. 

a. Find the radius of gyration of the pendulum about its axis of suspension. 

h. Find the period of this pendulum for small oscillations. 

8. A slim rod of length 1 meter hangs vertically, supported by a string 

40 cm. long. If the system is set into oscillation as a pendulum, calculate 

the period of small oscillations. Where is the center of oscillation of this 

system? (Assume that the string stays lined up with the rod during the 

motion.) 

9. A man weighing 160 lb. runs around the edge of a horizontal turntable 

which is free to rotate about a vertical axis through its center. The man 

runs with a constant speed of 4 ft./sec. with respect to the ground, and the 

turntable is rotating in a direction opposite to that of the man with an angu- 
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lar velocity of 0.2 radian/sec. The turntable has a moment of inertia 

about the axis of rotation of 320 slug-ft.® and a radius of 8 ft. 

If the man comes to rest with respect to the turntable, calculate the final 

angular velocity of the system. 

10. A uniform slim rod, initially at rest on a smooth horizontal table, is 

struck a blow at one end of the rod in a direction perpendicular to the length 

of the rod. Prove that the kinetic energy gained by the rod will be greater 

in the ratio of 4:3 than if the other end were fixed in frictionless bearings. 

11. A uniform slim rod is spinning freely with an angular velocity w 

about an axis through its center and perpendicular to its length. If one 

end be suddenly held fixed so that the rod rotates about this end, find the 

new angular velocity. 

12. A cylinder of mass M and radius r rolls on a horizontal table, with 

one end of the cylinder extending beyond the edge of the table. A long 

string is attached to a point on the surface of the projecting part, the string 

being pulled vertically downward with a constant force F. Show that the 

cylinder oscillates back and forth on the table with a period of 2Tr\/^Mr J2F 
for small amplitude oscillations. 

13. A man weighing 160 lb. stands on a rotating platform of negligible 

mass holding a pair of dumb-bells, each weighing 8 lb., at a distance of 1 ft. 

from his vertical axis. If the man is given an angular velocity of 2 r.p.s. 

about his vertical axis, calculate his angular velocity if he raises his arms and 

holds the dumb-bells each at a distance of 3 ft. from the axis. The radius 

of gyration of the man about his vertical axis is 0.45 ft. and does not change 

appreciably when he raises his arms. What is the change of kinetic energy? 

14. A turntable in the form of a solid disk of radius 10 ft. and mass 480 lb. 

turns about a fixed vertical axis, making one complete revolution in 5 sec. 

A 160-lb. man standing at the center runs out along a radius of the table and 

then runs around the circumference, all at a constant speed of 5 ft./sec. 

relative to the turntable. 

a. Calculate the torque exerted by the man on the table as he runs out 

along the radius. 

h. What is the angular velocity of the turntable when he reaches the rim ? 

c. What is the angular velocity of the turntable when he runs along the 

circumference? 

16. Calculate the change in diameter of the earth due to shrinking, neces¬ 

sary to produce a change of 1 sec. per day. Assume the earth is a sphere 

of radius 6.3 X 10* cm. 

16. Two spheres, each having a radius of 2.5 cm. and a mass of 200 grams, 

are mounted on a uniform rod 20 cm. long having a mass of 30 grams. 

Initially the centers of the spheres are 5 cm. from the center of the rod 

(but on opposite sides), and the whole system rotates in a horizontal plane 

about a vertical axis through the center of the rod. Without otherwise 

changing the system, the catch holding the spheres in position is released, 

and the spheres slide out until their centers are 10 cm. from the center of the 

rod. If initially the rod of rotation was 12 r.p.m., what is the rate of rotation 

when the spheres are in the new position? 

17. A slender homogeneous rod of length 60 cm., resting on a perfectly 

smooth horizontal surface, is struck a blow at right angles to the length of 
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the rod at one end of the rod. Find the distance through which the center 

of the rod moves while it makes one complete revolution. 

18. A uniform rod of mass 400 grams and length 60 cm. is pivoted at one 

end so that it may oscillate as a pendulum. When hanging in equilibrium 

it is hit at the bottom end by a horizontal blow with a hammer. Calculate 

the impulse of the blow, if 

а. The rod rises to a horizontal position. 

б. The rod just reaches a vertic^al position with its free end up. 

c. The rod rotates in a complete circle and its angular velocity at the top 

position is 2 radians/sec. 

19. An airplane motor weighs 320 lb. and has a radius of gyration of 1 ft. 

The propeller weighs 30 lb. and has a radius of gyration of 2.5 ft. The 

motor rotates with an angular velocity of 3,000 r.p.ni. The airplane moves 

in a horizontal circle of radius 280 ft. with a speed of 120 miles/hr. Find 

the torque tending to make the airplane rotate in a vertical circle. 

20. A heavy pendulum of mass M at rest is struck by a bullet of mass 

m{m <<M), moving with a velocity v at a point p units of length below the 

point of support. Show that, if the pendulum swings through an angle 0, 

V 
2Mk . e /y- 
-sm i^VLg 
mp 2 

if k is the radius of gyration about the axis and L the distance from the axis 

to the center of mass. 



CHAPTER XII 

PLANETARY MOTION; GRAVITATION 

The dynamical problem of the motion of the planets about the 
sun properly belongs to the realm of particle dynamics. We 
have, however, deferred the discussion of these motions to this 
point since it provides a valuable historical background to the 
law of universal gravitation. The interpretation of the latter in 
terms of the idea of field of force and its properties constitutes 
not only a new and fundamental concept but also a valuable 
basis for our future discussion of the mechanics of continuous 
bodies. In this manner we can most clearly understand the 
unity of method underlying the application of Newton's laws of 
motion both to particles and to continua, such as liquids and 

gases. 
76. Kepler’s Laws.—The motion of the planets around the 

sun provided Newton with the experimental material from which 
he derived his law of gravitation. Kepler, using the data 
collected by the Danish astronomer Tycho Brahe, found empiri¬ 
cally that the motion of the planets could be described by the 
following three laws: 

Law I. The planets move in ellipses and the sun is at one 
of the foci. 

Law II. The radius vector drawn from the sun to a planet 
sweeps out equal areas in equal times. 

Law III. The squares of the periods are proportional to the 
cubes of the semimajor axes. 

These ellipses are very nearly circles and in the following 
discussion we shall treat the orbits as circular. In this case the 
sun is situated at the center of the circle and the semimajor axes 
of the ellipses become the radii of the circles. Our main results 
are valid for elliptical motion, although we shall not prove this in 
the discussion which follows. 

For a particle moving in a circle, the area swept out by the 
radius in time dt, as the radius turns through an angle dBj is 
(Fig. 60) 

dA = \It^dd 
206 

(1) 
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so that the rate at which the radius vector sweeps out area is 

dA 1 de 1 „ 
Kepler’s second law tells us that this is constant, so that the 

angular velocity is constant. ^- 
There is no tangential acceler- 
ation, so that the force exerted X 
on a planet by the sun is / 
directed along a radius toward / 
the sun. I I 

The central acceleration is I c I 

The third law states that 

r = CR^ \ 

where the constant C is the ' 
same for all planets. From the definition of the period T, we 
have 

rp 2t 2t 
T . _ or „ - 

so that Eq. (4) becomes 

Inserting this value of in Eq. (3), we find for the acceleration 

_ i_ _ _A 
“r c ' R^ ^ ^ 

The acceleration of a planet toward the sun is inversely 
proportional to the square of the distance between planet and 
sun, and the proportionality factor depends only on the sun since 
k = is the same for all the planets. The force wilh which 
the sun pulls on a planet of mass m is then 

Newton generalized this result by placing the constant k pro¬ 
portional to the mass of the sun M and postulating the resulting 
law as valid for all mass points in the universe. 
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Thus, every particle in the universe attracts every other 
particle with a force varying directly as the product of the two 
masses and inversely as the square of the distance between 
them. 

yMm 
(7) 

where 7 is a universal constant of dimensions 

f 1 

and whose numerical value is 

7 = 6.66 X (8) 

Of course, Newton’s third law of motion requires that the planets 
pull on the sun with equal and opposite forces, but because of the 
huge mass of the sun we can neglect its acceleration caused by 
these forces. 

76. Field of Force; Gravitational Potential.—Consider a single 
fixed mass point of mass M, such as the sun. This mass will 
exert a force on any other particle m, according to Eq. (7), no 
matter where the latter particle is situated. We can think of all 
space being affected by the mass M, and we say that a field of 
force is set up by this mass. The same general statement is 
valid for a system of bodies, and we can investigate the field 
of force by measuring the magnitude and direction of the force 
exerted on a small test body of mass m as it is moved from point 
to point of space. At each point of space we can imagine the 
force vector drawn, and we can construct curves whose directions, 
i.e., the tangents to these curves, give the direction of the force 
exerted on the test mass at every point. The curves are known 
as lines of force, and they map out the field. 

For the case of our single particle M the lines of force consist 
of straight lines radiating in all directions from ilf as a center 
(Fig. 61). In other cases the lines will be more complicated 
curves. The lines of force yield information as to the direction 
but not as to the magnitude of the gravitational forces. We 
specify the latter by introducing the idea of the intensity of the 
field. This is defined as the force per unit mass exMed on a particle 
at a given point P. The intensity of a field of force does not 
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depend on the mass of the test body used to explore the field but 
only on the positions and masses of the attracting bodies. We 
shall denote the intensity of a 
gravitational field of force by G, 
and for a single particle of mass M 

we have, from Eq. (7), 

G = - = (9) 

G is a vector whose magnitude is 
given by the above equation and 
whose direction is inward along the 
line connecting M and the point P at which we calculate the field. 

For a system of particles the intensity of the field may be 
calculated by vector addition, the resultant intensity being the 
vector sum of the intensities due to the individual particles. If 
the lines of force form a set of parallel straight lines and if the 
intensity is the same at all points, we say that the field is uniform. 

Fio. 61. 

Such a uniform field exists in a limited region near the surfac.e 
of the earth, and its intensity is equal to g since the attracth^e 
force of the earth on a particle of mass m is mg. 

Gravitational forces are conservative, and it is usual to call 
the field conservative. To see this for the case of a single particle, 
let us calculate the work done by the force given by Eq. (7) on 
m as it moves from A to B along an arbitrary curve. The work 
done by this force as m moves a distance ds along the curve h 
(Fig. 62) 

dW = sin e 
K 

Now ds sin ^ = dR, and we obtain 
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dW = -yMm~ 

The total work is 

w.. . - i) (10) 

and this depends only on the positions of A and B and not on the 
path connecting them. Thus the potential energy of the mass m 
in the field of a single particle M is 

y — .j.. constant (11) 
K 

If we agree to call the potential energy of m zero when it is 
infinitely far from M, Eq. (11) becomes 

yMm 
(12) 

and is the work one must do to remove the particle m from its 
position to infinity. 

We thus see that the equipotential surfaces are the surfaces 
of concentric spheres with M as center. The lines of force are 
everywhere at right angles to these surfaces. If we imagine 
two neighboring equipotential spheres and the particle m moving 
from a point on one of them to a point on the other, it is evident 
that, for a given change of potential energy dVy the shortest, 
distance necessary is along a radius and hence along a line of 
force. In this direction the rate of change of potential energy 
with distance is greatest, and this maximum rate of change of 
potential energy is called the gradient of the potential energy. 
We then may state that the force acting on m is the negative 
gradient of the potential energy and is at right angles to the 
equipotential surface. 

For the case under discussion the above statement in symbols 

becomes 
dV _ yMm 

dR W 
(13) 

using Eq. (12), and this agrees with Eq. (7). For the general 
case of a field due to an arbitrary distribution of matter, it is 
also true that one can construct equipotential surfaces (they will 
not be spherical surfaces in general), and the lines of force will 
be normal to these surfaces everywhere. The force is given by 
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the negative gradient of the potential energy just as in the above 
example.' 

It is convenient to introduce, not only the potential energy of a 
particle in the field of force, but also a gravitational potential 
^ which is defined as the potential energy per unit mass. For 
the case of the field of a single particle the gravitational potential 
is 

$ = - 
yM 

(14) 

and the intensity G is the negative gradient of the potential 

G = 
dR 

(15) 

For the case of the field of a system of bodies, the potential 
is obtained by adding expres¬ 
sions similar to Eq. (14) for 
each body. The addition is 
algebraic (not vector) since 
is a scalar. 

77. The Potential of a Sphere.— 
In the previous paragraph we have 
discussed the field of force and grav¬ 
itational potential of a single mass (53 

point, and for further application we 
must discuss the field and potential of extended bodies. We consider first 
a very thin spherical shell of radius a and thickness t. Let us calculate 
the potential due to such a shell of jnass M at a point P outside the shell. 

Consider the ring of width a d$ (Fig. 63). It has a volume 

and a mass 
dV = 27ra sin e ' a dd • t 

dM = 2Trtpa^ sin $ dS (16) 

if p is the density of our spherical shell of thickness t. This ring of mass dM 
consists of particles all at the same distance I from P so that the potential 
due to it at P is [Eq. (14)] 

1 II -ydM 
(17) 

y/R^ — 2aR cos 6 

and the total potential 

<i> = — 2Trptya^ 
• 

sin 6 dd 
(18) 

H- — 2aR cos B 

The total mass of the spherical shell is 

M » AiraHp 
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so that Eq. (18) becomes 

^ = 
-yM T- Jo , 

sin d de 

2 Jo V-R* + 

In order to integrate this, we place 

2aR cos 0 

and differentiating 

when 

R'^ ~ 2aR cos 8 = x 

dx — 2aR sin 0 dB 

0=0; X = {R ~ ay 
0 = it; X ~ {R A- 

Substituting these values in P]q. (19) we find 

yM r(R + a)^ ,, A(ft + 
•i* = —T- n I ^ — “o"Ts{ I 4aRJ(R-ayi 2aR\ 

(RAay 
a) 2 

yM 
■ R 

(19) 

(20) 

which is just the same as E]q. (14). 

We have thus proved that a thin hollow sphere attracts just as if all its 
mass were concentrated at its center. A solid sphere may be considered as a 
large number of tightly fitting hollow spheres, and hence a solid sphere 

attracts matter outside its surface just as if all its mass were concentrated 

at its center. Thus the lines of force and equipotential surfaces are just the 
same as for a single mass point, 

78, Variations of g with Altitude.—The acceleration of a 
freely falling body at the surface of the earth is due to the 
gravitational pull of the earth, which we shall consider spherical 
and which hence, according to Eq. (20), behaves like a mass point 
situated at the center of the earth. The potential energy of a 
mass point of mass m at the earth\s surface is 

F = w# = (21) 

where is the mass of the earth and R its radius. The force 
which the earth exerts on this mass point is then given by 

dV __ yMsm 
~dR “ 

F = (22) 

By the second law of motion the acceleration ~ gfo caused by this 
force is given by 

F = = — mgo 

or 

(23) 

At a height h above the surface of the earth the acceleration g is 
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given by 

+ hY 

Dividing Eq. (24) by Eq. (23), we find 

9 = 9^0 

('•0' 
as the relation giving the variation of g with altitude h. 

For all heights small compared with the earth^s radius, we can 
write, instead of Eq. (25), 

(-1) 9 = gol 

The radius can be determined by measurements on the earth^s 
surface and is found to be 

= 6.4 X 10» cm. 

With these data we can find the mass of the earth with the help of 
Eq. (23). 

We have {/o = 980 cm./sec.-, so that 

980 X (6.4 X 10«)2 ^ _ 
Mk =-6.7 X 10-^- ^ ^ ^ ® 

6 X 10^^ grams 

As a final example we shall investigate the motion of a body 
falling from rest from a height h above the earth^s surface, con¬ 
sidering the variation of g with altitude. Neglecting air friction, 
we have, according to the energy principle, 

K.E. + F == constant 

1 _ yMEtn 
-mv^ —-- 

2 X 
constant 

where x is the distance of the body from the center of the earth. 
When v = 0yX — R + h so that 

mv^ yMsin 

~2 

yMsm 

\R+h) 

From Ecf. (23) we have 

yMs = goR^ 
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so that Eq. (28) becomes 

- rTi) 
The velocity with which a body falling freely from a height h 

would hit the earth^s surface {x = R) is given by 

vl = 2go/?/ 1 (30) 

If h is large compared to 72, f.c., from very great heights, Eq. (30) 
becomes 

vl = 2gjt 

or __ 
vq — V 2^o72 

which is about 7 miles/sec. 

Problems 

1. Prove that Kepler’s second law would be obeyed no matter what the 

law of attraction of sun for planet. Under what conditions would this law 

become invalid? 

2. With what horizontal velocity must a projectile 50 miles above the 

surface of the earth be projected so that it performs motion in a circle about 

the earth? The radius of the earth is 4,000 miles. What will be the period 

of rotation? 

3. The mass of the earth is 6.1 X 10*^ grams (or 7.2 X 10^^ tons), and its 

average distance from the sun is 93,000,000 miles. Assuming that the 

orbit is a circle, find the central acceleration and the force required to 

produce it. 

4. Two equal masses are fastened to the ends of a light rod 200 cm. long 

which is supported at its mid-point by a torsion fiber. When the system is 

allowed to vibrate as a torsion pendulum the period is 400 sec. Two large 

masses of 10 kg. each are placed in positions of the Cavendish set-up with the 

center of each large mass 10.0 cm. from the center of the nearer small mass. 

It is observed that, when this is done, the rod rotates through an angle of 

2.70 X 10""^ radian. From these data calculate the gravitational constant. 

6. The earth’s orbit about the sun can be considered as a circle with a 

radius of 1.5 X 10^® cm. with the sun at the center. From these data, the 

value of the gravitational constant and the time required for a complete 

revolution of the earth about the sun, calculate the mass of the sun. 

6. The distance from the earth to the moon is found by triangulation to 

be 239,000 miles (or 3.84 X 10^® cm.). Assuming that the orbit of the moon 

is a circle with the earth at the center, and using the data for the mass of 

the earth and the gravitational constant from the text, calculate the angular 

velocity of the moon and the time required for a complete revolution. (This 

is the method used by Newton to check his assumed form for the law of 
gravitation.) 
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7. What measurements would it be necessary for an astronomer to make 

to determine the mass of Jupiter? 

8. Masses of 500, 250, 1,000 grams are placed at the three vertices of an 

isosceles right triangle with the 500-gram body at the right angle. The 

length of each of the shorter sides of the triangle is 20 cm. What is the 

total force on the 500-gram body? How much work would be required to 

move the 500-gram body to a point 50 cm. from the 1,000-gram body and 

30 cm. from the 250-gram body? 

9. The distance between an 800-kg. mass and a 450-kg. mass is 50 cm. 

Find the gravitational field intensity due to these two masses at a point 

which is 40 cm. from the 800-kg. mass and 30 cm. from the 450-kg. mass. 

Find the gravitational potential due to these two masses at the same point. 

10. In a rectangular coordinate system, masses of 12 grams each are 

located at the points (4 cm., 0) and (0, 3 cm,). Find: 

а. The gravitational intensity and potential at the origin. 

б. The gravitational intensity and potential at the point midway between 

the two masses. 

c. The work required to carry a 10-gram mass from the origin to the point 

midway between the masses?. 

11. Two mass points lie in a plane as follows: a 3,600-gram body at the 

origin; a 3,200-gram body at the point a: = 8 cm., ?/ = 6 cm. Find the 

intensity and potential of the gravitational field produced by these masses 

at the point x = 0, y =* 6 cm. What force in dynes would be exerted on a 

10-grarn mass placed at this point? 

12. What is the length of a simple pendulum whose period is 2.00 sec.? 

Given that the mass of the moon is one eighty-first that of the eartJi, and 

the moon's diameter is 0.27 that of the earth, what is the length of the 

simple pendTilum which would have a period of 2.00 sec. on the moon? 

13. Masses of 100 and 400 grams are placed 15 cm. apart. What is the 

gravitational force on a unit mass at the point P, on the line joining the 

masses and 5 cm. from the 100-gram mass? What is the potential energy 

of unit mass at point P? How much work is required to move the unit 

mass to point P', 10 cm. from each mass? 

14. Two mass points of equal mass are held fixed with a distance A 
between them. Sketch the field of force due to these two mass points. 

Sketch in the equipotential surfaces on the same diagram. Calculate the 

potential at any point on the straight line connecting the two points; on the 

straight line which is the perpendicular bisector of the line of length A 
connecting the two mass points. 

15. Find the potential and field intensity due to a uniform thin circular 

ring of mass M, and radius P, at the center of the circle. Find the potential 

and field at a point P along a line perpendicular to the plane of the circle 

and passing through the center of the circle. 

16. Calculate the intensity of the force field produced by a long thin rod of 

length L and mass ilf at a point P situated on the long axis of the rod and 

at a distance A from one end. 

17. Two lead spheres, each of radius 25 cm., are placed with their centers 

55 cm. apart. Find the force which one exerts on the other. How much 

work is necessary to separate the spheres infinitely far? 
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18. The moon has one eighty-first the mass of the earth and is 250,000 

miles away from it. 

а. At what point is the intensity of the gravitational field, caused by the 

earth and moon, zero? 

б. Write expressions in symbols for the potential energy of a body of mass 

m due to the field of eartli and moon. 

(1) When m is on the surface of the earth. 

(2) When m is on the surface of the moon. 

19. With what velocity must a body be projected upward from the earth's 

,<jurface so that it reaches a maximum height of 400 miles above its initial 

position? What percentage of error would be made if this were calculated 

with a constant value of g? The radius of the earth is 4,000 miles. 

20. Given that a body inside a hollow spherical mass is in equilibrium 

and one outside is attracted toward the center of the sphere by Newton’s 

law of gravitation as if all the mass of the sphere were at the center, prove 

that a body underneath the earth’s surface is pulled toward the center 

with a force proportional to its distance from the center of the earth. 

21. A double star consists of two suns, each of mass 3 X grams, with 

their centers cm. apart. The path of a meteorite passes through the 

mid-point of the line between the suns’ centers and is perpendicular to this 

line. How fast must the meteorite be going at this point for it to escape 

completely from the double star? 

22. What is the acceleration of the earth toward the sun? What is the 

force with which the sun pulls the earth? Calculate the mass of the sun. 

23. How far above the surface of the earth must a body be raised so that 

its weight is diminished by 1 part in 1,000? Professor Piccard ascended in 

a balloon to the upper atmosphere, a height of 10 miles above the surface of 

the earth. If he weighs 1^50 lb. on the surface of earth, calculate the change 

in his weight when at the top of his flight. 

24. The mass of the sun is 324,000 times the mass of the earth, and the 

earth is 93,000,000 miles from the sun. How far from the earth must a body 

be so that the pull of the earth balances the pull of the sun on the body? 

26. The moon has 1/81 the mass of the earth and is 240,000 miles away. 

Calculate the percentage change in the earth’s acceleration toward the sun 

when there is a total eclipse of the sun as compared to the time when the 

moon is on the opposite side of the earth. 

26. A body is projected vertically from the surface of the earth with a 

velocity i>o. The radius of the earth is R. 
а. Show that, if Vo ^ \/2gRy the body will escape from the earth. 

б. Show that for the case Wo = 2gRy the time necessary for the body to 

reach a distance r from the center of the earth is 

t =-^7=(H - fii) 
ZR^/•2g 

c. If vl < 2gRf find the greatest height reached and the time of flight of 
the body. 

d. If v\ < <2gRj show that the answers to c become the same as those 
derived using a constant acceleration gf of a falling body. 



CHAPTER XIII 

HYDROSTATICS 

We now turn to the study of the behavior of deformable bodies 
in contradistinction to that of rigid bodies. We had defined a 
rigid body as one whose shape and volume remain unaltered 
during the process or motion under consideration, or more 
exactly we said that a body was rigid if the distance between any 
pair of its mass points remained unaltered. Whether a body is 
rigid or not depends then on the precision of the measurements 
employed to determine the volume and shape changes of the 
body. It is indeed possible to employ measuring devices 
sensitive enough to show that all bodies depart more or less from 
perfect rigidity. In studying this departure of bodies from 
rigidity, we are led to a more or less detailed consideration 
of the internal forces which hold bodies together, and from this 
standpoint it is convenient to classify bodies into three classes: 

a. Solids. These show large resistance to both changes of 
shape and volume. 

b. Liquids. These show practically no resistance to changes 
of shape but very great resistance to change of volume. 

c. Gases. These show practically no resistance to change of 
shape and very little to change of volume. 

This is a rough classification but it is very helpful, although 
there are cases where the above criteria fail to distinguish one 
class from its neighbor. 

The resistance shown to changes of shape and size is termed 
elasticity. A complete definition of this word will be given later 
when we learn how to set up a means of measuring it. For the 
present we shall merely point out a qualitative difference which 
is a matter of daily experience. If the same force acts first on a 
metal and second on a piece of rubber of similar original form 
and size, the rubber undergoes a much larger deformation than 
the metal. We say that the metal is more elastic and the rubber 
is the less elastic body. It should be noticed that this termi¬ 
nology is just the antithesis of that of everyday language. A 
rigid body is (in physics) perfectly elastic. 

217 
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We have overwhelming evidence from the study of chemical 
and many other types of phenomena that all bodies are composed 
of Enormously large numbers of minute particles, which we call 
atoms (and molecules). A complete knowledge of the structure 
and laws of interaction of atoms and molecules should allow us 
to predict the forces which hold bodies together and hence, from 
this point, to develop a complete theory of a deformable body 
from the knowledge of the atoms and molecules of which it is 
composed. This is unfortunately impossible at present, as our 
knowledge of interatomic and intermolecular forces is so limited 
that the theory of the behavior of deformable bodies has been 
built up along entirely different lines. It has used the picture 
of a deformable body as a continuous distribution of matter— 
as it indeed seems upon casual observation—and with the help 
of this picture has developed a powerful and important means 
of understanding the phenomena displayed by deformable 
bodies. We shall use this older, more approximate picture very 
much in our succeeding work, and we shall now show that this 
type of theory does not necessarily conflict with the more funda¬ 
mental atomic theory. In the continuous theory we must be 
able to choose our elements of volume dV so small that they may 
be considered as infinitesimals, allowing us to use the ordinary 
methods of calculus, and yet large enough so that each contains 
many molecules, in which case the forces exerted by such a 
volume element will be a sort of average over all the molecular 
and atomic forces caused by this volume element. This choice 
is actually possible, and we shall illustrate by an example. Let 
us calculate the number of silver atoms in a cubic centimeter of 
the metal. Avogadro^s principle tells us that each gram-atomic 
weight of any substance contains 6 X 10^^ atoms. Silver has an 
atomic weight of 108 and a density of 10.6 grams/cm, Thus the 
number of atoms of silver per cubic centimeter is 

-- = 5,9 X 102^ atoms/cm.® 
lUo 

Now suppose we were to choose as a volume element dV a cube, 
each side of which has a length of 1/10,000 mm.—certainly small 
enough from a large-scale viewpoint to be considered an infini¬ 
tesimal—we have for the volume dV = (10“®)® = 10“^® cm.®. 
The number of atoms of silver in this tiny element is about 
6 X 1022 y iQ-i® = 6 X 10^ or about sixty million atoms. 
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Thus it is evident that the continuous theory represents a 
reasonably good picture of the more correct atomic model. 

79. Pressure.—We shall start our study by handling the 
problems of equilibrium of fluids (liquids and gases). We shall 
define an ideal fluid as one which offers no resistance to change 
of shape, ^.c., it possesses no elasticity of form and pours freely. 
On the other hand liquids possess great volume elasticity, so that 
we may consider them as incompressible for most purposes. 
This property is not possessed by gases, and hence there will be 
some difference in the special formulas developed for incom¬ 
pressible liquids and the more general ones developed for fluids. 
Unless explicitly stated, we shall consider the density of liquids 
constant, indepcmdtuit of the pressure. 

In the study of continuous media, it is not convenient to talk 
about forces but ratlu^r of pressures^ a term which we now" define. 
Consider a small ])lane area A/1 inside a fluid. The fluid on 
one side of this surface exerts a force AF on the fluid on the 
other side, and this force is transmitted across the surface A/1. 
We define the pressure on this surface as the force per unit area 
acting on it, thus: 

V = A/1 (1) 

where p is the pressure of the fluid at the point w^here AA is 
situated. A/1 may be part of the surface of an immersed body, 
or part of the fluid itself. Strictly the pressure is defined as the 
limit of the ratio of AF/A/4, as AA approaches zero. Pressure 
has the dimensions of force per unit area and is measured in 
dynes per square centimeter, pounds per square foot, or any 
other system of units derived from these. 

A very important consequence of the definition of an ideal 
fluid is that the force exerted on any area AA w^hen the fluid 
is in equilibrium acts perpendicularly to the area and hence 
coincides with the direction of the normal to this surface. Con¬ 
sider a cubical element of volume of the fluid such as shown 
dotted in Fig. 64, and let us imagine that the fluid is slightly 
changed in shape so that the top face of the cube moves slightly 
to the right with respect to the bottom face. The final shape is 
shown in full lines, and it is clear that the original cube and the 
final slant prism have the same volume so that we have a change 
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of shape with no change of volume. Since, by definition, no 
work is done by the forces acting on this element of volume 
during this change of shape, there can be no horizontal com¬ 
ponent of force acting on the top surface. Thus we have shown 
that the force on this face is perpendicular to it. In a similar 
way one may repeat this argument for the other faces of the 
cube. As a final point we might mention that it can be shown 

_ that any arbitrary change of shape of 
a volume element of a fluid can be 

/ resolved into a combination of these 

I / ‘ / ' / simple changes of shape we have 
I / 1 / I / considered. 
! / \ J Thus the pressure of a fluid depends 
|/ position of AA and not 

04 on the orientation of the latter, and 
the force exerted on AA is always 

normal to it. This independence of pressure of direction is 
commonly known as PascaFs principle. It is really not an 
independent principle but rather a logical consequence of the 
definition of an ideal fluid. 

80. Law of Equilibrium.—We now proceed to formulate the 
law of equilibrium for a fluid. If a fluid is in equilibrium, then 
any part of the fluid is also in equilibrium and we must express 
our laws so that they apply to each mass point or volume element 
of the fluid. For this purpose it is convenient to divide the 
forces acting on any volume of a fluid into two classes: 

а. Surface Forces. These are the forces transmitted across the 
bounding surface of the fluid volume under consideration, such as 
those due to the push of the surrounding fluid. These forces 
may be expressed in terms of the pressure in an ideal fluid, and 
according to the results found in the preceding section these 
pressure forces act at right angles to the surface of the volume 
being studied. 

б. Body Forces, These are forces which act on every mass 
point of the fluid such as those due to a gravitational field of force. 
For simplicity we shall restrict our attention to the case of the 
uniform gravitational field at the surface of the earth. 

In the absence of body forces the law of equilibrium is simple. 
It states that the pressure is everywhere the same in a fluid in 
equilibrium. This may be proved by considering a cubical- 
volume element of the fluid and adding up the forces on its 
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faces. Thus, if we take the x-axis perpendicular to one pair of 
faces of this tiny cube and apply the condition that the sum of 
the x-components of the forces must add up to zero, it follows 
that the pressure is the same on opposite faces of the cube. Since 
this is true for any pair of faces, we see that the pressure does not 
depend on position and hence is constant throughout the whole 
fluid. 

In the case of the earth^s gravi¬ 
tational field we proceed as outlined 
above, but now we must add to the 
pressure forces the pull of the earth 
on the fluid mass under considera¬ 
tion. Since the gravitational pull 
is everywhere vertical, it follows 
that the pressure can vary only in 
the vertical direction and is constant 
at all points in any horizontal plane. 
To find the law expressing the varia¬ 
tion of pressure with depth, let us 
consider a vertical column of fluid 
of cross section A and height h 

(Fig. 65). Let us take the t/-axis 
vertically upward, the top face of the 
column at the height t/o, and the bottom face of the column at the 
height y, so that 

^ = 2/0 2/ 

Since the fluid is ideal the only y-components of the surface 
forces are those due to the pressure at the top face and at the 
bottom face. The former force is a downward push and the 
latter is upward. Besides these surface forces, we have the 
weight of the column of fluid which is a downward force. It is 
clear without calculation that the pressure at the bottom face 
must be larger than that at the top face, if equilibrium is to be 
maintained. 

If we call the pressure at the top face po, and that at the Bottom 
face p, the sum of the pressure forces on these faces is 

pA — poA = (p — po)A 

For incompressible liquids the pull of the earth on the column is 
its volume times its constant density times so that the body 
force Is 
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-hApg 

Thus our equilibrium condition gives 

(p — po)A hApg = 0 

or 
P - Po pgh (2) 

Thus we see that the pressure in an incompressible liquid 
increases proportional to the depth. For water, as an example, 
we have pg — 62.5 Ib./ft.^, so that the pressure increases by 
62.5 Ib./ft.- = 0.434 Ib./in.^ for each foot increase in depth. Of 
course, Eq. (2) only holds for an incompressible liquid in which 
the density is constant. In the case of a gas in which the 
density depends on the pressure, we must apply our laws of 
equilibrium not to a column of finite height h but to a column of 
infinitesimal height dy, since the pressure, and hence the density, 
is different at different levels in the column. For this purpose 
we rewrite Eq. (2) in the form 

p - Po 
h 

Vo-V 

Vo - y 
= pg 

Here po — P is the increase in pressure as we ascend from the 
face at y to the face at the height po. Thus po — p = Ap and 
yo — y — Ay. As Ay -*-> 0, the left-hand side of the above 
equation becomes —dpfdy and the whole equation may be 
written 

dp 

dy -pg (3) 

This is the general equation of equilibrium for any fluid in 
equilibrium under the action of gravity whether it be compressible 
or not. 

It should be added that the conditions for rotational equilib¬ 
rium are automatically satisfied. Consider again a cubical- 
volume element. Since the body forces may be considered as 
acting «at the center of mass, and since the surface forces are 
perpendicular to the surfaces of this volume element, the sum of 
the torques taken about any axis through the center of mass is 
zero and this is just the condition necessary for the rotational 
equilibrium of the volume element. 

81. Applications, a. Hydraulic Press.—Suppose we may 
neglect the body forces acting on an incompressible liquid in 



HYDROSTATICS 223 

equilibrium. We then know that the pressure everywhere within 
the liquid is constant. This situation is realized in the usual 
hydraulic press (Fig. 66), in which the pressure on the liquid is 
so large that we may correctly neglect the variations of pressure 
with depth compared to the pressure in the liquid. If the force 
exerted on the small piston of area Aiis Fi when the piston is in 
equilibrium, and the force F2 is exerted on the large piston of 
area A 2, we have 

p — constant = h El 
A2 

or 

F. = (4) 

V/J222Z/ZA 

Fig. 06. 

Po^A 

SO that by increasing the ratio 

A2IA1 one obtains a simple means of amplifying a force. 

b. Archimedes^ Principle,—In the case of the equilibrium of an 
incompressible liquid, such as water under the action of gravity, 

we have seen that the pressure increases with 
depth according to Eq. (2). Furthermore, as 
we have pointed out, the pressure is the same 
at all points at the same depth, i,e,^ the 
pressure is constant on the equipotential sur¬ 
faces of the earth’s gravitational field. Equa¬ 
tion (2), which is a direct consequence of 
Newton’s laws, contains the law commonly 
known as Archimedes’ principle. We may 
think of any submerged body as composed of a 

huge number of vertical columns of cross section AA and height h 

(Fig. 67). Since in this figure p > po, the upward force exerted 
on the column has a magnitude 

AB == {p — po)AA 

Inserting in this equation the value of p — po from Eq. (2), we 
have for the buoyant force acting on our column, 

AB = pqAA • h 

IP^A 
Fig. 07. 

and hence the total upward force is 

B = SAjB = pgl^AA • h = pgV (5) 

where V is the total volume of the submerged body. Now, since 
p is the density of the liquid, pV represents the mass of a volume 
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of liquid just equal to the volume of the submerged body. Hence 
the total buoyant force is equal to the weight of a volume of 
liquid equal to the submerged volume of the immersed body. 
This is exactly Archimedes’ principle. 

c. The Pascal Paradox.—Consider a vessel whose bottom has 
an area A containing liquid of height h. If the pressure at the 
surface is po (atmospheric), then the pressure on the bottom is 
p — po + pgh and the total force exerted by the liquid on the 

bottom of the vessel is 

F — Apgh 

and does not depend on the shape 
of the container. Consider three 
vessels of the following shapes with 
the same base area containing liquid 
of the same height (Fig. 68). 
These vessels contain different 

amounts of liquids, and it seems at first glance that the 
bases must support different weights and hence exert different 
forces on the liquid. Yet our equation tells us the forces 
must be equal. This seeming paradox is known as Pascal’s 
paradox. 

Of course our equation is correct, and the complete analysis 
must include the forces exerted by the walls as well as by the 
base of the container. In vessel a the walls push horizontally, so 
the base supports the whole weight of liquid. In vessel b the 
walls exert forces (normal to the walls) which have downward 
components which add to the weight of the liquid. In vessel c 

the forces exerted by the walls on the liquid have upward com¬ 
ponents which balance part of the weight of the liquid. In all 
cases the total force exerted by the base on the liquid is the same. 

82. The Free Stirface of a Liquid.—In the preceding section we have seen 

that the pressure in a liquid acted on by gravity is constant in any given 

horizontal plane, i.e., in an equipotential surface. It is true, in general, 

that the surfaces of constant pressure of a liquid coincide with the equipo¬ 

tential surfaces of the field of force which holds it in equilibrium. Thus, if 

we consider as large a body of water as the ocean, we may not assume a 

constant intensity of the gravitational field, but since the equipotential 

surfaces are spherical, so are the* surfaces of constant pressure. 

The free surface of a liquid is always one of constant pressure and is always 

perpendicular to the lines of force whatever the nature of the field of force. 

Thus, a small body of liquid displays a flat surface (subject to restrictions 
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which we shall discuss in the next section), the ocean displays a spherical 

surface, and a solution of FeCla placed in a magnetic field will form a surface 

perpendicular to the resultant of the magnetic force and the earth^s field. 

It is possible by an application of these ideas to calculate the surface 

assumed by a rotating liquid. Although this is an accelerated motion, 

we can reduce our problem to a static one by the following scheme. For 

any accelerated motion we have F = may and if we rewrite this in the form 

F — rna — 0, this last equation is in the form of an equilibrium equation 

where we introduce the fictitious force ~ma to take into account the actual 

acceleration of the body. 

Suppose we have a liquid in a cylindrical vessel rotating with constant 

angular velocity about the vertical axis y. Each particle of the liquid 

rotates in a circle of radius x and has an acceleration equal to —to^x (Fig. 69). 

Now we replace this term 7na — —mo3^x by the outward force mo3^x and 

consider the static behavior of the liquid in the earth’s field and this fictitious 

force field. We know that the free surface of the liquid is perpendicular to 

the resultant of the two forces at every point. If 4> is the angle whose 

tangent gives the slope of the curve formed by the surface, we have, from 

the accompanying figure, 

but 

tan 4> 
7rio)^x _ cA 

mg ~ g 

tan — 
(Jy 
(lx 

the slope of the curve, so that 

(iy _ oi^x 

dx g 

and integrating (co = constant) 

(6) Fiq. G9. 

if we choose our origin at the point where the curve intersects the y-axis. 

This is the equation of a parabola, and it holds for the intersection of the 

surface of the liquid with any vertical plane through the axis of rotation. 

Hence the free surface is that of a paraboloid of revolution, the axis of 

revolution being the axis of rotation. 

83. Surface Tension.—We have already seen that the free 
surface of a liquid is one of constant pressure. The free surface 
displays other properties of great interest. To understand why 
the surface should behave differently from the body of the liquid, 
we must think of the liquid as composed of a huge number of 
molecules which attract each other with large forces. As a 
rough picture, we may suppose that the molecules are rigid 
spheres about 10~^ cm. in diameter. Now consider a molecule 
inside the liquid. It is attracted by all its neighbors, but since on 
the average it is uniformly surrounded by other molecules, the 
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average force exerted on this molecule by all the others will be 
zero. On the other hand a molecule in the surface is not uni¬ 
formly surrounded by other molecules, as there are not so many 
above as below it. Hence, on the average, there is a large force 
pulling the molecules in the surface toward the inside of the 
liquid, thus imparting unusual properties to the surface layer.* 
This layer must be of a thickness of several times 10“^ cm. If we 
increase the free surface of a liquid (for example, by pouring it 
from one vessel to another of different shape), it is necessary 
to move new molecules from the inside of the liquid into the 
surface. Work must be done by the internal forces in creating 
this new surface. This work has been neglected in our definition 
of an ideal fluid in Sec. 79. It is usual to compare the surface 
layer of a liquid with a tough skin or rubber membrane stretched 

,over the surface of the liquid. Such an analogy is helpful but 
must be used with caution as the law of force in the two cases is 
quite different as we shall see in a later section. 

The existence of this surface layer explains many otherwise 
mysterious phenomena. The formation of drops is one of the 
most striking which can be understood with the help of this 
concept. As a drop forms on the end of a tube, it assumes a 
series of definite shapes and stays on the tube as long as the 
surface force can hold it. When it breaks off, it is invariably 
accompanied by a small secondary droplet. The drop thus 
formed becomes spherical, as the surface tries to shrink together, 
ix,, the molecules on the inside pull the surface molecules 

inward and produce as tight packing as 
possible. Since the sphere is the shape 
which for a given volume has the smallest 
surface, the drops become spheres. 

84. Coefficient of Surface Tension; Sur- 
® face Energy.—Suppose we form a soap film 

as shown in Fig. 70, where the wire AB 

is free to move. It is found that it is 
necessary to apply a force F, as shown, to 
hold the surface from shrinking together. 

This force turns out to be independent of the position of the wire 
AB and proportional to the length of this wire. Thus, by 

* Of course, there is an equally large force pushing outward, since the 

surface layer is in equilibrium. Perhaps it would be more exact to state 

that the surface layer is subject to tremendous compression. 
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Newton^s third law, the surface exerts a force F on the wire, so 
that we may write 

Fr^l 

(If this were a rubber sheet, the force would depend not only on I 
but also on the area of the sheet, i.e., the larger the area the 
larger the force necessary to hold it in equilibrium.) We now 
introduce as a measure of the surface force tjie force per unit 
length at the edge of the surface. Since there are two sides to 
the film, the edge has a length 21, and we have 

F = 2al (7) 

where a, the coefficient of surface tension, is the force per unit 
length on the boundary. In the c.g.s. system of units, a is 
measured in dynes per centimeter. The following table gives 
values of a for a few liquids at room temperature. 

Liquid H,0 
Soap 

solution 

Ethyl 

alcohol 
1 

Father Hg 

a in (dvnes/cm.). 72 26 22 16 500 

The coefficient of surface tension is extremely sensitive to 
impurities. Minute traces can produce marked changes in a. 

The reason for this behavior is that the 
concentration of the impurity is always 
greater in the surface than in the body of 
the liquid. Now let us stretch our soap 
film so that the wire AB moves a distance 
Ax from position 1 to position 2 (Fig. 
71). The work done by the pull of the 
surface is 

AW -FAx = —2alAx Fig. 71. 

Since F is constant this work can be entirely regained if the 
wire moves back from position 2 to position 1, so that there is a 
potential energy of the surface and the change of potential 

energy is 

= —ATT = 2al • Ax 

We have changed the surface by an amount AA = 2lAXy so that 
the increase of potential energy of the surface is 
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AF = AA • a 

Thus we may interpret the coefficient of surface tension as the 
potential energy per unit area of the surface of a liquid. Dimen¬ 
sionally we have , 

[a] — dynes/cm. = dyne-cm./cm.^ = ergs/cm.^ 

86. Formation of Drops; Capillary Rise.—If we form a drop 
of liquid from a tube of radius r, the drop breaks off when the 
surface force can no longer support the weight of the drop 
(Fig. 72). Just at the point of breaking, we have 

•-Zr-H mg = 27rm 

^ ^ If, after dropping, the drop becomes a sphere of 
radius Rj we have very nearly 

and hence 
mg = UR^P9 

— 

27rr 3 r 

The size of the drops varies with the surface tension 

Fig 72 hence is different for different liquids. For 
liquids of approximately the same density p, we 

see from Eq. (9) that the radii of the drops vary roughly as a^. 

When liquids adhere to the surface of a solid they are said 
to ^'wet'^ the solid, and they rise in capillary tubes made of 
these solids. Thus water wets glass, I ^ 
and the forces of attraction between L 

the glass and the water are much 
larger than the forces of cohesion in h 
water. If a capillary tube of glass is 
placed vertically in a dish of water, //////y/z 

the water rises in the tube to a i j d 
height h above the free surface in the -J-1-1— 
dish. As shown in Fig. 73, a menis- 
cus is formed and the angle is called the angle of contact. 

To calculate the height A, let us consider the column of liquid 
in the tube of height (A‘+ d). According to Newton’s laws, the 

Fig. 73. 
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sum of the vertical components of all the forces acting on this 
column must be zero. At the top surface we have the downward 
force due to atmospheric pressure which is — poirr^, if r is the 
radius of the tube. At the bottom surface we have the upward 
force due to the pressure of the liquid at a depth d. This is, 
according to Eq. (2), 

(pn + pgd)Trr^ 

Then we have the pull of the earth on the column of liquid given 

by 
— pgwr-{h + d) 

and finally the vertical component of the force F shown in the 
figure. This is the surface-tension force which the molecules 
of water clinging to the glass exert on their neighbors, and its 
vertical component is 

2Trct cos (t> 

where a is the coefficient of surface tension of the liquid. Apply¬ 
ing the condition of equilibrium, we have 

—Po^rr^ + (po + pgd)wT^ — pgirr^Qi + d) + 27rra cos 0 = 0 

Solving this equation for h, there follows: 

h - 
2a cos 0 

pgr 
(10) 

If the angle of contact is small, and for water on clean glass 
it is very nearly zero, we may place cos 0=1, and Eq. (10) 
becomes 

h^— (lOa) 
pgr 

SO that height to which a liquid rises in a 
capillary varies inversely as the radius of 
the tube. 

If we take two plane plates of glass and 
place them so as to form a small angle 0 
between them with one edge of one in 
contact with an edge of the other, upon 
partial immersion in a liquid which wets glass the liquid will 
rise between the plates (Fig. 74). From the figure, we have 

Fig. 74. 

tan 0 
d 

X 
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and we have seen that the height to which the liquid rises varies 
as 1/d, Hence 

_ c _ c . 1 _ ^ 
^ d tan ^ X X 

where c and k are constants. 
Thus we see that the surface of the liquid will form the curve 

xy = k (11) 

which is the equation of a rectangular hyperbola. 
86. Excess Pressure in Bubbles.—Because of the surface 

tension of liquids, a bubble, e.g.y a soap 
bubble, always tends to contract and diminish 
the surface. Hence, to form a soap bubble, 
we must blow and create an excess pressure 
inside the bubble to hold it in equilibrium. 
Let us calculate this excess pressure for a 
spherical bubble. Imagine that we slice 
the sphere into two hemispheres, and consider 

the forces acting on the upper hemisphere (Fig. 75). The 
downward force is 

{2TRa) inHidn + {2TRa) out«i(lo = 4:TRa 

and the total upward force is due to the excess pressure p of the 
gas in the lower hemisphere on the plane cutting the sphere. 
This is 

so that for equilibrium 

and hence 

ttR^^P 

ttR^P = ^irRa 

(12) 

so that the excess pressure is smaller, the larger the bubble. 
These excess pressures are very small. A soap bubble of 5 mm. 
radius has an excess pressure 

4 X 25 • 
p = = 200 dynes/cm.2 ^ 0.0002 atmosphere 

If we have a cylindrical shape, we imagine the cylinder (long 
axis horizontal), split in two by a vertical plane A A, and consider 
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the forces on the back half of the cylinder (Fig. 76). The total 
force pulling forward is 

(2aL) iuulde I ' (2ofjt/)outaide ^(xL 

and the force pushing back is due to the excess pressure in the 
gas in the front half and is p • 2RLy 

so that, for equilibrium, 

p • 2RL = 4aL 
or 

p - 
2a 

'R 
(13) 

T 
2R 

_L 

_A__ 

Fui. 76. 

which is just one half the excess 
pressure needed for a sphere of the 
same radius. 

If we have a sphere and cylinder connected, the excess pres¬ 
sures must be equal, so that 

4:a __ 2a 

X Tic 

Rs = 2Rc 

so that the radius of the sphere is twice that of the cylinder. 

Problems 

1. Calculate the radius of an aluminum sphere which contains about 
1,000,000 atoms of aluminum. 

2. Calculate the difference in pressure between the top and bottom of a 
mercury column 76.0 cm. high and 2 cm. in diameter. The density of Hg is 

13.69 grams/cm.* Express your answer in dynes per square centimeter 

and in pounds per square inch. Calculate the height of a water column 

which produces the same pressure difference. 

3. A tank 3 ft. long, 5 ft, wide, and 6 ft. high is filled half full of water. 

Calculate the total force exerted by the water on each wall (and on the 

bottom). (Hint: Consider a strip of the wall dy in height at a distance y 

below the surface. Calculate its area, the force on it, and then integrate to 
get the total force.) 

4. A vertical gate 3 ft. wide by 4 ft. high is hinged along its top edge 

which is parallel to the water surface and 12 ft, below it. Calculate the total 

torque in pound-feet acting on the gate about the hinge as an axis. 

6. Show that if a body of volume F, density po, is completely submerged 

in a liquid of density p, there is a resultant force acting on it equal 
to (yF(po — p) in the downward direction. 
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6. The cross section of a certain dam is a rectangle, 10 ft. wide and 20 ft. 
high. The depth of water behind the dam is 20 ft. 

Considering a section of the dam 1 ft, in length, what is the force on a small 
horizontal element of the upstream face, of width dy^ at a depth y below the 
surface? 

What is the torque, due to this force, tending to overturn the dam about 
the bottom of the downstream face 0? 

Show that the total torque about 0 due to the water pressure on the 1-ft. 
section is 83,500 lb.-ft. If the material of the dam weighs 100 lb./ft.^ 
show whether or not the restoring torque about 0 due to th(‘ weight of the 
dam is greater than the torque due to water pressure. 

7. A rectangular tank 10 ft. wide, 16 ft. long, and 12 ft, deep is filled 
one-third full of water, and the remainder of the tank contains oil of density 
56 Ib./cu. ft. What is the total force exerted by the water on one end of 
the tank? 

8. A uniform rod of length I is hinged at one end a distance 1/3 below 
the surface of water. If the rod is in equilibrium at an angle of 60° to the 
vertical, what is the density of the material of the rod? 

9. A hollow cylindrical can 20 cm. in diameter floats in water with 10 cm. 
of its height above the water line when a 10-kg. iron block hangs from its 
bottom. The iron is submerged in the water in which the cylinder floats. 
If the iron block is placed inside the can, how much of the cylinder's height 
will be above the water line? The density of iron is 7.8 grams/cm.^ 

10. Archimedes’ discovery of the principle bearing his name enabled 
him to solve a problem equivalent to this one. A crown consisting ()f gold 
and silver weighs 1,000 grams in air and 920 grams in water. Find the 
number of grams of gold and of silver it contains. 

11. A hollow sphere of inner radius 9 cm. and outer radius 10 cm. floats in 
water half submerged. Calculate the density of the material of the sphere. 
What will be the density of a liquid in which it would just float completely 
submerged? 

12. A cubical block of wood 10 cm. on a side and of density 0.5 gram/cm.* 
floats in a jar of water. Oil, of density 0.8 gram/cm.*, is poured on the water 
until the top of the oil layer is 4 cm. below the top of the block. How deep 
is the oil layer? 

13. Prove that, if a body floats, the ratio of the total volume of the body 
to the volume of the immersed part is equal to the ratio of the density of the 
liquid to the density of the body. 

14. The upper edge of a vertical gate in a dam is along the surface of the 
water. It is hinged at the lower end which is 10 ft. below the surface of the 
water. The gate is 6 ft. wide. Calculate the torque about the hinge. 

16. A polar bear weighing 1,000 lb. is floating on a cake of ice. As the 
ke melts, what will be the least volume so that the polar bear does not get 
his feet wet. 

Specific gravity of salt water = 1.03; specific gravity of ice = 0.92. 
16. The density of water at a depth z is given approximately by the 

formula p = po(l 4- /3z). ^3 == 1.21 X 10“® per foot. Calculate the pres¬ 
sure at a depth of 10^ ft. in salt water of specific gravity 1.025. 



HYDROSTATICS 233 

17. One end of a uniform wooden rod 4 ft. long and 2 in.* in cross section, 

of specific gravity 0.6 is hinged at a point 2.0 ft. below the water surface. 

What vertical force applied at the other end would be required to keep the 

rod completely immersed? 

18. A cubical block of steel (density =7.8 grams/cm.*'’) floats on mercury 

(density = 13.6 grams/cm.3). How much of the block is above the mercury 

surface? If water is poured on the Hg surface, how high must the water 

layer be so that the water surface just rises to the top of the steed block? 

19. A water-soluble crystal weighs 250 grams in air and 120 grams when 

submerged in oil of density 0.9 gram/cm. ^ What is the density of the 

crystal ? 

20. A barrel of water standing on one arm of an equal-arm balance is 

balanced by a weight of 200 lb. A steam coil weighing 60 lb. and occupying 

a volume of 0.33 ft.® is hung from the ceiling and completedy immersed in 

the water without touching the sides of the barred. Will the apparent weight 

ejf the barrel of water increase or decrease? how much? What is the tension 

in the rope supporting the steam coil? 

21. A test tube 2 cm. in diameter partially filled with Hg, the whole 

weighing 30 grams, floats vertically in water. Show that, if it is depressed 

and suddenly released, it will perform simple harmonic motion. What will 

be the period? 

22. A IJ-tube of uniform cross section of 6 in.* contains 96 in.® of water. 

A for(;e of 0.2'lb. is applied uniformly on one free surface and is suddenly 

removed. Calculate the period of the ensuing simple harmonic motion. 

What is its amplitude? 

23. A cylindrical vessel 10 cm. in radius contains a liquid standing at a 

height of 5 cm. It is rotated about its long axis so that the vertex Of the 

parabedoid formed by the surface of the liquid just touches the bottom of the 

vessel. What is the angular velocity necessary to attain this condition? 

24. A clean platinum ring of 2 cm. radius is placed on the surface of clean 

water of surface tension 72 dyncs/cm. and is carefully raised until the film 

which clings to the ring breaks. What force is necessary to cause the film 

to break? By measuring this force we have a method for measuring the 

coefficient of surface tension. 

25. Drops of water, alcohol, and mercury are formed from similar pipettes. 

What is the ratio of the radii of the drops which are thus formed? Calculate 

the radii of the drops. 

26. A U-tube has dissimilar legs, one of 2 mm. radius and the other of 

5 mm. radius. If water is poured into this U-tube, what will the difference 

of level be? What would this difference be for ether? 

27. A tube of square cross section 0.04 in.* is dipped vertically into a 

vessel of water. How high will the water rise in this tube? 

28. Mercury stands in an inverted completely evacuated tube to a height 

of 6 cm. A bubble of air 1 mm. in diameter is formed under the mercury at 

the bottom of the tube. What is the total pressure of air in this bubble? 

If it rises very slowly to the surface, how large is it just as it reaches the 

mercury surface? Assume Boyle^s law, i.c., pV - constant, for the air 

inside the bubble. 
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29. Two long parallel plates are placed vertically in a vessel of water. 

The distance between the plates is 1.0 mm. What is the difference in level 

of the water between the plates and outside of the plates? 

30. A hydrometer consists of a spherical bulb and a cylindrical stem of 

cross section 0.4 cm.^. The total volume of bulb and stem is 13.2 cm.I 

When immersed in water, it floats with the stem vertical, and 8 cm. of the 

stem is above the surface. In alcohol 1 cm. of the stem is above the surface. 

Calculate the density of the alcohol. 

31. A spherical soap bubble is blown so that its radius increases at the 

constant rate of 1 cm./sec. Calculate the rate of increase of surface energy 

of the bubble when its radius is 2 cm. a = 26 dynes/cm. for the soap film. 

32. A tube of circular cross section and radius 0.14 cm. is weighted at 

one end and floats vertically in water, heavy end down. The mass of the 

tube is 0.20 gram. If water wets the tube and the angle of contact is zero, 

how far below the surface is the bottom end of the tube? a 72 dynes/cm. 

for water. 



CHAPTER XIV 

FLUID DYNAMICS 

The study of fluid dynamics or of hydrodynamics comprises the 
study of the laws of motion of fluids. In this chapter we shall 
restrict ourselves to the case of incompressible fluids. Our 
results, however, are also approximately valid for the flow of 
gases, such as air, provided the velocities are not too high. If a 
volume change of 1 part in 100 may be considered negligible, it 
turns out that for the purposes at hand we may consider air as an 
incompressible fluid up to velocities of about 50 meters/sec. 

A liquid in motion presents a complicated state of affairs, since 
a complete description of its motion would demand a knowledge 
of the motion of each of the molecules of which it is composed. 
Such a detailed picture is, of course, hopelessly involved, since 
the molecules possess a random heat motion even when the 
liquid is at rest, and superimposed on this random motion we 
have the velocities which in their totality make up the observable 
velocity of the liquid. Hence we adopt the continuous picture 
of a liquid and neglect entirely the random heat motion, a 
procedure which is quite justifiable since the latter averages to 
zero in an infinitesimal volume element of the liquid. The 
motion of a continuous medium is completely described if we 
describe the motion of each volume element of the medium, z.e., 
we pick a volume element of the fluid and specify its velocity 
(direction and magnitude) at each point of its path and also 
specify the time it reaches each point of its path. Even this 
mode of procedure is very complicated and we shall, in our 
applications, confine ourselves to motions of physical and 
engineering interest which are describable in a simpler manner. 

Hydrodynamic phenomena are intricate enough so that very 
often they contradict our common sense and can only be under¬ 
stood by a careful application of Newton^s laws of motion. In 
the case of frictionless ideal fluids, the energy principle often 
allows a solution of a flow problem of which the details may be 
very involved. A simple example may help to illustrate this 

235 
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point. Consider the flow of a liquid out of a small hole in the 
bottom of a tank of uniform large cross section A, in which the 
liquid stands at height h. In time the level sinks an amount 
Ah, so that we lose a mass ApAh of liquid from the tank; otherwise 
no change takes place in the tank. The end result is the same as 
if this amount of liquid had fallen through a height h. The loss of 
potential energy of this amount of liquid is 

— AV = Apgh ■ Ah 

and since we have assumed no friction this must be equal to the 
gain of kinetic energy of this amount of liquid. If v is the velocity 
of efflux, we have 

AK.E. = ApAf^ 

Here we have neglected the kinetic energy gained by the liquid 
remaining in the tank, a procedure which will be justified in a 
later section. We have 

so that 

or 

AK.E. = -AV 

= 2gh 

V = ’\/2gh (1) 

a result known as Torricelli^s theorem. 
One-dimensional problems concerning the flow of water are 

called problems of hydraulics, in contradistinction to hydro¬ 
dynamics which deals with the flow of any fluid in three 
dimensions. 

87. Stationary Flow.—We start our discussion of hydro¬ 
dynamics with a consideration of the simplest kind of flow, 
known as stationary or steady flow, in which the velocity at a given 

point P of space does not change with time. Let us imagine that 
we take a snapshot of the moving fluid. At every point P of 
space we can draw a vector v representing the direction and 
magnitude of the velocity of the fluid particle which is situated 
at P when the picture is taken. We shall, in general, find 
different velocities at different points of the picture. The 
totality of these velocity vectors describes the state of motion 
uniquely at one instant of time. The condition of stationary 
flow is that a later snapshot of the fluid reveals the same velocity 
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vectors at each point P of space. Of course, the fluid particle 
which was at point P in the first snapshot is found at another 
point Q in the second picture and a new particle has moved into 
the position at P. 

At any point P of space, then, the particle at that point 
possesses the same vector velocity no matter at what instant of 
time we look at it. If we pick out such a particle (by coloring it 
red, for example) and follow it in its motion, it is found to move 
from P to Q along a definite path (Fig. 77). Every succeeding 
particle coming to P then follows the same path to Q and takes 
on the same set of velocity values Vi, • for steady flow. 
Thus the fluid streams as if it were enclosed in a number of little 
tubes. These little tubes are called tubes of flow and the lines 
which indicate the path of a particle are called lines of flow or 
streamlines. These lines of flow 
give the direction of the velocity 
of flow at every point of space. 
They are analogous to lines of 
force which give the direction of 
the intensity of a field of force 
at every point. A tube of flow is made up of a bundle of similar 
lines of flow. The liquid can never flow from one line of flow to 

another, as this would contradict the definition of line of flow. 
Thus the idea of tubes of flow may be taken quite literally and 
we may think of these tubes as made of real matter, as liquid 
which is in a tube never gets out. 

If we describe the motion of the liquid in one tube of flow, we 
then may obtain the description of the liquid flow as a whole by 
repeating this description for all the tubes of flow present. In 
the special case in which the motion in each tube of flow is 
identical with that in every other tube (this also means that the 
tubes of flow are all parallel to each other), we may consider the 
liquid as flowing in one large tube. This view is widely adopted 
by hydraulic engineers in the study of liquids streaming in pipes, 
and, if the flow characteristics are different in different tubes, 
they take averages and still consider but one large tube. This 
procedure, of course, can be at the best only a rough 
approximation. 

88. Equation of Continuity.—Not every conceivable streamline 
picture represents a possible fluid motion, since we must require 
that no liquid disappear, i.e., we must have conservation of the 

Fig. 77. 
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mass of liquid under consideration. Since each tube of flow 
contains its own particles of fluid, this condition must hold not 
only for the whole liquid but also for every individual tube of 
flow. Such a tube of flow may change its size as we move along 
it, and there may be different pressures at different points 
in it. We must consider two cross sections of the tube, A i and A 2 

(Fig. 78). The mass of fluid 

Fig. 78. 

which flows through the surface 
A1 in time dt is 

dm == pAiVidt 

where Vi is the velocity at the point Pi. Similarly the mass of 
fluid flowing in time dt across A 2 is the liquid contained in the 
cylinder of volume A2V2dt and is 

dm — pA2V2dt 

If there are no sources or sinks and if the liquid is incompressible, 
all the liquid entering across Ai must leave across A 2. Hence 

or 
pAiVidt = pA2V2dt 

AiV\ — A2V2 (2) 

t.e., the velocities in a given tube of flow must vary inversely as 
the cross sections of the tube. 

In the case of liquid flowing in a pipe of cross section A where 
we treat the pipe as one big tube of flow, we have for the dis¬ 
charge rate of the tube 

Q ^ Av (3) 

where v is the common velocity of the liquid at the cross section A, 
and Q has the dimensions of P/t and is expressed in cubic feet 
per second, cubic centimeters per second, or any equivalent 
measure. Even in cases where there are different velocities in 
different tubes of flow, engineers frequently use Eq. (3), where 
V then represents the average velocity of the liquid in the pipe. 

Equation (2) known as the equation of continuity holds in this 
form only for incompressible fluids. For compressible fluids it 
must be extended to take into account the fact that varying 
masses of liquid may be squeezed into a given volume because 
of the variable density of the fluid. 
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89. Bernoulli’s Principle.—The application of Newton’s second 
law of motion to the particles of a liquid in a tube of flow leads 
to an equation called Bernoulli's equation after its discoverer, 
Daniel Bernoulli (1738). In the steady state the velocity and 
pressure at a given point of space do not change with time. If 
the pressure varies from point to point of a tube of flow, this 
variation of pressure with position results in a force acting 
on the particles of liquid in the tube which accelerates them. 
Besides this force there are also the body forces acting on the 
liquid, but, as in the last chapter, we shall restrict our attention 
to gravity as the only body force 
acting. We shall set up Newton’s (p+Ap)A 
second law by calculating expressions 
for the force per unit mass due to 
(1) the change of pressure along the 
tube of flow and (2) the weight of 
the liquid. Let us call the distance 
measured along a tube of flow from 
an arbitrary origin 5, and consider 
a volume element of the liquid at a 
point P of the tube where the cross 
section is A (Fig. 79). To obtain 
the force per unit mass along the tube of flow due to changing 
pressure, we note that the resultant force due to the pressure on 
the two end faces of the particle is 

pA — (p + Ap)A = —ApA 

The mass of this volume of liquid is pAAs, so that the pressure 
force per unit mass along the tube is 

__ ApA _ __ 1 Ap 
AsAp p As 

and, as As 0, this expression becomes 

/9 AAsg 

Fig. 79. 

1 dp 

p ds (4) 

The weight of the liquid in the volume element is 

--pAgAs 

and, dividing by the mass, we find as the body force per unit 
mass. The component of this force parallel to the tube of flow 
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is —g' cos 6j if 6 is the angle between the direction of the tube 
and the vertical. Thus Newton’s second law may be written 

in the form 

1 dp 
p ds 

g cos e = (5) 

if V is the speed of the liquid particle at the point P, To integrate 
this equation we place 

dv __ dv ^ ds _ dv 
dt ds dt ds 

so that Eq. (5) becomes 

or, rewritten, 

1 dp 
p ds 

— Q cos Q — v-^ 

~dp + g cos dds + vdv = 0 
P 

Now ds cos B is just the vertical component of the displacement 
ds which we shall denote by dh. Thus we may write 

-dp + g dh V dv = 0 
p 

If we now integrate this equation remembering that p is constant, 
there follows 

p 
— + gh + -fr — constant (6) 
P ^ 

This is Bernoulli’s equation. It expresses the conservation of 
energy as applied to the liquid in a tube of flow. The first 
term represents the potential energy per unit mass of the liquid 
due to the pressure, the second term is the potential energy per 
unit mass of the liquid in the earth’s gravitational field, and 
the last term on the left side of the equation is the kinetic energy 
per unit mass of the liquid. The sum of the potential and 
kinetic energy per unit mass has the same value at different 
points of the same tube of flow. 

For the purposes of many applications, it is convenient to 
write Eq. (6) in the form 

1 , 7 I 1 I L I 
+ 9^1 + -^— ~P2 + gh2 + 2 (7a) 
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where the subscripts 1 and 2 refer to two different points in the 
tube of flow. 

If the flow occurs in a horizontal plane, hi — h^, and we have 

1 

P 

. v\ 1 . vl 
Pa +2 =7^+2 (76) 

This tells us that the pressure is higher where the velocity is 
lower. For a liquid at rest, we have p equal to the hydrostatic 
pressure. Consequently, the pressure of a liquid in motion (the 
dynamic pressure) is always lower than that in the same liquid 
at rest. 

90. Applications of Bernoulli’s Principle.—The Bernoulli 
equation is one of the most important in the hydrodynamics of 
ideal liquids. We shall give several applications. 

a. Stationary Flow of a Free Liquid Surface.—On the free 
surface of a licjuid we have constant pressure, and hence the 
Bernoulli equation takes the form 

-Ir qh — constant 

If, at a height /ii, the velocity Vi is zero, we have for the velocity 
at any ot her height (below hi) 

V = V^g{hi — hf) = y/2gh 

This equation holds for streamlines which start on a free surface 
and later are again found on a free surface, 
such as in the case of flow from a tank where 
a streamline starts from the liquid surface 
and later appears in the free jet w^hich 
emerges from the opening. This is identical 
with Eq. (1). 

Let us calculate a more exact expression 
for the velocity of efflux taking into account 
the velocity of the top surface of the 
liquid. If the velocity in a tube of flow 
at height hi is vij then w^e have for y, the velocity in the same 
tube at h2 (Fig. 80), 

= -^+ ghi 

Fig. 80. 

or 
i;2 — ~ 2g{hi — h^) = 2gk 
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which may be written 

,.2 _ 
(8) 

To calculate the ratio oi Vi/Vj we shall consider the flow as one 
big tube of flow whose area at hi is Ai and at /12 is A2. The 
equation of continuity gives 

so that 

(9) 

If the hole is very small compared with the area of the surface, 
we have approximately 

V = 1 + = \/2gh (10) 

If A 2/AI << 1, we may entirely neglect the term (^2/^1)^ 
and thus refind the TorricelM theorem. In actual cases the state 
of affairs is more complicated than here pictured as all the tubes 
of flow starting at hi do not continue into the stream at A2, but 
many are broken up at the edge of the hole and numerous eddies 
are formed so that Eq. (10) is not applicable without modifica¬ 
tion. An approximate method of modification is to consider 
the hole at the bottom of smaller effective area than its geo¬ 
metrical area and to introduce an empirical coefficient of 
contraction. 

b. The flow of a fluid from inside a vessel under the action of a 
constant inner pressure may be handled as follows: 

In a horizontal streamline, we have 

1 
■“P + TT ~ constant 
P ^ 

If the fluid, c.gr., a gas, is at rest inside the vessel, then 
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where pi is the pressure inside the vessel, and po the pressure 
outside. Hence 

V = yj^iPl - Po) (11) 

If the cross section of the emerging jet is A, the mass of fluid 
emerging per second is pAv and the loss of momentum per 
second is 

pAv- = 2(pi — j)o)A 

This rate of change of momentum is equal to the total force 
driving the fluid from the container. By the third law there is 
of course an equal and opposite force exerted back on the con¬ 
tainer by the outstreaming fluid. 

c. Strea7ning Around an Ob¬ 

stacle; Pitot Tube.—If an ob¬ 
stacle is placed in a liquid p® 
flowing with constant velocity 
Voj the liquid com(‘s to rest 
just before the obstacle and 
the streaming is divided into 
two branches, one on each side 
of the obstacle. The original streamline pattern which consisted 
of parallel straight lines is deformed as shown in Fig. 81. 

Fig. 82. Fig. 83. 

At the point 0, the velocity is zero and we have the hydrostatic 
pressure 

Px = Po + 
PVo 

if po is the pressure in that part of the flowing liquid where the 
streamlines are straight. We may use the above relation to 
measure the velocity of the flowing liquid. If we insert a curved 
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glass tube, as shown in Fig. 82, the pressure pi is transmitted 
through the stationary liquid in the tube and may be measured 
in the ordinary way. The pressure po may be rae^asured by insert¬ 
ing a straight tube transverse^ to the flow lines. Thus we may 
connect these tubes together as shown in Fig. 83 to form what is 
known as a Pitot tube. The pressure difference in the tubes is 
given by 

Pi - Po = pgh 

so that the velocity of the liquid is 

If we wished to measure the velocity of a streaming gas, wo 
would merely invert the device shown above and pour some 
liquid in it. The difference of level of the liquid being h and its 
density p', the velocity of the gas would then be given by 

where p is the density of the flowing gas. 
It is of course assumed in the preceding discussion that the 

tubes inserted are so small that the disturbance of the lines of 
flow caused by their presence may be 
neglected, except in the immediate 
vicinity of the tubes. 

91. Qualitative Examples, a. At¬ 

traction of a Disk.—Suppose we con¬ 
nect a disk QQ to a hollow cylindrical 
tube as showm, so that we may blow 
air through the tube, and place a solid 
disk PP in contact with the disk QQ 

(Fig. 84). If we do not blow through the tube, the disk 
PP will fall away from QQ as expected. If we blow through 
the tube, we might expect PP to be forced away from 
QQ faster than if we do not blow. Actually the disk 
QQ seems to attract PP, and the harder we blow, the greater this 
attraction. This phenomenon is understandable with the help 
of Bernoulli's equation. When we blow, an air stream is set 
in motion between the disks with a velocity v. In this stream 
the pressure is less than atmospheric, and, since there is atmos- 

Fig. 84. 
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pherie pressure below the disk PP, there is a resultant force 
upward on PP, 

P = (Po - v)A = 

where ^ is the area of the disk and v the average velocity of the 
air flowing between PP and QQ. The greater the velocity Vy 

the larger this upward force, so that it is easy to produce an 
upward force larger than the weight, of the disk, with the sur¬ 
prising result that the disk PP ‘^sticks^^ to the fixed disk QQ. 

A similar experiment may be carried out by hanging up two 
spheres so that their surfaces are almost in contact. If we then 
blow between the spheres, they come together since the pressure 
in the region between them is less then atmospheric and is 
atmospheric elsewhere. This gives rise to a resultant force 
pushing the spheres together. 

h. Celluloid Ball m an Air Blast.—If we place a celluloid ball, 
such as a ping-pong ball, in an air blast, it is observed that the 
ball stays within the blast of air even though the blast make an 
angle with the vertical. Since the i)ressure inside the air blast 
is less than the static atmospheric pressure outside the moving 
air, it is clear that, there is a resultant force so directed as to 
push the ball always toward the center of the blast where the 
pressure is lowest. 

92. Viscosity; Coefficient of Viscosity.—Thus far we have 
been considering ideal fluids, i.e., those for which no work is done 
in a change of shape of the fluid. Actually, no fluid is perfectly 
ideal, although many liquids and gases approximate this condition 
very closely. Some licpiids, such as glycerine and heavy oil, 
depart widely from this ideal condition and are known as viscous 

liquids. The viscosity of a liquid is a name for the internal 
friction of the liquid. We can arrive at an understanding of this 
internal friction by considering a simple experiment. Suppose 
we place a layer of viscous liquid, such as glycerine, on a glass 
plate and then place a similar glass plate on top of this liquid. If 
we now pull the top plate horizontally with a constant force F, it 
is found that the top plate attains a constant velocity v (Fig. 85). 
Furthermore the liquid clings to the plates, so that the layer of 
liquid clinging to the top plate moves with a velocity v and the 
layer of liquid clinging to the bottom plate remains at rest. The 
velocities of intermediate sheets of liquid are proportional to their 
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vertical distances from the bottom plate. Suppose the thickness 
of the liquid layer is a and the area of each glass plate is A, 

The friction force is equal and opposite to the applied force 
since there is no acceleration. The impressed force F is pro¬ 
portional to V and to A and is inversely proportional to the 
thickness of the liquid layer. Thus we may write 

F = (12) 

where rj is the proportionality factor and is called the coefficient 
of viscosity of the liquid. It has the dimensions 

m 

Tt 

and is usually expressed in dyne-sec./cm.^ = gram/cm.-sec. 
. _ _ More generally, if we consider 
\ A a 0, we have 

I ♦ where y is measured perpendic- 
ularly to the direction of motion. 

This type of flow is called laminar flow since the liquid sheets 
(laminae) flow over each other. The work done by the viscous 
force appears as heat energy and raises the temperature of the 
liquid. The coefficient of viscosity is strongly dependent on 
temperature and decreases with increasing temperature. For 
water we have the following values in dyne-sec./cm.^: 

1 

0.018 
0.010 

0.003 

T 
0°C. 

20°G. 

98°C. 

Glycerine has a viscosity coefficient of about 11 dyne-sec./cm.^ 
at room temperature, i.e,, about 1,000 times as great as water. 

93. Laminar Flow in Cylindrical Pipes; Poiseuille’s Law.—We 
now consider laminar flow in cylindrical pipes. In this case 
we think of the sheets of liquid as cylindrical tubes sliding over 
one another. Such flow takes place for sufficiently viscous 
liquids in small pipes. We shall give more exact criteria at the 
end of the chapter. 
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Consider a length I of a horizontal cylindrical pipe of radius B 

(Fig. 86). The pressure at a: = 0 is pi, and the pressure at 
X = Z is p2. Let us calculate the viscous force exerted on a 
laminar sheet of radius y. The area of the sheet (cylindrical 
surface) is 2Try • Z, and hence the viscous force is 

F. - 

The resultant force due to the pressure on the liquid contained 
inside this cylinder of radius y is (see Fig. 86) 

— P27ry2 = 7r?/2(pi — 

For equilibrium, we have 

(iv 
— V2) + ^^ttZ?/^ = 0 

whence 

dv 

dy 
1 Pi — P2 

~2rf ‘ Z y (14) 
Fig. 8G. 

an equation which gives us the rate of change of velocity along a 
radius of the pipe. (pi — P2)/Z is the pressure drop per unit 
length along the pipe. 

To find v as a function of p, we integrate P]q. (14) and obtain 

V = 
4:7] 

Pi - 
f 

P2 + c (15) 

and we determine c by the condition that the liquid clings to the 
inner surface of the pipe, z.e., r = 0 for y = R. 

Thus 

c >. . K= 
4i7 I (16) 

Inserting the value of c found in Eq. (16) into Eq. (15), we 
obtain 

V = 
1 Pi - Pi 
4, I 

(R^ - y^) (17) 

If we plot the velocity of a tube of the liquid as a function of the 
radius of the tube y, we obtain a picture of the velocity distribu¬ 
tion perpendicular to the direction of flow. Thus we have a 
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parabolic distribution of velocity across the pipe as shown in 
Fig. 87. 

To get an expression for the discharge rate of such a tube, we 
consider a cylindrical tube of liquid 
of radius y and thickness dy (Fig. 
88). The cross section of such a 
tube is 2Trydy, and the discharge 
rate of this tube is 

ax/>5 of 
luhe" 

dQ 2irydy 

Fig. 87. 
where v is the velocity at the radius 2/. 

Inserting its value from Eq. (17) we have 

dQ = ^ • {R'^ - y^)ydy 

and the total discharge rale ( f all the tubes making up the liquid 
in the pipe is 

This law is known as Poiseuille^s law and provides an excellent 
means for experimentally determining tj for various liquids. The 
discharge rate is most easily controlled by choosing a tube of 
proper radius R. 

94. Stokes’s Law.—If a sphere is dragged with constant 
velocity through a viscous liquid slowly enough so that the 
motion of the liquid relative to the sphere is laminar, the force 
applied measures the viscous force of the liquid on the sphere. 
The exact calculation of this force requires mathematical methods 
beyond the scope of this book, but we can investigate the form 
of the law from dimensional considerations. The friction force 
depends on the viscosity coefficient v, on the velocity of the 
sphere v, and on the radius of the sphere R. 
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P = /(*'» V, R) 

Now the dimensions of these quantities are: 

[v] = 
[rj] ~ 

[R] = I 

[F] - 7nlt~^ 

Thus we see that the function/ must be krjvR where k is a dimen¬ 
sionless constant. Exact calculation reveals the value of this 
constant as Gtt, so that 

F = (jtttjvR (20) 

a law known as Stokes\s law after its discoverer. For spheres 
falling under the action of gravity, we have for F, 

F = inR'^ip — po)g 

whei% p is the density of the sphere and po that of the fluid in 
which it falls. Inserting this in Eq. (20), we find 

dT7]vK = f^7rR^(p — po)g 

or 
2 

V = i^R-{p - pu)g (21) 

showing that larger spheres fall faster than smaller spheres of the 
same material in a viscous 
medium. 

96. Pressure Changes Per- 
pendicular to the Streamlines. r \ 

In deriving Bernoulli’s equation \ 
we considered only the com- 
ponent of acceleration along 39 

a streamline and the compon¬ 
ents of the forces in this direction. The resulting equation tells us 
how the pressure varies along a streamline. If we wish to find how 
the pressure changes transverse to the lines of flow, we must con¬ 
sider the transverse component of acceleration, t.c., the centripetal 
acceleration. Consider an element ds of a curved streamline 
(Fig. 89). This may be considered as an arc of a circle of radius r. 
r is called the radius of curvature of the curve at the point where ds 

is situated. For simplicity, we neglect the effect of gravity. 
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Consider a volume element as shown of base NA and height dr 

(Fig. 89). The resultant force on this element is 

— (p + dp)NA = —• dp 

so that the pressure increases as we go from the concave to the 
convex side of a streamline, and it increases by an amount 

p— per unit distance perpendicular to the streamline. In pirtic- 

ular, if the streamlines are straight lines, r = oo and we find 
dp/dr = 0, so that there are no pressure differences normal to 
these streamlines. 

Equation (22) allows us to understand why the boundary 
surface between a moving and stationary fluid (the so-called 
vortex sheet) is unstable. Consider a uniformly streaming fluid 
in contact with a fluid at rest. The pressure at the boundary 
must be the same just above the bounding surface as just below 
it, so that there is a sudden jump in the velocity at the boundary. 

Suppose a minute change occurs at the boundary which causes 
a small bend in the streamline there. In order to have a steady 
state with this curved line, it would be necessary to have a larger 
pressure on the convex side than on the concave side. More¬ 
over, if the original state is to be reobtained, this excess pressure 
must be even larger than that necessary to maintain the curved 
flow. These differences of pressure do not exist, however, at the 
boundary surface, nor are they caused by such a bend, so that 
any such disturbance once started grows indefinitely, or more 
exactly, grows until an eddy forms. Thus we have the formation 
of eddies at the boundary, and, if the original velocity v is large 
enough, we may completely destroy the steady character of the 
motion and produce a turbulent motion to which our formulas 

must not he applied, * 
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96. Turbulent Motion; Pressure Resistance; Reynolds Num¬ 
ber. *—If we pull a sphere through a liquid, the motion of the 
liquid maintains for small velocities a steady character (laminar 
flow). The resistance of the liquid to the motion is given by 
Stokes’s law [Eq. (20)]. We notice that when a certain critical 
velocity Vc is exceeded {vc depends on the liquid and on the shape 
of the body), the motion of the liquid changes its character 
entirely and becomes turbulent—eddies and whirls are formed. 
Vortices are formed in hack of the sphere. A similar departure 
from stationary flow occurs for pipes w^hen the liquid velocity 
exceeds a certain critical value. The appearance of turbulent 
flow is characterized by a change in the force opposing the 
motion of the body, giving rise to the so-called pressure resistance 

as contrasted with the viscosity resistance. This is due to the 
formation of vortices in back of the sphere. In the case of 
stationary flow, the streamline picture is symmetrical about the 
sphere, and hence the pressure 
distribution is also symmetrical so 
that there is no resultant force on 
the sphere due to pressure. In the 
case of vortex motion this sym¬ 
metry is destroyed, and the pres¬ 
sure in front is greater than that 
behind the sphere (Fig. 90). This 
is of course in addition to the viscous drag which is always 
present but is very much smaller than the pressure resistance. 

The force due to pressure resistance exerted on a body depends 
on the cross section of the body perpendicular to the direction of 
motion, on the density of the liquid since the w^ork done goes into 
kinetic energy of the vortices and eventually into heat, and on 
the velocity 

F = Kv, p, A) 

where A is the largest cross section perpendicular to the direction 
of motion. Dimensionally 

[v] = 
[p] = rnl-^ 

[A] = P 

[i^’l = mU-^ 

* The considerations in this section are rough approximations, and, 
although important in practice, they should be considered as qualitative 

results in comparison with Bernoulli’s equation and Poiseuille’s law. 
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SO that we obtain 
F = kpv'^A (23) 

where is a dimensionless constant depending on the shape of the 
body. As examph^s, wo give the values of k for a few cross 
sections (Fig. 91). It should be noticed that for turbulent 
motion the resistance to the motion is proportional to whereas 
for laminar flow it is directly proportional to v. 

If we now inquire as to when turbulent motion sets in, we must 
consider the factors on which the critical velocity depends. In 
the case of cylindrical tubes for which we have already considered 
laminar flow in detail, the critical velocity* may depend on the 
viscosity of the fluid, on its density and on the diameter of the 

tube d. Hence 

Vc = f(Vf Py d) 

Dimensionally 
K-a66 K-0.66 

K"0.17 K-0.028 
The arrows denote the liquid ve/ocity 

Fig. 91. 

so that 

[7,1 = 

[p] = nil-^ 

[d] = I 

[Vc] = 

Vc = R 
pd 

(24) 

where 12 is a dimensionless number called Reynolds number and 
does not depend on the liquid. For cylindrical pipes R ^ 1,000. 
As an example of the above, consider the flow of water in a pipe 
of 10 cm. diameter. The critical velocity is 

10"^ 

Vc = 1,000 X ^ = 1,000 X = 1 cm./sec. 

whereas for glycerine in the same tube, 

10 
Vc = 1,000 X ^ = 1,000 X j~3 cm./sec. 

so that the flow of glycerine is almost certain in practice to be 
laminar whereas that of water will be turbulent in most practical 
cases. 

* This critical velocity is not uniquely defined, since in laminar flow the 

velocity varies across a section of the tube. Roughly we may think of this 

critical velocity as the average velocity in the tube. 
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97. Some Laws of Vortex Motion.—Vortex motion plays such a large part 
in the theoretical and experimental study of hydrodynamics that we shall 

summarize a few of its most important characteristics for ideal fluids. Our 

knowledge of these laws is largely due to von Helmholtz. 

1. Vortices occur when the individual particles (i.e.y volume elements) 

possess angular momentum. 

2. A rotating particle can never rotate alone, but the neighboring particles 
partake of the rotation, and the axes of rotation form closed vortex lines or 

curves. Vortex lines always form closed curves or end on the sides of the 

vessel or in the free surface of the liquid. 

3. A vortex ring always consists of the same liquid. No energy is trans¬ 

ferred to another part of the liquid. 

4. The vortex strength of a ring is constant, i.e.y the vortex carries its 

energy with it in its motion through the remaining liquid. 

These laws may bo illustrated to a large extent by the help of smoke rings. 

We have given the above laws in order to offer the student at least a passing 

acquaintance with some of the more import-ant aspects of vortex motion. 

Problems 

1. Starting from the definition of work, prove that the work done per 

unit mass (e.g., a gram) of an incompressible liquid by the force due to 
changing pressure, when it moves from a region where the pressure is po to a 

region where the pressure is p, is given by 

W = -Up - Po) 
P 

where p is the density of the liquid. 

If the liquid is compressible, the density p depends on the pressure. In 

this case show that 

TF = - 
Jpo P 

2. Using the result of Prob. 1, derive Bernoulli’s equation by a direct 

application of the law of conservation of mechanical energy. 

3. Water flows out of a small hole of radius 2 in. in the bottom of a 

cylindrical vessel 1 ft. in radius. Calculate the velocity of efflux when the 

height of the liquid is 2 ft. in the vessel. What percentage error is made by 

neglecting the velocity of the top surface of the liquid? 

4. Water stands in a vessel of rectangular cross section 20 by 30 cm. to a 

height of 50 cm. If it flows out of a hole in the bottom of cross section 2 cm.*, 

calculate the time necessary for the vessel to become empty. 

5. Water flows horizontally out of a tank through a hole in its side i in. in 

diameter. The tank stands on the edge of a table 4 ft. high and the pressure 

inside the tank is maintained at 8 lb./in.* (gage pressure). How far from the 

edge of the table does the stream hit the floor? How fast is it then going? 

Calculate the vertical component of the force exerted by the stream on the 

floor. 
6. A horizontal pipe of 6.00 in.* cross section tapers to 2.00 in.*. If sea 

water is flowing at the rate of 180.0 ft./min. in the large pipe where a pressure 

gage reads 10.50 lb./in.*, what will the gage pressure be in the adjoining 

part of the small pipe? The barometer reads 30.0 in. What assumptions 
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have you made about the properties of the water and the nature of the flow? 

What is the discharge rate? 

7. Water flows through a horizontal pipe of cross-sectional area 1.44 in.2. 

At one section the cross-sectional area is 0.72 in.2. The difference in pres¬ 

sure between this section and a section where the pipe has its larger diameter 

is 5.0 X lO*"^ lb./ill,How many cubic feet of water flow out of the pipe in 

1 rnin.? 
8. At a point on a pipe line which is 10.0 ft. lower than the surface of the 

water in a reservoir the pressure is found to be 4.20 Ib./in.^ greater than 

atmospheric pressure. What would be the pressure at another point at the 

same level, if the diameter of the pipe at the second point is half that at the 

first point? What would be the velocity of the water at each point? 

Assume streamline flow. 

9. A U-tube containing mercury is connected in a vertical position to a 

horizontal pipe in which water is flowing. The legs of the U-tube enter the 

tube at points where the pipe diameters are 4 and 8 cm., respectively. The 

difference of level of the mercury in the legs is observed to be 4.1 cm. Cal¬ 

culate the velocity of the liquid at each point. (This device is known as a 

Venturi meter.) 
10. A Pitot tube is mounted on the wing of an airplane to measure the 

velocity of the plane relative to the air. The tube contains alcohol and 

shows a difference of level of 4.8 in. Calculate the velocity of the plane 

relative to the air in miles per hour. Take the density of air as 1.3 X lO*”® 

times the density of water. 

11. A circular stream of water flows vertically from a circular hole in the 

bottom of a tank, open at the top. The initial velocity of the water as it 

emerges is 700 cm./sec. If the stream remains circular, how far will it 

have fallen before its diameter has decreased to half of its initial diameter? 

What depth of water in the tank is needed to give this initial velocity? 

12. Water flowing in a horizontal pipe discharges at the rate of 0.12 ft. Vsec. 

At a point in the pipe where the cross section is 0.01 ft.^, the absolute pressure 

is 18 Ib./in.^. What must be the cross section of a constriction in the pipe 

such that the pressure there is reduced to 15 Ib./in.^? 

13. A horizontal pipe of cross section 8 sq, in. has a constriction of cross 

section 2 sq. in. Water flows in streamline flow in the pipe with a velocity 

of 3 ft./sec. in the large pipe. Calculate the velocity of the liquid in the 

constriction and the difference of pressure between a point in the constriction 

and a point in the large pipe. How many cubic feet of water will flow per 

minute out of the large pipe? 

14. A fire engine pumps 10,000 lb. of water per minute from a lake and 

ejects it from a nozzle 17 ft. above the lake surface with a velocity of 32 ft./sec. 

What horse-power output must the engine have, neglecting friction losses? 

16. A pipe, carrying water, broadens from a cross section of 10 cm.^ to an 

area of 30 cm.*. The difference in pressure between the two parts is 100 

dynes/cm.*. What is the total flow of water through the pipe? 

16. Water of density 2 slugs/ft. ^ flows steadily in a pipe line of constant 

cross section and is supplied by a tank. At a point 4,5 ft. below the level 

in the tank the pressure in the flowing stream is found to be 1 lb./in.* above 

atmospheric pressure. 
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a. What is the velocity of the water at the above point? 

h. Jf the pipe rises to a point 9 ft. above the level of the water in the tank, 

what are the velocity and pressure at the latter point? (Assume streamline 

flow.) 

17. A horizontal glass tube consists of three sections, A, 5, and (7, in 

series, each of constant cross section. Water flows through the tube dis¬ 

charging into the air at the open end of C. I-CacJi of the sections A and B 
has a small hole in the wall. It is found that water is ejected from the hole 

in A, whereas air bubbles appear in the water at the hole in B, Explain 

this. Which section of the tube has the largest diameter and which the 

smallest? 

18. Salt water (64 Ib./cu. ft.) in a large enclosed tank is to be driven out 

through a pipe with an eflflux velocity of 4 ft./sec. What gage pressure of 

air must be established inside the tank to accomplish this result if the open 

end of the pipe is 2 ft. above the level of the liquid in the tank? Neglect 

viscosity effects. 

19. Water flows steadily from a horizontal tube of cross section 5 cm.* 

into two horizontal tubes of cross sections 4 and 3 cm.*. The velocity of 

flow in the 5-cm.* tube is 100 cm,/sec. and in the 3-cm.* tube it is 60 cm./sec. 

a. Calculate the velocity of flow in the 4-cm.* tube. 

h. What is the difference of pressure between the two smaller tubes? 

c. Which tube has the lowest pressure? 

20. A submarine elevator fin has a volume of 20 cu. ft., an area of top 

surface (and also of bottom surface) of 50 sq. ft. The mean density of the 

fin is two times that of water. In a test tank, water was run past the fin 

so that the velocity along the upper surface, V\, was 13 ft./sec. and that along 

the lower surface, C2, was 12 ft./sec. Calculate the vertical component of 

the force required to hold the fin stationary (assume the top and bottom 

surfaces to be effectively horizontal). What is this force when the water 

is stationary with respect to the fin? 

21. Water is siphoned out of a tank by a pipe of 0.5 in.* uniform cross 

section. The top point of the pipe is 4 ft. above the water surface in the 

tank, and the open end is 2 ft. below the water surface. Assuming steady 

flow, calculate the pressure at the liighest point of the pipe. Wliat is the 

discharge rate? 

22. A viscous liquid flows in laminar flow under the action of gravity 

between two vertical parallel plates of large area. If the plates are sepa¬ 

rated by a distance 2a, show that the velocity of the liquid at a distance x 
from a plane halfway between the plates is given by 

«' = 

where p is the density of the liquid and rj the coefficient of viscosity. 

(Hint: Consider a slab of liquid of width height hj and thickness 2xy 
where x is the distance from the plane halfway between the plates to one 

of the faces wh.) 
23. A viscous liquid flows in laminar flow out of a vertical cylindrical pipe 

under the action of gravity alone. Calculate the distribution of velocity 
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across the pipe. Derive a formula for the discharge rate. Calculate the 

discharge rate for glycerine in a vertical tube 2 cm. in diameter. 

24. The following experiment was performed to determine the coefficient 

of viscosity of a heavy lubricating oil. A tank of the oil at 20®C. and main¬ 

tained at a constant gage pressure of 380.0 cm. of mercury was connected to 

one end of a glass capillary tube 2.00 mm. in diameter and exactly 1 meter 

long. The other end was open to the atmosphere and delivered 30.39 cm.^ 

of the oil in exactly 2 rnin. The barometer read 76.0 cm. Compute the 

coefficient of viscosity of the oil. 

26. Calculate the steady velocities with which raindrops of radii 0.001 and 

0.05 mm. fall. (Look up the viscosity coefficient and the density of air.) 

26. A glass sphere of radius 3 mm. is dropped from rest inside a vessel of 

glycerine. Write the differential cejuation of the motion of the sphere. 

Integrate this equation to find the velocity as a function of the time. Show 

tiiat, as the time increases, the velocity approaches a limiting value given by 

Stokes\s law. 



CHAPTER XV 

STATIC ELASTICITY 

We now turn to the discussion of elastic solids, and in this 
chapter we shall study problems of equilibrium of such bodies 
from the standpoint of the continuous theory of matter, and we 
shall consider bodies at rest. We say that an elastic body is 
deformed when the mass points (volume elements) of which the 
body is composed are displaced with respect to each other. If all 
the mass points undergo the same displacements, we have 
translation of the body as a whole and, since this does 7iot repre¬ 
sent a deformation, we omit such displacements from our 
consideration. Similarly a rotation of the body as a whole 
leaves the distance betAveen every pair of mass points unaltered 
and hence does not constitute an elastic deformation. A body 
is held in equilibrium in a deformed state by the application of 

external forces and torques, and these must add up to zero 
according to Newton\s first law of motion. If the external 
forces are removed, the body will return to its original state, a 
condition which we assume fulfilled in all the cases we shall 
discuss. From an atomic standpoint we can understand the 
phenomenon of elasticity in a qualitative manner as follows: 
Suppose we picture a solid as composed of atoms (or molecules) in 
definite positions acting on each other with forces depending on 
their separation, such as are exerted by springs. If we try to com¬ 
press a body we move the atoms closer together, and the com¬ 
pression of the springs gives rise to a repulsive force which just 
balances the external force. If we try to stretch the body, the 
springs become stretched as the atoms move apart and pull 
the atoms back to their original positions. Of course the 
law of force is, in general, more complicated than that of a 
stretched or compressed spring, but for the solids, such as 
metals where the deformations are small, springs provide a very 
good approximation. 

98, Stresses.—In the study of the statics of rigid bodies we 
have seen that the internal forces which hold the component parts 

257 
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of the body at fixed distances from each other played no part in 
the final equations of equilibrium. This fact, which is an 
immediate consequence of Newton^s third law, is still valid for 
non-rigid elastic solids, as the reader may easily ascertain by 
referring to the arguments of Chap. IX. Thus the relations 
between the external forces and torques which were derived for 
rigid bodies must hold equally well for elastic solids. 

In the case of elastic bodies, however, we must concern our¬ 
selves with the internal forces, since they play an imj^ortant part 
in determining the changes of size and shape which elastic bodies 
undergo when subjected to the action of external torches. Our 
problem, then, is to apply Newton^s laws of motion to each 
volume element of which the body is composed in addition to 
the body as a whole. Thus we must adopt some method of 
specification of the internal forces which act on an arbitrary 
particle or volume element. 

As we have done in the study of hydrostatics, we divide these 
forces into two types: body forces and surface forces. The body 
forces are defined in Sec. 80; the surface forces which are trans¬ 
mitted across the surfaces bounding the volume element under 
consideration no longer have the simple property of acting at 
right angles to the surface of the volume element being studied, 
as they did in the case of hydrostatics. For the sake of simplicity 
we shall disregard the effects of body forces and consider only the 
surface forces. 

Surface forces are described in terms of components of stress— 
a set of quantities specifying the force per unit area acting on 
any surface of a volume element of the body under considera¬ 
tion. Thus the idea of stress is a generalization of the idea of 
pressure which we have utilized in our study of the motion and 
equilibrium of fluids. 

Suppose we consider an element of area AA of the surface 
bounding a volume element of the body. To specify completely 
the state of affairs at this element of area, we must know 
а. The magnitude and direction of the force acting on the 

area. 
б. The size of the area AA and its orientation in space, the 

latter being uniquely determined if the direction of a line per¬ 
pendicular to the area is given. 

Let n be a vector of unit length drawn normal to AA in a 
direction outward from the volume element (Fig. 92). If the 
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surface force acting on the volume element across A-4 is F 

(Fig. 92a), we can resolve this force into two components, a 
component Fn perpendicular to (Fig. 925) and a component 
Ft tangent to AA (Fig. 92c). 

We now define the normal stress component on A^ as 

Sn = ZiL 
^A (1) 

This component of stress has the dimensions of pressure, i.e.y 

force per unit area. In fact, pressure is a normal stress. We 
shall adopt the convention of calling Sn positive if the force Fn 

acting on the volume is an outward pull, corresponding to 

<a> <b> 
Fig. 92. 

n 

<C> 

tension. Thus the normal stress on any surface element in an 
ideal fluid is given by 

Sn = -p (la) 

In Fig. 925 Sn corresponds to a compression and is negative. 
The tangential component of the force acting on AA gives rise 

to the so-called tangential or shearing component of stress St, 

defined by 

St 
Ft 

AA 
(2) 

These shearing stresses are zero in ideal fluids and a concise 
definition of an ideal fluid is that it is a fluid in which shearing 
stresses cannot be set up. In the case of viscous liquids, however, 
we have met an example of shearing stress. In Sec. 93, where we 
considered the laminar flow of a liquid in horizontal sheets, we 
might have written Eq. (13) as 

St = (3) 

since the viscous force acts horizontally and the normal to A is 
vertical. 

Thus far we have concerned ourselves only with the forces 
acting on a specified element of area AA located at a given point 
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P inside an elastic body. The components of stress for this sur¬ 
face have been defined. Suppose, however, we consider an 
element of area at the same point P which is oriented differently 
from the first. In general the stress components for this second 
area will be different from those on the first. To specify com¬ 
pletely the state of stress at a point, it is necessary to have 
sufficient information to be able to calculate the stress compo¬ 
nents for any surface whatsoever at the point under consideration. 
The information which must be ol)tained can be summarized 
as follows: At the point P we construct three elements of area 
whose normals are mutually perpendicular, as shown in the 
accompan3dng figure (Fig. 93). The directions of the normals 

/z 
Fig. 9S. 

are labeled x, y, and z\ as shown, x and y lie in the plane of the 
page, and z points out at the reader at right angles to the page. 

If the stress components are known for these three surface ele7nents, 

then it is possible to calculate from these the stress components for 

any other elementary surface at the point under consideration. 

We shall omit any detail of such a calculation but wish to empha¬ 
size the fact that the components of stress for three mutually 
orthogonal surfaces must be given to determine completely the 
state of stress at any point. This complication does not exist 
for ideal liquids, since not only are there no shearing stresses 
but also the normal stress is the same {—p) for any surface at a 
given point (independence of pressure forces on the orientation 
of the surface). 

To calculate the components of stress inside an elastic body 
when it is held in equilibrium by external forces, it is necessary 
to proceed as follows: 

1. Apply Newton’s laws of motion to an arbitrary volume 
element within the body. The sum of the forces and torques 
acting on this element must be zero for equilibrium. This leads 
to a set of relations among the stress components. 

2. The above equations must be solved, and the solutions must 
have the property that, when we choose our volume element at 
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the surface of the body, they yield the value of the external 
force acting on the body at that point. 

It would be beyond the scope of this book to set up the equa¬ 
tions mentioned above in their general form, but we shall consider 
the stress distributions for two simple cases in detail. 

99. Stresses {Continued), a. Simple Compression or Ten¬ 

sion.—Suppose we consider a uniform rod of length I and cross 
section Aj to which equal and opposite forces are applied uni¬ 
formly over, and normal to, the end faces. If the forces push 
inward on the bar, we have the case of simple compression, and 
if they pull outward, we speak of simple tension. The qualita¬ 
tive effect of a compression of the above type is to shorten the 
bar and to increase its cross section slightly with corresponding 
changes for tension. In the following we shall assume that the 
change in cross-sectional area is so small that it can be neglected 
as far as the stress calculation is concerned. This is always true 
in practice. 

F 
Sn = —p — on end face 

The bar is shown in the accompanying figure (Fig. 94). The 
external forces are shown, and the stress on the end faces is normal 

and equal to F/A everywhere on these faces. The tangential 
component of stress is zero on these faces. We may denote the 
three fundamental surfaces by x, z, corresponding to their 
respective normals. The stress distribution inside the bar is as 
follows: On every a:-surface (parallel to the end face) there is a 
uniform normal stress equal to F/A, the value on the end face, 
and no tangential stress. On every y- or ^-surface the normal 
and tangential stress is zero. Hence we have the simple case of 
only one component of stress (for the three fundamental sur¬ 
faces under consideration) different from zero, and this stress 
is constant, independent of position inside the bar. It is evident 
that this stress distribution yields the correct values for the 
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stresses on the external faces, since the end faces (which are 
a;-surfaces) have exactly the uniform normal stress F/A, whereas 
the lateral surfaces (which are y- and ^-surfaces) have zero 
stress since there are no external forces acting on them. We 
have to prove that the above stress distribution satisfies the 
equilibrium laws for an arbitrary volume element. Consider 

an arbitrarily chosen parallele- 
o(z piped of sides dx, dy, and dz, at 

some point inside the bar (Fig. 
95). The forces acting on it 
are shown. Since the only x- 

components of the forces are 
those on the end faces, we must have Sn equal on both end sur¬ 
faces. The y- and 2-components of the forces on all surfaces are 
zero, and hence the laws of equilibrium are satisfied. 

It must be emphasized again that the above stress components 
refer to three surfaces whose normals are x, y, and z, respectively. 
It is not correct, for example, to state that there are no shearing 
stresses in this type of deformation. This statement is only 

Fig. 96. 

true for the three surfaces under consideration. Let us calculate 
the normal and tangential components of stress on a plane 
surface whose normal makes an angle 6 with the x-axis (Fig. 96). 
Consider a wedge-shaped volume, as shown in the accompanying 
figure. The only forces acting on it act on the left-hand face 
and on the slant face, as shown. The forces acting on the other 
surfaces are zero since they are y- and 2-surfaces. For equilib¬ 
rium we must have 

SnA - F' (4) 

and we now must resolve F' into two components, one normal to 
^Le slant face and one tangent to it. These components are 

Fn = F' cos 6 = cos d\ 

^nd > (5) 
Ft = F' sin 6 = SnA sin $) 
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The normal and tangential components of stress on the slant face 
4re by definition 

cos d A 

S't = ^/ = -Sn sin e A 
(6) 

where A' is the area of the slant face. Since A A' cos d, these 
can be written 

>S' = Sn cos^ d 
S[ = Sn sin 6 cos B 

where Sn is equal to F/A, F the external force and A the cross 
section of the bar. 

From these equations, we see that there are both normal and 
tangential stresses on any slant face in the bar. The maximum 
value of S' occurs for 0 = 0, when S' = >Sn, as we should 

^ '‘max ' 

expect since this corresponds to an a;“Surface. The maximum 
value of the shearing stress occurs for 6 — 45°, and for this slant 
surface S', = Sn/2. The value of the normal stress on the 45° 

*mai 

surface is seen to be equal to Sn/2 also. 
6. Smplc Shear.—This case is defined most simply by consider- 

In Fig. 97 are shown the 
external forces, and the stress on the faces is tangential and equal 
to F/A everywhere on these faces. The normal component of 
stress is zero everywhere on these faces, and all components of 
stress are zero on all the other faces of the slab. 

The stress distribution inside the slab is as follows: On every 
2/-surface (parallel to the faces on which the external forces are 
applied) there is a uniform tangential or shearing stress equal to 
F/A and no normal stress. On every x- or z-surface both the 
normal and tangential stresses vanish. Hence we have once 
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again the simple case of only one component of stress (for the 
fundamental surfaces under consideration) different from zero^ 
and this component is constant, independent of position inside 
the slab. It is clear that this stress distribution yields the correct 
values F/A on the top and bottom faces of the slab and zero on 
the other external faces. 

When we come to examine the conditions for equilibrium of 
the slab, we run into a slight complication. The conditions for 
translation are clearly satisfied, but the condition that the sum 
of the moments of the forces vanish is not satisfied. From this 
we must conclude that a single stress component cannot exist 
alone for the case under consideration but that we must apply 
equal and opposite forces to the external x-faces to preserve 
equilibrium. This leads to relations between the various shear¬ 
ing components of stress which must exist in general, but since 
we shall not have occasion to utilize them, we shall pass over 
this point. There is a deformation, simple torsion, to which we 
shall return later for which the simple analysis which we have 
given will hold exactly, and in this case it will turn out that we 
are not troubled by any such complication as we have met here. 

Finally, we must emphasize again that the stress components of 
which we have been talking refer only to the three fundamental 
surfaces whose normals are x, 2/, and z. On any other surface 
there will exist, in general, both normal and tangential stress 
components which may be readily computed. 

In practice the two simple cases discussed above seldom occur 
alone, but they are fundamental because any stress distribution, 
no matter how complicated, may be compounded out of ele¬ 
mentary tensions or compressions and shears. / 

100. Strain.—Thus far we have concerned ourselves solely 
with the specification of the forces acting on an elastic body, 
and now we must turn to the method of description of the 
deformations which occur under the action of external forces. 
Since a body is deformed only if the particles of which a body 
is composed are displaced relatively with respect to each other, we 
introduce a set of quantities which measure these relative dis¬ 
placements and which are called strains. We shall postpone the 
general definitions of strains to the next section and confine our 
attention to the cases of simple tension and of simple shear. 

a. Simple Tension or Compression.—We first consider the 
deformation occurring when a bar of original length Zo, width 
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and breadth do, is subjected to simple tension or compression. 
In Vig. 98 the full-line figure represents the bar before deforma¬ 
tion, and the dotted-line figure shows the bar after deformation. 
The length of the deformed bar is h, and its width and breadth 

are di. 
The original length U is changed to h, and 

we define 

li — Iq _ Al 

lo lo 
€l = (8) 

-1 
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Fig. 98. 

as the longitudinal component of strain, or, 
for brevity, the longitudinal strain. It is 
the fractional change of length (the change 
of length per unit original length) and is 
dimensionless; ei is positive for tension and 
negative for compression. 

The original cross-section dimension do is changed to di, 
and we define 

Ad 
do 

(9) 

as the transverse component of strain. For most materials 
it is found experimentally that the ratio of transverse to 

longitudinal strain is negative and 
practically constant. This constant 
is called Poisson^s ratio” and is 

=— denoted by a. 

tl (10) 

Fig. 99. For practically all materials <r lies 
between | and 

h. Simple Shear,—Once again we consider a bar and produce 
the deformation by applying equal and opposite forces, almost 
along the same straight line, perpendicular to the length of the 
bar. The effect of these forces is to displace the cross section cd 

relative to the section ah into the position c'd' (Fig. 99). This 
deformation can be specified by giving the changes in angles 
between straight lines. Thus we define the shearing strain 
7 as 

7 = tan 
ad (11) 
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In most cases of practical interest the strains are small so that 
is a small angle and we may place tan /? = /?. 
The changes in volume for the above deformations are readily 

calculable in terms of the strain components which we have 
introduced. 

Consider a portion of an elastic body, originally of cubical shape, 
subjected to simple tension. Let us take a cube such that each 

side is of unit length. After deforma¬ 
tion we have a parallelepiped of length 
1+6 (Fig. 100) (e = longitudinal 
strain) and of width = thickness 
= 1 — <7€. Hence the volume after 
deformation is 

= (1 + €)(1 — ae) (1 — ae) 

= 1 -f" € — 2(T€ H” * * * 

Fig. 100. where the dots denote terms involving 

which we neglect since € is very small compared with unity. 
Before deformation the volume was Fo = 1, so that the change 

in volume per unit volume (called the volume dilation) is 

d 
Fi - Fo _ c(l - 2a) 

Vo 1 
- c(l - 2a) (12) 

Experiment shows that a body under tension always suffers an 
increase in volume > 0 and for compression the volume 
decreases Sc < 0, so that 

or Z ^ (13) 

When O' = ^ we have the case of no volume change. 

For the case of simple shear, the change in volume is zero and 
we have only a change of shape. This may be seen from Fig. 101 
where the dotted figure represents the cube after deformation, 

101. The General Analysis of Strain.—In the case of an arbitrary defor¬ 
mation, we proceed to describe the state of strain as follows: We choose one 
of the mass points of the elastic body as our origin 0 and refer all the dis¬ 
placements of the other mass points to the position of this mass point. At O 
we construct a set of three axes, mutually orthogonal, which we call the 
x-y y-’j and ^-axes. The position of a point of the body P with respect to 0 is 
fixed by giving the three coordinates a;, y, and z of the point P. Consider 
the volume element (or mass point) at P before deformation, After defor- 
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mation the position of the mass point which was at P is P' (still with respect 

to the mass point which was at O before deformation) (Fig. 102). 

The point P has undergone a vector displacement s with respect to 0, 

and the components of s we shall call a, 6, and c, respectively. If we specify 

the vector s for every point of the body, we have a complete description of 

the deformation state. In general, a will be different for different points P 

and hence is a function of x, z, i,e., 

« = /(^, Vy z) 

To say that a vector is a function of position (i.c., depends on position) 

means that each of its components is a function of the coordinates. 
Thus 

a = Mxy y, z) 
^ = Mxy y, z) 

c = /»(x, Vy z) 

We define the strain in general as the set of quantities which specify the rate 

of change of the displacement of a point in the body with respect to the 

coordinates, i.e., we specify how much the displacement vector changes as we 

go from one point to another in the body. If all points move the same 

amount, all these rates of change are zero and this is the case of translation 

of the body, in which case there is no deformation or strain. 

Thus we have the quantities daldx, dajdy^ dajdz, dbfdx, dbfdy, etc., 

specifying the strain at a point. In these derivatives we differentiate with 

respect to only one coordinate, keeping the others fixed. The three deriva¬ 

tives dajdxy db/dyy dc/dz are the three longitudinal-strain components. 

The first, for example, tells us how fast the x-component of the displacement 

vector changes in the x-direction. The remaining six derivatives deter¬ 

mine the shearing strains. It turns out that there are only three inde¬ 

pendent shearing strains, corresponding to the changes of the right angles 

between the x- and t/-axes, y- and z-axes, and z- and x-axes. 
We can illustrate this best in the case of a simple tension (a pure dilation) 

in which each displacement component is proportional to the corresponding 
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coordinate. In this case the corresponding strain component is constant. 

Thus, for simple tension, 
a — kx 

since the horizontal component of the displacement of each point is propor¬ 
tional to its ic-coordinate. Thus every point 

on the end face at a: = Z is displaced an 
amount AZ to the right, whereas every point 

on the face at a; = 0 is not displaced at all 

in a horizontal direction (Fig. 103). Obvi¬ 

ously, then, a does not depend on y (or z) 
since it is the same for all points in any ver¬ 

tical section through the rod. Thus we may 
write 

_ i. _ ® . da _ da 
Fig. 103. x I dy dz 

and we refind our elementary definition of longitudinal strain. 

Similarly, for the y-coordinate 

h = kiy 

the ^/-component of the displacement of a point is proportional to its y- 
coordinate only. Thus every point in the base at i/ == 0 undergoes no dis¬ 

placement in a vertical direction and every point in the top face moves down 
a distance Ad. We may then write 

^ _ , _ & _ n 
dy ^ y d dx dz 

For the z-coordinate everything is the same as for the y-coordinate, so that 

dc _ , _ c __ Ad _ ^ _ n 
dz ^ z "cT dx dy 

(The z-axis is perpendicular to the plane of the page.) 

102. Stress-strain Relations; Hooke’s Law.—Thus far our 
attention has been given to a description of the deformation 
state of an elastic body and a description of the state of stress 
of an elastic body. We now must inquire into the relation 
between stress and strain. The answer must be taken from 
experiment and is known as Hookers law. It states that the 
stress components are linear functions of all the strain components. 
It is important to remember that each stress component depends 
on all the strains and vice versa. Perhaps we may add that, if w 
is a linear function of x, y, and z, this means that w is related to 
Xj Vj and z by an equation of the form 

w — ax -{-iy + cz 

where 6, and c are Constants. 

Ay 

KAI-H 
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In the case of homogeneous isotropic bodies the number of 
proportionality constants which appear in Hookers law are only 
two and are called the elastic constants of the material of which the 
body is composed. We can illustrate best in the case of simple 
tension or compression. Here we have 

(14) 

where Sn is the constant stress and E is known as Young^s 
modulus or the stretch modulus of the elastic body. Equation (14) 
may also be written 

F _Z 
A ' Al 

(15) 

Fio. 104. 

E has the dimensions of stress. As we 
have pointed out, all the other compo¬ 
nents of stress are zero. It does not 
follow, however, that the other compo¬ 
nents of strain are zero, since each com¬ 
ponent of strain depends on all the stress components. In fact 
for pure tension there are no shearing strains, but there are two 
transverse components of strain, which we denote by ety and ee*. 
These transverse components are 

::Sn\ 

and (16) 

etz -aei -^s.] 

where <t is Poisson^s ratio. The negative sign indicates a trans¬ 
verse contraction if there is an extension in the a:-direction. 
The two constants E and a completely determine the behavior of 
an isotropic homogeneous elastic body. For the case of pure 
shear, and a:-force acting on a surface whose normal points 
in the ^/-direction Hookers law becomes (Fig. 104); 

7 = tan = Js* (14) 

n is known as the shearing modulus or torsion modulus. It can 
be calculated from a and E, and the relation can be shown to be 

E 
2(1 -b O') 

(17) 
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103. Hooke’s Law for Principal Axes.—It can be shown mathematically 

that any elastic deformation can be built up as the sum of three simple 

tensions or compressions along three mutually perpendicular axes. These 

three axes are known as the principal axes of strain. Similarly the state of 

stress may be represented by three normal stresses due to tension or com¬ 

pression along three mutually perpendicular axes known as the principal 
axes of stress. For the case of isotropic bodies these two sets of axes coincide. 

The geometrical meaning of these axes may be seen as follows: If we consider 

the points of an undeformed elastic body which lie on the surface of a very 

small sphere, these points will lie on the surface of an ellipsoid after deforma¬ 

tion. The axes of this ellipsoid are the principal axes of stress and strain. 

It may be easier for the student to consider a two-dimensional elastic body 

such as a sheet of rubber. Suppose we draw a small circle on this sheet. 

If the rubber is then stretched, the circle becomes an ellipse and the long and 

short axes of this ellipse are the principal axes at the point where the circle 

is located. 

Let us call the principal axes 1, 2, and 3. A simple pull along the 1-axis 

means that we have only one component of normal stress Si and three 

components of strain €(, 4 4- These are related by the equations 

Similarly, for the other two axes. 

and 

€l - 

ttf m tn 
H 8 

The resulting strain due to all three simple tensions or compressions S\^ /S-z, 

and Sz is obtained by simply adding the strain separately produced by each 

simple tension. Thus we have for the resultant components of strain: 

Cl = ^(^1 ~ <^^2 — 

€2 = Si — 0S3) 

Cs = ‘’'^2 ■+■ Ss) 

This is the general expression for Hooke's law applied to isotropic bodies 

when we choose the principal axes as the coordinate axes. 

104. Compressibility; Compression Modulus.—In Sec. 100 we 
have shown that the change in volume per unit volume of a body 
subjected to simple tension or compression in one direction is 

if) 
= (1 — 2a)et (18) 
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lAV -Ap-A 

A-V*Ap»A 

Suppose we have a body subject to uniform normal forces all over 
its surface. We can accomplish this by immersing it in a fluid, 
in which case the normal stresses 
are equal to the hydrostatic pressure. 
For simplicity let us consider a cube 
whose faces each have the area 
and let the hydrostatic pressure be 
increased from p to p + Ap (Fig. 
105). The surface forces on each 
pair of faces give rise to a volume 
dilation given by Eq. (18), and, since 
there are three pairs of faces, the 
total volume dilation is three times that for compression in one 
dimension. Thus, using Hooke’s law, Eq. (18) becomes 

, _ 1 - 2(r^ _ 1 - 20*,^ 
OtotC =  ^ On =-^ Ap 

Fig. 105. 

E E 

and, multiplying by three, there follows 

A7 _ 3(1 - 2a) 

V E 
8 = Ap (19) 

The compressibility of a substance (solid, liquid or gas) is 
defined by 

II 1 (20) 

so that for elastic solids 

3(1 - 2(r) 
* E 

(21) 

This expression has a meaning only for solids since Poisson’s 
ratio <T is meaningless for a fluid. 

The reciprocal of the compressibility is called the bulk modulus 
B and is 

E 
3(1 - 2a) 

(22) 

Equation (20) defining the compressibility is sometimes written 
in terms of the density p of the substance. Since 

dV-^P, and 
^_^ 
V ~ p 
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the compressibility becomes 

^ \ dp 

~ ~P^ 
(23) 

106. Simple Torsion.—As our last application we consider 
the case of simple torsion of a vertical 

. , H cylindrical rod of radius R and length L. 
Consider the rod held fixed at the bottom 
and a torque r applied to the upper end 
about the long axis of the cylinder. The 
upper face twists through an angle 6, the 
bottom face stays fixed, and intermediate 
sections twist through angles proportional 
to their heights above the bottom face. 
Consider a section at the height I and sup- 

Fig. 106. pose it twists through an angle Then 

II 

and since, when Z = L, 

II 

we have 

k-T L 
so that 

0i <p=jl (24) 

Now let us consider a cylindrical shell of radius r < R and of 
height I, thickness dr. Imagine this shell to be split up the side 
and unrolled flat on a plane. We then get a rectangle of height 
I and width 2rr (Fig. 106). After twisting (shown dotted), 
the upper side is moved to the right a distance i.e., each point 
on the upper face moves a distance r(p. 

Here we have a case of simple shear, and the shearing strain 
is tan = r^/Z, which, upon using Eq. (24), becomes 

y = tan = r~ (25) 

and does not depend on the height of the shell, only on its radius. 
Now consider the force acting on the top face of a shell of 

thickness dr, radius r, and height I (Fig. 107). This force is 
uniformly distributed over the area SSttt dr and gives rise to the 
shearing strain calculated in the last paragraph. Since this 
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force acts everywhere at right angles to the radius drawn to the 
point at which the force is applied, the torque of this force taken 
about the axis of the cylinder is 

dr = r • St • 27rr dr 

where St is the shearing stress on the shell. 
By Hookers law we have, using Eq. (25), 

St = fi€t = j^r 

so that Eq. (26) becomes 

dr = 

(26) 

(27) 

(28) 

Note that this expression does not depend on the height of the 
cylindrical shell. To get the total 
torque on any cross section of the solid 
cylinder, we must integrate Eq. (28) 
over all shells from r = 0 to r = JK. 
Thus there follows 

, = = (29) 
L Jo 

This is, of course, equal in magnitude 
to the externally applied torque. This 
equation allows a simple experimental 
determination of /x- The torque nec¬ 
essary to twist this rod through an ai 

r = k^e 
with 

2L 

If a disk of moment of inertia I is suspended from the rod (7 is 
taken about the long axis of the rod), we have already shown that 
it performs angular harmonic motion with the period 

(30) 

,dr 

5le 9 is then 

8ir/L 
M = 2,2^4 (31) 

so that 
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All quantities on the right-hand side can be experimentally 
determined so that we can determine /x. 

We see from the above that a wire of small radius gives a 
longer period of vibration than a rod of the same material and 
length. The dependence on length is not so marked since 
T ^ \/L and T ~ 1/R^. 

To recapitulate, we have applied Hookers law to only two 
simple cases, simple tension and simple torsion, in which examples 
the calculations are relatively simple. The general problem 
involves mathematical technique beyond the scope of this book 
but starts from the same fundamental equations. 

Problems 

1. A cubical block is subjected to simple tension in one direction perpen¬ 
dicular to one face. Show that the fractional decrease in area of the cross 

section is given by 2<r€, where <r is Poisson's ratio and e the longitudinal 

strain. 

2. A steel rod 1 by 1 by 10 in. is stretched by a force applied at the end By 

the end A being clamped so that the central point of the 1- by 1-in. face at A 
remains fixed. If the rod is given a longitudinal strain of 0.0020, find the 

magnitude and direction of the vector displacement of a point at the center 

of one of the 1- by 10-in. faces. 
3. If a cubical block of a solid is compressed in one dimension until it 

has shortened by 1 per cent of its original length, by how many per cent 

would its volume decrease if Poisson's ratio were i? i? 0? 
4. A steel rod 2 ft. long and 0.06 in.^ in cross section is rigidly clamped 

at both ends. The center of this rod is moved toward one end a distance 

of 0.0001 in., stretching one-half of the rod and compressing the other. 

Calculate the work done in carrying out this deformation. 

6. A 100-lb. weight is hung by a steel wire 50 ft. long of cross section 
0.01 in.2. 

a. Calculate the stretch of the wire. 
b. If the wire is further stretched vertically and released, how many 

vibrations per second will the 100-lb. weight make? 

6. A 10-lb. weight hangs on a vertical steel wire 2 ft. long and of 0.0020 
in.® cross section. Hanging from the bottom of this weight is a similar steel 

wire which supports another 10-lb. weight. Find the vertical displacement 

of a point half-way along the lower wire. 

7. Fifty feet of copper wire and 50 ft. of steel wire are fastened end to end, 

and the whole length of 100 ft. is stretched 0.50 in., each half stretching 0.25 

in. Find the ratio of the diameters of the two wires. 

8. If allowed to shorten ^thout developing tension, a steel bar will 

shorten 20 parts in 10,000 when cooled from 200° to 0°C. 

o. What force would be necessary to keep a steel rod 1 in. in diameter 

from shortening when pooled from 200° to 0°C.? 

6. What would the stress in the rod be when the temperature is 0°C. ? 
9. A hollow glass sphere of 500 cm.^ content is filled with water. If a 

bullet of volume l.O cm.^ is fired through this sphere, calculate the pressure 
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on the inner surface of the sphere when the bullet is inside it, assuming that 

no water has escaped from the sphere. What would be the effect on your 

answer if you considered the escaping water? 

10. Show that the work done in producing an increase in length Al of a 

wire of length I and cross-sectional area A is —— • 

11. A copper wire = 16 X 10® lb./in.2, <t — 0.34) and a steel wire 

== 30 X 10® lb./in.2, o- = 0.28), each 1 ft. long and 0.01 in.^ in area when 

unstretched, are welded together end to end. The combined wire supports 

a 400-lb. weight. What is the elongation of the combined wire? What 

are the per cent changes in cross-sectional areas under tension? 

12. A bar of copper of length 2 ft. is welded end to end with a bar of steel 

of length 15 in. The cross section of each bar is 0.1 in.2. The compound 

bar is stretched in simple tension by forces applied uniformly to its ends, 

each force of magnitude 1,000 lb. 

a. Calculate the longitudinal component of stress in each bar. 

h. Calculate the increase of length of each bar. 

13. A steel wire 5 ft. long, diameter 0.1 in., is fastened end to end with 

10 ft. of copper wire of the same diameter. The double wire is hung verti¬ 

cally with the free end of the steel wire fixed and a weight is hung on the 

other end. The bottom point of the double wire is observed to descend a 

distance of 0.25 in. What is the increase of length of each section of the 

wire? 

14. A steel block, 5 ft. long and 2 by 1 ft. in cross section, is placed in a 

testing machine and compressed by a force of 500 tons applied perpendicu¬ 

larly to the 2- by 1-ft. face. Find: 

a. The stress in the blo(;k. 

b. The change in length of the block. 

c. The fractional change in volume. 

16, A rigid bar 3 ft. long is supported in a horizontal position by a steel 

wire at one end and a copper wire at the other. Each wire is 5 ft. long and 

0.005 in.2 in cross section, A downward force of 450 lb. is applied to the 

bar at such a point that both wires stretch the same amount. Find: 

а. The tension in each wire. 

б. The position of the point of application of the 450-lb. force. Neglect 

the weight of the 3-ft. bar. 

16. An elevator, with its load, weighs 1 ton, and it is supported by a 

single steel cable. 

a. Find the cross-sectional area of the cable, if the tensile stress in it is 

not to exceed 5,000 lb./in.* with the elevator at rest, 

b. The elevator is descending at 50 ft./sec. Find the shortest distance 

in which it can be stopped if the stress in the cable is not to exceed 10,000 

lb./in.*. 

c. If the length of the cable in part b is 500 ft., how much is the cable 

stretched while the elevator is being stopped, compared with its length 

under no load? 

17. By eliminating dp between the equation ^ p9 and obtain 

the differential equation for p as a function of the depth y below the surface of 
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the water. Show that the integrated form of this equation is p = ^ _ Kp^gy' 

Set up the integral from which the variation of pressure with depth can be 

found. 

18. A steel wire 1 mile long and 2 in. in diameter hangs vertically in a mine 

shaft. How much longer is the wire in this position than when horizontal 

with no load applied? Neglect changes in linear density due to changes in 

cross section. 

19. Plot a curve of the potential energy of a bar under tension and com¬ 

pression as a function of its strain, showing that the curve is a parabola. 

(This curve holds for only small displacements where Hooke's law holds.) 

20. Construct a curve which you think would represent a qualitatively 

correct plot of potential energy vs. strain of a rod in pure tension for all 

values of the strain from zero to the point where the rod breaks. 

21. A 32-lb. weight supported at the end of a metal wire of unstretched 

length 2 ft. is whirled in a vertical circle with a constant angular velocity of 

2 r.p.s. The cross section of the wire is 0.01 in.*. Calculate the elongation 

of the wire when the weight is at the lowest point of its path. Young's 

modulus for the metal is 35 X 10® lb./in.* 

22. For processes in which the density of a gas is proportional to its pres¬ 

sure, show that the compressibility is equal to the/reciprocal of the pressure. 

23. What is the difference between the buoyant force on a metal block 

of volume 1 ft.®, at the surface of the ocean, and at a depth such that the 

pressure is 200 atm. greater than at the surface? Assume the metal to be 

incompressible. One cubic foot of sea water weighs 64 lb. at a pressure of 

1 atm. The compressibility of water is 50 X 10~* per atmosphere. 

24. A block of steel would increase its volume by 330 parts per million 

when heated from 20 to SO^C. at constant pressure. What increase of 

pressure would be necessary to keep the block from expanding when its 

temperature is thus raised? 

The compressibility of steel is 4.4 X 10“® in.*/lb. 

25. A steel wire 10 ft. long, of diameter 0.2 in., is stretched by a force of 

100 lb. and then twisted about its long axis by a torque of 5 Ib.-in. Calcu¬ 

late the work done in producing the above combined deformation. 

26. A copper rod 40 cm. long and 1.0 cm. in diameter has torques of 

50 kg .-cm. applied in opposite directions about its long axis at its two ends. 

How many degrees will one end face be turned relative to the other? 

27. a. What is the shearing strain of a thin hollow cylindrical shell 0,01 cm. 

thick at the surface of the rod of Prob. 26. Strictly speaking, is the strain 

constant throughout this thin shell? If not, by how many per cent does it 

vary? 

b. Answer the same questions for a 0.01-cm. thick shell 0.25 cm. from the 

axis. 

28. What is the shearing stress on the two shells of Prob. 27? 

29. One end of a 1-in. diameter rod 2 ft. long is clamped, and the other 

end is twisted through an angle of 3*^ (about the long axis of the rod). Find 

the displacement, in degrees and in inches, of a point in the rod 18 in. 

from the clamped end and i in. from the axis. 
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30. A cylindrical copper disk 12 cm. in diameter and 1.0 cm. thick is 

suspended at its center on a steel wire 1.00 mm. in diameter and 1.0 meter 

long, the axis of the disk coinciding with the axis of the wire. Calculate the 

period of this system when oscillating as a torsion pendulum. Density of 

copper =8.9 grams/cm.^. 

31. Let the disk and the wire of Prob. 30 both be made half as thick. 

How does this change the period of the pendulum? 

32. A certain length of steel wire has been stretched by a known force and 

its elongation noted, and has also been used as a support of a torsion pendu¬ 

lum, thus finding that Young's modulus for this steel is 29.4 X 10® lb./in.* 

and the shearing modulus is 11.7 X 10® lb./in.*. When a wire of the 

same diameter and length is made up of a new alloy steel, it is found that this 

wire is stretched only 91.5 per cent as much by the same force, and that the 

period, when used in the same apparatus as a torsion pendulum, is only 

96.5 per cent as great as for the first wire. Find Young's modulus and 

Poisson's ratio for the alloy steel. 

33. A hollow steel rod has an outer diameter of 1 in. and an inner diameter 

of i in. Calculate the torsional constant for a section 3 ft. long. What 

would be the diameter of a solid rod having the same torsional constant? 

What is the saving in material by making the rod hollow? 

34. The drive shaft of an automobile rotates at 3,000 r.p.m. and transmits 

10 hp. from the engine to the rear wheels. What is the value of the torque 

acting on the shaft? Through what angle is one end of the shaft twisted 

with respect to the other if the shaft is 1 in. in radius, is 5 ft. long, and has a 

torsion modulus of 12® X 10® Ib./sq. ft.? 

35. Calculate the torque in dyne-cm. necessary to hold a hollow cylinder 

of inside radius 2 cm. and thickness 1 mm. twisted through an angle of 1°. 

The length of the hollow cylinder is 1 meter, and the shear modulus of the 

metal is 6 X 10“ dynes/cm.*. 

36. Suppose a solid rod of radius 1 cm. is melted and recast into a thin 

shell of the same length and of inner radius 10 cm. Find the ratio of the 

stiffness coefficient of the thin shell to that of the solid rod, assuming that 

the elastic properties are not changed. 



CHAPTER XVI 

DYNAMICS OF ELASTICITY; ACOUSTICS 

The elasticity of bodies allows the transmission of energy 
through them since every part of an elastic body exerts forces on 
its surroundings. Thus, if one part of an elastic body is set in 
motion, it sets the neighboring parts in motion, these latter in 
turn set their neighbors in motion, and so on. Thus we have the 
energy expended in setting the first part in motion transmitted 
from point to point of the body. For simplicity, let us restrict 
ourselves for the present to a consideration of deformations 
which are transmitted in one direction only (e.g., in the x-direc- 
tion). These deformations are transmitted with a characteristic 
velocity V. Such a propagation of deformations is called wave 
propagation and we speak of the whole process as wave motion. 

We must distinguish between two kinds of waves: (1) those in 
which the deformation takes place in the direction of propagation, 
and (2) those for which the deformation is at right angles to the 
direction of propagation. The former are called longitudinal 
waves, and the latter transverse waves. In the transverse waves, 
the deformations which are transmitted are shearing deformations 
and in longitudinal waves they are compressions or tensions. In 
a solid both types of waves may exist. They travel with different 
velocities and the velocity of the longitudinal waves is always 
greater than that of the transverse waves. Since no shearing 
deformations can be set up in liquids or gases (at least in ideal 
fluids), only compressional, longitudinal waves are possible. In 
air these waves are recognized by us as sound so that the subject 
of acoustics has to do largely with a study of longitudinal wave 
motion. We shall first discuss transverse waves on a stretched 
string since they are easiest to visualize. 

106. The Wave Equation.—^Let us consider a long string 
stretched in the x-direction on which a transverse wave is travel¬ 
ing. At some instant of time t = 0 the shape of the string may 

be represented by 

y = /(*), « = 0 (1) 
278 



DYNAMICS OF ELASTICITY; ACOUSTICS 279 

where y is the sideways displacement of the string and x the 
distance measured along the string. The shape of the string 
may be, for example, of the form shown in Fig. 108. It is an 
experimental fact that this disturbance or pulse travels along 
the string without changing in form. At a time t later we find the 
whole figure displaced to the right (if the wave travels to the 
right) by an amount x = Vty where V is the wave velocity. Now 
let us construct a new coordinate system with its origin at O' 
(Fig. 109), i.e., at the point x — Vt. Let us further denote by x^ 
the distance of a point P measured from O'. Xj of course. 

measures the horizontal distance from 0 to P. From the figure 
it is clear that 

X — x' + Vti 
or > (2) 

x' ^x -Vt) 

With respect to the new moving axes we have exactly the same 
picture at time t as we had with respect to the old axes at ^ = 0. 
Therefore at time t we can write, in place of Eq. (1), 

y = fix'), t = t (3) 

and putting in the value of x' from Eq. (2), we find 

y = fix - Vt) (4) 

This is the general equation representing a wave of any shape 
traveling to the right. 

In interpreting this equation we note that for any fixed value 
of the time t the equation gives y as a function of x. This 
defijies a curve, and this curve represents the actual shape of the 
string at the instant of time under consideration. Furthermore, 
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if we focus our attention on one point of the string, t.e., a fixed 
value of Xy as we might do by placing a screen in front of the 
string with a narrow vertical slit at this point, Eq. (4) gives 
2/ as a function of the time t. This is the equation of motion 
of the piece of string visible through the slit and describes 
how the position of this particle changes with time. 

The argument presented above would hold equally well for 
longitudinal waves. Suppose we consider a long straight tube 
of air whose axis is taken as the a:-axis and consider how a pressure 
change travels in this tube. We then are led by exactly the 
same reasoning to an equation of the same form as Eq. (4) which 
gives the pressure variations with time at all points of the tube, 

107. Periodic and Simple Harmonic Waves; Superposition.— 
In the preceding section we have discussed a general equation 
representing a traveling wave. We now shall turn to a more 
detailed investigation of periodic waves. In particular let us 
consider periodic pressure changes in air which are recognized by 
our auditory nerves as musical sounds. Non-periodic pressure 
changes are heard as noise. Although we shall carry through the 
discussion for pressure waves in an air column, it must be 
emphasized at the start that precisely the same considerations 
hold for periodic transverse waves on a stretched string, or for the 
displacements of the air particles in sound waves, which are 
longitudinal. 

It will be necessary to consider only simple harmonic waves, 
i,e.y sinusoidal waves. We must pause for a moment to see why 
this does not constitute a restriction on our general problem. 
It can be shown mathematically that it is possible to represent 
any periodic function as a sum of sine and cosine functions, where 
the lowest frequency in the sum gives the same period as the 
function itself and the remaining terms have frequencies which 
are integral multiples of the lowest. This means that, if the 
periodic function is /(O, 

f(t) = Ao + Ai sin o)t + A2 sin 2u)t + As sin 3a>^ 
-j- . . . CQg -j- ^2 (>Qg 2o3t + • • • 

This is known as Fourier^s theorem and there are definite rules for 
finding the A's and B's if /(<) is given. Sinusoidal pressure 
variations are recognized as pure tones. The use of Fourier’s 
theorem in applications to physical problems is made possible by 
an important principle, known as the principle of euperposiiion. 
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For simplicity, we present the principle for the case of sound 
waves. Suppose we have a number of sources of sound located at 
the same point, each giving rise by itself to a definite sound 
wave. If all these sources act simultaneously, the resultant wave 
emitted can be calculated by adding the contributions due to 
the separate sources, considering each to be independent of the 
presence of the others. Applying Fourier's theorem and the 
principle of superposition to the case of periodic waves, we see 
that, if we can analyze a problem for a pure tone, t,e., a sine wave, 
we then can build up the solution of any problem by adding the 
solutions obtained for a number of sine waves. Conversely, it 
is possible to represent a relatively complicated wave motion by 
a sum of simpler motions (sine waves) and to treat each simple 
motion as if it existed alone. The general solution to any 
problem is then obtained by adding the solutions found for the 
simple component motions. 

Suppose in a long straight tube at a: = 0 we have a sinusoidal 
variation of pressure given by * 

p = a sin 27rnt, x = 0 (5) 

where a is the amplitude, i.e., the maximum value of the pressure. 
We obtain the equation of a pressure wave by noting that the 
state of affairs at a; == 0 occurs at the position x at a time At sec. 
later, where At = x/V, 

If we had a watch running At sec. behind the one used in 
measuring ^ in Eq. (5) and call its reading t', then t' = t — At. 
With this watch one would record exactly the same variations at 
X as one did with the first watch at x = 0, so that 

p = a sin 2wnt', x = x 

Now since t' = t — At == t — x/V, we have 

p = a sin 2Trn(^ — (6) 

This is the equation of a sinusoidal pressure wave traveling to the 

right with a velocity F. 
There are two sinusoidal variations in this wave. 
1. At any time to, p varies sinusoidally with x: At a time later, 

^0 + ^1, the whole curve is displaced to the right by an amount 

* In this equation p represents the gauge pressure, i.e., the Oiffereice 
between absolute and atmospheric pressures. 
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Lx = Vti, so that we get the curves as in Fig. 110, i.e., the crest 
a takes positions a, a', and a" at successive instants of time and 
thus travels to the right with a velocity V. The three curves 
represent snapshots’^ of the pressure wave at times io, + <i, 
and <0 + h- Thus we are led to the idea of a ‘traveling” 
wave. 

2. At any fixed point of the tube, let us say x == p varies 
sinusoidally with the time (Fig. 111). 

The wave length of the wave, denoted by X, is defined as the 
distance between two similar points of the wave, e.g.^ between 

two neighboring crests. According to Eq. (6) at time t and 
position Xf the pressure is 

p = a sin 27rn 

and this same value of p is found again when the angle increases 
by 2ir radians, since 

sin a — sin (a + 2w) 

Hence an increase of X in a; corresponds to an increase of 2x in 
the angle, and we have 

or 

so that 

= 27m^< — - “f" 2Tr 

2Tn\ 

V 
*f* 2ir 

n (7) 
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giving the relation between wave velocity, frequency, and wave 
length. Since n = 1/r, where T is the time of one vibration (the 
period), we have 

\ = VT • (8) 

and hence we can write our equation for the traveling wave as 

P = (9) 

The velocity of sound waves in air at room temperature is very 
nearly 1,100 ft./sec., so that a tuning fork vibrating with a 
frequency of 1,000 per second generates a sound wave of wave 
length 

V ^ 1,100 
n 1,000 

1.1 ft. 

108. Velocity of Transverse Waves on a String.—In the last 
two sections we have treated the kinematical description of 
traveling waves, and we must now concern ourselves with the 
dynamics of wave motion. Let us consider the problem of 
transverse waves on a stretched string. 

We shall assume that the initial tension in the string when it 
is straight is large enough so that we may neglect the changes in 
tension due to the bending of the string, and we shall neglect the 
effect of the earth pull. Let the tension in the straight string 
be To, the length of the string L, and its mass M, We now 
consider a small length dx of the string. When the string is 
straight, this piece of the string is pulled on each end by equal 
and opposite forces To so that it is in equilibrium. During the 
motion the string will form some sort of continuous curve at a 
given instant of time. In this position the pulls on the ends 
of the piece of string will be equal in magnitude but not quite 
opposite in direction, so that there is a resultant force not 
zero acting on this piece of the string. The y-component of 
this force, which is due to the curvature of the string, must be 
equal to the mass of the element on which it acts times the 
y-component of acceleration of this portion of the string. We 
shall adopt the procedure of calculating the force per unit length 
of the string, and then placing this equal to the mass per unit 
length times the acceleration of the string at the point where 
this force acts. Consider the piece of the string lying between 
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X and X + dx (Fig. 112). The ^-component of the resultant 
force on this piece is 

dFy = To sin ^2 — To sin 61 ^ To (tan $2 — tan ^1) 

Here we have replaced the sine by the tangent, which is allow¬ 
able if we consider only small vibrations since, then, the angles 
6 are small. Now (tan 62 — tan ^1) is the change in tan 6 as we 
go from the point x to the point x + dx^ and hence is d(tan 0), 

so that 

dFy = To d (tan 6) (10) 

Since for small displacements the 
length of our piece of the string is 
nearly da:, the y-componont force per 
unit length is 

dFy ^ m d 
dx ^dx 

(tan 6) = To 
d^ 
dx^ (11) 

Fig. 112. 

From this equation we see that the 
force per unit length causing the vibration depends on the rate of 
change of the slope of the string since tan d represents the slope 
of the curve (dy/dx) at the point under consideration. 

Newton^s second law of motion requires that this be equal to 
the mass per unit length, which we denote by /z = M/L, times the 
^/-component of acceleration of the point at which the force acts. 
Thus for this case the second law becomes 

d^y 
dP 

(12) 

Equation (12) is known as the differential equation of wave 
motion^ or, more briefly, the wave equation since its solutions 
turn out to represent waves. We shall not derive these solu¬ 
tions but shall content ourselves with showing that Eq. (12) is 
satisfied by the expressions we have obtained to represent wave 
motion. Consider a traveling sinusoidal wave of the form given 
by Eq. (6), 

j/ = A sin 2irn^< — (13) 

If we differentiate twice with respect to x, we find 

d^y 4ir*n*. • o /♦ 
- __4 8in2xn^t-^j (14) 
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and differentiating Eq. (13) twice with respect to t, there follows 

- y) (15) 

If we now substitute expressions (14) and (15) into Eq. (12), we 
find Newton's second law satisfied if 

d^y 
di^ 

= sin 2irn^ 

or 

(16) 

- I I 
>- 

I 

which fixes the velocity of the transverse waves on a stretched 
string in terms of the tension and mass per unit length of the 
string. 

109. Velocity of Acoustic (Longitudinal) Waves.—^Let us apply 
the procedure of the last section in calculating the velocity of 
longitudinal waves. A longitud¬ 
inal sinusoidal wave in a rod of ^ 
cross section A will be considered. ^ 
If a wave ^s traveling in the x-direc- 
lion along the rod, then for a piece - 
of the rod of length Ax we shall 
have at a definite instant of time a 
force Fi acting on the face at x and a force F2 acting on the face 
at X + Ax (Fig. 113). For equilibrium these forces are equal, 
but, when there is acceleration of the particles as there is in a wave 
motion, the forces will be different at the two faces. If Sn is 
the longitudinal-stress component, then the resultant force is 

+ F2 = ASn • A 

-Ax - 

Fig. 113. 

where ASn is the difference between the stresses at the two 
surfaces. Thus for this case the force per unit length of the rod 

is 
ASn 
Ax 

•A 

or, if Ax —> 0, 

dx 
(17) 

In order to proceed we must remind ourselves of the relation 
between the normal stress Sn and the particle displacement w 
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for simple tension or compression. This relation is given by 
Hookers law, so that Sn = Eei at every point of the rod, where 
E is Young^s modulus. Since the stress changes from point to 
point, so does the strain €i. At any point of the rod the longi¬ 
tudinal strain is given by the rate of change of w with x at that 
point. Thus ei = dw/dx, and hence 

S.~^ (18) 

If we insert this value of Sn in the expression (17) we find, for the 
force per unit length, 

dx- 
(19) 

This must equal the mass per unit length times the acceleration. 
If p is the density, the mass per unit length is pA, and this, times 
the acceleration, is 

.d^w 
(20) 

Thus the second law of motion yields 

j^d^w d^w 
~ '"IF 

(21) 

This equation for the longitudinal displacement w is just like 
Eq. (12) of the previous section for the transverse displacement 
y in the case of the stretched string. We can find the velocity 
of the longitudinal waves by the same method as employed 
in the last section. In a traveling sine wave each particle 
oscillates back and forth in simple harmonic motion about an 
equilibrium position. In particular the particle at x has a 
displacement w along the x-sixis given by 

w = W sin 2Trn^ — (22) 

where W is the amplitude of the motion. Performing the differ¬ 
entiations as before and substituting in Eq. (21), one finds 
readily 

E 
y2 ^ P 

or 

• *'=>/! (23) 
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as the expression for the velocity of a compressional wave in a 
bar. 

If we wish to find the velocity of such a wave in a liquid or gas, 
we proceed as above using — p instead of Sn. Then expression 
(17) for the force per unit length in the direction of the wave 
becomes 

We now may not use Hookers law but must revert to the defini¬ 
tion of compressibility. In so doing it must be remembered 
that the pressure p denotes the excess over static pressure in the 
fluid. Thus, since 

(v = volume) 

K AAx 

since Aw is the amount by which Ax changes during the com¬ 
pression, Thus we find that 

1 dw 
^ K dx 

p V 

we may write 

1 Av 

and the force per unit length becomes 

A d^w 
K dx"^ 

(25) 

Comparing this with the similar expression (19) for the rod, we 
see that the only change has been to replace E by 1/k. The rest 
of the argument is identical with the foregoing discussion so that 
we need not repeat the details. Thus we find 

y - Vs W 

as the expression for the velocity of sound waves in a gas or 
liquid. 

Before concluding this discussion it will be worth while to 
investigate the variations of pressure in such a wave. We 
obtain this by equating expression (24), giving the force per unit 
length along the wave, to the mass per unit length times the 
acceleration. This gives 
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dx 
— p4^w^n^W sin 27rni (' - f) 

and, integrating with respect to there follows 

p = —p2TnVW cos 27rn^ — ^ 

or 

p = a cos 27rnl (‘-t) (27) 

where a denotes the maximum pressure in the wave and is 
related to the amplitude of oscillation of the air particles W by 

a = -2TnVpW (28) 

The essential result is that we have a sinusoidal pressure wave 
along with the wave representing the motion of the individual 
particles of the fluid. 

110. Standing Waves.—In finite bodies traveling waves are 
reflected from the boundaries of the bodies and give rise to 
waves traveling in the opposite direction which add to the 
original waves according to the principle of superposition. 
Consider a column of air in which we have a traveling wave 

(‘ - f) Pi = a sin 2vn\ 

and suppose that the reflected wave has the same amplitude 
(complete reflection at the end of the column) so that it is a 
similar wave traveling to the left: 

(-v) 

p = Pi + P2 = aj^sin 2irn(^ 2rn^t + j 

P2 = a sin 2irn\ 

The total pressure is then 

and since we have the trigonometric relation 

sin a + sin = 2 sin —cos —x- 

we may write 

2a sin 2imt cos 2ir~ 
A 

(29) 
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This is the equation of the so-called standing wave. It is 
called standing because there are certain points where p is 
always zero, f.c., atmospheric a 
pressure. P 

These are the positions in the ^^^ —H ^ g ^ 
tube given by \ f \ f\ f\. A“ 

2TrX ^ 
COS = 0 

A 

v/ Now the cosine of an angle is <_ 
zero if the angle is an odd mul¬ 
tiple of 7r/2, so that the points 
of zero pressure, called the 
pressure nodes, occur at positions determined by 

2TrX jT 

--h' 

or for values of x given by 

Xk = 

i.e., when x has the values 

h — 3, 5, 7, 

A; — 1, 3, 5, 7, 

X 3X 5X 
^ 4' T' V ’ * ’ 

At points halfway between nodes we have the pressure varying 
sinusoidally with the time between values +2a and —2a, i.e,, 
at the points 

^ X 2X 3X 

we have pressure maxima (Fig. 114). At any instant of time 
the pressure curve lies between the full and dotted curves. 

The particle velocities u at different points of the tube are deter¬ 
mined by’’* 

du 1 dp Ava . rk ^ • 2tx 
=r — = T— sui 2irn^ sin 

at p ox \p X 

whence 

2a 0 4* 2ira; 
■ tT" cos 2vnt sin 

Vp X 

* This equation is obtained by equating the force per unit length (24) to 
du 

the mass per unit length (pA) times the acceleration 
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Thus the velocities of the individual particles form standing 
waves of the same type as the standing pressure wave. However, 
since the sine and cosine terms are interchanged, we see that 
velocity nodes occur where the pressure maxima occur and 
pressure nodes appear where the velocity reaches its greatest 
value. This we can schematically represent as follows: 

Pressure node <-> velocity maximum 
Velocity node <-> pressure maximum 

In all musical instruments the sound is produced by standing 
waves. 

111. Phase Changes in Reflection; Organ Pipes.—In the last 
section we have seen that the superposition of a traveling and a 
reflected wave gives rise to a standing wave. We shall now 
consider the process of reflection of a wave more closely, still 
confining ourselves to the case of total reflection; i.c., no wave 
motion is set up in the neighboring bodies. Suppose we have an 
air column in which we have a traveling pressure wave traveling 
toward an end which is closed. The resultant velocity of each 
air particle at this boundary must be zero at all times as no 
particle can get out of the tube and hence there is a velocity node 
at the closed end. This can occur only if at every instant of time 
the amplitudes of the direct and reflected velocity waves add up 
to zero, i.e.j the amplitudes are equal and opposite and the crest 
of the direct wave coincides with the trough of the reflected wave. 
Thus we see that the reflected wave is out of phase with the direct 
wave by X/2, if X is the wave length. The pressure wave must 
have a maximum where the velocity of the particles is always zero 
as we have shown in the previous section, so that there is a pres¬ 
sure maximum at the closed end of the tube. This means that 
the reflected pressure wave is in phase with the direct pressure 
wave so that the total pressure at the end is always twice the 
pressure in each wave at that point. 

At an open end we have just the opposite situation since the 
pressure is constant at this end and equal to atmospheric pressure. 
Since we measure pressures with respect to atmospheric pressure, 
we have a pressure node and a velocity maximum at an open end. 
For transverse waves we have very much the same behavior. 
For example, a transverse wave on a string has a displacement 
node at a fixed end, so that the reflected wave is half a wave 
length out of phase with the oncoming wave. 
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In the case of an organ pipe we have the typical case of a 
musical instrument in which there are standing waves. The 
tube alone is responsible for the production and determination 
of the tone. The mouthpiece acts only as a means of exciting 
the vibrations, which are standing waves in the tube. The pitch 
of the emitted note can be calculated from the length of the pipe 
alone. The mouthpiece end of an organ pipe is always open, so 
that we always have a pressure node at the bottom. We then 
have two cases to discuss: 

a. The open pipe, in which 
the top end is left open. 

h. The closed pipe, in which 
the top end is closed. 

a. The Open Organ Pipe.— 
In this case the only vibrations 
(or modes of vibration) which 
are possible are those which 
keep pressure nodes at both Fig. us. 
ends. These are sketched in 
Fig. 115. These curves represent the variation of pressure along 
the tube for the first four modes of vibration. We could, of 
course, keep on extending this scheme, and in the fcth mode of 
vibration 

The frequencies of the sound waves corresponding to these wave 
lengths are called the natural or proper frequencies of the pipe 
and are given by 

V V V 
^1 = 1*^; ^2=2*^; ^8=3-^; etc. 

or, in general 

njb = ft • Hi = * • ifc = 1, 2, 3, 4, • • • (31) 

if V represents the velocity of sound in the gas. Since the higher 
frequencies (overtones) are whole-number multiples of the 
fundamental frequency ni, they form a harmonic series. The 
amplitudes of the various overtones which determine the quality 
of the emitted sound depend, among other things, on the geo- 
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metrical shape of the pipe, especially on the ratio of cross-section 
dimension to length. 

h. The Closed Organ Pipe.—For pipes closed at the top, we 
have a velocity node and a pressure maximum at the top and a 
pressure node at the bottom. The possible vibrations are then 
quite different from those of an open pipe; several modes of 
vibration are sketched in Fig. 116. The corresponding fre¬ 
quencies are 

V V V 
Til = 1 * 72/2 = 3 * Uz = 5 ' etc. 

so that, in general, 

n* = (2* - l)n, = (2* - 1)^, = 1, 2, 3, • • • (32) 

Here all the even harmonics are missing, and the lowest frequency 
(the fundamental) is one-half the 
fundamental frequency of the 
same length open pipe. 

112. Reflection and Transmission 

at a Boundary.—In the preceding 

section we discussed the reflection of 

waves, assuming that we had total 

reflection. Now we shall investigate 

what happens at a boundary when we 

get only partial reflection and partial 

transmission of the waves. Consider two strings of different densities and 

the same cross section 

-1- 
1 X = Q 2 

joined together at x = 0 and subjected to the same tension. Let the velocity 

of a transverse wave be Fi in the left-hand string and F2 in the right-hand 

string. Now, if a wave travels along string 1 to the right and hits the 

boundary a; == 0, some of this wave will be transmitted in the second string 

and some will be reflected. 

For the incident wave in string 1 we write 

Vi ^ A sin 2irn^f — (33a) 

For the reflected wave in string 1 we write 

yr ^ B sin 2irn^t + (336) 

since it travels to the left. 
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For the transmitted wave in string 2 we write 

Vt ^ C sin (33c) 

Now at the boundary the displacement in string 1 must equal the displace¬ 

ment in string 2 if the string does not break there so that we have 

at a; == 0, yi -b yr == Vi (34) 

Furthermore, the slope of the string at x = 0 must be the same in string 1 

as in string 2. To see this consider Eq. (10) applied to a piece dx including 

the point x — 0. The expression (10) is equal to the mass per unit length, 

times dXy times the acceleration. As dx —► 0, Eq. (10) also approaches zero. 

Since To is not zero, the change in tan 6 must be zero at a; = 0, and this is 

the same as saying that the slope must not change abruptly at x =0. 

Thus we have. 

at a: = 0, 
, dyr ^ dyt 

dx dx dx 
(35) 

Equations (34) and (35) are known as the boundary conditions. From 

Eqs. (33a, by c) we have: 

dyi 
dx 

dyr 
dx 

dyt 
dx 

2TrnA c (s 

—FT ~ 

2TrnB ^ . a; \ -y- COS + Yj 

2TrnC ^ (. x\ 

—v7 ^^y - rj 
If we now substitute our expressions for t/t, yr, and yt in Eq. (34) and place 

a; == 0 we find 

A sin 2Tmt -f B sin 2Trnt = C sin 2irnt (36) 

and placing a: = 0 in the derivatives of the y’^ and putting them in Eq. (35), 

we get 
27rnA « , , 2irnB » , 27rnC « , /o^\ 

cos 2Trnt i-^— cos 2xn^ =-^— cos 2Trnt (37) 
Fi Vi 

If we divide Eq. (36) by sin 2Tmt and Eq. (37) by —2irn cos 27rn<, we find as 

the boundary conditions 

A + B = C 
(38) 

We now place VifVi = K;Kis just like the index of refraction in optics, z.e., 

the ratio of the velocities in the two bodies. Solving Eqs. (38) for B and C, 

we find 

(39) 

giving us the amplitude of the reflected and transmitted waves in terms of 
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the amplitude of the incident wave. Now in case the second string has a 

much larger density than the first, F2< <Fi and K becomes very great 

compared to 1. In this case we can neglect 1 compared to K and we find 

B ^ -A 

and C becomes very small, so we can neglect it. This is the case of total 

reflection, and we see that the reflected wave has the same amplitude but is 

180° out of phase with the incident wave, as we have discussed in Sec. Ill, 

113. Forced Vibrations and Resonance.—The problem of 
forced vibrations of elastic bodies is very similar to that of forced 
vibrations of a single particle whose free vibrations are harmonic. 
We have discussed the latter problem in Sec. 44 of Chap. VII 
and refer the reader to that section. One of the important results 
was that the steady-state motion of a harmonic oscillator, when 
subject to the action of an external force which varies sinu¬ 
soidally with time, is a harmonic motion of the same frequency 
as that of the exciting force and of amplitude depending very 
strongly on the difference between the frequencies of the exciting 
force and the natural frequency of the oscillator. The amplitude 
becomes extremely large when the two frequencies are about equal 
(in the absence of friction an infinite amplitude is predicted), and 
when there is but little friction, the relative response to fre¬ 
quencies other than the natural frequency is negligible. This 
phenomenon of resonance is displayed also by elastic bodies, such 
as the stretched wire or organ pipe. 

We have seen that for given boundary conditions (string 
fastened at its ends; closed or open pipe) there exists a whole 
series of natural frequencies, infinite in number. If an external 
sinusoidally varying force is applied to such a body, the steady- 
state motion produced will be appreciable only if the frequency 
of the force is practically equal to one of the natural frequencies 
of the body. This phenomenon is utilized to demonstrate the 
natural modes of vibration of a stretched string. If one were to 
deform a stretched string and release it, the ensuing vibration 
would be, not simple harmonic corresponding to one of the 
possible modes, but a superposition of harmonic motions of 
the different possible natural frequencies and hence would be 
extremely complicated. On the other hand, by applying an 
external force of frequency equal to one of the natural frequencies, 
that mode alone is excited and one can demonstrate a natural 
mode of vibration of the string. 
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If the exciting force is not simple harmonic in time, one can 
always represent it according to Fourier\s theorem by a sum of 
harmonic forces and the response will then occur at those fre¬ 
quencies which lie near to one or more of the Fourier component 
frequencies. This is demonstrated in the operation of an 
ordinary organ pipe. At the mouthpiece air is blown past a sharp 
edge; the flow becomes turbulent, eddies form more or less 
periodically, and the pressure varies accordingly. The exciting 
force is certainly not sinusoidal, but the pipe responds only to 
that Fourier component of frequency equal to its own natural 
frequency. The harder one blows the faster the air moves, and 
the eddies form more rapidly with a consequent increase in the 
amplitudes of the higher frequency components of the exciting 
force. Thus there is a good chance of exciting the overtones 
of the pipe, whereas at low velocities only the fundamental 
occurs with an appreciable 
intensity. 

The phenomenon of resonance 
plays a large part in the action of 
the ear. Roughly, we can think 
of the ear containing some 20,000 
chords, each with its own natural 
frequency. The oscillations of 
these chords excite the auditory 
nerve and give rise to the sen¬ 
sation of hearing. The minimum energy necessary to excite one 
of these chords sufficiently so that it can be detected is about 
10~^^ erg, making the ear one of the most sensitive sense organs. 
The reason such a sensitive organ does not get injured when 
there are large noises lies in the fact that the sensation of 
loudness is not at all proportional to the intensity of sound 
striking the ear. In fact, if we plot sensation of loudness against 
the intensity of sound we obtain something like the curve in 
Fig. 117. This curve has the form 

S =^k log I 
lo 

114. Addition of Oscillations; Interference; Beats.—We now 
turn our attention to the question of addition of oscillations, 
e.g., the addition of two sound waves at a given point of space. 
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We have already emphasized in our discussion of the principle 
of superposition that the amplitudes add. 

If the waves have the same frequency and wave lengthy we have 
two limiting cases: 

а. The Crests of the Waves Coincide. In this case the waves 
reinforce each other, and the resultant amplitude is twice that of 
one wave, if they are each of equal amplitude. More generally, 
the resultant amplitude is the sum of the two amplitudes. 

б. The Crests of One Wave Coincide with the Troughs of the 
Other. In this case, for two equal waves the sum of the ampli¬ 
tude is always zero. This effect is called total interference. Thus 
we see that two sounds can produce silence! If two waves 
travel in the same direction in the same tube, we get total inter¬ 
ference at all points where the path difference is X/2. 

In all other cases we get partial interference and the resultant 
amplitude lies between zero and the sum of the two amplitudes. 

If the waves have different frequencies and wave lengthSy we can 
write for the pressure in each wave at a point P, if they are in 
phase at ^ ~ 0, 

Pi = a sin 27rni^ 
P2 — a sin 2vn2t 

so that the resultant pressure is 

p = Pi + P2 = a(sin 2rnit + sin 2Trn2t) 
or 

p = 2a sin 2r(^^ ^ • cos (40) 

An interesting case occurs when ni — n2 is small compared with 
ni and n2. In this case we hear beats. If we write 

d = 

we obtain 

ni — 712 
and 

ni + 7^2 
== 71 ^ Til 712 

p = 2a cos 2ir8t sin %rnt (41) 

Now cos 2ir8t varies very slowly compared to sin 2jmt, i.e., there 
are a large number of oscillations of the frequency n during the 
time it takes the cosine to go through one period, so that we can 
think of the resultant pressure as a sine wave of slowly varying 
amplitude. The ear hears this slow periodic variation of ampli-* 
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tude as beats, and the number of beats per second equals the 
number of maxima and minima of cos 2Tdt per second (Fig. 118). 

116. Doppler Effect.—The pitch of a pure note is determined 
by its frequency, t.e., by the number of waves (each of length X) 
which strike the ear per second. The pitch of a note changes 
if the observer moves with respect to a fixed source of sound, 
or if the source moves with respect to a fixed observer. By 
fixedj we mean at rest with respect to the air, which is the elastic 
medium transmitting the sound 
waves. There are two cases. 

Case I. Moving Observer, 
Fixed Source.—Suppose an 
observer 0 is moving toward a 
fixed source of sound S with a 
velocity v. The source is to 
consist of a tuning fork, let us 
say, with frequency n. It 
emits waves of wave length 
X = F/n. In time Ai, nM 
waves pass a fixed observer's 
ear. During this time the 
moving observer moves a distance vAi toward the source. In this 
distance there are M^/X waves, so that the total number of waves 
passing his ear in time A^ are 

This number divided by M gives the apparent frequency n' 
heard by the observer, so that 

If the observer moves away from the source we must replace 
t; by —V, so that in general, for case I, 

Thus the pitch of a note apparently increases as an observer 
approaches the fixed source and decreases as he moves away 

from it. 
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Case II. Fixed Observer, Moving Source.—Suppose the source 
is moving toward the observer with a velocity v. The source of 
frequency n emits nM waves in M sec. Were the source at rest 
these waves would spread over a distance VM, but because of the 
motion of the source they are crowded into a distance (F — v)M. 
Thus the waves from a moving source have a wave length 

X' = 
V 

The fixed observer hears waves of wave length X' moving with a 
velocity V with respect to him, so he hears the frequency 

n' = 
y 
X' 

n 

If the source is moving away from the observer, we must replace v 
by — so that we have in general, for case II, 

n = . _ V 
1 + y 

(43) 

Thus we see that the qualitative effect is the same in both 
cases; the quantitative change in frequency, however, depends on 
the motion of source and observer, not with respect to each other but 
with respect to the elastic medium which transmits the waves. 

In the case that v/V < < 1, Eqs. (42) and (43) become prac¬ 
tically identical, since 

1 
= i±7 + ± 

Neglecting terms in {v/Vy and higher powers, we have 

1 

agreeing with the corresponding expression in Eq. (42). 
116, Proper Frequencies; Proper Functions in General.—We 

have already seen in the study of the vibrating string and the 
organ pipe that, with given boundary conditions (end conditions), 
only certain frequencies of free oscillations are possible. In the 
cases we have discussed these frequencies are whole-number 
multiples of the lowest allowed frequency. These frequencies 
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are called the proper frequencies of the system. In general we 
find that all elastic bodies possess a definite set of proper fre¬ 
quencies for given boundary conditions, but in general these 
frequencies have not the simple characteristic that the ratio of 
one of them to the fundamental is a whole number. For example, 
a stretched membrane possesses natural frequencies which do not 
form a harmonic series, although some of them may stand in the 
ratio of whole numbers. Similarly, a vibrating rod has a non¬ 
harmonic set of natural or proper frequencies. Hence these 
bodies would not be suitable for musical instruments. In all 
these cases we have standing waves, and certain regions of the 
bodies stay at rest all the time. These nodes are curves in the 
case of two-dimensional bodies such as membranes (nodal lines), 
and for three-dimensional bodies (elastic solids) they form nodal 
surfaces. 

Furthermore, for the case of a vibrating string we find as the 
equations describing standing waves relations of the type 

y = 2a sin 2Tnt sin or y = 2a sin 2irnt cos 
A A 

the former holding for strings held fixed at both ends. The 
picture of the string at any instant of time is fixed by the equation 

y C sin 
2Trx 

C sin 
kwx 
~T 

{t = constant) 

where C is a constant, L the length of the string, and fc is a whole 
number specifying the harmonic (mode of vibration). This 

function sin cos 
XV 

2^\ 
fixes the position of the nodes, and 

is called the proper function of the string. Similarly, the nodes of 
any vibrating elastic bodies are fixed by certain functions of 
position which are called the proper functions of the problem. In 
general these functions are not sinusoidal functions but are 
functions which vanish for certain values of the coordinates. 
The determination of these functions and the corresponding 
values of the proper frequencies form an exceedingly important 
part of modern atomic theory. 

Problems 

1. Using the same type of argument as presented in Sec. 106, show that 
/(« -h Vt) represents a wave traveling to the left along the af-axis with a 
velocity V, 
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2. Calculate the velocity of a sound wave in a bar of steel and in a bar of 

copper. 

3. A sound wave is sent out just under the surface of the water in an 

ocean. If the ocean is 2 miles deep at this point, calculate the time elapsed 

before the wave reflected from the bottom is heard at the surface. This 

provides a convenient way of measuring ocean depths. 

4. Two sinusoidal sound waves have wave lengths of 2 and 4 in. respec¬ 

tively. The phase relations are such that they each change from minus to 

plus at the same point. If the amplitudes are in the ratio 1:3, plot the 

resultant wave, and each wave separately. 

5. Plot the two waves of Prob. 4 and their resultant for the case in which 

the 2-in. wave has its maximum at the point where the 4-in. wave crosses 

the axis from minus to plus. 

6. Two tones of frequencies 375 and 400 vibrations per second, respec¬ 

tively, are overtones of the same fundamental frequency. What is the 

largest frequency possible for this fundamental, and which overtones of this 

frequency do the above two vibrations represent? 

7. The pressure in a traveling sound wave is given by 

p = 10 sin 2007r^^ — i Too) 

where t is in seconds and x in feet. 

a. Find the wave length of the wave. 

h. Plot the pressure as a function of x at the following instants of time: 

/ = 0, i sec., t = sis t — sec., and t =* sec. Draw these 

plots with one set of axes. 

8. The equation of a traveling transverse wave in a certain cord is given 

by 

y — 20 sin w(2.50t — O.Olx) 

where x and y are in centimeters and t is in seconds. 

a. What are the values of the amplitude, wave length, frequency, and 

velocity of the wave? 

h. What is the maximum transverse velocity of a point on the cord? 

9. Pure soft iron and steel have practically the same density, but Young^s 

modulus for steel is about twice that for pure iron. Sound waves are 

traveling along an iron and a steel rod, as given by the equations: 

pi = 12 X 10® sin 1,000 dynes/cm.* 

P2 ~ 2 X 10*^ sin 1,100 ^ dynes/cm.* 

(x in meters, t in seconds). Which of these waves is in iron? What are 

its speed, frequency, and amplitude? Give one value of x (distance from 

origin) at which the pressure produced by the wave is zero at the instant 

i =0.10 sec. Are there other points along the rod at which the pressure is 

zero at this instant? 

10. A wire is stretched between two supports with a force such that its 
length is increased by 1 part in 10,000. The velocity of longitudinal waves 
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in the stretched wire is 5,000 ft./sec. Find the velocity of transverse waves. 

11. A steel wire 10 ft. long and 0.01 in.^ in cross section is put into tension 

and observed to increase its length by 1 part in 2,000. 

а. Calculate the velocity of a transverse wave on this stretched wire. 

б. Calculate the velocity of a longitudinal wave in this wire. 

c. Prove that the ratio of the velocity of a longitudinal wave to that 

of a transverse wave in a stretched wire is the square root of the ratio of 

Young^s modulus to the longitudinal stress. 

12. Two sinusoidal waves give rise to pressure variations at a given point 
of space according to the equations: 

Pi 

Pi 

= a sin 2irnt 

= a sin ^irni 

Calculate the amplitude of the resultant wave at this point of space. 

13. A piece of steel wire originally 49.5 cm. long is stretched so that its 

ends can be fastened to two rigid supports 50 cm. apart. What is the 

fundamental frequency of transverse vibration of the stretched wire? 

(Density of steel = 8 grams/cm.3; Young's modulus = 2 X 10^^ dynes/cm.2.) 

14. An open organ pipe has a fundamental frequency of 275 vibrations 

per second. 

A closed pipe is found to have its first overtone equal in frequency to the 

first overtone of the open pipe. 

How long is each pipe? (The velocity of sound in air is 1,100 ft./sec.) 

16. A column of air in a tube 85 cm. long, closed at one end and open at 

the other, is set into vibration at its fundamental frequency by means of 

resonance with a tightly stretched wire placed near the open end. The 

wire is 25 cm. long, held at both ends, has a total mass of 10 grams, and 

oscillates in its fundamental mode of vibration. 
а. At what frequency does the air column vibrate? 

б. What is the tension in the wire? 

16. The fundamental and first overtones of an organ pipe are 200 and 600 

vibrations per second. Take the velocity of sound as 1,100 ft./sec. 

a. Is the pipe open or closed? 

b. What is its length? 

c. Draw the standing pressure waves corresponding to the above two 

frequencies. 

17. A copper wire of cross section 0.11 cm.* and length 2 meters is sub¬ 

jected to a tension of 10® dynes. Calculate the velocity of transverse waves 

on this wire. If the ends are held fixed, what are the lowest two frequencies 

with which this wire may vibrate? The density of copper is 9 grams/cm.®. 

18. A steel wire 0.0126 cm.* in cross section and 10 cm. long is stretched 

until its fundamental note is the same frequency as that of an organ pipe 

55 cm. long, closed at one end. What tension must be applied to the wire? 

The velocity of sound in air may be taken as 330 meters/sec., the density of 

steel as 7.8 grams/cm.* 

19. A traveling wave pi — A sin 2irn^f — and a reflected wave 

Pa =* — A sin -f combine to form a standing wave. Derive the 
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equation for the standing wave, and calculate the position of the pressure 

nodes. 

20. An electrically driven tuning fork is mounted 2.0 cm. above the open 

end of a vertical, cylindrical tube 4.0 cm. in diameter. The lower end of 

the tube is closed by a movable piston so that the effective length of the tube 

can be varied. Resonance (decided increase in the volume of the sound) 

occurred first at a tube length of 25.0 cm. Resonance occurred again at 

75.0 cm. and also at 125.0 cm. If the temperature of the laboratory was 

25°C. and the barometer read 76.0 cm., compute the frequency of the tuning 

fork. 

21. Air waves travel in a tube 2 meters long with the normal velocity of 

sound at room temperature. Calculate the two lowest frequencies of the 

standing waves in the tube when 

a. The tube is open at both ends. 

h. The tube is open at one end and closed at the other. 

22. Calculate the frequencies of Prob. 21, if the tube is filled with hydrogen 

instead of air, assuming the compressibility of h3^drogen is the same as that 

of air (same pressure and temperature). 

23. The fundamental vibration of an open organ pipe 1 meter long filled 

with air has the same frequency as the first overtone of a closed pipe filled 
with hydrogen. How long is the closed pipe? 

24. 2/1 = A sin P = 10 sec. (1) 

j/2 = A sin F g)’ X = 8 cm. (2) 

Equation (1) represents the equation of a wave incident from the left on 

a boundary at a; = 0. Equation (2) represents a reflected wave traveling 

toward the left. Find the resultant displacement at points a; =0, —1, —2, 

—3, —4 cm. at i = 0, 1, 2, 3, 5 sec. 

Solve graphically and analytically. 

25. A copper wire 2 mm.^ in cross section is subject to a tension equal to 

the weight of a 5-kg. body. 

a. Calculate the velocity of a transverse wave on this wire. 

h. Calculate the velocity of a longitudinal wave on this wire. 

26. A steel wire 1 mm. in radius is stretched with a tension T between 

two supports. At the same instant a longitudinal and a transverse wave 

are started at one end. When the longitudinal wave has reached the other 

end, the transverse wave has gone xJu of the length of the wire. Find the 

tension in the wire. 

27. An aluminum wire 2 mm. in diameter is joined at one end to a steel 

wire of 1 cm. diameter and the whole is stretched with a uniform tension T. 
If a sinusoidal transverse wave of amplitude 5 mm. travels along the alumi¬ 

num wire and strikes the junction, calculate the amplitude of the transmitted 

and reflected waves. Calculate these amplitudes when the initial traveling 

wave is in the steel. 

28. The water level in a vertical glass tube 1 meter long can be adjusted 

to any position in the tube. If a tuning fork of frequency 600 per second 

is held over the open end of the tube, where must the water level be to pro¬ 

duce resonance? At how many points will resonance occur? 



DYNAMICS OF ELASTICITY; ACOUSTICS 303 

29. The maximum tensile stress under which steel remains elastic is 

7.02 X 10® dynes/cm.*. Its density is 7.8 grams/cm.*. What is the highest 

fundamental frequency of transverse vibration which can be obtained with 

a stretched steel wire 50 cm. long? Give the corresponding values of the 

next three overtones and the positions of the nodes of the motion. 

30. A tightly stretched wire of length L held fixed at both ends vibrates 

in its first overtone and the transverse displacement of the wire in indies is 

given by 

y — 0.5 sin cos lOOxi 

where t is in seconds and x and L are in feet. 

a. Calculate the transverse acceleration of a point of the wire one-quarter 

the length L from one end for ^ sec. 

b. If the wire weighs 0.015 lb./ft., what is the transverse force on an 

element of the wire 0,001 ft. long at the above point, at time t = ^ Ju sec.? 

31a. The fundamental frequency of a string 2 meters long and weighing 

1,500 grams is 2 vibrations per second. What is the tension in the string? 

h. A tuning fork of frequency 360 vibrations per second causes resonance 

when held over the open end of a tube which is closed at the other end. 

The same tube also resonates to a fork having a frequency of 600 vibrations 

per second. If the velocity of sound in air is 336 meters/sec., w'hat is the 

least possible length of the tube? What other frequencies will also produce 

resonance? 

32. A steel wire 10 ft. long weighs J lb. and is stretched taut with a 

tension of 20 lb. One end of the wire is held fixed, and the other end is 

driven in simple harmonic motion with an amplitude of in. and a fre¬ 

quency of 40 vibrations per second, 

a. What is the velocity of transverse waves on this wire? 

h. What is the wave length of the waves? 

c. Find the position of the nodes on the wire. 

d. What is the amplitude of the standing waves set up on the wire? 

33. A section of steel wire 1 mm. in diameter subject to a tension equal 

to the weight of 5 kg. resonates to a frequency of 60 per second. Calculate 

the smallest possible length of this wire. 

34. Solve Prob, 33 for a steel wire of twice the diameter, subject to twice 

the tension. 

35. At a given point of space, two sound waves give rise to pressure 

variations: 

Pi — a sin 2Tmt 
pz — a sin (2wnt + 5) 

Make a plot of pi, pz and the resultant pressure as a function of t for the 

following values of 3, 

5-0, 
4’ 

TT 

2 

36, Two tuning forks of frequencies 500 per second and 601 per second are 

set in vibration. Calculate the number of beats heard per second. 
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87. An observer in an automobile traveling with a speed of 60 miles/hr. 
approaches a stationary whistle. Calculate the percentage change in the 
frequency heard by the observer from the frequency at rest. 

38. Calculate the fractional change in pitch of an automobile horn 
observed by a pedestrian when the automobile travels away from him with 
a speed of 60 miles/hr. 

39. Two express trains traveling with speeds of 70 and 50 miles/hr., 
respectively, approach each other. If the whistle is blown on the faster 
train, calculate the fractional change in frequency observed by the engineer 
on the other train. 

40. A tuning fork of frequency 500 vibrations per second is rotated in a 
horizontal circle of radius 1 ft. with an angular velocity of 20 radians/sec. 
Calculate the highest and lowest frequencies heard by an observer at rest. 
The velocity of sound in air is 1,100 ft./sec. 



CHAPTER XVII 

TEMPERATURE AND THERMOMETRY 

We now proceed to a study of a group of subjects which are 
usually classified under the heading of heat, and we shall see that 
it is advantageous to make close connection in this study with our 
previous work in mechanics. Of course our primary concepts 
of heat and warmth are direct outgrowths of our sense percep¬ 
tions, as are all other primary concepts in physics. Starting 
with these simple perceptions physics undertakes to lay down 
proper measures to describe these experiences quantitatively. 
In so doing it has turned out that many of our experiences in 
connection with heat phenomena can be correlated and under¬ 
stood with the help of mechanical principles, and hence we shall 
make no attempt to split off the following work from our previous 
study but shall look upon it as a continuation and extension of 
this study. We must start, however, by describing some of our 
fundamental experiences in connection with heat phenomena and 
by introducing new concepts to describe them. 

117. Thermal Equilibrium; Concepts of Quantity of Heat and 
of Temperature.—^Let us consider a number of material bodies, 
some of which may feel ^'hot^^ to our touch, others ^^cold,” and 
place such a system of bodies in a closed room free from external 
influences. In general, changes will occur, but eventually these 
bodies will settle down to a quiet state in which no more observa¬ 
ble changes occur. They will, according to our sensation of 
warmth, all seem equally '^hot^' or cold. This quiet state is 
called a state of thermal equilibrium^ and we shall assume that all 
bodies left to themselves reach such a state. Of course the titne 
necessary to reach this state may and will be widely different for 
different initial states and different bodies, but this fact need not 
concern us here. 

This idea of thermal equilibrium is essential as a starting point 
in building a set of laws to describe the thermal behavior of . 
matter. Furthermore we must introduce two more concept^, 
both of which are direct consequences of our everyday experience. 

305 
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They are the concept of quantity of heat and the concept of tem¬ 
perature. In accordance with our general scheme of procedure, 
we shall first qualitatively discuss these concepts and later lay 
down methods of measuring these quantities. 

a. Concept of Quantity of Heat.—Suppose we produce a change 
in a body A by rubbing or by holding it near a flame so that it 
feels hotter to our touch than a similar body B which we have 
left untouched. We then place the body A in contact with the 
body B and wait until they reach thermal equilibrium. Then, 
if we touch we notice that it is hotter to our touch than before 
it was placed in contact with A, and we conclude that something 
has been transferred from A to B. This something we call heat, 
and we say that heat has been transferred from A to B. The 
important point is that, by merely placing body B in contact with 
body A, a change is produced in B similar to that which we 
originally produced in A. 

b. Concept of Temperature.—The simplest idea of temperature 
is the idea of hotness,'^ and we distinguish in a primitive way 
between different degrees of hotness by our sense of touch. 
This sense of touch, like all human sensations, is too vague to 
serve as a means of measurement in physics, so that we must 
set up a quantitative measure of temperature. Our first step is 
to define a qualitative scale which will give more precision to the 
experiences described above than our own sensations. In doing 
so we proceed as follows: When two bodies A and B are in 
thermal equilibrium, the temperature of body A is equal to that 
of body B. Furthermore, when heat flows from body A to body 
B when they are placed in contact, we say that the temperature 
of body A is higher than that of body B. In building up quanti¬ 
tative scales of temperature, we must not contradict the above 
definitions. 

118. The Measurement of Temperature.—There are certain 
physical properties of substances which change with temperature. 
Any of these properties may be used to set up a quantitative 
sc^le of temperature. The choice of the property and the scale 
of temperature are both entirely arbitrary. One of the most 
universal properties of matter which changes with temperature is 
the volume occupied by a substance, and we say that all bodies 
expand or contract when their temperature is changed. This 
prpperty of expansion is extensively used in temperature- 
measuring (teyices, i.e., in thermometers. We must, however 
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remember that other properties, such as electrical resistance or 
thermoelectric force, also are utilized for temperature measure¬ 
ments. We shall confine our attention in this chapter to expan¬ 
sion as a measure of temperature. In doing so, we must recall 
that the volume of bodies can be changed by mechanical forces, 
e.g.j by pressure, and it becomes necessary to specify the mechani¬ 
cal forces acting on the substances to be used as thermometers. 
For example, in gases the pressure plays just as important a part 
as the temperature in fixing the volume. The expansion of solids, 
liquids, and gases has been used as means of measuring tempera¬ 
ture, and as examples we may mention metal thermometers, the 
well-known mercury-in-glass thermometers, and the gas ther¬ 
mometer. Strictly speaking, the latter two depend in their 
action on the difference in expansion of the liquid (or gas) and 
the container. 

In our study we shall utilize principally the Centigrade 
(Celsius) scale of temperature as fixed by a standard mercury-in- 
glass thermometer. The freezing and boiling points of water 
are called 0° and 100®, respectively, at atmospheric pressure 
(76 cm. of mercury). The size of the unit temperature interval 
is fixed as follows: Suppose we place a mercury-in-glass ther¬ 
mometer in melting ice and make a scratch on the glass cor¬ 
responding to the top of the mercury column. Then repeat 
the procedure in boiling water, making another scratch. We now 
divide the interval of length between these two scratches into 100 
divisions and the distance between two neighboring scratches 
corresponds to a 1®C. temperature interval, as defined hy this 
thermometer. The scale of temperature thus defined is called 
the ‘^mercury-in-glass^^ scale and a standard procedure has been 
adopted in constructing thermometers to read temperature on 
this scale. Apart from the use of mercury in glass there are two 
arbitrary points about this scale: (1) the choice of the unit tem¬ 
perature interval and (2) the choice of the zero of temperature. 

At this point we might mention two other scales^ of tem¬ 
perature. The Fahrenheit scale is a scale in which the unit 
temperature interval is viv the temperature difference between 
melting ice and boiling water at atmospheric pressure, and in 
which the temperature of melting ice is fixed as +32®. This 
temperature scale is widely used among engineers in English- 
speaking countries. The R4auymur temperature scale has a 
unit temperature interval of ^ the difference of temperature 
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between melting ice and boiling water, and its zero coincides with 
that of the Centigrade scale. 

119. Expansion of Gases; Absolute-temperature Scale.—We 
start our analysis with the expansion of gases where the effect of 
temperature on the volume is largest. The volume of a body, 
as we have already stated, depends not only on the temperature 
but also on the pressure. (We shall only consider uniform normal 

stresses. Shearing stress, of course, produces no change in 
volume.) Thus we may write 

V = F(p, 0 
or if we imagine the equation solved for p, 

P = fiV, t) 
(1) 

In Eqs. (1), p denotes the pressure, V the volume, and t the 
temperature of the body. Such an equation as either of Eqs. (1) 
is known as the equation of state of the body. 

For gases at moderate pressures and not too low temperatures 
it is found experimentally that the product of the pressure and 
volume of any gas is constant, provided the temperature is held 
constant. Thus, for a gas such as hydrogen we may write 

pV^C^git) (2) 

The value of the constant CJa different at different tempera¬ 
tures, and ve have indicated ti^ by equating it to a function of 
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the temperature g{i). Equation (2) is known as Boykos law. 
The curves pF = constant are called the isothermal curves, or 
simply isothermalsy of the gas. These are sketched in Fig. 119. 
For calculation purposes it is sometimes more convenient to 
write Eq. (2) in the form 

ViVi = P2V2 (2a) 

where pi, Vi denote a pressure and the corresponding volume 
and P2, F2 another pressure and corresponding volume of the 
same sample of gas at the same temperature. 

Within the range of temperatures and pressures where Boyle^s 
law holds, it is further found experimentally that the product pV 

varies linearly with temperature as measured with a standard 
mercury-in-glass thermometer, f.e., g(t) is sl linear function of t. 
Writing this as an equation, we have 

pV - poFod + yt) (3) 

Here t denotes Centigrade degrees, po and Vo denote the pressure 
and volume of the gas at 0®C., and r is a constant whose numerical 
value has been measured as 

7 = 0.00366 = (“C.)-i 

Thus we may write 

vV 
constant 

1 + yt 

The curves for which V is kept constant show how the pressure 
varias with temperature and are called isot^oric curves, or simply 
isQchors. These are straight lines, as shown in Fig. 120, deter- 
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mined by equations of the form 

P = Po + v^yt (4) 

Equation (4) has been stated as an experimental fact deter¬ 
mined with the help of a mercury thermometer. One can, how¬ 
ever, equally logically postulate Eq. (4), and this defines the 
so-called gas scale of temperature, still retaining the two fixed 
points, 0° and 100°, as before. Then y depends on the slope of 
the p vs. t lines and is given by 

y = 
P - Vo 

Pot 

With the help of a gas thermometer one could determine 
the length of the mercury column in glass as a function of tem¬ 
perature, and one would find very nearly that the length is a 
linear function of temperature (on the gas scale). We shall 
neglect completely the very slight differences existing between 
the mercury and various gas scales of temperature in the following 
discussion. 

The constant y is closely related to the coefficient of volume 
expansion which is defined by 

(5) 

This is the fractional change in volume per degree and has the 
same dimensions as those of 7, viz,^ (degrees)”'^ For a gas at 
constant pressure, the volume changes with temperature accord¬ 
ing to the law 

V = Fod + yt) 
whence 

Thus 0 becomes 

B == = iZ? = rFo ^ y 
^ V\dt / p^mcotut. V Fo(l +yt) 1 + yt 

(6) 

For temperatures small enough so that yt < < 1, we may thus 
take 0 ^ y. 

We are now in a position to introduce a new and important 
scale of temperature called the absolute scale. More precisely, we 
shal^^ introduce a new zero point called absohde zero and retain 
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the Centigrade unit. The true absolute scale (Kelvin scale) has 
practically the same unit as the Centigrade scale. We define 
the zero of the absolute scale as that temperature at which the 
pressure of an ideal gas kept at constant volume would become 
zero. By an ideal gas we mean one which obeys the above laws 
exactly. Thus, if temperatures on the absolute scale are denoted 

by Ty the temperature T = 0 corresponds to the Centigrade 
temperature 

( = _i = -273.2°C., (Fig. 121) 

and the relation between absolute and Centigrade temperatures is 

r = < + 273.2 = < + i 
7 

If we rewrite Eq. (3) in terms of absolute temperature, it 
becomes 

-pV = poFo(l + yt) = PoFo7^< **” 0 PoVoyT 

or 
pV 
^ = constant (7) 

This exceedingly important and simple equation is the equation of 
state of an ideal or perfect gas. It is approximately obeyed by 
real gases at high temperatures and low pressures. 

The constant in Eq. (7) is proportional to the number of moles 
(1 gram-molecular weight « 1 mole) of the gas under considera- * 
tion. The proportionality constant is the.same for alt gases and is 
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called the universal gas constant Denoting the number of molee 
by n and the gas constant by R, Eq. (7) becomes 

pV = nRT (8) 

This is another way of stating the well-known fact that the 
volume of 1 mole of any gas at 0®C. and 760 mm. Hg pressure 
is 22.4 liters. We thus have: 

1 atm. == 760 mm. Hg = 76 X 13.6 X 980 dynes/cm. ^ 
~ 10® dynes/cm.2 

and hence the value of R is 

pF _ 10® X 10® X 22.4 
^ nT IX 273.2 

= 8.31 X 10^ ergs/°Abs. 

This gas constant has the dimensions of work per degree 
Absolute and may be expressed in any units of work. For 
example, one common procedure is to express the pressure in 
atmospheres and the volume in liters. In this system of units, 
R becomes 

if = ~ liter-atm./°Abs. 

It is suggested that the student use the gas law in the form of 
Eq. (8), calculating the number of moles by the relation 

where m is the mass of the gas in grams and M its molecular 
weight. 

It is sometimes convenient to express results referred to 
1 gram of the gas. The volume of a substance per gram is called 
its specific volume and is the reciprocal of the density of the 
substance. If we wish to express Eq. (8) in terms of specific 
volume; we have, using Eq. (9), 

pV - nRT 
mRT 

and, since v» = F/m, 
this becomes 

M 
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120. Expansion of Solids and Liquids.—In describing the 
thermal expansion of solids, it is usual to define a coefficient of 
linear expansion, referring to a change of length; this coefficient 
is defined as 

ix.j the fractional change in length per degree. For purposes of 
application use is made of the fact that the changes of length are 
small enough compared with the length under consideration, for 
most temperature ranges encountered in practice, for us to 
consider a as very nearly constant. Thus we may write, in 
place of Eq. (11), 

AZ = amlAt 

We use am to denote the mean value of a over the temperature 
range considered. The expanded length Z' is 

Z' == Z + AZ 
so that 

V = Z(1 + a^AZ) (12) 

The coefficient a has the dimensions of a reciprocal temperature 
and is of the order of magnitude of 10“^ per degree Centigrade for 
most substances. A noteworthy exception is found in fused 
quartz for which it is roughly 10“^ per degree Centigrade, or about 
1 per cent of the usual value. 

The coefficient of linear expansion a is closely related to the 
coefficient of volume expansion ^ defined in Eq. (5). For solids 
and liquids where the fractional change in volume is small 
compared with unity, we write, in place of Eq. (5), 

AF = ^mVAt 
or 

F' = F(1 + pmM) (13) 

The relations between am and Pm may be obtained by considering 
a cube of side Z heated from t °C. to (t + AZ) °C. at constant 
pressure, for example, in the atmosphere. The final volume is 

F' « F(1 + PmAt) - IKl + PJ^t) 

Each side increases its length from I to V where, from Eq, (12), 

V sss -f* CtmAt) 
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Since F' == there follows 

P{1 + amMY - l\l + fimM) 

and, since a^AZ < < 1, we have very nearly 

(14> 

Similarly we might consider the change of area of a body and 
define a coefficient of surface expansion. This can be easily 
shown to be equal to 2ani or 

121. Thermal Stresses.—It is possible to create comparatively 
large stresses by heating bodies and mechanically preventing 
them from expanding. Consider a bar of metal which is heated 
so that if unrestrained it would expand from a length I to a 
length I + AZ. Should we attempt to prevent this expansion 
it would be necessary to apply external forces large enough to 
compress this same bar an amount AZ. The longitudinal stress 
component would then be 

where E is Young^s modulus for the metal. Since AZ/Z = aAZ, we 
thus would have a stress component 

Sn = EaAt (15) 

Since a ^ 10“V^C, and = 30 X 10® Ib./in.^ for steel, the 
stress set up in a steel bar which is prevented from expanding 
when its temperature is raised lOO^C. is approximately 

Sn = 10-® X 30 X 10® X 100 == 30,000 Ib./in.^ 

Thus we see that even breaking stresses may easily be attained 
by such, a method. 

122. Examples.—The following examples may serve to illus¬ 
trate the use of the above results: 

1. A mercury column in glass is 1.000 meter long at 20°C. 
When the whole is heated to 30®C., the length of the mercury 
column becomes 1.00165 meters. If the coefficient of volume 
expansion of mercury is 1.81 X 10“V°C., what is the coefficient 
of linear expansion of the glass? 

Let Ao be the cross section of the mercury column at 20® and 
AI that at 30®. Then the final volume of mercury is 

F' — liAi Fo(l + = IqA0(1 + /^HgAZ) 
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where U and h are the lengths of the column at 20® and 30®, 
respectively. 

Since the glass expands, 

so that 

whence 

= i4o(l + 2agiM) 

liAo{l + 2agiAt) = Zo^o(l + pHgAt) 

h 
lo 

1 4~ fingAt 

1 + 2agiAt 
~ 1 + 2agiAt) 

since 2agiAt < < 1. 
From this follows 

t'O ^0 

and, solving for a^t, 

-hi 1 
2 2 ZoAi 

_ 1.81 X 10-* - 1.65 X 10-* _ 0.16 X lO’* 
2 2 

= 8 X 10-V°C. 

which is the required solution. 

Fig'. 122. 

2. Two metal strips A and B each of length I at a temperature 
to are riveted together so that their ends coincide. Let the 
thickness of the metal strip A be di, its coefficient of linear 
expansion be ai, and the corresponding values for the strip B be 
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da and aa, with ai > aa. When heated to a temperature to + At, 
the top strip becomes longer than the bottom one, and hence the 
compound strip bends into the arc of a circle. The problem is to 
determine the radius of this circle. 

The central line of each strip is subjected to neither tension 
nor compression, and hence each expands as if the whole strip 
were free.* Let h be the expanded length of this central line of 

d 1 “b da 
strip A, and k that of strip B, As shown in Fig. 122, —g— 

is the separation of these central lines, and we have 

Za = BO 

so that 

_ 1 , d.1 di 
h~ 2R 

1 4- aiM 
1 “f" a^At 

= 1 + (ai — a^At 

di “h da 
== (ai — a^At 

whence 

p _ di + da 
2{ai — a2)At 

If ai = aa, i2 = and hence the compound bar stays straight. 
If di = da = d, the above expression simplifies to 

(a I — aa)AZ 

Problems 

1. Make a graph plotting Centigrade temperatures as abscissas and the 
corresponding Fahrenheit temperatures as ordinates. What property of 
this graph gives the ratio of the size of unit-temperature difference of these 
temperature scales? 

2. Set up a general equation expressing any temperature in degrees 
Centigrade in terms of temperature measured in degrees Fahrenheit. At 
what temperature would a Centigrade and Fahrenheit thermometer read 
alike? 

8. Because of the presence of air in the space above the mercury, the 
height of the mercury column in a tube 85 cm. tall is 73 cm. when the height 
of a mercury column in a correct barometer is 75 cm. What would the 
latter read when the former reads 69 cm.? 

* This is but a rough approximation. The line of sero stress must be 
determined by an applicatkm of Newton*s 
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4, At what depth below the surface of a lake would an air bubble have 
1 per cent of the density of water? Assume that the air in the bubble obeys 
the perfect gas laws and the temperature is 4°C. The molecular weight of 
air may be taken as 28.8. 

6. A barometer is made of a tube 90 cm. long and of cross section 1.5 cm.*. 
The mercury stands in this tube to a height of 75 cm. when the room tem¬ 
perature is 27°C. A small amount of oxygen is introduced into the evac¬ 
uated space above the mercury, and the column drops to a height of 70 cm. 
How many grams of oxygen were introduced? 

6. A hollow cylindrical jar was lowered slowly to the bottom of a lake 
with its open end downward. The barometer read 30 in., the air tempera¬ 
ture was 27°C., and the temperature at the bottom of the lake was 8°C. 
When raised to the top, a recording device showed that the water had risen 
0.80 of the length of the jar. Calculate the depth of the lake. The density 
of mercury is 13.6 grams/cm.*. 

7. A steel meter bar is to be calibrated within 0.001 mm. What is the 
maximum temperature change which may occur during the calibration and 
not affect this calibration? The coefficient of linear expansion of steel is 
1.3 X lO-V'^C. 

8. A steel tape is correct at 60°F. When used at a temperature of 40°F. 
the distance between two points was measured as 221.32 ft. What is the 
true distance between the two points? 

9. A brass ring has an inside diameter of 2.00 in. at a temperature of 
60°F., and a steel shaft has a diameter of 2.02 in. at the same temperature. 
To what temperature must the ring be heated if the ring is to just slip over 
the shaft? The coefficient of linear expansion of brass is 1.9 X lO^V^C. 

10. Two grams of nitrogen at 27°C. occupy a volume of 2 liters. What 
is the pressure of the gas? 

If the pressure is doubled and the temperature raised to 127°C., calculate 
the final volume of the gas. 

11. A bubble of air of 1 cm. radius is formed at the bottom of a lake 68 ft. 
deep where the temperature is 4°C. and rises slowly to the top where the 
temperature is 27°C. Calculate the radius of the bubble as it reaches the 
water surface. Neglect surface tension, 

12. A steel wire 0.01 in. in diameter is fastened between clamps at the 
ends of a large brass bar. The tension in the wire is zero at 0°C. Find 
the tension when bar and wire are at 20°C. 
•TTa clock with a secqnds pendulum (one vibration in 2 sec.) is correct 
at 25°C. xhe shaft of the pendulum is made of steel and its moment of 
inertia about the axis may be neglected compared to that of the bob. 

o. What is the fractional change of length of the shaft when it is cooled 
to 15°C.? 

5. How many seconds i>er day will the clock gain at 15°C.? 
14. A steel piano wire 1 mm.* in cross section is clamped rigidly at its 

ends under a tension of 7.8 X 10* dynes at a temperature of 20°C. The 
lowest natural frequency (for transverse vibrations) of the wire is found to 
be 500 vibrations per second at th|s temperatuit. What is the length of 
the wire? What effect will cooling the wire have upon its natural frequency? 
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Calculate the lowest natural frequency of the wire when it has been cooled 
to 0°C. Assume that the wire is so clamped that its length does not change 
with change of temperature. 

16. When laying rails for a railway, one must allow for thermal expansion. 
If 50-ft. rails are being laid in Death Valley at 40®F., what spacing should 
be allowed between the rails if a temperature of 130°F. is expected on hot 
days? 

16. A steel ball will just slip through a brass ring at 20°C. If the steel ball 
is heated to 60°C., it is necessary to heat the brass ring to 45'’C. before the 
ball will slip through. What is the coefficient of linear expansion for brass? 
What is the coefficient of volume expansion for brass? 

17. A iiniform steel rod 2.0 cm.^ in cross section, and 30 cm. long at 20°C. 
is 0.165 cm. longer at 520°C. Calculate the coefficient of linear expansion 
for steel. If allowed to cool to 20°C., without contracting, calculate the 
longitudinal stress in the rod. Young’s modulus == 2 X 10^^ dynes/cm. 2. 

18. The bulb of a mercury thermometer is a sphere of radius R, and the 
stem has a bore of radius r. Show that the distance between two scratches 
1° apart is very nearly given by 

4 R^ 

if ^2 and are the coefficients of volume expansion of mercury and glass, 
respectively. 

19. A hollow steel sphere is filled with water at 20°C., and the whole is 
heated to 30°C. Neglecting the change of volume of the steel container 
due to the increased pressure but not due to the increased temperature, 
calculate the pressure of the water at 30°C. The compressibility of water 
is 49 X 10”^ per atmosphere, and the coefficient of cubical expansion of the 
water is 37 X 10“^/°C, 

20. A steel bar of length 80 cm. and cross section 2 cm.* is welded end to 
end with a copper bar of length 50 cm. and of the same section. The whole 
is heated to a temperature of 220°C. What is the least force that will 
prevent contraction if the double rod cools to 20°C.? What is the stress 
in each rod? Young’s modulus for copper is 16 X 10® lb./in.* and for steel 
30 X 10® lb./in.*. The coefficient of linear expansion of copper is 
17 X 

21. A closed glass vessel is partially filled with mercury and evacuated. 
Upon heating the whole the volume of the empty part remains constant. 
What fraction of the whole volume did the mercury originally occupy? 
The coefficients of cubical expansion of glass and mercury are 2.5 X 10“® 
and 18 X 10“® per degree Centigrade, respectively. 

22. The interior volume of a hollow steel sphere is 1,000 cm.*. This 
volume is filled at a temperature of 20°C. with a liquid whose volume coeffi¬ 
cient of expansion is 0.0014 per degree Centigrade, and the sphere is closed 
tightly. 

o. By how many cubic centimeters would the volume of the liquid increase 
when heated to 100®C. if it were perfectly free to expand? 
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h. Assuming that the volume of the steel sphere does not change, compute 

the increase in pressure of the enclosed liquid when heated to 100°. The 

compressibility k of the liquid is 90 X 10“® per atmosphere. 
23. A thin flexible rubber bag is partially inflated with 1 liter of air at 

15°C. and atmospheric pressure and loaded with lead so that the total mass 
is 500 grams. If the bag is lowered to a depth 2 in a lake at 15°C. and then 
released, it will rise to the surface if 2 <20 but sink to the bottom if 2 > 20. 
Find Zq. Neglect the volume of the lead and of the rubber. 



CHAPTER XVIII 

THE FIRST LAW OF THERMODYNAMICS . 

In this chapter we shall complete the task outlined in the 
preceding chapter, viz,, that of defining a measure of quantity 
of heat. In so doing, it becomes necessary to differentiate 
between two different but not entirely independent methods of 
procedure in developing physical laws to account for the observed 
facts. The first of these methods is that of thermodynamics in 
the study of thermal phenomena, and this may be considered as a 
special case of a more general method of attack which we shall 
label the macroscopic method. We use the word macroscopic 
here in the specific sense that a macroscopic system is one whose 
dimensions are large compared with atomic dimensions. The 
second method is that of the atomic theory, and we shall call this 
method the atomic or microscopic method. We must now explain 
in some detail what is to be understood under each of these 
headings. 

123. The Macroscopic Method.—The starting point of the 
macroscopic method of attack is always some general physical 
principle. These principles are generalizations from experi¬ 
mentally observed facts and are the product of inductive reason¬ 
ing. As an example of such a general law or principle we may 
call to mind Newton’s law of universal gravitation. We have 
seen in Chap. XII how this general law was inferred from the 
empirical Kepler laws of planetary motion. The laws of thermo¬ 
dynamics which we shall develop are further examples of such 
general principles. The validity of these principles can only be 
insured by the success of the predictions which they make 
regarding actual experiments. The wider the range of experi¬ 
mental data explicable by the use of such a principle, the firmer 
becomes our belief in the validity of the principle. 

In applying these general principles to specific problems, one 
usually starts by formulating the principle in a form appropriate 
to the case under consideration, and, from this, one derives 
results which can'be tested by experiment. This, then, is a 

320 
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process of deductive reasoning. It may, of course, be necessary 
to make certain approximations in the course of such a solution, 
but this does not affect the general scheme of procedure. In 
the course of applying this method it may become necessary 
to introduce certain material constants describing the properties 
of matter. It is typical of the macroscopic method that such 
quantities are considered as quantities whose behavior must 
be determined by independent experiments, and hence this 
method can never yield any insight into the properties of matter. 
As an example, suppose we are concerned with a dynamical 
problem of a block sliding down an inclined plane. In the 
application of the general principles of mechanics we introduce a 
friction force. The determination of the law of friction and the 
value of the coefficient of friction to be used are found experi¬ 
mentally and are considered as empirical facts. 

124. The Atomic Method.—The atomic method proceeds by 
constructing pictures or models of matter in terms of such basic 
constituents as atoms and molecules and then subjecting these 
models to the principles of mechanics and electrodynamics. 
According to these laws one can predict how the models will 
behave, and these predictions are then compared with experi¬ 
mental results. Successful models help us see the connections 
between various branches of physics and often lead to predictions 
not attainable by an application of the method of macroscopic 
physics. If a prediction is not verified by experiment, the 
difficulty may lie either with the model utilized or with the laws 
governing the behavior of these models. The rational procedure 
is to discard the model and construct a new one, and only if such 
attempts persistently fail does it become necessary to admit the 
invalidity of mechanical or electrodynamic principles as they are 
formulated for large bodies when applied to the realm of atomic 
phenomena. The latter situation has actually come to pass 
in physics and has resulted in the development of principles 
of quantum mechanics which when applied to bodies of dimen¬ 
sions large compared with atomic dimensions become identical 
with the principles of Newtonian mechanics. The results of 
thermodynamics always provide useful guidance in atomic 
studies, since the results of the latter must always be consistent 
with the requirements of the former. 

To exemplify the general statements concerning the methods of 
phyBies, let us again consider the phenomenon of sliding friction. 
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Here we have a phenomenon resulting in the disappearance of 
mechanical energy and the evolution of a quantity of heat. From 
the macroscopic standpoint, this process is merely an experi¬ 
mental fact calling for the introduction of a dissipative force into 
the formulation of the problem. Similarly, in any process where 
mechanical energy disappears, dissipative forces are introduced 
and the question as to the nature of these forces does not arise; 
the dependence of these forces on various factors is left as a 
matter of empirical knowledge. On the other hand, atomic 
physics attempts to go further into the problem of the nature of 
friction forces and looks upon heat flow as a transfer of mechanical 
energy of molecules and atoms, this energy being in the form of 
kinetic and potential energy of a huge number of particles in 
random motion. The energy of this random motion is recognized 
by our sensory faculties as warmth. Thus, in this picture, if we 
include atoms and molecules in the mechanical system being 
studied, we need not talk at all of dissipation of energy. We do, 
however, recognize the fact that there is something fundamentally 
different about the mechanical energy of atoms and molecules 
which we perceive as heat from the mechanical energy of a stone 
in motion. 

As another example, consider the melting of a solid. Thermo¬ 
dynamically, we realize that a certain amount of heat must be 
added per unit mass to the solid in order to change it to a liquid. 
Conversely when the liquid solidifies, a similar amount of heat is 
liberated. From the atomic standpoint, crystalline solids con¬ 
sist of atoms (or ions) held together by forces which hold them in 
equilibrium positions so that the whole solid is formed of a lattice 
structure of atoms. If we heat the solid, the atoms oscillate in 
simple harmonic motion about their equilibrium positions, the 
amplitudes and hence the energy of these motions increasing 
with increasing temperature. When the melting point is reached, 
we picture the amplitudes of the motion so large that equilibrium 
can no longer be maintained and the whole lattice collapses. 
The heat added during the melting process is the work necessary 
to remove the atoms from their equilibrium positions. In the 
liquid state, we still imagine attractive forces between the atoms, 
although these forces are much smaller than in the solid state. 
Heating the liquid causes evaporation which is due to the fact 
that some of the atoms gain enough kinetic energy to escape 
from the body of the liquid. The work done by these atomsf 
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against the attractive forces of the remaining atoms is the heat of 
vaporization. Finally, in the gaseous state, if we heat a gas kept 
at constant volume, the pressure increases. The molecular 
interpretation is that the molecules of the gas gain kinetic energy 
and hence momentum due to the heating process, and when they 
collide with the walls of the container they exert larger forces on 
it due to the increased rate of change of momentum. The 
average effect of these forces is identified with the observable 
pressure of a gas. 

These qualitative examples may serve to indicate the general 
atomic picture of matter, and we shall attempt in the following to 
supplement our thermodynamic calculations with atomic ones. 

126. The First Law of Thermodynamics.—We have already 
discussed the concept of quantity of heat, and there now remains 
the task of laying down a method of measuring this quantity. 
We find that, if a given body is heated by dissipating mechanical 
energy, the same total amount of work must be done on the 
body to raise the temperature of the body by a specified amount 
no matter how this process is accomplished. We are thus 
led to measure quantity of heat by the mechanical work neces¬ 
sary to produce it and hence we identify heat as a form of 
energy. 

We are now prepared to formulate the first law of thermo¬ 
dynamics which expresses the general principle of conservation 
of energy, including heat energy. The general principle of 
conservation of energy states that in an isolated system in which 
any changes may occur (mechanical, electrical, thermal, chemical) 
the total energy of the system stays constant, and that this total 
energy can be changed only by doing work on the system by 
external means; and the increase in total energy of the system is 
just equal to the externally added work, which may be in the form 
of heat. In our formulation of this general principle we shall 
be concerned only with mechanical and thermal changes. In a 
conservative mechanical system the potential energy of the 
system depends on the configuration of the system and the 
kinetic energy on the speeds of the various particles which com¬ 
pose the system. The total mechanical energy stays constant. 
Thus we may think of the system in a definite energy state. If 
we now wish to generalize this picture to include thermal effects, 
we introduce a quantity known as the internal energy of a system 
which depends only on the state of the system, for example, on 
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its mechanical state and temperature.* If work is done by this 
system and heat is added to it, the increase in internal energy 
must just equal the heat added minus the work done by the 
system on its surroundings. Expressing this last statement 
analytically, we have 

dE ^ dQ - dW (1) 

where dE is the increase of internal energy of the system, dQ is the 
heat energy (measured in mechanical work units) added to 
the system, and dW is the work done by the system on its 
surroundings. 

At first glance Eq. (1) seems to be merely an equation defining 
the internal energy of a system. This, however, is not the whole 
story, since the internal energy depends only on the state of the 
system. If the system is in a state 1 and is brought into a state 2, 
the increase of internal energy depends only on the initial and 
final states and not on the intermediate states which occur in this 
transition. We may produce this change by adding heat and 
doing no external work, or by doing work on the system and not 
adding or subtracting heat, or by any combination of these two 
processes, but the increase of internal energy depends only on 
the initial and final states. This reminds us of the definition of the 
potential energy of a mechanical system, in which exactly the 
same criterion held for the existence of this potential energy. 
Indeed, the concept of internal energy is the generalization of the 
mechanical idea of potential energy. Thus the first law does 
more than define internal energy. It states that, if a process is 
carried out in which a system is taken through a series of states 
ending in the same state in which it started (a so-called cyclic 
process) j the change of internal energy is zero and hence the sum 
of the heat energy added and of the work done on the system is 
also zero. This statement precludes the possibility of a per¬ 
petual-motion device, and the countless number of fruitless 
attempts to construct, such a device provides a part of the experi¬ 
mental evidence justifying our belief in the validity of the first 
law. 

In applying the first law, we shall restrict our attention to 
processes in which the work done is that due to an external 
pressure, e.g., atmospheric pressure, acting on a system whose 
volume changes. ‘ If the pressure is denoted by p, and the 

* In general, the internal energy depends on other variables besides tl^ese. 
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system increases its volume by an amount dF, the work done by 
the system is 

dW = dV 

so that Eq. (1) becomes 

dE = dQ — p dV (2) 

This is the form which we shall use in our subsequent applications. 
We must still refer to the units of energy and work to be used in 
Eq. (2). Of course, any consistent set of energy units, such as 
ergs or foot-pounds, may be used throughout. It has, however, 
been customary to define a new unit of energy which is used 
extensively in thermal problems. This unit is called the gram 
calorie^ and it is defined as the energy required to raise the 
temperature of one gram of water one degree Centigrade, or, 
more precisely, from 14,5° to 15.5°C. when the water is at 
atmospheric pressure. The ratio between this energy unit and 
the mechanical units must be determined by experiment. Thus 
we often read of the mechanical ‘^equivalents' of heat, the 
numerical ratio of the energy unit usually employed in heat to a 
mechanical energy unit being meant. We have defined the 
joule by the relation 

10^ ergs = 10^ dyne-cm. == 1 joule 

and it is found experimentally that 

1 cal, = 4.19 joules. 

Thus we may use either “thermal" or mechanical units of energy 
and convert our results from one set of units to the other. In 
English-speaking countries engineers often employ a thermal 
unit of energy known as the British thermal unit (B.t.u.). It is 
defined as the energy required to raise the temperature of one 
IX)und of water one degree Fahrenheit. 

126. Heat Capacity; Specific Heat Capacity.—If heat is added 
to a body, the temperature of the latter will change in general and 
the size of this change for a given amount of heat added will 
depend on the body and also on the conditions to which the body 
is subjected while being heated. Thus, if we keep the volume V 
of a body constant while an amount of heat, dQ, is added and the 

temperature of the body changes by an amount dT, we define 

0) 
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as the heat capacity of the body at constant volume. The heat 
capacity per unit mass (a somewhat more convenient quantity) 
is similarly defined at constant volume by 

and is called the specific heat capacity at constant volume. In 
the c.g.s. system the proper units are ergs per gram per degree 
Centigrade, although very frequently specific heat capacities are 
expressed in calories per gram per degree Centigrade. 

Since we are restricting ourselves to changes where work is 
done only when a volume change occurs, it follows from the first 
law [Eq. (2)], since dV = 0, that 

so that the heat capacity of a body at constant volume is equal to 
the rate of increase of internal energy of the body with 
temperature. 

Another important heat capacity is defined by the process of 
heating a body at constant pressure, e.g.^ in the atmosphere. In 
this case the heat capacity at constant pressure is defined by the 
equation 

with an equation similar to Eq. (3a) for the specific heat capacity 
at constant pressure. The two heat capacities Cp and Cv are 
practically equal for liquids and solids, but the difference between 
these quantities is important in the case of gases. This, of 
course, is due to the fact that the coefficient of expansion of 
liquids and solids is extremely small compared with that of gases. 

It is usual to call specific heat capacity merely specific heat, but 
strictly speaking the specific heat of a body is equal to the 
dimensionless numerical ratio of the specific heat capacity of the 
body to that of water. Since the latter is one calorie per gram 
per degree Centigrade, specific heat and specific heat capacity 
are numerically equal when these latter are measured in calories 
per gram per degree Centigrade or British thermal units per 
Ib.-degree Fahrenheit. We shall use the term specific heat to 
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mean either quantity. There is no danger of confusion arising 
from this convention. Specific heats in general depend on 
temperature, and from the thermodynamic standpoint the tem¬ 
perature dependence as well as the values themselves must be 
experimentally determined. 

127. The Water Calorimeter; Determination of Specific Heats. 
The simplest practical method for measuring a quantity of heat 
utilizes the so-called water calorimeter. This device consists of a 
container holding water, the temperature of which is measured 
by a thermometer. The quantity of heat to be measured is 
transferred to the water and the rise of temperature of the water 
noted. From this, the quantity of heat absorbed by the water 
may be immediately found. For example, if the heat of combus¬ 
tion of coal is to be measured, the coal is burned in a pressure- 
tight container which is immersed in the water of the calorimeter. 
If Cw and rriy, denote the specific heat capacity and mass of the 
water in the calorimeter and Cc and me denote the corresponding 
quantities for the container, the rise of temperature of water 
and container, due to the addition of a quantity of heat Q, is 
determined by 

Q = {niwCu, + mcCc)At (6) 

if we neglect the heat lost to the surroundings and to the ther¬ 
mometer. In precise measurements the latter effects must be 
corrected for. The specific heats Cw and Cc are assumed constant 
over the temperature range At, 

The mean values of the specific heats of metals may be deter¬ 
mined by dropping a hot piece of the metal into the calorimeter 
and waiting until thermal equilibrium is attained. The system 
(water, container, and metal) neither gains nor loses an appreciable 
quantity of heat. Let Cm, mm denote the specific heat capacity 
(assumed constant) and mass of the metal, tm the initial tem¬ 
perature of the metal, to the initial temperature of the water and 
container, and t the equilibrium temperature of the mixture. 
Since the total heat gained by the system is zero, the sum of the 
quantities of heat gained by each part of the system must add 
up to zero. Thus we have 

(myfCto "1“ mcCc)(^t ““ ^o) "f" ^v%Cm(t tm) ~ 0 (7) 

Solving for Cm, we find 
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— + nicCc) (t — to) 

— t) 

or, if the final temperature t is desired, Eq. (7) yields 

”4" fflc^c^to "4“ ^mCrntm 
t = 

IThw^w "4" Wl-cCc *4“ 

(7a) 

(76) 

It must be emphasized that in the preceding discussion the 
specific heat capacities have been assumed constant. If the 
temperature dependence of c is known, the quantity of heat 
necessary to raise the temperature of a mass m from to to ti is 
given by 

Q = (8) 

a result which immediately follows by integration of the equation 

dt 
= C — me 

which defines the specific heat c. 

Problems 

1. What power is necessary to raise the temperature of 10 kg. of water 
from 0® to 50°C. in 20 min. ? Express the result in watts and in horde-power. 

2. In drilkaga^le in a 2-lb. copper block, power is supplied at the rate 
of 0.5 hp. for 2 min. How much heat is generated? If 80 per cent of this 
heat generated warms the copper, calculate the rise in temperature of the 
copper. The specific heat capacity of copper is 0.09 cal./gram-°C. 

S. A 2-gram lead bullet moving with a speed of 200 meters/sec. strikes 
and remains embedded in a 2-kg. wooden block used in a ballistic pendulum. 
Assuming that all the heat generated raises the temperature of the bullet, 
calculate the rise in temperature of the bullet. The specific heat capacity of 
lead is 0.03 cal./gram-°C. 

4. A steam-boiler and electric-generator plant develops a constant 
electrical power output of 850 kw. and bums 10 tons of coal per day. The 
coal burned yields 14,000 B.t.u./lb. Calculate the over-all efficiency of the 
plant. 

5. What is the least height from which a lead bullet must be dropped if 
its temperature is raisedjl00°C. when it collides inelastically with a non¬ 
conductor, if all the heatmeveloped raises the temperature of the bullet. 

6. One hundred grams of lead at a temperature of 200®C. is dropped into 
300 grams of water contained in an aluminum vessel weighing 200 grams. 
The temperature of d;he water is initially 22®C. Calculate the final tem¬ 
perature of the mixture. The specific heat capacity of aluminum is 0*22 
cal./gram-®C. 
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7. Forty pounds of water are contained in a vessel weighing 10 lb. A 
5-lb. piece of metal of which the vessel is made, initially at a temperature of 
380°F. is dropped into the water. If the final temperature of the water is 
64°F. and its initial temperature is 60‘^F., calculate the specific heat capacity 
of the metal. 

8. One hundred grams of lead at 100®C., 200 grams of iron at 120°C., 
and 60 grams of zinc at 200°C. are dropped into a copper vessel weighing 
600 grams containing 250 grams of water initially at 20°C. Calculate the 
final temperature of the mixture. The specific heat capacity of iron is 
0.11 cal./gram-°C.; of zinc 0.09 cal./gram-'^C.; of lead 0.03 cal./gram-°C., 
and of copper 0.09 cal./gram-°C. 

9. At very low temperatures the molal heat capacity of solids is given 
by the relation 

C = 144^—^ cal./°Abs. 

where T is the Absolute temperature and d a constant temperature charac¬ 
teristic of the solid. For diamond B = 1840°Abs. Calculate the heat 
energy necessary to heat 1 mole of diamond from 10° to 150°Ab8. 

10. The molal heat capacity of hydrogen at constant volume is found 
experimentally to be given by the equation 

C. = (4.61 + O.O^QT) cal./°Ab8. 

where T is the Absolute temperature. One liter of hydrogen at atmospheric 
pressure and a temperature of 0°C. is heated at constant volume to a tem¬ 
perature of 1500°C. Calculate the increase of internal energy of the gas. 
What is the final pressure? 

11. One thousand calories of heat are supplied to a system, while the 
system at the same time does 1,680 joules of external work. At the end of 
the process its internal energy has increased by 2,520 joules. Compute the 
value of the mechanical equivalent of heat from these data. 

12. A cylinder containing 10 grams of gas is compressed from a volume 
of 500 cm.® to a volume of 100 cm.®. During the compression process, 
100 cal. of heat are removed from the gas, and at the end of the process the 
temperature of the gas has increased by 5°C. Compute the specific heat 
of the gas for this process. 



CHAPTER XIX 

HEAT CONDUCTION 

Before applying the first law of thermodynamics to a study of 
actual phenomena, we must discuss the processes of heat transfer 
from one body to another. There are three processes of trans¬ 
ferring heat from one point of a body to another point in the body, 
or in another body, namely, radiationy convectiony and conduction. 
The process of radiation consists of the process of transfer of heat 
energy from one body to another even without the presence of an 
intervening material medium, such as the transfer of heat from 
the sun to the earth. An understanding and analysis of this 
process may be obtained only with the help of electrodynamic 
principles and hence lies beyond the scope of this book. The 
convection of heat consists of the motion of a hot body (or, more 
generally, of hot matter) from one point to another. This is a 
very efficient and controllable manner of accomplishing heat 
transfer and hence is of great practical importance. However, it 
offers us nothing new in principle. When the hot body arrives 
at its destination it must give up heat to another body, thus 
involving either radiation or conduction of heat. The process 
of heat conduction is very closely connected with our study of 
mechanics, and we shall examine this process more closely. 

128. Steady Heat Flow.—From the standpoint of thermo¬ 
dynamics we recognize the fact that, when one part of a stationary 
body is heated, heat flows from the hotter to the cooler parts of 
the body. The amount of energy flowing across any small area 
AA per second, i.e,, the rate of heat flow, is experimentally found 
to be proportional to the rate of decrease of temperature with 
distance as we move across AA in a direction normal to it and is 
also proportional to AA, so that 

H . (1) 

if a: is the direction normal to Aal. The proportional factor k is 
called the coefficient of thermal conductivity, and the negative 
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algebraic sign refers to —dT/dx^ which is the rate of decreasej not 
increase, of T with x. H is called the heat current. Equation (1) 
is a fundamental equation in the theory of heat conduction. 

From the standpoint of atomic theory we picture the atoms and 
molecules of a body colliding or interacting with their neighbors 
and exchanging mechanical energy. Thus in solids we get 
elastic waves, and these waves transmit heat energy within the 
body from one point to another. In gases we picture the atoms 
or molecules colliding with each other. In the hotter parts of the 
gas the molecules have a greater kinetic energy than in the cooler 
parts. If two similar molecules collide like mass points in an 
elastic collision, we know that they exchange velocities, so that 
the slower moving molecules get speeded up, and kinetic energy 
is transferred by this process. 

We shall be concerned only with the case of the steady or 
stationary flow of heat. This is very similar to the case of the 
stationary flow of a fluid, and we have the condition that at any 
point of the body the temperature does not change with time 
although different points are at different temperatures. In this 
case the resulting heat flow is steady and obeys an equation of 
continuity. If no sources or sinks of heat are present, the heat 
current entering any volume element of the body must be equal 
to the heat current leaving this element. 

Let us consider the linear flow of heat such as occurs along 
a rod when no heat is allowed to leak across the transverse 
surface. If the rod is of length I and constant cross section Ay 
and we have the steady state, Eq. (1) becomes 

H = -kA~ (2) 
dx 

where now H is the constant heat current flowing in the whole 
rod. Let us take one end of the rod as an origin, and the x-axis 

Fig. 123. 

along the axis of the rod (Fig. 123). For small temperature 
differences we may treat A; as a constant and Eq. (2) thus becomes 

dx kA 
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which when integrated yields 

T = 
JJ 

+ constant (3) 

Suppose the end face at = 0 is maintained at a temperature 
Tif and the face at a: = i is maintained at a temperature T2. 
Inserting the value T — Ti when a: == 0 in Eq. (3), we find that 
the constant has the value Ti. Thus Eq. (3) becomes 

(4) 

which determines the temperature at any position x along the 
rod. The heat current in the rod is determined by placing 
T — T2 when x = lin Eq. (4). There follows 

or 

T.-T.- 

H = ~ T2) (5) 

Finally, if we insert this expression in Eq. (4), we find for the 

temperature at any point Xy 

T = Tx- (6) 

129. Examples.—The follow¬ 
ing examples are given to illu¬ 
strate the use of the above 
equations. 

1. A compound wall is made 
of two slabs of different materi¬ 
als 1 and 2, each of area A, the 

first of thickness Zi, the second of thickness 1% and with thermal 
conductivities ki and k^, respectively. If the outer surfaces are 
maintained at temperatures Ti and To respectively (Ti > To), 
what is the temperature of the common surface and what is the 
rate of heat flow across any cross section of the wall if we have 
a steady state? 

Since we have a steady state the heat current is constant and 
equal in both slabs, and we may apply Eq. (5) first to slab 1 and 
then to slab 2. We then have (Fig. 124) 
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H = ^{Ti -T) = ^{T - To) 

Denoting kiA/h by yi and k^A/h by j/a, we have 

2/1 T -To 

and, solving for T, 
Ti2/i -4~ 7*02/2 

2/1 + 2/2 

From Eq. (7) we have 

Adding, we find 

H 
k,A/li 

H 
kiAjh 

from which H may be found directly without solving for T, 
2. A hollow sphere of inner radius Ri, outer radius has its 

inner surface maintained at a temperature Ti and its outer sur¬ 
face at TiiTi > T2)- The coefficient of thermal conductivity 
is k. Heat flows radially outward from the inner to the outer 
surface, and the flow is steady. It is required to find an expres¬ 
sion for the heat current flowing across any spherical surface. 

Since the flow is steady, the heat current across any spherical 
shell in the hollow sphere is the same as across any other shell 
(Fig. 125). Since the areas of different shells are different, we 
must revert to our fundamental Eq. (1), which we write in the 
form 

rr , * ^dT 

since any radius r is normal to the surface of the shell whose 
radius is r. Its area is 47rr^, and the above equation becomes 
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or rewritten 

= -Arkdr 
y.2 

Integrating this yields 

IT 

-= —ArrkT + constant 
r 

The constant is found by placing r = Ri and T = Ti, so that 

Constant = + ^kTi 

Thus we may write 

To find H we place r = R2 and T = T2, yielding 

"(e ' i)" 
or 

H = ^k(T, - 
1X2 *xi 

which is the required result. 
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Problems 

1. The coefficient of thermal conductivity of copper is 0.96 cal./sec.- 
cm.-®C. Calculate the number of B.t.u. per day which flow through a slab 

of copper 1 ft. 2 in area and 1 in. thick, when the opposite faces are maintained 

at a temperature difference of 1®F. 

2. One end of a copper bar 18 cm. long and of cross section 4 cm.* is in a 

steam bath and the other end in a mixture of melting ice and water. The 

surface of the bar is thermally insulated so that no appreciable quantity of 

heat escapes through this surface. Calculate the heat current in the rod. 

What is the temperature at a point 4 cm. from the cold end of the bar? 

3. A copper bar 15 cm. long and 6.0 cm.* in cross section has one end 

maintained at a temperature of 150°C. and the other end in contact with 

one end of an iron bar of equal cross section and 8.0 cm. long. The other 

end of the iron bar is maintained at a temperature of 20°C., and the sides of 

both bars are thermally insulated. Calculate the steady heat current in 

the rod and the temperature of the junction. The thermal conductivity of 

copper and iron are 0.95 and 0.16 cal./sec.-cm.-°C., respectively. 

4. Heat flows radially out of a hollow sphere of inner radius 1 cm. and 

outer radius 10 cm., in steady flow. The thermal conductivity of the 

material of the sphere is 0.1 cal./sec.-cm.-°C. If the heat current is 

10 cal./sec., calculate the temperature gradient dT!dr at the inner surface 

of the sphere and at a point 5 cm. from its center. Plot a graph to scale of 

this temperature gradient against distance out from the center of the sphere. 

6. A metal ball of radius 2 cm. is covered uniformly with a coating of 

insulating material of thermal conductivity 0.00016 cal./sec.-cm.-°C. and of 

thickness 3 cm., and this in turn is covered uniformly with a coating 

of insulating material of thermal conductivity 0.0004 cal./seC.-cm.-®C. and 

of thickness 5 cm. The temperature of the surface of the ball is maintained 

at 130°C., and the temperature of the outer surface is maintained at 30°C. 

Calculate 

а. The heat current flowing radially outward through this sphere. 

h. The temperature at the outer surface of the first insulator. 

б. A cylindrical steam pipe of outer radius 2 cm. carries steam at a tem¬ 

perature of 120°C. The pipe is covered uniformly with a coating of a 

thermal insulator of thermal conductivity 10“cal./sec.-cm.-°C. and of 

thickness 5 cm. The outer surface is at a temperature of 40®C. 

o. Set up the general equation for the temperature gradient transverse 

to the length of the pipe. 

h. Integrate this to obtain an expression for the heat current flowing 

transverse to the length of the pipe per centimeter of length. 

c. Calculate the value of this heat current. 
7. Plot graphs to scale of the temperature gradient and the temperature 

in Prob. 6 as functions of the distance from the surface of the steam pipe. 
8. A slab of a thermal insulator is 100 cm.* in cross section and 2 cm. 

thick and its thermal conductivity is 2 X 10“^ cal./sec.-cm.-°C. If the 

temperature difference between its opposite faces is maintained at 100®C. 

calculate the amount of heat in calories which flows through the slab in 

1 day. 



336 INTRODUCTION TO MECHANICS AND HEAT 

9. A furnace wall is made of two different layers, the inner of thickness 

10 cm. and thermal conductivity 0.0004 cal./sec.-cm.-^’C., the outer 

of thickness 20 cm. and thermal conductivity 0.002 cal./sec.-cm.-°C. 

The area of the wall is 1 meter'-*. If the inner surface of the wall is 

maintained at a temperature of 600°C. and the outer surface 260°C., 

calculate: 

a. The heat current flowing through the wall in the steady state. 

h. The temperature at the joining surface. 

10. A cubical tank has copper walls 0.95 cm. thick, its capacity is 10® cm.® 

and the area of its inner surface is 6 X 10^ cm.2. The outside of the tank 

is kept at 0°C., and the tank is filled with water initially at 100°C. What is 

the initial rate of loss of heat of the water? What is its initial rate of decrease 

of temperature? What total heat will be lost by the water by the time it 

reaches 0°C.? 

11. A solid steel rod 2 ft. long and 1 in. in diameter is surrounded by a 

cylindrical copper shell ^ in. thick. One end of the compound rod is at 

100°C. and the other at 0°C. If no heat escapes from the sides of the rod, 

find what fraction of the total heat current in the steady state is carried by 

each rod. The thermal conductivities of steel and copper are 0.11 and 

0.95 cal./sec.-cm.°C., respectively. 

12. Two concentric hollow spheres are made of iron and copper. The 

inner sphere (iron) has an inner radius of 10 cm. and an outer radius of 10.4 

cm. The outer sphere (copper) has an inner radius of 10.4 cm. and an outer 

radius of 20 cm. The thermal conductivities of iron and copper are 0.16 

and 0.95 cal./sec.-cm.-°C., respectively. The inner cavity is maintained 

at a temperature of 0®C. and the outer surface at lOO^C. 

Calculate the temperature at the boundary between the two metals, and 

calculate the heat current flowing across it. 



CHAPTER XX 

THERMODYNAMICS AND KINETIC THEORY OF AN 
IDEAL GAS 

In this chapter we shall turn to a more detailed discussion of 
the properties of gases and to the application of the first law of 
thermodynamics to gaseous systems. We first consider the 
simplest case, that of an ideal or perfect gas. Such a gas approxi¬ 
mates the behavior of a real gas for small densities and high 
temperatures. After the thermodynamic treatment of the ideal 
gas we shall develop the most elementary atomic theory of such 
gases. 

130. Thermodynamic Definition of an Ideal Gas.—We have 
already pointed out that a perfect gas obeys the equation of 
state pP = nRT exactly. This equation is not sufficient to 
define the gas completely, and we must consider an experiment 
called the free expansion of a gas. Suppose a gas expands from 
an initial volume Fo, initial pressure po, and initial temperature 
To into a large volume Fi with zero external pressure. Such an 
expansion is called a free expansion. In practice this process 
may be realized by breaking a flask of gas which is placed inside 
a large evacuated flask. We must take precautions to insulate 
the large flask thermally from the surroundings so that no 
appreciable quantity of heat flows into or out of the system. 
Since there is no work done on the gas as a whole by external 
forces, any temperature changes occurring in this process must 
be due to work done by internal forces. When such an experi¬ 
ment is carried out with real gases, it is observed that the tem¬ 
perature change of the gas is extremely small. We demand of a 
perfect gas that there be no temperature change in a free expansion. 

This means that the internal energy of an ideal gas does not 
depend on the volume occupied by the gas but only on the 
temperature. Analytically, this fact may be written in the form 

E^E{T); E^E{V) (1) 

Actually the results embodied in Eq. (1) can be deduced from the 
337 
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laws of thermodynamics utilizing only the equation of state of an 
ideal gas 

pV = nRT (2) 

Since we are not in a position to prove Eq. (1), we shall merely 
present it as part of the thermodynamic definition of an ideal 
gas. For real gases it is an experimental fact that the internal 
energy is very nearly a linear function of the temperature, and 
we shall postulate for an ideal gas that this is strictly true. As 
we shall see immediately, this implies that the heat capacity at 
constant volume of an ideal gas is constant. 

131. Relation between Cp and C,,.—The first law of thermo¬ 
dynamics may be written in a special form for ideal gases. The 
state of a given amount of any ideal gas is specified if its volume 
and temperature are known. Then the pressure can be cal¬ 
culated from Eq. (2), and the temperature fixes the internal 
energy according to Eq. (1). If we heat one mole of a perfect 
gas at constant volume, the first law yields the fact that dE == dQ, 
i.e.j the heat added is equal to the increase of internal energy 
since there is no work done on the gas. Since, by definition, 

\dT). \dT)r 

in general, and, since for a perfect gas the internal energy and 
hence its rate of change with temperature do not depend on the 
volume, we may equally well write for the ideal gas, 

r = ^ 
" dT 

or 
dE = CJT (3) 

In words, the total change in internal energy of an ideal gas 
during a small temperature change rfT is equal to the heat 
capacity of the gas at constant volume times the change in 
temperature. Equation (3) is true only for a perfect gas. For 
other substances not satisfying Eq. (1), we must supplement 
Eq. (3) by a term which takes into account the change of internal 
energy due to a change in volume. 

If we now substitute the expression for dE as given by Eq. (3) 
into the general expression of the first law of thermodynamics, 

dE ^dQ-pdV (4) 
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it follows that 
C,dT = dQ - pdV (5) 

If in particular we heat our one mole of perfect gas at constant 
pressure, dQ — CpdT from the definition of Cp and there follows 
from Eq. (5) 

{Cp - C,)dT ^ pdV 

in which p is constant. This may be rewritten as 

Thus we see that the heat capacity of an ideal gas is greater at 
constant pressure than at constant volume, since the gas expands 
upon heating and {dV/dT)^^^^^ is a positive quantity, and 
work is done by the gas. 

To evaluate the right-hand side of Eq. (6), we use the equation 
of state, Eq. (2), which for one mole is 

pV = RT 

so that by differentiation 

Inserting this into Eq. (6), it follows that 

Cp-C.^R (7) 

which is an important relation between the heat capacities of an 
ideal gas. Since we have considered one mole of the gas, the 
heat capacities refer to one gram-molecular weight of the gas and 
are called the molal heat capacities at constant pressure and 
constant volume, respectively. 

132. Isothermal Changes for Ideal Gases.—During an iso¬ 
thermal process the temperature of the gas is kept constant, and 
for ideal gases Boyle^s law is obeyed during such changes. We 
shall now calculate the work done by the ideal gas when it expands 
isothermally. We shall further imagine the gas to expand 
reversibly, t.e., to expand so slowly that at each instant of time 
the gas is almost exactly in equilibrium and no kinetic energy is 
gained by the gas as a whole. Only in reversible changes may we 
justly assume that our equilibrium equations remain valid. 
Indeed, thermodynamic calculations deal exclusively with 
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reversible or, as they are sometimes called, quasi-static processes, 
although the results may be applied to any process. 

If the initial volume of the gas is Fi and its final volume F2, 
the work done by the gas is 

W = { v dV = riRT f = nRT In ~ (8) 
JFi JVx V Vl 

This work is equal to the shaded area in Fig. 126. During an 
isothermal compression an equal amount of work must be done 
on the gas. 

133. Adiabatic Changes for Ideal Gases.—By an adiabatic 
expansion (or compression) is meant one in which the system is 

thermally insulated so that no heat enters or leaves the system. 
During such changes in a gas, the pressure, volume, and tem¬ 
perature all vary, but of course in such a way that the equation 
of state, Eq. (2), is satisfied at every point of the process. On the 
other hand, in the first law, dQ = 0, so that it becomes simply 

dE = -p dV 

for any adiabatic reversible process. For ideal gases we place 
dQ = 0 in Eq. (5) and it becomes 

CvdT 4- p dV = 0 (9) 

If we consider one mole of an ideal gas, the equation of state 

pV = RT 

yields an expression for p which when inserted in Eq. (9) gives 
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or 

CJT + = 0 

^ ft ^ 
T V ^ 

If we now integrate this equation we find 

In T + ^ In F = constant 

(10) 

(11) 

which may be written as 

R 

rV'Cv = constant (12) 

This relation between T and V exists throughout any reversible 
adiabatic change in an ideal gas. To calculate the relation 
between p and V during such changes, which we need to calculate 
the work done, we may replace T in Eq. (12) by its value in terms 
of p and V as given by the equation of state. It is, however, 
more convenient to take the logarithms of each side of the 
equation of state, obtaining 

In 29 + In 7 - In r = In /i! 

and, adding this to Eq. (11), there follows: 

In p + (l + ^ 

From Eq. (7) we have 

so that 

In V = constant 

C, + R = C\ 

1 + 
R _Cr 
C. " c. = 7, 7 > 1 

(13) 

(14) 

where y denotes the ratio of the heat capacities of the gas. 
Equation (13) then becomes 

In p + 7 In F ~ constant 

or 
pF^ = constant (IS) 

If we plot the curves given by Eq. (15), we get a family of curves 
as shown by the full lines in Fig. 127. The dotted curves are the 
isothermals. It is seen that the adiabatic curves have a steeper 

slope than the isothermals. 
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Let us calculate the work done by a gas during an adiabatic 
expansion. Since the temperature drops during such an expan¬ 
sion, we get less work done than in an isothermal expansion 
starting with the same initial conditions and ending in the same 
volume. This is indicated on the figure; the cross-hatched por¬ 
tion represents the work done in the adiabatic expansion and the 

more heavily shaded area the added work obtained in the iso¬ 
thermal change specified above. 

Since 
pVy = C, p = CV-y 

and 
rvt rv2 p 

W -- I pdV == Cl V~ydV = - Fa'-Y) 
Jvi JVi 7-1 

C = PlVC - P2F2^ 
and since 

this may be written in the form 

PP' sss PlFl P2F2 
7-1 

(16) 
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Adiabatic changes occur when the change ensues so fast that 
there is not time for an appreciable amount of heat to escape from 
or to enter the system. Such is the case of an explosion in the 
cylinder head of an internal-combustion engine, or the case of the 
compression and rarefaction in a sound wave. 

134. Isothermal and Adiabatic Compressibilities; Velocity of 
Sound.—In our study of the theory of elasticity we had defined 
the compressibility of a substance as 

= 
" V dp 

It is now clear that this definition must be supplemented by a 
specification of the thermal conditions existing during the 
compression. Hence we define 

as the isothermal compressibility^ and 

Ka = 
V\ dp/aQ~o 

(18) 

as the adiabatic compressibility. Let us evaluate these quantities 

for a perfect gas. We have 

nRT 
V = 

so that, if T is constant, 

d^ 
dp 

and 

V 

nRT 

1 
~ Z 

J> 

Y_ 
V 

Similarly, during an adiabatic change, 

constant 
y-r — -, V = cp ^ 

whence 
dp 

= -icp ^ ' = --^cp = 
V_ 

yp 

Ka 
TP 

(19) 

(20) 
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Let us use these compressibilities to calculate the velocity of 
sound in air, treating the latter as a perfect gas. In general we 
have for the velocity of sound in a gas, 

If the compressions and rarefactions were isothermal this would 
become 

whereas, if the changes were adiabatic, the velocity of sound 

would be 

We now compare the numerical values of these two expressions. 
The density of air at atmospheric pressure is 1.2 grams/liter == 
1.2 X lO’”® grams/cm.® and p = 10® dynes/cm.Thus the 
isothermal velocity is 

r 10® /iO'® 10® 0 0«W1A4 / 
Vl-S X 10-s V 12 3.6 ^ cm./sec. 

whereas the adiabatic velocity is (7 = 1.4 for air) 

= 3.4 X lO'* cm./sec. = 340 meters/sec. 

Since the measured value is about 340 meters/sec., it is clear that 
the propagation of sound in air is more nearly an adiabatic than 
an isothermal process. 

136. Banetic Theory of an Ideal Gas.—We have repeatedly 
made reference to the atomic structure of matter and have 
presented some qualitative results of this theory. At this point 
it becomes possible to carry out an elementary quantitative 
derivation of th^ gas laws on the basis of an atomic model. This 
derivation using a highly idealized picture of a gas will serve to 
illustrate the general nature of the atomic method. We start by 
constructing an atomic model of a gas, and indeed we*shall first 
ask the question: What is the simplest conceivable picture of a 
gas in terms of atoms and molecules? Then, after investigating 
the behavior of such a gas, the next step is to refine the model 
employed and in this fashion to build up the atomic theory of 
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gases which is given the name kinetic theory of gases. The ideas 
underlying the kinetic theory go back to D. Bernoulli (1738) and 
the development of these ideas is due largely to Clausius, Max¬ 
well, and Boltzmann. 

The simplest model of a gas is a collection of molecules which 
are small enough to be treated as mass points and which collide 
elastically with the walls of the vessel in which they are con¬ 
tained. We shall assume that the molecules exert no forces on 
each other. Consider the collision of one of these molecules 
with the wall of the container. If the molecule collides at an 

Fig. 128. Yio. 129. 

angle a with the normal, it will rebound at the same angle 
(Fig. 128). Since the speed of the molecule is unaltered by 
the collision, only the normal component of the velocity is 
changed. The initial normal component of momentum is 
mvn = rnv cos a. The final normal component of momentum 
is —mvn — —mv cos a, so that the magnitude of the change of 
momentum of one molecule per collision is 

2mv cos a 

Consider a spherical container of radius r filled with the gas, and 
let us follow the behavior of one molecule. The distance 
covered by the molecule between two successive collisions with 

the walls (Fig. 129) is 
PQ == 2r cos ot 

and hence the time between these collisions is 

PQ 2r cos a 
iXt ^ — 

V 

if t; is the speed of the molecule. 

V 
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The number of collisions of one molecule with the walls per 
unit time is then 

Z 2. 
At 

_V_ 

2r cos a 

If there are v molecules per unit volume the whole sphere con¬ 
tains (47rrV3) * p molecules which bombard the walls. On the 
average as many molecules strike an area AA of the walls as 
strike any other area of the same size. Thus the total number 
of molecules striking an element of area per unit time is 

47rr^ AA „ _ vvAA 
3 ^ 47rr^ ^ 6 cos a 

and, since the change of momentum of one molecule when striking 
the wall is 2mv cos a, the average change of momentum per unit 
time for those molecules striking AA is 

wAA 
6 cos a 

• 27nv cos a 
mv^ 

~2 
•AA 

Now this rate of change of momentum is equal in magnitude to 
the average force on the area AA due to the bombardment of the 
molecules, and hence the pressure of the gas is 

F 2 mv^ 
AA “ ^ ~ 3" "T' 

(21) 

SO that the pressure of the gas depends only on the density v and 
the kinetic energy of the molecules, and not on the containing 
vessel. If Avogadro^s number is denoted by N, then in n moles 
of gas there are nN molecules, and, if the volume occupied by 
these n moles is F, we have for the number of molecules per unit 
volume 

V 
nN 
V 

(22) 

Inserting this value of v in Eq. (21), there follows 

mv^ 
(23) 

If E is the energy of the gas, e = mv^/2 the, energy of a single 
molecule, and Em is. the energy of one mole, we may write 

- n{W = \nEm (24) 
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If we compare this with the equation of state of an ideal gas 

pV = nRT 

we see that our picture leads to the correct equation of state 
provided we interpret the internal energy of the gas as kinetic 
energy of the molecules. Since there are no forces between the 
molecules, the total energy is simply the sum of the kinetic 
energies of the individual molecules and does not depend on the 
volume 

A comparison of Eq. (24) with the equation of state shows that 

RT = (25) 

Z.C., the absolute temperature is proportional to the internal 
energy of the gas. This is in accord with the definition given by 
Eq. (1). Temperature then may be interi)reted in the atomic 
picture as a measure of the kinetic energy of the gas molecules. 
Referred to one molecule, Eq. (25) becomes, on division by 
Avogadro\s number A, 

<26) 

where k is called the gas constant per molecule or Boltzmann^s 
constant and has the numerical value 

^ ^ 1.06 1023 erg/degree = 1.37 X lO-i" erg/°Abs. 

Equation (26) shows that the average energy of a gas molecule 
is determined by the temperature. It can be shown that in 
an ideal gas (obeying Newtonian mechanics) at a tempera¬ 
ture T each molecule possesses an average energy equal to kT/2 
for each degree of freedom of its motion. This law is called the 
cquipartition of energy. Thus a mass point has three degrees of 
freedom so that we expect the average energy per molecule to be 
^kT, 

The molal heat capacity of our ideal gas at constant volume 

may now be calculated. It is 

^ _dEm _ 
dT “ 2 

or about 3 cal./mole-®C., and the molal heat capacity at constant 

pressure is 
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leading to 

Cp = C. + ie = -li? 

7 = c. life 3 
Experimentally, this value is approximately found for mon¬ 

atomic gases like helium, but for air the measured value is about 
1.4. We can understand this value by remembering that oxygen 
and nitrogen molecules are diatomic and by thinking of a molecule 
of these gases as two mass points mounted on the ends of a mass¬ 
less rod. Such a “dumb-bell” molecule has five degrees of 
freedom, three of translation and two of rotation, and hence, 
according to the equipartition law, should have an internal 
energy per mole equal to 

- {f) - 
This gives 

Ov ~ iRy Cp == 

whence 

in good agreement with the measured value. 
Let us calculate the average translational energy of a molecule 

at room temperature. We have 

€ = ffcr = I X 1.37 X 10-i« X 300 = 6 X 10~i* erg 

and the corresponding velocity is obtained from 

Now m = ilf/iV, where M is the molecular weight of the gas so 
that 

For H2, M = 2 so that 

V = 1,900 meters/sec. 

and for O2, JIf «= 32 so that 

(27) 

V * ^ 500 meters/sec. 
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In our derivation of the preceding laws we have made 
simplifying assumptions which must be briefly discussed. In 
the first place we have neglected entirely the collisions between 
molecules, and this rather artificial assumption simplifies the 
calculations enormously. These collisions must be assumed, to 
insure thermal equilibrium, and it turns out that a more exact 
and diflScult calculation yields exactly the same results as our 
simple proof. Thus we are led to picture a gas as a horde of 
molecules dashing around in random directions, colliding with 
each other and with the walls with a kinetic energy proportional 
to the absolute temperature of the gas. Furthermore we have 
assumed that all the molecules have the same speed v at a given 
temperature. This assumption really endows the molecules with 
too much intelligence so that 
they all adjust themselves to 
the same velocity. One must 
assume that perfectly random 
laws govern the behavior of 
systems of molecules, and 
under such laws we should find 
that at a given temperature 
there are molecules with all 
possible velocities. Most of 
the molecules, however, possess 
roughly the same velocity. If 
we make a plot of the number 
of molecules per unit velocity 
range against the velocity t;, we obtain the curve shown in Fig. 
130. This is a probability curve and the distribution thus rep¬ 
resented is called a Maxwell velocity distribution. Thus we must 
interpret the internal energy of a perfect gas as the average 
energy of the molecules. It is this average energy which obeys 
the equipartition law. Thus the square of the velocity given by 
Eq. (27) is the average of the squares of all the velocities, not the 
A?quare of the average speed. 

Problems 

1. Starting from the equation of state of an ideal gas and the definitions 

of heat capacity, prove that the specific heat capacity of' an ideal gas at 

constant volume is equal to 

R 
M(y - 1) 
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where M is the molecular weight of the gas and y the ratio of its heat capac¬ 

ities at constant pressure and at constant volume. 

2. Two grams of nitrogen at 27°C. occupy a volume of 2 liters. If 

allowed to expand isotherm ally to four times its initial volume, calculate 

the final pressure of the gas and the heat energy added in the expansion. 

3. In a container at a pressure of 2.00 X 10* dynes/cm.“ at 0°C. are 

enclosed 3.2 grams of oxygen. If compressed isothermally until the pressure 

rises to 4.20 X 10® dynes/cm.calculate the work in ergs done on the gas 

and the heat in calories given to, or given up by, the gas. 

4. Derive a relation expressing the pressure of an ideal gas in terms of 

its temperature during an adiabatic process. 

6. A monatomic ideal gas at 20°C. is suddenly compressed to one-tenth 

its original volume. Find its temperature after compression. Make the 

same calculation for a diatomic gas. 

6. Prove that when an ideal gas expands adiabatically the work done 

by the gas equals Cv(Ti — Ta), where Ti is the initial temperature of the 

gas, Ti is the final temperature, and Cv the heat capacity of the gas at con¬ 

stant volume. 

7. A gas initially at atmospheric pressure and 27®C. is enclosed in a 

cylinder with a movable piston. The gas is compressed isothermally to 

one-fourth its initial volume and is then allowed to expand adiabatically 

to its original volume. The final pressure of the gas is 0.4 atm. 

a. Calculate the total change in internal energy of the gas per mole. 

h. Calculate the ratio of heat capacities at constant pressure and volume 

for the gas. 

8. Ten liters of air at 0®C. and atmospheric pressure are compressexi 

isothermally to a volume of 2 liters and then allowed to expand adiabatically 

to a volume of 20 liters. Calculate the final temperature of the gas and the 

total work done on the gas. Take y == 1.40. 

9. Two-tenths gram of oxygen at atmospheric pressure and 27°C. is 

allowed to expand isothermally and reversibly until the pressure drops to 

0.5 atm. Calculate: 

a. The work done by the gas. 

h. The heat absorbed by the gas. 

c. The increase of internal energy of the gas. 

10. Two moles of hydrogen at a pressure of 4 atm., volume of 8 liters, and 

temperature 200° Abs., are heated at constant volume until the pressure 

rises to 12 atm. and the temperature to 600° Abs, The hydrogen is then 

allowed to expand adiabatically to its initial pressure of 4 atm., the corre¬ 

sponding values of volume and temperature being 17.4 liters and 435° Abs. 

a. Represent the processes above in the p-T plane. 

5. Calculate the values of AJS', AQ, and A IF for the constant volume and 

the adiabatic processes. {Cv = 5 cal./mole —°C.; y = 1.4.) 

11. Two and eight-tenths grams of nitrogen at 27°C. and at a pressure of 

1 atm. is heated at constant pressure until its volume is doubled, then 

heated at constant volume until its pressure is doubled, and finally allowed 

to expand isothermally until its pressure drops to 1 atm. 

Calculate the work done by the gas in each change, the heat absorbed or 
liberated, and the change in internal energy of the gas. 
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12. One mole of a monatomic ideal gas at 300® Abs. is subjected to three 

consecutive changes: (1) the gas is heated at constant volume until its 

temperature is 900° Abs.; (2) the gas is then allowed to expand isothermally 

until its pressure drops to its initial value; (3) the gas is then cooled at con¬ 

stant pressure until it returns to its original state. 

o. Sketch a curve in the p-V diagram showing the above changes. 

b. Calculate the total work done by the gas in the above changes, the 

total amount of heat transferred to or from the gas, and the total change in 

internal energy of the gas. (Express your answer in calories.) 

13. A gas is undergoing isothermal compression in a cylinder fitted with a 

piston of area 100 cm.2. At a given instant in the process the pressure of 

the gas is 10® dynes/cm. 2, and the piston is descending with a velocity 

V cm./sec. How much heat energy must be conducted through the cylinder 

walls per second for the compression to be isothermal at this instant? If 

the effective area of the walls is 240 cin.^ and their thickness 1 cm. and if 

the temperature inside the cylinder is to be maintained only 0.1 °C. above 

that outside, how large can v be? (1 joule = 0.24 cal.; heat conductivity 

of the walls = A cal./sec.-cm.-°C.) 

14. Three and two-tenths grams of oxygen is contained in a cylinder 

closed with a movable piston. Initially the pressure is 1 atm. and the 

volume is 1 liter. The gas is heated at constant pressure until the volume 

is doubled. Then it is heated at constant volume until the pressure is 

doubled. It is finally expanded adiabatically until the temperature drops 

to its initial value. 

o. Draw a p-F diagram showing the stages of this process. 

b. Calculate the heat added to, the work done by, and the change in 

internal energy of, the gas for each change. (Express your answer in calories.) 

The molecular weught of oxygen is 32. R = 8.31 X 10^ergs/°Abs. =0.082 

liter-atm./°Abs. ~ 2 cal./®Abs. The molal heat capacity of oxygen at con¬ 

stant volume is 5 cal./®Abs. 

16. Prove that the velocity of sound in air is proportional to the square 

root of the absolute temperature. Show that the proportionality constant 

is equal numerically to 2.01 X 10®, if the velocity is expressed in centimeters 

per second and the temperature in Centigrade degrees on the Absolute scale. 

16. If the velocity of sound in air at To° Abs. is Wo, show that the velocity 

changes by an amount Aw due to an increase of temperature At given by 

Aw _ 1 Ai 

Wo 2 7’o 

From this show that the velocity of sound in air increases about 2 ft./sec. 

for each degree Centigrade rise in temperature. 

17. Starting with a model of an ideal gas as a collection of mass points 

contained in a cubical box of side L, carry through a derivation of the equa¬ 

tion of state. For this purpose assume that one-third of the mass points 

move back and forth along the a>-axis, one-third along the p-axis, and one- 

third along the 2^-axis. 
18. Calculate the average velocity of an argon atom at room temperature. 

At what temperature Centigrade is this velocity one-half its value at room 

temperature? 



352 INTRODUCTION TO MECHANICS AND HEAT 

19. According to the Maxwellian distribution of velocities, the number of 
molecules having velocities lying between the velocity v and the velocity 
V + dvi^ given by 

times the velocity range dv. m is the mass of one molecule, fc Boltzmann^s 
constant, and v the number of molecules per cubic centimeter. Make a 
graph of <p{v) as ordinates vs. v as abscissas for hydrogen at 27°C. From 
this graph determine the velocity which is possessed by more molecules 
than any other velocity. 



CHAPTER XXI 

THE PROPERTIES OF REAL GASES 

In this chapter we shall examine the behavior of real gases, and 
especially the behavior under the conditions under which they 
depart widely from the behavior of perfect gases. The latter, as 
we have seen, must always remain gaseous, i.e., an increase of 
pressure at any temperature simply reduces the volume of the 
gas. Similarly, a reduction of temperature at constant pressure 
reduces the volume. In the case of real gases it is quite possible 

that an increase in pressure may produce condensation, t.e., 
formation of the liquid, and further increase of pressure may, 

indeed, produce solidification. It is easy to see from the atomic 

picture why an ideal gas can never form a liquid. An ideal gas 

the internal energy of which does not depend on its volume is 
thought of as an assembly of atoms or molecules which exert no 
forces on each other. In order to account for the properties of 
liquids or solids we must demand that the molecules e;?cert forces 

on one another so that the substance has internal potential as well 
as kinetic energy. The elastic properties of liquids and solids, 
and the free-surface and surface-tension phenomena of the former, 
are direct evidence for the existence of these forces. 

136. Isotherms of a Real Gas.—^Let us plot an isotherm of 

a real gas at such a temperature that condensation takes place. 
At low pressures and correspondingly large volumes the gas 
behaves very nearly like a perfect gas and satisfies Boyle's law, 

pF == constant. As the pressure is increased we reach a point 
A where liquid starts to form (Fig. 131). We now find that an 
attempt further to increase the pressure causes more liquid to 

form, and a decrease in volume takes place. The pressure does 
not increase but stays constant as long as liquid and gas are 

simultaneously present in the vessel. If we compress the mixture 

further, more and more liquid forms until all the gas has been 

changed to liquid and the liquid occupies the volume correspond¬ 
ing to the point B in Fig. 131. During this condensation process, 

353 
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heat is liberated and must be removed to keep the temperature 
constant. We shall discuss this evolution of heat in a later 
section. For the present we need only mention that this loss of 
heat energy of the system represents a decrease of the potential 
energy of the molecules. Careful experiments on the Joule 
effect, z.e., free-expansion experiments, yield evidence for the 
existence of these attractive forces between the molecules of a 
gas. It is found that all gases cool down upon such a free expan¬ 
sion. This means that work must be done on the gas in pulling 
the molecules of the gas apart so that they fill a larger volume. 
Since no heat enters or leaves the system, the kinetic energy and 

hence the temperature of the gas decrease. This cooling by free 
expansion is utilized in processes for the manufacture of liquid air. 

137. Condensation Processes.—^Let us examine the process of 
condensation more closely. During such a process, or more 
generally, whenever a liquid is in equilibrium with its vapor, i.e., 
the gas, there exists a pressure of the vapor known as the mpor 
pressure of the liquid. This vapor pressure for a given substance 
depends only on the temperature. Imagine a liquid placed in an 
evacuated vessel maintained at a definite temperature. Evapo¬ 
ration of the liquid takes place and just enough liquid evaporates 
to build up the vapor pressure corresponding to the temperature 
at which the system is maintained. 

Suppose, on the other hand, that we place an open vessel of 
liquid in a closed vessel in which there is a different gas from the 
vapor of a liquid such as air. The same evaporation process 
takes place as in an evacuated vessel and continues until the 
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pressure of the vapor alone, the so-called partial pressure of the 
vapor, becomes equal to the vapor pressure corresponding to that 
temperature. The total pressure in the vessel is then the sum 
of the vapor pressure and the external pressure.* Thus a glass 
of water placed in a room evaporates until either the partial 
pressure of water vapor in the room equals the vapor pressure 
of water at the temperature of the room or until all the water 
evaporates. If enough water evaporates for the vapor pressure of 
water vapor to exist in the room at a given temperature, we say 
that the air is saturated with water vapor. When this state is 
reached, there is a definite concentration of water vapor in the 
air, usually measured in grams per liter, which we denote by 
C*. The concentration of water vapor C in air measures the 
so-called absolute humidity at any temperature. The relative 
humidity at any temperature is defined as 

^ X 100 

and is measured in per cent. One hundred per cent relative 
humidity corresponds to a saturated state. 

When a liquid is in equilibrium under the pressure of a foreign 
gas, i.e.j under an external pressure, w^e define the boiling point of 
the liquid at a given pressure as the temperature at which the 
vapor pressure of the liquid just equals the external pressure on 
the liquid. Thus we may write 

Tb = f(p) 

i.c., the boiling point of the liquid is a function of the external 
pressure, and it increases with increasing pressure. 

We have already mentioned the fact that during a condensation 
process heat is liberated. The heat liberated per unit mass of the 
condensing gas is called the latent heat of vaporization of the 
substance. Similarly, when a liquid is vaporized, the latent heat 
of vaporization must be supplied per gram of the liquid to effect 
this vaporization process. This latent heat is a function of 
temperature, so that we may write 

L^f(T) 

* The law which states that in a mixture of gases the total pressure is the 
sum of the pressures which each constituent would exert if alone is known as 
DoJlUm^s law. It is valid for comparatively low pressures. 
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An exactly similar evolution or absorption of heat occurs during 
the process of solidification or of melting. In this case we speak 
of the latent heat of fusion of a substance. 

Finally, we must remember that the vapor pressure of a liquid 
is a function of the temperature, and it increases with increasing 
temperature. It can be shown that the change of vapor pressure 

with temperature, as indicated in Fig. 132, is determined by the 

equation 

dp _ L 
df " TAv 

where L is the latent heat of vaporization and Av is the change of 
specific volume in the transition liquid to vapor at the tempera¬ 
ture T, This equation is known as the Clausius-Clapeyron 
equation. It cannot be integrated until the temperature depend¬ 
ence of L and Av is known. 

138. The Critical Point.—We have thus far confined our 
attention to the behavior of a real gas at one temperature and 
must now inquire into the question of the change of the isotherms 
as the temperature is changed. As the temperature is raised we 
find the isotherms retaining their general form, but with the 
important difference that the change of volume during condensa¬ 
tion gets smaller and smaller. At a certain temperature there 
is no change of volume, and we can no longer distinguish between 
liquid and gas. This temperature is known as the critical 
temperature. At all higher temperatures no liquid can be formed 
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no matter how much the pressure is increased. We can express 
these statements best by a graph (Fig. 133). 

In this figure we have indicated the point known as the critical 
point. The corresponding pressure is called the critical pressure, 

Vc 

Fig. 133. 

Pc and the corresponding volume the critical volume, Fc. For 
1 gram of CO2 we have the following values 

Pc = 73 atm. 
Ve == 128.4 cm.® 

Tc = 304°Abs. ^ SVC. 

Furthermore, we have divided the pressure-volume diagram into 
three regions corresponding to the existence of only gas, liquid 
and gas, and liquid alone. 

To illustrate the liquid-solid transition we draw a complete 
isotherm at a temperature where liquid-gas and liquid-solid may 

coexist (Fig. 134). 
139, Constant-volume Changes.—To illustrate the interpreta¬ 

tion of the isothermal curves, let us consider the changes which 
occur at constant volume. All such changes carry us on a vertical 
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Fusion 

line in the p-V diagram. Suppose we have a liquid in equilibrium 
with its vapor at temperature T in a closed vessel of volume Vi 
greater than the critical volume Vc- If we heat this liquid at con¬ 

stant volume, we move from 
the isothermal T to isother¬ 
mals corresponding to higher 
temperatures along the vertical 
dotted line through Vi in Fig. 
135, and from this we find that 
the liquid evaporates forming 
more and more gas until we 
reach the temperature corre- 

T=cons+an+ spouding to the isothermal 
. passing through D. At this 

point, all the liquid has dis¬ 
appeared and we have only gas. 

Further heating increases the pressure of the gas. If, how¬ 
ever, we start with our liquid and gas in a vessel of volume 
V2, less than Va we find that upon raising the temperature the gas 
condenses and when the point E is reached all the vapor has 

,.t Condensoj+ion 

Fig. 134. 

disappeared and the vessel is full of liquid. Further heating 
increases the pressure and temperature of the liquid. 

The process of evaporation from an atomic viewpoint consists 
of the faster moving molecules of the liquid escaping through 
the free surface of the liquid. Only those molecules fast enough 
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to overcome the attraction of the remaining molecules ever get 
out of the liquid. As heat is added to the liquid more and more 
molecules acquire kinetic energies great enough to allow their 
escape, and hence the rate of evaporation increases. The work 
done by the attractive forces holding a liquid together on an 
escaping molecule is equal to the change of kinetic energy of the 
molecule and is the increase of potential energy of the system. 
This work is the heat of vaporization. As an example, water has 
a latent heat of vaporization 

L ^ 500 cal./gram at 100®C. 

In ergs per cubic centimeter this is about 

500 cal./cm.^ = 2 X 10^® ergs/cm.^ 

Now let Pi be the pressure which would produce the same force 
per unit area on the molcules at the surface as the attractive 
forces of the other molecules do. We call this pressure the 
internal pressure of the liquid. If there are v molecules per 
cubic centimeter, in a layer of liquid at the surface of area A A 
and thickness 5 there are 

molecules 

The force acting on these molecules due to the internal pressure is 
p. A.A p ’ 

Pi X AA, and the force on one of these molecules is - - ,, .— = ~ 
vd^A vb 

The work done in moving one of these molecules from the bottom 
face of this surface layer to the top face is accordingly 

and hence the work per cubic centimeter is 

™ X r - = 2 X 10^® ergs/cm.-"* == 2 X 10^® dynes/cm.^ 

^ 20,000 atm. 

This is the order of magnitude of the enormous internal pressures 

of liquids. 
140. Kinetic Theory of Real Gases; Van der Waals’ Equation. 

There are two major improvements which we must make in our 
elementary atomic theory of a gas. In the first place we must 
make a correction in our theory for the finite volume of the gas 
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molecules, and secondly we must introduce the molecular inter¬ 
action forces without which no explanation of the formation of a 
liquid may be obtained. 

According to the equation of state of an ideal gas it is possible 
to make the volume of the gas as small as we like by increasing 
the pressure sufficiently. In the case of real molecules the volume 
of the gas must approach a finite value instead of zero as the 
pressure gets infinitely great. Thus we may write 

V —^b as p —> 00 

so that we must replace F by F — 6 in the equation of state of the 
ideal gas. 

The attractive forces cause the gas to behave as if it were 
subjected to an additional pressure, an internal pressure p» 
similar to but much smaller than that in a liquid. Thus we 
must replace p in the ideal-gas equation by p + pt, and, including 
the volume correction, this becomes 

(p + Pi)(V ~ 6) - nRT 

The internal pressure pi increases as the density of the gas 
increases. Consider the molecules near the surface of the 
container. The attractive force on one molecule there increases 
proportional to the density of the gas since there are proportion¬ 
ally more molecules exerting this force. The total force on all 
the molecules near the surface is again proportional to the 
density due to the proportionate increase of the number of 
molecules near the surface. Thus 

Pi ~ 

and, since the density varies inversely as the volume for a given 
mass of gas, we may write 

1 a 
Pi or P ^ y2 

Thus our corrected equation of state becomes 

(p + - &) = riRT 

which is known as Fan der WaaW eqvMion 
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Plotting an isotherm we obtain Fig. 136. The portions of the 
curve Xj Y are unstable physically since they represent the case 
of decreasing volume and decreasing pressure. According to the 
second law of thermodynamics, which we shall next briefly 
discuss, we must draw the line 1,2,3 so that the two shaded areas 

are equal in order to represent the behavior of a real substance, 
and thus we find the type of isotherm experimentally observed. 

Van der Waals' equation is only an approximation to the real 
equation of state, but further refinements of this theory would 
tahe us beyond the scope of this book and we shall content our** 
selves with this second approximation to the real state of affairs. 

Problems 

1. The specific volume of steam at 100°C. and atmospheric pressure is 
1,640 cm.>, and the latent heat of vaporization of water is 636 cal./gram 

under these conditions. 
a. Calculate the work done on 1 cm.^ of water as it changes from liquid 

to gas at 100°C. and atmospheric pressure. 
h. Calculate the increase of internal energy of this amount of water during 

boiling. ^ r • i. 
2. How much heat in calories is necessary to change 1 gram of ice at 

-10°C. to steam at 120°C. at atmospheric pressure? The specific heat 



362 INTRODUCTION TO MECHANICS AND HEAT 

capacity of ice is 0.50 cal./gram-°C. and that of steam at constant pressure 
is 0.48 cal./gram-'^C. 

3. The concentration of water vapor in air when the latter is saturated 
is given by the table 

Tempera- Concentration, 
ture, °C. Grams/Cubic meter 
-10. 2.15 
0. 4.84 
10. 9.33 
20. 17.12 
30. 30.04 
40.1. 50.63 

When the air in a room at 25°C. is cooled to 5®C., water starts to condciiise 
out of the air. Calculate the relative humidity in the room. Plot a graph 
of the above data and interpolate. (The temperature at which the water 
starts to condense is known as the dew 'point.) 

4. A piece of ice at 0°C. falls from rest into a lake of water at 0°C., and 
0.1 per cent of the ice is melted. Calculate the height through which the 
ice falls. The latent heat of fusion of ice is 80 cal./gram. 

6. A copper bar 15 cm. long and of 6.0 cm.^ cross section is placed with 
one end in a steam bath and the other in a mixture of ice and water at 
atmospheric pressure. The sides of the bar are thermally insulated. How 
much ice melts in 2 min.? How much steam condenses in this time? The 
thermal conductivity of copper is 0.90 cal./cm.-sec.-°C. 

6. A copper vessel weighing 60 grams contains 250 grams of water and 
10 grams of ice at 0°C. Dry steam at 100°C. is condensed in this water 
until the temperature of the mixture is 30°C. C'alculate the final weight of 
the calorimeter and its contents. The specific heat capacity of copper is 
0.09 cal./gram-°C. 

7. A copper calorimeter weighing 100 grams contains 150 grams of water 
and 8 grams of ice at 0°C. A 100-gram piece of lead at a temperature of 
200°C. is dropped into the calorimeter. Calculate the final temperature of 
the mixture. 

8. A mixture of ice and water stands in a calorimeter. How much steam 
at 100*^0. must be condensed to melt 200 grams of ice? 

9. One pound of water, when boiled at 212°F. and atmospheric pressure, 
becomes 26.8 ft. ^ of steam. The latent heat of vaporization at this tempera¬ 
ture is 970 B.t.u./lb. (1 B.t.u. = 778 ft.-lb.) 

o. Compute the external work done in the process, in foot-pounds. 
5. Compute the increase in internal energy of the water, in B.t.u. 
10. A 2-kg. steel shell at temperature 200°C. and velocity 400 meters/sec. 

is fired into an iceberg at 0°C. How much ice melts due to this cause? 
(Specific heat of steel « 0.10.) 

11. A 200-gram block of ice at — 40'^C. is placed in 100 grams of water at 
5°C. Wliat happens? Find the resulting temperature. 
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12. A sheet of ice 1 cm. thick has frozen over a pond. The upper surface 
of the ice is at —20^0. At what rate is the thickness of the sheet of ice 
increasing? 

13. The specific volume of a liquid such as water is extremely small com¬ 
pared with the specific volume of the vapor. If one neglects the former 
compared with the latter, the Clausius-Clapeyron equation becomes 

dp _ 
If " Tv, 

where v, is the specific volume of the water vapor. Assuming that the 
latter is determined by the equation of state of an ideal gas and that the 
latent heat L is constant, independent of temperature, integrate this equa¬ 
tion to find a relation between the vapor pressure of water vapor and the 
temperature. 

14. Solve Prob. 13 for water vapor where 

L - 764 — 0.67' cal./gram 

where T is Absolute temperature. Cahnilate the vapor pressure of water 
vapor at 80°C. (The vapor pressure of water vapor at 100°C. is 1 atm.) 

16. Discuss with the help of a diagram the constant-pressure changes in a 
real gas: 

а. Wl»en tlie ])ressure is above the critical pressure. 
б. When the pressure is })elow the critical pressure. 
16. A cylinder contains water vapor at 200°C. and at atmospheric pres¬ 

sure. Heat is taken from the vapor steadily until the temperature falls to 
-- 10‘^C., while the pressure is kept constant by reducing the volume. Sketch 
a curve showing the approximate relation between volume and temperature. 

17. An open vessel contains 500 grams of ice at — 20'^C/., and heat is 
imparted to the vessel at the constant rate of 1,000 cal./min. for 100 min. 
Plot a curve showing elapsed time as abscissas and temperature as ordinates, 
assuming the vessel gives no heat to surrounding bodies. 



CHAPTER XXII 

THE SECOND LAW OF THERMODYNAMICS 

The law of conservation of energy as expressed in the first law 
of thermodynamics places heat energy on an equal footing with 
all other forms of energy. In so doing many processes are 
pronounced possible which do not happen in reality. Heat 
energy is a unique form of energy, and this uniqueness which 
places definite restrictions on the processes which may occur in 
nature forms the basis for the second law of thermod3mamics. 

A few examples may help to clarify the above statements. A 
rotating flywheel left to itself will gradually slow down and stop. 
During this process the bearings are heated, and according to the 
first law of thermodynamics the loss of kinetic energy of the 
wheel is just equal to the heat supplied to the surroundings in the 
process of stopping the wheel. Such a process is very usual and 
common, but no one has ever seen a flywheel at rest suddenly 
start rotating, gaining kinetic energy while the bearings get 
cooler. This seemingly absurd process would not violate the first 
law as we need only require that the heat energy lost is gained by 
the wheel in the form of kinetic energy of rotation. As another 
example, consider the changes which occur when a stone falls off 
a roof. Upon hitting the ground its kinetic energy is turned into 
heat. The reverse process in which a stone lying on the ground 
at rest suddenly jumps up to the roof while the ground cools off 
is one which might occur according to the first law but which 
never happens. The reader can supply innumerable further 
examples. 

In all these processes which result in an evolution of heat, energy 
is conserved, but one has the feeling that something has been 
lost. The internal energy of a piece of metal is not so available 
for doing work as the kinetic energy of this piece of metal when it 
is in motion. The quantitative formulation of the second law of 
thermodynamics consists of laying down a measure for this 
degradation or loss of availability of energy. 

141. Reversible and Irreversible Processes.—Before we 
proceed further with our discussion of the second law, we must 
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carefully discriminate between reversible and irreversible processes. 
A process is said to be reversible or quasi-static when it occurs so 
slowly that, at any point of the change, equilibrium conditions 
prevail. Our equilibrium equations then describe the state of 
the system at each instant of time. An example may help to 
clarify the distinction between reversible and irreversible changes. 
Let us consider the adiabatic expansion of a gas from a volume 
Fi, pressure pi to a volume F2. Suppose the gas is initially in a 
flask of volume F1 which is connected by means of a stopcock to 
an evacuated flask, so that the total volume of both flasks is F2. 
If we open the stopcock, the gas rushes from one flask to the 
other, turbulence ensues, and eventually thermal equilibrium 
within the gas is attained. No external work has been done by 
the gas and we have a typically irreversible process. The total 
energy of the expanded gas is equal to the energy of the com¬ 
pressed gas, but there has been a definite loss of the ability of the 
gas to perform work due to this irreversible expansion. 

On the other hand, let us suppose that the gas is initially 
contained in a metal cylinder which is thermally insulated and 
which is fitted with a tight frictionless piston. If we now allow 
the expansion to proceed very slowly by keeping the external 
pressure on the piston only infinitesimally less than the pressure 
of the gas, the moving piston may do work and indeed the maxi¬ 
mum amount of work attainable in such an adiabatic expansion 
is obtained by this reversible expansion. 

142. The Camot Cycle.—We may now give a verbal statement 
of the second law. One of the formulations given by Lord 
Kelvin is as follows: There is no natural process the only result of 
which is to cool a heat reservoir and do work as exemplified by 
raising a weight. Another statement we shall expand on in some 
detail is: Heat energy cannot be transformed into work with 100 per 
cent efficiency by a heat engine which carries a substance called the 
working substance through a cyclic process. 

By a cyclic process we mean a series of changes of the working 
substance such that it is returned at the end to its initial state. 
We shall now investigate the efficiency of such a thermodynamic 
engine, which we shall imagine as perfectly free from friction and 
in which all the changes occur reversibly. In so doing we shall 
get an upper limit to the efficiency of a real engine. As our work¬ 
ing substance we choose an ideal gas and carry this gas through a 
cycle known as a Carnot cycle. This process is to take place as 
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follows: Our gas initially of volume Fi, pressure pi, and tem¬ 
perature Ti is allowed to expand reversibly and iso thermally to a 
volume V2 and pressure p2. During this process an amount of 
heat Qi is absorbed by the gas from a heat reservoir at the 
temperature Ti. Next we allow a reversible adiabatic expansion 
to a volume Fa, pressure ps, and temperature T2 lower than Ti, 
The gas is then compressed isothermally at this temperature T2 

to a volume F4, pressure p4, and during this compression it gives 
up a quantity of heat Q2 to a heat reservoir at the lower tempera¬ 
ture T2. Finally an adiabatic reversible compression returns the 

gas to its original state, i,e.y to a volume Fi, pressure pi, and 
temperature Ti, 

The net result of this cycle has been to absorb a quantity of 
heat Qi at a temperature Ti, give off a quantity of heat Q2 at a 
temperature T2f and the gas does a total amount of work TF on its 
surroundings. The efficiency of this engine is then the ratio of 
the work done by the gas to the heat energy taken in at the higher 
temperature Ti, Of course the cycle may be repeated as many 
times as desired. 

We next make a diagram of such a cycle on a p-F plot (Fig. 
137). Now the work done by the gas in the isothermal expansion 
is 
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Wu^nRT^ln^ (1) 
y 1 

and, during the isothermal compression, it is 

TF34 = nRT^ In ^ (2) 
• V 3 

The work done by the gas in the adiabatic expansion F2 —> F3 is 
equal to the work done on the gas in the adiabatic compression 
F4 Fi, so that there is no contribution to the total work done 
by the gas from the adiabatic processes. We see this most 
easily as follows: During an adiabatic change, work is done at 
the expense of the internal energy of the gas only. Since the 
internal energy of a perfect gas depends only on its temperature, 
the changes in internal energy going from Ti to Ti and back 
from T2 to Ti must be equal and opposite. 

Thus the total work done by the gas in the cycle is obtained by 
adding Eqs. (1) and (2), and this sum may be written as 

W = nR(Ti In “ ^2 In ^ ) (3) 

We shall now show that the ratios F2/F1 and F3/F4 are equal. 
During an adiabatic change there exists a relation between tem¬ 

perature and volume given by 

jiyCv = constant 

Thus, for the adiabatic expansion, 

R R 

and, for the adiabatic compression, 

R R 

Dividing Eq. (4) by Eq. (5) there follows: 

Vt_Vs 
Vi ~ F4 

(4) 

(5) 

which equality we set out to prove. 
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Thus Eq. (3) may be written in the form 

W = nRTi In 
y 1' 

There remains now only the task of calculating Qi, the heat 
absorbed from the reservoir at the higher temperature Ti during 
the isothermal expansion. During this expansion dE = 0, so 
that the first law yields 

dQi = pdV 

or 

■ = j pdr==nRT,i y-== nRT, In (7) 

Dividing Eq. (6) by Eq. (7), there follows for the efficiency of our 
ideal engine 

^ Tl — T2 /Q\ 

Efficiency = ^ — (8) 

Thus we see that the efficiency is always less than 100 per cent 
and that it depends only on the two operating temperatures 
Ti and T2. It turns out to be generally true for any working 
substance carried reversibly in a Carnot cycle that Eq. (8) gives 
the efficiency of the conversion of heat into mechanical work. 
Of course, in a real engine the efficiency of conversion will be less 
than that given by Eq. (8) since the latter is derived for ideal 
conditions which may never be exactly realized in practice. 
Thus we may write 

Efficiency ^ ~(9) 
i 1 

as the efficiency of any heat engine which converts heat energy 
into work by carrying a working substance in a cyclic process 
between the temperatures Ti and T2- 

143. Entropy.—There is an elegant and important formulation 
of the second law of thermodynamics which we must briefly 
mention although we can but indicate its utility. We postulate 
that there is a quantity which we call the entropy of a body which, 
like the internal energy, depends only on the state of the body. 
It is defined as follows: If during an infinitesimal reversible change 
an amount of heat dQ is absorbed by a body, the increase of 
entropy dS of the body is equal to the heat absorbed divided by 
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the temperature at which this change occurs. Thus 

d-S = ^ (10) 

and the second law then may be formulated in the statement that 
in any isolated system every change which takes place is accom¬ 
panied by an increase of entropy of the system, or at best by a 
zero change in entropy. The entropy of an isolated system can 
never decrease. 

It must be emphasized that Eq. (10) holds only for reversible 
changes. Thus, in our example of the irreversible adiabatic 
expansion of a gas, there is an increase of entropy of the gas 
although no heat is absorbed. On the other hand, in a reversible 
adiabatic change the change of entropy is zero. 

We shall as a last example show how this formulation of the 
second law works for the Carnot cycle. All the changes are 
reversible so that we may use f]q. (10) to calculate the change of 
entropy. Since the working substance is carried through a 
cycle back to its initial state, the sum of all the changes of entropy 
of the working substance is zero. This follows from the fact 
that the entropy depends only on the state of the body. 

During the isothermal expansion, we have 

where Qi is the total heat absorbed at the constant temperature 
Ti. During the adiabatic changes there is no change of entropy 
since dQ = 0, and they are reversible changes. 

During the isothermal compression, 

{ASh = ^ “fI 

if Q2 is the heat given off (the negative of the absorbed heat) at Tj. 
Thus we must have, according to the second law, 

- I; = 0 (11) 

To attain our former result we must use the first law. Since in 
the cycle the change of internal energy of the working substance 

is zero, we must have 

Qi - Q* - W" = 0 (12) 
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Solving for Qz, we obtain 

Q2-Q1-W 

so that Eq. (11) becomes 

whence there follows that 

W T, _Ti-T2 
Qi Ti Ti 

(13) 

which is identical with Eq. (8). In this proof we have not used 
the properties of an ideal gas so that it is more general than the 

one previously given. 

Problems 

1. One mole of a monatomic ideal gas at pressure p, volume F, is heated at 
constant pressure until its volume is doubled and then heated at constant 
volume until its pressure is doubled. Sketch the path followed in a diagram 
in the p- V plane. Calculate the heat absorbed and the work done on the gas 
in both parts of the process, and from this find the change in internal energy 
of the gas. 

2. Carry out the same calculation as in Prob. 1, except that the gas is 
first heated at constant volume until the pressure is doubled and then heated 
at constant pressure until the volume is doubled. Show that the change in 
internal energy is the same as in Prob. 1. Is the total heat absorbed the 
same as in Prob. 1? Explain. 

3. Carry the mole of ideal gas in Prob. 1 from its initial to its final state 
by first letting it expand isotherm ally until its volume is doubled and then 
carrying it to the final state by a process at constant volume. Make the 
same calculations as in Prob. 1, 

4. Carry the mole of ideal gas in Prob. 1 from its initial to its final state 
by first compressing it isothermally until its pressure is doubled and then 
carry out a constant-pressure process to reach the final state. Make the 
same calculations as in Prob. 1. 

6. Repeat Prob. 3 with an adiabatic instead of isothermal expansion 
for the first process. 

6. Repeat Prob. 4, using an adiabatic instead of isothermal compression 
for the first process. 
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7. One mole of a substance is heated reversibly from a temperature Ti 
to a temperature T2 (a) at constant pressure, and (6) at constant volume. 

Show that the changes of entropy are 

(а) AS = f^C,dT/T 

(б) AS = j^"CvdT/T 

Calculate the increases of entropy per mole of an ideal monatomic gas heated 

reversibly from 0° to 300°C. 

8. Show that the entropy per mole of an ideal gas is given by 

S 
(C, dT + p dV) 

T 

Using the ideal-gas equation to express p/T in terms of F, integrate this 

expression. Show that, when S — constant, the relation obtained is 

identical with the relation between temperature and volume for an adiabatic 

process. 

9. Consider a mole of a monatomic ideal gas carried from a volume F, 

pressure p to a volume 2F, pressure 2p by the processes described in Probs. 

1 to 6. Calculate the entropy change in several of these processes, and 

show that it does not depend on the particular process. 

10. a. A Carnot engine, whose high-temperature reservoir is at 127°C., 

takes in 100 cal. at this temperature in each cycle and gives up 80 cal. to 

the low-t(iinperature reservoir in each cycle. Find the temperature of the 

latter reservoir. 

h. A Carnot engine, whose low-temperature reservoir is at 7°C., has an 

efficiency of 40 per cent. It is desired to raise this value to 50 per cent. 

By how much must the temperature of the high-temperature reservoir be 

increased? 





APPENDIX 

TABLES OF PHYSICAL CONSTANTS 

Densities 

(grams/oni.3) 

T )en- 
Substance 

sity 
Substance Density 

Aluminum. 2.7 Ethyl alcohol at 0°C. 0.81 

Brass. 8.6 Benzene at 0°C. 0.90 

Copper. 8.9 Water at 0°C. 1.00 

Gold. 19.3 Ether at 0°C. 0.74 

Ice at 0°C. 0.92 Glycerin at O'^C. 1.26 

Iron. 7.8 Air at 0°C.; 76 cm. 1.3 X 10-3 

Lead. 11.3 Argon at 0°C.; 76 cm.... 1.8 X 10-3 

Nickel. 8.8 CO2 at O^'C.; 76 cm. 2.0 X 10-3 

Platinum. 21 .4 He at 0°C.; 76 cm. 0.18 X 10-3 

Silver. 10.5 H2 at 0°C.j 76 cm.. . . 9 X 10-3 

Steel. 7.8 No at 0°C.; 76 cm. 9 X 10-* 

Tin. 7.3 Nj at 0°C.;76cm. 1.25 X 10-3 

Zinc. 7.1 O2 at 0°C.; 76 cm. 1.4 X 10-3 

Mercury. 13.6 

Thermal Conductivities 

k (caL/cm.-sec.-°C.) 

Aluminum. 0.5 Lead.... 

Brass. 0.26 Mercury 

Copper. 0.95 Steel.... 

Glass. 0.002 Silver... 

Gold. 0.7 Tin. 

Iron.. 0.16 Water. . 

Ice. 0.005 Zinc. 

0.08 

0.02 
0.11 
1.0 
0.15 

0.0013 

0.26 

373 
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Thermal Expansion Coefficients 

Linear coefficient 

d
 

o 

)->] Volume coefficient ^ [(°C.)-^] 

Aluminum. 2.3 X 10~® Alcohol. 101 X 10”5 

Brass. 1.9 X 10“® Glass. 2.5 X 10-5 

Copper. 1.7 X 10-^ Mercury. 18 X 10-5 

Goici. 1.4 X 10“® Water. 37 X 10-5 

Iron. 1.1 X lO-*^ 

Lead. 2.9 X 10-^ 

Platinum. 0.9 X 10-5 

Quartz. 0.057 X 10“*^ 
Silver. 1.9 X 10-5 

Steel. 1.3 X 10-5 

Tin. 2.2 X 10-‘ 

Specific Heat Capacities 

c (cal./gtti.-°C.) 

Alcohol. 0.6 Iron. 0.11 

Aluminum. 0.22 Lead. 0.03 

Brass . 0,09 Mercury. 0.03 

Copper . 0.09 Silver. 0.06 

Glass. 0.17 Tin. 0.05 

Gold. 0.03 Water. 1.0 

Ice. 0.49 Zinc. 0.09 

P^LASTic Constants 

Young^s modulus 
Poisson’s 

ratio 
or 

Torsion modulus 

E(lb./in.2) 
JS'(dynes/ 

cm.2) 
A.(lb./in.») 

M (dynes/ 

cm.*) 

Aluminum. 10 X 105 7 X 1011 0.33 3.4 X 10» 2.4 X 10“ 
Copper. 16 X 105 12 X 1011 0.34 6 X 10» 4.2 X 1011 

Steel. 30 X 105 20 X 10“ 0.28 11.8 X 10« 8.2 X 10i‘ 

Compressibility 

(Atmospheres)"^ 

Alcohol. 

Ether. 

Mercury. 
Water.. 

95 X 10-« 

170 X 10"« 

3.9 X 10-« 

49 X 10“^ 
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SuBFACB Tension 

a (dynes/cm.) 

at room temperature 

Alcohol. 22 

Ether. 16 
Mercury. 500 

Soap solution. 26 

Water. 72 

Coefficients of Viscosity 

ri (dyne-sec./cm.2) 

at room temperature 

Glycerin. 11 

Water. 0.01 

Heavy oil. 4 

Air. 180 X 10“® 

Mercury. 0.015 

Miscellaneous Constants 

Gravitational constant. 

Ice point (absolute scale).... 

Q. 
joules/calorie. 

Avogadro’s number. 

Boltzmann’s constant. 

Latent heat of fusion of water 

Latent heat of vaporization 

of water. 

Gas constant R. 

Velocity of sound in air at 

20°C. 

Atmospheric pressure. 

6.66 X 10“® c.g.s. units 

273.18 ®Abs. 

980.7 cm./sec.* 

4.185 

6.06 X 10*^ per mole 

1.37 X 10”^® erg/°Abs. 

80 cal./gm. 

536 cal./gm. 

8.31 X 10^ ergs/°Abs. - 

0.082 liter-atm. /°Abs. ~ 

1.99 cal./°Abs. 

1,130 ft./sec. = 344 meters/sec. 

76 cm. of Hg = 14.7 lb./in.* 

^ 10® dynes/cm.* 
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A 

Abscissp.s, axis of, 11 

Absolute humidity, 355 

Absolute reference system, 53, 123 

Absolute system of units, 61^. 

Absolute temperature scale, 310-311 

Accelerated reference system, 124 

Acceleration, angular, 26, 43 

average, 15 

central and tangential, 42 

of gravity, 62 

altitude variation, 212^. 

latitude variation, 125 

instantaneous, 21 

in particle plane motion, 35, S7ff, 
Acoustic waves, velocity of, 2S5ff. 
Action, at a distance, 54 

and reaction, 51-52 

Adiabatic changes for ideal gases, 

340jf. 

Adiabatic compressibility, 343 

Amplitude, simple harmonic motion, 

111 
wave, 281 

Angle of contact, 229 

Angular acceleration, 43 

average and instantaneous, 26 

Angular coordinate, 39 

Angular frequency. 111 

Angular harmonic motion, 191^. 

Angular impulse-angular momen¬ 

tum theorem, 199 

Angular momentum, 196 

conservation of, 198 

Angular motion, 26ff. 
Angular position, 25 

Angular velocity, 43 

average, 26 

of a particle, 39 

as a vector, 194J^. 

Archimedes^ principle, 223-224 

Atomic method in physics, 321^. 

Atomic structure of matter, 218 

Atwood^s machine, 82, 187 

Avogadro^s number, 346 

Avogadro's principle, 218 
Axis of rotation, instantaneous, 177^. 

B 

Ballistic pendulum, 104 

Beats, 295ff, 
Bernoulli, 345 

Bernoulli's principle, 239^’. 

applications of, 241 

Body forces, 220 

Boiling point, 355 

Boltzmann, 345 

gas constant of, 347 

Boyle ^8 law, 309 

B.t.u., 325 

Bubbles, excess pressure in, 230-231 

Bulk modulus, 271 

Buoyant force, 223 

C 

Calorie, gram, 325 

Calorimeter, water, 327 

Capillary rise, 228-229 

Carnot cycle, 365^. 

efficiency of, 368 

Center, of gravity, 154 

of mass, 131#. 

motion of, 133 

of oscillation, 192-193 

of percussion, 190-200 

Centigrade temperature scale, 307 

Central acceleration, 42 

Circular motion, 38#. 

Clausius, 345 
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Clausius-Clapeyron equation, 356 

Coefficient, of friction, 55 

of linear expansion, 314 

of restitution, 106^^. 

of surface expansion, 314 

of surface tension, 226^. 

of thermal conductivity, 330 

of torsional stiffness, 194 

of viscosity, 246 

of volume expansion, 310 

Collisions of particles, 106^. 

elastic, 107 

energy loss in, 109 

inelastic, 107 

Components of vectors, 33 

Compressibility, 270ff. 
adiabatic and isothermal, 343 

Compression, simple, 

Condensation, 

Conduction of heat, 330 

Conjugate points of a physical pen¬ 

dulum, 193 

Conservation, of angular momen¬ 

tum, 198 

of energy, general principle of, 323 

of mechanical energy, 94-95 

of momentum, 75ff, 
Conservative forces, 92 

Constrained motion, 71#.— 

Contact, angle of, 229 

Contact forces, 54 

Continuity, equation of, 237-238 

Convection of heat, 330 

Coordinate, angular, 39 

Coordinate systems, dynamical equi¬ 

valence of, 123 

Coordinates, origin of, 8 

of a particle, 9 

Critical point, pressure, tempera¬ 

ture, and volume, 356-357 

Critical velocity, 251-252 

Curvature, radius of, 249 

Cyclic process, 324, 365 

D 

Dalton *s law of partial pressures, 355 

Deformable bodies, 217#. 

definition of, 7 

Degrees of freedom, 8-9 

of rigid bodies, 146#. 

Densities, table of, 373 

Density, definition of, 135 

Dew point, 362 

Dilation, volume, 266 

Discharge rate, 238 

Displacement, of a particle, 9 

in a plane, 35 

Dissipative forces, 92 

Divisions of physics, 1#. 

Doppler effect, 297 

Drops, formation of, 228 

Dynamical measure of force, 61#. 

Dynamical stability, 202 

Dynamics, definition of, 7 

Dyne, 62 

E 

Ear, sensitivity of, 295 

Efficiency of ideal thermodynamic 

engine, 368, 370 

Elastic bodies, forced vibrations and 

resonance of, 294#. 

Elastic collisions, 107 

Elastic constants, 269 

table of, 374 

Elastic deformation, 257 

Elastic solids, equilibrium of, 257#. 

Elasticity, 217 

dynamics of, 278#. 

Energy, conservation of, 94-95, 323 

equipartition of, 347 

internal, 323 

loss of, in collisions, 109 

of a particle, kinetic, 89 

mechanical, 94 

potential, 91 

Energy relations for rigid-body rota¬ 

tion, 172#. 

Entropy, 368-370 

Equation, of continuity, 237-238 

of motion, 17 

of state, 308 

of ideal gas, 311 

Equilibrium, of fluids, 220 

of a particle, 55#. 
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Equilibrium, of rigid bodies, 147^. 

thermal, 305 

Equipartition of energy, 347 

Equipotential surfaces, 95210 

Erg, 89 

Excess pressure in bubbles, 230-231 

Expansion, of gases, 308jf. 

linear coefficient of, 313 

surface coefficient of, 314 

as temperature-measuring device, 

307 

volume coefficient of, 310 

F 

Fahrenheit temperature scale, 307 

Field of force, 20Sff. 
intensity of, 208 

First law of thermodynamics, 323J^. 

Flow, lines and tubes of, 237 

Fluid dynamics, 235^. 

Fluid flow, stationary or steady, 236 

Fluids, equilibrium of, 220 

Force, action at a distance, 49 

buoyant, 223 

concept of, 48j^. 

contact, 49 

dynamical measure of, Qlf. 
field of, 208#. 

of friction, 55 

gravitational unit of, 54 

linear restoring, 114 

lines of, 208 

static measure of, 53-54 

Forced harmonic motion, 116#. 

Forced vibrations, 117, 294#. 

Forces, conservative, 92 

dissipative, 92 

moments of, 147#. 

surface, 258 

surface and body, 220 

work done by, 87#. 

Fourier^8 theorem, 280 

Free expansion of a gas, 337 

Free surface of liquids, 224-225 

Free vibrations, 117 

Frequency of simple harmonic 

motion. 111 

Friction, coefficients of static and 

sliding, 55 

role of, in rolling of rigid bodies, 

181-182 

Frictional force, 55 

Fusion, latent heat of, 356 

G 

Galileo, 3 

principle of, 48 

Gas constant, per molecule, 347 

universal, 312 

Gradient, 210 

Gram, mass, 51 

weight, 63 

Graphs of motion, 11#. 

Gravitation, Newton’s law of, 208 

Gravitational constant, 208 

Gravitational potential, 211 

of a sphere, 211-212 

Gravitational system of units, 62 

Gravitational unit of force, 54 

Gyration, radius of, 168 

Gyroscope, motion of, 200#. 

H 

Heat, atomic picture of, 322 

concept of quantity of, 306 

mechanical equivalent of, 325 

steady flow of, 330 

Heat capacities, 325 

of ideal gas, 347 

relation between, for ideal gas, 338 

Heat capacity, molal, 339 

Heat conduction, 330#. 

Heat current, 331 

Hooke’s law, 114, 268 

for principal axes, 270 

Horsepower, 98 

Humidity, absolute and relative, 355 

Hydraulic press, 222-223 

Hydraulics, 236 

Hydrodynamics, 235#. 

Hydrostatics, 217#. 

law of equilibrium, 220 
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1 

Ideal gas, adiabatic changes of, 340^. 

adiabatic compressibility of, 343 

equation of state of, 338 

isothermal changes of, 339-340 

isothermal compressibility of, 343 

kinetic theory of, 344J^. 

relation of specific heats, 338 

thermodynamic definition of, 337 

velocity of sound in, 344 

Impulse, of a force, 78 

of restitution, 106 

of a torque, 199 

Impulse-momentum theorem, 78 

Inelastic collisions, 107 

Inertia, concept of, 

moment of {see Moment of inertia) 

Initial conditions, 22 

for linear motion, 65 

for plane motion, 68-69 

for simple harmonic motion, 113 

Instantaneous axis of rotation, 177^. 

Intensity of a force field, 208 

Interference of waves, 295ff. 
Internal energy, 323 

of an ideal gas, 337, 347 

Internal pressure, of a gas, 360 

of a liquid, 359 

Irreversible processes, 365 

Isochors, 309 

Isolated systems, 75 

Isothermal changes of ideal gas, 

339-340 

Isothermal compressibility, 343 

Isotherms, 309 

of a real gas, 353#. 

J 

Joule, 325 

Joule effect, 354 

K 

Kelvin, 366 

temperature scale, 311 

Kepler's law, 206 

Kinematics, definition of,^ 

Kinetic energy, of a particle, 89 

of a rigid body, 181 

in rotation, 173 

of a system of particles, 140#. 

Kinetic theory, of ideal gases, 344#. 

of real gases, 359#. 

L 

Laminar flow, 246 

Latent heat, of fusion, 356 

of vaporization, 355 

Latitude, variation of g with, 125 

Length, measurement of, 4#. 

Linear expansion coefficient, 313 

Linear motion, graphical description 

of, 9#. 

Linear restoring force, 114 

Lines, of flow, 237 

of force, 208 

Liquid, free surface of, 224-225 

internal pressure of, 359 

surface tension of, 225#. 

Lissajous figures, 121#. 

Longitudinal strain, 265 

Longitudinal waves, 278 

velocity of, 285#. 

M 

Macroscopic methods in physics, 

320-321 

Mass, center of, 131#. 

concept of, 49#. 

measure of, 5(1-51 

Material bodies, classification of, 6#. 

Maxwell, 345 

Maxwell velocity distribution, 349, 

352 

Mean solar day, 6 

Measurement, of length, 4#. 

of time, 6 

Mechanical energy, conservation of, 

94r-95 
of a particle, 94 

Mechanical equivalent of heat, 326 

Mechanics, definition of, 3 

divisions of, 7 
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Microscopic method in physics {see 
Atomic method in physics) 

Modes of vibration, of closed pipes, 

292 

of open pipes, 291 

Modulus of elasticity, compression 

or bulk, 271 

torsion or shearing, 269 

Young^s or stretch, 269 

Molal heat capacity, 339 

Moment of inertia, 164 

calculation of, 165^. 

about parallel axes, 169^. 

Moments, of forces, 1^7 
of vectors, 195 

Momentum, 49 

angular, 196 

conservation of, 75^. 

Motion, equations of, 17^. 

Newton’s law of, 51-52 

periodic, 110 

quantity of, 49 

rotatory, 110 

simple harmonic, 110 

vibratory, 110 

N 

Natural frequencies of organ pipes, 

291-292 

Newton, 3 

law of gravitation, 208 

laws of motion, 51-52 

for plane motion, ^7ff. 
Nodal lines and surfaces, 299 

Nodes, pressure, 289 

velocity, 290 

Normal stress, 259 

Nutation of a gyroscope, 202 

O 

Orbit, equation of, 69 

Ordinates, axis of, 11 

Organ pipes, closed, 292 

open, 291 

Oscillation, center of, 192-193 

Overtones, 291 

P 

Partial pressure, 355 

Pascal, paradox, 224 

principle, 220 

Pendulum, ballistic, 104 

physical, 191^. 

simple, 104, 

torsion, 193^". 

Percussion, center of, 199-200 

Perfect gas (see Ideal gas) 

Periodic motion, 110 

Periodic waves, 280^. 

Phase, changes in reflection of 

waves, 290 

of simple harmonic motion. 111 

Physical constants, tables of, 373ff. 
Physical pendulum, 191^^. 

conjugate points of, 193 

Physical quantities, definitions of, 4 

Physics, divisions of. Iff, 
Pitot tube, 244 

Plane motion, initial conditions for, 

68-G9 

Newton’s laws for, 67ff, 
of rigid bodies, 146 

Planetary motion, 206ff, 
Poiseuille’s law, 248 

Poisson’s ratio, 265 

Potential, gravitational, 211 

of a sphere, 211-212 

Potential energy, 91 ff. 
Pound, force, 54, 63 

mass, 51 

Power, 97-98 

Precession of a gyroscope, 200^. 

Pressure, 219 

changes perpendicular to stream¬ 

lines, 2i9ff, 
independence of surface orienta¬ 

tion in fluids, 220 

nodes, 289 

resistance, 251 

variation with depth, 222 

Principal axes, Hooke’s law for, 270 

of stress and strain, 270 

Principle of superposition, 280-281 
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Projectile, motion of, 69ff. 
range of a, 70 

Proper frequencies, 298-299 
of organ pipes, 291-292 

Proper functions, 298-299 

Q 

Quantity, of heat, concept of, 306 
of motion, 49 

Quasi-static process, 340 

R 

Radiation of heat, 330 
Radius, of curvature, 249 

of gyration, 168 
Real gases, isotherms of, 353^. 

kinetic theory of, 
Reaumur temperature scale, 307 
Reference systems, Sff, 
Reflection, of waves, phase changes 

in, 290 
and transmission of waves, 292^. 

Relative humidity, 355 
Resonance, 116^., 294ff. 

role in hearing, 295 
Restitution, coefficient of, 106^. 

impulse of, 106 
Reversible processes, 339, 365 
Reynolds number, 252 
Rigid bodies, 7 

combined translation and rotation 
of, 175Jf. 

degrees of freedom of, 146^. 
equilibrium of, 
kinetic energy of, 181 

in rotation, 173 
plane motion of, 146 
rolhng of, 175-176 
rotation about fixed axis, 162/. 
translation of, 160/. 

Rolling and sliding, 183/. 
Rolling rigid bodies, 175-176 

instantaneous axis for, 177/. 
Rotation, effect of earth's on Qy 123/. 

of a rigid body, fixed axis, 162/ 
energy relations for, 172/ 

S 

Second law of thermodynamics, 
364/ 

Shear, simple, 263/ 
Shearing modulus, 269 
Shearing stress, 259 
Sidereal day, 6 
Simple compression or tension, 

strains in, 264/ 
stresses in, 261/ 

Simple harmonic motion, 110 
amplitude, frequency and phase 

of. 111 
initial conditions for, 113 

Simple harmonic waves, 280/ 
Simple pendulum, 104, 119/ 
Simple shear, strains in, 265/ 

stresses in, 263/ 
Simple torsion, 272/ 
Sliding friction, 55 
Slope of a curve, 14 
Slug, 62 
Sound waves, velocity of, 285/ 
Specific heat capacities, 326 

ratio of, 341, 348 
table of, 374 

Specific volume, 312 
Spring balance, 54 
Stability of gyroscopic precession, 

202 
Standing waves, 288/ 
Static friction, 55 
Static measure of force, 53-54 
Stationary fluid flow, 236 
Steady-state motion, 117 
Stiffness coefficient, 114 
Stokes's law, 249 
Strain, 264/ 

general analysis of, 266 
longitudinal and transverse, 265 
principal axes of, 270 
in simple compression and tension, 

264/ 
in simple shear, 265/ 

Streamlines, 237 
Stresses, 257/ 

components of, 268 
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Stresses, normal and tangential, 269 

principal axes of, 270 

in simple shear, 263j^. 

in simple tension and compres¬ 

sion, 261 

thermal, 314 

Stress-strain relations, 268^. 

Stretch modulus, 269 

Superposition, principle of, 280-281 

Surfa(;e energy of liquids, 227-228 

Surface expansion coefficient, 314 

Surface forces, 220, 258 

Surface tension, 225ff. 
coefficient of, 226ff. 

table of, 375 

System of particles, center of mass 

of, 131Jf. 

kinetic energy of, 140^. 

work-energy theorem for, 142^. 

Systems of reference, Sff. 
absolute and accelerated, 123 

dynamical equivalence of, 123 

T 

Tangential acceleration, 42 

Tangential stress, 259 

Temperature, absolute scale of 

310-311 

atomic interpretation of, 347 

concept of, 305 

measurement and scales of, 305^. 

Temperature dependence, of sound 

velocity, 351 

of vapor pressure, 356 

Tension, simple, 261^. 

in a string, 55 

Thermal conductivity, coefficient of, 

330 

table of values of, 373 

Thermal equilibrium, 305 

Thermal expansion coefficients, table 

of, 374 

Thermal stresses, 314 

Thermodynamic definition of ideal 

gas, 337 

Thermodynamic engine, efficiency of 

ideal, 368, 370 

Thermodynamics, first law of, Z23ff. 
second law of, ZMff. 

Thermometers, 307 

Time, measurement and units of, 6 

Torque, 149 

impulse of a, 199 

internal, 164-165 

as a vector, 194^, 

work done by, 173-174 

Torricelli^s theorem, 236, 242 

Torsion of a cylindrical rod, 272ff. 
Torsion modulus, 269 

Torsion pendulum, 193^. 

Torsional stiffness, coefficient of, 194 

Transient motion, 117 

Translation, of rigid bodies, 160^. 

and rotation of rigid bodies, I75ff. 
work-energy theorem for, 179^ 

Transverse strain, 265 

Transverse waves, 270 

velocity of, in a string, 28Sff. 
Traveling waves, 282 

Tubes of flow, 237 

Turbulent motion, 251^. 

Tycho Brahe, 206 

U 

Uncertainty of physical measure¬ 

ments, 6, 7 

Units, absolute system of, 61^. 

c.g.s. absolute, 62 

gravitational system of, 62 

of length, 5 

of time, 6 

Universal gas constant, 312 

V 

Van der Waals' equation, 360 

Vapor pressure, 354 

temperature dependence of, 356 

Vaporization, atomic picture of, 

358-359 

latent heat of, 355 

Variables, dependent and independ¬ 

ent, 17 
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Variation of g with altitude, 212/. 

Vector nature of angular velocity 

and torque, 194/. 

Vectors, algebra of, in a plane, 32/. 

components of, 33 

rate of change of rotating, 39-40 

Velocity, of acoustic waves, 285/. 

angular, 26, 39, 43 

average, 10 

instantaneous, 13 

nodes, 290 

particle in a plane, 35, 37/ 

of sound in an ideal gas, 344 

temperature dependence of, 351 

of transverse waves on a string, 

283/ 

of waves, 278 

Venturi meter, 254 

Vibrations, free and forced, 117 

Viscosity, 245/ 

coefficients of, 246 

table of, 375 

Volume dilation, 266 

Volume expansion coefficient, 310 

Vortex formation, 251 

Vortex motion, some laws of, 253 

Vortex sheet, 250 

W 

Water calorimeter, 327 

Watt, 98 

Wave length, 282 

Wave motion, 278 

Wave velocity, 278 

Waves, equation of, 270/ 

differential form of, 284 

longitudinal and transverse, 278 

periodic and simple harmonic, 

280/ 

phase changes in reflection, 290 

standing, 288/ 

traveling, 282 

velocity of transverse, 283/ 

wave length of, 282 

Weight, definition of, 54 

Work, definition of, 87/ 

done by torques, 173-174 

Work-energy theorem, for combined 

rotation and translation, 179/ 

for a particle, 89/ 

for rotation of a rigid body, 174 

for system of particles, 142/ 

Y 

Young's modulus, 269 








